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Introduction

The present work is devoted to the study of dynamical systems described by
integral equations of Abel kind.
This equation - introduced by N. H. Abel in order to describe the mechan-

ical problem of isochrone curves - have found a wide range of applications in
the framework of Continuum Mechanics (e.g. in [1]) as well as in Quantum
Physics. Usually Abel, or more general fractional integral equations, are ex-
pected to appear in connection with singular perturbations of the Laplace
operator, when source or potential terms supported by set of null measure
are added to the laplacian. A classical example is given by the the problem
of heating an in�nite rod by an in�ux of heat through a pointwise source of
strenght p(t) placed in the origin. The temperature �eld u(t; x) is decribed
by the equation: �

d
dt
u(t; x)

w
= d2

dx2
u(t; x) + p(t)�(x)

u(0; x) = u0(x)

which has to be intended in the weak sense. Using Dhuamel�s formula, we
may write the solution u(t; x) of this problem in the form:

u(t; x) = et�u0 +

Z t

0

e(t�s)�p(s)�(x) ds

where et� is the propagator associated to the one dimensional Laplace oper-
ator, whose action is de�ned by the relation:

et�f =
1

(�t)
1
2

Z +1

�1
e�

jx�x0j2
4t f(x0) dx0

By de�nition of the Dirac delta �, we get:

et��(x) =
1p
�t
e�

x2

4t
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Then, assuming a vanishing initial temperature, we obtain:

u(t; x) =
1p
�

Z t

0

e�
x2

4(t�s)
p
t� s

p(s) ds

If the interior boundary temperature: �(t) = limjxj!0 u(t; x) is known (for ex-
ample a result of an experimental continuous monitoring), we may determine
the corrisponding unknown in�ux strenght as the solution of the following
Abel equation:

1p
�

Z t

0

p(s)p
t� s

ds = �(t)

In this work we will consider the energy transfer between discrete and
continuous spectral components in nonautonomous quantum systems gener-
ated by time dependent point interaction operators. The properties of these
operators, as we shall see, allow to describe energy exchanges in terms of
a system of two coupled integral equations of Abel kind with non constant
coe¢ cients, reducing in this way the real degree of freedom of the problem.
In the �rst Chapter, after a brief introduction to fractional integrals equa-

tions of Abel kind, we study the �nite time and the large time asymptotic
behavior of the solutions, taking into account the case of nonconstant coe¢ -
cients. Results presented there form the main contribution of this work and
will be largely applied in the subsequent chapters.
In the second Chapter we introduce the operators of point interaction

in Quantum Mechanics giving the main properties of the related quantum
systems. It will be shown that the state  of a quantum particle subjected
to the action of a 3-D point interaction is determined by the system:8>><>>:

 (t; x) = eit� 0(x) +
i

(�i)
3
2

Z t

0

e
�i x2

4(t�s)

(t�s)
3
2
q(s)ds

q(t) + 4
p
�i

Z t

0

�(s)q(s)p
t�s ds = 4

p
�i

Z t

0

(eis� 0)(x=0)p
t�s ds

where  0 is the initial state and �(t) is the dynamical parameter charac-
terizing the interaction as a function of time. It is immediate to recognize
that the auxiliary variable q(t) - which will be de�ned as the "charge" of the
system - satis�es an Abel integral equation with a nonconstant coe¢ cient
�(t) in the integral kernel.
Chapters three and four are devoted to the applications of Abel kind

equations in the context of quantum system generated by point interactions.
In the third Chapter we consider the problem of energy-mass transfer from
scattering to bound states for a one body quantum system uder the action of
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a time dependent point interaction. Under suitable assumptions on the initial
state of the particle and using results on the �nite time asymptotic behavior
for solutions of Abel equations, we prove a theorem of local controllability
of this process. In the fourth Chapter we study the time evolution of a
three dimensional quantum particle under the action of a time-dependent
point interaction �xed at the origin. We assume that the �strength�of the
interaction �(t) is a periodic function with an arbitrary mean. Under very
weak conditions on the Fourier coe¢ cients of �(t), and making use of large
time asymptotic results of Ch.1, we prove that there is complete ionization
as t!1, starting from a bound state at time t = 0.
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Chapter 1

Fractional Integral Equations

In this chapter we shall consider some basic integral equations of fractional
order; in particular, we will focus our attention on the asymptotic behav-
iour of the solutions. This analysis will be extended also to the the case of
equations with time periodic coe¢ cients.
A rather complete exposition on the subject of integral and di¤erential

problems of fractional order may be found in [2], [3]. For the speci�c case of
fractional integral equation with time dependent coe¢ cients, we refer to [4].

1.1 Introduction to Abel integral equations

According to the Riemann-Liouville de�nition, the fractional integral of order
� (� 2 R+), of a function f , is given by:

J�f � 1

�(�)

Z t

0

f(s)

(t� s)1��
ds (1.1)

where �(z) denotes the Euler Gamma function. This expression may be
thought as a natural generalization of the well known Cauchy formula:

Jnf =
1

(n� 1)!

Z t

0

f(s)

(t� s)1�n
ds

representing the n-fold primitive of the function f - Jnf in our notation - in
terms of a convolution integral.
The simplest equations involving the operators J� are the Abel equations

of the �rst and of the second kind:
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1.1.1 Abel integral equation of the �rst kind

The equation is:

1

�(�)

Z t

0

u(s)

(t� s)1��
ds = f(t) � 2 (0; 1) (1.2)

Let us solve (1.2) using Laplace transform �L�; �rst we observe that the
L-transform of the kernel function is given by:

L
�
1

�(�)

1

t1��

�
=
1

p�
8� > 0 (1.3)

from which we get the following relation for the Laplace transform of (1.2):

~u(p) = p� ~f(p) (1.4)

where ~u and ~f denote the transforms of u and f respectively. Next observe
that there are di¤erent ways to perform the inverse Laplace transform of
(1.4); in fact we may write this relation in the form:

~u(p) = p
~f(p)

p1��
(1.5)

obtaining, under the regularity condition:(
f 2 L1loc(0;+1)
f �
t!0

t�� � 2 [0; 1� �) (1.6)

the following solution:

u(t) =
1

�(1� �)

d

dt

Z t

0

f(s)

(t� s)�
ds (1.7)

Otherwise, equation (1.4) could also be set in the form:

~u(p) =

h
p ~f(p)� f(0+)

i
p1��

+
f(0+)

p1��
(1.8)

from which, under the condition:�
f 2 L1loc(0;+1)
jf(0+)j <1 (1.9)

we get an alternative form of the solution:

u(t) =
1

�(1� �)

Z t

0

f 0(s)

(t� s)�
ds+ f(0+)

1

�(1� �)

1

t�
(1.10)

We notice that the expressions (1.7) and (1.10) are not eqiuvalent, and, in
order to write the solution in the last form, a stronger regularity condition
on the source term f is required.
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1.1.2 Abel integral equation of the second kind

The equation is:

u(t) +
�

�(�)

Z t

0

u(s)

(t� s)1��
ds = f(t) � 2 (0; 1); � 2 C (1.11)

