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Chapter 1

An overview on the microstrips

1.1 The problems of interconnects in high frequency

circuits

The performances of the integrated circuits in the range of the radio frequency

(RF) strongly influence the versatility and the portability of the future elec-

tronic systems, especially for wireless communications. Considering the con-

tinuos request of a faster ability for the systems to transmit informations and

an even increasing need of bandwidth for several applications, united to the

demand to reduce the weight and the costs of the chips, the necessity of robust

and more efficient RF circuits is destined to increase.

Actually the microwave integrated circuits (MMICs) are developed in the

range of frequencies 10-100 GHz and they represent the base of the RF compo-

nents used in great part of the wireless systems. With the recent introduction

of the micro-electromechanical systems, new applications of the RF devices

have been discovered. From a careful analysis of the daily activities, it has

been evaluated that a medium family requires a transmission capability next

to 100 Mbps, due to the transmission of different informative contents, from

the vocal signal to the high resolution images. That requires a high bandwidth.

This request leads to more and more complex integrated circuits, able to

reach high clock speeds. Within the technology of the semiconductors, the

need to reach even higher frequencies has produced a considerable increase of

the density of the components (transistors) and of the interconnections on a
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1997 2003 2006 2012
Chip size (mm2) 300 430 520 750

Number of transistors (milions) 11 76 200 1400
Interconnect width (nm) 200 100 70 35

Total interconnect length (km) 2.16 2.84 5.14 24

Table 1.1: Increasing of the circuit density in the years

single chip, as it is deduced by the data presented in the following table 1.1.

From the previsions on the dimensions of the chips and the interconnec-

tions, it is evident the trend for the reduction of the size of the interconnects,

realized on more levels, and the increase of their general length (24 Km in

2012 !). So the realization of efficient projects since the beginning will become

fundamental.

Within the technology MOS, the density of the transistors per die can be

reassumed through the figure 1.1. It can be found a value greater than 109 for

the memories.

Figure 1.1: Evolution of the number of transistors used to realize some kind
of circuits

The to need reach high frequencies and elevated transmission speeds has
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accented some electromagnetic undesired phenomena that limit the electric

performances of the integrated circuits and increase their vulnerability to noises

and transmission error. The undesired phenomena may be crosstalk, ground

bounce, bypass capacitors and inductors,..

In the integrated circuits, the degradation of the performances manifests

itself through a greater delay in the transmission of the signals. The delay may

be generated by the gates and by the interconnects. As the technology pro-

gresses, the gate delay tends to reduce, while the delay due to the interconnects

increases, as shown in figure 1.2.

Figure 1.2: Gate delay and interconnect delay as function of the technology
used to realize the circuits

The use of copper interconnects instead of the aluminium ones produces a

smaller interconnect. Anyway, at the current state of the technology, the rele-

vant limitation to the performance of the circuits is due to the interconnects.

Another problem related to the interconnects is the heating of the circuits.

The density of the interconnections (m/cm2), considering only the active ones

on an integrated circuit, excluding the different levels, is strongly destined to

grow (table 1.2).
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Year 1997 2003 2006 2012
Chip size (mm2) 300 430 520 750

Table 1.2: Density of the interconnects in the years

This growth of the length of the interconnections will bring to increase

the resistances, the parasite capacitance and inductance of the metalizations,

causing worse performances of the circuits as the dimensions are reduced. From

some verifications it has been found that, for the 130 nm technology, the power

dissipated by the interconnections results to be more than the 50

From all these reasons, the problem of the interconnects covers a funda-

mental and critical role in the project of high speed high performance RF

circuits.

1.2 The role of the microstrips between the inter-

connects

Various types of transmission lines can be used to connect different circuits.

In figure 1.3 most of the existing interconnects are shown.

Figure 1.3: Different kind of interconnects

The planar transmission lines are one of the essential elements of the in-

tegrated circuits and the microwave printed circuits boards. The more used

planar structure is the microstrip. It is a structure composed by a ground

plane, a dielectric substrate and a conducting strip placed over it. Even if it’s

an open structure, the field is almost confined in the dielectric and it is prop-

agated along the metalization. Such a structure has the great advantage to
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be easily realizable with today’s technologies and contributes to considerably

decrease the dimensions of the circuits themselves.

Characteristic Coaxial cable Waveguide Stripline Microstrip
Losses Medium Low High High

Bandwidth Medium Great Small Small
Integration Vary bad Very bad Good Excellent

Volume and weigh High High Medium Low
Realization Easy Easy Very Easy Very Easy

Table 1.3: Main characteristics of the different kind of interconnects

1.3 Models for the analysis of microstrips

To analyse complex integrated circuit it’s not possible to use an unique tech-

nique, but different approaches have to be used or different detail levels. Of

course, in a structure containing several chips, components, interconnects, it’s

not possible to perform a full wave analysis of the whole structure, as it requires

an almost infinite computational time. On the other hand, a full wave simu-

lation can describe phenomenas that a lumped circuit neglects. The pyramid

shown in figure 1.4 expresses a good compromise between different methods.

To describe single elements, such as interconnects, a full-wave analysis has

to be adopted. As the complexity of the circuit grows, the analysis is always

less accurate, since to the large network analysers used for the entire circuits.

Anyway, the results obtained in a lower level are the base to perform the sim-

ulation at an higher level. For example, the results of a full-wave analysis are

used to extract an equivalent circuit to use in the lumped element simulation.

The work performed in this thesis is located in the lower part of the pyra-

mid. The objective is to furnish some methodologies for the accurate eval-

uation of the electromagnetic characteristics of a microstrip. The full-wave

models proposed can be useful for the extraction of equivalent circuit parame-

ters. From an analysis of the available models in literature, it is possible to

find that some approximations are usually assumed to simplify the treatment.



CHAPTER 1. AN OVERVIEW ON THE MICROSTRIPS 7

Figure 1.4: Different approaches to analyse integrated circuits

It can be observed that it is usual to neglect the conductive losses of the struc-

ture, that nevertheless result more and more remarkable with the increase of

the density of the circuits. Besides, the existing models for the analysis of

microstrips don’t generally take into account the thickness of the structure,

if not in a perturbative way. This thesis has the objective to propose some

models that try to eliminate or however to reduce the approximation around

the finite conductivity and the finite thickness of a microstrip.
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Chapter 2

Single microstrip of infinitesimal

thickness

2.1 Introduction

In this chapter, the behaviour of a single lossless microstrip of infinitesimal

thickness will be examined. The objective of this study is to present the

general method used for the solution of this kind of structures. The proposed

method is based on an analysis of the structure in the spectral domain, which

allows to reduce the problem to a system of dual integral equations. The

system will be resolved using a representation in series of functions of Bessel

(Neumann series). The geometry of the problem is shown in figure 2.1: a

microstrip of infinitesimal thickness, width 2a indefinite along the z axis, over

a substrate of relative electric permittivity εr and height d, located over a

perfectly conducting ground plane.

Figure 2.1: Geometry of the problem and sources

As forcing field we use either a plane wave, with the wave-number vector
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~k placed in the y-z plane, or a wire of current located in the point (α, k) and

independent from the z variable.

2.2 A general solution for the electromagnetic field

In this section, the transverse components of the electromagnetic field is ex-

pressed as function of its longitudinal components, namely Ez and Hz. Then,

a general expression of the longitudinal components will be found in the spec-

tral domain. Let’s start from Maxwell equations in the frequency domain, for

an isotropic and homogeneous media:

∇× ~E = −jωµ ~H (2.1)

∇× ~H = jωεẼ (2.2)

∇ · ~E = 0 (2.3)

∇ · ~H = 0 (2.4)

It’s possible to suppose a dependence from the variable z as:

~E(x, y, z) = ~e(x, y)e−jkzz (2.5)

~H(x, y, z) = ~h(x, y)e−jkzz (2.6)

So Maxwell equations become:

∇× ~e− jkz ẑ × ~e = −jωµ~h (2.7)

∇× ~h− jkz ẑ × ~h = jωε~e (2.8)

∇ · ~e− jkz ẑ · ~e = 0 (2.9)

∇ · ~h− jkz ẑ · ~h = 0 (2.10)

Dividing the electromagnetic field in a component along the z axis and in a

component transverse to this direction, namely ~e = ~et + ez ẑ and ~h = ~ht + hz ẑ,
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the equations (2.7) and (2.8) can be rewritten as follows:

∇× ~et +∇ez × ẑ − jkz ẑ × ~et = −jωµ~ht − jωµhz ẑ (2.11)

∇× ~ht +∇hz × ẑ − jkz ẑ × ~ht = jωµ~et + jωεez ẑ (2.12)

Also the operator ∇ can be divided in a longitudinal and in a transverse

component, that is:

∇ = ∇t +
∂

∂z
ẑ (2.13)

So the equations (2.11), (2.12), (2.9), (2.10) become:

∇t × ~et +∇tez × ẑ − jkz ẑ × ~et = −jωµ~ht − jωµhz ẑ (2.14)

∇t × ~ht +∇thz × ẑ − jkz ẑ × ~ht = jωµ~et + jωεez ẑ (2.15)

∇t · ~et − jkz ẑ · ez = 0 (2.16)

∇t · ~ht − jkz ẑ · hz = 0 (2.17)

From equations (2.14) and (2.15) it is possible to obtain the transverse

components of the fields as function of the longitudinal ones. In particular,

assuming k = ω
√

εµ:

~et = − k2

k2 − k2
z

1

jωε

(
ẑ ×∇thz −

kz

ωµ
∇tez

)
(2.18)

~ht =
k2

k2 − k2
z

1

jωµ

(
ẑ ×∇tez +

kz

ωε
∇thz

)
(2.19)

or, more explicitly:

ex =
k2

k2 − k2
z

1

jωε

(
kz

ωµ

∂ez

∂x
+

∂hz

∂y

)
(2.20)

ey =
k2

k2 − k2
z

1

jωε

(
kz

ωµ

∂ez

∂y
− ∂hz

∂x

)
(2.21)

hx =
k2

k2 − k2
z

1

jωµ

(
−∂ez

∂y
+

kz

ωε

∂hz

∂x

)
(2.22)

hy =
k2

k2 − k2
z

1

jωµ

(
−∂ez

∂x
+

kz

ωε

∂hz

∂y

)
(2.23)
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To the longitudinal components of the fields satisfy an Helmholtz equation,

that can be obtained from the equations (2.16) and (2.17):[
∂2

∂x2
+

∂2

∂y2
+
(
k2 − k2

z

)]
ez = 0 (2.24)[

∂2

∂x2
+

∂2

∂y2
+
(
k2 − k2

z

)]
hz = 0 (2.25)

To solve these equations it is useful to introduce a spatial Fourier transform:

Ẽz(w, y) =

∫ +∞

−∞
ez(x, y)e−jwxdx (2.26)

So the previous equations become:

∂2

∂y2
Ẽz(w, y) +

(
k2 − k2

z − w2
)
Ẽz(w, y) = 0 (2.27)

∂2

∂y2
H̃z(w, y) +

(
k2 − k2

z − w2
)
H̃z(w, y) = 0 (2.28)

Assuming A(w) =
√

k2 − k2
z − w2, the general solution of these equations

is:

Ẽz(w, y) = CE
1 (w)ejAy + CE

2 (w)e−jAy (2.29)

H̃z(w, y) = CH
1 (w)ejAy + CH

2 (w)e−jAy (2.30)

The constants C have to be found imposing the constrains of the problem.

2.3 Formulation of the problem in terms of currents

In the previous section, a general expression for the electromagnetic field, under

some assumptions, has been found. The solution of the problem has to be found

imposing the boundary conditions of the problem. Both in the dielectric and in

the free space, the total electromagnetic field can be decomposed as a term due

to the forcing field (E0 and H0), that already takes into account the presence

of the dielectric and the ground plane, and in an unknown term due to the
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current density induced on the microstrip.

