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Chapter 1

Introduction

Although the principles of Orthogonal Frequency Division Multiplexing
(OFDM) modulation [1, 2] have been in existence since 1960, in the last years
OFDM modulation is emerged as a key modulation technique of commercial
high speed communication systems. The principal reason of this increasing in-
terest is due to its capability to provide high-speed data rate transmissions with
low complexity and to counteract the intersymbol interference (ISI) introduced
by dispersive channels. For this reason OFDM modulation hasbeen adopted
by several digital wireline and wireless communication standards, such as the
European digital audio and video broadcasting standards, as well as local area
networks.

On the other hand, the use of OFDM systems with a high number ofsub-
carriers has some drawbacks. The major drawback is its high sensitivity to
synchronization non idealities between the transmitter and receiver oscilla-
tors [3]-[8]. Specifically, incorrect timing synchronization can cause inter-
ference between successive symbols and, if not perfectly compensated before
the equalization process, can lead to a severe performance degradation. In ad-
dition, a carrier-frequency offset (CFO) induces an amplitude reduction of the
useful signal and provokes interference between adjacent subcarriers (ICI).

Several studies have been focused on parameter estimation for OFDM sys-
tems based on data-aided and non data-aided (or blind) techniques. In the
first case it is in demand the transmission of known sequencesor the use of
a training symbol with a known structure while blind estimation algorithms
use exclusively the statistic properties of transmitted signal. For example, ef-

1



2 CHAPTER 1. INTRODUCTION

ficient blind techniques that take advantage of temporal redundancy induced
by the cyclic prefix (CP) has been exploited in [9] to obtain a low complexity
estimator. In particular, J.J. van de Beeket al. in [9] derive the joint symbol
timing and CFO maximum likelihood (ML) estimator under the assumption of
a non dispersive channel and by modeling the OFDM signal vector as a circular
complex Gaussian random vector (C-CGRV) [10]. The Gaussianassumption
is reasonable when the number of subcarriers is sufficientlylarge. However,
if a noncircular (NC) (or improper [11]) signal constellation is adopted the
received signal vector becomes an NC-CGRV [12]. Hence, in this case the
estimators derived in [9], termed MLC estimators, are not MLestimators.

In this thesis the problem of CFO and symbol timing synchronization in
OFDM systems is examined and, moreover, new blind estimation techniques
for OFDM systems with NC transmissions are proposed (see [13], [14] and
[15]). Specifically, unlike zero-mean C-CGRVs, completelydescribed by their
covariance matrix, the statistical properties of zero-mean NC-CGRVs are also
characterized by the relation matrix [16], defined as the statistical expectation
of the product between the vector and its transpose. By exploiting the joint
information of covariance and relation matrices a performance improvement
with respect to estimation methods that rely only on circular statistics can be
expected. However, unlike estimators based only on circular statistics, since
the relation matrix preserves phase information, it is necessary to consider joint
symbol timing, CFO and carrier phase estimation to obtain symbol timing and
CFO estimators robust with respect to a residual carrier phase offset in the
received signal. Specifically, by exploiting the generalized probability density
function (PDF) of NC-CGRVs, we derive the unconditional ML algorithm for
joint symbol timing and CFO estimation. The derived estimators can be also
used in absence of CP, turning into those proposed in [9] in the case of circular
transmissions.

The derived ML synchronization algorithm results particularly efficient
since it does not use training sequences, besides, it assures optimal perfor-
mances in AWGN furnishing estimates unbiased with a mean squared error
very close to the corresponding Gaussian Cramèr-Rao Bound(GCRB). In
presence of dispersive channel, however, there is a drawback because an ac-
curate synchronization needs an averaging over different OFDM symbols. For
high-rate packet transmission, the synchronization time needs to be as short
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as possible, preferably a few OFDM symbols only. To achieve this, special
OFDM training symbols can be used to obtain synchronization. In particular,
in [17] Schmidl and Cox consider a timing and CFO synchronization scheme
that exploits the redundancy associated with a training symbol composed by
two identical halves. However, the considered timing metric reaches a plateau
that produces large variance for the timing estimates. The training symbol pro-
posed in [18], with four identical parts and a sign inversion, provides a timing
metric with steeper rolloff. Nevertheless, the sign inversion in the transmitted
training symbol introduces, in dispersive channels, some interference in the
frequency estimation process causing severe performance degradation. This
drawback is investigated by Bhargava et al. in [19] where a more general syn-
chronization algorithm based on a structured training sequence is proposed
and, moreover, channel estimation is also incorporated in order to obtain fine
timing and CFO estimates. This refinement step reduces the interference intro-
duced in the coarse CFO acquisition process but at the cost ofsome increase
in computational load.

To overcome these limitations we develop in this thesis a reduced complex-
ity synchronization scheme for data-aided symbol timing and CFO recovery
with robust acquisition properties in dispersive channels([20]-[23]). Specif-
ically, this algorithm exploits the known structure of a training symbol made
up of L identical parts obtained by transmitting BPSK data symbols on the
subcarriers whose indexes are multiple of L and setting zeroon the remaining
subcarriers. In this case, if the number of subcarriers is sufficiently large, the
training symbol can be modeled as an NC-CGRV. Therefore, by exploiting the
joint PDF for improper CGRV’s in this work is derived the joint ML estimator
for the parameters of interest in an AWGN channel. The proposed method, as
illustrated by numerical simulations, assures, in multipath channels, attractive
properties for symbol timing acquisition and offers sufficiently accurate CFO
estimates outperforming the estimators prosed in [18] and [19].

1.1 Outline

The organization of this thesis is as follows.

• Chapter 2 provides an introduction to OFDM in general. After a brief
history on origin of multicarrier modulation, this chapterdescribes what
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OFDM is, and how it can be generated and received illustrating OFDM
digital implementation scheme by using the discrete Fourier Trans-
form (DFT) and its counterpart, the inverse discrete Fourier Transform
(IDFT). Moreover, it is explained the concept of CP necessary to avoid
ISI in dispersive channels. It also analyzes the robustnessof the OFDM
modulation scheme and some of its advantages over single carrier mod-
ulation schemes.

• Chapter 3 analyzes detrimental effects of symbol timing and CFO syn-
chronization errors on OFDM system performance. Moreover,it pro-
vides an outline on principal synchronization techniques proposed in
literature.

• Chapter 4 looks at blind estimation techniques for OFDM systems. In
particular, by considering the generalized PDF for NC-CGRVs the joint
symbol timing and CFO ML estimator for AWGN channel is obtained.
The derived ML estimator can also be used in absence of CP and it is
equal to the algorithm proposed in [9] in the case of circulartransmis-
sions. Moreover, the joint GCRB of CFO and carrier phase estimation
for both circular and NC transmissions is presented. Finally, to combat
dispersive effects of multipath channels in this chapter wedevelop blind
refined symbol timing estimators that do not require channel-parameters
knowledge at the receiver.

• Chapter 5 provides a treatment of OFDM synchronization techniques
using a training symbol. Precisely, the chapter includes new ML-based
estimation techniques using a training symbol made up of L identical
parts, obtained by transmitting BPSK data symbols on the subcarriers
whose indexes are multiple of L and setting zero on the remaining sub-
carriers. Moreover, due to computational complexity of ML estimator a
feasible method for CFO estimation is proposed. Finally, a refined sym-
bol timing estimator, apt to counteract the degrading effects of channel
dispersion, is considered.

• Chapter 6 contains numerical evaluations of the performance of pro-
posed blind and data-aided estimators in presence of AWGN and disper-
sive channel providing comparison with some of estimators previously
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proposed in literature.

• In Chapter 7 conclusions are provided, which summarize the major re-
sults obtained in this thesis and outline possible future work in this field.





Chapter 2

OFDM Basics

In this chapter, after a brief introduction on basic principles of OFDM mod-
ulation technique and an overview on its actual and future applications, we
start by describing its basic architecture. Then, we illustrate OFDM digital
implementation scheme by means IDFT/DFT and finally we explain how the
insertion of the CP avoids interference between successivesymbols in presence
of dispersive channels.

2.1 Introduction

In the last years OFDM (see [1], [2] and references therein) has been object
of increasing interest, in relationship to different applications, since it assures
high data rate transmissions immune to channel dispersion.It is well know
that if the channel impulse response is much longer than the symbol duration,
the received signal will be distorted in time. Nevertheless, for modern mul-
timedia applications operating with very high data rate communications the
required signal bandwidth can result much greater than the channel coherence
bandwidth so that distortion effects are severe. To containsuch distortion it is
necessary to use equalization systems, whose structure results more and more
complex as the ratio among the channel delay spread and the symbol period
increases. The OFDM modulation scheme offers an alternative solution to
deal this problem. This modulation technique is a particular application of
more general frequency division multiplexing (FDM) technique (also called

7



8 CHAPTER 2. OFDM BASICS

multicarrier or multitone modulation). Specifically, in anFDM system a sin-
gle high-rate bit stream is divided into many lower-rate substreams transmitted
over parallel subchannels (or subcarriers). IfN is the number of such sub-
streams, the rate on each subchannel decreases as a functionof the number of
subcarriers. Therefore, for a sufficiently large value ofN , each subchannel can
present a bandwidth less than the channel coherence bandwidth, and then, it
will appear flat fading. This implies that in the receiver a very simple equaliza-
tion system can be used to compensate, for every subchannel,the attenuation
and the phase offset induced by the channel.

The multicarrier modulation technique is not new, in fact its origin goes
back to the end-1950, when multicarrier modulation has beenused in mili-
tary context to realize high speed communication systems, we cite as exam-
ples “Kineplex”, “Adeft” and “Kathryn” systems. Nevertheless, at that time, it
didn’t have a particular success because of the high implementation complex-
ity due to the use of analogical devices. Almost 10 years later, in the 1971,
Weinstein and Ebert overcame the problem, publishing theirpioneering paper
[24] about how to implement a multicarrier system with IDFT/DFT. Subse-
quently, the principle of the multicarrier modulation became the foundation
of most current industry standards and in the coming broadband communica-
tion era, especially in wireless communication systems through two principal
implementation schemes:

• DMT (Discrete MulTitone) developed for broadband wired applica-
tions has been used as modulation technique for high-bit-rate digital
subscriber lines (HDSL) [25], asynchronous digital subscriber lines
(ADSL) [26] and the most recent very-high-speed digital subscriber
lines (VDSL) [27].

• OFDM has been exploited in the European digital audio/video broadcast-
ing (DAB [28], DVB [29]) standards and it has been chosen for wireless
local area network (WLAN) applications [30] (such as asynchronous
transfer mode (ATM) network and IEEE, ETSI and MMAC WLAN
standards). OFDM is under investigation for the fourth generation
mobile communication systems and for data transmissions with power
lines. There are also a number of emerging new uses for multicarrier
techniques, including fixed and mobile wireless broadband services, ul-
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Figure 2.1: Scheme of the OFDM transmitter.

trawideband radios, multiple access systems (Orthogonal Frequency Di-
vision Multiple Access (OFDMA)) and in association with other modu-
lation technique, see [1].

2.2 OFDM System

2.2.1 Basic Architecture

Let us consider a binary information source with rateRb = 1
Tb

. With reference
to Fig.2.1 and indicated with T the symbol period of considered multicarrier
system, through a serial/parallel buffer in theq-th OFDM symbol intervalB =

RbT bits are stacked, obtaining the vector

dq , [d 0
q , d1

q , . . . , d
B−1
q ]T ,

wheredi
q

4
= d(i + qB) is the i-th bit transmitted in theqth OFDM symbol

period. Subsequently, the bit vectordq is mapped into a the new vector

aq
4
= [a0

q , a
1
q , . . . , a

N−1
q ]T ,
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ãN−1
q

- D
E
C
O
D
+

P/S

-dq

Figure 2.2: Scheme of the OFDM receiver.

composed by N complex symbols modulating different subcarriers
{φi(t)}N−1

i=0 . The baseband signal transmitted in theq-th symbol interval
[qT, (q + 1)T ] is given by the sum of the signals conveyed through theN

parallel subchannels

fq(t) =

N−1∑

i=0

ai
qφi(t − qT ) , (2.1)

therefore, the OFDM signal emitted in consecutive symbol intervals can be
written as

s(t) =

∞∑

q=−∞
fq(t) =

∞∑

q=−∞

N−1∑

i=0

ai
qφi(t − qT ) . (2.2)

Under the hypothesis of a non dispersive channel and in the absence of
noise, at the receiver, (see Fig.2.2) to obtain thei-th symbol transmitted in the
q-th interval it is necessary to consider the correlation with the signalφ∗

i (t −
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qT )

ãi
q=

∫ ∞

−∞
s(t)φ∗

i (t − qT )dt=
∞∑

p=−∞

N−1∑

k=0

ak
p

∫ ∞

−∞
φk(t − pT )φ∗

i (t − qT )dt .

(2.3)
From (2.3) we can note that the signalãi

q depends on the contribution of the
symbolsak

q transmitted in the same interval but modulating different subcarri-
ers (ICI) and on the termsak

p transmitted in a different symbol interval (ISI). To
eliminate both the ISI and the ICI it is necessary to considera set of functions
φi(t) that verify the followingbiorthonormalitycondition

〈φk(t − qT )φ∗
i (t − pT )〉 = δ[k − i]δ[p − q] . (2.4)

In this way, at least in principle, it is possible to perfectly recover the desired
symbol from the received OFDM signal. To such end, we consider the set of
orthogonal functions

φi(t) =
1√
T

Π

(
t − T/2

T

)

ej2πfit 4
= RT (t)ej2πfit, i ∈ τ1

4
= {0, . . . N−1}.

(2.5)
with reference to (2.4) we obtain

〈φk(t − qT )φ∗
i (t − pT )〉 =

=

∫ ∞

−∞
RT (t − qT )RT (t − pT )
︸ ︷︷ ︸

1
T

RT (t−qT )δ[q−p]

ej2πfk(t−qT )e−j2πfi(t−pT )dt

=
1

T

∫ (q+1)T

qT
ej2π(fk−fi)(t−qT )dt

=
ej2π∆fT − 1

j2π∆fT
=

{

1 ∆fT = 0 ,

0 ∆fT = α , α ∈ Z .

Therefore, the choice of a rectangular pulse allows to select the desired symbol
annulling ISI. On the other hand, considering an intercarrier spacing∆f equal
to a multiple of1/T the interference among the different subchannels is absent
and therefore the biorthonormality condition (2.4) is verified. In particular,
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choosing the minimum intercarrier spacing∆f = 1
T we obtain the maximum

spectral efficiency. This is the value selected for the OFDM system, for which
the pulseφi(t) results to be

φi(t) = RT (t)ej 2π
T

it, i ∈ τ1 . (2.6)

Moreover, with the previous choice the transmitted OFDM signal is given by

s(t)=
∞∑

q=−∞

N−1∑

i=0

ai
qRT (t − qT )ej 2π

T
i(t−qT )=

∞∑

q=−∞
RT (t − qT )

N−1∑

i=0

ai
qe

j 2π
T

it.

(2.7)

2.2.2 Spectral Analysis

In this section we evaluate the power spectral density (PSD)of the multicarrier
signal described in the subsection§ 2.2.1.

Let us observe, preliminarily, that under the hypothesis that the data bits
{
di

p

}∞
p=−∞ for i ∈ τ1 can be modeled as independent and identically dis-

tributed (i.i.d.) random variables, we have:

1) the symbolsai
q andak

p, with i 6= k andq=p, transmitted in the same OFDM
interval but on different subcarriers, result to be i.i.d. random variables
since they are obtained from different bits of the same blockdq;

2) the symbolsai
q andak

p, with q 6= p e ∀ i, k ∈ τ1, transmitted in differ-
ent OFDM intervals, result to be random variables i.i.d. since they are
obtained from bits of different blocksdp anddq.

Therefore, under the hypothesis of data symbols
{
ai

q

}∞
q=−∞ with zero mean

and varianceE[|ai
q|2] = σ2

i , it follows that:

E[ai
q(a

k
p)

∗] = σ2
i δ[i − k]δ[q − p] .

From this relation and with reference to the model (2.2), theautocorrelation
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function of the transmitted OFDM signal is given by:

rs(t, τ)
4
=E[s(t)s(t−τ)∗]

=
∞∑

p,q=−∞

N−1∑

i,k=0

E[ai
q(a

k
p)

∗]
︸ ︷︷ ︸

σ2
i δ[i−k]δ[q−p]

φi(t − qT )φ∗
k(t − τ − pT )

=
N−1∑

i=0

σ2
i

∞∑

q=−∞
φi(t − qT )φ∗

i (t − τ − qT )

=

N−1∑

i=0

σ2
i repT [φi(t)φ

∗
i (t − τ)] .

Because ofrs(t, τ) is a periodic function of periodT with respect to the vari-
able t, the autocorrelation functionrs(τ) is given by

rs(τ)
4
= 〈r(t, τ)〉 =

1

T

N−1∑

i=0

σ2
i

∫ T

0
repT [φi(t)φ

∗
i (t − τ)] dt

=
1

T

N−1∑

i=0

σ2
i rφi

(τ)

whererφi
(τ)

4
=

∫ ∞

−∞
φi(λ)φ∗

i (λ − τ)dλ is the autocorrelation function of the

pulseφi(t).
Then, by the theorem of Wiener-Kintchine, considering the Fourier transform
of the autocorrelation functionrs(τ), the PSDPs(f) of the signals(t) is given
by

Ps(f) =
1

T

N−1∑

i=0

σ2
i Pφi

(f) =
1

T

N−1∑

i=0

σ2
i |Φi(f)|2 , (2.8)

whereΦi(f)
4
= F [φi(t)].

