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INTRODUCTION 
 

 

Masonry churches are particularly prone to damages and partial or global collapses 

when subjected to horizontal actions. High seismic vulnerability of these ancient 

buildings can be associated both to the particular configuration of this type of 

constructions and to the mechanical properties of the masonry “material”. 

Basilica churches have been selected in this study because of this typology is 

widely spread all over the national territory and is characterized by the presence of 

typical constituting elements so that a generalization of results obtained from a small 

group of study cases to a larger sample of religious buildings is possible.  

 

1. SEISMIC BEHAVIOUR OF MASONRY CHURCHES 

Basilica structures are usually constituted by a façade, a hall (with one or more 

naves), a presbytery and an apse; besides, a transept, a dome, the lateral chapels can 

be added; often, a bell tower or a sail is present. 
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More in general, churches are characterized by the presence of large wall panels 

of (both in length and in height) without internal thorn walls, slenderness of some 

vaulted structures (folded vaults), presence of thrusting elements of large span 

(arches, vaults and domes), lack of intermediate connection, degradation due to the 

scarce use and maintenance of some parts (bell towers).  

Furthermore, ancient constructions generally show several sources of seismic 

vulnerability. More specifically, the horizontal inertial forces can provoke the lost of 

equilibrium, especially in the slender and not connected elements (spires, sails, bad 

connected parts). Besides, the lack of rigid horizontal elements allows an 

autonomous dynamic vibration of the different parts of the structure. Churches, more 

than other typologies, show the absence of box behaviour with the consequent partial 

collapse possibility.  

Moreover, almost all the churches have undergone deep transformations during 

their life, which eventually turn out in: 

- uncertain characterization of the mechanical properties (large variability of the 

mechanical properties due to the making and working process, and use of naturals 

elements); 

- lacking of the knowledge of the original construction; 

- construction steps like plan increasing, raisings, masonry wall insertion in the hall, 

realization of new buildings leaning on the old structure; 

- damaging (soil movements, damaging of the materials); 

- permanent or progressive strains, cracking, physical or chemical degradation of 

the materials (mainly due to traffic jam, wind and thermal loads); 

- induced damages from previous interventions (earthquakes, fires, thunderbolts) that 

have induced cracking in the walls (cracking states) through which tension stresses 

can not be transmitted anymore; 

- recent retrofit interventions (a part from their efficacy, have generally transformed 

the original structural working); 
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- non applicability of the code provisions; 

Therefore, ancient buildings undergoing exceptional events are also affected by 

interaction with phenomena that can seriously compromise the whole structure [Roca 

P. & Gonzalez J.L., 1996].  

 

2. DAMAGES IN MASONRY CHURCHES 

Generally, the seismic collapse of masonry constructions occurs for the equilibrium 

loss of some structural parts, rather than the overcoming of a limit stress state of 

strength.  

Masonry walls are subjected to compression vertical stresses, to which bi-

dimensional stress in the plane of the wall, close to the openings or pointed loads, 

and flexural stresses, if horizontal loads due to the presence of arches and vaults are 

present, are superimposed. 

The collapse mechanisms related to the action induced by vertical loads are: 

- local crushing of constituting elements: it occurs in the mortar when it is 

particularly poor and the thickness of the joints is high; or in the units if poor or very 

degraded. Furthermore an irregular composition of the stone elements can determine 

stresses concentration so that local crushing phenomena can occur. 

- instability of the walls: it is dependent on: 1) insufficient thickness of the walls 

compared to the internal core; 2) lack of diatoms or other type of toothing able to 

guarantee the monolithicity of the wall; 3) strongly eccentric load condition. 

In the wall loaded out of the plane, Rondelet (1802) individuated three collapse 

modes as a function of the geometry and constraint conditions. In all three 

mechanisms, a loss of equilibrium of the collapsing portion occurs: the static vertical 

loads have a stabilizing effect, whilst the horizontal action implies a bending moment 

with respect to the rotation axes. If the horizontal action acts in the plane of the wall, 

two types of mechanisms dependent on the geometry, constraint conditions, the 

compression state, the wall composition are individuated. In stocky walls the sliding 



                                                                                                                   Introduction 4 

of the superior parts on the inferior ones is ruled by the friction coefficient. In slender 

walls the overturning of a part of wall around a hinge point will occur. 

Referring to churches, some particular collapse mechanisms have been 

individuated after seismic events [Doglioni F., Moretti A. & Petrini V., 1994]; in the 

following they will be summarized as a function of the constituting elements of the 

structure. 

1. façade: typical collapse mechanisms of this macroelement, studied in detail also in 

[Casolo S. et Al., 2000], are generally due to the interaction with the orthogonal 

elements, the presence of openings or thrusting roof structures, the shear failure in 

stocky elements. 

More in detail, when the tympanum on the top, lacking a good connection with 

the roof, undergoes the maximum oscillations, its overturning out of the plane around 

a horizontal or a diagonal axis could occur. Furthermore since the presence of 

openings is a weakening factor of the wall texture, the overturning of the element at 

the height of the openings can develop. The horizontal thrust of vaults and arches on 

the lateral walls with tension stresses in the panel could imply the formation of 

vertical cracks in the middle of the panel as well as the shear effect can be detected 

with diagonal crossed cracks. Finally, the rotation out of plane of the corner is due to 

the interaction of the forces acting on orthogonal walls.  

2. triumphal arch: vertical loads involve symmetrical mechanisms in the element 

like sliding in the abutments (which implies some cracks in the arch) or five hinges 

kinematisms. These mechanisms could cause the collapse as a function of the 

material, the constructive way, the presence of niches or dimensions of the blocks. 

The horizontal action represents, on the contrary, an asymmetric system so that the 

collapse occurs for the overturning of one or both the abutments if slender piers are 

present. Non symmetrical cracks can happen because of the presence of some 

rotational restraints. Another mechanism with discordant rotation of the piers has 

been noticed when a chain is present on the top of the arch. 
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3. lateral walls: the collapse mechanisms of perimetrical walls in churches are 

function of the trusses constraint to the piers and the presence of openings. In lacking 

or small openings walls the formation of horizontal cracks at a low level (close to the 

foundation) could occur. When some openings are present, a more complex 

distribution of the damages will be detected. A frequent mechanism is the formation 

of horizontal cracks at the base of the holes and vertical in correspondence of the 

architrave determining the formations of rotating blocks outside. Due to the 

interaction of the roof, this mechanism can also occur in association with the 

expulsion of the truss beam support and the rotation out of the plane of the façade.  

4. apse: its failure depends mainly on the shape, presence of openings and truss 

constraints. In case of circular apses or chapels, the localization of the crack lines 

starting from the top at the intersection with the hall until low quotes in the middle is 

the most recurrent mechanism. Cracks are characterized by a V opening, bigger on the 

top and decreasing toward the bottom. The presence of vaults or struts which thrusts 

are not absorbed by beams or steel hoopings or openings in the panels can determine 

preferential crack patterns. In case these forces are absorbed, the mechanisms 

transforms in diagonal cracks with the typical shear behaviour. 

 

3. PRINCIPAL AIM AND CONTENT OF THE THESIS 

This thesis intends to study the structural behaviour of basilica churches under 

horizontal actions. Hard topics for masonry structures like material and elements 

modelling and analysis methodology are taken into account. Surprisingly, also the 

seismic action indicated by Code Provisions shows some troubles. In order to apply 

the issues above cited, some study cases have been selected and deeply analyzed in 

their features. After carrying out a geometrical assessment of the churches some 

different analysis types are conducted: linear analysis on three-dimensional 

complexes and non linear analysis on bi-dimensional elements. Results in terms of 
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dynamic behaviour, seismic action distribution, strength demand, horizontal stiffness 

and bearing capacity are evaluated in the study cases.  

Successively, the need of a simplified analysis with the aim of obtaining an 

approximate evaluation of the bearing capacity of single elements, with few 

calculations and without time consuming and complex analyses, is considered. In 

order to seek this procedure on churches macroelements, a basic structural element in 

historical buildings, such as the portal frame, is studied in detail. Collapse 

mechanisms and maximum load multiplier and simplified formulas are obtained for 

the portal frame. The extension of the single portal frame to the multi-bay frame is 

applied in order to perform the comparison between non linear analyses and 

simplified analyses. 

Finally, another typical masonry element is analyzed through the application of 

limit analysis: the masonry arch. The theoretical formulation for determining the 

range of horizontal thrust and maximum displacements in the plane is verified 

through an experimental campaign. 

In the following a brief summary of the content of this thesis is reported: 

In Chapter 1, the state of the art in modelling and analysis of masonry structures 

is illustrated; in particular, the material and the structural approach, the horizontal 

actions (in terms of equivalent seismic forces and spectra), the analyses types (linear, 

non linear and limit ones) are analyzed. Finally, the applied methodology chosen in a 

range of possibilities illustrated in literature is exposed.  

In order to assess the seismic behaviour of basilica structures, four study cases 

have been selected. These churches are illustrated in Chapter 2, characterizing the 

geometry (global and of the single elements) and the load conditions. In the light of 

this study, the geometrical and typological features are analyzed and a comparison in 

geometrical terms of the churches is made. 

In Chapter 3, linear analyses of three-dimensional models of the study cases are 

conducted. The dynamic behaviour of the churches, the seismic action distribution, 
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and the strength demands are analyzed in the hypothesis of presence or lack of a rigid 

diaphragm at the roof level. 

The second part of the methodology is based on non linear analyses which are 

carried out in Chapter 4. After having exposed the model calibration, bi-dimensional 

analyses are illustrated. The bearing capacity and the horizontal stiffness of the 

churches elements are calculated. Summary plot for each church and the comparison 

between strength demand and bearing capacity are furnished and the reliability of the 

used computer code is commented. 

In the following two Chapters, a simplified procedure for the seismic assessment 

of basilica macroelements is provided. Through the application of the kinematic 

theorem of Limit analysis, in Chapter 5 the behaviour of masonry portal frame is 

analyzed. Expressions of kinematic multipliers in closed form are given and a 

parametric analysis is performed varying the geometrical proportions so that a 

simplified formula is proposed. Later, in Chapter 6 the application of this simplified 

methodology to the churches macroelements is made. The comparison of FEM – 

limit analysis is discussed with reference to the analyzed study cases and some 

conclusive remarks for each church are made.   

In the last two chapters, the behaviour of masonry pointed arch is studied in 

detail. The theoretical approach is exposed in Chapter 7 through the application of 

the static theorem of Limit Analysis. The proposed methodology consists into the 

evaluation of the thrust values ranges, the minimum thickness, the maximum 

displacements of one support of the arch through numerical algorithm and graphical 

statics. Furthermore, the behaviour of the half arch and a comparison of arches with 

same span and weight or same span and thickness are made. In the following 

Chapter 8 the validation of the theory on pointed arches is made through a vast 

experimental campaign on small scale structures. The test procedure has been 

illustrated and the test types as well. The comparison between theory and practice is 

enlightened.  
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CHAPTER 1: 

MASONRY STRUCTURES: MODELLING AND ANALYSES 
 

 

1. INTRODUCTION 

Seismic behaviour analysis of masonry historical structures is a hard topic due to the 

difficulties in the numerical modelling of material non linear behaviour, to the 

incomplete experimental characterization of the mechanical properties and to the 

complexity of the geometrical configuration. 

A panoramic view of the different approaches adopted in the research field to the 

study of masonry structures is illustrated in this chapter, dealing with the modelling 

of the material and the structure, the action applied and the analysis types. 
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2. MATERIAL MODELLING 

With the term masonry we intend a structural material made by the assemblage of 

natural (stones) or artificial (bricks) elements with or without mortar, suitable for the 

realization of the bearing elements of a construction. 

The difficulty of modelling the masonry depends on the following factors: 

- masonry is a discrete material (blocks and mortar) in which the dimension of the 

single constituting element is large compared to the dimensions of the structural 

element; 

- the geometry, origin and blocks placing can vary considerably; 

- blocks are stiffer than mortar; 

- the mortar thickness is limited (if compared to the block dimensions); 

- stiffness of the vertical joints is remarkably smaller than the one of the horizontal 

joints. 

More in detail, the physic-chemical and mechanical parameters in the interaction 

between the stone units and the mortar joints are referable to the following factors: 

Properties of the stone elements such as: compression and tension strength with 

monoaxial and pluriaxial stresses; elasticity module, Poisson coefficient, ductility 

and creep; water proof and superficial (roughness) characteristics; chemical agent 

resistance; volume variation for humidity, temperature and chemical reaction; 

weight, shape and holes dimensions. 

 Properties of the mortar such as: compression strength and behaviour under 

pluri-axial stresses; elasticity module, Poisson coefficient, ductility and creep; 

adhesive force; workmanship, plasticity and capacity of detaining water. 

Construction formality such as: geometry and placing of the stone elements; 

filling of the joints at the head; ratio of the joint thickness and dimensions of the 

stone elements; placing hand crafty; dis-uniformity of the layers. 

Actually, if some mono-axial tests are carried out separately on the constituting 

masonry elements (mortar and blocks), the typical qualitative behaviour shows good 
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compression strength and very poor tensile strength. But, whilst the stone has a 

nearly linear behaviour, larger elastic module and almost brittle failure, the mortar 

shows a non linear behaviour, larger elastic module and certain ductility.  

The need of characterizing with a suitable constitutive model the masonry 

material has lead to a series of modelling strategies [Sacchi Landriani G. & Riccioni 

R., 1982; Molins Borrel C., 1995].  

 

Depending on the desired level of accuracy and simplicity, the following methods 

have been individuated: 

1. detailed micro-modeling: the block and the mortar in the joints are represented by 

continuum models, whilst the interface unit-mortar is represented by 

discontinuous elements. The Young model, the Poisson coefficient and the 

inelastic properties of the units and the mortar are taken into account. 

2. simplified micro-modelling: the units are extended through the joints and are 

represented by continuous elements, whilst the interface unit-mortar is 

represented by discontinuous models. In other words, masonry is considered as a 

whole of elastic blocks surrounded by fracture lines in the joints. Poisson 

coefficient and the inelastic properties of the unit and the mortar are neglected. 

3. macro-modelling: units, mortar and interface unit-mortar are spread in a 

continuum. The difference between the units and the joints does not occur 

anymore but it is considered as an isotropic or anisotropic homogeneous 

continuum.  

Some homogenization theories for periodic media have been developed in 

literature in order to derive the global behaviour of masonry from the behaviour of 

the constitutive materials (brick and mortar). The procedure has been performed in 

several steps (head joints and bed joints being introduced successively) [Lee J.S., 

Pande G.N. & Al., 1996] or in one step on the real geometry of masonry [Anthoine 

A., 1995; Luciano R. & Sacco E., 1997; Zucchini A. & Lourenco P.B., 2002]. Later a 
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continuum damage modelling for the brick and the mortar has been added [P. Pegon, 

A. Anthoine, 1997; Luciano R. & Sacco E., 1998; Zucchini A. & Lourenco P.B., 

2004].  

This physic-mathematic abstraction, i.e. transforming the reality into a scheme 

governed by mathematically treatable laws, can appear arbitrary for masonry. In 

reality, each material is provided with a micro-structure and the assimilation to a 

continuum implies an operation of stress average on a suitable reference volume. The 

masonry material, realized through the assemblage of two components, shows a 

constitutive bond characterized by a non linear law and intermediate compression 

strength to both the single components. The limit of the linear behaviour coincides 

with the beginning of the partialization of the section; it has to be pointed out that 

this phenomenon, in a material provided of reduced tension strength, occurs for 

smaller load levels compared to the bearable ones.  

Therefore, micro-modelling is necessary to better understand the local behaviour 

of masonry structures; macro-modelling is applicable when the structure is composed 

of walls of sufficient dimensions so that the stresses along the length of the element 

are uniform. This type of modelling is preferable when a compromise between 

accuracy and efficiency is required. 

In this study only the macro-modelling approach has been considered in the 

application to the study cases.  

Other two important aspects related to the material in the analysis and behaviour 

of masonry are the size effect (unit size vs. structural size) and the influence of the 

material parameters on the numerical analysis [Lourenço P.B., 1997].  

 

3. STRUCTURAL MODELLING 

Another complex topic in masonry is the choice of a suitable model representing the 

structure. Inside the hypothesis of homogeneous material, two model types can be 

distinguished: 
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1. models with structural components among which different approaches are 

distinguishable: 

- With lumped masses: it’s a rough approximation of the geometry of the structure 

but it can be sufficient in order to determinate the structural dynamic response 

(if the non linearity of the material and the resultants effects of the real geometry 

of the structure are included). Quite obviously, this type of model can’t be used 

to predict the local or global collapse mechanisms or the damage levels of the 

single structural components.  

- With beams and columns: it defines in greater detail the behaviour of the system 

than the former one. It’s possible to determine the sequential formation of the 

collapse mechanisms both statically and dynamically. 

- Macroelements: introduced by [Doglioni F., 1994] for the first time, it considers 

the structure as a whole of wall panels each of them is a recognizable and 

complete part of the building. It can also coincide with an identifiable part of it 

under the architectonical and functional aspect (for example: the façade, the 

apse, the chapels); usually it is formed by more panels and horizontal elements 

connected each other so that they represent a unitary constructive part even if it 

is joined and not independent from the whole of the construction. 

2.    Finite Element Method that can be bi and three-dimensional models with mono-

dimensional (frame), bi-dimensional (shell) or three-dimensional (brick) elements. 

Shell elements produce faster and more controllable models because of the presence 

of a smaller number of joints if compared to the brick elements. The model with the 

three-dimensional elements allows, on the contrary, the visualization of the stresses 

evolution inside the structure. Notwithstanding this, the results gained in the two 

analysis types are similar, both in terms of structural strains and stress distribution, 

even if with a factor scale (for the bigger stiffness of the brick elements). It seems 

preferable, therefore, avoiding the shell elements in important areas for the global 

behaviour of the structure. In the Finite Element Model there is also the meshing 
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problem: to its increasing, the results reliability is strongly influenced by 

convergence problem solution; therefore, using a dense mesh could not be the better 

option. 

 

 Another hard topic in the study of masonry structures is the use of bi-dimensional 

models (parts of the structure) or three-dimensional models (structures in their 

whole). It has to be said that the last ones are time consuming in the preparation of 

the model and in the analysis of the results and that because of the big dimension of 

the model, some important aspects could be lost in sight. From one point of view, it’s 

preferable modelling some structural parts and details instead of modelling great and 

complex structures. 

More in general, a global model is worth because it is able to implicitly catch the 

interactions between the different parts of the building, but usually it is too complex 

from the conceptual and operative point of view in an historical construction.  

The study of the dynamic response through a modal global analysis could not 

have a lot of meaning because it founds on the superimposition of independent 

vibration modes, each of them involves the whole construction. If some 

disconnectedness is present in the structure, each element will tend to vibrate 

autonomously, with a self vibration frequency. The other prerogative of the modal 

analysis is the linearity of the material behaviour, necessary to carry out the 

superimposition of the effects in the different modes: also this qualification could not 

be satisfied in an historical building. On the other point of view local models tend to 

simplify sometimes the analysis through rough hypothesis; nevertheless they have 

the value of using intuitive calculus schemes and easy interpretability of the results.   

Herein, the study cases are analyzed through both the approaches above 

illustrated. Models with structural components (macroelements) are used in the 

application of the Limit Analysis; Finite Element Method is applied in linear and non 

linear analyses. More in particular, the commercial computer code SAP2000 (CSI, 
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2000) has been used for the analysis of three-dimensional structures in the linear 

field; the code ABAQUS (HKS, 2004) has been used for non linear analyses of bi-

dimensional structures. 

 

4. HORIZONTAL ACTIONS 

In seismic areas, in addition to vertical loads, horizontal actions have to be applied 

onto the structure. DM96 (M.LL.PP., 1996), EC8 (CEN, 2002), ORDINANZA 3274 

(O.P.C.M. 2003) and the following ORDINANZA 3431 (O.P.C.M. 2005) codes have 

been taken into account. Being the ground acceleration function of the seismic code, 

the difficulty into considering a suitable horizontal action applicable onto masonry 

structures is here enlightened.  

Notwithstanding it in [Meli R. & Sanchez-Ramirez R., 1996] some comments are 

made about the effects of different types of ground motion on monuments and about 

the qualification of the seismic action for the analysis of the structure.  

 

4.1. EQUIVALENT SEISMIC FORCES 

In static analyses, loads equivalent to the seismic action are applied onto the structure 

through the introduction of proportional weight forces.  

In the DM96 code provisions, the values of these forces on buildings are:  

 

WIRcFh ⋅⋅⋅⋅⋅⋅= γβε                                                                                               (1) 
 Where: c is intensity seismic coefficient, R is the reply coefficient, I is the seismic protection 
coefficient, ε is the foundation coefficient, β is the structure coefficient, γ is the distribution 
coefficient and W is the whole weight of the masses. 
 

In masonry structures, the value assumed by the structure coefficient β has a 

special meaning. It is the product of two other coefficients that are β1 and β2. The 

first one takes into account the ductility of masonry constructions and it is equal to 2 

in any case; the second one considers the collapse check modality and is assumed 

equal to 1 for new constructions and 2 for existing buildings.  
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In the EC8 (version November 2002 - draft n.6), OPCM 3274 and OPCM 3431 

codes, the force is evaluated in the same way as: 

 
λ⋅⋅= mTSF dh )( 1                                                                                                             (2) 

 Where: Sd(T1) is the ordinate in the design spectra assumed by the building in the considered 
direction, m  is the mass and λ a reductive coefficient that takes into account of the static 
analysis.  
 

Compared to the previous formula, in this expression different structural systems 

are considered in an indirect way and are included in the definition of the first period 

of the structure. The approximated evaluation of this number depends on the height 

of the building and a coefficient considering the different typologies.  

 

4.2. ELASTIC SPECTRA  

The earthquake motion in a given point of the surface is represented by an elastic 

ground acceleration response spectrum, called “elastic response spectrum”. The 

shape of the elastic response spectrum is the same for the no collapse requirement 

(Ultimate Limit State) and for the damage limitation requirement (Damage Limit 

State).  

According to EC8, OPCM 03 and OPCM 05 the elastic spectrum is: 
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 Where: ag is the design ground acceleration, S is the soil factor, T is the vibration period of a 
linear single-degree-of freedom system, η is the damping correction factor with reference 
value of 1 for 5% viscous damping, TB-TC are the limits of the constant spectral acceleration 
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branch, TD is the value defining the beginning of the constant displacement response range of 
spectrum. 
 

The value of ag varies in function of the seismic zones and the values of S, TB, TC 

and TD are function of the soil type. In case of soil B, they are reported in Tab.1.  

 
S TB TC TD Soil B 
 [s] [s] [s] 

EC8 1.2 0.15 0.50 2 
OPCM03-05 1.25 0.15 0.50 2 

Table 1. Coefficients for Soil Type B. 

 
In elastic spectra another quantity is also present, namely η, which is considered 

equal to 1 if the viscous damping ratio of the structure ξ is 5%.     

In the following plot (Fig. 1), the shape of EC8, OPCM 03 and OPCM 05 spectra 

are reported for class of soil B, in zone 1 (ag=0.35 g) and η =1.  

 

Elastic Spectra 
Comparison among code provisions (zone 1)

η = 1
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a[g] OPCM 03 and 05 Soil B
EC8 02 Soil B

Figure 1. Elastic spectra in EC8, OPCM 03 and OPCM05 codes. 
They are fairly similar except the fact that OPCM 03 and 05 consider a Soil factor S 

equal to 1.25 instead of 1.2 by EC8. 
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It has to be pointed out, furthermore, that the material and the type construction 

do not play any role in the elastic spectra, so that they are valid for any structure. 

 

4.3. DESIGN SPECTRA  

The capacity of structural systems to resist to seismic actions in the non linear range 

generally permits their design for smaller forces than those corresponding to a linear 

elastic response. To avoid explicit inelastic structural analysis in design, the capacity 

of the structure to dissipate energy, mainly through ductile behaviour of its elements, 

is taken into account by performing an elastic analysis based on a reduced response 

spectrum with respect to the elastic one, called “design spectrum”. This reduction is 

accomplished by introducing the behaviour factor q. It is the ratio of the seismic 

forces that the structure would experience if its response was completely elastic to 

the minimum seismic forces that may be used in design still ensuring a satisfactory 

response of the structure. The values of q are given by the code provisions for the 

various materials and structural systems.  

Generally, for masonry structures this value is fairly low because of the small 

plastic re-distribution (masonry works mainly to pure compression where stresses are 

uniformly distributed).  

According to EC8, values in masonry are depicted in table 2 where the underlined 

values are recommended: 

 
Type of construction Behaviour factor q 
Unreinforced masonry according to EN 1996 
(recommended only for low seismicity cases) 1.5 

Unreinforced masonry according to EN 1998-1 1.5 – 2.5 
Confined masonry 2.0 – 3.0 
Reinforced masonry 2.5 – 3.0 
 Table 2. Types of construction and behaviour factor according to EC8 code. 

 

In the recent Italian code OPCM 03 this range of variability is limited only to two 

classes of masonry types (Table 3). 



Chapter 1 – Masonry Structures: modeling and analyses                                         19                  

 
Type of construction Behaviour factor q 
Unreinforced masonry  1.5  
Reinforced masonry 2.0 – 3.0 
 Table 3. Types of construction and behaviour factor according to OPCM 03. 

 

But in its upgrading (OPCM 05) the behaviour factor q has been deeply changed 

according to the building technique and if the structure is new or already existing. 

Political reason maybe are under the decision of increasing the behaviour factor in 

masonry structures; values of ground acceleration so high in OPCM03 would have 

involved the retrofit of a too huge quantity of ancient buildings in the country non 

comforted by the economical aspect. At the moment for existing buildings, it is equal 

to the product of a number (function of the regularity in height) and a coefficient 

αu/α1 so defined: 

− α1 is the multiplier of the horizontal seismic action for which, keeping constant the 

other actions, the first masonry panel reaches the ultimate strength (for shear or 

compression+bending). 

− αu is the 90% of the seismic horizontal action for which, keeping constant the other 

actions, the building reaches the maximum resistant force. 

The value of this ratio can be calculated through a non linear static analysis and 

can not be larger than 2.5, or the following values can be adopted: 

 
Type of construction αu/α1 
Unreinforced masonry buildings with 1 floor 1.4  
Unreinforced masonry buildings with 2 or more floors 1.8 
Reinforced masonry buildings with 1 floor 1.3 
Reinforced masonry buildings with 2 or more floors 1.5 
Reinforced masonry designed with the strength hierarchy 1.3 
 Table 4. Evaluation of αu/α1 according to OPCM 05. 

and the behaviour factor q assumes the following values: 
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Regularity q 
Buildings regular in height 2.0*αu/α1 
In the other cases 1.5*αu/α1 
 Table 5. Evaluation of q according to OPCM 05. 

 

In the same section of masonry existing buildings it is declared that, in absence of 

precise evaluations, a ratio αu/α1
 equal to 1.5 can be assumed. This means that for 

masonry churches, generally 1 floor developed and not regular in height, the factor q 

should be equal to the product of 1.4*1.5 = 2.1 if table 4 is considered or 1.5*1.5 = 

2.25 if the note in the existing section is taken into account.  

The design spectrum indicated in the EC8 assumes the shape of: 
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 Where: ag is the design ground acceleration, S is the soil factor, T is the vibration period of a 
linear single-degree-of freedom system, q is the behaviour factor, TB-TC are the limits of the 
constant spectral acceleration branch, TD is the value defining the beginning of the constant 
displacement response range of spectrum.  
 

In the OPCM 03 and OPCM 05 the design spectrum in the ULS is: 
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 Where: ag is the design ground acceleration, S is the soil factor, T is the vibration period of a 
linear single-degree-of freedom system, q is the behaviour factor, TB-TC are the limits of the 
constant spectral acceleration branch, TD is the value defining the beginning of the constant 
displacement response range of spectrum.  
 

In DM96 spectrum, instead of the q factor, there is the β factor whose values 

already explicated in the equivalent seismic forces, characterize the masonry 

structures. 
 

β⋅⋅⋅= IRc
g
a

                                                                                                                   (6)

 Where: c is intensity seismic coefficient, R is the reply coefficient, I is the seismic protection 
coefficient and β is the structure coefficient. 
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Figure 2. Elastic spectra in EC8, OPCM 03 – OPCM 05 and DM96 Codes. 
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In Fig. 2 the design spectra given by EC8, OPCM03-05 and DM96 are provided 

in the first zone (ag = 0.35g). It can be noticed how EC802 and OPCM03 design 

spectra are close except for the starting value because of the different evaluation of S 

(as in the elastic spectra) and a factor equal to 1 in OPCM03 and 2/3 in EC8 when 

period varies between 0 and TB. On the other side, the OPCM05 is fairly close in 

terms of spectral ordinate to the previous evaluation made by DM96 compared to 

OPCM03 and EC8. 

In this study, the DM96 and EC8 codes have been considered using the equivalent 

seismic forces in the static analyses and the design spectra in the dynamic analyses. 

The coefficient β adopted in the calculation of the forces in DM96 is equal to 4 being 

the study cases existing constructions. In the EC8 spectra, on the contrary, the 

reference soil was type A with a behaviour factor q = 1.5. As furnished by the two 

codes, seismic actions have been considered acting not contemporarily in the two 

principal directions of the buildings. 

 

5. ANALYSES TYPES 

On masonry structures it is possible to carry out numerous analysis types. They are 

summarizable in three groups: linear analyses, non linear analyses and limit analysis.  

 

5.1. LINEAR ANALYSES 

It is the simplest analysis type in which the material obeying to the Hooke’s law is 

assumed. Therefore the elastic properties of the material and the maximum allowable 

stresses are necessary. The obtainable results are the deformed shapes and the stress 

distribution in the structure. In case of stress redistribution it is possible to assume a 

reduced stiffness in correspondence of the cracked areas. A linear analysis can help 

in the comprehension of the behaviour of a construction with regard to service loads, 

when the material still shows an elastic behaviour. On the other hand, it is not useful 

into the establishment of the collapse limits. The linear model is particular effective 
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into the identification of the global behaviour tendency of the building and the 

individuation of the points where the structure is subjected to tension stresses able to 

break the continuity of masonry elements. 

In seismic areas, linear analyses are applicable also in the calculation of structures 

in presence of seismic forces. More in particular, it is possible to carry out two types 

of analyses: the linear static and the modal dynamic ones, as described in the 

following.  

  

5.1.1. LINEAR STATIC ANALYSES 

The linear static analysis consists in the application of a force system distributed 

along the height of the building assuming a linear distribution of the displacements. 

In case of buildings made of a series of floors, these forces are applied at each slab 

where it is assumed that forces can be concentrated. In case of masonry monumental 

buildings, like churches (lacking slabs if not on the roof) the problem is overcome in 

a different way. Whether the walls are modelled with bi-dimensional elements, the 

horizontal forces, proportional to the weight, can be introduced directly on the shells. 

In this way, every single geometric variation, like the presence of openings or 

different thickness in the walls, will be taken into account.  

This type of analyses has been carried out on three-dimensional models of the 

four study cases. 

 

5.1.2. MODAL DYNAMIC ANALYSES 

The modal analysis, associated with the design response spectrum, can be performed 

on bi or three-dimensional structures in order to obtain the stresses values in the 

elements. In this analysis, all the vibration modes with a participating mass bigger 

than 5% should be considered summing up a number of modes so that the total 

participating mass is larger than 85%. In order to calculate stresses and displacements 

in the structure, SRSS or CQC combination rules may be used.  
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Also this type of analyses has been considered in the study of the four study 

cases. 

 

5.2. NON LINEAR ANALYSES 

It is possible to study the complete response of the structure from the elastic field 

through the cracking, until the complete collapse. Different types of non linear 

behaviour exist: mechanical (connected to the non linearity of the material), 

geometrical (connected to the fact that the application point of the loads changes 

increasing the actions) and of contact (connected to the interaction of two corps). It is 

also possible to carry out non linear analyses with damage models very useful into 

the evaluation of the stiffness loss at global and local level. This type of analysis 

requests the elastic and inelastic properties and the strength of the material. The 

results that can be gained are the strain behaviour, the stress distribution and the 

collapse mechanism of the structure. 

In addition to the vertical ones, in presence of horizontal actions, a non linear 

static analysis can be carried out.  

 

5.2.1. NON LINEAR STATIC ANALYSES 

The non linear static analysis consists into the application on the structure of the 

vertical loads (self weight and dead loads) and a horizontal forces system 

monotonously increasing until the reaching of the limit conditions. The method, used 

also in the evaluation of the bearing capacity of existing buildings, is comprised in 

the last seismic codes. 

This type of analysis has also been carried out in this study on bi-dimensional 

elements extrapolated from the whole structures of the four study cases. 
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5.3. LIMIT ANALYSES 

This analysis type is aimed at the evaluation of the collapse load. The theoretical 

principles that allow making a seismic check through the limit analysis are 

conceptually simple but result of complex and delicate application for the following 

reasons: it is not useful to interpret the cause and the extension of the cracks, strains 

or other damages not directly related to the collapse generation; furthermore its use is 

fairly difficult in complex structures with a lot of elements.  

The two theorems of the limit analysis, due to Godzev (1938) and Drucker, Prager 

and Greenberg (1952), are: 

- static theorem: the plastic collapse load multiplier γp is the largest of all the 

multipliers γσ correspondent to the statically admissible set (γp ≥ γσ). For statically 

admissible set, a stress distribution in equilibrium with the external forces that in no 

point violates the plastic conditions is intended. 

- kinematic theorem: the plastic collapse load multiplier γp is the smallest of all the 

multipliers γσ  correspondent to possible collapse mechanisms (γp ≤ γσ). For 

kinematically admissible set, a kinematism or a distribution of velocity of plastic 

deformations, related to the distribution of plastic hinges, which satisfies the 

condition of kinematic compatibility, is intended. 

These theorems generate two correspondent calculus methods of the collapse 

multiplier: 

- static method: it consists into assuming a distribution of statically admissible 

stresses dependent by a certain numbers of parameters and search them so that the 

correspondent load multiplier is maximum. 

- kinematic method: it consists into assuming a collapse mechanism dependent on 

some geometrical parameters and in the following minimization of the 

correspondent multiplier to the considered mechanism. 

According to the uniqueness theorem, a multiplier that is statically and kinematically 

admissible coincides necessarily with the collapse multiplier. 
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5.3.1. LIMIT ANALYSIS APPLIED TO MASONRY STRUCTURES 

The masonry constitutive model is of fragile type with a high value of collapse in 

compression compared to tension. The collapse tension stress is not only small but is 

characterized by a high uncertainty of evaluation because of the great scattering of 

the experimental results as well. This is the reason why in limit analysis a simplified 

diagram of linear indefinite elasticity on compression side and null collapse strength 

on tension is admitted. The masonry constitutive model coincides with materials 

called NRT (non resistant tension) and is defined by the following relationship: 

ε = Cσ + ε(f) 

σ ≤ 0        (lack of tension) 

ε(f) ≥ 0      (cracking strains) 

σ ε(f)  = 0   (lack of internal dissipation) 

The condition of convexity and the respect of the normality condition to the limit 

surface from the cracking strains, imply a tight connection between the theory 

developed by NRT materials and the classic theory of perfect plastic materials. 

The study of masonry structures through limit analysis investigates the very 

essential aspects of the behaviour at collapse and, at the same time, seems to match 

modern analysis techniques with geometrical static principles raising from traditional 

theories. 

The applicability of limit analysis to masonry structures has been firstly 

investigated by [Coulomb, 1773], in which a theory on the collapse behaviour of 

masonry elements was formulated. More recently, [Koorian, 1953] demonstrated 

how stone masonry can be dealt with through plasticity theorems. However, the main 

contribution in this regard is by [Heyman, J. 1966, 1969, 1995], who clearly stated 

some hypotheses on the mechanical behaviour of masonry, (already adopted, though 

implicitly, in the traditional pre-elastic theories). The following assumptions 

regarding material properties are made: 
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1. Masonry has zero tensile strength. Although this statement is conservative, it has 

to be considered that even if stones have a certain resistance, only very small tension  

forces will be transferred across joints because of the weakness or absence of the 

mortar;  

2. Infinite compression strength of the blocks. In most cases, collapse of masonry 

structures is not governed by compression failure, but is due to cracks opening and 

mechanisms formation: this assumption is slightly unconservative;  

3. Sliding of a stone, or of part of the structure, upon another cannot occur. Based on 

the experimental evidence that, generally, the angle between the thrust line and the 

sliding surface is greater than the friction angle. 

