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Introduction

Abstract

A complete three-dimensional shape of an isolateg th an immiscible liquid
phase undergoing simple shear flow with non Nevaorfiuids was investigated by
contrast-enhanced optical microscopy. Drop was rebsgeeither along the vorticity
direction or along the velocity gradient directiohthe shear flow. The effects on drop
deformation and break up of the viscoelastic cdnteithe liquid phases were
investigated. Two situation of a viscoelastic matvith a Newtonian drop and of
viscoelastic drop in a Newtonian matrix are con®de When possible my data are
compared with theoretical or phenomenological mtaahs. Finally | investigated also
the influence of confinement on the steady statéhefdrop in a regime where drop

diameter is comparable to gap width between tharsigeparallel plates.



Introduction

Summary

The objective of this PhD thesis is to investigdie flow-induced microstructure
of viscoelastic liquid-liquid dispersions, to betienderstand the influence of viscous
and elastic properties on droplets shape duringltiear flow, using a single drop model
system. The main objective is to well understara flationship between the flow,
phases rheological properties and droplet shaparder to provide basic guidelines on
how to control flow-induced microstructure of syetilc “real” polymer blends during
blending industrial processes.

The stated objective passes through the selecfi@ansingle drop model system
with non Newtonian highly elastic matrix or dropgse, with appropriate rheological
properties, in order to separate elastic and vsoan Newtonian effects on drop shape.
In addition the hydrodynamic problem of drop sulgdcto flow becomes more
complex in the case in which one or both the corepoffluids are viscoelastic. The
choice of non Newtonian fluids with an appropriatastitutive equation is necessary,
that allows to get results of general validity. #eoretical or phenomenological drop
shape characterization is also necessary to weligret the experimental results.

For a fully Newtonian system the influence of caefnent on drop shape is also
investigated to present a complete analysis of ffmuced droplet morphology.

To this porpoise, constant viscosity, elastic paymsolutions (Boger fluids) were
used as viscoelastic phase. These fluids have stazdrviscosity with a second order
rheological behaviour, so that it has been possibisolate the contribution due to the

only elasticity on the drop deformation and to gesults valid for all viscoelastic
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“Second order fluids”. For the first time, two pesfy chosen “inverse” non Newtonian
systems are considered, namely, a Newtonian drapemsed in a Boger fluid, and vice

versa.

Non dimensional parametgy = ;;1;2 , Wwheren andW; are the viscosity and the

first normal stress coefficient of the viscoelastiod respectivelyo is the interfacial
tension, R is the undeformed drop radius, has beed to quantify the weight of the
elasticity content of the fluids on the flow-indacdrop deformation. This parameter
introduced for the first time by Leal (208Land formalized by the theory on the steady
state drop shape in slow flow with non Newtonianosel order fluid ,Greco (200%2)

can be interpreted as the ratio between consiutaxation time of the viscoelastic

- /R

phasery, =% and emulsion time,,, . Drop flow-induced deformation has been

O
also studied as a function of the Capillary numlaza,= UCI}?/’ wherencc is the matrix
g

2o

C

O
phase viscosityy the shear rate and the drop to matrix viscosiip ra =

In the case of Newtonian single drop immersed atascoelastic matrix, drop
dynamics at start-up and after flow cessation @asHlow is investigated at a fixed
viscosity ratio, comparing the data with prediciofrom two recently proposed
phenomenological models. A very precise chara@gaa of drop shape is achieved
during transients, to catch fine details of thegrant dynamic. Briefly, drop evolutions
at start-up and after flow cessation are quiteedtfit with respect to the fully

Newtonian case.

Tretheway D. C., Leal L. G., “Deformation and relasatof Newtonian drops in planar
extensional flows of a Boger fluid”, J. Non-NewtaniFluid Mech. 99 (2001) 81-108.

% Greco F.. “Second-order theory for the deformatiba Newtonian drop in a stationary flow
field”. Phys. Fluids, 14, (2002) 946-954.
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Moreover the effect of matrix elasticity on the dteup of a sheared Newtonian
drop will be presented. In this case three dromatrix viscosity ratio were explored, in
order to well understand the role of the elastieihd viscosity on drop dynamic. An
accurate determination of the shear stress at fnpgCritical capillary number) as a
function of the matrix elasticity content (p pardengis here presented.

When one or both the component fluids are non Newatg the fluid-dynamics of
the drop become complex. Authors who studied visstie systems generally used
polymeric melts, which are also shear thinning.aAsonsequence a clear identification
of separate elastic and viscous non Newtonian tsfi@e drop break-up was in fact non
achieved. By using Boger fluids, conversely, thiffialilt can be overcome, also
because of the absence of any sear thinning. hargh | have used model fluids in
this work to reproduce non Newtonian polymeric dign think that my analysis can be
also relevant for “real” blend under shear flow.

For what concerns the system of non Newtonian dropersed into a Newtonian
matrix, a complete drop shape 3D analysis was aetjdfocusing the attention on the
drop behaviour for high hydrodynamic shear stressexp elastic content changes the
break-up mechanism and hinders drop break-up, wbempared with the equivalent
fully Newtonian system. Single drop dynamics wa®ahvestigated during start up and
after cessation of the shear flow. Moreover, a n@sthod to obtain a non Newtonian
polymer blend with constant viscosity Boger dispdrphase will be illustrated.

Finally I investigated the influence of confinemenmt the steady state drop shape
sheared between parallel plates in a regime wheyedlameter is comparable with gap
width using a fully Newtonian drop-matrix systemwias observed that the closeness to
the walls exacerbates the deformation of the dkdgreover the drop pushed by the

walls is closer to the velocity direction with regp to the Newtonian case without
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confinement.

1 Introduction

Immiscible liquid-liquid suspensions, such as emounlspolymer blends, are very
often encountered in nature and industrial processethe understanding and control of
their structure and flow properties is of great amtpnce. It is well known that many
physical properties of these systems, called “cemfilids”, are strongly influenced by
their morphology, exactly by the mean droplets ,siaeer phase shape and the degree
of dispersion. The knowledge about the effectshefftow, to which these systems are
submitted during the industrial processes, on timeirphology becomes a critical aspect
to control the properties of the finished produdtis has generated a basic scientific
interest in the fluid-dynamics of these liquid-lidususpensions. It is almost obvious
that flow-induced single drop deformation and itedkup, as well as coalescence, are
the primary mechanisms responsible of the innes@lshape, droplets size distribution
and complex rheological behaviour of a liquid-lidulispersion submitted to flow. The
dynamic of an isolated sheared drop can be regaaded sort of elementary event,
which can provide some interesting knowledge totebetinderstand the complex
rheological behaviour of flowing dispersion of dsofso a rather literature is dedicated
to the single drop system, which is summarized auesl reviews (J.M Rallison,
(1984); H.W. Stone, (1994) S. Guido and F. Greco, (208%) The majority of the
research papers has been focused mainly on puigipus Newtonian systems (i.e.
dispersed and continuous phase liquids are Newtomiad do not exhibit any

measurable degree of elasticity). On the other loauglfew investigations can be found

® Rallison, J. M., “The deformation of small viscalreps and bubbles in shear flows”, Annual
Review of Fluid Mechanics, 16, 45-66, (1984).

“ Stone H A (1994) Dynamics of drop deformation aneakup in viscous fluids. Ann. Rev. Fluid
Mech., 26, 65-102.

®>S. Guido and F. Greco, “Rheology Review 2004”, BS#rystwyth, UK 2004.
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in the literature, which are devoted to the non Mewan case, in spite of its practical
relevance. In many experiments, moreover, the dluidvestigated include both
viscosity and normal stress “thinning” with thevilsate (Mighri F, (1998) Elmendorp
J. J: (1985 Flumerfelt R W, (1972). So a clear identification of separate elastid an
viscous non Newtonian effects had not been obtaamebla full 3D characterization of
drop shape for a viscoelastic system is still lagkiThere are only a few predictions of
non Newtonian effect on drop morphology. By usimgstant viscosity Boger fluids |
overcame this difficulty. Moreover, recently somegresses have been made both on
the experimental and theoretical side (Guido ¢2@03J; Greco F. (2002§. So it has
been possible to estimate viscoelastic effectsymaumhic of the drop submitted to a well
defined flow. A perturbative calculation of dropagle submitted to a “slow” flow has
been developed for second order non Newtoniandlwith constant viscosity by F.

Greco (2003). Drop shape in shear flow with visaett fluids is governed by the non

O
U4
o/R

dimensional Capillary numbeCa = , Wherenc is the continuous phase viscosity,

0
Yy the shear rateg the interfacial tension of the couple of fluidsldR is the spherical

drop radius and by the drop to matrix viscosityorat = ,7—'3, as for the fully Newtonian
C

case, and by another non dimensional pararrmter;j#‘z, wheren is the viscosity of

® Mighri F, Carreau P J and Ajji A (1998) Influenakelastic properties on drop deformation and
breakup in shear flow. J. Rheol., 42, 1477-1490.

" Elmendorp J. J. and R. J. Maalcke, “A study on mellyblending microrheology. 1" Polym.
Eng. Sci. 25, 1041-1047 (1985).

8 Flumerfelt R W, (1972) Drop breakup in simple stfgglds of viscoelastic fluids. Ind. Eng.
Chem. Fundam., 11, 312-318.

° Guido S, Simeone M and Greco F, “Deformation dfeavtonian drop in a viscoelastic matrix
under steady shear flow. Experimental validatioslofv flow theory”, J. Non-Newtonian Fluid
Mech., 114 (2003) 65-82.

1% Greco F.. “Second-order theory for the deformatiba Newtonian drop in a stationary flow
field”. Phys. Fluids, 14, (2002) 946-954.
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the second order fluid and!; is the first normal stress coefficient. This paeden p

introduced for the first time by Leal, can be easiiterpreted as the ratio between

1)
constitutive relaxation time of the viscoelasticapé T :j and emulsion time

R
Ty = ,7‘; . With a few words theoretical analysis predictattkiscoelastic effects

come to play a significant role when p>1. When Beagy, during this thesis | will
recall theoretical predictions for a rapid compamisvith the experimental results.

This thesis is organized as follows. First | witlesik briefly about the materials
and the experimental apparatus used.

| will illustrate drop dynamics at start-up andeaftcessation of shear flows,
comparing the data with some phenomenological nsogetdictions. Drop break-up
phenomenon will be also investigated. In both casesodel system with a non
Newtonian highly elastic continuous phase and a tNean drop phase was
considered.

Then a complete 3D analysis of the shape evoluifoa single viscoelastic drop
(Boger fluid) immersed in a Newtonian matrix andbjsgted to shear flow was
performed as a function of the drop elastic contBnop break-up mechanism will be
also illustrated.

Another important aspect to be analysed, to unaedseand control the flow-
induced microstructure of a liquid-liquid disperssp is the effect of the confinement on
the drop shape in the regime where drop diametongparable with gap width. This is
a first step to better understand the shape ewolutf a single drop flowing into a
dispersion of droplets, where drop is submittedtite confinement of many other
droplets. In this case a single drop model systeithh Wewtonian phases was

considered. This problem was treated in the lagtae
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2 Experimental

2.1 Materials

Boger fluids were used as matrix and drop phaserder to obtain a viscoelastic

[}
fluid with second order rheological behaviour andstant viscosity I{, =¥, y*, where

N, is the of the first normal stresses difference #hdthe coefficient). Viscoelastic
fluid was carefully prepared in order to exploreide range of the p parameter and of
the viscosity ratio. Boger fluid was prepared byimg a Newtonian polyisobutilene
(PIB) sample (Napvis 10 and Napvis 30) with smaibant of a high molecular weight
grade of the same polymer, preliminarily dissolederosene at the concentration of
4% wt. The fluids used as viscoelastic disperseas@tand viscoelastic matrix phase in
this work will be listed in the results sectionstiwtheir rheological properties. Their
preparation protocol will be also illustrated intale Newtonian phase is a simple
silicone oil mixture (PDMS, polydimetisiloxane).

Rheological data were obtained by using a constttess rheometer equipped
with a normal stress transducer (Bolin, CVO 120)thie cone and plate configuration.
It was verified that viscosity of the Boger fluidere essentially constant in the range of
the shear rate investigated (up to 2 and rather large values of the first normalsstre
difference were found. As an example, the rheokldgi@ta of the Boger fluids used in
the section 4 are show in Figure 12. The solid Ima fit to the first normal stress
difference data in log scale. The slope of thanfitlines is equal to 2, in agreement with
the assumption of second order fluids. The firstmad stress difference coefficie¥
was calculated by fitting the data to a line f €ddin log scale. On the other hand,
silicon oils mixtures were purely Newtonian fluiglsth a constant viscosity and no

normal stress.

11
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The fully Newtonian system used to explore the \eéfcts on the drop shape is
constituted by a silicon oil drop immersed in a Navian PIB sample with low
molecular weight.

The interfacial tension of all the fluid pairs usedhe experimental campaign was
evaluated by applying the theory of Greco (2003)ldta at steady state drop shape in

shear flow. The method used every time will beflyridustrated in the single section.

2.2 Experimental apparatus

The shear device used in his work is well descripeuido and Villone (1998).
Simple shear flow was generated by a parallel @pparatus. Two interchangeable set-
ups designed to observe drop deformation eithergatioe velocity gradient direction or
along the vorticity axis were used. Flow directisrmparallel to the x-axis, the velocity
gradient is along the y-axis, and the vorticitysaomincides with the z-axis. In the set-up
used to look along the vorticity gradient (z-seteuside view experiment) each plate is
an optical glass bar of square section (100 mmmabdx 5 mm) and is glued on a glass
slide, which fits in a window cut on a rigid mouas shown in Figure 1. In the other
set-up, used to look along the velocity gradientation (y-set-up), each plate, made of
optical glass (100 mm x 50 mm x 6 mm), is glued window cut on a rigid mount, as
shown Figure 1. In either set-up, one of the moustscrewed on a set of two

micrometric stages (Newport), for rotary and titimotion.