Now, particularizing the expression (2.8) to the case of thepulse (2.6), for
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Figure 2.3: PSD into the case of an OFDM signal with an intercarrier
spacing1/T (a) and for an FDM signal with an intercarrier spacing
2/T (b).
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i ∈ τ1, we obtain

F

[

RT (t)ej 2πit
T

]

= F

[
1√
T
Π
(

t−T/2
T

)

ej 2π
T

it
]

=
√

T sinc
[(

f − i
T

)
T
]
e−jπ[(f− i

T )T ] ,

and then

Ps(f) =

N−1∑

i=0

σ2
i sinc2

[(

f − i

T

)

T

]

.

The PSD of the OFDM signal has been plotted in Fig.2.3 (a) as a function
of the normalized frequencyfT and for a system withN = 5 subcarriers
modulated by symbols with unit variance. We can note that thespectra of
different subchannels are partially overlapped with a total bandwidth

WOFDM ' 2

T
+

N − 1

T
' N

T
.

Instead, into the case of a multicarrier system with an intercarrier spacing
∆f = 2/T , as we can observe in Fig. 2.3 (b), the total bandwidth of transmit-
ted signal is given by

WFDM ' 2N

T
,

with a50% reduction in the spectral efficiency.

2.3 Digital Implementation

The idea behind the analog implementation of the OFDM systemcan be ex-
tended to the digital domain by means IDFT/DFT. Let us consider the PSD
of the analogous OFDM signal plotted in Fig.2.4 for a number of subcarriers
fixed to N = 8 and N = 64. We can note that the sum of different sub-
channels gives rise to a resulting spectrum approximatively flat for |f | ≤ N

T

and decaying rapidity to zero for|f | > N
T , and this characteristic is more

evident for a large number of subcarriers. Therefore, although the analogous
OFDM signal is not perfectly bandlimited, forN � 1 we can assume that the
bandwidth of the OFDM signal isWOFDM ' N

T . Thus, the continuous-time
OFDM signals(t) can be reconstructed from its sampless(n) by considering
a sampling intervalTc = 1/WOFDM = T/N . Specifically, let us consider the
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Figure 2.4: PSD of the OFDM signal for a multicarrier system with
N = 8 andN = 64 subcarriers.
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baseband discrete-time OFDM signal transmitted in theq-th OFDM interval
and sampled with a ratefc = N/T

f(qT + kTc)=
1√
T

N−1∑

i=0

ai
qe

j 2π
T

i(qT+k T
N )

=
1√
T

N−1∑

i=0

ai
qe

j 2π
N

ik =
N√
T

sq(k) ,

(2.9)

where

sq(k)
4
=

1

N

N−1∑

i=0

ai
qe

j 2π
N

ik ∀k∈τ1 (2.10)

is the IDFT of size N of the sequenceaq. Then, from (2.9), it follows that
the IDFT of the sequenceaq is, unless a multiplicative constant, a sampled
version of the analogous signalfq(t), transmitted in the q-th OFDM interval.
This observation suggests a more efficient ways to implementan OFDM sys-
tem. An entirely discrete time model of the multicarrier system is displayed
in Fig. 2.5, compared to the continuous time model, shown in Figures 2.1 and
2.2, the demodulation and the modulation schemes are replaced by IDFT and
DFT. Precisely, in transmission, after a serial/parallel buffer and an encoder,
the scheme presents an IDFT elaboration implemented through the efficient
IFFT algorithm. In this ways we obtain the sampling sequencesq transmitted
in the q-th OFDM interval

sq = [sq(0), . . . , sq(N − 1)]T ,

successively, elaborated by a digital to analog converter (DAC) with a sam-
pling frequencyfc. Then, considering the transmission of successive frames,
the transmitted OFDM signal is given by

s(t) =
N√
T

∞∑

q=−∞

N−1∑

k=0

sq(k)hDA(t − qT − kTc) . (2.11)

We can consider an alternative expression for (2.11). Let usdefine the resulting
signal after parallel-to-serial conversion

s(qN + k) = sq(k), ∀k ∈ τ1 ,
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Figure 2.5: Scheme of the multicarrier system based on IDFT/DFT.
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then, in this case the DAC output can be expressed as

s(t) =
N√
T

∞∑

q=−∞

N−1∑

k=0

s(qN + k)hDA(t − qT − kTc)

=
N√
T

∞∑

p=−∞
s(p)hDA(t − pTc) =

N√
T

sδ(t) ⊗ hDA(t)

(2.12)

wheresδ(t)
4
=

∞∑

p=−∞
s(p)δ(t − pTc).

In the absence of noise and indicating withhAD(t) the impulse response of the
analog to digital converter (ADC), at the receiving side, the received baseband
signal is given by

r(t) =
N√
T

sδ(t) ⊗ hDA(t) ⊗ hAD(t) . (2.13)

Moreover, let us assume that the impulsive response of DAC and of ADC filters
are equal to

hDA(t) = sinc

(
t

Tc

)

(2.14)

and

hAD(t) =
1√
T

sinc

(
t

Tc

)

(2.15)

then, from (2.13) the received OFDM signal can be written as

r(t) = sδ(t) ⊗ sinc

(
t

Tc

)

=

∞∑

p=−∞
s(p)sinc

(
t − pTc

Tc

)

. (2.16)

The received signal is sampled with rateRc = 1/Tc at time instantstk =

kTc + qT , with k ∈ τ1, yielding the discrete time sequence

rq(k)
4
= r(kTc + qT ) =

∞∑

p=−∞
s(p)sinc

(
kTc + qT − pTc

Tc

)

=

∞∑

p=−∞
s(p)δ [k + qN − p] = s(qN + k) = sq(k) .

(2.17)
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Therefore, into the case where the filters given by (2.14) and(2.15) are
adopted, there is not interference between successive symbols or between suc-
cessive subcarriers and, then, it is possible to extract perfectly the different
subchannels. Besides, it follows that

ãi
q = {DFT [rq]}i =

N−1∑

k=0

rq(k)e−j 2π
N

ki

=

N−1∑

k=0

[

1

N

N−1∑

h=0

ah
q ej 2π

N
hk

]

e−j 2π
N

ki=ai
q.

(2.18)

Then, by considering the DFT of the N-sequencerq it is possible to recover
the sequence of bit transmitted.

2.4 Cyclic Prefix

Two difficulties arise when the OFDM signal is transmitted over a dispersive
channel. One difficulty is that channel dispersion destroysthe orthogonality
between subcarriers and causes ICI. In addition, a dispersive channel causes
ISI between successive OFDM symbols. The insertion of a silent guard period
between successive OFDM symbols would avoid ISI in a dispersive environ-
ment but it does not avoid the loss of the subcarrier orthogonality. Peled and
Ruiz in [31] solved this problem with the introduction of a CP. This CP pre-
serves the orthogonality of the subcarriers and prevents ISI between successive
OFDM symbols. Therefore, equalization at the receiver is very simple. This
often motivates the use of OFDM in wireless systems. The cyclic extension,
illustrated in Fig.2.6, works as follows. Between consecutive OFDM signals a
guard period is inserted that contains a cyclic extension ofthe OFDM symbol.
The OFDM signal is extended over a period of lengthM = N + Lc so that

sq(n)=







1

N

N−1∑

k=0

ak
qe

j 2π
N

k(N+n), n ∈ {−Lc, . . . ,−1},

1

N

N−1∑

k=0

ak
qe

j 2π
N

kn, n ∈ {0, . . . , N−1}.
(2.19)
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Let us note thatej2πk = 1 ∀ k ∈ Z, therefore (2.19) can be rewritten as

sq(n) =
1

N

N−1∑

k=0

ak
qe

j 2π
N

kn, n ∈ τ2
4
= {−Lc, . . . , N − 1} . (2.20)

Then, based on (2.11), the transmitted signal in presence ofCP is given by

s(t) =
N√
T

∞∑

p=−∞

M−1∑

n=0

s(qM + n)hDA(t − qT − nTc)

=
N√
T

∞∑

m=−∞
s(m)hDA(t − mTc) =

N√
T

sδ(t) ⊗ hDA(t)

(2.21)

whereTc
4
= T/M and, moreover,T is the OFDM symbol interval. In pres-

ence of a linear time invariant channel with impulsive responseh(t) and with
additive noise, after the reconstruction filter, we obtain

r(t) =
N√
T

sδ(t) ⊗ hDA(t) ⊗ h(t) ⊗ hAD(t)

︸ ︷︷ ︸

y(t)

+n(t) ⊗ hAD(t) .

If we disregard the presence of additive noise and consider DAC and ADC
filters (2.14) and (2.15), respectively, we have

y(t) =
N√
T

sδ(t)⊗ hDA(t)⊗hAD(t)
︸ ︷︷ ︸

Tc√
T

sinc

(
t

Tc

)

⊗h(t)=
N

M
sδ(t)⊗ sinc

(
t

Tc

)

⊗ h(t)

︸ ︷︷ ︸

heq(t)

=
N

M
sδ(t) ⊗ heq(t) =

N

M

∞∑

m=−∞
s(m)δ(t − mTc) ⊗ heq(t)

=
N

M

∞∑

m=−∞
s(m)heq(t − mTc) .

(2.22)
Then, the received signal sampled at time instanttn = nTc + qT , with n ∈ τ2,
is equal to

yq(n)
4
=y(qT + nTc)=

N

M

∞∑

m=−∞
s(m)heq(qT + nTc − mTc) (2.23)
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and, puttingheq(mTc)
4
= heq(m), we have

yq(n) =
N

M

∞∑

m=−∞
s(m)heq(qM+n−m)

=
N

M

∞∑

m=−∞
s(qM+n−m)heq(m)

=
N

M

Nm−1∑

m=0

s(qM+n−m)heq(m) ,

(2.24)

whereNm is the the length of the discrete time channel impulsive response.
Let us rewrite (2.24) as

yq(n)=
N

M

p
∑

l=0

s(qM +n− l)heq(l)+
N

M

Nm−1∑

l=p+1

s(qM +n− l)heq(l) , (2.25)

we can see that the first term contains the contribution of theq-th useful sym-
bol, while the second term includes the interference of the(q − 1)-th symbol
(ISI). To avoid ISI it is necessary to discard the CP samples considering the
vector

yq
4
= [yq(0), yq(1), . . . , yq(N − 1)]T ,

moreover, ifLc ≥ Nm − 1, the ISI term is zero and then

yq(n) =
N

M

p
∑

l=0

s(qM + n − l)heq(l) =
N

M

p
∑

l=0

sq(n − l)heq(l). (2.26)

From (2.19) it results that

yq(n) =
1

M

N−1∑

k=0

ak
qe

j 2π
N

kn
p
∑

l=0

heq(l)e
−j 2π

N
lk , (2.27)

and sincep ≥ Lc ≥ Nm − 1, we have

p
∑

l=0

heq(l)e
−j 2π

N
lk =

Nm−1∑

l=0

heq(l)e
−j 2π

N
lk = {DFT [heq]}k

4
= Heq(k),

(2.28)
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where the vector N -dimensional heq is defined as heq
4
=

[heq(0), heq(1), ..., heq(Nm − 1), 0, ..., 0]T . Moreover, from (2.27) it
follows that

yq(n) =
1

M

N−1∑

k=0

ak
pe

j 2π
N

knHeq(k) =
N

M
{IDFT [gq]}n, (2.29)

wheregq
4
=
[
a0

qHeq(0), a
1
qHeq(1), ..., a

N−1
q Heq(N − 1)

]T
. Computing the

DFT of the vectoryq yields

ãi
q = {DFT [yq]}i =

N

M
{DFT [IDFT [gq]]}i =

N

M
ai

qHeq(i) . (2.30)

Thus, each subchannel is characterized by a complex gain. Inthis case the
transmitted information is completely recovered by multiplying the received
data symbols by the channel coefficientsH−1

eq (i). Moreover, including Gaus-
sian noise in the signal model, the equation (2.30) yields

ãi
q =

N

M
ai

qHeq(i) + ηq(i) , (2.31)

whereηq(i) is the DFT of the sampled noise termsnq(iTc). If the received
noise is modeled as a white complex Gaussian random process,it follows that
the noise contributions of different subchannelsηq(i) are statistically indepen-
dent. Therefore, an ML detector is equivalent to an independent detector on
each subchannel output.

Finally, we can note that the price to pay for eliminating ISIthrough the
cyclic extension is extra power. In fact, the cyclic extension means that an ad-
ditional (Lc − 1) units of average power are carried by the cyclically extended
symbols determining an SNR loss equal toSNR = (M − 1)/NdB.
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Figure 2.6: Insertion of CP.
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âN−1
q

d̂q

RECEIVER

S/P
+
D
F
T

}

Lc

Figure 2.7: Scheme of the OFDM receiver in presence of dispersive
channel and additive noise.



Chapter 3

Synchronization Problem in
OFDM Systems

Demodulation and detection of OFDM signals require accurate synchroniza-
tion. For example, symbol timing and CFO estimation errors may cause ISI
and ICI and can lead to a severe performance degradation. Therefore, after
the description of the adopted model, we separately consider their effects on
the system performance and, then, we present an overview on useful synchro-
nization schemes.

3.1 Model of Synchronization Errors

As previously stated one of the drawbacks of multicarrier systems is their high
sensitivity to synchronization errors. In fact, symbol timing and CFO estima-
tion errors can significantly deteriorate the performance of OFDM systems.
Specifically, incorrect timing synchronization can cause interference between
successive symbols and, if not perfectly compensated before the equalization
process, can lead to a severe performance degradation, [3]-[5]. In addition, a
CFO induces an amplitude reduction of the useful signal and provokes inter-
ference between adjacent subcarriers, see, for example, [6]-[8].
To investigate the effects of synchronization errors on theperformance of
OFDM systems let us consider the received signal in presenceof a delayτ

and a frequency offset4f . In this case, under the hypothesis of ideal DAC e

25
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ADC filters and in the absence of noise, it follows that

r(t) =
N

M

∞∑

i=−∞
s(i)sinc

(
t − τ − iTc

Tc

)

ej2π4ft. (3.1)

Let us suppose, moreover, without loss of generality, that the delayτ is the
integer part, with respect to the sampling period, of the propagation delayτ =

θTc. If we denote witĥθ a timing estimate, we obtain

rq(k+θ̂) =

∞∑

i=−∞
s(i)ej2π4f [(k+θ̂)Tc+qT ]δ[k + qM + θ̂ − θ − i]

=sq(k + 4θ)ej( 2π
N

εk+φ)

(3.2)

whereε
4
= 4fTcN is the frequency offset normalized to the intercarrier spac-

ing, 4θ
4
= θ̂ − θ is the error in the delay estimation,φ

4
= 2πε

[

q + (qLc+θ̂)
N

]

and, moreover,rq(k)
4
=

M

N
rq(k). In the following we consider separately

the sensitivity to CFO (4f 6= 0 and4θ = 0 ) and to symbol timing errors
(4f = 0 and4θ 6= 0 ).

3.2 Effect of Symbol Timing Errors

Let us put4f = 0 in (3.2), then in presence of noise the received signal is
given by

rq(k + θ̂) = sq(k + 4θ) + wq(k + θ̂) . (3.3)

Then, removing the CP and after the DFT, we have

ãl
q=

N−1∑

k=0

rq(k + θ̂)e−j 2π
N

kl=

N−1∑

k=0

[

sq(k+4θ)+wq(k + θ̂)
]

e−j 2π
N

kl . (3.4)

From the last expression it results that if the timing error satisfies the condition

−Lc ≤ 4θ ≤ 0, the vectorsq
4
= [sq(4θ), . . . , sq(N − 1+4θ)]T contains all
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samples of theq-th OFDM symbol and then based on (2.19) we can write

ãl
q =

N−1∑

k=0

[

1

N

N−1∑

h=0

ah
q ej 2π

N
h(k+4θ) + wq(k + θ̂)

]

e−j 2π
N

kl

= al
qe

j 2π
N

l4θ + η(l)

with η(l)
4
=

N−1∑

k=0

wq(k + θ̂)e−j 2π
N

kl.

Therefore, a symbol timing error4θ ∈ {−Lc, . . . , 0} only introduces a
phase offset, that must be compensated in a coherent receiver. Instead, for
4θ /∈ {−Lc, . . . , 0} it exists interference between successive OFDM sym-
bols. In particular, let us assume that4θ ∈ {−M, . . . ,−Lc} so that there is
interference between theq-th and the(q − 1)-th OFDM symbol, moreover in
this case (3.4) can be rewritten as

ãl
q =

M + 4θ

N
al

qe
j 2π

N
l4θ

+
1

N

N−1∑

k=−4θ−Lc

e−j 2π
N

kl
N−1∑

h = 0

h 6= l

ah
q ej 2π

N
h(k+4θ)

︸ ︷︷ ︸

ICI

+
1

N

−4θ−Lc∑

k=0

e−j 2π
N

kl
N−1∑

h=0

ah
q−1e

j 2π
N

h(k+4θ)

︸ ︷︷ ︸

ISI

+η(l) .