With these assumptions, the only possible collapse mode is the rotation of 

adjacent blocks about a common point, so that masonry behaves as an assemblage of 

rigid bodies held up by compressive contact forces. The collapse is characterized by 

the formation of hinges among the single parts.  

Uniqueness and safe theorems can be then respectively expressed as follows:  

“If a thrust line representing an equilibrium condition for the structure under certain 

loads lies fully within the masonry, and allows the formation of sufficient hinges to 

drive the structure into a mechanism, then the structure is about to collapse. Further, 

in case of proportional   loads, the load proportionality factor at collapse is unique.” 

“If a thrust line, in equilibrium with the external loads and lying wholly within the 

structure, can be found, then the structure is safe.” 

With these statements and under the outlined hypotheses, collapse analysis of 

masonry structures basically consists in seeking a thrust line, which is actually the 

graphical representation of equilibrium conditions, passing through a number of 

hinges sufficient to transform the structure into a mechanism.  

Though the approach is conceptually simple and well posed from a theoretical 

point of view, a few points on its applicability and reliability can be arisen. First of 

all, infinite compression strength is assumed, while experience has shown how 
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structures made of materials with poor mechanical properties often do not develop 

mechanism-like collapse, rather large portions of masonry crush. Possibly, finite 

values of compression strength can be accounted for by moving the position of the 

hinges from the external boundary towards the inside of the masonry.  

Secondly, it must be said that though limit analysis actually reveals the weakest 

points of the structure and provides a bound of the admissible horizontal action, it 

neglects, due to material assumptions, a few structural inelastic capacity issues, so 

that the safety assessment turns out to be fairly pessimistic.  

The application of limit analysis in studying the collapse of structural elements 

under seismic-type lateral loadings seems to be very appealing. As a matter of fact, 

on account of the hypotheses assumed regarding the material properties and the 

mechanism formation schemes, the horizontal bearing capacity of a masonry element 

can be derived as a function of the geometry alone. In this regard several authors 

have made use of limit analysis for treating simple masonry elements, since complex 

buildings are often seen as assemblages of elementary structural schemes, so that the 

overall capacity can be somehow derived from the ones of the components. Although 

in complex structures it might be difficult to find the correct failure mechanism by 

limit analysis, it is outlined that this simplified modelling combines, on one side, 

sufficient insight into collapse mechanism, ultimate stress distributions and load 

capacity, and on the other, simplicity to be caste in a practical computational tool. 

Another appealing feature of limit analysis is the reduced number of necessary 

material parameters, given the difficulties in obtaining reliable data for historical 

masonry. 

 

6. METHODOLOGY IN LITERATURE 

In the last forty years an enormous growth in the development of numerical tools for 

structural analysis has been achieved. On the same way, many possibilities of 

analyses have figured out to the attention of the researchers. In the following, an 
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overview of the procedures applied to masonry structures in order to understand their 

response is presented. 

Limit analysis on masonry portals is applied in [Como M. & Grimaldi A., 1983]; 

the extension to this scheme is the full opened wall analyzed in [Como M., Lanni G., 

Sacco E., 1991; Abruzzese D. & Lanni G., 1994] and the presence of reinforcing 

chains exposed in [Abruzzese D., Como M. & Grimaldi A., 1985; Abruzzese D., 

Abruzzese D., Como M. & Lanni G., 1993; 1996]. Furthermore, in [Abruzzese D., 

Como M. & Lanni G., 1995] strength evaluation of circular and pointed arch with 

abutment piers with or without a reinforcing chain is evaluated as such as in 

[Abruzzese D., Como M. & Lanni G., 1990] the case of gothic cathedral is exposed. 

In [Bosco D. & Limongelli M.P., 1992], on the basis of [Como M. & Grimaldi A., 

1983], a collapse analysis of a simple frame is made considering its most general, 

both geometric and loading features.  

An application of limit analysis combined to structural dynamic is given in [Lo 

Bianco M. & Mazzarella C., 1985] in which the soil acceleration transforms the 

structure in a mechanism; 

In 1994, [Pistone G., 1994] analyzes and compares different analysis methods (2D 

and 3D) through FEM on a case study. 

Some computer programs have been developed by researches in these years with 

different purposes. In [Briccoli Bati S., Paradiso M. & Tempesta G., 1997] collapse 

loads of masonry arches subjected to vertical and horizontal loads are implemented 

in the commercial code AEDES 2000. In [Orduna A. & Lourenco P.B., 2001] a 

formulation, implemented in a computer program, accounting for a limited 

compressive stress in the masonry and non-associated flow rules for sliding failure is 

presented. In [D’Ayala D. Speranza E., 2003] analytical models developed to 

calculate load factors of various collapse mechanisms have been developed into a 

numerical procedure interfaced with an electronic form and database called 

FAMIVE. Also in [Valluzzi et Al., 2004] a compendium of the main mechanisms has 
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been implemented in the automatic procedure VULNUS able to carry global 

vulnerability analyses.  

An overview of possible approaches for the numerical modelling of masonry 

structures is presented in an extensive way in [Lourenco P.B., 1998, 2001 and 2002]. 

Herein a review of displacement controlled experimental results and set-ups carried 

out in the last decade that are relevant for the purpose of sophisticated numerical 

modelling of masonry are also provided. 

In [Roca P. et Al., 1998] the validity of several modelling techniques with a very 

different level of sophistication is studied through their use in the study of the 

Barcelona Cathedral.  

Applications of limit analysis coupled to graphic static on real historical churches 

can be found in [Roca P. et Al., 1998] for the Barcelona cathedral and in [Huerta S., 

2001] for the gothic cathedral of Palma de Mallorca.  

In [Genna F., Di Pasqua M. & Veroli M., 1998], with reference to several 

constitutive models developed for the analysis of structures made of components 

weak in tension, many analysis types have been carried out on a model of a part of an 

old monastery placed in Brescia.  

In [Lagomarsino S. et Al., 1998, 1999] the approach of macroelements combined 

to collapse mechanisms (overturning and shear) applied on churches is presented. 

Also [Augusti G. Ciampoli M. & Giovenale P., 2001; Augusti G. Ciampoli M. & 

Zanobi S., 2002], on the basis of the macroelement approach and of limit analysis 

techniques, have elaborated a procedure that allows to calculate the probability of 

collapse or distribution of damages of monumental buildings. 

Pegon [Pegon P., Pinto A.V. & Geradin M., 2001] describes how 2D and 3D 

numerical modelling can be used in order to design a representative model of a built 

cultural heritage structure to test at the laboratory and to characterize its behaviour. 

Details on the models, starting from mesh generation and material description up to 

their non-linear results are given. 
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In [Roeder-Carbo G.M. and Ayala A.G., 2001] a review and evaluation of the 

methods of analysis currently used for the determination of stability conditions for 

historical buildings considering the elastic and inelastic properties of the masonry is 

presented. 

The growing interest in the preservation of historic structures has allowed [Boothby 

T.E., 2001] to underline that although plasticity methods provide an intuitive 

approach, the usefulness in performing actual assessments has limitations. According 

to the author, the recent progress in the development of constitutive laws for ancient 

masonry structures and various formulations of 3D FEM and plasticity methods have 

also proven useful. 

Performance-based concepts are discussed and applied in seismic assessment, 

rehabilitation and design of unreinforced masonry buildings in [Abrams D.P., 2001]. 

In [Giordano A., Mele E. & De Luca A., 2002] the applicability of different 

numerical techniques is investigated, comparing the computed results with the 

experimental test data obtained on a full scale masonry specimen (namely: 

ABAQUS, CASTEM 2000, UDEC). 

Comparing the results of physical non linear analysis and limit analysis on a 

masonry arch, Lourenco [Lourenco P.B., 2002] yield the same failure mechanisms 

and safety factors, if a zero tensile strength is assumed. 

In [Salonikios T. et Al., 2003] the results of comparative pushover analyses 

(through SAP2000 Non linear and CAST3M programs) of masonry plane frames are 

presented. 

With reference to masonry panels 1 or 2 floors high, in [Decanini L.D. & Tocci 

C., 2004] it is recognised that limit analysis-based procedures are more conservative 

than strength-based ones.  

As it can be noticed, generally the Authors propose two or more analysis types, 

enlightening the advantages and disadvantages, comparing and contrasting the results 
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and the reliability. Undoubtedly, the reason of this procedure has to be searched in 

the difficulty of really understanding the behaviour of these structures.  

 

7. THE APPLIED METHODOLOGY 

The proposed analysis method is based on a two step procedure [Mele E., De Luca 

A. & Giordano A., 2003; De Luca A., Giordano A. & Mele E., 2004]: a) first of all, 

the whole structure is analyzed in the linear field through a complete 3D model, with 

the aim of characterizing the static and dynamic behaviour, defining of the 

distribution of the internal forces through the elementary parts and identifying the 

points of possible collapse of the structure; b) afterwords, the single structural 

elements are extrapolated from the 3D global contest into detailed 2D models, 

analyzed in linear and non linear field. These more refined analyses have the goal to 

define some structural properties (horizontal strength, lateral bearing capacity) that 

can be used for the simplified evaluation of the seismic behaviour of the whole 

building. 

Finally, limit analysis has been used as a valid complement to the non-linear 

analysis of the macroelements under horizontal actions. This with the aim of 

comparing the results of the FEM analyses with a level that correspond to the 

minimum collapse multiplier among all the possible class of kinematics. 
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CHAPTER 2: 

STUDY CASES 
 

 

1. INTRODUCTION 

The religious buildings considered in this study are the church of “S. Giovanni a 

mare” (SGMR), of “S. Ippolisto” (SI), of “S. Giovanni Maggiore” (SGMG) and of 

“S. Paolo Maggiore” (SP) all placed in Naples with the exception of S. Ippolisto 

located in the area of Avellino. Some of these churches have been object of research 

in [Mele E., et Al. 1999] for SI and [Mele E., et Al. 2001] for SGMR.  

In this chapter, a detailed analysis of these basilicas is conducted in terms of 

geometry, typology and load conditions. The type and the repetition of the structural 

elements open to the possibility of a general unique model differentiable only by a 

scale factor with a common seismic behaviour. 
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2. S. GIOVANNI A MARE 

(a) (b) 
Figure 1. SGMR – a) Picture; b) Plant. 

 

Firstly referred of in 1186, this church was annexed to a gerosolimitan hospital. It 

was built on a pre-existence, whose remains are still “in situ”. Since 1200, a transept 

with high cross vaults was leaned to the Norman building. Later to the primitive 

installation, recognizable for the central core with three naves scanned by columns, a 

second transept and lateral chapels were added. Around 1300 three apses were built. 

In 1336 and around 1400 the church underwent some modifications. The 1456 

earthquake damaged the church and new alterations were made (the substitution of 

the wooden truss with cross vaults, the building of the bell tower). In 1500 the 

hospital disappeared. With the Risanamento works at the end of the XIX Century the 

church was included in new buildings. In 1949, the restoration of the church 

cancelled some pre-existences. After the 1980 earthquake the church was abandoned. 

In 1987 new restoration works began and in 2000 ended. Nowadays, the church is as 

shown in Fig.1. 
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2.1. GEOMETRY 

The building is 38 m long and 19 m wide approximately; roof heights vary from 7 m 

on some chapels to 13.3 m on the transept roof. The thickness of masonry walls is 

around 0.8 m, the diameter of the columns between the principal nave and the lateral 

ones is around 0.5 m. The roof is formed by different types of vaults: sometimes 

barrel vaults, other times crossed vaults or “lunettate” that are the intersection of a 

barrel vault with a semicircular directrix with another one posed on pointed arches. 

 

2.2. MACROELEMENTS 

In Fig. 2 the schematic plan with the individuation of the alignments or the 

macroelements which form the structural system of the church are depicted. 

 

T1T2T3T4T5T6

L1

L2

L3

L4

L5

L6

 
Figure 2. SGMR – individuation of the macroelements in plant. 

 

They are identified by an alphanumerical code constituted by a letter and a 

number: the letter will be an L in case of longitudinal elements and a T in case of 

transversal ones; the number, on the contrary, identifies the single element in a 

crescent order from the apse to the façade for the transversal elements and from the 

left front to the right front for the longitudinal elements.  
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In the following Figures (from 3 to 13) each macroelement is described in detail. 

On the left side the geometry and the applied dead loads are plotted; on the right part 

some general data characterizing the macroelement are precised. They are the total 

and the opening areas with the correspondent net area, the opening ratio intended as 

the ratio of the voids and the total area of the element, the thickness of the wall, the 

self weight, the dead load and their sum, the ratio of the dead load over the total 

weight.  

 

276

104

88.388.3

104

25.425.4 58 58

276

58

 

Whole Area: 346.15 m2 
Opening Area: 11.54 m2 
Net Area: 334.61 m2 
Opening ratio: 0.033 
Thickness: 0.8 m 
Self Weight: 4550.7 KN 
Dead Load: 1103.4 KN 
Self Weight + Dead Load: 5654.1 KN 
Dead Load/Self Weight: 0.24 

(a) (b) 
Figure 3. L1 macroelement – a) geometry and loads; b) general data. 

 

41.441.4

54.44772.34729

104104

88.3
88.3

 

Whole Area: 177 m2 
Opening Area: 78.85 m2 
Net Area: 98.15 m2 
Opening ratio: 0.445 
Thickness: 0.8 m 
Self Weight: 1334.8 KN 
Dead Load: 717 KN 
Self Weight + Dead Load: 2051.8 KN 
Dead Load/Self Weight: 0.537 

(a) (b) 
Figure 4. L2 macroelement – a) geometry and loads; b) general data. 
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497

4747

165165

204729

91 165 226 170

58 58

48 48 
497 Whole Area: 413.54 m2 

Opening Area: 217.03 m2 
Net Area: 196.51 m2 
Opening ratio: 0.525 
Thickness: 0.8 m 
Self Weight: 2672.5 KN 
Dead Load: 2378.1 KN 
Self Weight + Dead Load: 5050.6 KN 
Dead Load/Self Weight: 0.890 

(a) (b) 
Figure 5. L3-L4 macroelement – a) geometry and loads; b) general data. 

 

27 76 76 49
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40 6363

 

Whole Area: 177.0 m2 
Opening Area: 55.93 m2 
Net Area: 121.07 m2 
Opening ratio: 0.316 
Thickness: 0.8 m 
Self Weight: 1646.6 KN 
Dead Load: 414 KN 
Self Weight + Dead Load: 2060.6 KN 
Dead Load/Self Weight: 0.251 

(a) (b) 
Figure 6. L5 macroelement – a) geometry and loads; b) general data. 

 

2727

20 40 20

276 240

56 56

Whole Area: 346.15 m2 
Opening Area: 15.12 m2 
Net Area: 331.03 m2 
Opening ratio: 0.044 
Thickness: 0.8 m 
Self Weight: 4502 KN 
Dead Load: 762 KN 
Self Weight + Dead Load: 5264 KN 
Dead Load/Self Weight: 0.169 

(a) (b) 
Figure 7. L6 macroelement – a) geometry and loads; b) general data. 
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58 565658

4848

 

Whole Area: 170.365 m2 
Opening Area: 0.785 m2 
Net Area: 169.58 m2 
Opening ratio: 0.005 
Thickness: 0.8 m 
Self Weight: 2306.3 KN 
Dead Load: 324 KN 
Self Weight + Dead Load: 2630.3 KN 
Dead Load/Self Weight: 0.140 

(a) (b) 
Figure 8. T1 macroelement – a) geometry and loads; b) general data. 
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Whole Area: 248.71 m2 
Opening Area: 98.25 m2 
Net Area: 150.46 m2 
Opening ratio: 0.395 
Thickness: 0.8 m 
Self Weight: 2046.3 KN 
Dead Load: 1772 KN 
Self Weight + Dead Load: 3818.3 KN 
Dead Load/Self Weight: 0.866 

(a) (b) 
Figure 9. T2 macroelement – a) geometry and loads; b) general data. 

 

495 276

171 2162

466

17141

276

 

Whole Area: 248.79 m2 
Opening Area: 80.57 m2 
Net Area: 168.22 m2 
Opening ratio: 0.324 
Thickness: 0.8 m 
Self Weight: 2287.8 KN 
Dead Load: 1979 KN 
Self Weight + Dead Load: 4266.8 KN 
Dead Load/Self Weight: 0.865 

(a) (b) 
Figure 10. T3 macroelement – a) geometry and loads; b) general data. 
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139

6422622641.4

2129 2125 54

 

Whole Area: 187.06 m2 
Opening Area: 59.47 m2 
Net Area: 157.59 m2 
Opening ratio: 0.318 
Thickness: 0.8 m 
Self Weight: 1735.2 KN 
Dead Load: 846.4 KN 
Self Weight + Dead Load: 2581.6 KN 
Dead Load/Self Weight: 0.488 

(a) (b) 
Figure 11. T4 macroelement – a) geometry and loads; b) general data. 

 

165165

139

76 27464672.325.4

 

Whole Area: 147.91 m2 
Opening Area: 75.58 m2 
Net Area: 72.33 m2 
Opening ratio: 0.511 
Thickness: 0.8 m 
Self Weight: 983.7 KN 
Dead Load: 761.7 KN 
Self Weight + Dead Load: 1745.4 KN 
Dead Load/Self Weight: 0.774 

(a) (b) 
Figure 12. T5 macroelement – a) geometry and loads; b) general data. 
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272929

91

29

 

Whole Area: 1475.5 m2 
Opening Area: 2.01 m2 
Net Area: 145.5 m2 
Opening ratio: 0.014 
Thickness: 0.8 m 
Self Weight: 1979.3 KN 
Dead Load: 296 KN 
Self Weight + Dead Load: 2275.3 KN 
Dead Load/Self Weight: 0.150 

(a) (b) 
Figure 13. T6 macroelement – a) geometry and loads; b) general data. 

 

2.3. LOAD CONDITION 

In Fig. 14 the visualization of the dead loads is given on the three-dimensional model 

at the different heights. In this case, pointed loads are representative of the load path 

coming from cross vaults whilst distributed loads represent the barrel vaults. 
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Height: 7 m Height: 8 m 

 
Height: 10 m Height: 11.6 m 

 

 
Height: 13.3 m Loads on the shell elements 

Figure 14. SGMR dead loads. 
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3. S. IPPOLISTO 

The building was progressively built on a small roman catacomb starting from the V 

Century. Between the end of XVI Century and the beginning of XVII Century the 

church assumed the shape of nowadays (Fig. 15). In 1635 the church gallery caused 

the collapse of part of the crypt vaults. The 1980 earthquake has implied the whole 

collapse of the transept, the apse roof and the breaking of the lower crypt. 

 

  

(a) (b) 
Figure 15. SI – a) Picture; b) Plant. 

 

3.1. GEOMETRY 

The principal nave, 11.6 m wide, develops for 28 m with a maximum height of 16.5 

m. The two side naves are 5 m wide and have a maximum height of 8.5 m. The wall 

thicknesses vary from 1.0 to 2.0 m; the columns of the arcades on the side of the 

principal nave, have a squared section of 1.2 m per side. The rectangular apse is 11.6 

m wide and 8.8 m long, while the height varies between 14 and 18 m. The principal 

nave has a wood and bent tile roof, leaning on a wood truss placed in correspondence 

of columns 6 m distant. Also on the apse there is a wood truss leaning on lateral 

walls. Cross vaults span the lateral naves.  
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3.2. MACROELEMENTS 

In Figure 16 the plant of the church is represented. Again the longitudinal and 

transversal macroelements are depicted and better illustrated in the following cards 

(from Fig. 17 to Fig. 24).  

 

T1

T2 T3 T4 T5 T6
T7

L1

L2

L3

L4

T8

Figure 16. Individuation of the macroelements in plant. 

 

170

92.4

 

Whole Area: 411.5 m2 
Opening Area: 52.35 m2 
Net Area: 359.15 m2 
Opening ratio: 0.127 
Thickness: 1.2 m 
Self Weight: 7327 KN 
Dead Load: 262.4 KN 
Self Weight + Dead Load: 7589.4 KN 
Dead Load/Self Weight: 0.036 

(a) (b) 
Figure 17. L1 macroelement – a) geometry and loads; b) general data. 
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104 165

170

Whole Area: 615.98 m2 
Opening Area: 234.35 m2 
Net Area: 381.33 m2 
Opening ratio: 0.381 
Thickness: 1.2 m 
Self Weight: 7779 KN 
Dead Load: 439 KN 
Self Weight + Dead Load: 8218 KN 
Dead Load/Self Weight: 0.056 

(a) (b) 
Figure 18. L2-L3 macroelement – a) geometry and loads; b) general data. 

 

92.4

170

Whole Area: 402.95 m2 
Opening Area: 96.27 m2 
Net Area: 306.68 m2 
Opening ratio: 0.239 
Thickness: 1.2 m 
Self Weight: 6256 KN 
Dead Load: 262.4 KN 
Self Weight + Dead Load: 6518.4 KN 
Dead Load/Self Weight: 0.042 

(a) (b) 
Figure 19. L4 macroelement – a) geometry and loads; b) general data. 

 

80

 

Whole Area: 171.68 m2 
Opening Area: 0 m2 
Net Area: 171.68 m2 
Opening ratio: 0 
Thickness: 1.2 m 
Self Weight: 3502 KN 
Dead Load: 80 KN 
Self Weight + Dead Load: 3582 KN 
Dead Load/Self Weight: 0.023 

(a) (b) 
Figure 20. T1 macroelement – a) geometry and loads; b) general data. 
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42
290

42

 

Whole Area: 372.8 m2 
Opening Area: 172.32 m2 
Net Area: 200.48 m2 
Opening ratio: 0.462 
Thickness: 1.2 m 
Self Weight: 4090 KN 
Dead Load: 374 KN 
Self Weight + Dead Load: 4464 KN 
Dead Load/Self Weight: 0.091 

(a) (b) 
Figure 21. T2 macroelement – a) geometry and loads; b) general data. 

 

42
290

42

39.6 39.6

 

Whole Area: 195.78 m2 
Opening Area: 46.83 m2 
Net Area: 148.95 m2 
Opening ratio: 0.239 
Thickness: 1.2 m 
Self Weight: 3039 KN 
Dead Load: 453.2 KN 
Self Weight + Dead Load: 3492.2 KN 
Dead Load/Self Weight: 0.149 

(a) (b) 
Figure 22. T3 macroelement – a) geometry and loads; b) general data. 

 
2323

79.679.6

 

Whole Area: 119.06 m2 
Opening Area: 46.83 m2 
Net Area: 72.23 m2 
Opening ratio: 0.393 
Thickness: 1.2 m 
Self Weight: 1473 KN 
Dead Load: 205.2 KN 
Self Weight + Dead Load: 1678.2 KN 
Dead Load/Self Weight: 0.139 

(a) (b) 
Figure 23. T4-T7 macroelement – a) geometry and loads; b) general data. 
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39.639.6

19 19

 

Whole Area: 368.69 m2 
Opening Area: 36.5 m2 
Net Area: 332.19 m2 
Opening ratio: 0.099 
Thickness: 1.2 m 
Self Weight: 6777 KN 
Dead Load: 117.2 KN 
Self Weight + Dead Load: 6894.2 KN 
Dead Load/Self Weight: 0.017 

(a) (b) 
Figure 24. T8 macroelement – a) geometry and loads; b) general data. 

 

3.3. LOAD CONDITION 

In Fig. 25 the dead loads applied on masonry walls coming from the vaults and the 

wooden truss, depending on the height, are shown.  

 

 
Height: 9.1 m Height: 14.1 m 

 

Height: 14.1-17.85 m Height: roof truss 
Figure 25. SI dead loads. 
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4. S. GIOVANNI MAGGIORE 

Founded around 555 on a site already occupied by a pagan sanctuary, the basilica of 

S. Giovanni Maggiore is one of the main buildings of Naples (Fig.26). The 1456 

earthquake seriously damaged the church. In 1645 in the gallery, after the collapse of 

the original roof apse, the columns were reinforced and a new wall with the thickness 

of 2.70 m was realized. At that moment, the church was fairly big with its 24 altars. 

In 1656 the elliptical dome was erected on a short tambour. In 1732 another seismic 

event further ruined the transept and the lantern above the dome was demolished. In 

the 1805 earthquake, the transept is cracked again and unexpectedly in 1870 the right 

lateral nave collapsed. The following restoration works involved the destroyed part, 

the transept and the gallery. The last earthquake in 1980 has overburdened the static 

of the church so that retrofit works have interested the structure in the last years. 

 

 
 

(a) (b) 
Figure 26. SGMG – a) Picture; b) Plant. 

 

4.1. GEOMETRY 

The global dimensions in plant are 61 m long and 37 m wide, while the net length of 

the hall is 37 m. The height of the truss top on the central nave is 25.90 m, decreasing 

to 14.30 in the lateral naves and 9.30 in the lateral chapels. The dome is placed on a 
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tambour of 2 m at the height of 22 m reaching the new height of 32.7 m; the height 

of the apse is 19.8 m and the thickness of masonry elements varies from 0.6 to 2.4 m. 

 

4.2. MACROELEMENTS 

The individuation of the macroelements in the plan of the church is plotted in Fig. 

27. In the following Figures (from 28 to 35) the main data referred to each element 

are analyzed. 

 

L1

L5

L4

L3

L2

L1

T8T7T6T5T4T3T2T1

 
Figure 27. Individuation of the macroelements in SGMG. 

 

60

Whole Area: 651.2 m2 
Opening Area: 15.3 m2 
Net Area: 635.91 m2 
Opening ratio: 0.023 
Thickness: 0.7 ÷ 0.9 m 
Self Weight: 7856 KN 
Dead Load: 0 KN 
Self Weight + Dead Load: 7856 KN 
Dead Load/Self Weight: 0 

(a) (b) 
Figure 28. L1-L6 macroelement – a) geometry and loads; b) general data. 
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308

 

Whole Area: 801.3 m2 
Opening Area: 329.7 m2 
Net Area: 471.6 m2 
Opening ratio: 0.411 
Thickness: 1.4 ÷ 2.4 m 
Self Weight: 13587 KN 
Dead Load: 303 KN 
Self Weight + Dead Load: 13890 KN 
Dead Load/Self Weight: 0.022 

(a) (b) 
Figure 29. L2-L5 macroelement – a) geometry and loads; b) general data. 

 

1200

308

715

 

Whole Area: 1080.7 m2 
Opening Area: 350.2 m2 
Net Area: 730.5 m2 
Opening ratio: 0.324 
Thickness: 1.4 ÷ 2.4 m 
Self Weight: 19552.5 KN 
Dead Load: 2223 KN 
Self Weight + Dead Load: 21775.5 KN 
Dead Load/Self Weight: 0.114 

(a) (b) 
Figure 30. L3-L4 macroelement – a) geometry and loads; b) general data. 

 

5102150510

 

Whole Area: 771.7 m2 
Opening Area: 204.2 m2 
Net Area: 567.5 m2 
Opening ratio: 0.265 
Thickness: 1.8 ÷ 2.4 m 
Self Weight: 18549 KN 
Dead Load: 3170 KN 
Self Weight + Dead Load: 21719 KN 
Dead Load/Self Weight: 0.171 

(a) (b) 
Figure 31. T1 macroelement – a) geometry and loads; b) general data. 
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510
2150

510

50

40

50

40

 

Whole Area: 771.2 m2 
Opening Area: 266.4 m2 
Net Area: 504.8 m2 
Opening ratio: 0.345 
Thickness: 1.8 ÷ 2.4 m 
Self Weight: 17588 KN 
Dead Load: 3350 KN 
Self Weight + Dead Load: 20938 KN 
Dead Load/Self Weight: 0.19 

(a) (b) 
Figure 32. T2 macroelement – a) geometry and loads; b) general data. 
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100

76

80 80

 

Whole Area: 304.1 m2 
Opening Area: 74.8 m2 
Net Area: 229.3 m2 
Opening ratio: 0.246 
Thickness: 0.9 m 
Self Weight: 3500 KN 
Dead Load: 512 KN 
Self Weight + Dead Load: 4012 KN 
Dead Load/Self Weight: 0.146 

(a) (b) 
Figure 33. T3-T6 macroelement – a) geometry and loads; b) general data. 
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Whole Area: 318.8 m2 
Opening Area: 8.6 m2 
Net Area: 310.2 m2 
Opening ratio: 0.027 
Thickness: 0.6 m 
Self Weight: 3164 KN 
Dead Load: 763 KN 
Self Weight + Dead Load: 3927 KN 
Dead Load/Self Weight: 0.241 

(a) (b) 
Figure 34. T7 macroelement – a) geometry and loads; b) general data. 
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7975

 

Whole Area: 761.5 m2 
Opening Area: 39.3 m2 
Net Area: 722.2 m2 
Opening ratio: 0.052 
Thickness: 0.8 ÷ 2.4 m 
Self Weight: 21700 KN 
Dead Load: 466 KN 
Self Weight + Dead Load: 22632 KN 
Dead Load/Self Weight: 0.02 

(a) (b) 
Figure 35. T8 macroelement – a) geometry and loads; b) general data. 

 

4.3. LOAD CONDITION 

In Fig. 36 the load conditions are illustrated in function of the height, the location 

and the type.  

 

  
Height: 9.5 m Height: 14.3 m 

 
Height: 20.3 m Height: 21.4 m 
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Height: roof truss  
Figure 36. SGMG dead loads 

 

Loads on the shell elements are representative of uniform loads transferred by the 

barrel and pavilion vaults; the pointed loads are representative of the load path 

coming from the steel truss. 
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5. S. PAOLO MAGGIORE 

The church was built on a hexastyle and prostyle temple 24 m long and 17.40 m wide 

of the I Century. The construction was transformed into a Christian church between 

the end of VIII Century and the beginning of IX Century (Fig. 37). The building 

presented three naves separated by 18 columns wide as the temple which pronaos 

was conserved until the earthquake in 1688. Between the end of the XVI and the 

beginning of the XVII Century the church was restored more times. The inner part of 

the basilica has undergone severe damages during the II world war. The apse roof 

and the transept were destroyed whilst the central nave was heavily damaged. The 

following works involved the rebuilding of the apse walls, the temporary restoration 

of the transept roof and the strengthening of some columns of the central and left 

nave. In 1971 an exhaustive restoration design interested the substitution of the 

wooden truss with steel truss and the placing of reinforced concrete beams in the 

upper part of the building. These strengthening works have allowed to the structure 

to resist to the following seismic event in 1980.  
 

 
 

(a) (b) 
Figure 37. SP – a) Picture; b) Plant. 

 

5.1. GEOMETRY 

Nowadays, the basilica develops in plan on a total length of 63 m and a width of 39 

m; close to the transept, the width is 56 m and the length is 35 m. The height at the 
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top of the truss on the central nave is 27.6 m, the domes on the lateral naves are 13.3 

m high and the lateral chapels are 6.5 m high; the height of the apse is 16.3 m and the 

thickness of the walls varies from 0.7 to 1.9 m. 

 

5.2. MACROELEMENTS 

The following macroelements represented in Fig. 38 are analyzed in more detail from 

Fig. 39 to Fig. 48. 
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Figure 38. individuation of the macroelements in SP 

 
190

230

 

Whole Area: 638.12 m2 
Opening Area: 54.82 m2 
Net Area: 628.3 m2 
Opening ratio: 0.08 
Thickness: 0.8 m 
Self Weight: 8586 KN 
Dead Load: 420 KN 
Self Weight + Dead Load: 9006 KN 
Dead Load/Self Weight: 0.049 

(a) (b) 
Figure 39. L1 macroelement – a) geometry and loads; b) general data. 
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80 80 80 80

106

40

40100460

 

Whole Area: 1136.6 m2 
Opening Area: 351.8 m2 
Net Area: 784.8 m2 
Opening ratio: 0.310 
Thickness: 0.7 ÷ 0.9 ÷ 1.0 m 
Self Weight: 11211 KN 
Dead Load: 1066 KN 
Self Weight + Dead Load: 12277 KN 
Dead Load/Self Weight: 0.095 

(a) (b) 
Figure 40. L2-L5 macroelement – a) geometry and loads; b) general data. 
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760

 

Whole Area: 1039.78 m2 
Opening Area: 298.5 m2 
Net Area: 750.28 m2 
Opening ratio: 0.278 
Thickness: 1.9 m 
Self Weight: 24234 KN 
Dead Load: 1750 KN 
Self Weight + Dead Load: 25984 KN 
Dead Load/Self Weight: 0.072 

(a) (b) 
Figure 41. L3-L4 macroelement – a) geometry and loads; b) general data. 
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130 70

 

Whole Area: 683.15 m2 
Opening Area: 63.75 m2 
Net Area: 619.4 m2 
Opening ratio: 0.093 
Thickness: 0.8 m 
Self Weight: 8545 KN 
Dead Load: 390 KN 
Self Weight + Dead Load: 8935 KN 
Dead Load/Self Weight: 0.046 

(a) (b) 
Figure 42. L6 macroelement – a) geometry and loads; b) general data. 
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45 45

6060

 

Whole Area: 304.2 m2 
Opening Area: 0 m2 
Net Area: 304.2 m2 
Opening ratio: 0 
Thickness: 1.1 m 
Self Weight: 5685 KN 
Dead Load: 210 KN 
Self Weight + Dead Load: 5895 KN 
Dead Load/Self Weight: 0.037 

(a) (b) 
Figure 43. T1 macroelement – a) geometry and loads; b) general data. 
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Whole Area: 1179.9 m2 
Opening Area: 401.5 m2 
Net Area: 778.4 m2 
Opening ratio: 0.034 
Thickness: 1.4 m 
Self Weight: 18530 KN 
Dead Load: 1500 KN 
Self Weight + Dead Load: 20030 KN 
Dead Load/Self Weight: 0.08 

(a) (b) 
Figure 44. T2 macroelement – a) geometry and loads; b) general data. 
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300300
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Whole Area: 385.2 m2 
Opening Area: 0 m2 
Net Area: 385.2 m2 
Opening ratio: 0 
Thickness: 0.8 m 
Self Weight: 5238 KN 
Dead Load: 1260 KN 
Self Weight + Dead Load: 6498 KN 
Dead Load/Self Weight: 0.24 

(a) (b) 
Figure 45. T3 macroelement – a) geometry and loads; b) general data. 
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8080

400

180180 180 180

150 150

 

Whole Area: 1201.1 m2 
Opening Area: 414.6 m2 
Net Area: 786.5 m2 
Opening ratio: 0.345 
Thickness: 1.7 ÷ 2 m 
Self Weight: 24674 KN 
Dead Load: 1580 KN 
Self Weight + Dead Load: 26254 KN 
Dead Load/Self Weight: 0.064 

(a) (b) 
Figure 46. T4 macroelement – a) geometry and loads; b) general data. 

 

110110 30 30
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Whole Area: 360.38 m2 
Opening Area: 94.88 m2 
Net Area: 265.5 m2 
Opening ratio: 0.263 
Thickness: 0.75 m 
Self Weight: 3385 KN 
Dead Load: 480 KN 
Self Weight + Dead Load: 3865 KN 
Dead Load/Self Weight: 0.142 

(a) (b) 
Figure 47. T5-T10 macroelement – a) geometry and loads; b) general data. 
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Whole Area: 930.7 m2 
Opening Area: 33.5 m2 
Net Area: 897.2 m2 
Opening ratio: 0.036 
Thickness: 1.0 ÷ 1.5 m 
Self Weight: 21617 KN 
Dead Load: 684 KN 
Self Weight + Dead Load: 22301 KN 
Dead Load/Self Weight: 0.032 

(a) (b) 
Figure 48. T11 macroelement – a) geometry and loads; b) general data. 

 

5.3. LOAD CONDITION 

In Fig. 49 the load placing at the different heights are shown on the three-

dimensional models. 
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Height: 0.0  m Height: 11.0 m 

Height: 12.0 m Height: 17.0 m 

Height: 27.5 m Height: roof truss 
Figure 49. SP dead loads 

 

6. GEOMETRICAL AND TYPOLOGICAL FEATURES 

A geometrical-dimensional analysis has been conducted on the macroelements above 

cited. In particular, for each case and macroelement, the ratio Aopening/Atotal between 

the area of the holes and the surface of the whole masonry panel has been valuated. 
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The results are represented in Fig. 50 where in a bar diagram, for each church and 

macroelement, this ratio is reported.  
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Figure 50. Opening  ratio 

 

Generally, the external elements, corresponding to the apse and the façade among 

the transversal elements (T) and to the two fronts among the longitudinal elements 

(L) lack openings. The inner panels, on the contrary, are fairly opened so that two 

different typologies of elements are identified. 

