
UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” 
 

in consorzio con 
SECONDA UNIVERSITÀ DI NAPOLI  

UNIVERSITÀ “PARTHENOPE” NAPOLI 
in convenzione con 

ISTITUTO PER L’AMBIENTE MARINO COSTIERO – C.N.R.  
 STAZIONE ZOOLOGICA “ANTON DOHRN”  

 
 
 

 Dottorato in Scienze ed Ingegneria del Mare  
XVII ciclo 

 
 

Tesi di Dottorato  
 
 

GEOSTATISTICAL MODELS FOR  
ENVIRONMENTAL DATASETS 

 
 
 

Candidato: Dott. Simone Sammartino Relatore: Dott. Mario Sprovieri
 Co-Relatore: Dott. Ennio Marsella
  

 
 

Il Coordinatore del Dottorato: Prof. Bruno D’Argenio 
 
 
 
 
 

ANNO 2005 



______________________________________________________CONTENTS___ 

 1

CONTENTS 

CONTENTS 1 

INTRODUZIONE 4 

INTRODUCTION 7 

CHAPTER 1 10 

THEORY FUNDAMENTALS 10 

1. STATISTICAL INFERENCE 10 
2. GEOSTATISTICS – AN OVERVIEW 12 
3. STRUCTURAL ANALYSIS 14 
3.1 EMPIRICAL APPROACH 15 
3.2 PROBABILISTIC APPROACH 19 
3.3 SPATIAL MODELS 21 
3.3.1 Stationary models 21 
3.3.2 Non stationary models 29 
3.4 GEOSTATISTICAL INFERENCE 32 
3.4.1 Variogram evaluation 33 
3.4.1.1 Nested structures 36 
3.4.1.2 The nugget effect 38 
4. ESTIMATIONS 41 
4.1 THE LINEAR ESTIMATOR 42 
4.2 MINIMIZATION OF ERROR VARIANCE 44 
4.3 KRIGING 47 
4.3.1 The Ordinary Kriging system 48 
4.3.2 Estimation error variance 49 
4.3.3 Main features of kriging 51 
4.3.4 Simple Kriging 52 
4.3.5 Kriging with trend 53 
4.3.6 Kriging of spatial components 56 
4.4 CROSS VALIDATION 57 



______________________________________________________CONTENTS___ 

 2

5. GEOSTATISTICAL SIMULATIONS 60 

CHAPTER 2 62 

GEOCHEMISTRY OF SOUTHERN CAMPANIAN   CONTINENTAL 

SHELF 62 

1. THE SAMPLING PLAN 63 
2. THE DATASET 65 
3. STRUCTURAL ANALYSIS 71 
3.1 CHOICE OF CALCULATION PARAMETERS 72 
3.2 THE TRACE METALS 78 
4. THE ESTIMATION 90 
4.1 NESTED STRUCTURES 91 
4.2 NON NESTED STRUCTURES 96 
4.3 LOG-TRANSFORMED VARIABLES 98 
5. DISCUSSION 101 

CHAPTER 3 103 

OPTIMIZATION OF SAMPLING DESIGNS 103 

1.OPTIMIZATION OF A NEW SAMPLING PLAN 104 
1.1 SYSTEMATIC STRATEGIES 104 
1.2 NON SYSTEMATIC STRATEGIES 106 
1.3 THE EFFECT OF SAMPLING STRATEGY 107 
1.4 THE SIMULATION TEST 108 
1.4.1 The artificial surface 108 
1.4.2  The subsampling procedures 111 
1.4.3 Discussion 119 
2. IMPROVING THE PERFORMANCES OF AN EXISTING SAMPLING PLAN 121 
3. THE CASE OF ‘NUOVA DARSENA’ DOCK 122 
3.1 THE CYCLIC APPROACH 124 
3.2 THE BEHAVIOUR OF NUGGET EFFECT 129 
3.3 DISCUSSION 131 



______________________________________________________CONTENTS___ 

 3

CHAPTER 4 133 

FILTERING SIDE SCAN SONAR MOSAICS 133 

1. FILTERING WITH KRIGING 133 
1.2 THE SIDE SCAN SONAR DATASET 134 
1.3 STRUCTURAL ANALYSIS 137 
1.4 KRIGING OF SPATIAL COMPONENTS 138 
2. DISCUSSION 142 

CONCLUSIONS 144 

REFERENCES 147 

 



_________________________________________________INTRODUZIONE___ 

 4

INTRODUZIONE 

 
Nelle scienze ambientali il modo in cui ogni singolo dato viene elaborato e 

interpretato riveste un ruolo importantissimo per la comprensione della complessità 

dei fenomeni naturali. Il valore misurato di una variabile ambientale è il risultato di 

una miscela di fattori tanto complessa, che può essere ragionevolmente considerata 

come derivante da un processo casuale e quindi modellizzabile in un contenuto 

stocastico. Le metodologie afferenti all’ambito deterministico non sono in grado di 

rappresentare in modo completo il reale meccanismo responsabile della 

distribuzione spaziale di una certa variabile, limitandosi a modellizzare soltanto la 

variabilità intrinseca del sistema, attraverso vincoli matematici (Isaaks and 

Srivastava 1989).  

L’approccio geostatistico è basato sull’assunzione che la variabile è il risultato di 

un processo stocastico, e per questo la definisce come variabile aleatoria. Il suo 

valore misurato è valutato come una possibile realizzazione di una certa funzione 

aleatoria in un certo punto. Ognuna di queste realizzazioni è una variabile aleatoria 

e l’insieme di tali variabili aleatorie, valutate nell’intero dominio spaziale, è definita 

come la funzione aleatoria generante. 

L’analisi variografica e la stima con kriging rappresentano i concetti base 

dell’approccio geostatistico. Una applicazione corretta di tali strumenti, e 

un’accurata interpretazione dei risultati, permettono di comprendere la reale 

struttura di variabilità del sistema e realizzare ogni genere di analisi spaziale, 

finalizzata a simulare il suo andamento e a costruire modelli spaziali adeguati. 

In questo lavoro, oltre ad una discussione dettagliata degli algoritmi che saranno 

utilizzati nelle applicazioni, vengono proposti alcuni esempi di corretto utilizzo 

degli strumenti geostatistici. La teoria presentata è selezionata da numerose fonti 

bibliografiche ed è riorganizzata al fine di fornire un’immagine chiara e più 

completa possibile del significato matematico delle diverse procedure utilizzate. 

Alcuni tra gli algoritmi più noti sono discussi in dettaglio, con la ricostruzione 

completa degli sviluppi matematici. Per alcuni di questi sviluppi sono implementate 

alcune varianti specifiche, come la proposta dell’utilizzo di un intorno unico, 

indipendentemente dalla conformazione della matrice di stima, e della valutazione 
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contemporanea di varianza nugget e varianza di piccola scala nel processo di 

ottimizzazione delle strategie di campionamento. 

L’implementazione dettagliata della variografia e della stima con kriging viene 

prospettata come applicazione sul dataset geochimico relativo ai campioni di 

sedimento marino prelevati nella zona meridionale della piattaforma campana. Una 

analisi variografica accurata ha permesso di discriminare due gruppi principali di 

variabili, tra i metalli in tracce; il primo caratterizzato da una variabilità di tipo 

mono-strutturale e l’altro da una variabilità di tipo nidificata. Il kriging delle 

componenti spaziali viene sfruttato per separare le due componenti spaziali e 

utilizzato come strumento ausiliario per la definizione dei valori di background 

naturale delle singole variabili selezionate. 

La variografia viene successivamente implementata nell’ambito delle procedure 

di ottimizzazione, finalizzate al perfezionamento delle strategie di campionamento. 

Dopo una breve descrizione delle metodologie di campionamento già note, il 

variogramma viene presentato come uno strumento innovativo per l’ottimizzazione 

di un nuovo piano di campionamento e il miglioramento di uno già esistente. Le 

simulazioni geostatistiche vengono ampiamente sfruttate, in questo ambito, per 

modellizzare l’incertezza spaziale, mentre viene proposta la combinazione delle 

procedure di valutazione della varianza di nugget con la valutazione di tale 

incertezza. Un esempio concreto di tale approccio deriva dall’applicazione ai dati 

geochimici della ‘Nuova Darsena’ nel porto di Napoli. 

Infine, il kriging delle componenti spaziali viene applicato, come tecnica di 

filtraggio delle immagini, ad un esempio di mosaico acustico side scan sonar. La 

componente nugget viene filtrata al fine di rimuovere il rumore sale e pepe, 

responsabile di una interpretazione e classificazione del segnale non corrette. 

Il pacchetto software di applicazioni geostatistiche ISATIS, della società 

francese Geovariances (Bleines, Deraisme et al. 2004), è ampiamente usato come 

strumento principe per l’implementazione di analisi spaziali avanzate, in ambito 

stazionario e non stazionario, per il calcolo di variogramma direzionali e 

omnidirezionali, per le stime con kriging e per realizzazione di simulazioni iterative 

a diverse scale spaziali, attraverso le tecniche sequenziali gaussiane. Tutti i dataset 
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utilizzati per le applicazioni provengono dall’archivio della sede centrale di Napoli 

dell’Istituto per l’Ambiente Marino Costiero (I.A.M.C. - C.N.R.). 

Gli esempi di corrette applicazioni geostatistiche presentati dimostrano quanto 

sia importante la messa a punto degli strumenti geostatistici al fine di onorare le 

caratteristiche di variabilità strutturale del dataset. La gran parte dei software di 

elaborazione dei dati spaziali oggi include l’analisi variografica e la stima con 

kriging, ma molti di essi prevedono soltanto applicazioni di tipo “black box” che 

presumono un impiego automatico delle procedure. L’attenzione verso il corretto 

utilizzo di tali strumenti dovrebbe rappresentarne, invece, l’aspetto cruciale. La 

grande sensibilità e dipendenza di tali metodologie rispetto alle caratteristiche dei 

dati, implicano la necessità di un uso attento ed esperto di tali applicazioni. 

La geostatistica è una disciplina dalle grandi potenzialità, soprattutto perché è 

basata sulla modellizzazione della variabile in una prospettiva probabilistica e in 

questo modo rispetta la complessità intrinseca del sistema ambientale. Essa 

rappresenta un valido supporto non solo per stime o simulazioni spaziali, ma anche 

come strumento per l’ottimizzazione dei processi pre-analitici, che hanno una 

influenza critica sul risultato finale. Nella maggior parte dei casi, gli algoritmi di 

interpolazione vengono utilizzati per la produzione di mappe soggette a complesse 

interpretazioni, analisi di sistemi ambientali e decision making. E’ evidente quindi 

come un controllo affidabile del processo di trattamento sia fondamentale per dare 

forza ai risultati. 



_________________________________________________INTRODUCTION___ 

 7

INTRODUCTION 
 

In environmental sciences the importance of how the single data is processed and 

interpreted is a crucial aspect for the correct understanding of the complexity of 

natural phenomena. The measured value of an environmental variable is the result 

of such a complex mixture of different factors, that it can be reasonably considered 

as deriving from a random process and thus it can be modeled in a probabilistic 

framework. Deterministic methodologies can poorly catch the real mechanism 

responsible for the spatial distribution of the variable, limiting to model, only by 

mathematical constraints, the intrinsic variability of the field (Isaaks and Srivastava 

1989).  

Geostatistical approach is based on the probabilistic concept that assumes the 

variable as the result of some stochastic processes, and thus regards it as a random 

variable. The measured value of a certain variable is seen as one realization of a 

certain random function in one specific point. Each of this realization is just one 

random variable and the whole of random variables in the entire spatial domain is 

regarded as the parent random function.  

Variographic analysis and kriging estimation are the fundamentals of the 

geostatistical approach. A correct application of such instruments and an accurate 

interpretation of results allow to understand the real variability structure of the field 

and compute any kind of spatial analysis, aimed to simulate its behaviour and build 

adequate spatial models. 

In this work, after a detailed discussion of the algorithms will be used in the 

applications, some examples of the right use of geostatistical instruments are 

proposed. The presented theory is collected from the numerous literary sources and 

restructured, in order to provide a clearest and most complete image of the 

mathematical meaning of the different practices. Some main algorithms are 

discussed in detail, with the rebuilt complete mathematical develop. Some personal 

concerns are presented; such as the proposal of the use of a unique neighbourhood, 

independently from the set of the estimation grid and of the contemporary 

evaluation of nugget variance and small scale variance during the optimization of 

sampling strategies. 
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The detailed implementation of variography and kriging estimation is presented 

as applied to the geochemical dataset deriving from marine sediment samples 

collected in the southern Campanian continental shelf. An accurate variographic 

analysis has allowed to discriminate two main groups of variables, among trace 

metals; one characterized by a mono-structural variability and one with a nested 

ones. Kriging of spatial components has been exploited to separate the two spatial 

components and used as an indicative tool to define the natural background values 

for the single selected variables. 

Moreover, variography has been implemented as an optimizing procedure aimed 

to improve the efficiency of sampling plan strategies. After a brief discussion of 

existing different kinds of sampling strategies, variogram is presented as innovative 

tool to optimize a new sampling plan and to improve the efficacy of an existing one. 

Geostatistics simulations are widely exploited to model the spatial uncertainness 

and an innovative joins between such methodology and nugget variance assessment 

is proposed. A concrete example is applied to one of the inspected dock of the port 

of Naples, the ‘Nuova Darsena’. 

Eventually, kriging of spatial components is applied, as image filtering 

technique, to an example of side scan sonar acoustic mosaic image. Nugget effect 

component is filtered out in order to remove the salt and pepper noise responsible 

for incorrect interpretation and classification of signal. 

The ISATIS geostatistical package, from the french Geovariances society 

(Bleines, Deraisme et al. 2004), has been used as a master tool to implement 

advanced spatial analysis in stationary and non stationary frameworks, to compute 

omnidirectional and directional variograms, kriging estimations and iterative 

computation of different scale sampling simulations, via sequential gaussian 

technique. All the datasets used for applications come from the collection of the 

Neapolitan center of the Coastal Environment Institute of the National Research 

Council (I.A.M.C. C.N.R.).  

The shown examples of correct application of geostatistics demonstrate how it is 

important to tune the powerful instruments of such discipline, in order to meet 

“dataset demands”. The majority of mapping software now include variogram 

analysis and kriging estimation, but most of them take into account only the so 
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called “black-box” practices, whereas the attention due to the setting of these 

instruments is a crucial aspect. The susceptibility and the so deep dependence of 

such methodologies on data behaviour, imply a very careful and expert use of such 

applications. 

Geostatistics is a very powerful method, just because it is based on a modeling of 

variable from a probabilistic perspective and it respects the intrinsic complexity of 

the environmental system. It is a valid issue not only for estimation or simulation 

classical processes, but also for several pre-processing optimization tools, as 

sampling strategies definition, that have a critical influence on final results. In most 

cases, mapping algorithms are used to produce maps that are subject to tricky 

interpretation practices, environmental systems assessments and decision making. It 

is evident how a full and robust control of the processing pathway is fundamental to 

optimize and make reliable such results. 
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CHAPTER 1 

THEORY FUNDAMENTALS 
 

Here a detailed description of the theory applied in the rest of the work will be 

presented. Statistical inference, variographic analysis, the fundamentals of 

geostatistical inference and kriging will be discussed, with particular attention to the 

mathematical develop of the algorithms. All the algorithms described here have 

been collected from the most known bibliographic sources and rebuilt in a organic 

structure that can be regarded as a valid reference for the reader. 

 

1. Statistical inference 

Statistical inference concerns the problem of gain information about a certain 

population, from a set of samples generated by it (SurfStat Australia). When we 

want to obtain detailed description of a population, instead to work directly on it (it 

is often impossible), we can compute the statistical parameter of a certain set of 

samples, selected from the same population. Such operation leads to the estimation 

of the peculiar characteristics of the population, that is usually the more similar to 

reality the more the number of samples is close to the totality. Inference is, thus, 

exactly the operation of approximating a statistical description of a certain 

population, from the computation of statistical quantities of a defined sample 

(Soliani 2005). The detailed processes are: 

1. sample selection 

2. calculation of statistics of sample 

3. estimation of population parameters based on sample statistics 
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Figure 1.1 – Conceptual scheme of statistical inference. 
Figura 1.1 – Schema concettuale dell’inferenza statistica. 

 

Sampling is a selection process that can be repeated iteratively and can return 

any time a different result. If randomly repeated, this process gives origin to a 

random variable, studied to infer the population who generated it. In this case 

population can be regarded to be virtual and infinite because there are infinite 

random samples potentially extracted from it. In the statistical inference process, it 

is just the stochastic process that generated that certain sample to be studied and that 

process is exactly the population with its unknown and estimated statistical 

behaviour. Statistical inference is also finalized to quantify the correctness of such 

estimation. If we were able to extract some different subsets (samples) from the 

same population, we could try to estimate its statistics from a statistical treatment of 

all the samples. For example, if we want to estimate the mean value of a population 

we can extract several samples from it and examine the statistical distribution of the 

variable mean value. Such distribution is regarded as sampling distribution. 
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Figure 1.2 – The sampling distribution. 

Figura 1.2 – La distribuzione del campione. 
 

The estimated mean value of the population is the mean value of such 

distribution and the difference from such expected value of the samples and the real 

mean value of the population (usually unknown) is defined as the bias.  

 

2. Geostatistics – an overview 

Geostatistics is a relatively new branch of applied statistics that had origin from 

mining industries, where it has been used to affine techniques of computation of ore 

reserves. Both the African mining engineer DG Krige, with his practical 

applications, and the French mathematician George Matheron, with his theorization 

of the Regionalized Variable model, contributed to the born of such an important 

discipline, that has been applied on most of science and industry fields. 

Geostatistics is based on the study of the spatial behaviour of variables (Isaaks and 

Srivastava 1989). It concerns the modeling of such characteristics, with the aim of 

identifying the underlying structure, in order to implement different operations on 

data (estimation, simulation). The main difference between the geostatistical and the 

classical statistical approach to data analysis is exactly the spatial reference of 

datasets: all the statistical parameters are related to the spatial location of the single 
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information. Even the concept of variable is converted in its spatial context as the 

regionalized variable (Armstrong 1998; Journel and Huijbregts 2004).  

The model of the regionalized random variable is the basis principle of such kind 

of science.  

From a probabilistic point of view, a certain sampled value ( )xz , measured in 

some specific location, is the outcome of a random process that generated it from a 

random variable ( )xZ . In any x  point of the region of interest, ( )αxZ  can have a 

different property and thus generates different value ( )αxz . In this way, all the 

infinite measured values ( )xz  that can be collected in the entire spatial domain, can 

be viewed as a single outcome of all the infinite random variables involved.  

Each single set of random variables is called random function. Each sample is a 

random variable and a regionalized variable respectively from a random and a 

regional point of view. Both of the concepts yield to the model of random function.  

In practice, the regionalized variable is one realization of the random variable in 

each point of the spatial domain (Wackernagel 2003). 

 

 
Figure 1.3 – Conceptual scheme of the Theory of Regionalized Function. 