Its solution may be represented by the Picard series:8<: u(t) =
P+1

n=0 un(t)
u0(t) = f(t)
un = ��J�un�1

(1.12)

The explicit expression of un is:

un(t) = (��)n J�nf(t) (1.13)

and, using Laplace transform, this reads as:

un = (��)n
t�n�1

�(�n)
� f (1.14)

where ���indicates the convolution product. Then, the solution u(t) of equa-
tion (1.11) is, at least at a formal level, given by the limit:

u(t) = f(t)+ lim
n!1

nX
k=1

�
(��)k t

�k�1

�(�k)
� f
�
= f(t)+ lim

n!1

 
nX
k=1

(��)k t
�k�1

�(�k)

!
�f

(1.15)
Next we observe that, due to the rapid growth of the gamma function, the
series

Pn
k=0 (��)

k t�k�1

�(�k)
is uniformly convergent to a continuous function in

every bounded interval t 2 [t0; T ] such that t0 > 0. Moreover, this sum
diverges as 1

t1�� for t! 0+. This implies that there exists a solution:

u(t) = f(t) +

 1X
n=1

(��)n t�n�1

�(�n)

!
� f (1.16)

of equation (1.11) for any function f ful�lling the following regularity condi-
tion: (

f 2 L1loc(0;+1)
f �
t!0

t�� � 2 [0; �) (1.17)

The uniqueness of this solution is a straightforward consequence of expression
(1.16).
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A compact form for the solution of equation (1.11) can be given in terms
of Mittag-Le er functions. These functions are de�ned on the complex plane
by the relation:

E�(z) =
1X
n=0

zn

�(�n+ 1)
� > 0; z 2 C

The convolution kernel in (1.16) may be expressed as the derivative of a
Mittag-Le er function as follows:

d

dt
E�(��t�) =

d

dt

1X
n=0

(��)n t�n
�(�n+ 1)

=
1X
n=1

(��)n (�n) t�n�1
�(�n+ 1)

=
1X
n=1

(��)n t�n�1
�(�n)

(1.18)
then, the solution (1.16) reads as:

u(t) = f(t) + E 0�(��t�) � f (t) (1.19)

The same solution may still be given into di¤erent forms; the L-transform of
(1.11) reads:

~u(p) + �
~u(p)

p�
= ~f(p) (1.20)

from which we �nd two alternative forms for ~u:8<: ~u(p) = p
h
p��1

p�+�
~f(p)

i
~u(p) = p��1

p�+�

h
~f(p)� f(0+)

i
+ p��1

p�+�
f(0+)

Recalling that:

L [E�(��t�)] =
p��1

p� + �
Re p > j�j

1
� (1.21)

we obtain:

u(t) =
d

dt

Z t

0

f(t� s)E�(��s�) ds (1.22)

and

u(t) = f(0+)E�(��t�) +
Z t

0

f 0(t� s)E�(��s�) ds (1.23)

Again we notice that the expressions (1.19), (1.22) and (1.23) are not equiva-
lent because they require di¤erent condition of regularity on the source term
f . In particular, the validity of (1.23) implies the condition:�

f 2 L1loc(0;+1)
jf(0+)j <1 (1.24)

which is stronger than (1.17), needed for the validity of (1.19) and (1.22).
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1.1.3 Fractional integral equation with time dependent
coe¢ cients

Here we shall consider a fractional integral equation of order 1
2
where the

solution appears multiplied by a time dependent coe¢ cient:

u(t) +

Z t

0

�(s) u(s)p
t� s

ds = f(t) (1.25)

We will study the properties of equation (1.25) on a �nite time interval:
t 2 [0; T ] under the assumptions:�

� 2 L1(0; T ; C)
f 2 L1(0; T ; C) (1.26)

Firts observe that, by a simple iteration procedure, the solution u(t) may be
formally expressed using the Picard series:8<:

u(t) =
P+1

n=0 un(t)
u0(t) = f(t)

un(t) =
R t
0
�(s)un�1(s)p

t�s ds
(1.27)

which admit the following estimate:

+1X
n=0

jun(t)j � kf(t)kL1(0;T )

"
1 +

+1X
n=1

k�knL1(0;T ) An �
n
2 t

n
2

#
(1.28)

with:

An =

8<:
1

(n2 )!
n even

2(
n
2 +

1
2)

�( 1
2
)

1
n!!

n odd
(1.29)

Thus (1.27) de�nes a sum of continuous functions which is, by virtue of our
assumptions (1.26) and of the estimates (1.28), uniformely convergent into
[0; T ]. It remains proved the following result:

Theorem 1 Let � and f satisfy the assumptions (1.26). Then equation
(1.25) admits an unique continuous solution on the interval t 2 [0; T ], given
by the Picard series (1.27), (1.29), for which holds the estimate:

kuk1 � kfkL1(0;T )

"
1 +

+1X
n=1

k�knL1(0;T ) An �
n
2 T

n
2

#
(1.30)
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Proposition 2 The homogeneous equations associated to (1.25) with � 2
L1(R) has no non-zero solution in Lploc(R+), 1 � p � 1.

Proof The proof (see e.g. [26]) exploits the fact that, due to the estimate
(1.28), the homogeneous equation associated to (1.25) with � 2 L1(R)
has a null solution in any Lp(0; Tn) with Tn increasing to in�nity for
increasing n.

�

1.2 Small Time Asymptotics

Our aim is to study the small time behaviour of the solution u(t) of the
equation (1.11) with � = 1

2
:

u(t) +
�

�(1
2
)

Z t

0

u(s)p
t� s

ds = f(t) � 2 C (1.31)

under the following hypothesis on the source term f :

f(t) = uin0 E 1
2
(�t

1
2 ) + g(t) (1.32)

g(t) = am t
m+ 1

2 + o(tm+
3
2 ); am 6= 0 (1.33)

with: ���o(tm+ 3
2 )
��� � c tm+

3
2 ; c > 0 (1.34)

for t 2 [0; �), � 2 R+, m 2 N.
First we notice that the solution of (1.31) may be expressed as the sum

of the solutions u0 and ug of the equations:

u0(t) +
�

�(1
2
)

Z t

0

u0(s)p
t� s

ds = uin0 E 1
2
(�t

1
2 ) (1.35)

ug(t) +
�

�(1
2
)

Z t

0

ug(s)p
t� s

ds = g(t) (1.36)

Using the Laplace transform (1.35) become:

~u0(p)

�
1 +

�

p
1
2

�
= uin0

p�
1
2

p
1
2 + �

) ~u0(p) =
uin0

p� �2

11



then we have for u0(t) an exponential solution:

u0(t) = uin0 e
�2t (1.37)

For the second equation we have:

~ug(p)

�
1 +

�

p
1
2

�
= ~g(p)) ~ug(p) =

p
1
2

p
1
2 + �

~g(p) = p
p�

1
2

p
1
2 + �

~g(p)

whose solution of reads as:

ug(t) =

Z t

0

E 01
2
(��t 12 )g(t� s) ds (1.38)

Thus, the solution of equation (1.31) admits the following representation:

u(t) = uin0 e
�2t +

Z t

0

E 01
2
(��t 12 )g(t� s) ds (1.39)

Recalling that, from de�nition (1.18), the function E 01
2

(��t 12 ) may be ex-
pressed as:

E 01
2
(��t 12 ) = � �

�(1
2
)

1p
t
+ �2 + o(t

1
2 ) (1.40)

with: ���o(t 12 )��� � c1 t
1
2 ; c1 > 0 (1.41)

in a suitable right neighbourhood of the origin, by substitution in (1.39), we
have:

u(t)� uin0 e
�2t =

Z t

0

E 01
2
(��t 12 )g(t� s) ds =

= �� am
�(1

2
)

Z t

0

smp
t� s

ds+�2 am

Z t

0

smds+am

Z t

0

smo((t�s) 12 )ds� �

�(1
2
)

Z t

0

o(sm+1)p
t� s

ds+

+ �2
Z t

0

o(sm+1)ds+

Z t

0

o((t� s)
1
2 )o(sm+1)ds

which, after explicit calculations, becomes:

u(t)� uin0 e
�2t = �� am

�(1
2
)

2m+1m!