Afterwards, the geometrical dimensions of each macroelement have been 

characterized; in particular, the maximum values of the height H and the length L (in 

terms of the ratio H/L) have been detected and the same macroelements have been 

divided in parts with the same thickness (Hi and Li of the parts) as well. The 

dimensional results are reported in Fig. 51.  
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Figure 51. Dimensional Ratios. 
 

In order to compare the geometrical parameters already defined, some classes of 

macroelements morphologically similar have been identified. In the specific case, 

eight of them have been selected:  

1. the apse;  

2. the first triumphal arch (element between the apse and the transept);  

3. the second triumphal arch (separation between the transept and the nave); 

4. the transversal elements along the nave;  

5. the façade;  

6. the external longitudinal front;  

7. the internal longitudinal arcade;  

8. the ulterior longitudinal  internal arcade.  

They are reported in the abacus of Fig. 52, in which the classes, the common 

elements in the basilicas and the correspondent alphanumeric code of the single 

macroelement are reported. It can be observed that, among the four churches, two 

subgroups can be defined. In the first one there are SGMG and SP that are more 

similar to the basilica type, the other two churches, SI and SGMR, although they are 

included in the group, are slightly atypical.  
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Figure 52. Typological correspondence of the macroelements. 
 

7. CLASSES COMPARISON 

Looking at Fig. 52, the four churches, besides having the common configuration in 

plant, are also characterized by some uniformity in the global plano-altimetric 

apparatus. 

A comparison in terms of global dimensions among the study cases is reported in 

Fig. 53. 
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Figure 53. Dimensional comparison. 

 

In particular, in the first two pictures, for each church, maximum dimensions in 

terms of Hmax, Lmax and Bmax and of ratios Bmax/Lmax, Hmax/Bmax and Hmax/Lmax are 

reported. In the third and the fourth picture, such values are grouped with reference 

to the relevant church. From the observation of the last plot, it’s clear the regularity 

of the ratios between the global dimensions of the four churches: Bmax/Lmax varies in 

the range 0.5÷0.59; Hmax/Bmax between 0.7÷0.9; Hmax/Lmax in the range 0.35÷0.51. 

A comparison among the 8 classes of macroelements of the churches is depicted 

in Fig. 54. In particular, if the first class is neglected (bi or three-dimensional apse), a 

certain similarity can be observed among the elements:  
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(c) (d) 
Figure 54. Dimensional comparison in classes - a) Afor/Atot; b) H/L; c) smin/H; d) smin/L. 

 

1. ratio Afor/Atot (Fig. 54.a): classes 2, 3, 7 and 8 are bounded in the range 20% ÷ 

40% and classes 5 and 6 in the range 5% ÷ 15%.  

2. ratio H/L (Fig 54.b): it shows a uniform trend in all the classes of 

macroelements with the exception of the first one (correspondent to the apse). In 

particular the following ranges are defined: 0.58÷0.8 for classes 2 and 3; 0.50 ÷ 0.65 

for classes 4 and 5; 0.38 ÷ 0.5 for classes 6, 7 and 8. It has to be underlined that for 

the longitudinal macroelements, S. Paolo Maggiore church has higher values because 

it features a crypt at the bottom of the building which influences this ratio.  

3. ratio smin/H (fig. 54.c): there is a certain regularity for classes of macroelements 

2, 3 and 7 (triumphal arches and longitudinal internal arcades), defined in the range 

0.05 ÷ 0.085.  

4. ratio smin/L (fig. 54.d): there is a certain uniformity in the macroelements 2, 3, 7 

and 8 defined in the range 0.01÷ 0.58. 
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8. CONCLUSIONS 

From the analysis of these results, it is possible to affirm that the four study cases, 

besides the typical plan (defined basilica type), have certain uniformity in the global 

plan-altimetric apparatus. Furthermore it has been noticed that these ratios are 

recurrent also among the single macroelements belonging to the same class. 

Generally, it can be said that, with the exception of some particularities, the four 

study cases derive from a sort of three-dimensional global model that changes only 

for a scale factor. 

 Considering that a large amount of the seismic action on the macroelements is 

due to their mass, it is allowed to expect also a similar seismic behaviour among the 

buildings or, in other words, a typical seismic behaviour. 
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CHAPTER 3: 

LINEAR ANALYSES 
 

 

1. INTRODUCTION 

The evaluation of the behaviour of religious masonry buildings under seismic actions 

shows objective difficulties because of the geometrical - morphological 

characteristics and the non linear behaviour of the material.  

In this chapter, the first part of the two-step procedure previously illustrated is 

carried out. The structural systems have been subjected to elastic numerical analyses 

(static and dynamic) with different hypotheses about the modelling of the roofing 

system. The analyses on these buildings have allowed to characterize the seismic 

behaviour, to find out points of greater vulnerability, to identify the distribution of 

stresses among different structural elements and the out of the plane contribution of 

the elements orthogonal to the direction of seismic forces.  
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 2. STRUCTURE, MATERIAL AND SEISMIC ACTION  

The masonry buildings have been analyzed in the linear field through the Finite 

Element Method, using the commercial computer code SAP2000 [CSI, 2000]. 

Library elements have been used to model the structure: shell elements for vertical 

walls and frame elements for roof trusses, columns and arches.  

The three dimensional models of the four basilicas are reported in Fig. 1 and are 

composed respectively of 5924 shells, 8 frames and 6401 nodes for the church of S. 

Giovanni a Mare (SGMR); 5572 shells, 56 frames and 5941 nodes for the church of 

S. Ippolisto (SI); 13966 Shells, 256 frames and 16126 nodes for the church of S. 

Giovanni Maggiore (SGMG); 12349 shells, 1051 frames and 13777 nodes for the 

church of S. Paolo Maggiore (SP).  

 

  
(a) (b) 

  
(c) (d) 

  Figure 1. Three-dimensional models – a) SGMR, b) SI, c) SGMG, d)SP. 
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For masonry tuff elements the hypothesis of linear elastic behaviour (elastic 

module E = 1100 MPa, Poisson’s coefficient ν = 0.071, self weight W = 17 kn/m3) 

has been adopted. For the steel elements, E=210000 MPa, ν = 0.3 and W = 77 kn/m3 

have been assumed.  

In order to simulate the effects of the horizontal structural elements, two different 

hypotheses have been made: in the first one, roof elements in wood, steel or vaulted 

systems have been modelled with simple frame elements; in the second one, rigid 

diaphragms at different heights have been considered.  

The self weight of the buildings has been automatically applied onto the shell 

elements according to the weight density. The dead loads, coming from the self 

weight of vaults and trusses roof, have been imposed onto the structures. Depending 

on the load type, uniform and point loads have been considered along the elements or 

in correspondence of the wall crossing. In the SAP models, when the loads are 

distributed along the wall development, the values per unit per area (automatically 

applied to the thickness of the shell) have been applied. Furthermore the concentrated 

loads, such as the trusses weight, have been imposed directly on the joints. 

In addition to vertical loads, coming from the self weight and the dead load, in 

static analyses, horizontal actions equivalent to seismic loads have been applied 

according to DM96 [M.LL.PP., 1996] and EC8 [CEN, 2002]. Two load cases have 

been considered, applying the horizontal actions separately in the longitudinal and 

transversal directions. 

Furthermore, in order to investigate the response to seismic actions, dynamic 

analyses using the DM96 spectra and the EC8 design spectra have been carried out. 

Again, seismic actions have been considered acting not contemporarily in the two 

principal directions of the building. In Figure 2, values of the first period of the 

buildings with the presence or not of the rigid slab are reported. 
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 Figure 2. Seismic actions – DM96 and EC8 Design Spectra: a) actions on buildings without 

rigid slabs; b) actions on building with rigid slab. 
 

3. DYNAMIC BEHAVIOUR OF CHURCHES 

      3.1. “AS IS” MODELS 

In Figures 3,4,5,6 the first three modal shapes and the corresponding value of the 

period of churches without rigid diaphragms (in the following labelled “as is” 

models) not considering local deformations, are reported; in Tables 1,2,3 and 4 the 

modal participating mass ratios (individual mode and cumulative percent) are plotted.  

From the analyses of the deformed shapes some aspects are visible. Out of the 

plane deformation of some alignements, reveal a contribution of these elements to the 

absorption of seismic actions along the transversal direction. Torsional deformations 

of the whole three-dimensional complex show a low torsional stiffness of the 

buildings, deriving from the lack of “box behaviour”. The values of the first 

significant periods vary between 0.41 and 0.45 seconds for the smaller churches 

(SGMR and SI) and between 0.51 and 0.59 seconds for the bigger churches (SGMG 

and SP). 

Evaluating the total participating mass factor (expressed as the ratio between the 

participating mass of the single mode Mi and the total mass Mtot) it is noticeable that 

not many vibration modes (compared to the freedom grades) have to be summed up 

to excite a significant amount of the total mass.  
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First Mode T= 0.4092 sec Second ModeT=0.3923 sec Third Mode T=0.3339 sec 

Figure 3. S. Giovanni a Mare “as is” – Modal shapes of the building. 
 

TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

2 0.3923 37.2412 37.3496 1 0,4029 41.4730 41.4730 
3 0.3339 13.3174 50.667 6 0,2735 6.5533 48.2338 
4 0.3177 6.7272 57.3942 16 0,1612 4.7107 53.3756 
7 0.2365 2.2775 59.7409 17 0,1577 9.1321 62.5077 

12 0.1935 4.0774 63.9416 20 0,1482 5.1420 67.7137 
14 0.1763 2.1879 66.3523 58 0,0933 1.0679 75.6468 
15 0.1673 4.2064 70.5588     
29 0.1285 1.0476 73.0894     
41 0.1091 3.2464 76.9225     
48 0.1009 1.8576 80.1407     

Table 1. S. Giovanni a Mare “as is” – Modal Participating mass ratios 
 

 
First Mode T = 0.45 sec Third Mode T = 0.37 sec Fourth  Mode T = 0.30 sec 

Figure 4.  S. Ippolisto “as is” – Modal shapes of the building. 
 

 
TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

1 0.4470 42.6703 42.6703 3 0.3403 53.3264 53.5476 
2 0.3698 10.3297 53.0000 12 0.2272 8.9648 64.3640 
4 0.2982 1.0975 54.1439 13 0.2146 1.4342 65.7983 
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10 0.2649 9.2096 63.5956 21 0.1568 2.1460 68.8336 
14 0.2079 4.2496 68.7096 27 0.1387 1.6479 72.4708 
15 0.1889 3.3240 72.0336 29 0.1285 3.5134 76.0017 
17 0.1819 1.0010 73.8673 34 0.1100 1.0546 78.0047 
18 0.1764 1.7495 75.6168 48 0.0968 2.5551 82.3961 
30 0.1213 1.3443 80.8956     
45 0.1001 1.5998 83.9021     

Table 2. S. Ippolisto “as is” – Modal Participating mass ratios 
 

   
Fourth Mode T = 0.51 sec Fifth Mode T = 0.50 sec Sixth  Mode T = 0.47 sec 

Figure 5. S. Giovanni Maggiore “as is” – Modal shapes of the building. 
 

TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

5 0.5013 28.4619 29.2625 4 0.5072 50.2205 51.4709 
6 0.4684 22.6369 51.8994 12 0.3592 8.2557 61.7957 

11 0.3810 3.3445 55.7767 28 0.2885 4.9935 67.6308 
27 0.2943 3.4507 60.1516 30 0.2737 6.7693 74.5578 
29 0.2827 5.9720 66.1403 59 0.1430 0.2878 81.0464 
31 0.2711 8.9508 75.1322     
35 0.2349 1.1053 76.4739     
60 0.1402 0.7184 82.8708     

Table 3. S. Giovanni Maggiore “as is” – Modal Participating mass ratios 
 

  
Second Mode T = 0.59 sec Fourth Mode T = 0.55 sec Fifth  Mode T = 0.48 sec 

Figure 6. S. Paolo Maggiore “as is” – Modal shapes of the building.  
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TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

2 0.5909 17.5115 17.5135 1 0.6493 7.6043 7.6043 
9 0.4196 20.7699 39.6810 3 0.5514 1.5782 9.1944 

14 0.3580 2.5988 43.6750 4 0.5511 11.6010 20.7954 
15 0.3584 8.4881 52.1631 6 0.4581 25.6356 46.4528 
22 0.3408 1.1424 53.8622 7 0.4465 1.4861 47.9389 
25 0.3314 6.6361 61.3447 17 0.3547 1.8963 50.0004 
41 0.2840 3.1567 66.4612 24 0.3348 1.5099 51.8201 
54 0.2273 1.0180 69.1719 26 0.3284 5.8488 58.1490 

    27 0.3272 1.1108 59.2598 
    39 0.3078 3.9930 64.7309 
    45 0.2620 2.3950 66.7091 
    60 0.2075 2.7389 74.1130 

Table 4. S. Paolo Maggiore “as is” – Modal Participating mass ratios 
 

      3.2. RIGID DIAPHRAGMS MODELS 

Examining the more representative modal shapes of buildings with rigid diaphragms, 

a clearly different behaviour with respect to buildings without rigid diaphragms can 

be noticed in Fig. 7, 8, 9 and 10.  

Analyzing the first modes, rigid deformations in the transversal directions do not 

show the out of plane behaviour observed in the previous models. In particular, the 

structural schemes are stiffer and more monolithic than the previous ones, as 

suggested by the marked reduction of vibration periods as well (SGMR: T=0.26 s; 

SI: T=0.29 s; SGMG: T=0.42 s, SP: T=0.52 s). 

This variation is also visible in the total mass participating factors since fewer 

modes are needed to reach significant participating masses (Tab. 5-6-7-8).  
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First Mode T = 0. 26 sec Second Mode T = 0. 21 sec Third Mode T=0. 17 sec 

Figure 7. S. Giovanni a Mare with rigid slabs – Modal shapes of the building. 
 

TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

1 0.2576 72.0278 72.0278 2 0.2108 54.8590 54.8617 
3 0.1733 1.1963 73.2339 4 0.1498 14.1895 69.0808 
9 0.1134 3.181 77.6987 5 0.1352 2.3948 71.4755 

15 0.08876 7.2941 85.3091 6 0.1341 6.4473 77.9228 
    11 0.0982 3.9994 82.3417 

Table 5. S. Giovanni a Mare “rigid slab” – Modal Participating mass ratios. 
 

   
First Mode T = 0.29 sec Sixth Mode T = 0.22 sec Seventh Mode T = 0.19 sec 

Figure 8. S. Ippolisto with rigid slabs – Modal shapes of the building. 

 
TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

1 0.2898 79.4699 79.4699 2 0.2731 1.0973 1.2151 
11 0.1077 4.3497 84.6323 4 0.2644 1.2673 3.4543 

    6 0.2151 72.8354 76.2897 
    7 0.1859 6.4112 82.7009 

Table 6. S. Ippolisto “rigid slab” – Modal Participating mass ratios. 
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Fourth Mode T = 0. 42 sec Seventh Mode T = 0. 40 sec Eightieth Mode T=0. 32 sec 

Figure 9. S. Giovanni Maggiore with rigid slabs – Modal shapes of the building. 

 
TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

7 0.4002 70.1181 70.3515 4 0.4242 64.7336 65.8515 
8 0.3215 3.5853 73.9368 6 0.4063 8.4173 74.2794 
9 0.3198 3.1766 77.1134 40 0.1984 1.0515 76.6279 

44 0.1763 1.2113 80.1854 49 0.1625 1.9965 80.5213 
Table 7. S. Giovanni Maggiore “rigid slab” – Modal Participating mass ratios 
 

   
Third Mode T = 0. 52 sec Sixth Mode T = 0. 40 sec Seventh Mode T=0. 39 sec 

Figure 10. S. Paolo Maggiore with rigid slabs – Modal shapes of the building.  
 

TRANSVERSAL DIRECTION (X axe) LONGITUDINAL DIRECTION  (Y axe) 

MODE PERIOD 
[sec] 

Mi/Mtot  
[%] 

Σ Mi/Mtot 
[%] MODE PERIOD 

[sec] 
Mi/Mtot  

[%] 
Σ Mi/Mtot 

[%] 

4 0.4784 2.4545 2.4675 1 0.6335 2.7973 2.7973 
6 0.3976 50.7869 53.2544 3 0.5169 5.9929 8.7902 
7 0.3906 6.3610 59.6154 6 0.3976 7.2138 16.1220 
8 0.3790 6.1488 65.7642 7 0.3906 49.1364 65.2584 

44 0.2129 1.9213 70.9710 32 0.2932 2.5973 68.9197 
58 0.1680 1.7771 76.5010 50 0.2033 0.2439 76.2620 

Table 8. S. Paolo Maggiore “rigid slab” – Modal Participating mass ratios. 
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4. SEISMIC ACTIONS DISTRIBUTION 

Linear analyses of the whole structural complex allow individuating the stress 

distribution among the macroelements constituting the church. 

The results of the linear static and modal analyses, carried out on three-

dimensional models of buildings, with and without rigid slabs, are reported in Fig. 

11, 12 and 13.  
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Figure 11. Vtot/Wtot – Total shear at the base of the buildings normalized to the total weight.  

 

In Figure 11, on the horizontal axis two groups of bars are reported: “as is” and 

rigid slab models; on the vertical axis, the total base shear Vtot normalized to the total 

weight Wtot is indicated. In the histograms four bars per each model are reported; 

they are related to the case of equivalent static analysis with values of forces 

provided by DM96 and EC8 codes and of modal analyses with DM96 and EC8 

spectra. The values of the total participating masses of the structures on which the 

analyses have been done are also reported. As it can be seen, the range varies from a 
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minimum of 71% to a maximum of 88%, never reaching the whole 100% as deduced 

from the static equivalent analyses. This is the reason why, in the modal analyses the 

values of Vtot/Wtot are always inferior to the static analyses.  

The results reported in the histograms of Figure 11 show a marked reduction of 

base shear passing from static analyses to dynamic analyses. This obvious reduction 

contextually points out the need of taking into account the largest possible number of 

vibration modes.  
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Figure 12. Vi/Wtot – Shear in the single elements normalized to the total weight.  

In Fig. 12, the total amount of shear (plotted in Fig. 11) is distributed among the 

macro-elements. Because in each diagram the transversal and the longitudinal 

elements are both present, their sum will not be equal to the value reported in the last 

pictures. On the other side, it is noticeable that the macroelements placed in the same 

direction of the seismic action absorb more stresses than the elements out of plane. 

The histograms in Fig. 13 and 14, report for the four study cases (SGMR, SI, 

SGMG, SP), the shear absorbed by the single elements Vi normalized to the total 



                                                                                         Chapter 3 – Linear Analyses                                                               76 

shear Vtot for a seismic action coming from the transversal direction (X) and the 

longitudinal one (Y). In the histograms two bars per each structural element are 

reported, related respectively to the static analyses without and with the rigid 

diaphragms.  

The analyses of the results reported in Fig. 13 and 14 allow deriving information 

on the stress distribution of churches in the two modelling hypotheses. 
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Figure 13. Vi/Vtot – Shear of the single elements normalized to the total shear along X.  
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Figure 14. Vi/Vtot– Shear of the single elements normalized to the total shear along Y. 

 

Generally, it is fairly evident that in the X direction, the transversal elements 

absorb larger amount of base shear and that in the Y direction, the values of shear for 

longitudinal macroelements are greater than in the perpendicular direction. More 

comments are possible going into detail for the different church models. 

 

      4.1. STRUCTURES WITHOUT RIGID DIAPHRAGMS 

In the structures without rigid diaphragms, static and dynamic analyses in both 

directions show a stress concentration in the stiffer elements. In the transversal 

direction, they are the external elements such as the façade and the apse 

(macroelements T1X and T6X in SGMR; T1X, T2X and T8X in SI; AbsX, T1X and 

T8X in SGMG; AbsX, T1X, T2X and T11X in SP) and the transept area (SGMR 

hasn’t got it, T3X in SI, T2X in SGMG; T4X in SP). In the longitudinal direction, 

they are located in correspondence of the external elements (L1Y and L6Y in 

SGMR; L1Y and L4Y in SI; L1Y and L6Y in SGMG; L1Y and L6Y in SP) and in 

the arcades which separate the principal nave from the lateral ones (L3Y and L4Y in 

SGMG; L3Y and L4Y in SP). 
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      4.2. STRUCTURES WITH RIGID DIAPHRAGMS 

The analyses on buildings with rigid diaphragms highlight the transfer of the 

actions from less stiff to stiffer elements. Generally, external elements absorb a larger 

amount of base shear in the model without rigid diaphragms.  

 

earthquake in the TRANSVERSAL direction 
Church macroelemen

t 
“as is” Rigid slab 

T1X 13% →     21% SGMR 
T6X 11% →     19%  
T1X 8% →     12% 
T8X 16% →     27% SI 
T3X 12% ←       8% 

ABSX 9% →     11% 
T8X 13% →     17% SGMG 
T2X 19% ←     16% 
T2X 13% →     14% 

T11X 15% →     19% SP 
T4X 18% ←     16% 

Table 9. Stress transfer from less stiff to stiffer elements in the transversal direction. 

 

earthquake in the LONGITUDINAL direction 
Church macroelemen

t 
“as is” Rigid slab 

L1Y 21% →     34% SGMR 
L6Y 20% →     32%  
L1Y 24% →     35% SI 
L4Y 23% →     28% 
L1Y 12% →     14% 
L6Y 14% →     16% 
L3Y 15% ←     14% 

SGMG 

L4Y 16% ←     14% 
L1Y 10% →     13% 
L6Y 10% →     11% SP 

L3Y-L4Y 13% ←     14% 
Table 10. Stress transfer from less stiff to stiffer elements in the longitudinal direction. 
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In Tab.9 and 10 the variation of shear absorbed by the elements for each church is 

reported. The elements which have an increase of stresses due to the rigid 

diaphragms in the plane are the external ones, while all the others, less stiff, present a 

reduction of the stresses. Also in the buildings with rigid slabs the dynamic analyses 

confirm substantially the results of the static analyses. 

 

      4.3. OUT OF PLANE CONTRIBUTION 

From the analyses on buildings with and without rigid elements, the contribution of 

the orthogonal elements in the direction of the earthquake can be derived as well. 

They are depicted in Figures 13 and 14 and summarized in Tab. 11.  

 

Transversal direction Longitudinal direction Church 
“as is” Rigid slab “as is” Rigid slab 

SGMR 14% →     9% 27% →     23% 
SI 16% →     13% 26% →     21% 

SGMG 19% →     18% 14% ↔     14% 
SP 14% ↔     14% 12% →     11% 

Table 11. Transfer of the contribution of the orthogonal elements – transversal and 
longitudinal direction. 

 

It can be affirmed that the contribution of the orthogonal elements in the schemes 

with rigid diaphragms is slightly inferior to those without diaphragms and that in the 

transversal direction a larger contribution than longitudinally can be noticed. 

 

5. STRENGTH DEMAND  

The results of the analyses in terms of strength demand (that seismic action imposes 

to the structural elements) are provided in Figure 15 and 16.  
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Figure 15. Vi/Wi – Shear of the single elements normalized to their weight.  
 

In both the Figures, on the abscissa axis the label of the macroelements and on the 

ordinate axis the value of the shear absorbed from the single element is reported. In 

Figure 15 these shear values are normalized to the vertical load acting on the element 

Wi, and in Figure 16 to the total weight Wtot. In each diagram only the contribution 

of the elements in the direction of the earthquake is reported; for each element the 

two bars refer to the “as is” and with diaphragms.  

Examining the Figure in more detail, it can be noticed that larger strength 

demands are generally concentrated in the external elements. In the scheme with 

rigid diaphragms there is an even larger concentration in the stiffer elements. In 

Tables 12 the range of variability for models with and without rigid diaphragms in 

both directions is reported.  
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Vi/Wi RANGE OF VARIABILITY 
“as is” models rigid slab models Church 

Long. Dir. Trans. Dir. Long. Dir. Trans. Dir. 
SGMR 43% ÷ 107% 57% ÷ 93% 18% ÷ 89%   32% ÷ 54% 

SI 43% ÷ 74% 27% ÷ 70% 17% ÷ 85%   17% ÷ 94% 
SGM

G 
31% ÷ 59% 33% ÷ 59% 36% ÷ 82%   52% ÷ 72% 

SP 37% ÷ 70% 34% ÷ 53% 18% ÷ 52%   21% ÷ 65% 
Table 12. Vi/Wi – Range of variability in the “as is” and Rigid slab models. 
 

MINIMUM STRENGTH DEMAND 
“as is” models rigid slab models Church 

Long. Dir. Trans. Dir. Long. Dir. Trans. Dir. 
SGMR  6%  ÷ 97% 20%÷104% 17%÷102% 3% 

SI 30% ÷ 93% 19%÷111% 33%÷134% -- 
SGM

G 
  2% ÷ 66%  3% ÷ 63% 19%÷ 96% -- 

SP   9% ÷ 83% 28% ÷ 74% 32%÷ 90% -- 
Table 13. Range of variability of the minimum strength demand. 
 

Furthermore, in Table 13 the strength demand in terms of minimum and 

maximum values is provided. These values are substantially confirmed in Figure 16, 

in which the shear values Vi are normalized to the total vertical weight Wtot. These 

representation provides qualitative indications, concerning the repartition of global 

actions, and quantitative indications, on the entity of the seismic action on the 

building in the two cases (with and without rigid slab). 

 
6. CONCLUSIONS 

In this chapter the seismic behaviour of the four study cases has been analyzed. This 

study has been developed through static and dynamic analyses on models of the 

buildings with and without rigid diaphragms. The analyses on the schemes in the 

hypothesis of absence of the rigid diaphragm have highlighted the complexity of the 

dynamic behaviour of this typology and the particular vulnerability to seismic 

actions. The modal shapes for the analyzed buildings, furthermore, have shown low 
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torsional and transversal stiffness of the buildings and great out of the plane 

deformation. 

These problems are subdued in the behaviour of buildings with rigid slabs, 

characterized by a greater global stiffness (especially in torsional terms) and a more 

monolithic behaviour. The introduction of rigid diaphragms implies a global 

improvement of the buildings, even if this effect is not completely beneficial. 

Because the heights at which the roofs are located are different (principal naves are, 

generally, higher than the secondary naves) it is possible to notice some 

discontinuities. It has been noticed, furthermore, a stress concentration in the stiffer 

elements of the buildings (façade elements and in the transept zone) which absorb a 

greater amount of the total shear compared to the scheme without rigid diaphragms. 

In the longitudinal direction the external elements, stiffer than the internal ones, are 

more stressed than in the case without diaphragms, whilst internal elements are 

almost unloaded. 
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CHAPTER 4: 

FEM NON LYNEAR ANALYSES 
 

 

1. INTRODUCTION 

The mathematical modelling of masonry shows several difficulties that rise from the 

need to take into account the non linear behaviour and the progressive degradation of 

the stiffness when strains increase. In case of old stone masonry other irregularities 

are added. Different dimension and location of the stones, non homogeneity in the 

distribution of the mortar, great scattering of the mechanical characteristics of the 

elements and uncertainty on the structural complex have to be considered.  

In this chapter, non linear analyses on bi-dimensional elements are carried out 

through the computer code ABAQUS [HKS, 2004]. On the base of the results of 

these analyses, some considerations are made with reference to the confidence of the 

adopted model.   
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2. MODELLING THROUGH ABAQUS 

All the macroelements constituting the basilicas have been subjected to non linear 

analyses using a smeared cracking approach as implemented in the computer code 

ABAQUS. The computational mechanic of the brittle structures has been approached 

in the past through two different ways: discrete and smeared cracked models. In the 

first one, the cracking is considered through modifying the geometry whether the 

internal parts of the body are linear elastic [Alexandris A. et Al.., 2004; Azevedo et 

Al. 2000; Lemos, 2004; Schlegel R. & Rautenstrauch K., 2004; Tzamtis A.D. & 

Asteris P.G., 2004]; the second one considers fixed the geometry and introduces the 

cracking process only through constitutive law. In big or complex structures, the 

smeared model is preferred to the discrete one for the difficulties into following the 

developing of all the cracks. In the smeared models the cracking process is entirely 

introduced through constitutive laws and some important phenomenon like the 

tension stiffening, rotating or fixed multiple cracks, softening in tension and 

compression have been introduced. 

On the other side, this model has the disadvantage of being mesh-dependent. Two 

types of mesh dependency can be highlighted: 1) mesh organization: mechanisms of 

localization can be captured or addressed by the topology of the elements; 2) mesh 

dimensions. The last problem can be overcome putting into relation some 

constitutive model parameters with the dimension of the elements (i.e. fracture 

energy has to remain constant). The first one has been avoided by adopting some 

regularization technique. 

Caporale [A. Caporale, R. Luciano, 2002] shows how the post peak behaviour  is 

influenced by the deformation localization phenomena so that the numerical solution  

is mesh and arc-length dependent.   

  The smeared cracking model proposed in ABAQUS is called “concrete” and it is 

good for relatively monotonic loadings under fairly low confining pressure. Cracking 

is assumed to be the most important aspect of the behaviour and dominates the 
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modelling. It is assumed to occur when the stresses reaches a failure surface called 

“crack detection surface”. The presence of cracks enters into these calculations by the 

way the cracks affect the stress and the material stiffness associated with the 

integration point. When the principal stress components are dominantly compressive, 

the response of the concrete is modelled by an elastic-plastic theory using a simple 

form of yield surface written in terms of the first two stress invariants. Associated 

flow and isotropic hardening are used.  

The cracking and compression responses are illustrated by the uni-axial response 

depicted in Fig. 1.a. When the material is loaded in compression, it initially exhibits 

elastic response. As the stress is increased, some inelastic straining occurs and the 

response of the material softens. The softener unloading response is neglected by the 

model. When an uni-axial specimen is loaded into tension, it responds elastically 

until, at a stress that is around the 10% of the ultimate compressive stress, the 

material loses strength through a softening mechanism. This is a damage effect and 

the model neglects any permanent strain associated with cracking.  

In multi-axial stress states, these observations can be generalized through the 

concept of surfaces of failure and of ultimate strength in stress space (Fig. 1.b).  

 

(a) (b) 
Figure 1. a) Uni-axial behaviour of plain concrete; b) Concrete failure surface in plane stress. 
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Since ABAQUS is a stiffness method code and the material calculations used to 

define the behaviour of the material are carried out independently at each integration 

point, the solution is known at the start of the time increment. The constitutive 

calculations (based on the current estimate of the kinematic solution for the response 

at the spatial integration point during the increment) provide values of stress and 

material stiffness at the end of the increment. Once cracks exist at a point, the 

component forms of all vector and tensor quantities are rotated so that they lie in the 

local system defined by the crack orientation vectors. 

The model, thus, consists of a compressive yield/flow surface to model the 

response in predominantly compressive states of stress, together with damaged 

elasticity to present cracks that have occurred at a material calculation point.  

The model uses the classical concepts of plasticity theory: strain rate 

decomposition into elastic and inelastic strain rates, elasticity, flow and hardening. 

In the definition of the compression yield, the value of the magnitude of each 

nonzero principal stress in biaxial compression and the stress magnitude in uni-axial 

compression (σbc/σc) is given on the 1° FAILURE RATIO data line. In the same 

way, the ratio of the uni-axial tensile stress at failure to the uni-axial compressive 

stress at failure (σt/σc) is given on the 2° FAILURE RATIO data line. 

In the definition of the flow, the value given on the 3° FAILURE RATIO option 

is representative of the ratio of εpl in a monotonically loaded biaxial compression test 

to εpl in a monotonically loaded uni-axial compression test. 

In tension, cracking dominates the material behaviour. The model uses a “crack 

detection” plasticity surface in stress space to determine when cracking takes place 

and the orientation of cracking. Damaged elasticity is then used to describe the post-

failure behaviour of the material with open cracks. About the crack orientation, 

although some models have been proposed (fixed model with orthogonal cracks, 

rotating model, fixed model with multidirectional cracks), the used model by 

ABAQUS is the first one. The perpendicular to the first crack that occurs in a point is 
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parallel to the maximum principal tension stress; the model remembers this direction 

so that the following cracks could form only in direction perpendicular to the first 

one. 

The value of the tensile failure stress σI in a state of biaxial stress when the other 

nonzero principal stress σII, is at the uni-axial compression ultimate stress state is 

defined by the 4° FAILURE RATIO. 

Another important aspect of the model is the TENSION STIFFENING, which 

consists in the hypothesis that once the cracking tension stress is reached, the 

strength doesn’t decay suddenly; the stress-strain curve will be zero covering a 

descending rectilinear or curved path, definable by the user.    

After all, the utilization of the “concrete” model in ABAQUS requests the 

definition of the following parameters by the user: 

1. Young module (normal elasticity module);  

2. Poisson module (transversal contraction coefficient);  

3.  (whatever) Constitutive model assigned for values of tension and correspondent 

plastic strain rates;  

4.    Tension Stiffening or the tension strength decay once the cracking is reached; 

5.    Failure ratios:  

       1: ratio of the ultimate biaxial compressive stress to the uni-axial compressive 

ultimate stress. 

       2: absolute value of the ratio of uni-axial tensile stress at failure to the uni-axial 

compressive stress at failure. 

      3: ratio of the magnitude of a principal component of plastic strain at ultimate 

stress in biaxial compression to the plastic strain at ultimate stress in uni-

axial compression. 

      4: ratio of the tensile principal stress value at cracking in plane stress, when the 

other nonzero principal stress component is at the ultimate compressive stress 

value, to the tensile cracking stress under uni-axial tension. 



                                                                         Chapter 4 – FEM non lynear analyses 88 

 

3. MODEL CALIBRATION 

In order to correctly calibrate the model parameters, a curve fitting procedure was 

made by [Giordano A., 2002] using the results of the experimental tests on masonry 

tuff walls conducted at the ISMES in Bergamo. The natural stone blocks, deriving 

from the demolition of ancient Neapolitan buildings, were subjected to different set 

loadings, both monotone and cyclic, in order to determine the values of the elastic 

modules and the ultimate resistance. These data have been used in a finite element 

model to define the parameters in the σ-ε curve. Extended sensibility analyses have 

been conducted again by [Giordano A., 2002] to improve the correspondence 

between the experimental results and those numerically obtained. The model, applied 

to masonry with very low strength values, appears extremely sensitive even to small 

variation.  

About the TENSION STIFFENING option, although it could appear a non-sense 

in the case of masonry, small tension strength has been maintained in the cracking 

process in order to stabilize the numerical algorithm. The Riks algorithm has been 

used to push the analysis towards the descending load branch, without the need to 

carrying out simulations in displacement control.    

The following parameters have been used in the adopted model. 

1.   Young module: E=1.1 E+9 (N/m2); 

2.    Poisson module: n= 0.1;  

3. Constitutive model: as reported in Fig. 2; 
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Figure 2. Constitutive model adopted into the definition of the “concrete” properties.  

 

4.    Tension Stiffening: displacement = 3mm; 

5.    Failure ratios:  

       1: 1.16 (by default); 

       2: 0.1 (0.09 by default); 

       3: 1.33 (1.28 by default); 

       4: 0.3 (0.33 by default). 

 

4. BEARING CAPACITY IN THE FOUR STUDY CASES 

4.1. S. GIOVANNI A MARE 

The plan of the church with the individualization of the macroelements is reported in 

Fig. 3. From Fig. 4 to Fig. 13 a summary of the non linear analyses per each 

macroelement is reported. The visualization of the plastic strain tensor for forces 

coming from both directions and the plot of the force/displacement curve are 

depicted. On these curves, the maximum value reached by the collapse multiplier for 

each analysis is highlighted. 
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Figure 3. SGMR – individuation of the macroelements in plan. 
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Figure 4. L1 macroelement – a)Plastic strain tensor; b) Force/Displacement curve. 

 

This macroelement is not symmetric in geometry and load condition so that four 

analyses have been carried out (two of them for the self weight with horizontal 

actions in the right and left verse and other two for the self weight plus the dead load 

with seismic actions again in the two verses in the plane). Two aspects of these 

analyses can be clearly noticed: the first one is that the two curves relevant only to 

the self weight reach values that are double the ones of the analyses with the dead 

load included. Furthermore, the plastic branch is reached only in the analysis with 

horizontal forces coming from the left verse considering the self weight. Then, the 
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horizontal stiffness is fairly different. Surprisingly, in the analyses with self weight 

plus the dead load the values are bigger than the analyses with only the self weight 

and they are dependent on the verse of the force.  