The demodulated signal now consists of a useful portion and disturbances
caused by ISI, ICI and AWGN. Concerning the useful portion, as in the case
4θ ∈ {−Lc, . . . , 0} , the transmitted symbolsal

q are attenuated and rotated
by a phasor whose phase is proportional to the subcarrier index and the sym-
bol timing. In addition to this effect the demodulated signals suffer from the
disturbances caused by adjacent subcarriers and from the interference from the
previous OFDM symbol.
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Figure 3.1: Symbol timing errors

In presence of a multipath channel, basically the same analysis applies. In
particular, in this case let us consider the expression received signal

rq(n) =

Nm∑

l=0

h(l)sq(k − l − θ) + wq(n) (3.5)

where{h(l)}Nm

l=0 is the channel impulsive response with a maximum delay
spreadNm. The post-DFT signal is described by

ãl
q = α(θ)al

qH(l)e−j 2π
N

lθ + ξ(l) + η(l) , (3.6)

where ISI and ICI disturbance are modeled as additional noise ξ(l) while α(θ)

is the resulting attenuation of the symbol. In this case it isnecessary syn-
chronize the receiver to the first arriving multipath component. Therefore, as
shown in Fig.3.2, the range of symbol timing errors for whichdoes not exist
ISI is given by

−Lc + Nm ≤ 4θ ≤ 0 .

In such alock-in region, the orthogonality among the subcarriers is preserved,
resulting only in phase rotation and attenuation at the output of the DFT pro-
cessor which is easily corrected.
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OBS. WINDOW∆θ < −Lc + Nm ....................
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OBS. WINDOWPERFECT SYNCH. .........
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Nm-th ACTUAL SYMBOLPREVIOUS SYMBOL LcTcNmTc

Figure 3.2: Symbol timing errors in multipath channel

3.3 Effect of CFO

Let us put∆θ = 0 in (3.2) and let us consider the expression of the received
signal in presence of AWGN channel

rq(n) = sq(n)ej( 2π
N

εk+φ) + wq(n) (3.7)

whereφ
4
=

2π

N
εqM .

Let us observe that a synchronization errorε equal to an integer multiple of the
intercarrier spacing provokes a common rotation of different subcarriers that
will be still mutually orthogonal. Instead, a CFOε equal to a fraction of the
intercarrier space can cause ICI and attenuation in the transmitted signal. In
particular, to evaluate analytically this effect let us consider the expression of
received signal at the output of the OFDM demodulator

ãl
q =

N−1∑

k=0

[

sq(k)ej[ 2π
N

εk+φ] + wq(k)
]

e−j 2π
N

kl.
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Then, accounting for the expression of transmitted signal we have

ãl
q =

N−1∑

k=0

[

ej( 2π
N

εk+φ)

N

N−1∑

h=0

ah
q ej 2π

N
hk + wq(k)

]

e−j 2π
N

kl

= ej[πε(N−1
N )+φ] sin(πε)

N sin
(πε

N

)al
q

+
ejφ

N

N−1∑

h = 0

h 6= l

ah
q

N−1∑

k=0

ej 2π
N

k(h−l+ε)

︸ ︷︷ ︸

ICI

+η(l)

=
ejφ

N
al

qI0(ε) +
ejφ

N

N−1∑

h = 0

h 6= l

ah
q Ih−l(ε)

︸ ︷︷ ︸

ICI

+η(l)

(3.8)

where

Ip(ε)
4
=

N−1∑

k=0

ej 2π
N

k(ε+p) =
sin [π (ε + p)]

sin
[ π

N
(ε + p)

]ej[π(N−1
N )(ε+p)]. (3.9)

From (3.8) we can observe that the received signal is given bythe sum of three
different terms: the additive noiseη(l), the useful termal

q that presents attenu-
ation and phase rotation and the ICI term. The effect of CFO synchronization
errors is presented in Fig. 3.3, where it is shown the PSD of the OFDM signal
in absence of synchronization errors (solid lines) and in presence of a CFO
ε = 0.2 (dashed lines). As we can see the presence of a CFO provokes a
reduction in signal amplitude and ICI.

In [6], Pollet et al., analytically evaluate the degradation of the bit error
rate (BER) caused by the presence of CFO for an AWGN channel. It is found
that a multicarrier system is much more sensitive than single-carrier system
and, in particular, the degradation in SNR (in dB) can be approximated by

D(dB)
4
=

SNR

SNRe(ε)
' 10(πε)2SNR

3 ln 10
=

10(π∆fTcN)2SNR

3 ln 10
, (3.10)
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From (3.10) we can note that the degradation (in dB) increases with the square
of the number of subcarriers, ifε andTc are fixed.
With a similar reasoning we can demonstrate that in presenceof dispersive
channel the received OFDM signal after demodulation can be written as

ãl
q =

ejφ

N
I0(ε)a

l
qH(l) +

ejφ

N

N−1∑

h = 0

h 6= l

ah
q H(h)Ih−l(ε)

︸ ︷︷ ︸

ICI

+η(l) ,

that is, a dispersive channel leads to an attenuation and a constant carrier offset
that are added to those introduced by CFO synchronization errors. In regard
to the degradation due to the presence of ICI, Moose in [7], has estimated
analytically the incidence of such disturbance deriving the relation between
the effective SNRSNRe(ε) in presence of additive noise and ICI and that of
a perfectly synchronized systemSNR. In particular, the lower bound for the
SNRe(ε) at the output of the DFT derived in [7] is

SNRe(ε) ≥
SNR

1 + 0.5947SNR sin2(πε)

(
sin(πε)

πε

)2

. (3.11)

Therefore, the degradation in dB induced by the presence of CFO synchroniza-
tion errors is limited by

D(ε)
4
=

SNR

SNRe(ε)
≤ 10 log10

[
1 + 0.5947SNR sin2(πε)

sinc2(ε)

]

. (3.12)

In Fig.3.4 is plotted the degradation (3.10) in AWGN (dashedlines) and for
dispersive channel (3.12) (solid lines) as a function of thenormalized carrier
frequency offsetε, for different values of signal to noise ratioSNR. In partic-
ular we can observe that in presence of a signal to noise ratioequal to 30 dB
to have a degradation lower than10% it is necessary that|ε| < 10−2.

3.4 Synchronization Schemes

Several CFO and symbol timing synchronization scheme have been suggested
in literature. In particular they can be divided into two categories:
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Figure 3.3: PSD of the OFDM signal for a multicarrier system with
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Data-aided algorithms : algorithms based on known sequences or with a
known structure.

Non data-aided o blind algorithms : non data-aided (or blind) algorithms
exploiting only the statistical properties of the useful signal.

3.4.1 Blind and Semiblind Synchronization Schemes

Non data-aided synchronization techniques result to be particularly interesting
since they do not require the transmission of training symbols. Specifically,
Van de Beeket al. propose in [9] an ML method for joint symbol timing
and CFO estimation in flat fading channel that exploits the signal redundancy
induced by the CP. The algorithm performance is influenced bythe CP length
and the SNR value. Moreover, the algorithm performs very well in AWGN, but
exhibits a floor error in presence of a multipath channel since the CP contains
interference from the previous symbol. A solution that mitigates this problem
is considered in [5] where a modified ML estimator exploitingonly ISI-free
samples of the CP is proposed to counteract the degrading effects of dispersive
channels.

Efficient blind techniques that take advantage of transmission of virtual
subcarriers have also been considered in [32]. If the transmit and receive oscil-
lators are perfectly synchronized, the modulated carriersin the received signal
and virtual carriers are orthogonal. The degree to which these two sets of sub-
carriers are orthogonal then is a measure of how far out of synchronization the
receiver oscillator is. Orthogonality between the modulated and virtual carri-
ers over an interference free window of the received signal is used to develop
an algorithm for estimating the CFO and detecting the symboltiming.

Landström et al. propose in [33] an improved ML timing estimator using
both CP and training pilots. Two log-likelihood functions of the time delay are
constructed by also considering the contribution of the training symbols. One
log-likelihood function gives the position of the CP, thus giving an unambigu-
ous but coarse timing estimate. Another log-likelihood function is a matched
filter to the training symbols and this has many distinct correlation peaks that
give an ambiguous estimate of the time delay. The weighted criterion com-
bining the two functions yields an unambiguous and distinctpeak of the log-
likelihood function. The frequency offset causes an increase in the time delay
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estimator variance due to a random phase in the correlation sums. In order
to avoid this problem, the absolute value is taken in the log-likelihood func-
tion thus preserving the constructive contributions of thepeaks in the weighted
log-likelihood function.

Finally in [34] Bölcskei proposes a blind method for synchronization in a
pulse-shaped OFDM. The method exploits the cyclostationarity introduced by
the pulse-shaping operation to blindly identify both the symbol timing and the
frequency offset. The pulse shaped OFDM is preferable for high data rate ser-
vices since it reduces out-of-band emission and it has a reduced sensitivity to
frequency offsets. Different ways of inducing cyclostationarity in the OFDM
signal are discussed, including the carrier weighting (transmitting different
sub-carriers with different powers). If no pulse-shaping and carrier weight-
ing is performed, the OFDM signal is stationary and the blindsynchronization
cannot be performed based on the second order statistics. The proposed blind
method does not need any CP to perform the synchronization.

3.4.2 Data-Aided Synchronization Schemes

For high-rate packet transmission, the synchronization time needs to be as
short as possible, preferably a few OFDM symbols only. To achieve this,
special OFDM training symbols can be used to achieve synchronization. For
example current WLAN standards, like IEEE 802.11a or HiperLAN/2 [35],
include a preamble in the start of the packet composed by identical parts in
the time domain. The length and the contents of the preamble have been care-
fully designed to provide enough information for good synchronization per-
formance. In [17] Schmidl and Cox consider a timing and frequency offset
synchronization scheme that exploits the redundancy associated with a train-
ing symbol composed by two identical halves generated by transmitting a
pseudo-random sequence on even frequencies and zeroes on the odd frequen-
cies. However, the considered timing metric reaches a plateau, whose length is
equal to the CP length minus the length of the channel impulseresponse, that
produces large variance for the timing estimates.

The training symbol proposed in [18], with four identical parts and a sign
inversion, provides a timing metric with steeper rolloff. Nevertheless, the sign
inversion in the transmitted training symbol introduces, in dispersive channels,
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some interference in the frequency estimation process causing severe perfor-
mance degradation. This drawback is investigated by Bhargava et al. in [19]
where a more general synchronization algorithm based on a structured training
sequence is proposed and, moreover, channel estimation is also incorporated
in order to obtain fine timing and CFO estimates. This refinement step reduces
the interference introduced in the coarse CFO acquisition process but at the
cost of some increase in computational load.

In the following chapters we will explore some of these issues in more de-
tail. Moreover, we will present and analyze new data-aided and blind methods
to estimate symbol timing and CFO.



Chapter 4

Blind Synchronization

ML estimators of symbol timing and CFO have been derived under the as-
sumption of non dispersive channel and by modeling the OFDM signal vector
as a CGRV. However, when NC constellations are adopted the OFDM sig-
nal results to be an NC (or improper) process. This chapter deals with the
problem of blind joint symbol timing and CFO estimation in OFDM systems
with NC transmissions. Since the implementation complexity of derived ML
estimator is high, feasible computational algorithms are considered. Finally,
refined symbol timing estimators, apt to counteract the degrading effects of ISI
in dispersive channels, are suggested.

4.1 Problem Statement and Assumptions

With reference to the discrete time signal model (2.20), letus consider the
m-th sample of theq-th transmitted OFDM symbol

sq(m)
4
= s(m + qM) =

σs√
N

N−1∑

l=0

al
qe

j 2π
N

lm, m ∈ τ2, (4.1)

where the setτ2 has been defined in (2.20) andσ2
s

4
= E[|sq(m)|2]. Throughout

this chapter the following assumptions are made:

(AS1) The data symbols{al
q}∞q=−∞, l ∈ τ1, are i.i.d. random variables with

zero-mean and unit variance.

37
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(AS2) The number of subcarriersN is sufficiently large so that the OFDM
signalsq(m) can be modeled as a complex Gaussian process.

(AS3) The data symbols{al
q}∞q=−∞, l ∈ τ1, belong to a constellation with

E[(al
q)

2] = b 6= 0.

The assumption (AS3) imposes that the transmitted symbols belong to an
NC constellation [12]. Typical examples of NC constellations are those with
real symbols (e.g. BPSK, m-ASK, DBPSK), that present a noncircularity rate
|b| = 1 and are commonly used in the telecommunication context to assure
low BER at the expense of reduction in the data throughput. For example,
in the WLAN standard HIPERLAN2 BPSK constellations are adopted for the
broadcast channel, the frame channel, the access frame channel, the random
access channel and the physical layer channels 1 and 2 (see [36] and [35]).
Moreover, new NC constellations have been also proposed in [37].

Let us observe that from assumption (AS1) and in virtue of theredundancy
introduced by the CP, we can easily derive the following result:

Result 1 In each OFDM symbol the samples in the CP and their copies are
mutually correlated, thus the correlation function of the transmitted OFDM
signal is equal to

E
[
sp(k)s∗q(m)

]
=







σ2
sδ[p − q], m − k ∈ {−N, 0, N},

∀m,k ∈ τ2,

0, otherwise.

(4.2)

Moreover, by the assumption (AS3) of NC transmissions it follows that
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Result 2 For N ≥ 2 andN > 2Lc, the relation (or conjugate correlation)
function is given by1

E [sp(k)sq(m)] =







bσ2
sδ[p − q], m + k ∈ {0, N},

∀m,k ∈ τ2,

0, otherwise.

(4.3)

By reconsidering the signal model (4.1), we suppose that theOFDM sig-
nal is transmitted through an AWGN channel. Therefore, in presence of a
CFO (normalized to the intercarrier spacing)ε, a phase offsetφ and a delay
θ, assumed to be a multiple of the sampling period, the discrete-time received
signal can be modeled as

rq(k) = sq(k − θ)ej[2π
N

ε(k+qM)+φ] + nq(k) . (4.4)

Let us introduce the vectorsq
4
=[sq(−Lc), . . . , sq(N − 1)]T indicating the

qth transmitted OFDM symbol, then, using a vectorial notation, we can write

rq = Ψqsq + nq (4.5)

where

Ψq
4
= ej[ 2π

N
ε(qM+θ)+φ]diag

{

e−j 2π
N

εLc, . . . , ej 2π
N

ε(N−1)
}

is an M × M diagonal matrix and the noise vectorsnq
4
= [nq(−Lc +

θ), . . . , nq(N − 1 + θ)]T are modeled as a zero-mean C-CGRVs with
E[nqn

H
p ] = δ[p − q]σ2

nIM and statistically independent of the useful sig-

nal vectorssq. Finally, rq
4
=[rq(−Lc + θ), . . . , rq(N − 1 + θ)]T is the vector

of the received signal assumed to be a zero-mean NC-CGRV characterized by
the matrixC̄rq ∈ C

2M×2M [16]

C̄rq

4
= E

{[

rq

r∗
q

]

[rH

q , rT

q ]

}

=

[

Crq Rrq

R∗
rq

C∗
rq

]

(4.6)

1The conditionN ≥ 2 assures the presence of the conjugate correlation (4.3) form + k ∈

{0, N} while for N < 2 only m + k = 0 should be considered in (4.3). Moreover, the
assumptionN > 2Lc allows to exclude the conditionm + k = −N in (4.3). In fact, for
N ≤ 2Lc it follows thatE [sp(k)sq(m)] = bσ2

sδ[p − q] also form + k = −N . However, the
much more complex analysis withm+k ∈ {−N, 0, N} in (4.3) turns out to be of little interest
since the conditionN > 2Lc is always satisfied in practice.
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where
Crq

4
= E[rqr

H
q ] = Ψq E[sqs

H

q ]
︸ ︷︷ ︸

Csq

Ψ
∗
q + σ2

nIM

= Ψq

[
Csq + σ2

nIM

]
Ψ

∗
q

(4.7)

is the covariance matrix of the vectorrq, while

Rrq

4
= E[rqr

T

q ] = Ψq E[sqs
T

q ]
︸ ︷︷ ︸

Rsq

Ψq (4.8)

is the so-called relation matrix.
Note that accounting for the assumptions (AS1) and (AS3), and ac-

cording to result 1, the covariance matrixCsq , whose (i, l)th entry is
[
Csq

]

(i,l)

4
=E[sq(−Lc+i)s∗q(−Lc+l)],∀i, l ∈ {0, . . . ,M − 1}, results to be

a real symmetric Toeplitz matrix and its first row is equal to

[
Csq

]

(0,:)
= σ2

s [1,O1×(N−1), 1,O1×(Lc−1)] . (4.9)

Moreover, in virtue of result 2, the(i, l)th entry ofRsq , the relation matrix of
the vectorsq, is given by

[
Rsq

]

(i,l)

4
= E[sq(−Lc+i)sq(−Lc+l)]

=







bσ2
s , i+l=2Lc or i+l=2Lc+N,

∀i, l ∈ {0, . . . ,M − 1} ,

0, otherwise.

