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andling the still increasing amount of digital traffic is today a large and

H important research area. As it is well known, the information capac-
ity of the conventional single-input single-output (SISO) systems grows in a
logarithmic fashion with the signal-to-noise ratio. Since the signal-to-noise
ratio is related to the transmitted power and the ambient noise, one way to an-
swer the demand of high bit-rate services is to increase the transmitted power.
Unfortunately, in the modern multi-user environments, the ambient noise is
due to other users transmitting within the same frequency bands. It follows
that the increase in the transmit power does not guarantee a capacity gain be-
cause it implies a proportional increase in the overall disturbance. Moreover,
higher power level comes at the cost of a nonlinearity in the power ampli-
fier. For some years, the single-input multiple-output (SIMO) systems, as well
as multiple-input single-output (MISO) one, has represented a possible solu-
tion in attempting to increase the signal-to-noise ratio, and consequently the
capacity of the SISO system. The multiple output (input) character of such
communication systems is usually related to the adoption of receive (trans-
mit) diversity techniques. For instance, the use of multi element array at the
receiver (transmitter) and one element at the transmitter (receiver), has been
extensively studied. Unfortunately, the capacity achieved by the SIMO sys-
tems increases very slowly with the number of system outputs, whereas the
capacity achieved by the MISO ones rapidly reaches saturation as the number
of input increases. The natural conjunction between SIMO and MISO systems
leads to the more attractive multiple-input multiple-output (MIMO) systems.
Foschini and Telatar showed that a huge capacity gain can be achieved over the
SISO, SIMO, and MISO systems: more specifically, the capacity of a MIMO
system can grow, in principle, linearly with the minimum over the number of
inputs and outputs.

For this reason, over the last decade, there has been a growth of research
activity in the area of MIMO systems. The advantages of using a such systems

XV
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lie in the following achievable gains:

e multiplexing gain
e diversity gain
e array gain

The multiplexing gainis related to the possibility of breaking up the data
stream to be transmitted into several parallel data streams and of transmitting
such streams over as many orthogonal subchannels simultaneously and within
the same frequency band. THersity gainis related to possibility of trans-
mitting and receiving several replicas of the information signal so that, with
high probability, at least one or more of them will not be in a deep fade at any
given instant. The diversity techniques have been widely adopted in commu-
nications to counteract fading: owing to a large number of inputs and outputs,
the MIMO systems allow one to achieve a diversity order higher than the one
achieved by the SISO, SIMO and MISO systems. Finally,dtray gainis
related to the increased signal-to-noise ratio measured at the output of the re-
ceiver, and it is achieved by coherently combining (at the transmitter side) the
signals to be transmitted and by coherently combining (at the receiver side) the
received signals.

In the first part of this thesis, the focus is on the design of receiving ar-
chitectures which allow one to achieveraultiplexing gainover linear time-
dispersive MIMO channels. As well known, the optimum (in the Maximum
Likelihood sense) MIMO channel equalization mainly suffers from the compu-
tational complexity; in fact, it exponentially increases both with the number of
input sequences and with the channel memory length. For such a reason, many
suboptimal equalizers have been proposed in order to achieve an acceptable
compromise between performance and computational complexity. In addi-
tion, the remarkable hostility of wireless communication channels justifies the
continuous efforts for optimizing computationally feasible equalization tech-
nigues. In the class of symbol-by-symbol equalizers, the decision-feedback
(DF) equalization plays an important role since it performs almost as well
as the optimum equalizer, but it requires a computational complexity slightly
higher than the linear equalizer. According to the DF equalizer structure, the
intersymbol interference (I1SI) and the co-channel interference are removed via
the output of a feedback filter, which processes the past decisions provided
by a decision device on the basis of the equalizer output, from the output of
the feedforward filter, which processes the received signals. The DF equal-
izer structure usually employs linear feedforward and feedback filters. In this
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thesis, we propose to combine the DF strategy with the widely linear (WL)
filtering, which generalizes linear filtering by linearly processing both real
and imaginary part of the input signals. More specifically, with reference to
MIMO dispersive environment, an equalizer employing WL feedforward and
feedback finite impulse response filters is presented. The equalization struc-
ture will be synthesized according to the MMSE criterion. It will be shown
that, in presence of rotationally variant inputs, such an equalizer outperforms
the linear-filtering based DF equalizer by exploiting the statistical redundancy
characterizing the channel input.

Moreover, the thesis deals with an important issue concerning the choice
between two alternative WL receiver structures. The former performs the lin-
ear processing of the real and the imaginary parts of the input signals (as state
above), whereas the latter performs the linear processing of the input signals
and their conjugate version. In the literature, such receiver structures have
been proposed for detection scenarios where they result to be equivalent. In
this thesis, we recognize that, if the more general structure of DF equalizer
which utilizes also the decisions belonging to the same time step is consid-
ered, then the two choices are not anymore equivalent.

The second part of this thesis considers the design of MIMO transceivers
with channel state information at both sides of the link. In such a scenario,
channel-dependent linear transmit and receive processing of data streams can
improve the system performances by optimally allocating resources such as
power and bits over the multiple inputs. From an information-theoretic view-
point, the optimum design in terms of capacity diagonalizes the MIMO chan-
nel intoeigen subchannelsver which ideal Gaussian codes have to be trans-
mitted with a water-filling power allocation. With reference to non-dispersive
MIMO channels, we propose a WL filtering based transceiver structure, i.e.,
the one which performs a WL transmit processing as well as a WL receive
processing. It will be shown that, if the signals are known to be circularly
variant, then the transceiver which employs linear filters is not optimal. The
performance comparison between the linear transceiver structure and the WL
one is also carried out by using the asymptotic results in random matrix theory,
which has drawn considerable attention in the last few years.

The outline of the thesis is the following:

Chapter 1 presents the general framework. The MIMO system model
is introduced and the improvement provided MIMO system over conventional
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SISO one are shown from an information-theoretic view-point.  Finally,
the basic properties of MIMO receivers as well as MIMO transceivers are
described.

Chapter 2 addresses the equalization of time-dispersive MIMO chan-
nels in presence of possibly rotationally variant transmitted symbols. The
DF equalization strategy and the WL processing are combined to obtain the
widely-linear/widely-decision-feedback equalizer. The optimum equalizer is
derived according to the minimum mean square error criterion. An analytical
calculation of the performance loss due unavoidable mismatches between
the actual values of the channel parameters, which are assumed known in
the derivation, and those estimated in practice, is provided. Finally, the
chapter reports an extensive set of experiments mainly aimed at comparing
the performance of the proposed WL equalizer and the linear one.

Chapter 3 addresses the MIMO transceiver optimization when channel
knowledge is available at both sides of the link and when possibly rotationally
variant symbols have to be transmitted. A new transceiver structure employ-
ing WL transmit and receive filters is presented, and its performances are
compared with those of the linear transceiver in terms of mean square error
measured at the output of the receiver and in terms of symbol error rate.



Chapter 1

MIMO model

he increasing requirements on data rate and quality of service for wire-
less communications systems call for new techniques to improve spec-

trum efficiency as well as link reliability. In this context, much attention
has been focused on multiple-input multiple-output (MIMO) communication
channel models mainly for the following reasons:

a)

b)

the increasing exploitation of multiple antennas both at the transmitter
and at the receiver side to introduce spatial redundancy as well as to
utilize the recent space-time coding techniques;

the widespread use of multiplexing and multiple access techniques
which require to resort to a MIMO channel model, since it can describe
the mutual interferences among the different symbol streams. More
specifically, resorting to a MIMO model is mandatory in modern com-
munication systems that utilize code-division multiple-access (CDMA)
techniques such as direct sequence (DS) CDMA, multi carrier (MC)
CDMA and orthogonal frequency division multiplexing (OFDM));

the use of fractionally-spaced equalization where each received signal,
after analog filtering, is oversampled with sampling frequeptiymes

the symbol rate. In this case, an equivalent baud-rate MIMO model can
be adopted where the number of channel outputs becpiti@gs larger

than that associated with the baud-rate sampling.

In this chapter, after a brief introduction of the mathematical model
describing the radio channel propagation, we derive the bandpass equiva-
lent linear-time-invariant (LTI) finite-impulse-response (FIR) MIMO channel

1



2 CHAPTER 1. MIMO MODEL

model, whose equalization represents the main subject of the thesis. The ver-
satility of the adopted model is demonstrated by showing that a FIR MIMO
model arises in many communication systems such as multiple antenna sys-
tems, OFDM systems, CDMA systems, and systems which resort to fraction-
ally spaced sampling techniques.

Following the Telatar’ s paper [1], the extraordinary improvements in the
capacity provided by MIMO systems over the conventional single-input single-
output (SISO) systems, the multiple-input single-output (MISO) systems, and
single-input multiple output (SIMO) systems, are shown. In additicsiver-
sity gainandarray gain, MIMO links can offer the so callethultiplexing gain
by opening parallel data pipes (usually calimhtial modeor eigen subchan-
nelg within the same frequency band at no additional power expense. In the
presence of rich scattering, MIMO links offer capacity gains that are propor-
tional to the minimum of the number of channel inputs and outputs.

Finally, both basic MIMO receiver and transceiver architectures are intro-
duced to provide the general frameworks utilized in Chapter 2 and Chapter 3,
respectively. More specifically, when the MIMO channel transfer function is
known at only the receiver side, the linear and the decision-feedback equalizers
are considered rather than the optimum (in the Maximum Likelihood Sense)
due to their lower computational complexity. If the channel state information
is available at both ends of the link, the transmitter and the receiver structures
can be jointly designed to improve the system performances. At the end of this
chapter, the linear transceiver design procedure is described.

1.1 Multiple-input multiple-output channel model

The block diagram of the equivalent low-pass continuous-time & O
channel withV; input signals anaV,, output signals is depicted in Fig. 1.1. At
the transmitter sidsg) denotes théth complex-valued symbol to be trans-
mitted by utilizing thelth channel input; the symbdl; denotes the symbol
period, andyr(t) is the time-invariant unit-energy impulse response of the
transmit filters. The continuous-time linear MIMO channel is characterized by
the N, N; time-variant impulse responsg¥:*) (t,7) of the linear time-variant
(LTV) subchannel connecting thigh channel output with théth channel in-

put: note thay(“:*) (t,7) is defined as the response at tifrte a unitary Dirac
impulse applied to the considered subchannel at the timer [2]. At the

1The modeling of the channel as a linear system agrees with the observed behavior of a large
number of communication channels.
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receiver sidep(“)(t) represents the additive ambient noise at tteoutput,

andvp(t) denotes the time-invariant unit-energy impulse response of the re-

ceive filters. The/th channel outpuy®) (t) is sampled with sampling period

of T. = T,/q, with ¢ € N. The choice; = 1 accounts for the case where the

symbol rate at the transmitter and the sampling rate at the receiver are equal.
According to such a model, the input-output relationship of the MIMO

channel can be written as follows:

Z Zs IREi (¢t — nTy) +nO(t) (=1,...,N, (1.1)

n=—oo =1
where
R(6k) (t,7)
n® (t)

() * g (t,7) % Yr(r) (1.2)
Ot) *yr(t) (1.3)
with % denoting the continuous-time convolution operator. In the following,

we will refer toh(“%) (¢, 7) as the channel impulse response of the subchannel
(¢, k), and we will refer to theV,, x NN; matrix

L
L

ROD 7y B2t 1) ... ROND(t 1)
H(t.7) & h(z’l).(t,T) h(z’Q)l(t,T) h(2’Ni.)(t,T) (1.4)
OO (7)) RORD(1 7). NN (1 7)
as the MIMO channel matrix, whereas the column vector
[ WD) w2t 7) ... B@ed(t 7) |7 is usually referred to as

the signature induced by thith input across the channel outputs. In the cur-
rent literature, the special casgs; = 1, N, > 1) and(V; > 1, N, = 1) are
referred to as single-input multiple-output (SIMO) system and multiple-input
single-output (MISO) system, respectively;Nf = N, = 1, then the MIMO
system degenerates into the conventional SISO system.

The sampled versioyn,(f) of the channel outpuj(¥) (¢) is equal to

gl 2 <f>(kT) ¢(=1,...,N,

Z Z DD (KT, KT, — qnT.) +n” (1.5)

n=—o0 =1

wheren'” £ n(0 (kT.) denotes the sampled version of the noise sigfa(t).
The discrete-time model in (1.5) is written as a function of the two data rates
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1/Ts and1/T.. A suitable model, expressed as a function of a single data rate,
can be provided by defining the symbol sequences:

L0 2 s,(f/)q if £ is integer ' (1.6)
g 0 otherwise

Note thatr,(f) represents the oversampled versiorsg))f obtained by inserting

q — 1 zeros between the symbodg) andsffll. By utilizing (1.6), the input-
output relationship (1.5) can be rewritten as follows

o

T S W ¢=1,...,N, , (1.7)

n=—oo i=1

whereh,(f;fb) £ (KT, nT.). The equation in (1.7) provides the-space
sampled discrete-time MIMO channel model; without loss of generality, in this
thesis we will assum&,. = T unless specified.

Let us note thay“¥)(t,7) andn()(t) are, in general, complex-valued
random processes. More specifically, the channel impulse responses can be
modelled as white processes independent of each other, as well as they can be
modelled as structured processes and/or correlated with each other when spe-
cial scenarios are considered. On the other hand, the noise processes can be
reasonably modelled as white processes independent of each other and inde-
pendent of the transmitted signals when they take into account for the effects
of the only thermal noise present at the output of the communication channel,
while they are typically structured when they take into account for the effects
of the co-channel interference.

1.2 Multipath fading channe

The characterization of the communication chankéi) (¢, 7) as randomly
linear time-variant systems allows one to model many radio channels such as
ionospheric radio communication in the HF band, tropospheric scatter radio
communications in both the UHF and SHF bands, and ionospheric forward
scatter in the VHF band [3]. The time-varying nature of such channels is due
to the time-variant physical characteristics of the media and the time variations
are described in statistical terms. Because of such unpredictable behavior of
the channel, the resultant signal at the receiver will experiéadiag, defined

as the changes in the received signal level in time. A widely adopted fading
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channel model is thenultipath fadingchannel, which allows one to simply
describe and analyze propagation situations that include reflection, refraction,
and scattering of radio waves. The model assumes that the electromagnetic
energy carrying the modulated signal propagates along more than one path
connecting the transmitter and receiver. The amplitude, the phase shift, and
the time delay introduced by each path vary in time and produce a time-variant
destructive and constructive interference which causes fading. In order to pro-
vide a characterization of the MIMO channel in (1.4), in this section, we briefly
present the main features of the communication chal$él (¢, 7) when it is
modeled as anultipath fadingchannel.

According to the multipath model, the impulse respoléé) (¢, 7) can be
represented [3, 4] in the form

N(t)
W) = Y e n V05 (1B )) (1)

=1
whereaz@’k) (t) denotes the attenuation of thith path, fy is the carrier fre-

quency,Ti(ﬁ’k) (t) denotes the time delay that affects the replica of the trans-
mitted signal along théth propagation path, and whefé(t) is the number
of paths at the time instanf note that, except for the carrier frequency, all
these quantities are modeled as random processes. It is well known that large
dynamic changes in the medium are required to get a significant variation of
al(z,k) (t). On the other hand, the phase sl@iﬁ’k) (t) = 27rfori(€’k) (t) intro-
duced along theth path can noticeably change also in presence of small mo-
tions of the medium: in facﬂy’k) (t) will change by2x rad Wheneveri(é’k) (t)
changes by / fo.

According to (1.8), the output of the chanréf*) (¢, 7) corresponding to
the input signak:(¢) is equal to

yu(t) = /00 h(e’k)(t,T)u(t —7)dt (1.9)

N(t)
= Z agé’k) (t)e’ﬁaz“’k)(t)u (7’ — Ti(é’k) (t)) ,
i=1
i.e., itis the sum of different replicas of the input waveform affected by differ-
ent attenuations, phase shifts, and time delays. The fast variati@{ngsk&t)
produce fast amplitude variations in the received signal, teffiadidg When
N(t) is sufficiently large, the central limit theorem can be applied, and the



1.2. MULTIPATH FADING CHANNEL 7

channel responsk(‘:*) (t,7) may be modeled as a complex-valued Gaussian
random procegsn thet variable. The absence of direct and/or dominant paths
allows one to assume that the channel statistics are Gaussian with zero-mean:
in such a case the channel is said to be a Rayleigh fading channel, since the
envelope|h(“*) (¢, 7)| at any instant is Rayleigh distributed. On the other
hand, in presence of a line of sight (LOS) or fixed scatterers, the envelope
|n(&R) (¢, 7)| displays Rice statistics; in such a case, the channel is said to be a
Rice fading channel. Finally, a more general fading channel model is described
by a Nakagamin distribution for the envelope of the channel response (see [3]
for details).

For some channels, such as the tropospheric scatter channel, it is more ap-
propriate to consider the received signal as consisting of a continuum of mul-
tipath components. For such a reason, in the following, we as#lfig(z, 7)
not necessarily expressed as the finite sum of impulsive feamim (1.8).

The main properties characterizing the fading channel can be studied by in-
troducing the autocorrelation function of the channel impulse response. To this
aim, let us assume that®*) (¢, 7) is a Gaussian wide sense stationary (WSS)
processes; in such a case it can be fully characterized by its autocorrelation
function:

E[(h (6, 7)) hE0 (¢t + At, )] 2 6P (r, 7, A1), (1.10)

whereE|[] is the statistical expectation operator, and the superscdphotes

the complex conjugate. Note that, although the fluctuations in the channel are
due to non-stationary statistical phenomena, the interest here is in short-term
fading which allows us to reasonably assume tHat) (¢, 7) is stationary in a

time sense. The function in (1.10) can be seen as the correlation between the
two channel impulse responses evaluated at the time instemtt + At, and
corresponding to two different paths andrs.

The autocorrelation function is usually slightly simplified by assuming that
the channel propagation is affected by uncorrelated scattering (US): according
to such an assumption, the attenuation and the phase shift introduced by the
propagation path with time delay are uncorrelated with the attenuation and
the phase shift introduced by the path with time delayAccording to the as-
sumption of Gaussian WSSUS channel, the autocorrelation function in (1.10)

2The modeling of the wireless channel impulse response as Gaussian process agrees with
the observed behavior of many communication channels.

3The model in (1.8) is an idealization of the actual behavior of a multipath channel, which
would not have such a sharply defined impulse response.
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is rewritten as follows:
E[(h0) (¢, ) P (¢ + At )] 2 67 (1, At)o(m — 1) . (1.12)

The (autocorrelation) functioqﬁ,(f’k) (11, At) evaluated forAt = 0 is referred

to as themultipath intensity profileor delay power spectrumince it is the
average output power of the channel as a function of the time dellyfact,

by accounting for (1.9), one has that the instantaneous output power is equal
to:

Ky, (1) 2 Ely()yst)] (1.12)
_ / ¢“’“ (71, 0)u(t — )2
= ¢\ (t,0) * Ju(t)?

i.e., the instantaneous input powert)|?, which is nonzero over the time in-
tervalT,, is spread over an interval of duratifm+T( k), with T,Ef’k) denoting
the duration of;zsgf’k) (t,0). For such a reasoff(e " is calledmultipath delay
spread It follows that, as long aéﬂ% B T., the received signal is spread
in time, and the corresponding channel is said to be time-dispersive: as it is
well known, the effect of the time dispersion is the intersymbol interference
(ISI). On the contrary, whem, >> 7% no linear distortion is presentin the
received signal and the channel is sald to be flat in the frequency domain.

A completely analogous characterization of channel can be provided by
defining the transfer function

HF) (ta f) = / h(&k) (tv T)e_]QﬂdeT ’ (1.13)

which exhibits the same statistics bf*) (¢, 7) . Under the assumption of
WSSUS channel, we define the space-time space-frequency autocorrelation
function

oy (D00 = B[(H9@ 1) HO @+ ot )] (114)

whereAf = fo — f1; note thatgbH (Af, At) is the Fourier transform of

th (7’ At) from 7 to Af. The value ofng (Af, 0) allows one to un-
derstand the behavior of the channel when two sinusoids with frequency sep-
aration A f represent the channel input. When the frequency separation is
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such tha&z) (EF) (Af, 0) is very near to the maximum valuzélfk) 0 0) for all
Af < (Af)e (“%) all the transmitted frequencies less tr(a]sf) WI|| be
received fading in highly correlated fashion. For such a rea@ﬁrf) )is
called thecoherence bandwidtand it can be approximated with the inverse of
T(Z ) 1t follows that, as long as the bandwidthf of the transmitted signal

is larger thar(Af)(f k) , the channel exhibits frequency selectivity.

Let us now conS|der the effects of the time variation of the channel. To this
aim, consider the special case whefe) = ¢/>7/1* is the channel input, and
let us evaluate the autocorrelation of the channel ougp():

K, (t,At) £ E[yu( Yyu(t + At)] (1.15)
= oY (0, Atyemh At

The correlationk’,, (¢, At) allows to understand the behavior of the time vary-
ing channel in the instantsandt + /At, when the tone’?"/1t is transmitted.
When time separatior\t is such thatb(Z k) (0, At) is very near to the max-
imum value¢ M)(0,0) for all At < (At)ﬁ " the transmitted signal of du-
ration less thariAt). is not affected by the non linear distortion, or, in other
words, the channel is not time selective (say, flat)in For such a reason,
(At)g’k) is calledcoherence time

The equation (1.15) can be also studied in the frequency domain. To this

aim, define that the Fourier transform @%’k)(ﬁf, At) with respect to the
variable/At:

SER (AN / QER (NF, At)e PABGAL (1.16)

The correlation functiorsg’k)(Af, M) evaluated forAf = 0 is called the
Doppler power spectrum of the chans@tce it is a power spectrum that gives
the signal intensity as a function of the Doppler frequehciBy applying the
Fourier transform (with respect to the varialdlé) to both the right hand side
and the left hand side of the equation (1.15), one has:

F{K,,(t, A1), At — A} = SWF 0 - ) (1.17)

i.e., the effect of the time variations of the channel result in frequency spread of
the received signal. The range of values over whﬁ{ﬁﬁk) (0, \) is sensitively
nonzero is calledoppler spreadand is denoted witlB,;; being S}f’k) (0,\)



10 CHAPTER 1. MIMO MODEL
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Figure 1.2: Channel classificationT is the symbol periodB the
bandwidth.

the Fourier transform o&%’k)(o, At), By can be approximated with the in-
verse of(At)e.

A complete qualitative classification of the radio channel based ooahe
herence bandwidthnd thecoherence times reported in Fig 1.2.

1.3 Time-dispersive FIR MIMO channel

The characterization of the fading channel reported in the previous section al-
lows one to determine the nature of the communication channel by simply
comparing the symbol peridfl; and the bandwidtiB of the transmitted sig-

nals with thecoherence timand thecoherence bandwidibf the radio channel.

In the modern digital communication systems, and especially for mobile appli-
cations, the increasing demand of high bit-rate transmission and the need to use
stationary channel models require the adoption of a very short symbol period.
For such a reason, the condition of flat fading ichannel is usually satisfied:
specifically, T <« (At)ff’k) V¢, k, and, consequently, th¥; N, impulse re-
sponses of the composite MIMO channel in (1.4) do not introduce non linear
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distortion on the transmitted signals. On the other hand, b(emg)ﬁ”“) < B,
the communication channels’*) (¢, 7) result to be frequency selective or,
equivalently, time-dispersive.

According to the above considerations, this thesis considers the transmis-
sions over frequency-selective channel assumed to be invariant within the ob-
servation interval. It follows that the outpyt,(¢) of the channeh(“) (¢, 1)
corresponding to the input signa(t¢) can be simplified as follows [see also

(1.9)]:
yu(t) = /OO hER) (& T)u(t — 7)tr (1.18)

= /00 h(g’k)(T)u(t — T)tT

whereh(“%) (1) £ pEk) (0, 7) is the time-invariant channel impulse response.
Accounting for (1.18), the MIMO channel input-output relationship in (1.1)
and the corresponding.-space sampled version in (1.7) can be rewritten as
follows:

Z Z DRED (¢ — nTy) +nO(2) (1.19)

n=—o0 =1

[e'e) N; ) ‘
= 3 S a? a4 al (1.20)

n=—oo i=1

respectively, whera| 2 h“ D = h9)(0,nT,).

It is clear that the total number df.-space discrete-time channel coeffi-
cientsh% 7 is determined by the maximum delay spread of the physical fading
channelg(“?) (¢, 7) and the time durations of the transmit and receiver filters,
which are usually infinite in theory to maintain limited frequency bandwidth.
Therefore,hgf’i) is a time-invariant filter with infinite impulse response (IIR).
However, in practice, the time domain tails of the transmit and receive filters
are designed to fall off rapidly, and it is reasonable to assume a finite range
for the values of. over which the amplitude of the channel coefficieﬁn%si)
is essentially nonzero. Thus, by eliminating the coefficients which do not af-
fect significantly (owing to their small power) the channel output, the channel
impulse responsb( ) can be truncated to a finite impulse response (FIR).
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For the above reason, without loss of generality, we assume:

hibd) £ 0 if n=0,...,00)
h{b) = otherwise ,
with (4% denoting the memory of the subchanf&li). Therefore, the input-

output relationship of the MIMO channel in the discrete time domain can be
written as follows:

&1 N; .
WO MO 1sesn, . aay
n=0 =1

By grouping the received samples from all, channel outputs at theth in-
stant into theV, x 1 column vector

T
w2 [y @ ] (1.22)

one can relatg to the corresponding input and noise column vectors

X, = { :1:,&1) x](f) xl(cNi) } (1.23)
T
n, = [ n,(gl) n,(f) n,(CN") } (1.24)
as follows:
Vi = Zank—n+nk (1.25)

n=0
= Hpxx;+n;
whereH,, is the N, x N; matrix whose(/, i) entry is h,(f’i), vis the' maxi-
mum length of theV,N; channel impulse responses, i+ max 49 and

0,0

* denotes the discrete-time convolution operator. The blocl)< diagram of the
discrete-time MIMO channel model is depicted in Fig. 1.3, wheré de-
notes the unit-delay block (i.e., the system that respond to the ipuiith
the outputxy_1).

In many applications, the channel matrix entrjééi) can be medeled as
zero-mean jointly WSS complex-valued circularly symmetric (see Chapter 2)
Gaussian random sequences with the same variance. However, in real-word
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Figure 1.3: Block diagram of the LTI time-dispersive MIMO channel
of orderv.

scenarios, the statistics Bf; can vary owing to the spatial and temporal fad-
ing correlation, and/or to the presence of a fixed component (e.g., line of sight)
in the channel resulting in Ricean fading, and/or to keyholes. These effects
have been modeled in [5, 6, 7, 8] and have been shown to have a signifi-
cant impact on the performance limits of MIMO channels. As regards the
noise vectoiny, its components,(f) are usually modeled as zero-mean jointly
WSS complex-valued circularly symmetric Gaussian random sequences un-
correlated with each other and independent of the transmitted signals. Such
an assumption is realistic when the noise vector takes into account only for
the presence of the thermal noise in the receiver. On the other harahn
describe the effects of the narrow-band interference due to overlay applica-
tions or cross-talk phenomena: is such cases, the comporéé)nmn exhibit
spatial and/or temporal correlation, and they can be correlated with the input
signals. However, in the rest of the thesis, we assume the noise vector to be
independent of the useful signals.

The time-dispersive MIMO channel model in (1.25), as it will be shown
in next section, arises in many applications, including multi-antenna systems,
spread-spectrum multiuser communications, multi-carrier systems. On the
other hand, we should note that, although it well describes the linear distortion
introduced by the radio channel, it does not take into account for other im-
pairments such as the nonlinear distortion introduced by the A/D converters,
and/or the phase and time jitter due to imperfect synchronization between the
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transmit oscillators and the receive ones. Since the linear distortion represents
the most important cause of performance degradation in many communication
systems, this thesis will present some receiver and transmitter design methods
mainly aimed at reducing the negative effects of the frequency selectivity of
the communication channel.

