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Introduction

H andling the still increasing amount of digital traffic is today a large and
important research area. As it is well known, the information capac-

ity of the conventional single-input single-output (SISO) systems grows in a
logarithmic fashion with the signal-to-noise ratio. Since the signal-to-noise
ratio is related to the transmitted power and the ambient noise, one way to an-
swer the demand of high bit-rate services is to increase the transmitted power.
Unfortunately, in the modern multi-user environments, the ambient noise is
due to other users transmitting within the same frequency bands. It follows
that the increase in the transmit power does not guarantee a capacity gain be-
cause it implies a proportional increase in the overall disturbance. Moreover,
higher power level comes at the cost of a nonlinearity in the power ampli-
fier. For some years, the single-input multiple-output (SIMO) systems, as well
as multiple-input single-output (MISO) one, has represented a possible solu-
tion in attempting to increase the signal-to-noise ratio, and consequently the
capacity of the SISO system. The multiple output (input) character of such
communication systems is usually related to the adoption of receive (trans-
mit) diversity techniques. For instance, the use of multi element array at the
receiver (transmitter) and one element at the transmitter (receiver), has been
extensively studied. Unfortunately, the capacity achieved by the SIMO sys-
tems increases very slowly with the number of system outputs, whereas the
capacity achieved by the MISO ones rapidly reaches saturation as the number
of input increases. The natural conjunction between SIMO and MISO systems
leads to the more attractive multiple-input multiple-output (MIMO) systems.
Foschini and Telatar showed that a huge capacity gain can be achieved over the
SISO, SIMO, and MISO systems: more specifically, the capacity of a MIMO
system can grow, in principle, linearly with the minimum over the number of
inputs and outputs.

For this reason, over the last decade, there has been a growth of research
activity in the area of MIMO systems. The advantages of using a such systems

xv



xvi Introduction

lie in the following achievable gains:

• multiplexing gain

• diversity gain

• array gain.

The multiplexing gainis related to the possibility of breaking up the data
stream to be transmitted into several parallel data streams and of transmitting
such streams over as many orthogonal subchannels simultaneously and within
the same frequency band. Thediversity gainis related to possibility of trans-
mitting and receiving several replicas of the information signal so that, with
high probability, at least one or more of them will not be in a deep fade at any
given instant. The diversity techniques have been widely adopted in commu-
nications to counteract fading: owing to a large number of inputs and outputs,
the MIMO systems allow one to achieve a diversity order higher than the one
achieved by the SISO, SIMO and MISO systems. Finally, thearray gain is
related to the increased signal-to-noise ratio measured at the output of the re-
ceiver, and it is achieved by coherently combining (at the transmitter side) the
signals to be transmitted and by coherently combining (at the receiver side) the
received signals.

In the first part of this thesis, the focus is on the design of receiving ar-
chitectures which allow one to achieve amultiplexing gainover linear time-
dispersive MIMO channels. As well known, the optimum (in the Maximum
Likelihood sense) MIMO channel equalization mainly suffers from the compu-
tational complexity; in fact, it exponentially increases both with the number of
input sequences and with the channel memory length. For such a reason, many
suboptimal equalizers have been proposed in order to achieve an acceptable
compromise between performance and computational complexity. In addi-
tion, the remarkable hostility of wireless communication channels justifies the
continuous efforts for optimizing computationally feasible equalization tech-
niques. In the class of symbol-by-symbol equalizers, the decision-feedback
(DF) equalization plays an important role since it performs almost as well
as the optimum equalizer, but it requires a computational complexity slightly
higher than the linear equalizer. According to the DF equalizer structure, the
intersymbol interference (ISI) and the co-channel interference are removed via
the output of a feedback filter, which processes the past decisions provided
by a decision device on the basis of the equalizer output, from the output of
the feedforward filter, which processes the received signals. The DF equal-
izer structure usually employs linear feedforward and feedback filters. In this
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thesis, we propose to combine the DF strategy with the widely linear (WL)
filtering, which generalizes linear filtering by linearly processing both real
and imaginary part of the input signals. More specifically, with reference to
MIMO dispersive environment, an equalizer employing WL feedforward and
feedback finite impulse response filters is presented. The equalization struc-
ture will be synthesized according to the MMSE criterion. It will be shown
that, in presence of rotationally variant inputs, such an equalizer outperforms
the linear-filtering based DF equalizer by exploiting the statistical redundancy
characterizing the channel input.

Moreover, the thesis deals with an important issue concerning the choice
between two alternative WL receiver structures. The former performs the lin-
ear processing of the real and the imaginary parts of the input signals (as state
above), whereas the latter performs the linear processing of the input signals
and their conjugate version. In the literature, such receiver structures have
been proposed for detection scenarios where they result to be equivalent. In
this thesis, we recognize that, if the more general structure of DF equalizer
which utilizes also the decisions belonging to the same time step is consid-
ered, then the two choices are not anymore equivalent.

The second part of this thesis considers the design of MIMO transceivers
with channel state information at both sides of the link. In such a scenario,
channel-dependent linear transmit and receive processing of data streams can
improve the system performances by optimally allocating resources such as
power and bits over the multiple inputs. From an information-theoretic view-
point, the optimum design in terms of capacity diagonalizes the MIMO chan-
nel intoeigen subchannelsover which ideal Gaussian codes have to be trans-
mitted with a water-filling power allocation. With reference to non-dispersive
MIMO channels, we propose a WL filtering based transceiver structure, i.e.,
the one which performs a WL transmit processing as well as a WL receive
processing. It will be shown that, if the signals are known to be circularly
variant, then the transceiver which employs linear filters is not optimal. The
performance comparison between the linear transceiver structure and the WL
one is also carried out by using the asymptotic results in random matrix theory,
which has drawn considerable attention in the last few years.

The outline of the thesis is the following:

Chapter 1 presents the general framework. The MIMO system model
is introduced and the improvement provided MIMO system over conventional
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SISO one are shown from an information-theoretic view-point. Finally,
the basic properties of MIMO receivers as well as MIMO transceivers are
described.

Chapter 2 addresses the equalization of time-dispersive MIMO chan-
nels in presence of possibly rotationally variant transmitted symbols. The
DF equalization strategy and the WL processing are combined to obtain the
widely-linear/widely-decision-feedback equalizer. The optimum equalizer is
derived according to the minimum mean square error criterion. An analytical
calculation of the performance loss due unavoidable mismatches between
the actual values of the channel parameters, which are assumed known in
the derivation, and those estimated in practice, is provided. Finally, the
chapter reports an extensive set of experiments mainly aimed at comparing
the performance of the proposed WL equalizer and the linear one.

Chapter 3 addresses the MIMO transceiver optimization when channel
knowledge is available at both sides of the link and when possibly rotationally
variant symbols have to be transmitted. A new transceiver structure employ-
ing WL transmit and receive filters is presented, and its performances are
compared with those of the linear transceiver in terms of mean square error
measured at the output of the receiver and in terms of symbol error rate.



Chapter 1

MIMO model

T he increasing requirements on data rate and quality of service for wire-
less communications systems call for new techniques to improve spec-

trum efficiency as well as link reliability. In this context, much attention
has been focused on multiple-input multiple-output (MIMO) communication
channel models mainly for the following reasons:

a) the increasing exploitation of multiple antennas both at the transmitter
and at the receiver side to introduce spatial redundancy as well as to
utilize the recent space-time coding techniques;

b) the widespread use of multiplexing and multiple access techniques
which require to resort to a MIMO channel model, since it can describe
the mutual interferences among the different symbol streams. More
specifically, resorting to a MIMO model is mandatory in modern com-
munication systems that utilize code-division multiple-access (CDMA)
techniques such as direct sequence (DS) CDMA, multi carrier (MC)
CDMA and orthogonal frequency division multiplexing (OFDM);

c) the use of fractionally-spaced equalization where each received signal,
after analog filtering, is oversampled with sampling frequencyp-times
the symbol rate. In this case, an equivalent baud-rate MIMO model can
be adopted where the number of channel outputs becomesp times larger
than that associated with the baud-rate sampling.

In this chapter, after a brief introduction of the mathematical model
describing the radio channel propagation, we derive the bandpass equiva-
lent linear-time-invariant (LTI) finite-impulse-response (FIR) MIMO channel

1



2 CHAPTER 1. MIMO MODEL

model, whose equalization represents the main subject of the thesis. The ver-
satility of the adopted model is demonstrated by showing that a FIR MIMO
model arises in many communication systems such as multiple antenna sys-
tems, OFDM systems, CDMA systems, and systems which resort to fraction-
ally spaced sampling techniques.

Following the Telatar’ s paper [1], the extraordinary improvements in the
capacity provided by MIMO systems over the conventional single-input single-
output (SISO) systems, the multiple-input single-output (MISO) systems, and
single-input multiple output (SIMO) systems, are shown. In addition todiver-
sity gainandarray gain, MIMO links can offer the so calledmultiplexing gain
by opening parallel data pipes (usually calledspatial modeor eigen subchan-
nels) within the same frequency band at no additional power expense. In the
presence of rich scattering, MIMO links offer capacity gains that are propor-
tional to the minimum of the number of channel inputs and outputs.

Finally, both basic MIMO receiver and transceiver architectures are intro-
duced to provide the general frameworks utilized in Chapter 2 and Chapter 3,
respectively. More specifically, when the MIMO channel transfer function is
known at only the receiver side, the linear and the decision-feedback equalizers
are considered rather than the optimum (in the Maximum Likelihood Sense)
due to their lower computational complexity. If the channel state information
is available at both ends of the link, the transmitter and the receiver structures
can be jointly designed to improve the system performances. At the end of this
chapter, the linear transceiver design procedure is described.

1.1 Multiple-input multiple-output channel model

The block diagram of the equivalent low-pass continuous-time linear1 MIMO
channel withNi input signals andNo output signals is depicted in Fig. 1.1. At
the transmitter side,s(�)k denotes thekth complex-valued symbol to be trans-
mitted by utilizing the�th channel input; the symbolTs denotes the symbol
period, andψT (t) is the time-invariant unit-energy impulse response of the
transmit filters. The continuous-time linear MIMO channel is characterized by
theNoNi time-variant impulse responsesg(�,k)(t, τ) of the linear time-variant
(LTV) subchannel connecting the�th channel output with thekth channel in-
put: note thatg(�,k)(t, τ) is defined as the response at timet to a unitary Dirac
impulse applied to the considered subchannel at the timet − τ [2]. At the

1The modeling of the channel as a linear system agrees with the observed behavior of a large
number of communication channels.
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Figure 1.1: Analogic low-pass equivalent MIMO model.



4 CHAPTER 1. MIMO MODEL

receiver side,v(�)(t) represents the additive ambient noise at the�th output,
andψT (t) denotes the time-invariant unit-energy impulse response of the re-
ceive filters. The�th channel outputy(�)(t) is sampled with sampling period
of Tc � Ts/q, with q ∈ N. The choiceq = 1 accounts for the case where the
symbol rate at the transmitter and the sampling rate at the receiver are equal.

According to such a model, the input-output relationship of the MIMO
channel can be written as follows:

y(�)(t) =
∞∑

n=−∞

Ni∑
i=1

s
(i)
k h(�,i)(t, t− nTs) + n(�)(t) � = 1, . . . , No (1.1)

where

h(�,k)(t, τ) � ψT (τ) ∗ g(�,k)(t, τ) ∗ ψR(τ) (1.2)

n(�)(t) � v(�)(t) ∗ ψR(t) (1.3)

with ∗ denoting the continuous-time convolution operator. In the following,
we will refer toh(�,k)(t, τ) as the channel impulse response of the subchannel
(�, k), and we will refer to theNo ×Ni matrix

H(t, τ) �


h(1,1)(t, τ) h(1,2)(t, τ) . . . h(1,Ni)(t, τ)
h(2,1)(t, τ) h(2,2)(t, τ) . . . h(2,Ni)(t, τ)

...
...

.. .
...

h(No,1)(t, τ) h(No,2)(t, τ) . . . h(No,Ni)(t, τ)

 (1.4)

as the MIMO channel matrix, whereas the column vector[
h(1,i)(t, τ) h(2,i)(t, τ) . . . h(No,i)(t, τ)

]T
is usually referred to as

the signature induced by theith input across the channel outputs. In the cur-
rent literature, the special cases(Ni = 1, No > 1) and(Ni > 1, No = 1) are
referred to as single-input multiple-output (SIMO) system and multiple-input
single-output (MISO) system, respectively; ifNi = No = 1, then the MIMO
system degenerates into the conventional SISO system.

The sampled versiony(�)
k of the channel outputy(�)(t) is equal to

y
(�)
k � y(�)(kTc) � = 1, . . . , No

=
∞∑

n=−∞

Ni∑
i=1

s
(i)
k h(�,i)(kTc, kTc − qnTc) + n

(�)
k (1.5)

wheren(�)
k � n(�)(kTc) denotes the sampled version of the noise signaln(�)(t).

The discrete-time model in (1.5) is written as a function of the two data rates
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1/Ts and1/Tc. A suitable model, expressed as a function of a single data rate,
can be provided by defining the symbol sequences:

x
(�)
k �

{
s
(�)
k/q if k

q is integer

0 otherwise
. (1.6)

Note thatx(�)
k represents the oversampled version ofs

(�)
k obtained by inserting

q − 1 zeros between the symbolss(�)k ands(�)k−1. By utilizing (1.6), the input-
output relationship (1.5) can be rewritten as follows

y
(�)
k =

∞∑
n=−∞

Ni∑
i=1

x
(i)
k−nh

(�,i)
k,n + n

(�)
k � = 1, . . . , No , (1.7)

whereh(�,i)
k,n � h(�,i)(kTc, nTc). The equation in (1.7) provides theTc-space

sampled discrete-time MIMO channel model; without loss of generality, in this
thesis we will assumeTc = Ts unless specified.

Let us note thatg(�,k)(t, τ) andn(�)(t) are, in general, complex-valued
random processes. More specifically, the channel impulse responses can be
modelled as white processes independent of each other, as well as they can be
modelled as structured processes and/or correlated with each other when spe-
cial scenarios are considered. On the other hand, the noise processes can be
reasonably modelled as white processes independent of each other and inde-
pendent of the transmitted signals when they take into account for the effects
of the only thermal noise present at the output of the communication channel,
while they are typically structured when they take into account for the effects
of the co-channel interference.

1.2 Multipath fading channel

The characterization of the communication channelsh(�,k)(t, τ) as randomly
linear time-variant systems allows one to model many radio channels such as
ionospheric radio communication in the HF band, tropospheric scatter radio
communications in both the UHF and SHF bands, and ionospheric forward
scatter in the VHF band [3]. The time-varying nature of such channels is due
to the time-variant physical characteristics of the media and the time variations
are described in statistical terms. Because of such unpredictable behavior of
the channel, the resultant signal at the receiver will experiencefading, defined
as the changes in the received signal level in time. A widely adopted fading
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channel model is themultipath fadingchannel, which allows one to simply
describe and analyze propagation situations that include reflection, refraction,
and scattering of radio waves. The model assumes that the electromagnetic
energy carrying the modulated signal propagates along more than one path
connecting the transmitter and receiver. The amplitude, the phase shift, and
the time delay introduced by each path vary in time and produce a time-variant
destructive and constructive interference which causes fading. In order to pro-
vide a characterization of the MIMO channel in (1.4), in this section, we briefly
present the main features of the communication channelh(�,k)(t, τ) when it is
modeled as amultipath fadingchannel.

According to the multipath model, the impulse responseh(�,k)(t, τ) can be
represented [3, 4] in the form

h(�,k)(t, τ) =
N(t)∑
i=1

α
(�,k)
i (t)e−2πf0τ

(�,k)
i (t)δ

(
τ − τ (�,k)

i (t)
)

(1.8)

whereα(�,k)
i (t) denotes the attenuation of theith path,f0 is the carrier fre-

quency,τ (�,k)
i (t) denotes the time delay that affects the replica of the trans-

mitted signal along theith propagation path, and whereN(t) is the number
of paths at the time instantt; note that, except for the carrier frequency, all
these quantities are modeled as random processes. It is well known that large
dynamic changes in the medium are required to get a significant variation of
α

(�,k)
i (t). On the other hand, the phase shiftθ

(�,k)
i (t) � 2πf0τ

(�,k)
i (t) intro-

duced along theith path can noticeably change also in presence of small mo-
tions of the medium: in fact,θ(�,k)

i (t) will change by2π rad wheneverτ (�,k)
i (t)

changes by1/f0.
According to (1.8), the output of the channelh(�,k)(t, τ) corresponding to

the input signalu(t) is equal to

yu(t) �
∫ ∞

−∞
h(�,k)(t, τ)u(t− τ)dτ (1.9)

=
N(t)∑
i=1

α
(�,k)
i (t)e−θ

(�,k)
i (t)u

(
τ − τ (�,k)

i (t)
)

,

i.e., it is the sum of different replicas of the input waveform affected by differ-
ent attenuations, phase shifts, and time delays. The fast variations ofθ

(�,k)
i (t)

produce fast amplitude variations in the received signal, termedfading. When
N(t) is sufficiently large, the central limit theorem can be applied, and the



1.2. MULTIPATH FADING CHANNEL 7

channel responseh(�,k)(t, τ) may be modeled as a complex-valued Gaussian
random process2 in thet variable. The absence of direct and/or dominant paths
allows one to assume that the channel statistics are Gaussian with zero-mean:
in such a case the channel is said to be a Rayleigh fading channel, since the
envelope|h(�,k)(t, τ)| at any instantt is Rayleigh distributed. On the other
hand, in presence of a line of sight (LOS) or fixed scatterers, the envelope
|h(�,k)(t, τ)| displays Rice statistics; in such a case, the channel is said to be a
Rice fading channel. Finally, a more general fading channel model is described
by a Nakagami-m distribution for the envelope of the channel response (see [3]
for details).

For some channels, such as the tropospheric scatter channel, it is more ap-
propriate to consider the received signal as consisting of a continuum of mul-
tipath components. For such a reason, in the following, we assumeh(�,k)(t, τ)
not necessarily expressed as the finite sum of impulsive terms3 as in (1.8).

The main properties characterizing the fading channel can be studied by in-
troducing the autocorrelation function of the channel impulse response. To this
aim, let us assume thath(�,k)(t, τ) is a Gaussian wide sense stationary (WSS)
processes; in such a case it can be fully characterized by its autocorrelation
function:

E[(h(�,k)(t, τ1))∗h(�,k)(t+�t, τ2)] � φ
(�,k)
h (τ1, τ2,�t) , (1.10)

whereE[·] is the statistical expectation operator, and the superscript∗ denotes
the complex conjugate. Note that, although the fluctuations in the channel are
due to non-stationary statistical phenomena, the interest here is in short-term
fading which allows us to reasonably assume thath(�,k)(t, τ) is stationary in a
time sense. The function in (1.10) can be seen as the correlation between the
two channel impulse responses evaluated at the time instantt andt+�t, and
corresponding to two different pathsτ1 andτ2.

The autocorrelation function is usually slightly simplified by assuming that
the channel propagation is affected by uncorrelated scattering (US): according
to such an assumption, the attenuation and the phase shift introduced by the
propagation path with time delayτ1 are uncorrelated with the attenuation and
the phase shift introduced by the path with time delayτ2. According to the as-
sumption of Gaussian WSSUS channel, the autocorrelation function in (1.10)

2The modeling of the wireless channel impulse response as Gaussian process agrees with
the observed behavior of many communication channels.

3The model in (1.8) is an idealization of the actual behavior of a multipath channel, which
would not have such a sharply defined impulse response.
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is rewritten as follows:

E[(h(�,k)(t, τ1))∗h(�,k)(t+�t, τ2)] � φ
(�,k)
h (τ1,�t)δ(τ1 − τ2) . (1.11)

The (autocorrelation) functionφ(�,k)
h (τ1,�t) evaluated for�t = 0 is referred

to as themultipath intensity profileor delay power spectrumsince it is the
average output power of the channel as a function of the time delayτ . In fact,
by accounting for (1.9), one has that the instantaneous output power is equal
to:

Kyu(t, t) � E [yu(t)y∗u(t)] (1.12)

=
∫ ∞

−∞
φ

(�,k)
h (τ1, 0)|u(t− τ1)|2

= φ
(�,k)
h (t, 0) ∗ |u(t)|2 ,

i.e., the instantaneous input power|u(t)|2, which is nonzero over the time in-

tervalTu, is spread over an interval of durationTu+T (�,k)
m , withT (�,k)

m denoting
the duration ofφ(�,k)

h (t, 0). For such a reason,T (�,k)
m is calledmultipath delay

spread. It follows that, as long asT (�,k)
m > Tu, the received signal is spread

in time, and the corresponding channel is said to be time-dispersive: as it is
well known, the effect of the time dispersion is the intersymbol interference
(ISI). On the contrary, whenTu ≫ T

(�,k)
m , no linear distortion is present in the

received signal and the channel is said to be flat in the frequency domain.
A completely analogous characterization of channel can be provided by

defining the transfer function

H(�,k)(t, f) �
∫ ∞

−∞
h(�,k)(t, τ)e−2πfτdτ , (1.13)

which exhibits the same statistics ofh(�,k)(t, τ) . Under the assumption of
WSSUS channel, we define the space-time space-frequency autocorrelation
function

φ
(�,k)
H (�f,�t) = E

[(
H(�,k)(t, f1)

)∗
H(�,k)(t+�t, f2)

]
(1.14)

where�f = f2 − f1; note thatφ(�,k)
H (�f,�t) is the Fourier transform of

φ
(�,k)
h (τ,�t) from τ to �f . The value ofφ(�,k)

H (�f, 0) allows one to un-
derstand the behavior of the channel when two sinusoids with frequency sep-
aration�f represent the channel input. When the frequency separation is
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such thatφ(�,k)
H (�f, 0) is very near to the maximum valueφ(�,k)

H (0, 0) for all

�f < (�f)(�,k)
c , all the transmitted frequencies less than(�f)(�,k)

c will be

received fading in highly correlated fashion. For such a reason,(�f)(�,k)
c is

called thecoherence bandwidthand it can be approximated with the inverse of
T

(�,k)
m . It follows that, as long as the bandwidth�f of the transmitted signal

is larger than(�f)(�,k)
c , the channel exhibits frequency selectivity.

Let us now consider the effects of the time variation of the channel. To this
aim, consider the special case whereu(t) = e2πf1t is the channel input, and
let us evaluate the autocorrelation of the channel outputyu(t):

Kyu(t,�t) � E [yu(t)y∗u(t+�t)] (1.15)

= φ
(�,k)
H (0,�t)e−2πf1�t .

The correlationKyu(t,�t) allows to understand the behavior of the time vary-
ing channel in the instantst andt +�t, when the tonee2πf1t is transmitted.
When time separation�t is such thatφ(�,k)

H (0,�t) is very near to the max-

imum valueφ(�,k)
H (0, 0) for all �t < (�t)(�,k)

c , the transmitted signal of du-
ration less than(�t)c is not affected by the non linear distortion, or, in other
words, the channel is not time selective (say, flat int). For such a reason,
(�t)(�,k)

c is calledcoherence time.
The equation (1.15) can be also studied in the frequency domain. To this

aim, define that the Fourier transform ofφ(�,k)
H (�f,�t) with respect to the

variable�t:

S
(�,k)
H (�f, λ) �

∫ ∞

−∞
φ

(�,k)
H (�f,�t)e−2πλ�td�t . (1.16)

The correlation functionS(�,k)
H (�f, λ) evaluated for�f = 0 is called the

Doppler power spectrum of the channelsince it is a power spectrum that gives
the signal intensity as a function of the Doppler frequencyλ. By applying the
Fourier transform (with respect to the variable�t) to both the right hand side
and the left hand side of the equation (1.15), one has:

F {Kyu(t,�t),�t→ λ} = S
(�,k)
H (0, λ− f1) , (1.17)

i.e., the effect of the time variations of the channel result in frequency spread of
the received signal. The range of values over whichS

(�,k)
H (0, λ) is sensitively

nonzero is calledDoppler spreadand is denoted withBd; beingS(�,k)
H (0, λ)
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�

�

Ts

B

(�f)(�,k)
c

(�t)(�,k)
c

flat in t

flat in t

selective in t

selective in t
selective in f selective in f

flat in fflat in f

Figure 1.2: Channel classification:Ts is the symbol period,B the
bandwidth.

the Fourier transform ofφ(�,k)
H (0,�t), Bd can be approximated with the in-

verse of(�t)c.
A complete qualitative classification of the radio channel based on theco-

herence bandwidthand thecoherence timeis reported in Fig 1.2.

1.3 Time-dispersive FIR MIMO channel

The characterization of the fading channel reported in the previous section al-
lows one to determine the nature of the communication channel by simply
comparing the symbol periodTs and the bandwidthB of the transmitted sig-
nals with thecoherence timeand thecoherence bandwidthof the radio channel.
In the modern digital communication systems, and especially for mobile appli-
cations, the increasing demand of high bit-rate transmission and the need to use
stationary channel models require the adoption of a very short symbol period.
For such a reason, the condition of flat fading int channel is usually satisfied:
specifically,Ts ≪ (�t)(�,k)

c ∀�, k, and, consequently, theNiNo impulse re-
sponses of the composite MIMO channel in (1.4) do not introduce non linear
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distortion on the transmitted signals. On the other hand, being(�f)(�,k)
c < B,

the communication channelsh(�,k)(t, τ) result to be frequency selective or,
equivalently, time-dispersive.

According to the above considerations, this thesis considers the transmis-
sions over frequency-selective channel assumed to be invariant within the ob-
servation interval. It follows that the outputyu(t) of the channelh(�,k)(t, τ)
corresponding to the input signalu(t) can be simplified as follows [see also
(1.9)]:

yu(t) =
∫ ∞

−∞
h(�,k)(t, τ)u(t− τ)tτ (1.18)

=
∫ ∞

−∞
h(�,k)(τ)u(t− τ)tτ

whereh(�,k)(τ) � h(�,k)(0, τ) is the time-invariant channel impulse response.
Accounting for (1.18), the MIMO channel input-output relationship in (1.1)
and the correspondingTc-space sampled version in (1.7) can be rewritten as
follows:

y(�)(t) =
∞∑

n=−∞

Ni∑
i=1

s
(i)
k h(�,i)(t− nTs) + n(�)(t) (1.19)

y
(�)
k =

∞∑
n=−∞

Ni∑
i=1

x
(i)
k−nh

(�,i)
n + n

(�)
k , (1.20)

respectively, whereh(�,i)
n � h

(�,i)
0,n = h(�,i)(0, nTc).

It is clear that the total number ofTc-space discrete-time channel coeffi-
cientsh(�,i)

n is determined by the maximum delay spread of the physical fading
channelg(�,i)(t, τ) and the time durations of the transmit and receiver filters,
which are usually infinite in theory to maintain limited frequency bandwidth.
Therefore,h(�,i)

n is a time-invariant filter with infinite impulse response (IIR).
However, in practice, the time domain tails of the transmit and receive filters
are designed to fall off rapidly, and it is reasonable to assume a finite range
for the values ofn over which the amplitude of the channel coefficientsh

(�,i)
n

is essentially nonzero. Thus, by eliminating the coefficients which do not af-
fect significantly (owing to their small power) the channel output, the channel
impulse responseh(�,i)

n can be truncated to a finite impulse response (FIR).
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For the above reason, without loss of generality, we assume:

h(�,i)
n �= 0 if n = 0, . . . , ν(�,i)

h(�,i)
n = 0 otherwise ,

with ν(�,i) denoting the memory of the subchannel(�, i). Therefore, the input-
output relationship of the MIMO channel in the discrete time domain can be
written as follows:

y
(�)
k =

ν(�,i)∑
n=0

Ni∑
i=1

x
(i)
k−nh

(�,i)
n + n

(�)
k 1 ≤ � ≤ No . (1.21)

By grouping the received samples from allNo channel outputs at thekth in-
stant into theNo × 1 column vector

yk �
[
y

(1)
k y

(2)
k . . . y

(No)
k

]T
, (1.22)

one can relateyk to the corresponding input and noise column vectors

xk �
[
x

(1)
k x

(2)
k . . . x

(Ni)
k

]T
(1.23)

nk �
[
n

(1)
k n

(2)
k . . . n

(No)
k

]T
(1.24)

as follows:

yk =
ν∑

n=0

Hnxk−n + nk (1.25)

= Hk � xk + nk

whereHn is theNo × Ni matrix whose(�, i) entry ish(�,i)
n , ν is the maxi-

mum length of theNoNi channel impulse responses, i.e.,ν = max
(�,i)

ν(�,i), and

� denotes the discrete-time convolution operator. The block diagram of the
discrete-time MIMO channel model is depicted in Fig. 1.3, wherez−1 de-
notes the unit-delay block (i.e., the system that respond to the inputxk with
the outputxk−1).

In many applications, the channel matrix entriesh
(�,i)
n can be medeled as

zero-mean jointly WSS complex-valued circularly symmetric (see Chapter 2)
Gaussian random sequences with the same variance. However, in real-word
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� z−1 � z−1 � z−1

+ + +� �

�

�
�

xk

�

H1H0

xk−1

Hν

� �

�

xk−ν

yk

�

�

Hν−1

�
nk

Figure 1.3: Block diagram of the LTI time-dispersive MIMO channel
of orderν.

scenarios, the statistics ofHk can vary owing to the spatial and temporal fad-
ing correlation, and/or to the presence of a fixed component (e.g., line of sight)
in the channel resulting in Ricean fading, and/or to keyholes. These effects
have been modeled in [5, 6, 7, 8] and have been shown to have a signifi-
cant impact on the performance limits of MIMO channels. As regards the
noise vectornk, its componentsn(�)

k are usually modeled as zero-mean jointly
WSS complex-valued circularly symmetric Gaussian random sequences un-
correlated with each other and independent of the transmitted signals. Such
an assumption is realistic when the noise vector takes into account only for
the presence of the thermal noise in the receiver. On the other hand,nk can
describe the effects of the narrow-band interference due to overlay applica-
tions or cross-talk phenomena: is such cases, the componentsn

(�)
k can exhibit

spatial and/or temporal correlation, and they can be correlated with the input
signals. However, in the rest of the thesis, we assume the noise vector to be
independent of the useful signals.

The time-dispersive MIMO channel model in (1.25), as it will be shown
in next section, arises in many applications, including multi-antenna systems,
spread-spectrum multiuser communications, multi-carrier systems. On the
other hand, we should note that, although it well describes the linear distortion
introduced by the radio channel, it does not take into account for other im-
pairments such as the nonlinear distortion introduced by the A/D converters,
and/or the phase and time jitter due to imperfect synchronization between the
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transmit oscillators and the receive ones. Since the linear distortion represents
the most important cause of performance degradation in many communication
systems, this thesis will present some receiver and transmitter design methods
mainly aimed at reducing the negative effects of the frequency selectivity of
the communication channel.

1.4 MIMO in communications

The model in (1.25) describes the input-output relationship of an abstract sys-
tem with several inputs and/or outputs; in fact, its derivation has been carried
out with no assumption regarding the specific application scenario. In the liter-
ature, the MIMO communication systems are usually identified with the ones
that employ multiple antennas at both the transmitter and the receiver. How-
ever, we point out that, although it is not always explicit, a “virtual” MIMO
model frequently arises in many communication systems. For example, in
many applications, a more exact description of the detection scenario requires
to take into account for the presence of several signals that, together with the
transmitted one, affect the channel output: according to the conventional SISO
schemes, the effects of such signals are modeled as additive noise. Otherwise,
a MIMO model whose inputs include the undesired signals can be adopted to
improve the system performances [9], provided that some a priori information
about such undesired signals is available. It is clear that this model is not an
actual MIMO one since the MIMO character is generated by an ad hoc repre-
sentation of the transmitted signals.

