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Abstract 

A complete three-dimensional shape of an isolated drop in an immiscible liquid 

phase undergoing simple shear flow with non Newtonian fluids was investigated by 

contrast-enhanced optical microscopy. Drop was observed either along the vorticity 

direction or along the velocity gradient direction of the shear flow. The effects on drop 

deformation and break up of the viscoelastic content of the liquid phases were 

investigated. Two situation of a viscoelastic matrix with a Newtonian drop and of 

viscoelastic drop in a Newtonian matrix are considered. When possible my data are 

compared with theoretical or phenomenological predictions. Finally I investigated also 

the influence of confinement on the steady state of the drop in a regime where drop 

diameter is comparable to gap width between the shearing parallel plates. 
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Summary 

The objective of this PhD thesis is to investigate the flow-induced microstructure 

of viscoelastic liquid-liquid dispersions, to better understand the influence of viscous 

and elastic properties on droplets shape during the shear flow, using a single drop model 

system. The main objective is to well understand the relationship between the flow, 

phases rheological properties and droplet shape, in order to provide basic guidelines on 

how to control flow-induced microstructure of synthetic “real” polymer blends during 

blending industrial processes. 

The stated objective passes through the selection of a single drop model system 

with non Newtonian highly elastic matrix or drop phase, with appropriate rheological 

properties, in order to separate elastic and viscous non Newtonian effects on drop shape. 

In addition the hydrodynamic problem of drop subjected to flow becomes more 

complex in the case in which one or both the component fluids are viscoelastic. The 

choice of non Newtonian fluids with an appropriate constitutive equation is necessary, 

that allows to get results of general validity. A theoretical or phenomenological drop 

shape characterization is also necessary to well interpret the experimental results. 

For a fully Newtonian system the influence of confinement on drop shape is also 

investigated to present a complete analysis of flow induced droplet morphology. 

To this porpoise, constant viscosity, elastic polymer solutions (Boger fluids) were 

used as viscoelastic phase. These fluids have a constant viscosity with a second order 

rheological behaviour, so that it has been possible to isolate the contribution due to the 

only elasticity on the drop deformation and to get results valid for all viscoelastic 
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“Second order fluids”. For the first time, two properly chosen “inverse” non Newtonian 

systems are considered, namely, a Newtonian drop immersed in a Boger fluid, and vice 

versa. 

Non dimensional parameter 2
1

2 η
σ

R
p

Ψ= , where η and Ψ1 are the viscosity and the 

first normal stress coefficient of the viscoelastic fluid respectively, σ is the interfacial 

tension, R is the undeformed drop radius, has been used to quantify the weight of the 

elasticity content of the fluids on the flow-induced drop deformation. This parameter 

introduced for the first time by Leal (2001)1, and formalized by the theory on the steady 

state drop shape in slow flow with non Newtonian second order fluid ,Greco (2002)2, 

can be interpreted as the ratio between constitutive relaxation time of the viscoelastic 

phase 
η

τ
2

1Ψ=R  and emulsion time 
σ

ητ R
em = . Drop flow-induced deformation has been 

also studied as a function of the Capillary number, 
R

Ca C

σ
γη
⋅

= , where ηC is the matrix 

phase viscosity, 
⋅

γ  the shear rate and the drop to matrix viscosity ratio 
C

D

η
ηλ = . 

In the case of Newtonian single drop immersed into a viscoelastic matrix, drop 

dynamics at start-up and after flow cessation of shear flow is investigated at a fixed 

viscosity ratio, comparing the data with predictions from two recently proposed 

phenomenological models. A very precise characterization of drop shape is achieved 

during transients, to catch fine details of the transient dynamic. Briefly, drop evolutions 

at start-up and after flow cessation are quite different with respect to the fully 

Newtonian case. 
                                                           

1Tretheway D. C., Leal L. G., “Deformation and relaxation of Newtonian drops in planar 
extensional flows of a Boger fluid”, J. Non-Newtonian Fluid Mech. 99 (2001) 81–108. 

2 Greco F.. “Second-order theory for the deformation of a Newtonian drop in a stationary flow 
field”. Phys. Fluids, 14, (2002) 946-954. 
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Moreover the effect of matrix elasticity on the break-up of a sheared Newtonian 

drop will be presented. In this case three drop to matrix viscosity ratio were explored, in 

order to well understand the role of the elasticity and viscosity on drop dynamic. An 

accurate determination of the shear stress at break-up (Critical capillary number) as a 

function of the matrix elasticity content (p parameter) is here presented. 

When one or both the component fluids are non Newtonian, the fluid-dynamics of 

the drop become complex. Authors who studied viscoelastic systems generally used 

polymeric melts, which are also shear thinning. As a consequence a clear identification 

of separate elastic and viscous non Newtonian effects on drop break-up was in fact non 

achieved. By using Boger fluids, conversely, this difficult can be overcome, also 

because of the absence of any sear thinning. Even though I have used model fluids in 

this work to reproduce non Newtonian polymeric blends, I think that my analysis can be 

also relevant for “real” blend under shear flow. 

For what concerns the system of non Newtonian drop immersed into a Newtonian 

matrix, a complete drop shape 3D analysis was achieved, focusing the attention on the 

drop behaviour for high hydrodynamic shear stresses; drop elastic content changes the 

break-up mechanism and hinders drop break-up, when compared with the equivalent 

fully Newtonian system. Single drop dynamics was also investigated during start up and 

after cessation of the shear flow. Moreover, a new method to obtain a non Newtonian 

polymer blend with constant viscosity Boger dispersed phase will be illustrated. 

Finally I investigated the influence of confinement on the steady state drop shape 

sheared between parallel plates in a regime where drop diameter is comparable with gap 

width using a fully Newtonian drop-matrix system. It was observed that the closeness to 

the walls exacerbates the deformation of the drop. Moreover the drop pushed by the 

walls is closer to the velocity direction with respect to the Newtonian case without 
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confinement. 

1 Introduction 

Immiscible liquid-liquid suspensions, such as emulsion, polymer blends, are very 

often encountered in nature and industrial processes, so the understanding and control of 

their structure and flow properties is of great importance. It is well known that many 

physical properties of these systems, called “complex fluids”, are strongly influenced by 

their morphology, exactly by the mean droplets size, inner phase shape and the degree 

of dispersion. The knowledge about the effects of the flow, to which these systems are 

submitted during the industrial processes, on their morphology becomes a critical aspect 

to control the properties of the finished product. This has generated a basic scientific 

interest in the fluid-dynamics of these liquid-liquid suspensions. It is almost obvious 

that flow-induced single drop deformation and its breakup, as well as coalescence, are 

the primary mechanisms responsible of the inner phase shape, droplets size distribution 

and complex rheological behaviour of a liquid-liquid dispersion submitted to flow. The 

dynamic of an isolated sheared drop can be regarded as a sort of elementary event, 

which can provide some interesting knowledge to better understand the complex 

rheological behaviour of flowing dispersion of drops. So a rather literature is dedicated 

to the single drop system, which is summarized in several reviews (J.M Rallison, 

(1984)3; H.W. Stone, (1994)4; S. Guido and F. Greco, (2004)5). The majority of the 

research papers has been focused mainly on purely viscous Newtonian systems (i.e. 

dispersed and continuous phase liquids are Newtonian and do not exhibit any 

measurable degree of elasticity). On the other hand only few investigations can be found 

                                                           
3 Rallison, J. M., “The deformation of small viscous drops and bubbles in shear flows”, Annual 

Review of Fluid Mechanics, 16, 45-66, (1984). 
4 Stone H A (1994) Dynamics of drop deformation and breakup in viscous fluids. Ann. Rev. Fluid 

Mech., 26, 65-102. 
5 S. Guido and F. Greco, “Rheology Review 2004”, BSR Aberystwyth, UK 2004. 
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in the literature, which are devoted to the non Newtonian case, in spite of its practical 

relevance. In many experiments, moreover, the fluids investigated include both 

viscosity and normal stress “thinning” with the flow rate (Mighri F, (1998)6; Elmendorp 

J. J: (1985)7; Flumerfelt R W, (1972)8). So a clear identification of separate elastic and 

viscous non Newtonian effects had not been obtained and a full 3D characterization of 

drop shape for a viscoelastic system is still lacking. There are only a few predictions of 

non Newtonian effect on drop morphology. By using constant viscosity Boger fluids I 

overcame this difficulty. Moreover, recently some progresses have been made both on 

the experimental and theoretical side (Guido et al.(2003)9; Greco F. (2002)10. So it has 

been possible to estimate viscoelastic effects on dynamic of the drop submitted to a well 

defined flow. A perturbative calculation of drop shape submitted to a “slow” flow has 

been developed for second order non Newtonian fluids with constant viscosity by F. 

Greco (2003). Drop shape in shear flow with viscoelastic fluids is governed by the non 

dimensional Capillary number 
R

Ca C

σ
γη
⋅

= , where ηC is the continuous phase viscosity, 

⋅
γ  the shear rate, σ the interfacial tension of the couple of fluids and R is the spherical 

drop radius and by the drop to matrix viscosity ratio 
C

D

η
ηλ = , as for the fully Newtonian 

case, and by another non dimensional parameter 2
1

2 η
σ

R
p

Ψ= , where η is the viscosity of 

                                                           
6 Mighri F, Carreau P J and Ajji A (1998) Influence of elastic properties on drop deformation and 

breakup in shear flow. J. Rheol., 42, 1477-1490. 
7 Elmendorp J. J. and R. J. Maalcke, “A study on polymer blending microrheology. 1” Polym. 

Eng. Sci. 25, 1041-1047 (1985). 
8 Flumerfelt R W, (1972) Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. 

Chem. Fundam., 11, 312-318. 
9 Guido S, Simeone M and Greco F, “Deformation of a Newtonian drop in a viscoelastic matrix 

under steady shear flow. Experimental validation of slow flow theory”, J. Non-Newtonian Fluid 
Mech., 114 (2003) 65-82. 

10 Greco F.. “Second-order theory for the deformation of a Newtonian drop in a stationary flow 
field”. Phys. Fluids, 14, (2002) 946-954. 
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the second order fluid and Ψ1 is the first normal stress coefficient. This parameter p 

introduced for the first time by Leal, can be easily interpreted as the ratio between 

constitutive relaxation time of the viscoelastic phase 
η

τ
2

1Ψ=R  and emulsion time 

σ
ητ RC

em = . With a few words theoretical analysis predicts that viscoelastic effects 

come to play a significant role when p>1. When necessary, during this thesis I will 

recall theoretical predictions for a rapid comparison with the experimental results. 

This thesis is organized as follows. First I will speak briefly about the materials 

and the experimental apparatus used. 

I will illustrate drop dynamics at start-up and after cessation of shear flows, 

comparing the data with some phenomenological models predictions. Drop break-up 

phenomenon will be also investigated. In both cases a model system with a non 

Newtonian highly elastic continuous phase and a Newtonian drop phase was 

considered. 

Then a complete 3D analysis of the shape evolution of a single viscoelastic drop 

(Boger fluid) immersed in a Newtonian matrix and subjected to shear flow was 

performed as a function of the drop elastic content. Drop break-up mechanism will be 

also illustrated. 

Another important aspect to be analysed, to understand and control the flow-

induced microstructure of a liquid-liquid dispersions, is the effect of the confinement on 

the drop shape in the regime where drop diameter is comparable with gap width. This is 

a first step to better understand the shape evolution of a single drop flowing into a 

dispersion of droplets, where drop is submitted to the confinement of many other 

droplets. In this case a single drop model system with Newtonian phases was 

considered. This problem was treated in the last section. 
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2 Experimental 

2.1 Materials 

Boger fluids were used as matrix and drop phase, in order to obtain a viscoelastic 

fluid with second order rheological behaviour and constant viscosity (
⋅

Ψ= 2
11 γN , where 

N1 is the of the first normal stresses difference and Ψ1 the coefficient). Viscoelastic 

fluid was carefully prepared in order to explore a wide range of the p parameter and of 

the viscosity ratio. Boger fluid was prepared by mixing a Newtonian polyisobutilene 

(PIB) sample (Napvis 10 and Napvis 30) with small amount of a high molecular weight 

grade of the same polymer, preliminarily dissolved in kerosene at the concentration of 

4% wt. The fluids used as viscoelastic dispersed phase and viscoelastic matrix phase in 

this work will be listed in the results sections with their rheological properties. Their 

preparation protocol will be also illustrated in detail. Newtonian phase is a simple 

silicone oil mixture (PDMS, polydimetisiloxane). 

Rheological data were obtained by using a constant stress rheometer equipped 

with a normal stress transducer (Bolin, CVO 120), in the cone and plate configuration. 

It was verified that viscosity of the Boger fluids were essentially constant in the range of 

the shear rate investigated (up to 20 s-1), and rather large values of the first normal stress 

difference were found. As an example, the rheological data of the Boger fluids used in 

the section 4 are show in Figure 12. The solid line is a fit to the first normal stress 

difference data in log scale. The slope of the fitting lines is equal to 2, in agreement with 

the assumption of second order fluids. The first normal stress difference coefficient Ψ1 

was calculated by fitting the data to a line f slope 2 in log scale. On the other hand, 

silicon oils mixtures were purely Newtonian fluids with a constant viscosity and no 

normal stress. 
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The fully Newtonian system used to explore the wall effects on the drop shape is 

constituted by a silicon oil drop immersed in a Newtonian PIB sample with low 

molecular weight. 

The interfacial tension of all the fluid pairs used in the experimental campaign was 

evaluated by applying the theory of Greco (2003) to data at steady state drop shape in 

shear flow. The method used every time will be briefly illustrated in the single section. 

2.2 Experimental apparatus 

The shear device used in his work is well described by Guido and Villone (1998). 

Simple shear flow was generated by a parallel plate apparatus. Two interchangeable set-

ups designed to observe drop deformation either along the velocity gradient direction or 

along the vorticity axis were used. Flow direction is parallel to the x-axis, the velocity 

gradient is along the y-axis, and the vorticity axis coincides with the z-axis. In the set-up 

used to look along the vorticity gradient (z-set-up or side view experiment) each plate is 

an optical glass bar of square section (100 mm x 5 mm x 5 mm) and is glued on a glass 

slide, which fits in a window cut on a rigid mount, as shown in Figure 1. In the other 

set-up, used to look along the velocity gradient direction (y-set-up), each plate, made of 

optical glass (100 mm x 50 mm x 6 mm), is glued in a window cut on a rigid mount, as 

shown Figure 1. In either set-up, one of the mounts is screwed on a set of two 

micrometric stages (Newport), for rotary and tilting motion. 
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Figure 1:The two arrangements of the parallel plates used in the experiments. (a) 
Set-up to look along the vorticity direction (z-set-up); (b) set-up to look along the 

velocity gradient direction (y-set-up). 

The whole assembly (mount and micrometric stages) is mounted on a 2-axes 

translating stage, equipped with two computer-controlled stepper motors (LEP). 