When the forces are coming from the left side, the analysis stops when the collapse 

of the pier is obtained; in the opposite direction the condition for which the collapse 

occurs is for the opening of the cracks at the top of the panel in correspondence of 

the roof transmission loads.  
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(a) (b) 
Figure 5. L2 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

Also in this macroelement, four different analyses have been carried out. In the right 

verse the two curves (with and without the dead loads) seems to tend to the plastic 

branch; on the contrary, when the horizontal actions come from the left side, the 

analyses stop during the crescent phase. The horizontal stiffness is almost the same 

(independently from the load condition) except when the forces come from the left. 

In terms of strength the results are quite different. For left forces, the collapse of the 

pier sustaining the main arcade is determinant for the collapse. This happens because 

the horizontal thrust of the arch sums to the seismic force and there is no contrast 

from the following arcades. On the contrary, when the forces are coming from the 
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right direction, an effective contribute of the other arcades can be noticed so that the 

values of the collapse multiplier are higher than the previous ones. In both cases, 

anyway, the analyses stop for the opening of the cracks at the top of the main pier or 

at the base of the small piers. 
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Figure 6. L3 and L4 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

A decrease in the horizontal stiffness and in the collapse multiplier can be noticed in 

the model with self weight and dead load. At the same time the stiffness and the 

value of the bearing capacity are consistent in the models independently from the 

verse of the seismic action. The collapse conditions are due to the crack openings at 

the base of the piers with a linear behaviour until the reaching of the maximum 

strength. 

 

In Fig. 7 Although the collapse mechanism is close to the storey one, the great 

discrepancy between the dimensions of the pier on the left and the other ones on the 

right leads to great differences in terms of collapse multiplier depending from the 

verse of the force. When the forces come from the left part, in the first pier on the 

right the seismic action sums to the horizontal thrust of the arch. Independently from 
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the presence of the dead load, the analyses with seismic force coming from right give 

larger values than the analyses with forces coming from left.  
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Figure 7. L5 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Figure 8. L6 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

The analyses carried out on the model with the sole self weight give results somehow 

larger than the analyses with the included dead load. The horizontal stiffness is fairly 

the same in the four load conditions. The analysis stops for local cracking 

phenomenon at the top of the panel in correspondence of the loads coming from the 
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roof. The percentage of the dead load compared to the self weight is only of the 17% 

but the curves with the dead load break when they are still in the linear branch. 
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Figure 9. T1 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

The macroelement shows the classic behaviour of the stocky panel. The formation of 

compressed areas in correspondence of the corners at the bottom of the panels, with 

forces in the alternative directions, is individuated. Smaller values of the collapse 

multiplier and of the horizontal stiffness can be seen in the diagram in presence of 

the self weight and the dead load. The linear behaviour of the curves is shown until 

the reaching of the maximum values, although a starting of the plastic branch is 

detectable.  
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Figure 10. T2 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

In this macroelement, only a decrease of the stiffness can be noticed in the model 

with the self weight and the dead load. Because of the clear storey mechanism of this 

panel, the collapse occurs for a series of plastic hinges at the top and the bottom of 

the piers. The plastic branch is more visible in the cases with the dead load instead of 

the cases with the self weight only. 
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Figure 11. T3 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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This macroelement is symmetric only for the geometry but not for the load condition; 

this is the reason why three curves are depicted in the plot. A decrease of strength 

and stiffness can be noticed in the diagrams in the case of self weight plus dead load 

model; indeed the ratio between the dead load and the self weight is equal to 0.865 so 

fairly close to unity.  
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(a) (b) 

Figure 12. T4 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

This macroelement is very similar to the previous one in terms of geometric shape 

but is differently loaded. Horizontal stiffness and collapse value are different 

according to the load considered case. After the linear behaviour, increasing 

displacements more than the loads can be detected until the collapse. 

 

In Fig. 13 the symmetrical geometrical structure is loaded in a non symmetric way. 

This is the reason why three curves are shown. In terms of strength, the models 

inclusive of the dead load stop in the elastic branch with small values compared to 

the analysis with only the self weight which clearly reaches the horizontal branch. 

The discrepancy in the collapse values can be found also in the ratio between the 

intensity of the dead load on the self weight of the element that is 77.4 %. 
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Figure 13. T5 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Figure 14. T6 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

A decrease in terms of strength and collapse values can be detected in the models 

comprehensive of the dead load. The stocky panel lacks openings and indeed, the 

formation of compressive areas in correspondence of the corners at the bottom of the 

element is the cause of the collapse for forces coming in both the directions. 
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4.1.1. SUMMARY OF THE RESULTS IN SGMR 

In Figure 15 the summary of the smallest collapse multipliers for each macroelement 

is reported. In the picture on the top the results for the only self weight condition and 

in the picture on the bottom for the load condition of self weight plus dead load are 

reported. In both the pictures, the values assumed by the horizontal stiffness are 

clear: the external elements (L1, L6, T1, T6) which are lacking openings and fairly 

stocky shape have a greater stiffness than the internal elements. More into the detail, 

it can be noticed that the curves for the self weight reach more easily the plastic 

branch than the curves of the models with the self weight and the dead load. 

Furthermore, the collapse multiplier values of the first figure are generally larger and 

bear smaller displacements than the second one. 
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Figure 15. Summary of the curves in SGMR. 

 

4.1.2. STRENGTH VS CAPACITY IN SGMR 

In order to assess the seismic vulnerability of the macroelements constituting the 

churches, two values descending from different analyses can be compared. They are 

the strength demand (coming from linear analyses and already exposed in the 

previous chapter) and the bearing capacity (coming from non linear analyses and 

herein illustrated). Already [Abrams D.P., 1997, 2000], conducing some experiments 

on two reduced-scale, unreinforced clay-unit masonry buildings subjected to 

simulated earthquake motions on a shaking table, measured the response of estimated 

base shear demand versus capacity.  

In Fig. 16 the comparison between the two values of each macroelement is 

reported. In other words, from the linear analyses it is possible to determine the 

amount of shear stress each element needs when a seismic wave acts in its direction. 

More in detail the results for the two models in presence of a rigid diaphragm or “as 

is” can be compared to the results obtained from the non linear analyses which show 
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the bearing capacity of the element. In particular, two bars representing the minimum 

and the maximum capacity in presence of self weight and dead load are reported. It is 

noticeable that, the internal macroelements are easily subjected to damages in case of 

horizontal action because of the smaller values of the capacity compared to the 

strength. On the contrary, the external macroelements (the façade and the 

longitudinal walls) have shown a good behaviour in the non linear analyses so that, it 

seems they are able to bear the action.  
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Figure 16. Strength against capacity in SGMR. 
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4.2. S. IPPOLISTO 

The same scheme followed in SGMR has been adopted for the other churches. 

Therefore, in Fig. 16 there is the plan with the macroelements and in the following 

pictures (from Fig. 17 to Fig. 25) the analyses of the single macroelements are 

reported in detail. 
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Figure 17. SI - Individuation of the macroelements in plan. 
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Figure 18. L1 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 



                                                                         Chapter 4 – FEM non lynear analyses 102 

The small incidence of the dead load compared to the self weight shows similar 

results for the modelling with and without the dead load. The collapse multipliers for 

forces coming from the left side are bigger than the values coming from the right 

side. This is clearly explained noticing that a severe damage will form in 

correspondence of the connection between the high panel and the remaining part of 

the element. All the analyses will stop in consequence of the crack openings. 
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Figure 19. L2 & L3 macroelements – a) Plastic strain tensor; b) Force/Displacement curve. 

 

In this macroelement the coupling of the two collapse mechanisms of storey in the 

right part and panel in the left part is shown. This particularity can be evidenced in 

the different strength values according to the verse of the seismic action. When 

forces are coming from the left side, there isn’t enough contrast in the last pier such 

as when the forces are coming from the right side where a stocky panel can better 

absorb the actions. This is the reason why the values of the collapse multiplier are 

bigger for forces coming from the right side (independently from the load condition). 

The presence of the dead load influences, on the contrary, the horizontal stiffness of 

the panel as can be noticed in the plot. The plastic branch develops in almost all the 

four curves.  
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Figure 20. L4 macroelement – a) Plastic strain tensor;  b) Force/Displacement curve. 

 

This macroelement is characterized by the presence of three zones with different 

mechanical behaviour. The two external parts are close to the storey mechanism, 

while the central part is a stocky element. This configuration has an implication in 

the collapse multipliers: for forces coming from left a strength contribution is 

provided both from the central panel and the two external frames. When the forces 

are coming from right, the severe damage in correspondence of the beginning of the 

high panel on the left limits the value of the bearing capacity. This aspect reflects 

also in the horizontal stiffness which assumes different values according to the verse 

of the force independently from the load condition. 

 

In Fig. 21, the apse of the church, lacking openings, shows the classical behaviour of 

the stocky panel. The typical stress concentration for compression in correspondence 

of the hypothetic rotation hinge and the cracks’ opening in the opposite side is the 

cause of the collapse. The small ratio of the dead load over the self weight influences 

only in a small part the value of the collapse multiplier and not at all the value of the 

horizontal strength. 
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Figure 21. T1 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

In Fig. 22, for the triumphal arch the storey mechanism is assumed to form in the 

collapse process. The two piers show slender cantilever behaviour: at the base of the 

columns tension and compression stresses in the opposite sides are evident. Oddly, 

the model provided of self weight and dead loads has a strength value smaller than 

the model with the self weight only, but the stiffness is bigger than the other one. 
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Figure 22. T2 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Figure 23. T3 macroelement – a) Plastic strain tensor;  b) Force/Displacement curve. 

 

The symmetry of the geometry and the loads lead to the tracing of only two curves 

(one with the self weight and another one with self weight and dead load). The 

macroelement is constituted of two coupled elements which present the classic storey 

mechanism for the presence of column elements in the inferior part and the beam 

element in the upper part. The conventional load-displacement curve shows a linear 

behaviour until the non linearity with displacements bigger than the loads reach the 

maximum strength. Although the dead loads are the almost the 15% of the self 

weight, the strength value are very close the different stiffness can be noticed. 
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Figure 24. T4 – T5 – T6 – T7 macroelements – a) Plastic strain tensor; b) 
Force/Displacement curve. 
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Similarly to the previous macroelement, in Fig. 24 the repetitive elements along the 

development of the church have been assimilated to the storey mechanisms. Again, a 

greater stiffness and smaller bearing capacity are assumed by the model with the self 

weight and the dead load.  
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Figure 25. T8 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

Although in the panel some openings are present, the general behaviour of the 

element can be assumed as a stocky one. The course of openings at the base of the 

element defines some panels with a storey mechanism. Evident are the areas, close to 

the rotation corners where compression stresses are concentrated. A small plastic 

branch can be detected after the linear behaviour. The small amount of the dead load 

does not influence the horizontal stiffness and the bearing capacity of the panel. 

 

  4.2.1. SUMMARY OF THE RESULTS IN SI 

Again, the summarized values of the two analyses types are reported in Fig. 26.a and 

b. When the self weight and the dead load are considered, plastic branch and greater 

displacements are reached more easily. Again, the stockier elements have a greater 

stiffness than internal elements whose collapse is closer to the storey mechanism 

with a series of columns and a beam on the top.  
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Figure 26. Summary of the curves in SI 

 

4.2.2. STRENGTH VS CAPACITY IN SI 

In fig. 27 the comparison between strength and capacity is plotted. Again, the first 

two bars represent the strength in the two models (“as is” and with rigid slab) and the 

last two the capacity (minimum and maximum). For symmetrical elements only one 

bar is reported in terms of bearing capacity (being the seismic action equal in both 
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the directions). The seismic vulnerability of the internal elements compared to the 

external ones can be noticed as well. 
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Figure 27. Strength against capacity in SI 
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4.3. S. GIOVANNI MAGGIORE 

The macroelements of this church are visualized in the plan of Fig. 28 and are 

analyzed into detail from Fig. 29 to Fig. 36. 
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Figure 28. SGMG - Individuation of the macroelements in plan. 
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Figure 29. L1 & L6 macroelements – a) Plastic strain tensor; b) Force/Displacement curve. 
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From the observation of the deformed shape three different areas with different 

behaviour can be individuated. In particular, the two external panels are 

characterized by the typical rocking mechanism with the concentration of 

compression stresses in correspondence of a corner and tension stresses in the 

opposite one. The central panel, with a lengthened shape, will have the tendency to 

collapse due to shear. The dead load condition has been neglected due to very small 

value. When forces are coming from the left side, the damage in correspondence of 

the development of the high panel on the right can be detected. Again, when the 

horizontal forces are coming from the right verse, a crack will form at the beginning 

of the other high panel. Therefore, when forces are coming from whenever verse, the 

opening of a crack will be noticed in the opposite part; once the high panel on the 

right and once on the left, characterized by different dimensions and so different 

strengths will cause the collapse. For this reason, the collapse multiplier with forces 

coming from the left verse is smaller than with forces in the opposite verse. The 

horizontal stiffness is the same in both the directions.    
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Figure 30. L2 & L5 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
 

This macroelement assumes the classic behaviour of a frame with the formation of 

hinges at the base of the pillars with tension and compression areas in the opposite 
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sides. Independently from the load condition, for seismic action coming from the left 

side, the strength factors are smaller than the other ones coming from the right side 

because of the lacking of an opposition of some structural elements at the end of the 

slender right column and the crack opening between the high and the low part. This 

phenomenon does not occur with forces in the other direction where the horizontal 

thrust is better absorbed by the left side. The stopped analysis is due to the cracks 

opening at the top of the biggest pier or at the base of smaller piers. The small 

amount of the dead load compared to the self weight does not influence the values of 

the collapse multiplier and the horizontal stiffness.  
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Figure 31. L3 & L4 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

This macroelement has the same behaviour of the former one, but in the right part of 

the panel there is the presence of some external walls. For this reason, although the 

storey mechanism is the same, there is less discrepancy in the strength values. The 

opening of a crack in the corner between the high and the low part can not occur 

anymore and the analysis stops due to the cracks opening at the top of the biggest 

pier or at the base of smaller piers. The 11% of the dead load compared to the self 

weight influences significantly the values of the collapse multiplier and the stiffness.  
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Figure 32. T1 macroelement – a); b) Force/Displacement curve. 

 

Although some small openings are present at the base of the element, the 

macroelement is constituted of two big lateral panels joined through the arch. 

Therefore, the rocking collapse mechanism can be observed. The symmetry of the 

geometry and loads has implied only two analyses. The 17% of the dead load over 

the self weight has involved, in the analysis with the self weight plus the dead load, a 

smaller value of the collapse multiplier and of horizontal stiffness.  
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Figure 33. T2 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Unlike the previous macroelement, this panel has got two big openings on the sides 

so that in the deformed shape a transversal beam and some longitudinal piers can be 

individuated. Therefore, the panel collapse can be assimilated to a storey mechanism 

where the dead loads influence the stiffness and the strength. The two curves are 

close to the beginning of the plastic branch so that the values are fairly close to the 

maximum capacity of the element.  
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Figure 34. T3 – T4 – T5 – T6 macroelements – a) Plastic strain tensor; b) 

Force/Displacement curve. 
 

From the study of the deformed shape, hybrid behaviour between the storey 

mechanism (for the presence of some columns) and the rocking mechanism (for the 

two external cantilevers bigger than the internal pillars) can be detected. Again, 

stiffness and strength are penalized in the model with the addition of dead loads to 

the self weight. 

 

In Fig. 35 the macroelement presents the typical mechanism of partial rocking of the 

upper part of the panel. The plastic hinge formation at the base of the upper piers is 

detected. The ratio of the dead loads over the self weight of 24% reflects 

significantly on the horizontal stiffness and the collapse value. 



                                                                         Chapter 4 – FEM non lynear analyses 114 

 

SGMG-T7
31.56%

13.17%

0%

5%

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50 60

δ (mm)
F/

W T7 S
T7 S+D

 
(a) (b) 

Figure 35. T7 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

 

SGMG-T8

75.77% 77.55%

0%

15%

30%

45%

60%

75%

90%

0 5 10 15 20

δ (mm)

F/
W

T8 S
T8 S+D

(a) (b) 
Figure 36. T8 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

The macroelement is the assemblage of three stocky blocks with different thickness: 

the non linear analysis evidences that at each right corner the rotation centre of the 

compression forces occur. The small amount of overload doesn’t influence the 

models with the dead load and the two curves tend to the horizontal branch. 

 

 4.3.1. SUMMARY OF THE RESULTS IN SGMG 

In Figure 37 the comparison of all the collapse values with and without dead load 

condition is reported. Generally, it can be noticed a decrease of the stiffness in the 
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models provided of the dead load. Inside the same diagrams, more stocky are the 

elements stiffer is the response.  

 

SGMG
Self Weight

0%

20%

40%

60%

80%

0 5 10 15 20 25 30 35 40

δ (mm)

F/
W

L-L6 Left
L2-L5 Left
L3-L4 Left
T1
T2
T3-T6
T7
T8

L1-L6

T8

T1

T2 T3-T6

T7L3-L4

L2-L5

 
(a) 

SGMG
Self Weight
+ Dead Load

0%

20%

40%

60%

80%

0 5 10 15 20 25 30 35 40

δ (mm)

F/
W

L2-L5 Left
L3-L4 Left
T1
T2
T3-T6
T7
T8

T2

L2-L5
L3-L4

T3-T6

T7

T1

T8

 
(b) 

Figure 37. Summary of the curves in SGMG. 
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4.3.2. STRENGTH VS CAPACITY IN SGMG 
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Figure 38. Strength against capacity in SGMG. 

 

As in the previous study cases, the comparison between strength and demand is 

plotted in Fig. 38. Of course, the crisis points are individuated in the internal 

elements as already pointed out previously.
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4.1. S. PAOLO MAGGIORE 

For the SP basilica the macroelement are indicated in Fig. 39. In Fig. 40 to Fig. 49 

the detailed analysis of each macroelement is reported. 
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Figure 39: SP - individuation of the macroelements in plan. 
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Figure 40: L1 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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The macroelement can be divided into two zones with different behaviour. The right 

part is a stocky panel with a stress concentration in correspondence of the corners 

when subjected to lateral loads; the left part, dominated by the presence of some 

openings, defines slender cantilever behaviour in the arch columns with zones of 

tension and compression in opposite parts. When horizontal forces are coming from 

the right verse, the collapse multipliers are smaller than in the other verse. The small 

percentage of the dead load slightly influences the strength values and not at all the 

stiffness. 
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(a) (b) 
Figure 41. L2 – L5 macroelements – a) Plastic strain tensor; b) Force/Displacement curve. 

 

From the observation of the deformed shape, the main collapse mechanism of this 

element is a storey mechanism, even if there is a stocky cantilever in the right part. 

The left part, characterized by the sequence of two levels of arches, constitutes a 

frame in which pillars and beams can be distinguished. For the first ones, in 

particular, slender cantilever behaviour can be detected. The analyses stop before 

when horizontal forces come from the right side where the last arches on the left are 

not contrasted like the arches on the right. The horizontal stiffness is almost the 

same, whilst smaller collapse values are reached when the dead load is considered. 
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Figure 42. L3 – L4 macroelements – a) Plastic strain tensor; b) Force/Displacement curve. 

 

The deformed shape of this macroelement clearly shows the typical storey collapse 

mechanism. Indeed, for the particular geometric configuration, masonry frame can be 

defined. The translation mechanism of the superior beam and the rotation of the 

inferior piers are clearly evidenced. The small amount of dead load slightly influence 

the strength value even if in both the cases the horizontal branch is not reached.   
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Figure 43. L6 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Although some openings are present in the macroelement, because of their small 

dimensions, the whole panel can be considered stocky. In other words, the panel acts 

like a unique element subjected to horizontal forces. Nevertheless, in both the 

directions, plastic concentrations in the areas close to the corners of the openings can 

be noticed. As a confirmation, symmetric behaviour of the element in terms of 

stiffness and smaller values of the collapse when forces are coming from the left side 

can be noticed.   
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Figure 44. T1 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

This macroelement is formed by two panels completely lacking openings. The 

mechanism could be rocking with stress concentration on the corners at the base of 

the elements. The two non linear curves, although reaching the non linear field, do 

not seem to have reached the full developed capacity. 

 

In Fig. 45 the macroelement, as confirmed by the deformed shape presents a collapse 

mechanism given by the combination of a storey mechanism in the central part and 

the rocking of the two rigid panels formed by the two lateral walls. Because of the 

geometrical and load condition symmetries of the element, only two analyses have 

been performed with and without the dead load. A decrease in terms of collapse 
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value and horizontal stiffness can be noticed in the model with self weight and dead 

load. In both the analyses, the plastic branch is fairly reached.   
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Figure 45. T2 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 
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Figure 46. T3 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

This macroelement is constituted of two lacking openings elements, whose typical 

failure is by rocking. A stress concentration in the hypothetical hinge locations can 

be noticed in the plastic strain tensor so that the analysis stops for the cracks opening 

in the opposite side. Again, a decrease in horizontal stiffness and collapse value is 

shown in the model including the self weight and the dead load. 
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Figure 47. T4 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

Because of the presence of some openings on the right side of the element, the 

structure is not symmetric anymore like the T2 macroelement. This is the reason 

why, on the right side a storey mechanism will develop and on the left side the panel 

behaviour still occurs. This asymmetry can be seen through the curves as well. 

Independently from the load condition (presence or not of the dead load), the models 

with forces acting from the left side can bear less seismic load. On the contrary, 

analyzing the models in function of the load conditions, the horizontal stiffness is the 

same in the four analyses, while the collapse values vary according to the presence of 

the dead load. 

 

In Fig. 48, for these transversal macroelements, hybrid behaviour can be noticed for 

the presence of the inner columns and the external cantilevers wider than the 

previous ones. For this reason in the slender elements tension and compression zones 

forming in the opposite sides occur before the rocking of the two stocky elements. 

The geometrical and load condition allow the performing of two analyses with 

different horizontal stiffness and failure values. 
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Figure 48. T5 – T6 – T7 – T8 – T9 – T10 macroelement – a) Plastic strain tensor; b) 

Force/Displacement curve. 
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Figure 49. T11 macroelement – a) Plastic strain tensor; b) Force/Displacement curve. 

 

Because of the small presence of openings, the behaviour of this macroelement is 

monolitical. The formation of a hinge rotation around the corner at the bottom can be 

clearly noticed in the plot. Same stiffness but different collapse values are obtained 

from the analyses. Strangely, the value of the model with self weight plus the dead 

load is bigger than the one of the model only with the self weight. 
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4.4.1. SUMMARY OF THE RESULTS IN SP 
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Figure 50. Summary of the macroelements in SP. 

The summary of the curves of all the macroelements are reported in Fig. 49. As also 

derived in the previous cases, the external elements are the stiffest and able to bear 
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the largest amount of horizontal forces before the collapse. The internal arcades, on 

the contrary, are the least stiff and with the smallest value of bearing capacity.  

 

4.4.2. STRENGTH VS CAPACITY IN SP 

Finally, in Fig. 51 strength demand against capacity is reported. The conclusions 

made for the first three study cases are still valid in this church with some exceptions 

in the first transversal elements.   
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Figure 51. Strength against capacity in SP. 

 

5. CONCLUSIONS 

In this chapter non linear analyses on bi-dimensional elements have been performed. 

Such analyses are aimed at determining the collapse behaviour of the structural 

elements, and in particular the ultimate load bearing capacity.  It can be argued that  a 

direct evaluation of the ultimate condition at collapse is useful since the definition of 

the seismic forces for masonry structures according to different code provisions is 

not unique, as stated in §1. 
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The study cases have been analyzed adopting a smeared cracking approach as 

implemented in the computer code ABAQUS. The use of such a constitutive model 

has firstly required a curve-fitting procedure based on experimental tests for the 

choice of some parameters defining the material properties.  

Load-displacement curves, indicating the initial stiffness and the trend of the 

displacements of some points on the structure chosen as control points have been 

plotted. A full developed curve will have the first part in the linear field and the 

second part in the non linear one until the achievement of the plastic line leading to 

the vertical collapse of the element. The results will not be unique if the element is 

not symmetrical (so that two curves will represent the different response of the 

structure according to the verse of the seismic action) and if some dead loads are 

applied on it (so that one curve will be representative of the behaviour of the 

macroelement only for its shape and the other one will take into account the 

influence of the dead load). In safety terms, under the same load condition, the curve 

with the smaller value of the collapse multiplier should be the governing one.  

When the trend is quasi-linear and the analyses are stopped early due to numerical 

instability or slow rate of convergence, some issues arise about the reliability of the 

computed collapse multiplier value. In fact, it can be argued that the numerical 

algorithm may not be able of following the actual equilibrium path towards a further 

branch, so that the collapse multiplier may be larger to some extent. Besides, in case 

of stocky elements, failure may occur as a result of mechanisms that can not be 

simulated with such constitutive theory and homogenized approach. For example, 

sliding at joint level introduce such an anisotropy that can not be taken into account 

using smeared cracking approach. 

For each study case, all curves are plotted together for comparison purposes.  

Finally, the comparison between strength demand (from linear analyses) and 

bearing capacity (from non linear analyses) has been reported. It can be noticed that, 

generally, the bearing capacity of these elements is smaller than the strength demand. 
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Therefore these constructions are prone to damage and effective retrofit techniques 

are necessary. 

In the light of the analyses conducted on these complex constructions it can be 

said that is quite hard following a unique procedure able to define with consistency 

the most influencing quantities. Undoubtedly churches are more sensitive to damages 

than other structures for the reasons illustrated in the previous chapters, but at the 

same time the necessity of defining a handy and suitable methodology for designers 

is strongly felt. 
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CHAPTER 5: 

THE MASONRY PORTAL FRAME 
 

 

1. INTRODUCTION 

Masonry portals, made of two vertical elements and a rectilinear horizontal element, 

are very often found in any masonry structures (Fig.1) and can be considered as the 

basic structural element in historical multistory buildings; further, more complex 

structural elements of masonry constructions, such as churches, can be geometrically 

simplified and reduced to portal frames [De Luca A. et Al., 2004]. 

t

H
h

LB B  
Figure 1. Geometry and loads of a masonry portal. 
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By adopting the same hypotheses made by [Heyman J., 1966], limit analysis is 

applied for determining the collapse multiplier of an horizontal concentrated force in 

presence of self weight loads; on account of the additional hypothesis that crack 

hinges can only occur at the piers-to-spandrel connections, different possible 

mechanisms are identified and the corresponding horizontal collapse load evaluated. 

Eventually, as a result of a wide parametric analysis performed using the derived 

exact expressions, a simple approximated formula for computing the collapse 

multiplier is proposed.  

Some other authors have analyzed structures with one degree of freedom: in 

[Sinopoli A., 1985] arches and portals are evaluated in terms of equilibrium quality, 

safety assessment, analysis of free dynamic, impulsive phenomena and following 

action modes; [Como et Al., 1983;] dealt with portal frames through limit analysis 

approach. In particular the last work is reviewed and discussed enlightening the 

differences, since the results presented by the cited authors are obtained for portal 

outfitted with reinforcing ties in the spandrel and under slightly different assumptions 

about the mechanisms shapes. 

 

 2. A LIMIT ANALYSIS APPLICATION 

In this chapter, a fully geometrical formulation for the evaluation of horizontal 

collapse load is proposed. Direct geometrical approach, indeed, can be easy to use 

and the procedure fast to implement. 

Within the framework of the limit analysis, collapse multiplier of the distribution 

given in Figure 2 for a single rocking panel is derived through trivial equilibrium 

equation:  

 

H
B

W
F

⋅
=

2
                                                                                                                        (1) 

where F is the applied force, W the total weight, B the width and H the height of the masonry 
panel. 
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Figure 2. Rocking of the panel. 

 

For portal frames an analogy can be observed with the single panel rocking 

behaviour if the possible mechanisms are sketched. Four mechanism classes are 

chosen, in the following regarded as I mechanism (frame mech.), II and III 

mechanism (mixed mech.) and IV mechanism (storey mech.) as represented in Fig. 3. 

 

               I Mechanism                            II Mechanism 

 
              III Mechanism                         IV Mechanism 

 
Figure 3. Masonry portal –  collapse mechanisms. 

 

Each mechanism features 4 hinges that give the structure a single lagrangian 

degree of freedom. Once the kinematic chain has been drawn, the principle of virtual 
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works can be applied to each mechanism, stating an equilibrium equation which 

gives the load multiplier F/Wtot. The minimum of the four multipliers is assumed to 

be the collapse multiplier for the portal F/Wtot,real. 

The approach adopted clearly turns out to be a straightforward application of the 

kinematic theorem, which can be here synthetically expressed as follows: 

“If a collapse mechanism can be found such that the equilibrium condition (through 

the principle of virtual works) is satisfied, then the mechanism is kinematically 

sufficient and the corresponding load system is grater than or equal to the true 

collapse load”. 

 

3. EXPRESSIONS FOR KINEMATIC MULTIPLIERS 

On account of the hypotheses of limit analysis and within the chosen set of collapse 

mechanisms, expressions for the evaluation of the horizontal collapse load are here 

provided as function of the geometry alone. 

 

3.1. MECHANISM I (FRAME MECHANISM) 

Figure 4.a shows geometrical configuration and loads of the portal, while in figure 

4.b the kinematic chain of the mechanism is represented:  
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1 2

 
(a) (b) 

Figure 4. I mechanism – a) geometry and loads; b) kinematic chain. 
Operating on the kinematic chain, simple geometrical considerations give:  
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LB 23 ϕϕ = ; 3311 dd ϕϕ =                                                                   (2) 

Hd =1ϑ               => 
ϑ
Hd =1                     => 

t
LHd ⋅

=1                         (3) 

LBdd −−= 13    => LB
t

HLd −−=3    => 
t

LtBtHLd −−
=3           (4) 

                                                     
substituting the expressions of d1 and d3 in (2): 

t
LtBtHL

t
HL −−

= 31 ϕϕ                                                                                     (5)    

Let: 

LtBtHL
HL

−−
=ψ                                                                                                  (6) 

then:  

31 ϕψϕ = ;               ψϕϕ 12 L
B

=                                                                    (7) 

The principle of virtual work then gives:  

222 3322111
BWLWBWHF ϕϕϕϕ ++=                                                                   (8) 

 
From which the collapse multiplier for type I mechanism can be derived: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
=

tottot W
WWW

H
B

W
F ψψ 321

2
                                                                             (9)    

Where Wtot = W1 +W2 + W3. 

 

3.2. MECHANISM II (MIXED MECHANISM) 

Following the same procedure as outlined above, the collapse multiplier for the other 

mechanisms is here derived.  

As in the previous case, figure 5.a shows geometrical configuration and loads of 

the portal, while in figure 5.b the kinematic chain of the mechanism is shown. 
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Geometrical relations are the same as for type I mechanism, and the equilibrium 

condition, written the principle of virtual works, is:  

222 3322111
BWLBWBWHF ϕϕϕϕ +

+
+=                                                             (10) 

 

The collapse multiplier for II mechanism is then: 
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LBWW

H
B

W
F ψψ 321

2
                                                                 (11) 

 

B L B
D

H
h

t

F

W 1

W 3

W 2

 d1

d3

2

(1,2)

(1) (3)

(2,3)

(1,3)

1 2 3

1

3

 
(a) (b) 

Figure 5. II mechanism – a) geometry and loads; b) kinematic chain. 
 
  

3.3. MECHANISM III (MIXED MECHANISM) 

Figures 6.a and 6.b respectively show the geometrical/loads configuration of the 

portal and the kinematic chain for the mechanism.  
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(a) (b) 

Figure 6. III mechanism – a) geometry and loads; b) kinematic chain. 
 
The following geometrical relations can be written: 

31 ϕϕ =  ; 02 =ϕ                                              (12) 
 
The equilibrium condition is: 

( )
22 3312111
BWBWBWtHF ϕϕϕϕ ++=−                                                            (13) 

 
and then the collapse multiplier is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
=

tottot W
WWW

h
B

W
F 321 2

2
                                                                               (14) 

 

3.4. MECHANISM IV (STOREY MECHANISM) 

For this mechanism, geometrical configuration, loads of the portal and the kinematic 

chain of the mechanism are represented in figure 7.a and 7.b. 

Geometrical relations are the same as for III mechanism. The principle of virtual 

works gives:  

( )
22 3312111
BWBWBWtHF ϕϕϕϕ ++=−                                                            (15) 

 

from which the collapse multiplier can be derived: 
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⎟⎟
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F 321 2

2                                                                               (16)      
 

or:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

tot

beam

tot W
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h
B

W
F 1

2
                                                                                        (17) 

where: Wbeam=W2. 
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(a) (b) 

Figure 7. IV mechanism – a) geometry and loads; b) kinematic chain. 
 

4. NORMALIZATION  

In order to compare the collapse multiplier from the four selected mechanism and to 

unify the obtained expressions, let us identify the starting geometry as shown in 

figure 8, in which also the nodal panels are highlighted.  

 

 

Figure 8. Portal geometry with nodal panels. 

 

W1
W3

Wn1 Wn2W2



Chapter 5 – The masonry portal frame                                                                    137 

Collapse multiplier expressions can be then modified as follows: 

Mechanism I: 

( )( )
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Mechanism II: 
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 Mechanism III: 
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Mechanism IV: 
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                                       (21) 

 

In the expression given for IV mechanism, Wbeam denotes the weight of the 

horizontal element including nodal panels, i.e. Wbeam = W2+Wn1+Wn2. 

The expressions for I and II mechanism only differ in an addendum at second 

member. It is easy to recognize that, in those expressions, the collapse multiplier 

derived for I mechanism is always smaller than the one for II mechanism. 

Similarly, expressions for III and IV mechanisms are the same except of the 

addendum regarding the second nodal panel. As a result, the collapse multiplier for 

III mechanism is smaller than the one for IV mechanism.  
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The formulation proposed provides simple and clear expressions for all the four 

mechanisms. In particular the parameter B/2H, which provides an indication of 

capacity of a single column, is factored out. The multiplier of this factor clearly 

expresses the effect of the weight of the other parts of the portal (beam and panel of 

intersection of beam to column). 

 

5. PARAMETRIC ANALYSES 

From a geometrical point of view, the portal is identified by the quantities B, D, H 

and t as shown in Fig. 9. The geometry of the portal can be identified once the ratios 

B/D, H/D and t/H (in the following regarded as fundamental ratios) have been fixed 

and the value of a parameter, say H, chosen. 

 

 

Figure 9. Geometrical characteristics of the portal. 

 

It can be argued that all portal classes obtained fixing any combination of the 

fundamental ratios show the same collapse multiplier, so that the three chosen ratios 

are necessary and sufficient for characterizing the portal. 

In order to derive the collapse multiplier for the most commonly portals found in 

monumental structures, parametric analyses have been carried out on a wide class of 

portals obtained with the following ranges for the fundamental ratios: 

 

D

H

t

B
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- H/D step-wise variability: 0,50 – 1,00 – 1,50 – 2,00 (height of the portal ranging 

between half total width and twice the total width); 

- t/H step-wise variability: 0,10 – 0,20 – 0,30 – 0,40 – 0,50 (height of the horizontal 

element ranging between 10% and 50% of the total height of the portal); 

- B/D step-wise variability: 0,10 – 0,20 – 0,30 – 0,40 (width of the vertical elements 

ranging between 10% and 40% of the portal total width).  

The collapse multiplier of the four mechanisms F/Wtot has been plotted as 

function of the fundamental ratios B/D, t/H e H/D, alternatively fixing two of them 

and studying the variability of F/Wtot . 

In figures 10 to 13, the collapse multipliers for the four mechanisms are plotted as 

functions of variable H/D and t/H with B/D respectively equal to 0.1, 0.2, 0.3 and 

0.4. 

 

B/D=0,10 - H/D=0,5

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

 

B/D=0,10 - H/D=1.0

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t MEC 1

MEC 2
MEC 3
MEC 4

       
 

 
B/D=0,10 - H/D=1.5

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

B/D=0,10 - H/D=2.0

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

          
Figure 10. Collapse multipliers for B/D=0.1. 

 



Chapter 5 – The masonry portal frame                                140 

B/D=0,20 - H/D=0,5

0.00

0.20

0.40

0.60

0.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t MEC 1

MEC 2
MEC 3
MEC 4

 

B/D=0,20 - H/D=1.0

0.00

0.20

0.40

0.60

0.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

 

         
B/D=0,20 - H/D=1.5

0.00

0.20

0.40

0.60

0.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

 

B/D=0,20 - H/D=2.0

0.00

0.20

0.40

0.60

0.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60

T/H

F/
W

to
t

MEC 1
MEC 2
MEC 3
MEC 4

          
Figure 11. Collapse multipliers for B/D=0.2. 
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Figure 12. Collapse multipliers for B/D=0.3. 
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Figure 13. Collapse multipliers for B/D=0.4. 