(4.10)

4.2 Stochastic ML Estimators

In this section ML-based symbol timing and CFO estimators for OFDM sys-
tems with NC transmissions (NC-OFDM systems) are derived bymaximiz-
ing the log-likelihood function (LLF) for the vector of unknown parameters

λ
4
= [θ, ε, φ]T . Then, the resulting estimators are particularized to the case of

OFDM systems exploiting circular constellations (C-OFDM systems) and for
NC-OFDM systems with a null CP.
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4.2.1 ML Estimator for NC-OFDM Systems

Let us consider the observation vector of total lengthW = N/2 + (2 + η)M

r
4
= [(G1rq−1)

T

︸ ︷︷ ︸

řT
q−1

, rT

q , . . . , rT

q+η, (G2rq+η+1)
T

︸ ︷︷ ︸

řT
q+η+1

]T

where the matricesG1 andG2, defined as

G1
4
= [O(N/2+Lc+θ)×(N/2−θ) IN/2+Lc+θ] (4.11)

and
G2

4
= [IN−θ O(N−θ)×(Lc+θ)] , (4.12)

are real matrices withG1G
T
1 = IN/2+θ+Lc

, G2G
T
2 = IN−θ, GT

1 G1 =

[OM×(N/2−θ) GT

1 ] andGT
2 G2 = [GT

2 OM×(Lc+θ)]. Note that the vectorr
contains the lastθ+N/2+Lc samples of the(q−1)th OFDM symbol through
the subvectořrq−1, the firstN − θ samples of the(q+η+1)th OFDM symbol
throughřq+η+1 and moreover, the subvector[rT

q , . . . , rT
q+η]

T containsη + 1

whole OFDM symbols. This particular choice for the observation window
allows us to maximize, forθ ∈ τ1 andη = 0, the number of samples having
a nonzero conjugate correlation (see (4.3)) with respect tothose exhibiting the
correlation property (4.2).

TheW -dimensional NC-CGRVr is characterized by the joint PDF [16]

f(r, r∗;λ)=
1

πW
√

det
{
C̄r
} exp

〈

−1

2
[rHrT ] C̄

−1
r

[

r

r∗

]〉

(4.13)

whereC̄r is the covariance matrix of the vector[rT , rH]T depending on the
second-order circular and NC statistical properties of theuseful signal and of
the noise. In [9] the matrix̄Cr has been particularized to the case of C-OFDM
systems. In the following we will consider the situation appearing when the
circularity assumption is not valid.

In order to simplify the mathematical treatment, let us consider an appro-
priate permutation matrixP ∈ R

2W×2W such that the vector[rT , rH ]T can be
rearranged as

r̄=P [rT , rH]T = [řT

q−1, ř
H

q−1r
T

q , rH

q , . . . , řT

q+η+1, ř
H

q+η+1]
T . (4.14)
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In the following we assume that the symbol timing belongs to the interval
0 ≤ θ ≤ N/2 − Lc − 1 , then the covariance matrix of vectorr̄ in (4.14) can
be written as

C̄r̄ = diag
{

C̄řq−1
, . . . , C̄řq+η+1

}

= ΨC̄Ψ
∗ , (4.15)

where

Ψ=diag
{
G1Ψq−1G

T

1 ,G1Ψ
∗
q−1G

T

1 ,Ψq, . . . ,G2Ψ
∗
q+η+1G

T

2

}
. (4.16)

Moreover, accounting for (4.6)-(4.8) and sinceRsq+i
= Rs ∀ i ∈

{−1, . . . , η + 1} andCsq+i
= Cs ∀ i ∈ {0, . . . , η}, the matrixC̄ in (4.15)

can be written as

C̄=diag

{[

(σ2
s+σ2

n)IN/2+Lc+θ G1RsGT

1

G1R
∗
sGT

1 (σ2
s+σ2

n)IN/2+Lc+θ

]

,

[

Cs+σ2
nIM Rs

R∗
s Cs+σ2

nIM

]

⊗Iη+1,

[

(σ2
s + σ2

n)IN−θ G2RsGT

2

G2R
∗
sGT

2 (σ2
s + σ2

n)IN−θ

]}

,

(4.17)

where the relationC∗
s = Cs, deriving from (4.9), has been exploited.

Then, taking into accounting (4.13)-(4.15) and the properties of permuta-
tion matrices, and dropping a positive constant independent of the parameters
to estimate, we obtain the classic expression of the LLF forθ, ε andφ given
the observation vector̄r

Λ(λ) = log{f(r̄;λ)} = −1

2
Tr
{

ΨC̄
−1

Ψ
∗r̄r̄H

}

. (4.18)

This quadratic form by following the lines of Appendix A and putting, for the
sake of simplicity,q = 0 can be rewritten as

Λ(λ)=T (θ)+<
{

e−j2πε

η
∑

i=0

Ui(θ)

+γ∗
η+1
∑

i=−1

[

Vi(θ)e−j 4π
N

εiM+Zi(θ)e−j 2π
N

ε(2iM+N)
]
}

,

(4.19)
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where
γ

4
= ej[ 4π

N
εθ+2φ] (4.20)

while the termsT (θ), Ui(θ), i ∈ {0, . . . , η}, Vi(θ) and Zi(θ), i ∈
{−1, . . . , η + 1}, are defined, in (A.2)-(A.5) in Appendix A, respectively.

As indicated in [38] the unconditional ML estimator is obtained by search-
ing the value of the vectorλ that maximizes the LLF. To proceed we keep
the vector[θ, ε] fixed and letφ vary. In these conditions the functionΛ(λ) in
(4.19) achieves a maximum for

φ̂ML(θ, ε)=
1

2
∠

{

e−j 4π
N

εθ
η+1
∑

i=−1

e−j 4π
N

εiM
[
Vi(θ)+Zi(θ)e−j2πε

]

}

. (4.21)

Moreover, substituting (4.21) in (4.19), the joint ML symbol timing and CFO
estimator is given by

(θ̂ML, ε̂ML)=arg max
(θ̃,ε̃)

〈

T (θ̃)+<
{

e−j2πε̃
η
∑

i=0

Ui(θ̃)

}

+

∣
∣
∣
∣
∣

η+1
∑

i=−1

e−j 4π
N

ε̃iM
[

Vi(θ̃)+Zi(θ̃)e−j2πε̃
]
∣
∣
∣
∣
∣

〉

,

(4.22)

whereθ̃ andε̃ are trial values for symbol timing and frequency offset, respec-
tively. Unfortunately, the solution of this two-dimensional maximization prob-
lem can be found only by numerical methods. Therefore, due tothe com-
putational complexity of the joint ML estimator, we consider a more feasible
synchronization scheme that requires two one-dimensionalmaximization pro-
cedures. Specifically, we can note that the termsUi(m) (for i ∈ {0, . . . , η}),
Vi(m) andZi(m) (for i ∈ {−1, 0, . . . , η + 1}), defined in (A.3)-(A.5), take
into account the correlation and relation (conjugate correlation) (see (4.2) and
(4.3)) between the samples of each OFDM symbol. Moreover, their magni-
tude exhibits a maximum whenm is equal to the actual value of the symbol
timing, since in this case mutually correlated samples are perfectly aligned in
the summation windows. Thus, we propose the NC symbol timingestimator

θ̂NC= arg max
θ̃

{

T (θ̃)+

η
∑

i=0

|Ui(θ̃)|+
η+1
∑

i=−1

[

|Vi(θ̃)|+|Zi(θ̃)|
]
}

. (4.23)
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Moreover, according to (4.22) and (4.21), we consider the NCCFO and
carrier phase estimators

ε̂NC= arg max
ε̃

〈

<
{

e−j2πε̃
η
∑

i=0

Ui(θ̂NC)

}

+

∣
∣
∣
∣
∣

η+1
∑

i=−1

e−j 4π
N

ε̃iM
[

Vi(θ̂NC)+Zi(θ̂NC)e−j2πε̃
]
∣
∣
∣
∣
∣

〉 (4.24)

and

φ̂NC = φ̂ML(θ̂NC , ε̂NC) . (4.25)

Note that accounting for (4.21) it follows that the carrier phase estimator̂φNC

gives unambiguous estimates if| φ |≤ π
2 . Moreover, it can be easily shown

that the function to be maximized with respect toε in the right hand side (RHS)
of (4.24) is a periodic function whose periodQ is the minimum integer-value
in the set {

κ

2(α + 1)
, κ ∈ N

}

with α
4
= Lc/N . Therefore, the CFO estimatorε̂NC gives ambiguous esti-

mates unless| ε |≤ Q/2. In particular, with a suitable choice of the parameter
α the CFO acquisition range can be enlarged or reduced. For example, for an
OFDM system withN = 512 subcarriers and a CP lengthLc = 12 the period
is equal toQ = 64.

4.2.2 ML Estimator for C-OFDM Systems

In the case of circular transmissions (E[(al
q)

2] = b = 0) the matrixRs is
identically zero. Therefore, accounting for (A.2)-(A.5) and for the definition
(A.9) in Appendix A, the LLF (4.19) becomes

ΛC(θ, ε)= −ρ

2

η
∑

l=0

θ−1∑

k=θ−Lc

[
|rl(k)|2 + |rl(k + N)|2

]

+<






e−j2πε

η
∑

l=0

θ−1∑

k=θ−Lc

r∗l (k)rl(k + N)






,

(4.26)
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which is the LLF calculated in [39] forη+1 consecutive OFDM symbols.

Let us observe that the LLF (4.26) does not depend on the carrier phase,
thus, in this case, only the symbol timing and the CFO can be estimated. More-
over, the solution of the corresponding maximization problem is (see [9] and
[39])

θ̂MLC= arg max
θ̃






−ρ

2

η
∑

l=0

θ̃−1∑

k=θ̃−Lc

[
|rl(k)|2+|rl(k+N)|2

]

+

∣
∣
∣
∣
∣
∣

η
∑

l=0

θ̃−1∑

k=θ̃−Lc

r∗l (k)rl(k+N)

∣
∣
∣
∣
∣
∣







(4.27)

and

ε̂MLC =
1

2π
∠





η
∑

l=0

θ̂MLC−1∑

k=θ̂MLC−Lc

r∗l (k)rl(k + N)



 (4.28)

that gives ambiguous estimates unless| ε |≤ 0.5.

Note that the MLC symbol timing statistic (4.27), for high SNR values
(ρ→1, see (A.9)), becomes the minimum mean-squared error symboltiming
statistic in AWGN channel proposed in [5]. On the other hand,for low SNR
values (ρ→0), it reduces to the maximum correlation timing estimator consid-
ered in [40].

4.2.3 ML Estimator for NC-OFDM Systems with Lc = 0

In the case of NC-OFDM systems with a null CP we can refer to themodel
(4.5) by puttingLc = 0. In this situation, accounting for result 1,Cs = σ2

sIN ,
while the(i, l)th entry of the matrixRs ∈ C

N×N is given by

[Rs](i,l) =







bσ2
s , i + l = 0 or i + l = N,

∀ i, l ∈ {0, . . . , N − 1},

0, otherwise.

(4.29)
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Table 4.1: Error probabilityP (θ̂ 6= θ)

θ NC MLC MCL0

0 0.0000 0.0759 0.0016

20 0.0000 0.1594 0.0005

40 0.0000 0.1458 0.0000

60 0.0000 0.1505 0.0000

65 0.0000 0.1995 0.0000

69 0.0000 0.5752 0.0001

71 0.0002 0.6459 0.0003

73 0.0006 0.8205 0.0014

75 0.0012 0.9693 0.0031

Therefore, in this case the LLF for the vector of unknown parametersλ takes
the simpler form

ΛL0(λ)=−ρ|b|2TL0(θ)

+<
{

b∗γ∗
η+1
∑

i=−1

e−j4πεi
[
ViL0

(θ)+ZiL0
(θ)e−j2πε

]

}

,
(4.30)

where the parametersρ and γ are defined in (A.9) and (4.20), respectively,
while

TL0(θ)
4
=

η
∑

i=0

N−1∑

k=0

|ri(k + θ)|2+
2θ∑

k=0

|r−1(k + N/2)|2

+|rη+1(θ)|2+
N−θ−1∑

k=θ+1

|rη+1(k + θ)|2
(4.31)

ViL0
(θ)

4
=

{

0, i = −1,

r2
i (θ), i = 0, . . . , η+1,

(4.32)
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and

ZiL0
(θ)

4
=







2θ∑

k=0

ri(k+N/2)ri(N/2+2θ−k), i = −1,

N−1∑

k=1

ri(k + θ)ri(N + θ − k), i = 0, . . . , η,

N−θ−1∑

k=θ+1

ri(k + θ)ri(N + θ − k), i = η + 1.

(4.33)

Let us observe that, unlike the circular case developed in the previous sub-
section, for an NC-OFDM system withLc = 0 the corresponding LLF (4.30)
depends also on the phase offsetφ. Specifically, accounting for (4.30), the ML
carrier phase estimator is given by

φ̂(θ, ε)=
1

2
∠

{

b∗e−j 4π
N

εθ
η+1
∑

i=−1

e−j4πεi
[
ViL0

(θ)+ZiL0
(θ)e−j2πε

]

}

(4.34)

and provides unambiguous estimates for| φ |≤ π/2. Moreover, by replacing
(4.34) in (4.30), the ensuing LLF for the parameters[θ, ε]T is equivalent to

ΛL0(θ, ε, φ̂(θ, ε))= −ρ|b|TL0(θ)

+

∣
∣
∣
∣
∣

η+1
∑

i=−1

e−j4πεi
[
ViL0

(θ)+ZiL0
(θ)e−j2πε

]

∣
∣
∣
∣
∣
.

(4.35)

Due to the complexity of the joint ML symbol timing and CFO estimator,
by following the same considerations applied to derive the NC algorithm, we
can consider the decoupled timing metric

θ̂ = arg max
θ̃

{

−ρ|b|TL0(θ̃) +

η+1
∑

i=−1

∣
∣
∣ZiL0

(θ̃)
∣
∣
∣

}

, (4.36)

where in virtue of assumption (AS2) (N � 1) and accounting for the defini-
tions (4.31)-(4.33) we omitViL0

(m) terms. Moreover, with a further simplifi-
cation, (4.36) can be approximated with its expression for low SNR (ρ → 0)

θ̂MCL0 = arg max
θ̃

{
η+1
∑

i=−1

∣
∣
∣ZiL0

(θ̃)
∣
∣
∣

}

. (4.37)
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Since the estimate of the symbol timing is obtained by considering the maxi-
mum correlation of the metricZiL0

(m), the estimator (4.37) will be referred in
the following to as maximum correlation forLc = 0 (MCL0) algorithm. No-
tice that the MCL0 symbol timing estimator does not require the knowledge
of the parameterρ (that is, accounting for (A.9), it is independent of the SNR
value) and of the noncircularity rate|b|. Moreover, accounting for (4.35) we
propose the closed form CFO estimator

ε̂MCL0 =
1

4π
∠

{
η
∑

i=0

Zi+1L0
(θ̂MCL0)

ZiL0
(θ̂MCL0)

}

, (4.38)

that provides an unambiguous estimate for| ε |≤ 1/4.
To obtain some insights about the acquisition range of the considered sym-

bol timing estimators Table 4.1 shows the error probabilityP (θ̂ 6= θ) of NC,
MLC and MCL0 algorithms in AWGN channel withSNR = 10dB and for
an OFDM system withN = 64 BPSK subcarriers andLc = 12. By investi-
gating these results, obtained by performing104 runs, we can deduce that the
acquisition range of NC and MCL0 estimators is0 ≤ θ ≤ M − 1 while the
MLC estimator provides anomalous estimates in the intervalN ≤ θ ≤ M −1.

Moreover, with a slight adjustment the estimators (4.37) and (4.38) could
also be exploited in OFDM systems with a CP different from zero or in OFDM
systems with zero-padding, that is for OFDM systems in whichthe CP is re-
placed by a null prefix.