1.4 MIMO in communications

The model in (1.25) describes the input-output relationship of an abstract sys-
tem with several inputs and/or outputs; in fact, its derivation has been carried
out with no assumption regarding the specific application scenario. In the liter-
ature, the MIMO communication systems are usually identified with the ones
that employ multiple antennas at both the transmitter and the receiver. How-
ever, we point out that, although it is not always explicit, a “virtual” MIMO
model frequently arises in many communication systems. For example, in
many applications, a more exact description of the detection scenario requires
to take into account for the presence of several signals that, together with the
transmitted one, affect the channel output: according to the conventional SISO
schemes, the effects of such signals are modeled as additive noise. Otherwise,
a MIMO model whose inputs include the undesired signals can be adopted to
improve the system performances [9], provided that some a priori information
about such undesired signals is available. It is clear that this model is not an
actual MIMO one since the MIMO character is generated by an ad hoc repre-
sentation of the transmitted signals.

For such reasons, in subsection 1.4.1, we introduce the multi-antenna sys-
tems by utilizing a simple propagation model, known in the literature as one-
ring model: except when specified, in the rest of thesis, we will refer to
the MIMO systems as multi-antenna systems. On the other hand, in sub-
sections 1.4.2, 1.4.3, and 1.4.4, we refer to MIMO models which arise in
direct-sequence code-division multiple access (DS-CDMA) systems, OFDM
systems, and fractionally-spaced SISO systems.

1.4.1 Multipleantenna systems

Multiple antenna systems (see Fig. 1.4) have drawn a considerable attention
in the last years for their capability to reject interference and to reduce the ef-
fect of fading and noise. The earliest form of antenna system for improving
the performance of the communication systems was antenna diversity, which



1.4. MIMO IN COMMUNICATIONS 15

Transmitter

Yy v
vy Ty

Receiver

Figure 1.4. Multiantenna system.

mitigates the effect of fading. More recently, smart antenna systems, which at-
tempt to actively mitigate the channel impairments, have been developed [10].
The communication systems that employ multiple antennas at the transmitter
and at the receiver are popularly known as MIMO systems. Their structure nat-
urally leads to a MIMO model where the signals transmitted by the transmit
antennas represent the channel input, while the ones received by the receive
antennas represent the channel output. In this section, we derive the channel
impulse response of a multiple antenna system through the simple physical
scattering model known in literature ase-ringmodel [11], which is appro-
priate in the fixed communication context, where the transmitter is elevated
and seldom obstructed. For simplicity, in the following, we don’ t account for
the time-varying nature of the channel.

Fig. 1.5 shows th@ne-ringmodel. The transmitting antennas and the
receiving ones are denoted wiith4,; and RA,, and no LOS is present. Ac-
cording to such a model, every actual scatterer that lies at an értgl¢he
receiver is represented by a corresponding effective scatterer located at the
same angle on the ring. In other words, we assume that the receiving antennas
are surrounded by an infinite number of local scatterers uniformly distributed
over the ring with radiug?, which is usually assumed to be much smaller than
the distanceD, denoting the distance between the transmitting array and the
receiving one. Each effective scatterer is denoted W{#h): the rays that are
reflected byS(#) are subject to a phase chang@), which accounts for the
dielectric properties of the ring. Moreover, each scatterer is further assumed
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Figure 1.5: lllustration of the abstraaine ringmodel.

to be reflected only once, and all scatterers that reach the receiving antenna
are equal in powér According to the above assumptions, and in presence of
K scatterers, the normalized path gélp; of the subchannel connectidg/A;
andT Ay is [6]:

K
} Dra s + Do) ra
g0 (1) = 1 3 )5 (t_ TA—50:) T D56 RAI) (1.26)
C

whereD,_.;, denotes the distance betweeandb, andc is the speed of prop-
agation of the electromagnetic filed in the medum

Accounting for the time-invariant unit-energy impulse respongest)
andyr(t) of the transmit filter and the receive one, respectively, it is easy
verified that

WD (t) = () + g0 () = vr(t) (1.27)

The model in (1.26) and (1.27) allows to simply relate the MIMO subchan-
nel gains to the physical system parameters. Note that, when the reciprocal
communication bandwidth is much smaller than delay spread, (1.26) can be
approximated as follows

g (t) ~ aB)5(t) | (1.28)

4Such an assumption is equivalent to assume the antenna gains independent of the impinging
direction of the plane wave travelling from the scatterer to the receive antenna.
®Note the similarity with the multipath model in (1.8).
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i.e., a flat-frequency MIMO channel with complex-valued subchannel gains
a®) arises. With reference to such a channel model, it has been shown in [6]
that whenk is sufficient large, the central limit theorem can be appliedrid

can be modeled as a zero-mean unitary-variance Gaussian random variable: in
a way, this motivates the frequent assumption of Gaussian distributed channel
coefﬁcientshg’z). Moreover, accounting for the conditidn >> R, itis shown

that the correlation betweer’") anda (™™ varies as

E [a(“) (a(m’”)>*] ~ Jo (?d}z(m,n» (1.29)

where Jo(z) £ (1/27) [" exp(z cos(0))dd, andd®(m,n) denotes the dis-
tance between the two receiving antennas. If the antenna sp#éing n) is
sufficiently larger than half wavelength, the fades associated with two different

receiving antennas can be considered independent of each other.

142 DSCDMA systems

The code division multiple access (CDMA) systems have taken on a signifi-
cant role in communications since they allow all users to use all the available
time and frequency resources simultaneously, by assigning a code to each user
[12, 13]. In the following, we show that a MIMO system model can be uti-
lized to describe the CDMA system in the general case where the users are
asynchronous, and the channel exhibits multipath distortion effects.

In direct sequence (DS) CDMA systems wiih users, the transmitted
signal by thekth user can be written in the following general form:

M—-1

2B @) =S Fs®) (¢ —iT) k=1,2,... K (1.30)
=0
with
1 N-1 *)
k A .
s (1) & Vv c;o(t — jTe) 0<t<T (1.31)
j:

M-1
Where{bgk)}._0 denotes the symbol stream to be transmitted byAttie
user,T is the symbol intervaly(-) denotes the chip waveform of duration

R o (Te 2 - OhG
T, = T /N and with unit energy, |.e:fD w*(t)dt = 1, and, flnally,{cj } -
J:
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is the signature sequence assigned toktieuser. Each signal is transmitted
over a time invariant multipath channel whose impulse response is

L
g W) =>" alst — i) (1.32)
m=1

whereL denotes the number of paths(fi) the complex-valued path gain, and
T,Sf) the path delay such thafk) < 72(’“) < .. .Tg“). At any given receiver, the
received continuous-time signal is represented by the sum oKtlchannel
outputs and the additive noise:

K M-1 L
y®) = 30 N aPs® (it - 1) o) . (1.33)
k=1 1=0 m=1

The received signaj(t) is processed by the chip matched filter and sampled
at the chip-rate: theth signal sample during thé&h symbol interval is equal
to:

@ a [THEDT
= [ y(t)p(t — 0T — gT.)dt (1.34)
eT‘i‘ch
K M-1
=3y p{*)
k=1 i=0
L 1 N-1 . T.
a3 AP eeele (€N +q - )T - )
m=1 N3 0
éh;]j\)”rq
+ néq)
e (k) 4 (k) (9)
- Z Z by N g T ny'
k=1 p=0
where

LT+ (g+1)Te
nﬁq) = / n(t)p(t — 0T — qT,)dt
(T+qT.

1<k<K

(k)+Te
andé £ max ({TLT w> (with [-] denoting the smallest integer part
not less then its argument) denotes the maximum delay spread normalized to
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T. By collecting theN samples of the received signal during ttle symbol
interval into the column vector

T
ye = [ yéo) yél) yéNﬁl) ; (1.35)

the input-output relationship (1.34) can be rewritten in the matrix form:

ye=Hyxb;+ny (1.36)
(1) (K) 1 1
S o b i
H, = P b= | ng = |
(1 (K) K K
hé]\)/+N71 NG N bg : ”2 :

According to (1.36), the asynchronous DS CDMA system is equivalent to a
time-dispersive MIMO system, with impulse resporide. Let us note that,
while the multi-user scenario naturally leads to a multiple-input system, the
multiple-output character of the DS CDMA channel is generated by the special
transformation of the single received signal.

Finally, it is worthwhile to observe that also the advanced communication
systems combining DS CDMA techniques with multicarrier (MC) transmis-
sion schemes (see for example [14]) can be described by utilizing an aug-
mented MIMO channel model properly defined.

143 OFDM systems

Orthogonal frequency-division multiplexing (OFDM) is a digital multi-carrier
transmission technique that distributes the digitally encoded symbols over sev-
eral parallel carriers in order to reduce the symbol rate and to achieve robust-
ness against long echoes in a multipath radio channel. Unlike conventional
frequency-division multiplexing, the spectra of the OFDM carriers partially
overlap. Nevertheless, they exhibit orthogonality on a symbol interval if they
are spaced in frequency exactly at the reciprocal of the symbol interval. Such
a requirement can be fulfilled by using the discrete Fourier transform, and by
introducing a guard interval equal or greater then the delay spread of the chan-
nel. In this section, we provide a description of the OFDM communication
systems in terms of MIMO systems.

In an OFDM system}NV input symbols (say, OFDM word) are transferred
by the serial-to-parallel converter (S/P) to the OFDM modulator. After each
symbol is modulated by the corresponding subcarrier, it is sampledgrd



20 CHAPTER 1. MIMO MODEL

converted. The discrete-time OFDM signal, implemented by an inverse dis-
crete Fourier transform (IDFT), can be expressed as follows:

N-1
1 2tpm
TEN+p = Z SEN 4m€ N 0<p<N (1.37)
m=0
-0 <k<o
wheresiym (m = 0,..., N —1) denotes the OFDM word to be transmitted,

rEpN+p represents thékN + p)th output sample of the output of the IFFT
block. After pulse shaping and parallel-to-serial (P/S) conversion, the signal is
transmitted over a SISO time-variant multipath fading channel that consists of
L propagation paths with complex-valued channel gains(the apex(1, 1),
which accounts for thé x 1 channel, is omitted for clarity). At receiver hand,
after matched filtering and removing the cyclic prefix (see for instance [15]),
the received signal can be written as

L—-1
YeN+p = Z PEN4p TN +p—t T MEN+p (1.38)
(=0
wheren;,n 4, denotes the additive noise samples. After S/P conversion of the
received samples, the demodulated sigf)jeﬂ is obtained by taking the dis-

. T .
crete Fourier transform (DFT) of the vectory,n ... yenvin—1 | i
1N1L71N1 st L N-1 .
() (1 m_ 27pi _27mpi
Yk() SEN+mhEN i€ e N + Z NpN+i€ 7 N
i=0 (=0 m=0 i=0
éN](Cp)
L—1N-1 2m( Y ot ®)
T(p—m)i milm
— 7 -1~ p
=) skenim N Z hinyipe™ N N+ Ny
/=0 m=0
H}EP m, L)
L-1N-1 Jant
=53 BT sinime” + NP (1.39)
/=0 m=0

The input-output relationship (1.39) can be rewritten in a matrix form as fol-
lows:

Y, =Cisp + N (1.40)



1.4. MIMO IN COMMUNICATIONS 21

with
SkEN Yk(O) NIEO)

we | Ly | Y e | M| a
SEN+(N—-1) Yk(]\l”l) ngf\}*l)

and where thém, i) entry of theN x N matrix Cy, is defined as

271

C]gmﬂ) A ng(),mfi) _l_fllgl,mfi)efjW T

R o e (1.42)
It follows that the OFDM system is equivalent to a LTV non-dispersive MIMO
system with impulse respon€g,.
If the channel impulse response remains constant over the word interval,
one hasH,ip*m’e) = 0 for p # m, implying thatC; degenerates into a diago-
nal matrix, and there exists no intercarrier interference (ICI). In such a case, the
received sample)s*k(p ) are affected by only the multiplicative distortion, which
can be easily compensated for by a one-tap frequency-domain equalizer: in
other words, the OFDM effectively converts a frequency selective fading chan-
nel into a set ofV flat fading channels. On the other hand, the variations of
the channel impulse response during the word interval, as well as the existence
of a frequency offsét destroy the orthogonality among the OFDM subcarriers
leading to a non-diagonal matr®,,, which accounts for the presence of ICI.
Recently, multiple antenna solutions and OFDM modulation have been
combined to obtain the MIMO-OFDM systems [15]. Also in this case, it
is possible to show that the overall system equation can be represented by a
MIMO model.

1.4.4 Fractionally spaced sampling

Fractionally spaced sampling is frequently utilized in SISO systems to reduce
the sensitivity of the receiver to synchronization errors, or simply to improve
the detector performances. According to such a technique, the received signal
is sampled; times during a symbol period; (say7. = Ts/q the sampling
period), as depicted in Figure 1.6, where an LTI receiver has been considered
for simplicity.

SFrequency offset in communication systems are caused by the mismatches between the
oscillator in the transmitter and in the receiver, by Doppler shifts, etc..
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T. =Ts/q

y(t) —— LTI receiver >< y(kT,)

Figure 1.6: Fractionally spaced sampling leads to a stationary multiple
output model.

Since the sampling rate is not equal to the symbol rate, the signal at the
output of the matched filter is not cyclostationary rather that stationary: its
moments vary periodically with a period equalgoTheT,.-sampled discrete-
time input-output relationship can be obtained by utilizing (1.5) with=
N, = 1. However, a great advantage in terms of detector implementation
purposes could be obtained if the output of the matched filter is transformed
into a stationary signal. To this aim, we collectonsecutive samples of the
matched filter output in the vector

vi 2 [ ykTs+T.) y(kTo+2T.) ... y(kTo+(¢—DT.) ] .(143)

Each elemenj/,g) of yi. can be seen as thig-sampled output of a LTI channel
with channel impulse response defined as

hO(t) £ h(t 4 (T.) (=0,....,q—1 , (1.44)

corrupted by the additive noisgt), and whose input is the transmitted signal
e o sk0(t — nTy), with i.i.d. s;. According to the above considerations,

we can expresg in (1.43) as the output of a SIMO system defined as follows:
Vi = Hj x s, + ny (145)

whereH;, is ag x 1 vector whose’th element ish,(f) 2 pO(kTy), andny,
is obtained by stacking noiseT,-space samples at the output of the matched
filter. The system modelin (1.45) provides stationary input and output sampled
at the symbol rate.

For the sake of completeness, let us note that the adoption of the MIMO
model, instead of the SISO one, allows one to obtain a stationary model also
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in scenarios where the input signalis cyclostationary (providing so a cyclo-
stationary channel output). For example, the stationarization of pulse ampli-
tude modulated (PAM) cyclostationary sequences transmitted over frequency
selective fading channels has been considered in [16].

1.5 Capacity of MIMO systems

The MIMO system are here discussed from an information theoretic perspec-
tive: the concept of mutual information between the channel input and output
gives a guideline to how well our system performs and how close it operates
to the ultimate Shannon limit. With regards to such an aspect, recent research
on MIMO channels, including the study of channel capacity [1, 10] and the
design of communication schemes [17], demonstrates a great improvement of
performance over the conventional SISO systems.

For the analysis in this section, we consider a single user frequency flat-
fading channel withV; inputs andN, outputs. According to (1.7), the input-
output relationship over a symbol period can be written as

yi = Hgxyp + ng (1.46)

where the noise vectan; has i.i.d. complex-valued circularly symmetric
(see Chapter 2) zero-mean Gaussian entries with unitary variance, i.e., its
correlation matrix is equal tRR,, = [n;nf’] = Iy,, with the apexH de-
noting the conjugate transpose, and beipgthe identity matrix of sizek.

The total transmitted average power over a symbol period is constrained to
be less or equal t®, by assuming that the input correlation matrixof,

R, £ F [xxx]!], satisfiesrace(R,) = Py. Let us distinguish two possible
scenarios:

e H, = H is deterministic;

e H; is modeled as a random matrix with zero-mean circularly symmetric
Gaussian entries with unit variance and independent of each other.

In both scenarios, we assume that the channel state information (CSI) is avail-
able at the receiver. For convenience, in the following subsections, the sub-
scriptk in (1.46) is omitted, if not stated otherwise.
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15.1 Capacity of deterministic MIMO channel

Assume that the transmitter has knowledge of the channel ntatrihe chan-

nel capacity (measured in nats/s/Hz) is obtained by maximizing the mutual
information between the channel input and output over the input correlation
matrices satisfying the power constraint, -e.

~ R..IraC&R.)<P, {log det (Iy, + HR,H") }

= ptramls |, Uomdet (In; + R,H7H)} . (147)

By defining the eigenvalue decomposition (EVD) of the maHi¥ H as
H'H 2 VAV | (1.48)

it can be shown [18] that the input vector maximizing the information rate is a
circularly symmetric Gaussian vector with correlation matrix

R, = vVl (1.49)

where the diagonal entries (: = 1,...,V;) of the diagonal matrix2 are
provided by the well known water-filling procedure, i.e.,

oi=(n—A"), suchthat » ;<P , (1.50)

A

with \; (i = 1,...,N;) denoting the diagonal entrieA, and (a); =
max{0, a}. Thus, the channel capacity can be parametrized as

Clu) = > _log (1hi) - (1.51)

It is important to note that, being the nonzero eigenvalued8H equal to
those of HH", the channeldI and H achieves the same capacity (reci-
procity).

When CSl is available at the transmitter, the concept of forming an average
capacity is somewhat less straightforward, since the transmitter has the addi-
tional option of optimizing the power allocation over time as well as over the

"Accounting also for the independence between the useful signals and the noise ones, and
accounting fordet(I + AB) = det(I + BA).
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eigenvalues (while maintaining the required average power restriction). For
such a reason, we shall not consider average capacities for this case.

In some application scenarios, it is reasonable to restrain the computational
complexity of the transmitter by allocating the same power tohehannel
inputs, i.e. R, = (Po/N;)Iy,. In such a case, the achieved capacity is equal
to [1]

= P
Cep = ;log (1 + ﬁoAk> , (1.52)

wherem = min{N;, N, }, and the subscripk P stays for equal-power. The
above equation expresses the MIMO channel capacity as the sum of the ca-
pacities ofm SISO channels with channel gajf\. It follows that multiple
spatial modegor eigen subchannelgr eigenmodesopen up between trans-
mitter and receiver resulting in a performance improvement with respect to the
conventional SISO system.

1.5.2 Ergodic capacity of fading MIM O channel

Let us now consider the more interesting case of random channel matrix, inde-
pendent of the input and noise vectors. We make the following assumption:

e no CSl is available at the transmitter;
o the distribution ofH is known at the transmitter;

e the transmission of the symbol-vectercorresponds to one use of the
channel, and each use of the channel corresponds to an independent re-
alization ofH (according to the chosen probability distribution); this is
known as thesrgodic assumptian

The channel capacity (calledigodic capacityis obtained by maximizing over
the input correlation matriR ., the mutual information between the channel
input and output averaged ovHEr, in symbols, one has:

rotrands |, 1Py [logdet (Ly, + HR,H)]} | (1.53)

where Ey[-] denotes the expectation with respectHo In [1], it has been
shown that the capacity is achieved fercircularly symmetric zero-mean
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complex-valued Gaussian vector wil, = (Py/N;)In,. Accounting for
(1.52), it follows:

C=FEx

Zlog (1 + P—/\k>] . (1.54)

k=1

The computation of the expectation (1.54) needs the knowledge of the joint
density of the unordered strictly positive eigenvalugsof the random non-
negative definite Wishart matrifd” H (or, equivalently HH). Such a den-

sity is known in the literature to be [19]

AP

- i =i N C 2
PAL -3 Am) = 05 Ul m—iim—n° ill(& \e)? (1.55)
and, by accounting for its symmetry, one has
C =mkE), [log <1 + %)\k)] , (1.56)

where)\ is one of the unordered eigenvalues. Thus, the capacity of the MIMO
system is given by the following theorem [1].

Theorem 1.1 The capacity of the fading channkl with N; input and N,
outputs, subject to the power constraint tra€e,) = Py, is equal to

C= m/ log <1 + PO)\> pA(A)dA | (1.57)
0 Ni
where
1 '— ! 2
_ Lm n—m_—A\ 1.
mk:o k—i—n— [ % ()\)] A e (1.58)

wheren = max{N;, N,}, and whereL§(\) = (1/k!)e*\ =40 (e \thy is
the generalized Laguerre polynomial of order

The expression (1.57) can be specialized to both the cases of MISO and
SIMO channels as follows:

1 > P L
Curso = m/o log <1+F2)\> ANizlemXdx  (1.59)

1 o0
Csimo )/ log (1 4+ PoA) ANe~le™2dx . (1.60)

(N, —1)! J,
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Figure 1.7: Capacity of a MISO §V, = 1) system versus the number
of inputsV; for different values ofP,.

By numerically computing the integrals in (1.59) and (1.60), we have plot-
ted in Fig. 1.7 and 1.8 the capacity achieved by the MISO and the SIMO
systems, respectively, for different values of the available poWr &
0dB, 5dB, 10dB, 15dB, 20dB, 25dB, 30dB). As expected, they outperform the
conventional SISO systems. However, while; ;o is not bounded asv,
gets largeCyrso rapidly reaches saturation @&§ increases, i.e., increasing
the number of the MISO system inputs provides no further capacity gain. In
other words, the reciprocity observed for determinigicdoes not hold for
randomH. Such a difference can be easily explained by observing that, when
CSlis not available at the transmitter, the power allocated to eachRgN;
decreases a§; gets large. Thus, the gain provided by the use of multiple in-
put$ can not be exploited due to the decrease of power (per input). In [20],
upper and lower bounds to (1.57) have been provided to show that, for large

8Note that the nonzero eigenvalues of the Wishart mat#&€41 andHH* are equal, as
it happen for deterministi€l.
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Figure 1.8: Capacity of a SIMO {V; = 1) system versus the number
of outputsN, for different values ofP;.

Po, one has

finite N,, N; — o0 = C =~ N,log(Py) (1.61)

finite N;, N, - 00 = C = N;log (%) + N;log(N,) , (1.62)

2

i.e., the system capacity for fixed; grows withlog(XV,), while, for fixedN,, it
remains constant ds; increases. This confirms the results reported in Fig. 1.7.

In Fig. 1.9, the capacity of a squar&y( = N,) MIMO system has been
plotted versusV;, for the different values ofPy, by numerically computing
the integrals in (1.57). The analysis allows one to state that the system capacity
of the square MIMO system is well approximated by a linear functiofvof
Bounding (1.57), in [20], it has been shown that:

Ni 1 No
[Ni,NO — 00, & < 1] = EC — log(Py) + log (F) (1.63)

o 7

N; 1
[N,-,NO — 00, > 1] = FC — log(Po) (1.64)

o o

The ones previously considered in Fig. 1.7 and 1.8.
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Figure 1.9: Capacity of a square MIMON; = N, = N) system
versusN for different values ofP.

i.e., the system capacity grows linearly with the minimum between the number
of inputs and outputs:: this can be explained by observing that the capacity
of the MIMO channel has been expressed as the sum of the capacities of
SISO channels. Moreover, from (1.63) it is straightforward verified that there
is no benefit from increasiny; beyondN, in the asymptotic scenario.

Asymptotic analysis

In the last few years, a considerable amount of work is available in the liter-
ature on the fundamental limits of communication channels that makes sub-
stantial use of the asymptotic results in random matrix theory. Here, we briefly
recall the landmark contributioh of Marcenko and Pastur (1967) about the
eigenvalue distribution of random matrices in the folPY H, and we show

its utility in evaluating the capacity in (1.57) of the MIMO system when both
the numbers of inputs and outputs grow up to infinity, maintaining finite their
ratio.

190ther landmark contributions to the theory of random matrices have been previously pro-
vided by Wishart (1928) and Wigner (1955).
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To this aim, let us first rewrite (1.54) as

/Ooolog< +—Z>\>Z(5 A= \i) ]
= By [m/ooo log (1 + Z—A) d HHH()\)] (1.65)

where Fii'y (1)) is the empirical cumulative distribution function and it is
defined as

C = Ej\

Haa(\) £ — Zl{kk<A}7 (1.66)

with 1{-} being 1 if the argument is true, and O otherwise. &&eako and
Pastur have showed the following theorem [21]:

Theorem 1.2 Consider anN, x N; matrix H whose entries are zero-mean
i.i.d. complex-valued random variables with varian;ée and fourth moments
of order O(1/Ng2). AsNZ,N — oo with Nl — (3, the empirical asymp-

totic density functionl Fyfy ¢ (\)/dA converges almost surely to the nonran-
dom function

fa(A) = <1 - %) . S(A\) + v _2“71;(; — N+ A € [a,b]

with

—(1- /B b=(1+ /)

The density functiorfz () has been plotted in Fig. 1.10 for different values of
B. Note that, wher > 1, the impulsive term irfg(\) accounts for theV; —

N, > 0 zero eigenvalues dI”H. Analogously, the empirical asymptotic
density function o HH* converges almost surely to the nonrandom function

f0 = (1= B, 60 + YOIy

Thus, according to the asymptotic scenang,(V, — oo), the channel capac-
ity C can be written in the following form:

b
C— m/ log <1 + %A) fa(A)dA (1.67)
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£=0.01

Figure 1.10: The Magenko and Pastur of density 817 H for 3 =
1,0.5,0.1,0.01.

where the expectation operator in (1.65) has been removed $ifia¢ is a
deterministic function. By specializing such a result in the case of a square
MIMO channel, one has [1, 10]

C—>N/ log 1+—)\ 1\/é—1d/\ , (1.68)
2V A

which confirms the results shown in Fig. 1.9, where the capacity of the MIMO
channel grows in a linear fashion wifty,.

The widespread interest in the asymptotic results concerning the eigen-
value distribution of random matrices is due to its fast convergence to the
asymptotic limit. If the convergence is so fast, then, even for small values of the
parameters, the asymptotic results come close to the finite-size results. In Fig.
1.11 we have plotted the capacity (black lidein (1.68) versug < Py < 10,
for N; = 5,15,25,50. The grey points represents the capacity achieved over
each one of 100 realizations of the matkk whose entries have been mod-
eled as zero-mean complex-valued circularly symmetric Gaussian variables
with variancel /N,, and uncorrelated with each other. A% increases, the
asymptotic limit in (1.68) well approximates the capacity of the single channel
realization.
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Figure 1.11: One hundred realizations of (1.54) compared to the
asymptotic capacity in (1.68) vers§ = N, for different values of
Po.

The results concerning the asymptotic scenario will be utilized in Chapter
3 to compare the performances of different MIMO communication systems.

1.5.3 Outage capacity

The ergodic assumption considered in the previous subsection will not be satis-
fied in practical communication systems as, for example, in delay-constrained
applications, where the channel matFkis still random, but it remains fixed
once itis chosen for all the uses of the channel. In other words, the time interval
needed to transmit the information symbols is comparable with the coherence
time. In such a case, the Shannon capacity is zero due to the fact that there is
always a nonzero probability that the given channel realization will not support
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the rate at which we wish to communicate.

The system parameter to be considered isothi&; outage capacitf, .,
defined as the mutual information that is guaranteed 00 — out)% of the
channel realization:

Prob(Cep < Cout) = out% (1.69)

whereCgp has been defined in (1.52). The above definition is reasonable when
the channel matriH is just a “snapshot” of the underlying stochastic process.
Hence, there is a probability that this particular channel realization is in such
a deep fade that the communication system operating@yithnats/s/Hz will

fail to transmit without errors. The zero outage capacityt{c = 0) can be
interpreted as the lowest transmission rate that is invariant of the fading. Let
us note that, unlike MIMO system, for a SISO one this corresponds to channel
inversion, which then makes the observed channel independent of the fading.
Since a SISO Rayleigh fading channel is not invertible when the power is finite,
the SISO zero outage capacity is zero.

1.6 Multiplexing, diversity and array gain

In this section, the concepts wiultiplexing gaindiversity gainandarray gain

are introduced by resorting to an intuitive discussion based on the main results
(reported in previous section) about the eigenvalues distribution of random
matrices.

Let us note that the channel capacity in (1.51) and in (1.52) is related to
to the eigenvalueg,, of the random matri¥dI” H. The square roots of such
eigenvalues represent the gains of the parallel SISO charspelgl modes
in which H is decomposed, and, consequently, give an idea of how much the
transmission is good over a certain subchannel.

In Fig. 1.12-1.14, the joint density (1.55) has been depictedVioe 2
andN, = 2,6, 12. Note that, as the number of outputs increases, the centers
of two lobes ofpy (A1, A2) deviate from the axes; = 0 and\, = 0, i.e., it
increases the probability of decomposing the MIMO channel intogpatial
modeswith likely different from zero gain. Such a behavior can be explained
by the light of Theorem 1.2, from which it is evident that @s— 0, the
eigenvalue distribution d” H approaches to an impulsive function.