Minimum and maximum motor speeds are 0.0084 mm/s and 30 mm/s, respectively. The 

full travel in either direction is 100 mm, with a positioning accuracy of 5 µm. By using 

the 2-axes motorised stage one plate can be displaced along two perpendicular 

directions in the horizontal plane. Adjustment of either the tilting stage (z set-up) or the 

rotary stage (y set-up), with the aid of a stage micrometer, guarantees that the moving 

plate translates in its own plane. The mount supporting the fixed plate is screwed on an 

assembly of micrometric stages, including one rotary, two tilting and one vertical stage 

(Newport). The latter is used to set the gap between the plates. The rotary and tilting 

stages are used to make the fixed plate parallel with respect to the moving one by 

exploiting the reflections of a laser beam from the glass surfaces confining the sample. 

Parallelism was checked and further refined by focussing the glass surfaces with a 

microscope. In either set-up, the parallelism accuracy was estimated to about 10 µm 
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over the whole plate length of 100 mm, i.e. less than 0.01%. 

The sample was observed through a transmitted light microscope (Axioscop FS, 

Zeiss), equipped with a B/W CCD video camera (KP-ME1, Hitachi) and a motorised 

focus system (LEP). The microscope itself was mounted on a motorised translating 

stage (Newport), which was used to keep the deformed drop within the field of view 

during shear flow. In all the experiments, observations were performed in bright field, 

using long working distance optics (2.5x, 10x, 20x and 40x objectives, Zeiss). The total 

magnification was varied by using an additional lens holder (Optovar slider, Zeiss), 

with factors of 1.25x and 1.6x, and a zoom lens with a continuously adjustable zoom 

factor in the range 0.5 - 2.0x. The whole apparatus, which is shown schematically in the 

z-set-up in Figure 2, was placed on a vibration-isolated workstation (Newport). 
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Figure 2: Schematic view of the video microscopy workstation with the shearing 
device in the z-set-up. 

2.2.1 Sample loading and experimental protocol 

In either z or y set-up, once alignment of the glass surfaces was completed, the 

moving plate was driven apart from the fixed one by means of the motorised stage. The 

moving plate was then accessible to load the continuous phase, by carefully pouring it 

on the moving plate from a glass syringe. Care was taken to avoid air bubble formation. 

The moving plate was then approached again to the fixed one, until the desired gap was 

reached. Parallelism was checked again by using the microscope to measure the gap 

thickness at several positions, to see if some misalignment was introduced by squeezing 

a viscous fluid between the two plates. The small deviations possibly found, if any, 

were then corrected by using the micrometric stages. 

In the z-set-up, some edge effects coming from the confining surfaces of the two 

glass slides are expected. Such effects become negligible within a distance along z of 
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the order of the size of the gap between the two plates, as shown by de Bruijn for a 

Couette geometry (1989). To minimise edge effects, in all the experiments the gap 

between the plates was set at ∼ 0.5 mm. Besides, an experimental test of apparatus 

performance in the z-set-up was carried out by measuring velocity profiles in the x-y 

plane at several values of z. Such measurements were performed by tracking the motion 

of dust particles inside the sample. Velocity profiles were linear and independent of z, 

as expected for simple shear flow. 

After loading the continuous phase between the glass plates, a few drops of the 

dispersed phase were injected in the sample by using a tiny glass capillary (tip size: 

O.D. ~ 0.3 mm, I.D. ~ 0.1 mm), which had been obtained by pulling one end of a glass 

tube. Prior to use, the glass tube was filled with the dispersed phase and the end 

opposite to the capillary was connected either to a compressed air line or to a vacuum 

pump. By a judicious alternate operation of “push and pull” drops with diameters 

variable in the range 30-200 µm were generated. The glass tube was attached to a home-

made micromanipulator for a precise positioning of the capillary inside the gap. In the 

z-set-up, care was taken to generate isolated drops at about half-way distance between 

the two glass slides along the z-axis in order to avoid edge effects, as discussed above. 

After drop injection, the capillary was gently extracted from the gap. 

Drop diameter was always at least 5-10 times smaller than the gap, in order to 

minimise wall effects. As we will see next, I observed that, for an isolated drop, the 

effect of a wall is to generate an increase in drop deformation. Such effects decrease 

with increasing ratio d/R, where d is the gap width. The effects become negligible for 

d/2R above 5, a condition which was well satisfied in all the experiments presented in 

this work. 

Buoyancy effects were estimated by evaluating the non-dimensional quantity 
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γη
ρ∆
&c

gR
, representative of the ratio between sedimentation and shear velocity, where R is 

the radius of the drop at rest, ηc is the viscosity of the continuous phase and γ&  is the 

shear rate. According to Phillips et al. (1980), buoyancy effects are negligible when 

γη
ρ∆
&c

gR
 is less than 0.3. In this work, such quantity was at most 0.01, thus ensuring that 

drop deformation was not affected by sedimentation. 

After drop injection in the continuous phase between the parallel plates, the speed 

of the moving plate was set at the lowest value selected for the experiment (which was 

usually 0.01 mm/s). Motion was then started and the sample was sheared for a time long 

enough to reach a stationary drop shape. At this point, the flow was stopped and the 

drop allowed to relax back to the spherical shape. The whole sequence, including start-

up and retraction upon cessation of flow, was recorded on videotape for later analysis. 

Speed and travel of the moving plate were then progressively increased for each of the 

subsequent runs, until a stationary drop shape could not be attained anymore (a 

condition of incipient break-up). Due to the limited travel of the moving plate, flow 

direction was reversed from time to time. The overall magnification was decreased in 

the course of the experiment by changing zoom and objectives, to make it easier to 

follow drop motion at higher speeds. Reproducibility was assessed by repeating the 

experiment ex novo, i.e. starting from the preparation of fresh solutions of the 

biopolymers. Furthermore, drop phase and continuous phase were also inverted. 

Non Newtonian fluids and drop diameter were varied during the experimental 

campaign in order also to explore a wide range of p, that is a function of drop radius and 

first normal stress difference of the viscoelastic phase. 

2.2.2 Quantitative analysis of drop shape 
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Quantitative parameters representative of drop shape were obtained by an 

automated procedure based on image analysis techniques. Images of the deformed drop, 

captured by the CCD video camera and recorded on videotape, were digitised by an 8-

bit frame grabber (Spectrum, Imagraph) installed on a Pentium III host computer. 

Contrast was enhanced by adjusting gain and offset of the incoming video signal prior 

to digitisation. The images were analysed by a Visual Basic macro, exploiting standard 

image analysis routines provided by a commercial software package (Image-Pro Plus 

4.0, Media Cybernetics). The macro implemented an automated procedure of edge 

detection, based on maximisation of the contrast of the drop with respect to the 

background while preserving a closed contour. In the z set-up , the two axes a and b of 

the deformed drop (as observed in the plane of shear) and the angle θ between the major 

axis a and the velocity gradient direction (see the schematic drawing in Figure 3) were 

calculated for an equivalent ellipse (i.e., having the same area and first and second 

moments of area of the actual drop). 
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Figure 3: Drop as observed along vorticity axis and velocity gradient direction. 
Deformation parameters are also reported. 
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Morphology evolution of a Newtonian drop immersed into a 
viscoelastic phase under shear flow. 

First chapter of this section illustrates drop dynamics at start-up and after 

cessation of shear flows, comparing the data with some phenomenological models 

predictions, while second part is concerned about drop high deformations and break-

up. In both cases a model system with a non Newtonian highly elastic continuous phase 

and a Newtonian drop phase was considered. 
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3 Start-up and retraction dynamics 
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Maffettone, Pier Luca. “Start up and retraction dynamics of a Newtonian drop in a 

viscoelastic matrix under simple shear flow”. Journal of Non-Newtonian Fluid 

Mechanics. 

Keywords: Drop dynamics, viscoelastic matrix, Boger fluid, start-up, overshoot, 

retraction, shear flow. 

3.1 Introduction 

In this part, I will focus on transient dynamics. Specifically, I will describe the 

Newtonian drop dynamics at start-up and after cessation of shear flows in the case of a 

non-Newtonian external fluid. Experimental data are taken with the rheo-optical 

computer-assisted shearing device, allowing for drop observation under microscopy 

only from the vorticity direction of the shear flow, showed in the chapter “materials and 

methods”. A very precise characterization of drop shape along the vorticity direction is 

achieved, even at small deformations during transients. At a fixed viscosity ratio (drop 

to matrix viscosity is unity), I will show the effects of varying the flow rate (Capillary 

number), and of varying the “elasticity content” of the system. 

Transient behaviour of drop deformation at low shear rates will be illustrated in 

the first part of this section, and a comparison of these data with the predictions gotten 
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from two recently proposed phenomenological models of drop dynamics will also be 

illustrated and briefly discussed (Maffettone-Greco model - MG (Maffettone and Greco, 

2004)11 and the Yu-Bousmina-Zhou-Tucker model - YBZT (Yu et al., 2004)12). In spite 

of the fact that the phenomenological models were designed for the non-Newtonian case 

at low-to intermediate drop deformations, which is the case examined in the first part, 

fine details of the transient dynamics are not caught by the models. Rather, systematic 

discrepancies between data and predictions are found, as it will be discussed in the 

following. 

Finally, the start-up transient of drop deformation at high capillary numbers and 

with a fixed value of matrix elasticity will be briefly showed, focusing the attention on 

the new “overshoot phenomenon” of the deformation parameters, RMAX /R, RMIN/R and 

D, during which the drop enhanced its orientation toward the flow direction. Data will 

be compare with only MG predictions. It will be showed that the model performs 

adequately, giving quantitative predictions of the overshoot phenomenon up to a 

moderate drop deformation. 

3.2 Materials and methods 

Materials and experimental methods used to investigate drop dynamics upon start-

up and cessation of shear flow are the same used by Guido et al. (2003)13, and have 

been illustrated in the experimental section. Briefly, in all the experiments the matrix 

was a constant-viscosity elastic polymer solution (Boger fluid), and the dispersed 

Newtonian phase was a mixture of silicone oils (Dow Corning). The Boger fluids were 

prepared by mixing a Newtonian polyisobutylene (PIB) sample (Napvis 5, BP 
                                                           

11 Maffettone P. L. and Greco F., “An ellipsoidal drop model for single drop dynamics with non-
Newtonian fluids”, J. Rheol. (2004), 48, 83-100. 

12 Yu W, Bousmina M, Zhou CX, Tucker CL, “Theory for drop deformation in viscoelastic 
systems”, J. Rheol. (2004) 48, 417-438. 

13 Guido S, Simeone M and Greco F, “Deformation of a Newtonian drop in a viscoelastic matrix 
under steady shear flow. Experimental validation of slow flow theory”, J. Non-Newtonian Fluid 
Mech., 114 (2003) 65-82. 
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Chemicals) with a small amount of a high molecular weight grade of the same polymer 

(Aldrich), preliminary dissolved in kerosene at the concentration of 4% wt, as discussed 

in the previous section. 

The Boger fluids viscosity ηC was essentially constant in the range of shear rate 

investigated (
•
γ  up to 20 s-1), and rather large values of the first normal stresses 

difference N1 were found. Furthermore, the slope of N1 vs. shear rate 
•
γ  in log scale was 

equal to 2 within experimental error, showing that the Boger fluid used as external 

phase is in fact a “second-order fluid” at steady state. Rheological data for the 

viscoelastic matrix are: ηC = 6.6 Pa s and Ψ1 = N1/
2•

γ  = 3.5 Pa s2 at the temperature of 

the experiments (25°C). Concerning the drop fluid (i.e., the PDMS silicone oils), 

silicone oils were properly mixed to have a drop-to-matrix viscosity ratio of 1 at 25°C. 

For the so obtained mixture, the viscosity ηD was constant and no normal stresses could 

be measured within the instrumental sensitivity (Bohlin CVO 120) in the range 

investigated, thus confirming its Newtonian behaviour. The interfacial tension of the 

fluid pairs was measured by applying the theory by Greco (2002)14 to data of steady 

state drop shape in shear flow. The so obtained values were around 1.3 mN/m (more 

details can be found in Guido et al. (2003)). The “elasticity content” of the single drop 

system was quantified with the parameter 
2

1

η
σ

R
p

Ψ
= , that can be interpreted, as 

explained in the introduction, as the ratio between the constitutive relaxation time of the 

matrix fluid 
Cη

τ
2

1Ψ
=  and the emulsion time 

σ
ητ RC

em = . 

The parallel plate apparatus used to generate simple shear flow has been also 

                                                           
14 Greco F., “Drop deformation for non-Newtonian fluids in slow flows”, J. non-Newtonian Fluid 

Mech., 107 (2002) 111-131. 
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described in detail elsewhere by Guido et al. (2003). One plate was displaced with 

respect to the other by a 2-axis motorized translating stage. Observations along the 

vorticity axis of shear flow were performed by optical microscopy through a standard 

monochromatic CCD video camera. The deformed drop under shear flow was kept in 

the field of view by translating the microscope itself through a motorized stage. 

Drop diameter was at least ten times smaller than the gap (~1 mm), so that wall 

effects were negligible. Images from the experimental runs were both recorded on a 

videotape and stored on an hard disk after digitization by a frame grabber installed on a 

personal computer. At steady state, images were digitized during the experiment with a 

time step of a few seconds. To improve the temporal resolution during start-up and 

retraction and to compare with the good possible way experimental data with the 

phenomenological predictions, images were acquired offline from the videotape at 25 

frames per second. The maximum (RMAX ) and minimun (RMIN) drop axis in the shear 

plane (i.e., as seen from the vorticity direction) and the orientation angle θ were 

measured in each image by an automated image analysis procedure, based on an edge-

detection algorithm to identify the side-view drop contour. Transient behaviour of drop 

submitted to low shear rates, its steady shape and the comparison of these data with the 

two phenomenological models predictions were characterized only by the “deformation 

parameter” introduced by Taylor D=(RMAX -RMIN)/(RMAX+RMIN). The start-up transient 

of drop submitted to high capillary numbers was characterized by all the deformation 

parameters RMAX /R, RMIN/R, D and θ. Only the time evolution of D will be compare 

with MG-model predictions. 

Calibrated reticules were used to calculate the scale factors (micron/pixel) for the 

optics used in the experiments, and to correct for the small image distortions introduced 

by the CCD camera. But residual errors, which are also due to image digitalization, can 
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be estimated by the value of the deformation parameter D that is measured when the 

drop is in the spherical configuration at rest. In fact, due to image digitalization, the 

deviations from the theoretical value D = 0 depend on drop size in the image window 

(the larger is the size, i.e., the number of pixels delineating drop contour, the smaller the 

deviation). In the same experiment, the optical magnification and thus the apparent drop 

size in the image window was lowered with increasing the flow rate, to allow one of us 

to keep the drop in the field of view at higher speeds, translating the microscope by the 

joystick. The actual drop size was also changed from one experiment to the other in 

order to adjust the “elasticity content” of the system (as measured by the parameter p), 

which is very sensitive to drop radius. In particular, smaller drops had to be used to 

investigate higher elasticity. In the experiments presented in this work, the deformation 

parameter D at rest was around 5x10-3. Though small, such a deviation from 0 is quite 

evident in the analysis of drop retraction upon cessation of flow, especially when the 

data are plotted in a log-scale. Hence, a cut-off of 0.01 was used to remove data in the 

final part of drop retraction analysis. 