(2m+ 1)!!
tm+

1
2 + �2 am

tm+1

m+ 1
+ o(tm+

3
2 ) (1.42)

with: ���o(tm+ 3
2 )
��� � c2t

m+ 3
2 ; c2 > 0 (1.43)

for any t in a neighbourhood [0; �1).
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1.3 Large Time Asymptotics

In this section we will perform the analysis of the long time behaviour of the
solution of an (1.25)-type equation of order 1

2
:

q(t) +
�

�(1
2
)

Z t

0

�(s) q(s)p
t� s

ds = f(t) (1.44)

under the following assumptions for the source term and the coe¢ cients:

� = 4�
p
i (1.45)

f(t) = 4�
p
2 j�(0)jE 1

2
(��(0) t

1
2 ) (1.46)

In the physical applications - as we shall see - the meaningful parameter of
the system is the negative lower bound of �(t). Hence we require that:

�(0) < 0 (1.47)

Moreover we shall assume that �(t) is a real periodic continuous function of
period T . The continuity of �(t) guarantees that it can be decomposed in a
Fourier series, for each t 2 R+, and the series converges uniformly on every
compact subset of the real line. In terms of the Fourier coe¢ cients �(t) is
given by:

�(t) =
P
n2Z

�ne
�i!nt; f�ng 2 `1 (Z) ; ! = 2�

T

�n = ���n
(1.48)

In order to justy�e our use of Laplace transform in the analysis of equation
(1.44), our next task is to prove the following:

Lemma 3 Let q(t) be the solution of equation (1.25) with �; f 2 L1(R).
Then, the laplace transform Lq(p) exists and is analytic at least in the open
half plane of C de�ned by the condition:

p 2 C : Re p > j�j2 k�k21 (1.49)

Proof Consider the function: q0(t) = e�p tq(t) with p 2 C and Re p > 0, it
satis�es the equation:

q0(t) +
�

�(1
2
)

Z t

0

�(s) e�p(t�s) q(s)p
t� s

ds = e�ptf(t) = '(t) (1.50)

where, from our hypothesis, we have '(t) 2 L1(0;+1). Then, applying
the Young�s inequality:

kf � gk1 � kfk1 kgk1

13



to the convolution in equation (1.50), we obtain the following estimate:

kq0k1
�
1� j�j

�(1
2
)

e�p tp
t


1

k�k1
�
� k'k1

which provide an e¤ective bound for the norm kq0k1 if the coe¢ cient�
1� j�j

�( 1
2
)

 e�p tp
t


1
k�k1

�
is positive. Recalling that for Re p > 0:e� p tp

t


1

=

r
�

Re p

we get the condition:

1 >
j�j
�(1

2
)

r
�

Re p
k�k1 ) Re p > j�j2 k�k21 (1.51)

Following the same line, it�s easy to prove that the partial derivatives
of the function q0w.r.t Re p and Im p:

@Re pq
0 = @Im pq

0 = �te�p tq(t)

are bounded by measurable functions of t if the condition (1.51) is
ful�lled: te�p tq(t)

1
�
te�(16�2k�k21+iy) tq(t)

1
<1

Then e�p tq(t) is C1 measurable w.r.t. t 2 [0;+1) for any p in the
domain (1.49) and, in the same hypothesis, its partial derivatives w.r.t.
p are bounded by measurable functions of t. This allows us to conclude
that the Laplace integral:

Lq(p) =
Z +1

0

q(t)e�p t dt

de�nes a C1 class function for p in the domain (1.49)

�

Lemma 3 allow us to say that, under the hypothesis (1.45) and (1.46),
the Laplace transform of the solution q(t) exist analytic at least for:

p 2 C : < (p) > 16�2 k�k21

In the notation:
Lf = ~f

14



the Laplace transform to equation (1.44), reads as:

~q(p) = �4�

s
i

p

X
k2Z

�k ~q(p+ i!k) + ~f(p) (1.52)

where

~f(p) � 4�
p
2j�(0)j L

h
E 1

2
(��(0) t

1
2 )
i
(p) = 4�

p
2j�(0)j p�

1
2

p
1
2 � 4��(0)

p
i

with the choice of the branch cut for the square root along the negative real
line: if p = % ei#, p

p =
p
% ei#=2 (1.53)

with �� < # � �.
In the following sections we shall perform the asymptotic analysis of sys-

tem (1.44): we shall prove that, under generic conditions on �(t), the solution
of equation (1.44) goes asymptoticaly to zero with a polynomial power law.
Although the result does not depend on the sign of the mean �0 of �(t), we
have to discuss separately the case �0 < 0 and �0 � 0, because of the slightly
di¤erent form of equation (1.52).

1.4 Case �0 < 0: the L-transform analysis of
the problem

In what follows we introduce the analysis of equation (1.44) using as main
tool the Laplace transform.
Since �(0) < 0, we will assume that �(t) satis�es the normalization con-

dition: X
n2Z

�n = �
1

4�
(1.54)

In the framework of applications, this condition represents a change in the
energy scale of a physical system; on the other hand, it provide a simpli�ca-
tion of the Laplace transform calculus, but does not e¤ects the asymptotic
behaviour of the solution.
Moreover we introduce another condition we shall use later on: let T the

right shift operator on `1(N), i.e.