12
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PARALLEL PLATE SETUPS
Flow direction —— >

View along
vorticity

—
47

View along
velocity gradient

T

Figure 1:The two arrangements of the parallel pkatesed in the experiments. (a)
Set-up to look along the vorticity direction (z-sg%); (b) set-up to look along the
velocity gradient direction (y-set-up).

i Velocity
gradient

The whole assembly (mount and micrometric stagesnounted on a 2-axes
translating stage, equipped with two computer-adleid stepper motors (LEP).
Minimum and maximum motor speeds are 0.0084 mnds3@mm/s, respectively. The
full travel in either direction is 100 mm, with a$tioning accuracy of fim. By using
the 2-axes motorised stage one plate can be depladong two perpendicular
directions in the horizontal plane. Adjustment fer the tilting stage (z set-up) or the
rotary stage (y set-up), with the aid of a stagerometer, guarantees that the moving
plate translates in its own plane. The mount supppthe fixed plate is screwed on an
assembly of micrometric stages, including one yotawo tilting and one vertical stage
(Newport). The latter is used to set the gap betvtbe plates. The rotary and tilting
stages are used to make the fixed plate paralléi veispect to the moving one by
exploiting the reflections of a laser beam from gi@ss surfaces confining the sample.
Parallelism was checked and further refined by $stg the glass surfaces with a

microscope. In either set-up, the parallelism amcyrwas estimated to about futn

13
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over the whole plate length of 100 mm, i.e. lesst0.01%.

The sample was observed through a transmitted tigbtoscope (Axioscop FS,
Zeiss), equipped with a B/W CCD video camera (KPAMHBitachi) and a motorised
focus system (LEP). The microscope itself was medirdin a motorised translating
stage (Newport), which was used to keep the defdrdrep within the field of view
during shear flow. In all the experiments, obseoret were performed in bright field,
using long working distance optics (2.5x, 10x, 20x] 40x objectives, Zeiss). The total
magnification was varied by using an additionalsldrolder (Optovar slider, Zeiss),
with factors of 1.25x and 1.6x, and a zoom lendvaitcontinuously adjustable zoom
factor in the range 0.5 - 2.0x. The whole apparatinsch is shown schematically in the

z-set-up in Figure 2, was placed on a vibratiomaisal workstation (Newport).

14
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Video camera CCD

Microscope

1
oc Sample Mobile plate
e —

C— [ —
No vibration table
VCR
L] °° O | [
E = Motor control

Motor control

Figure 2: Schematic view of the video microscopykstation with the shearing
device in the z-set-up.

2.2.1 Sample loading and experimental protocol

In either z or y set-up, once alignment of the glasrfaces was completed, the
moving plate was driven apart from the fixed onenmans of the motorised stage. The
moving plate was then accessible to load the coatia phase, by carefully pouring it
on the moving plate from a glass syringe. Care tatasn to avoid air bubble formation.
The moving plate was then approached again toixked bne, until the desired gap was
reached. Parallelism was checked again by usingnilbeoscope to measure the gap
thickness at several positions, to see if someligisaent was introduced by squeezing
a viscous fluid between the two plates. The smalliations possibly found, if any,
were then corrected by using the micrometric stages

In the z-set-up, some edge effects coming fromcthdining surfaces of the two

glass slides are expected. Such effects becomeidglwithin a distance along z of

15
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the order of the size of the gap between the tvatep] as shown by de Bruijn for a
Couette geometry (1989). To minimise edge effeicisall the experiments the gap
between the plates was setlaD.5 mm. Besides, an experimental test of apparatus
performance in the z-set-up was carried out by oréas velocity profiles in the x-y
plane at several values of z. Such measuremengespeeformed by tracking the motion
of dust particles inside the sample. Velocity desfiwere linear and independent of z,
as expected for simple shear flow.

After loading the continuous phase between thesgidates, a few drops of the
dispersed phase were injected in the sample bygusitiny glass capillary (tip size:
0O.D. ~ 0.3 mm, I.D. ~ 0.1 mm), which had been of#diby pulling one end of a glass
tube. Prior to use, the glass tube was filled witie dispersed phase and the end
opposite to the capillary was connected either torapressed air line or to a vacuum
pump. By a judicious alternate operation of “pusid gull” drops with diameters
variable in the range 30-2Q0On were generated. The glass tube was attacheddme-
made micromanipulator for a precise positioninghe capillary inside the gap. In the
z-set-up, care was taken to generate isolated dbpbout half-way distance between
the two glass slides along the z-axis in ordenimichedge effects, as discussed above.
After drop injection, the capillary was gently eadted from the gap.

Drop diameter was always at least 5-10 times sm#ilen the gap, in order to
minimise wall effects. As we will see next, | obssdt that, for an isolated drop, the
effect of a wall is to generate an increase in dieformation. Such effects decrease
with increasing ratio d/R, where d is the gap widthe effects become negligible for
d/2Rabove 5, a condition which was well satisfied ihtlaé experiments presented in
this work.

Buoyancy effects were estimated by evaluating tba-dimensional quantity

16



Introduction

ApgR . . . . . .
pg' , representative of the ratio between sedimentatiwhshear velocity, where R is

ney

the radius of the drop at resf; is the viscosity of the continuous phase ana the

shear rate. According to Phillips et al. (1980)pymncy effects are negligible when

ApgR
n.y

Is less than 0.3. In this work, such quantity whamost 0.01, thus ensuring that

drop deformation was not affected by sedimentation.

After drop injection in the continuous phase betvtee parallel plates, the speed
of the moving plate was set at the lowest valuectetl for the experiment (which was
usually 0.01 mm/s). Motion was then started andsmple was sheared for a time long
enough to reach a stationary drop shape. At thist,pthe flow was stopped and the
drop allowed to relax back to the spherical shdpe. whole sequence, including start-
up and retraction upon cessation of flow, was medron videotape for later analysis.
Speed and travel of the moving plate were thenrpssively increased for each of the
subsequent runs, until a stationary drop shapedcook be attained anymore (a
condition of incipient break-up). Due to the lindtéravel of the moving plate, flow
direction was reversed from time to time. The oleregnification was decreased in
the course of the experiment by changing zoom dyjdctives, to make it easier to
follow drop motion at higher speeds. Reproducipilitas assessed by repeating the
experimentex novo i.e. starting from the preparation of fresh dolg of the
biopolymers. Furthermore, drop phase and continpbase were also inverted.

Non Newtonian fluids and drop diameter were vargling the experimental
campaign in order also to explore a wide range difigt is a function of drop radius and

first normal stress difference of the viscoelaphase.

2.2.2 Quantitative analysis of drop shape

17
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Quantitative parameters representative of drop eshapre obtained by an
automated procedure based on image analysis tedwmitmages of the deformed drop,
captured by the CCD video camera and recorded deotape, were digitised by an 8-
bit frame grabber (Spectrum, Imagraph) installed eoPentium 1ll host computer.
Contrast was enhanced by adjusting gain and offséte incoming video signal prior
to digitisation. The images were analysed by a &li®asic macro, exploiting standard
image analysis routines provided by a commerciétiveoe package (Image-Pro Plus
4.0, Media Cybernetics). The macro implemented atoraated procedure of edge
detection, based on maximisation of the contrasthef drop with respect to the
background while preserving a closed contour. éZlset-up , the two axes a and b of
the deformed drop (as observed in the plane ofrshed the angl® between the major
axis a and the velocity gradient direction (seedtigematic drawing in Figure 3) were
calculated for an equivalent ellipse (i.e., havthg same area and first and second

moments of area of the actual drop).

18



Figure 3: Drop as observed along vorticity axis avelocity gradient direction.

Deformation parameters are also reported.



Start-up and retraction of a Newtonian drop immergeo a viscoelastic phase under shear flow

Morphology evolution of a Newtonian drop immersedmto a
viscoelastic phase under shear flow.

First chapter of this section illustrates drop dymas at start-up and after
cessation of shear flows, comparing the data witimes phenomenological models
predictions, while second part is concerned abawpdiigh deformations and break-
up. In both cases a model system with a non Neartdnghly elastic continuous phase

and a Newtonian drop phase was considered.

20
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3 Start-up and retraction dynamics

Acknowledgements
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Maffettone, Pier Luca. Start up and retraction dynamics of a Newtonianpdio a
viscoelastic matrix under simple shear flondournal of Non-Newtonian Fluid

Mechanics.

Keywords: Drop dynamics, viscoelastic matrix, Boferd, start-up, overshoot,

retraction, shear flow.

3.1 Introduction

In this part, | will focus on transient dynamicgeSifically, | will describe the
Newtonian drop dynamics at start-up and after ¢essaf shear flows in the case of a
non-Newtonian external fluid. Experimental data aaen with the rheo-optical
computer-assisted shearing device, allowing forpdobservation under microscopy
only from the vorticity direction of the shear flpghowed in the chapter “materials and
methods”. A very precise characterization of drbppe along the vorticity direction is
achieved, even at small deformations during tramsieAt a fixed viscosity ratio (drop
to matrix viscosity is unity), | will show the effes of varying the flow rate (Capillary
number), and of varying the “elasticity contenttbé system.

Transient behaviour of drop deformation at low shages will be illustrated in

the first part of this section, and a comparisoithese data with the predictions gotten

21
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from two recently proposed phenomenological modéldrop dynamics will also be
illustrated and briefly discussed (Maffettone-Greeadel - MG (Maffettone and Greco,
2004Y* and the Yu-Bousmina-Zhou-Tucker model - YBZT (Yuak, 2004}?). In spite

of the fact that the phenomenological models wessghed for the non-Newtonian case
at low-to intermediate drop deformations, whichthe case examined in the first part,
fine details of the transient dynamics are not balny the models. Rather, systematic
discrepancies between data and predictions aredfoam it will be discussed in the
following.

Finally, the start-up transient of drop deformatetnhigh capillary numbers and
with a fixed value of matrix elasticity will be lefly showed, focusing the attention on
the new “overshoot phenomenon” of the deformatiarameters, Rax/R, Run/R and
D, during which the drop enhanced its orientatioward the flow direction. Data will
be compare with only MG predictions. It will be shed that the model performs
adequately, giving quantitative predictions of tbeershoot phenomenon up to a

moderate drop deformation.

3.2 Materials and methods

Materials and experimental methods used to invatgigrop dynamics upon start-
up and cessation of shear flow are the same use@uigo et al. (20035, and have
been illustrated in the experimental section. Byjeih all the experiments the matrix
was a constant-viscosity elastic polymer soluti®oger fluid), and the dispersed
Newtonian phase was a mixture of silicone oils (D@@arning). The Boger fluids were

prepared by mixing a Newtonian polyisobutylene (Pl&mple (Napvis 5, BP

1 Maffettone P. L. and Greco F., “An ellipsoidal dnmpdel for single drop dynamics with non-
Newtonian fluids”, J. Rheol. (2004), 48, 83-100.

12yu W, Bousmina M, Zhou CX, Tucker CL, “Theory for grdeformation in viscoelastic
systems”, J. Rheol. (2004) 48, 417-438.

3 Guido S, Simeone M and Greco F, “Deformation bfeavtonian drop in a viscoelastic matrix
under steady shear flow. Experimental validatiosloW flow theory”, J. Non-Newtonian Fluid
Mech., 114 (2003) 65-82.
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Chemicals) with a small amount of a high molecwaight grade of the same polymer
(Aldrich), preliminary dissolved in kerosene at tt@ncentration of 4% wt, as discussed
in the previous section.

The Boger fluids viscosity)c was essentially constant in the range of shear rat

investigated (/ up to 20 d), and rather large values of the first normaksges

difference N were found. Furthermore, the slope afus. shear ratg in log scale was

equal to 2 within experimental error, showing thia@ Boger fluid used as external

phase is in fact a “second-order fluid” at steadgtes Rheological data for the

.2
viscoelastic matrix are)c = 6.6 Pa s an; = N/ y = 3.5 Pa Sat the temperature of

the experiments (25°C). Concerning the drop fluié.,(the PDMS silicone oils),
silicone oils were properly mixed to have a dropvtatrix viscosity ratio of 1 at 25°C.
For the so obtained mixture, the viscosjtywas constant and no normal stresses could
be measured within the instrumental sensitivity {iBo CVO 120) in the range
investigated, thus confirming its Newtonian behaviolhe interfacial tension of the
fluid pairs was measured by applying the theoryGrgco (2002 to data of steady
state drop shape in shear flow. The so obtainedegsalvere around 1.3 mN/m (more

details can be found in Guido et al. (2003)). Thkasticity content” of the single drop
system was quantified with the parametprz% that can be interpreted, as

2

explained in the introduction, as the ratio betwd#®nconstitutive relaxation time of the

Y L R
L and the emulsion time,,_ = Ay
2] g

matrix fluid 7 =

The parallel plate apparatus used to generate sisiptar flow has been also

4 Greco F., “Drop deformation for non-Newtonian digiin slow flows”, J. non-Newtonian Fluid
Mech., 107 (2002) 111-131.
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described in detail elsewhere by Guido et al. (20@he plate was displaced with
respect to the other by a 2-axis motorized tramgjastage. Observations along the
vorticity axis of shear flow were performed by apii microscopy through a standard
monochromatic CCD video camera. The deformed drogeushear flow was kept in

the field of view by translating the microscopeitgshrough a motorized stage.

Drop diameter was at least ten times smaller thangap (~1 mm), so that wall
effects were negligible. Images from the experiraenins were both recorded on a
videotape and stored on an hard disk after digiimeby a frame grabber installed on a
personal computer. At steady state, images weligzaid during the experiment with a
time step of a few seconds. To improve the tempaablution during start-up and
retraction and to compare with the good possiblg waperimental data with the
phenomenological predictions, images were acquifécthe from the videotape at 25
frames per second. The maximumyiR) and minimun (Rn) drop axis in the shear
plane (i.e., as seen from the vorticity directiard the orientation anglé were
measured in each image by an automated image anplpgedure, based on an edge-
detection algorithm to identify the side-view drogntour. Transient behaviour of drop
submitted to low shear rates, its steady shapdgtendomparison of these data with the
two phenomenological models predictions were charaed only by the “deformation
parameter” introduced by Taylor D¢k« -Rvin)/(Ruax+Rmin). The start-up transient
of drop submitted to high capillary numbers wasrabgerized by all the deformation
parameters Rax/R, Run/R, D and6. Only the time evolution of D will be compare
with MG-model predictions.