3.3 Drop dynamics models 

To compare our data with theoretical predictions, in the lack of the exact fluid-

dynamic solution for the single-drop non-Newtonian problem, two models of drop 

dynamics have been chosen, namely, the Maffettone-Greco (MG) (Maffettone and 

Greco, 2004) and the Yu-Bousmina-Zhou-Tucker (YBZT) model (Yu et al., 2004). A 

brief description, derived from Vincenzo Sibillo et. al. work (2005)15, of the 

phenomenological models will be illustrated to better understand the comparison 

between my experimental data with the selected models predictions. Both these models 

                                                           
15 V. Sibillo, M. Simeone, S. Guido, F. Greco, P. "Start-up and retraction dynamics of a 

viscoelastic drop in a Newtonian matrix under simple shear flow." Paper approved for publication on 
the J. non-Newtonian Fluid Mech., special issue dedicated to AERC2005. 

 



Start-up and retraction of a Newtonian drop immersed into a viscoelastic phase under shear flow 

26 

start from the assumption that the drop always maintains an ellipsoidal shape when 

subjected to an imposed flow field “at infinity”. Thus, the “geometric” equation 

2:)( RrrtS =  always holds, with r a point of the drop surface, R the drop radius at 

rest, and (t)S  a second-order, positive definite, symmetric, time-dependent tensor, the 

evolution of which fully describes drop dynamics. For the reader’s convenience, we 

report in this Section the time dependent equations of tensor (t)S , in non dimensional 

form, derived from the work of Maffettone P.L. and Greco F. (2004) and from Yu W. 

Bousmina et. al (2004). 

For the MG model, it is: 

 

  ( ) ( ) ( ) ( )d
Ca a cTr f g( )

dt
 + − ⋅ − ⋅ + ⋅ + ⋅ + = − − 

S
Ω S S Ω D S S D S D S S I   (1) 

 

In eq.(1), D and ΩΩΩΩ are the (non dimensional) deformation rate tensor and vorticity 

tensor, respectively, at infinity, time has been made non dimensional through the so-

called emulsion time ( )RCem /σητ =  (with σ the surface tension of the fluid pair), and 

Ca is the “capillary number”. The three constants a, c, and f, and the S-dependent 

scalar-valued function g in eq.(1) (I  is the unit tensor) depend on all the constitutive 

parameters of the fluid pair. For the case of interest here, with a Newtonian drop in a 

non-Newtonian matrix, these are in fact the inner/outer viscosity ratio λ = ηD/ηC (ηD is 

the drop viscosity) and the time ratio p = τ/τem, with 
Cη

τ
2

1Ψ
=  the dominant 

characteristic time of the non-Newtonian matrix and τem the emulsion time. (Another 

parameter, which controls the normal stress differences in the non-Newtonian matrix, is 

not effective in the situations considered here.) The specific formulae for a, c, f, and g 
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are given in the original MG paper. 

For the YBZT model, the needed dynamical equations are (with the notations 

adopted in Sibillo et al., 2005): 

 

  Td

dt
= − ⋅ − ⋅S

S L L S          (2) 

 

  

( ) ( )

( ) ( )
1c t
p

1 1 2 2

3
Ca m n

Tr

1
1 Ca e F t

p

−

= + + +

 
− λ α + β + β 

  

S
L Ω D

S

D g g%

     (3) 

 

  ( )
i i

i

d c3
i 1 2

dt Tr p
, ,= − − =g S

I g
S

      (4) 

 

where, in eq.(3), ( )
1c t
p

1F t p c (e 1)= −  during flow, and 

( )
1

FIN
c

t
p

1F t p c (e 1)=const= −  after cessation of flow, i.e., for FINt t> . In eqs.(2)-(4), the 

seven constants 1 2 1 2m n c and c, , , , ,α β β  all depend on andλ λ%  (their explicit forms are 

given in the original papers). 

To understand the meaning of the new parameter λ% , one should recall that, in the 

derivation of eqs.(2)-(4), the non-Newtonian matrix was assumed to consist in a 

Newtonian part (the “solvent”) plus a Maxwell fluid, with viscosities Sη  and Mη , 

respectively. The parameter λ%  is then defined as the ratio of the “pure solvent” to the 

“total” matrix viscosity, namely, ( ) CSMSS ηηηηηλ =+=~
. 
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3.4 Results 

In the first part of this paragraph, I present single drop deformation data during the 

start-up and after cessation of shear flow, and compare these data to predictions from 

the MG and YBZT models. All data presented here are derived from the new work of 

Sibillo et al. (2005). The viscosity ratio λ = ηD/ηC is always unity, while the p parameter 

is varied up to 1.4, which stands for a robust elasticity. 

As reported later, upon shear start, overshoots of drop deformation may occur. At 

higher values of the elasticity parameter p, the overshoots are seen at lower Ca-values. 

These trends are qualitatively reproduced with the MG model, as we will see. However, 

in this first part I do not want to investigate on the overshoot phenomenon. For this 

reason, the Ca’s investigated now are rather low. 

Finally, concerning the extra parameter λ%  of the YBZT model, it should be 

mentioned that, because of the protocol used to prepare our Boger fluids, I cannot 

determine a value for λ% . Indeed, kerosene evaporation up to phase equilibrium (see the 

Materials and Methods Section) forbids a separate evaluation of ηS and ηM, the only 

measurable quantity being directly ηC. Thus, λ%  will be used in the calculations as an 

adjustable parameter, see below. 

Figure 4 shows the transients for the start-up with Ca = 0.07, and the 

corresponding relaxation, of a system with p = 0.5. Symbols are experimental data. 

Dotted lines are Newtonian predictions, whereas solid and dot-dashed lines are 

viscoelastic predictions from the MG and the YBZT models, respectively. For the 

YBZT model, 0 5.λ =%  has been chosen. (Larger values of λ%  give start-up predictions 

too close to the Newtonian curve; lower values of λ%  give a “hump” in early time 

relaxation.) At this low level of both capillary number and elasticity, the viscoelastic 

predictions are in good quantitative agreement with the experiments. The start-up data 
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are correctly described up to steady state, while the relaxation data are very well 

described up to t~2, then the predictions slightly underestimate the observed trend. The 

comparison with the Newtonian case show that the effect of matrix elasticity is to slow 

down the dynamics. 
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Figure 4: The deformation parameter D as a function of time during start-up 
(upper plot) and retraction upon cessation of flow (lower plot) for Ca = 0.07 and 
p = 0.5. Lines are predictions of the Newtonian theory (dotted), MG model 
(solid) and the YBZT model (dot-dashed). 

The effect of the increase of the capillary number is shown in Figure 5, with Ca = 

0.14, the elasticity parameter p being kept fixed at the same value of Figure 4 (p = 0.5). 
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Again, the agreement between both theories and experiments is quite good. 

Consequently the value of λ%  will be kept constant from now on. 
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Figure 5: The deformation parameter D as a function of time during start-up 
(upper plot) and retraction upon cessation of flow (lower plot) for Ca = 0.14 and 
p = 0.46. Lines are predictions of the Newtonian theory (dotted), MG model 
(solid) and the YBZT model (dot-dashed). 

The effect of the increase of the elasticity parameter is shown in Figure 6, where p 

= 1.4 and Ca = 0.075. In this case the comparison with the viscoelastic predictions is 

much less satisfactory than it was obtained at low p. The initial trend is now faster than 

the predictions, for both start-up and relaxation. It is interesting to note that the 
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Newtonian predictions are very close to the data for t<2. Above this value of time, data 

slow down with respect to Newtonian predictions. In this regard, note that the slowing 

down of the data can be well described by the viscoelastic predictions, and this is 

particularly evident with relaxation data as reported in Figure 7. In the semilog scale, a 

negative time shift of the viscoelastic predictions shows that the experimental data line 

up on this curve in a quite large time window (2<t<4). 
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Figure 6: The deformation parameter as a function of time during start-up 
(upper plot) and retraction upon cessation of flow (lower plot) for Ca = 0.075 
and p = 1.4. Lines as model predictions as in the previous figures. 
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Figure 7: Same results as in the lower diagram of Figure 6 plotted in semi-log 
scale. 

A very similar situation is found at “intermediate” p-values, as illustrated in 

Figure 8 (p = 1, Ca = 0.073), for relaxation only. Again, at short times (t<1.5) the drop 

dynamics essentially follows the Newtonian evolution, then it is adequately described 

(1.5<t<4) by the time-shifted MG viscoelastic curve. Here, as in Figure 7, the relaxation 

data at very large times (t>4) show an upturn. It should be mentioned that such an 

upturn, though corresponding to very low values of the deformation parameter (D<0.02) 

where image digitalization errors are higher (see Materials and Methods), has not been 

observed in the Newtonian case for drops of similar size (see Guido and Villone, 1999). 
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Figure 8: The deformation parameter D as a function of time during retraction 
upon cessation of flow for Ca = 0.075 and p = 1 Lines as model predictions as in 
the previous figures. 

Finally, in Figure 9 we report data and predictions for p = 1, at a “high” Ca = 0.12. 

(For Ca>0.12, overshoots would appear in the data for this system, as illustrated in the 

next section). In the very initial response to shear start-up, data sit in between the 

Newtonian and YBZT predictions, whereas the MG model behaves better at long times 

(t>4). (The steady state is almost equal for all the predicted curves.) In relaxation, again, 

drop deformation starts as Newtonian, to slow down later, towards the non-Newtonian 

predictions. 
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Figure 9: The deformation parameter D as a function of time during start-up 
(upper plot) and retraction upon cessation of flow (lower plot) for Ca = 0.115 
and p = 1 Lines as model predictions as in the previous figures. 

Transient behaviour of RMAX , RMIN and the orientation angle θ after the start up of 

the shear flow are reported in Figure 10 at p = 1, varying the Capillary number. At low 

capillary number all the parameters, as previously discussed, monotonically change to 

reach the steady state. As the Ca value increases, the drop initial evolution shows an 

evident overshoot of RMAX  and an undershoot of RMIN, that are more pronounced at Ca 

= 0.25, during which drop also enhances its orientation toward the flow direction. This 

feature is qualitatively captured by the MG model as sown in Figure 11, derived from 
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Sibillo et al. (Macromol. Symp. 2005)16, where is only reported D evolution in time 

t/τem. This phenomenon will be also illustrated in the next part of this section. The 

evolution of D and θ during the start-up of the flow as a function of the p parameter, at 

high but sub critical Capillary numbers (see next part), will be illustrated and discussed. 
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Figure 10: Deformation parameters during start-up flow at λ = 1, p = 1 and 
different Capillary numbers. 

                                                           
16 V. Sibillo, S. Guido, F. Greco, P.L. Maffettone. “Single drop dynamics under shearing flow in 

systems with a viscoelastic phase”. Macromolecular Symposium, (2005), 228, 31-39. 
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Figure 11: Transient behaviour of the deformation parameter D vs. non 
dimensional time, at various Capillary numbers: triangle 0.1, squares 0.2 and 
circles 0.25, for λ  = 1, p = 1. Lines are the corresponding MG model 
predictions. 

3.5 Final remarks 

In this Section, I illustrated fine details of drop dynamics in shear start-up and 

relaxation, the external matrix being a constant-viscosity, elastic liquid. First part was 

about drop small deformations, corresponding to low imposed capillary numbers. 

Comparison between data and predictions from two available drop dynamics models 

revealed an unexpected feature, namely, an “elasticity-controlled transition” from 

Newtonian to non-Newtonian dynamics throughout a single experiment. 

Indeed, at a sufficiently “intense” elasticity, early stages of drop dynamics are well 

described by the fully Newtonian predictions, while non-Newtonian effects become 

evident (and are well predicted) at later times only. In other words, a “time lag” sets in 

during transients, in which non-Newtonianness seems to be inactive. 

Since such effects are not observed for “weakly” elastic systems, one would be 

tempted to infer that the range of validity of the (initial) Newtonian dynamics increase 

as the elasticity increases. Our data, however, are too limited to support such a 

conclusion. 

A sort of “transition” in drop dynamics had already been observed by Leal and 
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coworkers (Threteway and Leal, 2001)17 in relaxation after planar elongational flow, 

and had in fact partly motivated the recent ellipsoidal model by Yu et al. (2004). It 

should be remarked, however, that the YBZT model, under our experimental conditions, 

is unable to predict the observed transition, and the same is true for the simple MG 

model (Maffettone and Greco, 2004). It so appears that some significant ingredient is 

still absent in the existing theoretical analyses. 

Finally, I would like to stress that, in relaxation and at long times, all data 

invariably show a further upturn beyond the “non-Newtonian” time interval (see Figure 

7 and Figure 8). The origin of this upturn is unclear. In this respect, it should be recalled 

that, in all of these experiments, the selected non-Newtonian fluids are Boger fluids, the 

properties of which, in transient situations, are always difficult to consider (Solomon 

and Muller, 1996)18. Investigations of drop dynamics with “realistic” non-Newtonian 

fluids will certainly be needed in the future. 

Besides it has been found that the presence of a viscoelastic matrix, during the 

start-up of flow, induces a transient characterized by an overshoot of the deformation 

parameters, during which drop enhances its orientation towards the shear direction 

before reaching the steady state. It has been shown that the MG model is capable of 

describing this phenomenon, giving quantitative predictions up to moderate drop 

deformation. 

 

                                                           
17 Tretheway D. C., Leal L. G., “Deformation and relaxation of Newtonian drops in planar 

extensional flows of a Boger fluid”, J. Non-Newtonian Fluid Mech. 99 (2001) 81–108. 
18 M. Solomon, S. Muller, “The transient extensional behavior of polystyrene-based Boger fluids 

of varying solvent quality and molecular weight”, J. Rheol. 40 (1996) 837-856. 
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4 High deformations and Break-up 

Keywords: Drop break up, Boger fluid, viscoelasticity, shear flow, optical 

microscopy 

4.1 Introduction 

The effect of matrix elasticity on the break-up of an isolated Newtonian drop 

under step shear flow is herein presented. 

It was observed in the introduction that many physical and rheological properties 

of the liquid – liquid suspensions, as the polymeric blends, are strongly dependent on 

the morphology, i.e., size and shape of the dispersed phase inclusions. Morphology 

control of these systems can often be achieved by proper setting of the flow conditions 

experienced during processing. The interplay between the applied flow and the 

morphology of the system is quite complex, and is often further complicated by non-

Newtonian behaviour of the fluid components. Nevertheless, in general terms, we can 

say that the mean size of the inclusions decreases as a consequence of drop break-up, 

caused by an “high-speed flow”. This part is concerned with the influence of the viscous 

and elastic properties of the outer phase on the break up phenomenon of a single 

Newtonian drop under simple shear flow conditions. 