 

As already stated in a previous paragraph, it is easy to recognize that I mechanism 

systematically leads to smaller values of the collapse multiplier with respect to II 

mechanism, ad the same happens for III mechanism with respect to IV mechanism.  
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Figure 14. Synthetic diagrams. 

 

In Figure 14, the minimum multipliers, regardless of the particular mechanism, 

are plotted as a function of t/H, for different H/D ratios, having fixed the value of 

B/D. 

Further, it is possible to define ranges of the fundamental ratios in which a 

mechanism prevails upon the others. In the following figure 15, the above described 

ranges, with prevalence of I or III mechanism, are represented in a graphical way. 
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Figure 15. Geometrical configurations for different geometrical ratios values; prevalence of I 
or III mechanism: B/D=0.1; 0.2; 0.3; 0.4. 

 

B/D ≤ 0,20                   mechanism type 1 

B/D = 0,30 and t/H ≤ 0,30                mechanism type 1  

B/D = 0,30 and t/H ≥ 0,40                mechanism type 3 

B/D ≥ 0,40                   mechanism type 3 
 

6. AN ABAQUS FOR EVALUATING THE COLLAPSE MULTIPLIER 

The formulation in a closed form of all the possible mechanism of the portal frame 

subjected to vertical load and horizontal load at the top allows obtaining the ultimate 

multiplier for any given geometry of a masonry portal frame. In order to catch in a 

more immediate manner this value in the design process, abacuses have been 

provided for the different parameters chosen defining the geometry of the portal: 

B/D, H/D and t/H. In particular each abacus is relative to a B/D value (0.1, 0.2, 0.3, 

0.4) in Fig. 16. In each of them iso-limit curves providing the F/Wtot values for 

different H/D abscissa and t/H ordinate values are then plotted. 
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 Figure 16. Iso-limit curves with fixed B/D ratio; B/D=0.1, B/D=0.2, B/D=0.3, B/D=0.4. 

 

As an example, let us consider a portal with the following fundamental ratios: 

B/D=0.2, t/H= 0.15 e H/D=1.7. Using the abacus of Figure 16, the plot 

corresponding to the actual B/D value has to be selected and in that one the point of 

coordinates (H/D, t/H) detected (Fig. 17). Such point represents the collapse 
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multiplier, obtainable by interpolating the iso-limit curves 0.06 and 0.07. As a 

verification, for the chosen fundamental ratios the collapse multiplier results  

F/Wtot = 0.0684. 

 

 

Figure 17. Example of use of the abacus. 
 

7. ADVANCES WITH RESPECT TO PREVIOUS FORMULATIONS 

Previous studies on similar portal frames can be found in [Como M. et Al., 1983], 

where horizontal load multipliers are derived under the hypotheses of non-zero 

bending capacity (M0) of the masonry spandrel beam, made possible by the presence 

of reinforcing ties.  

The expressions provided by [Como M. et Al., 1983] for the horizontal 

multipliers are derived for three mechanism shapes (Figure 18) comparable with the 

ones here denoted as mechanisms I, III and IV, though some differences exist 

regarding hinge positions and loads configuration.   
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Figure 18. Configuration and mechanism shapes in [Como M. et Al., 1983].  

 

Those expressions, as a function of geometry, applied vertical loads 2G, and 

spandrel bending capacity M0, are reported in Table 1. In those formulas, some 

algebra has been applied to the ones originally presented in the cited reference, in 

order to introduce the same symbols as here adopted. 

Since in the present approach any vertical/horizontal loads configuration can be 

easily taken into account, the formulas provided in the previous sections are here 

modified for the load assembly of Figure 18, and the expressions for mechanisms I to 

IV also shown in Table 1. 

 

 

 



Chapter 5 – The masonry portal frame                                                                    147 

 Cited reference Present proposal 
(load configuration asin figure 18) 

“Frame” 
mechanism 

(mechanism I) 

( )
⎟
⎠
⎞

⎜
⎝
⎛ +⋅

+
⎟
⎠
⎞

⎜
⎝
⎛ +

=
G

LBM
th

B
G
F 121

2
22

0 ( )ψ+
⎟
⎠
⎞

⎜
⎝
⎛ +

= 1

2
42 th

B
G
F  

“Mixed” 
mechanism 

(mechanism II) 
 

)21(
)

2
(42 L

BL
th

B
G
F +

+
+⋅

= ψ

 

“Mixed” 
mechanism 

(mechanism III) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +⋅

+⋅
⎟
⎠
⎞

⎜
⎝
⎛ ++⋅⎟

⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ +⋅⎟

⎠
⎞

⎜
⎝
⎛ +

=

h
tBG

M

h
t

B
L

h
t

h
t

h
t

B
L

h
B

G
F

22
3

1

2
1

2
1

222
31

22
0

 
h
B

G
F

4
3

2
=  

“Storey” 
mechanism 
(mechanism 

IV) 
h
B

G
F

=
2

 
h
B

G
F

=
2

 

Table 1. Comparison of present and cited formulas. 

 

For comparison, the following Table 2 reports the non-dimensional collapse loads 

calculated through the present and cited proposals, in which null bending capacity 

(M0 = 0) has been assumed, for the different geometrical configurations shown in 

Figure 19. 
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Figure 19. Geometrical configurations for comparison. 
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Case Cited reference Present proposal 
(load configuration as in figure 18) 

1 0.222 0.263 

2 0.111 0.131 

3 0.353 0.548 

4 0.176 0.274 

5 0.235 0.314 

6 0.118 0.157 

7 0.4 0.9 

8 0.2 0.43 
Table 2. Comparison among present and cited proposals. 

 

Quite evidently, differences arise between the two proposals, with the present 

expressions always giving higher values of the collapse load, although no reinforcing 

tie is taken into account. The largest scatters are obtained for the stockiest schemes. 

In particular, for cases 7 and 8, the cited reference provides values that are less than 

half those relevant to the present proposals. This is mainly due to the slightly 

different shapes of the collapse mechanisms, which reflects on the virtual 

displacements read from the kinematic chain. Actually, in case of non slender 

elements, small rotation differences drive to large displacement differences. 

A few issues arise about the conceptual differences with regard to the present 

proposal. Firstly, as far as loads are concerned, the horizontal force is applied at mid 

height of the spandrel beam, while in this study it is assumed at full height of the 

portal. This difference is generally negligible and may drive to considerable 

disagreement only for unrealistically large beam heights. Besides, vertical loads are 

limited to two forces, named G in Figure 18, acting on top of the portal, so that self-

weight is neglected. As a consequence, the stabilising effect of the weights of 

spandrel and panel zones, which is instead thought to be important, is not accounted 
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for. Presence of the beam is substantially accounted for by the way its bending 

capacity (when present) provides a contribution to the equilibrium.   

Arguably, the hypothesis of negligible self-weight with respect to the external 

vertical load can be reasonable when the portal is located at lowest levels of multi-

storey buildings, while it may not be realistic for some monumental buildings 

typologies, like churches, in which masonry weight almost fills out the total vertical 

load. 

A further conceptual difference regards the position of the adopted hinges. In the 

cited references, the upper part behaves as a beam, so that the bending capacity due 

to the presence of reinforcing ties (or possibly platbands) is assumed to be an 

equivalent plastic moment; as a consequence, hinges are regarded as plastic hinges 

and this circumstance involves a certain geometrical compenetration in the zones that 

mutually rotate in the deformed shape. This is not possible in the present approach, 

which considers infinite compressive strength in the blocks. 

The present study, indeed, do not need the presence of reinforcing ties, and the 

expression proposed are easily adaptable to any load condition.  

 

8. PROPOSAL FOR A SIMPLE APPROXIMATE EXPRESSION 

The deep insight obtained in the analysis and behaviour of portal frames, gained 

through the extensive parametric analysis developed on 80 different schemes 

characterized by strongly varying geometrical proportion, allow to define the 

mechanical parameters governing the behaviour and consequently the value of 

F/Wtot. The behaviour is in fact governed by: 

a) Column geometrical proportion B/2h which represents the multiplier of a single 

panel; 

b) Effect of the weight of the beam which stabilizes the column; 

c) Percentage of openings which drives the behaviour respectively to a stocky global 

panel or to the one characterized by two slender columns. 
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These considerations have allowed us to propose a simple formula which includes all 

the previously reported three effects. The formula is: 
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                                                                  (22)   

 
where the symbols are given in figure 20: 
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D
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Figure 20. Effects considered in the approximated formula. 
 
It’s easy to understand the meaning of the three multipliers: 

h
B
2

 Column behaviour as single panel element 
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D
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In Figure 21, for all the cases (B/D=0.1÷0.4), the exact collapse multipliers 

computed through the equations (18), (19), (20) and (21), are compared with the 

results obtained from expression (22). 
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Figure 21. Actual mechanism and approximated formula. Comparison. 
 

A more extensive comparison is given in Fig. 22 where for all the 80 cases of 

portal frames are compared the exact value against the approximate ones. The 

approximation is excellent since the errors are always less than 6 % except for two 

cases:  

1) H/D=0.5; t/H=0.4; B/D=0.3;  

2) H/D=0.5 ; t/H=0.5 ; B/D=0.3 ; 

in which the maximum error is anyway less than 8.5%. 
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Figure 22. Errors of the approximated formula for different portal configurations. 

 

9. CONCLUSIONS 

In this chapter an exhaustive analysis of masonry portals through limit approach has 

been presented. In this aim, by adopting the hypotheses made in [Heyman J., 1966], 

the analysis is extended to the portal frame which is a very recurrent element in 

historical buildings and is analyzed under the loading case of horizontal actions. 

The formulation proposed in this paper removes the hypotheses made in previous 

studies [Como M. et Al., 1983] on similar structures. In this manner, the formulation 

allows the possibility of deriving in a closed form solution, the horizontal capacity of 

portal masonry frames in absence of reinforcing ties. 

The closed form solution has been then used for performing an extensive 

parametric analysis on 80 structural schemes characterized by considerably varying 

geometrical proportions. 

Abacuses are given for an immediate use for design purposes. 

H/D=0.5
H/D=1.0
H/D=1.5
H/D=2.0
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Finally, an approximate solution is proposed for evaluating the horizontal 

capacities of such schemes. The approximate formula has a very sound mechanical 

basis since it splits the multiplier in three factors each of them being very simple and 

immediate in its mechanical significance. 

The formula has been tested for all the 80 cases providing excellent results with 

errors always less than 6%. 

The results provided both in terms of closed form and approximated solutions 

might be very valuable for the designer in evaluating the capacity of portal masonry 

frames of historical buildings to horizontal action which is related to their seismic 

strength. 
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CHAPTER 6: 

SIMPLIFIED ANALYSIS OF MACROELEMENTS 
 

 

1. INTRODUCTION 

One of the objects of this study is the possibility of defining a suitable methodology   

to obtain an approximate valuation of the bearing capacity of single macroelements, 

with few calculations and without time consuming and complex analyses. 

In this chapter, in the light of the simplified approach described in the previous 

chapter, an application of limit analysis to some elements of the four study cases is 

made. 

Furthermore, a comparison between simplified calculations and non linear 

analyses carried out in §4 is exposed and discussed. 



                                                       Chapter 6 – Simplified analyses of macroelements  

 

 

156 

2. EXTENSION OF THE SINGLE PORTAL FRAME TO THE MULTI-BAY 

FRAME. 

The formulas showed in the previous chapter can be somehow adapted in the case of 

multi-bay frames. Obviously, the kinematic chain will be more complicated but still 

constructible. In Fig. 1 the kinematic chain for the I - frame mechanism- and the IV – 

storey mechanism- type are depicted.  
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(3,4)
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B1 L1 B2 L2 B3
D

 
Figure 1. Frame and Storey kinematic chains in the multi-bay frames. 

  

Internal macroelements of churches, featuring a series of piers and a superior 

horizontal beam, are similar to the multi-bay frames. The non-linear analyses have 

shown that, generally, the columns rotate around a point on the base and the beam 

will shift horizontally. In other words, if a series of elements like columns can be 

individuated, the collapse occurs for the formation of a storey mechanism rather than 

a frame or a mixed mechanism (Fig.2).  

About the dimensions of the piers, the B value in the formula has to be specified. 

In has to be underlined that no kinematic chain can be constructed for different 

values of the base because of the non uniqueness of the fixed centre (2). For this 

reason a unique value have to be selected and, because it represents also the 
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contribution of the panel to the rocking, it could assume the value of the maximum, 

the minimum or the average dimension. Therefore, in the storey mechanism, passing 

from the portal frame to the multi-bay frame no change is individuated in the 

collapse multiplier; the formula adopted is then: 

 

(1)  

  

 
Figure 2. Frame and Storey mechanism in the multi-bay frames. 

 

In case of presence of dead loads coming from the over-structures such as roof 

systems or vaults, their stabilizing effect is considered as additional loads in the term 

Wbeam.  

Of course, these macroelements could feature non-uniform shapes so that the 

mechanism considered can not occur: this is a very delicate aspect of the simplified 

approach so that a confident statement can hardly be expressed.  

 

3. FEM – LIMIT ANALYSIS: COMPARISON 

In the following Figures, the internal churches macroelements are illustrated. In 

each of them, the comparison of the results of non linear and simplified analyses is 

reported. In the section a of the figures, the mesh and the deformed shape of the bi-

dimensional element in the non linear analysis are shown; in the b part the simplified 

geometry of the macroelement is depicted and in c part the numerical values used in 

the simplified analysis are reported. Finally, in the d and e section the comparison 
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between the non linear and limit analysis, as function of the applied loads (only 

dependent on the self weight in the first one and self weight plus dead load in the 

second one), are depicted in a graph. These plots represent the conventional load 

displacement curves obtained through non-linear analysis using ABAQUS. This 

curve will provide the initial stiffness with respect to the horizontal actions and the 

trend of the displacements of some points on the structure chosen as control points. 

As it has already been shown, a typical curve will have the first part in the linear 

field and the second part in the non linear range up to the achievement of the plastic 

branch; again, the results will not be unique if the element is not symmetrical in the 

vertical axis, so that two curves represent the different response of the structure 

according to the verse of the seismic action (from right or left). About plastic 

analyses no differences are pointed out as function of the verse of the horizontal 

force. On the other side, two plots have been diagrammed according to the presence 

or not of the dead load. Furthermore, when piers are not uniform in their dimensions 

three values of the collapse multiplier for each diagram, corresponding to the 

maximum, medium and minimum magnitude, have been calculated. 

Reasoning in safety terms, the curve with the smallest value of the collapse 

multiplier should be the reference in the comparison with the limit analysis 

represented by an horizontal line. The comparison between the results, representative 

of two different methodologies, consists into the evaluation of their scatter. Small 

error percentages mean that the results match well, or in other words, a good 

modelling of the structure has been performed. Differently, great scatters evidence 

that the model is not able to grasp the real behaviour of the structure.  
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 3.1. S. GIOVANNI A MARE 

In Figure 3 the macroelements of SGMR comparable to multi-bay frames and 

considered in the simplified analyses are enlightened.  
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Figure 3. SGMR – Individuation of the macroelements in plant.  
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Af /Atot: 0.445 
h: 5.7 m 
Bmin: 1.2 m 
Bmed: 2.325 m 
Bmax: 2.8 m 
Wbeam: 493.7 KN  
Wtot: 1244.4 KN  
DeadLoad/SelfWeight: 0.537 
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(c) (e) 
Figure 4. L2 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

This non symmetrical macroelement, both in geometry and loads, has implied the 

execution of four non linear analyses. The deformed shape in the non linear analysis 

has suggested the choice of a storey collapse mechanism in the simplified analysis. 

Due to the significant presence of dead load on the structure, the simplified value of 

the collapse multiplier varies according to the loads considered. Because of the non 

uniformity of the piers in the macroelement, three values of the collapse multiplier 

for each diagram have been calculated. In the “self weight diagram” the comparison 

between the FEM and simplified analyses show large difference. Smaller values of 

the limit analyses are reached compared to the non linear curves. Quite different is 

the behaviour when dead loads are applied. In Fig. 4.e the scatter between the 

simplified analysis considering a medium value of the base and the collapse value 

due the horizontal force coming from the left is small.  
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Af /Atot: 0.525 
h: 6.5 m 
Bmin: 0.5 m  
Bmed: 1.1 m  
Bmax: 2.2 m  
Wbeam: 1771.4 KN  
Wtot: 2567.1 KN 
DeadLoad/SelfWeight: 0.89 
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(c) (e) 

Figure 5. L3-L4 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The inner arcade of the church bears the dead loads on both the sides, so that the 

percentage of these actions compared to the self weight is close to the unity. This 

point reflects also in the shape of the two diagrams. Considering a collapse 

mechanism of storey type, in the first plot the two collapse value derived from the 

non linear analyses are closer to the value obtained assuming in the formula the 

maximum dimension of the columns, whilst in the second one the two values are 

close to the middle one relevant value of the pier base. 
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(d) 

 
(b) 

Af /Atot: 0.316 
h: 5.7 m 
Bmin: 0.5 m 
Bmed: 2.75 m 
Bmax: 5.3 m 
Wbeam: 647.4 KN 
Wtot: 1500 KN 
DeadLoad/SelfWeight: 0.251 
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(c) (e) 

Figure 6. L5 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

Great scatter of non linear behaviour of the macroelement are noticeable in both the 

diagrams according to the verse of the horizontal action. This is due to the small 

dimension of the first pier on the left. The shape of the element has suggested a 

storey mechanism type and in both the cases, the medium base values in the 

simplified analyses are close to the values of the collapse multiplier for forces 

coming from the left side. 
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(d) 

 
(b) 

Af /Atot: 0.395 
h: 7.4 m 
Bmin: 1.45 m 
Bmed: 1.525 m 
Bmax: 1.65 m 
Wbeam: 1349.1 KN  
Wtot: 1963 KN 
DeadLoad/SelfWeight:0.866 
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(c) (e) 

Figure 7. T2 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The inner macroelements, like this triumphal arch, have larger openings than the 

external elements and are strongly loaded, with values sometimes comparable to the 

self weight. The comparison of the non linear analyses under self weight only with 

simplified limit analyses is somehow uncertain due to sudden stop of the numerical 

curves. On the contrary, the case with dead loads also show more meaningful 

interpretability.  
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(d) 

 
(b) 

 
Af /Atot: 0.324 
h: 8.58 m 
Bmin: 1.1 m 
Bmed: 2.325 m 
Bmax: 4 m 
Wbeam: 1201.5 KN 
Wtot: 2292.68 KN 
DeadLoad/SelfWeight: 0.865 
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(c) (e) 

Figure 8. T3 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

Like the previous element, this second triumphal arch has small values scatter in the 

model with the dead load and bad matching for the case of self weight only.  
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(d) 

 
(b) 
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h: 6.08 m 
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Bmed: 2.325 m 
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Wtot: 1775.9 KN 
DeadLoad/SelfWeight: 0.488 
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(c) (e) 

Figure 9. T4 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The T4 element shows a no matching behaviour between the carried out analyses in 

both the modelling. More in detail, in case of only self weight load distribution, the 

values of limit analysis are sufficiently below the non linear curve. In the other 

model, the two ABAQUS curves give values closer to the one obtained using in the 

formula the maximum dimension of the columns.     
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(b) (d) 

Af /Atot: 0.511 
h: 6.1 m 
Bmin: 3.1 m 
Bmed: 3.55 m 
Bmax: 4.0 m 
Wbeam: 231.2 KN  
Wtot: 821.4 KN 
DeadLoad/SelfWeight:0.774 
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(c) (e) 

Figure 10. T5 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

In this macroelement, two marble columns are present. The non linear curve in the 

“self weight” diagram reaches an horizontal branch but the values given by limit 

analysis are three time smaller. In the second diagram, the two methodologies 

provide close values but the non linear curves have stopped still in the crescent 

branch, so that the values are not necessarily reliable. 
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    3.1.1. SUMMARY OF THE SGMR RESULTS 

In Figure 11 the comparison between the result obtained with the non linear analyses 

and the simplified approach for all the considered macroelements is depicted. 
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Figure 11. SGMR – Summary of the results. 
 

Fig. 11.a and 11.b report the results relevant to the case with only the self weight 

varying the chosen dimension for piers in the simplified analysis. Therefore, in the 

two plots, the values of non linear analysis will be the same (ordinate value) whilst 

the limit analysis values (on the abscissa), moving from one diagram to the other one, 

will assume greater values. Likewise, in Fig. 11.c and 11.d the diagrams with self 

weight plus dead load are reported. The diagonal line represents zero scatter between 

the two analyses while the other ones progressively less close represent ±10% and 
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±20% scatters. A point inside the domain defined by the constant scatter lines will 

mean that a small percentage of error exists. Two symbols have been chosen to 

represent the placing of the macroelements: according to the opinion of the author, 

the dot is for the developed curves and the cross when the curve is not considered 

wholly developed. It is fairly clear that in Fig. 11.a the values are generally in the 

upper part of the diagram (meaning that the non linear analyses give greater collapse 

multipliers than in the simplified approach) and move inside the domain if the 

maximum values of the piers are considered. In the following plot (Fig. 11.c), on the 

contrary, smaller scatters are evidenced between the two approaches. Therefore, 

when the maximum size of the piers is considered, the values move on the right part 

on the bottom. 

 

    3.2 S. IPPOLISTO 

T1

T2 T3 T4 T5 T6
T7

L1

L2

L3
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T8

 
Figure 12. SI – Individuation of the macroelements in the plant.  

The plan of SI with the individuation of the considered macroelements is shown in 

Fig. 12. 
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(b) (d) 

Af /Atot: 0.127 
h: 5.6 m 
Bmin: 1.7 m 
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Bmax: 18.9 m 
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Wtot: 7126.7 KN 
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(c) (e) 

Figure 13. L1 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The L1 macroelement is so slightly loaded by the dead load that the non linear curves 

and the simplified values in both the graphs are similar. As it can be noticed in the 

two plots, the weakest behaviour is when the forces come from the right verse. The 

values at the collapse are close to the simplified evaluation when the medium base is 

considered. 
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Wtot: 7155.2 KN 
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(c) (e) 
Figure 14. L2-L3 macroelements – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

The L2 and L3 macroelements present the classical mixed mechanism for the 

presence of a series of small piers along the nave of the church and a stocky panel in 

correspondence of the apse. It’s evident how the simplified methodology is not able 

to catch the real behaviour of the element, because of the choice of a unique 

mechanism (the storey one in this case). The values reached with the non linear 

analyses are inside the range of the simplified formula evaluated with medium and 

maximum value of the base. 

 



                                                       Chapter 6 – Simplified analyses of macroelements  

 

 

172 

 

 
(a) 

SI-L4
Self Weight

113.39%

63.77%

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25 30

δ (mm)

F/
W L4 S Left

L4 S Right
L.A.Bmax
L.A.Bmed
L.A.Bmin

 
(b) (d) 

Af /Atot: 0.239 
h: 8.25 m 
Bmed: 1.7 m 
Bmed: 4.18 m 
Bmed: 12 m 
Wbeam: 3651.4 KN 
Wtot: 6104.9 KN 
DeadLoad/SelfWeight:0.042 
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(c) (e) 

Figure 15. L4 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

In Fig. 15, although the difference of the two cases is just of 4.2%, the two curves for 

horizontal forces coming from the right side are different. While in the first one, the 

plastic branch is reached, in the second one the analysis stops some steps before 

reaching the horizontal plateau. The two cases don’t match well with the simplified 

analyses 
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(b) 

Af /Atot: 0.462 
h: 14.8 m 
Bmin: -- 
Bmed: 5 m 
Bmax: -- 
Wbeam: 1410 KN 
Wtot: 4429.2 KN 
DeadLoad/SelfWeight: 0.091 
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(c) (e) 
Figure 16. T2 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

Although the triumphal arch in Fig. 16 is similar to a simple portal, the limit analysis 

values are smaller than the collapse multiplier calculated with the non linear analysis. 

In the second graph the values match better than the first one because of the smaller 

response given by ABAQUS. 
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h: 7.45 m 
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Wtot: 2990.6 KN 
DeadLoad/SelfWeight: 0.149 
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(c) (e) 
Figure 17. T3 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 
A good comparison between the two approaches has been verified in the second plot. 

In the first one, greater scatters are present. 
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(b) 

Af /Atot: 0.393 
h: 7.45 m 
Bmin: 1 m 
Bmed: 1.4 m 
Bmax: 1.8 m 
Wbeam: 574.6 KN 
Wtot: 1425.6 KN 
DeadLoad/SelfWeight: 0.139 
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(c) (e) 

Figure 18. T4 - T5 - T6 - T7 macroelements – a) Mesh; b) Modelling; c) Simplified analysis 
data; d & e) Force/Displacement curves. 

 

These inner elements are symmetrical around the Y axis so that only one curve is 

necessary per each load condition. The values reached through non linear analyses 

are larger than the values estimated by limit analyses in both the load conditions and, 

also in the hypothesis of different values of the base. 
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(c) (e) 
Figure 19. T8 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
     

The façade of the SI church has a mass location on the top so that the storey 

mechanism has been considered. A good comparison in both the plots can be noticed. 

 



Chapter 6 – Simplified analyses of macroelements                                                  

 

177

     3.2.1. SUMMARY OF THE SI RESULTS 

The summary of the results in both the load conditions for the minimum and 

maximum size of the piers are reported in Fig. 20. 
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(d) 

Figure 20. SI – Summary of the results. 
 

Also in this case, the values of the collapse multiplier are generally safer according to 

the limit analysis than the non linear approach when the medium values are 

considered.  And again, the case of self weight plus dead loads matches better than 

the other one. 
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 3.3. S. GIOVANNI MAGGIORE 

In Figure 21 the considered elements are enlightened.  
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Figure 21. SGMG – Individuation of the macroelements in the plant. 
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(c) (e) 
Figure 22. L2 & L5 macroelements – a) Mesh; b) Modelling; c) Simplified analysis data; d & 

e) Force/Displacement curves. 
 

These longitudinal arcades inside the church show a storey mechanism. In both of the 

load condition the non linear analysis for horizontal actions coming from the left side 

are more penalizing. These values are close to the limit analysis value when the 

medium dimension of the piers is considered. 
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(c) (e) 

Figure 23. L3 & L4 macroelements – a) Mesh; b) Modelling; c) Simplified analysis data; d & 
e) Force/Displacement curves. 

 

The analyses carried out with the non linear code show a consistent behaviour with 

close values for actions coming in the two directions. Unfortunately the scatter 

between these values and the limit state analyses are too large to consider the 

modelling a good result for the self weight load case. Fairly better the case in which 

the dead load is considered as well. 
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(c) (e) 

Figure 24. T1 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The first triumphal arch of this church is similar to a simple portal. Although this fact 

is clearly shown, the comparison between the two type if analyses is good only in the 

second case. In particular, in the first one the value of the non linear analysis 

overcomes the limit one and in the second it approaches it. The percentage of dead 

load over the self weight is around 17% but the results are quite different. 
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(c) (e) 

Figure 25. T2 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                
Force/Displacement curves. 

 

The second triumphal arch of SGMG presents again the classical behaviour of a 

portal frame. Indeed, the results of the non linear and limit analyses agree fairly well 

in both cases. 

 

 

 



                                                       Chapter 6 – Simplified analyses of macroelements  

 

 

184 

 

 
(a) 

SGMG-T3-T6
Self Weight 32.08%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 5 10 15 20 25 30 35

δ (mm)

F/
W T3-T6 S

L.A.Bmax
L.A.Bmed
L.A.Bmin

(d) 

 
(b) 

 
Af /Atot: 0.246 
h: 8.3 m 
Bmin: 1.5 m 
Bmed: 2.9 m 
Bmax: 4.3 m 
Wbeam: 1961.5 KN 
Wtot: 3479.3 KN 
DeadLoad/SelfWeight:0.146 
 

SGMG-T3-T6
Self Weight

+
Dead Load

28.20%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 5 10 15 20 25 30 35

δ (mm)

F/
W T3-T6 S+D

L.A.Bmax
L.A.Bmed
L.A.Bmin

(c) (e) 
Figure 26. T3 – T4 – T5 – T6 macroelement – a) Mesh; b) Modelling; c) Simplified analysis 

data; d & e) Force/Displacement curves. 
 
A good match can be noticed in these transversal elements of the church between the 

two adopted methodologies. Because of the difference between the dimensions of the 

piers, the simplified analysis gives distant results of the collapse multiplier value. 

About the non linear analyses, both of them reach a sub-horizontal branch, meaning 

that the maximum capacity has been reached. 
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     3.3.1. SUMMARY OF THE SGMG RESULTS 

In Figures 27, the summary of the conducted analyses are reported. In this case, the 

medium values considered in the simplified analysis match better than the ones with 

the maximum dimensions. The results are fairly inside the cone of the 20% scatters.  
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Figure 27. SGMG – Summary of the results. 
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3.4. S. PAOLO MAGGIORE 

In Fig. 28 the considered macroelements are enlightened. 
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Figure 28. SP – Individuation of the macroelements in the plant. 

 

 

 

 

 

 

 

 



                                                       Chapter 6 – Simplified analyses of macroelements  

 

 

188 

 

 
(a) 

 

SP-L2-L5
Self Weight

32.87%

42.63%

0%

10%

20%

30%

40%

50%

0 5 10 15 20 25 30 35

δ (mm)

F/
W

L2-L5 S Right
L2-L5 S Left
L.A.Bmax
L.A.Bmed
L.A.Bmin

 
(b) (d) 

Af /Atot: 0.310 
h: 14.4 m 
Bmin: 1.75 m 
Bmed: 2.765 m 
Bmax: 7.6 m 
Wbeam: 3985 KN 
Wtot: 9910.4 KN 
DeadLoad/SelfWeight:0.095 
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(c) (e) 

Figure 29. L2 – L5 macroelements – a) Mesh; b) Modelling; c) Simplified analysis data; d & 
e) Force/Displacement curves. 

 

The non symmetry in the geometry and in the dead load has lead to four non 

different analyses. The small dimension of most of the piers has held to a fairly small 

collapse value. The non linear analyses are closer to the simplified approach if the 

maximum base is considered. 
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(b) 

Af /Atot: 0.278 
h: 10.5 m 
Bmin: 1.75 m 
Bmed: 1.9 m 
Bmax: 2 m 
Wbeam: 13361 KN 
Wtot: 18533.2 KN 
DeadLoad/SelfWeight: 0.072 
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(c) (e) 
Figure 30. L3 – L4 macroelements – a) Mesh; b) Modelling; c) Simplified analysis data; d & 

e) Force/Displacement curves. 
 

The inner arcade of SP shows a good match between the two methodologies although 

the non linear analyses do not develop completely in the plastic branch. It is worth 

noting that the simplified geometry has to consider the possible deformed shape 

under horizontal actions; in this case, because the base of the macroelement is 

stockier than the upper part, it has not been considered in the evaluation of the 

involved masses. 
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h: 12.5 m 
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(c) (e) 
Figure 31. L6 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

The ratio of the openings compared to the whole surface of this macroelement has 

conducted to assimilate this macroelement to a portal frame panel. The values of the 

maximum base in the simplified analyses are fairly close to the non linear analyses 

results. 
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Af /Atot: 0.34 
h: 18 m 
Bmin: 3.25 m 
Bmed: 7.67 m 
Bmax: 12.1 m 
Wbeam: 2034.9 KN 
Wtot: 16614.4 KN 
DeadLoad/SelfWeight: 0.08 
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(c) (e) 
Figure 32. T2 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

The storey mechanism individuated in the simplified geometry is not confirmed in 

the comparison with the non linear analysis whose values are fairly larger. In the 

models with and without the dead load, the values of the collapse multiplier are 

closer to the limit analysis when the maximum base of the piers is considered. 
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Af /Atot: 0.345 
h: 19 m 
Bmin: 3.26 m 
Bmed: 6 m 
Bmax: 12.1 m 
Wbeam: 2471 KN 
Wtot: 18484.6 KN 
DeadLoad/SelfWeight:0.064 
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(c) (e) 
Figure 33. T4 macroelement – a) Mesh; b) Modelling; c) Simplified analysis data; d & e)                

Force/Displacement curves. 
 

This transversal macroelement shows a fairly developed non linear branch. These 

values of the collapse multiplier are close to ones obtained using the maximum 

dimension of the pier instead of the medium one. 
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(c) (e) 

Figure 34. T5 – T6 – T7 – T8 – T9 – T10 macroelements – a) Mesh; b) Modelling; c) 
Simplified analysis data; d & e)  Force/Displacement curves. 

 
 

The internal arcades show a large difference of the non linear analysis compared to 

the limit analyses. The two ABAQUS curves even overcome the simplified 

evaluation with the maximum value of the base.
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    3.4.1. SUMMARY OF THE SP RESULTS 

In Fig. 35 the last series of compared results are depicted. 
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(d) 

Figure 35. SP – Summary of the results. 

 

Unfortunately, in both the load conditions, when the medium dimension is 

considered, the results do not match well being fairly higher in the non linear 

analyses. On the contrary, for maximum values of the piers, the results are fairly 

good when the self load or the self load plus the dead load is considered. 
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    3.5. COLLECTION OF THE RESULTS 

In Fig. 36 the evaluated collapse multipliers for all the case studies are plotted 

together. 
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(d) 

Figure 36. Summary of the results for all the churches. 

 

As already stated in the single paragraphs, the adopted procedure provides values 

that are variable according to the selected values of the averaged pier width.  
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4. CONCLUSIONS 

In this chapter, the comparison between non linear analyses and simplified analyses 

with limit analysis has been conducted. In the simplified approach, different sizes of 

the pier dimensions have been selected. They correspond to the minimum, medium 

and maximum value of the column width. Furthermore, two load conditions, in 

presence or not of dead loads, have been considered. 

When the medium value is taken into account, it has been noticed that, generally, 

greater error percentages are encountered in the model with the load condition 

considering the only self weight: in this case, the non linear analyses give high 

values; on the contrary the limit analysis gives small values of the collapse 

multiplier. In the load condition of self weight plus dead load, the scatters are 

smaller; this happens because of the presence of the dead load. It implies smaller 

collapse multiplier in the non linear analyses (the maximum values of the 

compression stresses are reached before) and greater values in the limit analysis 

(because the dead load, considered a stabilizing effect, is added into the weight of the 

beam).  As a result, the two ranges become closer.  

When the maximum pier is taken into account, the values of non linear analysis 

will be the same but limit analysis values will assume greater values, moving on the 

right side so that are inside the domain. 

This evidence has been confirmed for the churches of SGMR, SI and SP. On the 

contrary, in the church of SGMG, medium values have shown a better comparison 

with non linear procedure. 

From the above considerations, it can be derived that the use of simplified limit 

analysis approach, though approximated, is meaningfully able to provide indications 

on the collapse multiplier of the selected elements. Certainly, some issues arise about 

the validity of the calculated values since the adopted formulas are derived for a 

simple portal and require the choice of an average pier width. Nonetheless, it seems 



Chapter 6 – Simplified analyses of macroelements                                                  

 

199

to be an appealing path to follow in the study of the behaviour of structural elements 

at collapse.   
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CHAPTER 7 

THE MASONRY POINTED ARCH 
 

 

1. INTRODUCTION 

The masonry pointed arch, largely used in Gothic architecture, is known to generate 

lower horizontal thrust than the circular arch. While this fact is widely acknowledged 

and accepted, the structural behaviour of the pointed arch has not been investigated 

in detail. This chapter compares the circular and the pointed arch, evaluating the 

maximum and minimum thrust, and the collapse due to support displacement. Using 

limit analysis, a parametric study of such arches has been performed varying the 

angle of embrace, the thickness and the eccentricity of the centres. Graphical and 

numerical analyses have been carried out in order to predict failure as the supports 

are displaced. An extensive experimental campaign on model arches (illustrated in 

the following Chapter) is then used to verify the theoretical results allowing some 

new conclusions about the behaviour of the pointed arch. 
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1.1. THE ORIGIN OF THE POINTED ARCH 

One of the most important contributors on Gothic cathedrals is Viollet-le-duc, whose 

Dictionnaire raisonnè de l’architecture française du XIe au XVIe siécle [1875] is a 

milestone for the study of pointed arches. According the author, some traces of them 

can be found in Egypt and Persia in the VI Century mainly for their aesthetic and 

stylistic value. However, until the end of the XI Century the unique type of arch used 

was the circular one and only during the XII Century, the arch formed by two parts 

of a circle was widely adopted in France and later in Europe. It disappeared with the 

end of the Middle Ages, around the XVI Century when, with the advent of the 

Renaissance, the circular arch was readopted. 