Calibrated reticules were used to calculate thé&edeators (micron/pixel) for the
optics used in the experiments, and to correctifiersmall image distortions introduced

by the CCD camera. But residual errors, which ¢se due to image digitalization, can
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be estimated by the value of the deformation paranie that is measured when the
drop is in the spherical configuration at rest.fdot, due to image digitalization, the
deviations from the theoretical value D = 0 dependdrop size in the image window
(the larger is the size, i.e., the number of pixieBneating drop contour, the smaller the
deviation). In the same experiment, the optical mfégation and thus the apparent drop
size in the image window was lowered with increggime flow rate, to allow one of us
to keep the drop in the field of view at highereqpe translating the microscope by the
joystick. The actual drop size was also changethfome experiment to the other in
order to adjust the “elasticity content” of the tgys (as measured by the parameter p),
which is very sensitive to drop radius. In parta&sulsmaller drops had to be used to
investigate higher elasticity. In the experimentssented in this work, the deformation
parameter D at rest was around 5%10hough small, such a deviation from 0 is quite
evident in the analysis of drop retraction uponsaésn of flow, especially when the
data are plotted in a log-scale. Hence, a cut-b@.01 was used to remove data in the

final part of drop retraction analysis.

3.3 Drop dynamics models

To compare our data with theoretical predictiomsthie lack of the exact fluid-
dynamic solution for the single-drop non-Newtonigroblem, two models of drop
dynamics have been chosen, namely, the Maffettaeeds(MG) (Maffettone and
Greco, 2004) and the Yu-Bousmina-Zhou-Tucker (YB#ATQdel (Yu et al., 2004). A
brief description, derived from Vincenzo Sibillo. eal. work (2005Y, of the
phenomenological models will be illustrated to eetunderstand the comparison

between my experimental data with the selected laqatedictions. Both these models

5V Sibillo, M. Simeone, S. Guido, F. Greco, P.di$up and retraction dynamics of a
viscoelastic drop in a Newtonian matrix under siernghear flow." Paper approved for publication on
the J. non-Newtonian Fluid Mech., special issudated to AERC2005.
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start from the assumption that the drop always taaia an ellipsoidal shape when
subjected to an imposed flow field “at infinity”.hlis, the “geometric’ equation
S(t) = R? always holds, with r a point of the drop surfaRethe drop radius at
rest, andS(t) a second-order, positive definite, symmetric, tile@pendent tensor, the
evolution of which fully describes drop dynamicsrRhe reader’s convenience, we
report in this Section the time dependent equataintensorS(t),, in non dimensional
form, derived from the work of Maffettone P.L. a@deco F. (2004) and from Yu W.
Bousmina et. al (2004).

For the MG model, it is:

gma[—(sz@— S®)+aDB+SM)+ cT(9 D=~ S g(9) ()

In eq.(1),D andQ are the (non dimensional) deformation rate teasar vorticity
tensor, respectively, at infinity, time has beenden@on dimensional through the so-

called emulsion time :nc/(a/ R) (with o the surface tension of the fluid pair), and

Ca is the “capillary number”. The three constantx,aand f, and thé&-dependent
scalar-valued function g in eq.(1) i6 the unit tensor) depend on all the constitutive
parameters of the fluid pair. For the case of egehere, with a Newtonian drop in a

non-Newtonian matrix, these are in fact the innggp viscosity ratio\ = np/nc (No Is

the drop viscosity) and the time ratio p ®tem With 7= * the dominant
C

characteristic time of the non-Newtonian matrix agd the emulsion time. (Another
parameter, which controls the normal stress diffees in the non-Newtonian matrix, is

not effective in the situations considered herd¢ $pecific formulae for a, c, f, and g
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are given in the original MG paper.
For the YBZT model, the needed dynamical equatiares (with the notations

adopted in Sibillo et al., 2005):

S_sn-'s )
dt

L =Ca(Q+ nD)+ oy
Tr(S)

1 4 ©)
(1—X)B CaoD e® K }+B.0,+B.9,

L -1-"g, , i=1,2 (4)

o
where, in eq.(3), F(t)=p/c (eDt -1 during flow, and

& FIN
F(t)=p/q (eDt — 1)=cons after cessation of flow, i.e., far>t_, . In egs.(2)-(4), the

seven constantm,n,a 3, 3,,c, and ¢ all depend om andA (their explicit forms are
given in the original papers).

To understand the meaning of the new parametene should recall that, in the
derivation of egs.(2)-(4), the non-Newtonian matwas assumed to consist in a
Newtonian part (the “solvent”) plus a Maxwell flyigvith viscositiesng and n,,,
respectively. The parametdr is then defined as the ratio of the “pure solventthe

“total” matrix viscosity, namelyA =74 /(7s +1y ) =1s/1c -
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34 Results

In the first part of this paragraph, | present Bradyop deformation data during the
start-up and after cessation of shear flow, andpawenthese data to predictions from
the MG and YBZT models. All data presented heredamved from the new work of
Sibillo et al. (2005). The viscosity ratho= np/nc is always unity, while the p parameter
is varied up to 1.4, which stands for a robustteig.

As reported later, upon shear start, overshoothag deformation may occur. At
higher values of the elasticity parameter p, thersivoots are seen at lower Ca-values.
These trends are qualitatively reproduced withMit& model, as we will see. However,
in this first part I do not want to investigate thre overshoot phenomenon. For this
reason, the Ca’s investigated now are rather low.

Finally, concerning the extra parametkr of the YBZT model, it should be
mentioned that, because of the protocol used tpapeeour Boger fluids, | cannot
determine a value fok . Indeed, kerosene evaporation up to phase equitibfsee the

Materials and Methods Section) forbids a separatduation ofns andnu, the only

measurable quantity being directi. Thus, A will be used in the calculations as an
adjustable parameter, see below.

Figure 4 shows the transients for the start-up with = 0.07, and the
corresponding relaxation, of a system with p = G&%mbols are experimental data.
Dotted lines are Newtonian predictions, whereaddsahd dot-dashed lines are

viscoelastic predictions from the MG and the YBZTodals, respectively. For the
YBZT model, A =0.5 has been chosen. (Larger valueshofjive start-up predictions

too close to the Newtonian curve; lower valueshofgive a “hump” in early time
relaxation.) At this low level of both capillary mber and elasticity, the viscoelastic

predictions are in good quantitative agreement with experiments. The start-up data
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are correctly described up to steady state, whike relaxation data are very well
described up to t~2, then the predictions slightigerestimate the observed trend. The
comparison with the Newtonian case show that tfecedf matrix elasticity is to slow

down the dynamics.
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Figure 4: The deformation parameter D as a functiohtime during start-up
(upper plot) and retraction upon cessation of fldewer plot) for Ca = 0.07 and
p = 0.5. Lines are predictions of the Newtonian ahe (dotted), MG model
(solid) and the YBZT model (dot-dashed).

The effect of the increase of the capillary numbeshown in Figure 5, with Ca =

0.14, the elasticity parameter p being kept fixetha same value of Figure 4 (p = 0.5).
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Again, the agreement between both theories and riexpets is quite good.

Consequently the value &f will be kept constant from now on.
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Figure 5: The deformation parameter D as a functiohtime during start-up
(upper plot) and retraction upon cessation of fldawer plot) for Ca = 0.14 and
p = 0.46. Lines are predictions of the Newtoniaredhy (dotted), MG model
(solid) and the YBZT model (dot-dashed).

The effect of the increase of the elasticity par@mis shown in Figure 6, where p

= 1.4 and Ca = 0.075. In this case the comparisitin tive viscoelastic predictions is

much less satisfactory than it was obtained atgowhe initial trend is now faster than

the predictions, for both start-up and relaxatitinis interesting to note that the
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Newtonian predictions are very close to the datd<@. Above this value of time, data
slow down with respect to Newtonian predictionsthis regard, note that the slowing
down of the data can be well described by the wiestic predictions, and this is
particularly evident with relaxation data as repdrin Figure 7. In the semilog scale, a
negative time shift of the viscoelastic predictia®ws that the experimental data line

up on this curve in a quite large time window (28t<

009 1 1 1 1
p:1'4’ Ca=0.075 L ieeeeeeseesmeseieiciicis
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Figure 6: The deformation parameter as a functioh tone during start-up
(upper plot) and retraction upon cessation of flgwwer plot) for Ca = 0.075
and p = 1.4. Lines as model predictions as in thevpus figures.
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Figure 7: Same results as in the lower diagram oeufe 6 plotted in semi-log
scale.

A very similar situation is found at “intermediatg-values, as illustrated in
Figure 8 (p = 1, Ca = 0.073), for relaxation omgain, at short times (t<1.5) the drop
dynamics essentially follows the Newtonian evolatithen it is adequately described
(1.5<t<4) by the time-shifted MG viscoelastic curtAzre, as in Figure 7, the relaxation
data at very large times (t>4) show an upturn.hibutdd be mentioned that such an
upturn, though corresponding to very low valuethefdeformation parameter (D<0.02)
where image digitalization errors are higher (semédvlals and Methods), has not been

observed in the Newtonian case for drops of sinsitze (see Guido and Villone, 1999).
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Noe. p=1.0, Ca=0.075 |

D[]

0.01
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Figure 8: The deformation parameter D as a functmintime during retraction
upon cessation of flow for Ca = 0.075 and p = 1ésnas model predictions as in
the previous figures.

Finally, in Figure 9 we report data and predictiémrsp = 1, at a “high” Ca = 0.12.
(For Ca>0.12, overshoots would appear in the datéhis system, as illustrated in the
next section). In the very initial response to she@rt-up, data sit in between the
Newtonian and YBZT predictions, whereas the MG nhbddnaves better at long times
(t>4). (The steady state is almost equal for alghedicted curves.) In relaxation, again,
drop deformation starts as Newtonian, to slow ddaver, towards the non-Newtonian

predictions.
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Figure 9: The deformation parameter D as a functiohtime during start-up
(upper plot) and retraction upon cessation of flgwwer plot) for Ca = 0.115
and p = 1 Lines as model predictions as in the pyes figures.

Transient behaviour ofJix, Ruin and the orientation anglafter the start up of
the shear flow are reported in Figure 10 at p watying the Capillary number. At low
capillary number all the parameters, as previodstgussed, monotonically change to
reach the steady state. As the Ca value incredsegirop initial evolution shows an
evident overshoot of f\x and an undershoot ofyR, that are more pronounced at Ca
= 0.25, during which drop also enhances its ortertaoward the flow direction. This

feature is qualitatively captured by the MG modelsawn in Figure 11, derived from
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Sibillo et al. Macromol. Symp2005}°, where is only reported D evolution in time
t/tem This phenomenon will be also illustrated in thextpart of this section. The
evolution of D and® during the start-up of the flow as a function loé {p parameter, at

high but sub critical Capillary numbers (see next) will be illustrated and discussed.
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Figure 10: Deformation parameters during start-ujpw at A= 1, p = 1 and
different Capillary numbers.

18y, Sibillo, S. Guido, F. Greco, P.L. Maffetton&ifigle drop dynamics under shearing flow in
systems with a viscoelastic phase”. MacromolecBianposium, (2005), 228, 31-39.
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Figure 11: Transient behaviour of the deformatiormrgmeter D vs. non

dimensional time, at various Capillary numbers:atmgle 0.1, squares 0.2 and
circles 0.25, forA = 1, p = 1. Lines are the corresponding MG model
predictions.

35 Final remarks

In this Section, | illustrated fine details of drognamics in shear start-up and
relaxation, the external matrix being a constastaesity, elastic liquid. First part was
about drop small deformations, corresponding to liowposed capillary numbers.
Comparison between data and predictions from twailave drop dynamics models
revealed an unexpected feature, namely, an “elgstiontrolled transition” from
Newtonian to non-Newtonian dynamics throughouinglsi experiment.

Indeed, at a sufficiently “intense” elasticity, astages of drop dynamics are well
described by the fully Newtonian predictions, whilen-Newtonian effects become
evident (and are well predicted) at later times/ohi other words, a “time lag” sets in
during transients, in which non-Newtonianness seierbg inactive.

Since such effects are not observed for “weaklgstt systems, one would be
tempted to infer that the range of validity of {fr@tial) Newtonian dynamics increase
as the elasticity increases. Our data, however,taoelimited to support such a
conclusion.

A sort of “transition” in drop dynamics had alreadgen observed by Leal and
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coworkers (Threteway and Leal, 2001jn relaxation after planar elongational flow,
and had in fact partly motivated the recent elligabmodel by Yu et al. (2004). It
should be remarked, however, that the YBZT modadien our experimental conditions,
is unable to predict the observed transition, drel dame is true for the simple MG
model (Maffettone and Greco, 2004). It so appelaas some significant ingredient is
still absent in the existing theoretical analyses.

Finally, 1 would like to stress that, in relaxati@nd at long times, all data
invariably show a further upturn beyond the “nonailenian” time interval (see Figure
7 and Figure 8). The origin of this upturn is umeldn this respect, it should be recalled
that, in all of these experiments, the selectedMewtonian fluids are Boger fluids, the
properties of which, in transient situations, aleags difficult to consider (Solomon
and Muller, 1996%. Investigations of drop dynamics with “realistinbn-Newtonian
fluids will certainly be needed in the future.

Besides it has been found that the presence o$@efiastic matrix, during the
start-up of flow, induces a transient characteribgdan overshoot of the deformation
parameters, during which drop enhances its orientabwards the shear direction
before reaching the steady state. It has been shioatrnthe MG model is capable of
describing this phenomenon, giving quantitative dmgons up to moderate drop

deformation.

" Tretheway D. C., Leal L. G., “Deformation and reléom of Newtonian drops in planar
extensional flows of a Boger fluid”, J. Non-NewtaniFluid Mech. 99 (2001) 81-108.

8 M. Solomon, S. Muller, “The transient extensiobahavior of polystyrene-based Boger fluids
of varying solvent quality and molecular weight’Rheol. 40 (1996) 837-856.
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4 High deformations and Break-up

Keywords: Drop break up, Boger fluid, viscoelasyicishear flow, optical

microscopy

4.1 Introduction

The effect of matrix elasticity on the break-up af isolated Newtonian drop
under step shear flow is herein presented.