(T a)n � an+1 (1.55)
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we say that � = f�ng 2 `1(Z) is generic with respect to T , if ~� � f�ngn>0 2
`1(N) satis�es the following condition

e1 = (1; 0; 0; : : :) 2
1_
n=0

T n~� (1.56)

For a detailed discussion of genericity condition see [14].
If (1.54) holds, equation (1.52) becomes (at least for <(p) > 0)

~q(p) = � 4�

4��0 +
p
�ip

X
k2Z
k 6=0

�k ~q(p+ i!k)� 2i
p
2�

4��0 +
p
�ip

1�
p
�ip

1 + ip
(1.57)

Setting qn(p) � ~q(p+ i!n), we obtain a sequence of functions on the strip
I = fp 2 C; 0 � =(p) < !g. Setting

q(p) � fqn(p)gn2Z
equation (1.57) can be rewritten in the form:

q(p) = B(p)q(p) + g(p) (1.58)

where
(Bq)n (p) � �

4�

4��0 +
p
!n� ip

X
k2Z
k 6=0

�k qn+k(p) (1.59)

and g(p) = fgn(p)gn2Z with

gn(p) � �
2i
p
2�

4��0 +
p
!n� ip

1�
p
!n� ip

1 + ip� !n
(1.60)

We observe that (1.58) de�nes an equation in the Hilbert space H = `2(Z)
for any p 2 I. From the explicit expression of the operator (1.59) and (1.60),
it is clear that the coe¢ cients of the equation fails to be analytic on the
imaginary axis at �p = ((4��0)2�!�n)i, for some �n 2 Z and then the solution
may be singular there.
Since =(p) 2 [0; !), one has

(4��0)
2

!
� 1 < �n � (4��0)

2

!
(1.61)

and then the singularity appears at most in the equation for q�n (there is only
one integer1 which satis�es the previous inequality) at �p = ((4��0)2 � !�n)i.
For instance, if ! > (4��0)2, the pole may be at �p = (4��0)2i in the equation
for q0.
The next Proposition shows the properties of operator B:

1In fact �n must be non negative.
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Proposition 4 For p 2 I, <(p) = 0, p 6= 0; �p, B(p) is an analytic operator-
valued function and L(p) is a compact operator on `2(Z).

Proof: Analyticity on the imaginary axis for p 6= 0; �p easily follows from
the explicit expression of the operator.
Moreover B(p) can be written

B(p) = b(p)
X
k2Z
k 6=0

�kT n+k

where b(p) is the operator

(b q)n(p) � bn(p) qn(p) = �
4�qn(p)

4��0 +
p
!n� ip

and T is the right shift operator on `2(Z).
Since kT k = 1, the series converges strongly to a bounded operator. More-
over b(p) is a compact operator on the imaginary axis for p 6= 0; �p: b(p) is the
norm limit of a sequence of �nite rank operators, because limn!1 bn(p) = 0.
Hence the result follows for example from Theorem VI.12 and VI.13 of [27].

�

Let us �rst consider the behavior of the solution for Re p > 0:

Proposition 5 There exists a unique solution qn(p) 2 `2(Z) of (1.58) and
it is analytic for Re p > 0.

Proof: The key point will be the application of the analytic Fredholm
theorem to the operator L(p) (Theorem VI.14 of [27]), in order to prove that
(I � B(p))�1 exists for p : Re p > 0.
Since there is no non-zero solution in L2loc(R+) of the homogeneous equation
associated to (1.44) (see the Proposition 2), then the homogeneous equation
associated to (1.58) has only the trivial solution in `2(Z). Moreover the
operator B is compact and thus analytic Fredholm theorem applies. The
result easily follows, because g(p) 2 `2(Z) and each gn(p) is analytic for
p : Re p > 0.

�

In the following subsections we shall extend the equation (1.57) above to
the imaginary axis and study the behavior of the solution there.
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1.4.1 Behavior on the imaginary axis at p 6= 0
Actually we have to distinguish the so called (see [14]) resonant case, i.e.
when

(4��0)
2 = N!

for some N 2 N, because in that case we can have a pole only at p = 0 and
then the solution is immediately seen to be analytic on the whole imaginary
axis except at most for p = 0.
At �rst we consider the behavior of the solution on the imaginary axis for
p 6= 0; p 6= �p. We are going to prove that the solution is in fact analytic
there.

Proposition 6 There exists a unique solution qn(p) 2 `2(Z) of (1.58) and
it is analytic on the imaginary axis for p 6= 0; �p.

Proof: The Proof of Proposition 5 still applies because each gn(p) is
analytic for p 6= 0; �p on the imaginary axis.

�

We can now study the equation (1.58) in a neighborhood of �p (if �p 6= 0).
An important preliminary result is the following

Lemma 7 Let (1.48) and the genericity condition (1.56) be satis�ed by f�ng.
The system of equations

rn = �
4�

4��0 +
p
!n� ip

8><>:
X
k2Z
k 6=n;�n

�k�nrk + hn(p)

9>=>; (1.62)

has a unique solution frng 2 `2(Znf�ng) in a pure imaginary neighborhood of
�p, where �n 2 Z and �p 2 I, <(�p) = 0, are de�ned by (1.61), for every hn(p)
such that

h0n(p) �
hn(p)

4��0 +
p
!n� ip

belongs to `2(Z n f�ng).
Moreover, if hn(p) is analytic in a neighborhood of �p, the solution is analytic
in the same neighborhood.
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Proof: Equation (1.62) is of the form

r = B0r + h0

where h0 � fh0ng belongs to `2(Z n f�ng) and B0 is a compact operator (see
Proposition 4).
In order to apply analytic Fredholm theorem to the operator B0, we need
to prove that there is no non-zero solution in a neighborhood of �p of the
homogeneous equation. Suppose that the contrary is true, so that fRng 2
`2(Z n f�ng) is a non-zero solution of

Rn = �
4�

4��0 +
p
!n� ip

X
k2Z
k 6=n;�n

�k�nRn

Multiplying both sides of equation above by R�n and summing over n 2
Z n f�ng, one hasX

n2Z
n6=�n

p
!n� ip jRnj2 = �4�

X
n;k2Z
n;k 6=�n

Rn
��k�nRk

and, since the right hand side is real,

=[
X
n2Z
n6=�n

p
!n� ip jRnj2] = 0

for p = i�, 0 < � < !, and then Rn = 0 for n < 0. Now suppose that R 6= 0
and let n0 2 N be such that Rn = 0, n < n0, and Rn0 6= 0 (hence n0 � 0).
Fixing R�n = 0, for each n < n0 the homogeneous equation gives

1X
k=n0

�k�nRk = 0

or, setting k = n0 � 1 + k0, for n � 0,
1X
k0=1

�k0+nRn0�1+k0 = 0

which implies (see (1.48)), for each n � 0,

(R0; T n�)`2(N) = 0

where R0n = R�n0�1+n and (�; �) stands for the standard scalar product on
`2(N).
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If f�ng satis�es the genericity condition (1.56), R0 has to be orthogonal also
to e1 and then Rn0 = 0, which is a contradiction. Therefore R = 0.
The �rst part of the Lemma then follows from analyticity of B0(p) and ana-
lytic Fredholm theorem. Moreover if fhn(p)g is analytic in a neighborhood
of �p, analyticity of the solution is a straightforward consequence.

�

Proposition 8 If f�ng satis�es (1.48) and the genericity condition with
respect to T (1.56), the unique solution fqng 2 `2(Z) of (1.58) in analytic on
the imaginary axis except at most for p = 0.