Figura 1.3 – Schema concettuale della Teoria della Funzione Regionalizzata. 
 

The basic concept of Geostatistics is the probabilistic approach to the modeling 

of physical mechanism (Lee el. source). Each single value of a regionalized 

variable, and above all its spatial variability structure, is assumed to be described 

efficiently in a stochastic framework. Data values are regarded as the result of a 
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miscellaneous of complex factors and can be reasonably viewed as possible 

outcomes of a random process; in general, such randomness can be poorly 

described in a deterministic framework.  

A probabilistic model can better represent the structural variability of the field 

and be the basis to implement any spatial data processing. Often, the complete 

knowledge of the model is not required and it is sufficient to specify only some 

parameters of the whole random process.  

 

3. Structural analysis 

The structural analysis concerns all the methodologies aimed to investigate the 

spatial structure of data and exploit it to build reasonable spatial models. As 

discussed before, the main target is to represent exhaustively the random function 

model. 

Now, the problem concerns our knowledge of such random function. We can 

barely hope to make any assumption on it, knowing only one realization of such 

random function in few points only (one value for each sample). One solution is to 

reduce the study of the spatial law to the first two moments. Nevertheless, in order 

to be able to use such spatial law as a model of the spatial variability of the variable, 

we must take some other assumption. Such hypothesis regards the stationarity of the 

variable, that influences the validity of the law trough the spatial domain. 

There are two main degree of stationarity: i) the second order one, that assumes 

both the mean value (first moment) and the covariance (second moment) are 

stationary, and ii) the intrinsic one that assumes the covariance function does not 

exist and introduces the use of the variogram function. The crucial aspect of such 

assumptions is just the existence of the covariance/variogram function and its 

dependence only on the distance between pairs of samples and not on the absolute 

position of samples. Such important statement is the core of the main branch of 

geostatistics, the stationary geostatistics, that is largely used in environmental data 

processing.  

The three main feature of the variogram function are: 

- the behavior at small spatial scales (nugget variance); 

- the way it grows and reaches a certain threshold (authorized model type); 
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- the threshold value it reaches (sill variance). 

These are the crucial clues to mould the model (our simplification of the spatial 

law) in order to reproduce the complex variability of the variable. The basic process 

of the variographic approach is based on: i) the computation of the experimental 

variogram – that is the primitive calculation directly deriving from the real data, and 

ii) its fitting with a deterministic function (chosen among a family of authorized 

models), in order to synthesize the variability of the variable and express it with 

some few parameters. 

 

3.1 Empirical approach 

A first and easy kind of approach to better understand the application of 

geostatistical methodology is the empirical one (Raspa 2000; Raspa 2004). Let’s 

consider a certain spatial variable ( )ixZ , measured in some location ix  with 

ni ...1=  and some distance vector h , oriented in a certain direction, with an 

associated tolerance ε . Let’s consider the groups of pairs of samples that have a 

distance kh  with ℵ∈k , along that direction, within ε±  tolerance, and calculate 

for each group the scatterplot and the correlation coefficient. 
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Figure 1.4 – Empirical evaluation of covariance function. 

Figura 1.4 – Valutazione empirica della funzione covarianza. 
 

If we plot the values of correlation coefficient against the distance h , we can 

obtain a synthetic form to explain the spatial variability of variable ( )ixZ . We’ll 

observe that ρ , that is exactly one for zero distance (when ix  and hxi +  are 

coincident), decreases with h , and it tends asymptotically to null value with the 

increasing distance among pairs. 
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Figure 1.5 – Trend of correlation coefficient with distance. 

Figura 1.5 – Andamento della funzione coefficiente di correlazione. 
 

Now, if we substitute the standardized covariance (correlation coefficient), with 

the variance of histograms of pairs for each class distance, we obtain an analogue  

function, that show some peculiar differences. 

 



_____________________________________________________CHAPTER 1___ 

 18

 
Figure 1.6 – Empirical evaluation of variance. 

Figura 1.6 – Valutazione empirica della varianza. 
 

Variance of increments, that can be regarded as variogram function (more 

precisely as twice the variogram function), presents a mirrored shape of covariance 

one. It is zero at zero distance and increases with increasing distance tending 

asymptotically to a certain value that is usually comparable to the sample variance 

of the whole dataset. 
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Figure 1.7 – Trend of variance with distance. 

Figura 1.7 – Andamento della funzione varianza. 
 

Variogram function is one of the most important instruments of the structural 

analysis and just the transposition of such empirical approach to a more formal 

mathematical one, represents the basis of the probabilistic theory from which 

Geostatistics takes origin. 

 

3.2 Probabilistic approach 

In any location of the entire spatial domain, the sampled value can be regarded as 

the realization of a regionalized random function. It means this values are one 

possible outcome of a function that generates them following a certain regionalized 

probability density function (Deutsch 2002; Dutter 2003). 
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Figure 1.8 – The measured value in each point is one of the possible outcome of one 
realization of the random function. 
Figura 1.8 – Il valore misurato in ogni punto è uno dei possibili risultati di una 
realizzazione della funzione aleatoria. 

 

Considering that all the possible realizations are represented by the same random 

function, it must be necessary related to some spatial law. Such law is represented 

by the sum of  the joint distribution functions (cumulative distribution functions) of 

the n random variables: 

( ) ( ) ( ){ }nnnxx zxZzxZprzzF
n

≤≤= ,...,,... 1111K
. 

Such spatial law is an example of an extreme generalization of the stochastic 

modelling of  any universal natural process, and if we knew it in details, we could 

presume to be able to reproduce any feature of such phenomenon. Unfortunately it 

is not possible, because our knowledge of the phenomenon is based on only one 

realization of the random function, moreover available only in some points, of the 

entire spatial domain.  

We need a model to implement statistical inference on sample, but the theorized 

one (the spatial law) is too generic and cannot be explicated. We then need some 

simplifications of such model, based on some statistical hypothesis.  
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The most important assumption is the stationarity of the random function (strict 

stationarity), where the vectors of random variables ( ) ( ){ }nxZxZ ,...,1  and 

( ) ( ){ }hxZhxZ n ++ ,...,1  have the same distribution function. That is, any spatial 

distribution of samples (if any shift is applied to any samples configuration) 

presents the same distribution function. 

Because of the limitation of the amount of available samples, such condition is 

reasonably acceptable only up to a certain degree; that is only some degrees of 

stationarity are acceptable (Deutsch 2002). Thus a wide range of degrees of 

stationarity are defined, going from the closest to the ideal description, to the 

farthest one.  

As most of geostatistical processes (linear estimations) need the involvement of 

only the first two moments (mean and variance) of the entire spatial law, the 

assumption of stationarity can be limited only to such two moments. 

 

3.3 Spatial models 

Spatial probabilistic models are needed to model the random function and to 

implement geostatistical inference to spatial variables. Once analyzed the spatial 

structure of the dataset, we can assume to build different models following the 

degree of stationarity examined. Starting from the pure stationary model and ending 

to the different models of non stationary functions, we can be able to model any 

kind of spatial variability. 

 

3.3.1 Stationary models 

Stationarity hypothesis is essential to simplify the probabilistic model and to 

allow to implement statistical inference on the sample (Isaaks and Srivastava 1989). 

We already admitted that strict stationarity, applied to the whole random function, is 

unreliable, firstly because we lack a complete description of the phenomenon and 

then because we often do not need such generalization. For most cases, especially if 

variable have a Gaussian-like distribution, stationarity hypothesis can be reduced to 

the first two moments. In such case, in fact, distribution function can be reasonably 

represented by the two first moments. 

 



_____________________________________________________CHAPTER 1___ 

 22

Second order stationarity 

Condition 1: 

The first moment exists and it is translation invariant 

 

( )[ ] mxZE =α   for all the x . 

 

Condition 2: 

The second moment (covariance) exists and does not depend on the position but 

only on the distance h  

 

( ) ( ) ( ) ( )[ ] ( )hCovmhxZxZEhxxCovxxCov =−+⋅=+= 2
21 ,, . 

 

Assumed the shift invariance of the first moment it is reasonable to accept that 

the spatial variability function is the same for the whole spatial domain, once fixed 

the module and direction of h . 

The assumption of second order stationary should include also the condition of 

existence of the variance and its shift invariance. Nevertheless, it is implicit in the 

second condition, because at 0=h  covariance corresponds with variance.  

 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }xZVarCovxZxZCovhxZxZCov ===+ 0,,   for 0=h . 

 

Thus, even the variance exists and it is translation invariant for the whole spatial 

domain: 

 

( ){ } ( ){ }hxZVarxZVar +≡ . 

 

When both the conditions are satisfied and the stationarity is of the second order, 

( )hCov  or ( )hC  is called covariance function, that describes the variability of the 

auto-correlation of the increments  with distance h : 

 

( ) ( ) ( )[ ] 2mhxZxZEhCov −+⋅= . 
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Covariance function encloses some important features: 

1. it is an even function: ( ) ( )hCovhCov −=  

2. it always assumes positive values at 0=h . In fact 

( ) ( ){ } 00 ≥= xzVarCov  

3. Schwartz inequality is worth: ( ) ( )0CovhCov ≤  

 

Variogram function 

Variogram is the most common function in geostatistics and it often substitutes 

covariance function because of its lack in non stationarity cases (see chapter 3.3.2). 

Let’s consider a new random function that explicates the difference between the 

quantities ( )xZ  and ( )hxZ + , within a certain distance ±h  its tolerance ε , and call 

it increment ( ) ( )[ ]hxZxZ +− .  

The variance of such random variable is: 

 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ } =+−−+−=+− 2hxZxZEhxZxZEhxZxZVar  

 

( ) ( )[ ]{ } ( ) ( )[ ]{ }22 hxZxZEhxZxZE +−−+−= , according to covariance function 

of the same variable ( ) ( )[ ]hxZxZ +− ; 

 

in a second order stationary case, if generally ( )[ ] ( )[ ]hxZExZE += , then 

( ) ( )[ ] 0=+− hxZxZE . 

 

Thus ( ) ( )[ ] ( ) ( )[ ]{ }2hxZxZEhxZxZVar +−=+− . 

 

Variogram is defined as half of variance of increment, that is half the expectation 

value of the square difference between ( )xZ  and ( )hxZ + : 

 

( ) ( ) ( )[ ]{ }=+−= 2

2
1, hxZxZEhxγ  
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( )[ ] ( )[ ] ( ) ( )[ ]{ }=+⋅−++= hxZxZEhxZExZE 2
2
1 22  

( )[ ] ( )[ ] ( ) ( )[ ]{ }hxxhxx mmhxZxZCovmhxZVarmxZVar ++ −+−++++= 2,2
2
1 22  

( )[ ] ( )[ ] ( ) ( )[ ] [ ]{ }2,2
2
1

hxx mmhxZxZCovhxZVarxZVar +−++−++= . 

 

In a second order stationary case, when hxx mm +≡ ,  

 

( ){ } ( ){ } ( )0CovhxZVarxZVar ≡+≡  and ( ) ( ){ } ( )hCovhxZxZCov =+,  

( ) ( ) ( ){ }hCovCovh 202
2
1

−=γ ; 

 

that is: 

 

( ) ( ) ( )hCovCovh −= 0γ . 

 

It shows that variogram function depends on covariance and consequently, in 

stationary conditions, it is translation invariant too. If covariance exists and 

Schwartz inequality is worth, variogram is limited to the variance of the original 

dataset (called a priori variance) (Raspa 2000). 

 

( ) ( )0CovhCov ≤  that is ( ) ( ) ( )00 CovCovh ≤−γ  that is ( ) ( )02Covh ≤γ  that is 

( ) ( ){ }xZVarh 2≤γ  

 

That is the reason why variogram is half the variance; in this way it tends 

asymptotically to the a priori variance and not twice this value. 

Unfortunately, most of times, such stationarity hypothesis are too hard to be 

applied to sampled variables and real life is much more complicated than our 

theoretical assumptions would hope to treat with. We have to simplify our 

assumption to some weaker form of stationarity. 
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Quasi-stationarity 

Sometimes, the mean of the random function is not exactly constant, but it varies 

weakly within a certain spatial sub-domain. The so called quasi-stationary model 

assumes that the function can be considered as a second order stationary one, within 

the said neighbourhood. 

In a more general description of the random function, its variogram will be: 

 

( ) ( ) ( )[ ]{ } [ ]22,2 hxx mmhxZxZEhx +−−+−=γ , 

 

that is exactly correspondent to the classical formulation of the second order 

stationary model, when hxx mm +≡ . 

Now, let’s consider a new variable, said residual, with zero mean, that 

represents, in any point, the difference between the variable ( )xZ  and it’s local 

mean ( )xm : 

 

( ) ( ) ( )xmxZx −=Υ . 

 

We admit that such residual is second order stationary, that is its covariance 

exists and its variogram is dependent only on h  and it is up limited. Its variogram 

is: 

 

( ) ( ) ( )[ ]{ } ( )[ ] ( )[ ]{ }22

2
1 hxExEhxxEh +Υ−Υ−+Υ−Υ=γ , 

 

 that is 

 

( ) ( ) ( )[ ]{ }2

2
1 hxxEh +Υ−Υ=γ  because its mean is zero everywhere. 

 

If  we substitute ( ) ( ) ( )xmxZx −=Υ  in the last and rearrange the equation 

 



_____________________________________________________CHAPTER 1___ 

 26

( ) ( ) ( ) ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ][ ]{ }
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }hxmxmhxZxZhxmxmhxZxZE

hxmxmhxZxZE

hxmhxZxmxZEh

+−+−−+−++−=

=+−−+−

=+++−−=

2

2

22

2

2γ

 

 

and expand the average 

 

( ) ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ]
( ) ( )[ ]{ } ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ]{ } ( ) ( )[ ]22

222

2

2

2

2

2

hxmxmhxZxZE

hxmxmhxmxmhxZxZE

hxmxmhxZxZEhxmxm

hxZxZEh

+−−+−=

=+−++−−+−=

=+−++−+−−

−+−=γ

 

 

that is exactly correspondent with the general variogram of the function ( )xZ  

when it is not second order stationary. 

Thus, studying variogram of non stationary function ( )xZ , means studying 

variogram of its residual. In particular, such variogram is exactly correspondent to 

the stationary one, except for the second part that explains the trend component (the 

spatial variability law of the mean) of the global variability law of the random 

function. 

Let’s assume, now, that the trend is a linear function: 

 

( ) xaaxm 10 += , 

 

and substitute it in the last formulation of variogram. 

 

( ) ( ) ( )[ ]{ } ( )[ ]
( ) ( )[ ] ( ) 22

1
2

1

2
1010

2,2

hahhxxah

hxaaxaahxZxZEhx

+=−−−=

=+−−+−+−=

γγ

γ
 

 

The last equation explains the shape of the variogram of a non stationary 

function. It is the linear combination of the “true” variogram of the variable and its 

trend, that is represented by a parabolic shape (deterministic). It is just the presence 
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of a parabolic behaviour of experimental variogram that allows us to realize we are 

treating a non stationary random function (Clark 2000). 

 

 
Figure 1.9 – The quasi stationary model is the sum of a bounded model and a 
parabolic component. 
Figura 1.9 – Il modello quasi stazionario è la somma di un modello limitato e di una 
componente parabolica. 
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Such parabolic drift depends on coefficient 1a . Thus, there will be a certain 

range b  within which the parabolic component is negligible and it does not 

influence the true variogram shape. In practice, if we consider 1a  such that for 

bh ≤ , 022
1 ≅ha , we can consider the function as a second order stationary one 

(Raspa 2000). It means that if we limit our neighbourhood to b  we can treat with a 

stationary random function, even if it is not exactly so (Armstrong 1998; 

Wackernagel 2003; Journel and Huijbregts 2004; Raspa 2004). 

Thus, its variogram would be simply: 

 

( ) ( ) ( )[ ]{ }2

2
1 hxxEh +Υ−Υ=γ . 

 

When such range b cannot be reasonably defined and it is so short that the 

parabolic component is never negligible, we are forced to reformulate the problem 

in a non stationary framework. 

 

Intrinsic Hypothesis 

A even weaker hypothesis of stationarity is based on stationarity of increment 

and it is applied to the majority of conditions. If the random function presents a 

constant mean, but its variance varies with the increase of neighbourhood, we can 

apply second order stationarity assumption to the increment of the random function, 

instead of it own. One common example is the result of a Brownian random walk, 

that shows a variation of the variable with a constant mean and a varying variance, 

whose increment is second order stationary (Raspa 2000). 

Thus, for the intrinsic hypothesis, the first moment of such increment is zero 

anywhere in the domain: 

 

( ) ( )[ ] 0=+− hxZxZE  

 

and its second moment (variance) exists and has a finite value ( )hγ2 , depending 

on the vector value h , but not on the position of itself: 
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( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( )hhxZxZE

hxZxZEhxZxZEhxZxZVar

γ22

22

=+−=

=+−−+−=+−
 

 

It yields to the theoretical definition of the variogram: 

 

( ) ( ) ( )[ ]{ }2

2
1 hxZxZEh +−=γ . 

 

 When the increment of a random function is second order stationary it is called 

Intrinsic Random Function, and the variogram is called exactly intrinsic function 

(Wackernagel 2003). Intrinsic stationarity can be extended to higher order 

increment; the simple increment can be regarded as the zero order increment that is 

able to filter out zero degree drift (constant ones). Higher order intrinsic functions 

can exist, able to filter out higher order trends (see chapter 4.3.5). 

Intrinsic models are less demanding than second order stationary ones. 

Stationary models are always intrinsic (that is they admit stationarity of increment), 

while intrinsic ones are not second order stationary. In fact they are used to treat 

random function that do not admit covariance function. In particular the intrinsic 

models that are not stationary are called strictly intrinsic. Theoretical treatment of 

intrinsic models is exactly the same of second order ones, except that variogram is 

computed in substitution of covariance function (Raspa 2000; Raspa 2004). 

 

3.3.2 Non stationary models 

In order to treat some weak stationarity, we tried to reduce it to a stationary 

framework, making some assumptions about modelling variable or its increment. 

When the assumptions made before are not sufficient and the function is inevitably 

non stationary, we are forced to take into account the trend and integrate it in the 

structural analysis process. Nevertheless, we have to keep in mind that the 

stationarity is a feature of the stochastic model and not of the random function 

(Raspa 2004); besides it is dependent on the spatial scale of the studied 

phenomenon. 

There are two main approaches to solve such problem: 
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- the Dichotomy or Drift models, related to Universal Kriging method; 

- the Intrinsic random function of order k, related to Irf-k Kriging method. 

 

Dichotomy – drift models 

 Sometimes, natural phenomena act following some well known physical 

mechanism, and modelling of spatial variability must take into account such feature. 

Very often, such mechanism determines a global trend variability of the field, added 

to the random one. At this point we can try to model such trends, taking into 

account the affordability of our estimate. The more the process is effectively driven 

by a known physical mechanism, and such mechanism is well known by the user, 

the more the reliability of our assumption is valid. 