There are a lot of controversies about the reason of the massive use of the pointed 

arch. According to [Viollet-le-duc E., 1875] the emergence of the pointed arch 

originated from the deformation in aging circular arches. When master builders of 

the time were restoring the leaning and the settlements of circular arches started to 

consider the old centre in the deformed position as a new centre of a new arch that 

had to be “broken”. As years went by, they built thinner circular arches and thicker 

pointed ones until the former were abandoned.  

It is hard to believe [Abraham, 1934] that the master builders of the time knew the 

advantages of the pointed arch in terms of the smaller thrust they induced on the 

supports when it was first used. Rather the lack of space for the vaults’ centrings or 

pure aesthetically reasons could have driven them to such marvellous constructions. 

At that time, experimentation with the basic structural elements to achieve a focusing 

of the forces in a skeleton structure of arch, pier and buttress and allowing the areas 

between to be opened up or glazed often led to structural failures. Gothic building 

failures were, therefore, a vital key to the structural progression of the cathedrals 

[Nelson B., 1971] and only with time, they could have acquired the sensibility to the 

reduction of thrust and used it more widely in their constructions. 
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For [Saunders, 1810] and [Frankl, 1962] the pointed arch was adopted in order to 

achieve the same height at crown for arches with different spans. 

Regardless of the origin, according to [Viollet-le-duc E., 1875], starting from XIII 

century three main shapes of pointed arch were used (Fig. 1): 1) the arch generated 

from an equilateral triangle; 2) the arch with centres at one third of the span away 

from each of the supports (also called “arch for three points”); 3 the arch with centres 

at one fifth of the span away from each of the supports (also called “arch for five 

points”).  

 

A B C  
Figure 1.  Common shapes of pointed arches. After Viollet-le-duc [1875] – Dictionnaire 

raisonnè de l’architecture française du XIe au XVIe siècle. 6th Volume : p.440. 
 

1.2. ANALYTICAL STUDIES ON MASONRY ARCHES 

A quantitative static theory for arches was not defined until the end of XVII Century, 

even if there were some signs to understand the structural behaviour of constructions 

and to orient the building techniques. For example, Vitruvio in the sixth of the ten 

books on architecture mentions that vaults exercise a thrust on the adjacent walls or 

columns. In 1643 Derand and probably Martìnez de Aranda in 1590 and Boccojani in 

1546, proposed a geometric rule according to which the abutment for the circular 

arch is wider than that for the pointed arch (Fig. 2.a). It can be said that the 

proportions of the structural members was the most used criterion by master builders 

until the XVIII Century with almost no knowledge of static and strength. Among 

ancient scientists, Leonardo da Vinci is certainly an exception. In his notes and 

sketches there are ideas that were only developed three centuries later. In the Foster 
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Codex II fol. 82v there are sketches of an experimental measure of thrust and tension 

in the ties in arches including the pointed arch (Fig. 2.b). 

 

 
(a) 

  
(b) (c) 

 
(d) 

Figure 2. First steps in the analytical studies on masonry pointed arches. 
                 a) Source: Derand [1643] – L’architecture des voutes ou l’art des trait et coupe 

des voutes First Part, Chapter 6;  
                 b) Source: Leonardo da Vinci [1493-1505] – Foster Codex Vol. 2 fol. 82v ;  
                 c) After Couplet [1729] – De la poussèe des voutes; 
                 d) Source: Blondel [1675] – Cours d’architecture.Paris: Lambert Roulland. 
 

Besides, quoting da Vinci: “l’arco non si romperà, se la corda dell’archi di fori 

non toccherà l’arco di dentro” meaning that the arch will not fail if the chord on the 

extrados will not touch the intrados, the same proposed rule by Couplet only in the 

XVIII Century (Fig. 2.c). The first substantial steps in the static theory of arches and 

vaults were made by De la Hire in 1731 with “Sur la construction des voutes dans les 
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edifices” and Belidor in “La science des Ingenieurs dans la condite des travax de 

fortification et d’architecture civile” who assumed rigid blocks provided of self-load 

and without friction. Another big step was made by Couplet with his two essays “De 

la poussèe des voutes” in 1729 and “Seconde partie de l’éxamen de la poussèe des 

voutes” in 1730. After 1770, an unexpected and extraordinary interest on the theory 

of arches and vaults developed so that it became topic of study for distinguished 

scientists like Bossut and Coulomb in France, Mascheroni and Salimbeni in Italy 

[Nascè V., Sabia D.; Giuffrè A., 1986; Benvenuto E., Corradi M. & Foce F., 1988; 

Foce F., Sinopoli A., 2001]. 

In 1737, in the light of Hooke’s principle of the inverted curve (ut pendet 

continuum flexile, sic stabit continuum rigidum inversum), Frezier considered the 

catenary curve as the ideal shape for an arch with a uniform thickness (Fig. 3.a). 

Although the idea was already well known among mathematicians, the French 

engineer contributed to its spreading comparing the catenary to a pointed arch.    

One of the first researchers seeking an understanding of the failure modes of 

different types of arches is Méry in 1840. In his paper he analyzes the different 

position of the hinges for a circular, a basket handle and a pointed arch through the 

thrust line. He realized that in the pointed arch the key tends to rise and the lower 

parts tend to turn inside on the contrary of what happens in the circular arch 

(Fig.3.b). That theoretical line represents the path of the resultants of the compressive 

forces through the stone structures (this concept has been framed in the wider theory 

of limit analysis developed for masonry structures by Heyman since 1966).  

In 1890, the German architect Ungewitter published a study conducted in 1794 by 

a Spanish mathematician, Padre Tosca, on the collapse of pointed arches (Fig. 3.c). 

They underlined the different role assumed by dead loads according to the shape of 

the arch. It’s fairly evident that a circular arch needs some mass on the haunches and 

that the pointed arch needs the load on the key stone.    
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In 1891 Baker, envisaging the possibility of an arch to fail for unequal settlement 

of the foundation, listed the three ways in which a masonry arch might yield: by the 

crushing of stone, by the sliding of one voussoir on another, or by the rotation about 

one edge of some joints. Neglecting the first mode, he focused on the last two 

mechanisms for a circular and a pointed arch (Fig. 3.d).  

 

 
(b) 

  
(a) (c) 

 
  

(d) (e) (f) 
Figure 3. Upgradinds in the analytical studies in masonry pointed arches. 
          – a) Source: Frezier [1737] – La théorie et la pratique de la cupe de pierres et des bois 

pour la construction des voutes et autres parties des batiments civils et 
militaires, ou traitè de stéréotemie à l’usage de l’architecture. 

          – b) Source: Méry [1840] – Sur l’equilibre des voutes en berceau. Plates CLXXXIII            
and   CLXXXIV 

          – c) Source: Ungewitter [1859] – Lehrbuch der gotischen constructionen. p.447 
          – d) Source: Baker [1891] – A treatise on masonry construction. p.447 
          – e) Source: Abraham [1934] – Viollet-le-duc et le ratioanlisme medieval. p.16 

– f) Source: Fitchen [1961] – The construction of gothic cathedrals. p. 81  
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Starting from Baker’s work, Sondericker in 1907 considered only the failure due 

to rotation of the joints, noting that in a circular arch the centre of pressure moves 

upward at the crown and inward at the haunches, whilst in the case of a pointed arch 

or an arch very lightly loaded at the crown and heavily loaded at the haunches, the 

tendency may be for the crown to rise and the haunches to move inwards.  

Later [Abraham, 1934] noticed that the failure mode in pointed arches is different 

from that in the circular ones finding that the former divides in six blocks with five 

rupture joints (Fig. 3.e). 

Finally, [Fitchen, 1961] described the collapse of the pointed arch (Fig. 3.f) in 

four steps: the springs of the arch tend either to spread apart or to open their joints at 

the intrados, the arch tends to burst outward at the haunches, the joints of the intrados 

near the crown tend to open and the crown tends to rise.  

 

2. PROBLEM STATEMENT 

This chapter intends to bring a new note on the study of masonry pointed arches. 

Although in the centuries the attention of researchers has been focused on arches, 

most of the times their shape was circular neglecting the pointed ones.  

In particular, it has been noticed that in the relevant literature there are no 

expressions or indications of the values of maximum and minimum thrust. Besides, 

also the allowable displacements that can be tolerated by the structure in equilibrium 

have not been investigated.  

Comparing step by step the behaviour of circular and pointed arches, this chapter 

seeks in detail these new topics. Varying the angle of embrace, the thickness and the 

eccentricity of the centres of the arches, the range of thrust values determined by the 

maximum and the minimum position of the thrust line and the range of possible 

support movements in the plane has been obtained. Numerical and graphical analyses 

have been performed and later compared with the results gained by experimental 

tests on model arches. 
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Finally, given a fixed span for an arch, the above parameters have been compared 

in the hypothesis that the thickness or the weight of the voussoirs is the same.  

Purpose of this investigation is finding the best shape an arch can assume in terms 

of most displacements and height at the crown, less weight and thrust on the 

abutments. 

 

3. METHODOLOGY 

On the base of Limit Analysis, the proposed methodology used to assess the 

behaviour of masonry arches is founded on a three step procedure. From the 

theoretical point of view, all the parameters have been evaluated firstly in a 

numerical way and then with graphical methods. Later, the results have been 

compared against each other with some experimental results explained in the 

following chapter. 

Although in most masonry buildings arches and vaults are constructed with fill on 

top, providing an alternative force path, here it is assumed that the arch will act only 

under self weight neglecting the fill. 

 

3.1. NUMERICAL ALGORITHM 

In order to assess a variety of parameters through the application of equilibrium 

conditions from limit analysis, a rigorous numerical algorithm has been developed 

and then implemented in the commercially available software Matlab. Namely, the 

minimum possible thickness of arches, the range of thrust values, the allowable 

displacements in the plane of the arch and the change of internal forces as a result of 

the spreading supports have been obtained numerically through the construction of 

the thrust line in different states of the structure. These values can be found by 

examining the equilibrium of the central region of an arch. For example, to determine 

the minimum thrust, the correct hinge location is positioned where the thrust from the 

central region is maximized [Coulomb, 1773; Heyman J., 1972] or to calculate the 
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maximum allowable spreading of the support of an arch, the novel theory exposed by 

[Ochsendorf J., 2002] was followed. He determined the exact mode of failure and the 

maximum value of span increase as the supports move apart.  

Because the intrados hinge location may change position and move toward the 

crown, various equilibrium states are possible and the arch can adopt different 

deformed shape per each as the span increases. Therefore, to solve the problem of 

spreading abutments, he realized that it is necessary to begin from a known 

equilibrium configuration and follow the equilibrium state of the structure as it 

deforms until the collapse.  

 

3.2.  GRAPHICAL STATICS 

In the XIX Century graphical statics was discovered as a powerful method in 

structural engineering for equilibrium analysis. The shape of the thrust line in an arch 

can be found through graphical methods such as using the funicular polygon 

methods. Its position is indeterminate to the third degree such that for any arch there 

is a family of possible lines of thrust. The degeneracy can be extinguished once the 

magnitude of the horizontal force and the position of the line at two points are 

known. Master builders such as Maillart, Eiffel or Gaudì used it in the process design 

of their magnificent works. Because of the unwieldiness and tediousness of the 

method due to the complexity and uniqueness of the drawings, the charming 

graphical statics was abandoned in recent years in favor of numerical methods. More 

recently, the possibility of using computerized graphical methods for the analysis of 

structures was faced up by [Greenwold, Allen et Al., 2004] who introduced 

interactive static methods and later, deeply developed by [Block P., 2005] who 

presented new interactive computational analysis tools based on limit state analysis 

for the understanding of masonry structures. 
The software Cabri was used in order to have a visual check of the results gained 

through the numerical code Matlab. The graphic static method is equally rigorous as 
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the numerical one based on the equilibrium of the voussoirs; in this case, however, it 

is the geometry of the structure being analyzed that controls the loads. Changes in the 

geometry will alter the volume and therefore the weight of the blocks. This 

influences the force polygon and hence the thrust line representing internal forces.  

The possible thrust lines can be found using these graphical methods. One of the 

greatest advantages of this code is that it is possible to draw parametric models, so 

that every geometric characteristic can be changed. In this way, it can be avoided to 

draw a graphical static construction of every single structure being analyzed, and a 

quick tool to compare the relative influence of geometry on the range of possible 

stable conditions is provided. 
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Figure 4. Symbols used in the parametric analysis.  

 

In the case of arches, from the geometrical point of view, they can be roughly 

defined by their radius (Rcirc for circular arches and Rpoint for pointed arches) and 

thickness (t). But to characterize exactly their shape three fundamental values have to 

be fixed. They are the angle of embrace (αcirc and αpoint), the ratio of the thickness 

over the radius of the pointed arch (t/Rpoint) and the eccentricity (e) over the radius of 

the circular arch (e/Rcirc). If we define the eccentricity as the distance of the center of 

the arch from the vertical axis of symmetry, so that Rpoint = e + Rcirc, a circular arch 
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has a ratio of e/Rcirc = 0 because its center coincides with the axis; on the other hand, 

pointed arches have two different centers and they are placed symmetrically with 

respect to the vertical axis (Fig. 4).  

 

4. MINIMUM THICKNESS 

       4.1. THEORY 

According to limit analysis, a real arch has a thickness sufficient to accommodate 

infinite possible thrust lines but there will only be one depth for which the arch is on 

the point of collapse without any movements of the supports, and that is the 

minimum thickness. A thinner arch cannot be constructed without the line of thrust 

passing outside the masonry, which would imply tension in the material in 

contradiction to the no-tension assumption. It also implies that for this thin arch the 

minimum and the maximum thrust will coincide.  

 

 

 
(a) (b) 

Figure 5. Thrust lines - a) in the circular arch; b) in the pointed arch. 

 

As shown in Fig. 5 the circular arch is on the point of collapse by the 

theoretical formation of a five bar chain and the pointed arch will have one 

additional hinge (that is, a six-bar chain) that will disappear for any slight 

asymmetry. In both cases the mechanism will be reduced to the regular four-

bar chain because of the suppression of one of the abutment hinges. 
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The problem consists into determining the value of the minimum thickness of the 

arch and the angle at which the hinges form. Already studied by [Couplet, 1729; 

Pétit, 1835; Milankovitch, 1907; Heyman, J., 1969; Sinopoli A., Corradi M. & Foce 

F., 1997] and recently systematically by [Ochsendorf J.A., 2002.] for the circular 

arch, this has never been analyzed for the pointed arch. [Méry M. E., 1840] points 

out the thrust lines position for the circular, the basket handle and the pointed arch in 

this particular case, finding that the minimum thickness is determined when seven 

collapse joints form because of an additional contact point at the intrados at the 

crown.  

 

       4.2. NUMERICAL AND GRAPHICAL ANALYSES 

The numerical procedure follows the suggestion of [Heyman J., 1969], which 

basically uses the zero work condition due to the absence of dissipation at hinge 

level. With reference to Fig. 6, a starting value of t/Rpoint is chosen. Then several 

hinge configurations, chosen in user-controlled steps, are studied. For each of them 

the expression of total work is evaluated. If it is zero, the value of t/Rpoint is stored. 

Subsequently the ratio t/Rpoint is changed. The procedure, thus, gives a class of t/Rpoint 

ratio values for which the total work is zero. The maximum of them (according to the 

application of the “safe” theorem) represents the minimum thickness normalized to 

the radius. 
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Figure 6. Minimum thickness for an arch. 
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Figure 7. Kinematic chains determining of the minimum thickness of an arch. 

 

Increasing the eccentricity, smaller thickness of the voussoirs is requested (Fig. 7) 

and hinge location to the crown is moved. The results gained through this script in 

Matlab have been verified against the results of graphical analysis in Cabri where a 

unique thrust line can be constructed.  
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5. THRUST VALUES 

5.1. THEORY 

According to the safe theorem, if it is possible to find at least one thrust line entirely 

contained in the shape of the arch, then the arch is “safe”. Generally, as soon as a 

thicker arch than the one for the minimum is considered, some thrust lines lie in the 

depth of the structure. Defining the minimum and the maximum thrust as the limits 

of the range of variability, a cracked arch will develop a minimum thrust when the 

supports are moved apart and a maximum one when the supports are moved together. 

Figure 8 shows these lines in a circular and a pointed arch with a ratio e/Rcirc = 

0.6. While in the first one the thrust lines may touch the boundary in three points so 

that only three hinges need to form, in the latter one, for the minimum thrust, four 

hinges have to take place because the thrust line can not be pointed. But any slight 

asymmetry, whether of geometry of the arch or of loading, will ensure that only one 

of the hinges near to the crown will form, so that again a three hinges mechanism 

will form. Having the same span and thickness, it can be easily noticed that the 

pointed arch assumes lower values of maximum and minimum thrust compared to the 

circular arch. 

 

  

  
(a) (b) 

Figure 8. Maximum and minimum thrust lines – a) in the circular arch; b) in the pointed arch. 
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5.2. NUMERICAL AND GRAPHICAL ANALYSES 

Using a similar algorithm as before, in which the t/Rpoint ratio is now parametrically 

introduced together to the value of the angle of embrace α and the eccentricity e/Rcirc, 

a more systematic analysis of pointed arches has been held varying the three 

parameters as shown in Fig. 9.  

Three different values of the half embrace have been selected - 90°, 75° and 60°- 

and four values for the ratio of e/Rcirc: 0, 0.2, 0.6 and 1.0 varying the values of t/Rpoint 

from 0.04 to 0.24 with a step of 0.02. 

Basically the script, varying the position of the hinges through the depth of the 

arch and applying the safe theorem, maximizes the value of the thrust writing the 

equilibrium conditions on each part of the structure. This happens for both the search 

of the minimum and the maximum values, simply inverting the position the hinges at 

the extrados or at the intrados of the structure. 

 

  
(a) (b) (c) 

Figure 9. Study cases varying the embrace, the thickness and the eccentricity. 
                a) embrace = 90°; b) embrace = 75°; c) embrace = 60°. 
 

As already stated, because the geometry of the structure limits the range of 

possible thrust lines, the minimum and maximum thrust represent the smallest and 

the largest horizontal thrusts the structure transfers to its supports. In Fig. 10 the 

maximum and the minimum thrust normalized to the weight of the arch (H/W) are 
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depicted as function of t/Rpoint. In particular, in each graph the value of e/Rcirc is held 

constant and three different “scissors shape” curves are drawn. They represent the 

values of the minimum and maximum thrust varying the angle of embrace (90°, 75° 

and 60°) for a fixed ratio of e/Rcirc.  

Obviously, there will be a unique value of this ratio for which the maximum and 

the minimum thrust coincide and this is exactly the value of the minimum thickness 

of the arch. From the graphs it is clear that arches with embraces of 90° have to be 

thicker than those with embrace of 75° and 60° to stay up. 

These analyses have highlighted that pointed arches assume lower values of thrust 

than the circular ones. More in detail, increasing the pointidness, smaller values are 

obtained. 
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Figure 10. Maximum and minimum thrust in arches with constant e/Rcirc.  
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Furthermore, the range of possible positions between the maximum and the 

minimum thrust decreases when the angle of embrace increases. For example, with 

reference to Fig. 10 (the third one), which represents pointed arches with values of 

e/Rcirc = 0.6, for a value of t/Rpoint = 0.12 the minimum and maximum values for the 

embrace of 90° are 0.10 and 0.16; they become 0.13 and 0.25 for the embrace of 75° 

and increase to 0.17 and 0.40 for the 60° embrace. It is evident that an arch with a 

given embrace has a bigger range of possible positions of the thrust line compared to 

an arch with a wider embrace, but that at the same time, larger values of thrust on the 

abutments are requested. 

More significantly, similar results can be seen in Fig. 11.  
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Figure 11. Maximum and minimum thrust in arches with constant embrace α. 
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Holding fixed the variables on the two axes (H/W and t/Rpoint) and the angle of 

embrace for each graph and varying the value of e/Rcirc the arches’ thrust is reported. 

It is easily recognized that increasing the eccentricity of the arch (or its 

“pointedness”) the thrust values decrease and again, thinner arch can stand. Méry’s 

statement “on remarquera qu’elle exige une épaisseur plus considerable: c’est le 

contraire de ce que nous avous observé pour les voutes en plein cintre et en anse de 

panier“ (1840 – Sur l’equilibre des voutes eu berceau – p.66) that is “we’ll notice 

that the pointed arch (with smaller embrace) will require a greater thickness: that is 

the contrary of what we have observed for the circular and the basket handle arches” 

is evidently false. 
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Figure 12. Ratio of the maximum over the minimum thrust. 
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A visualization of the ratio Hmax/Hmin can be seen in Fig. 12 where the minimum 

values are fixed to unity (i.e. the minimum thickness). It can be noticed that 

decreasing the embrace, higher values of Hmax/Hmin and thinner arches can be 

obtained. For the same value of embrace increasing e/Rcirc, higher ratios Hmax/Hmin 

can be obtained. 

In order to select the best shape for an arch, one may notice that highest and 

heaviest arches have smaller values of thrust but at the same time also smaller range 

of variability in terms of Hmax/Hmin. On the other hand, the shortest and the lightest 

arches have bigger values of H/W and Hmax/Hmin. From this point of view, therefore, 

the best solution is found in the e/Rcirc range of 0.5-0.6 where the arches are not so 

high and heavy but have at the same time enough thrust variability. 

 

6. HORIZONTAL SUPPORT DISPLACEMENT 

6.1. THEORY 

Historic masonry structures are commonly subjected to differential settlements in 

foundations, defects in constructions, consolidation of materials (creep in the mortar) 

and vibrations. The result of these actions is an increasing displacement over the life 

in the upper part of the constructions and the structure reacts by developing cracks, 

often showing large deformation capacity. Structures on spreading supports could 

collapse in one of two ways: a five-hinge mechanism (symmetrical in the circular 

arch and asymmetrical for the pointed one with the activation of only one of the two 

hinges close to the crown) or a three-hinge mechanism by snap-through if the 

thickness is sufficiently large. Generally, in the five-hinge collapse mechanism, the 

central portion of the arch is a three-hinged arch, which deforms to accommodate the 

span increase. Previous studies by [Ochsendorf J., 2002] show that this result is 

unsafe since the hinge locations are not fixed, but may move during the support 

displacements toward the crown of the arch.  
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Neglecting the cause of the displacements, the stability of the structure has been 

investigated, through kinematic and static analyses. Through the use of two codes, 

Matlab and Cabri, the analysis of the evolution of the thrust line in the arch as the 

supports are spreading has been performed. Although the procedures are different, 

the gained results agree with high accuracy. Following the method proposed and 

investigated by [Ochsendorf J., 2002] for the circular arch, a new script has been 

written in Matlab for the spreading of the support of the pointed arch.  

 

  
(a) (b) 

 
 

(c) (d) 
Figure 13. Procedure for the determination of maximum displacement for an arch.  

a) minimum thrust; b) supports movement; c) first collapse condition; d) second 
collapse condition. 

 

Mainly the steps are the following: 

1. determination of the hinges’ position imposing the minimum thrust’s 

condition (Fig. 13.a); 
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2. imposition of the support’s movement constantly updating the position of the 

thrust line (Fig. 13.b); 

3. the first collapse condition is reached if the locus of pressure reaches one of 

the two supports (Fig. 13.c). This means that a fourth hinge will form and the 

structure becomes an instable collapse mechanism; 

4. if the first collapse condition is not verified, the second one could occur if the 

snap through of the rigid blocks develops (Fig. 13.d); 

If the last two conditions are not verified but the location of pressure goes inside 

the intrados, the hinge will move close to the support and all the procedure starts 

again from point 2 until the collapse (Fig. 14). 

 

 
(a)  (b) 

Figure 14. Movement of the hinge up to the crown in the sequence. 

 

6.2. NUMERICAL AND GRAPHICAL ANALYSES 

To get the solution for great displacements of the support, the rotation centres 

method was used. In Fig. 15 an example of the rigid bar mechanism is reported: 

moving the support on the right apart (the hinge A moves in A’ and C is fixed), the 

initial position of point B (intersection of the circle in C and in A) is updated in B’ as 

soon as A moves in A’ (being again the intersection of the circle in C and in A’). 
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Figure 15. Rotation centres’ method. 

In Fig. 16 the values of the displacement due to the increasing of the span are 

presented. It is clear that pointed arches are able to deform much more than the 

circular arches before the collapse.  
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Figure 16. Span increase in arches. 
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Furthermore, on the same graph it is possible to see that arches with the same 

value of e/Rcirc and t/Rpoint but with smaller embrace (from 90° to 60°) have larger 

displacements before failure.  

In Fig. 17 the values of the thrust increase in the arch after the displacement are 

shown. A higher percentage of the thrust increase is obtained either when the angle 

of embrace is reduced and when the eccentricity is increased. 
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Figure 17. Thrust increase in the arch. 

 

7. DOMAINS OF POSSIBLE DISPLACEMENTS 

In 2000, Smars gave a very good representation of possible positions assumed by an 

arch keeping one support fixed and moving the other one. He defined a kinematically 

possible domain as the area representing all the positions spanned by the moving 

point assuming that blocks can not pervade and rotations are only in one verse. In the 

same way a statically possible domain is defined with the additional restriction that a 

thrust line has to be wholly contained inside the shape of the arch. In order to seek 
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how much a domain can change as the eccentricity of the centres is increased This 

powerful representation for arches under study has been used.. One of the 

comparisons is shown in Fig. 18 where the locus of all the statically admissible states 

of arches with same embrace (90°) and t/Rpoint ratio (0.12) are depicted with the 

hatched area.  

 

 

 
 

(a) 
 

(b) 
 

 
 

(c)  
(d) 

Figure 18. Statically and kinematically domains of possible displacements in the plane 
increasing the pointidness. 
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8. THE HALF ARCH 

After having analyzed the behaviour of the whole arch, the half arch has also been 

considered because of its similarity to the flying buttress in the Gothic churches. 

 

8.1. THRUST VALUES 

In Fig. 19 the thrust lines for the entire and the half arches are compared varying the 

eccentricity of the centres (form 0 to 1.0). It has to be noticed that, in the case of the 

half arch, for the minimum thrust a different mechanism was pursued with the 

formation of the hinge exactly on the intrados at the crown.  

 

 

   
Figure 19. Minimum and maximum thrust lines for the entire and the half arch. 

 

Similarly to Fig. 10, the values of the minimum and the maximum thrust, keeping 

constant the ratio e/Rcirc for the half arch are reported in Fig. 20. Again for each 

eccentricity smaller values of the embrace have as a consequence possible thinner 

arches and bigger values of Hmax/Hmin. Surprisingly for a given angle the half circular 
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arch (Fig. 20.a) behaves better than any half pointed arch (Fig. 20.b,c,d) in terms of 

minimum thickness. 
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Figure 20. Maximum and minimum thrust in half arches with constant e/Rcirc.  
 

8.2. MAXIMUM DISPLACEMENTS 

An application of the theoretical procedure developed and stated in §6 to get the 

maximum allowable displacement in an arch, was made on the study cases selected. 

In Fig. 21 for the half arch, the values of the displacement due to the increasing of 

the span are represented.  
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Figure 21. Span increase in half arches. 

 

Again, it is clear that pointed arches are able to deform much more than the 

circular arches before the collapse. Furthermore, on the same graph it is possible to 

see that arches with the same value of e/Rcirc and t/Rpoint but with smaller embrace 

(from 90° to 60°) have larger displacements before failure. 

 

9. ARCHES WITH THE SAME SPAN 

In Fig. 22 the comparison of the circular arch with two pointed arches (with centres 

at the third and fifth point) in terms of horizontal thrust and overturning moment 

made by [Abraham, 1934] is shown. In the first set of arches, holding constant the 

span length, the material and the thickness of the blocks, the horizontal thrust and the 

overturning moment decrease when going from the circular arch (case a) to the first 

pointed arch with the centre at the third of the span (case b) to the second pointed 

arch with the centre at the fifth of the span (case c). The second set of compared 

arches has the same typology (one circular and two pointed ones), but holding 
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constant the span length and the material, the thickness of the blocks is varied so that 

the horizontal thrust is kept constant. As a result, the thickness increases when going 

from case a to case d and case e whilst the overturning moments decreases again. 

In order to seek the best shape of an arch for a given span, similar analyses have 

been performed. In particular, the behaviour of arches with same span and thickness 

and later, same span and weight are compared.  

 

 
Figure 22. Arches with the same span. Source: Abraham [1934] – Viollet-le-duc et le 

rationalisme medieval – p.14. 

 

9.1. SAME SPAN AND THICKNESS 

Having chosen a span of 4 m and a thickness of 0.6 m, varying the e/Rcirc ratio 

(from 0 to 1.0) and the angle of embrace (from 90° to 60°), the height at the crown 

(Fig. 23.a), the weight (Fig. 23.b), the ratios H/W (Fig. 23.c) and Hmax/Hmin (Fig. 

23.d) have been evaluated. In Fig. 23.a varying the values of e/Rcirc, different heights 
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at the crown are drawn holding constant the value of the embrace. In numbers for 

e/Rcirc = 0.2, the height at the crown will be 2.03 m for α = 60°, 2.47 m for α = 75° 

and 3.03 m for α = 90°.  
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Figure 23. Main results for arches with same span and thickness. 
                 a) height at the crown; b) weight; c) maximum and minimum thrust over  weight 

ratio; d) maximum and minimum thrust ratio; 
 

In Figure 23.b the weight of the arches, in terms of the area (neglecting the 

specific load and the depth of the arch in the other direction) are compared; for 

example for e/Rcirc = 0.2 smaller values of weight are obtained for smaller embraces. 

Graphing the values of the maximum and the minimum thrust (Fig. 23.c) it can be 

noticed that they generally decrease when the ratio e/Rcirc is increased and, for a fixed 

value of e/Rcirc, when the embrace is increased. In numbers, again for e/Rcirc = 0.2, 



                                                                        Chapter 7 -  The  masonry pointed arch 

 

230 

the maximum and the minimum thrust for α = 60° they are equal to 0.57 and 0.19, 

for α = 75° they are 0.36 and 0.14 and for α = 90° they are 0.23 and 0.11. In the last 

Figure (23.d) the values of Hmax/Hmin are reported: again they are decreasing as 

e/Rcirc is increased. 

 

9.2.  SAME SPAN AND WEIGHT 

A similar analysis has been conducted on arches with the same span - 4 m - and 

weight in terms of area - 4.33 m2.  
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Figure 24. Main results for whole arches with same span and weight. 
a) height at the crown; b) thickness; c) maximum and minimum thrust over  

weight ratio; d) maximum and minimum thrust ratio. 
 

In this case, whilst the trend of the weight at the crown (Fig. 24.a), the ratios H/W 

(Fig. 24.c) and Hmax/Hmin (Fig. 24.d) are similar to the previous analyses, the 
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thickness of the arch will decrease when e/Rcirc and the embrace are increased (Fig. 

24.b). Again, best arch shapes are around e/Rcirc = 0.6. 

 

9.3. HALF AND WHOLE ARCHES WITH SAME SPAN AND 

THICKNESS 

Adding the results gained in Fig. 23 to the values obtained for the half arch with 

same span and thickness, we obtain the graphs reported in Fig. 25.  
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Figure 25. Main results for the whole and half arches with same span and thickness. 

b) height at the crown; b) weight; c) maximum and minimum thrust over  weight 
ratio; d) maximum and minimum thrust ratio. 

 

For simplicity, one sample of circular arch and one sample of pointed arch (e/Rcirc 

= 0.6) were chosen. The results in terms of height, weight, minimum and maximum 

thrust and maximum displacements are visualized in Tab. 1.  
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Comparing the values, the tallest arch is the half pointed one and the shallowest is 

the whole circular one; the lightest one is the half circular arch and the heaviest is the 

whole pointed one.  

About the thrust, the minimum values of the Hmax and Hmin are both those of the 

whole pointed arch but the greatest ratio of thrust is that of the half circular arch. In 

terms of displacements, again the whole pointed arch reaches the maximum value.  

Compared to the other structures in Fig. 26 the visualization of the deformation 

for each type of arch at maximum displacements is depicted. 

 

    

0,6 4

Span         4.0 4.0 4.0 4.0 
Thicknes
s          

0.6 0.6 0.6 0.6 

Height        2.6 3.73 4.6 6.7 
Weight       4.32 5.24 4.05 4.89 
Hmin 0.56 0.42 0.81 0.88 
Hmax 1.21 0.89 1.82 1.47 
Hmax/Hmin 2.16 2.12 2.25 1.67 
Max displac 25% 48% 16% 12.5% 
Table 1. Comparison of four arches with same span and thickness. 
 

Therefore, it seems that the best behaviour of these arches is assumed by the 

whole pointed arch with e/Rcirc = 0.6 and that the worst is the half pointed arch with 

the highest value of Hmin, a quite high value of Hmax and the smallest possible 

displacement. 
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(a) (b) 

(c) (d) 
Figure 26. Collapse of the whole and the half arch with the same span. 

 

10.  CONCLUSIONS 

This chapter analyzes the structural behaviour of whole and half masonry arches 

focusing on pointed arches. The following facts have been deduced: 

The minimum and the maximum thrust lines of a whole pointed arch are slightly 

different from those of the circular arch. While in the latter three hinges are expected 

to form, the geometry of the pointed arch induces the formation of four hinges. Any 

slight asymmetry, however, whether in the geometry of the arch or in the loading, 

will ensure that only one of the hinges near the crown will form, so that again a three 

hinges mechanism will be activated.  

In the thinnest circular arch there is the formation of five hinges whilst in the 

pointed arch there is an additional hinge. Determining the minimum thickness for 
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pointed arches, as the eccentricity is increased, smaller thickness of the voussoirs is 

requested and hinge location to the crown is moved. Keeping constant the value of 

the embrace, pointed arches can be thinner than circular arches. Increasing the value 

of the eccentricity allows even thinner arches to remain stable. 

About the thrust values, the parametric analysis has allowed to note that for the 

whole arch:  

- keeping constant the value of t/Rpoint and e/Rcirc, the range of possible positions 

between the maximum and the minimum thrust (also quantifiable in terms of 

Hmax/Hmin) decreases when the angle of embrace is increased from 60° to 90°;  

- keeping constant the value of e/Rcirc and the angle of embrace, the value of 

Hmax/Hmin increases when the ratio t/Rpoint increases; keeping constant the angle of the 

embrace and the ratio t/Rpoint, the ratio Hmax/Hmin increases when the ratio e/Rcirc is 

increased. 

In the case of the half arch, a different location for the hinges has been 

considered; at the crown the hinge will only form at the intrados so that the half 

circular arch could be thinner than the half pointed one. 

The theory developed by [Ochsendorf J., 2002] on circular arches for the 

displacement of the supports has been confirmed for pointed arches. The main result 

is that pointed arches can bear greater displacement than the circular arches. In 

particular:  

- keeping constant the value of t/Rpoint and e/Rcirc, the maximum displacement 

decreases when the angle of embrace is increased from 60° to 90°;  

- keeping constant the value of e/Rcirc and the angle of embrace, the allowable 

displacement increases when the ratio t/Rpoint increases;  

- keeping constant the angle of the embrace and the ratio t/Rpoint, the maximum value 

increases when the ratio e/Rcirc is increased. 
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In case of arches with same span and thickness, highest and heaviest arches have 

smaller values of H/W and Hmax/Hmin; the shallowest and the lightest ones have 

higher values of H/W and Hmax/Hmin.  

In case of arches with the same span and weight, the thickness will decrease when 

e/Rcirc and the angle of embrace are increased. 

Comparing the behaviour of four arches (one whole circular, and pointed, one 

half circular and pointed)  having same span and thickness, in terms of  height, 

weight, Hmin and Hmax, Hmax/Hmin and maximum displacement, it was found that the 

best shape of arch was the whole pointed one and that the worst was the half pointed 

one. 

Moving one of the supports of the arch in any direction into the plane and tracing 

the domains of possible positions, pointed arches allow greater displacements in the 

plane. The domains increase when the eccentricity of the centres is increased and the 

angle of embrace decreased.  