4.3 Performance Bounds

In this section we evaluate the CRB on CFO and carrier phase estimation for
NC-OFDM systems in the case of known symbol timing and for theobserved
data vector̄r in (4.14). Note that since a Gaussianity assumption is imposed
on the useful OFDM signal vector, the derived CRB is the Gaussian [41] (or

stochastic [42]) CRB. Letν
4
= [ε, φ]T the vector of the parameters of interest,

the(i, l)th entry of the Fisher information matrix (FIM) under the assumptions
(AS1)-(AS3) can be expressed as follows (see [42] and [41])

[F ](i,l) =
1

2
Tr

[
∂C̄r̄

∂[ν]i
C̄

−1
r̄

∂C̄r̄

∂[ν]l
C̄

−1
r̄

]

, ∀i, l ∈ {0, 1} (4.39)
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where the covariance matrix̄Cr̄ is defined in (4.15). Substituting (4.15) into
(4.39) we obtain the2 × 2 FIM,

F=









(
2π

N

)2

Tr
[

C̄
−1

DεC̄Dε−D2
ε

] 2π

N
Tr
[

C̄
−1

DεC̄Dφ−DεDφ

]

2π

N
Tr
[

C̄
−1

DεC̄Dφ−DεDφ

]

Tr
[

C̄
−1

DφC̄Dφ − I2W

]









where the matrix̄C is defined in (4.17) and∀i ∈ {0, 1}

D[ν]i=diag
{

G1∆
[ν ]i
−1 GT

1 ,−G1∆
[ν]i
−1 GT

1 ,∆
[ν ]i
0 , . . . ,

−∆
[ν]i
η ,G2∆

[ν]i
η+1G

T

2 ,−G2∆
[ν]i
η+1G

T

2

}

with ∆
[ν]0
m

4
= diag {−Lc+θ+mM, . . . ,N−1+θ+mM} and ∆

[ν ]1
m

4
= IM ,

∀m ∈ {−1, . . . , η+1} . The CRB forε andφ is given by the corresponding
inverse FIM diagonal element, that is

CRBNC
ε =

N2

4π2

{

Tr
[

C̄
−1

DεC̄Dε−D2
ε

]

−Tr
[

C̄
−1

DεC̄Dφ−DεDφ

]2
Tr
[

C̄
−1

DφC̄Dφ−I2W

]−1
}−1 (4.40)

and

CRBNC
φ =

{

Tr
[

C̄
−1

DφC̄Dφ − I2W

]

−Tr
[

C̄
−1

DεC̄Dφ − DεDφ

]2
Tr
[

C̄
−1

DεC̄Dε−D2
ε

]−1
}−1 (4.41)

Thanks to the above expressions for the CRBs, we make the following com-
ments:

1. In the case of C-OFDM systems the covariance matrixC̄r̄ is indepen-
dent of the carrier phase (see subsection 4.2.2). Thus, the CRB on the
CFO estimate is easily obtained as

CRBC
ε =

N2

4π2

{

Tr
[

C̄
−1

DεC̄Dε−D2
ε

]}−1

=
1 − ρ2

8π2ρ2 (η + 1) Lc
=

2SNR+1

8π2LcSNR2(η+1)
.

(4.42)

This expression forη = 0 is coincident with that reported in [43].
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2. In Fig.4.1 we report the ratioCRBNC
ε /CRBC

ε as a function of the non-
circularity rate|b| for different values of SNR and by choosingN = 512,
Lc = 12 andθ = 0. The results, according to [42] (where the CRB on
direction-of-arrival estimation for NC sources has been derived), show
that theCRBNC

ε is upper bounded by the associatedCRBC
ε and, in the

examined case, the difference between them is more prominent for low
SNR values and, for a fixed SNR value, when the length of the observa-
tion window increases.

3. Figures 4.2 and 4.3 presentCRBNC
ε andCRBNC

φ , respectively, versus
the number of subcarriersN for different values of the parameter|b| and
SNR = 10dB. The results show that both theCRBNC

ε andCRBNC
φ

decrease at the rate1/N when the noncircularity rate is different from
zero. Thus, according to [41], in the case of NC transmissions (b 6= 0)
the convergence rate of the phase and the CFO4F = ε/N (remember
that ε is the CFO normalized to the intercarrier spacing) are1/N and
1/N3, respectively.

4. ForW = M andLc 6= 0 theCRBNC
ε in (4.40) takes the form (see [14])

CRBNC
ε =

CRBC
ε

︷ ︸︸ ︷
[

1 − ρ2

8π2ρ2 Lc

]

×







(1+ρ−2ρ2|b|2)

(1+ρ)

[

1−|b|2ρ+|b|2(1−ρ)
k1k2

(k1+k2)

]







,

where

k1 = 1 +
(1 + ρ − 2ρ2|b|2)
2 Lc (1 − ρ2|b|2) (4.43)

and

k2 = 1 +
(1 + ρ − 2ρ2|b|2)
2 Lc (1 − ρ2|b|2) (N − 2Lc − 1). (4.44)

Let us observe that forN�2(Lc+1),
k1k2

(k1+k2)
'k1>1, and, then the
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Figure 4.1: RatioCRBNC
ε /CRBC

ε versus the noncircularity rate|b|
for SNR∈{0, 5, 10, 15, 20, 25, 30} dB and for an observation win-
dow of lengthW=2M+N/2 (solid lines) andW=4M+N/2 (dashed
lines).



52 CHAPTER 4. BLIND SYNCHRONIZATION

CRBNC
ε can be approximated as

CRBNC
ε 'CRBC

ε







1

1+|b|2(1−ρ)

[
k1(1+ρ)−ρ

1+ρ−2ρ2|b|2
]







. (4.45)

Equivalently, it can shown that

CRBNC
φ ' (1 + ρ − 2ρ2|b|2)

8ρ2Lc|b|2
[

k1 +
1 − ρ|b|2

(1 − ρ)|b|2
] . (4.46)

From (4.45) we can easily deduce that theCRBNC
ε decreases monoton-

ically by increasing the noncircularity rate|b| of the adopted NC constel-
lation. In particular it attains its maximumCRBC

ε for |b| = 0 (circular

case) and the minimumCRBNCb1
ε =

(1 − ρ)(1 + 2ρ)

8π2ρ2 Lc(1 + k1)
for |b| = 1 (e.g.,

real constellations).

Note also that theCRBNC
ε in (4.45), obtained forN � 2(Lc + 1),

does not depend on the number of subcarriers N. This implies that the
convergence rate of the CFO4F = ε/N is 1/N2, i.e., one order of
magnitude less than the convergence rate obtained in the previously con-
sidered case of a sample sizeW > M . This is due to the fact that when
the joint CFO and carrier phase estimation is considered andonly one
OFDM symbol is exploited, that is the length of the observation window
is W = M , there exists a strong correlation between the CFO estimate
and the carrier phase estimate whose CRB presents a floor (see(4.46)).
To corroborate this statement we note that, whenW = M and the phase
offset is assumed to be known, the resulting CRB,CRBNC−kφ

ε , is given
by

CRBNC−kφ
ε =CRBC

ε

{
(1+ρ−2ρ2|b|2)

(1+ρ)[1−|b|2ρ+|b|2(1−ρ)k3]

}

, (4.47)

wherek3 = k1

(
2Lc

N

)2

+ k2

(
2Lc

N
+ 1

)2

, and, forN � 2Lc, we

obtain

CRBNC−kφ
ε 'CRBC

ε

{
(1+ρ−2ρ2|b|2)

(1+ρ)[1−|b|2ρ+|b|2(1−ρ)k2]

}

.
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Thus, accounting for (4.44), it follows that, whenW = M and the
phase offset is assumed to be known, the CRB on the CFO estimate
CRBNC−kφ

ε decreases at the rate1/N , and, then, the convergence rate
of the CFO4F = ε/N is again1/N3 as in the case 3).
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Figure 4.2: Behavior of CRBNC
ε as a function oflog2 N for

SNR=10 dB, |b|∈{10−3, 0.1, 0.2, 0.4, 0.6, 0.8, 1}, and for an observa-
tion window of lengthW=2M+N/2 (solid lines) andW=4M+N/2

(dashed lines).
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Figure 4.3: Behavior ofCRBNC
φ as a function oflog2 N for SNR =

10 dB, |b|∈{0.1, 0.2, 0.4, 0.6, 0.8, 1}, and for an observation window of
lengthW=2M+N/2 (solid lines) andW=4M+N/2 (dashed lines).
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4.4 Estimators in Multipath Channel

One of the main advantages of the OFDM system is its intrinsicrobustness to
multipath propagation that involves a significant reduction in the complexity
of equalizers at the receiver. However, in presence of dispersive channels the
statisticsθ̂NC and θ̂MCL0, in (4.23) and (4.37), respectively, derived for ISI-
free channels, could not provide satisfactory performance. Thus, in this case,
it is necessary to refine these estimates.

Let us consider a multipath channel, then the discrete-timereceived signal
can be rewritten as

rq(k) =
Nm∑

l=0

h(l)sq(k − l − θ)ej 2π
N

ε(k+qM) + nq(k) , (4.48)

whereNm is the maximum delay spread. Moreover, forN � 1 and under
the hypothesis that the channel impulse response is constant in the observation
window it follows that (see Appendix B)

1

N

{

T (θ+β)+

η
∑

i=0

|Ui(θ+β)|+
η+1
∑

i=−1

[|Vi(θ+β)|+ |Zi(θ+β)|]
}

'







µ1|(h ∗ h)(2β)|−µ2, β∈{0, . . . , Nm},

−µ2, otherwise,

(4.49)

whereµ1 and µ2 are positive constants defined in Appendix B. Therefore,
because of the channel dispersion, the statisticθ̂NC in (4.23) provides a coarse
estimate of the arrival time of the first multipath componentthat, with high
probability, differs from its actual valueθ by a quantityβ ∈ {0, . . . , Nm}.
Thus, a refined estimatêθNCR of the symbol timing is given by

θ̂NCR = θ̂NC − β̂. (4.50)

In particular, an estimatêβ of the parameterβ can be obtained (see [44]) by
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observing that, forβ ∈ {0, . . . , Nm} and forN�1

χ(u, θ+β)
4
=

1

N−1

η
∑

l=0

∣
∣
∣
∣
∣

N−1∑

k=1

rl(θ+β+k)rl(N+θ+β−k−u)

∣
∣
∣
∣
∣

'







|b|σ2
s(η+1) |(h∗h)(2β−u) |, 2β−u∈{0, . . . , 2Nm},

0, otherwise.

Hence, for
u = 2β + 1 (4.51)

χ(u, θ + β) drops to a value nearly equal to zero. An estimateû of the pointu
whereχ(u, θ + β) takes this value is given by

û = arg min
ũ

{(

χ(ũ, θ̂NC)/χ(ũ − 1, θ̂NC)
)2
}

. (4.52)

Then, accounting for (4.50), (4.51) and (4.52), the proposed estimator results
to be

θ̂NCR = θ̂NC −
⌈

1

2
(û − 1)

⌉

, (4.53)

whered·e represents the operator that rounds its argument to the nearest integer
towards infinity.

Moreover, following the lines of Appendix B it can be shown that

1

N

η+1
∑

i=−1

|ZiL0
(θ+β)| '







(η+2)σ2
s |b(h ∗ h)(2β)|, β∈{0, . . . , Nm},

0, otherwise.

(4.54)

Thus, the coarse estimateθ̂MCL0 in (4.37) can be refined by following the same
procedure exploited for the statistiĉθNC (see (4.49) and (4.54)). Specifically,
the refined symbol timing estimator MCL0R is given by

θ̂MCL0R = θ̂MCL0 −
⌈

1

2
(û − 1)

⌉

. (4.55)
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It should be noted that accounting for (4.51) the trial parameter ũ belongs to
the set{1, . . . , 2Nm + 1} whose size depends on the channel dispersionNm.
Thus, to obtain an algorithm independent of this channel parameter knowledge,
we can assume that the channel dispersion does not exceed theCP length, that
is Nm ≤ Lc, so that the search of the minimum of the function in the RHS of
(4.52) is done in the set̃u ∈ {1, . . . , 2Lc + 1}.

Finally, let us observe that NC and MCL0 CFO estimators in (4.24) and
(4.38), respectively, can be used in presence of dispersivechannel provided
that the channel impulse response is constant during the whole observation
interval. Moreover, forN � Nm + 1, θ = 0 and high SNR values, the
mean squared error of the MCL0 CFO estimator, evaluated atθ̂ = β, can be
approximated by (see Appendix C)

E[(ε̂MCL0−ε)2]'

Nm∑

l=0

|h(l)|2

4π2SNR|b|2(η+1)2|(h ∗ h)(2β)|2N . (4.56)

Thus for fixed SNR,η, |b| and N, the value ofβ maximizing the term|(h ∗
h)(2β)|2 minimizes (4.56). Since, the coarse MCL0 symbol timing estimate
maximizes the term|(h ∗ h)(2β)| (see (4.37) and (4.54)), it follows that in
presence of a dispersive channel the MCL0 CFO synchronization algorithm
provides estimates with a lower mean squared error when the coarse MCL0
symbol timing estimate is exploited. Moreover, simulationresults have shown
that also the NC algorithm assures in dispersive channel more accurate CFO
estimates when the coarse NC symbol timing estimate is used.Therefore, in
the following the performance of the proposed CFO estimators is assessed by
substituting in (4.24) and (4.38) the corresponding coarsetiming estimates.



Chapter 5

Synchronization with Training

This chapter deals with the problem of data-aided symbol timing and CFO
estimation in OFDM systems. A synchronization scheme basedon a training
symbol made up of L identical parts, obtained by transmitting BPSK data sym-
bols on the subcarriers whose indexes are multiple of L and setting zero on the
remaining subcarriers, is proposed. In this case, if the number of subcarri-
ers is sufficiently large, the training symbol can be modeledas an NC-CGRV.
By exploiting the joint PDF for NC-CGRVs, the joint ML estimator for the
parameters of interest is derived. Since its implementation complexity is sig-
nificant, a lower complexity algorithm is proposed. Finally, a refined symbol
timing estimator, apt to counteract the degrading effects of channel dispersion,
is considered.

5.1 Training Symbol

With reference to the signal model (4.1) let us assume that the training symbol
(q = 0) is made up (excluding the CP) of L identical parts with a possible sign
inversion, that is, it has the form

[
p(0)xT , p(1)xT , p(2)xT , . . . , p(L − 1)xT

]
, (5.1)

wherex
4
= [s(0), . . . , s(P − 1)]T is a column vector of lengthP = N/L and

p(l) represents thel-th entry of the vectorp ∈ {1,−1}L×1 denoting the train-
ing symbol pattern, that is, the sign of each blockxT in (5.1). The structure of

59
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the training symbol has been shown in Fig 5.1 into the case ofL = 2.
In the following we consider the assumptions (AS1) and (AS2)stated in

the previous chapter and moreover we suppose that

(AS3) The training symbol in (5.1) (except for the sign of each block) is given
by transmitting a BPSK sequence with mean squared valueL on the
subcarriers whose indexes are multiple ofL and setting zero on the re-
maining subcarriers.

(AS4) Except for the training symbol, the subcarrier symbols belong to a cir-
cular constellation (i.e.,E[(al

q)
2] = 0 for q 6= 0).

From the previous assumptions, we can easily derive the following results:
Result 1The(k,m)-th of the covariance matrix of the vector in (5.1) is equal
to

E [s(k)s∗(m)] =







σ2
sp
(⌊

k
P

⌋)
p
(⌊

m
P

⌋)
, k−m=lP,

∀m,k ∈ τ1,

0, otherwise,

(5.2)

where, the setτ1 is defined in (2.5). Moreover, since the training symbol is
made up by transmitting, on the different subcarriers, BPSKdata symbols, for
N ≥ 4L it follows that
Result 2The(k,m)-th of the relation matrix of the vector in (5.1) is given

E [s(k)s(m)] =







bσ2
sp(b k

P c)p(bm
P c), k+m=lP,

∀m,k ∈ τ1,

0, otherwise.

(5.3)

Let us note that theResult 1 particularized to the case ofL = 4 and a
possible sign inversion has been used in [18] and [19] to derive a joint CFO
and timing estimator.
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Figure 5.1: Scheme of training symbol withL = 2 identical parts.

Figure 5.2: Scheme of correlation sets for a training symbol withL =

2 identical parts.
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5.2 Stochastic ML Estimators

In this section ML-based symbol timing and CFO estimators for OFDM sys-
tems supported by a training symbol obtained by transmitting on the subcar-
riers whose indexes are multiple of L, symbols belonging to an NC constella-
tion. Specifically, they are derived by maximizing the LLF for the vector of

unknown parametersλ
4
= [θ, ε, φ]T . Successively, the obtained estimators are

particularized to the case of circular transmissions on thedifferent subcarriers.