The use of two antennas at the transmitter ahd> 2 antennas at the
receiver, in conjunction with rich scattering in the propagation environment,
opens up two 1@in{N;, N,} for a N, x N; MIMO channel, according to
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Figure 1.12: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixHH” H with N; = 2 and N, = 2.

(1.57)) data pipes which yield a capacity increase . This effect is csfllatial
multiplexing gaiftl. The basic idea ofpatial multiplexindies in the fact that

the symbol stream to be transmitted is broken up into several parallel symbol
streams which are then transmitted simultaneously from the antennas within
the same frequency band. Due to multipath propagation, different spatio-
temporal sighatures are induced by each transmit antenna across the receive
ones. The receiver exploits these signature differences to separate the individ-
ual data streams, allowing one to achieve tigtiplexing gain Let us note

that themultiplexing gaincan be achieved when the CSI is available at the
transmitter and at the receiver, as well as when the CSl is available at only the
receiver side. Clearly, the price to be paid foultiplexing gainis increased
hardware cost due to the use of multiple antennas.

"The adjectivespatial is mainly due to the identification of the MIMO systems with the
multi-antenna systems.
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By observing the joint densities in Fig. 1.12-1.14 for different values of
N,, it should be noted that, for the smallest valuesh\gf the multiplexing
gainis not supported by a good reliability of both the subchannels over which
the two data pipes are transmitted. In fact, the two subchannel gains might
be quite different, and we expect a good quality transmission over only one of
them. In such a case, a possible choice is to give up the idea of maximizing
the channel capacity, and maximize the so-cadledy gain by utilizing the
subchannel which provides the maximum channel gain [22]. arfeey gain
is related to the increased signal-to-noise ratio measured at the output of the
receiver, and it is achieved by coherently combining (at the transmitter side)
the signals to be transmitted and by coherently combining (at the receiver side)
the received signals. It should be noted that, untikatiplexing gainthearray
gainrequires the channel knowledge at the transmitter and at the receiver.
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Figure 1.13: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixdH” H with N; = 2 andN, = 6.

Finally, the curves in Fig. 1.12-1.14 allow us to state thatyg#ncreases,
the reliability of the subchannels, over which the two data pipes are transmit-
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Figure 1.14: Joint p.d.f. of the unordered positive eigenvalues of the
Wishart matrixHH? H with N; = 2 andN, = 12.

ted, become comparable since the corresponding subchannel gains are com-
parable. Such an effect is ascribed to #menna diversitywhich increases

when the number of employed antennas grows. arftenna diversitys one of

the main form&? of diversity traditionally exploited in communications. The
basic principle of diversity is that if several replicas of the information signal
are received through independently fading links (branches), then, with high
probability, at least one or more of these links will not be in a deep fade at any
given instant. Clearly, this probability will increase if the number of diversity
branches increases. For such a reason, regarding to the considered example,
the increase of the number of receive antennas allows the receiver to combine
the arriving signals to achieve an higher gain over each one of thepao

tial modes or, equivalently, to reduce the probability that one of them is in

20ther widely used forms of diversity are the temporal diversity, the frequency diversity,
and the code diversity. More general forms of diversity are obtained by the combination of the
above-mentioned ones.
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deep fading. As a consequence, the increased system capacity is supported
by a good reliability of both the parallel subchannels. The price to be paid
is, also in this case, the hardware cost. Receive diversity, i.e., the use of mul-
tiple antennas only at the receiver side, has been widely studied in the past.
On the other hand, transmit diversity has become an active area of research in
the past few years [23, 24, 25, 26, 27, 28]. More specifically, when the CSI
is available at both the transmitter and the receiver side, the transmitter and
the receiver can combine the transmitted and the received signals, respectively,
to reduce the effects of fading (see Section 1.8). In the case where CSl is
available only at the receiver side, transmit diversity techniques require more
sophisticated methods such as space-time coding (STC), which uses coding
across space and time and allows the receiver to achieve the diversity (see for
example [17, 29, 30]).

1.7 MIMO recever architectures

In this section, we provide a very brief overview of the main receiving architec-
tures for MIMO channels, which allow to achieveraultiplexing gain Let us

first introduce the working framework. At the transmitter side, the data stream
to be transmitted is demultiplexed inig streams::,(f) ¢=1,...,N;)which,

after coding and modulation, are simultaneously sent over many antennas with
symbol period equal t@;. At the receiver sidelN, antennas are employed to
recover as many superpositions of the transmitted signals. The received signals
y(t) areT,-space sampléd and, then, are processed to separate the differ-

ent N; transmitted sequenceée), which are finally remultiplexed to recover
the original data stream. The separation step can be performed according to
different (optimization) criteria and, clearly, it determines the computational
complexity of the receiver: in practical scenarios, the aim to be pursued is
represented by the achievement of an acceptable compromise between perfor-
mance and computational complexity. For such a reason, the maximum like-
lihood (ML) receiver, that yields the best performance in terms of error rate
at the expense of computational complexity, is often replaced by suboptimal
equalizers that exhibit a sustainable complexity.

In the following, we introduce some of the main receiver architectures for
MIMO receivers:

e ML receiver

BWe have assumet. = T in (1.5).
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e minimum mean square (MMSE) error linear receiver
e zero-forcing (ZF) linear receiver
e decision-feedback (DF) based receiver.

The MMSE receiver structures and the DF-based ones only introduced here,
constitute the main subject of the Chapter 2.

1.7.1 ML receiver

Consider a time non-dispersive LTI MIMO channel witfy inputs andN,
outputs. The input-output relationship corresponding to/theoutput can be
specialized as follows:

N; ) )
O AND a0 i=N @T
i=1

whereh(®) 2 p{“) () and wherer!” is drawn from the alphabkt A.
We aim at recovering the transmitted symbxé‘i) from the observatiory,(f)
in the case where the channel impulse response is known at the receiver. By
denoting withf,, () di probability density function of the additive I’]Oiﬁé@,

the likelihood function of the observation, conditioned on the symbréil)s
(i=1,...,N;)isequal to

N
(0 /x) = (y;(f) - waj)h“’”> : (1.72)
i=1

The ML symbol decision is given simply by the argument that maximizes
L (y,(f)/xk> over the symbol alphabet

i,(f) = argmax (L’ (y,(f)/xk = x)) . (1.72)
x€ANi

Thus, the ML detection requires an exhaustive search over a tatillofec-

tor symbols, rendering the decoding complexity exponential in the number of

channel inputs.

YFor the sake of clarity, we have assumed the same alphabet for all the input sequences; a
more general framework provides to account for the presence of different symbol alphabets as
it will be considered in Chapter 2.
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In the more general case of time-dispersive LTI MIMO channel, we should
consider the likelihood function of the observation conditioned on the frame
of symbolsz!” 2" .. 2" (vi). Thus, the exponential complexity of the
ML receiver increases simultaneously with the number of inputs and with the
channel memory, making its implementation costly for MIMO detection on
severe ISI channels, especially as the input signal constellation size increases
to improve spectral efficiency.

1.7.2 MMSE FIR equalizer

Let us consider the time-dispersive LTI MIMO channel model in (1.25). For
a block of Ny received symbols, rewrite the system equation in the following
matrix form:

Yi Ho Hy ... H, o .- 0
Yi— 0 Hp Hy --- Hy

o= | (1.73)

Yi—(Np—1) 0 - 0 Ho Hi -~ Hy

Xk Nk
Xk—1 Nk—1
+
Xk—(Nj—1)—v Nk—(N;-1)
or, more compactfp,

y=Hx+n . (1.74)

The vectory is processed by a linear FIR equalizer to provide an estimate
of the transmitted symbol vector; such an estimate is then quantized by the
decision devic&(-) to produce the symbol constellation (see Fig. 1.15).
The output of the equalizer is equal to
Ny—1
Xy = Z Wiyrk—s (1.75)
=0

- {ng wi Wiy

AW

The matrixH defined in (1.73) is not related to that defined in Section 1.5; we slightly
abuse the notation for the sake of simplicity.
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Figure 1.15: Block diagram of a linear receiver.

where W, denotes the complex-valued matrix taps of si¥g x N;. The
equalizer outpuky is the estimate of the transmitted symbol vestpr A, with
A denoting a processing delay. The value\ak related to the capability of the
equalizer in performing causal processing and anticausal processing: the case
A = 0 corresponds to a strictly causal filtering, while the case N;+v—1
corresponds to strictly anticausal filtering.

The MMSE equalizeW minimizes the trace of the error correlation ma-
trix16

Re 2 E[(% —xx) (s — xz)7] (1.76)

£ FE [ekekH]

By resorting to the orthogonality principle, and accounting for the indepen-
dence ofx from n, the optimumW can be written as follows:

WrmsE = jolHRxeA—H (1.77)
where
R, & E[XXH]
R, 2 E[nn'] (1.78)
R, £ HR,H+R,
A T
ear1 = [Onxvia Iny Onpuny(Vj4v—n-1) |

or, in other wordsW /s is the conventional Wiener filter that processes
the observation vectgr in order to estimate the desired vecigr_A. Let us

16 et us note that it would be advisable to design the equalizer to adjust the properties of
Q(xx), instead ofky, for instance to minimize the error rate. However, controlling the proper-
ties of Q(xx) is much more difficult than controlling the propertiessof.
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emphasize the importance of optimizing the defawhich, as it will be shown

in Chapter 2, greatly affects the traceRf: unfortunately, the optimization
over A can be usually carried out only by an exhaustive procedure. Moreover,
for the sake of completeness, we point out that, in the MIMO environment,
different delays\, (¢ = 1, ..., N;) can be chosen for each one of the symbols
x,(fl a, to be estimated. However, since the optimization aeris carried

out by an exhaustive procedure, the computational complexity can be unsus-
tainable. For such a reason, in the rest of the thesis, we do not explore this
variable-delay based detection strategy.

Unfortunately, some channels will still be difficult to be equalized by uti-
lizing only a linear filter. In fact, when the channel exhibits zeros close to
the unit circle, the equalizer would need poles outside the unit circle becom-
ing unstable and, at the same time, amplifying received noise, which leads to
frequent decision errors. The performance analysis of the linear MMSE FIR
equalizer is presented in Chapter 2 where the MMSE equalization is studied in
details, accounting also for other (nonlinear) equalizer structures.

1.7.3 ZF FIR equalizer

Rewrite the input-output relationship of the LTI time-dispersive MIMO chan-
nel in (1.25) as follows:

p(£:9)
= B0 R Y a0 0 (079)
i#l n=1

co-channel interference + ISI

where the second term at the right-hand-side (RHS) accounts for the effects of
the N; — 1 inputs over theth output at the time instait while the third term
accounts for the ISI. The ZF FIR equalizer is the linear filter which processes
the observation vectoss;, y._1, . . . s Yk—(N;—1) tO minimize the (co-channel
interference + ISI) power measured at the output of the equalizer.

To this aim, consider the system model (1.74) and assume that,g]t}we
is the symbol to be estimat€don the basis of the observatign which is
rewritten in the following equivalent form:

y = H(G, Dz + H_jx ) +n (1.80)
————

For the sake of clarity, we consider the case= 0.
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whereH(:, k) denotes théth column ofH, H(_, is given byH deprived of

its first column, andk_) is given byx deprived of its first row; the vector
accounts for both the co-channel interference and the ISI. According to (1.75),
the first column of the ZF matrix filtéW , ¢, i.e., the vector filter that provides

the estimat@,(j) of x,(:) by processing, is obtained by solving the following
optimization problem:

Wzr(:,1) = au",g_f,lrnin‘sz|2 (1.81)
subjectto: wiH(:,1) = 3% |

with § € R. As known, the optimum filter is derived by exploiting the La-

grangian multiplier method and is given by:
52

H(;, 1)HAR;1H(;, 1)

WZF(:71) = Rz_lH(:71> (182)

whereR. £ E [zz!]. The same reasonings apply Wzp(:,¢) (¢ =

1,...,N;). For ill-conditionedH, it is known that the ZF equalizer suffers
from the noise enhancement; on the other hand, it is equivalent to the MMSE
equalizer in presence of low noise level.

1.7.4 Decision-feedback FIR equalizers

In the class of the non-linear equalizers, the DF FIR equalizer constitutes an
attractive compromise between complexity and performance. It can perform
almost as well as the ML detector, but it requires a computational complexity
only slightly higher than the linear equalizer. Its structure is depicted in Fig.
1.16. The received signal; is the input of a linear feedforward FIR filter,
whose output is denoted with,. The estimate?;,(fl A Of the symbolxgl A

Feedforward + XE—A

Ye — W 4’63;» Decisé)(n_)device p Q(Xk—n)

A-

Feedback

B

A

Figure 1.16: The decision feedback equalizer structure.
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is obtained by subtracting fromy, the output of a linear feedback FIR filter,
which processes the past decisions provided by the decision device on the basis
of the estimated symbols. In such a way, the output of the feedforward filter
can be deprived of the co-channel interference and ISI due to previously trans-
mitted symbols. As long as the decisions are correct, the equalizer provides a
good estimate of the transmitted sequences.

Differently from the conventional SISO environment, three MIMO DF
equalizer structures can be defined :

Scenario 1 The DF equalizer provides the estimate@iﬁA =1,...,N;)

by resorting to the past decisio@f,(flA_n) with n > 0 andv/. Such
an equalizer scenario represents the MIMO DF counterpart of the con-
ventional SISO DF equalizer.

Scenario 2 Assume that the channel inputs are ordered so that lower in-
dexed components ok, are detected first; then, the DF equal-
izer utilizes, together with past decisions, the current decisions
Q(:%,(QA), Q(:%I(CQBA), R Q(ﬁc,(f:i)) to estimate the symbol,(sz. In

other words, the decisions are taken sequentially starting with the lower
indexed components.

Scenario 3 When all the current decisions
Q(fc,(i)A), Q(i'l(i)A), R Q(@,ﬁﬂ) are available from a previous
detection stage, then they can be processed together with past decisions
to provide the estimate of the symbol of interegﬁA. Such a detection
scenario deals with the multistage detection [31].

Accounting for the system model (1.74), the output of the DF FIR equalizer
can be written as follows:

)A(k_A = [ ng W{I Wﬁf—l :|y
5 wH
Q(Xk-n)
Q(Xp—A—
[ B -1, B ... B ] a1 ) gg)

é BH - [ INl ONiXNiNb ] Q(kk‘—A—Nb)

where N, is number of theV; x N; matrix tapsB, constituting the feedback
filter B. The three different equalizer structures previously discussed can be
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mathematically described by some constraints on the matriBtapgSpecifi-
cally, one has that the constraiBt = Iy, holds in Scenario 1 (in the follow-
ing, Scenario 1), whereas, in Scenario 2 the mdBj is constrained to be
monict® lower triangular. Finally, in Sc. BZ is constrained to be monic.

The feedforward filtetW and the feedback onB in (1.83) can be de-
signed according to any chosen optimization criterion. Let us note that any
optimization procedure should take into account for the non-linearity of the
decision device. However, also for simple decision mechanism, the derivation
of a closed form for the optimum equalizer is impossible to obtain. For such
a reason, in this thesis we adopt the common assumption that the decisions,
which affect the current estimate, are correct, i@i,(f)) = :r,(f). According
to such an assumption, the feedback filter can be treated as a feedforward filter
which processes a delayed version of the transmitted symbols, as depicted in
Fig. 1.17. However, it is clear that, in a realistic environment, the error propa-
gation can not be ignored and the performance loss due to to the feeding-back
of incorrect decisions has to be measured.

As previously discussed about the linear equalization, in all the three de-
tection scenarios the deldy has to be optimized, especially for short feedfor-
ward filters. Moreover, different delays, (¢ = 1,..., N;) for each one of
the symbols to be estimated can be chosen. However, apart from the computa-
tional complexity in optimizing such parameters, allowing different processing
delays does not make available all the past decisions in Scenario 1, and all the
current ones in Scenario 2 and Sc. 3, leading so to a more complicated mathe-
matical formulation for the DF-based equalization.

The MMSE DF equalization will be considered in details in Chapter 2

18A square matrix with diagonal elements all equal 1.

y Feedforward + Xk—A
k ——p
W
< Feedback
k—A — po
B

Figure1.17: The decision feedback equalizer in absence of error prop-
agation.
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Figure 1.18: The transceiver architecture.

with reference to the scenarios Scenario 1 and Scenario 2. Moreover, we will
present an equalizer structure that combines the DF strategy withidedy
linear processingwhich allows to improve the performances of the conven-
tional DF equalizers based on the linear filtering.

1.8 Transceiver architectures

Let us consider the MIMO communication system model depicted in Fig. 1.18.
At the transmitter side, the information bit streams are encoded and modulated
to generate the information symbol streams. Hence, such streams are pro-
cessed by a precoder and transmitted over the MIMO channel. At the receiver
side, the channel outputs are processed by the decoder which provides an es-
timate of the precoder inputs. Finally, the Viterbi decoder allows to recover
the (estimated) information bit streams. When the channel state information
(CSI) is available at both ends of the link, the precoder and the decoder can
be jointly designed, according to the chosen optimization criterion, to improve
the system performances.

In Fig. 1.19 we have depicted a transceiver structure employing a lin-
ear filter as precoder and decotferFor simplicity, we assume the time non-
dispersive channel model

Vi = Hx;, + ny (1.84)

%More general structures can be considered (see, for instance, [32] and [33]), but they are
out of the scope of this thesis.



46 CHAPTER 1. MIMO MODEL
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Figure 1.19: The transceiver architecture.

affected by additive spatially and temporally white noise with correlation
matrix R,, = Iny,. The symbol vector to be transmitted is denoted with

se 2 s\ s s with st drawn from the constellationd, (¢ =
1,...,B). Moreover, we assumé [s;sx_,| = Ipdx_,. The precoder

F e CVNi*B processes;, and provides the channel input vectoy £ Fs;,
of size N;. At the receiver side, the equalizer provides the estigatd s;, by
processing the received vectpy. The overall system equation is given by:

St = GHF's; + Gny, . (1.85)

The transceiver can be optimized according to the MMSE criterion as well as
the ZF criterion. In addition, the transmitter and the receiver can be jointly
designed to maximize the mutual information between precoder input and de-
coder output, sa¥ (s, Sx): in such a case, it has been shown in [34] that the
precoder maximizing the mutual information is unique, whereas the optimum
decoder in nonuniqgue and the available degrees of freedom can be utilized to
synthesize the receiver according any other optimization criterion.

It can be shown that (see [34, 25]), according to any optimization criterion,
the optimum matrice¥' andG are given by

Flr) — v (1.86)
GO = TAT'VIHH

whereV and A are the eigenvector and the eigenvalue matrices, respectively,
of H”H defined in (1.47), and wher@ andT represent a diagonal matrix
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with positive entries and an invertible matrix, respectively, that depend on the
chosen optimization criterion.

Let nowT" be a diagonal matrix. It is straightforward to verify that, in such
a special case, the overall MIMO system is described by the diagonal matrix
®TI" and, hence, the transmission over the MIMO charfiglis equivalent
torank(Hy,) transmissions oveank(H}) parallel non-dispersive subchannels
characterized by a transmit gain, corresponding to théh diagonal element
of ®, and a receive gaify;, corresponding to théh diagonal element df. It
can be shown that such a model arises whg, S, ) has to be maximized, as
well as when we adopt the MMSE criterion or the ZF one.

Before concluding this section, it is important to underline two interesting
issues recently discussed in [35] about MIMO communication systems:

e According to the transceiver defined in (1.86), let us evaluate the correla-
tion matrix of the estimation error measured at the output of the decoder:

Re 2 E[(8k —sk)(8 —sp)] (1.87)
= T(@*+A H)T" —@er” +1®+15 . (1.88)

The choice of a diagondl! allows one to obtain uncorrelated estimates

of s, and, hence, uncorrelated estimations error. This represents an im-
portant advantage provided by such a transceiver structure, since the
decision device can separately detect the transmitted symbols, requiring
so a lower computational complexity

e It can be simply verified that, given a diagodalthe mutual information
Z(sk,Sk) is equal to:

rank(Hy )
I(si,86) = Y log(1+Ng7) (1.89)
1=1
i.e., itis equal to sum of the capacity @ink(Hj) SISO non-dispersive

channels. However, note that, due to the different values of the eigenval-
ues),, one has that:

1. since different symbol rates are achieved over each subchan-
nel, different symbol alphabets can be utilized at the transmitter:

2\When R. is not diagonal, the correlation among the different estimates contain useful
information to be utilized by the subsequent decoding; hence, the optimum decoding procedure
becomes more complicated.
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specifically, dense constellations can be transmitted over subchan-
nels corresponding to high,, while thin constellations has to

be utilized over subchannels corresponding to fow Hence, a
more complicated encoder/decoder device is in general required to
achieve the capacity;

2. different error rates are achieved over each subchannel. Such an
undesirable behavior can be overcome by exploiting non linear
processing techniques which allow us to design the transceiver in
a more flexible manner. For instance, in [36], the precoder is de-
signed to maximiz€& (s, $;), whereas a DF-based decoder, de-
signed according to the MMSE criterion, is emplogkedit can
be shown that such a transceiver structure allows one to reach the
same error rate over all the subchannel. An alternative, but expen-
sive, solution is to utilize a large number of receiving antennas, i.e.,
N, >> Nj;. Infact, according to Theorem 1.2, for small values of
( the eigenvaluey; are comparable. To this aim, in Chapter 3, we
propose a new transceiver design method that, without increasing
the number of receiving antennas, allows one to reduce the value of
6 when real-valued constellation sets are provided by the encoder.

In Chapter 3, the transceiver optimization will be carried out by utilizindgly
linear filters as precoder and decoder. We will show that such a new transceiver
structure generalizes the one based on the conventional linear filtering.

2LAnalogously, in [37], the authors synthesize the decoder according to the ZF criterion.



Chapter 2

Decision-feedback equalization

H igh bit-rate transmissions require to account for the temporal dispersive
nature of the communication media, especially for mobile applications
where the symbol period must be also short enough to prevent non-stationary
channel impairments. Since the linear equalizers perform poorly on severe-ISI
channels, the DF-based equalizers, which employ also a linear filter operat-
ing on the past decisions, have been extensively proposed. It has been shown
that DF strategy allows one to achieve significant performance improvements
over linear equalizers both in SISO and in MIMO scenarios. Two DF struc-
tures are mainly considered in this chapter. The former exploits (together with
the received signals) the past decisions in order to simultaneously estimate all
the transmitted signals. Instead, the latter utilizes also the decisions belonging
to the same time step providing the estimate of the transmitted signal sequen-
tially: in such a case, the decision ordering represents a degree of freedom with
no counterparts in SISO DF-equalization, and it has to be optimized according
to a chosen optimization criterion. Unfortunately, the optimization over the
decision ordering is NP-hard and hence, suboptimum ordering strategies with
polynomial complexity (as example V-BLAST [24]) has to be adopted. With
reference to time-dispersive environments, it will be shown that the DF-MMSE
equalization can be performed by a two-stage equalizer. The first stage is a
time-dispersive equalizer and is unaffected by the decision ordering, whereas
the second stage is a zero-memory equalizer depending on the ordering. Ow-
ing to such a representation, any decision ordering strategy for non-dispersive
environment can be extended to the dispersive one. proposed

The widely linear (WL) filtering [38, 39, 40], as it is well-known, gen-
eralizes the linear filtering by exploiting both the correlation and the conju-

49
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gate correlation, i.e., the cross correlation between the signal and its conjugate
counterpart to better discriminate useful signals against interference and noise
signals. In this chapter, the receiver structure that combines DF strategy with
WL filtering, say widely-linear/widely decision feedback (WL-WDF) equal-
izer, is presented. It will be shown that, without requiring a significant increase
in computational complexity, such an equalizer allows one to achieve consid-
erable performance improvements over the DF equalizer based on the con-
ventional linear filtering when circularly variant signals (whose properties are
described in Appendix A) are transmitted. The performances of the proposed
equalizer are compared with those of the linear feedforward-based equalizer,
the DF-MMSE equalizer [9], the WL feedforward-based equalizer [41, 42],
and, finally, with those of the DF-based equalizer which employs a WL feed-
forward filter and a linear feedback one (proposed in [43] with reference to the
SISO channels).

The WL-WDF equalizer can be derived according to two alternative repre-
sentations of the involved signals. The former performs the linear processing
of both the real and the imaginary parts of the input vector [39, 44], whereas,
the latter performs the linear processing of the input vector and its conjugate
version [41, 42, 43, 45, 46]. It is well known that the two representations are
equivalent, namely a one-to-one correspondence between each processing and
the other. However, it is shown that they are not anymore equivalent when the
DF equalizer utilizes both past decisions and decisions belonging to the same
time step in order to achieve better performances.

2.1 Widely linear processing in the MM SE estimation

In this section, with reference to the mean square error (MSE) estimation of
complex data, the Wiener filtering will be generalized by introducing the non
strictly linear filtering calledwvidely linear(WL), which allows one to exploit
the correlation among the data and their conjugate version.

Consider the case where Airdimensional zero-mean observation random
vectorr is utilized to estimate the zero-meaii-dimensional random vector
d. According to the conventional linear filtering, the estimdtef d can be
written in the general form:

d=Wfr (2.1)

where W is an N x M complex-valued matrix. Define the error vector
e £ d — d, whose correlation matrix is denoted wikh.. = E [ee’’]. The
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linear minimum mean square error (MMSE) filter (or Wiener filter) provides
an estimatel of d by minimizing the trace oR.., i.e.:

(opt) — i
WP — argmin trace(Ree) - (2.2)

By differentiating the scalar functiotrace(R..) with respect toW, one has
that the optimum filter is equal to

wer) — R-IR,, (2.3)

with R, £ E [rr] andR,4 = E [rd’], and the optimum error correlation
matrix is given by

RL =Ry - RER'R,, | (2.4)

with Rqq = E [dd”]. Let us show that the linear transformati from r to

din (2.1) does not represent the most general form of a linear transformation
when dealing with complex-valued vectors. To this aim, rewrite (2.1) in terms
of the real and the imaginary parts of the involved vectosndd):

BHRERURINGIRE

w7T

(2.5)

It is easy to understand that the block structure of the matvixin (2.5)
does not allow one to perform the more general linear transformation from
[R{r} S{r} ] to [ R{d} S{d}]". Infact, R {W} and S {W} si-
multaneously affect the real and the imaginary pad of

Thewidely linear(WL) filtering generalizes the conventional linear filter-
ing by assuming that the estimadeof d is obtained by performing the linear
transformation

EIEER 1Rk eo

whereWy;, € RVN*M (¢, = 1,2). In other words, the output vectdrof the
WL filter is such that its real and imaginary parts are obtained by separately

When differentiatingrace(R..) with respect toG, we treatG andG” as independent
variables, i.e.9(tracel AXB))/(9X) = BA andd(tracel AX”B))/(0X) = 0.
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processing the real and the imaginary parts of the input vectadt follows

that the linear filters in (2.5) lie in a subset of the WL filters and, consequently,
according to any chosen optimization criterion, their performances cannot be
better than those obtained by WL filters. The WL transformation in (2.6) can
be rewritten in the equivalent form:

g H H r

where theF, G € CV*M are given by

R{F} = % [Wu + W22:| S{F} = % [ng — ng] (2.8)
R{G) =2 [Wu-Wa| (G} = [-War — W)

According to (2.7), the vectod at the output of a WL filter is obtained by
separately processing the input veatasnd its conjugate version; for such a
reason, it is straightforward to observe that ¢his not a linear function irr.

On the other hand, the conventional linear filter is simply obtained by setting
G =0.

We must recognize that the WL processing defined according to (2.7) (in
the following, referred to as real-valued representation) is widely adopted in
the literature [41, 42, 43, 45, 46] since the second-order momendsavé
directly related to the second-order moments @indr*, i.e., to the correla-
tion matricesR,.. andR,..»~ introduced in Section A.1.1 of the Appendix A.
Furthermore, the comparison reported below between the MMSE WL estima-
tor and the linear one (obtained by setti@g= 0) is less obvious when the
real-valued definition in (2.6) is utilized to define the WL filtering. For expla-
nation purposes, in this section, we adopt the complex-valued representation,
whereas, in the rest of the thesis, we will adopt the real-valued one. In Section
2.2, however, we introduce some useful operators which allow one to study the
main correspondence and differences among the two representations.