Proof: If (4��0)2 = N! for some N 2 N (resonant case) there is nothing
to prove, since the coe¢ cients of (1.58) fails to be analytic only at p = 0. On
the other hand, in the non resonant case, Proposition 6 guarantees analyticity
on imaginary axis for p 6= 0; �p. Therefore it is su¢ cient to study the behavior
of the solution in a neighborhood of �p, where the coe¢ cients of (1.58) have a
singularity. We are going to prove that in fact the solution is analytic at �p.
The strategy of the proof is to analyze separately the terms qn, n 6= �n, �n being
de�ned in (1.61), and then prove that also q�n is analytic in a neighborhood
of �p.
By Lemma 7 there is a unique solution of the system

tn = �
4�

4��0 +
p
!n� ip

X
k2Z
k 6=n;�n

�k�ntk �
4���n�n

4��0 +
p
!n� ip

(1.63)

Setting qn = rn + tnq�n, n 6= �n, on (1.58), one has

rn + tnq�n = �
4�

4��0 +
p
!n� ip

8><>:��n�nq�n +
X
k2Z
k 6=n;�n

�k�n (rk + tkq�n)

9>=>;+

� 2i
p
2�

4��0 +
p
!n� ip

1�
p
!n� ip

1 + ip� !n

and therefore the equation for frng, n 6= �n, becomes

rn = �
4�

4��0 +
p
!n� ip

8><>:
X
k2Z

k 6=0;�n

�k rn+k +
ip
2�

1�
p
!n� ip

1 + ip� !n

9>=>; (1.64)
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while q�n satis�es the equation

q�n = �
4�

4��0 +
p
!�n� ip

8>><>>:
X
k2Z
k 6=�n

�k��n (rk + tkq�n) +
ip
2�

1�
p
!�n� ip

1 + ip� !�n

9>>=>>;
or2644��0 +p!�n� ip+ 4�

X
k2Z
k 6=�n

�k��ntk

375 q�n = �4�
X
k2Z
k 6=�n

�k��nrk �
2i
p
2�

1 +
p
!�n� ip

Since the last term is analytic in a neighborhood of �p and ftng, frng 2
`2(Znf�ng) are both analytic, as it follows applying Lemma 7 above to (1.63)
and (1.64), it is su¢ cient to prove thatX

k2Z
k 6=�n

�k��n~tk 6= 0

where
~tn � tn(p)jp=�p

Assume that the contrary is true: from equation (1.63) we obtainX
n2Z
n6=�n

�
4��0 +

p
!n� i�p

� ��~tn��2 = �4� X
n;k2Z

n;k 6=�n;n6=k

~t�n�k�n~tk � 4�
X
n2Z
n6=�n

��n��n~t
�
n =

= �4�
X
n;k2Z

n;k 6=�n;n6=k

~t�n�k�n~tk

where we have used the second condition in (1.48). The previous equation
implies (the right hand side is real) ~tn = 0, 8n < �N = i�p

!
and then, since

�1 < �N < 0, ~tn = 0, 8n < 0. Hence from (1.63) we have, 8n < 0,X
k�0
k 6=�n

�k�n~tk + ��n�n = 0

Now supposing without loss of generality that ~t0 6= 0 and setting Tn = ~tn�1,
n 6= �n+ 1, and T�n+1 = 1, we obtain, 8n � 0,

1X
k=1

�k+nTk = 0
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and using the genericity condition (1.56) (as in the proof of Lemma 7) we
get T1 = t0 = 0, which is a contradiction.
In conclusion q�n is analytic in a neighborhood of �p: analyticity of qn, n 6=
�n is then a straightforward consequence of analyticity of frng, ftng and
decomposition qn = rn + tnq�n. The proof is then completed, since rn and tn
belong to `2(Z n f�ng) in a neighborhood of p = �p.

�

1.4.2 Behavior at p = 0

We shall now study the behavior of the solution of (1.58) on the imaginary
axis at the origin. With the choice (1.53) for the branch cut of the square
root, it is clear that we must expect branch points of ~q(p), solution of (1.57),
at p = i!n, n 2 Z, which should imply a branch point at p = 0 for each qn
in (1.58).
We are going to show that qn, n 2 Z has a branch point at p = 0. The
non-resonant case and the resonant one will be treated separately.

Proposition 9 (non resonant case)
If (4��0)2 6= N!, 8N 2 N and f�ng satis�es (1.48) and (1.56) (genericity
condition), the solution of equation (1.58) has the form qn(p) = cn(p) +
dn(p)

p
p, n 2 Z, in an imaginary neighborhood of p = 0, where the functions

cn(p) and dn(p) are analytic at p = 0.

Proof: Setting qn = rn + tnq0, n 6= 0 and choosing a solution ftng 2
`2(Znf0g) of the system of equations (1.63) with �n = 0, we obtain that frng
must satisfy (1.64). It is easy to see that the result of Lemma 7 holds also
in a neighborhood of �p = 0 with �n = 0, so that frng, ftng 2 `2(Z n f0g) are
unique and analytic at p = 0.
Thus it is su¢ cient to prove that q0, which is solution of2644��0 +p�ip+ 4�X

k2Z
k 6=0

�ktk

375 q0 = �4�X
k2Z
k 6=0

�krk �
2i
p
2�(1�

p
�ip)

1 + ip

has the required behavior near p = 0.
First, setting t0n = tn(p = 0), we have to prove thatX

k2Z
k 6=0

�kt
0
k 6= ��0
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but, assuming that the contrary is true and multiplying both sides of equation
(1.63) by t0n

� and summing over n 2 Z, n 6= 0, one hasX
n2Z

p
!n jt0nj2 = �4�

X
n;k2Z
n;k 6=0

t0n
�
�k�nt

0
k + 4��0

and then, because of genericity condition (1.56), ft0ng = 0, 8n 2 Z n f0g,
which is impossible, since ftng solves (1.63).
Now, calling

F � 4�
X
k2Z
k 6=0

�ktk

and
G � �4�

X
k2Z
k 6=0

�krk

we have h
4��0 +

p
�ip+ F

i
q0 = G+

2i
p
2�(1�

p
�ip)

1 + ip

and
q0 = F 0 +

p
pG0

where F 0 is analytic in a neighborhood of p = 0, because of analyticity of F
and G, and

G0 � �2i
p
�2�i (4��0 + F + 1) +

p
�i (1 + ip)G

(1 + ip)[(4��0 + F )2 + ip]
(1.65)

�

The resonant case, i.e. 4��0 = �
p
!N for some N 2 N, is not so di¤erent

from the non-resonant one and we shall prove that the solution has the same
behavior at the origin. The proof is slightly di¤erent because we need to
show the absence of a pole at p = 0: from (1.58) one has

qN(p) =
4�p

!N �
p
!N � ip

8><>:
X
k2Z
k 6=0

�k qn+k(p) +
ip
2�

1�
p
!N � ip

1 + ip� !N

9>=>;
and the coe¢ cients have a singularity at p = 0.
We are going to prove that in fact the solution has no pole at the origin:
proceeding as in the proof of Proposition 8, let us begin with a preliminary
result, which take the place of Lemma 7:

23



Lemma 10 Let (1.48) and the genericity condition (1.56) be satis�ed by
f�ng. The system of equations

rn =
4�p

!N �
p
!n� ip

8>><>>:
X
k2Z

k 6=0;�n

�krn+k + hn(p)

9>>=>>; (1.66)

has a unique solution frng 2 `2(Z n fNg) in a pure imaginary neighborhood
of p = 0, for every hn(p) such that

h0n(p) �
hn(p)p

!N �
p
!n� ip

belongs to `2(Z n fNg).
Moreover, if hn(p) is analytic in a neighborhood of p = 0, the solution is
analytic in the same neighborhood.