It was observed in the introduction that many ptgisand rheological properties
of the liquid — liquid suspensions, as the polymdiiends, are strongly dependent on
the morphology, i.e., size and shape of the diggephase inclusions. Morphology
control of these systems can often be achievedrtyyep setting of the flow conditions
experienced during processing. The interplay betw#dee applied flow and the
morphology of the system is quite complex, andfisrofurther complicated by non-
Newtonian behaviour of the fluid components. Neaweldss, in general terms, we can
say that the mean size of the inclusions decreasesconsequence of drop break-up,
caused by an “high-speed flow”. This part is conedrwith the influence of the viscous
and elastic properties of the outer phase on teakbup phenomenon of a single
Newtonian drop under simple shear flow conditions.

Investigation of drop deformation and break-up unsleear flow, when both
liquids are Newtonian, as discussed in the intrtdaogcwas pioneered by Taylor (1932,
1934)°%° and much phenomenological evidence and approgittheoretical analyses

have been collected through the years (Stone, $99d)extreme synthesis, we know

¥ Taylor G | (1932) “The viscosity of a fluid contirig small drops of another fluid”. Proc. R.
Soc. London A, 138, 41-48.

2 Taylor G 1, (1934) “The formation of emulsions iefthable fields of flow”. Proc. R. Soc.
London A, 146, 501-523.

%1 Stone H A (1994) “Dynamics of drop deformation &mdakup in viscous fluids”. Ann. Rev.
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that the dynamics of isolated drops in shear flewdetermined by the two non-
dimensional parameters, i.e., the capillary nun@®eerand the viscosity rati (drop to
matrix viscosity) and it is experimentally well knp (Grace, 198%; de Bruijn, 1988
that stationary drop shapes (starting from the spdleconfiguration) are only reached
up to a certain critical value gaf the capillary number, which only depends foreou
Newtonian systems, on the viscosity ratidBeyond Cg a drop keeps deforming, until
rupture occurs.

Briefly, when one or both the component fluids avéscoelastic, the
fluidodynamics of the drop becomes more complexthasconstitutive time scales of
the two fluids also come into play, together witke intrinsic time scale related to the
very existence of an interface. As early as in 19@merfelt* reported for the first
time experimental results on break-up of Newtoreops in shear flows of viscoelastic
fluids. He found that i) the non-Newtonian criticapillary number is always larger
than the corresponding Newtonian one (with sameogi$y ratio) and ii) there exists a
minimum drop size below which break-up can not bhieved. Point i) was later
confirmed in the reverse case (non-Newtonian dnagp Newtonian matrix) by Varanasi
et al. (1994F, while the existence of a minimum radius for brek(point ii)) is better
seen as a result limited to the range of sheas muestigated by those authors.

In the drop break-up experiments described satli@r non-Newtonian behaviour
of the fluids investigated included both viscostyear-thinning and less than quadratic

normal stresses. In other words, it so happendtidse experiments that “high” non-

Fluid Mech., 26, 65-102.

22 Grace H P (1982) “Dispersion phenomena in highosity immiscible fluid systems and
application of static mixers as dispersion devioesuch systems”. Chem. Eng. Commun., 14, 225-
277.

% de Bruijn R A (1989) “Deformation and breakup ok in simple shear flows”. PhD thesis,
Technische Universiteit Eindhoven.

4 Flumerfelt R W, (1972) Drop breakup in simple stfeglds of viscoelastic fluids. Ind. Eng.
Chem. Fundam., 11, 312-318.

% Varanasi P, Ryan M E and Stroeve P (1994) “Expertaiestudy on the breakup of model
viscoelastic drops in uniform shear flow”. Ind. E@hem. Res., 33, 1858-66.
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dimensional shear rates were at play. Hence, aideatification of separate elastic and
viscous non-Newtonian effects was in fact not asdie By using Boger fluids,
conversely, it is expected that this difficulty che overcome, also because of the
absence of any shear-thinning. Mighri et al. (1898%ed several pairs of Boger fluids
to study break-up conditions with different dropnbatrix elasticity ratios. They report
the variation of the critical capillary number Qaith the elasticity ratio, though limited
to viscosity ratiod\ ranging between 0.3 and 1.1. Even if the genesgréion that drop
break-up is somewhat inhibited by elastic effestpiiesent in the literature, a clear
understanding of non-Newtonian effects has nobgen achieved.

In this section the effect of matrix elasticity @he break-up of an isolated

Newtonian drop is showed. Boger fluids were usedaoadinuous phase and the weight

, o o . V.o .
of matrix elasticity is quantified with the parametp = R/l7 > » that can be interpreted,

as explained in the introduction, as the ratio leetwthe constitutive relaxation time of

W L R
L and the emulsion time_ = fIc
2’7(: ag

the matrix fluid r =

. The matrix rheological

properties and drop dimension were properly vairedyder to have p ranging from 0.1

to 10. Extrapolating Greco’s conclusions to largepddeformation, p=1 is the

condition to be fulfilled to make non-Newtonian exffs observable. Three viscosity
ratios were explored (drop/matrix), i.e. 2, 0.6 a@4.

At all the viscosity ratios explored, break-up wasdered by matrix elasticity.
The start-up transient of drop deformation, at higit sub-critical capillary numbers,
showed an overshoot, during which the drop enhaitisegrientation toward the flow

direction. Both phenomena increase if the p parameicreases. Finally, the non-

% Mighri F, Carreau P J and Ajji A (1998) Influenakelastic properties on drop deformation and
breakup in shear flow. J. Rheol., 42, 1477-1490.
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dimensional pinch-off length and break-up time wads® found to increase with p.

In the following, the experimental section will Hevoted to list the Boger fluids
used as continuous phase and to explain brieflyeperimental protocol. In the next
section, the results will be presented and discldsmally, some concluding remarks

will be presented.

4.2 Experimental
4.2.1 Experimental apparatus

The rheo-optical apparatus used in this work amedetkperimental protocol were
described in detail in the experimental section atgkwhere (Guido and Simeone,
1997"; Guido and Villone, 1998) The apparatus essentially consists of a panaléee
device coupled with an optical microscope. It haerb used with two different,
interchangeable setups to observe drop deformaimh break-up either along the
velocity gradient direction and along the vorticétyis. The drop was injected into the
continuous matrix using a tiny glass capillary, ethihad been preliminarily loaded
between the parallel plates. Simple shear floneisegated by displacing the motorised
plate with respect to the other. The experimentsevedl carried out in a room kept at
constant temperature (23 £ 0.5°C). During a typical, flow was impulsively started
by driving the moving plate at a given speed. Thaning drop was kept within the
field of view during motion by translating the noscope, which is itself mounted on a
motorized stage. When the drop was observed almngdrticity direction, the two axes
Rwvax and Ry of the deformed drop (as observed in the plargheér) and the angle
between the major axisMAx and the velocity gradient direction (see the scitem

drawing in the Materials and methods section) wateulated. On the other hand, when

" Guido, S. and Simeone, M. “Binary collisions obps in simple shear flow by computer-
assisted video optical microscopy”. Journal of &IMechanics, 357, (1998) 1-20.

8 Guido, S. and Villone, M. “Three dimensional shapa drop under simple shear flow”. Journal
of Rheology, 42, (1998) 395-415.
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the drop was observed along the velocity gradigecton, R and R were measured,
where R is the projection of Rax on the plane of shear and R drop axis along the
vorticity direction. The data were displayed inlreéae on the computer monitor and
stored. The break-up critical capillary number wiasermined by performing a set of
runs at increasing shear rate until break-up oecurlf steady state deformation was
reached, the flow was stopped and the drop waw@tido relax back to the spherical
shape before starting the next run. Drop breakhwpys occurred during the flow. With
this protocol, | identified an interval in whicheteritical capillary number is contained.
The extremes of this interval are referred to dsrior critical capillary number (Ga

inf) and superior critical capillary number (Csup).

42.2 Materials

Newtonian silicone oils (PDMS, Dow Corning 1000502, 60000, 100000) were
selected as the dispersed phase. In order to &chievdesired viscosity ratio, silicon
oils with different molecular weights were mixedgéther in proper amounts. The
experiments were performed at three viscosity safi@. 2, 0.6 and 0.04. Viscoelastic
Boger fluids were used as the continuous phasedesseribed, they were carefully

formulated in order to: i) have a constant visggsii) exhibit first normal stresses
difference proportional tgy*and iii) provide a value of the p parameter inridnege 0.1

+ 10, with a drop radius within the experimentahdow, i.e. 10 + 10Qum.

Table 1, referred to this section, summarises ttoparties of the viscoelastic
fluids used in this experimental campaign as cowotirs phase. In particular, column 1
reports a code name, Ci; column 2 reports the matss of high-to-low molecular
weight polymer, (the values are multiplied by*}1@&olumn 3 reports the viscosity at
0.05 and 1.5°§ which is roughly the range of shear rate at infiimposed during the

experiments (as shown, shear thinning is limited@el5%); column 4 reports the first
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normal stress coefficien#/; and column 5 reports the viscosity ratio of theegkpents

performed with that fluid.

Boger PIB/Napvis 30 Viscosity at 0.05—1.55 W, Experiment

fluids  (x10% (Pas) (Pag) atA
C1 3.2 55 —47.5 210  0.04
C2 0.5 80.1-79.7 65 0.6
C3 4.4 35.4-315 36 0.6
C4 44 43.1-34.8 93 2

C5 0.5 81 —80.6 63 2
C6 4.4 55 — 48 200 2

Table 1: Fluids used in the experiments.

As example, the rheological data of the Boger 8utl, C2 and C4 are shown in
Figure 12. The solid line in Figure 12 is a fittke first normal stress difference data in
log scale. The slope of the fitting lines is eqt@l2 £ 0.1, in agreement with the

assumption of second order fluids. The first normstkess difference coefficient

W, = lzl was calculated by fitting the data of Figure 12 tine of slope 2 in log scale.

On the other hand, no normal stresses could beureshfor the silicone oils within the

instrumental sensitivity.
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Figure 12: Viscosity and first normal stress didgece vs shear rate for the
Boger fluids C1, C2 and C4 (see Table I) at 23°C.

The interfacial tension of all the fluid pairs usedhe experimental campaign was
measured by applying the theory by Greco (28®)data of steady state drop shape in
shear flow, as described elsewhere. Depending ®nyjhe of observation of the drop,

two different relations were applied. When the dvegis observed along the vorticity

Ruax ~ Run

direction, the deformation parameter=—""——"= was measured and within the
MAX + RMIN

limits of the small deformation theory, no conttibm of the matrix elasticity is
predicted on D at the steady state. The relationDfareduces to the one valid for
Newtonian fluids (Taylor 1932, 1934), so interfa¢ension was evaluated as described
by (Guido et al. 2008j with eq. 5.

D= 194 +16Ca

=227 5
16/ +16 ©)

On the other hand, when the drop was observed alloagvelocity gradient

# Greco F, “Second-order theory for the deformatiba Newtonian drop in a stationary flow
field”. Phys. Fluids, 14, (2002) 946-954.

% Guido S, Simeone M and Greco F, “Deformation dfeavtonian drop in a viscoelastic matrix
under steady shear flow. Experimental validatiosloW flow theory”, J. Non-Newtonian Fluid
Mech., 114 (2003) 65-82.
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direction, the interfacial tension was obtainedrbgasuring the ratio J/R at steady
state within the limit of small deformation and bging the equation 6 introduced for

the first time by F. Greco.
R c14caf 217+ 2(s, + pg,) + 2 (s, + pg,) ©)
R 2 4 202 °

where T, s S3, @ and g are coefficients depending on the fluid proper{®seco,
2002) and p is the already defined parameter intted by Greco to measure the
“weight” of constitutive elasticity for the dropqislem.

To assess the consistency of the two methodsntadacial tension of one pair of
fluids was measured both according to egs. 5 ariché.data are reported in Figure 13
and Figure 14, respectively. Of course, the two sueaments required two different
experiments, performed by observing the drop ane &long the vorticity and the other

time along the velocity gradient direction.

0.5

044 |0=2.3% 0.1mN/n+

0.3 A 8

0.2 | o R, um

53.2
41

32.3
24.7

0.1

< > OO

0.0 0.1 0.2 0.3 0.4 0.5
Ca

Figure 13: Interfacial tension of the pair siliconil (drop phase) fluid C4
(matrix phase)A = 2 a) D vs. non-dimensional time. The line isitaof eq. 5 to
the data. p =1.5t0 3.5
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Figure 14: Rp/R vs. non-dimensional time. The Ima fit of eq. 6 to the data. p
= 0.75.

4.3 Results

Figure 15 and Figure 16 show the deformation par@ani@ and the orientation

angle® as a function of the non-dimensional tirhét,,, for the case oh =2 and p =

1.5. Micrographs of the deforming drop are reponteligure 17 at Ca = 0.43 (left side)
and at Ca = 0.47 (right side). The symbols refghtee different Ca numbers. The open
circles of Figure 15 and Figure 16 refer to Ca@60Qwell within the small deformation
limit. In this case, after an initial transienteatly state shape is reached. In the runs at
much higher Ca, e.g. Ca = 0.43 (filled squaresy, deformation parameter D goes
through a maximum as a consequence of shear rate ugi. After the maximum
(micrograph 2), the deformation parameter goeautnaan initial ,rapid” relaxation (up
to micrograph 3) and steady state shape is reachidafterwards, at time 140 ca.
(micrograph 4). While the deformation parametersgigough an overshoot, the drop
temporarily enhances its orientation toward thevfltirection, and this reflects into an
undershoot in the plot of the orientation angle nsn-dimensional time (Figure 16).

This behaviour is due to matrix elasticity, as disd in the previous part of this
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section, and no overshoot is present in the Newtooase. Finally, the open squares of
Figure 15 and Figure 16 refer to the deformatiorampeter and to the orientation angle,
when the critical capillary number is slightly erded. Micrographs of the drop during
this run, including drop break-up, are reportedrigure 17. Similarly to the case of
Newtonian matrix, drop deformation progressivelgreases, a neck forms in the
middle (micrograph 2) and break-up leads to twogtiéer drops and one tiny satellite

(micrograph 3 and 4).

0.20
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s 043| r 015
o 047 (o]
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@)
5
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o
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0 50 100 150 200
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Figure 15: D vs. non dimensional timg.= 2 and p = 1.5. Matrix phase: fluid
C4.
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Figure 16: 8 vs. non dimensional timel = 2 and p = 1.5. Matrix phase: fluid
C4.

Figure 17: Micrggraphs of the drop of Figure 16 arkigure 17. The non-
dimensional time tis reported on the micrograph.