~ETOT (x, y) = ~E0(x, y) + ~E(x, y) (2.31)

~HTOT (x, y) = ~H0(x, y) + ~H(x, y) (2.32)

Since the forcing field already satisfies the boundary conditions, the gen-

eral expression developed in the previous section is used only to develop

the unknown field. In future, all the fields will be marked with the sub-

script 1 in the dielectric and the subscript 2 in the free space. The following

quantities are defined: k1 = ω
√

ε1µ0, k2 = ω
√

ε0µ0, A1 =
√

k2
1 − k2

z − w2,

A2 =
√

k2
2 − k2

z − w2. Then, the unknown parts of the electromagnetic field

can be expressed:

inside the dielectric

Ẽ1z(w, y) = CE
11(w)ejA1y + CE

12(w)e−jA1y (2.33)

H̃1z(w, y) = CH
11(w)ejA1y + CH

12(w)e−jA1y (2.34)

in the free space

Ẽ2z(w, y) = CE
21(w)ejA2y + CE

22(w)e−jA2y (2.35)

H̃2z(w, y) = CH
21(w)ejA2y + CH

22(w)e−jA2y (2.36)

The first boundary condition is the vanishing of the tangential component

of the electric field over the ground plane (at y = 0):

Ez TOT (x, 0) = 0 ⇒ CE
11 + CE

12 + Ẽ0z(w, 0) = 0 ⇒ CE
12 = −CE

11 (2.37)

Ex TOT (x, 0) = 0 ⇒ ∂H̃z TOT

∂y

∣∣∣∣∣
y=0

= 0 ⇒

⇒ jA1C
H
11 − jA1C

H
12 +

∂H̃0z

∂y

∣∣∣∣∣
y=0

= 0 ⇒ CH
12 = CH

11 (2.38)

Then, since the electromagnetic field produced by the microstrip radiates

towards infinity and there aren’t reflected wave, a radiation condition has to
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be imposed on the fields in the free space:

Ez TOT (x, y →∞) = 0 ⇒ CE
21 = 0 (2.39)

Hz TOT (x, y →∞) = 0 ⇒ CH
21 = 0 (2.40)

Considering the previous condition, the fields become:

inside the dielectric

Ẽ1z(w, y) = CE
1 sin(A1y) (2.41)

H̃1z(w, y) = CH
1 cos(A1y) (2.42)

in the free space

Ẽ2z(w, y) = CE
2 e−jA2y (2.43)

H̃2z(w, y) = CH
2 e−jA2y (2.44)

Imposing the continuity of the tangential component of the electric field

between the dielectric and the air (y = d), the conditions that link the fields

in the two regions of space are obtained:

Ez TOT (x, d+) = Ez TOT (x, d−) ⇒ CE
1 sen(A1d) = CE

2 e−jA2d (2.45)

Ex TOT (x, d+) = Ex TOT (x, d−) ⇒

⇒ A1C
H
1 sin(A1d) = [

jkzw

ωµ

k2
0 − k2

1

k2
2 − k2

z

CE
2 + j

k2
1 − k2

z

k2
2 − k2

z

A2C
H
2 ]e−jA2d (2.46)

Finally, the continuity of the tangential component of the magnetic field

between the dielectric and the air has to be imposed. It can be useful to

introduce two new functions, namely Jz(x) and Jx(x), that are equal to the

longitudinal and the transverse components of the current densities induced

on the microstrip if x ≤ a, zero otherwise. In this way, the last boundary
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condition becomes:

h1x(x, d)− h2x(x, d) = Jz(x) (2.47)

h2z(x, d)− h1z(x, d) = Jx(x) (2.48)

The same equations, in the spectral domain, become:

H̃1x(w, d)− H̃2x(w, d) = J̃z(w) (2.49)

H̃2z(w, d)− H̃1z(w, d) = J̃x(w) (2.50)

Of course, the following constrains have to be respected on the current

densities, for |x| > a:

+∞∫
−∞

Jz(w)ejwxdw = 0 (2.51)

+∞∫
−∞

Jx(w)ejwxdw = 0 (2.52)

Using the equation (2.22), the (2.49) becomes:

k2
1

k2
1 − k2

z

1

jωµ

[
−∂Ẽ1z

∂y
+

jwkz

ωε1

H̃1z

]∣∣∣∣∣
y=d

+

− k2
2

k2
2 − k2

z

1

jωµ

[
−∂Ẽ2z

∂y
+

jwkz

ωε0

H̃2z

]∣∣∣∣∣
y=d

= J̃z(w) (2.53)

Substituting the expressions of the fields (2.41), (2.42), (2.43) and (2.44)
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in the (2.50) and (2.53), the following equation can be found:

J̃z(w) =− k2
1

k2
1 − k2

z

CE
1 A1 cos(A1d)

jωµ
+

wkz

k2
1 − k2

z

CH
1 cos(A1d)+

− CE
1

k2
2

k2
2 − k2

z

A2 sin(A1d)

ωµ
+ CH

1

jA1

A2

wkz

k2
1 − k2

z

sin(A1d)+

+ CE
1

k2
zw

2

ωµ

k2
2 − k2

1

(k2
2 − k2

z) (k2
1 − k2

z)

sin(A1d)

A2

(2.54)

J̃x(w) =− CH
1 j

A1

A2

k2
2 − k2

z

k2
1 − k2

z

sin(A1d)− CE
1

kzw

ωµ

k2
2 − k2

1

k2
1 − k2

z

sin(A1d)

A2

+

− CH
1 cos(A1d) (2.55)

Considering that:

− k2
2

k2
1 − k2

z

k2
2 − k2

z

A2
2 + k2

zw
2k2

2 − k2
1

k2
2 − k2

z

= k2
z(k

2
2 − k2

1)− k2
1A2 (2.56)

after some manipulation, it’s possible to obtain the induced currents as

function of the constants CE
1 and CH

1 (that is to say the fields):

J̃z(w) =
1

ωµA2(k2
1 − k2

z)
{CE

1 [jk2
1A1A2 cos(A1d) + k2

z(k
2
2 − k2

1) sin(A1d)+

− k2
1A2 sin(A1d)] +

CH
1

µ
wkz[ωµA2 cos(A1d) + jA1ωµ sin(A1d)]} (2.57)

J̃x(w) =
1

ωµA2(k2
1 − k2

z)
{−CE

1 kzw(k2
2 − k2

1) sin(A1d)+

− CH
1 [jωµA1(k

2
2 − k2

z) sin(A1d) + ωµA2(k
2
1 − k2

z) cos(A1d)]} (2.58)

That can be better expressed through a matrix:

A(w) = jk2
1A1A2 cos(A1d) + k2

z(k
2
2 − k2

1) sin(A1d)− k2
1A2 sin(A1d) (2.59)

B(w) = wkzωµ[A2 cos(A1d) + jA1 sin(A1d)] (2.60)

C(w) = −kzw(k2
2 − k2

1) sin(A1d) (2.61)

D(w) = −ωµ[jA1(k
2
2 − k2

z) sin(A1d) + A2(k
2
1 − k2

z) cos(A1d)] (2.62)
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(
J̃z(w)

J̃X(w)

)
=

1

ωµA2(k2
1 − k2

z)

(
A(w) B(w)

C(w) D(w)

)(
CE

1

CH
1

)
(2.63)

As will be shown in the next section, it’s more useful to find the expression

of the fields as function of the induced currents. For this reason, the matrix of

the equation (2.63) has to be inverted, obtaining:(
CE

1

CH
1

)
=

(
G11 G12

G21 G22

)(
J̃z

J̃x

)
(2.64)

where

G11 =
−ωµ[−jA1(k

2
2 − k2

z) sin(A1d) + A2(k
2
1 − kz2) cos(A1d)]

jA1A2k2
2[sin

2(A1d)(1− ε1)− ε1] + k2
2(A

2
1 + ε1A2

2) sin(A1d) cos(A1d)

(2.65)

G12 =
−wkzωµ[A2 cos(A1d) + jA1 sin(A1d)]

jA1A2k2
2[sin

2(A1d)(1− ε1)− ε1] + k2
2(A

2
1 + ε1A2

2) sin(A1d) cos(A1d)

(2.66)

G21 =
kzw (1− ε1) sin(A1d)

jA1A2[sin
2(A1d)(1− ε1)− ε1] + (A2

1 + ε1A2
2) sin(A1d) cos(A1d)

(2.67)

G22 =
jε1A1A2 cos(A1d) + [k2

z(1− ε1)− ε1A2] sin(A1d)

jA1A2[sin
2(A1d)(1− ε1)− ε1] + (A2

1 + ε1A2
2) sin(A1d) cos(A1d)

(2.68)

2.4 Solution of the problem

In this section, a perfectly conducting microstrip (σ = ∞). In the previ-

ous section, the electromagnetic field produced by the induced current on the

microstrip has been expressed as function of the current itself. To find the

unknown current density, the last boundary condition has to be imposed. As

the considered microstrip is lossless, the vanishing of the tangential component

of the electric field over the microstrip has to be enforced.

Ez TOT (x, y = d) = 0 |x| < a (2.69)

Ex TOT (x, y = d) = 0 |x| < a (2.70)
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In the spectral domain, these equations become:

1

2π

+∞∫
−∞

Ẽ1z(w, d)ejwxdw = − 1

2π

+∞∫
−∞

Ẽ0z(w, d)ejwxdw |x| < a (2.71)

1

2π

+∞∫
−∞

Ẽ1X(w, d)ejwxdw = − 1

2π

+∞∫
−∞

Ẽ0x(w, d)ejwxdw |x| < a (2.72)

By means of the equations (2.41) and (2.20), we obtain:

+∞∫
−∞

CE
1 sin(A1d)ejwxdw = −

+∞∫
−∞

Ẽ0z(w, d)ejwxdw (2.73)

+∞∫
−∞

[
−jwkz

ωµ
CE

1 − A1C
H
1

]
sin(A1d)ejwxdw =

=

+∞∫
−∞

[
−jwkz

ωµ
Ẽ0z(w, d) +

∂H̃0z(w, d)

∂y

]
ejwxdw (2.74)

Then, the constants CE
1 and CH

1 can be expressed by means of the relation

(2.64), so that:

+∞∫
−∞

[
G11J̃z(w) + G12J̃x(w)

]
sin(A1d)ejwxdw = −

+∞∫
−∞

Ẽ0z(w, d)ejwxdw (2.75)

+∞∫
−∞

[
jwkz

ωµ

[
G11J̃z(w) + G12J̃x(w)

]
− A1

[
G21J̃z(w) + G22J̃x(w)

]]
·

· sin(A1d)ejwxdw =

+∞∫
−∞

[
jwkz

ωµ
Ẽ0z(w, d)− ∂H̃0z(w, d)

∂y

]
ejwxdw (2.76)

These equations and the (2.51) and (2.52) are a dual system of integral

equations, whose solutions allow to evaluate the unknown induced current
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densities and then the electromagnetic field:

for |x| < a
+∞∫
−∞

[
G11J̃z(w) + G12J̃x(w)

]
sin(A1d)ejwxdw = −

+∞∫
−∞

Ẽ0z(w, d)ejwxdw

+∞∫
−∞

[
jwkz

ωµ

[
G11J̃z(w) + G12J̃x(w)

]
− A1

[
G21J̃z(w) + G22J̃x(w)

]]
·

· sin(A1d)ejwxdw =
+∞∫
−∞

[
jwkz

ωµ
Ẽ0z(w, d)− ∂H̃0z(w,d)