The dichotomy principle affirms that the measured value of a certain variable is 

the sum of a deterministic global trend and a stochastic local variability. Thus, these 

two components can be separated and the first one can be modelled in a pure 

deterministic framework. Nevertheless, such concept must be read following the 

scale of observation of the phenomenon and the authenticity of the deterministic 

behave of the trend (Raspa 2004). The scale of observation is very important, 

because it determines the border between the pure non stationary framework, that 

involves a deterministic modelling of trend variation, and the quasi-stationary one, 

for which, as we have already seen, a simple restriction of neighbourhood is 

sufficient to carry the model back to a stationary situation. 

Moreover, the solidity of the hypothesis about the deterministic nature of the 

phenomenon is a crucial aspect. We must assume and apply a deterministic 

approach to modelling of trend, only if we have a clear idea about the nature of 

physical phenomenon which is based on. We can not use it as in black box, because 

deterministic trend analysis is very sensitive to the kind of chosen model. The 

variogram of residual is distorted proportionally to the correctness of the trend fit 

(Wackernagel 2003). 

The variable is regarded as a composed quantity: 

 

( ) ( ) ( )xmxxZ +Υ= , where ( )xm  represents the trend deterministic component 

and ( )xΥ  the random residual part. 



_____________________________________________________CHAPTER 1___ 

 31

Thus, drift component is approximated with a polynomial function 

( ) ( )∑=
l

l
l xfaxm , where la  are the coefficients of the polynomial and lf  are the 

degree l  monomials.  

The crucial aspect of dichotomy approach is just the determination of such trend 

component, that is, as said before, strictly dependent on the scale of observation and 

on the kind of model chosen. This aspect involves a subjective evaluation of the 

phenomenon and it is very critical. 

The residual ( )xΥ  is treated as a random function in a second order stationary 

framework or in a intrinsic one, depending on the existence of covariance function. 

The variogram of residuals is said “underlying”, because its inference is not direct 

and it depends on the deterministic modelling of the trend. The variography of the 

drift model is the base of Universal Kriging estimation approach. 

 

Intrinsic random function of order k – Irf-k 

The Irf-k method is a generalization of the intrinsic random function model, in 

which higher order increments are computed to filter out some polynomial trend of 

a non stationary random function (Journel and Huijbregts 2004). The order of Irf-k 

is exactly the order of the trend it is able to filter out. The random function is 

regarded as the sum of a unknown varying mean and a residual stationary random 

function (Buttafuoco and Castrignanò 2005): 

 

( ) ( )xmxZ x Υ+= , where ( ) ( )∑
=

=
K

l
ll xfaxm

0

 is a linear combination of 

monomials lf  with unknown coefficients la . 

Such monomials are defined with the condition that their linear combination, 

evaluated in each ix  point is zero: 

 

( ) 0
0

=∑
=

n

i
i

l
i xfλ . 
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Once such conditions are satisfied, the linear combination ( ) ( )∑
=

=
n

i
ii xZZ

0

λλ  is 

defined as the authorized linear combination or increment of order k. Such higher 

order increment is able to filter out higher order trend. Structural analysis computed 

on such transformed variable ( λZ ) is similar to the classical stationary practice, 

except that covariance is computed with an automatic procedure and it is the sum of 

some authorized basic structures. 

The nested so called generalized covariance is: 

 

( ) ( )∑=
p

p
p hKbhK , where the components pb are generally polynomials and 

splines. 

Non stationary methods like Universal Kriging or Irf-k both are sensible 

instruments that need a cautious use. Both are based on a decomposition of the 

variability into a deterministic low fluctuating component and a rapidly fluctuating 

random one that is investigated with some specific structural analysis tools. In the 

case of Universal Kriging, such global mean is fitted by a deterministic function, 

arbitrarily chosen by the user and the resulting variogram of residuals is computed 

traditionally (Wackernagel 2003).  

Conversely, in Irf-K, the global mean is fitted with a deterministic combination 

of basic functions, such that the random function is transformed in a higher order 

increment that is stationary. In the UK, the most critical step is just the fit of the 

detrending function, that is chosen arbitrarily, often not knowing exactly its real 

nature. The resulting underlying variogram is necessarily biased. On the other hand, 

Irf-K approach, once chosen the degree of the detrending function, is an automatic 

method and, as such, it is poorly verifiable. 

 

3.4 Geostatistical inference 

The most critical step of geostatistical approach is the modeling of the 

experimental variogram. It is regarded as a synthetic form for explaining the 

structural variability of data. In order to be able to honour such information, in 

spatial modelling approach, we have to express the result of the structural analysis 
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with a continue and theoretical function. Such process needs a very careful attention 

of the user, in order to correctly represent the real model of the original dataset. 

 

3.4.1 Variogram evaluation 

Often, covariance function cannot be computed because of its lack, in the case 

the mean of the variable is not constant. Conversely, variogram of increment of the 

variable, is an universal good estimator of the spatial variability that can be 

correctly used also when the variable is intrinsic (Burrough and McDonnell 1997). 

Besides, the shape of variogram curve helps us to catch the non stationarity degree 

of the field, in order to choose the more appropriate method to process it. Once the 

variogram has been computed, if its shape is revealing enough stationary to proceed 

with classical methods, the next step is the fit of the theoretical variogram function 

(Clark 2000). 

The raw data and their related experimental variograms cannot be exploited to 

obtain a complete knowledge of the variability structure of the phenomenon, and 

some species of continuous function is needed (Isaaks and Srivastava 1989). The 

inference of the experimental variogram is based on a least square fit of the 

experimental values of semivariance for each lag. Such fit can be made by a single 

or a series (nested variograms) of so called authorized models. The authorized 

functions are the ones that follow particular conditions, among which the main one 

is to be positive definite (Wackernagel 2003). 

By fitting a continuous mathematical function on raw variogram we can exploit 

such powerful instrument in order to model the variability structure for the whole 

spatial domain (not only on the points we have measured values). Such precious 

informations can be used in estimation and simulation processes. 
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Figure 1.10 – The experimental variogram and its theoretical fitting function. 

Figura 1.10 – Il variogramma sperimentale e la sua funzione approssimante. 
 

The crucial aspect of the fitting operation is the choice of the model. In this step, 

the subjectivity of the process of adjusting the model and the way to associate 

weights to the different lags is the moment in which the experience and the 

smartness of the geostatistician have the greatest impact (Armstrong 1998). The 

technique is usually based on a dualistic process of manual adjusting and a 

statistical verification by a least square optimization procedure. However, the “try 

and catch” method should be always weighted on the knowledge of the 

phenomenon. The main parameters of a typical variogram function are: i) the sill 

(the variance value at which the function tends asymptotically) and ii) the range 

(the lag value at which the sill is reached). The most evident differentiation among 

the family of authorized models can be made between bounded and unbounded 

variograms. 
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Figure 1.11 – The three most known example of bounded variogram models. 

Figura 1.11 – Tre esempi, tra i più noti, di modelli di variogramma limitati. 
 

 
Figure 1.12 – Two examples of unbounded variogram models. 

Figura 1.12 – Due esempi di variogrammi non limitati. 
 

Those in figure are some of the most common authorized variogram models. The 

bounded ones (spherical, exponential and gaussian) show an asymptotic tendency to 

attest on the sill value and, although they have different behaviour at the origin, they 

represent a stationary random function. Contrarily, the unbounded ones, the ones 

that continue increasing not reaching a sill, characterize some form of non 
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stationarity: an intrinsic stationarity for the linear model and a marked non 

stationarity for the power model. 

 

3.4.1.1 Nested structures 

The so high complexity of natural phenomena is almost always related to the 

amount of factors that cooperate to generate a certain spatial distribution. The 

variability structure is the result of a mix of factors contributing each with a 

different weight and at a different spatial scale. Such situation needs to be 

quantified in the stochastic interpretation of the phenomenon and must not be 

ignored in the process of modelling of the random variable. 

Let’s assume that the stationary variable is sum of different independent 

variables: 

 

( ) ( )∑
−

=

=
1

0

S

u
u xZxZ  and ( ) ( )∑

−

=

+=+
1

0

S

u
u hxZhxZ . 

 

Its variogram is (Raspa 2004): 
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Expanding the square: 
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As ( )xZ  and ( )hxZ +  are independent, their covariance is null and: 

 

( ) ( ) ( )[ ]{ } ( )∑ ∑
−

=

−

=

=+−=
1

0

1

0

2
S

u

S

u
u hhxZxZh γγ , that is, the variogram of ( )xZ , is the 

sum of the variograms of all its components. Such components are regarded as 

spatial components and each of their contribute to the total variability (the weights) 

is represented by each own sill. The global variogram is called nested variogram. 

One typical example of nested variogram is the one in figure. 

 

 
Figure 1.13 – Top: the global nested structure. Down: the exploded structure with the 
two spatial model components. 
Figura 1.13 – In alto: la struttura nidificata globale. In basso: la stessa struttura 
scomposta nelle sue due componenti spaziali. 

 

Two independent components ( aγ  and bγ ) are contributing to the global 

structure of variability, each with its range a and b, that give an indication of the 
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spatial scale at which such structure is acting, and with its sill, that represents the 

magnitude of each contribute (Isaaks and Srivastava 1989). 

 

3.4.1.2 The nugget effect 

One of the most important variogram models, for joining the classical structural 

analysis with the study of small scale variability and optimizing of sampling 

strategy is the nugget model. Variogram mathematical formalism assumes the 

semivariance value is zero at zero lag, that is, two points have exactly the same 

value if their reciprocal distance is zero. 

With the distance increasing it is assumed that the differences among pairs 

increase with the said law. Nevertheless, with the distance tending to zero such 

difference must tend to zero. Very often, it happens that the high dissimilarity of 

very close pairs show non zero values at the smallest lags. As said before 

experimental variograms are computed directly from raw data and it is unreal we 

can have different measures realized in the same point. 

Moreover, even if it was real, it would hard to obtain exactly the same value for 

two or more replicas of the measure. The inevitable measurement error are around 

the corner and its minimization is limited by human and machine accuracy. 

Anyhow, more often, information at lag values less than sampling size are not 

available and small scale variability are only estimated by known values. 

Such situation leads to discontinuous experimental variogram showing non zero 

value at lag = zero, revealing a general marked small scale variability. 
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Figure 1.14 – An example of experimental variogram with a marked nugget effect. 
Figura 1.14 – Un esempio di variogramma sperimentale con una marcata struttura 
nugget. 

 

In general, environmental variables are assumed to have a regular behaviour at 

small scale. Scaled with the scale of investigation, it is unreal that two point very 

close each other can show very different values of altitude, pollutant concentration 

or moisture. High dissimilarity in pairs, at lags tending to zero, must inevitably be 

attributed to other causes. Such causes can be i) the ratio between the scale of the 

phenomenon we are interested in, and the scale of investigation and ii) the analytic 

errors. As said before, if the minimum sampling size is very larger than the scale of 

the phenomenon we are observing, we are not able to extract the correct small scale 

information. Moreover if the analytic error are comparable with the a sample global 

variance, the small scale variability is deeply influenced by this uncertainness. 

In order to be able to model such small scale variability we can use a special 

variogram model (the nugget model) that has formally infinite range and the sill 

equal to the estimated intercept on the semivariance axis. 
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Figure 1.15 – The pure nugget model. 
Figura 1.15 – Il modello nugget puro. 

 

Almost always, the nugget model is used as spatial component in a nested 

variogram model. The small scale variability is just modelled by nugget model, that 

represents the translation of the main model/s to non zero semivariance values at the 

smallest lags. Such translation is called nugget variance. 

 

 
Figure 1.16 – The example of figure 1.14 with its modelled theoretical variogram 
model. The nugget effect component is evident. 
Figura 1.16 – Lo stesso esempio della figura 1.14, per il quale è stato stimato il modello 
approssimante. La componente nugget è evidente. 

 

Eventually, in some cases data show the complete absence of auto-correlation  

and their model is called pure nugget. 
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Figure 1.17 – An example of pure nugget experimental variogram and its theoretical 
model . 
Figura 1.17 – Un esempio di variogramma sperimentale puramente nugget e del suo 
modello approssimante. 

 

Such cases are not conveniently processed by a geostatistical approach, because 

the main assumption, that is the presence of a well designed spatial structure, comes 

to missing. 

 

4. Estimations 

One of the main target of the spatial analysis of environmental data is the so 

called spatial estimation. It is clear that in loco measures can be realized only for 

some points; it would be unreliable to imagine to obtain a complete knowledge of 

the field, measuring it in any point of the spatial domain. Moreover the distance 

between two samples could be infinitely reduced, giving origin to the request of an 

infinite amount of samples. 

Taking into account the poor availability of information about the spatial 

distribution of a certain variable, is clear that the method that allows us to pass from 

a discrete information to a continue description of the phenomenon must be 

assigned the maximum importance. Another limitation is represented by the fact 

that we have often scattered data, that is the samples are irregularly distributed 

trough the spatial domain, while we need a regular distribution of information in 

order to obtain a continue descriptive surface. 

Moreover, we are often interested to know the value of a certain variable in a 

point out of the convex hull (the convex polygon that contains all the points) of 

known data (Isaaks and Srivastava 1989). 
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All these needs are reassumed under the definition of estimation process, that is 

the process with which we can estimate the value of a certain variable where it is 

not known, knowing only few information, often scattered in the spatial domain 

and, sometimes, not surrounding completely the target point. The main target is to 

obtain a regular matrix of information, on a dense regular grid with a certain 

resolution, with which we can build any vector or raster graphic representation of 

the estimated spatial distribution of the variable. 

 

4.1 The linear estimator 

The main instrument to deal with the estimation process is the linear estimator 

(Raspa 2004). For each target point the linear estimator is the linear combination of 

the known points: 

 

( ) ( )∑
=

=
n

i
ii xZxZ

1
0

~ λ ; 

 

where ( )0
~ xZ  is the estimated value in the target point, ( )ixZ  are the known 

values and iλ  are the weights of such values. In practice, the estimated target point 

value is the result of a weighted average of a certain amount of known values. The 

term “certain” is well used in this case, because it is unreal that all the point of the 

whole spatial domain can influence the value of the target point. Thus there must be 

a certain area of influence within which the target point value depends on the 

surrounding known values. Such area is called neighbourhood and its extent 

depends on the method chosen for the estimation process. 

 

Main features of linear estimators 

I – Unbiasedness of the estimator – the estimator is said unbiased when its 

average error is null. That is, the estimator makes as many overestimations as 

underestimations of the real unknown value. The error is the difference between the 

real and the estimated value: 
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( ) ( ) ( )∑
=

−=
n

i
ii xZxZx

1
00 λε . 

 

If ( )xZ  is a random variable, the error ( )xε  will be too. As said before, the 

unbiased estimator is the one that shows a null averaged error: 

 

( ) ( ) 0
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n

i
ii xZxZE λ  that is ( )[ ] ( )[ ] 0
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=

n

i
ii xZExZE λ . 

 

If we assume that ( )xZ  is stationary, that is ( )[ ] mxZE = , the equation becomes: 

0
1

=− ∑
=

n

i
imm λ  that is 01

1

=⎥
⎦

⎤
⎢
⎣

⎡
−∑

=

n

i
im λ  that leads to the condition: 

1
1

=∑
=

n

i
iλ . 

 

Such condition is the one that guarantees for the unbiasedness of the estimator. 

 

II – Maximum precision of the estimator – in order to obtain the best estimation, 

we must ask the estimator to return the smallest dispersion of the estimation. If we 

could observe the hypothetical probability distribution function of the estimated 

value, we would check the width of the curve (Wackernagel 2003; Raspa 2004). If 

the estimator were unbiased, such curve would be centred on zero and it would have 

the smallest width. Unfortunately we cannot compute the pdf of the estimate, but we 

can calculate its variance: 
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expanding the square and dividing the i index in a and b indices: 
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( ) ( ) ( )∑∑∑ −−−+=
a

aa
b

baba
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that is ∑∑∑ −+=
a

aa
b

baba
a

s CovCov 0,,
22 2 λλλσσ . 

 

Such estimation variance must be minimized in order to assure the optimization 

of estimation process. We have an expression of estimation variance based on 

sample variance and covariance of known and target points. The minimization of 

such expression depends only on the weights of linear estimator. 

 

4.2 Minimization of error variance 

In order to minimize the estimation error variance we should set its derivative to 

zero. Such derivative would be computed with respect to the n weights, thus 

obtaining n equations for n unknowns. Nevertheless, taking into account the 

condition for the unbiasedness of the estimator 1
1

=∑
=

n

i
iλ , we have n+1 equations 

for only n unknowns. 

 

The Lagrange parameter 

In order to introduce the n+1th variable we can invoke the so called Lagrange 

parameter: 
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 Such new equation must not affect the equality: 
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In fact, if we apply the condition of unbiasedness to such term: 
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In this way we obtain a set of n+1 equations with n + Lagrange parameter 

unknowns. 

 

Minimization of the estimation error variance 

The introduction of Lagrange parameter as additional equation allows us to 

express the unbiasedness condition directly trough the minimization derivative. In 

fact, setting the derivative of the variance to zero with respect to μ , we obtain 

exactly the unbiasedness condition and we do not need it anymore (Isaaks and 

Srivastava 1989): 
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Setting it to zero: 022 =−∑
a

aλ , we obtain exactly the unbiasedness condition: 

1
1

=∑
=

n

i
iλ . 

 

Since the unbiasedness condition is included in minimization equations, the 

minimization procedure leads to find the weights that minimize the estimation error 

variance and contemporarily respect the unbiasedness condition (Isaaks and 

Srivastava 1989). The estimator that follows this kind of condition is the best 

unbiased. 
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Going on with the other derivative, we can make an example with the weight 1λ : 
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spreading the equation in four terms: 
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where: 

- the first term does not depend on 1λ , that is 0
1

2

=
∂
λ
σ ; 

 

- the second term can be expanded separating the contribute for 1λ  from the 

other ones: 
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- the third term contains only one term in which 1λ  is involved: 
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- the fourth term also contains only one term involving 1λ : 
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The equation becomes: 
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Such equation is the result of the derivative of the estimation error variance to 

zero with respect to 1λ . We can obtain the same result, implementing the same 

method with the other weights. 

Thus, more in general, the join of unbiasedness condition and minimization of 

error variance of the linear estimator leads to the global system: 
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This is the system often referred as Kriging system. 

 

4.3 Kriging 

In 50’s the south african engineer Daniel G. Krige was the first to apply 

covariance function analysis to model the spatial continuity in order to quantify the 

reciprocal autocorrelation of the variable in linear spatial estimation. Gold mines 

exploitation and petroleum reservoirs design were the first application fields that 

obtained great profits from such applications. In particular, the dependence of the 
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estimation on the spatial continuity laws defined in structural analysis gave the 

chance to calibrate the model in order to honour the measured data, and the 

possibility of extracting the information about the estimation error variance revealed 

to be a very useful feature for the intent (Burrough el. source). 

The word “kriging” takes origin just from the name of the engineer that 

developed it. 