All the theoretical values have been checked each other with two different codes – 

Matlab (analytical code) and Cabri (visual graphic code) and the results agree. 
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CHAPTER 8: 

EXPERIMENTS ON POINTED ARCHES 
 

 

1. INTRODUCTION 

Only few cases of experiments on arches (even in small scale) are reported in 

literature and none of them concerns pointed arches (with the exception of 

Leonardo’s case). In 1732 Danisy, quoted by [Frezier, 1737](Fig.1.a), carried out a 

series of experiments on plaster arches investigating the collapse by the hinging of 

the voussoirs. [Méry, 1840] (Fig. 1.b) describes three experiments held by Boistard 

in 1810 on circular and hamper handle arches made by brick blocks jointed by thin 

layers of mortar with and without the load on the haunches. [Heyman J., 1999] 

reports a model of an arch built by Barlow in 1846 composed by six voussoirs and 

mortar made of small pieces of wood so that when three of the four pieces were 

removed the line of thrust became visible (Fig. 1.c). [Huerta S., 2001, 2004] made 

very simple models of a slightly pointed arch with cardboard (Fig. 1.d). Making four 
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different runs; in the first three he only moved one of the supports towards or away 

from the other one and up, in the fourth run he moved one support horizontally 

towards the second while moving the latter upwards. He has shown the capacity of 

the structure to respond to actions by cracking so that the position of the thrust line is 

unambiguously determined. 

 

  
(a) (b) 

  
(d) (c) 

Figure 1. Experiments on arches in Literature. 
               a) Source: Danyzy [1732] – Méthode générale pour déterminer la résistance qu’il 

faut opposer à la poussée. 
               b) Source: Boistard [1810] – Expériences sur la stabilté des voutes 
               c) Source: Barlow [1846] – On the existence (pratically) of the line of equal 

horizontal thrust in aches, and the mode of determining it by geometrical 
construction. 
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              d) Source: Huerta [2001] – Mechanics of masonry vaults: The equilibrium 
approach. 

2. THE EXPERIMENTAL CAMPAIGN 

In order to verify the theory developed with the two computer codes (Matlab and 

Cabri) on arches collapse due to supports’ displacements, an extensive experimental 

campaign on these elements, made with small concrete blocks, has been carried out. 

Having fixed the inner span to be 1 m and the angle of every single block equal to 

7.5°, eight different types of arches were tested. In Fig. 2 the first four tests, 

characterized by the same value of t/Rpoint = 0.12, are shown.  

 

  
Test1-e/Rcirc:0.0-90° Test 2-e/Rcirc:0.2-90° Test 3-e/Rcirc:0.6-

90° 
Test 4-e/Rcirc:1.0-
90° 

 
Test 1-e/Rcirc:0.0-75° Test 2-e/Rcirc:0.2-75° Test 3-e/Rcirc:0.6-

75° 
Test 4-e/Rcirc:1.0-
75° 

 
Test 1-e/Rcirc:0.0-60° Test 2-e/Rcirc:0.2-60° Test3-e/Rcirc:0.6-60° Test4-e/Rcirc:1.0-60° 
Figure 2. Tested arches with t/Rpoint=0.12. 

 

Test 1 represents the arch with zero eccentricity or the circular arch, test 2 a 

slightly pointed arch (e/Rcirc = 0.2), test 3 a pointed arch (e/Rcirc = 0.6) and test 4 a 
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deeper pointed arch with e/Rcirc = 1.0. Because of the choice of the size of the 

voussoirs, simply subtracting two blocks each time on both sides and placing two 

wedges at their place, it is possible to analyze the behaviour of the same arch in the 

three embraces of 90°, 75° and 60°. The other four tests (not shown in Figure 2) have 

the same ratio of e/Rcirc but values of t/Rpoint = 0.18, that is 1.5 time more the previous 

tests.  

 

TEST e/Rcirc t/Rpoint angle num. Span Height Weight Hmin Hmax

   [deg]  [m] [m] [KN] [KN] [KN] 
1 0 0.12 90 24 1.0 0.564 0.257 0.049 0.058 
2 0.2 0.12 90 22 1.0 0.677 0.338 0.048 0.065 
3 0.6 0.12 90 18 1.0 0.877 0.535 0.054 0.085 
4 1.0 0.12 90 16 1.0 1.062 0.779 0.059 0.111 
5 0 0.18 90 24 1.0 0.599 0.410 0.067 0.102 
6 0.2 0.18 90 22 1.0 0.725 0.550 0.066 0.118 
7 0.6 0.18 90 18 1.0 0.957 0.895 0.070 0.163 
8 1.0 0.18 90 16 1.0 1.181 1.347 0.074 0.223 

 
1 0 0.12 75 20 0.966 0.435 0.214 0.049 0.073 
2 0.2 0.12 75 18 0.959 0.520 0.275 0.049 0.081 
3 0.6 0.12 75 14 0.943 0.662 0.417 0.054 0.105 
4 1.0 0.12 75 12 0.927 0.786 0.584 0.059 0.135 
5 0 0.18 75 20 0.966 0.470 0.342 0.066 0.132 
6 0.2 0.18 75 18 0.959 0.567 0.447 0.066 0.151 
7 0.6 0.18 75 14 0.943 0.736 0.698 0.070 0.204 
8 1.0 0.18 75 12 0.927 0.894 0.101 0.074 0.277 

 
1 0 0.12 60 16 0.866 0.314 17.11 0.049 0.918 
2 0.2 0.12 60 14 0.837 0.373 21.19 0.049 0.974 
3 0.6 0.12 60 10 0.777 0.461 29.90 0.050 0.119 
4 1.0 0.12 60 8 0.714 0.528 38.94 0.051 0.149 
5 0 0.18 60 16 0.866 0.349 27.34 0.067 0.174 
6 0.2 0.18 60 14 0.837 0.421 34.50 0.065 0.191 
7 0.6 0.18 60 10 0.777 0.531 50.00 0.064 0.249 
8 1.0 0.18 60 8 0.714 0.894 67.46 0.060 0.337 

Table 1. Characteristic data of tested arches. 
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In Table 1 the test type, the value of e/Rcirc, t/Rpoint and the angle, the number of 

blocks, the span, the height, the weight (considering a specific load of 24 kN/m3) and 

the value of the minimum and maximum thrusts are presented.  

It is noticeable that the shallowest arch is the circular arch (test 1) with an 

embrace of 60° with a height of 0.314 m and the tallest is the deepest pointed arch 

(test 8) with the embrace of 90°, 1.18 m high. Similarly, such arches are also 

respectively the lightest (test 1 with 0.171 KN of weight) and the heaviest (test 8 

with 1.347 KN). About the minimum and the maximum thrust in absolute terms, the 

arches that express less thrust, 0.0486 KN is the smallest pointed one with an 

embrace of 60° and the arch with maximum thrust, 0.3372 KN, is test 8 with an 

embrace of 60°.  

To be easily recognized, arches with the same value of eccentricity and varying 

thickness (t/Rpoint  = 0.12 and 0.18), were painted in different colours. Circular arches 

were painted in red, pointed arches with the ratio e/Rcirc = 0.2 in blue, with the value 

of e/Rcirc = 0.6 in yellow and with e/Rcirc = 1.0 in green. 

Five different types of testes have been performed during the experimental 

campaign. The first one consisted in the evaluation of the friction coefficient; the 

other four ones consisted into moving one of the two supports of the arch away, 

towards, up and down from the other one. In order to have an average on the 

behaviour of each experiment, three trials have been done for each test so that around 

200 trials were performed. A benchmark for slight inside and outside displacements 

(without any friction) of one of the two sides of the arch was built and a remotely 

controlled steel machine for the friction test and up and down movements was used. 

Two levels placed horizontally and vertically, measured the span and the height of 

the arches in the original position and at the failure. In order to avoid the sliding of 

the arch on the two supports, two pieces of wrinkled paper were placed on the 

surface of the bench-mark and on the two wedges when utilized. 
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3. FRICTION COEFFICIENT MEASURES 

The failure of a masonry structure due to sliding has been detected by the researchers 

as often as the hinges mechanism. If the effect of the mortar is neglected, an arch is 

stable against sliding when the angle between the line of resistance and the normal is 

smaller than the angle of friction. The minimum angle of inclination with the normal 

at which sliding will occur is called the angle of repose and its tangent, or ratio of 

tangential to the normal component of the force, is called the coefficient of friction.  

[Méry, 1840] states that the greatest danger of this type of failure threatens the 

spreading of arches and advises to use a value of 0.76. [Baker, 1891] points out that 

the value under the most unfavorable conditions – i.e. while mortar is wet – is about 

0.50, which correspond to an angle of friction of about 25°. [Sondericker, 1907] says 

that in the case of masonry joints, the value of the friction coefficient is taken to be 

from 0.4 to 0.5. [Jorini, 1918] differentiates the coefficient of friction if the mortar is 

still wet or dried and indicates a range of variability between 0.5 and 0.75 (or a 

friction angle between 27° and 37°). 

 

Authors Year Material Friction Coeff. 
Mèry 1840 not specified 0.76 
Baker 1891 not specified 0.5 
Sondericker 1907 not specified 0.4 ÷ 0.5 
Jorini 1918 not specified 0.5 ÷ 0.75 
Meli 1972 brick 0.7 ÷ 1 
Hegemier 1978 concrete blocks and mortar 0.7 ÷ 0.4 
Hamid and Drysdale 1982 bricks and mortar 0.7 ÷ 1.5 
Atkinson 1989 old and new concrete blocks 0.7 ÷ 1.15 
Andreaus and Maroder 1991 not specified 0.4 
Calvi and Magenes 1991 bricks 0.59 
Riddington and Jukes 1994 bricks and blocks 0.8 ÷ 0.92 
Zorri 1994 bricks 0.5 
Alpa, Gambarotta and Monetto 1996 not specified 0.5 
Theodosius and Tassios 1996 not specified 0.3 ÷ 1.4 
Table 2. Friction coefficient values indicated in literature. 
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Later, many researchers have done experimentations on stones, bricks or concrete 

blocks achieving the results shown in Tab. 2. The authors, the year of the publication 

of the results, the material with which the experiments were made with and the value 

of the friction coefficient are reported. 

As it can be noticed, although in literature many values are cited, there is a certain 

discrepancy among them. For this reason, using a machine remotely controlled that 

allowed vertical displacements, the values of the angle for which the sliding failure 

occurs have been measured directly. For each group of blocks (each belonging to one 

of the eight tests) three pairs of blocks without paint and three painted ones have 

been randomly chosen; therefore, six samples of units per test for a total amount of 

48 trials were tested. 

 

  

Figure 3. Friction test obtained moving up the steel plate remotely controlled. 
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In Fig. 3 four different moments in a general try of the test when the steel plate 

was moving up are captured, and in Tab. 3 the average values are reported. 

 

TEST Paint Friction 
coefficient 

Friction 
coeff. 

Average 

Friction 
coeff. 
Total 

Average 
YES 0.839 1 
NO 0.578 

0.71 

YES 0.631 2 NO 0.674 0.65 

YES 0.864 3 NO 0.676 0.77 

YES 0.652 4 NO 0.667 0.66 

YES 0.601 5 NO 0.578 0.59 

YES 0.570 6 NO 0.609 0.59 

YES 0.528 7 NO 0.529 0.53 

YES 0.641 8 NO 0.650 0.64 

0.66 

Table 3. Friction coefficient values from experimental testes. 

 

 The range of variability among the values is due to the fact that, although all the 

blocks have been built with the same amount of water (1 part), cement (2 part), sand 

(4 parts) and gravel (8 parts), they have not been made all together. Therefore, being 

a hand-made product, slight differences in the manufacturing are expected. First 

using the average of the painted blocks and the average of the unpainted ones, then 

using the average for each test and finally the average of all the tests, the friction 

coefficient that was found is 0.66, corresponding to a friction angle of 33.5°. This 

value has been very useful in the following tests to understand some collapse 

mechanisms not estimated in theory. 

 



                                                                                                                           245 Chapter 8 – Experiments on pointed arches

4. MOVING THE SUPPORTS APART 

This experiment, already done by [Ochsendorf J., 2002] on two small concrete 

circular arches (e/Rcirc = 0), t/Rpoint = 0.23 and embrace of 90° in the first case and 

t/Rpoint = 0.13 and embrace of 80° in the second one, showed that the collapse 

occurred in both cases by a four hinge mechanism when the locus of pressure points 

arrived at the extrados at the support (i.e. the arch exceeded the stability conditions 

for one of the supporting regions of the arch). 

From Figure 4 to 7 the new experiments on pointed arches are visualized. Each of 

them represents a typical failure mechanism so that in Fig. 4 the circular arch (e/Rcirc 

= 0) is depicted, in Fig. 5 the first pointed arch with small eccentricity (e/Rcirc = 0.2), 

in Fig. 6 the arch with the eccentricity of 0.6 and at last, in Fig. 7 the arch with the 

ratio t/Rpoint = 1.0. For each picture, the Cabri model and three moments of the 

collapse have been chosen.  

It is clearly visible that the failure mode and the hinge location with their 

movement up to the crown have been accurately predicted by the Matlab and Cabri 

models. As expected by theory the collapse occurred when the thrust line reached 

one of the two supports with a four hinges mechanism (or in some cases with a five 

hinges mechanism) in the thinnest arches with high value of the embrace (Fig. 4 - 5 - 

6) and with the snap-through in the thickest ones with a small value of the embrace 

(Fig. 7); therefore, these collapse mechanisms depend fundamentally on the ratio 

t/Rpoint and on the angle of embrace. 
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(a) (b) 

  
(c) (d) 

Figure 4. Test 5 - t/Rpoint :0.18 - e/Rcirc:0 - α:60° -- a) cabri model; b-c-d) test pictures. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Test 6 - t/Rpoint :0.18 - e/Rcirc=0.2 - α:90° -- a) cabri model; b-c-d) test pictures. 
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(a) (b) 

 
(c) (d) 

Figure 6. Test 3 - t/Rpoint :0.12 - e/Rcirc=0.6 - α:75° -- a) cabri model; b-c-d) test pictures. 
 

  
(a) (b) 

 
(c) (d) 

Figure 7. Test 8 - t/Rpoint :0.18 - e/Rcirc=1.0 - α:60° -- a) cabri model; b-c-d) test pictures. 
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MOVING THE SUPPORT APART 
EXPERIMENTAL 

RESULTS 
MATLAB/CABRI 

TEST α 

HINGE HINGE Spread HINGE HINGE Spread 
 [deg] [deg] [deg] [%] [deg] [deg] [%] 

1 90 -- -- -- 0 55.5 2.13 
2 90 -- -- -- 17.1 62.1 11.04 
3 90 30 67.5 18.27 29.5 67.02 24.61 
4 90 37.5 75 29.35 37.5 75 51.42 
5 90 0 52.5 7.00 0 59→52 11.26 
6 90 15 60 16.33 17 69.5→62 27.50 
7 90 30 75→60 33.00 29.5 74.5→59.5 48.77 
8 90 37.5 75 39.00 37.5 75→67.5 70.12 

 
1 75 0 52.5→45 7.61 0 55→48 9.91 
2 75 15 52.5 12.28 17 62→39.6 17.14 
3 75 30 67.5→45 25.26 29.5 67→37 30.49 
4 75 37.5 75→52.5 29.67 37.5 75→37.5 31.00 
5 75 0 52.5 12.50 0 59.5→44.5 17.91 
6 75 15 67.5→52.5 23.16 17 69.6→9.6 18.72 
7 75 30 67.5→45 29.79 29.5 74.5→29.5 33.79 
8 75 -- -- -- 37.5 75→52.5 70.91 

 
1 60 0 37.5→30 8.43 0 55.5→10.5 8.91 
2 60 22.5 60→37.5 17.28 17 54.6→32.1 17.70 
3 60 30 60→45 25.32 29.5 59.6→44.5 35.94 
4 60 37.5 60 38.03 37.5 60→52.5 50.945 
5 60 0 52.5→37.5 14.12 0 59.5→14.5 14.90 
6 60 15 60→45 27.50 17 54.6→39.6 27.49 
7 60 30 60 37.50 29.5 59.5→52 52.19 
8 60 37.5 60→52.5 66.20 37.5 60→52.5 75.00 

Table 4. Comparison between experimental results and modelling moving the support apart. 
 

In Table 4, the comparison between all the experimental results and the 

corresponding modelling moving the support apart is depicted. For the 24 test types 

(8 arches for 3 values of the embrace), the location of the hinges and the value of the 

spread normalized to the span are reported. In particular, if the hinge movement 

occurs, the initial and the final value are specified. For the experimental results, the 

average of the values on the three trials is reported. It is clearly visible that both the 
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values of the hinge location and of the spread agree very well with the value 

predicted by theory. 

 
5. MOVING THE SUPPORTS TOGETHER 

This time the experiments revealed failure mechanisms that had been neglected when 

the theoretical model has been developed. As can be seen from Fig. 8 to 11 the 

collapse now depends on the ratio e/Rcirc and the angle of embrace, as opposed to 

t/Rpoint and the angle of embrace in the case discussed in § 4.   

Mainly three different mechanisms have been identified: the first one (also called 

of “type I”), visible only in the circular arch, is almost similar to the mechanism 

activated when the supports are moved apart with the hinges forming on the same 

side (Fig. 8.a); the second type (type II) is activated for any kind of arch (Fig. 8.e, 

9.e, 10.e, 11.e) and the third one (type III) only for pointed arches (Fig. 9.a, 10.a, 

11.a).  

The type II mechanism mainly consists in the formation of the hinges at the 

intrados up to the crown and at the extrados at the base. Two facts can influence the 

collapse: the thrust line reaching the physical boundary of the arch somewhere so 

that the fourth hinge can form (collapse for lack of stability) or the thrust line being 

is out of the friction cone (collapse for sliding). This aspect, initially neglected in the 

theory, was added after being observed in the experiments. Because nothing similar 

was cited in the literature, the only considered collapse was by instability with unsafe 

values of maximum displacements. For the circular and the first pointed arch (t/Rpoint 

= 0.2) the collapse induced by sliding has preceded the collapse by instability that 

occurred in the last two arches (t/Rpoint = 0.6 and t/Rpoint = 1.0). Drawing for each 

sketch the thrust line and the friction cone for an angle of 33.5° (corresponding to the 

average friction value of 0.66 found through the experiments stated in §9), this 

phenomenon is clearly shown in the Cabri models depicted in the Fig. 8.e, 9.e, 10.e 

and 11.e. In the first two arches the thrust line goes out of the friction cone in the 
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hinge at the crown (point B’) and is fully inside in the arch; in the last two arches, on 

the other hand, the thrust line is inside the cone of friction at the crown but reaches 

the boundary at least in an other point to form the fourth hinge. 

The type III collapse only regards to the pointed arches (it substitutes the type I in 

the circular arch) and it is exactly the failure mode described by [Baker, 1891], 

[Abraham, 1934] and [Fitchen, 1961]. Although according to the cited references it 

occurs for angles of 90°, the experiments have shown that this collapse takes place 

only with embrace of 60° (Fig. 9.a, Fig. 10.a and Fig. 11.a) being the type II collapse 

effective with wider embraces. 

Comparing the final value of the span decrease between theory and practice 

(Table 5), it can be noticed that they match very well within the average error 

percentage of 18.22% for the embrace of 90°, 16.46% for the embrace of 75° and 

9.76% for the embrace of 60°. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

(g) (h) 
Figure 8. a-b-c-d) Test 5 - t/Rpoint :0.18 - e/Rcirc=0 - α:75° - type I of failure.  
                e-f-g-h) Test 5 - t/Rpoint :0.18 - e/Rcirc=0 - α:60° - type II of failure. 
                a) Source: Philippe Block Master of Science in Architecture Studies dissertation. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9.  a-b-c-d) Test 2 - t/Rpoint :0.12 - e/Rcirc=0.2 - α:60° - type III of failure.  
                 e-f-g-h) Test 6 - t/Rpoint :0.18 - e/Rcirc=0.2 - α:75° - type II of failure. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

  
(g) (h) 

Figure 10. a-b-c-d) Test 3 - t/Rpoint :0.12 - e/Rcirc=0.6 - α:60° - type III of failure.  
                  e-f-g-h)  Test 7 - t/Rpoint :0.18 - e/Rcirc=0.6 - α:90° - type II of failure. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 11. a-b-c-d) Test 4 - t/Rpoint :0.12 - e/Rcirc=1.0 - α:60° - type III of failure.  
                  e-f-g-h) Test 4 - t/Rpoint :0.12 - e/Rcirc=1.0 - α:90° - type II of failure. 
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MOVING THE SUPPORT TOGETHER 
EXPERIMENTAL RESULTS CABRI 

Test α 1st 
hinge 

2nd-
3rdhnge        

4thhinge Failure type spread spread 

 [deg] [deg] [deg] [deg]  [%] [%] 
1 90 -- -- -- -- -- -- 
2 90 -- -- -- -- -- 10.42 
3 90 0 90 52.5→60 II 49.54 49.08 
4 90 0 90 60 II 45.00 71.88 
5 90 7.5 90 52.5 II 3.83 3.92 
6 90 0 90 52.5→37 II 31.83 51.05 
7 90 0 90 52.5 II 73.68 80.75 
8 90 -- -- -- Sliding 43.00 71.88 

 
1 75 0→7.5 75 45→37.5 I 6.13 -- 
2 75 0 75 67.5 - 30 II and III 14.39 19.36 
3 75 0 75 45 II,III and No coll. 58.60 Nocoll. 
4 75 0 75 -- III and No coll. 75.82 Nocoll. 
5 75 7.5 75 30→15 II 9.38 12.00 
6 75 0 75 -- III – Sliding 53.68 54.68 
7 75 0 75 -- Out of plane 48.57 Nocoll. 
8 75 -- -- -- -- -- Nocoll. 

 
1 60 22.5 60  I 15.75 -- 
2 60 0 37.5→30 -- III 11.25 13.75 
3 60 0 60→37.5 -- III 17.30 18.00 
4 60 0 60→45 -- III 32.86 39.14 
5 60 0 60 -- III 55.69 56.22 
6 60 0 60 -- Sliding 44.58 Nocoll. 
7 60 0 60 -- II and No coll. 72.15 Nocoll. 
8 60 -- -- -- -- -- Nocoll. 

Table 5. Comparison between experimental results and modelling moving the support 
together. 
 

6. MOVING THE SUPPORT VERTICALLY 

The tests type was realized using a machine remotely controlled which allowed 

moving one of the two supports in vertical. Although the sharp corner of the blocks 

started damaging, as a consequence of the high number of testes previously done, the 

failures mode, the hinges location and the maximum displacement match very well 

with the ones predicted by theory. 
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Two different mechanisms are activated moving the support vertically as function 

of the pointidness of the arch. However, in both the cases, a four hinge mechanisms 

is activated: the difference is notable in the location of the hinges. For small values of 

the eccentricity, the collapse occurs along the development of the arch whilst for a 

great pointidness a hinge at the crown at the intrados will always develop. 

 From Figure 12 to 15, eight samples of arches have been chosen to represent the 

consistency of the results between theory and practice. Furthermore, it is enlightened 

that moving one support up produces the same results than moving the other support 

down, being the mechanism mirrored. As in the previous pictures, in the first one the 

Cabri model and the last three ones some captured frames during the experiments are 

shown.  

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                           257 Chapter 8 – Experiments on pointed arches

(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) (h) 

Figure 12. Test 5 - t/Rpoint :0.18 - e/Rcirc=0 - α:75° - a/e) cabri model; b/f-c/g-d/h) test 
pictures. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

  
(g) (h) 

Figure 13. Test 6 - t/Rpoint :0.18 -e/Rcirc=0.6 -α:75° -a/e) cabri model; b/f-c/g-d/h) test 
pictures. 



                                                                                                                           259 Chapter 8 – Experiments on pointed arches

 
(a) (b) 

 
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 14. Test 3 -t/Rpoint :0.12 -e/Rcirc=0.6 - α:60° -a/e) cabri model; b/f-c/g-d/h) test 
pictures. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 15. Test 4 -t/Rpoint :0.12 -e/Rcirc=1.0 - α:75° -a/e) cabri model; b/f-c/g-d/h) test 
pictures.  
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7. EXPERIMENTS VS MODELLING 

The series of experiments held on different arches has delivered a better 

understanding of the real behaviour of these structures made by rigid blocks without 

any sort of mortar among the joints. Many of the results obtained through the theory 

developed with the Matlab and Cabri codes have been confirmed and, at the same 

time some matters otherwise neglected have been highlighted. Quoting [Huerta S., 

2001] “Ars sine scientia nihil est – practice is nothing without theory, but theory 

without practice is simply dangerous”. In this spirit the experiments have been held 

and the comparison of theory and practice has resulted in very interesting 

discoveries.  

First of all, the differences between theoretical and real arches have to be 

highlighted. In the model developed with Cabri and Matlab, the voussoirs are perfect 

rigid blocks with very sharp corners so that the hinge locations could occur exactly at 

the edge. To reproduce this situation in the lab only machined steel voussoirs would 

be suitable. Since this is not a common masonry structure, which is usually inexact in 

its construction, blocks made by concrete with naturally not perfectly defined edges 

were chosen. As a consequence, the hinges formations were expected to be slightly 

offset with respect to the theoretical model. The imperfect modelling of the blocks 

causes also slightly asymmetry in the whole arch so that the collapse could occur 

prematurely (for example in the circular arch the failure happens with a four hinge 

mechanism rather than a perfectly symmetrical five-hinge mechanism). Finally, when 

the arch approaches the collapse state, the thrust from the central region is nearly 

equal to the resistance of the supporting region of the arch. Any small movement will 

lead to changes in the stability of the system and to a premature collapse of the arch. 

In particular, small vibrations (due for example to the friction of the removable 

support when it is moving) will lead to the collapse of the arch and therefore it is 

highly difficult to reach the theoretical limit for the spreading of the supports. 
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The consequence of all these observations is that the theoretical approach predicts 

larger support separations measured just before collapse because of the perfect 

modelling of the blocks, the complete symmetry, the absolute absence of friction in 

the displacements and all the variables present in the lab that could lead to a 

premature collapse of the arches. What is more important is that the presented 

methods correctly predicted the final collapse mechanism in all the directions for the 

circular and especially for the pointed arches. 

The first proof of the difference between theory and practice concerns the 

stability of test 1 (e/Rcirc = 0 and t/Rpoint = 0.12) and test 2 (e/Rcirc = 0.2 and t/Rpoint = 

0.12) with the embrace of 90° before moving the support. In theory these two arches 

should stay because the minimum thickness for the circular arch is t/Rpoint = 0.1075 

and 0.0829 for the pointed arch; actually the blocks have a ratio of t/Rpoint of 0.12 

which is larger than the minimum values. The two structures collapse as soon as the 

centring or the constraints at the supports are removed. This means that the values of 

t/Rpoint found analytically are theoretical.  

Another consideration can be done for the heaviest arches (as in test 8 with the 

angle of embrace of 90° and 75°). Although they should be able to deform more than 

the other tested arches, the expected mechanism never formed and the collapse 

occurred always prematurely in an out-of-the plane failure. However it has to be 

pointed out that such high values of t/Rpoint are almost never encountered in real cases 

(these arches have got a ratio t/Rpoint = 0.18 that means for a span of 1 m a thickness 

of the voussoirs of 0.22 m that is almost 1/5 of the span). These results are therefore 

not so relevant. 

All the other arches are within these two extremes and were therefore the main 

focus of the research. In order to compare the results gained by the experiments with 

those obtained by theory, the Matlab script was customized with the real size of the 

blocks (with an embrace of 7.5°). It has to be pointed out that all the results presented 

in the previous chapter were obtained without considering specific dimension of the 
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blocks and the hinges could occur therefore at any point along the arch. In practice, 

instead, hinges are constrained to form only at the end of the real blocks so that the 

theoretical values will be slightly different from the experimental ones had the script 

been left unchanged. Then the collapse would happen sooner or later compared to the 

predicted results. 
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Figure 20. Comparison of the theoretical and experimental displacements in the plane -- test 1 
to 4. 

 
In Figure 20 the comparison between theoretical and experimental displacements 

in the plane is reported. On the vertical axis, the values of the up and down 

movements and on the horizontal axis, the values of the apart and together 

displacements are shown. Considering the initial length of the arch equal to the unity 

and supposing of moving the point at the support at the intrados of the arch, the 

possible displacements of this point until the collapse of the structure, in percentage 
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terms can be seen. It can be seen how the domain of possible states enlarges once the 

eccentricity is increased. 

 
8. CONCLUSIONS 

In order to check the theoretical results on pointed arches (illustrated in the previous 

Chapter), an extensive experimental campaign was held on rigid concrete blocks in 

small scale representing eight different pointed arches varying the eccentricity of the 

centres, the thickness of the blocks and the angle of embrace. 

Five test types were made on the built arches: firstly, friction coefficient measures 

were taken on the blocks; then moving the supports horizontally apart and together 

and vertically up and down, the span variation was recorded. 

The comparison of theoretical and experimental results has allowed to emphasize 

the limits of both of them. Perfect hinges, sharp blocks, exactly symmetric structures, 

absence of friction, all accepted hypotheses in the theory, can never exist in reality; 

as a consequence the theoretical numerical results are greater than those measured in 

the experiments. At the same time the presented methods correctly predicted the final 

collapse mechanisms for the circular and specially the pointed arches. 

Moving the supports apart, two collapse mechanisms occurred: by a four hinge 

mechanism in the thinner arches with high value of the embrace and by the snap-

through in the thicker ones with a small value of the embrace. These mechanisms 

depend fundamentally on the ratio t/Rpoint and on the angle of embrace. 

Moving the support together, the collapse depends on the ratio e/Rcirc and the 

angle of embrace and three different mechanisms have been identified:  

- the type I occurs only in circular arches and is almost similar to the mechanism 

activated when the support is moved apart with the same hinges formation.  

- the type II mainly consists in the formation of hinges at the intrados up to the crown 

and at the extrados at the base and two types of collapse can happen:  four hinge 

mechanism and sliding.  
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- the type III, substituting the type I in the pointed arches which is described in 

literature, is activated only with small embraces. 

Two different mechanisms are activated moving the support vertically as function 

of the pointidness of the arch. However, in both the cases, a four hinge mechanisms 

is activated: the difference is notable in the location of the hinges. For small values of 

the eccentricity, the collapse occurs along the development of the arch whilst for a 

great pointidness a hinge at the crown at the intrados will always develop. 

Finally, the comparison between theoretical and experimental displacements 

along the axis in the plane is reported.  
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CONCLUSIONS 
 

 

In this thesis, masonry churches under horizontal actions have been studied. Such 

structures feature strong seismic vulnerability, both because of the mechanical 

properties of the material and the particular configuration. Besides, uncertainty of the 

conventional seismic action is detected. Different codes provide different spectra 

and, subsequently, different total seismic actions.  

In order to assess such difficulties, the four basilicas of SGMR, SI, SGMG and SP 

have been selected. These study cases are analysed with a two step procedure in 

which the whole structure is analyzed in the linear field through a complete 3D 

model, and then the single structural elements are assessed in non linear field through 

FEA and limit analyses. 

The following remarks can be stated: 

Certain uniformity in the global plan-altimetric apparatus can be recognised so 

that the four churches can be regarded as deriving from a sort of three-dimensional 
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global model that changes only for a scale factor. Similarly, a common structural 

behaviour is expected and in the analyses confirmed. 

The modal shapes for the analyzed constructions have shown low torsional and 

transversal stiffness and great out of the plane deformation. When rigid diaphragms 

are inserted to model retrofit interventions, greater global stiffness (especially in 

terms of torsion) and a more monolithic behaviour is detected. It has been noticed, 

furthermore, a stress concentration in the stiffer elements of the constructions (façade 

elements and in the transept zone) which absorb a larger amount of the total shear. 

Given the already stated uncertainty in the characterisation of seismic actions, 

assessment of the behaviour at collapse through spectrum-independent analyses is 

preferable. In this aim, advanced nonlinear analyses using the code ABAQUS are 

carried out on the single macro-elements constituting the structural complex. This 

approach is apparently the most accurate methodology for structural analyses. The 

results, in fact, are reliable only providing that very precise material characterisation 

is made. This can be very tricky for historical existing structures. Additional 

difficulties also derive from the complex geometrical configuration of the studied 

non-conventional structures. Load-displacement curves providing the collapse 

multiplier, the horizontal stiffness and the maximum displacement of some control 

points are obtained for all the macro-elements. These curves are compared with the 

elastic demands derived through global analyses. It has been shown that generally the 

bearing capacity of these elements is smaller than the strength demand. Therefore, 

these constructions are prone to damage and retrofit techniques are necessary. The 

presence of a rigid slab at the height of the roof has not improved at all the seismic 

behaviour of the study cases. On the contrary, the effective use of such retrofit 

technique has to be carefully evaluated specially when adopted in ancient 

constructions. 

In the light of the analyses conducted on these complex constructions it is derived 

that is quite hard following a unique procedure able to define with consistency the 
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most influencing quantities. Therefore, the necessity of defining a handy and suitable 

methodology for designers is strongly felt. In order to seek a simplified procedure on 

churches macroelements, a basic structural element in historical buildings, such as 

the portal frame, has been studied in detail. An analytical exact expression, derived 

using the kinematic theorem, and an approximate formula have been used for 

performing a parametric analysis varying geometrical proportions.  

The extension of the single portal frame to the multi-bay frame has been applied 

in order to perform the comparison between non linear analyses and simplified 

analyses. The use of approximate expressions derived for the portal frame implies an 

averaging of the pier widths. When the medium value is taken into account, 

generally, greater error percentages are encountered in the model with the load 

condition considering the only self weight: in this case, the non linear analyses give 

higher values; on the contrary the limit analysis gives small values of the collapse 

multiplier. In the load condition of self weight plus dead load, the scatters are 

smaller. When the maximum pier is taken into account, the values of non linear 

analysis will be the same but limit analysis values will assume greater values, 

moving on the right side so that are inside the domain. This evidence has been 

confirmed for the churches of SGMR, SI and SP. On the contrary, in the church of 

SGMG, medium values have shown a better comparison with non linear procedure. 

In the last part of the thesis, the structural behaviour of another typical element in 

ancient structures has been sought: it is the masonry arch. In order to determine the 

thrust ranges and the minimum thickness, a parametric analysis has been carried out 

on whole and half arches. A theory for the displacement of the supports has been 

developed: pointed arches can bear greater displacement than circular arches. This 

result is confirmed moving one of the supports in any direction into the plane and 

tracing the domains of possible positions. All the theoretical values have been 

checked with two different codes and the results agree well. Later, in order to verify 

these values, an extensive experimental campaign has been held on rigid concrete 
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blocks in small scale representing eight different pointed arches varying eccentricity, 

the thickness and the angle of embrace. Five types of test were made on the arches: 

first, friction coefficient measures were taken on the blocks; then moving the 

supports horizontally apart and together, and vertically up and down. The 

comparison of theoretical and experimental results has allowed to emphasize the 

limits of both of them. Perfect hinges, sharp blocks, exactly symmetric structures, 

absence of friction, all accepted hypothesis in the theory, can never exist in reality; as 

a consequence the theoretical numerical results are greater than those measured in the 

experiments. At the same time the presented methods correctly predicted the final 

collapse mechanisms for the circular and specially the pointed arches.  

 

In the light of the conducted experiences in this study, in terms of modelling, 

analysis and testing, it is believed that masonry structures deserve great attention in 

the design and assessment process. Many mistakes can be made regarding the basic 

assumptions on the constitutive model of the material, the suitable structural 

modelling, the choice of the seismic action and an effective retrofit technique. 

Furthermore, churches are more sensitive to damages than other “conventional” 

structures for their characteristic typology.  

The main features of these structures have been drawn throughout this work so 

that whatever similar construction will fairly show the same topics here presented. 

About the material properties, only experimental campaigns on the structural 

constituents of the building under study could provide a good characterization.   