For such reasons, in subsection 1.4.1, we introduce the multi-antenna sys-
tems by utilizing a simple propagation model, known in the literature as one-
ring model: except when specified, in the rest of thesis, we will refer to
the MIMO systems as multi-antenna systems. On the other hand, in sub-
sections 1.4.2, 1.4.3, and 1.4.4, we refer to MIMO models which arise in
direct-sequence code-division multiple access (DS-CDMA) systems, OFDM
systems, and fractionally-spaced SISO systems.

1.4.1 Multiple antenna systems

Multiple antenna systems (see Fig. 1.4) have drawn a considerable attention
in the last years for their capability to reject interference and to reduce the ef-
fect of fading and noise. The earliest form of antenna system for improving
the performance of the communication systems was antenna diversity, which
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H

Transmitter

Receiver

Figure 1.4: Multiantenna system.

mitigates the effect of fading. More recently, smart antenna systems, which at-
tempt to actively mitigate the channel impairments, have been developed [10].
The communication systems that employ multiple antennas at the transmitter
and at the receiver are popularly known as MIMO systems. Their structure nat-
urally leads to a MIMO model where the signals transmitted by the transmit
antennas represent the channel input, while the ones received by the receive
antennas represent the channel output. In this section, we derive the channel
impulse response of a multiple antenna system through the simple physical
scattering model known in literature asone-ringmodel [11], which is appro-
priate in the fixed communication context, where the transmitter is elevated
and seldom obstructed. For simplicity, in the following, we don’ t account for
the time-varying nature of the channel.

Fig. 1.5 shows theone-ring model. The transmitting antennas and the
receiving ones are denoted withTAi andRA�, and no LOS is present. Ac-
cording to such a model, every actual scatterer that lies at an angleθ to the
receiver is represented by a corresponding effective scatterer located at the
same angle on the ring. In other words, we assume that the receiving antennas
are surrounded by an infinite number of local scatterers uniformly distributed
over the ring with radiusR, which is usually assumed to be much smaller than
the distanceD, denoting the distance between the transmitting array and the
receiving one. Each effective scatterer is denoted withS(θ): the rays that are
reflected byS(θ) are subject to a phase changeφ(θ), which accounts for the
dielectric properties of the ring. Moreover, each scatterer is further assumed
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TAm

TA�

RAn

RAi

∆ θ

S(θ)

D R

Figure 1.5: Illustration of the abstractone ringmodel.

to be reflected only once, and all scatterers that reach the receiving antenna
are equal in power4. According to the above assumptions, and in presence of
K scatterers, the normalized path gainG�,i of the subchannel connectingRAi

andTA� is [6]:

g(�,i)(t) =
1√

2πK

K∑
k=1

eφ(θk)δ

(
t− DTA�→S(θk) +DS(θk)→RAi

c

)
(1.26)

whereDa→b denotes the distance betweena andb, andc is the speed of prop-
agation of the electromagnetic filed in the medium5.

Accounting for the time-invariant unit-energy impulse responsesψT (t)
andψR(t) of the transmit filter and the receive one, respectively, it is easy
verified that

h(�,i)(t) = ψT (t) ∗ g(�,i)(t) ∗ ψR(t) . (1.27)

The model in (1.26) and (1.27) allows to simply relate the MIMO subchan-
nel gains to the physical system parameters. Note that, when the reciprocal
communication bandwidth is much smaller than delay spread, (1.26) can be
approximated as follows

g(�,i)(t) 
 α(�,i)δ(t) , (1.28)

4Such an assumption is equivalent to assume the antenna gains independent of the impinging
direction of the plane wave travelling from the scatterer to the receive antenna.

5Note the similarity with the multipath model in (1.8).
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i.e., a flat-frequency MIMO channel with complex-valued subchannel gains
α(�,i) arises. With reference to such a channel model, it has been shown in [6]
that whenK is sufficient large, the central limit theorem can be applied andα�,i

can be modeled as a zero-mean unitary-variance Gaussian random variable: in
a way, this motivates the frequent assumption of Gaussian distributed channel
coefficientsh(�,i)

k . Moreover, accounting for the conditionD ≫ R, it is shown
that the correlation betweenα(�,i) andα(m,n) varies as

E
[
α(�,i)

(
α(m,n)

)∗]
∼ J0

(
2π
λ
dR(m,n)

)
(1.29)

whereJ0(x) � (1/2π)
∫ 2π
0 exp(x cos(θ))dθ, anddR(m,n) denotes the dis-

tance between the two receiving antennas. If the antenna spacingdR(m,n) is
sufficiently larger than half wavelength, the fades associated with two different
receiving antennas can be considered independent of each other.

1.4.2 DS-CDMA systems

The code division multiple access (CDMA) systems have taken on a signifi-
cant role in communications since they allow all users to use all the available
time and frequency resources simultaneously, by assigning a code to each user
[12, 13]. In the following, we show that a MIMO system model can be uti-
lized to describe the CDMA system in the general case where the users are
asynchronous, and the channel exhibits multipath distortion effects.

In direct sequence (DS) CDMA systems withK users, the transmitted
signal by thekth user can be written in the following general form:

x(k)(t) =
M−1∑
i=0

b
(k)
i s(k)(t− iT ) k = 1, 2, . . . ,K (1.30)

with

s(k)(t) � 1√
N

N−1∑
j=0

c
(k)
j ϕ(t− jTc) 0 ≤ t < T (1.31)

where
{
b
(k)
i

}M−1

i=0
denotes the symbol stream to be transmitted by thekth

user,T is the symbol interval,ϕ(·) denotes the chip waveform of duration

Tc = T/N and with unit energy, i.e.,
∫ Tc

0 ϕ2(t)dt = 1, and, finally,
{
c
(k)
j

}N−1

j=0
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is the signature sequence assigned to thekth user. Each signal is transmitted
over a time invariant multipath channel whose impulse response is

g(k)(t) =
L∑

m=1

α(k)
m δ(t− τ (k)

m ) (1.32)

whereL denotes the number of paths,α(k)
m the complex-valued path gain, and

τ
(k)
m the path delay such thatτ (k)

1 ≤ τ (k)
2 ≤ . . . τ (k)

L . At any given receiver, the
received continuous-time signal is represented by the sum of theK channel
outputs and the additive noise:

y(t) =
K∑

k=1

M−1∑
i=0

b
(k)
i

L∑
m=1

α(k)
m s(k)(t− iT − τ (k)

m ) + υ(t) . (1.33)

The received signaly(t) is processed by the chip matched filter and sampled
at the chip-rate: theqth signal sample during the�th symbol interval is equal
to:

y
(q)
� �

∫ �T+(q+1)Tc

�T+qTc

y(t)ϕ(t− �T − qTc)dt (1.34)

=
K∑

k=1

M−1∑
i=0

b
(k)
i

·
L∑

m=1

α(k)
m

1√
N

N−1∑
j=0

c
(k)
j

∫ Tc

0
ϕ(z)ϕ(z + ((�− i)N + q − j)Tc − τ (k)

m )dz︸ ︷︷ ︸
�h

(k)
pN+q

+ n
(q)
�

=
K∑

k=1

ξ∑
p=0

b
(k)
�−ph

(k)
pN+q + n

(q)
�

where

n
(q)
� �

∫ �T+(q+1)Tc

�T+qTc

n(t)ϕ(t− �T − qTc)dt ,

and ξ � max
1≤k≤K

(⌈
τ

(k)+Tc

L

T

⌉)
(with �·� denoting the smallest integer part

not less then its argument) denotes the maximum delay spread normalized to
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T . By collecting theN samples of the received signal during the�th symbol
interval into the column vector

y� �
[
y

(0)
� y

(1)
� . . . y

(N−1)
�

]T
, (1.35)

the input-output relationship (1.34) can be rewritten in the matrix form:

y� = H� � b� + n� (1.36)

H� �


h

(1)
�N . . . h

(K)
�N

...
. . .

...

h
(1)
�N+N−1 . . . h

(K)
�N+N−1

 b� �

 b
(1)
�
...

b
(K)
�

 n� �

 n
(1)
�
...

n
(K)
�

 .

According to (1.36), the asynchronous DS CDMA system is equivalent to a
time-dispersive MIMO system, with impulse responseH�. Let us note that,
while the multi-user scenario naturally leads to a multiple-input system, the
multiple-output character of the DS CDMA channel is generated by the special
transformation of the single received signal.

Finally, it is worthwhile to observe that also the advanced communication
systems combining DS CDMA techniques with multicarrier (MC) transmis-
sion schemes (see for example [14]) can be described by utilizing an aug-
mented MIMO channel model properly defined.

1.4.3 OFDM systems

Orthogonal frequency-division multiplexing (OFDM) is a digital multi-carrier
transmission technique that distributes the digitally encoded symbols over sev-
eral parallel carriers in order to reduce the symbol rate and to achieve robust-
ness against long echoes in a multipath radio channel. Unlike conventional
frequency-division multiplexing, the spectra of the OFDM carriers partially
overlap. Nevertheless, they exhibit orthogonality on a symbol interval if they
are spaced in frequency exactly at the reciprocal of the symbol interval. Such
a requirement can be fulfilled by using the discrete Fourier transform, and by
introducing a guard interval equal or greater then the delay spread of the chan-
nel. In this section, we provide a description of the OFDM communication
systems in terms of MIMO systems.

In an OFDM system,N input symbols (say, OFDM word) are transferred
by the serial-to-parallel converter (S/P) to the OFDM modulator. After each
symbol is modulated by the corresponding subcarrier, it is sampled andD/A
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converted. The discrete-time OFDM signal, implemented by an inverse dis-
crete Fourier transform (IDFT), can be expressed as follows:

xkN+p =
1
N

N−1∑
m=0

skN+me
 2πpm

N 0 ≤ p ≤ N (1.37)

−∞ ≤ k ≤ ∞
whereskN+m (m = 0, . . . , N −1) denotes the OFDM word to be transmitted,
xkN+p represents the(kN + p)th output sample of the output of the IFFT
block. After pulse shaping and parallel-to-serial (P/S) conversion, the signal is
transmitted over a SISO time-variant multipath fading channel that consists of
L propagation paths with complex-valued channel gainshk,� (the apex(1, 1),
which accounts for the1× 1 channel, is omitted for clarity). At receiver hand,
after matched filtering and removing the cyclic prefix (see for instance [15]),
the received signal can be written as

ykN+p =
L−1∑
�=0

hkN+p,�xkN+p−� + nkN+p , (1.38)

wherenkN+p denotes the additive noise samples. After S/P conversion of the

received samples, the demodulated signalY
(p)
k is obtained by taking the dis-

crete Fourier transform (DFT) of the vector
[
ykN . . . ykN+N−1

]T
, i.e.:

Y
(p)
k =

1
N

N−1∑
i=0

L−1∑
�=0

N−1∑
m=0

skN+mhkN+i,�e

2π(i−�)m

N e− 2πpi
N +

N−1∑
i=0

nkN+ie
− 2πpi

N︸ ︷︷ ︸
�N

(p)
k

=
L−1∑
�=0

N−1∑
m=0

skN+m
1
N

N−1∑
i=0

hkN+i,�e
−

2π(p−m)i
N︸ ︷︷ ︸

�H
(p−m,�)
k

e− 2π�m
N +N

(p)
k

=
L−1∑
�=0

N−1∑
m=0

H
(p−m,�)
k skN+me

− 2π�m
N +N

(p)
k . (1.39)

The input-output relationship (1.39) can be rewritten in a matrix form as fol-
lows:

Yk = Cksk + Nk (1.40)
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with

sk �


skN

skN+1
...

skN+(N−1)

 Yk �


Y

(0)
k

Y
(1)
k
...

Y
(N−1)
k

 Nk �


N

(0)
k

N
(1)
k
...

N
(N−1)
k

 , (1.41)

and where the(m, i) entry of theN ×N matrixCk is defined as

C
(m,i)
k � H

(0,m−i)
k +H(1,m−i)

k e− 2πi
N + . . .

. . .+H
(L−1,m−i)
k e−

2π(L−1)i
N . (1.42)

It follows that the OFDM system is equivalent to a LTV non-dispersive MIMO
system with impulse responseCk.

If the channel impulse response remains constant over the word interval,
one hasH(p−m,�)

k = 0 for p �= m, implying thatCk degenerates into a diago-
nal matrix, and there exists no intercarrier interference (ICI). In such a case, the
received samplesY (p)

k are affected by only the multiplicative distortion, which
can be easily compensated for by a one-tap frequency-domain equalizer: in
other words, the OFDM effectively converts a frequency selective fading chan-
nel into a set ofN flat fading channels. On the other hand, the variations of
the channel impulse response during the word interval, as well as the existence
of a frequency offset6, destroy the orthogonality among the OFDM subcarriers
leading to a non-diagonal matrixCk, which accounts for the presence of ICI.

Recently, multiple antenna solutions and OFDM modulation have been
combined to obtain the MIMO-OFDM systems [15]. Also in this case, it
is possible to show that the overall system equation can be represented by a
MIMO model.

1.4.4 Fractionally spaced sampling

Fractionally spaced sampling is frequently utilized in SISO systems to reduce
the sensitivity of the receiver to synchronization errors, or simply to improve
the detector performances. According to such a technique, the received signal
is sampledq times during a symbol periodTs (sayTc = Ts/q the sampling
period), as depicted in Figure 1.6, where an LTI receiver has been considered
for simplicity.

6Frequency offset in communication systems are caused by the mismatches between the
oscillator in the transmitter and in the receiver, by Doppler shifts, etc..
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� LTI receiver

Tc = Ts/q

��y(t) y(kTc)

Figure 1.6: Fractionally spaced sampling leads to a stationary multiple
output model.

Since the sampling rate is not equal to the symbol rate, the signal at the
output of the matched filter is not cyclostationary rather that stationary: its
moments vary periodically with a period equal toq. TheTc-sampled discrete-
time input-output relationship can be obtained by utilizing (1.5) withNi =
No = 1. However, a great advantage in terms of detector implementation
purposes could be obtained if the output of the matched filter is transformed
into a stationary signal. To this aim, we collectq consecutive samples of the
matched filter output in the vector

yk �
[
y(kTs + Tc) y(kTs + 2Tc) . . . y(kTs + (q − 1)Tc)

]
. (1.43)

Each elementy(�)
k of yk can be seen as theTs-sampled output of a LTI channel

with channel impulse response defined as

h(�)(t) � h(t+ �Tc) � = 0, . . . , q − 1 , (1.44)

corrupted by the additive noisen(t), and whose input is the transmitted signal∑∞
n=−∞ skδ(t − nTs), with i.i.d. sk. According to the above considerations,

we can expressyk in (1.43) as the output of a SIMO system defined as follows:

yk = Hk � sk + nk (1.45)

whereHk is a q × 1 vector whose�th element ish(�)
k � h(�)(kTs), andnk

is obtained by stackingq noiseTc-space samples at the output of the matched
filter. The system model in (1.45) provides stationary input and output sampled
at the symbol rate.

For the sake of completeness, let us note that the adoption of the MIMO
model, instead of the SISO one, allows one to obtain a stationary model also
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in scenarios where the input signalsk is cyclostationary (providing so a cyclo-
stationary channel output). For example, the stationarization of pulse ampli-
tude modulated (PAM) cyclostationary sequences transmitted over frequency
selective fading channels has been considered in [16].

1.5 Capacity of MIMO systems

The MIMO system are here discussed from an information theoretic perspec-
tive: the concept of mutual information between the channel input and output
gives a guideline to how well our system performs and how close it operates
to the ultimate Shannon limit. With regards to such an aspect, recent research
on MIMO channels, including the study of channel capacity [1, 10] and the
design of communication schemes [17], demonstrates a great improvement of
performance over the conventional SISO systems.

For the analysis in this section, we consider a single user frequency flat-
fading channel withNi inputs andNo outputs. According to (1.7), the input-
output relationship over a symbol period can be written as

yk = Hkxk + nk (1.46)

where the noise vectornk has i.i.d. complex-valued circularly symmetric
(see Chapter 2) zero-mean Gaussian entries with unitary variance, i.e., its
correlation matrix is equal toRn �

[
nknH

k

]
= INo , with the apexH de-

noting the conjugate transpose, and beingIK the identity matrix of sizeK.
The total transmitted average power over a symbol period is constrained to
be less or equal toP0 by assuming that the input correlation matrix ofxk,
Rx � E

[
xkxH

k

]
, satisfiestrace(Rx) = P0. Let us distinguish two possible

scenarios:

• Hk = H is deterministic;

• Hk is modeled as a random matrix with zero-mean circularly symmetric
Gaussian entries with unit variance and independent of each other.

In both scenarios, we assume that the channel state information (CSI) is avail-
able at the receiver. For convenience, in the following subsections, the sub-
scriptk in (1.46) is omitted, if not stated otherwise.
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1.5.1 Capacity of deterministic MIMO channel

Assume that the transmitter has knowledge of the channel matrixH. The chan-
nel capacity (measured in nats/s/Hz) is obtained by maximizing the mutual
information between the channel input and output over the input correlation
matrices satisfying the power constraint, i.e.7:

C = max
Rx,trace(Rx)≤P0

{
log det

(
INo + HRxHH

)}
= max

Rx,trace(Rx)≤P0

{
log det

(
INi + RxHHH

)}
. (1.47)

By defining the eigenvalue decomposition (EVD) of the matrixHHH as

HHH � VΛVH , (1.48)

it can be shown [18] that the input vector maximizing the information rate is a
circularly symmetric Gaussian vector with correlation matrix

Rx = VΣVH (1.49)

where the diagonal entriesσi (i = 1, . . . , Ni) of the diagonal matrixΣ are
provided by the well known water-filling procedure, i.e.,

σi =
(
µ− λ−1

i

)
+

such that
∑

i

σi ≤ P0 , (1.50)

with λi (i = 1, . . . , Ni) denoting the diagonal entriesΛ, and (a)+ �
max{0, a}. Thus, the channel capacity can be parametrized as

C(µ) =
∑

i

log (µλi) . (1.51)

It is important to note that, being the nonzero eigenvalues ofHHH equal to
those ofHHH , the channelsH andHH achieves the same capacity (reci-
procity).

When CSI is available at the transmitter, the concept of forming an average
capacity is somewhat less straightforward, since the transmitter has the addi-
tional option of optimizing the power allocation over time as well as over the

7Accounting also for the independence between the useful signals and the noise ones, and
accounting fordet(I + AB) = det(I + BA).
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eigenvalues (while maintaining the required average power restriction). For
such a reason, we shall not consider average capacities for this case.

In some application scenarios, it is reasonable to restrain the computational
complexity of the transmitter by allocating the same power to theNi channel
inputs, i.e.,Rx = (P0/Ni)INi . In such a case, the achieved capacity is equal
to [1]

CEP =
m∑

k=1

log
(

1 +
P0

Ni
λk

)
, (1.52)

wherem = min{Ni, No}, and the subscriptEP stays for equal-power. The
above equation expresses the MIMO channel capacity as the sum of the ca-
pacities ofm SISO channels with channel gain

√
λk. It follows that multiple

spatial modes(or eigen subchannelsor eigenmodes) open up between trans-
mitter and receiver resulting in a performance improvement with respect to the
conventional SISO system.

1.5.2 Ergodic capacity of fading MIMO channel

Let us now consider the more interesting case of random channel matrix, inde-
pendent of the input and noise vectors. We make the following assumption:

• no CSI is available at the transmitter;

• the distribution ofH is known at the transmitter;

• the transmission of the symbol-vectorx corresponds to one use of the
channel, and each use of the channel corresponds to an independent re-
alization ofH (according to the chosen probability distribution); this is
known as theergodic assumption.

The channel capacity (calledergodic capacity) is obtained by maximizing over
the input correlation matrixRx, the mutual information between the channel
input and output averaged overH; in symbols, one has:

C = max
Rx,trace(Rx)≤P0

{
EHk

[
log det

(
INo + HRxHH

)]}
, (1.53)

whereEH[·] denotes the expectation with respect toH. In [1], it has been
shown that the capacity is achieved forx circularly symmetric zero-mean
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complex-valued Gaussian vector withRx = (P0/Ni)INi . Accounting for
(1.52), it follows:

C = EΛ

[
m∑

k=1

log
(

1 +
P0

Ni
λk

)]
. (1.54)

The computation of the expectation (1.54) needs the knowledge of the joint
density of the unordered strictly positive eigenvaluesλk of the random non-
negative definite Wishart matrixHHH (or, equivalently,HHH ). Such a den-
sity is known in the literature to be [19]

pΛ(λ1, . . . , λm) =
1
m!

n∏
i=1

λn−m
i

(n− i)!(m− i)!e
−∑m

i=1 λi
∏
i<k

(λi − λk)2 ,(1.55)

and, by accounting for its symmetry, one has

C = mEλk

[
log

(
1 +
P0

Ni
λk

)]
, (1.56)

whereλk is one of the unordered eigenvalues. Thus, the capacity of the MIMO
system is given by the following theorem [1].

Theorem 1.1 The capacity of the fading channelH with Ni input andNo

outputs, subject to the power constraint trace(Rx) = P0, is equal to

C = m

∫ ∞

0
log

(
1 +
P0

Ni
λ

)
pλ(λ)dλ , (1.57)

where

pλ(λ) =
1
m

m−1∑
k=0

k!
(k + n−m)!

[
Ln−m

k (λ)
]2
λn−me−λ (1.58)

wheren = max{Ni, No}, and whereLα
k (λ) = (1/k!)eλλ−α dk

dλk (e−λλα+k) is
the generalized Laguerre polynomial of orderk.

The expression (1.57) can be specialized to both the cases of MISO and
SIMO channels as follows:

CMISO =
1

(Ni − 1)!

∫ ∞

0
log

(
1 +
P0

Ni
λ

)
λNi−1e−λdλ (1.59)

CSIMO =
1

(No − 1)!

∫ ∞

0
log (1 + P0λ)λNo−1e−λdλ . (1.60)
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Figure 1.7: Capacity of a MISO (No = 1) system versus the number
of inputsNi for different values ofP0.

By numerically computing the integrals in (1.59) and (1.60), we have plot-
ted in Fig. 1.7 and 1.8 the capacity achieved by the MISO and the SIMO
systems, respectively, for different values of the available power (P0 =
0dB, 5dB, 10dB, 15dB, 20dB, 25dB, 30dB). As expected, they outperform the
conventional SISO systems. However, whileCSIMO is not bounded asNo

gets large,CMISO rapidly reaches saturation asNi increases, i.e., increasing
the number of the MISO system inputs provides no further capacity gain. In
other words, the reciprocity observed for deterministicH does not hold for
randomH. Such a difference can be easily explained by observing that, when
CSI is not available at the transmitter, the power allocated to each inputP0/Ni

decreases asNi gets large. Thus, the gain provided by the use of multiple in-
puts8 can not be exploited due to the decrease of power (per input). In [20],
upper and lower bounds to (1.57) have been provided to show that, for large

8Note that the nonzero eigenvalues of the Wishart matricesHHH andHHH are equal, as
it happen for deterministicH.
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Figure 1.8: Capacity of a SIMO (Ni = 1) system versus the number
of outputsNo for different values ofP0.

P0, one has

finiteNo, Ni →∞ ⇒ C ≈ No log(P0) (1.61)

finiteNi, No →∞ ⇒ C ≈ Ni log
(P0

Ni

)
+Ni log(No) , (1.62)

i.e., the system capacity for fixedNi grows withlog(No), while, for fixedNo, it
remains constant asNi increases. This confirms the results reported in Fig. 1.7.

In Fig. 1.9, the capacity of a square (Ni = No) MIMO system has been
plotted versusNi, for the different9 values ofP0, by numerically computing
the integrals in (1.57). The analysis allows one to state that the system capacity
of the square MIMO system is well approximated by a linear function ofNi.
Bounding (1.57), in [20], it has been shown that:[

Ni, No →∞, Ni

No
≤ 1

]
⇒ 1

Ni
C → log(P0) + log

(
No

Ni

)
(1.63)[

Ni, No →∞, Ni

No
> 1

]
⇒ 1

No
C → log(P0) , (1.64)

9The ones previously considered in Fig. 1.7 and 1.8.
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Figure 1.9: Capacity of a square MIMO (Ni = No = N ) system
versusN for different values ofP0.

i.e., the system capacity grows linearly with the minimum between the number
of inputs and outputsm: this can be explained by observing that the capacity
of the MIMO channel has been expressed as the sum of the capacities ofm
SISO channels. Moreover, from (1.63) it is straightforward verified that there
is no benefit from increasingNi beyondNo in the asymptotic scenario.

Asymptotic analysis

In the last few years, a considerable amount of work is available in the liter-
ature on the fundamental limits of communication channels that makes sub-
stantial use of the asymptotic results in random matrix theory. Here, we briefly
recall the landmark contribution10 of Marc̆enko and Pastur (1967) about the
eigenvalue distribution of random matrices in the formHHH, and we show
its utility in evaluating the capacity in (1.57) of the MIMO system when both
the numbers of inputs and outputs grow up to infinity, maintaining finite their
ratio.

10Other landmark contributions to the theory of random matrices have been previously pro-
vided by Wishart (1928) and Wigner (1955).
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To this aim, let us first rewrite (1.54) as

C = EΛ

[∫ ∞

0
log

(
1 +
P0

Ni
λ

) m∑
k=1

δ (λ− λi)

]
dλ

= EΛ

[
m

∫ ∞

0
log

(
1 +
P0

Ni
λ

)
dFm

HHH(λ)
]

(1.65)

whereFm
HHH

(λ) is the empirical cumulative distribution function and it is
defined as

Fm
HHH(λ) � 1

m

m∑
k=1

1 {λk ≤ λ} , (1.66)

with 1{·} being 1 if the argument is true, and 0 otherwise. Marc̆enko and
Pastur have showed the following theorem [21]:

Theorem 1.2 Consider anNo × Ni matrix H whose entries are zero-mean
i.i.d. complex-valued random variables with variance1No

and fourth moments

of orderO(1/N2
0 ). AsNi, No → ∞ with Ni

No
→ β, the empirical asymp-

totic density functiondFm
HHH

(λ)/dλ converges almost surely to the nonran-
dom function

fβ(λ) =
(

1− 1
β

)
+

δ(λ) +

√
(λ− a)+(b− λ)+

2πβλ
λ ∈ [a, b]

with

a = (1−
√
β)2 b = (1 +

√
β)2 .

The density functionfβ(λ) has been plotted in Fig. 1.10 for different values of
β. Note that, whenβ > 1, the impulsive term infβ(λ) accounts for theNi −
No > 0 zero eigenvalues ofHHH. Analogously, the empirical asymptotic
density function ofHHH converges almost surely to the nonrandom function

f ′β(λ) = (1− β)+ δ(λ) +

√
(λ− a)+(b− λ)+

2πλ
λ ∈ [a, b] .

Thus, according to the asymptotic scenario (Ni, No →∞), the channel capac-
ity C can be written in the following form:

C → m

∫ b

a
log

(
1 +
P0

Ni
λ

)
fβ(λ)dλ (1.67)
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Figure 1.10: The Mar̆cenko and Pastur of density ofHHH for β =
1, 0.5, 0.1, 0.01.

where the expectation operator in (1.65) has been removed sincefβ(λ) is a
deterministic function. By specializing such a result in the case of a square
MIMO channel, one has [1, 10]

C → No

∫ 4

0
log

(
1 +
P0

Ni
λ

)
1
2π

√
4
λ
− 1dλ , (1.68)

which confirms the results shown in Fig. 1.9, where the capacity of the MIMO
channel grows in a linear fashion withNo.

The widespread interest in the asymptotic results concerning the eigen-
value distribution of random matrices is due to its fast convergence to the
asymptotic limit. If the convergence is so fast, then, even for small values of the
parameters, the asymptotic results come close to the finite-size results. In Fig.
1.11 we have plotted the capacity (black line)C in (1.68) versus0 ≤ P0 ≤ 10,
for Ni = 5, 15, 25, 50. The grey points represents the capacity achieved over
each one of 100 realizations of the matrixH, whose entries have been mod-
eled as zero-mean complex-valued circularly symmetric Gaussian variables
with variance1/No, and uncorrelated with each other. AsNo increases, the
asymptotic limit in (1.68) well approximates the capacity of the single channel
realization.
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Figure 1.11: One hundred realizations of (1.54) compared to the
asymptotic capacity in (1.68) versusNi = No for different values of
P0.

The results concerning the asymptotic scenario will be utilized in Chapter
3 to compare the performances of different MIMO communication systems.

1.5.3 Outage capacity

The ergodic assumption considered in the previous subsection will not be satis-
fied in practical communication systems as, for example, in delay-constrained
applications, where the channel matrixH is still random, but it remains fixed
once it is chosen for all the uses of the channel. In other words, the time interval
needed to transmit the information symbols is comparable with the coherence
time. In such a case, the Shannon capacity is zero due to the fact that there is
always a nonzero probability that the given channel realization will not support
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the rate at which we wish to communicate.
The system parameter to be considered is theout% outage capacityCout,

defined as the mutual information that is guaranteed for(100 − out)% of the
channel realization:

Prob(CEP ≤ Cout) = out% (1.69)

whereCEP has been defined in (1.52). The above definition is reasonable when
the channel matrixH is just a “snapshot” of the underlying stochastic process.
Hence, there is a probability that this particular channel realization is in such
a deep fade that the communication system operating withCout nats/s/Hz will
fail to transmit without errors. The zero outage capacity (out% = 0) can be
interpreted as the lowest transmission rate that is invariant of the fading. Let
us note that, unlike MIMO system, for a SISO one this corresponds to channel
inversion, which then makes the observed channel independent of the fading.
Since a SISO Rayleigh fading channel is not invertible when the power is finite,
the SISO zero outage capacity is zero.

1.6 Multiplexing, diversity and array gain

In this section, the concepts ofmultiplexing gain, diversity gainandarray gain
are introduced by resorting to an intuitive discussion based on the main results
(reported in previous section) about the eigenvalues distribution of random
matrices.

Let us note that the channel capacity in (1.51) and in (1.52) is related to
to the eigenvaluesλk of the random matrixHHH. The square roots of such
eigenvalues represent the gains of the parallel SISO channels (spatial modes)
in which H is decomposed, and, consequently, give an idea of how much the
transmission is good over a certain subchannel.

In Fig. 1.12-1.14, the joint density (1.55) has been depicted forNi = 2
andNo = 2, 6, 12. Note that, as the number of outputs increases, the centers
of two lobes ofpλ(λ1, λ2) deviate from the axesλ1 = 0 andλ2 = 0, i.e., it
increases the probability of decomposing the MIMO channel into twospatial
modeswith likely different from zero gain. Such a behavior can be explained
by the light of Theorem 1.2, from which it is evident that asβ → 0, the
eigenvalue distribution ofHHH approaches to an impulsive function.

The use of two antennas at the transmitter andNo ≥ 2 antennas at the
receiver, in conjunction with rich scattering in the propagation environment,
opens up two (min{Ni, No} for a No × Ni MIMO channel, according to
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Figure 1.12: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixHHH with Ni = 2 andNo = 2.

(1.57)) data pipes which yield a capacity increase . This effect is calledspatial
multiplexing gain11. The basic idea ofspatial multiplexinglies in the fact that
the symbol stream to be transmitted is broken up into several parallel symbol
streams which are then transmitted simultaneously from the antennas within
the same frequency band. Due to multipath propagation, different spatio-
temporal signatures are induced by each transmit antenna across the receive
ones. The receiver exploits these signature differences to separate the individ-
ual data streams, allowing one to achieve themultiplexing gain. Let us note
that themultiplexing gaincan be achieved when the CSI is available at the
transmitter and at the receiver, as well as when the CSI is available at only the
receiver side. Clearly, the price to be paid formultiplexing gainis increased
hardware cost due to the use of multiple antennas.