Figure 18 shows, at increasing values of p, therdeition parameter measured
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along the velocity gradient direction, B (R-Rz)/(RrtR;z), as a function of the non-
dimensional time. The viscosity ratio is 2 and va&ies are normalised with respect to
the steady state value of the deformation paramdtee runs refer to the highest
subcritical condition explored at the correspondmatue of p. As shown in Figure 18,
the overshoot increases with the p parameter ugheaopoint that, for p = 1.2, the
maximum deformation reached by the drop is fiveesnhigher than the steady state
value. A similar behaviour was observed for visgosatio 0.6, as illustrated in Figure
20, and 0.04. Some data are omitted for the sak®wenfity. Micrographs of the three

drops, captured at the maximum deformation andeaidy state, are reported in Figure

19.

5
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Figure 18: D vs. non dimensional time. = 2. Matrix phase: p = 0 fluid Napvis
30; p = 0.7 fluid C5; p = 1.22 fluid C5.
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p=0 p=1.2

p=0.7
Figure 19: Micrographs of the drops of Figure 18.
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Figure 20: D' vs. non dimensional timd.= 0.6; p = 0.8, p = 1.2 fluid C3
In the micrographs of Figure 21 the 3D drop shape evolution is qualitatively

illustrated at p almost 1 and at fixed high Ca. Tvershoot phenomena caused by
matrix elasticity content at high Ca is so clearofp shape and its orientation pass

across a “summit”, after which they drastically e, to reach the steady state value.
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Figure 21: 3D time evolution of the drop.
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Figure 22, Figure 23 and Figure 24 report the aaiticapillary number as a
function of the p parameter for the case of vidgasitio 2, 0.6 and 0.04, respectively.
The open symbols represent the maximum capillamb®ar at which steady state
deformation was achieved (&anf), while the filled symbols represent the minim
capillary number at which steady state deformatias not reached anymore (Csup).
The different shapes of the symbols refer to d#ferexperiments. Indeed, for each
viscosity ratio, several pairs of fluids were usgdorder to vary the value of the p
parameter. It is worth noting how the rheologicabperties of the fluids used to
perform the experiments at the same viscosity rate quire different (see Table 1).
Nevertheless, as expected, the data relative terelift fluid pairs superimpose nicely,
when plotted vs the p parameter. On the y-axisiglifé 22, Figure 23 and Figure 24,
the critical capillary number for Newtonian drogspointed out. It was experimentally
measured during this work for the case of viscosatio 2, by using the low molecular
weight PIB (Napvis 30) as matrix and silicon oildasp phase. For the case of viscosity
ratio 0.6 and 0.04 it was gained from literaturéad@Cristini et al., 2001, de Bruijn,
1989¥.

The increase of critical capillary number with fhe@arameter is a common trend
for the three viscosity ratios explored, allowing ¢onclude that matrix elasticity
hinders drop break-up. It is also confirmed thatrimaelasticity becomes important

when the p parameter assumes values higher than one

31 Cristini V, Blawzdziewicz J and Loewenberg M, (200An Adaptive Mesh Algorithm for
Evolving Surfaces: Simulations of Drop Breakup &whlescence. J. Comput. Phys., 168, 445-463.

52



0.8

o 0A YV Cag,inf
0.7 1 e m AV Cag sup A
A
“u
0.6 -
o
)
0, .
[¢]
Newt C
B 04l
0.3 T T .
0.01 0.1 1 10

p

Figure 22: Critical capillary number as a functioof p. A = 2. Open symbols:
Ca inf. Filled symbols: Ca sup. The fluids used as matrix phase are: circte C
square C4, triangle up C6, triangle down Napvis 30.
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Figure 23: Critical capillary number as a functiaof p. A = 0.6. Open symbols:
Ca inf. Filled symbols: Ca sup. The fluids used as matrix phase are: circke C
square C3.
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Figure 24: Critical capillary number as a functiaf p. A = 0.04. Open symbols:
Ca. inf. Filled symbols: Ca sup. The fluids used as matrix phase are: circle C

It is worth commenting, at this point, that theeetf of matrix elasticity on the
critical capillary number may be much larger thamatmeasured in this work. Indeed,
the experiments were always performed by turninghenshear flow stepwise. As a
consequence of this, at high capillary numbers {mlow the critical value), drop
deformation went through a maximum and then relaxed much lower steady state
value, until drop break-up occurred. | believe thgtapplying a progressive increase of
shear rate with a ,slow" ramp, the drop would bregkat a much higher capillary
number. Indeed, the drop would progressively insgeds deformation by passing
through the steady state values that corresponldetanstantaneous shear rate, and no
overshoot would be present. Considering that teadst state deformation is several
folds smaller that the maximum deformation reacthedng the transient, | argue that a
much stronger flow is required to deform and brapkthe drop if the start up transient
is suppressed. Further work is needed to elucitieggoint.

Figure 25 and Figure 26 report the non-dimensignath-off length (L) and

time, respectively, for the case of viscosity rakioFor the non-dimensional length,
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depending on the direction of observatiomak¥Ro or R/Ro was measured; being the
drop at break-up highly oriented toward the flowedtion, the two data sets were
considered as identical. It is worth mentioningthéd point, that the measurement of the
pinch-off non-dimensional length is very delicatecs it greatly increases as soon as
the critical capillary number is exceeded. For te@son, the data reported in Figure 25
and Figure 26 refer only to the cases where brgaleads to two daughter drops and a
single tiny satellite. This is typical of near @w#l break-up. On the other hand, when
more than one satellite was formed, break-up wasidered to have taken place under
super critical conditions and the data were dissdrd’ he data indicate that both the
non-dimensional pinch-off length and time increast p. Furthermore, we observed
that the pinch-off non dimensional length is indegent of the viscosity ratio, while the
pinch-off non dimensional time is strongly influencby the viscosity ratio. When p
was much lower than one, i.e. in the Newtoniantliiie non dimensional pinch-off
time were 100, 70 and 20 for viscosity ratio 2, &l 0.04, respectively (these data are

not shown for sake of brevity).

p
Figure 25: Non-dimensional pinch-off length vs Ag2.

55



1007 e L]

tcro-/(rl matrix R)
°
°

p

Figure 26: Non-dimensional pinch-off time vs. plat2.
4.4 Final remarks

We explored the effect of matrix elasticity on dimeak-up under step shear flow.
Three viscosity ratios were considered, i.e. 2, &@ 0.04. The entity of matrix
elasticity was quantified through the non-dimenalgrarameter p, introduced by Greco
(2002). The results presented allow to conclude thatrix elasticity hinders drop
break-up. This was found at all three viscosityosaexplored and was quantified by
measuring the critical capillary number as a fuorctof the p parameter. The maximum
increase of critical capillary number measured 8@% ca. when the p was increase to
10 ca p=2). At high, but sub-critical capillary numberspd deformation goes through
an overshoot during which the drop temporarily ewes its orientation toward the
flow direction. The entity of this phenomenon irases with p. Finally, the non
dimensional pinch-off length and time were measudoedhe case of viscosity ratio 2.

The data indicate that both quantities increask puit
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Morphology evolution of a single drop under shdawf with non Newtonian dispersed phase.

Morphology evolution of a single drop under shearlbw, with
non Newtonian dispersed phase.

First part of this section illustrates experimentatsults concerning drop
deformation and orientation during a “slow” shealow, both at steady state and in
time dependent situations (during the start-up aafter cessation of the flow),
comparing the data with the non Newtonian secordeotheory, while second part
examines the drop high deformations and break+upokh cases a model system with a
non Newtonian, highly elastic drop phase and a MNei@nh matrix phase was

considered.

5 Single viscoelastic drop under shear flow

Beginning from the fundamental theoretical and expental contribution of
Taylor (1932, 1934¥, regarding the small deformation and breakup dbatated drop,
most works in literature had as subject the mompdichl evolution and breakup of an
isolated drop subjected to a well defined flow,usiog the attention on Newtonian
mixtures only, in which the two phases didn't extélmy elastic behaviour. Conversely
a large part of the liquid-liquid dispersions cutie used for the production of new
materials are gotten with non Newtonian compondfis.this reason from some years,
the attention of the scientific world is moved ¢ tunderstanding of the effects of the

phases viscoelastic properties on the flow-indunedohology of a dispersion with non

%2 Taylor G |1 (1932) The viscosity of a fluid contaig small drops of another fluid. Proc. R. Soc.
London A, 138, 41-48.

Taylor G 1, (1934) The formation of emulsions irfidable fields of flow. Proc. R. Soc. London
A, 146, 501-523.
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Morphology evolution of a single drop under shdawf with non Newtonian dispersed phase.

Newtonian fluids (S. Guido, F. Greco, 2684Elmendorp, J. J. et al (198%)
Flumerfelt, R. W. (1973} Mighri, F. et al. (1999f; Varanasi P, Ryan M E and
Stroeve P (1994)). In the case in which one or both phases areelastic fluids, the
dispersed drops are subjected to both viscous lasticeforces, as well as to interfacial
one. Therefore the mechanism of drop deformatiahlaeakup in viscoelastic systems
will be quite different in comparison to Newtonigystems as predicted by those
authors. Unfortunately a clear picture that illat#s the effects of the only elastic
content of the dispersed phase on the morphologlyeoirop doesn't still exist.

In this section the video enhanced contrast opticaloscopy has been used to
explore the 3D shape evolution of a single visctiairop (Boger fluidf immersed in
a Newtonian matrix and subjected to a well defiskéear flow. Fundamental target will
be to come to a full knowledge about drop shapestabdy state, comparing
experimental data with Greco’s theShpredictions and to have a clear picture about
the influence of the viscoelastic properties of dispersed phase on the drop evolution
during the transients of flow, start-up and aftessation of the shear flow. Finally the
break-up mechanism of the viscoelastic drop willllustrated as a function of the drop
phase elastic content.

In extreme synthesis, as discussed in the intremuctection, for Newtonian

systems the dynamics of an isolated drop submittedshear flow in absence of inertia

%3, Guido and F. Greco, “Rheology Review 2004", BSferystwyth, UK 2004,

34 Elmendorp J. J. and R. J. Maalcke, “A study orymelr blending microrheology. 1” Polym.
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Morphology evolution of a single drop under shdawf with non Newtonian dispersed phase.

O
is function of two only non dimensional parameténg: capillary numbe€Ca= ”‘;g in
o

O
which nc is the continuous phase viscosijy the shear ratey the interfacial tension of

the couple of fluids and R is the spherical drogius, and the viscosity ratio between

the two phases, drop to matrix viscosit)y,:”—D. The capillary number is the ratio
e

between the hydrodynamic stress, that deforms itbpe dnd the interfacial stress, that
tends to restore the drop to a spherical shapeciitigal capillary number corresponds
to the critical shear rate at which the drop ineagy flow is no longer able to assume a
steady shape, it becomes unstable and breakspdénds on the flow type and on the
viscosity ratio only (Grace, 198%9)(de Bruijn R A, 1989, Ph.D thesl§) The
hydrodynamic problem becomes more complex in ttee ¢a which one or both the
component fluids are viscoelastic. In fact the choof a non Newtonian dispersed
phase with an appropriate constitutive equationeisessary, to get results of general
validity. In addition it is experimentally not ea$y separate the role of the fluids
elasticity and of the viscosity dependence withghear rate on the drop evolution. The
viscoelastic fluids used in this work as disperpddse were the constant viscosity
Boger fluids, with a second order rheological betan So it has been possible to
isolate the contribution due to the only elasti@tythe drop deformation, getting some
results applicable in a large class of non Newtorfiaids, defined Noll's “simple
fluids”. These so called “Second Order Fluids” (@starita and G. Marrucci,
“Principles of Non-Newtonian fluid mechanics, Mc@raHill, Maidenhead, 1974)

exhibit a first normal stresses difference, proportional to the square of the shear rate

40 Grace H P (1982) Dispersion phenomena in highosisg immiscible fluid systems and
application of static mixers as dispersion devioesuch systems. Chem. Eng. Commun., 14, 225-
277.

“1 de Bruijn R A (1989) Deformation and breakup afgs in simple shear flows. PhD thesis,
Technische Universiteit Eindhoven.
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O
in a wide range I, =¥, >, whereW; is the coefficient of the first normal stresses

difference). Non dimensional parametpr:;j#a, in whichn is the viscosity of the

second order fluid, has been used to quantify thight of the dispersed phase elasticity
on the dynamic of drop deformation under the siiear. It changes varying the drop
radius or the pair of fluids. This parameter introeld for the first time by Leal (200%)
and formalized by the Greco theory on the steadie sirop shape in slow flow with

non Newtonian second order fluids (F. Greco, 20@3)) be interpreted as the ratio

L and emulsion

between constitutive relaxation time of the dispdrphaser, =
D

R
g

time 7, = . From the non dimensional analysis of the probles possible to

establish that the effects of the dispersed phdasti@ty on the drop shape are
observable when p is around 1. Much more detailsiathe theoretical analysis can be

found in the work of S. Guido et al., (2063)

51 Materials and methods

The pair of fluids used as viscoelastic disperdaemsp and Newtonian continuous
phase were selected in order to have a single sirsiem with a parameter p almost 1,
with a drop of radius within the range 10 —5®, and with a viscosity ratid (drop to
matrix viscosity) equal to 1 and 2.6. In a few wetle fluids were prepared as follows.
The viscoelastic drop phase was a constant vigcBsiger fluid. It has been prepared
by mixing a small fraction of high molecular weigbolymer (Polyisobutylene PIB,

Sigma Aldrich, Mw = 4.6 x 106) with a Newtonian weht, Polybutene, PB,

“2Tretheway D. C., Leal L. G., “Deformation and seltion of Newtonian drops in planar
extensional flows of a Boger fluid”, J. Non-NewtaniFluid Mech. 99 (2001) 81-108.

43 Guido S, Simeone M and Greco F, “Deformation dfeavtonian drop in a viscoelastic matrix
under steady shear flow. Experimental validatioslot flow theory”, J. Non-Newtonian Fluid
Mech., 114 (2003) 65-82.
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commercially known as Napvis (BP Chemicals). ThB Ris previously dissolved in
Kerosene at 4% weight concentration. Then the Inigihecular weight PIB-kerosene
solution was mixed to the PB in order to have tesireéd final mass ratio PIB/PB. This
solution was slowly stirred at room temperature dowveek, to avoid the formation of
clots and it was placed in a vacuum oven at 401®f@ month, to remove the whole
kerosene. The Newtonian continuous phase was mgadabbng Silicon Oil fluids,
PDMS (Polydimethylsiloxane, Dow Corning) with difésit average molecular weight,
in order to have the desired experimental viscasitip.