5.2.1 Estimators Based on an NC Training Symbol

Let us consider the2N × 1 vector

r̄
4
= [r(−Lc), . . . , r(θ − Lc − 1), r(θ), . . . , r(2N − 1)]T , (5.4)

obtained by discarding the samples in the CPr(θ − Lc), . . . , r(θ − 1) and let
us suppose that the unknown delayθ satisfies the condition0 ≤ θ ≤ N, so
that r̄ contains the entire training symbol. Using the vectorial model defined
in chapter§4 the considered observation vector can be rewritten as

r̄
4
= [(G1r−1)

T

︸ ︷︷ ︸

řT
−1

, rT

0 , (G2r1)
T

︸ ︷︷ ︸

řT
1

]T

where the matricesG1 andG2, defined as

G1
4
= [Oθ×(N−θ) Iθ] (5.5)

and
G2

4
= [IN−θ O(N−θ)×θ] , (5.6)

are real matrices withG1G
T
1 = Iθ, G2G

T
2 = IN−θ, GT

1 G1 =

[ON×(N−θ) GT
1 ] andGT

2 G2 = [G2 Oθ×N ]. Note that the vector̄r contains
the lastθ samples of the(−1)th OFDM symbol through the subvectorř−1, the
first N − θ samples of the OFDM symboľr1 and moreover, the subvectorrT

0

contains, except for the CP, the training symbol.
The2N -dimensional NC-CGRV̄r is characterized by the joint PDF [16]

f(r̄, r̄∗;λ)=
1

π2N
√

det
{
C̄r̄
} exp

〈

−1

2
[r̄H r̄T ] C̄

−1
r̄

[

r̄

r̄∗

]〉

(5.7)
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whereC̄r̄ is the covariance matrix of the vector[r̄T , r̄H]T . Moreover, since
the vectoršr−1, rT

0 andř1 are statistically independent CGRVs, the joint PDF
(5.7) can be rewritten as

f(r̄, r̄∗;λ) =f(ř−1, ř
∗
−1;λ)f(r0, r

∗
0;λ)f(ř1, ř

∗
1;λ)

=
1

πθ

√

det
{

C̄ř
−1

} exp

〈

−1

2

[
řH

−1ř
T

−1

]
C̄

−1
ř

−1

[

ř−1

ř∗
−1

]〉

× 1

πN
√

det
{
C̄r0

} exp

〈

−1

2
[rH

0 rT

0 ] C̄
−1
r0

[

r0

r∗
0

]〉

× 1

πN−θ
√

det
{
C̄ř1

} exp

〈

−1

2
[řH

1 řT

1 ] C̄
−1
ř1

[

ř1

ř∗
1

]〉

,

(5.8)
where the matrices̄Cř

−1
, C̄r0 andC̄ř1

are given by

C̄ř
−1

=






(σ2
s+σ2

n)Iθ Oθ

Oθ (σ2
s+σ2

n)Iθ




 , (5.9)

C̄r0 =






Ψ(λ)
[
Cs+σ2

nIM

]
Ψ

∗(λ) Ψ(λ)RsΨ(λ)

Ψ
∗(λ)R∗

sΨ
∗(λ) Ψ

∗(λ)
[
C∗

s+σ2
nIM

]
Ψ(λ)






(5.10)
and

C̄ř1
=






(σ2
s+σ2

n)IN−θ ON−θ

ON−θ (σ2
s+σ2

n)IN−θ




 , (5.11)

with
Ψ(λ)

4
= ej[ 2π

N
εθ+φ]diag

{

1, . . . , ej 2π
N

ε(N−1)
}

N × N diagonal matrix whileRs andCs are the relation and the correlation

matrices of the transmitted training symbols
4
= [s(0), . . . , s(N−1)]T .
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Thus, accounting for (5.8)-(5.11) and the results (5.2) and(5.3), after some
algebraic manipulation, the LLF takes the form

Λ(λ) =κ1

{

−c1ρP (θ)+

L−2∑

l=0

<
[

Ql(θ)e−j 2π(l+1)
L

ε

+γ∗
L∑

n=1

L∑

l=n

(

Sl,n(θ) + Tl,n(θ)ej 2πε
L

)

e−j
2π(2l−n)

L
ε

]}

,

(5.12)

where

P (θ)
4
=

N−1∑

k=0

|r̄(k + θ)|2,

Ql(θ)
4
=

L−(l+1)
∑

n=1

2p(n−1)p(n+l)

P−1∑

k=0

r̄∗(k+(n−1)P+θ)r̄(k+(n+l)P+θ) ,

Sl,n(θ)
4
=

l−1∑

h=l−n

p(2l−n−h−1)p(h)

P−1∑

k=1

r̄(k+hP+θ)r̄((2l−n−h)P+θ−k)

and

Tl,n(θ)
4
=

l−1∑

h=l−n

p(2l−n−h−1)p(h)r̄(hP+θ)r̄((2l−n−h − 1)P+θ) .

Moreover,γ andρ are defined in (4.20) and (A.9), respectively, while

κ1
4
=

ρ

(σ2
s + σ2

n)(c1ρ + 1)(1 − ρ)
, (5.13)

and

c1
4
=

(L + 1)(L + 2)

6
+ L − 1 . (5.14)

To derive the joint ML frequency offset and symbol timing estimator we
initially keep the vector[θ, ε]T fixed and letφ vary. In these circumstances the
LLF (5.12) achieves a maximum for

φ̂ML(θ, ε)=
1

2
arg

[
L∑

n=1

L∑

l=n

(

Sl,n(θ) + Tl,n(θ)ej 2πε
L

)

e
−j2πε

�
(2l−n)

L
+ 2θ

N �
]

.

(5.15)
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Then, substituting (5.15) in (5.12) and accounting for the fact thatκ1 is a pos-
itive constant, we obtain

(θ̂ML, ε̂ML) = arg max
(θ̃,ε̃)

Λ
(

θ̃, ε̃, φ̂ML(θ̃, ε̃)
)

= arg max
(θ̃,ε̃)

{

−c1ρP (θ̃)+
L−2∑

l=0

<
[

Ql(θ̃)e−j
2π(l+1)

L
ε̃
]

+

∣
∣
∣
∣
∣

L∑

n=1

L∑

l=n

(

Sl,n(θ̃) + Tl,n(θ̃)ej 2πε̃
L

)

e−j 2π(2l−n)
L

ε̃

∣
∣
∣
∣
∣

}

.

(5.16)
Unfortunately, the solution of this problem requires a two-dimensional search.
To reduce the computational complexity of the joint ML estimator, we consider
a simpler synchronization scheme. Specifically, in virtue of results 1 and 2,
the magnitude of each termQι(α), Sι,η(α) andTι,η(α) in (5.16) can present
a peak whenα is the actual symbol timing. Thus we consider the decoupled
symbol timing metric

θ̂= arg max
θ̃

{

−c1ρP (θ̃)+

L−2∑

l=0

|Ql(θ̃)|+
L∑

n=1

L∑

l=n

(

|Sl,n(θ̃)| + |Tl,n(θ̃)|
)
}

.

(5.17)
This estimator provides high false probability detection when the useful signal
is absent, therefore it can be used with difficulty for a bursttransmission mode
(see [19]). To obtain a timing metric with low false detection probability we
propose the NC symbol timing estimator

θ̂NC =arg max
θ̃
















L−2∑

l=0

∣
∣
∣Ql(θ̃)

∣
∣
∣+

L∑

n=1

L∑

l=n

(∣
∣
∣Sl,n(θ̃)

∣
∣
∣+
∣
∣
∣Tl,n(θ̃)

∣
∣
∣

)

c1P (θ̃)










2




.

(5.18)
Moreover, accounting for (5.15) and (5.16), we propose the NC frequency
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offset and carrier phase estimators

ε̂NC = arg max
ε̃

{
L−2∑

l=0

<
[

Ql(θ̂NC)e−j 2π(l+1)
L

ε̃
]

+

∣
∣
∣
∣
∣

L∑

n=1

L∑

l=n

[

Sl,n(θ̂NC)+Tl,n(θ̂NC)ej 2πε̃
L

]

e−j
2π(2l−n)

L
ε̃

∣
∣
∣
∣
∣

}
(5.19)

and
φ̂NC=φ̂ML(ε̂NC , θ̂NC) . (5.20)

Note that the estimator̂φNC in (5.20), accounting for (5.15), provides a
closed form estimate for the carrier phase and gives an unambiguous estimate
if | φ |≤ π/2. Moreover, since the function to be maximized in the RHS of
(5.19) is a periodic function of period L, it follows that theCFO estimator̂εNC

gives ambiguous estimates unless| ε |≤ L/2.

5.2.2 Estimators Based on a Circular Training Symbol

In the case where the training symbol (withL identical parts) is made up by
transmitting subcarrier symbols belonging to a circular constellation (that is,
E[(al

q)
2] = 0 for q = 0 ), the relation matrix of the training symbolRs is

identically zero. Therefore, accounting for (5.8)-(5.11), the LLF (5.12) be-
comes

Λc(θ, ε) = κ2

{

<
[

L−2∑

l=0

e−j 2π(l+1)
L

εQl(θ)

]

− c2ρP (θ)

}

(5.21)

whereκ2
4
=

ρ

(σ2
s + σ2

n)(c2ρ + 1)(1 − ρ)
and c2

4
= L − 1 . Exploiting the

approach followed before, accounting for (5.21) and for thefact thatκ2 is a
positive constant, we obtain the symbol timing and CFO estimators

θ̂GSC = arg max
θ̃











L−2∑

l=0

∣
∣
∣Ql(θ̃)

∣
∣
∣

c2P (θ̃)





2






(5.22)

and

ε̂GSC=arg max
ε̃

{
L−2∑

l=0

<
[

Ql(θ̂GSC)e−j 2π(l+1)
L

ε̃
]
}

, (5.23)
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that give ambiguous estimates unless| ε |≤ L/2 and 0 ≤ θ ≤ N . It is
of interest to observe that in the case of a training symbol with two identical
halves and without a sign inversion estimators (5.22) and (5.23) take a form
similar to the symbol timing and CFO estimators proposed by Schmidl and
Cox in [17]. Therefore, since estimators (5.22) and (5.23) can be considered a
generalization of those obtained in [17] to the case where the training symbol
has more than two identical parts, they are referred to as generalized Schmidl
and Cox (GSC) estimators.
The symbol timing statistic (5.22) in the case whereL = 4 and the training
symbol patternp = [1, 1,−1, 1]T is exploited, reduces to the coarse estimator
proposed in [18] by Shi and Serpedin that will be referred to as SS estimator.
Moreover, to limit the computational cost, the following simplified coarse CFO
estimator has been proposed in [18] in place of (5.23)

ε̂SS =
L

2π
arg[Q0(θ̂SS)] . (5.24)

By minimizing the squared average distance between L succeeding parts of
the received training symbol, Minn, Bhargava and Letaief proposed in [19] the
coarse symbol timing metric

θ̂MBL = arg max
θ̃







(

L|Q0(θ̃)|
c2P (θ̃)

)2





. (5.25)

In the case whereL = 2 the MBL timing estimator (5.25) and the GSC esti-
mator (5.22) are coincident. Nevertheless, when the numberof repeated parts
increases, the simpler expression (5.25) does not account for the correlation
between not adjacent parts of the training symbol. Thus, in this case a perfor-
mance loss with respect to the GSC estimator (5.22) could occur. Moreover,
the coarse frequency-offset estimator proposed in [19] is aslight modification
of the CFO estimator proposed in [45].

5.3 Practical Estimator

The frequency offset estimators (5.19) and (5.23) require amaximization pro-
cedure with respect to the continuous parameterε̃. They can be obtained, as



68 CHAPTER 5. SYNCHRONIZATION WITH TRAINING

pointed out in [46], exploiting a two step procedure. In the first step is per-
formed a coarse search followed, in the second step, by a fine search. Specif-
ically, in this paper the dichotomous fine search, describedin detail in [47], is
considered. However, this is a time-consuming procedure.
To overcome this problem, in this section we propose a lower complexity syn-
chronization algorithm viable for practical implementation. Specifically, we
propose a best linear unbiased (BLU) estimator that provides a closed form
expression for the frequency shift estimate. Let us consider the terms

R(m) =
1

N − mP

N−mP−1∑

k=0

r̄(k + θ)∗r̄(k + mP + θ) bk,k+mP (5.26)

and

C(m) =
1

N−mP

N−mP−1∑

k=1

[r̄(k+mP+θ)r̄(N−k+θ)bN−k,k+mP

+r̄(mP+θ)r̄(θ)b0,mP ],
(5.27)

with 0 ≤ m ≤ L − 1 and

bm,l
4
= p

(⌊m

P

⌋)

p

(⌊
l

P

⌋)

, (5.28)

wherep(l) is thel-th entry of the vectorp denoting the training symbol pattern
except for the CP (see Section§ 5.1).
We observe preliminarily that, in virtue of the repetitive structure of the train-
ing symbol and since it is obtained by transmitting on the different subcarriers
data symbols belonging to a real constellation, it results that

s(0) = s(0)∗ , (5.29)

p

(⌊
k

P

⌋)

s(k) = p

(⌊
k + mP

P

⌋)

s(k + mP ) , (5.30)

∀k, k + mP ∈ τ2 ∪ {0} ,

p

(⌊
N − k

P

⌋)

s(N − k) = p

(⌊
k + mP

P

⌋)

s(k + mP )∗ . (5.31)

∀k, k + mP ∈ τ2 ,
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Thus, by substituting the received signal (see (4.4)) in (5.26) and (5.27),
accounting for (5.29)-(5.31) and neglecting noise×noise terms, we have

R(m)= σ2
se

j2πmε
L

×
[

1+
1

σ2
s(N−mP )

N−mP−1∑

k=0

[s(k)∗w(k+mP+θ)+w(k+θ)∗s(k+mP )] bk,k+mP

]

(5.32)
and

C(m)= σ2
se

j
�
2πε(mP+N+2θ)

N
+2φ�

×
[

1 +
2

σ2
s(N − mP )

N−mP−1∑

k=0

s(k)∗w(k + mP + θ)bk,k+mP

]

,

(5.33)

wherew(k)
4
= n(k)e−j[ 2πεk

N
+φ].

Let us now consider the vectory ∈ R(L−1)×1 whose elements are defined as

y(m)
4
= arg [R(m)R(m − 1)∗ + C(m)C(m − 1)∗] , m ∈ [1, ..., L − 1] .

(5.34)
At high SNR values and for|ε| ≤ L/2, y(m) can be approximated by a linear
expression in the unknown parameterε

y(m)'2πε

L
+

=[η(m) + η(m − 1)∗]

2σ2
s

, (5.35)

with

η(m)
4
=

1

N−mP

N−mP−1∑

k=0

[s(k+mP )w(k+θ)∗+3s(k)∗w(k+mP+θ)] bk,k+mP .

(5.36)
Thus, the estimation problem can be reduced to a linear modeland by ex-
ploiting the Gauss-Markov theorem we can consider (see [38]) the BLU CFO
estimator

ε̂ =
L

2π

[

yT C−1
y 1

1T C−1
y 1

]

(5.37)
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where the(m, l)-th entry of the covariance matrixCy ∈ R
L−1×L−1 is given

by

[Cy](m, l)
4
=E[y(m)y(l)∗]=

1

4P SNR(L−(l−1))

×
[
5δ[m − l]

(L−l)
+

3L u(L−m−l)

(L−l)(L−m)(L−(m−1))
−3δ[m + l − L − 1]

(L − (m − 1))

]

.

(5.38)
Note that this approach generalizes that proposed by Mengali and Morelli in
[45] to the case where the training symbol withL identical parts is obtained by
transmitting, on the different subcarriers, data symbols belonging to a noncir-
cular constellation. Specifically, in this case, in addition to the correlation term
(5.26) considered in [45], the term (5.27) is exploited. It is worth pointing out
that, accounting for (5.37) and (5.38), the NC-BLU estimator does not require
the knowledge of the SNR value and of the channel. Moreover, the acquisition
range of the proposed NC-BLU frequency offset estimator is coincident with
that of estimators in (5.19) and (5.23).

5.4 Data-Aided Estimators in Multipath Channel

Since the statistiĉθNC in (5.18) is derived for ISI-free channels, in presence
of dispersive channels it could not provide satisfactory performance. Thus, in
this case, it is necessary to refine the symbol timing estimate. Specifically,
by exploiting the periodic structure of the training symbol, basically the same
analysis considered for blind symbol timing estimator in the section§ 4.4 can
be applied.

Let us consider the received signal model in multipath channel (4.48). Let
us observe that forN � Nm, following the lines of appendix B, we can easily
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demonstrate tha following approximation

L−2∑

l=0

|Ql(θ+β)|+
L∑

n=1

L∑

l=n

(|Sl,n(θ+β)| + |Tl,n(θ+β)|)

c1P (θ + β)

'







σ2
s |(h⊗h)(2β) |

σ2
s

Nm∑

l=0

| h(l) |2 +σ2
n

, β ∈ {0, . . . , Nm}

0, otherwise .

Therefore, as in the case of blind symbol timing estimators,because of the
channel dispersion, the statisticθ̂NC in (5.18) provides a coarse estimate of the
arrival time of the first multipath component that, with highprobability, differs
from its actual valueθ by a quantityβ ∈ {0, . . . , Nm}. Thus, by following the
lines of subsection 4.4, a refined estimateθ̂NCR of the symbol timing is given
by

θ̂NCR = θ̂NC −
⌈

1

2
(û − 1)

⌉

. (5.39)

The estimatêu can be obtained considering the estimator (4.52) and in this
case the functionχ(u, θ + β) is defined as

χ(u, θ + λ)
4
=

1

N − 1

L∑

n=1

L∑

l=n

l−1∑

h=l−n

[| Bl,n,h(u, θ+λ) |

+ | r̄(β+hP )r̄((2l−n−h−1)P+β−u) |]

(5.40)

where

Bl,n,h(u, α)
4
=

P−1∑

k=1

r̄(k+α+hP )r̄((2l−n−h)P+α−k−u).

Once the fine symbol timing estimate has been evaluated, the frequency
offset estimate can be obtained by (5.19) (referred as NCR estimator) or by the
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reduced-complexity expression (5.37) (referred to in the following as NCR-
BLU estimator). Note that, unlike the refined symbol timing estimator re-
ported in [19] and referred to in the following as fine-MBL, the proposed al-
gorithm requires neither a channel-dependent timing preadvancement nor a
SNR-dependent threshold.



Chapter 6

Numerical Results

In this chapter we the performance of derived blind and data-aided estimators
is assessed via computer simulations and compared with thatof some esti-
mators previously proposed in literature in presence of AWGN and multipath
channel.