∂y

]
ejwxdw

for |x| > a
+∞∫
−∞

Jz(w)ejwxdw = 0

+∞∫
−∞

Jx(w)ejwxdw = 0

(2.77)

The system can be efficiently solved representing the current densities by

means of a Neumann series, namely a series of Bessel functions of variable

index. In general, the Neumann series can be expressed as follows:

∞∑
n=0

Fn
Jn+s(αw)

(αw)s
(2.78)

The investigation of the most general series is due to Gegenbauer and the

representability in Neumann series has been analysed by Watson in its famous

treatise on the Bessel functions [11]: the representability condition is translated

in a complicated integral equation, so the method results very hard to use. The

problem has been recently reconsidered by Eswaran, who has analyzed the

problem more accurately and he has an easy way to use these series [15]. In

particular, it has been demonstrated that a function whose Fourier transform

has compact support, that is to say null outside of an ended domain, can be

expanded in Neumann series. Now, the last two equations of the dual system

just express this property. For this reason, the current densities Jz(w) and
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Jx(w) are expanded as follows:

J̃z(w) = A
∞∑

n=0

Fzn
Jn+s(wa)

(wa)s
(2.79)

J̃x(w) = A

∞∑
n=0

Fxn
Jn+p(wa)

(wa)p
(2.80)

The quantities Fzn and Fxn are dimensionless unknown expansion coeffi-

cients, while A is only a normalizing constant. To understand how this ex-

pansion can be useful, a relevant integral on the Bessel functions has to be

invoked:

∞∫
−∞

Jn+p(wa)

(wa)s
ejwxdw =

2sjnn!Γ(s)
aΓ(2s+n)

[
1−

(
x
a

)2]s− 1
2
Cs

n

(
x
a

)
x < a

0 x > a
(2.81)

a∫
−a

[
1−

(x

a

)2
]s− 1

2

Cs
n

(x

a

)
e−jwxdx =

aπ21−sΓ(2s + n)

jnn!Γ(s)

Jn+s(wa)

(wa)s
(2.82)

The functions Cs
m(x) are Gegenbauer polynomials (see Appendix 1).

For x < a, the equation (2.81) gives a way to analytically transform the

Neumann series, so that the expression of the induced currents in the spa-

tial domain can be easily computed and used for further analyses. Then, a

proper choice of the parameter s in the series allows to factorise the right edge

behaviour of the current, so only a continuos function has to be represented

(by means of Gegenbauer polynomials), producing a fast convergence of the

method. On the other hand, for x > a the (2.81) states that the last two equa-

tions of the (2.77) are already satisfied if the current densities are expanded in

Neumann series.
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Thus, the equations (2.79) and (2.80) are substituted in the (2.77):

A
+∞∑
n=0

{
Fzn

+∞∫
−∞

Jn+s(wa)
(wa)s G11 sin(A1d)ejwxdw+

+Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p ·G12 sin(A1d)ejwxdw
}

= −
+∞∫
−∞

Ẽ0z(w, d)ejwxdw

A
+∞∑
n=0

{
Fzn

+∞∫
−∞

Jn+s(wa)
(wa)s

(
jwkz

ωµ
G11 − A1G21

)
sin(A1d)ejwxdw+

+Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

(
jwkz

ωµ
G12 − A1G22

)
sin(A1d)ejwxdw =

=
+∞∫
−∞

[
jwkz

ωµ
Ẽ0z(w, d)− ∂H̃0z(w,d)

∂y

]
ejwxdw

(2.83)

These equations have to be verified ∀x : |x| ≤ a. There are different

solutions to impose this condition. One can be projecting the equations in the

same functional space used to expand the current densities. That can be done

multiplying the equations (2.83) by the quantity:

1

2πa

[
1−

(x

a

)2
]r− 1

2

Cr
m

(x

a

)
(2.84)

Then, integrating the resulting equations in dx between −a and a, using

the relevant integral (2.82), we finally obtain:

A
+∞∑
n=0

{
Fzn

+∞∫
−∞

Jn+s(wa)
(wa)s

Jm+r(wa)
(wa)r G11 sin(A1d)dw+

+Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)
(wa)r G12 sin(A1d)dw =

= −
+∞∫
−∞

Ẽ0z(w, d)Jm+r(wa)
(wa)r dw

A
+∞∑
n=0

{
Fzn

+∞∫
−∞

Jn+s(wa)
(wa)s

Jm+t(wa)
(wa)t

(
jwkz

ωµ
G11 − A1G21

)
sin(A1d)dw+

+Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+t(wa)
(wa)t

(
jwkz

ωµ
G12 − A1G22

)
sin(A1d)dw

}
=

=
+∞∫
−∞

[
jwkz

ωµ
Ẽ0z(w, d)− ∂H̃0z(w,d)

∂y

]
Jm+t(wa)

(wa)t dw

(2.85)
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After that, the system of integral equations has been reduced to an alge-

braic system, whose easy solution allows to evaluate the coefficients Fzn and

Fxn.

At this point, a proper choice has to be done on the parameters s and p.

A first constrain is due to the convergence of the integrals. This means that

the following condition has to be respected:

s > −1

2
and p >

1

2
(2.86)

A further constrain on such parameters in given imposing the right edge

behaviour of the current densities. From the integral (2.82), it can be seen

that the edge behaviour of the expansion (2.79) is given by the term:

[
1−

(x

a

)2
]s− 1

2

(2.87)

As the microstrip is perfectly conducting and of infinitesimal thickness,

the longitudinal component of the current, Jz(x), has to show, for x → a, a

behaviour like 1

/√
1− (x/a)2 . For this reason, the right choice is s = 0.

For the same reason, considering that the transverse component of the

current density, Jx(x), has to show, for x → a, a behaviour like
√

1− (x/a)2,

the proper choice is p = 1.

With these choices, the transform of the current densities, performed by

means of the integral (2.82), can be particularised of follows:

J̃z(x) = A
1

aπ

[
1−

(x

a

)2
]− 1

2
∞∑

n=0

(−j)nFznTn

(x

a

)
(2.88)

J̃x(x) = A
1

aπ

[
1−

(x

a

)2
] 1

2
∞∑

n=0

(−j)n

n
FxnUn

(x

a

)
(2.89)

Note that the Gegenbauer polynomials turn into Chebyshev polynomials

of first and second kind, as described in Appendix 1.

Finally, the value of the parameters r and t, introduced in the system 2.85

by the projection, has to be chosen. There isn’t a physical reason in this
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choice, but only a computational convenience: it has been demonstrated that

the conditions r = s and p = t assure that the matrix of the algebraic system

exhibits a diagonal dominance, that is a desirable for the inversion.

2.5 Evaluation of the integrals

After the use of the Neumann series, the problem has been reduced to the

solution of an algebraic system. Some considerations can be done on the

matrix of this system, and in particular on the integrals that are the elements

of this matrix. The following elements can be defined:

I1 n,m = Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
G11sen(A1d)dw (2.90)

I2 n,m = Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
G12sen(A1d)dw (2.91)

I3 n,m = Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+t(wa)

(wa)t

(
−G11

wkz

k2 − k2
z

+

−G21
k2

k2 − k2
z

A1

jωε

)
sen(A1d)dw (2.92)

I4 n,m = Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+t(wa)

(wa)t

(
−G12

wkz

k2 − k2
z

+

−G22
k2

k2 − k2
z

A1

jωε

)
sen(A1d)dw (2.93)

Then, the matrix of the system can be written as follows:[
I1 I2

I3 I4

]
(2.94)

To fill efficiently the matrix, some consideration can be done. First of all,
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each of the sub-matrix I1, I2, I3 and I4 exhibits a symmetry with respect to

the principal diagonal, that is to say:

Ii m,n = Ii n,m (2.95)

Then, considered that the Bessel functions of integer order are even or odd

as the order of the function itself. So considering the parity of the functions

multiplied for the Bessel ones, some integrals vanish. In particular, all the

integrals contained in I1 and I4 are zero if n + m is odd while the integrals

contained in I2 and I3 are zero if n + m is even.

All these considerations on the integrals reduce the number of integrals to

evaluate.

Other considerations must be done on the computation of the integrals.

The Bessel functions are asymptotically oscillating and slowly convergent, so

the time required to numerically evaluate the integrals could be relevant. For

this reason, it could be useful to study the asymptotic behaviour of kernels of

the integrals. For example, let us consider the sub-matrix I1, that is to say

the integral:
+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
G11sen(A1d)dw (2.96)

It’s possible to expand the function G11 in inverse powers of w, something

like that:

G(w) = c0 +
c1

w
+

c2

w2
+ . . . (2.97)

Of course only a finite number of expansion terms can be considered: for

example two expansions terms are considered. In that case, the integral (2.96)

can be written as follows:

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r

[
G(w)− c0 −

c1

w

]
dw+

+

+∞∫
−∞

[
c0 +

c1

w

] Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
dw (2.98)
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Of course the first integral has a faster convergence than the (2.96). This

trick is useful if the second integral can be evaluated analytically. That is

possible, through the relevant integral [22]:

+∞∫
0

Jµ(αt)Jν(αt)t−λdt =
αλ−1

2λ

Γ(λ)Γ
(

µ+ν−λ+1
2

)
Γ
(

µ+ν+λ+1
2

)
Γ
(

µ−ν+λ+1
2

)
Γ
(−µ+ν+λ+1

2

) (2.99)

Of course, as many terms of the expansion (2.97) are used, as faster the

integral in evaluated numerically. Anyway, the choice of the number of terms

to be subtract to the kernel is a compromise asymptotical between the rapidity

and the simplicity to analytically solve the residual integral.

A critical situation happens when µ = ν = 0 and λ = 1, because the

integral diverges, due to the singularity in the origin, that is to say:

+∞∫
−∞

1

w
J0(wα)J0(wα)dw = ∞ (2.100)

The problem can be easily revolved using another function that doesn’t

exhibit the singularity in the origin but the same behaviour of the function

1/w. A possible choice can be:

w

w2 + q2
(2.101)

That solution is suggested by a relevant integral:

+∞∫
−∞

w

w2 + q
J0(wα)J0(wα)dw = I0(αq)K0(αq) (2.102)

The parameter q has to be chosen properly.

2.6 Numerical results

In this section, some numerical results are presented, considering as forcing

field a wire of current of a plane wave TM and TE polarized. These are the
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values used for all the simulations (if not specified differently): a = 1 mm

(microstrip half width), d = 1 mm (dielectric thickness), εr = 9.2 (dielectric

relative permittivity), f = 1 GHz (frequency).

The system (2.85) has been written in the most generic form. Depending

on the forcing field used, the terms of the system have to be particularized and

some of them may vanish. For example, if the source is a wire of current or a

plane wave TM polarized (described in appendix B), only the current density

Jz(x) is present.

First of all, a wire of current is assumed as forcing field. The matrix of the

system is plotted to evidence the diagonal dominance (figure 2.2).

Figure 2.2: Lossless microstrip: Amplitude of the matrix of the system

Then, placing the wire in α = 0.5mm and at different heights, the expan-

sion coefficients and the induced current densities are shown (figures 2.3 and

2.4). Few coefficients are needed to have a good accuracy. The results are also

compared with the ones produced by a FEM solver, Maxwll 2D by Ansoft,

exhibiting a good agreement. Of course the FEM solver becomes inadequate

to evaluate the current density at the edges of the microstrip, as a numerical

method can’t reproduce accurately a divergent variable.
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Figure 2.3: Lossless microstrip: Expansion coefficients of current densities
induced by a wire

Also a plane wave TM polarized is considered as forcing field, in particular

when the propagation vector is in the y, z plane (kz 6= 0). In the following

figures 2.5 and 2.6, the expansion coefficients and the induced current densities

are shown for different incidence angles.