It consist in a linear estimation of known values, based on the unbiasedness and 

the greatest precision of the results (Isaaks and Srivastava 1989). Its peculiarity is 

based on the use of covariance and variogram as instruments for asses such main 

features. Kriging is regarded as B.L.U.E. (Best Linear Unbiased Estimation), that is, 

best, because its error variance is guaranteed to be the minimum, unbiased because 

the average error is guaranteed to be null, linear estimation. 

 

4.3.1 The Ordinary Kriging system 

As defined before, the kriging system is: 
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that, written in matrix notation, is: 
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μ
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We have seen how the variogram is complementary to variogram function. Thus 

we can express the kriging system with variogram function. 

Taking into account the equation: 
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( ) ( ) ( )hCovCovh −= 0γ , that can be expressed as baba Cov ,
2

, −= σγ , the system 

becomes: 
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 the classical expression of kriging system explicited with 

variogram. 

 

4.3.2 Estimation error variance 

One of the most important feature of kriging is the possibility to associate to the 

estimated value, the measure of its statistical reliability (Burrough and McDonnell 

1997). Such additive parameter is just the estimation error variance that will be 

regarded as kriging variance. The value of such variance must be as lower as 

possible as assumed before. 

Tacking into account the kriging system, and in particular the first term 

0,
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n

b
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μλ , we can multiply each term by aλ  and obtain: 
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Expanding it: 
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that is: 
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and considering the unbiasedness condition 1
1

=∑
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a
aλ  the last term is only μ  

and the equation becomes: 
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Substituting it into the general equation of error variance 
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Taking into account again baba Cov ,
2

, −= σγ , the equation becomes 
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From this equation is clear that the value of estimation variance depends on the 

variogram function value. The more is the proximity of the target point from a 
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known one, the more is the reliability of the estimate. In particular its smallest value 

depends on the presence of the nugget effect. Excluding the case in which the target 

point coincides with a known one, for which the variance is exactly zero (the 

estimated value is exactly the known one), the nugget variance is the lower limit for 

the variance of estimation. 

 

4.3.3 Main features of kriging 

I – exactness of interpolation – as said before if the target point coincides with a 

known one, its estimated value will be exactly the known one. Its variance is zero, 

because the variogram function is a discontinuous function and it shows zero 

semivariance value at zero lag. Moreover, if we apply the system in order to 

estimate the target point, we will obtain zero weights for each sample but for the 

known target one, and the two values will coincide. 

II – effect of range – in the linear combination of known samples we affirmed 

that there is a certain area of self correlation among pairs within which the 

involvement of information takes sense. Beyond such threshold samples are too far 

away and their influence is assumed to be negligible. The variogram shape offers a 

way to quantify such limit. In a classical case of bounded variogram, in fact, the 

semivariance values tend to the samples variance value (the a priori variance) and 

indicate the lack of self correlation among pairs. It allows the kriging system to 

associate very low weights to samples at distances greater than range. In this way 

the system is able to auto-tune itself functionally to range of self correlation of real 

data (Raspa 2004). Moreover, the range is a precious indication to quantify the 

neighbourhood of the estimates, in order to reduce the computational complexity of 

the algorithm. 

III – the screen effect – the unbiasedness condition does not assure the presence 

of positive weights. In some cases, when some extreme values appear, they are 

associated with negative weights. When two or more samples are aligned in one 

direction, the closest known point is assigned the highest weight and consequently 

the one behind has a very low one. In some cases such low weights are also 

negative; such effect is called screen effect, because closest points make a screen to 

shadow the most distant ones. The presence of negative weights can introduce, 
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sometimes, some negative estimates, that are often not coherent with natural 

variables. In this cases the user can artificially set such estimates to zero (Isaaks and 

Srivastava 1989). 

IV – effect of small scale behaviour of variogram – the shape of variogram near 

the origin is a very important indication for the understanding of the continuity and 

regularity of the variable. The more is the steepness of the function the more is the 

discontinuity and the small scale variability of the variable. To better understand it, 

we can think that the pure nugget model can be regarded as a common model with a 

very high discontinuity at zero lag and infinite range. Conversely, when the variable 

is very regular, the variogram shows a very slow increase with lag and a parabolic 

behaviour at small lags. Such different cases act on the setting of kriging weights in 

different ways. The more the variogram is regular, the more the weights decrease 

slowly with distance and estimates are more similar. Contrarily, if the increase of 

semivariance values is rapid, the weights decrease quickly and estimates tend to 

produce the so called bull’s eyes effect.  

 

4.3.4 Simple Kriging 

In the case the variable is known and second order stationary, the kriging system 

is submitted to some modification. The mean of the variable is known: 

 

( )[ ] mxZE =  and it is constant for the whole spatial domain. 

The estimation, expressed with respect to the residual ( ) ( ) mxZx −=Υ  is 

defined as: 
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As m is the same for the whole spatial domain, ( )[ ] ( )[ ]xZExZE ~≡  for any point 

and the condition of unbiasedness that assumed that ( ) ( )[ ] 0~ =− xZxZE  is useless. 

Thus we have not any condition on the weights and the kriging system is simply: 
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with estimation error variance (kriging variance): 
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Note that the system is expressed with respect to covariance function, because 

the second order stationarity guarantees for its existence. 

 

4.3.5 Kriging with trend 

I – Universal Kriging 

When the variable cannot be assumed to be stationary, we have to modify the 

situation in order to lead it to a stationary case (Wackernagel 2003; Raspa 2004). 

The variogram is no more usable because it is able to filter only a constant mean (in 

intrinsic hypothesis) and we have to move the approach on the residuals: 
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Assuming ( ) ( )∑=
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i
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li xfaxm , the general expression for the estimator 

becomes: 
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that coincides with the stationary form: 
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Such condition is the same that assures that the average error ( ) ( ){ } 0~ =− xZxZE . 

With such condition and using the residual covariance (because we are not able 

to compute the direct variogram or covariance from raw data) the kriging 

(universal) system becomes: 
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 where RCov  is the covariance of 

residuals, 

with the minimized estimation variance (Universal Kriging variance): 
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Such approach is called Universal Kriging, in which the trend is filtered by a 

deterministic function and the underlying covariance (or variogram) is computed in 
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order to implement the system. As seen before, the weights of known samples used 

for the linear combination are submitted to respect the unbiasedness condition and 

to minimize the estimation variance, but they have to filter the trend too. With such 

weights, the linear combination of the original variable coincides with the same 

linear combination of residuals. That is why they are able to filter the trend 

(Trevisani 2004). 

The more is high the degree of the trend, the more severe are the conditions and 

less is the importance of randomness of the phenomenon. As seen before, the 

detrending approach is based on a polynomial fit of the surface and the underlying 

covariance is computed on the residuals. Such method is, thus, extremely sensible 

to the choice of the shape of the trend, that is rarely justified by a real knowledge of 

the physical meaning of the phenomenon. More often the fit is a deterministic result 

and the reliability of such results is often doubtful. 

 

II – Kriging in Irf-k 

The alternative method to Universal Kriging is the kriging estimation applied to 

the Irf-k technique. As seen before, this method is a generalization of the intrinsic 

stationarity approach in which the zero order increment (the simple increment) of 

the variable is able to filter out a constant trend. In this way, using the variogram 

function as the main instrument for the structural analysis, we can be sure to be able 

to model second order (zero mean), intrinsic (constant mean) or quasi stationary 

(intrinsic within a certain sub-domain) variables. Generalizing the concept of the 

intrinsic stationarity, the higher order increment is able to filter out higher order 

trend (Buttafuoco and Castrignanò 2005). 

The further feature is the way to model the spatial continuity, for which a 

simplified form of covariance is used. Such function, the generalized covariance, is 

regarded as the sum of polynomials, plus some spline components. 

Summing up, the Irf-k is a function for which a linear combination of increments 

exists, it is second order stationary, it is able to filter out higher order trend, and its 

spatial continuity is modelled by the generalized covariance (Trevisani 2004). 

The kriging (Irf-k) system is the same of universal kriging, where covariance of 

residuals is substituted by generalized covariance: 
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with the minimized estimation variance (Irf-k Kriging variance): 
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4.3.6 Kriging of spatial components 

When the structural analysis of a certain variable returns a nested variogram with 

some different spatial components, we can be interested to estimate the unknown 

value of the variable regarding only one of such components (Bleines, Deraisme et 

al. 2004). For example, a nested variogram with two spherical models with two 

different ranges can be at the base of a multi-source phenomenon. Thus, the 

measured value can be the results of two different processes acting at two different 

scales and we could be interested to understand how one of the component had 

influenced the spatial distribution of the variable. 

The estimator takes the form: 
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and the kriging (of the component) system is the same of ordinary one: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=−

∑

∑

=

=

1
1

0,
1

,

n

a

u
a

u
a

u
n

b
ba

u
b

λ

γμγλ
, where uγ  represents the uth model component. 
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The sum of the estimated component with kriging of the component must be 

exactly equal to the estimated global value (with the global nested variogram) with 

ordinary kriging (Wackernagel 2003; Raspa 2004). 

 

4.4 Cross validation 

One of the main target of the geostatistician is to check the reliability of the 

estimation, to compare the results of different methods application and finally to 

evaluate the effects of setting the main parameters of each procedure. 

One of the most used method to implement such tests is the so called cross 

validation. Known points represent the reference information and in general a 

comparison between they and their estimations is the approach used to verify the 

affordability of the method. Nevertheless, if kriging is asked to estimate a target 

point in a position coinciding with a known one, it returns exactly the same value.  

Thus, in order to implement a concrete comparison, the leaving one out 

methodology suggests to remove one known point at once and to ask the method to 

estimate the value in the position of such removed point, using all the other 

informations (Isaaks and Srivastava 1989). Iterating the procedure for each known 

point, we can obtain two vectors of estimated and known information, that can be 

statistically compared with traditional techniques. 

One of the most common one is the classical scatter plot between ( )xZ  and 

( )xZ~ , in which the more the points cloud is stretched on a line, the higher is the 

correspondence between the two variables.  

 



_____________________________________________________CHAPTER 1___ 

 58

 
Figure 1.18 – The scatter plot of known points values and their estimates. 

Figura 1.18 – Lo scatter plot dei punti noti e delle loro stime. 
 

In general, the dispersion of estimated values is lower than the real ones, because 

their variance is minimized by the kriging procedure. 

The histograms of the standardized error ( ) ( )
σ

xZxZ ~−  is a very important tool to 

evaluate the unbiasedness of the estimation procedure and to quantify graphically 

the dispersion (the variance) of estimates.  
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Figure 1.19 – Histogram of estimates. 
Figura 1.19 – Istogramma delle stime. 

 

Moreover, such representation is useful to focus on the outliers. The scatter plot 

between the estimates and their standardized errors is a powerful tool to locate 

under- and over-estimates. The reference line (zero error variance) is the border 

between these two kinds of errors. 

 

 
Figure 1.20 – The scatter plot of estimates and their standardized errors. 

Figura 1.20 – Lo scatter plot delle stime e dei loro errori standardizzati. 
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The last parameter is very useful also to quantify univocally the reliability of the 

whole estimation procedure. The square mean of such standardized error 

( ) ( )
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⎢
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2~

σ
xZxZE  should be one, for a perfect estimate. Such parameter is often 

used to compare results obtained with different set of the main factors in the 

estimation method definition, in order to check for the best combination of 

variogram model and neighbourhood size. Moreover it is useful for different 

method comparison. 

 

5. Geostatistical simulations 

As we have seen in previous sections, kriging algorithm produces the most 

probable estimation of a certain variable on a certain grid. Such estimation is unique 

because it follows some conditions of unbiasedness and minimization of error 

variance, defined in the procedure (Isaaks and Srivastava 1989; Wackernagel 2003; 

Bleines, Deraisme et al. 2004). Because of the structure of the algorithm, kriging 

estimations are smoothed, realistic and precise representations of the spatial 

distribution of a certain variable, following the spatial law estimated just by real 

data (Journel and Huijbregts 2004). In most cases kriging results are more 

affordable than other interpolation methods because the algorithm is able to mould 

itself agreeing with the variability structure of the field. 

For many modelling application, such as flow models and quantitative 

manipulations of environmental variables, such unique representations of the field 

are not useful because they do not provide a quantitative measure of the variability 

of the system. Very often, in mathematical models applications, iterative versions of 

the random function distribution are very useful and geostatistical simulations 

provide it. Such methodologies return several reproductions of the function, such 

that they share the same histogram and variogram of the original raw data. The 

simulated realizations of the random function are know everywhere and are usually 

iteratively computed, for hundreds times. Such set of outputs can be exploited to 

compute the spatial variability of the system. One of the most widely used 

simulation method is the Sequential Gaussian Simulation (SGS), that is based on 



_____________________________________________________CHAPTER 1___ 

 61

the sequential simulation, the iterative simulation of each grid node, of the gaussian 

transformed variable. 

A summary description of the method is supplied here, while, for more details it 

is reminded to cited literature (Bleines, Deraisme et al. 2004)  

After a gaussian transformation of raw data (anamorphosis), finalized to give a 

gaussian distribution to raw data, we can apply simple kriging to them (the mean 

value is known and it is zero) in order to compute the value and the variance of each 

grid node.  

The simulated value is: 

 

UZZ SKSKS σ+= , 

 

where SKZ  and SKσ  are the values computed with simple kriging and U is a 

random normal function. Such procedure is usually repeated iteratively. 

 

Assessing spatial uncertainty 

Geostatistical simulations are conveniently used to compute spatial uncertainty. 

Having hundreds of realizations of the original random function, that share the same 

spatial law, we can combine them to compute some spatial statistics of the 

variability of the system. Local variability can be measured summarizing the n 

equally probable values of each grid node into some uncertainty indices. Such as the 

interquartile range, or the standard deviation of each grid node, can be used as 

measures of local dispersion. Such technique will be used to compute the local 

variability in order to locate the most sensible points for the infilling sampling plan. 
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CHAPTER 2 

GEOCHEMISTRY OF SOUTHERN CAMPANIAN   

CONTINENTAL SHELF 
 

In autumn 2004, the National Coastal Marine Environment Research Institute 

(I.A.M.C. Istituto per l’Ambiente Marino Costiero – C.N.R.) planned an 

oceanographic survey, focused on the geomorphologic research of the Campanian 

continental shelf. In this occasion, the Geochemistry Laboratory of the Institute, 

proposed to take part of the project in order to plan an intensive geochemical 

investigation of the area. The original sampling plan, focused on superficial 

sampling of the 0-200 mt. depth area, has been enriched by about 150 additional 

samples expressly devoted to geochemical analysis. The practical complexity of the 

survey, the economical affords and meteorological adversities caused a reduction of 

the planned amount of samples and the final set consisted on 104 samples. 

The 104 geochemical samples have been analyzed for trace metals, grain size  

and Total Organic Carbon content and the results have been processed with a 

geostatistical approach, in order to estimate the spatial distribution of the variables 

and eventually make any assumption about the natural and anthropic origins of the 

different trace metals. 

Structural analyses results, combined with them of classical statistics, allowed to 

classify the variables, dividing them in some group. A quasi stationary outline has 

been identified for almost all the variables (Myers 1989; Petitgas 1997). For the first 

group a well designed nested spatial structure has been recognized (Raty and 

Gilbert 1998). The two spatial components have been evaluated by a nested 

variogram and then used to implement kriging of spatial components (Morris 1999). 

Such methodology allowed to identify two different spatial scales distributions of 

the variables, one with high frequency rapid oscillations and one with some 

smoothed low frequency variations (Facchinelli, Sacchi et al. 2001; Franklin and 

Mills 2003). The second group showed mono structural variogram and have been 

treated with classical ordinary kriging, while log-normal kriging has been 

implemented on the last group in order to manage variables presenting high skewed 

distributions. 
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1. The sampling plan 

As said before, the cruise was focused on the geological analysis of the area and 

the geochemical exploration represented only an infilling of the defined sampling 

plan. The first one was defined following a systematic strategy in which a regular 

grid was built and each node represented a potential sample. Later, the same 

resolution has been kept, but with samples located only on the bathymetric lines. In 

order to reduce the redundancy of information and to avoid the aliasing of structural 

analysis (see chapter 3) it has been decided to infill the existent plan with a 

stratified random one on a denser grid. Such infilling has been computed in three 

different areas, that are widely known as risk ones: 

- Sele river estuary; 

- Harbour of Agropoli (SA); 

- City of Sapri (SA) – Golfo di Policastro. 

 The original grid resolution has been reduced to 700-800 mt. and 100-1500 mt., 

respectively for the area between 10-50 mt. depth and 50-200 mt. depth. Each cell 

of such grid has been sampled randomly. 
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Figure 2.1 – Sampling plan of the area out of the estuary of Sele river. 

Figura 2.1 – Piano di campionamento dell’area al largo di Foce Sele. 
 



_____________________________________________________CHAPTER 2___ 

 64

Napoli_Salerno.tif
PuntaLicosa_Sapri.tif
bat_5m
bat_50m
bat_20m
bat_200m
bat_10m
bat_100m
Aree 10-50
Aree50_200
Campionature
Geochimica

 
Figure 2.2 – Sampling plan of the area out of the bay of Agropoli. 

Figura 2.2 – Piano di campionamento dell’area al largo della baia di Acropoli. 
 

Napoli_Salerno.tif
PuntaLicosa_Sapri.tif
bat_5m
bat_50m
bat_20m
bat_200m
bat_10m
bat_100m
Aree 10-50
Aree50_200
Campionature
Geochimica

 
Figure 2.3 – Sampling plan of the area of Gulf of Policastro. 

Figura 2.3 – Piano di campionamento dell’area del Golfo di Policastro. 
 

The total amount of potential samples has been defined to about 600 units. 

Such prospective was obviously optimistic, because of economic and temporal 

practical limitations. 
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At the end of the cruise, the amount of sample for geochemical analyses was 

104 units, widely distributed along the southern coastal area (within 200 mt. 

depth). 

 

 
Figure 2.4 – The final sampling plan of the entire area. 

Figura 2.4 – Il piano di campionamento definitivo dell’intera area. 
 

Most of samples were located within the 100 mt. bathymetry, while only the 

ones around the deeper Golfo di Policastro overcame that quote, until 200 mt depth. 

The involved catchments basins are the Alento Mingardo river and Sele river. 

 

2. The dataset 

Geological description, together with sedimentological examination, has been 

executed onboard on the whole dataset, before to store them for the laboratory 

analyses. The spatial distribution of descriptive grain size values is conveniently 

correlated with bathymetry, where silt/clay samples are located mainly in the 

deepest Golfo di Policastro area and beyond the estuary of Sele river and coarser 

sand, with some zones with the presence of Posidonia Oceanica, are widely 
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distributed along the shoreline, concentrated in Punta Licosa area, where bottom is 

shallower (Russo 1990; Ferraro, Pescatore et al. 1997). 

 

 
Figure 2.5 – Grain size analyses results on the samples. 

Figura 2.5 – I risultati delle analisi granulometriche effettuate sui campioni. 
 