11The adjectivespatial is mainly due to the identification of the MIMO systems with the
multi-antenna systems.
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By observing the joint densities in Fig. 1.12-1.14 for different values of
No, it should be noted that, for the smallest values ofNo, the multiplexing
gain is not supported by a good reliability of both the subchannels over which
the two data pipes are transmitted. In fact, the two subchannel gains might
be quite different, and we expect a good quality transmission over only one of
them. In such a case, a possible choice is to give up the idea of maximizing
the channel capacity, and maximize the so-calledarray gain by utilizing the
subchannel which provides the maximum channel gain [22]. Thearray gain
is related to the increased signal-to-noise ratio measured at the output of the
receiver, and it is achieved by coherently combining (at the transmitter side)
the signals to be transmitted and by coherently combining (at the receiver side)
the received signals. It should be noted that, unlikemultiplexing gain, thearray
gain requires the channel knowledge at the transmitter and at the receiver.
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Figure 1.13: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixHHH with Ni = 2 andNo = 6.

Finally, the curves in Fig. 1.12-1.14 allow us to state that, asNo increases,
the reliability of the subchannels, over which the two data pipes are transmit-
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Figure 1.14: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixHHH with Ni = 2 andNo = 12.

ted, become comparable since the corresponding subchannel gains are com-
parable. Such an effect is ascribed to theantenna diversity, which increases
when the number of employed antennas grows. Theantenna diversityis one of
the main forms12 of diversity traditionally exploited in communications. The
basic principle of diversity is that if several replicas of the information signal
are received through independently fading links (branches), then, with high
probability, at least one or more of these links will not be in a deep fade at any
given instant. Clearly, this probability will increase if the number of diversity
branches increases. For such a reason, regarding to the considered example,
the increase of the number of receive antennas allows the receiver to combine
the arriving signals to achieve an higher gain over each one of the twospa-
tial modes, or, equivalently, to reduce the probability that one of them is in

12Other widely used forms of diversity are the temporal diversity, the frequency diversity,
and the code diversity. More general forms of diversity are obtained by the combination of the
above-mentioned ones.
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deep fading. As a consequence, the increased system capacity is supported
by a good reliability of both the parallel subchannels. The price to be paid
is, also in this case, the hardware cost. Receive diversity, i.e., the use of mul-
tiple antennas only at the receiver side, has been widely studied in the past.
On the other hand, transmit diversity has become an active area of research in
the past few years [23, 24, 25, 26, 27, 28]. More specifically, when the CSI
is available at both the transmitter and the receiver side, the transmitter and
the receiver can combine the transmitted and the received signals, respectively,
to reduce the effects of fading (see Section 1.8). In the case where CSI is
available only at the receiver side, transmit diversity techniques require more
sophisticated methods such as space-time coding (STC), which uses coding
across space and time and allows the receiver to achieve the diversity (see for
example [17, 29, 30]).

1.7 MIMO receiver architectures

In this section, we provide a very brief overview of the main receiving architec-
tures for MIMO channels, which allow to achieve amultiplexing gain. Let us
first introduce the working framework. At the transmitter side, the data stream
to be transmitted is demultiplexed intoNi streamsx(�)

k (� = 1, . . . , Ni) which,
after coding and modulation, are simultaneously sent over many antennas with
symbol period equal toTs. At the receiver side,No antennas are employed to
recover as many superpositions of the transmitted signals. The received signals
y(�)(t) areTs-space sampled13 and, then, are processed to separate the differ-

entNi transmitted sequencesx(�)
k , which are finally remultiplexed to recover

the original data stream. The separation step can be performed according to
different (optimization) criteria and, clearly, it determines the computational
complexity of the receiver: in practical scenarios, the aim to be pursued is
represented by the achievement of an acceptable compromise between perfor-
mance and computational complexity. For such a reason, the maximum like-
lihood (ML) receiver, that yields the best performance in terms of error rate
at the expense of computational complexity, is often replaced by suboptimal
equalizers that exhibit a sustainable complexity.

In the following, we introduce some of the main receiver architectures for
MIMO receivers:

• ML receiver
13We have assumedTc = Ts in (1.5).
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• minimum mean square (MMSE) error linear receiver

• zero-forcing (ZF) linear receiver

• decision-feedback (DF) based receiver.

The MMSE receiver structures and the DF-based ones only introduced here,
constitute the main subject of the Chapter 2.

1.7.1 ML receiver

Consider a time non-dispersive LTI MIMO channel withNi inputs andNo

outputs. The input-output relationship corresponding to the�th output can be
specialized as follows:

y
(�)
k =

Ni∑
i=1

x
(i)
k h(�,i) + n

(�)
k � = 1, . . . , No (1.70)

whereh(�,i) � h
(�,i)
k (∀k), and wherex(i)

k is drawn from the alphabet14 A.

We aim at recovering the transmitted symbolx
(�)
k from the observationy(�)

k

in the case where the channel impulse response is known at the receiver. By
denoting withfn(·) di probability density function of the additive noisen(�)

k ,

the likelihood function of the observation, conditioned on the symbolsx
(i)
k

(i = 1, . . . , Ni) is equal to

L
(
y

(�)
k /xk

)
= fn

(
y

(�)
k −

Ni∑
i=1

x
(i)
k h(�,i)

)
. (1.71)

The ML symbol decision is given simply by the argument that maximizes

L
(
y

(�)
k /xk

)
over the symbol alphabet

x̂
(�)
k = argmax

x∈ANi

(
L
(
y

(�)
k /xk = x

))
. (1.72)

Thus, the ML detection requires an exhaustive search over a total ofANi vec-
tor symbols, rendering the decoding complexity exponential in the number of
channel inputs.

14For the sake of clarity, we have assumed the same alphabet for all the input sequences; a
more general framework provides to account for the presence of different symbol alphabets as
it will be considered in Chapter 2.
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In the more general case of time-dispersive LTI MIMO channel, we should
consider the likelihood function of the observation conditioned on the frame
of symbolsx(i)

k , x
(i)
k−1, . . . x

(i)
k−ν (∀i). Thus, the exponential complexity of the

ML receiver increases simultaneously with the number of inputs and with the
channel memory, making its implementation costly for MIMO detection on
severe ISI channels, especially as the input signal constellation size increases
to improve spectral efficiency.

1.7.2 MMSE FIR equalizer

Let us consider the time-dispersive LTI MIMO channel model in (1.25). For
a block ofNf received symbols, rewrite the system equation in the following
matrix form:

yk

yk−1
...

yk−(Nf−1)

 =


H0 H1 . . . Hν 0 · · · 0
0 H0 H1 · · · Hν · · · 0
...

. .. . ..
...

0 · · · 0 H0 H1 · · · Hν

 (1.73)

·


xk

xk−1
...

xk−(Nf−1)−ν

 +


nk

nk−1
...

nk−(Nf−1)


or, more compactly15,

y = Hx + n . (1.74)

The vectory is processed by a linear FIR equalizer to provide an estimate
of the transmitted symbol vector; such an estimate is then quantized by the
decision deviceQ(·) to produce the symbol constellation (see Fig. 1.15).

The output of the equalizer is equal to

x̂k =
Nf−1∑
�=0

W�yk−� (1.75)

=
[

WH
0 WH

1 . . .WH
Nf−1

]
︸ ︷︷ ︸

�W

y

15The matrixH defined in (1.73) is not related to that defined in Section 1.5; we slightly
abuse the notation for the sake of simplicity.
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yk W� �x̂k−∆ Decision device
Q(·) � Q(x̂k−∆)

Figure 1.15: Block diagram of a linear receiver.

whereW� denotes the complex-valued matrix taps of sizeNo × Ni. The
equalizer output̂xk is the estimate of the transmitted symbol vectorxk−∆, with
∆ denoting a processing delay. The value of∆ is related to the capability of the
equalizer in performing causal processing and anticausal processing: the case
∆ = 0 corresponds to a strictly causal filtering, while the case∆ = Nf +ν−1
corresponds to strictly anticausal filtering.

The MMSE equalizerW minimizes the trace of the error correlation ma-
trix16

Re � E
[
(x̂k − xk)(x̂k − xk)H

]
(1.76)

� E
[
ekeH

k

]
.

By resorting to the orthogonality principle, and accounting for the indepen-
dence ofx from n, the optimumW can be written as follows:

WMMSE = R−1
y HRxe∆+1 (1.77)

where

Rx � E
[
xxH

]
Rn � E

[
nnH

]
(1.78)

Ry � HRxH + Rn

e∆+1 �
[

0Ni×Ni∆ INi 0Ni×Ni(Nf+ν−∆−1)

]T
,

or, in other words,WMMSE is the conventional Wiener filter that processes
the observation vectory in order to estimate the desired vectorxk−∆. Let us

16Let us note that it would be advisable to design the equalizer to adjust the properties of
Q(x̂k), instead of̂xk, for instance to minimize the error rate. However, controlling the proper-
ties ofQ(x̂k) is much more difficult than controlling the properties ofx̂k.
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emphasize the importance of optimizing the delay∆ which, as it will be shown
in Chapter 2, greatly affects the trace ofRe: unfortunately, the optimization
over∆ can be usually carried out only by an exhaustive procedure. Moreover,
for the sake of completeness, we point out that, in the MIMO environment,
different delays∆� (� = 1, . . . , Ni) can be chosen for each one of the symbols
x

(�)
k−∆�

to be estimated. However, since the optimization over∆� is carried
out by an exhaustive procedure, the computational complexity can be unsus-
tainable. For such a reason, in the rest of the thesis, we do not explore this
variable-delay based detection strategy.

Unfortunately, some channels will still be difficult to be equalized by uti-
lizing only a linear filter. In fact, when the channel exhibits zeros close to
the unit circle, the equalizer would need poles outside the unit circle becom-
ing unstable and, at the same time, amplifying received noise, which leads to
frequent decision errors. The performance analysis of the linear MMSE FIR
equalizer is presented in Chapter 2 where the MMSE equalization is studied in
details, accounting also for other (nonlinear) equalizer structures.

1.7.3 ZF FIR equalizer

Rewrite the input-output relationship of the LTI time-dispersive MIMO chan-
nel in (1.25) as follows:

y
(�)
k = h

(�,�)
0 x

(�)
k +

∑
i�=�

x
(i)
k h

(�,i)
0 +

ν(�,i)∑
n=1

x
(i)
k−nh

(�,i)
n︸ ︷︷ ︸

co-channel interference + ISI

+n(�)
k (1.79)

where the second term at the right-hand-side (RHS) accounts for the effects of
theNi − 1 inputs over the�th output at the time instantk, while the third term
accounts for the ISI. The ZF FIR equalizer is the linear filter which processes
the observation vectorsyk,yk−1, . . . ,yk−(Nf−1) to minimize the (co-channel
interference + ISI) power measured at the output of the equalizer.

To this aim, consider the system model (1.74) and assume that thex
(1)
k

is the symbol to be estimated17 on the basis of the observationy, which is
rewritten in the following equivalent form:

y = H(:, 1)x(1)
k + H(−1)x(−1)︸ ︷︷ ︸

�z

+n (1.80)

17For the sake of clarity, we consider the case∆ = 0.
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whereH(:, k) denotes thekth column ofH, H(−1) is given byH deprived of
its first column, andx(−1) is given byx deprived of its first row; the vectorz
accounts for both the co-channel interference and the ISI. According to (1.75),
the first column of the ZF matrix filterWZF , i.e., the vector filter that provides
the estimatêx(1)

k of x(1)
k by processingy, is obtained by solving the following

optimization problem:

WZF (:, 1) = argmin
w

∣∣wHz
∣∣2 (1.81)

subject to: wHH(:, 1) = β2 ,

with β ∈ R. As known, the optimum filter is derived by exploiting the La-
grangian multiplier method and is given by:

WZF (:, 1) =
β2

H(:, 1)HR−1
z H(:, 1)

R−1
z H(:, 1) (1.82)

where Rz � E
[
zzH

]
. The same reasonings apply toWZF (:, �) (� =

1, . . . , Ni). For ill-conditionedH, it is known that the ZF equalizer suffers
from the noise enhancement; on the other hand, it is equivalent to the MMSE
equalizer in presence of low noise level.

1.7.4 Decision-feedback FIR equalizers

In the class of the non-linear equalizers, the DF FIR equalizer constitutes an
attractive compromise between complexity and performance. It can perform
almost as well as the ML detector, but it requires a computational complexity
only slightly higher than the linear equalizer. Its structure is depicted in Fig.
1.16. The received signalyk is the input of a linear feedforward FIR filter,
whose output is denoted withzk. The estimatêx(�)

k−∆ of the symbolx(�)
k−∆

Feedforward

Feedback

Decision device
Q(·)

yk
x̂k−∆ Q(x̂k−∆)

W

B

+

-

Figure 1.16: The decision feedback equalizer structure.



1.7. MIMO RECEIVER ARCHITECTURES 43

is obtained by subtracting fromzk the output of a linear feedback FIR filter,
which processes the past decisions provided by the decision device on the basis
of the estimated symbols. In such a way, the output of the feedforward filter
can be deprived of the co-channel interference and ISI due to previously trans-
mitted symbols. As long as the decisions are correct, the equalizer provides a
good estimate of the transmitted sequences.

Differently from the conventional SISO environment, three MIMO DF
equalizer structures can be defined :

Scenario 1 The DF equalizer provides the estimate ofx
(�)
k−∆ (� = 1, . . . , Ni)

by resorting to the past decisionsQ(x̂(�)
k−∆−n) with n > 0 and∀�. Such

an equalizer scenario represents the MIMO DF counterpart of the con-
ventional SISO DF equalizer.

Scenario 2 Assume that the channel inputs are ordered so that lower in-
dexed components ofxk are detected first; then, the DF equal-
izer utilizes, together with past decisions, the current decisions
Q(x̂(1)

k−∆),Q(x̂(2)
k−∆), . . . ,Q(x̂(�−1)

k−∆ ) to estimate the symbolx(�)
k−∆. In

other words, the decisions are taken sequentially starting with the lower
indexed components.

Scenario 3 When all the current decisions
Q(x̂(1)

k−∆),Q(x̂(2)
k−∆), . . . ,Q(x̂(Ni)

k−∆) are available from a previous
detection stage, then they can be processed together with past decisions
to provide the estimate of the symbol of interestx

(�)
k−∆. Such a detection

scenario deals with the multistage detection [31].

Accounting for the system model (1.74), the output of the DF FIR equalizer
can be written as follows:

x̂k−∆ =
[

WH
0 WH

1 . . . WH
Nf−1

]
︸ ︷︷ ︸

� WH

y

−[ BH
0 − Ini BH

1 . . . BH
Nb

]︸ ︷︷ ︸
� BH − [

INi 0Ni×NiNb

] ·

Q(x̂k−∆)
Q(x̂k−∆−1)

...
Q(x̂k−∆−Nb

)

(1.83)

whereNb is number of theNi × Ni matrix tapsB� constituting the feedback
filter B. The three different equalizer structures previously discussed can be
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mathematically described by some constraints on the matrix tapB0. Specifi-
cally, one has that the constraintB0 = INi holds in Scenario 1 (in the follow-
ing, Scenario 1), whereas, in Scenario 2 the matrixBH

0 is constrained to be
monic18 lower triangular. Finally, in Sc. 3BH

0 is constrained to be monic.
The feedforward filterW and the feedback oneB in (1.83) can be de-

signed according to any chosen optimization criterion. Let us note that any
optimization procedure should take into account for the non-linearity of the
decision device. However, also for simple decision mechanism, the derivation
of a closed form for the optimum equalizer is impossible to obtain. For such
a reason, in this thesis we adopt the common assumption that the decisions,
which affect the current estimate, are correct, i.e.,Q(x̂(�)

k ) = x
(�)
k . According

to such an assumption, the feedback filter can be treated as a feedforward filter
which processes a delayed version of the transmitted symbols, as depicted in
Fig. 1.17. However, it is clear that, in a realistic environment, the error propa-
gation can not be ignored and the performance loss due to to the feeding-back
of incorrect decisions has to be measured.

As previously discussed about the linear equalization, in all the three de-
tection scenarios the delay∆ has to be optimized, especially for short feedfor-
ward filters. Moreover, different delays∆� (� = 1, . . . , Ni) for each one of
the symbols to be estimated can be chosen. However, apart from the computa-
tional complexity in optimizing such parameters, allowing different processing
delays does not make available all the past decisions in Scenario 1, and all the
current ones in Scenario 2 and Sc. 3, leading so to a more complicated mathe-
matical formulation for the DF-based equalization.

The MMSE DF equalization will be considered in details in Chapter 2

18A square matrix with diagonal elements all equal 1.

Feedforward

Feedback

yk

xk−∆

x̂k−∆

W

B

+

-

Figure 1.17: The decision feedback equalizer in absence of error prop-
agation.
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Figure 1.18: The transceiver architecture.

with reference to the scenarios Scenario 1 and Scenario 2. Moreover, we will
present an equalizer structure that combines the DF strategy with thewidely
linear processing, which allows to improve the performances of the conven-
tional DF equalizers based on the linear filtering.

1.8 Transceiver architectures

Let us consider the MIMO communication system model depicted in Fig. 1.18.
At the transmitter side, the information bit streams are encoded and modulated
to generate the information symbol streams. Hence, such streams are pro-
cessed by a precoder and transmitted over the MIMO channel. At the receiver
side, the channel outputs are processed by the decoder which provides an es-
timate of the precoder inputs. Finally, the Viterbi decoder allows to recover
the (estimated) information bit streams. When the channel state information
(CSI) is available at both ends of the link, the precoder and the decoder can
be jointly designed, according to the chosen optimization criterion, to improve
the system performances.

In Fig. 1.19 we have depicted a transceiver structure employing a lin-
ear filter as precoder and decoder19. For simplicity, we assume the time non-
dispersive channel model

yk = Hxk + nk (1.84)

19More general structures can be considered (see, for instance, [32] and [33]), but they are
out of the scope of this thesis.
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Figure 1.19: The transceiver architecture.

affected by additive spatially and temporally white noise with correlation
matrix Rn = INo . The symbol vector to be transmitted is denoted with

sk � [s(1)k , s
(2)
k , . . . , s

(B)
k ]T with s

(�)
k drawn from the constellationA� (� =

1, . . . , B). Moreover, we assumeE [sksk−n] = IBδk−n. The precoder
F ∈ CNi×B processessk and provides the channel input vectorxk � Fsk

of sizeNi. At the receiver side, the equalizer provides the estimateŝk of sk by
processing the received vectoryk. The overall system equation is given by:

ŝk = GHFsk + Gnk . (1.85)

The transceiver can be optimized according to the MMSE criterion as well as
the ZF criterion. In addition, the transmitter and the receiver can be jointly
designed to maximize the mutual information between precoder input and de-
coder output, sayI(sk, ŝk): in such a case, it has been shown in [34] that the
precoder maximizing the mutual information is unique, whereas the optimum
decoder in nonunique and the available degrees of freedom can be utilized to
synthesize the receiver according any other optimization criterion.

It can be shown that (see [34, 25]), according to any optimization criterion,
the optimum matricesF andG are given by

F(opt) = VΦ (1.86)

G(opt) = ΓΛ−1VHHH

whereV andΛ are the eigenvector and the eigenvalue matrices, respectively,
of HHH defined in (1.47), and whereΦ andΓ represent a diagonal matrix
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with positive entries and an invertible matrix, respectively, that depend on the
chosen optimization criterion.

Let nowΓ be a diagonal matrix. It is straightforward to verify that, in such
a special case, the overall MIMO system is described by the diagonal matrix
ΦΓ and, hence, the transmission over the MIMO channelHk is equivalent
to rank(Hk) transmissions overrank(Hk) parallel non-dispersive subchannels
characterized by a transmit gainφi, corresponding to theith diagonal element
of Φ, and a receive gainγi, corresponding to theith diagonal element ofΓ. It
can be shown that such a model arises whenI(sk, ŝk) has to be maximized, as
well as when we adopt the MMSE criterion or the ZF one.

Before concluding this section, it is important to underline two interesting
issues recently discussed in [35] about MIMO communication systems:

• According to the transceiver defined in (1.86), let us evaluate the correla-
tion matrix of the estimation error measured at the output of the decoder:

Re � E
[
(ŝk − sk)(ŝk − sk)H

]
(1.87)

= Γ
(
Φ2 + Λ−1

)
ΓH −ΦΓH + ΓΦ + IB . (1.88)

The choice of a diagonalΓ allows one to obtain uncorrelated estimates
of sk and, hence, uncorrelated estimations error. This represents an im-
portant advantage provided by such a transceiver structure, since the
decision device can separately detect the transmitted symbols, requiring
so a lower computational complexity20.

• It can be simply verified that, given a diagonalΓ, the mutual information
I(sk, ŝk) is equal to:

I(sk, ŝk) =
rank(Hk)∑

i=1

log
(
1 + λiφ

2
i

)
, (1.89)

i.e., it is equal to sum of the capacity ofrank(Hk) SISO non-dispersive
channels. However, note that, due to the different values of the eigenval-
uesλ�, one has that:

1. since different symbol rates are achieved over each subchan-
nel, different symbol alphabets can be utilized at the transmitter:

20When Re is not diagonal, the correlation among the different estimates contain useful
information to be utilized by the subsequent decoding; hence, the optimum decoding procedure
becomes more complicated.
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specifically, dense constellations can be transmitted over subchan-
nels corresponding to highλ�, while thin constellations has to
be utilized over subchannels corresponding to lowλ�. Hence, a
more complicated encoder/decoder device is in general required to
achieve the capacity;

2. different error rates are achieved over each subchannel. Such an
undesirable behavior can be overcome by exploiting non linear
processing techniques which allow us to design the transceiver in
a more flexible manner. For instance, in [36], the precoder is de-
signed to maximizeI(sk, ŝk), whereas a DF-based decoder, de-
signed according to the MMSE criterion, is employed21: it can
be shown that such a transceiver structure allows one to reach the
same error rate over all the subchannel. An alternative, but expen-
sive, solution is to utilize a large number of receiving antennas, i.e.,
No ≫ Ni. In fact, according to Theorem 1.2, for small values of
β the eigenvaluesλi are comparable. To this aim, in Chapter 3, we
propose a new transceiver design method that, without increasing
the number of receiving antennas, allows one to reduce the value of
β when real-valued constellation sets are provided by the encoder.

In Chapter 3, the transceiver optimization will be carried out by utilizingwidely
linear filters as precoder and decoder. We will show that such a new transceiver
structure generalizes the one based on the conventional linear filtering.

21Analogously, in [37], the authors synthesize the decoder according to the ZF criterion.



Chapter 2

Decision-feedback equalization

H igh bit-rate transmissions require to account for the temporal dispersive
nature of the communication media, especially for mobile applications

where the symbol period must be also short enough to prevent non-stationary
channel impairments. Since the linear equalizers perform poorly on severe-ISI
channels, the DF-based equalizers, which employ also a linear filter operat-
ing on the past decisions, have been extensively proposed. It has been shown
that DF strategy allows one to achieve significant performance improvements
over linear equalizers both in SISO and in MIMO scenarios. Two DF struc-
tures are mainly considered in this chapter. The former exploits (together with
the received signals) the past decisions in order to simultaneously estimate all
the transmitted signals. Instead, the latter utilizes also the decisions belonging
to the same time step providing the estimate of the transmitted signal sequen-
tially: in such a case, the decision ordering represents a degree of freedom with
no counterparts in SISO DF-equalization, and it has to be optimized according
to a chosen optimization criterion. Unfortunately, the optimization over the
decision ordering is NP-hard and hence, suboptimum ordering strategies with
polynomial complexity (as example V-BLAST [24]) has to be adopted. With
reference to time-dispersive environments, it will be shown that the DF-MMSE
equalization can be performed by a two-stage equalizer. The first stage is a
time-dispersive equalizer and is unaffected by the decision ordering, whereas
the second stage is a zero-memory equalizer depending on the ordering. Ow-
ing to such a representation, any decision ordering strategy for non-dispersive
environment can be extended to the dispersive one. proposed

The widely linear (WL) filtering [38, 39, 40], as it is well-known, gen-
eralizes the linear filtering by exploiting both the correlation and the conju-

49
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gate correlation, i.e., the cross correlation between the signal and its conjugate
counterpart to better discriminate useful signals against interference and noise
signals. In this chapter, the receiver structure that combines DF strategy with
WL filtering, say widely-linear/widely decision feedback (WL-WDF) equal-
izer, is presented. It will be shown that, without requiring a significant increase
in computational complexity, such an equalizer allows one to achieve consid-
erable performance improvements over the DF equalizer based on the con-
ventional linear filtering when circularly variant signals (whose properties are
described in Appendix A) are transmitted. The performances of the proposed
equalizer are compared with those of the linear feedforward-based equalizer,
the DF-MMSE equalizer [9], the WL feedforward-based equalizer [41, 42],
and, finally, with those of the DF-based equalizer which employs a WL feed-
forward filter and a linear feedback one (proposed in [43] with reference to the
SISO channels).

The WL-WDF equalizer can be derived according to two alternative repre-
sentations of the involved signals. The former performs the linear processing
of both the real and the imaginary parts of the input vector [39, 44], whereas,
the latter performs the linear processing of the input vector and its conjugate
version [41, 42, 43, 45, 46]. It is well known that the two representations are
equivalent, namely a one-to-one correspondence between each processing and
the other. However, it is shown that they are not anymore equivalent when the
DF equalizer utilizes both past decisions and decisions belonging to the same
time step in order to achieve better performances.

2.1 Widely linear processing in the MMSE estimation

In this section, with reference to the mean square error (MSE) estimation of
complex data, the Wiener filtering will be generalized by introducing the non
strictly linear filtering calledwidely linear(WL), which allows one to exploit
the correlation among the data and their conjugate version.

Consider the case where anN -dimensional zero-mean observation random
vectorr is utilized to estimate the zero-meanM -dimensional random vector
d. According to the conventional linear filtering, the estimated̂ of d can be
written in the general form:

d̂ = WHr (2.1)

whereW is anN × M complex-valued matrix. Define the error vector
e � d − d̂, whose correlation matrix is denoted withRee = E

[
eeH

]
. The
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linear minimum mean square error (MMSE) filter (or Wiener filter) provides
an estimatêd of d by minimizing the trace ofRee, i.e.:

W(opt) = argmin
W∈CN×M

trace(Ree) . (2.2)

By differentiating1 the scalar functiontrace(Ree) with respect toW, one has
that the optimum filter is equal to

W(opt) = R−1
rr Rrd (2.3)

with Rrr � E
[
rrH

]
andRrd � E

[
rdH

]
, and the optimum error correlation

matrix is given by

RL
ee = Rdd −RH

rdR
−1
rr Rrd , (2.4)

with Rdd � E
[
ddH

]
. Let us show that the linear transformationW from r to

d̂ in (2.1) does not represent the most general form of a linear transformation
when dealing with complex-valued vectors. To this aim, rewrite (2.1) in terms
of the real and the imaginary parts of the involved vectors (r andd̂):[ �{d̂}

�{d̂}
]

=
[ �{

WT
} �{

WT
}

−�{
WT

} �{
WT

} ]
︸ ︷︷ ︸

W̃T

·
[ �{r}
�{r}

]
. (2.5)

It is easy to understand that the block structure of the matrixW̃ in (2.5)
does not allow one to perform the more general linear transformation from[ �{r} �{r} ]T

to
[ �{d̂} �{d̂} ]T

. In fact, �{W} and�{W} si-

multaneously affect the real and the imaginary part ofd̂.
Thewidely linear(WL) filtering generalizes the conventional linear filter-

ing by assuming that the estimated̂ of d is obtained by performing the linear
transformation[ �{d̂}

�{d̂}
]

=

[
W̃T

11 W̃T
21

W̃T
12 W̃T

22

]
·
[ �{r}
�{r}

]
(2.6)

whereW̃�k ∈ RN×M (�, k = 1, 2). In other words, the output vectord̂ of the
WL filter is such that its real and imaginary parts are obtained by separately

1When differentiatingtrace(Ree) with respect toG, we treatG andGH as independent
variables, i.e.,∂(trace(AXB))/(∂X) = BA and∂(trace(AXHB))/(∂X) = 0.
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processing the real and the imaginary parts of the input vectorr. It follows
that the linear filters in (2.5) lie in a subset of the WL filters and, consequently,
according to any chosen optimization criterion, their performances cannot be
better than those obtained by WL filters. The WL transformation in (2.6) can
be rewritten in the equivalent form:[

d̂
d̂∗

]
=

[
FH GH

GT FT

]
·
[

r
r∗

]
(2.7)

where theF,G ∈ CN×M are given by

�{F} =
1
2

[
W̃11 + W̃22

]
�{F} =

1
2

[
W̃21 − W̃12

]
(2.8)

�{G} =
1
2

[
W̃11 − W̃22

]
�{G} =

1
2

[
−W̃21 − W̃12

]
.

According to (2.7), the vector̂d at the output of a WL filter is obtained by
separately processing the input vectorr and its conjugate version; for such a
reason, it is straightforward to observe that thed̂ is not a linear function inr.
On the other hand, the conventional linear filter is simply obtained by setting
G = 0.

We must recognize that the WL processing defined according to (2.7) (in
the following, referred to as real-valued representation) is widely adopted in
the literature [41, 42, 43, 45, 46] since the second-order moments ofd̂ are
directly related to the second-order moments ofr andr∗, i.e., to the correla-
tion matricesRrr andRrr∗ introduced in Section A.1.1 of the Appendix A.
Furthermore, the comparison reported below between the MMSE WL estima-
tor and the linear one (obtained by settingG = 0) is less obvious when the
real-valued definition in (2.6) is utilized to define the WL filtering. For expla-
nation purposes, in this section, we adopt the complex-valued representation,
whereas, in the rest of the thesis, we will adopt the real-valued one. In Section
2.2, however, we introduce some useful operators which allow one to study the
main correspondence and differences among the two representations.

The optimum (in the MMSE sense) WL filter can be obtained by solving
the optimization problem:(

F(opt),G(opt)
)

= argmin
F,G∈CN×M

trace(Ree) (2.9)

beingRee the correlation matrix of the error vector corresponding to the esti-
mationd̂ = FHr + GHr∗. By differentiating the scalar functiontrace(Ree)
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with respect toF andG, one has:

F(opt) =
[
Rrr −Rrr∗R−∗

rr R∗
rr∗

]−1 · [Rrd −Rrr∗R−∗
rr R∗

rd∗
]

(2.10)

G(opt) =
[
Rrr −Rrr∗R−∗

rr R∗
rr∗

]−∗ · [Rrd∗ −Rrr∗R−∗
rr R∗

rd

]∗
(2.11)

whereRrr∗ � E
[
rrT

]
andRrd∗ � E

[
rdT

]
, and where we assume that the

involved inverse matrices exist. The optimum error-correlation matrix is equal
to

RWL
ee = Rdd −

(
F(opt)H

Rrd + G(opt)H
Rrd∗

)
. (2.12)

The performance advantage of the WL estimator over the linear one is charac-
terized by the matrix∆ee � RWL

ee −RL
ee which can be expressed as follows

∆ee =
[
Rrd∗ −Rrr∗R−∗

rr R∗
rd

]T · [R∗
rr −RH

rr∗R
−1
rr Rrr∗

]−1
(2.13)

· [Rrd∗ −Rrr∗R−∗
rr R∗

rd

]∗
and whosekth diagonal entry represents the MSE gain provided by the
WL filter over linear one in estimating thekth entry of d. Being[
R∗

rr −RH
rr∗R

−1
rr Rrr∗

]
non negative definite (see Appendix A Proposition

A.1), the linear MMSE filtering can not outperform the WL MMSE filtering.
Note that, ifr is rotationally variant (Rrr∗ = 0) and, moreover,r andd

are cross-rotationally variant (Rrd∗ = 0), thenF(opt) = W(opt), G(opt) = 0
and∆ee = 0: in other words the WL MMSE estimator degenerates into the
optimum linear one, providing so the same performances. On the other hand,
∆ee does not vanish whenr andd are rotationally variant. A special case is
represented by the estimation of a real-valued random vectord (d = �{d})
from a complex-valued observation vector. BeingRrd = Rrd∗ , one has (see
(2.10)-(2.11)):

F = G∗ ⇒ d̂ = 2�{FHr} . (2.14)

Note that the WL filtering leads to a real-valued estimation opposite of the
linear filtering which provides a complex-valued vector as estimate of a desired
real-valued one.