Finally, the same simulations are performed with a plane wave TE polarized

(figures 2.7 and 2.8), always when the propagation vector is in the y, z plane

(kz 6= 0).
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Figure 2.4: Lossless microstrip: Current densities induced by a wire, for dif-
ferent distances, and comparison with a FEM solver

Figure 2.5: Lossless microstrip: Expansion coefficients of current densities
induced by a plane wave TM polarized
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Figure 2.6: Lossless microstrip: Current densities induced by a plane wave TM
polarized, for different incidence angles

Figure 2.7: Lossless microstrip: Expansion coefficients of current densities
induced by a plane wave TE polarized
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Figure 2.8: Lossless microstrip: Current densities induced by a plane wave TE
polarized, for different incidence angles
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Chapter 3

Microstrip of finite conductivity

In this chapter, the method previously presented is adopted to analyze a mi-

crostrip of finite conductivity. Then, the method is extended to the case of

two coupled microstrips, with a minimum increase of computational effort.

3.1 Formulation and solution of the problem

As the microstrip has an infinitesimal thickness, the finite conductivity is in-

troduced through the Leontovich surface impedance ζ, defined as:

ζ =
√

µ0/ (ε0 − jσ/ω) (3.1)

where σ is the conductivity of the microstrip. The validity of this model has

been already discussed in chapter 1.

Following this approach, the formulation presented in section 2.3 can be

repeated identically. The difference is the boundary condition to impose on

the microstrip, that now is:

~ETOT (x, y = d) = ζ ~HTOT (x, y = d)× n̂ |x| < a (3.2)

That means:

Ez TOT (x, y = d) = ζHx TOT (x, y = d) (3.3)

Ex TOT (x, y = d) = ζHz TOT (x, y = d) (3.4)
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In the spectral domain, these equations become:

1

2π

+∞∫
−∞

[
Ẽ1z(w, d)− ζH̃1x(w, d)

]
ejwxdw =

= − 1

2π

+∞∫
−∞

[
Ẽ0z(w, d)− ζH̃0x(w, d)

]
ejwxdw (3.5)

1

2π

+∞∫
−∞

[
Ẽ1x(w, d) + ζH̃1z(w, d)

]
ejwxdw =

= − 1

2π

+∞∫
−∞

[
Ẽ0x(w, d) + ζH̃0z(w, d)

]
ejwxdw (3.6)

Using the equations (2.41), (2.42), (2.20) and (2.22), after some operations:

+∞∫
−∞

[
CE

1 sin(A1d)− ζ
k2

2

k2
2 − k2

z

1

jωµ

(
−A1C

E
1 −

jwkz

ωε
CH

1

)
cos(A1d)

]
ejwxdw =

= −
+∞∫
−∞

[
Ẽ0z(w, d) + ζ

k2
2

k2
2 − k2

z

1

jωµ

(
∂Ẽ0z

∂y
(w, d) +

jwkz

ωε
H̃0z(w, d)

)]
ejwxdw

(3.7)

+∞∫
−∞

[
k2

2

k2
2 − k2

z

1

jωε

(
−jwkz

ωµ
CE

1 − A1C
H
1

)
sin(A1d) + ζCH

1 cos(A1d)

]
ejwxdw =

= −
+∞∫
−∞

[
k2

2

k2
2 − k2

z

1

jωε

(
−jwkz

ωµ
Ẽ0z(w, d) +

∂H̃0z(w, d)

∂y

)
+ ζH̃0z(w, d)

]
ejwxdw

(3.8)

Then, the relation (2.63) between the constants CE
1 , CH

1 and the current

densities has to be used. To simplify the notation, it’s convenient to make
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some positions:

M11 = G11 sin(A1d) +

(
G11

k2
2

k2
2 − k2

z

ζ
A1

jωµ
+ G21

ζwkz

k2
2 − k2

z

)
cos(A1d) (3.9)

M12 = G12 sin(A1d) +

(
G12

k2
2

k2
2 − k2

z

ζA1

jωµ
+ G22

ζwkz

k2
2 − k2

z

)
cos(A1d) (3.10)

M21 = ζG21 cos(A1d)−
(

G11
wkz

k2
2 − k2

z

+ G21
k2

2

k2
2 − k2

z

A1

jωε

)
sin(A1d) (3.11)

M22 = ζG22 cos(A1d)−
(

G12
wkz

k2
2 − k2

z

+ G22
k2

2

k2
2 − k2

z

A1

jωε

)
sin(A1d) (3.12)

N1 = Ẽ0z(w, d) + ζ
k2

2

k2
2 − k2

z

1

jωµ

(
∂Ẽ0z

∂y
(w, d) +

jwkz

ωε
H̃0z(w, d)

)
(3.13)

N2 =
k2

2

k2
2 − k2

z

1

jωε

(
−jwkz

ωµ
Ẽ0z(w, d) +

∂H̃0z

∂y
(w, d)

)
+ ζH̃0z(w, d) (3.14)

After these positions, using the (2.63) in the (3.7) and (3.8), the following

equations are finally obtained:

+∞∫
−∞

(
J̃z(w)M11 + J̃x(w)M12

)
ejwxdw = −

+∞∫
−∞

N1 ejwxdw (3.15)

+∞∫
−∞

(
J̃z(w)M21 + J̃x(w)M22

)
ejwxdw = −

+∞∫
−∞

N2 ejwxdw (3.16)

These equations are valid for |x| < a. Two others have to be added to the

previous, valid for |x| > a, that are:

+∞∫
−∞

J̃z(w)ejwxdw = 0 (3.17)

+∞∫
−∞

J̃x(w)ejwxdw = 0 (3.18)

These four equations are dual system of integral equation. Again, it’s possi-

ble to use the Neumann series to solve this system. By means of the expansions
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(2.79) and (2.80), the equations (3.17) and (3.18) are already satisfied, while

the (3.15) and (3.16) become:

A
+∞∑
n=0

Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s
M11e

jwxdw + Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p
M12e

jwxdw =

= −
+∞∫
−∞

N1 ejwxdw (3.19)

A
+∞∑
n=0

Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s
M21e

jwxdw + Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p
M22e

jwxdw =

= −
+∞∫
−∞

N2 ejwxdw (3.20)

The equations are finally projected, as described in section 2.4, to finally

obtain a system of algebraic equations:

A
+∞∑
n=0

Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11dw + Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12dw =

= −
+∞∫
−∞

Jm+r(wa)

(wa)r
N1dw (3.21)

A
+∞∑
n=0

Fzn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+t(wa)

(wa)t
M21dw + Fxn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+t(wa)

(wa)t
M22dw =

= −
+∞∫
−∞

Jm+t(wa)

(wa)t
N2dw (3.22)

Also in this case, some considerations have to be done on the parameters s

and p. The choice adopted in the section 2.4 is incorrect, as the edge behaviour

of the current densities is changed according to the new boundary condition

on the microstrip. At the moment, there isn’t an adequate theory to justify

the correct edge behaviour of the current densities. So it’s not possible to



CHAPTER 3. MICROSTRIP OF FINITE CONDUCTIVITY 34

find the correct value of these parameters by physical considerations. Anyway,

a correct choice of the parameters s and p allows to minimize the expansion

coefficients, because if the edge behaviour is already factorized, only a contin-

uous function has to be represented. For this reason, it’s possible to perform

different simulations, finding that the values able to minimize the expansion

coefficients are s=1/2 and p=1/2.

With these choices, the transform of the current densities assumes the

following expressions:

J̃z(x) = A
1

a
√

2π

∞∑
n=0

(−j)nFznPn

(x

a

)
(3.23)

J̃x(x) = A
1

a
√

2π

∞∑
n=0

(−j)nFxnPn

(x

a

)
(3.24)

In this case the Gegenbauer polynomials turn into Legendre polynomials,

as described in Appendix 1. It’s possible to make consideration on the matrix

of the system and on the integrals exactly as in section 2.5.

3.2 Coupled microstrips

Before analysing some numerical results, it’s interesting to show how the pre-

sented method can be easily extended to study two coupled microstrips.

To simplify the study, the two microstrips are supposed to have the same

width (a). The distance of the centres of the microstrip from the origin is b.

Figure 3.1: Two coupled microstrips

It’s simple to observe that the formulation presented in section 3.1 can
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be repeated with some small corrections. If the current densities on the left

and right microstrip respectively are called ~J ′(x) and ~J ′′(x), the dual system

of integral equations, composed by the (3.15), (3.16), (3.17), (3.18), can be

written as follows:

+∞∫
−∞

{
[J̃ ′z(w) + J̃ ′′z (w)]M11 + [J̃ ′x(w) + J̃ ′′z (w)]M12

}
ejwxdw =

= −
+∞∫
−∞

N1 ejwxdw for |x− b| < a and for |x + b| < a (3.25)

+∞∫
−∞

{
[J̃ ′z(w) + J̃ ′′z (w)]M21 + [J̃ ′x(w) + J̃ ′′x (w)]M22

}
ejwxdw =

= −
+∞∫
−∞

N2 ejwxdw for |x− b| < a and for |x + b| < a (3.26)

+∞∫
−∞

J̃ ′z(w)ejwxdw = 0,

+∞∫
−∞

J̃ ′x(w)ejwxdw = 0 for |x + b| < a (3.27)

+∞∫
−∞

J̃ ′′z (w)ejwxdw = 0,

+∞∫
−∞

J̃ ′′x (w)ejwxdw = 0 for |x− b| < a (3.28)

The last four equations of the system state that the current densities have

to vanish outside the microstrips. That means that the Neumann series has to

be adapted to the new positions of the microstrip, as the previous expansions

(2.79) and (2.80) are null for |x| > a. This translation of the domains can be

easily made by multiplying the previous Neumann series for some opportune

exponentials:

J̃ ′z(w) = A

∞∑
n=0

F ′
zne+jbw Jn+s(wa)

(wa)s
, J̃ ′′z (w) = A

∞∑
n=0

F ′′
zne

−jbw Jn+s(wa)

(wa)s
(3.29)

J̃ ′x(w) = A

∞∑
n=0

F ′
xne

+jbw Jn+p(wa)

(wa)p
, J̃ ′′x (w) = A

∞∑
n=0

F ′′
xne

−jbw Jn+p(wa)

(wa)p
(3.30)
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This small change allows to satisfy the equations (3.27) and (3.28), as the

transform of the Neumann series now is:

+∞∫
−∞

Jn+s(aw)

(aw)s
ejw(x∓b)dw =

2sjnn!Γ(s)
aΓ(2s+n)

[
1−

(
x±b
a

)2]s− 1
2
Cs

n

(
x±b
a

)
|x± b| < a

0 |x± b| > a

(3.31)

After using the expansions of the current densities (3.29) and (3.30) in

the remaining equations of the dual system (3.25) and (3.26), these equations

have to be projected in the two functional spaces used to expand the current

densities, that is to say multiplying the equations separately by the quantities:

1

2πa

[
1−

(
x± b

a

)2
]r− 1

2

Cr
m

(
x± b

a

)
(3.32)

and integrating the resulting equations in dx between −a and a.

From these operations, four expressions that compose a system of algebraic

equations are obtained. The first two expressions are found from the equation

(3.25), choosing the signs + and − in the (3.32).

A
+∞∑
n=0

J ′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11dw + J ′′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11e

j2bwdw+

+ J ′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12dw + J ′′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12e

j2bwdw =

= −
+∞∫
−∞

Jm+r(wa)

(wa)r
N1e

jbwdw (3.33)
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A
+∞∑
n=0

J ′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11e

−j2bwdw + J ′′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11dw+

+ J ′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12e

−j2bwdw + J ′′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12dw =

= −
+∞∫
−∞

Jm+r(wa)

(wa)r
N1e

−jbwdw (3.34)

The second two expressions are found from the equation (3.26), choosing

the signs + and − in the (3.32).