Investigation of drop deformation and break-up under shear flow, when both 

liquids are Newtonian, as discussed in the introduction, was pioneered by Taylor (1932, 

1934)1920, and much phenomenological evidence and approximate theoretical analyses 

have been collected through the years (Stone, 1994)21. In extreme synthesis, we know 

                                                           
19 Taylor G I (1932) “The viscosity of a fluid containing small drops of another fluid”. Proc. R. 

Soc. London A, 138, 41-48. 
20 Taylor G I, (1934) “The formation of emulsions in definable fields of flow”. Proc. R. Soc. 

London A, 146, 501-523. 
21 Stone H A (1994) “Dynamics of drop deformation and breakup in viscous fluids”. Ann. Rev. 
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that the dynamics of isolated drops in shear flow is determined by the two non-

dimensional parameters, i.e., the capillary number Ca and the viscosity ratio λ (drop to 

matrix viscosity) and it is experimentally well known (Grace, 198222; de Bruijn, 198923) 

that stationary drop shapes (starting from the spherical configuration) are only reached 

up to a certain critical value Cacr of the capillary number, which only depends for pure 

Newtonian systems, on the viscosity ratio λ. Beyond Cacr a drop keeps deforming, until 

rupture occurs. 

Briefly, when one or both the component fluids are viscoelastic, the 

fluidodynamics of the drop becomes more complex, as the constitutive time scales of 

the two fluids also come into play, together with the intrinsic time scale related to the 

very existence of an interface. As early as in 1972, Flumerfelt24 reported for the first 

time experimental results on break-up of Newtonian drops in shear flows of viscoelastic 

fluids. He found that i) the non-Newtonian critical capillary number is always larger 

than the corresponding Newtonian one (with same viscosity ratio) and ii) there exists a 

minimum drop size below which break-up can not be achieved. Point i) was later 

confirmed in the reverse case (non-Newtonian drop in a Newtonian matrix) by Varanasi 

et al. (1994)25, while the existence of a minimum radius for break-up (point ii)) is better 

seen as a result limited to the range of shear rates investigated by those authors. 

In the drop break-up experiments described so far, the non-Newtonian behaviour 

of the fluids investigated included both viscosity shear-thinning and less than quadratic 

normal stresses. In other words, it so happened in these experiments that “high” non-
                                                                                                                                                                          

Fluid Mech., 26, 65-102. 
22 Grace H P (1982) “Dispersion phenomena in high viscosity immiscible fluid systems and 

application of static mixers as dispersion devices in such systems”. Chem. Eng. Commun., 14, 225-
277. 

23 de Bruijn R A (1989) “Deformation and breakup of drops in simple shear flows”. PhD thesis, 
Technische Universiteit Eindhoven. 

24 Flumerfelt R W, (1972) Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. 
Chem. Fundam., 11, 312-318. 

25 Varanasi P, Ryan M E and Stroeve P (1994) “Experimental study on the breakup of model 
viscoelastic drops in uniform shear flow”. Ind. Eng. Chem. Res., 33, 1858-66. 
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dimensional shear rates were at play. Hence, a clear identification of separate elastic and 

viscous non-Newtonian effects was in fact not achieved. By using Boger fluids, 

conversely, it is expected that this difficulty can be overcome, also because of the 

absence of any shear-thinning. Mighri et al. (1998)26 used several pairs of Boger fluids 

to study break-up conditions with different drop to matrix elasticity ratios. They report 

the variation of the critical capillary number Cacr with the elasticity ratio, though limited 

to viscosity ratios λ ranging between 0.3 and 1.1. Even if the general assertion that drop 

break-up is somewhat inhibited by elastic effects is present in the literature, a clear 

understanding of non-Newtonian effects has not yet been achieved. 

In this section the effect of matrix elasticity on the break-up of an isolated 

Newtonian drop is showed. Boger fluids were used as continuous phase and the weight 

of matrix elasticity is quantified with the parameter 
2

1

η
σ

R
p

Ψ
= , that can be interpreted, 

as explained in the introduction, as the ratio between the constitutive relaxation time of 

the matrix fluid 
Cη

τ
2

1Ψ
=  and the emulsion time 

σ
ητ RC

em = . The matrix rheological 

properties and drop dimension were properly varied, in order to have p ranging from 0.1 

to 10. Extrapolating Greco’s conclusions to large drop deformation, 1≥p  is the 

condition to be fulfilled to make non-Newtonian effects observable. Three viscosity 

ratios were explored (drop/matrix), i.e. 2, 0.6 and 0.04. 

At all the viscosity ratios explored, break-up was hindered by matrix elasticity. 

The start-up transient of drop deformation, at high, but sub-critical capillary numbers, 

showed an overshoot, during which the drop enhanced its orientation toward the flow 

direction. Both phenomena increase if the p parameter increases. Finally, the non-

                                                           
26 Mighri F, Carreau P J and Ajji A (1998) Influence of elastic properties on drop deformation and 

breakup in shear flow. J. Rheol., 42, 1477-1490. 
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dimensional pinch-off length and break-up time were also found to increase with p. 

In the following, the experimental section will be devoted to list the Boger fluids 

used as continuous phase and to explain briefly the experimental protocol. In the next 

section, the results will be presented and discussed. Finally, some concluding remarks 

will be presented. 

4.2 Experimental 

4.2.1 Experimental apparatus 

The rheo-optical apparatus used in this work and the experimental protocol were 

described in detail in the experimental section and elsewhere (Guido and Simeone, 

199727; Guido and Villone, 199828) The apparatus essentially consists of a parallel-plate 

device coupled with an optical microscope. It has been used with two different, 

interchangeable setups to observe drop deformation and break-up either along the 

velocity gradient direction and along the vorticity axis. The drop was injected into the 

continuous matrix using a tiny glass capillary, which had been preliminarily loaded 

between the parallel plates. Simple shear flow is generated by displacing the motorised 

plate with respect to the other. The experiments were all carried out in a room kept at 

constant temperature (23 ± 0.5°C). During a typical run, flow was impulsively started 

by driving the moving plate at a given speed. The deforming drop was kept within the 

field of view during motion by translating the microscope, which is itself mounted on a 

motorized stage. When the drop was observed along the vorticity direction, the two axes 

RMAX  and RMIN of the deformed drop (as observed in the plane of shear) and the angle θ 

between the major axis RMAX  and the velocity gradient direction (see the schematic 

drawing in the Materials and methods section) were calculated. On the other hand, when 

                                                           
27 Guido, S. and Simeone, M. “Binary collisions of drops in simple shear flow by computer-

assisted video optical microscopy”. Journal of Fluid Mechanics, 357, (1998) 1-20. 
28 Guido, S. and Villone, M. “Three dimensional shape of a drop under simple shear flow”. Journal 

of Rheology, 42, (1998) 395-415. 
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the drop was observed along the velocity gradient direction, Rp and Rz were measured, 

where Rp is the projection of RMAX  on the plane of shear and Rz is drop axis along the 

vorticity direction. The data were displayed in real time on the computer monitor and 

stored. The break-up critical capillary number was determined by performing a set of 

runs at increasing shear rate until break-up occurred. If steady state deformation was 

reached, the flow was stopped and the drop was allowed to relax back to the spherical 

shape before starting the next run. Drop break-up always occurred during the flow. With 

this protocol, I identified an interval in which the critical capillary number is contained. 

The extremes of this interval are referred to as inferior critical capillary number (Cacr 

inf) and superior critical capillary number (Cacr sup). 

4.2.2 Materials 

Newtonian silicone oils (PDMS, Dow Corning 1000, 12500, 60000, 100000) were 

selected as the dispersed phase. In order to achieve the desired viscosity ratio, silicon 

oils with different molecular weights were mixed together in proper amounts. The 

experiments were performed at three viscosity ratios, i.e. 2, 0.6 and 0.04. Viscoelastic 

Boger fluids were used as the continuous phase. As described, they were carefully 

formulated in order to: i) have a constant viscosity; ii) exhibit first normal stresses 

difference proportional to 2γ& and iii) provide a value of the p parameter in the range 0.1 

÷ 10, with a drop radius within the experimental window, i.e. 10 ÷ 100 µm. 

Table 1, referred to this section, summarises the properties of the viscoelastic 

fluids used in this experimental campaign as continuous phase. In particular, column 1 

reports a code name, Ci; column 2 reports the mass ratio of high-to-low molecular 

weight polymer, (the values are multiplied by 103); column 3 reports the viscosity at 

0.05 and 1.5 s-1, which is roughly the range of shear rate at infinity imposed during the 

experiments (as shown, shear thinning is limited to 10-15%); column 4 reports the first 
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normal stress coefficient, Ψ1 and column 5 reports the viscosity ratio of the experiments 

performed with that fluid. 

Boger 
fluids 

PIB/Napvis 30  
(x103) 

Viscosity at 0.05 – 1.5 s-1 
(Pa s) 

ΨΨΨΨ1  
(Pa s2) 

Experiment 
at λλλλ 

C1 3.2 55 – 47.5 210 0.04 

C2 0.5 80.1 - 79.7 65 0.6 

C3 4.4 35.4 – 31.5 36 0.6 

C4 4.4 43.1 – 34.8 93 2 

C5 0.5 81 – 80.6 63 2 

C6 4.4 55 – 48 200 2 

Table 1: Fluids used in the experiments. 

As example, the rheological data of the Boger fluids C1, C2 and C4 are shown in 

Figure 12. The solid line in Figure 12 is a fit to the first normal stress difference data in 

log scale. The slope of the fitting lines is equal to 2 ± 0.1, in agreement with the 

assumption of second order fluids. The first normal stress difference coefficient 

2
1

1 γ&
N

=Ψ  was calculated by fitting the data of Figure 12 to a line of slope 2 in log scale. 

On the other hand, no normal stresses could be measured for the silicone oils within the 

instrumental sensitivity. 
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Figure 12: Viscosity and first normal stress difference vs shear rate for the 
Boger fluids C1, C2 and C4 (see Table I) at 23°C. 

The interfacial tension of all the fluid pairs used in the experimental campaign was 

measured by applying the theory by Greco (2002)29 to data of steady state drop shape in 

shear flow, as described elsewhere. Depending on the type of observation of the drop, 

two different relations were applied. When the drop was observed along the vorticity 

direction, the deformation parameter 
MINMAX

MINMAX

RR

RR
D

+
−

=  was measured and within the 

limits of the small deformation theory, no contribution of the matrix elasticity is 

predicted on D at the steady state. The relation for D reduces to the one valid for 

Newtonian fluids (Taylor 1932, 1934), so interfacial tension was evaluated as described 

by (Guido et al. 2003)30 with eq. 5. 

Ca
1616

1619
D

+
+=

λ
λ

     (5) 

On the other hand, when the drop was observed along the velocity gradient 

                                                           
29 Greco F, “Second-order theory for the deformation of a Newtonian drop in a stationary flow 

field”. Phys. Fluids, 14, (2002) 946-954. 
30 Guido S, Simeone M and Greco F, “Deformation of a Newtonian drop in a viscoelastic matrix 

under steady shear flow. Experimental validation of slow flow theory”, J. Non-Newtonian Fluid 
Mech., 114 (2003) 65-82. 
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direction, the interfacial tension was obtained by measuring the ratio Rp/R at steady 

state within the limit of small deformation and by using the equation 6 introduced for 

the first time by F. Greco. 

 






 +++++= )(
2

1
)(

4

1

2

1
1 3322

22 pgspgsTCa
R

RP    (6) 

 

where T, s2, s3, g2 and g3 are coefficients depending on the fluid properties (Greco, 

2002) and p is the already defined parameter introduced by Greco to measure the 

“weight” of constitutive elasticity for the drop problem. 

To assess the consistency of the two methods, the interfacial tension of one pair of 

fluids was measured both according to eqs. 5 and 6. The data are reported in Figure 13 

and Figure 14, respectively. Of course, the two measurements required two different 

experiments, performed by observing the drop one time along the vorticity and the other 

time along the velocity gradient direction. 
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Figure 13: Interfacial tension of the pair silicon oil (drop phase) fluid C4 
(matrix phase). λ = 2 a) D vs. non-dimensional time. The line is a fit of eq. 5 to 
the data. p = 1.5 to 3.5 
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Figure 14: Rp/R vs. non-dimensional time. The line is a fit of eq. 6 to the data. p 
= 0.75. 

4.3 Results 

Figure 15 and Figure 16 show the deformation parameter D and the orientation 

angle θ as a function of the non-dimensional time em/t τ  for the case of λ = 2 and p = 

1.5. Micrographs of the deforming drop are reported in Figure 17 at Ca = 0.43 (left side) 

and at Ca = 0.47 (right side). The symbols refer to three different Ca numbers. The open 

circles of Figure 15 and Figure 16 refer to Ca = 0.06, well within the small deformation 

limit. In this case, after an initial transient, steady state shape is reached. In the runs at 

much higher Ca, e.g. Ca = 0.43 (filled squares), the deformation parameter D goes 

through a maximum as a consequence of shear rate start up. After the maximum 

(micrograph 2), the deformation parameter goes through an initial „rapid“ relaxation (up 

to micrograph 3) and steady state shape is reached only afterwards, at time 140 ca. 

(micrograph 4). While the deformation parameter goes through an overshoot, the drop 

temporarily enhances its orientation toward the flow direction, and this reflects into an 

undershoot in the plot of the orientation angle vs. non-dimensional time (Figure 16). 

This behaviour is due to matrix elasticity, as described in the previous part of this 
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section, and no overshoot is present in the Newtonian case. Finally, the open squares of 

Figure 15 and Figure 16 refer to the deformation parameter and to the orientation angle, 

when the critical capillary number is slightly exceeded. Micrographs of the drop during 

this run, including drop break-up, are reported in Figure 17. Similarly to the case of 

Newtonian matrix, drop deformation progressively increases, a neck forms in the 

middle (micrograph 2) and break-up leads to two daughter drops and one tiny satellite 

(micrograph 3 and 4). 
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Figure 15: D vs. non dimensional time. λ = 2 and p = 1.5. Matrix phase: fluid 
C4. 
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Figure 16: θ  vs. non dimensional time. λ = 2 and p = 1.5. Matrix phase: fluid 
C4. 
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Figure 17: Micrographs of the drop of Figure 16 and Figure 17. The non-
dimensional time t*  is reported on the micrograph. 