As we will analyze later, such grain size distribution will influence deeply the 

variables distribution. Eleven trace metals have been analyzed. Main basic statistics 

are presented in table. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
Al 99 497 98158 41389 40696 6.7e08 26002 0.074 -1.30
Fe 99 4540 68519 33368 35550 2.4e08 15493 0.003 -1.01
Cr 104 4.46 101.76 41.16 42.37 592 24.32 0.061 -1.05
Cu 104 1.15 46.44 19.60 18.81 148 12.18 0.136 -1.24
Ni 104 2.49 45.82 24.05 25.36 166 12.87 -0.133 -1.19
V 104 12.04 151.45 65.24 68.31 900 30.00 0.128 -0.65
Zn 104 11.99 124.86 69.81 73.43 935 30.57 -0.221 -0.93
Pb 104 2.75 46.29 18.00 16.44 110 10.47 0.678 -0.13
Hg 102 0.002 0.35 0.06 0.04 4.0e-03 0.06 2.222 5.67
Cd 104 0.02 2.00 0.15 0.10 4.8e-02 0.22 6.243 50.58
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As 104 6.47 50.77 20.85 20.18 63 7.96 0.859 1.26 
 

Table 2.1 – Basic statistics of the analyzed trace metals. 
Tabella 2.1 – Statistiche di base dei metalli in tracce analizzati. 

 

Generally, the variables are quite normally distributed, while Arsenic and Pb 

present a rather skewed distribution. Cadmium and Hg are significantly unbalanced 

toward low values and they show some high outliers. 

 

 

 

 



_____________________________________________________CHAPTER 2___ 

 68

 

Figure 2.6 – Histogram of 
the analyzed trace metals. 
Figura 2.6 – Istogramma 
dei metalli in tracce 
analizzati. 

 

One of the most important aspect of multivariate datasets processing is the 

quantification of correlation among variables.  

 

 AL  FE  CR CU NI V ZN PB HG CD AS  
Al 1.00 0.95 0.95 0.92 0.92 0.92 0.91 0.81 0.38 0.21 0.19 
Fe  1.00 0.89 0.89 0.92 0.85 0.90 0.76 0.39 0.23 0.18 
Cr   1.00 0.96 0.96 0.96 0.95 0.85 0.37 0.19 0.19 
Cu   1.00 0.97 0.93 0.96 0.88 0.46 0.16 0.22 
Ni   1.00 0.90 0.97 0.81 0.41 0.16 0.14 
V   1.00 0.91 0.89 0.32 0.26 0.33 
Zn   1.00 0.83 0.39 0.20 0.15 
Pb   1.00 0.32 0.32 0.43 
Hg   1.00 -0.05 0.10 
Cd   1.00 0.06 
As   1.00  

 
Table 2.2 – Correlation coefficient matrix of the analyzed trace metals. In red the 
values beyond 0.80. 
Tabella 2.2 – Matrice di correlazione tra I metalli in tracce analizzati. In rosso i valori 
oltre lo 0.80. 

 

The correlation coefficient table (computed on 99 valid samples) shows a general 

good correlation among the group Aluminium, Fe, Cr, Cu, Ni, V, Zn, while Lead 

seems to be slightly less concordant with them. Mercury, Cd and As are evidently 

uncorrelated. Such behaviour is confirmed by the analysis of distribution, that 

suggests the same gathering, and will be validated in structural analysis. The 

scatterplot between Aluminium and Fe, for example, reveals the typical high 

correlation between such metals, whose behaviour is  deeply influenced by grain 

size distribution. 
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Figure 2.7 – Scatter plot of Aluminium and Iron. 

Figura 2.7 – Scatter plot tra Alluminio e Ferro. 
 

Conversely, the scatterplot between Arsenic and most of other variables (Iron, in 

the example figure) reveals the presence of two subpopulations that each shows a 

good correlation. Such situation will be analyzed in the structural analysis, when 

influence on variogram computation will be investigated. 
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Figure 2.8 – Scatter plot of Arsenic and Iron. 
Figura 2.8 – Scatter plot tra Arsenico e Ferro. 

 

Principal component analysis of the multivariate dataset confirms the gathering 

made on the basis of the classical statistical parameters (Carlon, Critto et al. 2001; 

Reisa, Sousab et al. 2004). 
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Figure 2.9 – Factors circle plot with factors 1 and 3. 

Figura 2.9 – Grafico dei fattori della ACP. Fattori 1 e 3. 
 

PCA correlation circle, between factors one and three, shows a very clear cluster 

made by Aluminium, Fe, Cr, Cu, Ni, V, Zn, Pb, along factor one, while arsenic, 

mercury and cadmium are spread along the factor three axis. Such statistical 

behaviour will be confirmed by structural analysis. 

 

3. Structural analysis 

Structural analysis is the crucial aspect of such kind of application and its use 

will represent a fundamental step to optimize the kriging estimation procedures will 

be applied on the dataset. A detailed variographic analysis will be computed on 

data, in order to evaluate the consistence of the spatial structure and the presence of 

eventual anisotropies and non-normal behaviours of variables (Rosenbaum and 

Soderstrom 1996). 

 

Influence of lognormality and presence of outliers on variogram computation 

As seen before, the whole spatial law of the random function must be simplified 

and reduced to the definition of the behaviour of the first two moments (mean and 

variance/covariance). Such assumption is based on the consideration that only a 
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normal-like variable can be completely described by the first two moments 

(Bleines, Deraisme et al. 2004). Consequently, a more general geostatistical 

approach assumes that the variable (and its modelled random function) follows a 

normal distribution. When it does not, log-normal kriging is used. Such technique is 

based on a first transformation of the raw variable in its logarithms and a back-

transformation of the estimated values into their antilogarithms. 

The original variable can be regarded as: 

 

( ) ( ) β−= Υ xexZ , 

 

where the variable Y stands for the logarithm of Z and β  is the shift that makes Z 

positive. Log-normal kriging is based on the estimation of Y and on the final back 

transformation of Y in the original form Z, following: 

 

( ) ( )[ ] βμσ −= ++Υ 2
2

1~~ YxexZ , 

 

where the estimated variable ( )xZ~  derives from the back transformation of 

( )xΥ~ , added with its estimation variance. The use of lognormal kriging, especially 

in the case of geochemical variables is somewhat tricky and its use must be carried 

on with care. 

When some outliers are suspected to be present, a try-catch strategy is applied. 

Variogram is iteratively computed in order to evaluate the influence of eventual 

outlier on the conformity of spatial structure of the random function. If the apparent 

lack of structure is demonstrated to be due to some outlier they are assumed to be 

spike and rejected. 

 

3.1 Choice of calculation parameters  

The choice of variogram calculation parameters is a very important aspect, 

because the correct interpretation of the spatial structure of the random function 

depends on them. 
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The two-dimensional variogram map represents the semivariance values in a 

360° polar diagram, in which each cell value is defined for a certain distance and 

direction. Such graph is very useful for the definition of lag parameters and the 

recognition of anisotropies (Deutsch 2002). 

The spatial distribution of samples causes an anisotropic availability of pairs. 

 

 
Figure 2.10 – Polar plot of pairs abundance. Lag value = 1000 mt. # of lags = 60. 
Figura 2.10 – Grafico polare del numero di coppie. Lag = 1000 m. # di lags = 60. 

 

Number of pairs is widely concentrated along the Northwest - Southeast 

direction, that is approximately the long-shore direction. Because of the main target 

of the cruise, in fact, the samples are distributed along the coastline and are 

concentrated within the band of 10-200 mt. depth. Considering that the estimation 

procedure must be computed isotropically in all the direction and that a too much 

big neighbourhood is often unnecessary, we can reduce the computation domain to 

the minor radius of the ellipse. 
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Figure 2.11 – Polar plot of pairs abundance. Lag value = 1000 mt.; # of lags = 20. 

Figura 2.11 – Grafico polare del numero di coppie. Lag = 1000 m. # di lags = 20. 
 

Reducing the computation domain to 20 lags (lag = 1000 mt.), the pairs 

availability decreases but it is suitable also in cross-shore direction. 

 

The quasi-stationarity of data 

If we observe the omnidirectional experimental variogram of Zinc, computed 

over 90 lags, we can note a rapid increase of variability around the 60 Km lag. 

  

 
Figure 2.12 – Left: the variogram cloud and its fitted theoretical model. Right: 
location map of samples. In both the figure, the pairs responsible for the 
semivariance peak are highlighted. 
Figura 2.12 – A sinistra: la nuvola variografica e la sua funzione approssimante. A 
destra: mappa di ubicazione dei campioni. In entrambe le figure le coppie responsabili 
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del picco di semivarianza sono evidenziate. 
 

Such peak is related to the pairs belonging to Golfo di Policastro and Punta 

Licosa areas. It means that the most elevated dissimilarity among pairs is 

represented by the comparison between such two areas. As seen before, these two 

zones presents the most pronounced dissimilarity about the grain size, showing a 

broadly silt/clay sea-bottom in Golfo di Policastro and a coarse sandy one in Punta 

Licosa. Such dissimilarity is the indicator of a slight non stationary situation, in 

which the mean value of the variable (Zinc in this case) is varying trough the 

domain, showing very different averaged values between the two zones. We should 

chose a non stationary approach, in order to process such variable. 

Nevertheless, taking into account the considerations made before, regarding the 

pairs availability trough all the directions of investigation, we can simply reduce the 

spatial domain of variogram computation, following the procedure of the so called 

quasi stationary approach. Moreover, as affirmed before it is unreliable that such a 

large neighbourhood (with the related variogram range) would be necessary. 

In fact, the same experimental variogram, reduced to 30 lags, show a stationary 

well defined spatial structure. 

 

 
Figure 2.13 – Experimental variogram of Zinc. Lag value = 1000 mt.; # of lags = 30. 
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Figura 2.13 – Variogramma sperimentale dello Zinco. Lag = 1000 m. # di lags = 30. 
 

In this case, as omnidirectionally computed, the pairs availability allows to 

extend the upper limit to 30 lags, instead of the 20 defined before. In order to 

evaluate eventual anisotropic behaviour of the variables, we can observe the 

variogram map (Copper in the example). 

 

 
Figure 2.14 – Variogram map of Copper. Lag value = 1000 mt.; # of lags = 30. 

Figura 2.14 – Mappa variografica del Rame. Lag = 1000 m. # di lags = 30. 
 

The distribution of cell semivariance values does not reveals any evident 

anisotropy.  

 

Nested structures 

If we observe the experimental variogram of Aluminium, we can note how a 

fitting spherical model is not able to catch the behaviour of the first lags, while a 

exponential one is not able to model correctly the right sill. 
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Figure 2.15 – Experimental variogram of Aluminium. Left: modelled with a spherical 
model (Sill: 6.90e008, range: 14.80 e003). Right: modelled with an exponential model 
(Sill: 7.01e008, range: 17.95e003). 
Figura 2.15 – Variogramma sperimentale dell’Alluminio. A sinistra: approssimato con 
un modello sferico (Sill: 6.90e008, range: 14.80 e003). A destra: approssimato con un 
modello esponenziale (Sill: 7.01e008, range: 17.95e003). 

    

The pairs availability amount keeps over 30 units for all the lags, and we can 

trust on their semivariance values, trying to fit the model at all the scales. One way 

to try to honour the data is to introduce another structure for the smaller scales. 

 

 
Figure 2.16 – Experimental variogram of Aluminium and its theoretical nested 
model: 1.29e008 * sph (2.79e003) + 5.52e008 * sph (15.23e003). 
Figura 2.16 – Variogramma sperimentale dell’Alluminio e suo modello approssimante: 
1.29e008 * sph (2.79e003) + 5.52e008 * sph (15.23e003). 

 

Such choice leads to the definition of a nested model, where two spherical 

models are combined to represent the whole variability structure of the random 
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function. In this way, in fact, both the small scale and the large scale (the sill) of the 

variogram are correctly modelled. The range of the first component is about one 

fifth of the large scale one, while the sum of the two sills is nearby the sample 

variance trough which the values oscillate. As said before, such situation reveals the 

role of two main mechanism contributing to the spatial distribution of the variable 

(Bourennane, Salvador-Blanes et al. 2003). 

 

3.2 The trace metals 

At this point we can go on analyzing each variable at once, following the 

calculation parameters, as defined here. 

 

Aluminium 

As seen before, Aluminium is one of the variable that shows a nested variogram. 

Its histogram is sufficiently normal-like. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
AL 99 497 98158 41389 40696 6.7e08 26002 0.074 -1.30 

 
Table 2.3 – Basic statistics for Aluminium. 

Tabella 2.3 Statistiche di base per l’Alluminio. 
 

 

 
Figure 2.17 – Variogram and histogram of Aluminium. 

Figura 2.17 – Variogramma e istogramma dell’Alluminio. 
     

With the theoretical nested variogram model: 



_____________________________________________________CHAPTER 2___ 

 79

 

( ) ( ) ( )00323.1500379.2 00852.500829.1 ee sphespheh ∗+∗=γ . 

 

Iron 

Variogram of iron presents the same nested structure, but with an even more 

regular small scale variability. The short range model, in fact, is a gaussian one, that 

reveals a homogeneous variation of variable values at small scales. Its histogram is 

close to be normal-like. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
FE 99 4540 68519 33368 35550 2.4e08 15493 0.003 -1.01 

 
Table 2.4 – Basic statistics for Iron. 

Tabella 2.4 – Statistiche di base per il Ferro. 
 

 
 

Figure 2.18 – Variogram and histogram for Iron. 
Figura 2.18 – Variogramma e istogramma per il Ferro. 

      

With the theoretical nested variogram model: 

 

( ) ( ) ( )00337.1700349.2 00862.100740.7 ee sphegauseh ∗+∗=γ . 

 

Chromium 

Chromium variogram does not show any clear nested structure. The rapid 

increase of variability at small scales, maybe due to the abundance of very small 



_____________________________________________________CHAPTER 2___ 

 80

values populating the first class of the histogram, does not allow to catch the 

multiple structure. Small values, especially if related to geochemical variables, are 

often supposed to be affected by analytic errors, and such uncertainty is confirmed 

by small scale variogram. Even if it is reliable to have the same nested structure of 

the other variables, we cannot hazard to model the short range component with only 

one lag. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
CR 104 4.46 101.76 41.16 42.37 592 24.32 0.061 -1.05 

 
Table 2.5 – Basic statistics for Chromium. 

Tabella 2.5– Statistiche di base per il Cromo. 
 

 
 

Figure 2.19 – Variogram and histogram for Chromium. 
Figura 2.19 – Variogramma e istogramma per il Cromo. 

     

With the theoretical variogram model: 

 

( ) ( )00367.1578.54752.30 esphh ∗+=γ . 

 

Copper 

In agreement with Chromium, also Copper does not show a clear nested 

structure, with some degree of nugget effect and only one spherical model. Such as 

in Chromium case, Copper histogram presents a large accumulation of very small 

values. 
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 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
CU 104 1.15 46.44 19.60 18.81 148 12.18 0.136 -1.24 

 
Table 2.6 – Basic statistics for Copper. 

Tabella 2.6– Statistiche di base per il Rame. 
 

  
Figure 2.20 – Variogram and histogram for Copper. 

Figura 2.20 – Variogramma e istogramma per il Rame. 
     

With the theoretical variogram model: 

 

( ) ( )00346.1421.13238.14 esphh ∗+=γ . 

 

Nickel 

As the two previous variables, also Nickel shows some nugget effect with no 

clear nested structures. Once again, its histogram presents several units in the lowest 

classes. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
NI 104 2.49 45.82 24.05 25.36 166 12.87 -0.133 -1.19 

 
Table 2.7 – Basic statistics for Nickel. 

Tabella 2.7– Statistiche di base per il Nichel. 
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Figure 2.21 – Variogram and histogram for Nickel. 
Figura 2.21 – Variogramma e istogramma per il Nichel. 

     

 

With the theoretical variogram model: 

 

( ) ( )00305.1663.15155.8 esphh ∗+=γ . 

 

Vanadium 

Variogram of vanadium shows a clear nested structure with two spherical 

models. Its histogram is closer to a normal-like one than the previous variables. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
V 104 12.04 151.45 65.24 68.31 900 30.00 0.128 -0.65 

 
Table 2.8 – Basic statistics for Vanadium. 

Tabella 2.8– Statistiche di base per il Vanadio. 
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Figure 2.22 – Variogram and histogram for Vanadium. 
Figura 2.22 – Variogramma e istogramma per il Vanadio. 

     

With the theoretical nested variogram model: 

 

( ) ( ) ( )00340.1600376.3 98.78866.140 ee sphsphh ∗+∗=γ . 

 

Zinc 

Once again, Zinc variogram shows a well defined nested structure, with two 

spherical models. The histogram is somewhat normal-like. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
ZN 104 11.99 124.86 69.81 73.43 935 30.57 -0.221 -0.93 

 
Table 2.9 – Basic statistics for Zinc. 

Tabella 2.9– Statistiche di base per lo Zinco. 
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Figure 2.23 – Variogram and histogram for Zinc. 
Figura 2.23 Variogramma e istogramma per lo Zinco. 

     

With the theoretical nested variogram model: 

 

( ) ( ) ( )00386.1500333.4 56.77960.208 ee sphsphh ∗+∗=γ . 

 

Lead 

Lead histogram reveals a certain unbalance of the distribution with a positive 

skewness. Its variogram and generally the application of geostatistical technique 

could be more correctly implemented if the variable were logarithm transformed 

(the natural logarithm ln). Nevertheless, if we observe the histograms of the original 

and the transformed variable, we can note that such improvement has not happened. 

 

  
Figure 2.24 – Histograms of Lead (left) and natural logarithm of Lead (right). 

Figura 2.24 – Istogramma del Piombo (sinistra) e del suo logaritmo naturale (destra). 
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Basic statistics are: 

 

 N MI
N 

MA
X 

MEA
N 

MEDIA
N 

VARIANC
E 

STD 
DEV 

SKEWNES
S 

KURTOSI
S 

PB 10
4 2.75 46.29 18.00 16.44 110 10.47 0.678 -0.13

Ln(PB
) 

10
4 1.01 3.83 2.69 2.80 0.44 0.67 -0.59 2.85

 
 

Table 2.10 – Basic statistics for Lead and natural logarithm of Lead. 
Tabella 2.10 – Statistiche di base per il Piombo e per il suo logaritmo naturale. 

 

where it is clear that the variable has not improved the normal-like behaviour 

(compare the skewness coefficients). In agreement with statistical results, also 

variogram of transformed variable is not clearer than the original one. 

 

  
Figure 2.25 – Histograms of Lead (left) and natural logarithm of Lead (right). 

Figura 2.25 – Istogramma del Piombo (sinistra) e del suo logaritmo naturale (destra). 
    

In order to avoid the distortions due to computation of variogram of a 

transformed variable, and considering that the gain from such transformation is 

about null, we’ll continue processing the untransformed variable. 

Lead variogram shows a very clear nested structure, with the highest short range 

component of the variables. 
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Figure 2.26 – Nested variogram of Lead. 

Figura 2.26 – Variogramma nidificato del Piombo. 
 

With the theoretical nested variogram model: 

 

( ) ( ) ( )00368.1200372.4 95.8042.40 ee sphsphh ∗+∗=γ . 