A
+∞∑
n=0

J ′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11dw + J ′′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M21e

j2bwdw+

+ J ′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M22dw + J ′′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12e

j2bwdw =

= −
+∞∫
−∞

Jm+r(wa)

(wa)r
N2e

jbwdw (3.35)

A
+∞∑
n=0

J ′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M11e

−j2bwdw + J ′′zn

+∞∫
−∞

Jn+s(wa)

(wa)s

Jm+r(wa)

(wa)r
M21dw+

+ J ′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M22e

−j2bwdw + J ′′xn

+∞∫
−∞

Jn+p(wa)

(wa)p

Jm+r(wa)

(wa)r
M12dw =

= −
+∞∫
−∞

Jm+r(wa)

(wa)r
N2e

−jbwdw (3.36)

On the parameters s and p the same considerations of the previous section

are still valid.
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3.3 Numerical results

In this section, some numerical results are presented, always considering as

forcing field a wire of current of a plane wave TM and TE polarized. The

values used for all the simulation (if not specified differently) are: a = 1 mm

(microstrip half width), d = 1 mm (dielectric thickness), εr = 9.2 (dielectric

relative permittivity), σ = 62.8 MS · m (conductibility of the microstrip),

f = 1 GHz (frequency). In case of two microstrips, b = 2 mm (half distance

between the centres of the microstrips).

First of all, a single microstrip is considered and a wire of current is assumed

as forcing field. Placing the wire in α = 0.5mm and at different heights, the

expansion coefficients and the induced current densities are shown (figures 3.2

and 3.3). The results are also compared with the ones produced by a FEM

solver, Maxwll 2D by Ansoft.

Figure 3.2: Lossy microstrip: Expansion coefficients of current densities in-
duced by a wire

A comparison has to be performed between the induced current density on

a perfectly conducting microstrip and a conductive one (figure 3.4).
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Figure 3.3: Lossy microstrip: Current densities induced by a wire, for different
distances, and comparison with a FEM solver

The two curves seem almost to be overlapped, but it needs to keep in mind

that the edge behaviour is clearly different. To be sure of that, in figure 3.5

the value of the current density in a corner is plotted as function of the num-

ber of expansion coefficients. Of course the current density on the conductive

microstrip converges to a finite value, while the current density induced on

the lossless microstrip has to diverge.1 This isn’t a trivial difference: to eval-

uate the conductive losses of the structure, the following integral has to be

evaluated: ∫
−a

a|J(x)|2dx (3.37)

Due to the different edge behaviour, only in the lossy microstrip this inte-

gral has a finite value. So the formulation proposed in these chapters can be

1To make this simulation, in both the expansions of the current densities has been chosen
s = 1/2, so the edge behaviour of the current density induced on the lossless microstrip is
NOT factorized and visible in the figure. If the edge behaviour is correctly factorized (i.e.
s = 0), the value of the expansion at the edge is infinite whatever the number of the
expansion coefficients may be
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Figure 3.4: Lossy microstrip: Comparison between the current densities in-
duced on a perfectly conducting microstrip and a conductive one

useful to avoid the tricks [6] for the evaluation of the conductive losses.

Then, still using a wire as forcing field, the induced currents are shown for

two coupled microstrips (figures 3.6 and 3.7). The wire is always placed in

α = 0.5mm, so that the two curves are not specular.

Also a plane wave TM polarized is considered as forcing field, in particular

when the propagation vector is in the y, z plane (kz 6= 0). In the following

figures 3.8 and 3.9, the expansion coefficients and the induced current densities

are shown for different incidence angles.
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Figure 3.5: Lossy microstrip: Edge value of the current density as function of
the number of expansion coefficients

Figure 3.6: Coupled microstrips: Expansion coefficients of current densities
induced by a wire
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Figure 3.7: Coupled microstrips: Current densities induced by a wire, for
different distances

Figure 3.8: Coupled microstrips: Expansion coefficients of current densities
induced by a plane wave TM polarized
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Figure 3.9: Coupled microstrips: Current densities induced by a plane wave
TM polarized, for different incidence angles
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Chapter 4

Microstrip of finite thickness

4.1 Introduction

In this chapter, a model to analyse microstrips of finite thickness is presented:

the current densities induced on the microstrip will be evaluated and a com-

parison with the microstrip of infinitesimal thickness will be performed.

To simplify the treatment, the microstrip will be supposed to be perfectly

conducting. Then, only a wire of current will be assumed as forcing field, so

the induced currents will have only a component along the z axis. These two

hypotheses reduce the notation and the number of equations, not the difficulty

of the problem. However, in the previous chapters it has been shown how these

hypotheses can be removed, without besides complicating the treatment.

4.2 Strip of finite thickness in free space

Everybody could imagine that the method used in the previous chapters will

also be used to study the microstrip of finite thickness. To arise some doubts,

a simpler structure will be quickly studied, only to show how the Neumann

series can be used in a different way. The reason of this small digression will

be clear as the thick microstrip will be presented.

Anyway, in this section a strip of finite thickness in free space will be

examined, whose structure is shown in figure 4.1.

The strip is perfectly conducting, indefinite along the z-direction, has a
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Figure 4.1: Strip of finite thickness in free space

finite width 2a and a finite thickness 2b. A current I(ω) fluxing in a wire

parallel to the z-axis and displaced at (α, β) is assumed as source.

Due to the forcing field, the induced current densities on the strip has only

a component along the z axis. So four current densities are defined, namely

Jz1(x), Jz2(x), Jz3(x) and Jz4(x), according to the numeration of the walls of

the strip in figure 4.1.

The electric field produced by an unitary current fluxing along a wire of

current placed in (x0, y0) is:

~E(x, y) = E(x, y)ẑ = −ẑζ0
k

4
H

(2)
0

[
k

√
(x− x0)

2 + (y − y0)
2

]
(4.1)

where ζ0 =
√

µ0/ε0 is the characteristic impedance of the free space.

This expression can be used as Green function to evaluate the electric field
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produced by the current densities on the strip:

E(x, y) = −ζ0
k

4


a∫

−a

Jz1(x0)H
(2)
0

[
k
√

(x− x0)2 + (y − b)2
]
dx0+

+

a∫
−a

Jz3(x0)H
(2)
0

[
k
√

(x− x0)2 + (y + b)2
]
dx0+

+

b∫
−b

Jz2(y0)H
(2)
0

[
k
√

(x− a)2 + (y − y0)2
]
dy0+

+

b∫
−b

Jz4(y0)H
(2)
0

[
k
√

(x + a)2 + (y − y0)2
]
dy0

 (4.2)

This field already satisfies the radiation condition, so only the boundary

condition on the strip has to be imposed. If E0(x, y) is the electric forcing

field, the boundary condition is:

E(x, y) = −E0(x, y) ∀(x, y) on the walls of the strip (4.3)

This condition, considering the equation (4.2), is the integral equation that

allows to solve the problem. To find a solution, the unknown current densities

are expanded in series as follows:

Jz i(x) =
I(ω)

a

1
3
√

1− (x/a)2

+∞∑
n=0

Fi,nC
1/6
n

(x

a

)
for i = 1, 3 (4.4)

Jz i(y) =
I(ω)

b

1
3
√

1− (y/b)2

+∞∑
n=0

Fi,nC
1/6
n

(y

b

)
for i = 2, 4 (4.5)

That expansions are the transforms of Neumann series (see equations (2.79)

and (2.82)), as we are working in the spatial domain. In the Neumann series

the proper choice is s = 1/6 to factorize the right edge behaviour. After that,
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the equation (4.3) explicitly becomes:

+∞∑
n=0

F1,n

a∫
−a

H
(2)
0

[
k
√

(x− x0)2 + (y − b)2
]

a 3
√

1− (x0/a)2
C1/6

n

(x0

a

)
dx0 +

F2,n

b∫
−b

H
(2)
0

[
k
√

(x− a)2 + (y − y0)2
]

b 3
√

1− (y0/b)2
C1/6

n

(y0

b

)
dy0+

F3,n

a∫
−a

H
(2)
0

[
k
√

(x− x0)2 + (y + b)2
]

a 3
√

1− (x0/a)2
C1/6

n

(x0

a

)
dx0+

F4,n

b∫
−b

H
(2)
0

[
k
√

(x + a)2 + (y − y0)2
]

b 3
√

1− (y0/b)2
C1/6

n

(y0

b

)
dy0

 =

= −H
(2)
0

[
k
√

(x− α)2 + (y − β)2
]

(4.6)

That equation has to be verified for every (x, y) belonging to the walls of the

strip. To impose this condition, there are different ways. One has been exposed

in the previous chapters and it is performed by projecting the equations in the

functional space used to represent the unknown density currents. That is

simple to do only in the spectral domain, as shown in the previous chapters,

but it’s easy to find the spatial Fourier transform of the Green function (4.1)

and the method could be adopted without effort also for these problems.

Anyway, there is another solution: it’s possible to sample the (4.6) in as

many points as the number of expansion coefficient desiderated. Also in this

way the problem is reduced to an algebraic system.

Some considerations should be done on the two methods. The sampling

method leads to an ill-posed problem, so that it could be ineffective if an high

number of coefficients has to be calculated. On the other hand it happens only

at very high frequencies, at which the projection technique should necessarily

be adopted to regularize the problem. The advantage in using the sampling

method lies in the numerical calculation of the integrals, that are extended over

a finite domain, therefore fast to evaluate. Using the projection method, the

integrals are extended over an infinite domain, and therefore slowly converging
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and very time consuming. Note that in the spatial domain the projection

method is hard to use, except that in some lucky cases.

To solve this problem both the methods could be used, with similar results:

we chose to use the sampling method to acquire familiarity with it. Of course

the sampling point has to be chosen properly, as they strongly influence the

result. On every wall of the strip the number of sampling point is equal to

the number of coefficients used to represent the current on that wall. It’s well

known that, for a polynomial representation, the sampling that produces the

minimum quadratic error is in the zeros of the Chebyshev polynomials of first

kind [19]. Practically, if N sampling point are required it the interval [−1, 1],

the best choice is:

TN(xk) = 0 ⇒ xk = cos

[
(2k + 1)

N

π

2

]
for k = 0, 1, . . . , N−1 (4.7)

Testing different sampling, apart from the benefit on the quadratic error,

it has been pleasantly discovered that the expansion coefficients show a faster

convergence with respect to the truncation order using the Chebyshev sam-

pling. That is unexpected but desirable because the matrix of the system is

not diagonal, so to evaluate such a number of coefficients accurately, always a

greater number of coefficients has to be considered.

As a proof of that, in the following figure 4.2, the coefficient F1,2 is plotted

as function of the truncation order, using an uniform sampling and another as

explained above.

Then, just a numerical result is shown to proof the validity of the method.

These are the values used for all the simulation: a = 1 mm (strip half width),

b = 0.1 mm (strip half thickness), f = 1 GHz (frequency), α = 0.5 mm and

β = 0.5mm (position of the wire). The expansion coefficients and the induced

current densities are shown in the figures 4.3 and 4.4. The results are also

compared with the ones produced by Maxwll 2D.
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Figure 4.2: Strip in free space: The coefficient F1,2 as function of the truncation
order, for different sampling

Figure 4.3: Strip in free space: Expansion coefficients of current densities
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Figure 4.4: Strip in free space: Current densities induced on the walls of the
strip and comparison with a FEM solver

4.3 Some problems with the Green function

After the useful digression on the strip in free space, let’s go back to the aim

of this chapter, a model for a microstrip of finite thickness.