Finally, let us consider the extreme case wherer is real-valued (r = �{r}).
BeingRrr = Rrr∗ and real-valued, the matrix inversion in (2.10)- (2.11) and
in (2.14) can not be performed. It is simple to understand that the optimum
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MMSE WL filter is not unique, in fact:

d̂ = FHr + GHr∗ (2.15)

= (F + G︸ ︷︷ ︸
�D

)Hr .

It follows that, given the optimum (linear filter)D, there exist infinite optimum
filter pairs(F,G) whose sum is equal to the optimumD. Similar consider-
ations are valid when0 < nr < N components ofr are real-valued. The
(non)-uniqueness of the MMSE WL solution clearly follows from the fact that,
beingr = r∗, the jointly processing ofr andr∗ is redundant. With reference to
the MIMO channel equalization based on the WL filtering, we address such a
problem by processing the only real part of the real-valued observation vector
components.

�

Final remark

Based on the above considerations, we can state that, if the observation vector
and/or the desired one are rotationally variant, then the adoption of a linear
filter is a suboptimum choice when an MMSE estimate has to be provided
on the basis of the second-order statistics. For this reason, WL filters in the
MIMO receiver and transceiver architectures will be synthesized in this chapter
and in Chapter 3, respectively, in presence of rotationally variant information
symbols.

Note that, independently of the chosen optimization criterion, the advan-
tage provided by WL filtering can be intuitively justified by observing that the
jointly processing ofr andr∗, in the case where they exhibit statistical corre-
lation, allows one to increase the dimension of the observation space.

2.2 Widely linear transformations

The WL processing can be performed by adopting the real-valued representa-
tion of the involved vectors, as in (2.6), or the complex-valued one, as in (2.7).
For this reason, we introduce some operators that allow us to:

• address the problem of finding the main correspondences and differences
between the two representations;
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• to synthesize the WL processing-based receiver in Section 2.5 (or the
transceiver one in Chapter 3) by utilizing the procedure relative to the
conventional linear processing-based structures.

To this aim, in subsection 2.2.1, we define the operators which allow us to
represent a complex-valued vector by utilizing a real-valued representation or
a complex-valued one, and we provide the correspondence between them. In
subsection 2.2.2, we define the WL transformation with reference to both the
previously introduced representations.

2.2.1 Real-valued and complex-valued representation

Let us define the following operators:

Ẽp[u] �
[ �{u(1 : n1, 1 : p)} �{u(1 : n1, p+ 1 : n2)}
�{u(1 : n1, 1 : p)} �{u(1 : n1, p+ 1 : n2)} (2.16)

−�{u(1 : n1, p+ 1 : n2)}
�{u(1 : n1, p+ 1 : n2)}

]

C̃p[u] �
[

u(1 : n1, 1 : p) u(1 : n1, p+ 1 : n2)
u∗(1 : n1, 1 : p) 0n1×(n2−p)

(2.17)

0n1×(n2−p)

u∗(1 : n1, p+ 1 : n2)

]

Ep[u] �
[ �{u}
�{u(p+ 1 : n1, 1 : n2)}

]
(2.18)

Cp[u] �
[

u
u∗(p+ 1 : n1, 1 : n2)

]
(2.19)

whereu ∈ Cn1×n2 , 0 ≤ p ≤ n1 is an integer value,u(i1 : �1, i2 : �2) is the
submatrix ofu, whose first and last rows (columns) are thei1th (i2th) and the
�1th (�2th) ones, respectively, and where the array0n1×n2 is then1×n2 matrix
containing all null entries (the specification of the sizen1×n2 will be omitted
in the sequel for the sake of brevity). Note that, if the firstp components of the
n1 × 1 vectorx are real-valued, the augmented vectorEp[x] does not contain
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thep identically null imaginary parts of the firstp components ofx. Moreover,
it is easy verified that the following equivalences hold:

x = y⇔ Cp[x] = Cp[y]⇔ Ep[x] = Ep[y]⇔ C̃p[x] = C̃p[y]⇔ Ẽp[x] = Ẽp[y]
(2.20)

x + y = z⇔ C0[x] + C0[y] = C0[z]⇔ E0[x] + E0[y] = E0[z] (2.21)

hx = s⇔ C̃p[h]Cp[x] = C0[s]⇔ Ẽp[h]Ep[x] = E0[s] (2.22)

wherey andz aren1 × 1 vectors,h is an2 × n1 matrix ands is an2 × 1
vector. The operators̃Ep[·] andEp[·], as it will be shown in Section 2.5, are
useful to rewrite the input-output relationship of a linear FIR MIMO system in
terms of the real and the imaginary parts of the involved vectors; analogously,
the operators̃Cp[·] andCp[·] are useful to rewrite such a relationship in terms of
the involved complex-valued vectors and their conjugate counterparts. Define
also

C̄p
[

u1

u2

]
= u1 Ēp

 u3

u4

u5

 =
[

u3

u4 + u5

]
(2.23)

whereu1 hasn1 rows,u2, u4, u5 hasn1 − p rows andu3 havep rows. Note
that, if the firstp components ofu are real-valued, then̄Cp [Cp[u]] = u and
Ēp [Ep[u]] = u. We will show that the operators̄Ep[·] andC̄p[·], together with
Ep[·] andCp[·], allow us to define the input-output relationship of the WL FIR
MIMO systems.

Finally, similarly to [40], let us define the matrix transformations

T �

 Ip 0 0
0 1√

2
In1−p

√
2
In1−p

0 1√
2
In1−p

−√
2
In1−p

 with TTH = THT = I2n1−p (2.24)

and

Υ �

 Ip 0 0
0
√

2In1−p 0
0 0

√
2In1−p

 . (2.25)

If u is a complex-valued vector withn1 rows such that the firstp rows are
real-valued, thenCp [u] = ΥTEp [u].
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2.2.2 WL transformations

Let x be a vector of sizeNi whosenr first components are real-valued, and
let y be a vector of sizeNo whose firstnq components are real-valued. By
adopting the real-valued representation, the WL transformation fromx to y is
defined as the linear transformation on the extended vectorEnr [x], namely:

Enq [y] �

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 Enr [x] = FEnr [x] . (2.26)

whereF11 ∈ Rnq×nr , F12,F13 ∈ Rnq×(Ni−nr), F21,F31 ∈ R(No−nq)×nr ,
and whereF�k ∈ R(No−nq)×(Ni−nr) with �, k = 2, 3. More specifically, the
widely linear transformation fromx toy can be written as:y = Ēnq [FEnr [x]].

The linear transformation (2.26) can also be equivalently written as:

Cnq [y] �

 G11 G12 G∗
12

G21 G22 G23

G∗
21 G∗

23 G∗
22

 Cnr [x] = GCnr [x] (2.27)

whereG11 = F11, G12 = 1
2 [F12 − F13], G21 = F21 + F31, G22 =

1
2 [F22 + F33 +  (F32 − F23)], andG23 = 1

2 [F22 − F33 +  (F32 + F23)],
or, more compactly,

G = ΥTFTHΥ−1 . (2.28)

Then, the overall WL processing can also be written as:y = C̄nq [GCnr [x]].
In other words, when a matrixF for WL processing in real-valued repre-
sentation is available, then the matrix for the corresponding WL processing
in complex-valued representation isG = ΥTFTHΥ−1 and, vice versa,
F = THΥ−1GΥT is the relation for the inverse transformation between
the two representations.

The WL transformation in (2.26) (analogously, in (2.27)) becomes a
strictly linear transformation inx if F12 = F13 = 0, F22 = F33 and
F32 = −F23 (analogously,G12 = G23 = 0); in such a case, in fact, the
following equivalence holds:

y =
[

G11 0
G21 G22

]
x⇔ Enq [y] = FEnr [x]⇔ Cnq [y] = GCnr [x] . (2.29)

In the current literature, the two representations are both utilized since they
are often equivalent for many application scenarios. However, it can be verified
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that such an equivalence does not hold in general. Let us further discuss how it
may happen that the choice of the representation can affect the WL processing
of the vectorx. Let us denote withS(1)

r andS(2)
r two sets of matricesF in

the real-valued representation corresponding, by means of the transformation
(2.28), to the setsS(1)

c andS(2)
c of matricesG in the complex-valued repre-

sentation, respectively. Assume thatS
(1)
r satisfies a constraint on the structure

of its matrix elements, andS(2)
c satisfies a constraint on the structure of its

elements. Then, ifS(1)
r �= S

(2)
r and, therefore,S(1)

c �= S
(2)
c , the two represen-

tations are not equivalent. In fact, the choice of the real-valued representation
implies to define a WL transformationF in S(1)

r , while choosing the complex-
valued representation implies to defineF in S(2)

r . Obviously, the two repre-
sentations are equivalent only in the special case whereF ∈ (S(1)

r
⋂
S

(2)
r ), or,

equivalently,G ∈ (S(1)
c

⋂
S

(2)
c ).

For example, consider the case where bothF andG are lower triangu-
lar matrices. According to the real-valued representation, the imaginary parts
of the complex-valued components ofy are obtained by linearly combining
(also) the real parts of the complex-valued components ofx. On the other
hand, according to the complex-valued representation,y is obtained by lin-
early processingx beingG12 = 0 andG23 = 0.

2.3 System model

Let us consider the FIR baseband equivalent noisy communication channel in
(1.25) withNi jointly wide-sense stationary (WSS) transmitted signals andNo

received signals. Therefore, the�th output at thekth instant is given by

y
(�)
k =

ν(�,i)∑
m=0

Ni∑
i=1

x
(i)
k−mh

(�,i)
m + n

(�)
k 1 ≤ � ≤ No (2.30)

whereh(i,j)
k (k = 0, . . . , ν(i,j)) accounts for the effect of theith input on the

jth output. The noise signalsn(j)
k are assumed to be zero-mean jointly WSS

complex-valued processes independent of the useful signals.
Each symbolx(i)

k belongs to the constellationSi (i = 1, . . . , Ni): we con-
sider both the two-dimensional constellations (e.g., MPSK withM ≥ 4 and
QAM) and the one-dimensional constellations (e.g., PAM and its rotated ver-
sions) for which it existsθi ∈ [0, 2π] such thate−θix

(i)
k is a real-valued se-

quence. Since in (2.30)h(i,j)
m x

(i)
k−m = [eθih

(i,j)
m ][e−jθix

(i)
k−m], the caseθi �= 0
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is easily transformed into an equivalent problem withθi = 0 by substitut-
ing, for the considered value ofi and for all values ofj andk, [x(i)

k−m] and

[h(i,j)
m ] with [e−θix

(i)
k−m] and [eθih

(i,j)
m ], respectively. Note also that two-

dimensional constellations as OQPSK and OQAM can be described by two
one-dimensional constellations after a suitable sampling [43]. For the above
reasons, there is no loss of generality if one assumes that each one-dimensional
constellation is real-valued. We order the symbol sequences so that the real-
valued constellations have indicesi ∈ {1, . . . , nr}. The casenr = 0 accounts
for the absence of real-valued constellations whereasnr = Ni is the case cor-
responding to all real-valued constellations.

As shown in Section 1.3, the input-output relationship (2.30) can be ex-
pressed using a matrix notation as follows:

yk =
ν∑

m=0

Hmxk−m + nk (2.31)

whereν = max
(�,i)

ν(�,i), Hm is theNo × Ni matrix whose(�, i) entry ish(�,i)
m ,

andnk is theNo × 1 vector of noise samples at thekth instant.

�

Useful definitions

Let us define the set of operatorsTN [·, �] that associate with the sequence of
n1×n2 arraysuk the following sequence ofn1N×n2 arrays:TN [uk−k0 , �] =[
uT

�−k0
uT

�−1−k0
. . . uT

�−N+1−k0

]T
where� denotes the observation instant,

and k0 denotes a time-shift. It is also useful to define the correspondence
that associates to a sequence ofn1 × n2 arraysuk then1M × n2N matrix
T̃[uk,M,N ] defined as follows

T̃[uk,M,N ] � [TM [uk,0] TM [uk,1] . . .TM [uk,N−1]] . (2.32)

The operatorTN [·, �], when applied to the system input, is useful to repre-
sent the output of a linear and time-invariant FIR system, while the operator
T̃[·,M,N ] applied to the auto-correlation function of a stationary array se-
quenceuk constructs the auto-correlation matrix ofTN [uk, k], namely

E
[
TM [uk, k]TH

N [uk, k]
]

= T̃[E[ukuH
k−m],M,N ] . (2.33)
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2.4 DF-MMSE FIR equalizer

In this section, the decision-feedback (DF) FIR equalizer, whose structure has
been presented in subsection 1.7.4, is derived according to the MMSE crite-
rion. By utilizing the notation introduced in this chapter, the equalizer output
(1.83) can be written as follows:

x̂k−∆ =
[
WH

0 WH
1 . . . WH

Nf−1

]
︸ ︷︷ ︸

� WH

TNf
[yk, k] (2.34)

−[
(BH

0 − INi) (BH
1 ) . . . (BH

Nb
)
]︸ ︷︷ ︸

� BH − [INi 0Ni×NiNb
]

Q (TNb+1[x̂k, k −∆])

with the integer∆ denoting the decision delay, and withWi andBi denoting
the matrix taps of sizeNo × Ni andNi × Ni , respectively. The decision
mechanismQ(·) is applied to each component of the vectorTNb+1[x̂k, k−∆]
to provide an estimate ofTNb+1[xk, k−∆]. According to the MMSE criterion,
the optimum FIR filtersW andB in (2.34), sayW(opt) andB(opt), are derived
by minimizing the MSE cost function

min
W,B

E
[‖x̂k−∆ − xk−∆‖2

]
(2.35)

and by accounting for the constraints imposed by the considered detection sce-
nario (see subsection 1.7.4). To this aim, let us remind that the filter optimiza-
tion in Scenario 1 requires to take into account for the constraintB0 = INi ,
whereas, in Scenario 2,BH

0 is constrained to be monic lower triangular. In
Scenario 3,BH

0 is monic.
In the following, the DF-MMSE equalizer is derived by utilizing the opti-

mization procedure proposed in [9], under the assumption that the available es-
timates be correct. The procedure is based on the knowledge of the channel im-
pulse responseHm (m = 0, . . . , ν) and the matricesRx(m) � E

[
xkxH

k−m

]
andRn(m) � E

[
nknH

k−m

]
, which describe the spatial and temporal corre-

lation of both the transmitted symbols and the noise, respectively. Such an
assumption is reasonable since they can be estimated blindly or by means of a
training-based method.

2.4.1 DF-MMSE for Scenario 1

The optimum equalizer estimatesxk−∆ by resorting to the past decisions,
namely it does not exploit also the current decisions. Accounting for (2.32),
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let us define the following matrices:

Rx � T̃ [Rx(m), Nf + ν,Nf + ν]

Rn � T̃ [Rn(m), Nf , Nf ] (2.36)

H � T̃ [Hm, Nf , Nf + ν]

whereHm = 0 for m /∈ {0, . . . , ν}. Under the assumption that the available
estimates be correct, i.e.,Q (TNb+1[x̂k, k −∆]) = TNb+1[xk, k − ∆], and
that the matricesRx, Rn, andHRxHH + Rn be invertible, the optimum
W(opt) andB(opt) are expressed as follows:

Scenario 1
W(opt) = W0B̃(opt)

B̃(opt) �
[
0Ni×Ni∆ B(opt)H

]H

B(opt) = f1 [Rx,Rn,H]
W0 �

[
HRxHH + Rn

]−1 HRx .

(2.37)

The optimum feedback matrixB(opt) in (2.37) can be determined as follows:

1. determineR = R−1
x + HHR−1

n H;

2. extract fromR the matrixRα that contains its firstNi(∆ + 1) columns
and the matrixRβ that contains the upper-left square sub-block of size
Ni(∆ + 1);

3. determineB(opt) as the lower right sub-block of sizeNi(Nb + 1) ×Ni

of RαR−1
β .

The corresponding error correlation matrix and achieved MSE are given by

R(opt,1)
e = ΨHR−1

β Ψ (2.38)

MMSE1 = trace
(
R(opt,1)

e

)
(2.39)

with ΨH �
[

0Ni×Ni∆ INi

]
. Note that the decision delay∆ is a parameter

to be optimized in the method (in [9] the optimization has been carried out by
an exhaustive procedure) and, together with the parameterNf , it determines
the number of causal taps and the number of anticausal taps in the linear FIR
filter W. Also the number of tapsNb of the feedback filter can be optimized;
here, however, in accordance with [9], we assumeNb = Nf + ν −∆− 1.
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It can be readily checked that the optimum linear (L) MMSE equalizer,
the one which resorts to the only feedforward filter to provide an estimation
of xk−∆, is given by the first equation in (2.37) settingBk in (2.34) equal to
INiδk, i.e. B = [INi 0Ni×NiNb

]H .

2.4.2 DF-MMSE for Scenario 2

The optimum equalizer estimatesx(�)
k−∆ by resorting to the past decisions and

also the current decisionsQ(x̂(1)
k−∆),Q(x̂(2)

k−∆), . . . ,Q(x̂(�−1)
k−∆ ) with lower in-

dexed components, namely the decisions are taken sequentially starting with
the lower indexed components. It follows that the optimization procedure over
the matrixW andB has to be carried by accounting for the monic lower tri-
angular matrix tapBH

0 . The optimum DF-MMSE equalizers given by:

Scenario 2
W(opt)

2 = W0B̃
(opt)
2

B(opt)
2 = B(opt)B(2)

0

B(2)
0 = f2 [Rx,Rn,H]

(2.40)

where W0 and B(opt) have been defined in (2.37) and whereB̃(opt)
2 �[

0Ni×Ni∆ B(opt)H

2

]H
. The optimum feedback matrixB(2)

0 in (2.40) can be

determined as follows:

1. extract fromR the upper-left square sub-blockRβ of sizeNi(∆ + 1)
and determineRb = R−1

β ;

2. extract fromRb the lower-right square sub-blockRc � ΨHR−1
β Ψ of

sizeNi;

3. determine its monic lower triangular Cholesky factorLc, i.e., Rc =
LcDLH

c whereD is a diagonal matrix with positive entries andLc has
unit diagonal entries;

4. determine the optimumB(2)
0 =

(
LH

c

)−1
.

The corresponding error correlation matrix and achieved MSE are given by

R(opt,2)
e = D (2.41)

MMSE2 = trace(R(opt,2)
e ) . (2.42)
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Note that, beingD diagonal, the error vector measured at the output of the
equalizer has uncorrelated components, i.e., it is spatially white.

�

The procedures in (2.37) and (2.40) to derive the DF-MMSE equalizer exhibit
a computational complexity which grows cubically with the system param-
eters. In presence of spatially and temporally uncorrelated input and noise
sequences, (2.37) and (2.40) can be solved (see [9] for details) by means of
simpler procedure based on fast factorization algorithms [47, 48] with com-
plexity O(N2

i (Nf +ν)2). A procedure alternative to the one in [9] is proposed
in Appendix B.

2.4.3 DF-MMSE for Scenario 3

For the sake of completeness, we report the DF-MMSE equalizer structure
when both past and current decision are available form a previous detection
stage. However, in the rest of the thesis, we will not consider anymore such a
scenario which deals with the multistage detection.

By accounting for the monic matrix tapB0, the optimum DF-MMSE
equalizer is given by:

Scenario 3
W(opt)

3 = W0B̃
(opt)
3

B(opt)
3 = B(opt)B(3)

0

B(3)
0 = f3 [Rx,Rn,H]

(2.43)

where W0 and B(opt) have been defined in (2.37), and whereB̃(opt)
3 �[

0Ni×Ni∆ B(opt)H

3

]H
. The optimum feedback matrixB(3)

0 in (2.43) is de-

termined as follows:

1. according to the steps 1. and 2. of the procedure which provides the
optimum DF-MMSE equalizer in Scenario 2, determineRc

2. the(i, j) entry ofB(3)
0 is equal to[

B(3)
0

]
(i,j)

=
[Rd](i,j)
[Rd](j,j)

(2.44)

where[Rd](i,j) denotes the(i, j) entry ofRd = R−1
c .
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The corresponding MSE is equal to

MMSE3 =
Ni∑
j=1

1
[Rd](j,j)

. (2.45)

2.4.4 Detection ordering

The order of detection in MIMO DF based equalization is a valuable degree
of freedom with no counterpart in SISO channels. Note that, while Scenario 1
the decision over the symbolsx(�)

k−∆ are taken simultaneously, in Scenario 2
the decisions are taken sequentially according to a chosen order. Changing
such an ordering leads to a modification of the equivalent discrete-time chan-
nel response to be equalized and, consequently, to different performances. As
well known, the optimum detection ordering is NP-hard [31]: in fact,Ni! DF
equalizers exist, one for every order in which theNi inputs can be detected.
For such a reason, suboptimal algorithms that provide reliable performances
with polynomial complexity have been widely studied. Among them, the
vertical BLAST (V-BLAST) algorithm2 ensures significantly performance im-
provement over the conventional linear equalizer with onlyO(N2

i ) complex-
ity [24, 49]. Unfortunately, the issue of the decision ordering has been widely
studied in DF equalization over non-dispersive MIMO channel ([24, 49, 50]
and references therein) but only few contributions [51, 52] have started its dis-
cussion over dispersive MIMO channel.

In this subsection, with reference to the Scenario 2, we prove the depen-
dence of the DF-MMSE equalizer (and of its performances) on the decision
ordering by rewriting the system model (2.31) as a function of a permutated
input vectorxk. Moreover, we show that the optimum equalizer in Scenario 2
can be expressed as a two-stage equalizer: the former is the optimum time-
dispersive equalizer of Scenario 1 (which is independent of the decision or-
dering), the latter performs a non-dispersive equalization and the optimization
over the decision ordering. Such aframeworkallows us to extend any subopti-
mum ordering method proposed for non-dispersive environment to the disper-
sive one.

Let P be a permutation matrix of sizeNi, such thatPTP = INi . By
defining the (row) permutated input vectorxk(P ) � Pxk and, hence, the
(column) permutated channel matrixHm(P ) � HmPT , the channel output

2BLAST: Bell Laboratories Layered Space-Time
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can be equivalently re-written as follows:

yk =
ν∑

m=0

Hm(P )xk−m(P ) + nk. (2.46)

In the following theP-dependence is omitted for the caseP = INi (e.g.,
Hm(INi) � Hm ), which corresponds to the input ordering in (2.31). With
reference to channel model (2.46), we define the input-correlation matrix

Rx(m,P ) � E
[
xk(P )xk−m(P )H

]
= PRx(m)PT . (2.47)

For any given permutationP, the output correlation matrixRy(m,P ) �
E

[
yk(P )yH

k−m(P )
]

can be shown to be independent ofP , in fact:

Ry(m,P ) =
ν∑

m1=0

ν∑
m2=0

Hm1(P )Rx(m+m2 −m1, P )HH
m2

(P ) + Rn(m)

=
ν∑

m1=0

ν∑
m2=0

Hm1Rx(m+m2 −m1)HH
m2

+ Rn(m)

= Ry(m)

By replacing the matricesRx(m) and Hm with Rx(m,P ) and Hm(P ),
the optimization procedure (2.37) can be utilized to determine DF-MMSE
equalizer for each one of theNi! permutation matrices; the optimum ma-
trix filters and the achieved MMSE are denoted withW(opt)

i (P ), B(opt)
i (P )

(B̃(opt)
i (P )), andMMSEi(P ), wherei accounts for the detection scenario

andP-dependence is introduced.
By resorting to the propertytrace(A) = trace(X−1AX), with X be-

ing a unitary matrix, it can be verified that, for any givenP, the achieved
MMSE1(P ) in Scenario 1 is such thatMMSE1(P ) = MMSE1(I) ∀P,
i.e., the performances of DF-based equalizers are invariant to the decision or-
dering. On the other hand, if Scenario 2 is considered, the permutation matrix
P greatly affects theMMSE2(P ) and, therefore,Ni! different DF-MMSE
equalizers exist. Unfortunately, as previously stated, the optimum decision
ordering can be derived only by an exhaustive procedure. For the sake of
brevity, in the sequel, if not specified, the problem of input ordering will refer
to Scenario 2.

For a given detection orderingP, denote witĥx(i)
k−∆(P ) the output of the

DF-MMSE equalizer when theith scenario is considered. Assuming correct
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decision, the output vector̂x(2)
k−∆(P ) = Px̂(2)

k−∆ can be rewritten as follows:

x̂(2)
k−∆(P ) = W(opt)H

2 (P )TNf
[yk, k] + Pxk−∆−B̃(opt)H

2 (P )TNf+ν [xk(P ), k]

= B(2)H

0 (P )
[
W(opt)H

1 (P )TNf
[yk, k]−B̃(opt)H

1 (P )TNf+ν [xk(P ), k]
]

+ xk−∆(P )

= B(2)H

0 (P )P
[ (

PTW(opt)H

1 (P )
)︸ ︷︷ ︸

=W
(opt)H

1

TNf
[yk, k]

− (
PT B̃(opt)H

1 (P )P̃Nb+1

)︸ ︷︷ ︸
=B̃

(opt)H

1

TNf+ν [xk, k]
]

+ Pxk−∆

x̂(2)
k−∆(P ) = B(2)H

0 (P )P x̂(1)
k−∆ +

[
INi −B(2)H

0 (P )
]
Pxk−∆ (2.48)

i.e., it can be expressed as the output of a two-stage equalizer (see Fig. 2.1):
the output of the former stage coincides withx̂(1)

k−∆, which is also the final
output in Scenario 1 (only past decisions are fed back) and is unaffected by
a possible ordering; the latter stage, instead, performs a non-dispersive DF-
MMSE equalization depending on the permutation matrixP.

Nondispersive−equalization stage

W(opt)
1

I−B(opt)
1

Dispersive-equalization stage

current
decisions

past decisions

B(2)
0 (P )

I−B(2)
0 (P )

Q(·)yk
x̂(1)

k−∆ x̂(2)
k−∆ Q(x̂(2)

k−∆)

Figure 2.1: Two stage equalizer structure: the former stage performs
the MMSE equalization by utilizing only past decisions (Scenario 1),
the latter performs the MMSE equalization by utilizing only current
decisions (Scenario 2).
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Note that (2.48) allows us to simply express the error vectore(2)
k−∆(P ) �

x̂(2)
x−∆ − xx−∆ at the output the second stage as follows:

e(2)
k−∆ = B(2)H

0 (P )P
[
x̂(1)

k−∆ − xk−∆

]
� B(2)H

0 (P )Pe(1)
k−∆. (2.49)

wheree(1)
k−∆ denotes the error vector measured at the output of the first stage

and its correlation matrix is equal toR(opt,1)
e in (2.38). From (2.40) and (2.49),

it is clear that the optimum second stage performs the spatial whitening (see
also [53] and [54]) of the error vectore(1)

k−∆ by utilizing the monic upper tri-

angular filterB(2)
0 (P ), which is constrained to be upper triangular with unit

diagonal entries.
The decision ordering optimization in a time-dispersive environment has

been, therefore, recognized to be equivalent to the decision ordering optimiza-
tion in such a latter stage. Such a result allows us to extend every subopti-
mum ordering method, already proposed for DF equalization of non-dispersive
MIMO channel, to the MIMO dispersive environment. For the sake of com-
pleteness, we point out that:

• the feedforward filtering of the noise and the pre-cursor ISI makes the
resulting noise at the output of the first stage spatially correlated;

• the derivation of the second stage needs to take into account for input
and noise signals correlated with each other.

Consequently, when designing the second stage, the DF-MMSE procedure in
(2.40) has to be modified to take into account for possibly correlated (with
each other) input and noise vectors.

2.5 WL decision-feedback FIR equalizer

In this section, with reference to the MIMO dispersive channel equalization,
we introduce the structure of the widely-linear/widely-decision feedback (WL-
WDF) FIR equalizer, i.e., the DF-based equalizer which utilizes both widely
linear feedforward filter and a widely linear feedback filter. Owing to the
input-output channel model and to the equalizer structure proposed here, the
WL-WDF-MMSE in Scenario 1 and Scenario 2 will be carried out (in Sec-
tion 2.6 and in Section 2.7, respectively) by utilizing the existing procedure
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for DF-MMSE equalization. As discussed in Section 2.2, the WL filtering
can be performed by utilizing the real-valued representation of the involved
vectors, as well as the complex-valued one: it follows that two WL-WDF
equalizer structures can be defined according to each representation. When
Scenario 1 is considered, the two representations are shown to be equivalent
[44], i.e., a one-to-one correspondence (by means of (2.28)) exists between
the two structures and, therefore, for any chosen optimization criterion, they
perform equivalently. On the other hand, in Scenario 2, the correspondence
between the two representations no longer holds. In fact, when the equalizer
obtained by a real-valued representation satisfies the constraint imposed by
the scenario, the corresponding equalizer provided by (2.28) may not satisfy
the constraint in complex-valued representation, andvice versa. The problem
of the non-equivalence between the two approaches will be addressed in Sec-
tion 2.8. Here, we adopt the real-valued representation to describe the main
properties of the DF-based equalization combined with the WL filtering. Nev-
ertheless, we point out that the same mathematical framework is required when
the complex-valued representation is adopted.

We resort to the operators (2.16) and (2.18) and their properties (2.20)-
(2.22) to replace the channel model (2.31) with the following equivalent one:

E0[yk] =
ν∑

m=0

Ẽnr [Hm]Enr [xk−m] + E0[nk]. (2.50)

Note that the above input-output relationship is written in terms of the aug-
mented input vectorEnr [xk] whose firstnr components are the real-valued

transmitted symbolsx(�)
k with � = 1, . . . , nr, and whose last2(Ni − nr) com-

ponents are the real and the imaginary parts of the complex-valued transmitted
symbolsx(�)

k with � = nr + 1, . . . , Ni. The output of the DF equalizer operat-
ing on the channel model (2.50) can be written as:

Enr [x̂E,k−∆] = WH
E TNf

[E0[yk], k]−BH
EQ

(
TNb+1[Enr [x̂E,k−∆, k −∆]]

)
(2.51)

where WE and BE are matrices of size(2NoNf ) × (2Ni − nr) and
(2Ni − nr) (Nb + 1) × (2Ni − nr), respectively, and where the deci-
sion mechanism is applied to each component of the augmented vector
TNb+1[Enr [x̂E,k−∆, k − ∆]]. Let us note that the first tap of the filter ma-
trix BE , sayBE,0, is subject to the constraint imposed by the equalization
scenario: in other words it represents the WL counterpart of the matrix taps
B0 in (2.34). The operator̄Enr [·] allows us to obtain from (2.51) the output
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x̂E,k−∆ of the WL-WDF equalizer, namely:

x̂E,k−∆ = Ēnr

[
WH

E TNf
[E0[yk], k]−BH

EQ
(
TNb+1[Enr [x̂E,k−∆, k −∆]]

)]
.

(2.52)
Relation (2.52) shows that the outputx̂E,k−∆ can be obtained by the sum of
two contributes: the former is obtained by a feedforward-based processing
whereas the latter by a feedback-based one.

In the particular case ofBE = 0 in (2.52), the subset of the WL-WDF
equalizers, usually called the class of WL equalizers [42], is recognized. In
fact, accounting forBE = 0, (2.52) becomes:

x̂E,k−∆ = Ēnr

[
WH

E TNf
[E0[yk], k]

]
(2.53)

�
[
WH

α GH
α

] E0 [TNf
[yk, k]

]
where

[
WH

α GH
α

]
� Ēnr

[
WH

E

]
AH , with Wα andGα of sizeNo(Nf +

ν) × Ni. The matricesWα andGα represent the impulse responses of the
FIR feedforward filters which process the real part of the received vector and
the imaginary one, respectively. Since the filtersWα andGα are independent
of each other, the resulting processing of the received signals is widely linear
rather than linear.