The optimum (in the MMSE sense) WL filter can be obtained by solving
the optimization problem:

(F(opt)7(;(opt)> = argmin _ trace(Re.) (2.9)
F,GeCNx

beingR.. the correlation matrix of the error vector corresponding to the esti-
mationd = Ffr + GHr*. By differentiating the scalar functiamace(R..)
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with respect t&F andG, one has:

-1

Fr) = [R,, — R.wR,RY.] - [Rog — R R, RY,] (2.10)

G = [R,, — R, R,RE.] - [Roas — RoRRE]T (2.12)
whereR,,« £ E [rr”] andR,4 £ E [rd”], and where we assume that the
involved inverse matrices exist. The optimum error-correlation matrix is equal
to

RWE — Ryy— (F(opwHRr i+ G(opwHer*) , (2.12)

The performance advantage of the WL estimator over the linear one is charac-
terized by the matriA.. £ RWX — RL which can be expressed as follows

e

Ace = [er* — Ry R;r* :d]T ’ [Rir - R{—{"* R;rlRTT*] o (213)

' [er* - Rrr* R;r* :d]*

and whosekth diagonal entry represents the MSE gain provided by the
WL filter over linear one in estimating thé&th entry of d. Being
[R:. — RI.R,'R,,-] non negative definite (see Appendix A Proposition
A.1), the linear MMSE filtering can not outperform the WL MMSE filtering.

Note that, ifr is rotationally variantR,..~ = 0) and, moreovery andd
are cross-rotationally varianR(.;« = 0), thenF(rt) = Wrt) Glort) — o
andA.. = 0: in other words the WL MMSE estimator degenerates into the
optimum linear one, providing so the same performances. On the other hand,
A.. does not vanish whenandd are rotationally variant. A special case is
represented by the estimation of a real-valued random vecf{dr= R{d})
from a complex-valued observation vector. BelRg; = R4+, one has (see
(2.10)-(2.11)):

F=G* = d=2R{Fr} . (2.14)

Note that the WL filtering leads to a real-valued estimation opposite of the
linear filtering which provides a complex-valued vector as estimate of a desired
real-valued one.

Finally, let us consider the extreme case wheigreal-valuedf = R{r}).
BeingR,, = R, and real-valued, the matrix inversion in (2.10)- (2.11) and
in (2.14) can not be performed. It is simple to understand that the optimum



54 CHAPTER 2. DECISION-FEEDBACK EQUALIZATION

MMSE WL filter is not unique, in fact:

d = FAryGHir (2.15)
(F+G)r
N——
4D

It follows that, given the optimum (linear filtel), there exist infinite optimum
filter pairs (F, G) whose sum is equal to the optimub. Similar consider-
ations are valid whe® < n, < N components of are real-valued. The
(non)-uniqueness of the MMSE WL solution clearly follows from the fact that,
beingr = r*, the jointly processing af andr* is redundant. With reference to
the MIMO channel equalization based on the WL filtering, we address such a
problem by processing the only real part of the real-valued observation vector
components.

Final remark

Based on the above considerations, we can state that, if the observation vector
and/or the desired one are rotationally variant, then the adoption of a linear
filter is a suboptimum choice when an MMSE estimate has to be provided
on the basis of the second-order statistics. For this reason, WL filters in the
MIMO receiver and transceiver architectures will be synthesized in this chapter
and in Chapter 3, respectively, in presence of rotationally variant information
symbols.

Note that, independently of the chosen optimization criterion, the advan-
tage provided by WL filtering can be intuitively justified by observing that the
jointly processing ofr andr*, in the case where they exhibit statistical corre-
lation, allows one to increase the dimension of the observation space.

2.2 Widely linear transformations

The WL processing can be performed by adopting the real-valued representa-
tion of the involved vectors, as in (2.6), or the complex-valued one, as in (2.7).
For this reason, we introduce some operators that allow us to:

e address the problem of finding the main correspondences and differences
between the two representations;
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e to synthesize the WL processing-based receiver in Section 2.5 (or the
transceiver one in Chapter 3) by utilizing the procedure relative to the
conventional linear processing-based structures.

To this aim, in subsection 2.2.1, we define the operators which allow us to
represent a complex-valued vector by utilizing a real-valued representation or
a complex-valued one, and we provide the correspondence between them. In
subsection 2.2.2, we define the WL transformation with reference to both the
previously introduced representations.

2.2.1 Real-valued and complex-valued representation

Let us define the following operators:

] 2 [ R{u(l:n1,1:p)} R{u(l:ny,p+1:n9)} (2.16)

u(l:n,1:p)} S{u(l:ny,p+1:n9)}

=S{u(l:ny,p+1:n9)} ]
R{u(l:n1,p+1:n2)}

Gl 2 [u(l:nl,lzp) u(l:ny,p+1:no)

u*<1 ‘ny, 1 :p) Onlx(nz—p) (217)
01, x (n2—p) }
u*(1:n1,p+1:n9)
N R{u}
Eplu] = [ S{ulp+1:n1,1:n9)} } (2.18)
Cplu] = { u*(p+1:n1,1:n9) ] (2.19)

whereu € C™*"2, 0 < p < n; is an integer valueu(i; : ¢1,1iz : £3) is the
submatrix ofu, whose first and last rows (columns) are i (ioth) and the
£1th (¢2th) ones, respectively, and where the a@ayy,, is then; x ny matrix
containing all null entries (the specification of the sigex n, will be omitted
in the sequel for the sake of brevity). Note that, if the firsbmponents of the
n1 x 1 vectorx are real-valued, the augmented vedpjx| does not contain
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thep identically null imaginary parts of the firptcomponents ok. Moreover,
it is easy verified that the following equivalences hold:
x=y & ClX = Colyl & & X = ElY] & Colx] = Goly] & EX] = ElY]
(2.20)
X+y=2z% CoX] + Coly] = Colz] < Eo[X] + Eoly] = &o[2] (2.21)

hx = s < C,[hICy[X] = Cols| & E,[NEX] = &l (2.22)

wherey andz aren; x 1 vectors,h is ans x ny; matrix ands is ans x 1
vector. The operators,[-] and&,[-], as it will be shown in Section 2.5, are
useful to rewrite the input-output relationship of a linear FIR MIMO system in
terms of the real and the imaginary parts of the involved vectors; analogously,
the operatoré?vp[-] andC,|[-] are useful to rewrite such a relationship in terms of
the involved complex-valued vectors and their conjugate counterparts. Define
also

us
C, [ E; ] =u & { u ] _ [ . i3ju5 ] (2.23)
us
whereu; hasn; rows,us, uy, us hasn; — p rows andug havep rows. Note
that, if the firstp components ofi1 are real-valued, theé, [C,[u]] = u and
&y [Ep[u]] = u. We will show that the operatoi,[-] andC,[ ], together with
&y[-] andC,[], allow us to define the input-output relationship of the WL FIR
MIMO systems.
Finally, similarly to [40], let us define the matrix transformations

I, 0 0
T2 | 0 Sl Hluyp | with TTY = THT = T, , (2.24)

0 Shu—p Alnp

V2 V2
and
I, 0 0
Y20 VoI, 0 : (2.25)

0 0 V2L,

If uis a complex-valued vector with; rows such that the firgt rows are
real-valued, the@, [u] = YTE, [u].
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2.2.2 WL transformations

Let x be a vector of sizéV; whosen,. first components are real-valued, and
let y be a vector of sizeV, whose firstn, components are real-valued. By
adopting the real-valued representation, the WL transformation oy is
defined as the linear transformation on the extended végidik|, namely:

Fiu Fio Fi3
5nq [y] £ F21 Fgg F23 5nr [X] = anr [X] . (226)
F31 F32 Fa3

whereF; € R%*" Fi9,Fq3 € anX(Ni_"T), Fo1,F31 € R(No—nq)xnr’

and whereF;, € R(No—na)x(Ni=nr) with ¢, k = 2, 3. More specifically, the

widely linear transformation from toy can be written asy = &, [F&,, [x]].
The linear transformation (2.26) can also be equivalently written as:

G G2 Gy
qu [y] £ G'21 G'22 G23 Cnr [X} == GCnT [X] (227)

* * *
21 23 22

whereGy; = Fiy, Giz = §[Fi2 — jF13], Gor = Fo1 + jF31, Gy =
+[Foo 4+ F33 + 5 (F32 — Fa3)], and G = 1 [Foy — Fy3 + 7 (Fs2 + Fag)),
or, more compactly,

G =YTFTHY ! . (2.28)

Then, the overall WL processing can also be writtenyas: C,,, [GC,, [x]].
In other words, when a matri¥' for WL processing in real-valued repre-
sentation is available, then the matrix for the corresponding WL processing
in complex-valued representation & = YTFTHY~! and, vice versa
F = THY-!GYT is the relation for the inverse transformation between
the two representations.

The WL transformation in (2.26) (analogously, in (2.27)) becomes a
strictly linear transformation irx if F15 = Fi3 = 0, Foo = F33 and
F3, = —Fy3 (analogouslyGis = Gog = 0); in such a case, in fact, the
following equivalence holds:

G 0
v [ Gy G }X & Enly] = F&,, [x] & Cn,ly] = GC, [x] . (2.29)

In the current literature, the two representations are both utilized since they
are often equivalent for many application scenarios. However, it can be verified
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that such an equivalence does not hold in general. Let us further discuss how it
may happen that the choice of the representation can affect the WL processing
of the vectorx. Let us denote withSﬁl) and 352) two sets of matrice¥ in
the real-valued representation corresponding, by means of the transformation
(2.28), to the sets'" and S!? of matricesG in the complex-valued repre-
sentation, respectively. Assume thﬁ(p satisfies a constraint on the structure
of its matrix elements, an6§2) satisfies a constraint on the structure of its
elements. Then, iﬂﬁl) + SﬁQ) and, thereforeSﬁl) #+ Sﬁz), the two represen-
tations are not equivalent. In fact, the choice of the real-valued representation
implies to define a WL transformatidn in S,(,l), while choosing the complex-
valued representation implies to defiRen Sf«?). Obviously, the two repre-
sentations are equivalent only in the special case vaesEe(Sﬁl) N Sf?)), or,
equivalently,G € (Sél) ﬂSéz)).

For example, consider the case where bBtand G are lower triangu-
lar matrices. According to the real-valued representation, the imaginary parts
of the complex-valued components pfare obtained by linearly combining
(also) the real parts of the complex-valued components.ofOn the other
hand, according to the complex-valued representagois, obtained by lin-
early processing beingGi2 = 0 andGsz = 0.

2.3 System model

Let us consider the FIR baseband equivalent noisy communication channel in
(1.25) with V; jointly wide-sense stationary (WSS) transmitted signals/snd
received signals. Therefore, thh output at théth instant is given by

V(Z,i) N; A
y) = 3N al? A 1l 1<e<N, (2.30)
m=0 i=1
wheren\") (k = 0,...,v(%)) accounts for the effect of thigh input on the

jth output. The noise signah;,ﬁ]) are assumed to be zero-mean jointly WSS
complex-valued processes independent of the useful signals.

Each symbolc,(j) belongs to the constellatio$} (: = 1, ..., N;): we con-
sider both the two-dimensional constellations (e.g., MPSK with> 4 and
QAM) and the one-dimensional constellations (e.g., PAM and its rotated ver-
sions) for which it exist®); € [0, 27] such thate*f‘)ix,(j) is a real-valued se-

quence. Since in (2.30bgi’j)x,§lm = [e?h ) [e=102) 1 the casd; # 0

k—m
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is easily transformed into an equivalent problem with= 0 by substitut-
ing, for the considered value éfand for all values ofj andk, [xg‘lm] and
(D] with [e—ﬂeix,(flm] and [ 1], respectively. Note also that two-
dimensional constellations as OQPSK and OQAM can be described by two
one-dimensional constellations after a suitable sampling [43]. For the above
reasons, there is no loss of generality if one assumes that each one-dimensional
constellation is real-valued. We order the symbol sequences so that the real-
valued constellations have indicés {1,...,n,}. The case:, = 0 accounts
for the absence of real-valued constellations whergas N; is the case cor-
responding to all real-valued constellations.

As shown in Section 1.3, the input-output relationship (2.30) can be ex-
pressed using a matrix notation as follows:

Ve = Y HpXp_m+ny (2.31)

m=0

wherey = max vt H,, is the N, x N; matrix whose(?, i) entry ish{s”,
K
andny is the N, x 1 vector of noise samples at tlé&h instant.

Useful definitions

Let us define the set of operatdFsy |-, ¢] that associate with the sequence of
ni X ng arraysuy, the following sequence of; N x ny arrays:T y[ug—,, {] =
[N VA uZTfNkaO]T where/ denotes the observation instant,
and ko denotes a time-shift. It is also useful to define the correspondence
that associates to a sequencen@fx no arraysu, the n; M x ns N matrix
T[ux, M, N] defined as follows

T[uy,M,N| = [T p[ug,0] Tas[ug,1] ... Tasfug,N—1]]. (2.32)

The operatorT y[-, ¢], when applied to the system input, is useful to repre-
sent the output of a linear and time-invariant FIR system, while the operator
T[-, M, N] applied to the auto-correlation function of a stationary array se-
quenceuy, constructs the auto-correlation matrix®Bfy [uy, k], namely

E [Tas[ug, k)T [ug, k]] = T[E[wuf ], M,N] . (2.33)
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2.4 DF-MMSE FIR equalizer

In this section, the decision-feedback (DF) FIR equalizer, whose structure has
been presented in subsection 1.7.4, is derived according to the MMSE crite-
rion. By utilizing the notation introduced in this chapter, the equalizer output
(21.83) can be written as follows:

Rpn = [ng whH Wﬁf_l] T, [y, 4] (2.34)

-~

& wH
— By —1In,) Bf) ... (BY,)] Q(Tny,1[kn, k — A))

2B - [INi ONiXNiNb]

with the integerA denoting the decision delay, and wiN; andB; denoting
the matrix taps of sizeV, x N; and N; x N, , respectively. The decision
mechanisn(-) is applied to each component of the veclty, 1 (X, k — A]
to provide an estimate @f , 11 [x;, k—A]. According to the MMSE criterion,
the optimum FIR filter8V andB in (2.34), sayW (°?!) andB(°*") | are derived
by minimizing the MSE cost function

: N B 2
Vf{}lgE [1%k—a — xp-all’] (2.35)

and by accounting for the constraints imposed by the considered detection sce-
nario (see subsection 1.7.4). To this aim, let us remind that the filter optimiza-
tion in Scenario 1 requires to take into account for the constiBint Iy,
whereas, in Scenario 235{ is constrained to be monic lower triangular. In
Scenario 3B is monic.

In the following, the DF-MMSE equalizer is derived by utilizing the opti-
mization procedure proposed in [9], under the assumption that the available es-
timates be correct. The procedure is based on the knowledge of the channel im-
pulse responskl,,, (m = 0,...,v) and the matriceR,(m) = E [x;x!_ |
andR,,(m) £ E [ngnf’ ], which describe the spatial and temporal corre-
lation of both the transmitted symbols and the noise, respectively. Such an
assumption is reasonable since they can be estimated blindly or by means of a
training-based method.

241 DF-MMSE for Scenario 1

The optimum equalizer estimates_ A by resorting to the past decisions,
namely it does not exploit also the current decisions. Accounting for (2.32),
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let us define the following matrices:

[I>

R, T[Rx(m),Nf—i-I/,Nf—l-l/]
R, £ T[Ry(m),Nys, Ny (2.36)
H £ T[H, Ny, Ny+v]

[I>

whereH,,, = 0 for m ¢ {0,...,v}. Under the assumption that the available
estimates be correct, i.6Q (T, +1[Xk, k — A]) = Tn,+1[xx, k — A], and
that the matrice®R,, R,,, andHR,H” + R,, be invertible, the optimum
W rt) andB(P!) are expressed as follows:

Scenario 1
wiort) — w,Brt)
H
Blont) 2 [ON «N.a B opt)H}
f Rz,Rn,H]
-1

) (2.37)
W, £ [HR,H” +R,] HR, .

The optimum feedback matr&(°?") in (2.37) can be determined as follows:
1. determindR = R, ! + H'R,'H;

2. extract fromR the matrixR,, that contains its firsiV;(A + 1) columns
and the matriXR that contains the upper-left square sub-block of size
Ni(A+1);

3. determineB(°P!) as the lower right sub-block of siz¥;(N, + 1) x N;
of R.R;".

The corresponding error correlation matrix and achieved MSE are given by
R = WHR 1w (2.38)
MMSE, = trace (Rg"p“l)) (2.39)

with @# £ [ 0y, n,a Iy, |. Note that the decision delay is a parameter

to be optimized in the method (in [9] the optimization has been carried out by
an exhaustive procedure) and, together with the paraméteit determines

the number of causal taps and the number of anticausal taps in the linear FIR
filter W. Also the number of tap8/, of the feedback filter can be optimized;
here, however, in accordance with [9], we assuje= Ny +v — A — 1.
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It can be readily checked that the optimum linear (L) MMSE equalizer,
the one which resorts to the only feedforward filter to provide an estimation
of x,_a, is given by the first equation in (2.37) settily, in (2.34) equal to
INiék, i.e.B = [INi ONixNiNb]H

242 DF-MMSE for Scenario 2

The optimum equalizer estimateglA by resorting to the past decisions and
also the current decisior@(iéle), Q(i,(f_)A), e Q(i,(f*Al)) with lower in-

dexed components, namely the decisions are taken ;equentially starting with
the lower indexed components. It follows that the optimization procedure over
the matrixW andB has to be carried by accounting for the monic lower tri-

angular matrix tarBéf. The optimum DF-MMSE equalizers given by:

Scenario 2
Wgopt) _ Woﬁg"pt)
B{*) = Blrt)B(?) (2.40)

BY = f,[R,, R, H]

where W, and B(P") have been defined in (2.37) and wheas™" 2
H
{ONMMA Bg"pt)H] . The optimum feedback matrB” in (2.40) can be

determined as follows:

1. extract fromR the upper-left square sub-blodks of size NV;(A + 1)
and determin®,;, = Rgl;

2. extract fromR, the lower-right square sub-blod,. £ \IIHR?\II of
sizeN;;

3. determine its monic lower triangular Cholesky faclqy, i.e., R, =
L.DL/ whereD is a diagonal matrix with positive entries ahg has
unit diagonal entries;

4. determine the optimumB(” = (L7) .
The corresponding error correlation matrix and achieved MSE are given by

R = D (2.41)
MMSE, = trace(R(P"?)) . (2.42)
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Note that, beingD diagonal, the error vector measured at the output of the
equalizer has uncorrelated components, i.e., it is spatially white.

The procedures in (2.37) and (2.40) to derive the DF-MMSE equalizer exhibit
a computational complexity which grows cubically with the system param-
eters. In presence of spatially and temporally uncorrelated input and noise
sequences, (2.37) and (2.40) can be solved (see [9] for details) by means of
simpler procedure based on fast factorization algorithms [47, 48] with com-
plexity O(N?(N¢ +v)?). A procedure alternative to the one in [9] is proposed

in Appendix B.

243 DF-MMSE for Scenario 3

For the sake of completeness, we report the DF-MMSE equalizer structure
when both past and current decision are available form a previous detection
stage. However, in the rest of the thesis, we will not consider anymore such a
scenario which deals with the multistage detection.

By accounting for the monic matrix taB,, the optimum DF-MMSE
equalizer is given by:

Scenario 3
Wéopt) _ W0]~3g0pt)
BéOPt) _ B(opt)B(()3) (243)

B!Y = f;[R,, R,,, H]

where W, and B(?) have been defined in (2.37), and whd&”” £
H

0N, x N, A Bg"pt)H} . The optimum feedback matrB(()s) in (2.43) is de-
termined as follows:

1. according to the steps 1. and 2. of the procedure which provides the
optimum DF-MMSE equalizer in Scenario 2, determRg

2. the(i, ) entry ofB(()S) is equal to

L

[B‘(ﬁ)} ()[R

(2.44)
]?])

where[R,]; ; denotes théi, j) entry of R; = R_ .
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The corresponding MSE is equal to

MMSE; =
; [Ral ()

(2.45)

2.4.4 Detection ordering

The order of detection in MIMO DF based equalization is a valuable degree
of freedom with no counterpart in SISO channels. Note that, while Scenario 1
the decision over the symbois(,fzA are taken simultaneously, in Scenario 2
the decisions are taken sequentially according to a chosen order. Changing
such an ordering leads to a modification of the equivalent discrete-time chan-
nel response to be equalized and, consequently, to different performances. As
well known, the optimum detection ordering is NP-hard [31]: in fa¢t, DF
equalizers exist, one for every order in which tNeinputs can be detected.

For such a reason, suboptimal algorithms that provide reliable performances
with polynomial complexity have been widely studied. Among them, the
vertical BLAST (V-BLAST) algorithn? ensures significantly performance im-
provement over the conventional linear equalizer with a[yV?) complex-

ity [24, 49]. Unfortunately, the issue of the decision ordering has been widely
studied in DF equalization over non-dispersive MIMO channel ([24, 49, 50]
and references therein) but only few contributions [51, 52] have started its dis-
cussion over dispersive MIMO channel.

In this subsection, with reference to the Scenario 2, we prove the depen-
dence of the DF-MMSE equalizer (and of its performances) on the decision
ordering by rewriting the system model (2.31) as a function of a permutated
input vectorx,. Moreover, we show that the optimum equalizer in Scenario 2
can be expressed as a two-stage equalizer: the former is the optimum time-
dispersive equalizer of Scenario 1 (which is independent of the decision or-
dering), the latter performs a non-dispersive equalization and the optimization
over the decision ordering. Suclirameworkallows us to extend any subopti-
mum ordering method proposed for non-dispersive environment to the disper-
sive one.

Let P be a permutation matrix of siz&;, such thatP’P = In,. By
defining the (row) permutated input vectef(P) £ Px; and, hence, the
(column) permutated channel mati#k,,(P) £ H,,PT, the channel output

2BLAST: Bell Laboratories Layered Space-Time
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can be equivalently re-written as follows:
Yk = Z Hm(P)Xk—m(P) + ng. (246)
m=0

In the following theP-dependence is omitted for the caBe= Iy, (e.g.,
H,,(Iy,) £ H,, ), which corresponds to the input ordering in (2.31). With
reference to channel model (2.46), we define the input-correlation matrix

R, (m, P) £ B [x4(P)x4—m(P)"] = PR,(m)P" . (2.47)
For any given permutatio®, the output correlation matriR, (m, P) =
E [yx(P)y}.,,(P)] can be shown to be independentrafin fact:

Ry(m, P) = Z Z H,,,(P)R;(m + ma — myq, P)ng(P) + R, (m)

m1=0mo=0
v v
= Z Z H,,, R, (m +ma —m1)HYL +R,(m)
m1=0mo=0

=Ry (m)

By replacing the matriceR,(m) and H,, with R,(m, P) and H,,(P),

the optimization procedure (2.37) can be utilized to determine DF-MMSE
equalizer for each one of th&;! permutation matrices; the optimum ma-
trix filters and the achieved MMSE are denoted wia\””"(P), B!{*"" (P)

(]~3§Opt) (P)), and M M SE;(P), wherei accounts for the detection scenario
andP-dependence is introduced.

By resorting to the propertyrace(A) = trace(X ' AX), with X be-
ing a unitary matrix, it can be verified that, for any givén the achieved
MMSE;(P) in Scenario 1 is such that/ M SE;(P) = MMSE;(I) VP,
i.e., the performances of DF-based equalizers are invariant to the decision or-
dering. On the other hand, if Scenario 2 is considered, the permutation matrix
P greatly affects the\/ M SE,(P) and, therefore)N;! different DF-MMSE
equalizers exist. Unfortunately, as previously stated, the optimum decision
ordering can be derived only by an exhaustive procedure. For the sake of
brevity, in the sequel, if not specified, the problem of input ordering will refer
to Scenario 2. '

For a given detection orderirig, denote withfc,(le(P) the output of the
DF-MMSE equalizer when théh scenario is considered. Assuming correct
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decision, the output vecténff_) AP) = Px,(f_) A €an be rewritten as follows:

H

opt)H, = (0]
%2 \(P) = WPV (P)Tn, [y, ] + Pxi—a— B (P)Tn, 4 [x1(P), K]
— B2 p)[wer) pyT k=B pyT P). k
o ( 1 (P)YTN, [yk, k] =By™" (P)T N0 [xk(P), K]

H o H
=B (P)P| (PTW{T(P)) T, [y, M

:W(lopt)H

~ (o) H -
_ (PTBg pt) (P)PNb+1) TNf+V[Xk7 k]} + Pxp_A

:E(lopt)H

H

%2 (P)=BP (PP, + [INi - B(?)H(P)} Pxi_a  (2.48)
i.e., it can be expressed as the output of a two-stage equalizer (see Fig. 2.1):
the output of the former stage coincides witbl_)A, which is also the final
output in Scenario 1 (only past decisions are fed back) and is unaffected by
a possible ordering; the latter stage, instead, performs a non-dispersive DF-
MMSE equalization depending on the permutation ma#ix

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Dispersive-equalization stage Nondispersive-equalization stage

~(1 | ~(2 ~(2
Xl(c—)A‘= B2 (P) - Xl(c—A= Q) Q(XECEA)

Vi — WP

) 4

N
%
A

current
@ decisiong
********** I-B(P) -

past decisions

Figure 2.1: Two stage equalizer structure: the former stage performs
the MMSE equalization by utilizing only past decisions (Scenario 1),
the latter performs the MMSE equalization by utilizing only current

decisions (Scenario 2).
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Note that (2.48) allows us to simply express the error vee@rA(P) =
fcf_)A — X,_a at the output the second stage as follows:

H
ey = BY(PIP[x), — x4 s
2 BP"(pypell) . (2.49)

Wheree,(ql_)A denotes the error vector measured at the output of the first stage

and its correlation matrix is equal B’V in (2.38). From (2.40) and (2.49),
it is clear that the optimum second stage performs the spatial whitening (see

also [53] and [54]) of the error vectaﬂgjA by utilizing the monic upper tri-

angular fiIterB(()Q)(P), which is constrained to be upper triangular with unit
diagonal entries.

The decision ordering optimization in a time-dispersive environment has
been, therefore, recognized to be equivalent to the decision ordering optimiza-
tion in such a latter stage. Such a result allows us to extend every subopti-
mum ordering method, already proposed for DF equalization of non-dispersive
MIMO channel, to the MIMO dispersive environment. For the sake of com-
pleteness, we point out that:

¢ the feedforward filtering of the noise and the pre-cursor ISI makes the
resulting noise at the output of the first stage spatially correlated;

e the derivation of the second stage needs to take into account for input
and noise signals correlated with each other.

Consequently, when designing the second stage, the DF-MMSE procedure in
(2.40) has to be modified to take into account for possibly correlated (with
each other) input and noise vectors.

2.5 WL decision-feedback FIR equalizer

In this section, with reference to the MIMO dispersive channel equalization,
we introduce the structure of the widely-linear/widely-decision feedback (WL-
WDF) FIR equalizer, i.e., the DF-based equalizer which utilizes both widely
linear feedforward filter and a widely linear feedback filter. Owing to the
input-output channel model and to the equalizer structure proposed here, the
WL-WDF-MMSE in Scenario 1 and Scenario 2 will be carried out (in Sec-
tion 2.6 and in Section 2.7, respectively) by utilizing the existing procedure
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for DF-MMSE equalization. As discussed in Section 2.2, the WL filtering
can be performed by utilizing the real-valued representation of the involved
vectors, as well as the complex-valued one: it follows that two WL-WDF
equalizer structures can be defined according to each representation. When
Scenario 1 is considered, the two representations are shown to be equivalent
[44], i.e., a one-to-one correspondence (by means of (2.28)) exists between
the two structures and, therefore, for any chosen optimization criterion, they
perform equivalently. On the other hand, in Scenario 2, the correspondence
between the two representations no longer holds. In fact, when the equalizer
obtained by a real-valued representation satisfies the constraint imposed by
the scenario, the corresponding equalizer provided by (2.28) may not satisfy
the constraint in complex-valued representation, &nd versa The problem
of the non-equivalence between the two approaches will be addressed in Sec-
tion 2.8. Here, we adopt the real-valued representation to describe the main
properties of the DF-based equalization combined with the WL filtering. Nev-
ertheless, we point out that the same mathematical framework is required when
the complex-valued representation is adopted.