After the injection of a pure Polybutene drop ipuae Silicon Oil fluid, a decrease
in drop diameter was observed because of a smabisty of the PB in PDMS (Guido
et al. Rheol. Acta, 1999f. To avoid, during an experiment, every geometrical
rheological and interfacial properties variationtloé blend constituted by a single drop
of viscoelastic PB immersed into PDMS, it was neaggto realize the thermodynamic
phase equilibrium between the pair of fluids presiadescribed. Equal volumes of
viscoelastic Boger fluid and PDMS were emulsifi&#tie emulsion so gotten, was left
for about a week under static conditions. The twases at the thermodynamic
equilibrium were separated by ultra centrifugateord used for the experiments. The
absence of any diffusion phenomenon was verifiddrbesvery experiment, observing
for one day a drop of viscoelastic phase inserigtie Silicon Oil phase. No significant
changes in drop size were found.

Two phases rheological properties were obtainechgusa constant-stress
rheometer, equipped with a normal stress sensdilifBaCVO 120), with the cone and
plate configuration. As an example, rheologicaladat two viscoelastic phases, to be

exact D4 and D5, used for the experiments at vigcoetio 1 and 2.6, are presented in

44 3. Guido, M. Simeone, M. Villone, “Diffusion effescon the interfacial tension of immiscible
polymer blends”. Rheol. Acta 38 (1999) 287-296.
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Figure 27, at the experimental temperature 23°Gs ltlear that the dispersed phase
viscositynp was essentially constant in the range of shearinaestigated during the
experiments (up to 5 s-1) and that the first norstisdss difference N\had a quadratic
dependence from the shear rate, in a completelgeaggnt with the assumption of
second order fluids made in the theoretical ansl{fsi Greco, 2002). The first normal
stress difference coefficied¥; was obtained by fitting the data to a line of sldpin
log scale. It was also verified that the Silicorl ghase was a Newtonian fluid with a
constant viscosity and with no appreciable normrass in a wide range of shear rate.
All fluids used as dispersed viscoelastic phaselarexperimental campaign are shown
in Table 2, together with their rheological propestat the experimental temperature,
23°C. In particular, column 1 reports a code nabigcolumn 2 reports the mass ratio
of high-to-low molecular weight polymer, (the vatuare multiplied by 19; column 3
reports the viscosity at 0.05 and 1 svhich is roughly the range of shear rate at
infinity imposed during the experiments (as showhear thinning is limited to 10-
20%); column 4 reports the first normal stress toeht, W;, column 5 reports the
viscosity ratio of the experiments performed withttfluid and columns 6 and 7 report
the p parameter and the type of experimental observ Newtonian silicon fluids used

as continuous phases are absent.
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Figure 27 rheological data of the drops D4 and Di528°C.
Dispersed | PIB/Napvis g'ggos'iy;_é (U} Experiment |p, vorticity |p, gradient
h l 3 . -_ . . . .
phase (x10°) (Pas) (Pag) |atA view direction
D1 3.0 10.7 - 8.5 11 1 1.6;2.4 1.3;1.9; 1
D2 3.0 78 -76.8 145 1 0.7
D3 3.5 46 — 42.3 67 1 3
D4 3.0 67 - 61 127 1 1.1
D5 2.0 28 31 2.6 0.6; 0.85; 1.7
Table 2: Experimental viscoelastic fluids used aspdphase.

The rheo-optical apparatus and the images andgdimiques used in this work to

shear a drop and to monitor the drop shape duhedlow were described in detail in

the materials and methods section of S. Guido, ieSne (1998F and S. Guido, M.

Villone (1998¥°. The experimental apparatus essentially consisascouple of parallel

glass plates mounted on motorized supports and optical microscope, Axioscop FS

(Zeiss) equipped with an analogical CCD camera. Wifferent parallel plates devices,

> Guido, S. and Simeone, M. (1998) Binary collisiofislrops in simple shear flow by computer-
assisted video optical microscopy. Journal of FM&thanics, 357, 1-20.
“6 Guido, S. and Villone, M. (1998) Three dimensiostape of a drop under simple shear flow.
Journal of Rheology, 42, 395-415.
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easily interchangeable, were used for observingdtiop along the vorticity axis and
along the velocity gradient direction of the shéaw. When the drop was observed
along the flow vorticity direction, the two axes& and Ryn of the deformed drop (as
observed in the plane of shear) and the afdbetween the major axisyirx and the
velocity direction (see the schematic drawing i ihaterials and method section) were
calculated. On the other hand, when the drop wasrebd along the velocity gradient
direction, B and R were measured, where B the projection of Rax on the plane of
shear and Ris drop axis along the vorticity direction. Theperments were carried out
at constant temperature, 23°C+ 0.5 °C. Briefly,imyithe experimental campaign drop
was submitted to step up shear flows varying tleashate and starting from spherical
shape. Its morphology and orientation were analysetiime during the start up, the
steady state, and after flow cessation.

Within the limit of small deformations, as predittey the theory (Greco, 2002),
observing the drop along the vorticity axis of #fear flow, no deviation of the major
and minor axes of the deformed drop at the stetadg & predicted with respect to the
corresponding Newtonian case. In addition the defdion parameter D reduces to one
predicted by the Newtonian theory of Taylor, acaogdto which D at steady state is
linear with the shear rate, as illustrated in Fég8i.

Therefore the interfacial tension of all coupledlofds has been calculated from
the slope of the linear fit of D at steady statesus the shear rate, within the limit of

D<2.

5.2 Results

| start this paragraph presenting in a few words daat | usually obtain with the
rheo-optical apparatus shearing the drop by turomghe shear flow at a given value of

shear rate, observing the viscoelastic drop albegvorticity axis, as illustrated in the
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“materials and method” section. In Figure 28 théodwation parameter D of the drop
D2 during a typical step up shear flow is plottessus the time, made non dimensional
using the emulsion time., of the system. The drop has been submitted teeargiate
0.1. From its spherical shape (D=0), drop deformsnatonously itself, up to a
stationary state (D=0.1). After the cessation efftbw the drop relaxes for reaching its
initial rested shape, D=0. The corresponding ewmtubdf the orientation angl® is
shown in the Figure 30. Micrographs of the dropleton are reported in Figure 29.
This morphological evolution of the drop under epstip shear flow is quite similar to

the pure Newtonian system illustrated by S. Guiadid . Villone (1998).
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Figure 28: Evolution of the D parameter of drop D&ith p = 0.7,4=1, Ca=0.1.
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Figure 29: Micrographs associated with Figure 28daRigure 30
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Figure 30: Evolution of the orientation angi of drop D2, with p = 0.74=1,
Ca=0.1.

First part of this section is devoted to explainr@sults obtained during my Ph.D.
about the 3D shape of the viscoelastic drop atigtetate, comparindor the first time
the experimental data with the theoretical prediti obtained by F. Grecd(op
deformation for non Newtonian fluids in slow floBubsequently | will investigate the
drop shape evolution during the transients of 4tprand after cessation of the shear

flow as a function of the viscous and elastic props of the drop phase. Finally | will
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show to the reader some “nice” drop evolutionst kizgppen when the shear flow is fast
or in other words when the drop is submitted toagillary near the critical value, to
finish with the evaluation of the critical capijamumber as a function of the

viscoelastic drop properties.

5.2.1 Three dimensional drop shape at steady state. Cosgrawith the
second order theoretical predictions.

| start the explanation of this first part from ttese with viscosity ratio 1. In such
a case, three fluids have been selected, namelypRBnd D4 (see the table of fluids)
to make the single drop blend. It is important tatice that the dispersed phase
components of these three blends largely diffethair elasticity, as measured by the
first normal stress coefficiedt;. So, different values of the p parameter, thaggauhe
non Newtonian effects, can be obtained not onlghgnging the drop radius for a given
fluid pair, as illustrated in the introduction, kalso by changing the fluid pair itself. So
by using different pairs of fluids, a stringenttte$ the theoretical predictions and a
good and complete experimental study will be penfat without any doubt.

In Figure 31 the deformation parameter D at stestdye is plotted versus the
Capillary number Ca, for three values of p: 0.7aoted using D2 as drop phase, 1.1
obtained using D4 as drop phase and 1.6 and 2tdined using D1 as drop phase with
two different drop radii. The continuous line i®thrediction from second order theory
(Greco, 2002). As discussed in the introductionghediction for D derived from that
theory is independent of the phases elasticitythedelation for D reduces to the one
valid for Newtonian fluids (Taylor 1932, 1934). W the limit of small deformations,
all data points fall on the theoretical line upaacertain value of Ca, which should
decrease with increasing p, as described by S.dGaind F. Greco (2003). No

significant discrepancy between experimental daih the theoretical line was found
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with increasing p up to Capillary 0.2, excludinge tlexperimental errors foo
evaluation. In other words, it seems that the ranfevalidity of the theoretical
prediction is independent of p when the disperdsake is a non Newtonian fluid and

viscosity ratio is 1.
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Figure 31: Deformation parameter vs. Ca at steadgtes, using as dispersed
phase the fluids D1, p = 1.6 — 2.4; D2, p = 0.7;dabB4, p = 1.1. The solid line is
the Taylor theoretical prediction. All data are at= 1.

In Figure 32 non dimensional axegAR/R and Ryn/R are reported, as measured
in the view along the vorticity axis of the shelamf, versus the Capillary number Ca at
steady state, using D1 fluid as dispersed phasparBmeter was 1.6. Dashed and
continuous lines correspond to the Newtonian and hewtonian second order
predictions, respectively. It is clear, as befdhesirated for D, that the two lines are
very closed to each other in a wide range of Capilnumber. Besides experimental
data overlap to the predictions up to Capillary. O.Berefore | can assert that the non
Newtonianness of the dispersed phase does not qgeaahy effect on the deformation

of the drop observed along the vorticity axis, canaol with the Newtonian case, at low
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Ca values.
In Figure 33 the experimental data of D plottedsusrCa at steady state, for p =
1.1, are compared with the value of D obtained fthenpredictions of Rax and Run

of the second order non Newtonian theory, using ttiefinition of D,
D = (Ryax _RMIN)/(RMAX + Ry ) -

It is important to notice that the experimentaladiatl on the continuous line up to
Capillary 0.6. Therefore the “numerical or phenooiegical’ prediction of the
deformation parameter D at the steady state gdrbem the theoretical values ofyirx
ed Ry is valid in a wide range of Ca and it is bettearththe Taylor's formula.
Moreover the viscoelastic system displays a lessrohed drop with respect to the fully
Newtonian case, i.e. D<sRw: for “high” Capillary numbers (V. Sibillo et. aR005}".

In fact as we will see later, the droplet is “skaled” by the dispersed phase
elasticity and the non Newtonian critical capillalymber is always larger than the

corresponding Newtonian one.

MAX

MIN/R

Figure 32: Major and minor non dimensional axes €s, using D1 with p = 1.6
as dispersed phase, dt=1. Dashed lines are second order Newtonian theory.

47V. Sibillo, S. Guido, F. Greco, P.L. Maffetton&itigle drop dynamics under shearing flow in
systems with a viscoelastic phase”. Macromolec8Bianposium, (2005), 228, 31-39.
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Continuous lines are non Newtonian theory.
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Figure 33: Deformation parameter vs. Ca at steadgtes, using as dispersed

phase the fluids D4, p = 1.1. The continuous lisghe numerical prediction of

D, gotten by the values ofyRx and RN drawn by second order non Newtonian
theory. The dashed-dot line represents the Tayleotetical prediction.

Figure 34 shows the drop orientation ang@hith respect to the velocity direction
at steady state, for drop D¥,= 1. Dashed and continuous lines refer to the Neiah
and non Newtonian theoretical predictions, respebti As described by S. Guido and
F. Greco, (2003), and by Sibillo et al., (2005 thfference between the two curves is
now clear. This reveals that the drop orientatiepehds on p, that is linked to the first
normal stresses difference;.NThis theoretical prediction is here confirmed tine
experimental data @, that is lowered with respect to the Newtonianieajent system.
Unfortunately, in the case of viscoelastic droiear flow of a Newtonian matrix, the
non Newtonian prediction overestimates experimedédh. While as described by S.
Guido et al. (2003) in the case of Newtonian dropjected to a shear flow of a
viscoelastic matrix experimental data of the oaéinph angle® provide an excellent

confirmation of the non Newtonian prediction, ohtag an univocal correlation
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between the slope @& vs. Ca curve with the matrix first normal stresdéference N.
In Figure 35 the orientation angle of drop D1 a&@sly state is plotted vs. Ca, with p =

2.4 and\ = 1. It confirms without any doubt, what has poasgly been illustrated.
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Figure 34: Drop orientation anglé vs. Ca at steady state, using as drop phase
D4, p=1.1.
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Figure 35: Drop orientation anglé& vs. Ca at steady state, using as drop phase
D1 with p = 2.4.

Now we can go to the top view experiments. The whaeéal drop is now observed
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along the velocity gradient direction. In FiguretB& non dimensional major and minor
axes R/R and R/R respectively, are plotted as a function of Cataady state. The
dashed lines are the Newtonian predictions. As seqhdoy F. Greco, (2003) these two
axes depend also on the second normal stressesedife N, exactly on the ratio
- N, /N,. The imposed value on that ratio,N,/N,, was 0.18<0.25, that represents
the condition to reproduce a Weissemberg viscaelflsid, as suggested by S. Guido
and F. Greco (2003).

Also in this case the two theoretical curves aeetically close to each other and
the experimental data fall on the two lines for loapillaries.

So if one considers the case when only the dr@pviscoelastic fluid, the optical
measurements at steady state of@Dand R/R lead to a good evaluation of the
rheological properties of the drop fluid, for agivvalue of viscosity ratio, i.a.= 1. In
other words, the interfacial tension of the coumfiéluids can be obtained by the slope
of D vs. the shear rate at steady state as ilkestrmm Figure 31; the slope 6fvs. Ca
curve is only determined by the p parameter argiviéks us an approximate value for

W,; and finally — N, /N, can be evaluated by the quadratic fitting effR using the

corresponding second order theoretical equaticn tfe appendix).
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Figure 36: Drop axes of the deformed drop obserabxhg the velocity gradient
direction vs. Ca at steady state, using as drop phase D1 with 1.9, A=1.
Continuous lines are the non Newtonian predictidrew— N, /N, = 018.