 

Mercury 

Variogram of mercury shows a complete lack of spatial structure. Data seem to 

be totally uncorrelated and the resulting model is a pure nugget one, with sill close 

to the total sample variance. Skewness value and the highly skewed histogram 

reveal a strong unbalance toward lower classes. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
HG 102 0.0002 0.35 0.06 0.04 4.0e-03 0.06 2.222 5.67 

 
Table 2.11 – Basic statistics for Mercury. 

Tabells 2.11 – Statistiche di base del Mercurio. 
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Figure 2.27 – Variogram and histogram for Mercury. 
Figura 2.27 – Variogramma e istogramma del Mercurio. 

    

With the theoretical pure nugget variogram model: 

 

( ) 00313.4 −= ehγ . 

 

If we consider the analytic mean error equal to the 10 percent of the median 

value of the whole dataset, we can fix the median analytic variance to 1.6e-005 

ppm2, that is much lower than nugget variance value. It means the small scale 

variability is intrinsic in the dataset and does not depend from the analytic 

uncertainness. By transforming the variable into its natural logarithm, we can 

improve the meaning of variogram. 

 

  

Figure 2.28 – Variogram and histogram for natural logarithm of Mercury. 
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Figura 2.28 – Variogramma e istogramma per il logaritmo naturale del Mercurio. 
    

With the theoretical variogram model: 

 

( ) ( )00376.736.113.0 esphh ∗+=γ . 

 

Cadmium 

Experimental variogram of Cadmium does not reveal any clear structure, and 

observing the histogram we can propose to check the role of the highest class values 

in variogram definition. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
CD 104 0.02 2.00 0.15 0.10 4.8e-02 0.22 6.243 50.58 

 
Table 2.12 – Basic statistics for Cadmium. 

Tabella 2.12 – Statistiche di base per il Cadmio. 
 

 
 

Figure 2.29 – Variogram and histogram for Cadmium. 
Figura 2.29 – Variogramma e istogramma per il Cadmio. 

    

If we filter out such class (red highlighted), the variogram is somewhat clearer 

and it can be conveniently modelled. 
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Figure 2.30 – Variogram and histogram for filtered Cadmium. Outlier class 
highlighted in red. 
Figura 2.30 – Variogramma e istogramma del Cadmio filtrato. Le classi estreme sono 
evidenziate in rosso. 

    

With the theoretical variogram model: 

 

( ) ( )00313.2014.0 esphh ∗=γ . 

 

In this case the logarithmic transformation of the variable, even improving the 

shape of histogram making it more normal-like, does not increase the conformity of 

the variogram. 

 

Arsenic 

Experimental variogram of Arsenic reveals a somewhat high degree of small 

scale variability, with a important role of the nugget variance. Nevertheless, by 

computing the variance contribution from analytic measurements as 10% of the 

median value, about 16 ppm2, we must rescale the nugget effect, such that only the 

50% is effectively due to intrinsic small scale variability. 

 

 N MIN MAX MEAN MEDIAN VARIANCE STD DEV SKEWNESS KURTOSIS
AS 104 6.47 50.77 20.85 20.18 63 7.96 0.859 1.26 

 
Table 2.13 – Basic statistics for Arsenic. 

Tabella 2.13 – Statistiche di base per l’Arsenico. 
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Figure 2.31 – Variogram and histogram for Arsenic. 
Figura 2.31 – Variogramma e istogramma per l’Arsenico. 

     

With the theoretical variogram model: 

 

( ) ( )00300.2061.4790.30 esphh ∗+=γ  

 

4. The estimation 

Once defined the variograms and modelled them in the most appropriate way, we 

can implement the final target, that is the spatial estimation, focused on the 

complete knowledge of the spatial distribution of the different trace metals, in the 

investigated area. 

By analyzing results of structural analyses, we can gather the variables into two 

main group: 

- Nested (Aluminium, Fe, V, Zn, Pb); 

- Non nested (Chromium, Cu, Ni, As). 

Eventually, mercury has been ln-transformed, in order to obtain a clearer 

variogram structure, and Cadmium has been filtered of highest values. Some 

example for each group will be shown here, in order to realize how the variogram 

influences the estimation process. 
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4.1 Nested structures 

The nested variogram model of Zinc is well defined and it will be used to 

implement kriging of components, in order to decompose the two spatial 

components contributing to the distribution of variable. Kriging of the global 

structure gives origin to the map in figure 2.32, where the constant global mean is 

72.67 ppm. A unique neighbourhood has been chosen because variogram range 

represents the driving indication for the kriging search radius definition. 

 

 
Figure 2.32 – Kriged map of Zinc, based on the nested variogram. 

Figura 2.32 – Stima con Kriging dello Zinco, basata sul modello nidificato. 
 

The spatial distribution reveals a complex structure, in which a global smoothed 

variation is overlapped to a more local one, with some spots widely distributed in 

the domain (Durrani and Badr 1995). Lowest concentration values are located 

mainly along the shoreline at the shallowest depth as in Punta Licosa, while high 

values are concentrated in deepest areas as Golfo di Policastro. The greatest bull’s 

eyes effect is concentrated around those high value samples that are isolated from 

the others out of Palinuro and Punta Licosa shores. Kriging variance map is 
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minimized at the close neighbourhoods of samples and increase slowly with going 

further. 

 

 
Figure 2.33 – Kriging variance map of the estimated map based on nested variogram 
of Zinc. 
Figura 2.33 – Mappa della varianza di kriging relativa al modello nidificato dello Zinco. 

 

Cross validation confirms the good quality of the estimation, with the scatter plot 

of real and estimated values revealing a correct balance between under- and over-

estimation, and the histogram of the standardized errors showing their normal 

distribution. As always, estimated values are slightly less spread than real ones. The 

bands are related to ± 2.5 standardized error. 
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Figure 2.34 – Left: scatter plot of known and estimated values. Right: histogram of 
relative errors. 
Figura 2.34 – A sinistra: scatter plot dei valori noti e stimati. A destra: istogramma degli 
errori relativi. 

 

 SCATTER PLOT HISTOGRAM 

 ( )ZZ ~,ρ  MIN MAX MEAN STD DEV 

ZN 0.69 -3.02 3.83 -0.03 1.20  
 

Table 2.14 – Basic statistics for estimates for Zinc. 
Tabella 2.14 – Statistiche di base per le stime dello Zinco. 

 

By using kriging to filter the spatial components, we can decompose the spatial 

structure. In the figure, the long range map looks like the global one except for the 

absence of the punctual spots of high and low values. 
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Figure 2.35 – Kriged map of the long range component of Zinc (subtracted of the 
global mean value). 
Figura 2.35 – Stima con kriging della componente regionale dello Zinco (sottratta del 
valore medio globale). 

 

It represents the low frequency variation of the field, with slow and smoothed 

variability spread over the whole domain. As in the global map, high values are 

concentrated in deep water and in Golfo di Policastro, while the lowest values are 

mainly located along the shoreline and out of Punta Licosa. The estimated values 

are subtracted of the mean (72.67 ppm) and does not represent a quantitative 

estimation of real values. 

The short range map reveals a series of rapid oscillations around the mean 

filtered value.  
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Figure 2.36 – Kriged map of the short range component of Zinc (subtracted of the 
global mean value). 
Figura 2.36 – Stima con kriging della componente locale dello Zinco (sottratta del 
valore medio globale). 

 

Such high frequency variability produces several hotspots presenting high and 

low values (anomalies). In general, positive anomalies are widely spread in deep 

water, while lowest one are close to the shore, but in some zones of Golfo di 

Policastro, such tendency is inverted, with a negative anomaly in the deep centre of 

the gulf. 

An interesting aspect is the variation range of both the maps. The long range map 

presents a range of about 93 ppm, while the short one only 57 ppm. It confirms the 

greatest variation of the low frequency component that is the driving factor in 

spatial distribution of the variable. Conversely, the short range component is just 

like an adding signal that leads positive and negative anomalies to a more stable 

track. If we move the interpretation to the temporal framework, we can assume that 

the long range component is a more stable natural and old factor defining the spatial 

structure, while the short one is a more recent one that can reasonably be lead to 

some external interference, like anthropic presence. 
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4.2 Non nested structures 

Chromium will be used as example for non nested structures. Its processing is a 

classical example of Ordinary Kriging application. The estimated map shows a 

spatial distribution very similar to the Zinc one. 

 

 
Figure 2.37 – Kriged map of Chromium. 

Figura 2.37 – Stima con kriging del Cromo. 
 

Again, concentration values are mainly driven by grain size, with highest values 

concentrated in Golfo di Policastro and in deep water and lowest ones spread along 

the shoreline and out of Punta Licosa. Cross validation and kriging variance map 

confirm the affordability of the map. 
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Figure 2.38 – Left: scatter plot of known and estimated values. Right: histogram of 
relative errors. 
Figura 2.38 – A sinistra: scatter plot dei valori noti e stimati. A destra: istogramma degli 
errori relativi. 

 

 SCATTER PLOT HISTOGRAM 

 ( )ZZ ~,ρ  MIN MAX MEAN STD DEV 

CR 0.79 -2.63 3.27 -0.03 1.11  
 

Table 2.15 – Basic statistics for estimates for Chromium. 
Tabella 2.25 – Statistiche di base per la stima del Cromo. 
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Figure 2.39 – Kriging variance map of the estimated map of Chromium. 

Figura 2.39 – Mappa della varianza di kriging per il Cromo. 
 

Minimum value of kriging variance are quite high, because of the non zero value 

of nugget variance. 

 

4.3 Log-transformed variables 

As described in the previous chapter, log-normal kriging is based on the 

application of the method to the logarithmic transformed variable, in the case it does 

not present a convenient normal distribution. As noted in structural analysis, 

mercury shows such highly skewed histogram and it has been ln-transformed. In 

this case the variable shows all positive values and a shift is not needed. 

Log-normal kriged map shows a somewhat irregular spatial distribution of 

mercury concentration values, with several spots and high frequency variations. 
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Figure 2.40 – Estimated map of Mercury computed with Log-normal kriging 
technique. 

Figura 2.40 – Stima con Log-normal kriging del Mercurio. 
 

Nevertheless, the general course of the field is kept and the usual spatial 

correlation with grain size is somewhat clear. If compared with results from IDW 

(inverse distance weighted) and SPLINE methods, the kriged map is much clearer 

and consistent with original data (Lancaster and Salkauskas 1986). 

 

  
Figure 2.41 – Estimated map of Mercury computed with IDW and spline techniques, 
respectively on the left and on the right. 
Figura 2.41 – Stima con IDW e spline del Mercurio, rispettivamente a sinistra e a 
destra. 
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Both the methods presents the classical bull’s eyes effect, more evident in spline 

map, while the last one, because of the smoothing behaviour of the 3rd degree 

polynomials, produces also negative values (Wingle 1992; Collins and Bolstad el. 

source). By observing the basic statistics we can note how the kriged map is the less 

spread, because of the features of kriging algorithm described before. 

 

 N  MIN  MAX MEAN MEDIAN STD DEV SKEWNESS KURTOSIS
Hg raw data  102 0.0002 0.35 0.06 0.04 0.06 2.22 5.67
Est. Hg log-kri 5150 0.0006 0.25 0.07 0.06 0.04 0.98 4.66
Est. Hg IDW 5150 0.0014 0.34 0.06 0.05 0.03 1.95 11.25
Est. Hg spline 5150 -0.05 0.36 0.06 0.06 0.03 2.95 22.87 

 
Table 2.16 – Basic statistics comparing the results of different estimation techniques. 
Tabella 2.16 – Statistiche di base per il confronto dei risultati delle diverse tecniche di 
stima 

 

The best reliability of kriged map is more evident from the observation of the 

histograms. 
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Figure 2.42 – Histograms of original data and estimated values with lognormal 
kriging, spline and IDW, respectively from the top and from the right. 
Figura 2.42 – Dall’alto a sinistra: istogramma dei dati originali e delle stime con log-
normal kriging, spline e IDW. 

 

Where the skewed shape of original data is respected better in kriged map. 

 

5. Discussion 

We presented some example of geochemical variables processing approach, 

based on stationary geostatistical technique. A preliminary statistical analysis 

allowed to investigate on the correlations among the variables and to divide them in 

two main groups. Aluminium, Fe, Cr, Cu, Ni, V, Zn, Pb result strictly correlated, 

while arsenic, mercury and cadmium are far from such cluster. A detailed structural 

analysis and an accurate variography complicate such gathering defining two more 

classes. Aluminium, Fe, V, Zn present a nested variogram with two or more spatial 

components, while for Chromium, Cu, Ni, As the spatial variability can be 

conveniently described by only one model. Finally, lead, mercury and cadmium are 

treated separately, analyzing each case in details. 

Different forms of kriging are applied to the different groups of variables, 

illustrating the use of spatial component filtration and the influence of skewed 

distributions or outliers in datasets. Each map is checked by cross validation 

technique or by observing the basic statistics of results. 

The main evidence is the almost complete dependence of nearly all the variables 

from grain size distribution. Finest sediment, concentrated in deeper water and in 

Golfo di Policastro area, seems to cause an accumulation of each trace metals, while 
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the zone out of Punta Licosa, with its shallower bottoms and its more active gravel 

sand, does not allow a high degree of sedimentation. 

For what concerns the variables that present a nested structure of variability, it is 

very interesting to propose a geochemical interpretation of such situation. Large 

scale component, in fact, can be regarded as a globally varying background value 

that represents the natural oscillating level of each of these chemical species 

(Cheng, Agteberg et al. 1994; Salminen and Tarvainen 1997; Vivo, Boni et al. 

1997; Yunker, Macdonald et al. 1999; Singh, Müller et al. 2003). Background 

values are assumed to be not a fixed threshold that is constant for the whole spatial 

domain, but, more reasonably, a slowly varying surface (range of values) that had 

been evidently shaped by natural constraints. Conversely the high frequency 

component can be regarded as an adding signal with more rapid and small scale 

oscillation. Thus, such component can be reasonably regarded as the result of a 

more local control of grain size anomalies, hydrothermal activities, that are widely 

spread in the area, or a somewhat anthropic input.  

Such interpretation is obviously less affordable than the one proposed for the 

large scale component (Sprovieri et al. 2005). It is much easier to suppose a natural 

background interpretation for the low frequency slowly varying component, rather 

than for the more irregular one. Thus, anthropic incidence can be at least one of the 

factor responsible for such structure. 
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CHAPTER 3 

OPTIMIZATION OF SAMPLING DESIGNS 
 

The optimization of sampling strategies is a well known argument that has been 

exhaustively discussed in literature (Lloyd and Atkinson 2001; Lloyd and Atkinson 

el. source). The quality of data and the reliability of the measure is strictly 

dependent rather than on the analytic errors, on the choice regarding the location of 

sampling sites. The key feature of geostatistical applications is the strict dependence 

of such methodologies on the results of variographic analyses. Such analyses are 

based on statistical processing of hard data (the samples) that are deeply influenced 

by their spatial distribution. 

In fact geostatistics is exactly somewhat statistics (or better stochastics) in spatial 

context and it is consequently strictly dependent on spatial features of hard data. 

The main of such spatial features is just the sampling scheme. The sampling 

structure, the sampling resolution and the total amount of samples (informations) 

are essential parameters for variogram computation and just such instrument will be 

employed in this work, in order to optimize sampling strategy (Smith and Williams 

1996). 

The problem will be divided in two main branches: 

- Optimizing a new sampling plan; 

- Improve the efficiency of an existing sampling plan. 

The first concern will be based on the definition of the technique finalized to 

optimize the faculty of a sampling plan, to catch the whole variability of the system. 

Variograms will be used to analyze the differences between two classical sampling 

techniques: i) the systematic one and ii) the stratified random one. 

The second point will focus on the enhancement of effectiveness of an existing 

sampling plan for which the minimum number of additional samples will be 

outlined (Goovaerts 2001; Kanevski, Parkin et al. 2004; Goovaerts, Jacqueza et al. 

2005; Goovaerts el. source; Goovaerts el. source). Geostatistical simulations will be 

used to quantify the spatial uncertainness of the field, while the variogram will be 

involved in the process of minimization of the small scale variance (Castrignanò 

and Buttafuoco 2004). 
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1.Optimization of a new sampling plan 

Sampling strategy is a very important aspect of spatial analysis. As said before 

the information deriving from hard data are deeply influenced by samples location 

and their distribution in spatial domain. In particular, with fixed economic 

availability and with the consequent fixed number of potential samples, the quality 

of representation of variability structure of the variable is strictly dependent on the 

way the available information sources are located in the spatial domain.  

That is the reason for which sampling strategy is so important in spatial analysis 

and its optimization is a key concept in such kind of applications. The author wants 

to present an application of variographic instruments as control of the influence of 

the sampling plan on the variability structure and thus propose the best strategy.  

Many sampling approaches have been defined in literature (Burrough and 

McDonnell 1997) and each of them is reasonably applicable in different conditions. 

Nevertheless, here a generalization of an optimal choice is proposed, focusing on 

the capacity of  applying it conveniently in any situation. 

As said before, each sampling strategy is opportunely applied in any well defined 

situation, but all the methods are grouped into two main divisions: 

- systematic strategies; 

- random strategies. 

As easy realizing, the first group concern all the methods based on regular 

division of the spatial context and the systematic allocation of samples, while the 

second one regards a random distribution of information sources. 

 

1.1 Systematic strategies 

Systematic sampling strategies are based on regular distribution of sites of 

investigation, based on a simple division of the spatial domain in a regular grid, or 

by following some specific demand, as isovalues lines or transects. The main 

typologies are (Burrough and McDonnell 1997): 

- pure systematic sampling, that is based on the simple division of the spatial 

domain in a regular grid and on the sample allocation in each cell of such 

grid; 
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- transect sampling, that is based on the distribution of each sample along 

defined transects; 

- isovalues sampling, that is based on the distribution of samples along 

isovalues lines of the investigated variable (whereas they are known). 

 

Figure 3.1 – The systematic, the transect 
and the isolines sampling techniques, 
respectively on the top-left, on the top-
right and on the bottom-left. 
Figura 3.1 – Dall’alto a sinistra: le 
tecniche di campionamento: sistematica, 
a transetto ed  a isolinee. 

       

The main feature of such kind of methods is the capacity to cover uniformly the 

whole domain of investigation, and to explore with details the elements of the 

system that are partially known. The transect sampling strategy is focused on the 

idea to investigate some variable that is expected to vary principally along a certain 

direction, while the isovalues sampling method is usually used for the vectorization 

of raster map, for which the aim is to create a punctual set of isovalues for a certain 

variable. 
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The common feature of such methodologies is the lack of relation between the 

variability of the variable and the choice on samples allocation. In pure systematic 

sampling only the resolution of the grid is defined before (usually as function of 

economic availability), with no consideration on possible over- or under- estimation 

of the field, while the other two methods make some assumption on the behaviour 

of the variable, but with no precise knowledge. 

 

1.2 Non systematic strategies 

As affirmed in previous chapter, environmental variables are assumed to be 

better interpreted by stochastic modelling, more than by deterministic ones. It has 

been explained how the main geostatistical principle is to consider the variable as a 

random regionalized function and to regard the samples as realizations of such 

function.  