We resort to the operators (2.16) and (2.18) and their properties (2.20)-
(2.22) to replace the channel model (2.31) with the following equivalent one:

Eolyrl = En, [HimlEn, [Xp—m] + o] (2.50)
m=0

Note that the above input-output relationship is written in terms of the aug-
mented input vecto€,, [x;] whose firstn, components are the real-valued
transmitted symbols,(f) with ¢ =1,...,n,, and whose last(N; — n,) com-
ponents are the real and the imaginary parts of the complex-valued transmitted
symboISr,(f) with ¢ = n, + 1, ..., N;. The output of the DF equalizer operat-

ing on the channel model (2.50) can be written as:

En, K h-a]l = WETN, [Eolyk], k] — BEQ(T N, 1[En, [Kph-a, k — A]))

(2.51)
where W and By are matrices of siz§2N,Ny) x (2N; — n,) and
(2N; —n,) (Ny+1) x (2N; —n,), respectively, and where the deci-
sion mechanism is applied to each component of the augmented vector
Tn,+1[En, [XEK—A,k — A]]. Let us note that the first tap of the filter ma-
trix Bg, sayBg, is subject to the constraint imposed by the equalization
scenario: in other words it represents the WL counterpart of the matrix taps
By in (2.34). The operatof,, [-] allows us to obtain from (2.51) the output
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Xg k- Of the WL-WDF equalizer, namely:

Xpk-a = En, [WETN, [Eolye], k] — B Q(Tn,+1[En, [REs-a, k — Al])] .
(2.52)

Relation (2.52) shows that the outptit 1. A can be obtained by the sum of
two contributes: the former is obtained by a feedforward-based processing
whereas the latter by a feedback-based one.

In the particular case dBp = 0 in (2.52), the subset of the WL-WDF
equalizers, usually called the class of WL equalizers [42], is recognized. In
fact, accounting foBg = 0, (2.52) becomes:

Xph-a = En, [WETN, [Eolysl, k]] (2.53)
2 (W G & [Ty, [yk K]

where (W GH] 2 &, [WH] AH, with W, and G,, of size N,(N; +
v) x N;. The matricesW,, and G, represent the impulse responses of the
FIR feedforward filters which process the real part of the received vector and
the imaginary one, respectively. Since the filt8¥s, andG,, are independent
of each other, the resulting processing of the received signals is widely linear
rather than linear.

As regards to the more general cas®gf =~ 0, by defining the real-valued
sequenca,(:) 2 x;(1 : n,.), the complex-valued sequenzg) =xp(ny+1:
N;), and the permutation matrix,. such that

Ty, 1 [x\7) k= A

A TN, 1 [En, x5,k — A] = ¢

)

one has that the feedback-based estimate componentin (2.52) can be re-written

as follows:
> (2.54)

whereﬁg?k andkif?k are the estimates aig’) andx,(f), respectively, and where

[BY D] £ ¢, [BE] AF, with B, andD,, of sizeN; (N, + 1) x N; and

(N; —n,) (Np + 1) x N;, respectively. The matriceB, andD,, represent

the impulse responses of the FIR feedback filters that process the real part
and the imaginary part of the past decisions, respectively. Analogously to the
feedforward filtersB,, andD,, are independent of each other and, hence, the
past decisions are processed by a widely linear filter.

T, 1%y kb — A

H
i B
En [ BRxpp-a] 2| 5%
Bz -] [ Da ] Q( €o |:TNb+1[§(g,)k7k_A]:|
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26 WL-WDF-MM SE equalizer for Scenario 1

By adopting the MMSE criterion, and accounting for the (2.52), one

can derive the optimun(W(bi’pt),ngt)) and, consequently, the optimum

(W&O”“,Gg“p”> and (B&OP“,DSP”) in (2.53) and (2.54), by utilizing
the procedure (2.37) with the parametéy¥s and N, replaced by2N; —

n, and 2N,, respectively, under the assumption of correct previous es-
timates. The matriceR,(m), R,(m), and H,, in (2.36) are replaced
with RxE(m) =S E [57” [Xk]gn [Xk,m]T], Rg(m) £ E [So[nk]é’g[nk,m]T],
and £, [H,,], respectively, in order to single m(tW%’pt),ngpt) . Con-
sequently, the matrice®R,, R,, and H in (2.37) are substituted with
RE 2 T[RE(m),N;+v,Ny+v], RY 2 T[RE(m), Ns, Nys], and

n

T

Hp 2T |:gn7~ [H,,,], Ns, Ny + y], respectively, andR is replaced witlR ; =
(RE) 4 HE (RE) ' H|.

Unlike the DF optimization, which is based only on the knowledge of
R.(m), the construction of the matriRZ (m) in WL-WDF optimization re-
quires also the pseudo-correlation mafiy(m) £ E [xpx]_,, ], or, equiva-
lently, the three matriceB [R{x; }R{xp_n}'], E [S{xk}S{xt_n}’], and
E [R{x)}3{xr_m}"] (see Section A.1 for details). Of course, the same rea-
soning applies to the noise statistics.

The application of the procedure (2.37) to the channel model (2.50),
namely

B D] = A, [0 [RERE B (259)

implies the utilization of augmented matrices with a consequent increase in
the computational complexity. In order to apply the procedife-, |, the
matricesRY, RZ, andHgREHY + RE are obviously required to be non-
singular. Note, however, that the possible introduction of the augmented vector
&o [xx] in (2.50) (rather thar€,,, [xi], here utilized) implies that the matrix
Rf is singular whem,. > 1. In fact, if the feedback filter is interpreted

as a feedforward filter which processes a delayed version of the transmitted
symbol$, the couple(W g, Bg)) can be seen as a WL filter that processes

SAccording to (2.34), the feedback filter in (2.51) can be re-written as
[Bio—Ion,—n, Bi, ... Bgbe]H, and, therefore, the utilization of (2.37) provides the
optimum filterBg = [BZ , B&7 ; ... BZ{NJH subject to the constrai® s 0 = Ton, —n,..

4Such an interpretation is possible when no decision errors occur.



2.6. WL-WDF-MMSE EQUALIZER FOR SCENARIO 1 71

an observation vector with both complex-valued (i.e., the complex-valued past
decisionséf)) and real-valued components (i.e., the real-valued past decisions

x,(;)). It follows that, according to (2.16), the MMSE solution is not unique
when& [x] in (2.50).

2.6.1 Reduced-order design of WL-WDF-M M SE equalizer

By exploiting the particular structures of the augmented matrices, we propose
an equivalent procedure exhibiting a lower computational complexity than that

of the procedure (2.55) which is based on the inversion of the augmented ma-
trices. Moreover, such a simplified procedure provides also a better under-
standing of the optimum WL-WDF equalizer structure.

To this aim, define then,.(Ny + v) x 1 real-valued vectorx(r) =
TN, +v [x](C ),k} and the(Ni—nr)(Nf+u)xlvectorx,g) TN+ [xk , }
and re-order the matric®®”, R, andH; as follows

R,»n Ryoo Ryeo

R} 2 ARIAT=| Rl R,y Ry (2.56)
N N )
RI(rc) Rx(cc) R:E(C)
R R

A A EAH _ t n(c) An(CC)

RA 2 ARFPAM = [RZ@C) R ] (2.57)

(2.58)

() O _g©
Hy £ AHEA;H:[HR He  —H; ]

W oHD HY

where

R, 2FE [xg>xg> } R, 2E [3% {i,(f)} R {iﬁﬂ (2.59)

R, (. 2 [ ”é}t{ © } ] R, éE[g,@%{ig)}T} (2.60)

A T R T
Ry & B {3? (=7} s {x} ] R, 2 E [& {x}s {7} } ,
. . (2.61)
R, o, R, andR, ) are the auto-correlation matrices and the cross-

correlation matrix of the real part and the imaginary part of the noise vector
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Tn, [ng, k], the (NoNy) x ny(Ny +v) matriceng) anng’") contain the
columns ofi {H} and< {H}, respectively, that perform the processing of the
real-valued transmitted sequences and, finally( MgV ) x (N;—n,.) (N +v)
matricengg) andHﬁc) contain the remaining columns &f{H} and< {H},
respectively. Then, from (2.55) and (2.56)-(2.58) one has:

(opt)
Bo l=ALE, [ [AFRIA, AYRIAATHLA]].  (2.62)

Dg’pt)

It can be easily verified that the right-hand side of (2.62) can be re-written
so that it requires only additions, multiplications, and inversion of real-valued
symmetric matrices in the form

L M N
g(Lme7Mm><naNm><naPn><n’Qn><n7Sn><n)é MT P Q .
NT QT s

(2.63)

The set of symmetric matric@3 L., M xns Nomxny Prxn, Qnxns Snxn)

is a matrix algebrd2,, ,, closed under addition, multiplication, and inversion.
By resorting to the formula for inversion of block-partitioned matrices [55],
and omitting the matrix sizes in the notation, it can be shown that the following
relation holds

[g(L,M,N,P,Q,8)]"! = g(G1, G2, G3, G4, G35, Gy) (2.64)
where
MT
G = L'-[Gy G3] [ NT ]Ll (2.65)
G, = -L'(MGy+NGY) (2.66)
G; = —-L7'(MG;5+NGg) (2.67)

G, = (P-M'L'M)""

~G5 (Q" - NTAT'M) (P - M7L'M)""  (2.68)
G; = —(P-M'L"'M) (Q" —N"A"'M)'Gs  (2.69)
Gs = [(S—-N'L'N)-(Q"—N"A"'M)

- (P-M'L'M) T (QT - NTAT'M) | @
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By accounting for the properties 6f,, ,,, the optimum(BEfpt), Dgf’pt)) can
be determined by means of the following alternative procedure:

1. determine the matrices in (2.71) and in (2.72) set below:

g(In,n;, 0N, N, ON, Ny Rim, Ro, Ran)

£ [g (INoNf, ON, N ON, Ny Ry R, (o), Rn(@)} _1(2.71)
R £ g (R1,R2,R3, R4, R5, Rg)
[g <Rx<,,.> R0 Ryo, Ry Ryeo, Ryio) )} B

Rl,n RZ,n
T
R2,n R37n

[I>

+HY [ ] H, (2.72)

2. extract fromR;, RI, andR! the matricesR, ., Ra., andRg . (re-
spectively) that contain their first. (A 4 1) columns; moreover, extract
from Ry, R3, Ry, Rs, R, andRg the matriceRo ., R3¢, Rae, Rse,
R5,e, andRg . (respectively) that contain their firétV; — n, )(A + 1)
columns;

3. extract fromR the upper-left square sub-blogk; ; of sizen, (A + 1)
and fromRy andR3 the upper-left sub-blockR, s andRg  (respec-
tively) of sizen, (A + 1) x (N; — n,)(A + 1). Finally, extract from
R, Rs, andRg the upper-left square sub-blocks, ¢, R5 ¢, andRg ¢
(respectively) of siz¢ N; — n,)(A + 1);

4. determine the matrix

Ra g(Ria,Roa,R3a, Rin,R50,R60)

g(Ris,Ros Ras,Ras, Rs Rep)] ™ (2.73)

(> >

5. extract from the matrix
RicRia+RoRJA + R3cRIA (2.74)

the lower-right sub-bloclB() of sizen,. (N, + 1) x n, and from the
matrices

Ry Roa +RocRyn + Ry RE L (2.75)
fil,eRs,A +RocR5a + Rs,eRg,A (2.76)
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the lower-right sub-blocksB(*2) and B(:3) (respectively) of size
ny(Np + 1) x (N; — n,). Moreover, extract from the matrices

RoeRia + RycRIA + Rs RS A (2.77)
RjcRia + Rs Rj A+ Re RS A (2.78)

the lower-right sub-blockB (21 andB(*-1) (respectively) of siz¢ N; —
n,)(Ny 4+ 1) x n, and from the matrices

RocRoa + RycRun + RsREA (2.79)
Ry Rsa +RicRsa +RsRoa (2.80)
RscRoa + Rs Run + ReeREA (2.81)
R;.Rsa +RscRsa +RecRea (2.82)

the lower-right sub-block822), BZ3) B(:2) and B®3) (respec-
tively) of size(N; — n,)(Np + 1) x (N; — n,);

Finally, the optimum(Bgf’pt), D&Opt)) are given by the following matrices:

1Ly g2 _,pgls3)

(opt) _ B 9
BPY = [ B21) B(2,2)_]B(2’3) (2.83)
DgOpt) = [ BB  BG2_,;BG3) ]. (2.84)

The properties of the matrix algebfa,,,, and the formula for inver-
sion of block-partitioned matrices also allow us to express the optimum

(W&(’pt), G&"P“) as follows:

«

Wi (8,1,
—R;(b Ry(cc> G&opt) (2.85)
. N R —1
Gt = (Ry(c> Rl R Ry“C’)
[ 8 )

+ (Ryr<c> ~RTR L Rywc)) ﬁa] (2.86)
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where

OnTAXNi

i B(Q,l) B(2,2) —]B(2’3) ]

D,2| ————————— (2.87)

andR, ) andRy(c) are the correlation matrices of the real part and the imag-

inary part, respectively, of the output vec®H, [y, k], R, denotes their
cross-correlation matrix®, . R, ] is the cross-correlation matrix be-
tween the real [imaginary] part of the output vecx, [y, k| and the real
part of the input vectol .+, [xx, k] and, analogously, ;) [Ryz@] is the
cross-correlation matrix between the real [imaginary] part of the output vector
Tx, [yk, k] and the imaginary part of the input vecﬁo,(f).

This procedure, by exploiting the special structure (2.63) of the correla-
tion matrices, exhibits a lower computational complexity with respect to the
procedure (2.55): in fact, the maximum size of the matrices to be inverted in
feedback filter reduced-order desigmisx(n,(N¢ +v), (N; —n,)(Nf +v))
instead of(2N; — n,)(Ny + v) required in (2.55).

In the particular case where both the transmitted and the noise vector
are complex-valued rotationally invariant, i.en, = 0, R, = Rx@,

R, = R, ), and the matriceR (.., andR, (., are skew-symmetric [56],
consequentlyRse = Rge, Rse = —Rse, Rya = Rga, andRsa

is skew-symmetric; moreoveR ) = R, Ry is skew-symmetric,
R, =R andR = —R (e, and, henceD*) = — ;B
andGP — ;W j.e. the optimum WL-WDF-MMSE equalizer degen-
erates into DF-MMSE one proposed in [9]. Note that, when the noise vector
is rotationally variant, the optimum WL-WDF equalizer does not reduce to
the linear one also when the transmitted sequences are rotationally invariant:
for such a reason, in order to examine some particular structures of the WL-
WDF-MMSE equalizer, in the sequel we assume a rotationally invariant noise.
When all theN; transmitted signalsg) are real-valued, i.en,, = N;, the op-

yx(c) y ym(r(:)
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timum feedback filter is linear and real-valued, in f&$"Y = BLD while
the optimum feedforward filter is widely linear. Such an equalizer, here re-
named WL-DF-MMSE, has been proposed in [43] with reference to the SISO
channel.

In the casé) < n, < Nj, itis simple to verify that the optimum matrices

( {owt) G,(fpt)> and (Bﬁfpt),DE,f’pt)) satisfy the following conditions:

A) the feedforward processing of the received vector is widely linear, except
for the extreme case, = 0;

al) the feedforward sub-processing that provides the contributes to the
estimate of the real-valued componentspf A exhibits an halved
computational complexity with respect to the processing which
provides the lasiV; — n,. ones;

B) the processing of the past decisiofig; A is widely linear un-
lessn, = 0;

bl) the sub-processing of the real-valued componentggf A is lin-
ear rather than widely linear,;

b2) the sub-processing that provides the real-valued components of
X g kA €xhibits an halved computational complexity;

b3) the sub-processing that provides the complex-valued components
of xg 1—a is widely linear, although the complex-valued compo-
nents of the transmitted vectef_ A are complex-valued circularly
symmetric.

The above properties are summarized in the overall structure reported in Fig.
2.2. Note that the synthesis of the WL-WDF equalizer can be performed
both in the presence of uncorrelated input sequences and in the case where
space-time coding introduces spatial and temporal correlation R/tmon-
singular) in the transmitted sequences [26].

It is possible to show that the error-correlation matrix of the WL-WDF-
MMSE equalizer is equal to

RP2 B |(xpn —Xpp-n) (Xpa — fiE,k—A)H} = o RAD

(2.88)
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~(r)
= L e R{ an () O

Yk — ]

L
=~
A

Figure 2.2: Block diagram of the WL-WDF-MMSE equalizer: the
blocks labelled withl are linear filters, whereas the ones labelled with
W L are widely linears filters.

where
OHTAXTM | O (nr+N; A)X(N;—n;)
Ay | INi_nr
oL | . (2.89)
| O(N,—ny) A x (N;—ny)
Oo(N,—ny (At )xne | =7 INj—n,

Moreover, it is straightforward to recognize that the optimum WL equal-
izer in (2.53), as shown in [42, 57] (by using the complex-valued nota-
tion), is given by (2.85) and (2.86) settifB") = [I,. 0, xn,n,]",
B12 = B(l3) = o, B&D = BGL = o, B22 = BG3) =
Iy, —n, O(Ni—n,.)x(Ni—n,,.)Nb]T, andB>® = B2 = 0.

2.6.2 WL-DF-MM SE equalizer for Scenario 1

Since it is interesting to evaluate the advantage of the widely linear feedback
filtering over linear feedback filtering, in this section we present the deriva-
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tion of the WL-DF-MMSE equalizer (which employs a linear feedback filter
rather than a widely linear one). Following the same guidelines of the previous
section, it can be shown that the optimum WL-DF-MMSE equalizer can be
determined by the following procedure:

1. determine the matrix
R é g <R17 R27 R37 R47 R57 R6>
SRA-RAHY (HARAHY+RY) TTHLRY  (2.90)

2. determine the matriR” defined as follows:

R’ 2 [ Ry Rg]
R, Rj
R1 RQ —JR3
Rg+jRg R4+R6—j<R5—Rg)]

A

(2.91)

3. determine the following matrices:

R, 2 <R1>_1 + (R1>_1 RIR;R%" <R1>_1 (2.92)
Ry 2 (Rl)_l RCR; (2.93)
R; 2 [Rg ~ R (Rl)_l Rg] - (2.94)

4. extract fromR, and RY the matricesR/, and R, (respectively)
that contain the first, (A + 1) columns; analogously, extract froRxy
andRj3 the matriceng,e and Rge (respectively) that contain the first
(N; —n,) (A + 1) columns;

5. extract from R, the upper-left square sub-bloch,f of size
n, (A + 1), fromRy the upper-leftsub-blocRgf of sizen, (A +1)x
(N; —n,) (A +1), and, finally, fromRs the upper-left square sub-
block RS ; of size(N; — n,) (A + 1);
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6. determine the matrices

1 1 " 1
R?,A = (R?,f) +<R?,f) Rg,ng,ARg,f (Rf,f>

(2.95)
R), 2 (R],) RORE, (2.96)
RE, 2 {Rg ;—RY, (Rf’ f>_1 R] f] o (2.97)
7. extract from the matrix
R/ R’ ., +R) RS, (2.98)

the lower-right sub-bloclBg’l) of sizen, (N, + 1) x n, and from the
matrix

R/ R, +RJ R}, (2.99)

the lower-right sub—bloclB(ﬁl’Q) of sizen, (N, +1) x (N; —n,). More-

over, extract from the matrix
_ H
RJ R;, + RS R}, (2.100)

the lower-right sub-bloclB(;’l) of size (N; — n,)(Ny + 1) x n, and
from the matrix

R; R) A +Rj RY (2.101)

the lower-right sub-bloclBg’2) of size(NV; —n, ) (Np+ 1) x (N; —ny).

Therefore, the optimum feedback filters are:

(1) R(12)
B! B
B — |8 (2.102)
8 2.1) (22
B, " B
(ont) _ [ n@1) _ n(22)
D™ = [ BFY By (2.103)

The optimum feedforward filters are given by equations (2.85) and (2.86)
by replacingBY”" in (2.83) withB;*" in (2.102) andD{"" in (2.84) with

D" in (2.103).
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2.7 WL-WDF-MM SE equalizer for Scenario 2

Analogously to Scenario 1, the optimum WL-WDF equalizer in Scenario 2 can
be determined by applying the procedure (2.40) to the input-output channel
model (2.50), and accounting for the augmented correlation maiRégs)

andR”(m) (as already shown in Section 2.6 with reference to Scenario 1).

Note that, unlike Scenario 1 WheEegO =0, the term(BgO&% [fck_AD is

included in (2.52) and the lower triangular matrix B , is to be optimized
according to the MMSE criterion. 7

As it happens for DF equalization, it is easy to understand that the
performances of the WL-WDF-MMSE equalizer are affected by the deci-
sion ordering. In fact, leP be a permutation matrix of siz€N; — n,),
such thatP”P = Iy, ... By defining the (row) permutated input vector
En, [xx](P) = PE, [xx] and, hence, the (column) permutated channel matrix
En, [Hn|(P) £ &, [H,,]PT, the channel output (2.50) can be equivalently
re-written as follows:

Eolyrl = Y En, [Hu](P)En, [Xp—m] (P) + 1. (2.104)
m=0

The reordering of the columns @, [H,,] determines different WL-WDF
equalizer structures with different performances. Note that the optimization
over the decision ordering requires to account (faN; — n,.)! permutation
matricesP, instead of/V;!, as it happens in DF equalization. It is straightfor-
ward verified that also the WL-WDF-MMSE equalizer can be implemented by
resorting to two equalization stages:

1%t the former stage is the optimum WL-WDF-MMSE equalizer in
Scenario 1, maybe synthesized by resorting to the low computational
complexity algorithm proposed in subsection 2.6.1. Specifically, such
a stage performs a dispersive WL-WDF equalization by processing the
received vectoly, over Ny symbol period and by utilizing only past

decisionst,, [xx—a—,] With n > 0 to provide the estimatéf,;l)kfA of
Xk—A,

2nd the latter stage is the optimum WL-WDF non-dispersive equalizer in
Scenario 2 that performs the non-dispersive equalizaticin(El@J_A by
utilizing current decisions and whose performances depen’d on the deci-
sion ordering. Clearly, any suboptimal ordering algorithm designed for
DF equalization can be used in WL-WDF equalization.
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Note that, when Scenario 2 is considered, the decision ﬁ\{erfsz} with

¢ > n, can improve the estimation é}{x,(flA} or, vice versawhen a dif-
ferent ordering of the components &f, [x;_a] is adopted, the decision over
%{x,(ﬁA} can improve the estimation @%{x,(flA}. In other words, differ-
ently form the DF equalizer, which simultaneously provides the estimates of
%{x,(sz} and%{x,(flA}, the WL-WDF equalizer can estimate in a sequential
manner the quadrature and the in-phase components of the complex-valued
transmitted symbols.

Let us now show that, although not intuitive, the estimaté%@i,(flA}
can improve the estimation é}{x,(sz}, also whenyg,(ﬁA is complex-valued
circularly symmetric. To this aim, assume (for simplicity) that the components
of the transmitted vectax;, are uncorrelated with each other and temporally
uncorrelated, i.eR.(m) = ¥,d(m) with 3, diagonal, and (assuming correct
decisions) rewrite the output of the WL-WDF equalizer as follows:

En, [XE k- al =WETwN, [Eolyrl, k] = BET N, 11[En, [xx], k — A]  (2.105)
—WET(E,, [Hyl, Np, A+ 1] Tag1[En, [x1], 4]
+AWHTEn, [Her a1l Ny, NoJ - T [En, [x4), k= A—1] &

+WH Ty, [Eo[n], k] = BET N, +1(En, [x4], & — A

where is the post-cursor ISI term which affec§s, [Xg -], and where

the degree of freedom lying in channel input ordering have been temporarily
disregarded. According to any chosen detection scenario, the optimum feed-
back filter removes such an ISI term. Therefore, the equalizer output can be
equivalently rewritten as follows:

En, (X% Al 2 En[REfon] — & (2.106)
= Wir — Bf o, [Xr-a]

withr £ T[gn,« [Hk], Nf, A+ 1] . TA-i—l[gnr [Xk], /{] + TNf [50[11]6}, k‘], or, by
reordering the rows oW g, as
En, (X} Al 2 WEE] = BY &, [k (2.107)

with ¥ 2 T[Hy, Ny, A+1]-Ta1[xg, ]+ T, [0y, k. The matrix W and
the lower triangular matriBg0 have to be optimized according to the MMSE

SNote that, although the rows 8 - have been reordered, we have not defined a new matrix
filter for simplicity of the notation.
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criterion. Sincer does not depend on the channel input ordering, (2.107) can
be rewritten by accounting for the dependence on the permutation riRatrix

En 5 Al 2 WHE ]~ BE & i al(P)  (2.108)
~—_———

A
=X

From the above expression, it can be easily sfaat the optimunwg and
B#  are given by:

W(Opt)<. 0) R: Ry; -1 Prz,
_ & 7 2.109
B<0”t>(1 0—1,0) [RT R, ] [ Pz, ] (2409

Ty

with ¢ = 1,...,2N; — n,, and whereR; = [50[ 1&0[t1]], Riz,
El&r)xT(1 : £ —1)], Rz, & Ex(1 : £ —-1D)xT(1 : £ —1)], pra,
E[&[r)%(0)], andpz, £ E[x(1: £ — 1)%(£)].

For the sake of simplicity, assume that the permutation m&tiix (2.104)
is such that{x = &, [x;_al(P) : x(1) = R{z{’ }, %(2) = S{z” I},
i.e., the first two detected componentséf [x;_a|(P) are the in-phase and
the quadrature components of the complex-valued symfjbk (@ > ny).
From (2.109) and employing the matrix-inversion lemma, it can be verified if
the following equality holds true,

1> >

p/iM11pi12 + PayMTopia + pliMi2pas + pa;Maopas =0 (2.110)

with
pu 2 ERERED ] e 2 B [S{ER{ )]
piz 2 B[RS0} 2 E[S{1}S{a4)]
P = F [?R{I‘}%{I‘T}] Pio £ F [%{f‘}%{f‘T}]
Py, £ E [S{r}3{z"}]
and with
My £ Py + P PioMyPLP
M, 2 —P[['P13My
My £ (P -— P1T2P1_11P12)_1 ;

®According to the assumption of correct decisions, treat the feedback filter as a feedforward
filter that processes the vector_ A .
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then the decision taken f@%{x,j A} is not fed back to improve the estima-
tion of \s{x A}~ Unfortunately, the condition (2.110) is not so intuitive. Let

us investigate the special case where the input sequences are jointly circularly
symmetric (i.e.;n, = 0 and E {x,(c)xl?)é] = 0 VO, Vi, j € {1,...,n;}).

By exploiting the special structure of the correlation matrices of circularly

symmetric vectors [56], and by using the properties of the set of symmetric
matrices reported in [44], it can be verified that the following relations hold:

M, = My My = —MP, (2.111)

P11 = P22 P12 = —Ppa1.
In such a case, the condition (2.110) is verifiett foIIows that the estimate
of &e{xk A} does not improve the estimate i}l{xk A}, and it can be veri-
fied that if the real part and the imaginary one of each symz:@?_)lA are de-
tected successively, then the WL-WDF-MMSE equalizer structure degenerates
into the DF. On the other hand, it can be verified that the equality in (2.111)
does not hold for every decision ordering and, consequently, the decision over
%{mk A} is fed back to improve the estimate %{x,g) A} allowing one to
consider the optimization over all theN;)! permutation matrices. Such a
behavior can be explained by studying the variations of the statistical prop-
erty of the interference with respect to the decision ordering. In Fig. 2.3, we

have considered two different decision ordering. Assumeatfjég is circu-
larly symmetricvi. According to the casea), the undetected components

%{x (i+1) } and \s{x (i+1) } by means of the channel matrix weigh& [Hy)),
can be seenasa reS|duaI circularly symmetric interference when estimating the

real and the imaginary parts mfj) Being bothx,(f) A and the interference
jointly circularly symmetric, the resulting processing is linear (see subsection

2.1), i.e. ﬂ?{x,(i, At is not fed back to improve the estlmateﬁa{:zk At On

the other hand, wheiﬁ{xk_A} is detected first (casl®)), the feedback filter
allows to remove the interference term dueﬁﬁ{xpgﬁA} in the estimates of
%{m(”l } and“{x (i+1) } In such a case, the last component to be detected
\s{:t A} can be seen as a residual rotationally variant interference when esti-
matingR{x ”1)} and3{x hLl)} It follows that the feedback filter performs

"If A is areal-valued skew-symmetric matrix, thehAv = 0 for every real-valued.