The microstrip is perfectly conducting, indefinite along the z-direction, has

a finite width 2a and a finite thickness 2b. The dielectric has thickness d and

relative permittivity εr. A current I(ω) fluxing in a wire parallel to the z-axis

and displaced at (α, β) is assumed as source (figure 4.5).

Figure 4.5: Microstrip of finite thickness



CHAPTER 4. MICROSTRIP OF FINITE THICKNESS 51

Proceeding as in the previous section, the problem can be reduced to the

imposition of the boundary condition on the microstrip, that is exactly the

equation (4.3). The electric field radiated by the current on the microstrip has

to be evaluated. It can be convenient to split the total electric field in four

terms, namely E1(x, y), E2(x, y), E3(x, y) and E4(x, y), each one produced by

a single current density. That is to say:

E(x, y) = E1(x, y) + E2(x, y) + E3(x, y) + E4(x, y) (4.8)

To evaluate these quantities, the four current densities on the walls of the

microstrip, namely Jz1(x), Jz2(y), Jz3(x) and Jz4(y), have to be defined. They

can be represented as follows:

Jz i(x) =
I(ω)

a

1
3
√

1− (x/a)2

N∑
n=0

Fi,nC
1/6
n

(x

a

)
for i = 1, 3

(4.9)

Jz i(y) =
I(ω)

b

1
3
√

1− [(y−d−b)/b]2

N∑
n=0

Fi,nC
1/6
n

(
y−d−b

b

)
for i = 2, 4

(4.10)

Then, to evaluate the electric field, the Green function of the problem has

to be found. Unfortunately, for such a geometry, it’s not possible to express

the Green function in the spatial domain. The electric field produced by an

unitary current fluxing along a wire of current placed over a dielectric and

a ground plane has been derived in appendix 2. This field can be assumed

as Green function of the problem and it seems really improbable to find the
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transform of such an expression:

G̃(w, y, x0, y0) =
−jωµ e−jwx0

jA2 + A1 cot(A1d)



e−jA2(y0−d) sen(A1y)
sen(A1d)

0 ≤ y ≤ d

e−jA2(y0−d) {cos A2(y−d) +

+A1

A2
cot(A1d) sin[A2(y−d)]

}
d ≤ y ≤ y0

e−jA2(y−d) {cos A2(y0−d) +

+A1

A2
cot(A1d) sin[A2(y0−d)]

}
y ≥ y0

(4.11)

if (x0, y0) is the position of the wire.

Being defined the current densities and the Green function, the four com-

ponents of the electric field can be evaluated. For example, let us study the

term E1(x, y), that is the electric field produced only by the current density

Jz1(x), using the Green function (4.11). As the boundary condition has to be

imposed only on the walls of the microstrip, so always for d ≤ y ≤ 2b, it’s

enough to evaluate the electric field in this region. For the quantity E1(x, y)

we have:

E1(x, y) =

a∫
−a

Jz1(x0)
1

2π

+∞∫
−∞

G̃(w, y, x0, y0 = d+2b) e−jwxdw dx0 =

=

a∫
−a

Jz1(x0)
1

2π

+∞∫
−∞

(−jωµ)
ejwx0e−2jA2b

jA2 + A1 cot(A1d)
·

·
{

cos [A2(y − d)] +
A1

A2

cot(A1d) sin [A2(y − d)]

}
e−jwxdw dx0 =

= −jωµ

2π

+∞∫
−∞

J̃z1(w)ejwx0e−2jA2b

jA2 + A1 cot(A1d)

{
cos [A2(y−d)] +

A1

A2

cot(A1d) sin [A2(y−d)]

}
dw

(4.12)

This procedure could be extended also to the other components of the

electric field. Then, the total electric field could be evaluated and the boundary

condition on the microstrip could be imposed, finding the integral equation

that allows to solve the problem. Then, the projection method or the sampling
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one could be adopted to solve the equation.

Anyway, following this technique, great computational problems are found.

In fact, operating in the spectral domain, all the integrals are extended to an

infinite domain. In particular, when the electric field produced by a wall to

another adjacent is evaluated, the integrals are really slowly convergent. The

methods proposed in section 2.5 to accelerate the convergence are unfit for this

case and there isn’t an efficient technique to this aim. The slow convergence

of the integrals is due to the Green function that asymptotically shows an

oscillatory behaviour, independently from the representation chosen for the

current densities. Of course the problem would be avoided if the Green function

could be expressed in the spatial domain. This is still an open problem in

literature, and several numerical techniques have been proposed to find an

approximation in the spatial domain.

A numerical approximation of the Green function is a delicate operation

and has to be avoided if possible: the Green function is the heart of the

problem and even a small approximation sometimes could cause the loss of

relevant phenomena.

In this case it’s possible to avoid an approximation of the Green function.

Even if an expression in the spatial domain is unknown, it can be found par-

tially. The Green function in the spatial domain is:

Gx, y, x0, y0 =
1

2π

+∞∫
−∞

G̃(w, y, x0, y0) e−jwxdw (4.13)

For y ≥ d, the case of our interest, the Green function can be splitted in

two terms. The following expression is valid for both d ≤ y ≤ y0 and y ≥ y0:

G̃(w, y, x0, y0) =
−ωµ

2

[
ejw(x−x0)

A2

e−jA2|y0−y| +

+
ejw(x−x0)

A2

e−jA2(y+y0−2d) jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)

]
(4.14)
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Due to the following integral [22]:

+∞∫
−∞

e−j
√

k2−w2|y−y0|
√

k2 − w2
e−jwadw = πH

(2)
0

[
k
√

a2 + (y − y0)2
]

(4.15)

the transform (4.13) becomes:

Gx, y, x0, y0 = −ωµ

4
H

(2)
0

[
k2

√
(x− x0)2 + (y − y0)2

]
+

− ωµ

4π

+∞∫
−∞

e−jw(x−x0)

A2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y+y0−2d)dw (4.16)

This way to express the Green function has also a physical meaning: the

first term, expressed in the spatial domain, is the electric field of a wire placed

in (x0, y0) in the free space. The second term, that hasn’t an analytical trans-

form, represents all the reflection and refractions due to the dielectric and the

ground plane.

This expression of the Green function is much more useful, as the electric

field E1(x, y) now becomes:

E1(x, y) = −ωµ

4

a∫
−a

Jz1(x0)H
(2)
0

[
k2

√
(x− x0)2 + (y − d− 2b)2

]
dx0+

− ωµ

4π

+∞∫
−∞

J̃z1(w)
ejwx0

A2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y−d+2b)dw (4.17)

Now, using this procedure to calculate the components of the electric field,

no problems occur in the evaluation of the electric field produced by a wall

to another adjacent. In this case the integral on the compact domain can be

evaluated without any effort, while the integral on the infinite domain now

is fastly convergent, due to the asymptotic behaviour of the integrand. For

example, for the field E1(x, y) we find the following asymptotic behaviour:

1

jA2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y−d+2b) ∼ e−w(y+d+2b)

|w|
(4.18)



CHAPTER 4. MICROSTRIP OF FINITE THICKNESS 55

4.4 Formulation of the problem

Following the procedure exposed in the previous section, all the electric fields

can be evaluated. In particular, it’s easy to find:

E3(x, y) = −ωµ

4

a∫
−a

Jz3(x0)H
(2)
0

[
k2

√
(x− x0)2 + (y − d)2

]
dx0+

− ωµ

4π

+∞∫
−∞

J̃z3(w)
ejwx0

A2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y−d)dw (4.19)

For the electric fields E2(x, y) and E4(x, y), if it is assumed, as an extension

of the (2.26) 1:∫ +∞

−∞
J2z(y)e−jA2ydy =

∫ d+2b

d

J2z(y)e−jA2ydy = e−jA2(d+b)J̃2z[A2(w)] (4.20)

it’s simple to find:

E2(x, y) = −ωµ

4

d+2b∫
d

Jz2(y0)H
(2)
0

[
k2

√
(x− a)2 + (y − y0)2

]
dy0+

− ωµ

4π

+∞∫
−∞

J̃z2(A2)
e−jw(a−x)

A2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y−d+b)dw (4.21)

E4(x, y) = −ωµ

4

d+2b∫
d

Jz4(y0)H
(2)
0

[
k2

√
(x + a)2 + (y − y0)2

]
dy0+

− ωµ

4π

+∞∫
−∞

J̃z4(A2)
ejw(a+x)

A2

jA2 − A1 cot(A1d)

jA2 + A1 cot(A1d)
e−jA2(y−d+b)dw (4.22)

As the total electric field is known, the boundary condition (4.3) on the

1Is this transform correct? For w > k2, the quantity A2(w) =
√

k2
2 − w2 becomes imag-

inary, so the Fourier transform becomes a Laplace transform. This extension is acceptable
as the function to transform, J2z(y), is defined in a compact domain
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microstrip can be imposed, obtaining four integral equations, one for each wall

of the microstrip. To solve these equations, the Neumann series is used, by

means of the expansions (4.9) and (4.10) of the current densities are used. The

following representations have also to be used in the spectral domain:

J̃z i(w) = I(ω)
2−5/6π

Γ(1/6)

+∞∑
n=0

Γ(1/3 + n)

n!(−j)n
Fi,n

Jn+1/6(wa)

(wa)1/6
for i = 1, 3

(4.23)

J̃z i(A2) = I(ω)
2−5/6π

Γ(1/6)

+∞∑
n=0

Γ(1/3 + n)

n!(−j)n
Fi,n

Jn+1/6(b
√

k2
2 − w2)

(b
√

k2
2 − w2)1/6

for i = 2, 4

(4.24)

Note that the series (4.24) is divergent for w →∞, as the Bessel functions

Jn+1/6(·) turn into modified Bessel functions In+1/6(·) for w > k2. Anyway

that does not affect the summability of the integrals in the (4.21) and (4.22),

due to the presence of e−jA2(y−d+b).

After that, the system of integral equations can be turned into an algebraic

system using the sampling technique described in the previous section.

4.5 Induced current

It may be interesting to perform a comparison between the thin and the thick

microstrip. Of course the current densities are unfit for this comparison, while

the total induced currents can be useful for this aim. Besides, using the Neu-

mann series, an analytical expression can be found.

This integral can be useful [22]:

+a∫
−a

[
1−

(x

a

)2
]s− 1

2

Cs
n

(x

a

)
euxdx =


aπ21−2sΓ(2s)
Γ(s)Γ(s+1)

n = 0

0 n 6= 0
(4.25)

For the thick microstrip, according to the expansions (4.9) and (4.10), the
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total induced current IT (ω) is:

IT (ω) =

+a∫
−a

[Jz1(x) + Jz3(x)]dx +

d+2b∫
d

[J2z(y) + Jz4(y)] dy =

= I(ω)
22/3πΓ(1/3)

Γ(1/6)Γ(7/6)
[F1,0 + F2,0 + F3,0 + F4,0] (4.26)

For the thin microstrip, the following limit has to be considered:

lim
s→0

2s−1Γ(2s)

Γ(s)
= 1 (4.27)

For this reason, according to the expansion (2.88), the total induced current

It(ω) over the thin microstrip is:

It(ω) =

+a∫
−a

Jz(x)dy = I(ω)4Fz0 (4.28)

4.6 Numerical results

In this section, some numerical results are presented. These are the values

used for all the simulations (if not specified differently): a = 1mm (microstrip

half width), b = a/10 = 0.1mm (microstrip half thickness), d = 1 mm (di-

electric thickness), εr = 9.2 (dielectric relative permittivity), α = 0.5 mm and

β = 1.5 mm (position of the wire). The expansion coefficients and the in-

duced current densities are shown in the figures 4.6 and 4.7, for a frequency of

100MHz.
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Figure 4.6: Thick microstrip: Expansion coefficients of current densities at 1
GHz
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Figure 4.7: Thick microstrip: Current densities induced on the microstrip at
1 GHz.
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Chapter 5

Conclusions and outlook

In this thesis, a full-wave model has been introduced for the simulation of mi-

crostrip structures. The model allows to examine two remarkable aspects, the

finite conductivity and the finite thickness of the conductor, that are generally

presented in literature in a doubtful way and however through approximations

of various entity. This represents an improvement of the actual models for

the simulation and characterization of microstrip structures. In particular,

the model proposed to simulate the microstrip of finite thickness uses a rig-

orous expression of the Green function, while the models actually present in

literature only use an approximate expression.