Following such principle, we can assume that the best way to create an unbiased 

sampling plan is to define it in a random framework (Burrough and McDonnell 

1997; Burrough el. source). Nevertheless, a pure random sampling strategy can lead 

to an excessive economic waste, because a complete coverage of the domain is 

assured only by a very large amount of samples. In order to join the unbiasedness of 

random methods and the complete investigation of the site, the stratified random 

strategy has been defined. 

 

  
Figure 3.2 – The pure random and the stratified random sampling strategy, 
respectively on the left and on the right. 
Figura 3.2 – Le strategie di campionamento casuale pura (a sinistra) e casuale 
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stratificata (a destra). 
 

Such methodology is based on the random location of each sample in each cell 

of the regular grid previously created over the domain. In this way the complete 

coverage of the area is guaranteed by the regular grid and the unbiasedness of the 

investigation is assured by the randomness of samples location within the grid. 

The main problem regarding the bias introduced by sampling strategy regards the 

relationship between the scale of variability of the field and the scale of the 

exploration grid. When the frequency of the sampling method is so precise, the 

information at that scale are redundant, while the ones at other scales are scarce or 

totally missing. This is the key concept will be discussed in this section. In 

particular, variogram will be used to test how the stratified random sampling can be 

moulded as the optimizing method for generic spatial analysis. 

 

1.3 The effect of sampling strategy 

For what concern the influence of sampling approach on the experimental 

variogram, two main features will be analyzed in details: i) the small scale lags 

variability and ii) the pairs abundance. 

Looking at the two variograms computed respectively on a systematic and on a 

stratified random sampled variable, we can note how the main differences regard 

the smallest scale investigable and the distribution of pairs abundance among the 

different spatial scales. 

 

  
Figure 3.3 – Effect of the different sampling strategies on the pairs abundance. 
Figura 3.3 – Effetto delle diverse strategie di campionamento sulla disponibilità delle 
coppie. 

     

In particular, it is clear how, in the case of systematic sampling the smallest lag 

is far to be the smallest investigable spatial scale and the pairs abundance is biased 
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through the different spatial scales. There are many pairs at the multiples of the grid 

resolution value and very few at the intermediate scales. 

Such relevant features are very important for the computation of experimental 

variogram, that is deeply influenced by the pairs distribution over the lags and that 

can be consequently interpreted in a more or less correct way. 

 

1.4 The simulation test 

In order to test the differences between the systematic and random sampling 

strategies and to analyze their influence on the variogram computation, a simulation 

test is proposed. It consists on the simulation of several iterative sub-samplings of a 

known artificial surface with different grid resolutions, and the computation of 

variographic analysis on them. 

 

1.4.1 The artificial surface 

An artificially surface has been built with Matlab®, simulating a stationary 

random function on a 350 x 350 mt. grid with 1 mt. resolution (Hu el. source). 

 

 
Figure 3.4 – The artificial surface. 
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Figura 3.4 – La superficie artificiale. 
 

The surface presents several small oscillations, with an homogeneous small scale 

variation of the variable. It is stationary and its two-dimensional polynomial global 

trend is an horizontal plane. Histogram of the variable shows a normal like 

behaviour, with mean and median values coinciding and a skewness of -0.04. 

 

 

 

BASICS STATISTICS FOR ‘Zeta’ variable 
Min -7.93
Max 38.57
Mean 16.60
Median 16.55
Variance 104.58
Standard deviation 10.23
Skewness -0.04
Kurtosis 2.11

Figure 3.5 – Histogram of test variable 
‘Zeta’. 
Figura 3.5 – Istogramma della variabile 
test ‘Zeta’. 

Table 3.1 – Basic statistics for test variable 
‘Zeta’. 
Tabella 3.1 – Statistiche di base per la 
variabile test ‘Zeta’. 

  

Experimental variogram computed for East-West and North-South directions 

(lag = 10 mt.; # of lags = 35), reveals a slight geometric anisotropy, with the 

northward range larger than the southward one. 
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Figure 3.6 – Experimental directional variogram of test variable ‘Zeta’. Lag value = 
10 mt.; # of lags = 35. 
Figura 3.6 – Variogramma direzionale sperimentale della variabile test ‘Zeta’. Lag = 10 
m. # di lags = 35. 

 

Each structure shows an evident periodicity, reflecting the periodic variation of 

the surface with larger oscillations in eastward direction. As confirmed by the 

observation of the shape of the surface, the variograms reveal a very homogeneous 

variability at small scale lags, with a parabolic behaviour within the first 20-30 mt. 

In general, the experimental variograms are very regular, because of the continuity 

and large abundance of information. 

One interesting aspect is the frequency of the oscillations of the variograms. In 

both the directions the semivariance values complete a whole oscillation within the 

250 mt. lag. 
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Figure 3.7 – Orthogonal profiles for the test surface. 
Figura 3.7 – Profili ortogonali della superficie di test. 

 

If we observe the profiles for the two directions, we can note just an oscillation 

period of about 200-250 mt. This is the confirmation of the importance of 

variogram as instrument for structural analysis of spatial variables. 

 

1.4.2  The subsampling procedures 

As mentioned before, in order to examine the differences between the two kind 

of sampling procedures (the systematic one and the stratified random one), an 

iterative subsampling of the original dataset has been implemented with different 

spatial resolutions. The ISATIS package from geovariances allows to compute two 

kinds of sampling selections on points: i) a regular one in which, once defined the 

resolution, samples are selected at the centre of each cell, and ii) a stratified random 

one in which, once defined the grid, the samples are chosen randomly within each 

cell (Malyuk el. source).  

Subsampling has been implemented for resolutions 2, 5, 10, 20, 30, 40, 50, 60, 

70 mt., respectively for regular and random method, and experimental variogram 

has been computed for each subset.  

In the figure 3.8, an example of regular and random subsampling for 20 mt. 

resolution is shown. 
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Figure 3.8 – Two examples of systematic and stratified random sampling techniques, 
respectively on the left and on the right. 
Figura 3.8 – Due esempi di tecniche di campionamento sistematica (sinistra) e casuale 
stratificata (destra). 

    

It is clear how the total amount of spatial scales covered by random sampling is 

much more than the one of regular sampling, while complete coverage of the spatial 

domain is generally guaranteed by both the methods. 

Structural analysis has been computed on both the series of sub sampled datasets 

and a general decrease of reliability of variograms has been observed. The main 

concern is just the way and the rapidity with which such variograms lose meaning. 

Omnidirectional variograms have been computed and compared with the original 

one. 
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Figure 3.9 – Omnidirectional experimental variogram of test variable ‘Zeta’. Lag = 
10 mt.; # of lags = 35. 
Figura 3.9 – Variogramma omnidirezionale sperimentale per la variabile test ‘Zeta’. 
Lag = 10 m. # di lags = 35. 

 

Regularly and randomly sampled subsets are respectively on the left and on the 

right side of the following figures. 

 

  
Figure 3.10 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Systematic and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 2 mt. 
Figura 3.10 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 2 m. 
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Figure 3.11 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 5 mt. 
Figura 3.11 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 5 m. 

     

  
Figure 3.12 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 10 mt. 
Figura 3.12 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 10 m. 
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Figure 3.13 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 20 mt. 
Figura 3.13 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 20 m. 

     

  
Figure 3.14 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 30 mt. 
Figura 3.14 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 30 m. 
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Figure 3.15 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 40 mt. 
Figura 3.15 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 40 m. 

     

  
Figure 3.16 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 50 mt. 
Figura 3.16 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 50 m. 

     



_____________________________________________________CHAPTER 3___ 

 117

  
Figure 3.17 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 60 mt. 
Figura 3.17 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 60 m. 

     

  
Figure 3.18 – Omnidirectional variograms of sub-sampled test variable ‘Zeta’. 
Regular and stratified random sampling respectively on the left and on the right. 
Sub-sampling resolution = 70 mt. 
Figura 3.18 – Variogrammi omnidirezionali della variabile test ‘Zeta’, subcampionata 
secondo la tecnica sistematica (sinistra) e quella casuale stratificata (destra). 
Risoluzione = 70 m. 

     

The results of variographic analysis reveal the presence of many differences in 

the behaviour of the two groups of subsets. First of all the change in the histograms 

of the pairs abundance. As the subsampling resolution decreases, the number of 

pairs available for semivariance computation decreases uniformly in random 

approach and irregularly in systematic one. In particular, an overabundance of pairs, 

for lags coinciding with sampling scale or multiple of it, is relevant in regular 
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approach. The uniformity of informations is crucial for an unbiased computation of 

semivariance values, that, in this case, results poorly reliable. The irregular 

oscillation of variogram values, as in 10 mt. scale in regular sampling, can be 

related just to such unbalanced abundance of pairs. Conversely, in random 

sampling, the pairs abundance decreases in regular way, so that, even the variogram 

being less reasonable, the semivariance values contributing to its shape are wholly 

consistent and affordable. 

Another very important aspect is the characterization of the small spatial scale 

variability, that is completely lost in regular sampling, after the first sampling 

scales. The systematic sampling strategy assumes to have one information on each 

cell of the grid and consequently to fix the smallest lag exactly to the value of the 

sampling grid resolution. It leads to the complete lack of information regarding the 

micro structural variability and to the quantification of high nugget effects, often 

not reflecting the reality.  

Looking at the experimental variograms of figure 3.10 - 3.12 (from 2 mt. to 10 

mt. scales) we can note how the small scale variability in regular sampling is lost 

immediately and some nugget effect is modelled. Conversely, random sampling 

represents correctly the uniform variation of the first lags, that reveals the 

homogeneity of the variable (compared with variogram of raw data).  

Going on with subsampling scale, we can note how the nugget effect modelled 

by systematic sampling variograms is even more evident, while random subsets 

show only a bit increase of it. Eventually, at the scale 70 mt. the systematic 

sampling variogram is somewhat a pure nugget model, while the random one still 

preserves the correct shape. 

To better understand the differences between the two approaches, we can 

observe the directional variograms for the 50 mt. sampling scale. In the figure, the 

systematic and the stratified random sampling strategy, respectively on the left and 

on the right, are represented. Lag = 25 mt. # of lags = 14. 
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Figure 3.19 – A zoomed image of the directional experimental variograms for the 
sub-sampled test variable ‘Zeta’, at the resolution value of 50 mt. Lag value = 25 mt.; 
# of lags = 14. 
Figura 3.19 – Un’immagine ingrandita del variogramma sperimentale direzionale per la 
variabile test ‘Zeta’ subcampionata con risoluzione 50m. Lag = 25 m. # di lags = 14. 

    

It is clear how, in the case of directional variograms (with zero angular 

tolerance) the differences between the two methods are even more evident. First of 

all, the pairs abundance are hardly biased and completely absent for lags 50 and 125 

mt. in systematic approach and then the shape of the variograms that are much less 

meaningful and irregular. In stratified random strategy, the structure is hold and the 

original anisotropy is honoured too. 

 

1.4.3 Discussion 

An iterative subsampling of a known surface with 1 mt. resolution, for 9 

different grid resolution, form 2 to 70 mt., using a systematic regular sampling 

strategy and a stratified random one has been simulated. Structural analysis on the 

subsets has been implemented, computing omnidirectional variograms for each 

scale and comparing results with the one computed on raw data. Since the first 

subsets, for which the grid resolution is reasonably high, the differences among the 

two approaches appear clear.  

The systematic sampling approach is not able to keep the information of the 

small scale variability and loses it, assuming a increasing nugget effect (that is not 

real). Meanwhile it presents several unreliable oscillations, due to the biased 

amount of pairs, that are denser at the scale equal to the sampling one or at the 

multiples of it, and fewer in the others. Conversely, variograms computed on 
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randomly sampled subsets, preserve the original shape of the raw data variogram 

and, even decreasing in details with the increase of sampling scale, they represent 

conveniently the real variability structure of the variable. 

Such crucial differences reveal the importance of the choice of sampling strategy 

on environmental analysis planning. Especially for what concerns the spatial 

estimation of environmental variables, the correct and reasonable reproduction of 

the real structure of the field is a crucial aspect that is mostly reflected on the 

interpretation practice. As seen on results of simulation, an unreliable image of the 

variable represents the base for a incorrect understanding of the real natural 

processes. 

If we consider the economic aspect, we can observe how, with the same 

economic waste, we can obtain more detailed informations on the subject, simply 

choosing to locate the samples in a random way and not over a systematic grid. 

Moreover, with stratified random sampling, we can reduce the number of samples, 

and obtain the same degree of quality of knowledge on the variable that we could 

obtain only by increasing consistently the economic waste. 

One concrete application is the geochemical datasets of Port of Naples, coming 

from the I.A.M.C. C.N.R. (The Coastal Environment Institute of the National 

Research Council), sampled following the national directions of I.C.R.A.M. (The 

Italian Institute for Marine Research). Most of the docks of the inner part of the port 

have been examined implementing a detailed program for monitoring the 

distribution of pollutants in marine sediments coming from the commercial 

divisions of the harbour. Following economic accessibilities of the Institute and the 

national standard for sampling strategies, a systematic grid with 50 mt. resolution 

has been applied on the site. 

In the “Darsena di Levante” dock, with its squared shape 350 mt. wide, such 

sampling plan has led to a total amount of about 50 samples, regularly distributed 

trough the spatial domain. The number of samples could seem enough, in such a 

small area, but the resulting experimental variogram does not reflect this 

assumption (in the figure the experimental variogram for vanadium computed with 

lag = 50 mt. and # of lags = 6) . 
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Figure 3.20 – Experimental omnidirectional variogram for vanadium in the ‘Nuova 
Darsena’ dock in port of Naples. Lag value = 50 mt.; # of lags = 6. 
Figura 3.20 – Variogramma sperimentale omnidirezionale per il Vanadio nella ‘Nuova 
Darsena’, nel porto di Napoli. Lag = 50 m. # di lags = 6. 

 

The shape of the variogram is not so far from a pure nugget model and its use for 

spatial modelling is very hard. The semivariance value at the first lag should not 

deceive because the amount of pairs contributing to such calculus is only one. If we 

observe the comparison between regular and random sampling in figure 3.16, for 

the simulation test at 50 mt. sampling scale, we can note how the results are 

comparable with the one obtained in a real application. Almost certainly, if they had 

chosen a stratified random sampling strategy for such dock, they could have 

obtained a more useful and reasonable description of the real spatial structure of the 

variable, investing the same resources. 

 

2. Improving the performances of an existing sampling plan 

Sometimes happens that the spatial analysis of sampled data reveals some lack in 

coverage of the whole spatial structure of the variable. Such lack is often related to 

the sampling strategy that is not able to catch entirely the behaviour of the field. In 

this case, an infilling procedure is rather needed, in order to cover the existing 

holes. Assumed to have the chance to take into account some additional samples, 

the problem is where to locate them (Pilger, Costa, Koppe). 
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Many authors have discussed on this argument, presenting several different 

hypotheses. The one presented here is a somewhat discussion of the work of Pilger, 

Costa, Koppe, to which the comparison between estimation variance and nugget 

variance is added. 

As mentioned before, geostatistical simulations have been used to locate the area 

with maximum dispersion in kriging estimations, in order to suggest the sites where 

locating additional samples. An iterative check of the consistence of variogram has 

been computed in order to minimize such increase of sample amount. 

The main concern is related to the definition of the nugget variance of 

experimental variogram. As defined in previous chapter, it is regarded as the sum of 

the intrinsic small scale variability of the variable and the analytic uncertainness of 

laboratory analyses. Just the relationship between these two factors is a trivial 

concept in geostatistics, whereas the quantification of the nugget effect is regarded 

as an instrument to evaluate the contribute of the analytic uncertainness to the 

irregularity of the small spatial scales in map estimation.  

In particular, the zero lag semivariance value, assumed to be always zero, can be 

computed as a positive value only if we consider two different results of laboratory 

analysis. There will never exist an analytic procedure that will guarantee zero errors 

for any measure; it is intrinsic in any measurement process. 

Thus, the minimum value of nugget effect must be fixed to exactly the analytic 

error variance: 

 

Sh
Var=

→
Var(h)lim

0
. Nugget effects less than such quantity are not reasonable. 

 

When experimental variograms show very high values of nugget effect (if 

compared with analytic variance), the aim is to propose an infilling procedure that 

minimizes the numbers of additional samples, reducing the nugget variance until it 

reaches the estimated value of analytic variance. 

 

3. The case of ‘Nuova Darsena’ dock 

The Nuova Darsena is one of the dock of the harbour of Naples, where the 

I.A.M.C. (Coastal Environment Institute of the Italian National Research Council) 
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planned an investigation program to asses the quality of the waters and levels of 

pollutants accumulation in marine sediments. The dock is a square tub 350 mt. 

wide, located in the inner part of the port, in front of the internal edge of the 

offshore wharf. 

 

 
Figure 3.21 – Location map of the samples in ‘Nuova Darsena’ dock, in the port of 
Naples 
Figura 3.21 – Mappa di ubicazione dei campioni nella ‘Nuova Darsena’, nel porto di 
Napoli. 

 

The sampling strategy chosen is a systematic one with 50 mt. grid resolution, 

with a total amount of 30 samples inside the dock and 17 out of the basin. Each 

sample consists on a corer 3,00 mt. long from which 5 different levels have been 

identified. Experimental variogram has been computed for iron, with lag = 50 mt. 

and # lags = 7 for the first level (0 - 20 cm.). 
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Figure 3.22 – Experimental omnidirectional variogram for Iron. Lag = 50 mt.; # of 
lags = 7. 
Figura 3.22 – Variogramma sperimentale omnidirezionale per il Ferro. Lag = 50 m. # di 
lags = 7. 

 

As clear from the figure, the nugget effect (~1.5e008) is regarded as the sum of 

analytic error variance (computed as 10% of the median value of the raw data), in 

green and the intrinsic small scale variability of the variable, in blue. We can note 

how the bars of pairs abundance are biased with unbalance among lags coinciding 

to the sample scale and its multiples and the others lags. Such bias could be even 

more evident by computing directional variograms on a rotated reference axis, but it 

is not the target of the work. 

Especially when the target is an environmental variable it is assumed that high 

variations at very small scales are unreliable. Thus, the non zero value of the nugget 

effect, rather than be constituted by analytic variance, can be explained only by the 

sampling strategy that has been not able to model correctly the regularity of the 

variable. 

 

3.1 The cyclic approach 

The aim is to reduce the nugget variance until it reaches the analytic variance. 

Geostatistical simulations can come in our aid. 
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The approach is iterative and assumes i) a cyclic computation of Sequential 

Gaussian simulations (SGS), with the location of additional sample located in the 

cell that shows averagely the highest variability, ii) the selection of such sample 

from the kriged map and iii) its addition to the original dataset and eventually iv) 

the computation of experimental variogram of the updated dataset (Pilger, Costa et 

al. el. source). At each step, the varying nugget variance is compared with the 

analytic variance and the process is stopped when the two values converge. 