As regards to the more general case ofBE �= 0, by defining the real-valued
sequencex(r)

k � xk(1 : nr), the complex-valued sequencex(c)
k = xk(nr + 1 :

Ni), and the permutation matrixAr such that

ArTNb+1 [Enr [xk], k −∆] =

[
TNb+1[x

(r)
k , k −∆]

E0
[
TNb+1[x

(c)
k , k −∆]

] ]
,

one has that the feedback-based estimate component in (2.52) can be re-written
as follows:

Ēnr

[
BH

E x̂E,k−∆

]
�

[
Bα

Dα

]H

Q
( TNb+1[x̂

(r)
E,k, k −∆]

E0
[
TNb+1[x̂

(c)
E,k, k −∆]

] )
(2.54)

wherex̂(r)
E,k andx̂(c)

E,k are the estimates ofx(r)
k andx(c)

k , respectively, and where[
BH

α DH
α

]
� Ēnr

[
BH

E

]
AH

r , with Bα andDα of sizeNi (Nb + 1)×Ni and
(Ni − nr) (Nb + 1) × Ni, respectively. The matricesBα andDα represent
the impulse responses of the FIR feedback filters that process the real part
and the imaginary part of the past decisions, respectively. Analogously to the
feedforward filters,Bα andDα are independent of each other and, hence, the
past decisions are processed by a widely linear filter.
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2.6 WL-WDF-MMSE equalizer for Scenario 1

By adopting the MMSE criterion, and accounting for the (2.52), one

can derive the optimum
(
W(opt)

E ,B(opt)
E

)
and, consequently, the optimum(

W(opt)
α ,G(opt)

α

)
and

(
B(opt)

α ,D(opt)
α

)
in (2.53) and (2.54), by utilizing

the procedure (2.37) with the parametersNi and No replaced by2Ni −
nr and 2No, respectively3, under the assumption of correct previous es-
timates. The matricesRx(m), Rn(m), and Hm in (2.36) are replaced
with RE

x (m) � E
[Enr [xk]Enr [xk−m]T

]
, RE

n (m) � E
[E0[nk]E0[nk−m]T

]
,

and Ẽnr [Hm], respectively, in order to single out
(
W(opt)

E ,B(opt)
E

)
. Con-

sequently, the matricesRx, Rn, and H in (2.37) are substituted with
RE

x � T̃
[
RE

x (m), Nf + ν,Nf + ν
]
, RE

n � T̃
[
RE

n (m), Nf , Nf

]
, and

HE � T̃
[
Ẽnr [Hm], Nf , Nf + ν

]
, respectively, andR is replaced withRE =[(

RE
x

)−1 + HH
E

(
RE

n

)−1 HE

]
.

Unlike the DF optimization, which is based only on the knowledge of
Rx(m), the construction of the matrixRE

x (m) in WL-WDF optimization re-
quires also the pseudo-correlation matrixR̂x(m) � E

[
xkxT

k−m

]
, or, equiva-

lently, the three matricesE
[�{xk}�{xk−m}T

]
, E

[�{xk}�{xk−m}T
]
, and

E
[�{xk}�{xk−m}T

]
(see Section A.1 for details). Of course, the same rea-

soning applies to the noise statistics.
The application of the procedure (2.37) to the channel model (2.50),

namely [
B(opt)H

α D(opt)H

α

]H
= ArĒnr

[
f1

[
RE

x ,R
E
n ,H

E
]]

(2.55)

implies the utilization of augmented matrices with a consequent increase in
the computational complexity. In order to apply the proceduref1[·, ·, ·], the
matricesRE

x , RE
n , andHERE

x HH
E + RE

n are obviously required to be non-
singular. Note, however, that the possible introduction of the augmented vector
E0 [xk] in (2.50) (rather thanEnr [xk], here utilized) implies that the matrix
RE

x is singular whennr ≥ 1. In fact, if the feedback filter is interpreted
as a feedforward filter which processes a delayed version of the transmitted
symbols4, the couple(WE ,BE)) can be seen as a WL filter that processes

3According to (2.34), the feedback filter in (2.51) can be re-written as[
BH

E,0−I2Ni−nr BH
E,1 . . . BH

E,Nb

]H
, and, therefore, the utilization of (2.37) provides the

optimum filterBE =
[
BH

E,0 BH
E,1 . . . BH

E,Nb

]H
subject to the constraintBE,0 = I2Ni−nr .

4Such an interpretation is possible when no decision errors occur.
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an observation vector with both complex-valued (i.e., the complex-valued past
decisionsx(c)

k ) and real-valued components (i.e., the real-valued past decisions

x(r)
k ). It follows that, according to (2.16), the MMSE solution is not unique

whenE0 [xk] in (2.50).

2.6.1 Reduced-order design of WL-WDF-MMSE equalizer

By exploiting the particular structures of the augmented matrices, we propose
an equivalent procedure exhibiting a lower computational complexity than that
of the procedure (2.55) which is based on the inversion of the augmented ma-
trices. Moreover, such a simplified procedure provides also a better under-
standing of the optimum WL-WDF equalizer structure.

To this aim, define thenr(Nf + ν) × 1 real-valued vector̃x(r)
k �

TNf+ν

[
x(r)

k , k
]

and the(Ni−nr)(Nf +ν)×1 vectorx̃(c)
k � TNf+ν

[
x(c)

k , k
]
,

and re-order the matricesRE
x , RE

n , andHE as follows

RA
x � ArRE

x AH
r =

 Rx(r) Rx(rc) R̂x(rc)

RT
x(rc) Rx(c) R̂x(cc)

R̂T
x(rc) R̂T

x(cc) R̂x(c)

 (2.56)

RA
n � ARE

n AH =

[
Rn(c) R̂n(cc)

R̂T
n(cc) R̂n(c)

]
(2.57)

HA � AHEAH
r =

[
H(r)

R H(c)
R −H(c)

I

H(r)
I H(c)

I H(c)
R

]
(2.58)

where

Rx(r) � E
[
x̃(r)

k x̃(r)T

k

]
Rx(c) � E

[
�
{
x̃(c)

k

}
�
{
x̃(c)

k

}T
]

(2.59)

Rx(rc) � E

[
x̃(r)

k �
{
x̃(c)

k

}T
]

R̂x(rc) � E

[
x̃(r)

k �
{
x̃(c)

k

}T
]

(2.60)

R̂x(cc) � E

[
�
{
x̃(c)

k

}
�
{
x̃(c)

k

}T
]

R̂x(c) � E

[
�
{
x̃(c)

k

}
�
{
x̃(c)

k

}T
]
,

(2.61)
Rn(c) , R̂n(c) , and R̂n(cc) are the auto-correlation matrices and the cross-
correlation matrix of the real part and the imaginary part of the noise vector
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TNf
[nk, k], the (NoNf ) × nr(Nf + ν) matricesH(r)

R andH(r)
I contain the

columns of�{H} and�{H}, respectively, that perform the processing of the
real-valued transmitted sequences and, finally, the(NoNf )×(Ni−nr)(Nf +ν)
matricesH(c)

R andH(c)
I contain the remaining columns of�{H} and�{H},

respectively. Then, from (2.55) and (2.56)-(2.58) one has:[
B(opt)

α

D(opt)
α

]
=ArĒnr

[
f1

[
AH

r RA
x Ar,AHRA

n A,AHHAAr

]]
. (2.62)

It can be easily verified that the right-hand side of (2.62) can be re-written
so that it requires only additions, multiplications, and inversion of real-valued
symmetric matrices in the form

g(Lm×m,Mm×n,Nm×n,Pn×n,Qn×n,Sn×n)�

 L M N
MT P Q
NT QT S

 .
(2.63)

The set of symmetric matricesg(Lm×m,Mm×n,Nm×n,Pn×n,Qn×n,Sn×n)
is a matrix algebraΩm,n closed under addition, multiplication, and inversion.
By resorting to the formula for inversion of block-partitioned matrices [55],
and omitting the matrix sizes in the notation, it can be shown that the following
relation holds

[g(L,M,N,P,Q,S)]−1 = g(G1,G2,G3,G4,G5,G6) (2.64)

where

G1 = L−1 − [
G2 G3

] [ MT

NT

]
L−1 (2.65)

G2 = −L−1
(
MG4 + NGT

5

)
(2.66)

G3 = −L−1 (MG5 + NG6) (2.67)

G4 =
(
P−MTL−1M

)−1

−G5

(
QT −NTA−1M

) (
P−MTL−1M

)−1
(2.68)

G5 = −(P−MTL−1M
)−1(

QT −NTA−1M
)T

G6 (2.69)

G6 =
[(

S−NTL−1N
)− (

QT −NTA−1M
)

· (P−MTL−1M
)−1(

QT −NTA−1M
)T

]−1
. (2.70)
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By accounting for the properties ofΩm,n, the optimum
(
B(opt)

α ,D(opt)
α

)
can

be determined by means of the following alternative procedure:

1. determine the matrices in (2.71) and in (2.72) set below:

g
(
INoNf

,0NoNf
,0NoNf

,R1,n,R2,n,R3,n

)
�

[
g
(
INoNf

,0NoNf
,0NoNf

,Rn(c) , R̂n(cc) , R̂n(c)

)]−1
(2.71)

R � g (R1,R2,R3,R4,R5,R6)

�
[
g
(
Rx(r) ,Rx(rc) , R̂x(rc) ,Rx(c) , R̂x(cc) , R̂x(c)

)]−1

+HT
A

[
R1,n R2,n

RT
2,n R3,n

]
HA (2.72)

2. extract fromR1, RT
2 , andRT

3 the matricesR1,e, R̄2,e, andR̄3,e (re-
spectively) that contain their firstnr(∆+1) columns; moreover, extract
from R2, R3, R4, R5, RT

5 , andR6 the matricesR2,e, R3,e, R4,e, R5,e,
R̄5,e, andR6,e (respectively) that contain their first(Ni − nr)(∆ + 1)
columns;

3. extract fromR1 the upper-left square sub-blockR1,f of sizenr(∆ + 1)
and fromR2 andR3 the upper-left sub-blocksR2,f andR3,f (respec-
tively) of sizenr(∆ + 1) × (Ni − nr)(∆ + 1). Finally, extract from
R4, R5, andR6 the upper-left square sub-blocksR4,f , R5,f , andR6,f

(respectively) of size(Ni − nr)(∆ + 1);

4. determine the matrix

R∆ � g (R1,∆,R2,∆,R3,∆,R4,∆,R5,∆,R6,∆)
� [g (R1,f ,R2,f ,R3,f ,R4,f ,R5,f ,R6,f )]−1 (2.73)

5. extract from the matrix

R1,eR1,∆ + R2,eRT
2,∆ + R3,eRT

3,∆ (2.74)

the lower-right sub-blockB(1,1) of sizenr(Nb + 1) × nr and from the
matrices

R̂1,eR2,∆ + R2,eR4,∆ + R3,eRT
5,∆ (2.75)

R̂1,eR3,∆ + R2,eR5,∆ + R3,eRT
6,∆ (2.76)
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the lower-right sub-blocksB(1,2) and B(1,3) (respectively) of size
nr(Nb + 1)× (Ni − nr). Moreover, extract from the matrices

R̄2,eR1,∆ + R4,eRT
2,∆ + R5,eRT

3,∆ (2.77)

R̄3,eR1,∆ + R̄5,eRT
2,∆ + R6,eRT

3,∆ (2.78)

the lower-right sub-blocksB(2,1) andB(3,1) (respectively) of size(Ni−
nr)(Nb + 1)× nr and from the matrices

R̄2,eR2,∆ + R4,eR4,∆ + R5,eRT
5,∆ (2.79)

R̄2,eR3,∆ + R4,eR5,∆ + R5,eR6,∆ (2.80)

R̄3,eR2,∆ + R̄5,eR4,∆ + R6,eRT
5,∆ (2.81)

R̄3,eR3,∆ + R̄5,eR5,∆ + R6,eR6,∆ (2.82)

the lower-right sub-blocksB(2,2), B(2,3), B(3,2), andB(3,3) (respec-
tively) of size(Ni − nr)(Nb + 1)× (Ni − nr);

Finally, the optimum
(
B(opt)

α ,D(opt)
α

)
are given by the following matrices:

B(opt)
α =

[
B(1,1) B(1,2)−B(1,3)

B(2,1) B(2,2)−B(2,3)

]
(2.83)

D(opt)
α =

[
B(3,1) B(3,2)−B(3,3)

]
. (2.84)

The properties of the matrix algebraΩm,n and the formula for inver-
sion of block-partitioned matrices also allow us to express the optimum(
W(opt)

α ,G(opt)
α

)
as follows:

W(opt)
α = R−1

y(c)

(
Ryx(r)B̃α + Ryx(rc)D̃α

)
−R−1

y(c)R̂y(cc)G(opt)
α (2.85)

G(opt)
α =

(
R̂y(c) − R̂T

y(cc)R−1
y(c)R̂y(cc)

)−1

·
[(

Ryx(cr) − R̂T
y(cc)R−1

y(c)Ryx(r)

)
B̃α

+
(
Ryx(c) − R̂T

y(cc)R−1
y(c)Ryx(rc)

)
D̃α

]
(2.86)
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where

B̃α �



0nr∆×Ni

−−−−−−−−−−
B(1,1) B(1,2)−B(1,3)

−−−−−−−−−−
0(Ni−nr)∆×Ni

−−−−−−−−−−
B(2,1) B(2,2)−B(2,3)


D̃α �

 0(Ni−nr)∆×Ni

−−−−−−−−−−
B(3,1) B(3,2)−B(3,3)

 (2.87)

andRy(c) andR̂y(c) are the correlation matrices of the real part and the imag-

inary part, respectively, of the output vectorTNf
[yk, k], R̂y(cc) denotes their

cross-correlation matrix,Ryx(r)

[
Ryx(cr)

]
is the cross-correlation matrix be-

tween the real [imaginary] part of the output vectorTNf
[yk, k] and the real

part of the input vectorTNf+ν [xk, k] and, analogously,Ryx(rc)

[
Ryx(c)

]
is the

cross-correlation matrix between the real [imaginary] part of the output vector
TNf

[yk, k] and the imaginary part of the input vectorx̃(c)
k .

This procedure, by exploiting the special structure (2.63) of the correla-
tion matrices, exhibits a lower computational complexity with respect to the
procedure (2.55): in fact, the maximum size of the matrices to be inverted in
feedback filter reduced-order design ismax(nr(Nf + ν), (Ni−nr)(Nf + ν))
instead of(2Ni − nr)(Nf + ν) required in (2.55).

In the particular case where both the transmitted and the noise vector
are complex-valued rotationally invariant, i.e.nr = 0, Rx(c) = R̂x(c) ,
Rn(c) = R̂n(c) , and the matriceŝRx(cc) andR̂n(cc) are skew-symmetric [56],
consequently,R4,e = R6,e, R̄5,e = −R5,e, R4,∆ = R6,∆, and R5,∆

is skew-symmetric; moreover,Ry(c) = R̂y(c) , R̂y(cc) is skew-symmetric,

Ryx(r) = Ryx(c) , andRyx(rc) = −Ryx(cr) , and, hence,D(opt)
α = −B(opt)

α

andG(opt)
α = −W(opt)

α , i.e. the optimum WL-WDF-MMSE equalizer degen-
erates into DF-MMSE one proposed in [9]. Note that, when the noise vector
is rotationally variant, the optimum WL-WDF equalizer does not reduce to
the linear one also when the transmitted sequences are rotationally invariant:
for such a reason, in order to examine some particular structures of the WL-
WDF-MMSE equalizer, in the sequel we assume a rotationally invariant noise.
When all theNi transmitted signalsx(i)

k are real-valued, i.e.nr = Ni, the op-
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timum feedback filter is linear and real-valued, in factB(opt)
α = B(1,1), while

the optimum feedforward filter is widely linear. Such an equalizer, here re-
named WL-DF-MMSE, has been proposed in [43] with reference to the SISO
channel.

In the case0 < nr < Ni, it is simple to verify that the optimum matrices(
W(opt)

α ,G(opt)
α

)
and

(
B(opt)

α ,D(opt)
α

)
satisfy the following conditions:

A) the feedforward processing of the received vector is widely linear, except
for the extreme casenr = 0;

a1) the feedforward sub-processing that provides the contributes to the
estimate of the real-valued components ofxk−∆ exhibits an halved
computational complexity with respect to the processing which
provides the lastNi − nr ones;

B) the processing of the past decisionsx̂E,k−∆ is widely linear un-
lessnr = 0;

b1) the sub-processing of the real-valued components ofx̂E,k−∆ is lin-
ear rather than widely linear;

b2) the sub-processing that provides the real-valued components of
x̂E,k−∆ exhibits an halved computational complexity;

b3) the sub-processing that provides the complex-valued components
of x̂E,k−∆ is widely linear, although the complex-valued compo-
nents of the transmitted vectorxk−∆ are complex-valued circularly
symmetric.

The above properties are summarized in the overall structure reported in Fig.
2.2. Note that the synthesis of the WL-WDF equalizer can be performed
both in the presence of uncorrelated input sequences and in the case where
space-time coding introduces spatial and temporal correlation (withRE

x non-
singular) in the transmitted sequences [26].

It is possible to show that the error-correlation matrix of the WL-WDF-
MMSE equalizer is equal to

R(opt)
e � E

[
(xk−∆ − x̂E,k−∆) (xk−∆ − x̂E,k−∆)H

]
= ΦHR∆Φ

(2.88)
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L

L

L

WL

WL

�{·}

�{·}

Q(·)

Q(·)

yk

Q(x̂(r)
k−∆)

Q(x̂(c)
k−∆)

Figure 2.2: Block diagram of the WL-WDF-MMSE equalizer: the
blocks labelled withL are linear filters, whereas the ones labelled with
WL are widely linears filters.

where

Φ �


0nr∆×nr

Inr

02(Ni−nr)(∆+1)×nr

| 0(nr+Ni∆)×(Ni−nr)

| INi−nr

| 0(Ni−nr)∆×(Ni−nr)

| − · INi−nr

 . (2.89)

Moreover, it is straightforward to recognize that the optimum WL equal-
izer in (2.53), as shown in [42, 57] (by using the complex-valued nota-
tion), is given by (2.85) and (2.86) settingB(1,1) = [Inr 0nr×nrNb

]T ,
B(1,2) = B(1,3) = 0, B(2,1) = B(3,1) = 0, B(2,2) = B(3,3) =[
INi−nr 0(Ni−nr)×(Ni−nr)Nb

]T
, andB(2,3) = B(3,2) = 0.

2.6.2 WL-DF-MMSE equalizer for Scenario 1

Since it is interesting to evaluate the advantage of the widely linear feedback
filtering over linear feedback filtering, in this section we present the deriva-
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tion of the WL-DF-MMSE equalizer (which employs a linear feedback filter
rather than a widely linear one). Following the same guidelines of the previous
section, it can be shown that the optimum WL-DF-MMSE equalizer can be
determined by the following procedure:

1. determine the matrix

Ṙ � g
(
Ṙ1, Ṙ2, Ṙ3, Ṙ4, Ṙ5, Ṙ6

)
� RA

x −RA
x HH

A

(
HARA

x HH
A +RA

n

)−1
HARA

x (2.90)

2. determine the matrixRβ defined as follows:

Rβ �
[

Ṙ1 Rβ
2

RβH

2 Rβ
3

]

�
[

Ṙ1 Ṙ2 − Ṙ3

ṘT
2 + ṘT

3 Ṙ4 + Ṙ6 − 
(
Ṙ5 − ṘT

5

)]
(2.91)

3. determine the following matrices:

R1 �
(
Ṙ1

)−1
+

(
Ṙ1

)−1
Rβ

2R3RβH
(
Ṙ1

)−1
(2.92)

R2 �−
(
Ṙ1

)−1
Rβ

2R3 (2.93)

R3 �
[
Rβ

3 −RβH

2

(
Ṙ1

)−1
Rβ

2

]−1

(2.94)

4. extract fromR1 and RH
2 the matricesRβ

1,e and R̄β
2,e (respectively)

that contain the firstnr (∆ + 1) columns; analogously, extract fromR2

andR3 the matricesRβ
2,e andRβ

3,e (respectively) that contain the first
(Ni − nr) (∆ + 1) columns;

5. extract from R1 the upper-left square sub-blockRβ
1,f of size

nr (∆ + 1), fromR2 the upper-left sub-blockRβ
2,f of sizenr (∆ + 1)×

(Ni − nr) (∆ + 1), and, finally, fromR3 the upper-left square sub-
blockRβ

3,f of size(Ni − nr) (∆ + 1);
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6. determine the matrices

Rβ
1,∆ �

(
Rβ

1,f

)−1
+
(
Rβ

1,f

)−1
Rβ

2,fR
β
3,∆RβH

2,f

(
Rβ

1,f

)−1

(2.95)

Rβ
2,∆ �−

(
Rβ

1,f

)−1
Rβ

2,fR
β
3,∆ (2.96)

Rβ
3,∆ �

[
Rβ

3,f −RβH

2,f

(
Rβ

1,f

)−1
Rβ

2,f

]−1

(2.97)

7. extract from the matrix

Rβ
1,eR

β
1,∆ + Rβ

2,eR
βH

2,∆ (2.98)

the lower-right sub-blockB(1,1)
β of sizenr(Nb + 1) × nr and from the

matrix

Rβ
1,eR

β
2,∆ + Rβ

2,eR
β
3,∆ (2.99)

the lower-right sub-blockB(1,2)
β of sizenr(Nb + 1)× (Ni−nr). More-

over, extract from the matrix

R̄β
2,eR

β
1,∆ + Rβ

3,eR
βH

2,∆ (2.100)

the lower-right sub-blockB(2,1)
β of size(Ni − nr)(Nb + 1) × nr and

from the matrix

R̄β
2,eR

β
2,∆ + Rβ

3,eR
β
3,∆ (2.101)

the lower-right sub-blockB(2,2)
β of size(Ni−nr)(Nb +1)× (Ni−nr).

Therefore, the optimum feedback filters are:

B(opt)
β =

[
B(1,1)

β B(1,2)
β

B(2,1)
β B(2,2)

β

]
(2.102)

D(opt)
β =

[
−B(2,1)

β −B(2,2)
β

]
. (2.103)

The optimum feedforward filters are given by equations (2.85) and (2.86)
by replacingB(opt)

α in (2.83) withB(opt)
β in (2.102) andD(opt)

α in (2.84) with

D(opt)
β in (2.103).
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2.7 WL-WDF-MMSE equalizer for Scenario 2

Analogously to Scenario 1, the optimum WL-WDF equalizer in Scenario 2 can
be determined by applying the procedure (2.40) to the input-output channel
model (2.50), and accounting for the augmented correlation matricesRE

x (m)
andRE

n (m) (as already shown in Section 2.6 with reference to Scenario 1).

Note that, unlike Scenario 1 whereBH
E,0 = 0, the term

(
BH

E,0Enr [x̂k−∆]
)

is

included in (2.52) and the lower triangular matrix tapBH
E,0 is to be optimized

according to the MMSE criterion.
As it happens for DF equalization, it is easy to understand that the

performances of the WL-WDF-MMSE equalizer are affected by the deci-
sion ordering. In fact, letP be a permutation matrix of size(2Ni − nr),
such thatPTP = I2Ni−nr . By defining the (row) permutated input vector
Enr [xk](P ) � PEnr [xk] and, hence, the (column) permutated channel matrix
Ẽnr [Hm](P ) � Ẽnr [Hm]PT , the channel output (2.50) can be equivalently
re-written as follows:

E0[yk] =
ν∑

m=0

Ẽnr [Hm](P )Enr [xk−m](P ) + nk. (2.104)

The reordering of the columns of̃Enr [Hm] determines different WL-WDF
equalizer structures with different performances. Note that the optimization
over the decision ordering requires to account for(2Ni − nr)! permutation
matricesP, instead ofNi!, as it happens in DF equalization. It is straightfor-
ward verified that also the WL-WDF-MMSE equalizer can be implemented by
resorting to two equalization stages:

1st the former stage is the optimum WL-WDF-MMSE equalizer in
Scenario 1, maybe synthesized by resorting to the low computational
complexity algorithm proposed in subsection 2.6.1. Specifically, such
a stage performs a dispersive WL-WDF equalization by processing the
received vectoryk overNf symbol period and by utilizing only past

decisionsEnr [xk−∆−n] with n > 0 to provide the estimatêx(1)
E,k−∆ of

xk−∆;

2nd the latter stage is the optimum WL-WDF non-dispersive equalizer in
Scenario 2 that performs the non-dispersive equalization ofx̂(1)

E,k−∆ by
utilizing current decisions and whose performances depend on the deci-
sion ordering. Clearly, any suboptimal ordering algorithm designed for
DF equalization can be used in WL-WDF equalization.
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Note that, when Scenario 2 is considered, the decision over�{x(�)
k−∆} with

� > nr can improve the estimation of�{x(�)
k−∆} or, vice versa, when a dif-

ferent ordering of the components ofEnr [xk−∆] is adopted, the decision over

�{x(�)
k−∆} can improve the estimation of�{x(�)

k−∆}. In other words, differ-
ently form the DF equalizer, which simultaneously provides the estimates of
�{x(�)

k−∆} and�{x(�)
k−∆}, the WL-WDF equalizer can estimate in a sequential

manner the quadrature and the in-phase components of the complex-valued
transmitted symbols.

Let us now show that, although not intuitive, the estimate of�{x(�)
k−∆}

can improve the estimation of�{x(�)
k−∆}, also whenx(�)

k−∆ is complex-valued
circularly symmetric. To this aim, assume (for simplicity) that the components
of the transmitted vectorxk are uncorrelated with each other and temporally
uncorrelated, i.e.,Rx(m) = Σxδ(m) with Σx diagonal, and (assuming correct
decisions) rewrite the output of the WL-WDF equalizer as follows:

Enr [x̂E,k−∆]=WH
E TNf

[E0[yk], k]−BH
E TNb+1[Enr [xk], k −∆] (2.105)

=WH
E T̃[Ẽnr [Hk], Nf ,∆ + 1] ·T∆+1[Enr [xk], k]

+WH
E T̃[Ẽnr [Hk+∆+1], Nf , Nb] ·TNb

[Enr [xk], k−∆−1] ♣
+WH

E TNf
[E0[nk], k]−BH

E TNb+1[Enr [xk], k −∆]

where♣ is the post-cursor ISI term which affectsEnr [x̂E,k−∆], and where
the degree of freedom lying in channel input ordering have been temporarily
disregarded. According to any chosen detection scenario, the optimum feed-
back filter removes such an ISI term. Therefore, the equalizer output can be
equivalently rewritten as follows:

Enr [x̂
♣
E,k−∆] � Enr [x̂E,k−∆]−♣ (2.106)

= WH
E r−BH

E,0Enr [xk−∆]

with r � T̃[Ẽnr [Hk], Nf ,∆ + 1] ·T∆+1[Enr [xk], k] + TNf
[E0[nk], k], or, by

reordering the rows ofWE , as

Enr [x̂
♣
E,k−∆] � WH

E E0[r̄]−BH
E,0Enr [xk−∆] (2.107)

with r̄ � T̃[Hk, Nf ,∆+1]·T∆+1[xk, k]+TNf
[nk, k]. The matrix5 WH

E and
the lower triangular matrixBH

E,0 have to be optimized according to the MMSE

5Note that, although the rows ofWE have been reordered, we have not defined a new matrix
filter for simplicity of the notation.
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criterion. Sincēr does not depend on the channel input ordering, (2.107) can
be rewritten by accounting for the dependence on the permutation matrixP:

Enr [x̂
♣
E,k−∆] � WH

E E0[r̄]−BH
E,0 Enr [xk−∆](P )︸ ︷︷ ︸

�x̄

(2.108)

From the above expression, it can be easily shown6 that the optimumWH
E and

BH
E,0 are given by:[

W(opt)
E (:, �)

B(opt)
E,0 (1 : �− 1, �)

]
=

[
Rr̄ Rr̄x̄�

RT
r̄x̄�

Rx̄�

]−1

·
[

pr̄x̄�

px̄�

]
(2.109)

with � = 1, . . . , 2Ni − nr, and whereRr̄ � E[E0[r̄]E0[r̄T ]], Rr̄x̄�
�

E[E0[r̄]x̄T (1 : � − 1)], Rx̄�
� E[x̄(1 : � − 1)x̄T (1 : � − 1)], pr̄x̄�

�
E[E0[r̄]x̄(�)], andpx̄�

� E[x̄(1 : �− 1)x̄(�)].
For the sake of simplicity, assume that the permutation matrixP in (2.104)

is such that
{
x̄ = Enr [xk−∆](P ) : x̄(1) = �{x(i)

k−∆} , x̄(2) = �{x(i)
k−∆}

}
,

i.e., the first two detected components ofEnr [xk−∆](P ) are the in-phase and

the quadrature components of the complex-valued symbolx
(i)
k−∆ (i > nr).

From (2.109) and employing the matrix-inversion lemma, it can be verified if
the following equality holds true,

pT
11M11p12 + pT

21M
T
12p12 + pT

11M12p22 + pT
21M22p22 = 0 (2.110)

with

p11 � E
[
�{r̄}�{x(i)

k−∆}
]

p21 � E
[
�{r̄}�{x(i)

k−∆}
]

p12 � E
[
�{r̄}�{x(i)

k−∆}
]

p22 � E
[
�{r̄}�{x(i)

k−∆}
]

P11 � E
[�{r̄}�{r̄T }] P12 � E

[�{r̄}�{r̄T }]
P22 � E

[�{r̄}�{r̄T }] ,

and with

M11 � P−1
11 + P−1

11 P12M22PT
12P

−1
11

M12 � −P−1
11 P12M22

M22 �
(
P22 −PT

12P
−1
11 P12

)−1
,

6According to the assumption of correct decisions, treat the feedback filter as a feedforward
filter that processes the vectorxk−∆.
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then the decision taken for�{x(i)
k−∆} is not fed back to improve the estima-

tion of�{x(i)
k−∆}. Unfortunately, the condition (2.110) is not so intuitive. Let

us investigate the special case where the input sequences are jointly circularly

symmetric (i.e.,nr = 0 andE
[
x

(i)
k x

(j)
k−�

]
= δij ∀� , ∀i, j ∈ {1, . . . , ni}).

By exploiting the special structure of the correlation matrices of circularly
symmetric vectors [56], and by using the properties of the set of symmetric
matrices reported in [44], it can be verified that the following relations hold:

M11 = M22 M12 = −MT
12 (2.111)

p11 = p22 p12 = −p21.

In such a case, the condition (2.110) is verified7. It follows that the estimate
of �{x(i)

k−∆} does not improve the estimate of�{x(i)
k−∆}, and it can be veri-

fied that if the real part and the imaginary one of each symbolx
(i)
k−∆ are de-

tected successively, then the WL-WDF-MMSE equalizer structure degenerates
into the DF. On the other hand, it can be verified that the equality in (2.111)
does not hold for every decision ordering and, consequently, the decision over
�{x(i)

k−∆} is fed back to improve the estimate of�{x(i)
k−∆}, allowing one to

consider the optimization over all the(2Ni)! permutation matrices. Such a
behavior can be explained by studying the variations of the statistical prop-
erty of the interference with respect to the decision ordering. In Fig. 2.3, we
have considered two different decision ordering. Assume thatx

(i)
k−∆ is circu-

larly symmetric∀i. According to the case8 a), the undetected components

�{x(i+1)
k−∆ } and�{x(i+1)

k−∆ }, by means of the channel matrix weights (E0[H0]),
can be seen as a residual circularly symmetric interference when estimating the
real and the imaginary parts ofx(i)

k−∆. Being bothx(i)
k−∆ and the interference

jointly circularly symmetric, the resulting processing is linear (see subsection
2.1), i.e.,�{x(i)

k−∆} is not fed back to improve the estimate of�{x(i)
k−∆}. On

the other hand, when�{x(i)
k−∆} is detected first (caseb)), the feedback filter

allows to remove the interference term due to�{x(i)
k−∆} in the estimates of

�{x(i+1)
k−∆ } and�{x(i+1)

k−∆ }. In such a case, the last component to be detected

�{x(i)
k−∆} can be seen as a residual rotationally variant interference when esti-

mating�{x(i+1)
k−∆ } and�{x(i+1)

k−∆ }. It follows that the feedback filter performs

7If A is a real-valued skew-symmetric matrix, thenvT Av = 0 for every real-valuedv.
8The casea) corresponds to the detection ordering such that the real part and the imaginary

one of each symbol sequencex
(i)
k−∆ are detected successively, i.e., the ordering such that (2.111)

is verified.
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Figure 2.3: Statistical properties of the interference for different de-
cision ordering and complex-valued circularly symmetric transmitted
sequences: C.S.I. stays for circularly symmetric interference, whereas
C.V.I. stays for circularly variant interference.

a widely linear processing of�{x(i+1)
k−∆ } and�{x(i+1)

k−∆ }, i.e.,�{x(i+1)
k−∆ } is fed

back to estimate�{x(i+1)
k−∆ }. The same reasoning applies to the case where

nr > 0.