Figure 18 shows, at increasing values of p, the deformation parameter measured 



High deformation and break-up of a Newtonian drop immersed into a viscoelastic phase under shear flow 

49 

along the velocity gradient direction, D′ = (RP-RZ)/(RP+RZ), as a function of the non-

dimensional time. The viscosity ratio is 2 and the values are normalised with respect to 

the steady state value of the deformation parameter. The runs refer to the highest 

subcritical condition explored at the corresponding value of p. As shown in Figure 18, 

the overshoot increases with the p parameter up to the point that, for p = 1.2, the 

maximum deformation reached by the drop is five times higher than the steady state 

value. A similar behaviour was observed for viscosity ratio 0.6, as illustrated in Figure 

20, and 0.04. Some data are omitted for the sake of brevity. Micrographs of the three 

drops, captured at the maximum deformation and at steady state, are reported in Figure 

19. 
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Figure 18: D′ vs. non dimensional time. λ = 2. Matrix phase: p = 0 fluid Napvis 
30; p = 0.7 fluid C5; p = 1.22 fluid C5. 
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Figure 19: Micrographs of the drops of Figure 18. 
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Figure 20: D′ vs. non dimensional time. λ = 0.6; p = 0.8, p = 1.2 fluid C3 

In the micrographs of Figure 21 the 3D drop shape time evolution is qualitatively 

illustrated at p almost 1 and at fixed high Ca. The overshoot phenomena caused by 

matrix elasticity content at high Ca is so clear. Drop shape and its orientation pass 

across a “summit”, after which they drastically change, to reach the steady state value. 
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Figure 21: 3D time evolution of the drop. 
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Figure 22, Figure 23 and Figure 24 report the critical capillary number as a 

function of the p parameter for the case of viscosity ratio 2, 0.6 and 0.04, respectively. 

The open symbols represent the maximum capillary number at which steady state 

deformation was achieved (Cacr inf), while the filled symbols represent the minimum 

capillary number at which steady state deformation was not reached anymore (Cacr sup). 

The different shapes of the symbols refer to different experiments. Indeed, for each 

viscosity ratio, several pairs of fluids were used, in order to vary the value of the p 

parameter. It is worth noting how the rheological properties of the fluids used to 

perform the experiments at the same viscosity ratio are quire different (see Table 1). 

Nevertheless, as expected, the data relative to different fluid pairs superimpose nicely, 

when plotted vs the p parameter. On the y-axis of Figure 22, Figure 23 and Figure 24, 

the critical capillary number for Newtonian drops is pointed out. It was experimentally 

measured during this work for the case of viscosity ratio 2, by using the low molecular 

weight PIB (Napvis 30) as matrix and silicon oil as drop phase. For the case of viscosity 

ratio 0.6 and 0.04 it was gained from literature data (Cristini et al., 2001, de Bruijn, 

1989)31. 

The increase of critical capillary number with the p parameter is a common trend 

for the three viscosity ratios explored, allowing to conclude that matrix elasticity 

hinders drop break-up. It is also confirmed that matrix elasticity becomes important 

when the p parameter assumes values higher than one. 

                                                           
31 Cristini V, Blawzdziewicz J and Loewenberg M, (2001). An Adaptive Mesh Algorithm for 

Evolving Surfaces: Simulations of Drop Breakup and Coalescence. J. Comput. Phys., 168, 445-463. 
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Figure 22: Critical capillary number as a function of p. λ = 2. Open symbols: 
Cacr inf. Filled symbols: Cacr sup. The fluids used as matrix phase are: circle C5, 
square C4, triangle up C6, triangle down Napvis 30. 
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Figure 23: Critical capillary number as a function of p. λ = 0.6. Open symbols: 
Cacr inf. Filled symbols: Cacr sup. The fluids used as matrix phase are: circle C2, 
square C3. 
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Figure 24: Critical capillary number as a function of p. λ = 0.04. Open symbols: 
Cacr inf. Filled symbols: Cacr sup. The fluids used as matrix phase are: circle C1. 

It is worth commenting, at this point, that the effect of matrix elasticity on the 

critical capillary number may be much larger than what measured in this work. Indeed, 

the experiments were always performed by turning on the shear flow stepwise. As a 

consequence of this, at high capillary numbers (but below the critical value), drop 

deformation went through a maximum and then relaxed to a much lower steady state 

value, until drop break-up occurred. I believe that, by applying a progressive increase of 

shear rate with a „slow“ ramp, the drop would break up at a much higher capillary 

number. Indeed, the drop would progressively increase its deformation by passing 

through the steady state values that correspond to the instantaneous shear rate, and no 

overshoot would be present. Considering that the steady state deformation is several 

folds smaller that the maximum deformation reached during the transient, I argue that a 

much stronger flow is required to deform and break-up the drop if the start up transient 

is suppressed. Further work is needed to elucidate this point. 

Figure 25 and Figure 26 report the non-dimensional pinch-off length (L*) and 

time, respectively, for the case of viscosity ratio 2. For the non-dimensional length, 
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depending on the direction of observation, RMAX /R0 or Rp/R0 was measured; being the 

drop at break-up highly oriented toward the flow direction, the two data sets were 

considered as identical. It is worth mentioning, at this point, that the measurement of the 

pinch-off non-dimensional length is very delicate since it greatly increases as soon as 

the critical capillary number is exceeded. For this reason, the data reported in Figure 25 

and Figure 26 refer only to the cases where break-up leads to two daughter drops and a 

single tiny satellite. This is typical of near critical break-up. On the other hand, when 

more than one satellite was formed, break-up was considered to have taken place under 

super critical conditions and the data were discarded. The data indicate that both the 

non-dimensional pinch-off length and time increase with p. Furthermore, we observed 

that the pinch-off non dimensional length is independent of the viscosity ratio, while the 

pinch-off non dimensional time is strongly influenced by the viscosity ratio. When p 

was much lower than one, i.e. in the Newtonian limit, the non dimensional pinch-off 

time were 100, 70 and 20 for viscosity ratio 2, 0.6 and 0.04, respectively (these data are 

not shown for sake of brevity). 
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Figure 25: Non-dimensional pinch-off length vs. p. λ=2. 



 

56 

p

1 10

t cr
σσ σσ/

( ηη ηη
m

at
rix

R
)

100

 

Figure 26: Non-dimensional pinch-off time vs. p at.�λ=2. 

4.4 Final remarks 

We explored the effect of matrix elasticity on drop break-up under step shear flow. 

Three viscosity ratios were considered, i.e. 2, 0.6 and 0.04. The entity of matrix 

elasticity was quantified through the non-dimensional parameter p, introduced by Greco 

(2002). The results presented allow to conclude that matrix elasticity hinders drop 

break-up. This was found at all three viscosity ratios explored and was quantified by 

measuring the critical capillary number as a function of the p parameter. The maximum 

increase of critical capillary number measured was 50% ca. when the p was increase to 

10 ca (λ=2). At high, but sub-critical capillary numbers, drop deformation goes through 

an overshoot during which the drop temporarily enhances its orientation toward the 

flow direction. The entity of this phenomenon increases with p. Finally, the non 

dimensional pinch-off length and time were measured for the case of viscosity ratio 2. 

The data indicate that both quantities increase with p. 
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Morphology evolution of a single drop under shear flow, with 
non Newtonian dispersed phase. 

First part of this section illustrates experimental results concerning drop 

deformation and orientation during a “slow” shear flow, both at steady state and in 

time dependent situations (during the start-up and after cessation of the flow), 

comparing the data with the non Newtonian second order theory, while second part 

examines the drop high deformations and break-up. In both cases a model system with a 

non Newtonian, highly elastic drop phase and a Newtonian matrix phase was 

considered. 

5 Single viscoelastic drop under shear flow 

Beginning from the fundamental theoretical and experimental contribution of 

Taylor (1932, 1934)32, regarding the small deformation and breakup of an isolated drop, 

most works in literature had as subject the morphological evolution and breakup of an 

isolated drop subjected to a well defined flow, focusing the attention on Newtonian 

mixtures only, in which the two phases didn't exhibit any elastic behaviour. Conversely 

a large part of the liquid-liquid dispersions currently used for the production of new 

materials are gotten with non Newtonian components. For this reason from some years, 

the attention of the scientific world is moved on the understanding of the effects of the 

phases viscoelastic properties on the flow-induced morphology of a dispersion with non 
                                                           

32 Taylor G I (1932) The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. 
London A, 138, 41-48. 

Taylor G I, (1934) The formation of emulsions in definable fields of flow. Proc. R. Soc. London 
A, 146, 501-523. 
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Newtonian fluids (S. Guido, F. Greco, 200433; Elmendorp, J. J. et al (1985)34; 

Flumerfelt, R. W. (1972)35; Mighri, F. et al. (1999)36; Varanasi P, Ryan M E and 

Stroeve P (1994)37). In the case in which one or both phases are viscoelastic fluids, the 

dispersed drops are subjected to both viscous and elastic forces, as well as to interfacial 

one. Therefore the mechanism of drop deformation and breakup in viscoelastic systems 

will be quite different in comparison to Newtonian systems as predicted by those 

authors. Unfortunately a clear picture that illustrates the effects of the only elastic 

content of the dispersed phase on the morphology of the drop doesn't still exist. 

In this section the video enhanced contrast optical microscopy has been used to 

explore the 3D shape evolution of a single viscoelastic drop (Boger fluid)38 immersed in 

a Newtonian matrix and subjected to a well defined shear flow. Fundamental target will 

be to come to a full knowledge about drop shape at steady state, comparing 

experimental data with Greco’s theory39 predictions and to have a clear picture about 

the influence of the viscoelastic properties of the dispersed phase on the drop evolution 

during the transients of flow, start-up and after cessation of the shear flow. Finally the 

break-up mechanism of the viscoelastic drop will be illustrated as a function of the drop 

phase elastic content. 

In extreme synthesis, as discussed in the introduction section, for Newtonian 

systems the dynamics of an isolated drop submitted to a shear flow in absence of inertia 

                                                           
33 S. Guido and F. Greco, “Rheology Review 2004”, BSR Aberystwyth, UK 2004. 
34 Elmendorp J. J. and R. J. Maalcke, “A study on polymer blending microrheology. 1” Polym. 

Eng. Sci. 25, 1041-1047 (1985). 
35 Flumerfelt R W, (1972) Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. 

Chem. Fundam., 11, 312-318. 
36 Mighri F, Carreau P J and Ajji A (1998) Influence of elastic properties on drop deformation and 

breakup in shear flow. J. Rheol., 42, 1477-1490. 
37 Varanasi P, Ryan M E and Stroeve P (1994) Experimental study on the breakup of model 

viscoelastic drops in uniform shear flow. Ind. Eng. Chem. Res., 33, 1858-66. 
38 D.V. Boger, R. Binnington, “Separation of elastic and shear thinning effects in the capillary 

rheometer”, Trans. Soc. Rheol. 21 (1977) 515-34. 
39 Greco F, (2002) Second-order theory for the deformation of a Newtonian drop in a stationary 

flow field. Phys. Fluids, 14, 946-954. 
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is function of two only non dimensional parameters: the capillary number 
R

Ca C

σ
γη
⋅

= , in 

which ηC is the continuous phase viscosity, 
⋅
γ  the shear rate, σ the interfacial tension of 

the couple of fluids and R is the spherical drop radius, and the viscosity ratio between 

the two phases, drop to matrix viscosity, 
C

D

η
ηλ = . The capillary number is the ratio 

between the hydrodynamic stress, that deforms the drop and the interfacial stress, that 

tends to restore the drop to a spherical shape. The critical capillary number corresponds 

to the critical shear rate at which the drop in a steady flow is no longer able to assume a 

steady shape, it becomes unstable and breaks. It depends on the flow type and on the 

viscosity ratio only (Grace, 1982)40 (de Bruijn R A, 1989, Ph.D thesis)41. The 

hydrodynamic problem becomes more complex in the case in which one or both the 

component fluids are viscoelastic. In fact the choice of a non Newtonian dispersed 

phase with an appropriate constitutive equation is necessary, to get results of general 

validity. In addition it is experimentally not easy to separate the role of the fluids 

elasticity and of the viscosity dependence with the shear rate on the drop evolution. The 

viscoelastic fluids used in this work as dispersed phase were the constant viscosity 

Boger fluids, with a second order rheological behaviour. So it has been possible to 

isolate the contribution due to the only elasticity on the drop deformation, getting some 

results applicable in a large class of non Newtonian fluids, defined Noll’s “simple 

fluids”. These so called “Second Order Fluids” (G. Astarita and G. Marrucci, 

“Principles of Non-Newtonian fluid mechanics, McGraw Hill, Maidenhead, 1974) 

exhibit a first normal stresses difference, N1, proportional to the square of the shear rate 

                                                           
40 Grace H P (1982) Dispersion phenomena in high viscosity immiscible fluid systems and 

application of static mixers as dispersion devices in such systems. Chem. Eng. Commun., 14, 225-
277. 

41 de Bruijn R A (1989) Deformation and breakup of drops in simple shear flows. PhD thesis, 
Technische Universiteit Eindhoven. 
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in a wide range (
⋅

Ψ= 2
11 γN , where Ψ1 is the coefficient of the first normal stresses 

difference). Non dimensional parameter 
2

1

2 η
σ

R
p

Ψ= , in which η is the viscosity of the 

second order fluid, has been used to quantify the weight of the dispersed phase elasticity 

on the dynamic of drop deformation under the shear flow. It changes varying the drop 

radius or the pair of fluids. This parameter introduced for the first time by Leal (2001)42, 

and formalized by the Greco theory on the steady state drop shape in slow flow with 

non Newtonian second order fluids (F. Greco, 2002), can be interpreted as the ratio 

between constitutive relaxation time of the dispersed phase 
D

R η
τ

2
1Ψ

=  and emulsion 

time 
σ

ητ RC
em = . From the non dimensional analysis of the problem it is possible to 

establish that the effects of the dispersed phase elasticity on the drop shape are 

observable when p is around 1. Much more details about the theoretical analysis can be 

found in the work of S. Guido et al., (2003)43. 

5.1 Materials and methods 

The pair of fluids used as viscoelastic dispersed phase and Newtonian continuous 

phase were selected in order to have a single drop system with a parameter p almost 1, 

with a drop of radius within the range 10 – 50 µm, and with a viscosity ratio λ (drop to 

matrix viscosity) equal to 1 and 2.6. In a few words the fluids were prepared as follows. 

The viscoelastic drop phase was a constant viscosity Boger fluid. It has been prepared 

by mixing a small fraction of high molecular weight polymer (Polyisobutylene PIB, 

Sigma Aldrich, Mw = 4.6 x 106) with a Newtonian solvent, Polybutene, PB, 

                                                           
42 Tretheway D. C., Leal L. G., “Deformation and relaxation of Newtonian drops in planar 

extensional flows of a Boger fluid”, J. Non-Newtonian Fluid Mech. 99 (2001) 81–108. 
43 Guido S, Simeone M and Greco F, “Deformation of a Newtonian drop in a viscoelastic matrix 

under steady shear flow. Experimental validation of slow flow theory”, J. Non-Newtonian Fluid 
Mech., 114 (2003) 65-82. 
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commercially known as Napvis (BP Chemicals). The PIB was previously dissolved in 

Kerosene at 4% weight concentration. Then the high molecular weight PIB-kerosene 

solution was mixed to the PB in order to have the desired final mass ratio PIB/PB. This 

solution was slowly stirred at room temperature for a week, to avoid the formation of 

clots and it was placed in a vacuum oven at 40°C for one month, to remove the whole 

kerosene. The Newtonian continuous phase was made by mixing Silicon Oil fluids, 

PDMS (Polydimethylsiloxane, Dow Corning) with different average molecular weight, 

in order to have the desired experimental viscosity ratio. 