6.1 Performance of Blind Estimators

In this section the performance of the proposed blind estimators is assessed via
computer simulations and compared with that of MLC estimators, derived in
[9], and that of modified MLC (MMLC) estimators, proposed in [5], exploiting
only ISI-free samples of the CP to counteract the degrading effects of disper-
sive channels. In the simulations the values of the arrival time, the normalized
CFO and the carrier phase have been fixed atθ = 10, ε = 1/8 andφ = π

8 ,
respectively. Moreover,105 trials were used to obtain the performance plot.

Note that the MCL0 symbol timing estimator has been derived under the
assumptionLc = 0. However, since in the following experimentsLc is dif-
ferent from zero, the known bias equal to the CP lengthLc is subtracted from
the estimates provided by the MCL0 symbol timing estimator.Moreover, to
obtain unbiased estimates the CFO estimator (4.38) is multiplied byN/M (see
also [44]).

73
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6.1.1 AWGN Channel

In this first set of simulations we have tested the performance of the proposed
algorithms as a function of SNR in AWGN channel and for an OFDMsystem
with N=512 DBPSK subcarriers.

The performance of the considered symbol timing estimatorsis shown in

Fig. 6.1 where it is reported the probabilityP (θ)
4
= P ({θ̂<θ−Lc}

⋃{θ̂>θ}),
that is the probability that an incorrect symbol timing causes ISI and ICI (see
Section§ ??). In the figure three different contexts are considered: an obser-
vation window of lengthW = 2M + N/2 and a CP length fixed atLc = 4

(dashed lines) andLc = 12 (solid lines) and, moreover, an observation win-
dow of lengthW = 4M + N/2 and a CP length fixed atLc = 12 (dotted
lines). Note that the markers for NC and MCL0 estimators appear only for
SNR < 0 dB, since for higher values of SNR both the NC and MCL0 es-
timates were coincident with the actual value of the symbol timing in all the
105 performed experiments. The results show that NC and MCL0 estimators,
whose performance is practically unaffected by the value ofthe CP length,
greatly outperform the MLC estimator on the whole range of SNR values.

Fig. 6.2 shows the mean squared error (MSE) of the consideredCFO esti-
mators as a function of SNR and for different values of the CP length. In the
figure are also reported as benchmark theCRBNC

ε and theCRBC
ε derived

in Section 4.3 for the case ofLc = 12. Note that, although the CRBs have
been derived under the assumption of known symbol timing, the performance
of the CFO estimators has been obtained without the knowledge of this param-
eter, that is, in each run the CFO estimate has been obtained by exploiting the
corresponding timing estimate. However, it should be emphasized that, as pre-
viously stated, NC and MCL0 symbol timing estimates were coincident with
the actual value of the symbol timing in all the performed runs for SNR ≥ 0

dB. The results show that the greater accuracy of the proposed symbol timing
estimators has beneficial effects also on the performance ofthe CFO estima-
tors. In particular, the performance improvement of NC and MCL0 estimators,
with respect to the MLC estimator, increases as the CP lengthdecreases. More-
over, the performance of NC and MLC estimators results to be very close to
the correspondingCRBs.

By augmenting the observation interval, the considered CFOestimators
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provide more accurate estimates and, besides, as shown in Fig. 6.3, the per-
formance gap between the proposed CFO estimators and the MLCestimator
increases. Moreover, by a comparison with Fig. 6.2 it follows that the MLC
CFO estimator achieves theCRBC

ε for lower SNR values as the sample size
increases. This is in agreement with the fact that theCRBC

ε has been derived
under the assumption of known symbol timing while the performance of the
MLC CFO estimator depends on the accuracy of the symbol timing estimate
that improves as the sample size increases.

6.1.2 Multipath Channel

The performance of the considered estimators has also been assessed in multi-
path channel for an OFDM system withN=1024 DBPSK subcarriers. In each
experiment the multipath channel has been modeled to consist of Nm+1=11

independent Rayleigh-fading taps with an exponentially decaying power de-
lay profile. Specifically,E[|h(l)|2]=Ce−

l
4 , l ∈ {0, . . . , Nm}, whereC is a

constant such that
Nm∑

l=0

E[|h(l)|2] = 1. Moreover, the channel is fixed in the

observation window but independent from one run to another.

Figures 6.4 and 6.5 show the MSE and the probabilityP (θ)
4
= P ({θ̂<θ−Lc +

Nm}⋃{θ̂>θ}) of NCR, MCL0R, MLC and MMLC symbol timing estima-
tors (defined in (4.53), (4.55), (4.27) and in [5], respectively) for an obser-
vation window of lengthW=2M+N/2 and different CP values. The results
show that the proposed NCR estimator and the more practical MCL0R syn-
chronization scheme exhibit nearly the same performance and significantly
outperform the MLC algorithm proposed in [9] and its modifiedversion for
dispersive channel (MMLC algorithm). In particular, as thenumberLc−Nm

of ISI-free samples decreases, the performance gain of the proposed estimators
with respect to the MMLC algorithm increases. Note that the MLC statistic is
strongly biased for all examined situations. Moreover, it is worthwhile to em-
phasize that, unlike the proposed NCR and MCL0R algorithms,the MMLC
estimator requires the knowledge of the maximum delay spread Nm.

The results reported in Fig.6.6 show that the feasible-computational MCL0
CFO estimator provides the most accurate estimates. Moreover, as one would
expect, only the MMLC algorithm does not present a floor sinceit exploits
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ISI-free samples. However, the figure shows that the MMLC algorithm as-
sures a relevant performance, as the number of ISI-free samples decreases, for
higher and higher values of SNR. Moreover, as already underlined, the MMLC
algorithm requires the knowledge of the maximum delay spread Nm.

Finally, Fig. 6.7 illustrates the symbol-error rate (SER) performance of
NCR, MCL0R, MLC and MMLC algorithms as a function of SNR. The re-
sults show that the SER achieved by using NCR and MCL0R estimators is
coincident with that obtained in the case of perfect synchronization, while the
MMLC estimator assures relevant performance only forLc = 16 and high
SNR values. Moreover, the MLC estimator provides a contained performance
loss with respect to the case of perfect synchronization only for Lc = 16.

6.2 Performance of Data-Aided Estimators

In this section the performance of the proposed estimators based on a training
symbol is assessed via computer simulations and compared with that of SS
and MBL algorithms derived in [18] and [19], respectively. In all the simu-
lations we consider an OFDM system with N=1024 subcarriers and a prefix
length fixed atLc = 16. The actual values of the arrival time, the normalized
frequency offset and the carrier phase have been fixed atθ = 10, ε = 1/8 and
φ = π

8 , respectively. Moreover, the training symbol used for NC estimators
is obtained by transmitting, on the different subcarriers,a maximum length
sequence (MLS) of DBPSK data symbols, whereas, for the otherschemes, a
MLS of DQPSK symbols is exploited. Furthermore, to verify the incidence
of the training symbol pattern on the performance we have considered two
different cases:

(a) training symbol patternp = [1, 1, 1, 1]T (solid lines);

(b) training symbol patternp = [1, 1,−1, 1]T (dashed lines).

6.2.1 Timing Metric

Figures 6.8-6.9 show the behavior in a single run of NC, GSC1 and MBL
timing metrics for a noiseless and distortionless transmission of the training

1Note that, as previously stated, for the considered number of repeated parts (L = 4), the
GSC timing metric reduces to the SS timing metric when the training symbol patternp =
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symbol. Specifically, in Fig. 6.8 the employed training symbol is made up of
four identical parts and with the pattern (a). In this case the NC timing met-
ric presents the sharpest peak at the actual timingθ = 0, whereas MBL and
GSC metrics present a large plateau. As showed in the plot, the NC metric
exhibits relative maxima, located in±lN/2L with l ∈ {1, ..., L}. However,
these peaks do not interfere with the exact correlation peakprovided that the
length P of each identical training sequence block is sufficiently large. In
Fig. 6.9 the timing metrics corresponding to the training symbol pattern (b)
have been considered. The results show that the sign inversion in the trans-
mitted training symbol pattern reduces the undesirable peaks in the NC timing
metric and eliminates the plateau effect for GSC and MBL symbol timing met-
rics. Nevertheless, as we will see, the use of a training sequence made up of
identical parts with different signs can introduce in a dispersive channel some
performance degradation in the frequency offset estimation.

6.2.2 AWGN Channel

In this first set of simulations we have tested the performance of the proposed
algorithms in an AWGN channel. In particular, Fig. 6.10 illustrates the perfor-
mance of NC, MBL and GSC symbol timing estimators as a function of SNR
evaluated in terms of the probabilityP (θ) that an incorrect timing causes ISI
and ICI. The number of runs for each SNR value is equal to104. The results
presented in Fig. 6.10 show that, for both patterns, the NC symbol timing es-
timator greatly outperforms GSC and MBL estimators. Besides, in the case
(a) the plot reveals a degradation in the performance for both MBL and GSC
estimators due to the plateau in the metric (see Fig.6.8).
The previous conclusions are further supported by results reported in Fig. 6.11,
where the MSE versus SNR for symbol timing estimates is depicted. In par-
ticular, in the cases (a) and (b) no errors were observed for the NC estimator
in the performed runs forSNR ≥ −5 , while, in the case (a) MBL and GSC
estimators present performance floor. In AWGN channel the considered CFO
estimators do not reveal significant performance sensitivity to the training se-
quence pattern. Therefore, for the sake of brevity, we present only the results
in the case (a). In particular, in Fig. 6.12 we compare the performance of

[1, 1,−1, 1]T is considered.
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NC, GSC and NC-BLU CFO estimators proposed in (5.19), (5.23)and (5.37),
respectively, with that of SS and MBL CFO estimators. Moreover, MSE for
the proposed NC-BLU estimator under perfect timing synchronization is also
included as reference. The results show that NC and GSC CFO estimators
present, for low SNR values, a performance gain with respectto MBL and
SS estimators, while NC-BLU CFO estimator assures the best performance at
moderate and high SNR values. Note that this performance is very close to
that obtained with perfect symbol timing estimation.

6.2.3 Multipath Channel

The performance of the proposed data-aided estimators has also been assessed
in a multipath channel. In each experiment the multipath channel has been
modeled to consist ofNm + 1 = 13 independent Rayleigh-fading taps with
an exponentially decaying power delay profile with root mean-squared width
corresponding to two samples. The channel is fixed during thetransmission of
one OFDM symbol but independent from one run to another. The values of the
remaining parameters are those used for AWGN channel.
Figures 6.13 and 6.14 show the probabilityP (θ) and the MSE, respectively, of
NCR, NC, GSC and fine-MBL symbol timing estimators in the cases (a) and
(b). We can note that for both patterns the NCR estimator clearly outperforms
NC, GSC and fine-MBL estimators. Moreover, GSC and fine-MBL estimators
exhibit satisfactory performance only in the case (b).
Figures 6.15 and 6.16 present the MSE of NC, NCR, NCR-BLU, SS,GSC and
MBL2 CFO estimators as a function of SNR. Specifically, Fig. 6.15 illus-
trates the performance in the case (b). As we can see, the presence of a sign
inversion in the training symbol pattern leads to a performance floor in a dis-
persive channel. Thus, it is necessary fine frequency estimation to counteract
this degradation (see [19]). However, except for NC and MBL estimators, no
floor effect is observed in Fig. 6.16 in the case of a training pattern without
sign inversion. In particular, the NCR-BLU estimator presents the best perfor-
mance for moderate and high SNR values, while the more complex NCR CFO

2To compare coarse CFO estimators the simulated MBL algorithm is that considered in
[19] without a subsequent fine frequency estimation. Specifically, this algorithm is a modified
version of that proposed in [45].
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estimator assures a good estimation accuracy for low SNR values.
Finally, Figures 6.17 and 6.18 illustrate the SER performance versus SNR

of the considered OFDM system when the investigated estimators are exploited
and the two training symbol patterns are adopted. As shown inthe plots, for
both cases the proposed NCR and the more feasible NCR-BLU synchroniza-
tion schemes provide a SER very close to that of the perfectlysynchronization
system.
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Figure 6.1: Performance of NC, MCL0 and MLC symbol timing es-
timators in AWGN channel for an observation window lengthW =

2M + N/2 and a CP length fixed atLc = 12 (solid lines) andLc = 4

(dashed lines). Dotted lines refer to an observation windowof length
W = 4M + N/2 and a CP length fixed atLc = 12.
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Figure 6.2: MSE of NC, MCL0 and MLC CFO estimators in AWGN
channel for an observation window of lengthW = 2M + N/2 and for
a CP length fixed atLc = 12 (solid lines) andLc = 4 (dashed lines).
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Figure 6.3: MSE of NC, MCL0 and MLC CFO estimators in AWGN
channel for a CP length fixed atLc = 12 and for an observation win-
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Figure 6.4: MSE of NCR, MCL0R, MLC and MMLC symbol timing
estimators in multipath channel for an observation window of length
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timing estimators in multipath channel for an observation window of
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Figure 6.6: Performance of NC, MCL0, MLC and MMLC CFO es-
timators in multipath channel for an observation window of length
W = 2M + N/2 and a CP fixed atLc = 12 (solid lines) andLc = 16

(dashed lines).



86 CHAPTER 6. NUMERICAL RESULTS

−10 −5 0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

S
E

R

SNR[dB]

L
c
=12

L
c
=16

NCR
MLC
MCL0R
MMLC
Perfect Synch

Figure 6.7: SER performance versus SNR of NCR, MCL0R, MLC
and MMLC algorithms in multipath channel for an observationwin-
dow of lengthW = 2M +N/2 and a CP fixed atLc = 12 (solid lines)
andLc = 16 (dashed lines).



6.2. PERFORMANCE OF DATA-AIDED ESTIMATORS 87

−1000 −500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (samples)

T
im

in
g

 M
e

tr
ic

s

NC
GSC
MBL

Figure 6.8: Behavior, in a single run, of symbol timing metrics as
a function of time [samples] for an OFDM system withN = 1024

subcarriers, a CP lengthLc = 16 and for the training symbol pattern
p = [1, 1, 1, 1]T .
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Figure 6.9: Behavior, in a single run, of symbol timing metrics as
a function of time [samples] for an OFDM system withN = 1024

subcarriers, a CP lengthLc = 16 and for the training symbol pattern
p = [1, 1,−1, 1]T .
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symbol patternsp = [1, 1,−1, 1]T (dashed lines) andp = [1, 1, 1, 1]T

(solid lines).



90 CHAPTER 6. NUMERICAL RESULTS

−10 0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

SNR[dB]

M
S

E
(θ

)

NC
GSC
MBL

Figure 6.11: MSE of symbol timing estimators as a function of SNR
in an AWGN channel (N = 1024, Lc = 16) for a training symbol
pattern[+ + −+] (dashed lines) and for a training sequence without
sign inversion (solid lines).
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Figure 6.12: MSE of CFO estimators as a function of SNR in an
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without sign inversion.
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Figure 6.15: Performance of CFO estimators as a function of SNR in
a multipath channel (N = 1024, Lc = 16, Nm = 13) for the training
symbol patternp = [1, 1,−1, 1]T .
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Figure 6.16: Performance of CFO estimators as a function of SNR in
a multipath channel (N = 1024, Lc = 16, Nm = 13) for a training
symbol pattern without sign inversion.
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Figure 6.17: SER of considered OFDM system as a function of SNR
in a multipath channel (N = 1024, Lc = 16, Nm = 13) for the
training symbol pattern andp = [1, 1,−1, 1]T .
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Figure 6.18: SER of considered OFDM system as a function of SNR
in a multipath channel (N = 1024, Lc = 16, Nm = 13) for the
training symbol patternp = [1, 1, 1, 1]T .





Chapter 7

Conclusions

7.1 Thesis Summary

The performance of OFDM systems depends on the signal quality seen by
the receiver. Good signal integrity is only obtained when the correct timing
information is available and system impairment such as CFO is effectively es-
timated and corrected. This requirement demands properly designed synchro-
nization systems. In this thesis, issues related to symbol timing and CFO syn-
chronization are discussed. In particular, after the presentation of the OFDM
system and the analysis of effects of CFO and symbol timing synchronization
errors, new blind and data-aided synchronization algorithms have been derived
and analyzed.

Precisely, in the chapter§ 4 the problem of blind joint symbol timing and
CFO estimation in OFDM systems with NC transmissions has been considered
and new ML-based synchronization algorithms have been derived. These es-
timators, unlike MLC estimators based only on the correlation induced by the
CP insertion, exploit also the conjugate correlation resulting from the adoption
of NC constellations. Due to the computational complexity of ML estimators
for NC transmissions, simpler synchronization schemes that can also be used
in the absence of CP, have been proposed. Moreover, in this chapter it has
been evaluated the CRB on CFO and carrier phase estimation for NC-OFDM
systems in the case of known symbol timing and under the Gaussianity as-
sumption on the useful OFDM signal vector. In particular, ithas been shown
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that according to [41], in the case of NC transmissions and for an observation
window including different OFDM symbols, the convergence rate of the phase
and the CFO4F = ε/N are1/N and1/N3, respectively. Moreover, the
CRBNC

ε obtained into the case of NC-OFDM transmissions is upper bounded
by the associatedCRBC

ε for circular transmissions and, in the examined case,
the difference between them is more prominent for low SNR values and, for a
fixed SNR value, when the length of the observation window increases.