The above results can be extended to any detection ordering by defining
a vectorr̄ that is updated after each cancellation performed by the feedback
tapBE,0. However, we do not consider such a case since it makes heavy the
notation and, consequently, does not allow to simply expose the main concepts
discussed here.

The results in this section generalize the ones of [58] for the SISO scenario,
and formalize the ones of [59] for the MIMO non-dispersive scenario.

2.8 Nonequivalent WL-WDF equalizers

The WL-WDF equalizer structure (presented in Section 2.5) has been intro-
duced by resorting to the real-valued representation ((2.16) and (2.18)) of the
transmitted vectorxk and the received oneyk, as well as of the input vector
of the feedback filterQ(Enr [xk−∆]

)
. An analogous structure of the WL-WDF

equalizer can be introduced by resorting to the complex-valued representation
((2.16) and (2.18)) of the involved vectors. The complex-valued counterpart of
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the equalizer input-output relationship in (2.52) can be written as follows:

x̂C,k−∆ = C̄nr

[
WH

C TNf
[C0[yk], k]−BH

CQ
(
TNb+1[Cnr [x̂C,k−∆], k −∆]

)]
.

(2.112)
whereWC andBC are complex-valued matrices of size(2NoNf ) × (2Ni −
nr) and(2Ni − nr) (Nb + 1) × (2Ni − nr), and wherêxC,k−∆ denotes the
equalizer output. The first tap of the filter matrixBC , sayBC,0, is subject to
the constraint imposed by the equalization scenario. By means of (2.28), it is
simple to show that, when Scenario 1 is the detection scenario, one has

Cnr [x̂C,k−∆] = ΥTEnr [x̂C,k−∆] (2.113)

whereΥ andT are given by (2.25) and (2.24) (withn1 = nr), respectively,
i.e., a one-to-one correspondence exists between the two structures and, con-
sequently, they perform equivalently.

On the other hand, when Scenario 2 is considered, the matrix tapsBE,0 and
BC,0 are constrained to be upper triangular. In such a case, the complex-valued
counterpart ofBE,0 provided by (2.28) is not lower triangular in general and,
vice versa, the real-valued counterpart ofBC,0 provided by (2.28) is not lower
triangular. It follows that the real-valued equalizer structure and the complex-
valued one are not equivalent and, consequently, they are expected to perform
differently. Moreover, let us note that, whenBC,0 is upper triangular, the

decision over the complex-valued symbol(x(�)
k−∆)∗ can be fed back to improve

the estimation ofx(�)
k−∆, and, vice versa, when a different ordering for the

components ofCnr [xk−∆] is adopted, the decision over the complex-valued

symbolx(�)
k−∆ can be fed back to improve the estimation of(x(�)

k−∆)∗. It follows
thatBH

C,0 defines in general a WL transformation that can not be expressed in
the form of (2.27): we call such transformationgeneralized widely linear.

A derivation analogous to the one proposed in Section 2.7 for the real-
valued equalizer structure allows to determine the complex-valued counterpart
of the condition (2.110), i.e., the condition that is verified when(x(�)

k−∆)∗ is

not fed back to improve the estimatex(�)
k−∆ (being(x(�)

k−∆)∗ andx(�)
k−∆ the first

two detected components of the vectorCnr [xk−∆](P )). Specifically, account-
ing for the vector̄r given by (2.107), define the correlation and the pseudo-
correlation matricesRr̄r̄ � E

[
r̄r̄H

]
and Rr̄r̄∗ � E

[
r̄r̄T

]
, respectively.

Moreover, define the cross correlation vectorspr̄xi � E
[
r̄
(
x

(i)
k−∆

)∗]
and

pr̄x∗
i

� E
[
r̄x(i)

k−∆

]
. It can be verified that if

2 pH
r̄x∗

i
R11pr̄xi + pT

r̄xi
R∗

12pr̄xi + pH
r̄x∗

i
R12p∗

r̄x∗
i

= 0 , (2.114)
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where

R11 �
[
Rr̄r̄ −Rr̄r̄∗R−∗

r̄r̄ R∗
r̄r̄∗

]−1

R12 � −R−1
r̄r̄ Rr̄r̄∗R11 ,

then the decision taken for
(
x

(i)
k−∆

)∗
is not fed back to improve the estimation

of x(i)
k−∆. From (2.114), it follows that if the observation vectorr̄ is rotationally

variant (Rr̄r̄∗ �= 0), then the estimate ofx(i)
k−∆ and the estimate of its conjugate

version can be not equivalent, i.e. the optimum feedforward and feedback
filters can define twogeneralized widely lineartransformations of the received
vector and the decision vector, respectively.

The condition (2.114) is always verified when the transmitted sequences
are complex-valued circularly symmetric. In such a case the WL-WDF-MMSE
equalizer structure obtained by adopting the complex-valued representation
degenerates into the linear DF-MMSE one. On the other hand, whennr > 0,
the condition (2.114) does not hold also when the(Ni − nr) complex-valued
transmitted sequences are circularly symmetric.

2.9 Mismatching analysis

In this section, we derive a closed-form expression that allows one to as-
sess performance degradation of the WL-WDF-MMSE equalizer due to the
channel and/or (possibly) noise mismatch conditions. We denote the mises-
timated channel matrix and the misestimated noise-correlation matrixHEe

andREe

n , respectively. Channel and noise estimation errors give rise to an
incorrect estimation of the input-correlation matrices: specifically, denoted
with νe the misestimated channel memory, we callRe

x(r) , Re
x(rc) , R̂e

x(rc) ,

Re
x(c) , R̂e

x(cc) , andR̂e
x(c) the misestimated input-correlation matrices of size

nr(Nf + νe) × nr(Nf + νe), nr(Nf + νe) × (Ni − nr)(Nf + νe) and
(Ni − nr)(Nf + νe) × (Ni − nr)(Nf + νe). It follows that, by permutation
of the augmented input and noise correlation matrices and augmented channel
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matrix, (2.56)-(2.58) are modified as follows

RAe

x �

 Re
x(r) Re

x(rc) R̂e
x(rc)

ReT

x(rc) Re
x(c) R̂e

x(cc)

R̂eT

x(rc) R̂eT

x(cc) R̂e
x(c)

 (2.115)

RAe

n �
[

Re
n(c) R̂e

n(cc)

R̂eT

n(cc) R̂e
n(c)

]
(2.116)

He
A �

[
H(r)e

R H(c)e

R −H(c)e

I

H(r)e

I H(c)e

I H(c)e

R

]
(2.117)

whereH(r)e

R andH(r)e

I are of size(NoNf )×nr(Nf +νe) and whereH(c)e

R and

H(c)e

I are of size(NoNf )×(Ni−nr)(Nf +νe). Consequently, by substituting
the input and noise correlation matrices and the channel matrices in (2.56)-
(2.58) with the corresponding misestimated ones, the optimum(Be

α,D
e
α) can

be derived by using the procedure described in Section 2.6 from the steps 2)-
6). Note that the misestimated channel memoryνe gives rise to a mismatched
decision delay∆e and to a mismatched order of the feedback filterN e

b =
Nf +νe−∆e−1. The optimum feedforward filters(We

α,G
e
α) are determined

by using in (2.85)-(2.86) the misestimated matrices defined in this section and
taking into account for the misestimated decision delay∆e.

The error-correlation matrix corresponding to the misestimated feedback
filter B̃e

F �
[
B̃eH

α D̃eH

α

]H
, with B̃e

α andD̃e
α defined according to (2.87), and

to the feedforward filterW
e

F �
[
WeH

α GeH

α

]H
can be expressed in compact

form as follows

Re
e = B̃eH

F R̄A
x B̃e

F − B̃eH

F R̄A
x H̄T

AWe
F −WeH

F H̄AR̄A
x B̃e

F + WeH

F RA
y WeH

F

(2.118)
whereRA

y is the correlation matrix of the output vectorE0
[
TNf

[yk, k]
]
, and

whereR̄A
x , R̄x(r) , HA, andH̄(r)

R are defined below in (2.119), with̄Rx(rc) ,
¯̂Rx(rc) , R̄x(c) ,

¯̂Rx(cc) , and ¯̂Rx(c) defined in accordance with̄Rx(r) , and with

H̄(r)
I , H̄(c)

R , andH̄(c)
I defined accordingly tōH(r)

R .
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R̄A
x �

 R̄x(r) R̄x(rc)
¯̂Rx(rc)

R̄T
x(rc) R̄x(c)

¯̂Rx(cc)

¯̂RT
x(rc)

¯̂RT
x(cc)

¯̂Rx(c)

 (2.119)

R̄x(r) �


[

Inr(Nf+νe)

0nr(ν−νe)×nr(Nf+νe)

]T

Rx(r)

[
Inr(Nf+νe)

0nr(ν−νe)×nr(Nf+νe)

]
: ν ≥ νe[

Rx(r) 0nr(Nf+ν)×nr(νe−ν)

0nr(νe−ν)×nr(Nf+ν) 0nr(νe−ν)×nr(νe−ν)

]
: νe > ν

H̄A �
[

H̄(r)
R H̄(c)

R −H̄(c)
I

H̄(r)
I H̄(c)

I H̄(c)
R

]

H̄(r)
R �

 H(r)
R

[
Inr(Nf+νe)

0nr(ν−νe)×nr(Nf+νe)

]
: ν ≥ νe[

H(r)
R 0noNf×nr(νe−ν)

]
: νe > ν

2.10 Numerical results

In this section we present the performance analysis of the proposed equalizers.
It will be shown that the adoption of WL filters in the design of the DF-based
equalizer allows one to achieve considerable performance gain over the con-
ventional structures based on linear filtering. Section 2.10.1 presents the results
proposed in [44] with reference to the Scenario 1: the performances are evalu-
ated in terms of achieved MSE, both in presence and absence of channel mis-
matching. In Section 2.10.2, some results proposed in [60] are presented with
reference to the Scenario 2: the performance analysis is carried out in terms of
both achieved MSE and symbol error rate. Since the real-valued representation
and the complex-valued one are equivalent when WL-WDF-MMSE equaliza-
tion is performed in Scenario 1, obviously, we will not refer to any specific
structure in Section 2.10.1.

2.10.1 Numerical results in Scenario 1

In this section we present the performance analysis of the proposed equaliz-
ers. The performance is evaluated in terms of the signal-to-noise ratio at the
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decision point defined as

SNR�
1

Ni(Nf+ν) trace(Rx)

1
Ni

trace(R(opt)
e )

(2.120)

whereRx has been defined in (2.36) andR(opt)
e is the error-correlation matrix,

which, for WL-WDF-MMSE equalizer, is given by (2.88). The averaged SNR
(ASNR) in dB is obtained by averaging over 100 independent trials: in each
trial, each channel tapHm is randomly generated according to a complex zero-
mean uncorrelated Gaussian random process with varianceσ2 = 1

ν , which
assures unit-energy FIR filters. Moreover, the channel impulse-responses used
in our experiment are FIR filters with tapsHm (m = 0, . . . , ν) andν = 6.

Before presenting the performance results based on the mismatching anal-
ysis carried out in the previous section, we consider at first a set of experiments
in an ideal scenario, namely the channel impulse-response is assumed to be ex-
actly known and the assumptions (used to design the equalizers) of signals and
noise spatially and temporally uncorrelated with known power are fully veri-
fied. Moreover, assuming unit powers for the input signals andnr real-valued
constellations, we assume the following input-correlations:

r(i,j)x (�) � E
[
x

(i)
k+�x

(j)∗
k

]
= δ�δi−j (2.121)

r̂(i,j)x (�) � E
[
x

(i)
k+�x

(j)
k

]
=

{
δ�δi−j i = 1, . . . , nr

0 i = nr + 1, . . . , Ni
.

The noise is assumed complex white WSS Gaussian zero-mean processes with
same powerσ2

n and spatially uncorrelated, namely:

r(i,j)n (�) � E
[
n

(i)
k+�n

(j)∗
k

]
= σ2

nδ�δi−j (2.122)

r̂(i,j)n (�) � E
[
n

(i)
k+�n

(j)
k

]
= 0 .

According to (2.121) and (2.122), the input signal-to-noise ratio is defined as
SNRi � 1

σ2
n

.
Unless not specified, in the following simulations, we consider a6 × 6

MIMO channel,nr = 3 rotationally variant transmitted sequences,Nf = 5,
and the processing delay∆ that optimizes the performance.

A. Ideal scenario

In Fig. 2.4, the decision-point ASNRs of all the considered MMSE equalizers
are plotted versus SNRi. In such a scenario the WL-WDF equalizer outper-
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Figure 2.4: ASNR of different equalizers versus SNRi.

forms all the other equalizers. We have evaluated the performance gains of
the WL-WDF equalizer over both DF and WL-DF equalizers defined as fol-
lows

G1 � ASNRWL-WDF (dB)− ASNRDF (dB) (2.123)

G2 � ASNRWL-WDF (dB)− ASNRWL-DF (dB) . (2.124)

Figs. 2.5 (a)-(b) reportG1 andG2 versus the rationc
Ni

, beingnc the number of
circularly symmetric trnasmitted sequences, for different values ofNi = No.
Note thatG1 reaches the maximum value fornc

Ni
= 0 and, as expected, the

minimum one fornc
Ni

= 1 since, in this case, the widely linear equalizers de-
generate into the linear ones. The gainG2 is null,vice versa, whennc

Ni
= 0 and

nc
Ni

= 1: the former condition means that all the components of the transmitted
vector are real-valued and so the WL-WDF equalizer degenerates into WL-DF
one; the latter condition means that the transmitted vector is rotationally in-
variant and, therefore, both the WL-WDF and WL-DF equalizers degenerate
into the DF equalizer. In the intermediate situation, i.e.,nc

Ni
= 1

2 , the WL-WDF
equalizer exhibits the maximum performance gain. The results show that the
performance gains are approximately independent ofNi.

Fig. 2.6 shows the behaviors of the decision-point ASNRs of the different
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Figure 2.5: Performance gain of the WL-WDF-MMSE equalizer over
DF-MMSE (a) and WL-DF-MMSE (b) equalizers versus the rationc

Ni

for different values ofNi = No.

equalizers versusNf when SNRi = 15dB. We can notice that the WL-WDF
equalizer provides satisfactory performance also whenNf is small and the
WL-DF equalizer outperforms the DF one for larger values ofNf . As ex-
pected, all the decision-feedback equalizers outperform the WL and L ones at
the expense of an additional computational complexity. Finally, we investigate
the dependence on the processing delay0 ≤ ∆ ≤ (Nf +ν−1) of the decision-
point ASNR. The results of Fig. 2.7 show that the performances of the WL and
L equalizers are very sensitive to the variations of∆. Such a behavior is due to
the fact that, when∆ is too small, the equalizers cannot satisfactorily perform
anticausal processing; on the other hand, when∆ is too large, the equalizer
cannot satisfactorily perform causal processing. Moreover, the performances
of all the DF equalizers are more sensitive to variations of∆. The results in
Fig. 2.7 agree with those, reported in [61, 62], where it is suggested to use
∆ = Nf − 1 for SISO DF equalizer. Note that, when∆ = Nf + ν − 1, then,
Nb = 0: it follows that the WL-WDF and the WL-DF equalizers degenerate
into the WL one, and, similarly, the DF equalizer degenerates into the linear
equalizer.
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B. Mismatched scenario

Channel-mismatch effects can manifest themselves in several forms includ-
ing errors affecting the channel impulse response coefficients and/or errors in
determining the channel order. In our numerical experiments, the effects of
channel mismatch are modelled by assuming that all the estimated coefficients
h

(i,j)e

k of the channel impulse response are defined as

h
(i,j)e

k � h
(i,j)
k + ε

(i,j)
k (2.125)

with ε(i,j)k zero-mean Gaussian random variables, uncorrelated each other, with
variance:

σ2
ε �

E

[∣∣∣ε(i,j)k

∣∣∣2]
E

[∣∣∣h(i,j)
k

∣∣∣2] . (2.126)

In Fig. 2.8, the decision-point ASNRs of the equalizers under consideration
are plotted versus the channel mismatching percentage defined asρ � 100σ2
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Figure 2.8: Effect of channel mismatching percentage on decision-
point ASNR.
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for SNRi = 10dB (a) and SNRi = 20dB (b). The results show that, unlike
feedforward-based WL and L equalizers, the decision-feedback equalizers are
very sensitive to channel mismatch: such a behavior, which agrees with the
results derived in [61] for a special case of SISO channel, is due to the inca-
pability of the feedback filter to correctly compensate the interference origi-
nated by the past samples. Moreover, DF-based equalizers appear more sen-
sitive to channel mismatch for large values of SNRi where, in the presence of
severe mismatching, L equalizer outperforms WL equalizer, especially when
nr = Ni.

In all the following experiments we have set the channel mismatching per-
centage at10% to assure that the decision-feedback equalizers perform as well
as the non decision-feedback ones. Note that the considered mismatching is
larger than the value achieved by many channel estimation techniques and,
therefore, it represents the worst case in many realistic scenarios. Figs. 2.9
(a)-(b) report the decision-point ASNRs versus SNRi. While the performances
of the ideal equalizers increase with SNRi, this is no longer true when the
channel impulse response is misestimated. Also in this scenario, the WL and
L equalizers appear more tolerant to the channel mismatch (note that, for the
sake of representation, a different scale is used in Fig. 2.9(b)).

In Figs. 2.10 (a)-(b), the performances of the decision-feedback equalizers
and the non decision-feedback ones, respectively, are evaluated for different
values ofNf with SNRi = 15dB. The results show that, unless a large ASNR
offset is present, the behaviors of the equalizers operating in ideal and mis-
matched scenarios are the same. Finally, in Fig. 2.11, we analyze the behav-
iors of the equalizers under consideration with respect to the processing delay
∆ (SNRi = 15dB). The results show that the decision-feedback equalizers are
more sensitive to the variations of∆ with respect the non decision-feedback
ones.



2.10. NUMERICAL RESULTS 95

Figure 2.9: Effect of channel mismatch on decision-point ASNR ver-
sus SNRi.

Figure 2.10: Effect of channel mismatch on decision-point ASNR ver-
susNf .
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Figure 2.11: Effect of channel mismatch on decision-point ASNR versus∆.

2.10.2 Numerical results in Scenario 2

We first consider the case where the optimum decision ordering is adopted
and no error propagation is present. Then, we consider the case where the
optimum ordering is still available, but the effects of error propagation in DF
equalization are taken into account. In order to obtain accurate symbol error
rate estimates, the computer simulations have required a large amount of time.
In this study, we admit that at least 10 errors would occur for the lowest level
of symbol error rate, resulting in a 95% confidence interval [63].

A. DF equalization in absence of error propagation

The performances are evaluated in terms of the SNR defined in (2.120) and
optimized with respect to∆ andP. The ASNR in dB is obtained by averaging
over 100 independent trials: in each trial, the channel tapsh

(i,�)
m (i = 1, . . . , Ni

, � = 1, . . . , No) are randomly generated according to a complex zero-mean
white Gaussian random process with unitary variance and uncorrelated with
each other. Unless not specified, in the following simulations, we assume:

- Ni = 4 input sequences with correlations defined in (2.121), such that
nr = 2;
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Figure 2.12: ASNRs of the equalizers versus SNRi (No = 2).

- nc = Ni − nr complex-valued circularly symmetric input sequences;

- No noise with correlation defined in (2.122);

- channel orderν = 1;

- Nf = 4 feedforward matrix taps.

Moreover, we denote the WL-WDF-MMSE equalizer obtained by adopting
the complex-valued representation with WLWDF-C, while WLWDF-R will
denote the WL-WDF-MMSE equalizer obtained by adopting the real-valued
representation. In the following, the the abbreviations Sc. 1 and Sc. 2 will
denote Scenario 1 and Scenario 2, respectively.

In Fig. 2.12, the ASNRs at the decision point of the ideal WL-WDF-
MMSE equalizers and the ideal conventional DF-MMSE equalizer are plotted
versus SNRi � 1

σ2
n

for No = 2. The WLWDF-C significantly outperforms
all the other equalizers in this ideal conditions. Then, to analyze the perfor-
mance dependence on the number of outputs, we have evaluated the perfor-
mance relative gainG1 of the WLWDF-C equalizer over the WLWDF-R one,
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the performance relative gainG2 of the WLWDF-R equalizer over the DF-
MMSE equalizer in both Scenario 1 and Scenario 2, the performance relative
gainG3 of the WLWDF-R equalizer in Scenario 2 over the same equalizer in
Scenario 1, and, finally, the performance relative gainG4 of the DF equalizer
in Scenario 2 over the same equalizer in Scenario 1. More specifically:

G1 � ASNRWLWDF-C(dB)− ASNRWLWDF-R(dB)
min {ASNRWLWDF-C(dB),ASNRWLWDF-R(dB)} (2.127)

G2 � ASNRWLWDF-R(dB)− ASNRDF(dB)
ASNRDF

(2.128)

G3 � ASNR(Sc.2)
WLWDF-R(dB)− ASNR(Sc.1)

WLWDF-R(dB)

ASNR(Sc.1)
WLWDF-R(dB)

(2.129)

G4 � ASNR(Sc.2)
DF (dB)− ASNR(Sc.1)

DF (dB)

ASNR(Sc.1)
DF (dB)

. (2.130)

where G2 will be evaluated for both Scenario 1 and Scenario 2. Fig. 2.13 (a)
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and (b) report[Gi]i=1,...,4 versus the number of channel outputsNo for SNRi =
15dB (a) and SNRi = 30dB (b), respectively. Note that the WLWDF-C equal-
izer reaches its largest gainG1 over the WLWDF-R equalizer forNo < Ni;
moreover, G1 exhibits the maximum value forNo = 2 in presence of large
SNRi. Similarly, the gain G2 of the WLWDF-R equalizer over the DF is dif-
ferent from zero forNo < Ni both in Scenario 1 and in Scenario 2; more
specifically, G2 exhibits its maximum forNo = 3 when Scenario 1 is consid-
ered, while it is constant forNo < Ni when Scenario 2 is considered. The
performance improvement gained by the WL processing, for fixedNi andNo,
is due to to a better exploitation of the statistical redundancy exhibited by the
useful signal component. As expected, similarly to G1, also G2 approaches to
zero whenNo increases. Finally, the gains G3 and G4 monotonically decrease
with No. The feedback of current decisions (Scenario 2) allows one to achieve
a large gain over the equalizer structures of the Scenario 1 whenNo is lower
thanNi since they guarantee the capability to discriminate theNi inputs.

In Fig. 2.14 (a)-(b), a performance analysis of all the considered equalizers
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Figure 2.14: ASNRs of the equalizers versusNo for SNRi = 15dB
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is also presented where the ASNRs are plotted versusNo for SNRi = 15dB and
SNRi = 30dB, respectively. The simulation results show a different sensitivity
of the ASNR’ s curves of the different equalizers to the growth of the number
of channel outputs. Specifically, the WL equalizers appear more sensitive with
respect to the linear equalizers to the variations ofNo, especially forNo < Ni.
It follows that the WL processing allows one to efficiently exploit the diversity
gain due to the multiple observations and it provides significant performance
improvements when a small number of channel outputs is available at the re-
ceiver (typical down-link scenarios). Note the performance equivalence of the
different equalizers whenNo is sufficiently large.

B. DF equalization in presence of error propagation

In real word scenarios the performances of the DF-based equalizers are also
affected by the presence of the error propagation; its negative effects in DF-
based MIMO equalization have been studied in [49], where it has been shown
that they can be reduced by properly re-ordering the decision vector. In the
following we analyze by computer simulations the effects of the error prop-
agation when the WL-WDF-MMSE is employed at the receiver side. More
specifically, we single out important differences between the complex-valued
representation and the real-valued one when Scenario 2 is considered.

We have considered a1×2 MISO channel model (Fig. 2.15) and a2×2 one
(Fig. 2.16). BPSK and 4-QAM modulations are assumed to be employed for
the real-valued input sequence and the complex-valued circularly symmetric
one (i.e.,nr = 1 andnc = 1). The number of the feedforward matrix taps
is set toNf = 2 and all the equalizer parameters are chosen according to the
MMSE criterion.

In presence of error propagation we have adopted, as performance mea-
sure, the symbol error rate (SER) averaged over theNi inputs; moreover, the
SER curves have been averaged over 100 independent channel realizations.
In Fig. 2.15 and 2.16, the SER of the considered equalizers in Scenario 2 is
plotted versus SNRi both in absence and in presence of error propagation: in
correspondence of each value of the SNRi, the equalizer performances are op-
timized (with an exhaustive procedure) over all the possible decision orderings,
i.e. over all the(Ni + nc)! permutation matrices (Ni! for DF-MMSE equal-
izer). The reported SER curves show that the WLWDF-C equalizer, which
outperforms all the other equalizers when correct decisions feed the feedback
filter (see the black lines), can perform very poorly (see the grey lines) in the
presence of error propagation. In such a scenario the WLWDF-R equalizers
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Figure 2.15: SERs of the equalizers versus SNRi; 2× 1 MISO channel.

outperforms all the other equalizers.
The results of such analysis are dramatically different from those obtained

in the previous subsection where the error propagation effects were not taken
into account. In fact, the WLWDF-C equalizer is able to utilize the decision
over the conjugate version ofx(i)

k−∆ to improve the estimate ofx(i)
k−∆ (andvice

versa). However, such an improvement holds only whenx̂(i)
k−∆ = x

(i)
k−∆, i.e.

when the estimation error is enough small to allow to achieve a correct deci-
sion. It follows that the achieved accuracy improvement in estimatingx

(i)
k−∆

(correspondent to an increase in the SNR at the decision point) does not reduce
the probability of error.
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Chapter 3

Transceiver design

T his chapter considers the design of MIMO communication systems
with channel knowledge at both the transmitter and receiver side. By

exploiting the CSI, the system can adapt itself to each channel realization to
improve the spectral-efficiency and/or communication reliability. As shown in
Chapter 1, the optimum transceiver, which maximizes the mutual information
between the system input and output, diagonalizes the MIMO channel: ideal
Gaussian codes have to be transmitted through theeigen subchanelswith a
water-filling power allocation procedure [18].

In practice, the system is divided into an inner subsystem and an outer one,
and the ideal Gaussian codes are replaced by the symbol constellations of finite
dimension. The former performs channel coding in order to gain error correc-
tion capabilities, whereas the latter transmits symbols belonging to specific
signal constellations. For mathematical tractability, the overall system design
problem is treated by separately addressing the two subsystem design prob-
lems. Let us concentrate on the second subsystem, i.e., the uncoded one. Such
a subsystem can be further divided into two parts: the constellation mapping
and the signal processing. The constellation mapping refers to how the data
bits are mapped into points of a constellation, whereas the signal processing
refers to any additional processing in the form of precoding at the transmitter
and equalization at the receiver, that transforms the channel into an equivalent
one.

We will focus on the signal processing part, i.e., we consider the opti-
mization of the pair of transformations of blocks of the transmit symbols and
receive samples, namely the precoder and the decoder, that operate on the time
and space dimensions. In the existing literature, the linear transceiver, i.e.,

103
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Figure 3.1: The transceiver architecture.

the one that employs linear precoder and decoder, have been widely studied
[23, 25, 27, 64]. In this chapter, we point out that if the symbols (to be trans-
mitted) are known to be circularly variant, then a solution based on the assump-
tion of circular symmetric signals is not optimal. Therefore, the transceiver
design is generalized to the case where WL filters, which exhibit significant
performance improvements over conventional linear filters in presence of ro-
tationally variant inputs, are utilized as precoder and decoder. It is shown that,
in presence rotationally variant transmitted symbols, the proposed transceiver
structure outperforms the linear-filtering based one in terms of mean square
error and symbol error rate.

3.1 System Model

Fig. 3.1 shows the MIMO communication system model already considered
in Section 1.8. At the transmitter side, the information bit streams are encoded
to generate the information symbol streams that are processed by the precoder.
The precoder output is then transmitted over the MIMO channel withNi in-
puts andNo outputs. At the receiver side, the channel outputs are processed
by the decoder whose outputs are decoded to recover an estimate of the infor-
mation bit streams. In the following, with reference to such a system model,
we assume that specific signal constellations have been selected for all the in-
formation symbol streams that must be detected by the receiver, i.e. we focus
on the boxed section of the communication system shown in Fig. 3.1.

Under the assumption that channel state information (CSI) is available at
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both ends of the link, the precoder and the decoder can be jointly designed,
according to a chosen optimization criterion (see [23, 25, 27, 64, 65], and
references therein). In previous works, linear filters have been extensively em-
ployed as precoder and decoder: the resulting transceiver structure is referred
in the following to as linear transceiver (LT). On the other hand, WL filters,
which exhibit significant performance improvements over conventional linear
filters in presence of circularly variant inputs (as shown in the previous chap-
ter), have been extensively proposed in the literature (e.g., [41, 43, 44, 46]) but
with exclusion of the transceiver design. For such a reason, in this chapter, we
propose to employ WL filters as precoder as well as decoder (we will refer to
as widely linear transceiver (WLT)) in the general case where symbol streams
can belong to different symbol alphabets.

Since the WL processing can be performed by adopting the real-valued
representation of the transmitted and received vectors (see Chapter 2), as well
as the complex-valued one , in the two next subsections we introduce the two
system models according to such representations. Although they are equiva-
lent, we will recognize that the real-valued representation allows us to design
the WLT by utilizing the LT design method already proposed in the literature.

3.1.1 Real-valued system model

Consider a baseband equivalent noisy non-dispersive MIMO channel. The
input-output relationship, as shown in Section 1.3, is given by

y = Hx + n , (3.1)

whereH is the channel matrix, andn denotes the noise vector assumed to
be independent ofs, and where we have removed the time-indexk for conve-
nience. In this chapter, our focus is on the frequency flat environment since it
allows us to provide a performance analysis of the proposed transceiver struc-
tures by utilizing the asymptotic results (Theorem 1.2) of the random matrix
theory. However, the more general time-dispersive MIMO channel can be
analogously treated by resorting to the augmented model of (1.73) (see also
[25] for details).

By resorting to the operators (2.16) and (2.18), we can simply define the
WLT structure as shown in Fig. 3.2. The symbol vector to be transmitted is
denoted withs � [s(1), s(2), . . . , s(B)]T : each symbols(i) is drawn from the
constellationSi (i = 1, . . . , B) and, with no loss of generality, we consider
both the real-valued constellations (e.g., PAM) and complex-valued constella-
tions (e.g., MPSK withM � 4 and QAM). We order the symbol sequences
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ŝ
(B)

Figure 3.2: Block diagram of the widely linear transceiver.

so that the real-valued constellations have indicesi ∈ {1, . . . , br}; the case
br = 0 accounts for the absence of real-valued constellations, whereasbr = B
is the case of all real-valued constellations.