After the injection of a pure Polybutene drop in a pure Silicon Oil fluid, a decrease 

in drop diameter was observed because of a small solubility of the PB in PDMS (Guido 

et al. Rheol. Acta, 1999)44. To avoid, during an experiment, every geometrical, 

rheological and interfacial properties variation of the blend constituted by a single drop 

of viscoelastic PB immersed into PDMS, it was necessary to realize the thermodynamic 

phase equilibrium between the pair of fluids previous described. Equal volumes of 

viscoelastic Boger fluid and PDMS were emulsified. The emulsion so gotten, was left 

for about a week under static conditions. The two phases at the thermodynamic 

equilibrium were separated by ultra centrifugation and used for the experiments. The 

absence of any diffusion phenomenon was verified before every experiment, observing 

for one day a drop of viscoelastic phase inserted in the Silicon Oil phase. No significant 

changes in drop size were found. 

Two phases rheological properties were obtained using a constant-stress 

rheometer, equipped with a normal stress sensor (Bohlin, CVO 120), with the cone and 

plate configuration. As an example, rheological data of two viscoelastic phases, to be 

exact D4 and D5, used for the experiments at viscosity ratio 1 and 2.6, are presented in 

                                                           
44 S. Guido, M. Simeone, M. Villone, “Diffusion effects on the interfacial tension of immiscible 

polymer blends”. Rheol. Acta 38 (1999) 287-296. 
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Figure 27, at the experimental temperature 23°C. It is clear that the dispersed phase 

viscosity ηD was essentially constant in the range of shear rate investigated during the 

experiments (up to 5 s-1) and that the first normal stress difference N1 had a quadratic 

dependence from the shear rate, in a completely agreement with the assumption of 

second order fluids made in the theoretical analysis (F. Greco, 2002). The first normal 

stress difference coefficient Ψ1 was obtained by fitting the data to a line of slope 2 in 

log scale. It was also verified that the Silicon Oil phase was a Newtonian fluid with a 

constant viscosity and with no appreciable normal stress in a wide range of shear rate. 

All fluids used as dispersed viscoelastic phases in the experimental campaign are shown 

in Table 2, together with their rheological properties at the experimental temperature, 

23°C. In particular, column 1 reports a code name, Di; column 2 reports the mass ratio 

of high-to-low molecular weight polymer, (the values are multiplied by 103); column 3 

reports the viscosity at 0.05 and 1.5 s-1, which is roughly the range of shear rate at 

infinity imposed during the experiments (as shown, shear thinning is limited to 10-

20%); column 4 reports the first normal stress coefficient, Ψ1, column 5 reports the 

viscosity ratio of the experiments performed with that fluid and columns 6 and 7 report 

the p parameter and the type of experimental observation. Newtonian silicon fluids used 

as continuous phases are absent. 
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Figure 27 rheological data of the drops D4 and D5 at 23°C. 

Dispersed 
phase 

PIB/Napvis 
(x10-3) 

Viscosity at 
0.05 – 1.5 s-1 
(Pa s) 

ΨΨΨΨ1  
(Pa s2) 

Experiment 
at λλλλ 

p, vorticity 
view  

p, gradient 
direction 

D1 3.0 10.7 - 8.5 11 1 1.6; 2.4 1.3; 1.9; 2.9 

D2 3.0 78 – 76.8 145 1 0.7  

D3 3.5 46 – 42.3 67 1 3  

D4 3.0 67 - 61 127 1 1.1  

D5 2.0 28 31 2.6 0.6; 0.85; 1.7  

Table 2: Experimental viscoelastic fluids used as drop phase. 

The rheo-optical apparatus and the images analysis techniques used in this work to 

shear a drop and to monitor the drop shape during the flow were described in detail in 

the materials and methods section of S. Guido, M. Simeone (1998)45 and S. Guido, M. 

Villone (1998)46. The experimental apparatus essentially consists of a couple of parallel 

glass plates mounted on motorized supports and of an optical microscope, Axioscop FS 

(Zeiss) equipped with an analogical CCD camera. Two different parallel plates devices, 

                                                           
45 Guido, S. and Simeone, M. (1998) Binary collisions of drops in simple shear flow by computer-

assisted video optical microscopy. Journal of Fluid Mechanics, 357, 1-20. 
46 Guido, S. and Villone, M. (1998) Three dimensional shape of a drop under simple shear flow. 

Journal of Rheology, 42, 395-415. 
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easily interchangeable, were used for observing the drop along the vorticity axis and 

along the velocity gradient direction of the shear flow. When the drop was observed 

along the flow vorticity direction, the two axes RMAX  and RMIN of the deformed drop (as 

observed in the plane of shear) and the angle θ between the major axis RMAX  and the 

velocity direction (see the schematic drawing in the Materials and method section) were 

calculated. On the other hand, when the drop was observed along the velocity gradient 

direction, RP and RZ were measured, where RP is the projection of RMAX  on the plane of 

shear and RZ is drop axis along the vorticity direction. The experiments were carried out 

at constant temperature, 23°C± 0.5 °C. Briefly, during the experimental campaign drop 

was submitted to step up shear flows varying the shear rate and starting from spherical 

shape. Its morphology and orientation were analysed in time during the start up, the 

steady state, and after flow cessation. 

Within the limit of small deformations, as predicted by the theory (Greco, 2002), 

observing the drop along the vorticity axis of the shear flow, no deviation of the major 

and minor axes of the deformed drop at the steady state is predicted with respect to the 

corresponding Newtonian case. In addition the deformation parameter D reduces to one 

predicted by the Newtonian theory of Taylor, according to which D at steady state is 

linear with the shear rate, as illustrated in Figure 31. 

Therefore the interfacial tension of all couples of fluids has been calculated from 

the slope of the linear fit of D at steady state versus the shear rate, within the limit of 

D<2. 

5.2 Results 

I start this paragraph presenting in a few words data that I usually obtain with the 

rheo-optical apparatus shearing the drop by turning on the shear flow at a given value of 

shear rate, observing the viscoelastic drop along the vorticity axis, as illustrated in the 
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“materials and method” section. In Figure 28 the deformation parameter D of the drop 

D2 during a typical step up shear flow is plotted versus the time, made non dimensional 

using the emulsion time τem of the system. The drop has been submitted to a shear rate 

0.1. From its spherical shape (D=0), drop deforms monotonously itself, up to a 

stationary state (D=0.1). After the cessation of the flow the drop relaxes for reaching its 

initial rested shape, D=0. The corresponding evolution of the orientation angle θ is 

shown in the Figure 30. Micrographs of the drop evolution are reported in Figure 29. 

This morphological evolution of the drop under a step up shear flow is quite similar to 

the pure Newtonian system illustrated by S. Guido and M. Villone (1998). 
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Figure 28: Evolution of the D parameter of drop D2, with p = 0.7, λ=1, Ca=0.1. 
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Figure 29: Micrographs associated with Figure 28 and Figure 30 
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Figure 30: Evolution of the orientation angle θ  of drop D2, with p = 0.7, λ=1, 
Ca=0.1. 

First part of this section is devoted to explain all results obtained during my Ph.D. 

about the 3D shape of the viscoelastic drop at steady state, comparing, for the first time, 

the experimental data with the theoretical predictions obtained by F. Greco (Drop 

deformation for non Newtonian fluids in slow flow). Subsequently I will investigate the 

drop shape evolution during the transients of start-up and after cessation of the shear 

flow as a function of the viscous and elastic properties of the drop phase. Finally I will 
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show to the reader some “nice” drop evolutions, that happen when the shear flow is fast 

or in other words when the drop is submitted to a Capillary near the critical value, to 

finish with the evaluation of the critical capillary number as a function of the 

viscoelastic drop properties. 

5.2.1 Three dimensional drop shape at steady state. Comparison with the 
second order theoretical predictions. 

I start the explanation of this first part from the case with viscosity ratio 1. In such 

a case, three fluids have been selected, namely D1, D2 and D4 (see the table of fluids) 

to make the single drop blend. It is important to notice that the dispersed phase 

components of these three blends largely differ in their elasticity, as measured by the 

first normal stress coefficient Ψ1. So, different values of the p parameter, that gauges the 

non Newtonian effects, can be obtained not only by changing the drop radius for a given 

fluid pair, as illustrated in the introduction, but also by changing the fluid pair itself. So 

by using different pairs of fluids, a stringent test of the theoretical predictions and a 

good and complete experimental study will be performed without any doubt. 

In Figure 31 the deformation parameter D at steady state is plotted versus the 

Capillary number Ca, for three values of p: 0.7 obtained using D2 as drop phase, 1.1 

obtained using D4 as drop phase and 1.6 and 2.4, obtained using D1 as drop phase with 

two different drop radii. The continuous line is the prediction from second order theory 

(Greco, 2002). As discussed in the introduction the prediction for D derived from that 

theory is independent of the phases elasticity and the relation for D reduces to the one 

valid for Newtonian fluids (Taylor 1932, 1934). Within the limit of small deformations, 

all data points fall on the theoretical line up to a certain value of Ca, which should 

decrease with increasing p, as described by S. Guido and F. Greco (2003). No 

significant discrepancy between experimental data and the theoretical line was found 
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with increasing p up to Capillary 0.2, excluding the experimental errors for σ 

evaluation. In other words, it seems that the range of validity of the theoretical 

prediction is independent of p when the dispersed phase is a non Newtonian fluid and 

viscosity ratio is 1. 
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Figure 31: Deformation parameter vs. Ca at steady state, using as dispersed 
phase the fluids D1, p = 1.6 – 2.4; D2, p = 0.7; and D4, p = 1.1. The solid line is 
the Taylor theoretical prediction. All data are at λ = 1. 

In Figure 32 non dimensional axes RMAX /R and RMIN/R are reported, as measured 

in the view along the vorticity axis of the shear flow, versus the Capillary number Ca at 

steady state, using D1 fluid as dispersed phase. P parameter was 1.6. Dashed and 

continuous lines correspond to the Newtonian and non Newtonian second order 

predictions, respectively. It is clear, as before illustrated for D, that the two lines are 

very closed to each other in a wide range of Capillary number. Besides experimental 

data overlap to the predictions up to Capillary 0.2. Therefore I can assert that the non 

Newtonianness of the dispersed phase does not produce any effect on the deformation 

of the drop observed along the vorticity axis, compared with the Newtonian case, at low 
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Ca values. 

In Figure 33 the experimental data of D plotted versus Ca at steady state, for p = 

1.1, are compared with the value of D obtained from the predictions of RMAX  and RMIN 

of the second order non Newtonian theory, using the definition of D, 

)()( MINMAXMINMAX RRRRD +−= . 

It is important to notice that the experimental data fall on the continuous line up to 

Capillary 0.6. Therefore the “numerical or phenomenological” prediction of the 

deformation parameter D at the steady state gotten from the theoretical values of RMAX  

ed RMIN is valid in a wide range of Ca and it is better than the Taylor’s formula. 

Moreover the viscoelastic system displays a less deformed drop with respect to the fully 

Newtonian case, i.e. D<DNewt for “high” Capillary numbers (V. Sibillo et. al., 2005)47. 

In fact as we will see later, the droplet is “stabilized” by the dispersed phase 

elasticity and the non Newtonian critical capillary number is always larger than the 

corresponding Newtonian one. 
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Figure 32: Major and minor non dimensional axes vs. Ca, using D1 with p = 1.6 
as dispersed phase, at λ = 1. Dashed lines are second order Newtonian theory. 

                                                           
47 V. Sibillo, S. Guido, F. Greco, P.L. Maffettone. “Single drop dynamics under shearing flow in 

systems with a viscoelastic phase”. Macromolecular Symposium, (2005), 228, 31-39. 
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Continuous lines are non Newtonian theory. 
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Figure 33: Deformation parameter vs. Ca at steady state, using as dispersed 
phase the fluids D4, p = 1.1. The continuous line is the numerical prediction of 
D, gotten by the values of RMAX and RMIN drawn by second order non Newtonian 
theory. The dashed-dot line represents the Taylor theoretical prediction. 

Figure 34 shows the drop orientation angle θ with respect to the velocity direction 

at steady state, for drop D4, λ = 1. Dashed and continuous lines refer to the Newtonian 

and non Newtonian theoretical predictions, respectively. As described by S. Guido and 

F. Greco, (2003), and by Sibillo et al., (2005), the difference between the two curves is 

now clear. This reveals that the drop orientation depends on p, that is linked to the first 

normal stresses difference N1. This theoretical prediction is here confirmed by the 

experimental data of θ, that is lowered with respect to the Newtonian equivalent system. 

Unfortunately, in the case of viscoelastic drop in shear flow of a Newtonian matrix, the 

non Newtonian prediction overestimates experimental data. While as described by S. 

Guido et al. (2003) in the case of Newtonian drop subjected to a shear flow of a 

viscoelastic matrix experimental data of the orientation angle θ provide an excellent 

confirmation of the non Newtonian prediction, obtaining an univocal correlation 
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between the slope of θ vs. Ca curve with the matrix first normal stresses difference N1. 

In Figure 35 the orientation angle of drop D1 at steady state is plotted vs. Ca, with p = 

2.4 and λ = 1. It confirms without any doubt, what has previously been illustrated. 
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Figure 34: Drop orientation angle θ  vs. Ca at steady state, using as drop phase 
D4, p = 1.1. 
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Figure 35: Drop orientation angle θ  vs. Ca at steady state, using as drop phase 
D1 with p = 2.4. 

Now we can go to the top view experiments. The deformed drop is now observed 
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along the velocity gradient direction. In Figure 36 the non dimensional major and minor 

axes RP/R and RZ/R respectively, are plotted as a function of Ca at steady state. The 

dashed lines are the Newtonian predictions. As exposed by F. Greco, (2003) these two 

axes depend also on the second normal stresses difference N2, exactly on the ratio 

12 / NN− . The imposed value on that ratio, 12 / NN− , was 0.18<0.25, that represents 

the condition to reproduce a Weissemberg viscoelastic fluid, as suggested by S. Guido 

and F. Greco (2003). 

Also in this case the two theoretical curves are practically close to each other and 

the experimental data fall on the two lines for low capillaries. 

So if one considers the case when only the drop is a viscoelastic fluid, the optical 

measurements at steady state of D, θ and RP/R lead to a good evaluation of the 

rheological properties of the drop fluid, for a given value of viscosity ratio, i.e. λ = 1. In 

other words, the interfacial tension of the couple of fluids can be obtained by the slope 

of D vs. the shear rate at steady state as illustrated in Figure 31; the slope of θ vs. Ca 

curve is only determined by the p parameter and it gives us an approximate value for 

Ψ1; and finally 12 NN−  can be evaluated by the quadratic fitting of RP/R, using the 

corresponding second order theoretical equation (see the appendix). 