Proof: We shall proceed as in the proof of Proposition 8, separating the
contribution of rN , which may be singular: setting rn = un+vnrN , n 6= 0; N ,
on (1.66), one has

un+vnrN =
4�p

!N �
p
!n� ip

8><>:�N�nrN +
X
k2Z

k 6=0;�n;N�n

�k (un+k + vn+krN)

9>=>;+

+
2i
p
2�p

!N �
p
!n� ip

1�
p
!n� ip

1 + ip� !n

and requiring that fvng, n 6= 0; N , solves

vn =
4�p

!N �
p
!n� ip

X
k2Z

k 6=0;�n;N�n

�kvn+k +
4��N�np

!N �
p
!n� ip

(1.67)

the equation for fung, n 6= 0; N , becomes

un =
4�p

!N �
p
!n� ip

8>><>>:
X
k2Z

k 6=0;�n;N�n

�kun+k +
ip
2�
:
1�

p
!n� ip

1 + ip� !n

9>>=>>;
(1.68)
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Moreover rN satis�es

rN =
4�p

!N �
p
!N � ip

8>><>>:
X
k2Z

k 6=0;�N

�k (uk + vkrN) +
ip
2�

1�
p
!n� ip

1 + ip� !n

9>>=>>;
or 2664p!N �

p
!N � ip� 4�

X
k2Z
k 6=0;N

�k�Nvk

3775 rN =
= 4�

X
k2Z
k 6=0;N

�k�Nuk +
ip
2�

1�
p
!n� ip

1 + ip� !n

Applying the discussion contained in the proof of Lemma 7, it is not di¢ cult
to see that the solutions of equations (1.68) and (1.67) are analytic in a
neighborhood of the origin and belong to `2(Znf0; Ng). Therefore it remains
to prove that (setting v0n = vn(p = 0))X

k2Z
k 6=0;N

�k�Nv
0
k 6= 0

but the argument in the proof of Proposition 8 excludes this possibility, if
f�ng satis�es the genericity condition. The proof is then completed, because
analyticity of rN implies analyticity of all rn, n 6= 0; N .

�

Proposition 11 (resonant case)
If (4��0)2 = N!, for some N 2 N and f�ng satis�es (1.48) and (1.56)
(genericity condition), the solution of equation (1.58) has the form qn(p) =
cn(p) + dn(p)

p
p, n 2 Z, in an imaginary neighborhood of p = 0, where the

functions cn(p) and dn(p) are analytic at p = 0.

Proof: See the proof of Proposition 9 and Lemma 10 above.

�
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1.4.3 Asymptotic behaviour of the solution in the generic
case

Summing up the results about the behavior of the Laplace transform ~q(p) of
q(t) we can state the following

Theorem 12 If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , as t!1,

jq(t)j � A t�
3
2 +R(t) (1.69)

where A 2 R and R(t) has an exponential decay, R(t) � Ce�Bt for some
B > 0.

Proof: Propositions 6, 8 and 9 guarantee that ~q(p) is analytic on the
closed right half plane, except branch point singularities on the imaginary
axis at p = i!n, n 2 Z.
Therefore we can chose a integration path for the inverse of Laplace transform
of ~q(q) along the imaginary axis like in [14].
Proposition 9 implies that the contribution of the branch point at p = 0 is
given by the integral

2i

Z 1

0

dp
p
pG0(�p) e�pt

where G0, de�ned in (1.65), is a bounded analytic function on the negative
real line: from explicit expression of F andG and equations (1.64) and (1.63),
it is clear that G0 is analytic and limp!1G

0(�p) = 0 on the real line. So
that the corresponding asymptotic behavior as t!1 is����Z 1

0

dp
p
pG0(�p) e�pt

���� � C

Z 1

0

dp
p
p e�pt = A t�

3
2

Let us consider now the contribution of branch points at p = i!n, n 6= 0:
from Propositions 9 and 11 it follows that, in a neighborhood of p = 0,

qn(p) = cn(p) + dn(p)
p
p

where cn(p) and dn(p) are analytic at p = 0. Moreover using the decompo-
sition qn = rn + tnq0, n 6= 0, as in the proof of Proposition 9 and 11, and
studying the equation (1.63) for tn, we immediately obtain fdng 2 `1(Znf0g),
because of condition 2 in (1.48). Since qn(p) = ~q(p + i!n), the contribution
of singularities at p = i!n, n 6= 0, is then given by

2
X
n2Z
n6=0

Z i!n

i!n�1
dp dn(p� i!n)

p
p� i!n ept =
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= 2i

Z 1

0

dpf
X
n2Z
n6=0

dn(�p) ei!ntg
p
p e�pt =

and the series X
n2Z
n6=0

dn(�p) ei!nt

converges uniformly to a bounded function of t, because fdng 2 `1(Z n f0g).
Adding up the contributions of every branch cut, one obtain the required
leading term in the asymptotic behavior. Indeed the rest function R(t) is
given by the contribution of poles outside the imaginary axis and then shows
an exponential decay as t!1.

�

1.5 Case II: �0 = 0

If �(t) = �0 = 0 does not depend on time, the problem has a simple solution:
the spectrum of H�(t) is absolutely continuous and equal to the positive real
line, with a resonance at the origin; hence there is no bound state and the
system shows complete ionization independently on the initial datum.
On the other hand if �(t) is a zero mean function, we shall see that the
genericity condition (1.56) is still needed to have complete ionization.
So let us assume that �0 = 0, the normalization (1.54) holds and the initial
datum is given by (4.4): equation (1.52) then becomes

~q(p) = �4�

s
i

p

X
k2Z
k 6=0

�k ~q(p+ i!k)� 2i

s
2�i

p

1�
p
�ip

1 + ip
(1.70)

with the choice (1.53) for the branch cut of
p
p. By Proposition 5 the solution

is analytic on the open right half plane. In the following section we shall study
the singularities on the imaginary axis.

1.5.1 Singularities on the imaginary axis

Setting qn(p) � ~q(p+ i!n), p 2 I = [0; !), as in Section 3.1, equation (1.70)
assumes the form (1.58),

q(p) =M(p)q(p) + o(p) (1.71)
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with
(Mq)n (p) � �

4�p
!n� ip

X
k2Z
k 6=0

�k qn+k(p) (1.72)

and o(p) = fon(p)gn2Z,

on(p) � �
2i
p
2�p

!n� ip (1 +
p
!n� ip)

(1.73)

Proposition 13 For p 2 I, <(p) = 0, p 6= 0,M(p) is an analytic operator-
valued function andM(p) is a compact operator on `2(Z).

Proof: See the proof of Proposition 4.

�

Proposition 14 There exists a unique solution qn(p) 2 `2(Z) of (1.71) and
it is analytic on the imaginary axis for p 6= 0.

Proof: See the proof of Proposition 6.