8The case:) corresponds to the detection ordering such that the real part and the imaginary
one of each symbol sequenr:%lA are detected successively, i.e., the ordering such that (2.111)
is verified.
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Figure 2.3; Statistical properties of the interference for different de-
cision ordering and complex-valued circularly symmetric transmitted
sequences: C.S.I. stays for circularly symmetric interference, whereas
C.V.l. stays for circularly variant interference.

a widely linear processing at{z\"\'} andS{z\""V}, i.e., R{z{ "V} is fed
back to estimaté\}{mgfi)}. The same reasoning applies to the case where
ny > 0.

The above results can be extended to any detection ordering by defining
a vectorr that is updated after each cancellation performed by the feedback
tapBgo. However, we do not consider such a case since it makes heavy the
notation and, consequently, does not allow to simply expose the main concepts
discussed here.

The results in this section generalize the ones of [58] for the SISO scenario,
and formalize the ones of [59] for the MIMO non-dispersive scenario.

2.8 Nonequivalent WL-WDF equalizers

The WL-WDF equalizer structure (presented in Section 2.5) has been intro-
duced by resorting to the real-valued representation ((2.16) and (2.18)) of the
transmitted vectok; and the received ong;, as well as of the input vector

of the feedback filte© (&, [x;—a]). An analogous structure of the WL-WDF
equalizer can be introduced by resorting to the complex-valued representation
((2.16) and (2.18)) of the involved vectors. The complex-valued counterpart of
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the equalizer input-output relationship in (2.52) can be written as follows:

X k- = Cn, [WETN, [Colyr], k] — BEQ(Tw,+1[Cn, [Rep—al, k — A])] .
(2.112)

whereW ¢ andB¢ are complex-valued matrices of sig&V,Ny) x (2N; —

n,) and (2N; — n,) (N + 1) x (2N; — n,), and wherexc ;_a denotes the

equalizer output. The first tap of the filter mati¢, sayBc, is subject to

the constraint imposed by the equalization scenario. By means of (2.28), it is

simple to show that, when Scenario 1 is the detection scenario, one has

Cn,[Xck—a) = YTE,, [Xok—n) (2.113)

whereY andT are given by (2.25) and (2.24) (withy = n,.), respectively,
i.e., a one-to-one correspondence exists between the two structures and, con-
sequently, they perform equivalently.

On the other hand, when Scenario 2 is considered, the matriBtapgsind
B¢ are constrained to be upper triangular. In such a case, the complex-valued
counterpart oB g o provided by (2.28) is not lower triangular in general and,
vice versathe real-valued counterpart B o provided by (2.28) is not lower
triangular. It follows that the real-valued equalizer structure and the complex-
valued one are not equivalent and, consequently, they are expected to perform
differently. Moreover, let us note that, whdd is upper triangular, the
decision over the complex-valued syml()mL@A)* can be fed back to improve
the estimation ofr](fZA, and, vice versa when a different ordering for the
components o€, [x;_a] is adopted, the decision over the complex-valued
symbol:nl(fzA can be fed back to improve the estimatior(;osz)*. It follows
thath0 defines in general a WL transformation that can not be expressed in
the form of (2.27): we call such transformatiganeralized widely linear

A derivation analogous to the one proposed in Section 2.7 for the real-
valued equalizer structure allows to determine the complex-valued counterpart
of the condition (2.110), i.e., the condition that is verified wmefﬁA)* is
not fed back to improve the estimazlfglA (being(:c,(sz)* anda:,i@A the first
two detected components of the veafor [x;—a](P)). Specifically, account-
ing for the vectorr given by (2.107), define the correlation and the pseudo-
correlation matriceR;> £ E [rr¥] and R~ £ E [rr!], respectively.

Moreover, define the cross correlation vectprs, £ F [f (x,(ﬁ A) ] and

Pror = E [fx,(ﬁ A}. It can be verified that if

2 p/h-RuPrs, + Pry, RisPrs, + Pl Riopr,s =0, (2.114)
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where

-1

=

i

o
lI>

[Ryr — R Ry R
Ri» £ -R'R/Ry ,

then the decision taken f rgc,(fZA) is not fed back to improve the estimation

of xfﬁA. From (2.114), it follows that if the observation vectds rotationally

variant Rq= # 0), then the estimate aﬁ,;l A and the estimate of its conjugate
version can be not equivalent, i.e. the optimum feedforward and feedback
filters can define twgeneralized widely linearansformations of the received
vector and the decision vector, respectively.

The condition (2.114) is always verified when the transmitted sequences
are complex-valued circularly symmetric. In such a case the WL-WDF-MMSE
equalizer structure obtained by adopting the complex-valued representation
degenerates into the linear DF-MMSE one. On the other hand, wheno,
the condition (2.114) does not hold also when thg — n,.) complex-valued
transmitted sequences are circularly symmetric.

2.9 Mismatching analysis

In this section, we derive a closed-form expression that allows one to as-
sess performance degradation of the WL-WDF-MMSE equalizer due to the
channel and/or (possibly) noise mismatch conditions. We denote the mises-
timated channel matrix and the misestimated noise-correlation nitfix

andRE", respectively. Channel and noise estimation errors give rise to an
incorrect estimation of the input-correlation matrices: specifically, denoted
with ¢ the misestimated channel memory, we Cﬁﬂm' R° f{f;(m) ,

z(re)?
R, Ri(w), andR;@ the misestimated input-correlation matrices of size
n.(Ny + v°) x ng.(Ny + v°), n.(Ny + v°) x (N; — n,;)(N¢ + v°) and

(Ni —np)(Ny +1v°) x (N; — n,.)(Ny + v©). It follows that, by permutation

of the augmented input and noise correlation matrices and augmented channel
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matrix, (2.56)-(2.58) are modified as follows

. R%gr) R;Oe) Bi‘;(rc)
R} & | R°,, R%, R°., (2.115)
nel  fel Se
L Ri(re) Rx(cc) Rz(c)
. R¢, R¢
R 2 S n() ] (2.116)
L n(cc) n(c)
[ ™ pplF ()
. H H -H
HY 2 e e e ] (2.117)
L HI HI HR

whereHg)e andHY)e are of siz N,Ny) xn,(Ny+v°) and wherd—IEl?e and

ch)e are of sizg N,N¢) x (N; —n,)(N¢+v°). Consequently, by substituting

the input and noise correlation matrices and the channel matrices in (2.56)-
(2.58) with the corresponding misestimated ones, the optirflafn D¢ ) can

be derived by using the procedure described in Section 2.6 from the steps 2)-
6). Note that the misestimated channel memgrgives rise to a mismatched
decision delayA® and to a mismatched order of the feedback fiRgl =
Ny+v°—A°—1. The optimum feedforward filterdW?,, G¢,) are determined

by using in (2.85)-(2.86) the misestimated matrices defined in this section and
taking into account for the misestimated decision deddy

The error-correlation matrix corresponding to the misestimated feedback
filter B, 2 [B<” D<"]", with B, and D¢, defined according to (2.87), and
to the feedforward filteW . £ [W¢" GgH]H can be expressed in compact
form as follows

e neln Ane el 5 Af e el pARe el el
R¢ = BS R)BY — B RIHLWS — Wi HAR)BS + Wi R, W5
(2.118)
whereR;! is the correlation matrix of the output vecigy [T, [y, k]|, and
whereRz, R, ), Hy, angﬁg) are defined below in (2.119), witR,..),
R, o, Ry, Ry, andR, . defined in accordance witR,(,), and with

A", 72, andA\" defined accordingly t&1{ .
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- _ ~

) R, Ryro Ryeo
L Ri—‘(’r‘c) Rz;(cc) R‘Qj((')
I g I
[ nr (Ny+v°) } R,» { nr(Nyhv©) ] cv > e
R ") On,«(zx—zxe)xnr(Nf—&—ye) Onr(u—ue)xnr(Nf—l-ue)
v R 0 e
|: 2(r) ny(Ng4v)xn, (ve—v) Ve Sy
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(r) [ Lo (Vy4ve) ] > e
_ H v>v
Hg) = R OTLT(V—I/E)XnT(Nf-‘rVe)

[ Hg) OnoNanr(uefu) V>

2.10 Numerical results

In this section we present the performance analysis of the proposed equalizers.
It will be shown that the adoption of WL filters in the design of the DF-based
equalizer allows one to achieve considerable performance gain over the con-
ventional structures based on linear filtering. Section 2.10.1 presents the results
proposed in [44] with reference to the Scenario 1: the performances are evalu-
ated in terms of achieved MSE, both in presence and absence of channel mis-
matching. In Section 2.10.2, some results proposed in [60] are presented with
reference to the Scenario 2: the performance analysis is carried out in terms of
both achieved MSE and symbol error rate. Since the real-valued representation
and the complex-valued one are equivalent when WL-WDF-MMSE equaliza-
tion is performed in Scenario 1, obviously, we will not refer to any specific
structure in Section 2.10.1.

2.10.1 Numerical resultsin Scenario 1

In this section we present the performance analysis of the proposed equaliz-
ers. The performance is evaluated in terms of the signal-to-noise ratio at the
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decision point defined as

1
N Wtraee{Rz)

Niitrace(Rg"pt))

SNR (2.120)

whereR, has been defined in (2.36) ard is the error-correlation matrix,
which, for WL-WDF-MMSE equalizer, is given by (2.88). The averaged SNR
(ASNR) in dB is obtained by averaging over 100 independent trials: in each
trial, each channel taH,,, is randomly generated according to a complex zero-
mean uncorrelated Gaussian random process with variahce % which
assures unit-energy FIR filters. Moreover, the channel impulse-responses used
in our experiment are FIR filters with tap$,, (m =0,...,v) andv = 6.

Before presenting the performance results based on the mismatching anal-
ysis carried out in the previous section, we consider at first a set of experiments
in an ideal scenario, namely the channel impulse-response is assumed to be ex-
actly known and the assumptions (used to design the equalizers) of signals and
noise spatially and temporally uncorrelated with known power are fully veri-
fied. Moreover, assuming unit powers for the input signalsrgneal-valued
constellations, we assume the following input-correlations:

P00 () 2 B [%(gi ﬁxm*] = 60i_; (2.121)
(i i ' 0pbi—i i=1,...,n,
ng’])(f)éE[x’(ﬂiﬁ ’gj)]:{o Lt N

The noise is assumed complex white WSS Gaussian zero-mean processes with
same powet2 and spatially uncorrelated, namely:

ri(e) & B [nﬁﬁwé”*} = 07008;-j (2.122)
A0 2 B[l ml] =0

According to (2.121) and (2.122), the input signal-to-noise ratio is defined as
SNR £ .

Unless not specified, in the following simulations, we considér>a 6
MIMO channel,n, = 3 rotationally variant transmitted sequencé§, = 5,

and the processing delady that optimizes the performance.

A. ldeal scenario

In Fig. 2.4, the decision-point ASNRs of all the considered MMSE equalizers
are plotted versus SNRIn such a scenario the WL-WDF equalizer outper-
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Figure 2.4: ASNR of different equalizers versus SNR

forms all the other equalizers. We have evaluated the performance gains of
the WL-WDF equalizer over both DF and WL-DF equalizers defined as fol-
lows

Gl = ASNRWL_WDF (dB) — ASNRDF (dB) (2123)
G2 = ASNRwL-wor (dB) — ASNRy.pr (dB) . (2.124)

Figs. 2.5 (a)-(b) repoitr; andG4 versus the ratlc?v beingn. the number of
circularly symmetric trnasmitted sequences, for different values;of N,.
Note thatGG; reaches the maximum value f%’— = 0 and, as expected, the
minimum one for”c = 1 since, in this case, the widely linear equalizers de-
generate into the Ilnear ones. The gainis null, vice versawhenzs = 0 and
7 = 1: the former condition means that all the components of the transmitted
vector are real-valued and so the WL-WDF equalizer degenerates into WL-DF
one; the latter condition means that the transmitted vector is rotationally in-
variant and, therefore, both the WL-WDF and WL-DF equalizers degenerate
into the DF equalizer. In the intermediate situation, k.= 1, the WL-WDF
equalizer exhibits the maximum performance gain. The results show that the
performance gains are approximately independen{;of

Fig. 2.6 shows the behaviors of the decision-point ASNRs of the different
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Figure 2.5. Performance gain of the WL-WDF-MMSE equalizer over
DF-MMSE (a) and WL-DF-MMSE (b) equalizers versus the r%fo
for different values ofV; = N,,.

equalizers versud’y; when SNR = 15dB. We can notice that the WL-WDF
equalizer provides satisfactory performance also whgnis small and the
WL-DF equalizer outperforms the DF one for larger values\gf As ex-
pected, all the decision-feedback equalizers outperform the WL and L ones at
the expense of an additional computational complexity. Finally, we investigate
the dependence on the processing delayA < (N;+v—1) of the decision-

point ASNR. The results of Fig. 2.7 show that the performances of the WL and
L equalizers are very sensitive to the variationa\ofSuch a behavior is due to

the fact that, wher\ is too small, the equalizers cannot satisfactorily perform
anticausal processing; on the other hand, wheis too large, the equalizer
cannot satisfactorily perform causal processing. Moreover, the performances
of all the DF equalizers are more sensitive to variationaofThe results in

Fig. 2.7 agree with those, reported in [61, 62], where it is suggested to use
A = Ny — 1 for SISO DF equalizer. Note that, whén= N, + v — 1, then,

N, = 0: it follows that the WL-WDF and the WL-DF equalizers degenerate
into the WL one, and, similarly, the DF equalizer degenerates into the linear
equalizer.
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B. Mismatched scenario

Channel-mismatch effects can manifest themselves in several forms includ-
ing errors affecting the channel impulse response coefficients and/or errors in
determining the channel order. In our numerical experiments, the effects of
channel mismatch are modelled by assuming that all the estimated coefficients

h,(f’j)e of the channel impulse response are defined as

h}(j,j)e N h,(f’j) i glgi,j) (2.125)

with eg’]) zero-mean Gaussian random variables, uncorrelated each other, with
variance:

o M . (2.126)
B “h;(f’j)ﬂ

In Fig. 2.8, the decision-point ASNRs of the equalizers under consideration
are plotted versus the channel mismatching percentage defineé d$00?

a) b
14 T @ T T 25 T T ©) T T
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— WL-MMSE — WL-MMSE
+++ DF-MMSE +++ DF-MMSE
\ — - WL-DF-MMSE — - WL-DF-MMSE
12 — WL-WDF-MMSE — WL-WDF-MMSE

201

H
5
:
. ASNR (dB) ..
(%,
4

ASNR (dB)
®
T

o
T

2 i i i i 0 i i i i
0 2 4 6 8 10 0 2 4 6 8 10
Channel matchina nercentace o Channel matchina nercentace o

Figure 2.8: Effect of channel mismatching percentage on decision-
point ASNR.
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for SNR = 10dB (a) and SNR= 20dB (b). The results show that, unlike
feedforward-based WL and L equalizers, the decision-feedback equalizers are
very sensitive to channel mismatch: such a behavior, which agrees with the
results derived in [61] for a special case of SISO channel, is due to the inca-
pability of the feedback filter to correctly compensate the interference origi-
nated by the past samples. Moreover, DF-based equalizers appear more sen-
sitive to channel mismatch for large values of SNWRere, in the presence of
severe mismatching, L equalizer outperforms WL equalizer, especially when
ny = Nz

In all the following experiments we have set the channel mismatching per-
centage at0% to assure that the decision-feedback equalizers perform as well
as the non decision-feedback ones. Note that the considered mismatching is
larger than the value achieved by many channel estimation techniques and,
therefore, it represents the worst case in many realistic scenarios. Figs. 2.9
(a)-(b) report the decision-point ASNRs versus SNRhile the performances
of the ideal equalizers increase with S\NEhis is no longer true when the
channel impulse response is misestimated. Also in this scenario, the WL and
L equalizers appear more tolerant to the channel mismatch (note that, for the
sake of representation, a different scale is used in Fig. 2.9(b)).

In Figs. 2.10 (a)-(b), the performances of the decision-feedback equalizers
and the non decision-feedback ones, respectively, are evaluated for different
values of Ny with SNR = 15dB. The results show that, unless a large ASNR
offset is present, the behaviors of the equalizers operating in ideal and mis-
matched scenarios are the same. Finally, in Fig. 2.11, we analyze the behav-
iors of the equalizers under consideration with respect to the processing delay
A (SNR = 15dB). The results show that the decision-feedback equalizers are
more sensitive to the variations &f with respect the non decision-feedback
ones.
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2.10.2 Numerical resultsin Scenario 2

We first consider the case where the optimum decision ordering is adopted
and no error propagation is present. Then, we consider the case where the
optimum ordering is still available, but the effects of error propagation in DF
equalization are taken into account. In order to obtain accurate symbol error
rate estimates, the computer simulations have required a large amount of time.
In this study, we admit that at least 10 errors would occur for the lowest level
of symbol error rate, resulting in a 9%confidence interval [63].

A. DF equalization in absence of error propagation

The performances are evaluated in terms of the SNR defined in (2.120) and
optimized with respect tch andP. The ASNR in dB is obtained by averaging
over 100 independent trials: in each trial, the channelhéfpéé (G=1,...,N;

, ¢ =1,...,N,) are randomly generated according to a complex zero-mean
white Gaussian random process with unitary variance and uncorrelated with
each other. Unless not specified, in the following simulations, we assume:

- N; = 4 input sequences with correlations defined in (2.121), such that
ny =2,
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Figure 2.12: ASNRs of the equalizers versus SNRV, = 2).

- n. = N; — n, complex-valued circularly symmetric input sequences;

N, noise with correlation defined in (2.122);

channel order = 1;

- Ny = 4 feedforward matrix taps.

Moreover, we denote the WL-WDF-MMSE equalizer obtained by adopting
the complex-valued representation with WLWDF-C, while WLWDF-R will
denote the WL-WDF-MMSE equalizer obtained by adopting the real-valued
representation. In the following, the the abbreviations Sc. 1 and Sc. 2 will
denote Scenario 1 and Scenario 2, respectively.

In Fig. 2.12, the ASNRs at the decision point of the ideal WL-WDF-
MMSE equalizers and the ideal conventional DF-MMSE equalizer are plotted
versus SNR £ (%2 for N, = 2. The WLWDF-C significantly outperforms
all the other equalizers in this ideal conditions. Then, to analyze the perfor-
mance dependence on the number of outputs, we have evaluated the perfor-
mance relative gaid/; of the WLWDF-C equalizer over the WLWDF-R one,
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the performance relative gaid, of the WLWDF-R equalizer over the DF-
MMSE equalizer in both Scenario 1 and Scenario 2, the performance relative
gain G5 of the WLWDF-R equalizer in Scenario 2 over the same equalizer in
Scenario 1, and, finally, the performance relative gainof the DF equalizer

in Scenario 2 over the same equalizer in Scenario 1. More specifically:

e ASNRwiwpr-c(dB) — ASNRwLwpr-r(dB) (2.127)
min {ASNRWLWDF_C(dB), ASNRWLWDF_R(dB)} .

. ASNRwiwor-r(dB) — ASNRor(dB)

e " (2.128)
Sc.2 Sc.1
Gs £ ASNR\(NLWE)F-R(dB) —ASN ( |_W|)3|:-R(dB) (2 129)
Se. .
ASNR| LV\lll)DF—R(dB)
ASNRE“?) (dB) — ASNREY (dB
G, & Ror ~(dB) Ror ' (dB) (2.130)

ASNREY (dB)

where G will be evaluated for both Scenario 1 and Scenario 2. Fig. 2.13 (a)
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Figure 2.13: Gains[G;],_, _, versus the number of outputs, for
SNR = 15dB(a) and SNR = 30dB (b).
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and (b) reporfG;],_, _, versus the number of channel outpiisfor SNR =
15dB (@) and SNR = 30dB (b), respectively. Note that the WLWDF-C equal-
izer reaches its largest gai, over the WLWDF-R equalizer foN, < N;;
moreover, G exhibits the maximum value fav, = 2 in presence of large
SNR. Similarly, the gain G of the WLWDF-R equalizer over the DF is dif-
ferent from zero forN, < N; both in Scenario 1 and in Scenario 2; more
specifically, G exhibits its maximum fotV, = 3 when Scenario 1 is consid-
ered, while it is constant foN, < N; when Scenario 2 is considered. The
performance improvement gained by the WL processing, for fixednd V,,,
is due to to a better exploitation of the statistical redundancy exhibited by the
useful signal component. As expected, similarly tg @so G approaches to
zero whenV, increases. Finally, the gaing@nd G, monotonically decrease
with N,. The feedback of current decisions (Scenario 2) allows one to achieve
a large gain over the equalizer structures of the Scenario 1 \Whesa lower
thanV; since they guarantee the capability to discriminateh@puts.

In Fig. 2.14 (a)-(b), a performance analysis of all the considered equalizers
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Figure 2.14: ASNRs of the equalizers versug, for SNR = 15dB
(a) and SNR = 30dB ().
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is also presented where the ASNRs are plotted veksuer SNR = 15dB and

SNR = 30dB, respectively. The simulation results show a different sensitivity
of the ASNR'’ s curves of the different equalizers to the growth of the number
of channel outputs. Specifically, the WL equalizers appear more sensitive with
respect to the linear equalizers to the variation&/gfespecially forV, < N;.

It follows that the WL processing allows one to efficiently exploit the diversity
gain due to the multiple observations and it provides significant performance
improvements when a small number of channel outputs is available at the re-
ceiver (typical down-link scenarios). Note the performance equivalence of the
different equalizers whely, is sufficiently large.

B. DF equalization in presence of error propagation

In real word scenarios the performances of the DF-based equalizers are also
affected by the presence of the error propagation; its negative effects in DF-
based MIMO equalization have been studied in [49], where it has been shown
that they can be reduced by properly re-ordering the decision vector. In the
following we analyze by computer simulations the effects of the error prop-
agation when the WL-WDF-MMSE is employed at the receiver side. More
specifically, we single out important differences between the complex-valued
representation and the real-valued one when Scenario 2 is considered.

We have consideredla<2 MISO channel model (Fig. 2.15) an@& 2 one
(Fig. 2.16). BPSK and 4-QAM modulations are assumed to be employed for
the real-valued input sequence and the complex-valued circularly symmetric
one (i.e.,n, = 1 andn. = 1). The number of the feedforward matrix taps
is set toN; = 2 and all the equalizer parameters are chosen according to the
MMSE criterion.

In presence of error propagation we have adopted, as performance mea-
sure, the symbol error rate (SER) averaged ovetNhaputs; moreover, the
SER curves have been averaged over 100 independent channel realizations.
In Fig. 2.15 and 2.16, the SER of the considered equalizers in Scenario 2 is
plotted versus SNRboth in absence and in presence of error propagation: in
correspondence of each value of the SNRe equalizer performances are op-
timized (with an exhaustive procedure) over all the possible decision orderings,
i.e. over all the(N; + n.)! permutation matrices\;! for DF-MMSE equal-
izer). The reported SER curves show that the WLWDF-C equalizer, which
outperforms all the other equalizers when correct decisions feed the feedback
filter (see the black lines), can perform very poorly (see the grey lines) in the
presence of error propagation. In such a scenario the WLWDF-R equalizers
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Figure 2.15: SERs of the equalizers versus SNRx 1 MISO channel.

outperforms all the other equalizers.

The results of such analysis are dramatically different from those obtained
in the previous subsection where the error propagation effects were not taken
into account. In fact, the WLWDF-C equalizer is able to utilize the decision
over the conjugate version mfﬁA to improve the estimate czfgle (andvice

versg. However, such an improvement holds only WlﬂféﬁA = xl(flA, ie.

when the estimation error is enough small to allow to achieve a correct deci-

sion. It follows that the achieved accuracy improvement in estimatfjbA
(correspondent to an increase in the SNR at the decision point) does not reduce
the probability of error.
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Figure 2.16: SERs of the equalizers versus SNRx 2 MIMO channel.



Chapter 3

Transceiver design

his chapter considers the design of MIMO communication systems

with channel knowledge at both the transmitter and receiver side. By
exploiting the CSlI, the system can adapt itself to each channel realization to
improve the spectral-efficiency and/or communication reliability. As shown in
Chapter 1, the optimum transceiver, which maximizes the mutual information
between the system input and output, diagonalizes the MIMO channel: ideal
Gaussian codes have to be transmitted througreihen subchanelwith a
water-filling power allocation procedure [18].

In practice, the system is divided into an inner subsystem and an outer one,
and the ideal Gaussian codes are replaced by the symbol constellations of finite
dimension. The former performs channel coding in order to gain error correc-
tion capabilities, whereas the latter transmits symbols belonging to specific
signal constellations. For mathematical tractability, the overall system design
problem is treated by separately addressing the two subsystem design prob-
lems. Let us concentrate on the second subsystem, i.e., the uncoded one. Such
a subsystem can be further divided into two parts: the constellation mapping
and the signal processing. The constellation mapping refers to how the data
bits are mapped into points of a constellation, whereas the signal processing
refers to any additional processing in the form of precoding at the transmitter
and equalization at the receiver, that transforms the channel into an equivalent
one.

We will focus on the signal processing part, i.e., we consider the opti-
mization of the pair of transformations of blocks of the transmit symbols and
receive samples, namely the precoder and the decoder, that operate on the time
and space dimensions. In the existing literature, the linear transceiver, i.e.,

103
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Figure 3.1: The transceiver architecture.

the one that employs linear precoder and decoder, have been widely studied
[23, 25, 27, 64]. In this chapter, we point out that if the symbols (to be trans-
mitted) are known to be circularly variant, then a solution based on the assump-
tion of circular symmetric signals is not optimal. Therefore, the transceiver
design is generalized to the case where WL filters, which exhibit significant
performance improvements over conventional linear filters in presence of ro-
tationally variant inputs, are utilized as precoder and decoder. It is shown that,
in presence rotationally variant transmitted symbols, the proposed transceiver
structure outperforms the linear-filtering based one in terms of mean square
error and symbol error rate.

3.1 System Modd

Fig. 3.1 shows the MIMO communication system model already considered
in Section 1.8. At the transmitter side, the information bit streams are encoded
to generate the information symbol streams that are processed by the precoder.
The precoder output is then transmitted over the MIMO channel Witin-
puts andN, outputs. At the receiver side, the channel outputs are processed
by the decoder whose outputs are decoded to recover an estimate of the infor-
mation bit streams. In the following, with reference to such a system model,
we assume that specific signal constellations have been selected for all the in-
formation symbol streams that must be detected by the receiver, i.e. we focus
on the boxed section of the communication system shown in Fig. 3.1.

Under the assumption that channel state information (CSlI) is available at
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both ends of the link, the precoder and the decoder can be jointly designed,
according to a chosen optimization criterion (see [23, 25, 27, 64, 65], and
references therein). In previous works, linear filters have been extensively em-
ployed as precoder and decoder: the resulting transceiver structure is referred
in the following to as linear transceiver (LT). On the other hand, WL filters,
which exhibit significant performance improvements over conventional linear
filters in presence of circularly variant inputs (as shown in the previous chap-
ter), have been extensively proposed in the literature (e.qg., [41, 43, 44, 46]) but
with exclusion of the transceiver design. For such a reason, in this chapter, we
propose to employ WL filters as precoder as well as decoder (we will refer to
as widely linear transceiver (WLT)) in the general case where symbol streams
can belong to different symbol alphabets.

Since the WL processing can be performed by adopting the real-valued
representation of the transmitted and received vectors (see Chapter 2), as well
as the complex-valued one , in the two next subsections we introduce the two
system models according to such representations. Although they are equiva-
lent, we will recognize that the real-valued representation allows us to design
the WLT by utilizing the LT design method already proposed in the literature.

3.1.1 Real-valued system model

Consider a baseband equivalent noisy non-dispersive MIMO channel. The
input-output relationship, as shown in Section 1.3, is given by

y=Hx+n , (3.1)

whereH is the channel matrix, and denotes the noise vector assumed to
be independent af, and where we have removed the time-indeor conve-
nience. In this chapter, our focus is on the frequency flat environment since it
allows us to provide a performance analysis of the proposed transceiver struc-
tures by utilizing the asymptotic results (Theorem 1.2) of the random matrix
theory. However, the more general time-dispersive MIMO channel can be
analogously treated by resorting to the augmented model of (1.73) (see also
[25] for detalils).