Besides, it has been shown how the proposed method can be easily adapted

to study the problem of two coupled microstrips. This technique can also

be extended to an arbitrary number of microstrips. Note that the coupling

between the microstrips is rigorous, while often in literature it is considered

by means of corrective factors.

The presented results can lead to different interesting future developments.

From a point of view, it’s possible to proceed, from these results, to the ex-

traction of circuital parameters useful for the simulations of more complex

structures. Particularly, the model proposed with finite conductivity can al-

low the evaluation of the resistance of the structure in a more accurate way

than how it has been done till now. Another interesting aspect to be eas-

ily developed is the improvement of the proposed model, to consider a thick

microstrip and of finite conductivity (always Leontovich).
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Finally, there are two quests of great interest, that are anyway far to be

resolved. The first one is the expression of the Green function in the spatial

domain in a rigorous way. The second one is a model for the study of a

microstrip of finite thickness and finite conductivity, considering volumetric

current densities. These problems are still open, especially the second one,

despite the great amount of articles on these arguments.
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Appendix A

Properties of some orthogonal

polynomials

This appendix doesn’t have the pretencion to deeply treat the orthogonal poly-

nomials. An appendix would not be enough, neither this is the purpose of this

thesis. Specific texts [21] should be used for this aim. This appendix is simply

a brief revision of the fundamental properties of the orthogonal polynomials

used in this thesis.

A.1 Orthogonal polynomials

A system of polynomials fn(x) is orthogonal in the interval [a, b], with respect

to a weigh function w(x), if the following equation is satisfied:

b∫
a

w(x)fn(x)fm(x)dx = 0 (m 6= n; m, n = 0, 1, 2, . . . ) (A.1)

The orthogonal polynomials are usually standardized with respect to the

following equation:

b∫
a

w(x)f 2
n(x)dx = hn (n = 0, 1, 2, . . . ) (A.2)

where hn is a parameter depending on the type of polynomials.
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A.2 Gegenbauer polynomials

The Gegenbauer polynomials Cs
n(x), also said ultraspherical polynomials, are

a complete system in L2[−1, 1] and they satisfy the condition (A.1) if the

integration interval is [−1, 1] and the weigh function is:

w(x) = (1− x2)s− 1
2 (A.3)

About the normalization (A.2), the parameter hn assumes different values:

hn =


π21−2sΓ(n+2s)
n!(n+s)[Γ(s)]2

s 6= 0

2π
n2 s = 0, n 6= 0

π s = 0, n = 0

(A.4)

Such polynomials are solutions, for s < 0.5 and n integer, of the Gegenbauer

differential equation:

(1− x2)y′′ − (2s + 1)xy′ + n(n + 2s)y = 0 (A.5)

In general, they can be defined through the Jacoby polynomials P
(α,β)
n (x)

as follows:

Cs
n(x) =

Γ(s + 1
2
)

Γ(2s)

Γ(n + 2s)

Γ(n + s + 1
2
)
P

(s− 1
2
,s− 1

2
)

n (x) (A.6)

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
[(1− x)α+n(1 + x)β+n] (A.7)

Another common definition is the following:

Cs
n(x) =

1

Γ(s)

[n/2]∑
m=0

(−1)mΓ(s + m− n)(2x)n−2m

m!(n− 2m)!
(A.8)

where [n/2] is the integer part of n/2.

The Gegenbauer polynomials are produced by the following generatrix func-
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tion:
1

(1− 2xt + t2)
=

∞∑
n=0

Cs
n(x)tn (A.9)

The first Gegenbauer polynomials are shown:

Cs
0(x) = 1

Cs
1(x) = 2sx

Cs
2(x) = −s + 2s(1 + s)x2

Cs
3(x) = −2s(1 + s)x +

(
4

3

)
s(1 + s)(2 + s)x3

In general, this recurrence equation can be useful:

Cs
n(x) =

1

n

[
2(n− 1 + s)xCs

n−1(x)− (n + 2s− 2)Cs
n−2(x)

]
. (A.10)

There are some relevant properties related to the derivates of the Gegen-

bauer polynomials:

d

dx
Cs

n(x) = 2sCs+1
n−1(x) (A.11)

dk

dxk
Cs

n(x) = 2k Γ(s + k)

Γ(s)
Cs+k

n−k(x) (A.12)

nCs
n(x) = x

d

dx
[Cs

n(x)]− d

dx

[
Cs

n−1(x)
]

(A.13)

(n + 2s)Cs
n(x) =

d

dx

[
Cs

n+1(x)
]
− x

d

dx
[Cs

n(x)] . (A.14)

A.3 Chebyshev polynomials

As the Gegenbauer polynomials, also the Chebyshev polynomials of first kind

Tn(x) and second kind Un(x) are a complete system in L2[−1, 1]. They are

defined as follows:

Tn(x) = cos(n arccos x) (A.15)

Un(x) =
sin[(n + 1) arccos x]

sin(arccos x)
(A.16)
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The functions Tn(x) and
√

1− x2Un(x) are independent solutions of the

differential equation:

(1− x2)
d2y

dx2
− x

dy

dx
+ n2y = 0 (A.17)

All the zeros of these polynomials are placed in the interval [−1, 1]. Further

expressions of the polynomials are:

Tn(x) = (−1)n

√
1− x2

(2n− 1)!!

dn

dxn
(1− x2)n− 1

2 (A.18)

Un(x) = (−1)n (n + 1)√
1− x2(2n + 1)!!

dn

dxn
(1− x2)n+ 1

2 (A.19)

The first Chebyshev polynomials are shown:

T0(x) = 1 U0(x) = 1 (A.20)

T1(x) = x U1(x) = 2x (A.21)

T2(x) = 2x2 − 1 U2(x) = 4x2 − 1 (A.22)

T3(x) = 4x3 − 3x U3(x) = 8x3 − 4x (A.23)

In particular, there are some special cases:

Tn(1) = 1 Tn(−1) = (−1)n (A.24)

T2n(0) = (−1)n T2n+1(0) = 0 (A.25)

U2n(0) = 0 U2n+1(0) = (−1)n (A.26)

In general, these recurrence equations can be useful:

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0 (A.27)

Un+1(x)− 2xUn(x) + Un−1(x) = 0 (A.28)

Tn(x) = Un(x)− xUn−1(x) (A.29)

(1− x2)Un−1(x) = xTn(x)− Tn−1(x) (A.30)

The generating functions of the Chebyshev polynomials Tn(x) e Un(x) re-
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spectively are:

1− t2

1− 2tx + t2
= T0(x) + 2

∞∑
k=1

Tk(x)tk (A.31)

1− t2

1− 2tx + t2
=

∞∑
k=1

Uk(x)tk (A.32)

There is a relevant connection between the Gegenbauer polynomials and

the Chebyshef polynomials of first and second kind:

lim
s→0

Γ(s)Cs
n(x) =

2

n
Tn(x) (A.33)

C(1)
n (x) = Un(x) (A.34)

Figure A.1: Chebyshev polynomials of first kind
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Figure A.2: Chebyshev polynomials of second kind

A.4 Legendre polynomials

The Legendre polynomials, also called Legendre functions of first kind, are

solutions of the Legendre differential equation:

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0 (A.35)

A particular expression of these polynomials is:

Pn(x) =
1

2n

[n/2]∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

=
1

2n

[n/2]∑
k=0

(−1)k

(
n

k

)(
2n− 2k

n

)
xn−2k (A.36)

where [n/2] is the integer part of n/2.
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The Legendre polynomials are given by the generating function:

g(t, x) = (1− 2xt + t2)−
1
2 =

+∞∑
n=0

Pn(x)tn (A.37)

From the generating function it’s possible to extract a relation useful in

many physical problems:

(1− 2xt + t2)−
3
2 [1− t2] =

+∞∑
n=0

(2n + 1)Pn(x)tn (A.38)

The first Legendre polynomials are shown:

P0(x) = 1 (A.39)

P1(x) = x (A.40)

P2(x) =
1

2
(3x2 − 1) (A.41)

P3(x) =
1

2
(5x3 − 3x) (A.42)

P4(x) =
1

8
(35x4 − 30x2 + 3) (A.43)

In general, these recurrence equations can be useful:

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0 (A.44)

(1− x2)P
′

n(x) = −nxPn(x) + nPn−1(x) =

= (n + 1)xPn(x)− (n + 1)Pn+1(x) (A.45)

The integral of a Legendre polynomial, in the interval [x, 1], for n 6= 0, in

general is:
1∫

x

Pn(x)dx =
(1− x2)

n(n + 1)

dPn(x)

dx
(A.46)
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In particular, in the interval [x, 1]:

l∫
0

Pn(x)dx =
Pn−1(0)− Pn+1(0)

2n + 1
=


1 n = 0

0 n 6= 0, even

(−1)
n−1

2
n!!

n(n+1)(n−1)!!
n 6= 0, odd

(A.47)

There is a relevant connection between the Gegenbauer polynomials and

the Legendre polynomials::

C(1/2)
n (x) = Pn(x) (A.48)

Figure A.3: Legendre polynomials
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Appendix B

Canonical sources

The aim of this appendix is to report the expression of the electromagnetic

field produced by some canonical sources used in the thesis.

B.1 Wire of current in free space

A wire of current in free space is considered in this section. The value of the

current, i(t), is impressed or known. The wire is indefinite along the z axis

and it’s placed in (α, β) in the x, y plane. The geometry is shown in figure B.1.

Figure B.1: Wire of current in free space

The current, and so the electromagnetic field, are constant with respect

to the z variable. If I(ω) is the Fourier transform of the current i(t), the

electromagnetic field produced by such a structure can be easily found:

E0
z (r) = −ωµ

4
I(ω)H

(2)
0 (kr) (B.1)

H0
ϕ(r) =

k

4j
I(ω)H

(2)
1 (kr) (B.2)
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where r =
√

(x− α)2 + (y − β)2.

Note that, if k → 0, the well known result is obtained:

E0
z (r) = 0 (B.3)

H0
ϕ(r) =

I

r
δ(ω) (B.4)

It can also be useful the expression of the electromagnetic field in the

spectral domain, coherently with spatial Fourier transform (2.26).

Ẽ0
z (w, y) = −ωµ

I(ω)

2
e−jwα e−jA2|y − β|

A2

(B.5)

H̃0
x(x, y) = −I(ω)

2
e−jwαe−jA2|y−β|sgn(y − β) (B.6)

H̃0
y (x, y) =

I(ω)

2
we−jwα e−jA2|y−β|

A2

(B.7)

B.2 Wire of current over a dielectric substrate

In this section, a wire of current over a dielectric and a ground plane is con-

sidered, as shown in figure B.2.

Figure B.2: Wire of current over a dielectric and a ground plane

The space is divided in three zones, identified with 1,2 and 3, that re-

spectively are the dielectric (0 ≤ x ≤ d), the zone between the wire and the

dielectric (d ≤ x ≤ β) and finally the zone above the wire (x ≥ β).