By linearly combining the outputs of the filters that separately process
the real and the imaginary parts ofs, the WL precoder provides the real
and the imaginary parts of the channel-input vectorx of sizeNi, whose first
nr components are assumed to be real-valued (the casenr = 0 accounts
for the absence of real-valued components, whereasnr = Ni is the case
of all complex-valued components). Let us note that the number of real-
valued components ofx represents a degree of freedom in the WLT design.
The operators (2.17) and (2.18), together withĒp[·] defined in (2.23), allow
us to simply describe the WL precoding by utilizing a linear transformation
F ∈ RDr×Br , with Br � 2B − br, andDr � 2Ni − nr, from the aug-
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mented vector̃s � [s̃(1), s̃(2), . . . , s̃(Br)]T = Ebr [s] to the augmented vector
x̃ � [x̃(1), x̃(2), . . . , x̃(Dr)]T = Enr [x]. More specifically, one has:

x �
[
x(1) x(2) . . . x(Ni)

]T
= Ēnr [FEbr [s]] . (3.2)

At the receiver side, the outputŝ of the decoder is obtained by WL pro-
cessing the received vectory, to provide independent estimations of the real
and the imaginary parts ofs. Hence,̂s can be written as follows:

ŝ � Ēbr [GE0 [y]] (3.3)

whereG ∈ RBr×(2No) is a linear transformation from the augmented vec-
tor ỹ � [ỹ(1), ỹ(2), . . . , ỹ(2No)]T = E0 [y] to the augmented vector̃z �
[z̃(1), z̃(2), . . . , z̃(Br)]T = Ebr [ŝ].

Finally, let us note that, since the input-output relation (3.1) can be replaced
by the equivalent one

E0 [y] = Ẽnr [H] Enr [x] + E0 [n] ↔ ỹ � H̃x̃ + ñ , (3.4)

we can define the overall WLT system equation as follows:

z̃ = GH̃Fs̃ + Gñ , (3.5)

where z̃ is utilized to recover the estimatês of s by means of̂s = Ēbr [z̃].
The system model in (3.5), as it will be shown in Section 3.3, allows us to
synthesize the WLT, i.e. the matrix filtersF andG, by utilizing the procedures
already proposed in [25, 27] with reference to the LT design.

3.1.2 Complex-valued system model

By resorting to the operators (2.17) and (2.19), the WLT structure can be de-
fined according to the complex-valued representation of the transmitted and
received vectors. It is simple to verify that the system equation (3.5) is equiv-
alent to the system equation:

Z = G C̃nr [H]F Cbr [s] + G C0 [n] , (3.6)

where, according to (2.27), the precoder matrixF ∈ CDr×Br is structured as
follows

F =

F1,1 F1,2 F∗
1,2

F2,1 F2,2 F2,3

F∗
2,1 F∗

2,3 F∗
2,2

 (3.7)
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with F1,1 ∈ Cnr×br , F1,2 ∈ Cnr×(B−br), F2,1 ∈ C(Ni−nr)×br , and, finally,
F2,2,F2,3 ∈ C(Ni−nr)×(B−br), and the decoder matrixG ∈ CBr×(2No) is
structured as follows

G =

 G1,1 G∗1,1

G2,1 G2,2

G∗2,2 G∗2,1

 (3.8)

with G1,1 ∈ Cbr×(2No) andG2,1,G2,2 ∈ C(B−br)×(2No). The decoder output,
i.e., the estimatês of the transmitted vectors, is equal tôs = C̄br [Z], with
C̄p[·] defined in (2.23).

Since no special structures are assumed for both the precoder and decoder
matrices, it is easily verified (see subsection 2.2.2) that the system models
in (3.5) and (3.6) are equivalent. However, the adoption of the real-valued
model makes the design of WLT simpler with respect to the adoption of the
complex-valued one. In fact, any design method that adopts the real-valued
representation avoids to take into account for the special block structure of
the matricesF andG in (3.7) and (3.8), respectively, which define the WL
filters according to the complex-valued representation. Only in the spacial case
of real-valued information symbols and real-valued channel input , i.e., when
br = B andnr = Ni, the two models can be utilized without distinction, as it
will be shown in the next section.

3.2 MMSE linear transceiver design

The overall system equation of a LT is given by (see also (1.85)):

ŝL = GLHFLs + GLn (3.9)

whereFL ∈ CNi×B andGL ∈ CB×No denote the linear precoder and de-
coder, respectively,̂sL is the estimate ofs, and whereH andn have been
defined in (3.1). In this section, we extend the design procedure proposed in
[25] to the case where the componentss(�) of input vector can exhibit different
variances. Such a condition is necessary since it allows us to simply derive
the MMSE WLT by applying the proposed LT design procedure to the aug-
mented system model (3.5). In fact, let us note that, although it is reasonable
to assume, as in [25], that the outputs of the symbol mapperss� exhibit the
same variance, the components of the augmented vectors̃ in (3.5) exhibit the
same variance only in the special cases of all real-valued or all complex-valued
information symbols (i.e.,br = B or br = 0).
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To this aim, we assume zero-mean uncorrelated components for the sym-
bol vectors, i.e.,

Rs � E[ssH ] = diag
(
σ2

1, σ
2
2 . . . , σ

2
B

)
(3.10)

whereσ2
� is the variance of the�th component ofs. The noise vectorn is

assumed to be zero-mean with correlation matrixRn � E[nnH ]. Finally, we
define the error vectore � ŝL − s measured at the output of the decoderGL

and its correlation matrix

Re � E
[
eeH

]
= (GLHFL − IB)Rs (GLHFL − IB)H (3.11)

+GLRnGH
L .

According to the MMSE criterion, the optimum LT precoder and decoder
F(opt)

L andG(opt)
L are derived by solving the constrained minimization prob-

lem:

min
FL,GL

trace(WRe) (3.12)

subject to: trace
(
FLRsFH

L

)
= P0

whereW is a diagonal weight matrix of sizeB, and whereP0 denotes the
total available transmission power. Note that without any power constraint,
minimizing the above cost function leads to the trivial solution corresponding
to ‖G‖ = 0 and requiring infinite power to be transmitted‖F‖ = ∞. The
weighted MSE cost function in (3.12), as shown in [25], provides a unified
framework for designing jointly optimal precoder and decoder according to
different criterions1. In the particular case ofW = IB, (3.12) reduces to the
conventional MMSE design.

The receiver filter matrixG(opt)
L that minimizes (3.12) is the WL Wiener

filter for any givenFL and it is equal to

G(opt)
L = RsFH

L HH
(
HFLRsFH

L HH + Rn

)−1
, (3.13)

which, as expected, does not depend onW. Using the optimum decoder matrix
settings of (3.13) in (3.12), and applying the matrix inversion lemma, we can
rewrite the minimization problem (3.12) as follows:

min
FL

trace
(
W

(
R−1

s + FH
L HHR−1

n HFL

)−1
)

(3.14)

subject to: trace
(
FLRsFH

L

)
= P0 .

1For example, by opportunely choosing the weight matrix, the transceiver can be optimized
according to the maximum information rate design, as well as a QoS one.
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Such an optimization problem can be solved by resorting to the eigenvalue
decomposition (EVD)

HHR−1
n H =

[
U Ū

] [Γ 0
0 Γ̄

] [
UH

ŪH

]
(3.15)

whereU andŪ are orthogonal matrices of sizeNi × B andNi × (Ni − B),
respectively,Γ � diag(γ1, . . . , γB) is the diagonal matrix containing theB
nonzero eigenvalues (arranged in decreasing order), andΓ̄ is a diagonal matrix
containing the zero eigenvalues. In defining (3.15) we have implicitly assumed
thatB = rank(H) as in [25]. The caseB < rank(H), as it will be shown, does
not require to define a different mathematical framework, while the caseB >
rank(H) is not considered here2. By following the same procedure described

in [25, 27, 66], it can be verified that the optimum matrix filterF(opt)
L is equal

to:

F(opt)
L = UΘ (3.16)

whereΘ is a diagonal matrix of sizeB with diagonal entries

Θ� =

(
P0 +

∑B̄
i=1 γ

−1
i∑B̄

i=1w
1/2
� γ

−1/2
i σ�

· w
1/2
�

γ
1/2
� σ�

− 1
γ�σ

2
�

)1/2

+

(3.17)

and wherew� are the entries ofW, (a)+ � max(a, 0), andB̄ ≤ B is such
that |Θ�|2 > 0 for � ∈ [1, . . . , B̄] and|Θ�|2 = 0 for all others�. The variance

of the�th component of the error vectore corresponding toF(opt)
L andG(opt)

L

is given by (3.11) and it can be shown to be equal to

Re(�, �) = E[|e(�)|2] � = 1, . . . , B̄ (3.18)

= w
1/2
� γ

−1/2
� σ� µ

1/2

with µ1/2 �
∑B̄

i=1 w
1/2
� γ

−1/2
i σ�

P0+
∑B̄

i=1 γ−1
i

. Note that the optimum precoder and decoder

diagonalize both the channelH and the error correlation matrixRe, giving rise
to B̄ eigen subchannels(or equivalentlyspatial models) with channel gainγ�

(see [25], Lemma 2), as shown in Fig. 3.3.

2Since the transmitter knows the channel, it is reasonable that it will not transmit more
than rank(H) independent data streams; however, very recently, it has been considered the
possibility of transmittingB > rank(H) data streams by resorting to a DF-based decoder [36].
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s(1)

s(2)

s(B)

ŝ(1)

ŝ(2)

ŝ(B)

λ1

λ2

λB

φ1

φ2

φB

β1

β2

βB

Figure 3.3: Decomposition of the MIMO channel intoeigen subchan-
nels: the gainsβ� are optimized according to the MMSE criterion.

Remark :The MMSE LT has been derived by assuming uncorrelated com-
ponents for the symbol vectors. If Rs is not diagonal, a prewhitening op-
eration can be performed over the symbol vectors before precoding, and the
corresponding inverse operation can be performed after decoding.

3.3 MMSE Widely Linear transceiver design

In this section, we derive the MMSE WLT, i.e., the optimum matricesF(opt)

andG(opt) in (3.5), by utilizing the method proposed in the previous section
for the LT design.

Unlike LT optimization, which is based only on the knowledge of the input
and noise correlation matricesRs andRn, the WLT optimization requires the
knowledge of the augmented correlation matricesRs̃ � E

[
s̃s̃T

]
andRñ �

E
[
ññT

]
. In other words, it requires the knowledge of both the correlation

matrixRs (Rn) and the pseudo-correlation matrixRss∗ � E
[
ssT

]
(Rnn∗ �

E
[
nnT

]
). We assume zero-mean uncorrelated components for the symbol

vectors̃, i.e.,

Rs̃ = diag
(
σ̃2

1, σ̃
2
2, . . . , σ̃

2
Br

)
(3.19)

with σ̃2
� denoting the variance of the�th component of̃s. Note that, if the

complex-valued components ofs are circularly symmetric, theñσ2
br+� = σ̃2

B+�

with � = 1, . . . , (B− br), i.e. the real and the imaginary parts exhibit the same
variance.
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According to (3.5), the error vector measured at the output of the WLT
decoderG is defined as̃e � z̃− s̃ and its correlation matrix is given by

Rẽ � E
[
ẽẽT

]
=

(
GH̃F− IBr

)
Rs̃

(
GH̃F− IBr

)T
(3.20)

+GRñGT .

The MMSE WLT precoder and decoderF(opt) andG(opt) are derived by solv-
ing the following constrained minimization problem:

min
F,G

trace
(
W̃Rẽ

)
(3.21)

subject to: trace
(
FRs̃FT

)
= P0

whereW̃ is a diagonal weight matrix of sizeBr, and whereP0 is defined in
(3.12). To this aim, define the EVD

H̃TR−1
ñ H̃ =

[
V V̄

] [Λ 0
0 Λ̄

] [
VT

V̄T

]
(3.22)

whereV andV̄ are orthogonal matrices of sizeDr×Br andDr× (Dr−Br),
respectively,Λ � diag(λ1, . . . , λBr) is the diagonal matrix containing theBr

nonzero eigenvalues (arranged in decreasing order), andΛ̄ is a diagonal matrix
containing the zero eigenvalues. In defining (3.22) we have implicitly assumed
thatBr = rank(H̃) as in (3.15), and thatnr ≥ Br − Ni, so that all theBr

components of̃s can be transmitted.
By utilizing the procedure proposed in the previous section for the MMSE

LT design, it is straightforwardly verified thatF(opt) andG(opt) are:

G(opt) = Rs̃FT H̃T
(
H̃FRs̃FT H̃T + Rñ

)−1
(3.23)

F(opt) = VΦ (3.24)

whereΦ is a diagonal matrix of sizeBr with diagonal entries

Φ� =

(
P0 +

∑B̄r
i=1 λ

−1
i∑B̄r

i=1 w̃
1/2
i λ

−1/2
i σ̃i

· w̃
1/2
�

λ
1/2
� σ̃�

− 1
λ�σ̃

2
�

)1/2

+

(3.25)

and wherew̃� are the entries of̃W, and whereB̄r ≤ Br is such that|Φ�|2 > 0
for � ∈ [1, . . . , B̄r] and|Φ�|2 = 0 for all others�.
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Analogously, the variance of the�th component of the error vectorẽ, cor-
responding toF(opt) andG(opt), is given by:

R(opt)
ẽ (�, �) = E[|ẽ�|] � = 1, . . . , B̄r (3.26)

= w̃1/2λ
−1/2
� σ̃� µ̃

1/2

with µ̃1/2 �
∑B̄r

i=1 w̃
1/2
i λ

−1/2
i σ̃i

P0+
∑B̄r

i=1 λ−1
i

.

Let us note that the cost function in (3.14) depends on the parameternr.
More specifically, the sizes of both the channel matrixH̃ and of the precoder
matrix F depend on such a parameter and, hence, since there is no functional
dependence of the cost function onnr, the optimization (overnr) has to be
carried out by an exhaustive procedure.

�

Remark 1 : We point out that in presence of possibly correlated complex-
valued circularly variant symbol vectors, the prewhitening operation, which
provides the uncorrelated input vector to the precoder, has to be performed by
utilizing a WL filter operating on the augmented vectors̃ instead of a linear one
operating ons. In fact, the adoption of a linear filter does not ensure that the
real and the imaginary parts of the complex-valued components of the output
of the prewhitening filter will be uncorrelated as assumed in (3.19).

�

Remark 2 : Let us consider the complex-valued system model (3.6) in the
special case wherebr = B and nr = Ni. From (3.7), one has that
the precoder matrixF degenerates into the nonstructured real-valued ma-
trix F1,1 of sizeNi × B. Moreover, define the matricesH � C̃Ni [H] and

Rñ � E
[
C0 [n] C0 [n]H

]
. The optimum precoder and decoderF (opt) and

G(opt) can be derived by utilizing the same procedure proposed in this sec-
tion with reference to the real-valued representation. However, since it can be
easily verified that

HHR−1
ñ H = H̃HR−1

ñ H̃ (3.27)

= VΛVT ,

the complex-valued representation leads an optimum WLT which is equivalent
to the one obtained according to the real-valued notation. Specifically, one has
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that

F (opt) = VΦ (3.28)

and the optimumG(opt) is obtained fromG by means of (2.8).

3.4 MSE Analysis

In this section, we compare the performances of the MMSE WLT and MMSE
LT in the special scenarios of real-valued information symbolss(i) (i.e., br =
B), and in the special one of complex-valued circularly symmetric information
symbolss(i) (i.e., br = 0). Since the MSE achieved by the MMSE LT and by
MMSE WLT are functions of the eigenvaluesγ� in (3.15) andλ� in (3.22), re-
spectively, the performance comparison will be carried out by studying the re-
lationship betweenγ� andλ�. We will show that the MMSE WLT outperforms
the MMSE LT, whereas for the case whereB complex-valued circularly sym-
metric information symbols have to be transmitted (i.e.,br = 0), the MMSE
WLT degenerates into the MMSE LT. Moreover, our analysis points out the in-
capability by the MMSE LT of transmitting theB information symbols when
Ni andNo are sufficiently large andNi

No
≈ 1.

The following subsections 3.4.1 and 3.4.2 present, with reference to the
case of real-valued information symbols (br = B), two structures for the
design of the MMSE-WLT: the former assumes that the transmitted symbols
x(�) are real-valued (i.e.,nr = Ni), whereas the latter assumes that they are
complex-valued (i.e.,nr = 0). Finally, in subsection 3.4.3, we consider the
case whereB complex-valued circularly symmetric information symbols are
transmitted by utilizingNi complex-valued channel inputs. Although the case
0 < br < B is not studied in the sequel, we remark that, due to the non cir-
cularly variant nature of the desired vector, the MMSE WLT is expected to
outperform the MMSE LT.

With no loss of generality, in the following, we assume unit-variance infor-
mation symbols, i.e., we assumeσ̃2

i = 1 for i = 1, . . . , br, andσ̃2
i = 1/2 when

i = br +1, . . . , Br. Moreover, to clearly show the effects of WL processing on
theeigen subchanneldecomposition, we assume uncorrelated complex-valued
circularly symmetric noise components with varianceσ2

n, i.e., Rn = σ2
nINo

andRnn∗ = 0, or, equivalently,Rñ = σ2
n
2 I2No .
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3.4.1 Real-valued information symbols and real-valued transmit-
ted symbols (br = B,nr = Ni)

The MSE analysis provided in this subsection is first carried out by considering
two scenarios for the matrixH:

1. H is deterministic;

2. H is a random matrix whose entries are i.i.d. random variables, and such
thatNi, No →∞ with a finite ratioNi

No
.

Deterministic channel

Accounting for the assumption of uncorrelated complex-valued circularly
symmetric noise components, it can be verified that

2 · H̃T H̃ = HHH + HTH∗ . (3.29)

Before proceeding any further, let us remind here the Weyl’ s theorem [55, p.
396], on the perturbation matrix theory:

Theorem 3.1 If A andA + E aren× n Hermitian matrices, then

λk(A) + λn(E) ≤ λk(A + E) ≤ λk(A) + λ1(E) k = 1, . . . n

whereλk(A) denote thekth largest eigenvalue ofA.
By applying the Weyl’s theorem to (3.29), the following bounds hold:

λ�(HHH)+λNi(H
HH) ≤ λ�(2 ·H̃HH̃) ≤ λ�(HHH)+λ1(HHH) (3.30)

where we have taken into account forλ�(HHH) = λ�(HTH∗). From (3.30)
one has thatγ� + γNi � λ� � γ� + γ1, i.e., the MMSE WLT decomposes the
MIMO channel intoB eigen subchannelswith gains larger than those of the
MMSE LT eigen subchannels.

Let us now consider the achieved MMSEs in (3.18) and (3.26). We assume
that the same number of information symbolsB̄ = B̄r = B are transmitted by
the MMSE LT and the MMSE WLT. However, the same results apply to the
case wherēB = B̄r < B.

The(�, �) entry of the error correlation matricesR(opt)
e andR(opt)

ẽ can be
both expressed as follows:

R(opt)
e (�, �) = f�(γ1, . . . , γB) (3.31)

R(opt)
ẽ (�, �) = f�(λ1, . . . , λB) (3.32)
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where

f�(t1, . . . , tB) �
t−1
� + t

−1/2
�

∑
n�=� t

−1/2
n

P0 + t−1
� +

∑
n�=� t

−1
n

(3.33)

with t� > 0 (� = 1, . . . B) such that

P0 +
∑
n�=�

t−1
n � t

−1/2
�

∑
n�=�

t−1/2
n ∀�

to ensure that the error variance does not exceed the input variance. It can be
shown thatf�(t1, . . . , tB) monotonically decreases witht�, and hence, being
γ� � λ�, one has

R(opt)
ẽ (�, �) � R(opt)

e (�, �) , (3.34)

i.e., the MMSE WLT outperforms the MMSE LT for any of theB desired
symbols.

Random channel with large Ni and No

We consider a channel matrixH whose entriesh(�,i) are modeled as complex-
valued circularly symmetric independent zero-mean i.i.d. random variables
with variance 1

No
. According to above assumptions, the entries of the aug-

mented channel matrix̃H are zero-mean i.i.d. random variables with the same
variance 1

2No
. Moreover, we assume that the number of channel inputs and

outputs grows up to infinity (Ni, No →∞).
By utilizing the Mar̆cenko-Pastur law (Theorem 1.2), we can determine

the asymptotic (i.e.,Ni, No → ∞) probability density function (pdf) of the
eigenvaluesγ� andλ� versusβ � Ni

No
:

pγ�
(α) = σ2

n

(1− 1
β

)
+

δ(α) +

√
(α− aL)+ (bL − α)+

2πβα

 (3.35)

pλ�
(α) =

σ2
n

2

(1− 2
β

)
+

δ(α) +

√
(α− aWL)+ (bWL − α)+

πβα

(3.36)

aL � 1
σ2

n

(
1−

√
β
)2

bL � 1
σ2

n

(
1 +

√
β
)2

(3.37)

aWL � 2
σ2

n

(
1−

√
β

2

)2

bWL � 2
σ2

n

(
1 +

√
β

2

)2

, (3.38)
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whereα ∈ [aL , bL ] in (3.35) andα ∈ [aWL , bWL ] in (3.36). According to
(3.35) and (3.36), the mean values ofγ� andλ� are

E [γ�] = min
{

1,
1
β

}
· 1
σ2

n

(3.39)

E [λ�] = min
{

1,
2
β

}
· 2
σ2

n

, (3.40)

respectively, i.e., the mean value ofλ� is at least twice the mean value of
γ�. Moreover, let us note that, in the spacial case of Gaussian channel entries
(h(�,i) ∼ N (0, 1/No)), the maximum (minimum nonnull) eigenvalues of the
matrices 1

σ2
n
HHH and 2

σ2
n
H̃HH̃ converge almost surely tobL andbWL, re-

spectively, (aL andaWL respectively) [67]. Since both the performances of
the MMSE WLT and of the MMSE LT are governed by the weakest subchan-
nels, the lower limitsaL andaWL allow to state a performance comparison
between the two structures in the considered asymptotic scenario.

Whenβ ≪ 1, from (3.35) and (3.38), the random variablesγ� andλ� can
be reasonably approximated to their mean values, more specifically,γ� �

1
σ2

n

andλ� �
2

σ2
n

. By substituting such values in (3.33), and assumingP0
σ2

n
= ξB

(ξ ∈ R+), one has

lim
β→0

R(opt)
ẽ (�, �)

R(opt)
e (�, �)

=
1
2
· ξ + 1
ξ + 1

2

. (3.41)

From (3.41), it follows that the performance gain provided by the MMSE WLT
over the MMSE LT over each subchannel approaches to3dB whenξ ≫ 1, i.e.,
when the ratio of the transmitted power to the noise variance at each channel
output is larger thatB.

Whenβ → 1, the probability of having nullγ� increases sinceaL achieves
the minimum value forβ = 1; moreover,γB → 0 almost surely whenh(�,i) ∼
N (0, 1/No). Let us note that, asγ� → 0, one has

lim
γ�→0

R(opt)
e (�, �) = 1 (3.42)

lim
γ�→0

µ1/2 = 0 . (3.43)

From (3.42), it follows that the MMSE LT performs poorly over the weakest
eigen subchannels. Moreover, from (3.43), it can happen that theB symbols
s(�) are partially transmitted. On the other hand, sinceaWL = (

√
2 − 1)2/σ2

n

for β = 1, the MMSE WLT, asσ2
n → 0, improves the estimate of all theB
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symbols. Moreover, by improving theeigen subchannelgains, the WL pro-
cessing allows us to achieve a multiplexing gain, i.e., it reduces the probability
of discarding the weakest subchannels.

Finally, note that the impulsive terms in (3.35) and (3.36) have nonnull
amplitudes forβ > 1 and forβ > 2, respectively, and they account for the
Ni−No zero eigenvalues in (3.15) and theNi−2No zero eigenvalues in (3.22).
In such a scenario, the comparison between the smallest valuesaL andaWL of
the range of the eigenvaluesγ� andλ�, respectively, does not allow us to carry
out the performance comparison between the two transceivers. In fact, since
Ni > No, one has thataL still represents a quality index of the transmission
over the weakest subchannels, whereasaWL does not. For the sake of clarity,
let us consider the numerical exampleβ = 2 (Ni = 2No). The impulsive
term 1

2δ(α) in (3.35) accounts for theNo zero eigenvalues, whileaL andbL
define the interval where the nonnull eigenvalues lie. On the other hand, the
impulsive term in (3.36) has null amplitude, andaWL = 0. BeingB = No, the
eigenvalues(λNo+1, . . . , λ2No) are the channel gains of the unutilizedeigen
subchannelsand, therefore,aWL does not provide any information about the
transmission over the weakesteigen subchannel.

�

Remark :It is important to note that the assumption of real-valued transmitted
symbolsx(�) limits the search for the optimum MMSE WLT precoderF in
the subset of the real-valued matrices, whereas the optimumFL is complex-
valued. Nevertheless we have shown in this section that such a restriction does
not determine any loss when the MMSE is adopted as performance measure.
On the other hand, if the MMSE WLT and the MMSE LT are compared in
terms of symbol error rate, the above restriction can lead to a performance loss
when special scenarios are considered (see Section 3.5).

3.4.2 Real-valued information symbols and complex-valued
transmitted symbols (br = B,nr = 0)

In this scenario, we have to analyze separately the caseB = 2K and the case
B = 2K − 1 (with K positive integer). We will show that, regardless the
value ofB (even or odd):a) the MMSE WLT outperforms the MMSE LTb)
the MMSE WLT precoder can be implemented with a linear filter (rather than
WL) that processes a complex-valued input vector whose components belong
to a different constellation set.
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B = 2K : By assuming (for the sake of simplicity)̄B = B, i.e.,µ1/2 ≤ √γB

and accounting for (3.51), one has that

µ̃1/2 =
∑Br

i=1 λ
−1/2
i

P0 +
∑Br

i=1 λ
−1
i

(3.44)

=
√

2
∑K

i=1 γ
−1/2
i

P0 +
∑K

i=1 γ
−1
i

.

By observing thatµ1/2 ≥
∑K

i=1 γ
−1/2
i

P0+
∑K

i=1 γ−1
i

, it can be shown that̃µ1/2 ≤ √λB =
√

2γK , i.e., the MMSE WLT utilizes all thēBr = B subchannels to transmit
the information vector. Straightforwardly, by utilizing (3.44), it can be verified
that

Rẽ(2�− 1, 2�− 1) = Rẽ(2�, 2�) (3.45)

= γ
−1/2
�

∑K
i=1 γ

−1/2
i

P0 +
∑K

i=1 γ
−1
i

� = 1, . . . ,K

and, consequently,Rẽ(n, n) ≤ Re(n, n) (n = 1, . . . , B), namely the MMSE
WLT outperforms the MMSE LT.

Let us show now that the precoder of the MMSE WLT is equivalent to
the precoder of the MMSE LT transmittingB/2 complex-valued information
symbolss(�) of a QAM constellation. In such a case, the matrixΘ in the
expression (3.18) of the optimum precoderF(opt)

L = UΘ is such that

|Θ�|2 =


(

γ
−1/2
�

µ1/2 − 1
γ�

)
+

� = 1, . . . , B/2

0 � = B/2 + 1, . . . B
(3.46)

with µ1/2 = µ̃1/2√
2

. Consequently, from (3.44), it follows that the optimum
matrix entriesΦ� in the expression (3.25) of the MMSE WLT precoder are
given by:

Φ2�−1 = Φ2� =
1√
2
·Θ� � = 1, . . . , B/2 . (3.47)

Accounting for (3.47) and (3.51), it can be verified that

F(opt) =
1√
2
· Ẽ0

[
F(opt)

L

]
, (3.48)
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and the output̄E0 [x̃] of the optimum WL precoder is equal to

Ē0 [x̃] =
1√
2
· F(opt)

L Ē0 [s] (3.49)

� F(opt)
L sQAM ,

where the�th component of the vectorsQAM is equal tos(�)
QAM

� 1√
2
(s(�)

QAM
+

s(�+B/2)
QAM

) (� = 1, . . . , B/2), i.e., its in-phase and quadrature components are
modulated by the two independent (of each other) symbolss� ands�+B/2, and
normalized so thats(�)

QAM
has unit variance3. From (3.49), it follows that the

output of MMSE WLT precoder can be obtained by linearly precoding the
vectorsQAM with the optimum MMSE LT precoder designed to transmitB/2
information symbols.

Note that, sincesQAM is circularly symmetric, the output of the optimum
WL precoder, and so the channel output, are jointly circularly symmetric4.
However, since the desired vector is actually not circularly symmetric, the op-
timum decoderG(opt) is still a WL filter. Let us also note that, the output
vectorŝ (scaled by

√
2) of G(opt) can be equivalently obtained by utilizing the

optimum linear decoderG(opt)
L corresponding toF(opt)

L in (3.48), and applying
the non linear operatorE0[·] to its output vector̂sQAM .

Finally, we compare the performances of the MMSE WLT proposed in
this subsection (sayR[B]

ẽ (n, n) the achieved MSE) with the performances of

the MMSE WLT proposed in subsection 3.4.1 (sayR[A]
ẽ (n, n) the achieved

MSE) with reference to the special case whereNi, No → ∞ andβ → 0. In
such a scenario, it has been shown thatγ� andλ� can be approximated with the
asymptotic values1

σ2
n

and 2
σ2

n
, respectively. Accounting for (3.45), it is easy

verified that asσ2
n → 0,

R[B]
ẽ (n, n)→ σ2

nB

2P0
(3.50)

R[A]
ẽ (n, n)→ σ2

nB

2P0
,

i.e., the two MMSE WLT structures performs equivalently. The limits in
(3.50) imply also that the MMSE WLT which transmitsB symbols belonging

3Note that, ifs(�) belongs to the M-ASK constellation, thens(�)
QAM

belongs to the M2-QAM
constellation.

4If the input vector is circularly symmetric and the channel is linear, then it can be shown
that the input and output of the channel are jointly circularly symmetric.
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to a real-valued alphabet (such as M-ASK) achieves the same performances
of an MMSE LT which transmitsB/2 symbolss(�)

QAM
belonging to a denser

alphabet. Unfortunately, the proposed framework does not allow us to provide
a complete performance comparison between the two structures.

B odd : Following the same guidelines reported in the previous paragraph, it
can be verified that whenB is odd

• if B̄ = B, thenB̄r = B, i.e., the MMSE WLT and the MMSE LT utilize
the same number of subchannels to transmit the information symbols;

• Rẽ(n, n) ≤ Re(n, n) (n = 1, . . . , B), i.e., the MMSE WLT outper-
forms the MMSE LT;

• the MMSE WLT precoder can be implemented with a linear filter that
processes a new input vector of sizeB−1

2 whose firstK− 1 components
are equal tos� + s�+K−1 (� = 1, . . . ,K − 1), and theKth one is
the real-valued components2K−1. However, in such a case, the MMSE
WLT can not be equivalently performed by an MMSE LT;

• asNi, No → ∞ andβ → 0, the MMSE WLT proposed in this subsec-
tion and the MMSE WLT in subsection 3.4.1 perform equivalently.

3.4.3 Complex-valued information symbols and complex-valued
transmitted symbols (br = 0,nr = 0)

In this subsection, we show that the MMSE WLT degenerates into the MMSE
LT when the information symbolss(�) are complex-valued circularly symmet-
ric (br = 0) and the channel inputsx(�) are assumed to be complex-valued
(nr = 0). For the sake of simplicity, let us assume, with no loss of generality,
B = Ni = rank(H) in (3.15).