By resorting to the operators (2.16) and (2.18), we can simply define the
WLT structure as shown in Fig. 3.2. The symbol vector to be transmitted is
denoted withs £ [s(1) s ... sB))T: each symbok(® is drawn from the
constellationS; (i = 1,..., B) and, with no loss of generality, we consider
both the real-valued constellations (e.g., PAM) and complex-valued constella-
tions (e.g., MPSK withM/ > 4 and QAM). We order the symbol sequences
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Figure 3.2: Block diagram of the widely linear transceiver.

so that the real-valued constellations have indices {1,...,b.}; the case
b, = 0 accounts for the absence of real-valued constellations, whiereas$3
is the case of all real-valued constellations.

By linearly combining the outputs of the filters that separately process
the real and the imaginary parts sf the WL precoder provides the real
and the imaginary parts of the channel-input vestaf size V;, whose first
n, components are assumed to be real-valued (the ease 0 accounts
for the absence of real-valued components, whergas= N, is the case
of all complex-valued components). Let us note that the number of real-
valued components of represents a degree of freedom in the WLT design.
The operators (2.17) and (2.18), together ] defined in (2.23), allow
us to simply describe the WL precoding by utilizing a linear transformation
F ¢ RP*Br with B, £ 2B — b,, andD,, & 2N; — n,, from the aug-
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mented vectog 2 [5(1) 52 . 3BT = g [s] to the augmented vector
x 2 W 2@ . zPT = g, [x]. More specifically, one has:
x 2 [20 2@ m(N»]T

At the receiver side, the outpatof the decoder is obtained by WL pro-
cessing the received vectgr to provide independent estimations of the real
and the imaginary parts ef Hence s can be written as follows:

§2 &, [G& [yl (3.3)
whereG € RB-*(2No) is a linear transformation from the augmented vec-
tory 2 [0, 5@, ... g@NIT = & ]y] to the augmented vectar £
[’2(1)1 2(2)7 SR 2(BT)]T = 5br [é]

Finally, let us note that, since the input-output relation (3.1) can be replaced
by the equivalent one

Eoly] =& HEy, x|+ & —  §EHX+A . (34)
we can define the overall WLT system equation as follows:
z=GHFs+ Gn |, (3.5)

wherez is utilized to recover the estimateof s by means o& = &, [z].

The system model in (3.5), as it will be shown in Section 3.3, allows us to
synthesize the WLT, i.e. the matrix filteFsandG, by utilizing the procedures
already proposed in [25, 27] with reference to the LT design.

3.1.2 Complex-valued system model

By resorting to the operators (2.17) and (2.19), the WLT structure can be de-
fined according to the complex-valued representation of the transmitted and
received vectors. It is simple to verify that the system equation (3.5) is equiv-
alent to the system equation:

Z2=GCn, [H|FC, [s]+GCo[n] (3.6)
where, according to (2.27), the precoder mafFix CP*B- is structured as
follows

Fia Fiz Fio
Fo1 Fopo Fa3
Fo1 Fos Fao

F= (3.7)
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with Fy 1 € Cvxbr) Fy o € Cox(B=b) e CWimme)xbe and, finally,
Foo, Fag € CWNimn)x(B=br) " and the decoder matrig € CB>*(2Ne) g
structured as follows

Gi1 91,
G=10G21 Gopo (3.8)
G302 931

with G € C*(No) andGy 1, Gon € CBr)x(2No) The decoder output,
i.e., the estimat@ of the transmitted vectas, is equal tos = C_br [Z], with
Cp[-] defined in (2.23).

Since no special structures are assumed for both the precoder and decoder
matrices, it is easily verified (see subsection 2.2.2) that the system models
in (3.5) and (3.6) are equivalent. However, the adoption of the real-valued
model makes the design of WLT simpler with respect to the adoption of the
complex-valued one. In fact, any design method that adopts the real-valued
representation avoids to take into account for the special block structure of
the matricesF andg in (3.7) and (3.8), respectively, which define the WL
filters according to the complex-valued representation. Only in the spacial case
of real-valued information symbols and real-valued channel input , i.e., when
b, = B andn, = N;, the two models can be utilized without distinction, as it
will be shown in the next section.

3.2 MMSE linear transceiver design

The overall system equation of a LT is given by (see also (1.85)):
S, = G HF;s+ Gn (3.9)

whereF; € CYi*B andG; € CP*Ne denote the linear precoder and de-
coder, respectivelys;, is the estimate o§, and whereH andn have been
defined in (3.1). In this section, we extend the design procedure proposed in
[25] to the case where the componesifs of input vector can exhibit different
variances. Such a condition is necessary since it allows us to simply derive
the MMSE WLT by applying the proposed LT design procedure to the aug-
mented system model (3.5). In fact, let us note that, although it is reasonable
to assume, as in [25], that the outputs of the symbol mapgpeexhibit the
same variance, the components of the augmented veatdi3.5) exhibit the
same variance only in the special cases of all real-valued or all complex-valued
information symbols (i.eh, = B or b, = 0).



3.2. MM SE LINEAR TRANSCEIVER DESIGN 109

To this aim, we assume zero-mean uncorrelated components for the sym-
bol vectors, i.e.,

R, £ E[ss”] = diag (O‘%, o3... ,a%) (3.10)

whereo? is the variance of théth component ok. The noise vecton is
assumed to be zero-mean with correlation maRijx2 E[nn’’]. Finally, we
define the error vectas £ §;, — s measured at the output of the deco@gr
and its correlation matrix

R, 2 F[ee’] = (G HF[ —Ip)R, (G HF; — I5)" (3.11)
+GrR,GH

According to the MMSE criterion, the optimum LT precoder and decoder
F(LOpt) and Gfpt) are derived by solving the constrained minimization prob-
lem:
in trace(WR, 3.12
P (WR,) (3.12)

subject to: trace(F R,F}) = Py

whereW is a diagonal weight matrix of siz8, and whereP, denotes the
total available transmission power. Note that without any power constraint,
minimizing the above cost function leads to the trivial solution corresponding
to |G| = 0 and requiring infinite power to be transmitté#'|| = co. The
weighted MSE cost function in (3.12), as shown in [25], provides a unified
framework for designing jointly optimal precoder and decoder according to
different criteriond. In the particular case 6W = Ip, (3.12) reduces to the
conventional MMSE design.

The receiver filter matri>G(Lo”t) that minimizes (3.12) is the WL Wiener
filter for any givenF' 1, and it is equal to

G\ = R,FYHY (HF R.FIHY +R,) " (3.13)

which, as expected, does not depend®nUsing the optimum decoder matrix
settings of (3.13) in (3.12), and applying the matrix inversion lemma, we can
rewrite the minimization problem (3.12) as follows:
min trace (W (R;' + FfHHRngFL)_l) (3.14)
L

subject to: trace(F R.F}) = Py

1For example, by opportunely choosing the weight matrix, the transceiver can be optimized
according to the maximum information rate design, as well as a QoS one.
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Such an optimization problem can be solved by resorting to the eigenvalue
decomposition (EVD)

H'R,'H=[U U] [gg] [EZ] (3.15)

whereU andU are orthogonal matrices of siz2é, x B andN; x (N; — B),
respectively’ £ diag(yi,...,vg) is the diagonal matrix containing thé
nonzero eigenvalues (arranged in decreasing order) asd diagonal matrix
containing the zero eigenvalues. In defining (3.15) we have implicitly assumed
thatB = rank(H) as in [25]. The cas®& < rank(H), as it will be shown, does

not require to define a different mathematical framework, while the Base
rank(H) is not considered heteBy following the same procedure described

in [25, 27, 66], it can be verified that the optimum matrix fiIE%pt) is equal
to:

Fi7) — Ue (3.16)

where® is a diagonal matrix of siz& with diagonal entries

5 1/2
S R T VN
¢ = B 1/2 12 12 2 :
Yoimiw, Ty o vy Tog 0% n

and wherew, are the entries oW, (a), = max(a,0), andB < B is such
that|©,|> > 0for¢ € [1,..., B] and|©,|? = 0 for all others¢. The variance

of the /th component of the error vectercorresponding t(F(L"pt) andG(L"pt)
is given by (3.11) and it can be shown to be equal to

R.(¢,0) = E[le“} (=1,...,B (3.18)

1/2_—1/2
_ w/ Y /w M1/2

B _1/2 _—1/2

with p1/2 & % Note that the optimum precoder and decoder
0 i=17i
diagonalize both the channHl and the error correlation matrR., giving rise

to B eigen subchannel®r equivalentlyspatial modelswith channel gainy,
(see [25], Lemma 2), as shown in Fig. 3.3.

%Since the transmitter knows the channel, it is reasonable that it will not transmit more
thanrank(H) independent data streams; however, very recently, it has been considered the
possibility of transmittingB > rank(H) data streams by resorting to a DF-based decoder [36].
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Figure 3.3: Decomposition of the MIMO channel inigen subchan-
nels the gaing3, are optimized according to the MMSE criterion.

Remark :The MMSE LT has been derived by assuming uncorrelated com-
ponents for the symbol vecter If R, is not diagonal, a prewhitening op-
eration can be performed over the symbol vestbefore precoding, and the
corresponding inverse operation can be performed after decoding.

3.3 MMSE Widely Linear transceiver design

In this section, we derive the MMSE WLT, i.e., the optimum matrif&g"*)
andG(°!) in (3.5), by utilizing the method proposed in the previous section
for the LT design.

Unlike LT optimization, which is based only on the knowledge of the input
and noise correlation matric&s; andR.,,, the WLT optimization requires the
knowledge of the augmented correlation matrifes= E [ss”]| andR; =
E [an’]. In other words, it requires the knowledge of both the correlation
matrix R (R,,) and the pseudo-correlation mati,;- = E [ss”] (R, =
E [nn™]). We assume zero-mean uncorrelated components for the symbol
vectors, i.e.,

R; = diag(61,53,...,63,) (3.19)

with &g denoting the variance of th&h component ok. Note that, if the
complex-valued componentso#re circularly symmetric, the® ., = 6%,
with/ =1,...,(B—b,), i.e. the real and the imaginary parts exhibit the same
variance.
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According to (3.5), the error vector measured at the output of the WLT
decodelG is defined ag¢ £ Z — § and its correlation matrix is given by

R; 2 F [66"] = (GHF - 15, ) R; (GHF - IBT)T (3.20)
+GR;G”

The MMSE WLT precoder and decodEf°?Y) andG-(°P!) are derived by solv-
ing the following constrained minimization problem:

%ucr;l trace (W Ré> (3.21)
subject to: trace(FR;F”) =P,

whereW is a diagonal weight matrix of sizB,, and whereP, is defined in
(3.12). To this aim, define the EVD

~ ~ —[AO0][VT

TR-197 _ 0 \

H'R;'H=[V V][OA} [VT] (3.22)
whereV andV are orthogonal matrices of siZze. x B, andD, x (D, — B,.),
respectivelyA = diag(\1, ..., Ag, ) is the diagonal matrix containing the,
nonzero eigenvalues (arranged in decreasing order)Adsd diagonal matrix
containing the zero eigenvalues. In defining (3.22) we have implicitly assumed
that B, = rankH) as in (3.15), and that, > B, — N;, so that all theB,
components of can be transmitted.

By utilizing the procedure proposed in the previous section for the MMSE
LT design, it is straightforwardly verified th&(°*") andG () are:

~ ~ ~ -1
Gcr) — RFTHT (HFRgFTHT + Rﬁ) (3.23)
Flr) — v (3.24)
where® is a diagonal matrix of siz&, with diagonal entries

By y—1 ~1/2 1/2
Po+ D> 70N 1
D, ( 0 Zz:l i . Wy > (325)

B, ~1/2\-1/2. /2~ 2,52
Do w TN e N ey Aea;

and wheray, are the entries oW, and whereB, < B, is such that®,|? > 0
for¢ e [1,...,B,] and|®,|? = 0 for all otherst.
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Analogously, the variance of thigh component of the error vectér cor-
responding t&(°?Y) andG(°P!) | is given by:

R (1,0) = E[|&]] (=1,...,B, (3.26)
_ 1171/2)\4_1/252 /11/2

o B g1/,
with jil/2 & 2B 0

Po+> Br At
Let us noteoth%ﬁhez cost function in (3.14) depends on the parameter
More specifically, the sizes of both the channel maHband of the precoder
matrix F' depend on such a parameter and, hence, since there is no functional
dependence of the cost function ap, the optimization (overn,.) has to be

carried out by an exhaustive procedure.
[ |

Remark 1 : We point out that in presence of possibly correlated complex-
valued circularly variant symbol vectar the prewhitening operation, which
provides the uncorrelated input vector to the precoder, has to be performed by
utilizing a WL filter operating on the augmented ve@&anstead of a linear one
operating ors. In fact, the adoption of a linear filter does not ensure that the
real and the imaginary parts of the complex-valued components of the output
of the prewhitening filter will be uncorrelated as assumed in (3.19).

Remark 2 :Let us consider the complex-valued system model (3.6) in the
special case where, = B andn, = N,;. From (3.7), one has that
the precoder matrix* degenerates into the nonstructured real-valued ma-
trix F1,, of size N; x B. Moreover, define the matricés = Cn, [H] and

Ry & FE [CO ] Co [n]”|. The optimum precoder and decod&f**") and
Grt) can be derived by utilizing the same procedure proposed in this sec-
tion with reference to the real-valued representation. However, since it can be
easily verified that

HAR'H = HYR_'H (3.27)
= VAVT |

the complex-valued representation leads an optimum WLT which is equivalent
to the one obtained according to the real-valued notation. Specifically, one has
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that
Flort) — v (3.28)

and the optimung(°P") is obtained fromG by means of (2.8).

3.4 MSE Analysis

In this section, we compare the performances of the MMSE WLT and MMSE
LT in the special scenarios of real-valued information symb6is(i.e., b, =

B), and in the special one of complex-valued circularly symmetric information
symbolss® (i.e., b, = 0). Since the MSE achieved by the MMSE LT and by
MMSE WLT are functions of the eigenvaluegin (3.15) and\, in (3.22), re-
spectively, the performance comparison will be carried out by studying the re-
lationship between, and\,. We will show that the MMSE WLT outperforms
the MMSE LT, whereas for the case whdsecomplex-valued circularly sym-
metric information symbols have to be transmitted (ibe.= 0), the MMSE
WLT degenerates into the MMSE LT. Moreover, our analysis points out the in-
capability by the MMSE LT of transmitting th8 information symbols when

N; and N, are sufficiently large anﬁ% ~ 1.

The following subsections 3.4.1 and 3.4.2 present, with reference to the
case of real-valued information symbols. (= B), two structures for the
design of the MMSE-WLT: the former assumes that the transmitted symbols
0 are real-valued (i.en, = N;), whereas the latter assumes that they are
complex-valued (i.eq, = 0). Finally, in subsection 3.4.3, we consider the
case wherd3 complex-valued circularly symmetric information symbols are
transmitted by utilizingV; complex-valued channel inputs. Although the case
0 < b, < B is not studied in the sequel, we remark that, due to the non cir-
cularly variant nature of the desired vector, the MMSE WLT is expected to
outperform the MMSE LT.

With no loss of generality, in the following, we assume unit-variance infor-
mation symbols, i.e., we assumg = 1 fori = 1,...,b,, ands? = 1/2 when
i=0b.+1,...,B,.. Moreover, to clearly show the effects of WL processing on
theeigen subchannelecomposition, we assume uncorrelated complex-valued
circularly symmetric noise components with variangeg i.e., R,, = 021y,

andR,,,~ = 0, or, equivalentlyR; = %IQNO.
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3.4.1 Real-valued information symbols and real-valued transmit-
ted symbols (br = B,n, = N;)

The MSE analysis provided in this subsection is first carried out by considering
two scenarios for the matrild:

1. H is deterministic;

2. His arandom matrix whose entries are i.i.d. random variables, and such
thatN;, N, — oo with a finite ratio%—z.

Deter ministic channel

Accounting for the assumption of uncorrelated complex-valued circularly
symmetric noise components, it can be verified that

2-H'H=H"H+H'H" . (3.29)

Before proceeding any further, let us remind here the Weyl’ s theorem [55, p.
396], on the perturbation matrix theory:

Theorem 3.1 If A andA + E aren x n Hermitian matrices, then
)\k(A)—l-)\n(E) S)\k(A-l-E) S/\k(A)+>\1(E) k= 1,...n

where); (A ) denote thesth largest eigenvalue cA.
By applying the Weyl's theorem to (3.29), the following bounds hold:

M (HTH) + Ay, (HTH) < \(2-HTH) < A\ (HH)+ )\ (H"H) (3.30)

where we have taken into account fo H”H) = \,(H"H*). From (3.30)
one has that, + vn, < A¢ < v + 71, i.€., the MMSE WLT decomposes the
MIMO channel intoB eigen subchannelwith gains larger than those of the
MMSE LT eigen subchannels

Let us now consider the achieved MMSEs in (3.18) and (3.26). We assume
that the same number of information symbBis= B, = B are transmitted by
the MMSE LT and the MMSE WLT. However, the same results apply to the
case wheré3 = B, < B.

The (¢, ¢) entry of the error correlation matric@. ") andRéom) can be
both expressed as follows:

R opt) (‘6’ é) = fﬁ(ryla s 773) (331)
R (4,0) = (A, AB) (3.32)
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where
1 +t_1/2 ;1/2
foltr,... tg) & — L Lot - (3.33)
Po+t, + 2 ztn

witht, >0 (¢ =1,... B) such that

Po+ Yttt PN 2w

n#l n#l
to ensure that the error variance does not exceed the input variance. It can be
shown thaff,(¢1,...,t5) monotonically decreases with, and hence, being
~ve < A, ONe has

R (0,0) <REM(2,0) (3.34)

i.e., the MMSE WLT outperforms the MMSE LT for any of the desired
symbols.

Random channel with large NV; and N,

We consider a channel mat# whose entries‘") are modeled as complex-
valued circularly symmetric independent zero-mean i.i.d. random variables
with varianceNi. According to above assumptions, the entries of the aug-

mented channel matrid are zero-mean i.i.d. random variables with the same
varianceﬁ. Moreover, we assume that the number of channel inputs and
outputs grows up to infinity;, N, — o0).

By utilizing the Makenko-Pastur law (Theorem 1.2), we can determine
the asymptotic (i.e.N;, N, — o0) probability density function (pdf) of the
eigenvalues;, and )\, versus3 £ {2

poy(a) = o2 <1 _ l>+ 5(a) + \/(a —a,), (b, —a), (3.35)

P, (a) =

[I>

o>
(>

S

=

=~

(>

Q
3N
N

—

|
)
~

no

~

=

=~

(>
:qw‘w qu|’_‘

—t

+
)
~_

no

—_

w

w

(o9

N



3.4. MSE ANALYSIS 117

wherea € [a,,b,] in (3.35) anda € [a,,,,b,,,] in (3.36). According to
(3.35) and (3.36), the mean valuesypfand A, are

E [y¢] = min {1, %} . ai% (3.39)
ELM]:rmn{L%}-g% , (3.40)

respectively, i.e., the mean value &f is at least twice the mean value of
~¢. Moreover, let us note that, in the spacial case of Gaussian channel entries
(R ~ N(0,1/N,)), the maximum (minimum nonnull) eigenvalues of the
matrices_ HH and J%f{Hf{ converge almost surely tly, and by, re-
spectively, ¢; anday,;, respectively) [67]. Since both the performances of
the MMSE WLT and of the MMSE LT are governed by the weakest subchan-
nels, the lower limitsz;, anday, 1, allow to state a performance comparison
between the two structures in the considered asymptotic scenario.

Wheng « 1, from (3.35) and (3.38), the random variablgsand A, can

be reasonably approximated to their mean values, more specifigagalilyj,gl2
and)\, = 2. By substituting such values in (3.33), and assunfiag= ¢B
(¢ € RT), one has

R0 1 €+1

e == . 3.41
ORI (1) 2 €+ 3 (3.41)

From (3.41), it follows that the performance gain provided by the MMSE WLT
over the MMSE LT over each subchannel approachddBwhens > 1, i.e.,
when the ratio of the transmitted power to the noise variance at each channel
output is larger thaB.

Wheng — 1, the probability of having null, increases since, achieves
the minimum value fof3 = 1; moreover;yz — 0 almost surely when(¢?) ~
N(0,1/N,). Let us note that, ag; — 0, one has

lim RCPD(¢,0) =1 (3.42)
Ye—0
lim p/? =0 . (3.43)
Y¢—0

From (3.42), it follows that the MMSE LT performs poorly over the weakest
eigen subchanneldVoreover, from (3.43), it can happen that tBesymbols
s() are partially transmitted. On the other hand, singe = (v/2 — 1)?/0?2
for 8 = 1, the MMSE WLT, aSO'?l — 0, improves the estimate of all the
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symbols. Moreover, by improving theigen subchannejains, the WL pro-
cessing allows us to achieve a multiplexing gain, i.e., it reduces the probability
of discarding the weakest subchannels.

Finally, note that the impulsive terms in (3.35) and (3.36) have nonnull
amplitudes forg > 1 and for > 2, respectively, and they account for the
N;— N, zero eigenvalues in (3.15) and thge— 2N, zero eigenvaluesin (3.22).

In such a scenario, the comparison between the smallest value®ayy 7, of

the range of the eigenvaluegand ), respectively, does not allow us to carry
out the performance comparison between the two transceivers. In fact, since
N; > N,, one has that;, still represents a quality index of the transmission
over the weakest subchannels, wherggs does not. For the sake of clarity,

let us consider the numerical examplte= 2 (N, = 2N,). The impulsive

term %5(04) in (3.35) accounts for th&V, zero eigenvalues, while;, andby,
define the interval where the nonnull eigenvalues lie. On the other hand, the
impulsive term in (3.36) has null amplitude, amgl;, = 0. BeingB = N,, the
eigenvaluegAy, +1,...,A2n,) are the channel gains of the unutilizeien
subchannelsaind, thereforeqy 1, does not provide any information about the
transmission over the weakesgen subchannel

Remark :It is important to note that the assumption of real-valued transmitted
symbolsz(® limits the search for the optimum MMSE WLT precodgrin

the subset of the real-valued matrices, whereas the optilgns complex-
valued. Nevertheless we have shown in this section that such a restriction does
not determine any loss when the MMSE is adopted as performance measure.
On the other hand, if the MMSE WLT and the MMSE LT are compared in
terms of symbol error rate, the above restriction can lead to a performance loss
when special scenarios are considered (see Section 3.5).

3.4.2 Real-valued information symbols and complex-valued
transmitted symbols (b, = B,n, = 0)

In this scenario, we have to analyze separately the Base2 K and the case

B = 2K — 1 (with K positive integer). We will show that, regardless the
value of B (even or odd)«a) the MMSE WLT outperforms the MMSE L¥b)

the MMSE WLT precoder can be implemented with a linear filter (rather than
WL) that processes a complex-valued input vector whose components belong
to a different constellation set.
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B = 2K : By assuming (for the sake of simplicit§j = B, i.e.,u'/? < /75
and accounting for (3.51), one has that

Br \—1/2
ﬂ1/2 _ Zi:l );z - (344)
Po+ il A
K _—1/2

-3 D im1 7
Po+ i7"

K —1/2
By observing thaj!/? > % it can be shown thgi'/? < /A =
0 i=1"1;

V27K, i.e., the MMSE WLT utilizes all the3, = B subchannels to transmit
the information vector. Straightforwardly, by utilizing (3.44), it can be verified
that

Re(20— 1,20 — 1) = Ry(20,20) (3.45)

_ 7—1/2 Zf; 7‘71/2

P+ PO it
and, consequentiR:(n,n) < Re(n,n) (n = 1,..., B), namely the MMSE
WLT outperforms the MMSE LT.

Let us show now that the precoder of the MMSE WLT is equivalent to
the precoder of the MMSE LT transmitting/2 complex-valued information
symbolss® of a QAM constellation. In such a case, the ma@@xin the
expression (3.18) of the optimum precodéLFpt) = U® is such that

—1/2
L L =1,...,B/2
6] = <“”2 W>+ t=1.... B/ (3.46)
0 (=B/2+1,...B

(=1,...,K

with pl/2 = L\//; Consequently, from (3.44), it follows that the optimum
matrix entries®, in the expression (3.25) of the MMSE WLT precoder are
given by:

1
V2

Accounting for (3.47) and (3.51), it can be verified that

Doy | = Doy = — - O, (=1,...,B/2 .  (3.47)

1 ~
(opt) — —_ . (opt)
F NG & [FL } , (3.48)
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and the outpug, [x] of the optimum WL precoder is equal to

- 1

& %] = — -FYP& s 3.49
0 [X] N 0 [s] (3.49)
opt
£ F(Lp )SQAM )
where the/th component of the vectar, ,, is equal tos()) | £ J5(s{)  +
gstB/2)y (0 = 1,...,B/2), i.e., its in-phase and quadrature components are

QAM

modulated by the two independent (of each other) symhaaids,, 5,2, and
normalized so thaﬁgzw has unit variance From (3.49), it follows that the
output of MMSE WLT precoder can be obtained by linearly precoding the
vectors,, ,,, with the optimum MMSE LT precoder designed to transijt2
information symbols.

Note that, since,, ,,, is circularly symmetric, the output of the optimum
WL precoder, and so the channel output, are jointly circularly symmfetric
However, since the desired vector is actually not circularly symmetric, the op-
timum decodeiG (") s still a WL filter. Let us also note that, the output
vectors (scaled byy/2) of G(°P!) can be equivalently obtained by utilizing the
optimum linear decodeﬁ‘r(LOpt) corresponding t(F(LOpt) in (3.48), and applying
the non linear operatd -] to its output vectos, ,,, -

Finally, we compare the performances of the MMSE WLT proposed in
this subsection (sa]}l[éB ] (n,n) the achieved MSE) with the performances of

the MMSE WLT proposed in subsection 3.4.1 (Sﬂyﬂ(n,n) the achieved
MSE) with reference to the special case whake N, — oo andg8 — 0. In
such a scenario, it has been shown thand\, can be approximated with the
asymptotic values(,}z and % respectively. Accounting for (3.45), it is easy

verified that agr2 — 0,
RP (n,n) — 222 (3.50)
R (n,n) — ——

i.e., the two MMSE WLT structures performs equivalently. The limits in
(3.50) imply also that the MMSE WLT which transmifs symbols belonging

®Note that, ifs"“ belongs to the M-ASK constellation, theff),,, belongs to the M-QAM
constellation.

“If the input vector is circularly symmetric and the channel is linear, then it can be shown
that the input and output of the channel are jointly circularly symmetric.
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to a real-valued alphabet (such as M-ASK) achieves the same performances
of an MMSE LT which transmits3 /2 SymbOlSng‘M belonging to a denser
alphabet. Unfortunately, the proposed framework does not allow us to provide

a complete performance comparison between the two structures.

B odd : Following the same guidelines reported in the previous paragraph, it
can be verified that wheB is odd

e if B = B, thenB, = B, i.e., the MMSE WLT and the MMSE LT utilize
the same number of subchannels to transmit the information symbols;

e R:(n,n) < Re(n,n) (n = 1,...,B), i.e., the MMSE WLT outper-
forms the MMSE LT,

e the MMSE WLT precoder can be implemented with a linear filter that
processes a new input vector of si@gl whose first’ — 1 components
are equal tosy + yspr g1 (¢ = 1,..., K — 1), and theKth one is
the real-valued componesiy ;. However, in such a case, the MMSE
WLT can not be equivalently performed by an MMSE LT;

e asN;, N, — oo ands — 0, the MMSE WLT proposed in this subsec-
tion and the MMSE WLT in subsection 3.4.1 perform equivalently.

3.4.3 Complex-valued information symbols and complex-valued
transmitted symbols (br = 0,n, = 0)

In this subsection, we show that the MMSE WLT degenerates into the MMSE
LT when the information symbols) are complex-valued circularly symmet-
ric (b, = 0) and the channel inputs!”) are assumed to be complex-valued
(n, = 0). For the sake of simplicity, let us assume, with no loss of generality,
B = N; =rankH) in (3.15).