 

 
Figure 3.23 – Conceptual scheme of the procedure used to locate the additional 
points. 
Figura 3.23 – Schema concettuale della procedura utilizzata per ubicare i campioni 
addizionali. 

 

When the aim is to infill the original dataset with real information, the new 

sample can be collected directly on the site, and not extracted by kriged map. In this 

way the sampling strategy can be defined as dynamic, composed by a preliminary 

exploration step and a further infilling with additional samples. Obviously the 

synopticity of the sampling process becomes a driving factor. 

In the case of Nuova Darsena, 100 Sequential Gaussian Simulations have been 

computed on Iron concentration values, for the superficial level, and the area (the 
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grid cell) with maximum standard deviation of the 100 simulated maps has been 

highlighted. 

In the figure the first, the 10th, the 50th and the 80th simulation are represented as 

examples. 

 

  

  
Figure 3.24 – Four examples of simulated maps. The first, the 10th, the 50th and 80th 
simulated map, respectively from the top-left to the down-right. 
Figura 3.24 – Quattro esempi di mappe simulate. Dall’alto a sinistra: la prima, la 
decima, la cinquantesima e l’ottantesima mappa simulata. 

 

Negative values are explained by the negative weights of the simple kriging 

system, that cannot take into account the natural meaning of the variable. However 

it does not matter, because our use of simulations is focused on the quantification of 

the absolute value of spatial variability. 

Summarizing the first 100 simulations, we can compute any statistic measure of 

dispersion. ISATIS allows to calculate the mean and the standard deviation value of 

the whole set of simulated map. The map of mean and standard deviation of 

realizations is represented in figure 3.25. 
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Figure 3.25 – The maps of mean and standard deviation of the 100 simulated maps, 
respectively on the left and on the right. In the black circle the cell with the maximum 
value of standard deviation. 
Figura 3.25 – Le mappe della media (sinistra) e della deviazione standard (destra) delle 
100 mappe simulate. Il cerchio nero indica la cella che presenta il picco di deviazione 
standard. 
   

The highest score for standard deviation (18943 mg/kg) of the 100 simulations is 

located in the cell highlighted by the black circle. Thus, we will extract that cell 

value from the kriged map. 

 

 
Figure 3.26 – The kriged map from which the additional samples has been extracted. 

Figura 3.26 – La stima con kriging da cui il campione addizionale è stato estratto. 
 

In that point, the iron estimation is 41694 mg/kg. We can add such value to the 

original dataset and compute the resulting variogram. 
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Figure 3.27 – The variogram of the dataset added of one point. 
Figura 3.27 – Il variogramma del dataset arricchito di un punto. 

 

The resulting nugget effect has decreased from 1.5e008 to 1.33e008. Kriging can 

be applied again to this new dataset and the cycle can be carried on checking the 

variation of the nugget effect. Following the same process, six samples have been 

added, obtaining a decrease of nugget effect until setting it to zero. In the figure the 

six added samples taken by the recalculated kriged map. 
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Figure 3.28 – The location map of all the six additional points. 
Figura 3.28 – La mappa di ubicazione dei 6 campioni aggiuntivi. 

 

3.2 The behaviour of nugget effect 

Even being characterized by only few samples, the small scale variability 

decreases after the first additions and goes to zero with the sixth sample. In the 

figure the variograms computed after each addition. 
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Figure 3.29 – The six variograms after the six addition, respectively from the top-left 
to the down-rigth. 
Figura 3.29 – Dall’alto a sinistra: i 6 variogrammi relative alle sei aggiunte. 

     

The plot of decreasing nugget variance reveals the relationship with analytic 

uncertainness variance (in red). 
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Figure 3.30 – Plot of the decreasing value of nugget variance with the increase of 
additional points. The threshold value is reached at the fourth point. 
Figura 3.30 – Grafico del valore decrescente della nugget variance. Il valore soglia 
viene raggiunto al quarto punto. 

 

Looking at the plot, we can note how at the fourth addiction, the nugget variance 

reaches the analytic variance and beyond such value, it decreases further. Following 

the principles defined before, we can stop the iterative process at the fourth sample 

and obtain a somewhat more reasonable variogram. In fact it would be useless to 

invest in further samples when analytic uncertainness introduces a contribute to the 

global variance that is larger than the one obtained just from the additional samples. 

 

3.3 Discussion 

The approach described for the infilling of an existing sampling plan wants to 

represent an indication on how to rebuild the sampling strategy for successive 

surveys. The main concern is the target of decreasing the nugget variance of 

modelled variogram, in order to reduce it to being comparable to the analytic 

variance. Such aim is obtained by infilling the sampling grid with some additional 

points that are located by defining the risk zones (Koppe) as the ones presenting the 

highest variability (with the aid of geostatistical simulations). It is clear that the 
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small scale variability computed with only few samples is poorly representative, but 

the resulting variogram is anyhow indicative. 
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CHAPTER 4 

FILTERING SIDE SCAN SONAR MOSAICS 
 

In most of branches of Science, one of the most popular problem is the image 

treatment. Very often the base of interpretation and scientific discussions is simply 

a confuse image. Microscopes and telescopes return images of very different scale 

phenomena and their interpretation is often based on somewhat confuse slide or 

film. It is clear how one of the central need is, thus, the practice of image 

processing, finalized to improve the reliability of data and to extract the needed 

information. 

In this bound, mathematics and statistics have contributed with several methods, 

that in many cases returned optimal results and allowed to generate correct 

interpretation of different phenomena. One of the most common need is the removal 

of the noise. Salt and pepper noise is often present on images coming from 

scientific instruments, mainly due to the sensibility of film grain (ISO value) that 

must be set to high values in order to catch the details of the phenomenon. Band-

pass filter, in deterministic approach, or k-order moment filter in statistics one, are 

the most commonly used approaches. 

In this work, kriging of spatial component will be applied to an acoustic 

seabottom mosaic (Side Scan Sonar mosaic image), and used as filtering technique, 

in order to remove noises due to acquisition errors. Such kind of methodology, 

although often used to treat image, for which the salt and pepper noise is usual, 

must be carefully applied in these cases, in order to avoid to remove also the signals 

related to real structures. 

 

1. Filtering with kriging 

Kriging of spatial components is applied to a portion of a side scan sonar mosaic 

coming from a survey made in gulf of Augusta (Siracuse – Sicily) by the Coastal 

Environment Institute of the Italian National Research Council (I.A.M.C. C.N.R.). 

Variographic analysis reveals a marked nugget effect in the variability structure 

of data, related to noises and spikes, widely spread through the domain. Kriging of 

spatial component, used as filtering technique, can rebuild the surface, filtering out 
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the small scale variance and obtaining a satisfying results (Bourgault 1994; Wen 

and Sinding-Larsen 1997). Most attention must be reserved to the use of such 

technique, in order to confuse real signals with noise and filter them out. 

 

1.2 The side scan sonar dataset 

Side scan sonar images are digital elaborations of the back scattering signal of 

the seabottom recorded by the instrument. A hundreds KHz order signal is pulsed 

downward by the transmitter and the back scattering wave is recorded by the 

receiver. The result is a digitally converted 8-bit (grey scale) map that represents the 

acoustic image of the seabottom. Often used to locate and to classify marine 

features, like sediment typology or different species of marine plants, side scan 

sonar is a even more diffuse technique for seabottom investigation. The lattice 

chosen for this work is 2.3 x 1.9 km wide, with 1 meter resolution, showing several 

sedimentological structures as erosive traces and pull-up depositional formations. 

Different grain size facies are present, going from coarse sand to pelitic clay. 

The parcel chosen is a portion of a raw mosaic, made by joining numerous 

survey routelines. 
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Figure 4.1 – The portion of Side Scan Sonar mosaic used as test data. 
Figura 4.1 – Il taglio del mosaico Side Scan Sonar utilizzato come test. 

 

The image reveals several sedimentary accumulation structures that are 

sufficiently clear, except for the presence of oblique lines revealing an imperfect 

removing of slant range signal (the line joining the two channel signals in side scan 

sonar traces).  

Nevertheless, if we observe the image with a larger zoom, we can note the 

presence of a diffuse noise. 
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Figure 4.2 – A zoomed detail of the test mosaic, where the salt and pepper noise is 
evident. 
Figura 4.2 – Un dettaglio ingrandito del mosaico test, dove il rumore sale e pepe è netto. 

 

Such kind of noise is the typical salt and pepper noise, that is a generally a high 

frequency noise, with a defined variance, that is uniformly added to the original 

signal. 

Analyzed from a geostatistical point of view, the grey scale value for each pixel 

can be regarded as a random regionalized function with the form: 

( ) ( ) ε+Υ= xxZ ; where the variable ( )xZ  is composed by a real random function 

( )xΥ , that is assumed to have a certain variability structure, and an uncorrelated 

noise ε  with a defined variance. 

We can observe the histograms and the qq-plot (the scatter plot of the quantiles 

of the two datasets). 
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Figure 4.3 – The histogram and the qq-plot of the test mosaic. 

Figura 4.3 – Istogramma e qq-plot del mosaico test. 
    

The variable is almost normal-like, with some bias trough the highest classes, 

related to positive spikes. Its qq-plot, computed comparing it with a gaussian 

variable, with a mean of 103.34 and standard deviation of 17.39, confirms the 

normal-like behaviour. Basic statistics are represented in the table 4.1: 

 

  
SSS original 

(grey scale pixel value) 
MIN 13 
MAX 254 
MEAN 103.34 
MEDIAN 102 
VARIANCE 302.57 
STD DEV 17.39 
SKEWNESS 0.73 
KURTOSIS 6.52  

 
Table 4.1 – Basic statistics for test mosaic. 
Tabella 4.1 – Statistiche di base per il 
mosaico test. 

 

1.3 Structural analysis 

Due to the absence of correlation, we can regard the resulting variogram as the 

sum of different spatial component and treat them singularly with kriging (Bleines, 

Deraisme et al. 2004). 
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The resulting variogram, computed orthogonally in the two directions, with lag = 

1 mt. and # of lags = 50, is represented in the figure. 

 

 
Figure 4.4 – Directional (orthogonal) variograms of test mosaic. 
Figura 4.4 – Variogrammi direzionali (ortogonali) del mosaico 
test. 

 

The coinciding shape of the two directional experimental variograms reveals a 

marked isotropy of the field. The experimental values can be modelled by two 

isotropic nested exponential models and a marked nugget effect. The model is 

( ) ( ) ( )385 *98*60150 expexph ++=γ . Such so high nugget effect is due mainly to 

the noise and in part to the small scale signals related to some real microstructures 

that are hard to be discriminate by filtering techniques. 

 

1.4 Kriging of spatial components 

Kriging of spatial components can be used to filter out such nugget effect and 

rebuild the grid with no small scale variability (Bourgault 1994; Wen and Sinding-

Larsen 1997). 

The resulting image is the one represented in figure 4.5. 
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Figure 4.5 – The resulting image filtered with kriging. 

Figura 4.5 – L’immagine risultante filtrate con il kriging. 
 

In the filtered image the structures are more evident and most of the salt and 

pepper noise has been removed. We can observe the resulting variogram of such 

grid. 
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Figure 4.6 – Directional (orthogonal) variograms of filtered variable. 

Figura 4.6 – Variogrammi direzionali (ortogonali) della variabile filtrata 
 

With theoretical nested model: ( ) ( ) ( )304 *112*25 expgaush +=γ . Such model 

reveals a large uniformity at small spatial scale confirmed by the absence of nugget 

model. Moreover, the type of short range model, the gaussian one, typical of very 

uniform functions, validates such regularity. Basic statistics confirm the increase of 

normality of the variable, with a lower value of skewness parameter. 

 

  
SSS filtered 

(grey scale pixel value) 
MIN 14 
MAX 253 
MEAN 103.34 
MEDIAN 103.11 
VARIANCE 135.81 
STD DEV 11.65 
SKEWNESS 0.53 
KURTOSIS 7.82  

 
Table 4.2 – Basic statistics for filtered mosaic. 
Tabella 4.2 – Statistiche di base del mosaico 
filtrato. 
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As any kriged variable, the filtered one is less disperse than the original one, 

with lower standard deviation (Wackernagel 2003). 

We can observe two zoomed examples to better appreciate the results of 

filtering. The original and the filtered set respectively on the left and on the right of 

the following figure. 

 

  

  
Figure 4.7 – Two zoomed details of original and filtered data, respectively on the left 
and on the right. 
Figura 4.7 – Due dettagli ingranditi del dato originale (sinistra) e di quello filtrato 
(destra). 

 

The salt and pepper noise has disappeared and the image is clearer. Such 

improvement is particularly effective for the final aim of the processing practice of 

side scan sonar data, that is the target recognition. Such procedure is based on the 

vectorization of all the structures and elements that can be regarded as known 

marine constructions and be used as indicator factors for the characterization of 

seabottom. 

A further analysis of results can be made by Fourier transform, that allows to 

examine the frequencies of the signal and to quantify the contribute of each 
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frequency to the whole structure. In the figure the plot with the original and the 

filtered signal analyzed by Fourier transform (Lancaster and Salkauskas 1986). 

It is evident how, in the filtered signal, all the highest frequencies are filtered out. 

Their amplitude, in fact, is highly reduced and, most of times, hold to zero. Such 

result confirms the efficiency of the filtering method that is able to clean the signal 

from the highest frequencies, responsible for the underlying noise.  

 

 
Figure 4.8 – Results of frequency analysis of original and filtered signal, respectively 
at the top and at the bottom. 
Figura 4.8 – Risultati dell’analisi di frequenza del segnale originale (in alto) e di quello 
filtrato (in basso). 

 

2. Discussion 

Kriging of spatial components has been used to treat side scan sonar images, in 

order to filter out the fixed variance noise that is the cause of a poor interpretation 

of the information. Variography revealed the presence of a marked nugget effect in 

experimental variograms and kriging has been used to filter such component out.  

The resulting filtered image is clearer and most of the salt and pepper noise has 

disappeared. Maybe some real microstructures have been partially hidden by the 

procedure, but the filtered mosaic is surely more adapt for seabottom classification. 
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Frequency analysis, computed by Fourier transform confirmed the efficiency of 

the filtering method. 
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CONCLUSIONS 
 

The study of environmental science and its several applications are deeply 

influenced by the quality of data and its reliability. In general each data should 

represent faithfully the reality of the field and be regarded as a affordable 

information on which the interpretation of natural phenomena can be based. 

Unfortunately, such informations are not continue in the space and they are 

measured only in few points. Fitting techniques are thus called in aid, to reproduce 

an estimation of the reality that will be the stand for the understanding of the 

occurrences. Here the importance of the spatial analysis. 

Most of times the observed phenomenon is the result of a complex mixture of 

factors influencing its behaviour, such that a simple model is not sufficient to 

completely represent it. Stochastic approach is based on the application of the 

theory of the regionalized random function (Armstrong 1998) to natural 

phenomena. The principle is that such natural complexity can be poorly represented 

by deterministic models but can be more reasonably reproduced in a stochastic 

framework. 

The measured values in any point are regarded as the realizations of a random 

function that is defined on the basis of the measured variable. Thus the variable is 

substitute by its stochastic model and the interpretative process continues on such 

model. 

Geostatistics stands for the application of such theory to spatial environmental 

variables. The modelling of the natural variable is carried on by one principal step 

(the variography) and some others following that are defined depending on the 

scientist demands (spatial estimations or simulations). Variography is the core of 

spatial analysis: the study of the spatial structure of the variable is functional to any 

estimation, simulation or other spatial computations can be made. The definition of 

experimental variogram, and its fit with continue deterministic functions, is the 

principal step that requires the maximum attention and experience by the user. Once 

modelled the variability spatial structure of the function, typically the kriging 

estimate is computed, in order to model the spatial distribution of the original 

variable. Kriging guarantees the best estimation with the smallest unbiased 
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estimation error and joins the estimation with the measure of its statistical 

consistency (the variance of estimation). 

For such reasons, kriging, and more generally geostatistics, is more and more 

often used in environmental spatial analysis and largely diffused in the most 

common softwares. 

In this PHD work the ISATIS geostatistics package from the french 

Geovariances (Bleines, Deraisme et al. 2004) has been widely used to present some 

applications to some different environmental datasets coming from the Neapolitan 

center of the Coastal Environment Institute of the National Research Council 

(I.A.M.C. C.N.R.).  

Here the applications presented in the work. 

• The geochemical dataset coming from the analyses computed on the marine 

sediments of the southern Campanian continental shelf has been processed with 

classical variography and kriging of spatial components has been implemented 

in order to define the geochemical backgrounds and their manifestation at 

different spatial scales. In particular the regional component has been 

interpreted as the real background value, globally varying in the domain, while 

the local component has been attributed to some non natural (anthropogenic 

impacts) or high frequency natural component added to the intrinsic small scale 

variability of the field. A further detailed variographic analysis has been 

implemented for all the eleven trace metals analyzed and, for each of them, the 

correct spatial models have been defined. 

• One of the most important factors determining the quality of information and 

the reliability of the interpretation is the sampling strategy. Here variography 

has been applied to the optimization of a new sampling plan and to the 

minimization of wastes for the improvement of an existing one. In the first case 

the stratified random sampling strategy has been compared with systematic one 

from a geostatistics point of view. The subsampling of a simulated surface has 

been implemented with several decreasing resolution and experimental 

variograms have been computed on the resulting data vectors. The influence of 

the different strategies on the nugget effect has been examined in details and the 

optimization of the procedure has been defined. In the second case geostatistical 
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simulations have been implemented to model the spatial uncertainness and to 

locate the high risk points in a model area examined with an existing sampling 

plan. The additional samples have been located just in this areas and the process 

is iteratively checked by variographic analysis, in order to minimize the 

economical wastes. In particular, the ratio between the varying nugget effect 

and the analytic variance introduced by laboratory measure errors has been 

analyzed in details, with optimizing procedures. A practical application on a real 

dataset coming from survey made in the Port of Naples has been carried on. 

• One of the most used geophysical method of investigation of seabottom is the 

side scan sonar. One of the step of the processing procedure of such datasets is 

the filtering of the mosaic image, in order to remove the noise coming from 

additional sources during acquisition. Salt and pepper noise is one of the most 

common. Variographic analysis has been used in this case to define the spatial 

component related to such noise and kriging of spatial components has been 

implemented to filter it out. Visual comparative tests, together with Fourier 

frequency analysis, have been presented to demonstrate the validity of the 

method. 

The aim of this work wants to be the definition of the correct use of 

Geostatistics. As affirmed before, this discipline is more and more diffused in 

environmental science and many and many software host different kriging and 

variography applications. The negative aspect of such trend is the meaning of 

geostatistics that most scientists take into account. Geostatistics is based on a 

modelling approach (the modelling of the environmental variable by a random 

regionalized function) and as such is more sensible to subjective interpretation of 

the different tools used. In particular, the variogram modelling and the use of 

kriging cannot be considered as a automatic process and cannot be used as a black 

box practice. Results from fitting procedures are the basis elements for the 

interpretation of environmental phenomena and the attention required by the 

processing practice cannot be submitted to automatic methods. 
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