Morphology evolution of a single drop under shear flow, with non Newtonian dispersed phase. 

75 

Ca

0.0 0.1 0.2 0.3 0.4

RP/R 

RZ/R

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 

Figure 36: Drop axes of the deformed drop observed along the velocity gradient 
direction  vs. Ca at steady state, using as drop phase D1 with p = 1.9, λ=1. 
Continuous lines are the non Newtonian prediction when 18.012 =− NN . 

For a full analysis and to illustrate how the theoretical and experimental results 

depend on the viscosity ratio λ, I show the case at λ = 2.6. The fluid used as drop phase 

is now D5. Different p parameters were explored, changing the drops radii. 

Figure 37 shows the non dimensional axes RMAX /R and RMIN/R vs. Ca. Dashed 

lines correspond to the Newtonian theory, while continuous lines refer to the non 

Newtonian predictions. The theoretical assumption about the drop shape under slow 

flows at steady state is clearly confirmed by the data. Within the limit of small 

deformations the viscoelastic drop shape does not depend on the p parameter and it is 

equal to the Newtonian case. Data about D, RP/R and RZ/R at λ = 2.6 are omitted for the 

sake of brevity. 
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Figure 37: Major and minor axes vs. Ca of drop D5,with p=0.85, at λ=2.6. 
Continuous lines are non Newtonian theory. 

Figure 38 shows the orientation angle θ vs. Ca at steady state for two different p 

values, with the corresponding non Newtonian predictions, at λ = 2.6. It is clear that the 

angle do not depend on the drop phase non Newtonianness. At two different p values, 

0.85 and 1.7, experimental data fall on the Newtonian line up to Ca = 0.1. 

Probably the range of validity of the non Newtonian prediction of θ comes to zero 

with the increasing of the viscosity ratio, as illustrated by S. Guido et al (2003). In this 

case every theoretical affirmation becomes impossible to be shown.. 
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Figure 38: Orientation angle θ  vs. Ca at steady state, for the fluid D5, with p = 
0.85 and p = 1.7, at λ = 2.6 with the corresponding non Newtonian predictions. 

5.2.2 Transient response of the drop deformation at start-up and after flow 
cessation 

Figure 39 shows the transient response of the viscoelastic drop subjected to a step 

increase in shear rate from rest to the final stable shape. The drop fluid is D5. Viscosity 

ratio is 2.6. (In all Figures time is made non dimensional using the emulsion time τem). 

It is clear that, at low capillary numbers, D increases monotonically up to reach its final 

steady value. The transient response is quite similar to the Newtonian drop one. As the 

Ca value increases transient response differs drastically from the Newtonian response, 

see S. Guido and M. Villone (1998). Non Newtonian drop shape shows an evident 

overshoot, which depends on Ca. Considering Newtonian drops submitted to a well 

defined flow of a viscoelastic matrix, this phenomenon has already been illustrated by 

Sibillo et. al. (2004)48, and by Tretheway et al. (2001)49 “Deformation and relaxation of 

Newtonian drops in planar flows of a Boger fluid”, and in the previous section. All the 

                                                           
48 Sibillo V, Simeone M, Guido S, “Break-up of a Newtonian drop in a viscoelastic matrix under 

simple shear flow”, Rheologica Acta, 43, (2004) 449-456. 
49 Tretheway D. C., Leal L. G., “Deformation and relaxation of Newtonian drops in planar 

extensional flows of a Boger fluid”, J. Non-Newtonian Fluid Mech. 99 (2001) 81–108. 
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authors affirm that, as we increase p or Ψ1 and Ca, the transient response of the 

viscoelastic drop observed by turning on the shear flow stepwise differs drastically from 

the Newtonian case. Moreover, as illustrated by Sibillo et al. (2005), the Maffettone - 

Greco model prediction are very close to the experimental data and it gives a good 

qualitatively description of the overshoot up to moderate drop deformation D<0.3. This 

leads to the conclusion that this phenomenon exclusively depends on p and Ca. 
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Figure 39: Transient behaviour of the deformation parameter D vs. non 
dimensional time at various Ca. Drop fluid is D5, with p=0.85 and λ=2.6. 

Figure 40 shows transient behaviour for D as a function of the non-dimensional 

time. Now the viscosity ratio is 1 and the D values are normalised with respect to the 

steady value of the deformation parameter, DSS. As shown in Figure 39, the overshoot 

increases with the Ca. Micrographs of the drop evolution in time, submitted to Ca = 1.1 

are reported in Figure 41. It is important to notice that for the final capillary number, 

Ca=1.1, a slight secondary undershoot, after the initial overshoot, is also observed (see 

micrographs 4 and 5). Moreover it was clear during the experimental tests that the 

overshoot and the resulting undershoot of deformation were larger for a higher Capillary 

number. As supposed by Tretheway and Leal, (2001) the overshoot and resulting 
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undershoot in deformation are the result of a quite subtle interaction between the stretch 

of non Newtonian long chain polymer, PIB, inside the drop, the drop shape, and the 

local disturbance velocity field. In absence of exact theoretical predictions I cannot say 

more than this. 
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Figure 40: Transient behaviour of the deformation parameter D normalised with 
respect to the steady value vs. non dimensional time. Drop fluid is D4, with 
p=1.1, λ=1. 
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Figure 41: Micrographs of the drop evolution of Figure 40, submitted to Ca=1.1. 

The second type of transient phenomenon considered in the experimental section 

was the relaxation of the drop from a stationary deformed shape after the shear flow 

cessation. Only the drop relaxation from a little deformed shape (D<0.2) was 

investigated. The relaxation of drops from the same initial deformation, 1.0=Ca and 

1.0≅D , for different p, is reported in Figure 42 by plotting the Taylor deformation 

parameter normalised with respect to the steady value DSS as a function of the non 
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dimensional time t/τem. Figure shows that as the p parameter increases the relaxation 

time decreases. So the drop elasticity inhibits its relaxation. Unfortunately no models or 

theoretical predictions are now available to understand the experimental data. 
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Figure 42: Drop relaxation for different drop systems Di, with the same initial 
deformation (Ca = 0.1). Newtonian case is also reported (p = 0). 

5.2.3 Transient evolution of drop shape for sub critical capillary number and 
drop break-up. 

In Figure 43 non dimensional major and minor axes, RMAX /R and RMIN/R, as well 

as the deformation parameter DSS, at the steady state, are plotted versus the capillary 

number and the Weissenberg number, 
⋅

⋅= γτ RWi , for the drop D4, comparing the 

experimental data with the non Newtonian second order theoretical predictions. 

Viscoelastic drop display a less deformed shape with respect to the Newtonian case for 

high Deformation parameters. Moreover it needs to underline that the drop reached a 

stable shape up to capillary around 1, while it is well known in literature that the critical 

capillary value for Newtonian systems is almost 0.48 at λ=1. The capillary number, at 

which the drop D4 has been broken, was 1.4 c.a.. It follows that the dispersed phase 

elasticity hinders drop breakup. It was before illustrated in Figure 41 some micrographs 
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of the drop D4 evolution at Ca = 1.1, and it was clear that no break-up occurred. 
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Figure 43: Major (• full symbols), minor axis (o open symbols) and Taylor 
parameter DSS at steady state of the deformed drop observed along the vorticity-
axis of the couple of fluids D4, λ = 1, p = 1.1. Comparison with the theoretical 
predictions. 

In the micrographs of Figure 43 and Figure 45 the shape temporal-evolutions of 

the drops D4, λ = 1 and p = 1.1, and D5, λ = 2.6 and p = 0.85, are exposed, respectively 

observed along the vorticity and velocity gradient axis, submitted to an high capillary 

number, 1.38 and 1.30 respectively. After having started the flow, drops quickly left the 

ellipsoidal shape (micrographs 2 – b), they were stretched forming a system of two 

drops joined by a thread, that avoided their separation during the start up of the flow 

(micrographs 3 – c). The final part of drops extension has been characterized by a 

thinning of the thread, an increasing of the two extreme drops’ dimensions and an 

inversion of the orientation θ of the drop-thread-drop system with respect to the shear 

plane (micrographs 2,3,4 - b,c,d). Under these conditions the long thread that links the 

two drops is like a rigid rod, whose rigidity is due to the extension of the high molecular 

weight PIB macromolecules dispersed inside the drop and to an elongation component 



Morphology evolution of a single drop under shear flow, with non Newtonian dispersed phase. 

83 

of viscosity. The inversion of the orientation θ caused a change of the sign of the 

relative speed between the mass centres of the two system’s extremities, with a 

consequent approach (micrograph 4 - e), collision (micrograph 5 - f) and partial or total 

coalescence of the two drops (micrograph 6 - g). Because the shear stress induced by the 

flow on the drop D4 was “high”, the two extremity-drops were again moved away from 

each other (micrograph 7), realizing a second sequence of extension - inversion - 

collision and partial coalescence (micrograph 7, 8, 9, 10). Also in this case, during the 

extension time the thread kept the two drops together, avoiding their separation. The 

drop D4 (Figure 44) was submitted to a capillary 1.38 close to the critical one (1.4) and 

three big damped oscillations of the maximum length of the drop-thread-drop system 

occurred. The flow was interrupted because it was reached, in both cases, the maximum 

run of the parallel plates apparatus, that was almost 15 cm, without any breakup 

occurred. This phenomenon has been named “Yo-Yo instability”. It occurs from a 

certain capillary number and it always precedes the breakup of the viscoelastic drop, 

characterized by p>1. The breakup occurs with the disappearance of the thin thread that 

links the two extremities, during one of the sequences of extension, inversion and 

collision of the system drop-thread-drop. On the left side of Figure 44 the major length 

evolution of the drop-thread D4, RMAX /R, is plotted versus the non dimensional time 

t/τem, at three different runs with capillary numbers: 0.08, 1.28 and 1.38. In the graph of 

Figure 44 is shown that for shear flows with high hydrodynamic stresses, Ca=O(1), the 

shape transient of the drop before the steady state reaching is characterized by a 

sequence of damped oscillations of the non dimensional major length, that correspond 

to drop shape oscillations, as discussed before. The amplitude and the number of these 

damped oscillations increase with the capillary number, as shown in the graph of Figure 

40 and Figure 44, up to observe the Yo-Yo phenomenon and they depend on the degree 
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of elasticity (p) of the drop. The oscillations are absent for Ca <<1 or for p almost zero 

(Newtonian case). This shows that the dispersed phase elasticity plays an important role 

on the drop evolution when Weissenberg number is of order 1. 
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Figure 44: Micrographs of the drop evolution D4, p=1.1, λ=1, submitted to 
capillary 1.38 and the corresponding measure of the non dimensional major axis. 
On the graph the evolution of RMAX/R for capillary numbers 0.08 and 1.28 are 
also reported. 
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Figure 45: Micrographs of the drop evolution D5, p=0.85, λ=2.6, submitted to 
capillary 1.30, observed along the velocity gradient direction of the shear flow. 

In Figure 46 is showed the disappearance of the thin thread that linked the two 
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drops-extremities during the Yo-Yo evolution for the system D4 at Ca = 1.4. Our 

experimental campaign demonstrated that this situation was hard to reproduce perfectly. 

Indeed the number and the amplitudes of the damped oscillations, before the break-up 

occurred, might be different. 
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Figure 46: Drop D4 break-up. Ca = 1.4. 

It is important to underline that the Capillary at which drop break-up occurred 

after the Yo-Yo evolution for system D4 was 1.4. Therefore, as illustrated in the 

previous section for a Newtonian drop under the shear flow of a non Newtonian matrix, 

phases non Newtonianness hinders drop break-up. 

The break-up critical capillary number was determined, as discussed in the 

previous section, by performing a set of runs at increasing shear rate until break-up 

occurred. If steady state deformation was reached, after the Yo-Yo, the flow was 

stopped and the drop was allowed to relax back to the spherical shape before starting the 

next run. Drop break-up always occurred during the flow. With this protocol, I 

identified Cacr inf. and Cacr sup, or in other words, the interval in which the critical 

capillary number is contained. 

In Table 3 the inferior critical capillary number (Cacr inf) and the superior critical 

capillary number (Cacr sup) are reported for the systems D2 and D4 at two different p 

parameters, at λ = 1. The Newtonian critical capillary number is also reported. 

It is confirmed that drop elasticity hinders break-up and this effect becomes 

important when the p parameter assumes values higher than one. We noticed in the 
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previous section for a Newtonian drop immersed into a viscoelastic matrix that the 

maximum increase of critical capillary number measured was 50% ca. when the p 

parameter was increased to 5 at λ = 0.6 or to 10 ca at λ = 2. While now, for a 

viscoelastic drop the maximum increase of critical capillary number with respect to the 

fully Newtonian case is almost 300% when p parameter is increased to 1.1 at λ = 1.  

 

p 
 

Cacr 
Inferior 

Cacr 
Superior 

0 / 0.48 

0.7 0.65 0.66 

1.1 1.38 1.40 

Table 3: Critical capillary number as function of p. 

5.3 Final remarks 

The first result of this section was the definition of a protocol to produce a non 

Newtonian model liquid-liquid dispersion with a constant-viscosity second order drop 

phase. 

For the fist time the experimental validation of the theoretical predictions 

concerning non Newtonian drop stationary shape submitted to a slow shear flow was 

achieved. I have presented the first complete viscoelastic drop shape 3D analysis at 

steady state. Two viscosity ratio were considered, λ=1 and λ=2.6. Drop deformation, as 

observed along the vorticity axis and the velocity gradient direction, for “slow” flows is 

essentially unaltered with respect to the fully Newtonian case. Moreover the agreement 

between the experimental results and theory predictions was good in a wide range of 

Capillary number. This feature confirms that the small deformation limit can be studied 

to evaluate interfacial tension of viscoelastic liquid-liquid dispersions. I exposed that the 

interfacial tension can be determined by rheo-optical measurements of the deformation 
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parameter D as a function of the shear rate in the linear regime, observing the drop 

along the vorticity axis direction. On the other hand, by looking at the results on the 

projected axis RP, the interfacial tension can be measured also using the top view 

experiment, that is very easier to be realized, if N1 is known. Finally a complete drop 

shape 3D analysis can lead to knowledge of the rheological drop phase viscoelastic 

properties. 

Viscoelastic drop dynamics was also investigated during start up and after 

cessation of the shear flow. At high capillary numbers (Ca>0.3) drop deformation goes 

through an overshoot and a subsequent slight undershoot during which the drop changes 

its orientation with respect to the flow direction. The entity of this phenomenon 

increases with Ca and p up to observe the “Yo-Yo instability” at high, but sub-critical 

capillary numbers. 