For a full analysis and to illustrate how the tlegmal and experimental results
depend on the viscosity rathg | show the case at= 2.6. The fluid used as drop phase
is now D5. Different p parameters were explore@ngjing the drops radii.

Figure 37 shows the non dimensional axggax®R and Ryn/R vs. Ca. Dashed
lines correspond to the Newtonian theory, whiletewous lines refer to the non
Newtonian predictions. The theoretical assumptioaualthe drop shape under slow
flows at steady state is clearly confirmed by thead Within the limit of small
deformations the viscoelastic drop shape does @pémtd on the p parameter and it is

equal to the Newtonian case. Data about @RRnd R/R atA = 2.6 are omitted for the

sake of brevity.
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Figure 37: Major and minor axes vs. Ca of drop Dh&hwp=0.85, at 1=2.6.
Continuous lines are non Newtonian theory.

Figure 38 shows the orientation an@lgs. Ca at steady state for two different p
values, with the corresponding non Newtonian ptexhs, ath = 2.6. It is clear that the
angle do not depend on the drop phase non Newtoesan At two different p values,
0.85 and 1.7, experimental data fall on the Nevetoiine up to Ca = 0.1.

Probably the range of validity of the non Newtonprdiction ofd comes to zero
with the increasing of the viscosity ratio, assthated by S. Guido et al (2003). In this

case every theoretical affirmation becomes impdss$tbbe shown..
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Figure 38: Orientation angleég vs. Ca at steady state, for the fluid D5, with p =
0.85 and p = 1.7, a#l = 2.6 with the corresponding non Newtonian prenins.

5.2.2 Transient response of the drop deformation at st@rand after flow
cessation

Figure 39 shows the transient response of the @iastic drop subjected to a step
increase in shear rate from rest to the final stabbpe. The drop fluid is D5. Viscosity
ratio is 2.6. (In all Figures time is made non disienal using the emulsion tiney).

It is clear that, at low capillary numbers, D ineses monotonically up to reach its final
steady value. The transient response is quite sitaléhe Newtonian drop one. As the
Ca value increases transient response differsicaigtfrom the Newtonian response,
see S. Guido and M. Villone (1998). Non Newtonianpdshape shows an evident
overshoot, which depends on Ca. Considering Newatoirops submitted to a well

defined flow of a viscoelastic matrix, this phenaoe has already been illustrated by
Sibillo et. al. (2004¥, and by Tretheway et al. (2001 Deformation and relaxation of

Newtonian drops in planar flows of a Boger flyidnd in the previous section. All the

“8 Sibillo V, Simeone M, Guido S, “Break-up of a Newtan drop in a viscoelastic matrix under
simple shear flow”, Rheologica Acta, 43, (2004) 4v85.

9 Tretheway D. C., Leal L. G., “Deformation and sedtion of Newtonian drops in planar
extensional flows of a Boger fluid”, J. Non-NewtaniFluid Mech. 99 (2001) 81-108.
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authors affirm that, as we increase p¥t and Ca, the transient response of the
viscoelastic drop observed by turning on the sHear stepwise differs drastically from
the Newtonian case. Moreover, as illustrated byll8ikt al. (2005), the Maffettone -
Greco model prediction are very close to the expenital data and it gives a good
gualitatively description of the overshoot up todamate drop deformation D<0.3. This

leads to the conclusion that this phenomenon exelysdepends on p and Ca.
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Figure 39: Transient behaviour of the deformatiorargmeter D vs. non
dimensional time at various Ca. Drop fluid is D5ithwp=0.85 andA=2.6.

Figure 40 shows transient behaviour for D as atfancof the non-dimensional
time. Now the viscosity ratio is 1 and the D valaes normalised with respect to the
steady value of the deformation parametess [Bs shown in Figure 39, the overshoot
increases with the Ca. Micrographs of the drop @it in time, submitted to Ca = 1.1
are reported in Figure 41. It is important to nettbat for the final capillary number,
Ca=1.1, a slight secondary undershoot, after tii@alimvershoot, is also observed (see
micrographs 4 and 5). Moreover it was clear durhg experimental tests that the
overshoot and the resulting undershoot of defowwnatiere larger for a higher Capillary

number. As supposed by Tretheway and Leal, (2001)otleshoot and resulting
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undershoot in deformation are the result of a ggudetle interaction between the stretch
of non Newtonian long chain polymer, PIB, inside tirop, the drop shape, and the
local disturbance velocity field. In absence of@xheoretical predictions | cannot say

more than this.
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Figure 40: Transient behaviour of the deformaticargmeter D normalised with
respect to the steady value vs. non dimensionaé.tibrop fluid is D4, with
p=1.1, A=1.
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Figure 41: Micrographs of the drop evolution of kig 40, submitted to Ca=1.1.

The second type of transient phenomenon considarétkiexperimental section
was the relaxation of the drop from a stationarfodeed shape after the shear flow
cessation. Only the drop relaxation from a littlefamed shape (D<0.2) was
investigated. The relaxation of drops from the sanm#al deformation,Ca= 0.1land
D C 01, for different p, is reported in Figure 42 by pilng the Taylor deformation

parameter normalised with respect to the steadyevaks as a function of the non
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dimensional time ttm Figure shows that as the p parameter increasesethxation
time decreases. So the drop elasticity inhibitsaltaxation. Unfortunately no models or

theoretical predictions are now available to unders the experimental data.

p=0

p=0.7
p=1.2
p=24

S > O e

001 T T T T T T T T

t*a/nc'R,

Figure 42: Drop relaxation for different drop syste Di, with the same initial
deformation (Ca = 0.1). Newtonian case is also néed (p = 0).

5.2.3 Transient evolution of drop shape for sub criticapillary number and
drop break-up.

In Figure 43 non dimensional major and minor akgx/R and Ryn/R, as well

as the deformation parametegdat the steady state, are plotted versus thelaapil

number and the Weissenberg numbﬁh’,=rRDS, for the drop D4, comparing the
experimental data with the non Newtonian seconderortheoretical predictions.
Viscoelastic drop display a less deformed shapk mspect to the Newtonian case for
high Deformation parameters. Moreover it needsrdeudine that the drop reached a
stable shape up to capillary around 1, while wedl known in literature that the critical
capillary value for Newtonian systems is almosi80a#A=1. The capillary number, at
which the drop D4 has been broken, was 1.4 c.dalliws that the dispersed phase

elasticity hinders drop breakup. It was beforesiitated in Figure 41 some micrographs
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of the drop D4 evolution at Ca = 1.1, and it wasaclthat no break-up occurred.
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Figure 43: Major (¢ full symbols), minor axis (o ep symbols) and Taylor
parameter Rsat steady state of the deformed drop observedgtbe vorticity-
axis of the couple of fluids D4, = 1, p = 1.1. Comparison with the theoretical
predictions.

In the micrographs of Figure 43 and Figure 45 thaps temporal-evolutions of
the drops D4\ =1 and p = 1.1, and D%,= 2.6 and p = 0.85, are exposed, respectively
observed along the vorticity and velocity gradiaris, submitted to an high capillary
number, 1.38 and 1.30 respectively. After haviragtet the flow, drops quickly left the
ellipsoidal shape (micrographs 2 — b), they weretshed forming a system of two
drops joined by a thread, that avoided their sdjmaraluring the start up of the flow
(micrographs 3 — c). The final part of drops extemshas been characterized by a
thinning of the thread, an increasing of the twdreaxe drops’ dimensions and an
inversion of the orientatiof of the drop-thread-drop system with respect tostear
plane (micrographs 2,3,4 - b,c,d). Under these itiond the long thread that links the
two drops is like a rigid rod, whose rigidity isalto the extension of the high molecular

weight PIB macromolecules dispersed inside the drapto an elongation component
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of viscosity. The inversion of the orientatidhcaused a change of the sign of the
relative speed between the mass centres of thesigtem’s extremities, with a
consequent approach (micrograph 4 - e), collismitrograph 5 - f) and partial or total
coalescence of the two drops (micrograph 6 - g¢aBse the shear stress induced by the
flow on the drop D4 was “high”, the two extremityeghs were again moved away from
each other (micrograph 7), realizing a second sempef extension - inversion -
collision and partial coalescence (micrograph M,810). Also in this case, during the
extension time the thread kept the two drops tagetavoiding their separation. The
drop D4 (Figure 44) was submitted to a capillai38lclose to the critical one (1.4) and
three big damped oscillations of the maximum lengfthhe drop-thread-drop system
occurred. The flow was interrupted because it washed, in both cases, the maximum
run of the parallel plates apparatus, that was stini® cm, without any breakup
occurred. This phenomenon has been named “Yo-Yabiigy”. It occurs from a
certain capillary number and it always precedeshifeakup of the viscoelastic drop,
characterized by p>1. The breakup occurs with tekaptiearance of the thin thread that
links the two extremities, during one of the seaq@snof extension, inversion and
collision of the system drop-thread-drop. On tHeda&le of Figure 44 the major length
evolution of the drop-thread D4, /R, is plotted versus the non dimensional time
t/tem at three different runs with capillary number€8) 1.28 and 1.38. In the graph of
Figure 44 is shown that for shear flows with higldtodynamic stresses, Ca=0(1), the
shape transient of the drop before the steady s&stehing is characterized by a
sequence of damped oscillations of the non dimeasimajor length, that correspond
to drop shape oscillations, as discussed before aimf@itude and the number of these
damped oscillations increase with the capillary hamas shown in the graph of Figure

40 and Figure 44, up to observe the Yo-Yo phenomemal they depend on the degree
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of elasticity (p) of the drop. The oscillations atesent for Ca <<1 or for p almost zero
(Newtonian case). This shows that the dispersedepdlasticity plays an important role

on the drop evolution when Weissenberg number aradr 1.
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Figure 44: Micrographs of the drop evolution D4, p4, A=1, submitted to
capillary 1.38 and the corresponding measure ofnba dimensional major axis.
On the graph the evolution ofyRx/R for capillary numbers 0.08 and 1.28 are
also reported.

Figure 45: Micrographs of the drop evolution D5, 85,1=2.6, submitted to
capillary 1.30, observed along the velocity gradidirection of the shear flow.

In Figure 46 is showed the disappearance of the ttiread that linked the two
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drops-extremities during the Yo-Yo evolution foretlsystem D4 at Ca = 1.4. Our
experimental campaign demonstrated that this situatas hard to reproduce perfectly.
Indeed the number and the amplitudes of the daropeitlations, before the break-up

occurred, might be different.

Figre break-up. =1.4. |

It is important to underline that the Capillary valbich drop break-up occurred
after the Yo-Yo evolution for system D4 was 1.4.efidfore, as illustrated in the
previous section for a Newtonian drop under thesflew of a non Newtonian matrix,
phases non Newtonianness hinders drop break-up.

The break-up critical capillary number was deteedinas discussed in the
previous section, by performing a set of runs atdasing shear rate until break-up
occurred. If steady state deformation was reaclager the Yo-Yo, the flow was
stopped and the drop was allowed to relax backdspherical shape before starting the
next run. Drop break-up always occurred during flosv. With this protocol, |
identified Cg, inf. and Cg sup, or in other words, the interval in which trdical
capillary number is contained.

In Table 3 the inferior critical capillary numbeZd;, inf) and the superior critical
capillary number (Casup) are reported for the systems D2 and D4 atdifferent p
parameters, at = 1. The Newtonian critical capillary number is@feported.

It is confirmed that drop elasticity hinders bragk-and this effect becomes

important when the p parameter assumes values rhtgha one. We noticed in the
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previous section for a Newtonian drop immersed iatwiscoelastic matrix that the
maximum increase of critical capillary number meaduwas 50% ca. when the p
parameter was increased to 5Mat= 0.6 or to 10 ca ah = 2. While now,_for a

viscoelastic drop the maximum increase of criticabillary number with respect to the

fully Newtonian case is almost 300% when p paranistmcreased to 1.1 at=1

p Car Cacr
Inferior Superior
0 / 0.48
0.7 0.65 0.66
1.1 1.38 1.40

Table 3: Critical capillary number as function of p
5.3 Final remarks

The first result of this section was the definitioha protocol to produce a non
Newtonian model liquid-liquid dispersion with a abant-viscosity second order drop
phase.

For the fist time the experimental validation ofe thheoretical predictions
concerning non Newtonian drop stationary shape #tdmmto a slow shear flow was
achieved. | have presented the first complete eisstic drop shape 3D analysis at
steady state. Two viscosity ratio were consideked, andA=2.6. Drop deformation, as
observed along the vorticity axis and the velogitgdient direction, for “slow” flows is
essentially unaltered with respect to the fully M@awan case. Moreover the agreement
between the experimental results and theory pliedgtwas good in a wide range of
Capillary number. This feature confirms that theaBrdeformation limit can be studied
to evaluate interfacial tension of viscoelastizidiliquid dispersions. | exposed that the

interfacial tension can be determined by rheo-apticeasurements of the deformation
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parameter D as a function of the shear rate inlittear regime, observing the drop
along the vorticity axis direction. On the othemtaby looking at the results on the
projected axis R the interfacial tension can be measured alsogutie top view
experiment, that is very easier to be realizedNifis known. Finally a complete drop
shape 3D analysis can lead to knowledge of thelogeal drop phase viscoelastic
properties.

Viscoelastic drop dynamics was also investigatedindustart up and after
cessation of the shear flow. At high capillary nerg(Ca>0.3) drop deformation goes
through an overshoot and a subsequent slight umaletrsluring which the drop changes
its orientation with respect to the flow directiomhe entity of this phenomenon
increases with Ca and p up to observe the “Yo-¥ataipility” at high, but sub-critical
capillary numbers.

The results presented, concerning drop evolutiomgt capillary number, allow
to conclude that drop elastic content changes tbakbup mechanism and hinders drop
break-up, when compared with the equivalent fulgwibnian system. This was found
at viscosity ratio 1 and was quantified by meagutime critical capillary number as a
function of the p parameter. The maximum increasecrdical capillary number
measured was 300% ca. when the p was increase tal.