�

Proposition 15 If f�ng satis�es (1.48) and the genericity condition (1.56),
the solution of equation (1.71) has the form qn(p) = cn(p)+ dn(p)

p
p, n 2 Z,

in a neighborhood of p = 0, where the functions cn(p) and dn(p) are analytic
at p = 0.

Proof: Let us proceed as in the proof of Proposition 9: setting qn =
rn + tnq0, n 2 Z n f0g, where ftng is the solution of

tn = �
4�p

!n� ip

X
k2Z

k 6=0;�n

�ktn+k �
4���np
!n� ip

(1.74)

A slightly di¤erent version of Lemma 7 guarantees that the solution ftng 2
`2(Z n f0g) is unique and analytic at p = 0.
By means of this substitution we obtain

rn = �
4�p

!n� ip

X
k2Z

k 6=0;�n

�krn+k �
2i
p
2�p

!n� ip (1 +
p
!n� ip)

(1.75)
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and

q0 = �
4�p
�ip

X
k2Z
k 6=0

�k (rk + tkq0)�
2i
p
2�p

�ip (1 +
p
�ip)

or �p
�ip+ F

�
q0 = G� 2

p
2�

1 +
p
�ip

where (like in the proof of Proposition 9)

F � 4�
X
k2Z
k 6=0

�ktk

and
G � �4�

X
k2Z
k 6=0

�krk

Moreover F (0) 6= 0, because of genericity condition (1.56) (see the proof of
Proposition 9), F and G are analytic in a neighborhood of p = 0 (see Lemma
7), so that

q0 = F 0 +
p
pG0

where F 0 and G0 are analytic and

G0 � 2
p
�2�i(F + 1)�

p
�i(1 + ip)G

(1 + ip)(F 2 + ip)

�

As in section 4 of this Chapter, we can now state the main result:

Theorem 16 If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , as t!1,

jq(t)j � A t�
3
2 +R(t) (1.76)

where A 2 R and R(t) has an exponential decay, R(t) � Ce�Bt for some
B > 0.

Proof: See the proof of Theorem 12.

�
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1.6 Case III: �0 > 0

To complete the analysis of the problem, we shall consider the case of mean
greater than 0: taking the normalization (1.54) and the initial condition
(4.4), (1.52) assumes the form (1.57):

~q(p) = � 4�

4��0 +
p
�ip

X
k2Z
k 6=0

�k ~q(p+ i!k)� 2i
p
2�

4��0 +
p
�ip

1�
p
�ip

1 + ip
(1.77)

Analyticity of the solution on the open right half plane is a consequence of
Proposition 5.
Moreover, following the discussion contained in section 4 and setting qn(p) �
~q(p+ i!n), =(p) 2 [0; !), the equation assumes the form (1.58).
Let us now consider the behavior on the imaginary axis: singularities for
<(p) = 0 are associated to zeros of 4��0 +

p
!n+ s, s 2 [0; !), but, since

�0 > 0, it is clear that the expression can not have zeros on the imaginary
axis. Hence the proof of Proposition 6 can be extended to the closed right
half plane except the origin:

Proposition 17 If f�ng satis�es (1.48), the solution ~q(p) of (1.77) is unique
and analytic for <(p) � 0, p 6= i!n, n 2 Z.

Proof: See the proof of Proposition 6, Propositions 4 and 2 and the
previous discussion.

�

Moreover the behavior at the origin is described by the following

Proposition 18 If f�ng satis�es (1.48) and the genericity condition with
respect to T (1.56), then, in an imaginary neighborhood of p = i!n, n 2 Z,
the solution of equation (1.77) has the form ~q(p) = cn(p) + dn(p)

p
p� i!n,

where the functions cn(p) and dn(p) are analytic at p = i!n.

Proof: The proof of Proposition 9 still applies with only one di¤erence:
since, independently on !, the solution can not have a pole on the imaginary
axis, we need not to distinguish between the resonant case and the non-
resonant one.

�

We can now prove the asymptotic result:
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Theorem 19 If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , as t!1,

jq(t)j � A t�
3
2 +R(t) (1.78)

where A 2 R and R(t) has an exponential decay, R(t) � Ce�Bt for some
B > 0.

Proof: See the proof of Theorem 12.

�

Remark: If �(t) � 0, 8t 2 R+, Proposition 18 holds without the gener-
icity condition on the Fourier coe¢ cients of �(t): for instance the genericity
condition enters (see the proof of Proposition 9) in the proof of absence of
non-zero solutions of the homogeneous equation

tn = �
4�

4��0 +
p
!n+ s

X
k2Z

k 6=0;�n

�k tn+k

where s 2 [0; !). Let us suppose that there exists a non-zero solution fTng 2
`2(Z). Multiplying both sides of the equation by T �n , one hasX

n2Z
n6=0

p
!n+ s jTnj2 = �4�

X
n;k2Z
n;k 6=0

T �n�k�nTk

Since the right hand side is real, Tn = 0, 8n < 0. Moreover, �xing T0 = 0
and setting

T (t) �
X
n2Z

Tn e
�i!nt

it follows that

�4�
X
n;k2Z

T �n�k�nTk = �4� (T (t); �(t)T (t))L2([0;T ]) � 0

because �(t) � 0, 8t 2 [0; T ], but the left hand side is positive and then
Qn = 0, 8n 2 Z.
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Chapter 2

Point Interactions in Quantum
Mechanics

2.1 Introduction

A perturbation of the laplacian supported by a �nite set of points fyigni=1 in
Rd - with d � 3 - de�nes a special case of singular perturbation referred to
as point interaction. At a formal level, the associated Schrödinger operator
can be written as1:

H = ��+
nX
i=1

�i�(x� yi) (2.1)

A point interaction hamiltonian, then, is intended as the selfadjoint realiza-
tion in L2(Rd) of the formal expression (2.1) [5].
These operators appeared �rst in Theoretical Physics during the 30�s.

They were introduced in order to realize a model for the interaction of par-
ticles in nuclei [6]. After then, they became a natural tool to describe short
range forces or "small" obstacles for scattering of waves and particles.
In the applications perspective, the main reason of interest of this sub-

ject rests upon the fact that point ineractions often lead to models which are
explicitely solvables. It turns out that the spectral characteristics (eigenval-
ues and eigenfunctions) of operators (2.1), and then all the physical relevant
quantities related to, can be explicitely computed [7]. This circumstance
motivates an increasing attention on this subject in the application of math-
ematics in various sciences, e.g. in physics, chemistry, biology, and in tech-
nology.