The results presented, concerning drop evolution at high capillary number, allow 

to conclude that drop elastic content changes the break-up mechanism and hinders drop 

break-up, when compared with the equivalent fully Newtonian system. This was found 

at viscosity ratio 1 and was quantified by measuring the critical capillary number as a 

function of the p parameter. The maximum increase of critical capillary number 

measured was 300% ca. when the p was increase to 1.1 ca. 

Finally it was underlined that drop elasticity influences the relaxation time of the 

drop from a stationary deformed shape after the shear flow cessation. 

As described by S. Guido et al. (2003) these results are also useful in evaluating 

non Newtonian effects for liquid-liquid dispersion processed in industrial application. 
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Wall effects on drop deformation under simple shear flow 

This section illustrates the influence of confinement on the steady state of a single 

drop sheared between parallel plates, in a regime where the droplet diameter is 

comparable with the gap width, comparing the experimental data with some theoretical 

predictions. Drop high deformations were also investigated as a function of the 

confinement. A single drop model system with Newtonian phases was considered. 
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6 Wall effects on drop deformation under simple shear 
flow 

Acknowledgements 

I wish to thank Eng. Gilberto Pasquariello as co-worker and for his great 

experimental support during this difficult experimental campaign. Some results of this 

section are taken from the poster presented at the Annual European Rheology 

Conference 2005 in Grenoble: Sibillo, Vincenzo; Simeone, Marino; Guido, Stefano; 

Pasquariello, Gilberto. “Wall effects on drop deformation under simple shear flow”. 

Keywords: Drop dynamic, wall effect, microfluidic, shear flow, microscopy. 

6.1 Introduction 

In this section I will present briefly, some results obtained during the last year of 

my Ph. D. on the influence of confinement on the steady state morphology of a single 

Newtonian drop sheared between parallel plates in a regime where the drop diameter 2R 

is comparable to the gap width, d. 

The regime where drop diameter 2R and gap width d are comparable, where wall 

effects influence drop dynamic and shape, is not yet well understood. On the other hand 

many attractive technological applications depend a lot on the fluid-dynamic behaviour 

of liquid-liquid dispersions flowing through microscopic devices, where chemical 

reactions or particles interactions can be controlled with a micro metric accuracy. 

On the market we can find some miniature devices able to pump, to mix, to check 

small volumes of liquid-liquid dispersion, i.e. polymer blends, emulsions for food 

industry, cells suspensions etc., where a knowledge concerning the micro fluidic or the 

micro-scale processing of emulsion is fundamental. 
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For example the bioanalyzer illustrated in Figure 47 is a highly successful micro 

fluidics-based platform for the analysis of DNA, RNA, proteins and cells. It can analyze 

cells treated with medicines. Cells train is driven through a micro channel by using two 

converging laminar flows. Optical analyzers can count and characterize fluorescent cells 

one by one. 

 

Figure 47: Bioanalyzer. 

Diluted polymer blends can be used as model systems to better understand the 

behaviour of a liquid-liquid dispersion subjected to confined flow. Son 50 has recently 

reported some important results concerning a polymeric emulsion composed of 

polyisobutylene (PIB) and poly(dimethylsiloxane) (PDMS), sheared between parallel 

plates in the regime where droplets diameters are equal to gap width dR ≈2 . He 

observed the formation of stable strings, created by the coalescence of the dispersed 

phase during the shear flow. He found that the transition from the droplet to string 

morphology is governed by the ratio R/d. He also found that the Rayleigh-Tomotica 

                                                           
50 Youngoon Son, Nicos S. Martys, John G. Hagerdon, and Kalman B. Migler, “Suppression of 

Capillary instability of a polymeric thread via parallel plate confinement”, Macromolecules, 35, 5825-
5833, (2003). 
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break-up is suppressed by both finite size effect, in the case of wider strings, and by 

shear confined flow. 

The deformation of a drop near a plane wall was considered theoretically by 

Shapira and Haber51. Using the method of reflections they found that the wall 

confinement exacerbates the deformation of the drop. This was confirmed by numerical 

results of Kennedy et al. (1994)52. They found that the general behaviour of the drop is 

similar to that of drops in an unbounded shear flow, but with slightly larger 

deformations and lower angles of orientation as the drop are placed closed to the wall. 

Briefly, when a shear field with no confinement is imposed on a Newtonian drop 

(d>>2R), interfacial tension effects tend to keep the drop spherical, while shear stress 

tends to deform it. Up to moderate deformation, the steady-state drop shape is well 

described by an ellipsoid having three different axes. Increasing the shear rate the 

droplet continues to deform itself until the interfacial tension effects are not able to 

balance the shear-stress-induced deformation and then the droplet breaks up. Drop 

deformation, its orientation with respect to the flow direction and break-up phenomenon 

depend only on the dimensionless Capillary number σ
γη RCa C

•

= , (where ηC is the 

matrix viscosity, 
•
γ  is the shear rate, R is spherical droplet radius and σ is the interfacial 

tension of the system) and on drop to matrix viscosity ratio 
C

D

η
η

 (Taylor53, Grace54, 

                                                           
51 M. Shapira and S. Haber, Lew Reynolds number motion of a droplet in shear flow includin wall 

effect. Int. J. Multiphase Flow 16, 305 (1990). 
52 M. R. Kennedy, C. Pozrikidis and R. Skalak, Motion and deformatio of liquid drops and the 

rheology of dilute emulsions in simple shear flow. Computer Fluids Vol.23, No.2,pp.251-278, (1994). 
53 Taylor, G. I., “The formation of emulsion in definable fields of flow”, Proceedings of the Royal 

Society of London: A, 138, 41-48, (1934). 
54 Grace, H., “Dispersion phenomena in high viscosity immiscible fluid system and application of 

static mixers as dispersion devices in such systems”, Chemical Engineering Communications, 14, 
225-277, (1982). 



Wall effects on drop deformation under simple shear flow 

93 

Guido et al.55, Rallison J. M.56, C. Chaffey et al.57). Above a certain value of Ca drop 

becomes unstable and the corresponding Ca is known as the Critical Capillary number 

CaCr, which is a function only of the viscosity ratio λ. Critical Capillary number for 

viscosity ratio equal to 1 is almost 0.48 (Grace, 1982). Drop deformation can be 

evaluated using the deformation parameter D introduced for the first time by Taylor, 

MINMAX

MINMAX

RR

RR
D

+
−

= , where RMAX  and RMIN are the major and minor axes of the deformed 

ellipsoidal drop observed along the vorticity axis direction of the shear flow (side view 

experiment). It is well known that D depends linearly on Ca in the limit of small 

deformation, without walls confinement, 
1616

1619

+
+⋅=

λ
λ

CaD , Taylor(1934). 

In this section I investigated single Newtonian drop behaviour immersed into a 

Newtonian matrix, with drop to matrix viscosity ratio 1, submitted to a simple shear 

flow in the regime where drop diameter is comparable to gap width, dR ≈2 . A new 

non dimensional parameter was considered, d/2R, namely non dimensional gap, to 

quantify the effect of the confinement on the drop deformation. Wall effects on drop 

shape were studied by performing a set of runs at reducing d/2R, starting from not 

confined regime. 

We will focus on the drop deformation at steady state within the limit of small 

deformations, Capillary number lower than 0.2, as a function of d/2R, comparing for the 

first time experimental data with theoretical predictions of Shapira-Haber, Taylor and 

with the second order Newtonian theory. Drop dynamics at start-up will be briefly 

explored as function of non dimensional gap, d/2R. Drop shape at high Capillary 

                                                           
55 Guido, S., Villone, M., “Three dimensional shape of a drop under simple scorrimento flow”, 

Journal of Rheology, 42, 395-415, (1998). 
56 Rallison, J. M., “The deformation of small viscous drops and bubbles in shear flows”, Annual 

Review of Fluid Mechanics, 16, 45-66, (1984). 
57 C. Chaffey, H. Brenner and S. G. Mason, Particle motions of sheared suspensione XVIII. Wall 

migration (Theoretical). Rheol. Acta 4, 64 (1965). 
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numbers will be finally illustrated. 

6.2 Materials and methods 

The fluids used in this work were two Newtonian polymers, polyisobutylene (PIB) 

as matrix phase and polydimethylsiloxane (PDMS) as drop phase. In all experiments 

drop to matrix viscosity ratio was 1. All the experiments were performed at room 

temperature, 23°C. For sake of brevity I don’t show rheological data for the PIB and 

PDMS samples. For both matrix and drop phase, up to shear rates around 1 s-1 viscosity 

is essentially constant with the shear rate. The viscosity at 23°C is sPa⋅3.83  for PIB 

and sPa⋅1.83  for PDMS. 

The shear device used in this work has been well described by Guido and Villone 

(1998) and illustrated in the material and methods section. 

The experimental apparatus essentially consists of a couple of parallel glass plates 

mounted on motorized supports and of an optical microscope, Axioscop FS (Zeiss) 

equipped with an analogical CCD camera. Sheared drop was observed only along the 

vorticity axis direction of the shear flow (side view experiment). The two axes RMAX  

and RMIN of the ellipsoidal drop, major drop length L and the angle θ between the major 

axis RMAX  and the velocity direction (see the schematic drawing in the Materials and 

methods section) were calculated. L is equal to RMAX  within the limit of small 

deformations and without confinement effects, as well illustrated by Guido and Villone 

(1998). 

After loading matrix phase between the glass parallel plates, a single drop of 

PDMS was injected in the sample by using a tiny glass capillary, fixed on an homemade 

micromanipulator. The parallelism accuracy was estimated to about 10 µm over the 

whole plate length. Gap width was gently reduced during the experiment to vary non 

dimensional gap d/2R, taking care of avoiding drop squeezing out of the parallel plates. 
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A sets of runs at different d/2R were carried out, from d/2R=9 up to d/2R=0.5. 

The interfacial tension of the couple of fluids has been calculated from the slope 

of the linear fit of D at steady state versus the shear rate, within the limit of D<2, and 

d/2R>7 to be sure that wall effects were negligible, σ=2.4 mN/m. 

6.3 Results 

Images of the deformed drop at steady state (Ca=0.1) for different non 

dimensional gap values, d/2R, are reported in Figure 48. Deformation parameter D as a 

function of d/2R is also reported at Ca=0.1 and Ca=0.2. Experimental data are 

compared with the predictions of Shapira-Haber. It is clear, as predicted by Shapira-

Haber and Kennedy et al, that within the limit of small deformations, drop shape and its 

orientation angle at steady state don’t depend on the closeness of the walls up to 

d/2R=2. Below d/2R=2 drop steady shape, the orientation angle and its non dimensional 

major length change drastically. As predicted by Shapira-Haber the presence of the wall 

exacerbates the deformation of the drop. Theoretical prediction underestimates the 

increase of the deformation parameter D, because it doesn't predict the deviation of drop 

shape from the ellipsoidal one, when d/2R is close to 1. Major and minor axes, RMAX  

and RMIN, are reported in Figure 49 as a function of the non dimensional gap d/2R, at 

Ca=0.2. Shapira-Haber theoretical prediction is also reported. As previously discussed, 

drop major and minor length don’t change up to non dimensional gap 2. 
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Figure 48: Images of the deformed drop at steady state as a function of d/2R, at 
Ca=0.1. Experimental data are compared with predictions of Shapira-Haber at 

Ca=0.1 and Ca=0.2. 

d/(2R)

1 2 3 4

RMAX /R

 RMIN /R

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Shapira, Haber, Ca=0.2

 

Figure 49: Major and minor axis at steady state as a function of d/2R, at Ca=0.2. 
Dashed lines are predictions of Shapira-Haber. 

In Figure 50 the drop orientation angle θ versus d/2R is reported at Ca=0.1 and 
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Ca=0.2. The angle of orientation is also remarkably influenced by the reduction of the 

gap width. As consequence of the confinement drop progressively increases its 

alignment to the flow direction. 

The Shapira-Haber theory is a first order analytical solution of the hydrodynamic 

interaction between the drop immersed in a shear flow and the containing walls. It 

predicts that the orientation angle is always 45°. Therefore in absence of an exact 

theoretical prediction of the orientation angle as a function of the confinement, a simple 

regression of the experimental data has been presented, using the equation, 
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aTaylorθθ , where θTaylor is the experimental orientation angle at steady 

state for d/2R>>2 or in absence of confinement effects. 
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Figure 50: The drop orientation angle θ vs. d/2R, at Ca=0.1 and Ca=0.2. Lines 

were obtained by fitting the data using the equation 
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In Figure 51 the deformation parameter D and major length of the drop at steady 

state are reported as a function of the Capillary number and for different values of d/2R. 

It is clear that the deformation of the drop increases as consequence of the decrease of 
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the non dimensional gap. However, D data don’t exhibit any deviation from linearity 

within the explored range of Ca. 

It’s important to notice that drop shape at steady state seems not to be influenced 

by the closeness to the walls up to d/2R~2, as previously observed in Figure 48 and 

Figure 49. I would to underline that, for Ca=0.3 and d/2R=1, drop length is almost 40% 

higher with respect to not confined case, and drop shape is not more ellipsoidal (see 

micrographs of Figure 53). 
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Figure 51: Deformation parameter D and non dimensional length L/2R vs. Ca, at 
various d/2R. 

In Figure 52 the orientation angle is reported as a function of the Capillary number 

for different non dimensional gap values. As observed in Figure 50, as consequence of 



Wall effects on drop deformation under simple shear flow 

99 

the confinement, drop progressively enhances its alignment to the flow direction. 

Probably this is due to a pressure difference from the walls to the drop during the shear 

flow, caused by the crushing of the flow lines between drop and wall. 

It is important to underline that drop pushed by the walls is closer to the velocity 

direction with respect to the Newtonian case without confinement, as a non Newtonian 

drop sheared into a Newtonian matrix (see previous section) or vice versa. In fact Guido 

et al. (2003) demonstrated that a Newtonian drop immersed into a non Newtonian 

matrix displays a stronger alignment in the flow direction respect with the fully 

Newtonian case. They explained that this behaviour was due to the first normal stresses 

difference, N1,of the viscoelastic phase, which is a pressure difference. So we can argue 

that drop generally tends to align itself to the flow direction if a pressure difference is 

present. 
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Figure 52: The drop orientation angle θ vs. Ca, at various non dimensional gap 
width d/2R. 

Here images of the drop subjected to Ca=0.3 at steady state are presented for 

different non dimensional gap. All results previously illustrated are now confirmed at 

high capillary number. Drop shape and its orientation change drastically when d/2R is 
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lower than 2. In Figure 53 drop length time-evolution is also reported. It is clear that 

drop transient also change drastically when drop closeness to the walls becomes 

significant. It is important to underline that drop start-up at d/2R=1 is characterized by 

an overshoot. Probably this phenomenon is due to the drag of the drop, caused by the 

walls during the initial time of the flow, when drop is still in contact with them. 
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Figure 53: Images of the deformed drop under steady shear flow at Ca=0.3, for 
various non dimensional gap width d/2R. Drop length time-evolution is also 
reported. 
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