Regarding the suitable analysis types, undoubtedly, a global three-dimensional 

analysis is necessary to get the general idea of the construction and understand its 

behaviour. On the other side, a useful quantitative result is the evaluation of the 

ultimate condition at collapse on bi-dimensional elements. This consideration is also 

made since the definition of the seismic forces for masonry structures according to 

different code provisions is not unique. 
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Simplified approaches do prove their appeal. Though some approximations are 

unavoidably to be made, in the aim of assessing the structural behaviour of ultimate 

capacity, such techniques seem to provide a very interesting path to follow in the 

future. 
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clear all 
%MINIMUM THICKNESS in MASONRY ARCHES 
%geometry and variables 
 out=[ ]; 
 test=[ ]; 
%geometry 
 Rcirc=[--]; 
 e_over_Rcirc=[--]; 
 e=Rcirc*e_over_Rcirc; 
 compldeg=[--]; 
 compl=compldeg*pi/180; 
 teta=asin((e*sin(compl))/Rcirc); 
 omega=pi-compl-teta; 
 Rpoint=(e^2+Rcirc^2-2*e*Rcirc*cos(omega))^0.5; 
 stepangledeg=0.01;     
 fiapointmin=asin (e/Rpoint); 
 fiapoint=pi/2-compl-fiapointmin; 
 fibpoint=(20:stepangledeg:70)*(pi/180); 
 stepratio=0.0001; 
 t_over_Rpoint=(0.01:stepratio:0.12); 
%cicles 
for j=1:length(fibpoint) 
 k=1; 
 t=Rpoint*t_over_Rpoint(k); 
 h=t/2; 
 r1=Rpoint-h; 
 r2=Rpoint+h; 
 rad=(r1^3-r2^3)/(r1^2-r2^2); 
 %voussoir areas 
 A1=((fiapoint-fibpoint(j))*(r2^2))/2; 
 a1=((fiapoint- fibpoint(j))*(r1^2))/2; 
 A2=( fibpoint(j)*(r2^2))/2; 
 a2=( fibpoint(j)*(r1^2))/2; 
%vertical loads 
 F1=(A1-a1); 
 F2=(A2-a2); 
%distance of centroids from the arch centre 
 G1point=4*rad*sin((fiapoint-fibpoint(j))/2)/(3*(fiapoint-fibpoint(j)));   
 G2point=4*rad*sin(fibpoint(j)/2)/(3* fibpoint(j)); 
%coordinates of centroids, fixed and relative centres 
 XG1point=G1point*sin((fiapoint+fibpoint(j))/2+fiapointmin); 
 YG1point=G1point*cos((fiapoint+fibpoint(j))/2+fiapointmin); 
 XG2point=G2point*sin(fibpoint(j)/2+fiapointmin); 
 YG2point=G2point*cos(fibpoint(j)/2+fiapointmin); 
 X1point=(h+Rpoint)*sin(fiapoint+fiapointmin); 
 Y1point=(h+Rpoint)*cos(fiapoint+fiapointmin); 
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 X12point=(Rpoint-t/2)*sin(fibpoint(j)+fiapointmin); 
 Y12point=(Rpoint-t/2)*cos(fibpoint(j)+fiapointmin); 
 lpoint=(Y12point-Y1point)/(X12point-X1point); 
 X2point=(X1point*lpoint-Y1point+(Rpoint+h)*cos(fiapointmin))/lpoint; 
 Y2point=(Rpoint+h)*cos(fiapointmin); 
 %rotation angle  
 alfa= atan((X1point-X12point)/(X12point-X2point)); 
 alfadeg=alfa*180/pi; 
 %vertical displacements 
 VG1=(X1point-XG1point); 
 VG2=(XG2point-X2point)*tan(alfa); 
 %principle of virtual works 
PVW=F1*VG1+F2*VG2; 
  
 while (round(10*PVW) ~= 0) & (k < length(t_over_Rpoint)) 
 k=k+1; 
 t=Rpoint*t_over_Rpoint(k); 
 h=t/2; 
 r1=Rpoint-h; 
 r2=Rpoint+h; 
 rad=(r1^3-r2^3)/(r1^2-r2^2); 
 %voussoir areas 
 A1=((fiapoint-fibpoint(j))*(r2^2))/2; 
 a1=((fiapoint- fibpoint(j))*(r1^2))/2; 
 A2=( fibpoint(j)*(r2^2))/2; 
 a2=( fibpoint(j)*(r1^2))/2; 
%vertical loads 
 F1=(A1-a1); 
 F2=(A2-a2); 
%distance of centroids from the arch centre 
 G1point=4*rad*sin((fiapoint-fibpoint(j))/2)/(3*(fiapoint-fibpoint(j)));   
 G2point=4*rad*sin(fibpoint(j)/2)/(3* fibpoint(j)); 
%coordinates of centroids, fixed and relative centres 
 XG1point=G1point*sin((fiapoint+fibpoint(j))/2+fiapointmin); 
 YG1point=G1point*cos((fiapoint+fibpoint(j))/2+fiapointmin); 
 XG2point=G2point*sin(fibpoint(j)/2+fiapointmin); 
 YG2point=G2point*cos(fibpoint(j)/2+fiapointmin); 
 X1point=(t/2+Rpoint)*sin(fiapoint+fiapointmin); 
 Y1point=(t/2+Rpoint)*cos(fiapoint+fiapointmin); 
 X12point=(Rpoint-t/2)*sin(fibpoint(j)+fiapointmin); 
 Y12point=(Rpoint-t/2)*cos(fibpoint(j)+fiapointmin); 
 lpoint=(Y12point-Y1point)/(X12point-X1point); 
 X2point=(X1point*lpoint-Y1point+(Rpoint+h)*cos(fiapointmin))/lpoint; 
 Y2point=(Rpoint+h)*cos(fiapointmin); 
 %rotation angle  
 alfa= atan((X1point-X12point)/(X12point-X2point)); 
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 alfadeg=alfa*180/pi; 
 %vertical displacements 
 VG1=(X1point-XG1point); 
 VG2=(XG2point-X2point)*tan(alfa); 
 %principle of virtual works 
PVW=F1*VG1+F2*VG2; 
 end 
 test(j)=PVW; 
 out(j) = t/Rpoint;     
 end 
max(out) 
[Y,I] = max(out); 
(fibpoint(I)+fiapointmin)*180/pi 
figure 
subplot(2,1,1) 
plot(fibpoint*180/pi,out) 
subplot(2,1,2) 
plot(fibpoint*180/pi,test) 
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clear all 
% MAXIMUM SPREAD in MASONRY ARCHES 
%geometry and variables 
Rcirc=[--]; 
e_over_Rcirc=[--]; 
e=Rcirc*e_over_Rcirc; 
t_over_Rpoint = [--]; 
compledeg=[--]; 
compl=compledeg*pi/180; 
Rpoint=e+Rcirc; 
alphapointmin=asin (e/Rpoint); 
alphapoint=pi/2-compl-alphapointmin; 
t = Rpoint*t_over_Rpoint; 
h = t/2; 
r1 = Rpoint-h; 
r2 = Rpoint+h; 
rad = (r1^3 - r2^3)/(r1^2 - r2^2); 
riga=0; 
stepangle=0.5; 
amin = alphapointmin*180/pi; 
amax = amin+alphapoint*180/pi; 
lux=2*((Rpoint-h)*sin(alphapointmin+alphapoint)-e); 
height=((Rpoint+h)*cos(alphapointmin)-(Rpoint-h)*cos(alphapointmin+alphapoint)); 
% Coordinate system is XY with origin at the centre of circle 
X_O=[0]; 
Y_O=[0]; 
% Find coordinates of point C and D 
XC = (Rpoint+h)*sin(alphapointmin); 
YC = (Rpoint+h)*cos(alphapointmin); 
XD = (Rpoint+h)*sin(alphapointmin+alphapoint); 
YD = (Rpoint+h)*cos(alphapointmin+alphapoint); 
 for a=(amin+stepangle):stepangle:(amax-stepangle); 
    arads = (pi/180)*a; 
    XB = (Rpoint+h)*sin(arads); 
    YB = (Rpoint+h)*cos(arads); 
    % Find x-coordinate of centre of gravity of arch segment BC  
    C1 = (4/3)*rad*(sin((arads-alphapointmin)/2))/(arads-alphapointmin); 
    XM1 = C1*sin((arads+alphapointmin)/2); 
    YM1= C1*cos((arads+alphapointmin)/2); 
    M1 = (arads-alphapointmin)*(r2^2-r1^2)/2;  
    for b=(a+stepangle):stepangle:amax; 
        brads= (pi/180)*b;  
        riga=riga+1; 
        XA = (Rpoint-h)*sin(brads); 
        YA = (Rpoint-h)*cos(brads); 
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        % Find x-coordinate of centre of gravity of arch segment BA  
        C2 = 4/3*rad*sin((brads-arads)/2)/(brads-arads); 
        XM2 = C2*sin((arads+brads)/2); 
        YM2 = C2*cos((arads+brads)/2); 
        M2 = (brads-arads)*(r2^2-r1^2)/2; 
        % Compute value of thrust 
        thrustin=(M1*(XA-XB)+M2*(XA-XM2))/(YB-YA); 
        % Find mass of the last arch segment 
        M3 = (alphapoint+alphapointmin-brads)*(r2^2-r1^2)/2; 
        % Find weight of the arch 
        Wtot=2*(M1+M2+M3);     
        %matrix datas 
        L(riga,1)=alphapointmin; 
        L(riga,2)=arads; 
        L(riga,3)=brads; 
        L(riga,4)=(alphapoint+alphapointmin); 
        L(riga,5)=Wtot; 
        L(riga,6)=thrustin; 
        L(riga,7)=M1; 
        L(riga,8)=M2; 
        L(riga,9)=M3; 
        L(riga,10)=XA; 
        L(riga,11)=YA; 
        L(riga,12)=XB; 
        L(riga,13)=YB; 
        L(riga,14)=XM1; 
        L(riga,15)=YM1; 
        L(riga,16)=XM2; 
        L(riga,17)=YM2; 
        L(riga,18)=alphapointmin*180/pi; 
        L(riga,19)=arads*180/pi; 
        L(riga,20)=brads*180/pi; 
        L(riga,21)=(alphapoint+alphapointmin)*180/pi; 
    end 
 end 
%thrust 
[Hmin,ind] = max(L(:,6)); 
%print results 
L(ind,(5)); 
L(ind,(18:21)) 
Hmin/Wtot 
arads=L(ind,2); 
brads=L(ind,3); 
thrustin=L(ind,6); 
M1=L(ind,7); 
M2=L(ind,8); 
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M3=L(ind,9); 
XA=L(ind,10); 
YA=L(ind,11); 
XB=L(ind,12); 
YB=L(ind,13); 
XM1=L(ind,14); 
YM1=L(ind,15); 
XM2=L(ind,16); 
YM2=L(ind,17); 
% Find x-coordinate of hinge E  
XE=-(XA-2*e); 
YE=YA; 
LBE = (((XB-XE)^2+(YE-YB)^2)^.5); 
LBA= (((XA-XB)^2+(YB-YA)^2)^.5); 
% step variation 
step=--; 
stepvh=--; 
XA1=0; 
thrustfinh=[-100]; 
XBh=0; 
YBh=0; 
for XA1=(XA+step):step:50 
    a12=((-YE+YA)^2/(-XE+XA1)^2)+1; 
    b12=(XE^2+YE^2-LBE^2-XA1^2-YA^2+LBA^2)*(-YE+YA)/(-XE+XA1)^2+... 
        2*XE*(-YE+YA)/(-XE+XA1)-2*YE; 
    c12=(XE^2+YE^2-LBE^2-XA1^2-YA^2+LBA^2)^2/(4*(-XE+XA1)^2)+... 
        XE*(XE^2+YE^2-LBE^2-XA1^2-YA^2+LBA^2)/(-XE+XA1)+XE^2+YE^2-LBE^2; 
    YB1=(-b12+(b12^2-4*a12*c12)^0.5)/(2*a12); 
    XB1=(-XE^2-YE^2+LBE^2+XA1^2+YA^2-LBA^2-2*YB1*(YA-YE))/(2*(XA1-XE)); 
    YA1=YA; 
    %verify snap-through is not occurred 
    if ((imag(XB1)<0) | (imag(XB1)>0)) 
       spreadsnap= (XA1-XA)/lux*100 
       dipspread=((YC-YC1)/height*100) 
       dipOCH=(YC-YC1)/t 
       thrustincrease=thrust/thrustin 
    break 
    end      
    if((imag(YB1)<0) | (imag(YB1)>0)) 
        spreadsnap= (XA1-XA)/lux*100 
        dipspread=((YC-YC1)/height*100) 
        dipOCH=(YC-YC1)/t 
        thrustincrease=thrust/thrustin 
    break 
    end  
    LCB=(((XC-XB)^2+(YC-YB)^2)^.5); 
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    LCE=(((XC-XE)^2+(YC-YE)^2)^.5); 
    a34=((-YB1+YE)^2/(-XB1+XE)^2)+1; 
    b34=(XB1^2+YB1^2-LCB^2-XE^2-YE^2+LCE^2)*(-YB1+YE)/(-XB1+XE)^2+... 
        2*XB1*(-YB1+YE)/(-XB1+XE)-2*YB1; 
    c34=(XB1^2+YB1^2-LCB^2-XE^2-YE^2+LCE^2)^2/(4*(-XB1+XE)^2)+... 
        XB1*(XB1^2+YB1^2-LCB^2-XE^2-YE^2+LCE^2)/(-XB1+XE)+XB1^2+YB1^2-
LCB^2; 
    YC1=(-b34+(b34^2-4*a34*c34)^0.5)/(2*a34); 
    XC1=(-XB1^2-YB1^2+LCB^2+XE^2+YE^2-LCE^2-2*YC1*(YE-YB1))/(2*(XE-XB1)); 
    XD1=XD+(XA1-XA); 
    YD1=YD; 
    LXM1E = (((XM1-XE)^2+(YM1-YE)^2)^.5); 
    LXM1B = (((XM1-XB)^2+(YM1-YB)^2)^.5); 
    a56=((-YB1+YE)^2/(-XB1+XE)^2)+1; 
    b56=(XB1^2+YB1^2-LXM1B^2-XE^2-YE^2+LXM1E^2)*(-YB1+YE)/(-XB1+XE)^2+... 
        2*XB1*(-YB1+YE)/(-XB1+XE)-2*YB1; 
    c56=(XB1^2+YB1^2-LXM1B^2-XE^2-YE^2+LXM1E^2)^2/(4*(-XB1+XE)^2)+... 
        XB1*(XB1^2+YB1^2-LXM1B^2-XE^2-YE^2+LXM1E^2)/(-
XB1+XE)+XB1^2+YB1^2-LXM1B^2; 
    YM11=(-b56+(b56^2-4*a56*c56)^0.5)/(2*a56); 
    XM11=(-XB1^2-YB1^2+LXM1B^2+XE^2+YE^2-LXM1E^2-2*YM11*(YE-
YB1))/(2*(XE-XB1)); 
    M11=M1; 
    LXM2B = (((XM2-XB)^2+(YM2-YB)^2)^.5); 
    LXM2A = (((XM2-XA)^2+(YM2-YA)^2)^.5); 
    a78=((-YB1+YA)^2/(-XB1+XA1)^2)+1; 
    b78=(XB1^2+YB1^2-LXM2B^2-XA1^2-YA^2+LXM2A^2)*(-YB1+YA)/(-
XB1+XA1)^2+... 
        2*XB1*(-YB1+YA)/(-XB1+XA1)-2*YB1; 
    c78=(XB1^2+YB1^2-LXM2B^2-XA1^2-YA^2+LXM2A^2)^2/(4*(-XB1+XA1)^2)+... 
        XB1*(XB1^2+YB1^2-LXM2B^2-XA1^2-YA^2+LXM2A^2)/(-
XB1+XA1)+XB1^2+YB1^2-LXM2B^2; 
    YM21=(-b78+(b78^2-4*a78*c78)^0.5)/(2*a78); 
    XM21=(-XB1^2-YB1^2+LXM2B^2+XA1^2+YA^2-LXM2A^2-2*YM21*(YA-
YB1))/(2*(XA1-XB1)); 
    M21=M2; 
    C3 = 4/3*rad*sin((alphapoint+alphapointmin-brads)/2)/(alphapoint+alphapointmin-brads); 
    XM3 = C3*sin ((alphapoint+alphapointmin+brads)/2); 
    XM31=XM3+(XA1-XA); 
    M31=M3;        
    M4=M2; 
    XM4=-(XM2-2*e); 
    YM4=YM2; 
    LXM4E = (((XM4-XE)^2+(YM4-YE)^2)^.5); 
    LXM4B = (((XB-XM4)^2+(YB-YM4)^2)^.5); 
    a910=((-YB1+YE)^2/(-XB1+XE)^2)+1; 
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    b910=(XB1^2+YB1^2-LXM4B^2-XE^2-YE^2+LXM4E^2)*(-YB1+YE)/(-
XB1+XE)^2+... 
         2*XB1*(-YB1+YE)/(-XB1+XE)-2*YB1; 
    c910=(XB1^2+YB1^2-LXM4B^2-XE^2-YE^2+LXM4E^2)^2/(4*(-XB1+XE)^2)+... 
         XB1*(XB1^2+YB1^2-LXM4B^2-XE^2-YE^2+LXM4E^2)/(-
XB1+XE)+XB1^2+YB1^2-LXM4B^2; 
    YM41=(-b910+(b910^2-4*a910*c910)^0.5)/(2*a910); 
    XM41=(-XB1^2-YB1^2+LXM4B^2+XE^2+YE^2-LXM4E^2-2*YM41*(YE-
YB1))/(2*(XE-XB1)); 
    M5=M1; 
    XM5=-(XM1-2*e); 
    YM5=YM1; 
    LXM5E = (((XM5-XE)^2+(YM5-YE)^2)^.5); 
    LXM5B = (((XB-XM5)^2+(YB-YM5)^2)^.5); 
    a1112=((-YB1+YE)^2/(-XB1+XE)^2)+1; 
    b1112=(XB1^2+YB1^2-LXM5B^2-XE^2-YE^2+LXM5E^2)*(-YB1+YE)/(-
XB1+XE)^2+... 
          2*XB1*(-YB1+YE)/(-XB1+XE)-2*YB1; 
    c1112=(XB1^2+YB1^2-LXM5B^2-XE^2-YE^2+LXM5E^2)^2/(4*(-XB1+XE)^2)+... 
          XB1*(XB1^2+YB1^2-LXM5B^2-XE^2-YE^2+LXM5E^2)/(-
XB1+XE)+XB1^2+YB1^2-LXM5B^2; 
    YM51=(-b1112+(b1112^2-4*a1112*c1112)^0.5)/(2*a1112); 
    XM51=(-XB1^2-YB1^2+LXM5B^2+XE^2+YE^2-LXM5E^2-2*YM51*(YE-
YB1))/(2*(XE-XB1));   
    % Find distances 
    L1=XA-XM2; 
    L11=abs((XE-XM41)); 
    L2=XA-XM1; 
    L21=abs((XE-XM51)); 
    L3=XM1-XE; 
    L31=XM11-XE; 
    L4=XB-XE; 
    L41=XB1-XE;     
    thrustfin=((((M4*L11+M5*L21+M1*L31)/L41)+M2)*(XD1-XA1)+M3*(XD1-
XM31))/((YA1-YD1)+(YB1-YE)*(XD1-XA1)/L41); %-mobile 
    %thrustfin=((((M4*L1+M5*L2+M1*L3)/L4)+M2)*(XD-XA)+M3*(XD-XM3))/((YA-
YD)+(YB-YE)*(XD-XA)/L4) %-fisso 
    thrust=(((M4*L11+M5*L21+M1*L31)/L41)*(XA1-XB1)+M2*(XA1-XM21))/((YB1-
YA1)+(YB1-YE)*(XA1-XB1)/L41); 
    if thrustfin>0 
       if thrust > thrustfin 
          spreadthrust= ((XA1-XA)/lux*100) 
          dipthrust=((YC-YC1)/height*100) 
          dipOCH=(YC-YC1)/t 
          thrustincrease=thrust/thrustin 
       break 
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       end    
    end 
    v=1; 
    vrads=v*pi/180; 
    CV= (4/3)*rad*sin(vrads/2)/(vrads); 
    XV=CV*sin(brads-vrads/2); 
    YV=CV*cos(brads-vrads/2); 
    m=vrads*(r2^2-r1^2)/2;      
    LXVB = (((XV-XB)^2+(YV-YB)^2)^.5); 
    LXVA = (((XV-XA)^2+(YV-YA)^2)^.5); 
    a1314=((-YB1+YA)^2/(-XB1+XA1)^2)+1; 
    b1314=(XB1^2+YB1^2-LXVB^2-XA1^2-YA^2+LXVA^2)*(-YB1+YA)/(-
XB1+XA1)^2+... 
          2*XB1*(-YB1+YA)/(-XB1+XA1)-2*YB1; 
    c1314=(XB1^2+YB1^2-LXVB^2-XA1^2-YA^2+LXVA^2)^2/(4*(-XB1+XA1)^2)+... 
          XB1*(XB1^2+YB1^2-LXVB^2-XA1^2-YA^2+LXVA^2)/(-
XB1+XA1)+XB1^2+YB1^2-LXVB^2; 
    YV1=(-b1314+(b1314^2-4*a1314*c1314)^0.5)/(2*a1314); 
    XV1=(-XB1^2-YB1^2+LXVB^2+XA1^2+YA^2-LXVA^2-2*YV1*(YA-
YB1))/(2*(XA1-XB1));        
    phiBA=atan((YB-YA)/(XA-XB)); 
    phiB1A1=atan((YB1-YA1)/(XA1-XB1)); 
    phi=phiBA-phiB1A1; 
    X_01=XA1-r1*sin(brads-phi); 
    Y_01=YA1-r1*cos(brads-phi); 
    sum=pi/2-brads+vrads+phi; 
    Rf= (((M4*L11+M5*L21+M1*L31-thrust*(YB1-YE))/L41+M2)*(XA1-X_01)+... 
        thrust*(YA1-Y_01)-m*(XV1-X_01))/(((M4*L11+M5*L21+M1*L31-thrust*... 
        (YB1-YE))/L41+M2-m)*cos(sum)+thrust*sin(sum));              
    %one voussoir before hinge E 
    phiBE=atan(abs(YB-YE)/abs(XE-XB)); 
    phiB1E=atan(abs(YB1-YE)/abs(XE-XB1)); 
    phi2=phiBE-phiB1E; 
    X_02=XE+r1*sin(brads-phi2); 
    Y_02=YE-r1*cos(brads-phi2); 
    sum2=pi/2-brads+vrads+phi2; 
    XV2=-(XV-2*e); 
    YV2=YV; 
    LXV2B = (((XV2-XB)^2+(YV2-YB)^2)^.5); 
    LXV2E = (((XV2-XE)^2+(YV2-YE)^2)^.5); 
    a1516=((-YB1+YE)^2/(-XB1+XE)^2)+1; 
    b1516=(XB1^2+YB1^2-LXV2B^2-XE^2-YE^2+LXV2E^2)*(-YB1+YE)/(-
XB1+XE)^2+... 
          2*XB1*(-YB1+YE)/(-XB1+XE)-2*YB1; 
    c1516=(XB1^2+YB1^2-LXV2B^2-XE^2-YE^2+LXV2E^2)^2/(4*(-XB1+XE)^2)+... 
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          XB1*(XB1^2+YB1^2-LXV2B^2-XE^2-YE^2+LXV2E^2)/(-
XB1+XE)+XB1^2+YB1^2-LXV2B^2; 
    YV21=(-b1516+(b1516^2-4*a1516*c1516)^0.5)/(2*a1516); 
    XV21=(-XB1^2-YB1^2+LXV2B^2+XE^2+YE^2-LXV2E^2-2*YV21*(YE-
YB1))/(2*(XE-XB1));     
    Rf2= ((-(M4*L11+M5*L21+M1*L31-thrust*(YB1-YE))/L41+M1+M5+M4)*... 
         (-XE+X_02)+thrust*(YE-Y_02)-m*(-XV21+X_02))/((-(M4*L11+M5*L21+... 
         M1*L31-thrust*(YB1-YE))/L41+M1+M5+M4-m)*cos(sum2)+thrust*sin(sum2)); 
    vh=0; 
     
    while (Rf2<r1) & (vh<(b-stepvh)) 
          bradsh= brads-vh*(pi/180);  
          %Find new x-coordinate of hinge E  
          XEh=-((Rpoint-h)*sin(bradsh)-2*e); 
          YEh=(Rpoint-h)*cos(bradsh); 
          LBEh = (((XB-XEh)^2+(YEh-YB)^2)^.5); 
          for XAh=(XA1+step):step:50 
              a1718=((-YEh+YA)^2/(-XEh+XAh)^2)+1; 
              b1718=(XEh^2+YEh^2-LBEh^2-XAh^2-YA^2+LBA^2)*(-YEh+YA)/(-
XEh+XAh)^2+... 
                    2*XEh*(-YEh+YA)/(-XEh+XAh)-2*YEh; 
              c1718=(XEh^2+YEh^2-LBEh^2-XAh^2-YA^2+LBA^2)^2/(4*(-XEh+XAh)^2)+... 
                    XEh*(XEh^2+YEh^2-LBEh^2-XAh^2-YA^2+LBA^2)/(-
XEh+XAh)+XEh^2+YEh^2-LBEh^2; 
              YBh=(-b1718+(b1718^2-4*a1718*c1718)^0.5)/(2*a1718); 
              XBh=(-XEh^2-YEh^2+LBEh^2+XAh^2+YA^2-LBA^2-2*YBh*(YA-
YEh))/(2*(XAh-XEh)); 
              YAh=YA; 
              %verify snap-through is not occurred 
              if ((imag(XBh)<0) | (imag(XBh)>0)) 
                  spreadsnap= (XAh-XA)/lux*100 
                  thrustincrease=thrust/thrustin 
                  dipspread=((YC-YCh)/height*100) 
                  dipOCH=(YC-YCh)/t 
 
              break 
              end      
              if((imag(YBh)<0) | (imag(YBh)>0)) 
                 spreadsnap= (XAh-XA)/lux*100 
                 thrustincrease=thrust/thrustin 
                 dipspread=((YC-YCh)/height*100) 
                 dipOCH=(YC-YCh)/t 
 
              break 
              end 
               LCB=(((XC-XB)^2+(YC-YB)^2)^.5); 
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               LCEh = (((XC-XEh)^2+(YC-YEh)^2)^.5); 
               a2728=((-YBh+YEh)^2/(-XBh+XEh)^2)+1; 
               b2728=(XBh^2+YBh^2-LCB^2-XEh^2-YEh^2+LCEh^2)*(-YBh+YEh)/(-
XBh+XEh)^2+... 
                     2*XBh*(-YBh+YEh)/(-XBh+XEh)-2*YBh; 
               c2728=(XBh^2+YBh^2-LCB^2-XEh^2-YEh^2+LCEh^2)^2/(4*(-
XBh+XEh)^2)+... 
                     XBh*(XBh^2+YBh^2-LCB^2-XEh^2-YEh^2+LCEh^2)/(-
XBh+XEh)+XBh^2+YBh^2-LCB^2; 
               YCh=(-b2728+(b2728^2-4*a2728*c2728)^0.5)/(2*a2728); 
               XCh=(-XBh^2-YBh^2+LCB^2+XEh^2+YEh^2-LCEh^2-2*YCh*(YEh-
YBh))/(2*(XEh-XBh)); 
               XDh=XD+(XAh-XA); 
               YDh=YD; 
               LXM1Eh = (((XM1-XEh)^2+(YM1-YEh)^2)^.5); 
               a1920=((-YBh+YEh)^2/(-XBh+XEh)^2)+1; 
               b1920=(XBh^2+YBh^2-LXM1B^2-XEh^2-YEh^2+LXM1Eh^2)*(-YBh+YEh)/(-
XBh+XEh)^2+... 
                     2*XBh*(-YBh+YEh)/(-XBh+XEh)-2*YBh; 
               c1920=(XBh^2+YBh^2-LXM1B^2-XEh^2-YEh^2+LXM1Eh^2)^2/(4*(-
XBh+XEh)^2)+... 
                     XBh*(XBh^2+YBh^2-LXM1B^2-XEh^2-YEh^2+LXM1Eh^2)/(-
XBh+XEh)+XBh^2+YEh^2-LXM1B^2; 
               YM1h=(-b1920+(b1920^2-4*a1920*c1920)^0.5)/(2*a1920); 
               XM1h=(-XBh^2-YBh^2+LXM1B^2+XEh^2+YEh^2-LXM1Eh^2-2*YM1h*(YEh-
YBh))/(2*(XEh-XBh)); 
               a2122=((-YBh+YA)^2/(-XBh+XAh)^2)+1; 
               b2122=(XBh^2+YBh^2-LXM2B^2-XAh^2-YA^2+LXM2A^2)*(-YBh+YA)/(-
XBh+XAh)^2+... 
                     2*XBh*(-YBh+YA)/(-XBh+XAh)-2*YBh; 
               c2122=(XBh^2+YBh^2-LXM2B^2-XAh^2-YA^2+LXM2A^2)^2/(4*(-
XBh+XAh)^2)+... 
                     XBh*(XBh^2+YBh^2-LXM2B^2-XAh^2-YA^2+LXM2A^2)/(-
XBh+XAh)+XBh^2+YBh^2-LXM2B^2; 
               YM2h=(-b2122+(b2122^2-4*a2122*c2122)^0.5)/(2*a2122); 
               XM2h=(-XBh^2-YBh^2+LXM2B^2+XAh^2+YA^2-LXM2A^2-2*YM2h*(YA-
YBh))/(2*(XAh-XBh)); 
               XM3h=XM3+(XAh-XA); 
               % Find x-coordinate of centre of gravity of new arch segment BEh  
               C4h = 4/3*rad*sin((bradsh-arads)/2)/(bradsh-arads); 
               M4h = (bradsh-arads)*(r2^2-r1^2)/2; 
               XM4h=-(C4h*sin((arads+bradsh)/2)-2*e); 
               YM4h = C4h*cos((arads+bradsh)/2); 
               LXM4hEh = (((XM4h-XEh)^2+(YM4h-YEh)^2)^.5); 
               LXM4hB = (((XB-XM4h)^2+(YB-YM4h)^2)^.5); 
               a2324=((-YBh+YEh)^2/(-XBh+XEh)^2)+1; 
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               b2324=(XBh^2+YBh^2-LXM4hB^2-XEh^2-YEh^2+LXM4hEh^2)*(-
YBh+YEh)/(-XBh+XEh)^2+... 
                     2*XBh*(-YBh+YEh)/(-XBh+XEh)-2*YBh; 
               c2324=(XBh^2+YBh^2-LXM4hB^2-XEh^2-YEh^2+LXM4hEh^2)^2/(4*(-
XBh+XEh)^2)+... 
                     XBh*(XBh^2+YBh^2-LXM4hB^2-XEh^2-YEh^2+LXM4hEh^2)/(-
XBh+XEh)+XBh^2+YBh^2-LXM4hB^2; 
               YM4h1=(-b2324+(b2324^2-4*a2324*c2324)^0.5)/(2*a2324); 
               XM4h1=(-XBh^2-YBh^2+LXM4hB^2+XEh^2+YEh^2-LXM4hEh^2-
2*YM4h1*(YEh-YBh))/(2*(XEh-XBh));  
               LXM5Eh = (((XM5-XEh)^2+(YM5-YEh)^2)^.5); 
               a2526=((-YBh+YEh)^2/(-XBh+XEh)^2)+1; 
               b2526=(XBh^2+YBh^2-LXM5B^2-XEh^2-YEh^2+LXM5Eh^2)*(-YBh+YEh)/(-
XBh+XEh)^2+... 
                     2*XBh*(-YBh+YEh)/(-XBh+XEh)-2*YBh; 
               c2526=(XBh^2+YBh^2-LXM5B^2-XEh^2-YEh^2+LXM5Eh^2)^2/(4*(-
XBh+XEh)^2)+... 
                     XBh*(XBh^2+YBh^2-LXM5B^2-XEh^2-YEh^2+LXM5Eh^2)/(-
XBh+XEh)+XBh^2+YBh^2-LXM5B^2; 
               YM5h=(-b2526+(b2526^2-4*a2526*c2526)^0.5)/(2*a2526); 
               XM5h=(-XBh^2-YBh^2+LXM5B^2+XEh^2+YEh^2-LXM5Eh^2-2*YM5h*(YEh-
YBh))/(2*(XEh-XBh)); 
               % Find distances 
               L1h=abs((XEh-XM4h1)); 
               L2h=abs((XEh-XM5h)); 
               L3h=XM1h-XEh; 
               L4h=XBh-XEh; 
               L1hn=abs((XEh-XM4h)); 
               L2hn=abs((XEh-XM5)); 
               L3hn=XM1-XEh; 
               L4hn=XB-XEh; 
               thrustfinh=((((M4h*L1h+M5*L2h+M1*L3h)/L4h)+M2)*(XDh-XAh)+M3*(XDh-
XM3h))/... 
                   ((YAh-YDh)+(YBh-YEh)*(XDh-XAh)/L4h);%mobile  
               %thrustfinh=((((M4h*L1hn+M5*L2hn+M1*L3hn)/L4hn)+M2)*(XD-
XA)+M3*(XD-XM3))/... 
                   ((YA-YD)+(YB-YE)*(XD-XA)/L4hn)%fisso  
               thrusth=(((M4h*L1h+M5*L2h+M1*L3h)/L4h)*(XAh-XBh)+M2*(XAh-
XM2h))/((YBh-YAh)+... 
                   (YBh-YEh)*(XAh-XBh)/L4h);  
                                           
               if thrustfinh>0 
                  if thrusth > thrustfinh 
                     spreadthrusth= ((XAh-XA)/lux*100) 
                     dipthrusth=((YC-YCh)/height*100) 
                     dipOCH=(YC-YCh)/t 
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                     thrustincrease=thrusth/thrustin 
                  break 
                  end    
               end 
               %one voussoir before hinge Eh 
               phiBEh=atan(abs(YB-YEh)/abs(XEh-XB)); 
               phiBhEh=atan(abs(YBh-YEh)/abs(XEh-XBh)); 
               phi2h=phiBEh-phiBhEh; 
               X_02h=XEh+r1*sin(bradsh-phi2h); 
               Y_02h=YEh-r1*cos(bradsh-phi2h); 
               sum2h=pi/2-bradsh+vrads+phi2h; 
               XV2h=-(CV*sin(bradsh-vrads/2)-2*e); 
               YV2h=CV*cos(bradsh-vrads/2); 
               LXV2hB = (((XV2h-XB)^2+(YV2h-YB)^2)^.5); 
               LXV2hEh = (((XV2h-XEh)^2+(YV2h-YEh)^2)^.5); 
               a2930=((-YBh+YEh)^2/(-XBh+XEh)^2)+1; 
               b2930=(XBh^2+YBh^2-LXV2hB^2-XEh^2-YEh^2+LXV2hEh^2)*(-YBh+YEh)/(-
XBh+XEh)^2+... 
                     2*XBh*(-YBh+YEh)/(-XBh+XEh)-2*YBh; 
               c2930=(XBh^2+YBh^2-LXV2hB^2-XEh^2-YEh^2+LXV2hEh^2)^2/(4*(-
XBh+XEh)^2)+... 
                     XBh*(XBh^2+YBh^2-LXV2hB^2-XEh^2-YEh^2+LXV2hEh^2)/(-
XBh+XEh)+XBh^2+YBh^2-LXV2hB^2; 
               YV2h=(-b2930+(b2930^2-4*a2930*c2930)^0.5)/(2*a2930); 
               XV2h=(-XBh^2-YBh^2+LXV2hB^2+XEh^2+YEh^2-LXV2hEh^2-
2*YV2h*(YEh-YBh))/(2*(XEh-XBh)); 
               Rf2h=((-(M4h*L1h+M5*L2h+M1*L3h-thrusth*(YBh-
YEh))/L4h+M1+M5+M4h)*(-XEh+X_02h)+... 
                   thrusth*(YEh-Y_02h)-m*(-XV2h+X_02h))/((-(M4h*L1h+M5*L2h+M1*L3h-
thrusth*(YBh-YEh))... 
                   /L4h+M1+M5+M4h-m)*cos(sum2h)+thrusth*sin(sum2h)); 
               if (Rf2h<r1) 
                  vh=vh+stepvh; 
               break 
               end 
           end    
 
               if thrustfinh>0 
                  if thrusth > thrustfinh 
                  break 
                  end    
               end 
               if ((imag(XBh)<0) | (imag(XBh)>0)) 
               break 
               end      
              if((imag(YBh)<0) | (imag(YBh)>0)) 
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              break 
              end 
   end 
   if thrustfinh>0 
      if thrusth > thrustfinh 
      break 
      end    
   end 
   if ((imag(XBh)<0) | (imag(XBh)>0)) 
   break 
   end      
   if((imag(YBh)<0) | (imag(YBh)>0)) 
   break 
   end 
end 
initialhinge=brads*180/pi 
finalhinge=brads*180/pi-vh 