In the chapter§ 5 the problem of data-aided symbol timing and CFO esti-
mation in OFDM systems has been considered. Precisely, a novel synchroniza-
tion scheme based on a training symbol made up of L identical parts, obtained
by transmitting BPSK data symbols on the subcarriers whose indexes are mul-
tiple of L and setting zero on the remaining subcarriers, hasbeen proposed. In
this case, if the number of subcarriers is sufficiently large, the training sym-
bol can be modeled as an NC-CGRV. By exploiting the joint PDF for improper
CGRV’s, the joint ML estimator for the parameters of interest has been derived.
Since its implementation complexity is high, simpler estimators have been ob-
tained. Moreover, a refined symbol timing estimator, that donot require the
knowledge of the maximum channel delay spread or a timing advancement
estimate, has been proposed.

In the chapter§ 6 the performance of the considered blind and data-aided
estimators has been evaluated and compared with that of MLC and MMLC
estimators, proposed in [9] and [5], and with that of SS and MBL estimators
based on complex training symbol proposed in [18] and in [19], respectively.
Computer simulations have shown that:

• Proposed blind ML-based symbol timing and CFO estimators can out-
perform in AWGN and in multipath channel MLC and MMLC estima-
tors.

• In multipath channel the derived blind estimators assure a SER perfor-
mance practically coincident with that obtained in the caseof perfect
synchronization while the adoption of MLC and MMLC schemes leads
to a severe performance degradation unless the CP presents arelatively
large number of ISI-free samples.

• Proposed data-aided NC symbol timing estimator assures in AWGN
channel absence of plateau effect. In particular, in contrast to the meth-
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ods considered in [18] and in [19] the proposed symbol timingestimator
assures good localization properties independently of thetraining se-
quence pattern,

• The proposed NCR and the more feasible NCR-BLU synchronization
schemes provide a SER very close to that of the perfectly synchroniza-
tion system in presence of AWGN and in multipath channel.

7.2 Future Works

In this work, we have investigated the problem of symbol timing and CFO
synchronization for OFDM systems by deriving ML-based blind synchroniza-
tion schemes for OFDM systems with NC transmissions and new estima-
tors based on an NC training symbols. Our suggestions for future work are
twofold: they pertain to the application of our analysis method to orthogo-
nal frequency-division multiplexing (OFDM) systems basedon offset QAM
(OFDM/OQAM) (see [48]), and to the derivation and analysis of synchroniza-
tion algorithms for NC-OFDM systems with virtual subcarriers. Moreover, all
proposed synchronization schemes have been derived under the hypothesis of
a non dispersive channel. Nevertheless, in a dispersive channel the proposed
symbol timing estimators could not synchronize the receiver to the first arriv-
ing multipath component giving rise to imperfect timing recovery. Therefore,
to maintain orthogonality between different subcarriers,refined symbol tim-
ing estimators have been proposed. Future work could include the study and
the analysis of new blind and/or data-aided estimators designed for multipath
channels that do not require the refinement process.
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Appendix A

Derivation of LLF

In this appendix we present some algebraic detail to derive the expression of
the LLF in (4.19).

With reference to the quadratic form in (4.18), we can observe that the in-
verse of the block diagonal matrix̄C, defined in (4.17), is still a block diagonal
matrix equal to

C̄
−1

=diag







[

(σ2
s+σ2

n)IN/2+Lc+θ G1RsGT

1

G1R
∗
sGT

1 (σ2
s+σ2

n)IN/2+Lc+θ

]−1

[

Cs+σ2
nIM Rs

R∗
s Cs+σ2

nIM

]−1

⊗Iη+1

[

(σ2
s + σ2

n)IN−θ G2RsGT

2

G2R
∗
sGT

2 (σ2
s+σ2

n)IN−θ

]−1





,
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moreover, using the properties of inversion of block matrices, we obtain

C̄
−1

=diag













P−1
s−1 −

G1RsGT

1 P−1
s−1

σ2
n+σ2

s

−
G1R

∗
sGT

1 P−1
s−1

σ2
n+σ2

s

P−1
s−1







Iη+1⊗
[

P−1
s −

(
Cs+σ2

nIM

)−1
RsP−1

s

−
(
Cs+σ2

nIM

)−1
R∗

sP−1
s P−1

s

]







P−1
s+1 −G2RsGT

2 P−1
s+1

σ2
n+σ2

s

−G2R
∗
sGT

2 P−1
s+1

σ2
n+σ2

s

P−1
s+1













(A.1)

where
Ps−1=(σ2

n+σ2
s)IN/2+Lc+θ−(σ2

n+σ2
s)

−1G1Rs(G1Rs)H ,
Ps=(Cs+σ2

nIM )−Rs(Cs+σ2
nIM )−1R∗

s and
Ps+1=(σ2

n+σ2
s)IN−θ−(σ2

n+σ2
s)

−1G2Rs(G2Rs)H .

Let us define the complex matricesΥ−1
4
= G1Ψ−1G

T

1 and Υη+1
4
=

G2Ψη+1G
T

2 . Substituting (A.1) in (4.18) and applying the definition oftrace
of a block diagonal matrix, the quadratic form (4.18) can be rearranged as

Λ(λ)=<
{

Tr

[

Υ−1
G1RsGT

1P−1
s−1

σ2
n+σ2

s

Υ−1ř
∗
−1ř

H

−1

−Υ−1P
−1
s−1Υ

∗
−1ř−1ř

H

−1 − Υη+1P
−1
s+1Υ

∗
η+1řη+1ř

H

η+1

+

η
∑

i=0

Ψi

((
Cs+σ2

nIM

)−1
RsP−1

s Ψir
∗
i−P−1

s Ψ
∗
i ri

)

rH

i

+Υη+1
G2RsGT

2 P−1
s+1

σ2
n+σ2

s

Υη+1ř
∗
η+1ř

H

η+1

]}

,

that, after some algebraic manipulations, can be rewrittenas

Λ(λ)=T (θ)+<
{

e−j2πε

η
∑

i=0

Ui(θ)

+γ∗
η+1
∑

i=−1

[

Vi(θ)e−j 4π
N

εiM+Zi(θ)e−j 2π
N

ε(2iM+N)
]
}

,
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where the parameterγ is defined in (4.20),

T (θ)
4
= −

η
∑

l=0

M−1∑

k=0

|rl(k + θ − Lc)|2
[
P−1

s
]

k,k

−
N/2+Lc+θ−1

∑

k=0

|r−1(k + N/2 − Lc)|2
[
P−1

s−1

]

k,k

−
N−θ−1∑

k=0

|rη+1(k+θ−Lc)|2
[
P−1

s+1

]

k,k
,

(A.2)

Ui(θ)
4
=−2

Lc−1∑

k=0

r∗i (k+θ−Lc)ri(k+θ+N−Lc)
[
P−1

s
]

k,k+N
, (A.3)

for i = 0, . . . , η, moreover

Vi(θ)
4
=







0 i = −1

2Lc∑

k=0

ri(k+θ−Lc)ri(Lc+θ−k)×
[(

Cs+σ2
nIM

)−1
R∗

sP−1
s

]

k,2Lc−k
i=0, . . . , η

2Lc∑

k=0

ri(k+θ−Lc)ri(Lc+θ−k)×
[

1

σ2
n+σ2

s

G2R
∗
sGT

2 P−1
s+1

]

k,2Lc−k

i = η+1

(A.4)
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and

Zi(θ)
4
=







2Lc+2θ∑

k=0

ri(k+N/2−Lc)ri(N/2+Lc+2θ−k)×
[

1

σ2
n+σ2

s

G1R
∗
sGT

1P−1
s−1

]

k,2Lc+2θ−k

i=−1

M−1∑

k=Lc+1

ri(k+θ−Lc)ri(M+θ−k)×
[(

Cs+σ2
nIM

)−1
R∗

sP−1
s

]

k,N+2Lc−k
i=0, . . . , η

N−θ−1∑

k=2Lc+θ+1

ri(k+θ−Lc)ri(M+θ−k)×
[

1

σ2
n+σ2

s

G2R
∗
sGT

2P−1
s+1

]

k,N+2Lc−k

i=η+1.

(A.5)

Finally, the (l,m)th entries of inverse of the matricesPs−1, Ps and
Ps+1, appearing in (A.2) - (A.5), are given by

[
P−1

s−1

]

(l,m)
=







1

(σ2
n + σ2

s)(1 − ρ2|b|2) l = m

∀ 0 ≤ l,m ≤ 2Lc + 2θ,

1

(σ2
n + σ2

s)
l = m

∀ 2Lc + 2θ + 1 ≤ l,m ≤ N/2 + Lc + θ − 1,

0 otherwise,
(A.6)
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[
P−1

s
]

(l,m)
=







c1(ρ
2|b|2 − 1) l = m

∀ 0 ≤ l,m ≤ Lc−1, N ≤ l,m ≤ M−1

c1(ρ
2 − 1) l = m

∀ Lc+1 ≤ l,m ≤ 2Lc,

1

(σ2
n + σ2

s)(1 − ρ2|b|2) l = m

∀ l,m = Lc, 2Lc + 1 ≤ l,m ≤ N − 1,

c1ρ(1 − ρ|b|2) |l − m| = N

∀ 0 ≤ l,m ≤ M − 1,

0 otherwise
(A.7)

and

[
P−1

s+1

]

(l,m)
=







1

(σ2
n + σ2

s)(1−ρ2|b|2) l=m

∀ 0 ≤ l,m ≤ 2Lc, 2Lc+θ+1 ≤ l,m ≤ N−θ−1,

1

(σ2
n + σ2

s)
l = m

∀ 2Lc + 1 ≤ l,m ≤ 2Lc + θ,

0 otherwise ,
(A.8)

where
c1

4
=

1

(σ2
n + σ2

s)(−1 + 2ρ2|b|2 + ρ2 − 2ρ3|b|2)
and

ρ
4
=

σ2
s/σ

2
n

1 + σ2
s/σ

2
n

=
SNR

1 + SNR
. (A.9)





Appendix B

Refined Symbol Timing
Estimators

In this Appendix we report some details to derive the approximation (4.49).
We underline that these approximations are derived to clarify the relationship
between the coarse NC and MCL0 symbol timing estimators in (4.23) and
(4.37) and their refined version in (4.53) and (4.55), respectively.

Let us substitute the signal model (4.48) into (A.3), then, in the absence of
noise and accounting for (4.1), we can write

|Ui(β+θ)|
N

=
2ρ2(1−ρ|b|2)

(1−ρ)(1+ρ−2ρ2|b|2)

∣
∣
∣
∣
∣
∣

Nm∑

l1,l2=0

h(l1)h
∗(l2)

1

N2

N−1∑

n1,n2=0

an1
i (an2

i )∗ej 2π
N

(n1−n2)(k−Lc+β)ej 2π
N

(n2l2−n1l1)

∣
∣
∣
∣
∣
∣

.

Let us observe that the random variable

1

N2

N−1∑

n1,n2=0

an1
i (an2

i )∗ej 2π
N

(n1−n2)(k−Lc+β)ej 2π
N

(n2l2−n1l1)

with meanO(N−1) and varianceO(N−2), tends to 0 in the mean squared
sense by the Markoff’s theorem. Then, forN � 1 and fori ∈ {0, . . . , η}

|Ui(β+θ)|
N

' 0 . (B.1)
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Equally, it can be shown that fori ∈ {0, . . . , η + 1}

|Vi(β+θ)|
N

'0 . (B.2)

Moreover, substituting the signal model (4.48) into (A.5),and accounting
for (A.6)-(A.8), after simple manipulations, we can write

1

N

η+1
∑

i=−1

|Zi(β+θ)|= ρ2|b|
(1−ρ2|b|2)

{

wN (−1)+wN (η + 1) +

η
∑

i=0

wN (i)

}

,

where

wN (−1)
4
=

∣
∣
∣
∣
∣
∣

Nm∑

l1,l2=0

h(l1)h(l2)

Lc+2(θ+β)
∑

k=−Lc

yN (k+N/2−θ−β,−1)

∣
∣
∣
∣
∣
∣

,

wN (η + 1)
4
=

∣
∣
∣
∣
∣
∣

Nm∑

l1,l2=0

h(l1)h(l2)

N−Lc−θ−β
∑

k=Lc+θ+β+1

yN (k, η + 1)

∣
∣
∣
∣
∣
∣

and

wN (i)
4
=

∣
∣
∣
∣
∣
∣

Nm∑

l1,l2=0

h(l1)h(l2)

[

2ρ(|b|2ρ − 1)

(1+ρ−2ρ2|b|2)

Lc∑

k=1

yN (k, i)−yN (0, i)

+
1

N

N−1∑

n=0

(an
i )2ej 2π

N
n(2β−l1−l2)

]∣
∣
∣
∣
∣

with

yN (k, i)
4
=

1

N2

N−1∑

n1,n2=0

[

an1
i an2

i ej 2π
N

(n1−n2)k

ej 2πβ
N

(n1+n2)e−j 2π
N

(n1l1+n2l2)
]

.

It can be shown that the random variableswN (−1)+wN (η+1) andwN (i), for
i ∈ {0, . . . , η} tend to|b||(h ∗ h)(2β)| in the mean squared sense . Therefore,
for N � 1 and under the assumption that the channel impulse responseh(n)
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spans overNm samples (that ish(n) 6= 0, ∀n ∈ {0, . . . , Nm} andh(n) ≡ 0,
∀n 6∈ {0, . . . , Nm}), it follows that∀β ∈ {0, . . . , Nm}

1

N

η+1
∑

i=−1

|Zi(β+θ)|'(η + 2)ρ2|b|2|(h ∗ h)(2β)|
(1 − ρ2|b|2) , (B.3)

while ∀β 6∈ {0, . . . , Nm}

1

N

η+1
∑

i=−1

|Zi(β+θ)| ' 0 . (B.4)

Note that in presence of additive noise modeled as a complex circular white
Gaussian process it can be easily shown that (B.1)-(B.4) hold true, while the
T (β+θ)/N term can be approximated by

T (β+θ)

N
' −

[
(η+2)ρ

(1−ρ2|b|2)+
ρ

2

] Nm∑

l=0

|h(l)|2

−(η+2)(1−ρ)

(1−ρ2|b|2) +
(1 − ρ)

2
.

(B.5)

Thus, from (B.1)-(B.5), we obtain (4.49) withµ1
4
=

(η+2)ρ2|b|2
(1−ρ2|b|2) and

µ2
4
=

[
(η + 2)ρ

(1−ρ2|b|2)+
ρ

2

] Nm∑

l=0

|h(l)|2+(η+2)(1−ρ)

(1−ρ2|b|2) +
(1 − ρ)

2
.





Appendix C

Analytical Performance of
MCL0

In this Appendix we derive the mean squared error reported in(4.56). Let us
evaluate the CFO MCL0 estimator in (4.38) atθ̂ = β and let us observe that
for |ε̂MCL0 − ε|�1/4π we can approximate the estimation error as (see [7])

ε̂MCL0−ε' 1

4π







η
∑

i=0

=
[
e−j4πεZi+1L0

(β)/ZiL0
(β)
]

η
∑

i=0

<
[
e−j4πεZi+1L0

(β)/ZiL0
(β)
]







. (C.1)

Let us substitute the signal model (4.48) in (4.33). Then, under the hypothesis
N�1, by following the lines of Appendix B and for high SNR values,(4.33)
can be rewritten as

ZiL0
(β)

N
'ej 2πε

N
((2i+1)N+2β)σ2

sb(h ∗ h)(2β)+wi, (C.2)

for i ∈ {0, . . . , η + 1}, with

wi
4
=

1

N

N−1∑

k=1

[

ni(k+β)e−j 2πε
N

(iN+β+k)
Nm∑

l=0

si(N+β−k−l)h(l)

+ni(N−k+β)e−j 2πε
N

((i+1)N+β−k)
Nm∑

l=0

si(β+k−l)h(l)

]

,
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for i ∈ {0, . . . , η}, and

wi
4
=

1

N

N−β−1
∑

k=β+1

[

ni(k+β)e−j 2πε
N

(iN+β+k)
Nm∑

l=0

si(N+β−k−l)h(l)

+ni(N−k+β)e−j 2πε
N

((i+1)N+β−k)
Nm∑

l=0

si(β+k−l)h(l)

]

,

for i = η + 1. Then, accounting for (C.2) and after simple manipulations, it
can be shown that

ε̂MCL0−ε' 1

4πσ2
s(η+1)

=
[

1

b(h ∗ h)(2β)
(wη+1−w0)

]

. (C.3)

From (C.3) we obtainE[(ε̂MCL0−ε)] = 0, that is, for high SNR values the
CFO MCL0 estimate is unbiased. Moreover, the mean squared error is given
by

E[(ε̂MCL0−ε)2] ' E[|wη+1|2+|w0|2]
32π2σ4

s(η+1)2|b(h ∗ h)(2β)|2

=

(N−β−1)

Nm∑

l=0

|h(l)|2

4π2SNR(η+1)2|b|2|(h ∗ h)(2β)|2N2
,

then, forN � 2Nm + 1 (4.56) is obtained.
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