The electromagnetic field can’t be found in the spatial domain explicitly,

so it will be found in the spectral domain. Considering the radiation condition
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and the presence of the ground plane, following the procedure shown in section

2.2, the electric field in the three zones can be written as follows:

Ẽ(1)
z = C1 sin(A1y) (B.8)

Ẽ(2)
z = C21e

jA2y + C22e
−jA2y (B.9)

Ẽ(3)
z = C3e

−jA2y (B.10)

To determine the coefficients, the boundary conditions have to be imposed.

They are the continuity of the tangential component of the electric field along

the separation surfaces between the zone 1 and 2 and the zone 2 and 3, the

continuity of the tangential component of the magnetic field along the separa-

tion surfaces between the zone 1 and 2 and the discontinuity of the tangential

component of the magnetic field along the separation surfaces between the

zone 2 and 3, due to the wire of current:

C1 sin(A1d) = C21e
jA2d + C22e

−jA2d

C3e
−jA2β = C21e

jA2β + C22e
−jA2β

−A1C1 cos(A1d) + jA2[C21e
jA2d − C22e

−jA2d] = 0

−[C21e
jA2β − C22e

−jA2β]− C3e
−jA2β = ωµ

A2
I(ω)e−jwα

(B.11)

Solving the system, the constants C can be found, obtaining finally:

Ẽ(1)
z = −jωµI(ω)

e−jwαe−jA2(β−d) sin(A1y)

jA2 sin(A1d) + A1 cos(A1d)
(B.12)

Ẽ(2)
z = −jωµI(ω)

e−jwαe−jA2(β−d)

jA2 sin(A1d) + A1 cos(A1d)
·

·
[
sin(A1d) cos[A2(y − d)] +

A1

A2

cos(A1d) sin[A2(y − d)]

]
(B.13)

Ẽ(3)
z = −jωµI(ω)

e−jwαe−jA2(y−d)

jA2 sin(A1d) + A1 cos(A1d)
·

·
[
sin(A1d) cos[A2(β − d)] +

A1

A2

cos(A1d) sin[A2(y − d)]

]
(B.14)
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B.3 Plane wave TM over a dielectric substrate

In this section, the problem of plane wave TM polarized over a dielectric and a

ground plane is examined, considering both the case of the propagation vector

in the x, y plane and in the y, z plane, as shown in figure ?? and B.3.

Figure B.3: Plane wave over a dielectric and a ground plane

The space is divided in two zones, identified with 1 and 2, that respectively

are the dielectric (0 ≤ x ≤ d) and the zone above it (x ≥ d).

Let us consider the case of the propagation vector in the x, y (kz = 0).

Operating in the spectral domain, if the electric field in the free space is

E0z(x, y) = E0e
jk2(x cos α+y sin α), following the procedure used in the previous

section is possible to determine the electric field in the zones 1 and 2:

Ẽ
(1)
0z (w, y) = E0 ejk2d sin αδ(w − k2 cos α)· (B.15)

· 2j sin α sin(k2y
√

εr − cos2 α)

j sin α sin(k2d
√

εr − cos2 α) +
√

εr − cos2 α cos(k2d
√

εr − cos2 α)

Ẽ
(2)
0z (w, y) = E0 ejk2d sin αδ(w − k2 cos α)· (B.16)

·

[
1− sin α e−jk2d

√
εr−cos2 αe−k2(y−d) sin α

j sin α sin(k2d
√

εr − cos2 α) +
√

εr − cos2 α cos(k2d
√

εr − cos2 α)

]

Then, let us consider the case of the propagation vector in the y, z (kz =

k2 cos α). If the electric field in the free space is E0z(x, y) = E0e
jk2(y sin α+z cos α),
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following the same procedure used above:

Ẽ
(1)
0z (w, y) = E0 ejk1d sin αδ(w)· (B.17)

· 2j
√

εr − cos2 αsen(k1y
√

εr − cos2 α)

j
√

εr − cos2 α sin(k1d
√

εr − cos2 α) + εr sin α cos(k1d
√

εr − cos2 α)



BIBLIOGRAPHY 75

Bibliography

[1] R. E. Collin, Foundation for microwave engineering, 2nd Edition, Mc

Graw-Hill, Singapore, 1992.

[2] R. F. Harrington, Time Harmonics Electromagnetic Fields, McGraw-Hill,

London ,1995.

On the microstrips

[3] Special Issue on ”Recent Advances in EMC of Printed Circuit Boards”,

IEEE Transactions On Electromagnetic Compatibility, November 2001.

[4] R. A. Pucel, D. J. Masse, C. P. Hartwig, Losses in microstrip, IEEE

Transactions On Microwave Theory and Techniques, vol. 16, pp. 343-350,

June 1966.

[5] E. Hammerstad, . Jensen, Accurate Models for Microstrip Computer-Aided

Design, Symposium on Microwave Theory and Techniques, June 1980.

[6] C. L. Holloway, E. F. Kuester, Edge shape effect and quasi-closed form

expressions for conductor loss of microstrip lines, Radio Science, vol. 29,

pp. 539-559, May-June 1994.

[7] D. F. Williams, C. L. Holloway, Transmission-Line Parameter Approx-

imation for Digital Simulation, IEEE Transactions On Electromagnetic

Compatibility, vol. 43, pp. 466-470, Nov. 2001.

[8] H. Guckel, P. A. Brennan, and I. Palocz, A parallel-plate waveguide ap-

proach to microminiaturized, planar transmission lines for integrated cir-



BIBLIOGRAPHY 76

cuits, IEEE Transactions on Microwave Theory and Technique, vol. MTT-

15, August 1967.

[9] F. Boegelsack, I. Wolff, Application of a projection method to a mode-

matching solution for microstrip lines with finite metalization thickness,

IEEE Transactions on Microwave Theory and Technique, Oct. 1987.

[10] J.D. Morsey, V.I. Okhmatovski, A.C. Cangellaris, Finite-thickness con-

ductor models for full-wave analysis of interconnects with a fast integral

equation method, IEEE Transactions on Advanced Packaging, February

2004.

On the Neumann series

[11] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge

University Press, Cambridge 1944.

[12] C. J. Tranter, Bessel function within some physical applications, The Eng-

lish University Press, London, 1968.

[13] C. J. Tranter, A further note on dual integral equation and an applica-

tion to the diffraction of electromagnetic waves, Royal Military College of

Science, Shrivenham.

[14] F. Erdogan, L. Y. Bahar, On the solution of simultaneous dual integral

equation, J. Soc. Indust., Appl. Math vol. 12, No 3, September 1964.

[15] K. Eswaran, On the solution of a class of dual Integral Equations Occuring

in Diffraction Problems, Proc. Royal Society, London, 1990.

[16] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory,

North-Holland, Amsterdam, 1996.

Other references

[17] J. Meixner, The Behaviour of electromagnetic fields at edge, IEEE Trans-

action on antennas and propagation, July 1972.



BIBLIOGRAPHY 77

[18] S. Celozzi, G. Panariello, F. Schettino, L. Verolino, Analysis of the induced

currents in finite size PCB round planes, Electrical Engineering, 2001.

Numerical aids

[19] V. Cominciali, Analisi numerica, McGraw-Hill Italia, Milano, 1995.

[20] F. Oberhettinger, L. Badii, Table of Laplace Transforms, Springer-Verlag,

N.Y., 1972.

[21] M. Abramovitz, I. Stegun, Handbook of mathematical function, 9th Edi-

tion, Dover, New York, 1972.

[22] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products,

Academic Press, New York, 1980.



LIST OF FIGURES 78

List of Figures

1.1 Evolution of the number of transistors used to realize some kind

of circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gate delay and interconnect delay as function of the technology

used to realize the circuits . . . . . . . . . . . . . . . . . . . . . 4

1.3 Different kind of interconnects . . . . . . . . . . . . . . . . . . . 5

1.4 Different approaches to analyse integrated circuits . . . . . . . . 7

2.1 Geometry of the problem and sources . . . . . . . . . . . . . . . 8

2.2 Lossless microstrip: Amplitude of the matrix of the system . . . 25

2.3 Lossless microstrip: Expansion coefficients of current densities

induced by a wire . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Lossless microstrip: Current densities induced by a wire, for

different distances, and comparison with a FEM solver . . . . . 27

2.5 Lossless microstrip: Expansion coefficients of current densities

induced by a plane wave TM polarized . . . . . . . . . . . . . . 27

2.6 Lossless microstrip: Current densities induced by a plane wave

TM polarized, for different incidence angles . . . . . . . . . . . . 28

2.7 Lossless microstrip: Expansion coefficients of current densities

induced by a plane wave TE polarized . . . . . . . . . . . . . . 28

2.8 Lossless microstrip: Current densities induced by a plane wave

TE polarized, for different incidence angles . . . . . . . . . . . . 29

3.1 Two coupled microstrips . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Lossy microstrip: Expansion coefficients of current densities in-

duced by a wire . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



LIST OF FIGURES 79

3.3 Lossy microstrip: Current densities induced by a wire, for dif-

ferent distances, and comparison with a FEM solver . . . . . . . 39

3.4 Lossy microstrip: Comparison between the current densities in-

duced on a perfectly conducting microstrip and a conductive

one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Lossy microstrip: Edge value of the current density as function

of the number of expansion coefficients . . . . . . . . . . . . . . 41

3.6 Coupled microstrips: Expansion coefficients of current densities

induced by a wire . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Coupled microstrips: Current densities induced by a wire, for

different distances . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Coupled microstrips: Expansion coefficients of current densities

induced by a plane wave TM polarized . . . . . . . . . . . . . . 42

3.9 Coupled microstrips: Current densities induced by a plane wave

TM polarized, for different incidence angles . . . . . . . . . . . . 43

4.1 Strip of finite thickness in free space . . . . . . . . . . . . . . . . 45

4.2 Strip in free space: The coefficient F1,2 as function of the trun-

cation order, for different sampling . . . . . . . . . . . . . . . . 49

4.3 Strip in free space: Expansion coefficients of current densities . . 49

4.4 Strip in free space: Current densities induced on the walls of

the strip and comparison with a FEM solver . . . . . . . . . . . 50

4.5 Microstrip of finite thickness . . . . . . . . . . . . . . . . . . . . 50

4.6 Thick microstrip: Expansion coefficients of current densities at

1 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Thick microstrip: Current densities induced on the microstrip

at 1 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Chebyshev polynomials of first kind . . . . . . . . . . . . . . . . 66

A.2 Chebyshev polynomials of second kind . . . . . . . . . . . . . . 67

A.3 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 Wire of current in free space . . . . . . . . . . . . . . . . . . . . 70

B.2 Wire of current over a dielectric and a ground plane . . . . . . . 71



LIST OF FIGURES 80

B.3 Plane wave over a dielectric and a ground plane . . . . . . . . . 73


	Contents
	An overview on the microstrips
	The problems of interconnects in high frequency circuits
	The role of the microstrips between the interconnects
	Models for the analysis of microstrips

	Single microstrip of infinitesimal thickness
	Introduction
	A general solution for the electromagnetic field
	Formulation of the problem in terms of currents
	Solution of the problem
	Evaluation of the integrals
	Numerical results

	Microstrip of finite conductivity
	Formulation and solution of the problem
	Coupled microstrips
	Numerical results

	Microstrip of finite thickness
	Introduction
	Strip of finite thickness in free space
	Some problems with the Green function
	Formulation of the problem
	Induced current
	Numerical results

	Conclusions and outlook
	Properties of some orthogonal polynomials
	Orthogonal polynomials
	Gegenbauer polynomials
	Chebyshev polynomials
	Legendre polynomials

	Canonical sources
	Wire of current in free space
	Wire of current over a dielectric substrate
	Plane wave TM over a dielectric substrate

	Bibliography
	List of Figures