Finally it was underlined that drop elasticity uihces the relaxation time of the
drop from a stationary deformed shape after tharsth@wv cessation.

As described by S. Guido et al. (2003) these resark also useful in evaluating

non Newtonian effects for liquid-liquid dispersiprocessed in industrial application.
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Wall effects on drop deformation under simple sheaflow

This section illustrates the influence of confinetren the steady state of a single
drop sheared between parallel plates, in a reginteene the droplet diameter is
comparable with the gap width, comparing the experital data with some theoretical
predictions. Drop high deformations were also iniggted as a function of the

confinement. A single drop model system with Neatophases was considered.
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6 Wall effects on drop deformation under simple shear
flow

Acknowledgements

| wish to thank Eng. Gilberto Pasquariello as cokeo and for his great
experimental support during this difficult expermt& campaign. Some results of this
section are taken from the poster presented atAtheual European Rheology
Conference 2005 in Grenoble: Sibillo, Vincenzo; &me, Marino, Guido, Stefano;

Pasquatriello, Gilberto Wall effects on drop deformation under simple shizay’.

Keywords: Drop dynamic, wall effect, microfluidéhear flow, microscopy.

6.1 Introduction

In this section | will present briefly, some resuttbtained during the last year of
my Ph. D. on the influence of confinement on theady state morphology of a single
Newtonian drop sheared between parallel plates@giane where the drop diameter 2R
is comparable to the gap width, d.

The regime where drop diameter 2R and gap widtreccamparable, where wall
effects influence drop dynamic and shape, is nbtws understood. On the other hand
many attractive technological applications deperat @n the fluid-dynamic behaviour
of liquid-liquid dispersions flowing through microgpic devices, where chemical
reactions or particles interactions can be comdollith a micro metric accuracy.

On the market we can find some miniature devicds mbpump, to mix, to check
small volumes of liquid-liquid dispersion, i.e. poler blends, emulsions for food
industry, cells suspensions etc., where a knowledgeerning the micro fluidic or the

micro-scale processing of emulsion is fundamental.
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For example the bioanalyzer illustrated in Figuveigla highly successful micro
fluidics-based platform for the analysis of DNA, RNproteins and cells. It can analyze
cells treated with medicines. Cells train is dritkrough a micro channel by using two
converging laminar flows. Optical analyzers canrta@and characterize fluorescent cells

one by one.

]

Figure 47: Bioanalyzer.

Diluted polymer blends can be used as model systenfgetter understand the
behaviour of a liquid-liquid dispersion subjectedcbnfined flow. Sori® has recently
reported some important results concerning a palgmemulsion composed of
polyisobutylene (PIB) and poly(dimethylsiloxane)D(AS), sheared between parallel
plates in the regime where droplets diameters grealeto gap width2R=d. He
observed the formation of stable strings, creatgdhle coalescence of the dispersed
phase during the shear flow. He found that thesttem from the droplet to string

morphology is governed by the ratio R/d. He alsonfb that the Rayleigh-Tomotica

*0Youngoon Son, Nicos S. Martys, John G. Hagerdod,Kalman B. Migler, “Suppression of
Capillary instability of a polymeric thread via pdel plate confinement”, Macromolecules, 35, 5825-
5833, (2003).
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break-up is suppressed by both finite size effiecthe case of wider strings, and by
shear confined flow.

The deformation of a drop near a plane wall wassictemed theoretically by
Shapira and Hab®r Using the method of reflections they found thhe twall
confinement exacerbates the deformation of the.drbfs was confirmed by numerical
results of Kennedy et al. (1994) They found that the general behaviour of the dsop
similar to that of drops in an unbounded shear fldwt with slightly larger
deformations and lower angles of orientation agitiop are placed closed to the wall.

Briefly, when a shear field with no confinemeningposed on a Newtonian drop
(d>>2R), interfacial tension effects tend to keke trop spherical, while shear stress
tends to deform it. Up to moderate deformation, sheady-state drop shape is well
described by an ellipsoid having three differenesaxincreasing the shear rate the
droplet continues to deform itself until the intarial tension effects are not able to
balance the shear-stress-induced deformation aewl tine droplet breaks up. Drop

deformation, its orientation with respect to theafldirection and break-up phenomenon
depend only on the dimensionless Capillary numbar e y%’ (wherenc is the

matrix viscosity, ) is the shear rate, R is spherical droplet radngscais the interfacial

tension of the system) and on drop to matrix viggostio 22 (Taylof®, Grac,
C

1 M. Shapira and S. Haber, Lew Reynolds number maifa droplet in shear flow includin wall
effect. Int. J. Multiphase Flow 16, 305 (1990).

*2M. R. Kennedy, C. Pozrikidis and R. Skalak, Motard deformatio of liquid drops and the
rheology of dilute emulsions in simple shear flé&amputer Fluids Vol.23, No.2,pp.251-278, (1994).

%3 Taylor, G. 1., “The formation of emulsion in dedible fields of flow”, Proceedings of the Royal
Society of London: A, 138, 41-48, (1934).

> Grace, H., “Dispersion phenomena in high viscositsniscible fluid system and application of
static mixers as dispersion devices in such systedimemical Engineering Communications, 14,
225-277, (1982).
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Guido et af®, Rallison J. M°, C. Chaffey et al’). Above a certain value of Ca drop
becomes unstable and the corresponding Ca is kaswhe Critical Capillary number
Cac;, which is a function only of the viscosity ratho Critical Capillary number for

viscosity ratio equal to 1 is almost 0.48 (Grac882). Drop deformation can be

evaluated using the deformation parameter D intwedufor the first time by Taylor,

D= M, where Riax and Ryn are the major and minor axes of the deformed
RMAX + MIN

ellipsoidal drop observed along the vorticity adisection of the shear flow (side view

experiment). It is well known that D depends lingasn Ca in the limit of small

deformation, without walls confinemerd, = Ca 1Zj :iz Taylor(1934).

In this section | investigated single Newtonian mteehaviour immersed into a
Newtonian matrix, with drop to matrix viscosity iatl, submitted to a simple shear
flow in the regime where drop diameter is comparabl gap width,2R=d. A new
non dimensional parameter was considered, d/2Relyanon dimensional gap, to
quantify the effect of the confinement on the ddgformation. Wall effects on drop
shape were studied by performing a set of runsdticing d/2R, starting from not
confined regime.

We will focus on the drop deformation at steadytestaithin the limit of small
deformations, Capillary number lower than 0.2, &snation of d/2R, comparing for the
first time experimental data with theoretical padins of Shapira-Haber, Taylor and
with the second order Newtonian theory. Drop dymamat start-up will be briefly

explored as function of non dimensional gap, d/ZRop shape at high Capillary

* Guido, S., Villone, M., “Three dimensional shag@alrop under simple scorrimento flow”,
Journal of Rheology, 42, 395-415, (1998).

% Rallison, J. M., “The deformation of small viscalr®ps and bubbles in shear flows”, Annual
Review of Fluid Mechanics, 16, 45-66, (1984).

°"C. Chaffey, H. Brenner and S. G. Mason, Partiaiéions of sheared suspensione XVIII. Wall
migration (Theoretical). Rheol. Acta 4, 64 (1965).
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numbers will be finally illustrated.

6.2 Materials and methods

The fluids used in this work were two Newtonianywoeérs, polyisobutylene (PIB)
as matrix phase and polydimethylsiloxane (PDMSHig phase. In all experiments
drop to matrix viscosity ratio was 1. All the exjpeents were performed at room
temperature, 23°C. For sake of brevity | don’t shineological data for the PIB and
PDMS samples. For both matrix and drop phase, shéar rates around T siscosity
is essentially constant with the shear rate. Tiseogity at 23°C i83.3Pals for PIB
and83.1Pals for PDMS.

The shear device used in this work has been wstirdeed by Guido and Villone
(1998) and illustrated in the material and methsettion.

The experimental apparatus essentially consisésaaiuple of parallel glass plates
mounted on motorized supports and of an opticalresmpe, Axioscop FS (Zeiss)
equipped with an analogical CCD camera. Sheared Waspobserved only along the
vorticity axis direction of the shear flow (sideew experiment). The two axesuk
and Ry of the ellipsoidal drop, major drop length L ahé &ingled between the major
axis Ryax and the velocity direction (see the schematic drgwun the Materials and
methods section) were calculated. L is equal igxRwithin the limit of small
deformations and without confinement effects, al ivastrated by Guido and Villone
(1998).

After loading matrix phase between the glass pargllates, a single drop of
PDMS was injected in the sample by using a tiny gtagsllary, fixed on an homemade
micromanipulator. The parallelism accuracy wasnestied to about 1(um over the
whole plate length. Gap width was gently reducednduthe experiment to vary non

dimensional gap d/2R, taking care of avoiding dsqpeezing out of the parallel plates.
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A sets of runs at different d/2R were carried &atn d/2R=9 up to d/2R=0.5.
The interfacial tension of the couple of fluids Heesen calculated from the slope
of the linear fit of D at steady state versus theas rate, within the limit of D<2, and

d/2R>7 to be sure that wall effects were negligiok2.4 mN/m.

6.3 Results

Images of the deformed drop at steady state (Ca=fbd different non
dimensional gap values, d/2R, are reported in Eig®. Deformation parameter D as a
function of d/2R is also reported at Ca=0.1 and @C2~ Experimental data are
compared with the predictions of Shapira-HabersItlear, as predicted by Shapira-
Haber and Kennedy et al, that within the limit ofadl deformations, drop shape and its
orientation angle at steady state don’'t dependhendoseness of the walls up to
d/2R=2. Below d/2R=2 drop steady shape, the orilemangle and its non dimensional
major length change drastically. As predicted bypBlaaHaber the presence of the wall
exacerbates the deformation of the drop. Theotepcadiction underestimates the
increase of the deformation parameter D, becaudeegn't predict the deviation of drop
shape from the ellipsoidal one, when d/2R is ckas&. Major and minor axes,\RRx
and Ry, are reported in Figure 49 as a function of the diomensional gap d/2R, at
Ca=0.2. Shapira-Haber theoretical prediction is atsmrted. As previously discussed,

drop major and minor length don’t change up to diomensional gap 2.
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Figure 48: Images of the deformed drop at steadyesas a function of d/2R, at
Ca=0.1. Experimental data are compared with preins of Shapira-Haber at
Ca=0.1 and Ca=0.2.
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Figure 49: Major and minor axis at steady stateaafunction of d/2R, at Ca=0.2.
Dashed lines are predictions of Shapira-Haber.

In Figure 50 the drop orientation andeversus d/2R is reported at Ca=0.1 and
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Ca=0.2. The angle of orientation is also remarkafilyenced by the reduction of the
gap width. As consequence of the confinement dropgrpssively increases its
alignment to the flow direction.

The Shapira-Haber theory is a first order analytsmdltion of the hydrodynamic
interaction between the drop immersed in a sheav tind the containing walls. It
predicts that the orientation angle is always 4Bierefore in absence of an exact
theoretical prediction of the orientation angleadsinction of the confinement, a simple

regression of the experimental data has been peEserusing the equation,

3
0= [El—a(?j } whereBrayior IS the experimental orientation angle at steady

state for d/2R>>2 or in absence of confinementcgffe
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Figure 50: The drop orientation angl@vs. d/2R, at Ca=0.1 and Ca=0.2. Lines

3
were obtained by fitting the data using the equattd= &, E{l—a{?j }

In Figure 51 the deformation parameter D and mangth of the drop at steady
state are reported as a function of the Capillampler and for different values of d/2R.

It is clear that the deformation of the drop insesmas consequence of the decrease of
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the non dimensional gap. However, D data don't lekt@ny deviation from linearity
within the explored range of Ca.

It's important to notice that drop shape at stestdye seems not to be influenced
by the closeness to the walls up to d/2R~2, as pusly observed in Figure 48 and
Figure 49. | would to underline that, for Ca=0.3 a@#2R=1, drop length is almost 40%
higher with respect to not confined case, and dilagpe is not more ellipsoidal (see

micrographs of Figure 53).
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Figure 51: Deformation parameter D and non dimemsiblength L/2R vs. Ca, at
various d/2R.

In Figure 52 the orientation angle is reported amation of the Capillary number

for different non dimensional gap values. As obedrin Figure 50, as consequence of
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the confinement, drop progressively enhances ign@ent to the flow direction.
Probably this is due to a pressure difference frieenwalls to the drop during the shear
flow, caused by the crushing of the flow lines bextw drop and wall.

It is important to underline that drop pushed by walls is closer to the velocity
direction with respect to the Newtonian case withmnfinement, as a non Newtonian
drop sheared into a Newtonian matrix (see preveéaaesion) or vice versa. In fact Guido
et al. (2003) demonstrated that a Newtonian dromensed into a non Newtonian
matrix displays a stronger alignment in the flowedtion respect with the fully
Newtonian case. They explained that this behawias due to the first normal stresses
difference, N,of the viscoelastic phase, which is a pressurfereiice. So we can argue
that drop generally tends to align itself to thewfldirection if a pressure difference is

present.

50
d/i2R
® 02
—o0— 2.0
40 A 15
—v— 13
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30 —— Chaffey, Brenne
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0 T T T T
0.0 0.1 0.2 0.3 0.4 0.5
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Figure 52: The drop orientation anglévs. Ca, at various non dimensional gap
width d/2R.

Here images of the drop subjected to Ca=0.3 atdgtstate are presented for
different non dimensional gap. All results previgudlustrated are now confirmed at

high capillary number. Drop shape and its orieatathange drastically when d/2R is
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lower than 2. In Figure 53 drop length time-evalutis also reported. It is clear that
drop transient also change drastically when drapseriess to the walls becomes
significant. It is important to underline that drefart-up at d/2R=1 is characterized by
an overshoot. Probably this phenomenon is due talithg of the drop, caused by the

walls during the initial time of the flow, when grds still in contact with them.

-d/zé =2 i

Stead state at Ca=0.3
With decrease of non
dimensional gap

0 20

Li2R |

0 100

to/ncR, d/2R=1.3 e d/2R=1

Figure 53: Images of the deformed drop under stesldgar flow at Ca=0.3, for
various non dimensional gap width d/2R. Drop lengtime-evolution is also
reported.
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