By computing the EVD of the matrilI”’ R,,'H as in (3.15), after some
matrix manipulations, it can be verified that

T
ity Up —Ug 2" 0 Uyp —Ug
TIT R R R R
HYH = |:Ug Ugp :| |: 0 21-‘] |:Ug Ugp :| (3.51)

2
a2
whereUy = R{U}, andUg £ 3{U}. Sincely 1 = Ay = 27, for
= 1,..., B, and accounting for the assumption of circularly symmetric in-
formation symbols&3, = 6%, , = 07/2, for ¢ = 1,...,B), one has that
B, = 2B. In fact, from (3.15) it follows that the numbé? of subchannels
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utilized by the MMSE LT is such that!/2 < pj with p; 2 w,*~,%¢, and

ordered in decreasing manner; > ...pp. Analogously, from (3.22)3,
is such thati'/? < jp with g, £ wl}/zkém&g (and ordered in decreasing

manner). Beingoy = por—1 = p¢ (¢ = 1,..., B), one has that
p? <pp = @M <pyp (3.52)

i.e., B, = 2B. Consequently, from (3.18) and (3.25), it is easily verified that
Op = Dgp_1 = Doy, With £/ = 1,... ,B and

Flor) — & [Ffp”} . (3.53)
From such a relation it holds that
x = & [F<°Pt>s} (3.54)
= Fg)pt)s ,

i.e., the optimum WL precoder degenerates into the optimum linear precoder.
Moreover, being the desired vector and the received one jointly circularly sym-
metric, the optimum WL decoder degenerates into the optimum linear one [44]
and, consequently, the MMSE WLT degenerates into the MMSE LT.

3.5 SER analysis

In this section, we provide a performance comparison in terms of the symbol
error rate (SER) between the MMSE LT and the MMSE WLT. The MSE anal-
ysis carried out in the previous section showed that the WLT is optimum in the
MMSE sense. However, let us note that when the SER is adopted as perfor-
mance measure, only the real part of the estimates of the real-valued symbols
sg ((=1,...,b.) is relevant for the decision rule. For such a reason, the MSE
improvement provided by the MMSE WLT is not fully translated into a SER
improvement.

To gain some insight the problem, let us consider, as in subsection 3.4.1,
the scenario wheré. = B unit variance real-valued symbaoi§”) are trans-
mitted and where the channel input) are real-valued. Let us note that,
although the desired vector is real-valued, the output of the MMSE LT is
complex-valued and, hence, the variance of imaginary part of the components
of ey, (the error vector measured at the output of the conventional MMSE LT)
does not affect the SER. It follows that the performance comparison in terms
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of SER between the MMSE LT and the MMSE WLT has to be carried out by
comparing the variances of the componente pf; = R{e.} with those of
the components ot (the error vector measured at the output of the MMSE
WLT).

To this aim, it can be verified (udeemma 2andTheorem Iin [25]) that:

1

Rer 2 E[eppefl p] = gpu'/°T 712 (IB + ul/Qr—l/Q) (3.55)
1

R.; £ E [eL,Iegj] = §u1/2I‘_1/2 (IB - p1/2I‘_1/2> (3.56)

whereer ; £ S{er}. Unfortunately, the comparison betwe&a(¢, ¢) and
R r(¢,¢) is not simple to be carried in the general case. For such a reason,
we consider the two extreme cases:

e the MMSE LT performs poorly, i.e., wheR..(¢, £) = /2y, "/? ~ 1;

o the MMSE LT performs well, i.e., wheR. (¢, £) = ul/Q'yZl/Q <« 1.

According to the former, the variand&, (¢, £) of ¢(¥) is governed by the vari-
anceR. g (¢, ) of its real part. In such a case, it is reasonable to expect that
the MSE improvements provided by the MMSE WLT over the MMSE LT are
fully translated into SER improvements.

On the other hand, according to the latter case, one has

Re,R ~ Re,[ (357)
~ N1/2 (41-\)71/2

i.e., the error at the output of the MMSE LT becomes circularly symmetric
and hence, the variance of the components 0, is halved with respect to
the variance of the componentseflt is straightforwardly verified that, with
reference to théth symbol, the MMSE LT achieves a lower SER with respect
to the MMSE WLT when the following inequality is verified:

Re R(& f) [L’YZ

kM S | — >0.25 . 3.58

Re(4,0) — MV ! (3.58)

The approach based on the random channel model proposed in subsection 3.4.1
allows us to foresee the scenarios where (3.58) occurs:

6 >>1 by means of (3.37) and (3.38), the strong approximatg"\élns» 1and

1% — 1 can be adopted; hence~ 1 and (3.58) holds true;
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B <« rank(H), o2 — 0 the MIMO channel is decomposed into a large num-
ber fank(H)) of eigen subchannelsith respect to the number of trans-
mitted symbols B); since}—i > 0.5 (by means of (3.37) and (3.38)), it
can happen that (3.58) is verified for the strongggén subchannels

Finally, when — 0, one has thal, ~ 2v,. In such a case it is easily
verified that:
Re,R(Ea Z) Ye

< — > 0. .
NN S1= 205 (3.59)

i.e., the MMSE LT can not outperform the MMSE WLT in terms of SER.

3.6 Numerical results

In this section, we present a numerical performance analysis of the pro-
posed transceiver structure. In our experiments, the MIMO channel matrix
entriesh(*?) are randomly generated according to a complex-valued circu-
larly symmetric zero-mean uncorrelated Gaussian process with variance 2 (i.e.,
E [(R{h“D})?] = E [(S{h¢})?] = 1). The noise components at the out-
put of the MIMO channel are uncorrelated complex-valued circularly symmet-
ric with the same variance?, i.e.,R,, = 021y, andR,,,,» = 0. In each ex-
periment, the channel matrix is known at both the transmitter and the receiver,
that are jointly designed according to the MMSE criterion and accounting for
the available poweP, = 1.

In a first set of experiments, the (achieved) MSE and the probability of
transmitting all theB information symbols are adopted as performance mea-
sure to compare the MMSE WLT and the MMSE LT. The performance pa-
rameter curves have been averaged over 500 independent channel realizations.
Afterwards, we consider a set of experiments where the performances are eval-
uated in terms of symbol error ral¥ob (s, # s, ) (with a slight abuse of no-
tation, we have denoted with the output of the decision device). The symbol
error rate (SER) curves have been averaged over 100 independent channel real-
izations by Monte Carlo simulations; moreover, in this study, we admit that at
least 10 errors would occur for the lowest level of symbol error rate, resulting
in a95% confidence interval [63].

The performance comparison between the MMSE WLT and the conven-
tional MMSE LT has been carried out by accounting only for that experiments
where the two transceivers can transmit the same number of information sym-
bols.
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Figure 3.4: Average gainG in dB versusN, > 8 for SNR =
0dB, 5dB, 10dB, 20dB (B = N, = 8).

M SE results

Consider a MIMO system over whicB = b, = 8 independent real-valued
information symbol streams have to be transmitted. Accounting for (3.26) and
(3.18), let us define (with reference to thl information symbol) the MSE
gain

52 B
R (¢, 0)

e

¢(=1,....,B (3.60)

provided by the MMSE WLT over the MMSE LT. In Fig. 3.4, a MIMO chan-
nel with N; = 8 inputs has been considered, and the gaifin dB) averaged
over theB information symbols, i.e; = (1/B) - Zle g¢, has been plotted
versusN, > 8 for different values of the ratio of the total transmit powey

to the noise variance? (say, SNR). In such a scenario, the MMSE WLT out-
performs the MMSE LT. The WL processing allows us to achieve considerable
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Figure 3.5: Average gainG in dB versusN; > 8 for SNR =
0dB, 5dB, 10dB, 20dB (B = N, = ).

performance gain wheN, is comparable withV;. In fact, as shown in Section
3.4, wheng — 1 the adoption of the MMSE LT increases the probability of
having weakeigen subchannelOn the other hand, as expected from (3.41),
the gainG approaches tddB whens — 0. Analogously, in Fig. 3.5, a MIMO
channel withN, = 8 outputs has been considered, and the gaimas been
plotted versusV; for different values of SNR As expected from (3.30), the
MMSE WLT outperforms the MMSE LT. However, the gaihdecreases when

N; increases, i.e., whefi — oo. In both the considered scenarios, when the
number of the outputs and the number of inputs increase, the performance gain
provided by the exploitation of the spatial redundancy becomes relevant with
respect to the gain provided by the exploitation of the statistical redundancy
by means of the WL processing. For such a reagbmas expected to be a
decreasing function 8 — 0 or § — .

In the next experiment, we have evaluated the capability of the considered
transceivers to transmit all thB = 8 information symbols over &, x 8
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Figure 3.6: Probability of allocating all theB information symbols
versushN,, for SNR = 0dB, 5dB, 10dB, 20dB.

MIMO channel, withN, > 8. To this end, let us define the probabilities:
Pp 2 Prob(B = B) and Py, £ Prob(B, = B), whereB and B, denotes
the number of symbols allocated by the LT precoder and by the WLT precoder,
respectively.

Fig. 3.6 shows the behavior &%, and Py 1, versush;, for different values
of SNR. The MMSE LT appears more sensitive (with respect to the MMSE
WLT) to the variation of both SNRand N,. More specifically, the results in
Fig. 3.6 confirm the efforts of MMSE LT in allocating all the symbols in
low-SNR environments whep ~ 1. On the other hand, the MMSE WLT is
able to transmit thé? information symbols ever since SNR 0dB.

Since the MMSE WLT structure depends on the paramegtdet us define
(with reference to théth information symbol) the MSE gain

R 1,
qék) = [Réopt)(g’g)} = k= 0’, . ﬁa _, (361)

nyr==k
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provided by the MMSE WLT synthesized by setting = k over the MMSE
WLT synthesized by setting, = N;. The gainqék) (in dB) averaged over the
B information symbols is reported in Table 3.1 for different valued/gfand
assuming(%) = 10dB.

n

n. \No || No=8 | No=16 | Ny =24 | N, = 32 |
n,=0 | 3.671 | 2495 | 2.036 | 1.728
n.=1] 3402 | 2299 | 1.850 | 1563
n,=2 | 3113 | 2.067 | 1.656 | 1.417
n.=3 || 2.802 | 1.8407 | 1.449 | 1.243
n.=4 | 2393 | 1564 | 1.244 | 1.057
n,=5| 2034 | 1283 | 1.002 | 0.868
n,=6 | 1517 | 0975 | 0.752 | 0.639
n, =71 0888 | 0561 | 0415 | 0.355

Table 3.1 Averageqék) (in dB) versus0 < n, < N; andN, =
8,16,24,32 (Py/o2 = 10dB)

The results show that the MSE achieved by the MMSE WLT reduces when
smaller values of:, are considered, i.e., when the transmitted vestas
complex-valued. Let us point out that, as expected from (3.50), the average
gainqéo) converges, ag — 0, to 0dB; however, the experiments have showed
a very slow convergence.

SER results

In the following experiments we consider a MIMO channel over whitk=
b, = 4independent BPSK symbols have to be transmitted. In Fig. 3.%,/4,
MIMO channel have been considered and the SERs achieved by the MMSE LT
and the MMSE WLT have been plotted versus SNR the number of outputs
increasesk, = 4,6,8). The MMSE WLT outperforms the MMSE LT and it
provides a considerable gain over the MMSE LT when square MIMO channels
(8 = 1) are considered. A%V, increases, the performance gain provided
by the MMSE WLT reduces due to the increasing spatial redundancy, as also
confirmed by the curves in Fig. 3.4.

In Fig. 3.8, we have considered a4 x 4 MIMO channel. The SER
has been plotted versus SNRor different values ofNV; = 4,6,8,16. As
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Figure 3.7: Symbol error rates of the considered transceivers versus
SNR, for different values ofV,,.

the number of inputs increases, the performance gain provided by the MMSE
WLT reduces due to the increasing spatial redundancy, and, whe#a 16,

the two transceivers perform equivalently. The performance analysis showed
that the MMSE LT slightly outperforms the MMSE WLT wheéWw, = 32, as
expected from the SER analysis carried out in Section 3.5. For completeness,
in Fig. 3.8, the SER achieved by the MMSE WLT with = 8 has been
plotted: as expected from the MSE analysis in Table 3.1, the performances of
MMSE WLT improve whem,. reduces.

Finally, in Fig 3.9, we have considered the scenario where the information
symbols has to be transmitted over &nx N MIMO channel. The SER has
been plotted versus SNRor different values ofV = 6, 7, 8. The performance
gain provided by the MMSE WLT over the MMSE LT reducesMagncreases,

i.e., whenB becomes much smaller theank(H). For the largest value a¥,
as expected from the SER analysis carried out in Section 3.5, the MMSE LT
outperforms the MMSE WLT.
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SER

Total power/noise variance Polcﬁ (in dB)

Figure 3.8: Symbol error rates of the considered transceivers versus
SNR, for different values ofV;.

10 T T T T
— g —LT, NI=N0=6
—&— WLT, N=N =6

Total power/noise variance Poloﬁ (in dB)

Figure 3.9: Symbol error rate of the considered transceiver over a
square MIMO channel of siz& = 6,7, 8.



Conclusion

In this thesis, the exploitation of widely linear filtering in both MIMO channel
equalization and transceiver design has been proposed.

It has been shown that the widely-linear/widely linear decision-feedback
MMSE equalizer, without requiring a significant increase in computational
complexity, allows one to achieve considerable performance improvements
over the DF-MMSE equalizer based on the linear filtering when circularly
variant signals are transmitted. The mismatch analysis has also confirmed
that the DF-based structures are more sensitive to channel mismatch. More
specifically, the performance analysis has shown that the proposed DF-based
equalizers, which resort to the widely linear processing, perform satisfacto-
rily, provided that the mismatch channel percentage is limited to roughly 10%,
which is, on the other hand, a severe level of mismatching.

Since the widely-linear/widely linear decision-feedback equalizer syn-
thesis can be based on both the real-valued signal representation and the
complex-valued one, the issue concerning the choice between the two rep-
resentations has been addressed. We have recognized that they lead to two
nonequivalent structures when the receiver exploits not only past decisions,
but also the available current decisions (in Chapter 2 referred to as Scenario
2). The performance comparison between such structures has shown that
real-valued representation-based structure outperforms the complex-valued
representation-based one since it is more tolerant to the effects of decision
errors in the feedback filter. Moreover, with reference to such a receiver strat-
egy, the issue of decision ordering, widely studied in DF equalization over
non-dispersive channels, has been addressed with reference to dispersive envi-
ronments. Specifically, it has been shown that the DF-based equalizers can be
expressed as a two-stage equalizer: the former is the optimum time-dispersive
equalizer which exploits only past decisions (in Chapter 2 referred to as Sce-
nario 1), whereas the latter performs a non-dispersive equalization exploiting
current decisions and, moreover, performs the optimization over the decision
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ordering. Such a framework allows one to extend any suboptimum ordering
method proposed for non-dispersive environment to the dispersive one.

In the last part of the thesis, the exploitation of the WL filtering has been
proposed in the transceiver design when channel state information is available
at both the transmitter and the receiver side. According to the MMSE crite-
rion, it has been shown that the transceiver outperforms the linear transceiver
when circularly variant symbols are transmitted. Nevertheless, in the spacial
case where the symbols to be transmitted are real-valued and the precoder is
constrained to be real-valued, the MSE improvements provided by the WL
transceiver are not always translated into symbol error rate improvements:
specifically, it has been shown that if the number of channel inputs is much
larger than the number of channel outputs, or if the numbeiggn subchan-
nels (in which the MIMO channel can be decomposed) is much larger than
the number of symbols to be transmitted, then the linear transceiver can out-
perform the WL transceiver in terms of symbol error rate. Finally, it has been
shown that the optimum WL transceiver degenerates into the linear one when
complex-valued circularly symmetric information symbols have to be trans-
mitted.



Appendix A

A.1 (Non)-circular random variables and vectors

When dealing with narrowband signals, the linear bandpass single-input
single-output channel can be represented by an equivalert MIMO chan-

nel whose inputs and outputs are the the in-phase and the quadrature compo-
nents of the transmitted signal (channel input) and the received one (channel
output), respectively. If the in-phase and the quadrature components of the
(additive) noise are independent of each other, then a memory-less channel re-
duces to a couple of independent SISO channels over which the in-phase and
the quadrature components of the signal are transmitted independently and do
not interfere with each other; in other words, the matrix describin@tke2
equivalent MIMO channel is diagonal. On the other hand, channel memory
causes interference between the in-phase and the quadrature components of
the received signal, yielding to two non independent SISO transmissions. To
simplify the mathematical formulation of the problem, the base-band channels
are described in terms of complex-valued signals and complex-valued channel
impulse responses [3]. For this reason, the MIMO systems in 1.1 have been
introduced according to such a complex-valued representation.

The theory on the complex-valued random variables and vectors is ob-
tained by simply extending the theory of the real-valued ones. For example,
the correlation matrix of the complex-valuéd x 1 random vectot is de-
fined asR.. £ E [zz''], i.e., itis obtained by simply substituting iti [zz” |,
the correlation matrix of a real-valued vector, the transpose operator with the
Hermitian one. Nevertheless, it can happen that the vecdmdz* are corre-
lated with each other: it follows that the onRy. , is not sufficient to describe
the statistical properties of the random vectorbut it is necessary to take
into account for the nonzero correlation matRx.- £ E [zz” |, namely the
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pseudo-correlation matrixA simple example is represented by the real-valued
random vectors (or, equivalently, random variables), whose pseudo-correlation
matrix is obviously nonzero and such tfat.- = R.,.. Random vectors (and
variables), like the real-valued ones, having nonnull pseudo-correlation are
said to be rotationally variant. However, the maf®x.- is rarely introduced
in the signal processing literature, and the main reason lies in the fact that it is
implicitly or explicitly assumed to be zero.

In the following subsections, we briefly introduce some basic concepts
about the (non)circular symmetry of the complex-valued random vectors (see
also [39, 68]).

A.1.1 Definition of circularity

Let us first consider the case of a random variable z. + 5z, wherez. and
zs denote the real and imaginary parts:zgfrespectively; for simplicity, we
assume: having zero-mean.

Definition A.1 The complex-valued random variablds circularly symmet-
ric if for any «, z and z, £ ze’* have the same probability distribution func-
tion (p.d.f.).

The invariance of the p.d.f. to the rotati@enexplains the definition of
circular symmetry. By definingl = |z| and¢ = /2, the circularity ofz is
characterized by the following factorization of the p.d.f.

£ = fronaCo G = fan(a ) = 5 fala) . (AD

i.e., the amplituded with arbitrary f4 (a) is independent of the phagewhich
is uniformly distributed in0, 2x].

Consider now the complex-valued random veetarhose components are
the zero-mean random variable$) with k = 1,..., N.

Definition A.2 The random vectoz is marginally circularly symmetric if its
scalar components(*) are circularly symmetric random variables.

Accordingly, the p.d.f. of each componerit) is given by (A.1) where
fa(a) can now depend oh.

Definition A.3 The random vectaz is weakly circularly symmetric if its p.d.f.
is equal to the p.d.f. afe’™ for any a.

Let us denote withf,(¢) = fa.a(a,¢) the p.d.f. ofz as a function of
the random amplitude vectéx = [ A; Ao ... Ay ] and of the random phase
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vector® = [¢1 ¢2 ... ¢n . It can be easily verified that the following im-
plication hold wher is weakly circularly symmetric:

faa(a, @) = fas(@a,ér+a, 02+ a,..., 0N + ) Va
a3 (A.2)
fae(@ ¢) = fae(a, g2 — d1,02 — d1,...,0N — ¢1)

i.e., the p.d.f. of a weakly circularly symmetric random vector depends on only
N — 1 random phases.

Definition A.4 The random vectorz is strongly circularly symmet-
ric if its p.d.f. is equal to the p.d.f. of the random vector
[z(l)ejal 2Deraz - H(N)eian ]T, foranyaq, as, ..., an.

In such a case, it can be verified that the p.d.fz &f equal to:

Fa(ad) = (i)NfA<a> , (A3)

27
i.e., the phaseg;, are i.i.d random variables uniformly distributed [in 27]
and are independent &. Note that when the componentszfre indepen-
dent of each othey, is said to bdotally circularly symmetricsincefa (a) can
be factorized inV functions.

A.1.2 Second order analysisof a complex-valued random vector

Consider the zero-mean complex-valued random vedoprs: z; . + jz1 s
andzy = zo . + jzo s Of sizeé* N. To specify the correlation matrik., ., =
FE [zlzﬂ of the two random vectors, andz,, we need to specify the follow-

ing (real-valued) correlation matrices:

E [zl,czgc} E [zl,CZQT,s]

E [21421,] E 2121 (A-4)

However, it can happen that the statistical properties of the considered vectors
can not be fully described by the onR.,.,. As a matter of fact, we can
introduce the pseudo-correlation matrix

R...; £ E [z123] (A5)

For simplicity, in the following we assume that andz, have the same dimension.
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where the Hermitian transpose operator in the definitiolRof,, has been
replaced by the transpose operator. Let us note that the knowledge of the ma-
trices in (A.4) is equivalent to the knowledge of both the correlation and the
pseudo-correlation matrices. In fact, one has:

E [z1,.23,] = —éR{Rzm +R.,; } (A.6)
E[z2},] = —%{RM ~ R}
E [z1,75,] = —J{Rm + Rz}
E[z1.75,] = 5% {Rers — Ropzg )

The vectorg; andz, are uncorrelated if and only if the four matrices in (A.4)
vanish or, equivalently, if and only if both the correlation and the pseudo-
correlation matrices vanish.

The casez = z; = 2z, allows one to define the autocorrelation matrix
R.. £ E [zz'] and the pseudo-correlation matii..- = E [zz”] of the
vectorz. Moreover, given the correlation matrices

R.... £F [ZCZCT] R.... £ F [zszST] R.... £F [ZCZST} J(A7)
it is easily verified that

R.. = RZch + RZsZs +J [RT - chzs] (A8)

ZcZs

R.-=R.. —R.. +JRL. +R..] . (A.9)

ZcZs

According to Definition A.3, ifz is weakly circularly symmetric, them and
ze’* have the same p.d.f. and, consequently, one has that

R..-(1-¢?*) =0 Vo (A.10)

implying that the pseudo-correlation matix..- vanishes wher exhibits
weak circularity. The conditioRR,.~ = 0 is equivalent to
R...=R.,., and R.,..= -RT (A.11)

ZcZs

or, in other words, the real and the imaginary partz dfave the same cor-
relation matrix, and their cross correlation is skew-symmetric. Note that the
skew-symmetry oR ., .. implies thatR._., has a zero main diagonal, which
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means that the real and imaginary part of each componezitbre uncor-
related. The vanishing dk... ., does not, however, imply that the real part of
z(*) and the imaginary part ef) are uncorrelated fof .

Based on the above argumentations, we give the following definitions of cir-
cularly symmetric and of jointly circularly symmetric random vectors:

Definition A.5 The complex-valued/ x 1 random vectot is said to be cir-
cularly symmetric if the pseudo-correlation matRx .- is zero. Conversely, a
nonzero pseudo-correlation matrix characterizes the rotationally variant vec-
tors.

Definition A.6 The complex-valuedv x 1 random vectorsz; and z, are

jointly circularly symmetric if the stacked vect{)zl Z9 ]T is circularly sym-
metric.

Finally, by omitting the demonstration which can be found in [40], it can be
shown that:

Proposition A.1 LetR., be a complex-valued Hermitian positive definite ma-
trix, and letR,.~ be a complex-valued symmetric matrix; thBn.- is a
pseudo-correlation matrix of if and only ifQ = R:, — RZ.R_!'R,.« is
non negative definite.






Appendix B

In this appendix, we propose an algorithm to derive the DF-MMSE equalizers
in (2.37) and (2.40) in the case where the input and noise sequences are spa-
tially and temporally uncorrelated. By exploiting the diagonal structure of the
input and noise correlation matrices, the proposed algorithm exhibits compu-
tational complexity still grows quadratically with the system parameters.

To this aim, in absence of decision errors, rewrite the DF equalizer output
in (2.34) as follows:

Xp-a = WHTy [ye, k] = BY T, a[xp, k — Al + X (B.1)
= WHT[Hy, Ny, A+ 1] - Taja[xs, k]
+WHATH; a1, Nf, Ny - T, [xp, k—A—1] *»

+WHTNf [nk, k:] — BHTNbJrl[Xk, k — A] + XEp_A

When Scenario 1 is considered, the DF-MMSE equalizer is constituted by
the feedback filter that removes the ISl introduced by the post-césae.

Blop)" _ [IM W(Opt)H’T[Hk+A+1,Nf,Nb]], and by the MMSE feedfor-
ward filter which processes the observation vector

r = T[Hkv Nf7 A+ 1] ' TA+1[X]€7 k] + TNf [nk7 k] (Bz)

and provides the estimate ®f,_,. The computation oW (°?") would gen-
erally require0 (NSN;?) operations since it mainly depends on the compu-

tation of the inverse of the correlation matiik. = [rr”]. However, such
an inversion can be performed efficiently with(A + 1) iterations, each one

requiringO (NOZNJ%) operations.
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According to the assumptions, one has:

R.(m) = E [xxx{_,,] = Z6(m) (B.3)

R, (m) = E [mniL,,] = 3,6(m) (B.4)

with 3, = diag(o? ..., 02 y,) andX, = diag(, ;.. ., 07 v ). Define the
matrices

R,, £ T[R x< ), A+1,A+1] (B.5)

R, £ T[ n ) Nf7Nf] (8-6)

Ha £ T[Hy, Ny, A+ 1] (B.7)

H() = T[Hjia, Ny, 1] (B.8)

and the correlation matrix
RM £ +ZHA (G OHAG O (B.9)

suchthaR, = RSNi(AH)). The inverse oR,, can be obtained aftéy;(A+1)

steps by utilizing the following recursive algorithm (in the sequel referred to
as Algorithm 1) proposed in [69, 70] based on the Sherman-Morrison formula:
step O

k=0
RO =Ry

step k

end

where the inversion of the matricdR,, and R, can be performed in
O(Ni(A + 1)) and O(N,N¢) operations, and where each step requires
O((N,Ny)?) operations. As discussed in [70], such a procedure is useful when
the structure oR,, is “nice” in the sense that the effort involved in evaluating
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the inverse of the right hand-side of (B.9) is small relative to the effort of in-
verting a general square matrix of Siz&,Ny).

When Scenario 2 is considered, the estimation ofitheeomponent of the
desired vectok_ A is performed by processing the difference of the observa-
tion vectorr, and the interference due to the figst 1 components ok .
More specifically, let us denote with (¢) theith column of W and let us de-
fine the vector,_alq] £ [01xq xk-a(g+1: N;, T with0 < ¢ < N;—1.

The optimumw(°?Y) (¢ + 1) is the MMSE filter that processes the observation
vector

rlg] £ T[Hy, Ny, AT [xk, k] + Hoyx-alg] + Ty g, k] (B.10)
to estimate the desired symbﬁffi). From (B.10), one has that

rlg + 1] = rlg) — Hg (1 : NoNy, g+ Dai™") (B.11)
and

R.[g+1] 2 E[rg+ 1r"[g + 1] (B.12)
= RT[Q]_H(O)(:v q+ 1)0-3:,q+1H(0)(:7 q+ 1)H

The derivation of the optimum feedforward filter columt®??) (g+ 1) follows

from the inversion of the correlation matrR,.[¢], which generally requires

O ((N,Ny)?) operations. However, it is simple to verify that, givan ' [¢—1],

the inversion of the matriR,[¢] can be efficiently performed i@ ((N,Ny)?)
operations by exploiting the Sherman-Morrison formula and by inverting the
right hand-side of (B.13) rather than the left hand-side one. It follows that, for
Scenario 2,VV§0pt) is computed with the following algorithm (in the sequel
referred to as Algorithm 2) afte¥; steps:

step O
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[Re[K]] ™ [Relk — 1] — [Re[k — 1] 7" Hg)(:, k)

-1
: <H(0)(27 W) Ry [k — 1]~ Hg)(:, k) — %)

“Ho) (-, k)T [Ry [k — 1]

Wéopt)<k 1) e [Rr[kﬂ_l Ho)(:, k + 1)U§,k+1

end
where the inverse dR,.[0] represents the output of Algorithm 1. Finally, the

optimum feedback filteB{”") given by

Bl _ [INZ. + LW H  WEHETHg a0, Ny, N | (B.13)
whereL(-) is the strictly lower triangular part of the matrix argument, and its
computation exhibits a® (N?N,N;N,) complexity. We must point out that

the computational complexity of the proposed algorithm is in general larger
than the one of the algorithm proposed in [9] except for the very special case
whereN, < N; andN})’ %

On the other hand, the proposed algorithm is compatible with the V-
BLAST ordering algorithm and, unlike [52], preserves a computational com-
plexity which grows quadratically with the system parameters. In such a case,
the Algorithm 2 needs to be slightly modified by introducingsinep k the
operations that:

a) calculate théV; decision-point signal-to-noise ratio;

b) chose the indek, related maximum decision-point signal-to-noise ratio
to define the V-BLAST orderingiy, ..., iy, }.
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