By computing the EVD of the matrixHHR−1
n H as in (3.15), after some

matrix manipulations, it can be verified that

2
σ2

n

H̃T H̃ =
[
U� −U�
U� U�

] [
2Γ 0
0 2Γ

] [
U� −U�
U� U�

]T

(3.51)

whereU� � �{U}, andU� � �{U}. Sinceλ2�−1 = λ2� = 2γ� for
� = 1, . . . , B, and accounting for the assumption of circularly symmetric in-
formation symbols (̃σ2

2� = σ̃2
2�−1 = σ2

� /2, for � = 1, . . . , B), one has that
B̄r = 2B̄. In fact, from (3.15) it follows that the number̄B of subchannels
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utilized by the MMSE LT is such thatµ1/2 ≤ ρB̄ with ρ� � w
1/2
� γ

1/2
� σ� and

ordered in decreasing manner:ρ1 ≥ . . . ρB. Analogously, from (3.22),̄Br

is such that̃µ1/2 ≤ ρ̃B̄r
with ρ̃� � w̃

1/2
� λ

1/2
� σ̃� (and ordered in decreasing

manner). Being̃ρ2� = ρ̃2�−1 = ρ� (� = 1, . . . , B), one has that

µ1/2 ≤ ρB̄ ⇒ µ̃1/2 ≤ ρ̃2B̄ , (3.52)

i.e., B̄r = 2B̄. Consequently, from (3.18) and (3.25), it is easily verified that
Θ� = Φ2�−1 = Φ2�, with � = 1, . . . , B̄ and

F(opt) = Ẽ0
[
F(opt)

L

]
. (3.53)

From such a relation it holds that

x = Ē0
[
F(opt)s̃

]
(3.54)

= F(opt)
L s ,

i.e., the optimum WL precoder degenerates into the optimum linear precoder.
Moreover, being the desired vector and the received one jointly circularly sym-
metric, the optimum WL decoder degenerates into the optimum linear one [44]
and, consequently, the MMSE WLT degenerates into the MMSE LT.

3.5 SER analysis

In this section, we provide a performance comparison in terms of the symbol
error rate (SER) between the MMSE LT and the MMSE WLT. The MSE anal-
ysis carried out in the previous section showed that the WLT is optimum in the
MMSE sense. However, let us note that when the SER is adopted as perfor-
mance measure, only the real part of the estimates of the real-valued symbols
s� (� = 1, . . . , br) is relevant for the decision rule. For such a reason, the MSE
improvement provided by the MMSE WLT is not fully translated into a SER
improvement.

To gain some insight the problem, let us consider, as in subsection 3.4.1,
the scenario wherebr = B unit variance real-valued symbolss(�) are trans-
mitted and where the channel inputsx(�) are real-valued. Let us note that,
although the desired vector is real-valued, the output of the MMSE LT is
complex-valued and, hence, the variance of imaginary part of the components
of eL (the error vector measured at the output of the conventional MMSE LT)
does not affect the SER. It follows that the performance comparison in terms
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of SER between the MMSE LT and the MMSE WLT has to be carried out by
comparing the variances of the components ofeL,R � �{eL} with those of
the components of̃e (the error vector measured at the output of the MMSE
WLT).

To this aim, it can be verified (useLemma 2andTheorem 1in [25]) that:

Re,R � E
[
eL,ReH

L,R

]
=

1
2
µ1/2Γ−1/2

(
IB + µ1/2Γ−1/2

)
(3.55)

Re,I � E
[
eL,IeH

L,I

]
=

1
2
µ1/2Γ−1/2

(
IB − µ1/2Γ−1/2

)
(3.56)

whereeL,I � �{eL}. Unfortunately, the comparison betweenRẽ(�, �) and
Re,R(�, �) is not simple to be carried in the general case. For such a reason,
we consider the two extreme cases:

• the MMSE LT performs poorly, i.e., whenRe(�, �) = µ1/2γ
−1/2
� ≈ 1;

• the MMSE LT performs well, i.e., whenRe(�, �) = µ1/2γ
−1/2
� ≪ 1.

According to the former, the varianceRe(�, �) of e(�) is governed by the vari-
anceRe,R(�, �) of its real part. In such a case, it is reasonable to expect that
the MSE improvements provided by the MMSE WLT over the MMSE LT are
fully translated into SER improvements.

On the other hand, according to the latter case, one has

Re,R ≈ Re,I (3.57)

≈ µ1/2 (4Γ)−1/2 ,

i.e., the error at the output of the MMSE LT becomes circularly symmetric
and hence, the variance of the components ofeL,R is halved with respect to
the variance of the components ofe. It is straightforwardly verified that, with
reference to the�th symbol, the MMSE LT achieves a lower SER with respect
to the MMSE WLT when the following inequality is verified:

Re,R(�, �)
Rẽ(�, �)

≤ 1 ⇒ µ̃γ�

µλ�
≥ 0.25 . (3.58)

The approach based on the random channel model proposed in subsection 3.4.1
allows us to foresee the scenarios where (3.58) occurs:

β ≫ 1 by means of (3.37) and (3.38), the strong approximationsγ1

λ1
→ 1 and

γB
λB
→ 1 can be adopted; hence,µ̃ ≈ µ and (3.58) holds true;
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B ≪ rank(H), σ2
n → 0 the MIMO channel is decomposed into a large num-

ber (rank(H)) of eigen subchannelswith respect to the number of trans-
mitted symbols (B); since γ1

λ1
≥ 0.5 (by means of (3.37) and (3.38)), it

can happen that (3.58) is verified for the strongesteigen subchannels.

Finally, whenβ → 0, one has thatλ� ≈ 2γ�. In such a case it is easily
verified that:

Re,R(�, �)
Rẽ(�, �)

≤ 1 ⇒ γ�

λ�
≥ 0.5 , (3.59)

i.e., the MMSE LT can not outperform the MMSE WLT in terms of SER.

3.6 Numerical results

In this section, we present a numerical performance analysis of the pro-
posed transceiver structure. In our experiments, the MIMO channel matrix
entriesh(�,i) are randomly generated according to a complex-valued circu-
larly symmetric zero-mean uncorrelated Gaussian process with variance 2 (i.e.,
E

[
(�{h(�,i)})2] = E

[
(�{h(�,i)})2

]
= 1). The noise components at the out-

put of the MIMO channel are uncorrelated complex-valued circularly symmet-
ric with the same varianceσ2

n, i.e.,Rn = σ2
nINo andRnn∗ = 0. In each ex-

periment, the channel matrix is known at both the transmitter and the receiver,
that are jointly designed according to the MMSE criterion and accounting for
the available powerP0 = 1.

In a first set of experiments, the (achieved) MSE and the probability of
transmitting all theB information symbols are adopted as performance mea-
sure to compare the MMSE WLT and the MMSE LT. The performance pa-
rameter curves have been averaged over 500 independent channel realizations.
Afterwards, we consider a set of experiments where the performances are eval-
uated in terms of symbol error rateProb(ŝ� �= s� ) (with a slight abuse of no-
tation, we have denoted witĥs� the output of the decision device). The symbol
error rate (SER) curves have been averaged over 100 independent channel real-
izations by Monte Carlo simulations; moreover, in this study, we admit that at
least 10 errors would occur for the lowest level of symbol error rate, resulting
in a95% confidence interval [63].

The performance comparison between the MMSE WLT and the conven-
tional MMSE LT has been carried out by accounting only for that experiments
where the two transceivers can transmit the same number of information sym-
bols.
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Figure 3.4: Average gainG in dB versusNo ≥ 8 for SNRi =
0dB, 5dB, 10dB, 20dB (B = Ni = 8).

MSE results

Consider a MIMO system over whichB = br = 8 independent real-valued
information symbol streams have to be transmitted. Accounting for (3.26) and
(3.18), let us define (with reference to the�th information symbol) the MSE
gain

g� � R(opt)
e (�, �)

R(opt)
ẽ (�, �)

� = 1, . . . , B (3.60)

provided by the MMSE WLT over the MMSE LT. In Fig. 3.4, a MIMO chan-
nel withNi = 8 inputs has been considered, and the gaing� (in dB) averaged
over theB information symbols, i.e.,G � (1/B) ·∑B

�=1 g�, has been plotted
versusNo ≥ 8 for different values of the ratio of the total transmit powerP0

to the noise varianceσ2
n (say, SNRi). In such a scenario, the MMSE WLT out-

performs the MMSE LT. The WL processing allows us to achieve considerable



126 CHAPTER 3. TRANSCEIVER DESIGN

8 10 15 20 25 30 35 40
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of inputs N
i

G
 (

in
 d

B
)

P
0
/σ

n
2 = 0 dB

P
0
/σ

n
2 = 5 dB

P
0
/σ

n
2 = 10 dB

P
0
/σ

n
2 = 20 dB

Figure 3.5: Average gainG in dB versusNi ≥ 8 for SNRi =
0dB, 5dB, 10dB, 20dB (B = No = 8).

performance gain whenNo is comparable withNi. In fact, as shown in Section
3.4, whenβ → 1 the adoption of the MMSE LT increases the probability of
having weakeigen subchannels. On the other hand, as expected from (3.41),
the gainG approaches to3dB whenβ → 0. Analogously, in Fig. 3.5, a MIMO
channel withNo = 8 outputs has been considered, and the gainG has been
plotted versusNi for different values of SNRi. As expected from (3.30), the
MMSE WLT outperforms the MMSE LT. However, the gainG decreases when
Ni increases, i.e., whenβ → ∞. In both the considered scenarios, when the
number of the outputs and the number of inputs increase, the performance gain
provided by the exploitation of the spatial redundancy becomes relevant with
respect to the gain provided by the exploitation of the statistical redundancy
by means of the WL processing. For such a reason,G was expected to be a
decreasing function asβ → 0 or β →∞.

In the next experiment, we have evaluated the capability of the considered
transceivers to transmit all theB = 8 information symbols over aNo × 8
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Figure 3.6: Probability of allocating all theB information symbols
versusNo, for SNRi = 0dB, 5dB, 10dB, 20dB.

MIMO channel, withNo ≥ 8. To this end, let us define the probabilities:
PL � Prob(B̄ = B) andPWL � Prob(B̄r = B), whereB̄ andB̄r denotes
the number of symbols allocated by the LT precoder and by the WLT precoder,
respectively.

Fig. 3.6 shows the behavior ofPL andPWL versusNi, for different values
of SNRi. The MMSE LT appears more sensitive (with respect to the MMSE
WLT) to the variation of both SNRi andNo. More specifically, the results in
Fig. 3.6 confirm the efforts of MMSE LT in allocating all theB symbols in
low-SNRi environments whenβ ≈ 1. On the other hand, the MMSE WLT is
able to transmit theB information symbols ever since SNRi = 0dB.

Since the MMSE WLT structure depends on the parameternr, let us define
(with reference to the�th information symbol) the MSE gain

q
(k)
� �

[
R(opt)

ẽ (�, �)
]
nr=Ni[

R(opt)
ẽ (�, �)

]
nr=k

� = 1, . . . , B
k = 0, . . . , Ni − 1

(3.61)
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provided by the MMSE WLT synthesized by settingnr = k over the MMSE
WLT synthesized by settingnr = Ni. The gainq(k)

� (in dB) averaged over the
B information symbols is reported in Table 3.1 for different values ofNo, and

assuming
(
P0
σ2

n

)
= 10dB.

nr \No No = 8 No = 16 No = 24 No = 32
nr = 0 3.671 2.495 2.036 1.728
nr = 1 3.402 2.299 1.850 1.563
nr = 2 3.113 2.067 1.656 1.417
nr = 3 2.802 1.8407 1.449 1.243
nr = 4 2.393 1.564 1.244 1.057
nr = 5 2.034 1.283 1.002 0.868
nr = 6 1.517 0.975 0.752 0.639
nr = 7 0.888 0.561 0.415 0.355

Table 3.1: Averageq(k)
� (in dB) versus0 ≤ nr < Ni andNo =

8, 16, 24, 32 (P0/σ
2
n = 10dB)

The results show that the MSE achieved by the MMSE WLT reduces when
smaller values ofnr are considered, i.e., when the transmitted vectorx is
complex-valued. Let us point out that, as expected from (3.50), the average
gainq(0)� converges, asβ → 0, to 0dB; however, the experiments have showed
a very slow convergence.

SER results

In the following experiments we consider a MIMO channel over whichB =
br = 4 independent BPSK symbols have to be transmitted. In Fig. 3.7, a4×No

MIMO channel have been considered and the SERs achieved by the MMSE LT
and the MMSE WLT have been plotted versus SNRi, as the number of outputs
increases (No = 4, 6, 8). The MMSE WLT outperforms the MMSE LT and it
provides a considerable gain over the MMSE LT when square MIMO channels
(β = 1) are considered. AsNo increases, the performance gain provided
by the MMSE WLT reduces due to the increasing spatial redundancy, as also
confirmed by the curves in Fig. 3.4.

In Fig. 3.8, we have considered anNi × 4 MIMO channel. The SER
has been plotted versus SNRi, for different values ofNi = 4, 6, 8, 16. As
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Figure 3.7: Symbol error rates of the considered transceivers versus
SNRi, for different values ofNo.

the number of inputs increases, the performance gain provided by the MMSE
WLT reduces due to the increasing spatial redundancy, and, whenNi = 16,
the two transceivers perform equivalently. The performance analysis showed
that the MMSE LT slightly outperforms the MMSE WLT whenNi = 32, as
expected from the SER analysis carried out in Section 3.5. For completeness,
in Fig. 3.8, the SER achieved by the MMSE WLT withnr = 8 has been
plotted: as expected from the MSE analysis in Table 3.1, the performances of
MMSE WLT improve whennr reduces.

Finally, in Fig 3.9, we have considered the scenario where the information
symbols has to be transmitted over anN × N MIMO channel. The SER has
been plotted versus SNRi, for different values ofN = 6, 7, 8. The performance
gain provided by the MMSE WLT over the MMSE LT reduces asN increases,
i.e., whenB becomes much smaller thanrank(H). For the largest value ofN ,
as expected from the SER analysis carried out in Section 3.5, the MMSE LT
outperforms the MMSE WLT.
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Conclusion

In this thesis, the exploitation of widely linear filtering in both MIMO channel
equalization and transceiver design has been proposed.

It has been shown that the widely-linear/widely linear decision-feedback
MMSE equalizer, without requiring a significant increase in computational
complexity, allows one to achieve considerable performance improvements
over the DF-MMSE equalizer based on the linear filtering when circularly
variant signals are transmitted. The mismatch analysis has also confirmed
that the DF-based structures are more sensitive to channel mismatch. More
specifically, the performance analysis has shown that the proposed DF-based
equalizers, which resort to the widely linear processing, perform satisfacto-
rily, provided that the mismatch channel percentage is limited to roughly 10%,
which is, on the other hand, a severe level of mismatching.

Since the widely-linear/widely linear decision-feedback equalizer syn-
thesis can be based on both the real-valued signal representation and the
complex-valued one, the issue concerning the choice between the two rep-
resentations has been addressed. We have recognized that they lead to two
nonequivalent structures when the receiver exploits not only past decisions,
but also the available current decisions (in Chapter 2 referred to as Scenario
2). The performance comparison between such structures has shown that
real-valued representation-based structure outperforms the complex-valued
representation-based one since it is more tolerant to the effects of decision
errors in the feedback filter. Moreover, with reference to such a receiver strat-
egy, the issue of decision ordering, widely studied in DF equalization over
non-dispersive channels, has been addressed with reference to dispersive envi-
ronments. Specifically, it has been shown that the DF-based equalizers can be
expressed as a two-stage equalizer: the former is the optimum time-dispersive
equalizer which exploits only past decisions (in Chapter 2 referred to as Sce-
nario 1), whereas the latter performs a non-dispersive equalization exploiting
current decisions and, moreover, performs the optimization over the decision
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ordering. Such a framework allows one to extend any suboptimum ordering
method proposed for non-dispersive environment to the dispersive one.

In the last part of the thesis, the exploitation of the WL filtering has been
proposed in the transceiver design when channel state information is available
at both the transmitter and the receiver side. According to the MMSE crite-
rion, it has been shown that the transceiver outperforms the linear transceiver
when circularly variant symbols are transmitted. Nevertheless, in the spacial
case where the symbols to be transmitted are real-valued and the precoder is
constrained to be real-valued, the MSE improvements provided by the WL
transceiver are not always translated into symbol error rate improvements:
specifically, it has been shown that if the number of channel inputs is much
larger than the number of channel outputs, or if the number ofeigen subchan-
nels (in which the MIMO channel can be decomposed) is much larger than
the number of symbols to be transmitted, then the linear transceiver can out-
perform the WL transceiver in terms of symbol error rate. Finally, it has been
shown that the optimum WL transceiver degenerates into the linear one when
complex-valued circularly symmetric information symbols have to be trans-
mitted.



Appendix A

A.1 (Non)-circular random variables and vectors

When dealing with narrowband signals, the linear bandpass single-input
single-output channel can be represented by an equivalent2× 2 MIMO chan-
nel whose inputs and outputs are the the in-phase and the quadrature compo-
nents of the transmitted signal (channel input) and the received one (channel
output), respectively. If the in-phase and the quadrature components of the
(additive) noise are independent of each other, then a memory-less channel re-
duces to a couple of independent SISO channels over which the in-phase and
the quadrature components of the signal are transmitted independently and do
not interfere with each other; in other words, the matrix describing the2 × 2
equivalent MIMO channel is diagonal. On the other hand, channel memory
causes interference between the in-phase and the quadrature components of
the received signal, yielding to two non independent SISO transmissions. To
simplify the mathematical formulation of the problem, the base-band channels
are described in terms of complex-valued signals and complex-valued channel
impulse responses [3]. For this reason, the MIMO systems in 1.1 have been
introduced according to such a complex-valued representation.

The theory on the complex-valued random variables and vectors is ob-
tained by simply extending the theory of the real-valued ones. For example,
the correlation matrix of the complex-valuedN × 1 random vectorz is de-
fined asRzz � E

[
zzH

]
, i.e., it is obtained by simply substituting inE

[
zzT

]
,

the correlation matrix of a real-valued vector, the transpose operator with the
Hermitian one. Nevertheless, it can happen that the vectorz andz∗ are corre-
lated with each other: it follows that the onlyRzz is not sufficient to describe
the statistical properties of the random vectorz, but it is necessary to take
into account for the nonzero correlation matrixRzz∗ � E

[
zzT

]
, namely the
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pseudo-correlation matrix. A simple example is represented by the real-valued
random vectors (or, equivalently, random variables), whose pseudo-correlation
matrix is obviously nonzero and such thatRzz∗ = Rzz. Random vectors (and
variables), like the real-valued ones, having nonnull pseudo-correlation are
said to be rotationally variant. However, the matrixRzz∗ is rarely introduced
in the signal processing literature, and the main reason lies in the fact that it is
implicitly or explicitly assumed to be zero.

In the following subsections, we briefly introduce some basic concepts
about the (non)circular symmetry of the complex-valued random vectors (see
also [39, 68]).

A.1.1 Definition of circularity

Let us first consider the case of a random variablez = zc + zs, wherezc and
zs denote the real and imaginary parts ofz, respectively; for simplicity, we
assumez having zero-mean.

Definition A.1 The complex-valued random variablez is circularly symmet-
ric if for any α, z andzα � zeα have the same probability distribution func-
tion (p.d.f.).

The invariance of the p.d.f. to the rotationα explains the definition of
circular symmetry. By definingA � |z| andφ � ∠z, the circularity ofz is
characterized by the following factorization of the p.d.f.:

fz(ζ) = fzc,zs(ζc, ζs) = fA,Φ(a, φ) =
1
2π
fA(a) , (A.1)

i.e., the amplitudeA with arbitraryfA(a) is independent of the phaseφ, which
is uniformly distributed in[0, 2π].

Consider now the complex-valued random vectorz whose components are
the zero-mean random variablesz(k) with k = 1, . . . , N .

Definition A.2 The random vectorz is marginally circularly symmetric if its
scalar componentsz(k) are circularly symmetric random variables.

Accordingly, the p.d.f. of each componentz(k) is given by (A.1) where
fA(a) can now depend onk.

Definition A.3 The random vectorz is weakly circularly symmetric if its p.d.f.
is equal to the p.d.f. ofzeα for anyα.

Let us denote withfz(ξ) = fA,Φ(a, φ) the p.d.f. ofz as a function of
the random amplitude vectorA = [A1 A2 . . . AN ] and of the random phase
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vectorΦ = [ φ1 φ2 . . . φN ]. It can be easily verified that the following im-
plication hold whenz is weakly circularly symmetric:

fA,Φ(a, φ) = fA,Φ(a, φ1 + α, φ2 + α, . . . , φN + α) ∀α
⇓ (A.2)

fA,Φ(a, φ) = fA,Φ(a, φ2 − φ1, φ2 − φ1, . . . , φN − φ1)

i.e., the p.d.f. of a weakly circularly symmetric random vector depends on only
N − 1 random phases.

Definition A.4 The random vectorz is strongly circularly symmet-
ric if its p.d.f. is equal to the p.d.f. of the random vector[
z(1)eα1 z(2)eα2 . . . z(N)eαN

]T
, for anyα1, α2, . . . , αN .

In such a case, it can be verified that the p.d.f. ofz is equal to:

fA,Φ(a, φ) =
(

1
2π

)N

fA(a) , (A.3)

i.e., the phasesφk are i.i.d random variables uniformly distributed in[0, 2π]
and are independent ofA. Note that when the components ofz are indepen-
dent of each other,z is said to betotally circularly symmetricsincefA(a) can
be factorized inN functions.

A.1.2 Second order analysis of a complex-valued random vector

Consider the zero-mean complex-valued random vectorsz1 = z1,c + z1,s

andz2 = z2,c + z2,s of size1 N . To specify the correlation matrixRz1z2 �
E

[
z1zH

2

]
of the two random vectorsz1 andz2, we need to specify the follow-

ing (real-valued) correlation matrices:

E
[
z1,czT

2,c

]
E

[
z1,czT

2,s

]
E

[
z1,szT

2,c

]
E

[
z1,szT

2,s

] . (A.4)

However, it can happen that the statistical properties of the considered vectors
can not be fully described by the onlyRz1z2 . As a matter of fact, we can
introduce the pseudo-correlation matrix

Rz1z∗2 � E
[
z1zT

2

]
(A.5)

1For simplicity, in the following we assume thatz1 andz2 have the same dimension.



136 APPENDIX A.

where the Hermitian transpose operator in the definition ofRz1z2 has been
replaced by the transpose operator. Let us note that the knowledge of the ma-
trices in (A.4) is equivalent to the knowledge of both the correlation and the
pseudo-correlation matrices. In fact, one has:

E
[
z1,czT

2,c

]
=

1
2
�{

Rz1z2 + Rz1z∗2

}
(A.6)

E
[
z1,szT

2,s

]
=

1
2
�{

Rz1z2 −Rz1z∗2

}
E

[
z1,szT

2,c

]
=

1
2
�{

Rz1z2 + Rz1z∗2

}
E

[
z1,czT

2,s

]
=

1
2
�{

Rz1z2 −Rz1z∗2

}
.

The vectorsz1 andz2 are uncorrelated if and only if the four matrices in (A.4)
vanish or, equivalently, if and only if both the correlation and the pseudo-
correlation matrices vanish.

The casez = z1 = z2 allows one to define the autocorrelation matrix
Rzz � E

[
zzH

]
and the pseudo-correlation matrixRzz∗ � E

[
zzT

]
of the

vectorz. Moreover, given the correlation matrices

Rzczc � E
[
zczT

c

]
Rzszs � E

[
zszT

s

]
Rzczs � E

[
zczT

s

]
,(A.7)

it is easily verified that

Rzz = Rzczc + Rzszs + 
[
RT

zczs
−Rzczs

]
(A.8)

Rzz∗ = Rzczc −Rzszs + 
[
RT

zczs
+ Rzczs

]
. (A.9)

According to Definition A.3, ifz is weakly circularly symmetric, thenz and
zeα have the same p.d.f. and, consequently, one has that

Rzz∗
(
1− e2α

)
= 0 ∀α (A.10)

implying that the pseudo-correlation matrixRzz∗ vanishes whenz exhibits
weak circularity. The conditionRzz∗ = 0 is equivalent to

Rzczc = Rzszs and Rzczs = −RT
zczs

(A.11)

or, in other words, the real and the imaginary parts ofz have the same cor-
relation matrix, and their cross correlation is skew-symmetric. Note that the
skew-symmetry ofRzczs implies thatRzczs has a zero main diagonal, which
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means that the real and imaginary part of each component ofz(k) are uncor-
related. The vanishing ofRzczs does not, however, imply that the real part of
z(k) and the imaginary part ofz(�) are uncorrelated for� �= k.
Based on the above argumentations, we give the following definitions of cir-
cularly symmetric and of jointly circularly symmetric random vectors:

Definition A.5 The complex-valuedN × 1 random vectorz is said to be cir-
cularly symmetric if the pseudo-correlation matrixRzz∗ is zero. Conversely, a
nonzero pseudo-correlation matrix characterizes the rotationally variant vec-
tors.

Definition A.6 The complex-valuedN × 1 random vectorsz1 and z2 are

jointly circularly symmetric if the stacked vector
[
z1 z2

]T
is circularly sym-

metric.

Finally, by omitting the demonstration which can be found in [40], it can be
shown that:

Proposition A.1 LetRzz be a complex-valued Hermitian positive definite ma-
trix, and let Rzz∗ be a complex-valued symmetric matrix; thenRzz∗ is a
pseudo-correlation matrix ofz if and only if Q � R∗

zz − RH
zz∗R

−1
zz Rzz∗ is

non negative definite.





Appendix B

In this appendix, we propose an algorithm to derive the DF-MMSE equalizers
in (2.37) and (2.40) in the case where the input and noise sequences are spa-
tially and temporally uncorrelated. By exploiting the diagonal structure of the
input and noise correlation matrices, the proposed algorithm exhibits compu-
tational complexity still grows quadratically with the system parameters.

To this aim, in absence of decision errors, rewrite the DF equalizer output
in (2.34) as follows:

x̂k−∆ = WHTNf
[yk, k]−BHTNb+1[xk, k −∆] + xk−∆ (B.1)

= WHT̃[Hk, Nf ,∆ + 1] ·T∆+1[xk, k]

+WHT̃[Hk+∆+1, Nf , Nb] ·TNb
[xk, k−∆−1] ♣

+WHTNf
[nk, k]−BHTNb+1[xk, k −∆] + xk−∆

When Scenario 1 is considered, the DF-MMSE equalizer is constituted by
the feedback filter that removes the ISI introduced by the post-cursor♣, i.e.

B(opt)H
=

[
INi W(opt)H

T̃[Hk+∆+1, Nf , Nb]
]
, and by the MMSE feedfor-

ward filter which processes the observation vector

r � T̃[Hk, Nf ,∆ + 1] ·T∆+1[xk, k] + TNf
[nk, k] (B.2)

and provides the estimate ofxk−∆. The computation ofW(opt) would gen-

erally requiresO
(
N3

oN
3
f

)
operations since it mainly depends on the compu-

tation of the inverse of the correlation matrixRr �
[
rrH

]
. However, such

an inversion can be performed efficiently withNi(∆ + 1) iterations, each one

requiringO
(
N2

oN
2
f

)
operations.
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According to the assumptions, one has:

Rx(m) = E
[
xkxH

k−m

]
= Σxδ(m) (B.3)

Rn(m) = E
[
nknH

k−m

]
= Σnδ(m) (B.4)

with Σx = diag(σ2
x,1, . . . , σ

2
x,Ni

) andΣn = diag(σ2
n,1, . . . , σ

2
n,No

). Define the
matrices

Rx∆ � T̃[Rx(m),∆ + 1,∆ + 1] (B.5)

Rn � T̃[Rn(m), Nf , Nf ] (B.6)

H∆ � T̃[Hk, Nf ,∆ + 1] (B.7)

H(0) � T̃[Hk+∆, Nf , 1] (B.8)

and the correlation matrix

R(k)
r � Rn +

k∑
�=1

H∆(:, �)Rx∆(�, �)H∆(:, �)H (B.9)

such thatRr = R(Ni(∆+1))
r . The inverse ofRr can be obtained afterNi(∆+1)

steps by utilizing the following recursive algorithm (in the sequel referred to
as Algorithm 1) proposed in [69, 70] based on the Sherman-Morrison formula:
step 0

k = 0[
R(0)

r

]−1
= R−1

n

step k

k ← k + 1[
R(k)

r

]−1←
[
R(k−1)

r

]−1−
[
R(k−1)

r

]−1
H∆(:, k)

[
H∆(:, k)H

[
R(k−1)

r

]−1

·H∆(:, k) + R−1
x∆

(k, k)
]−1·H∆(:, k + 1)H

[
R(k−1)

r

]−1

end
where the inversion of the matricesRx∆ and Rn can be performed in
O(Ni(∆ + 1)) and O(NoNf ) operations, and where each step requires
O((NoNf )2) operations. As discussed in [70], such a procedure is useful when
the structure ofRn is “nice” in the sense that the effort involved in evaluating
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the inverse of the right hand-side of (B.9) is small relative to the effort of in-
verting a general square matrix of size(NoNf ).

When Scenario 2 is considered, the estimation of theqth component of the
desired vectorxk−∆ is performed by processing the difference of the observa-
tion vectorrk and the interference due to the firstq − 1 components ofxk−∆.
More specifically, let us denote withw(i) theith column ofW and let us de-
fine the vectorxk−∆[q] � [01×q xk−∆(q+1 : Ni, 1)T ]T with 0 � q � Ni−1.
The optimumw(opt)(q + 1) is the MMSE filter that processes the observation
vector

r[q] � T̃[Hk, Nf ,∆]T∆[xk, k] + H̃(0)xk−∆[q] + TNf
[nk, k] (B.10)

to estimate the desired symbolx(q+1)
k−∆ . From (B.10), one has that

r[q + 1] = r[q]−H(0)(1 : NoNf , q + 1)x(q+1)
k−∆ (B.11)

and

Rr[q + 1] � E
[
r[q + 1]rH [q + 1]

]
(B.12)

= Rr[q]−H(0)(:, q + 1)σ2
x,q+1H(0)(:, q + 1)H .

The derivation of the optimum feedforward filter columnw(opt)(q+1) follows
from the inversion of the correlation matrixRr[q], which generally requires
O
(
(NoNf )3

)
operations. However, it is simple to verify that, givenR

−1

r [q−1],
the inversion of the matrixRr[q] can be efficiently performed inO

(
(NoNf )2

)
operations by exploiting the Sherman-Morrison formula and by inverting the
right hand-side of (B.13) rather than the left hand-side one. It follows that, for
Scenario 2,W(opt)

2 is computed with the following algorithm (in the sequel
referred to as Algorithm 2) afterNi steps:
step 0

k = 0

Rr[0]← Rr

w(opt)
2 (1)← [Rr[0]]−1 H(0)(:, 1)σ2

x,1

step k

k ← k + 1
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[Rr[k]]
−1 ← [Rr[k − 1]]−1 − [Rr[k − 1]]−1 H(0)(:, k)

·
(

H(0)(:, k)
H [Rr[k − 1]]−1 H(0)(:, k)−

1
σ2

x,k

)−1

·H(0)(:, k)
H [Rr[k − 1]]−1

W(opt)
2 (k + 1)← [Rr[k]]

−1 H(0)(:, k + 1)σ2
x,k+1

end
where the inverse ofRr[0] represents the output of Algorithm 1. Finally, the

optimum feedback filterB(opt)
2 given by

B(opt)H

2 =
[
INi + L(WH

2 )H(0) WH
2 T̃[Hk+∆+1, Nf , Nb]

]
, (B.13)

whereL(·) is the strictly lower triangular part of the matrix argument, and its
computation exhibits anO

(
N2

i NoNfNb

)
complexity. We must point out that

the computational complexity of the proposed algorithm is in general larger
than the one of the algorithm proposed in [9] except for the very special case
whereNo � Ni andN3

f � ν2.
On the other hand, the proposed algorithm is compatible with the V-

BLAST ordering algorithm and, unlike [52], preserves a computational com-
plexity which grows quadratically with the system parameters. In such a case,
the Algorithm 2 needs to be slightly modified by introducing instep k the
operations that:

a) calculate theNi decision-point signal-to-noise ratio;

b) chose the indexik related maximum decision-point signal-to-noise ratio
to define the V-BLAST ordering{i1, . . . , iNi}.
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