1Note that this expression is always to be intended in a weak sense when working in
dimension greater than one.
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The rigorous de�nition of a one point interaction - due to F.A. Berezin
and L.D. Fadeev [5] - is based on the theory of selfadjoint extensions of
symmetric operators. Let us consider the set of all selfadjoint extentions of
the operator: �

H = �4
D(H) = C1(R3= f0g)

it may be expressed in the form:8>><>>:
H = H�

D(H�) =

�
 2 L2(R3)

���� = �+ q�G
�; � 2 H2(R3); lim

x
¯
!0
¯

� = q�(�+
p
�
4�
)

�
(H� + �) = (��+ �)�

(2.2)
where G� is the Green function of the laplacian with respect to � > 0:

(��� �)G� = �(x)

whose explicit expression is:

G�(x) =
e�

p
� jxj

4� jxj (2.3)

while � is a real parameter. From de�nition (2.2) results that every function
in the domain of H� is then composed of a regular part � in H2and a singular
part given by G�. Moreover it can be shown that the domain D(H�) doesn�t
depend on the choice of �. In particular for � < 0, we may choose the
parameter � such that:

�
��+

p
�
4�

�
= 0, giving rise to the following domain�s

representation:

D(H��) =
�
 2 L2(R3)

�� = '+ q ��; ' 2 H2(R3); '(0) = 0; q 2 C
	
(2.4)

which will be extensively used in this work.
By projecting the action of H� on a space of test functions we get2:

((H� + �) ; ') = ((��+ �)�; ') =

=
�
�� + � +�q�G

� � q��G
�; '
�
=

=
�
�� + � + q��G

� � q�� � q��G
�; '
�
= (�� + � � q��; ')

then we have:

(H� ; ') = (�� � q��; ') 8' 2 space of test functions (2.5)

2Here (�; �) denotes the usual L2 scalar product
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This relation shows that, in a weak sense, we may considerH� as the operator
associated to a delta shaped potential placed in x = 0. We will refer to
H� as a point interaction Schrödinger operator.
In the following some basic properties of point interactions operators are

resumed.

2.2 Spectral Properties

Assume that the couple � 2 R and  2 D(H�) satis�es the eigenvalues
equation for the operator H�.

(H� + �) = 0

By de�nition (2.2), we have:�
(��+ �)� = 0
� 2 H2(R3)

whose unique solution in H2(R3) is: � = 0. Then, the eigenfunction related
to � should be proportional to the Green function G�:

 = q�G
�

and the boundary condition in (2.2) implies that:

q�(�+

p
�

4�
) = �(0))

8<:
p
� = �4��

or
q� = 0

(2.6)

Relation (2.6) implies that the discrete spectrum of H� is empty if � � 0,
othervise, if � < 0, it consists of one eigenvalue �� = �16�2 �2. The
corrispondent normalized eigenfunction is:

 � =

p
2 j�je4� � jxj
jxj (2.7)

The risolvent operator associated to H�, may be expressed as follows:

1

H� + z
'(x) =

Z
R3
R�
z (x; y)'(y) dy (2.8)

where the integral kernel R�
z (x; y) - obtained by an application of Krein�s

formula to H� (e.g. [7])- is given explicitely by the relation:

R�
z (x; y) = Gz(x� y) +

4�p
z + 4��

Gz(x)Gz(y) (2.9)
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where the Green function Gz(x) -with the usual de�nition- provide the inte-
gral kernel for the laplacian resolvent 1

��+z . From (2.9) easily follows that
the continuous spectrum of H� is purely continuous and coincides with the
interval equal to [0;+1).
The generalized eigenfunctions of H� are de�ned by the relation:

'k(x) = eik x � 1

��� ijkj
4�

eijkj jxj

jxj

with k 2 R3. Then all scattering states may be expressed in the integral
form:

8� 2 D(H��) : (�;  ��) = 0) 9~� 2 L2(R3)
���

) �(x) =
1

(2�)
3
2

Z
R3
~�(k)

 
eik x � 1

�� i jkj
4�

ei jkj jxj

jxj

!
dk (2.10)

2.3 Quantum Dynamics of Point Interactions

The dynamics of a quantum particle subjected to the action of a point inter-
action H� is described by the evolution of a state function  which satis�es
the equation: �

i d
dt
 = H� 

 (0) =  0 2 D(H�)
(2.11)

The existence of the dynamics for Schrödinger operator of type H� is a well
established fact (e.g. [20]); this implies that H� is the generator of a strongly
continuous unitary group of operators e�i tH� acting on the space D(H�).
The time evolution of system (2.11) is determined by the relation:

 (t) = e�i tH� 0

An explicit expression of the time propagator may be achieved setting
equation (2.11) in the weak form:

(i@t ; ') = (H� ; ') 8' 2 C1c (R3) (2.12)

From (2.5) and (2.12) we get:

(i@t ; ') = (�� � q��; ') 8' 2 C1c (R3) (2.13)

Let us denote with e�it� the unitary group generated by the laplacian oper-
ator. Its action is well de�ned on the space H2(R3) and may be represented
in the following integral form:

e�it�'(x) =
1

(2�t)
3
2

Z
R3
e�i

jx0�xj
4t '(x0) dx0 (2.14)
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In what follows we will refer to the integral kernel of (2.14) also as U(t; x).
The same letter will be used also to indicate the operator itselfs:

e�it�' = Ut'

Setting: eit�~ =  , and taking into account the relation:

i@te
it�~ = ��eit�~ + eit�i@t~ 

we get: �
i@t~ ; '

�
=
�
�q� e�i t� �; '

�
8' 2 C1c (R3) (2.15)

Observing that ~ and  have the same initial conditions, a direct integration
of (2.15) gives the following solution:

~ (x)
w
=  0(x) + i

Z t

0

q�(s) e
�i s� �(x) ds (2.16)

where the time dependece of the parameter �q��is connected with the time
variation of the regular part of the state via the boundary condition:

lim
x
¯
!0
¯

� = q�(�+

p
�

4�
) (2.17)

From (2.16) we obtain the equation:

( ; ') =

�
eit� 0 + i

Z t

0

q�(s) e
i (t�s)� � ds; '

�
8' 2 C1c (R3)

from which we get the weak solution of (2.11)3:

 (t; x) = eit� 0(x) + i

tZ
0

ei(t�s)�q�(s) �(x) ds =

= eit� 0(x) + i

tZ
0

Z
Rn
U(t� s; x� x0) q�(s) �(x

0) ds =

= eit� 0(x) + i

tZ
0

U(t� s; x) q�(s) ds (2.18)

which, due to the existence of the dynamics for the system (2.11), is a strong
solution as well.

3Here the function U is the kernel of the free propagator in n dimensions:

U(t; x) =
1

(4�it)
n
2
ei

jxj2
4t
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2.4 The Charge Equation

As shown in equation (2.18), the dynamics of a quantum particle, subjected
the action of the Schrödinger operator H�, is determined by the time evo-
lution of the boundary condition (2.17). From the decomposition properties
of the domain D(H�) we see that relation (2.17) may also be written in the
form:

lim
x
¯
!0
¯

�
 � q�G

�
�
= q�(�+

p
�

4�
) (2.19)

Acting on (2.19) with the Laplace transform operator �L�and making use of
(2.18), we get the equation for the coe¢ cient q�:

lim
x
¯
!0
¯

0@Leit� 0 + iL
tZ
0

U(t� s; x) q�(s) ds� Lq�G�

1A = Lq��+
p
�

4�
Lq�

from which follows:

L
�
eit� 0

�
(0) + lim

x
¯
!0
¯

�
iLU(t; x) ~q�(p)� q�(p)G

�(x)
�
= L [q��] +

p
�

4�
~q�(p)

(2.20)
where ~q�(p) de�nes the Laplace trensform of q�(t). Observing that the trans-
form of the free propagator kernel U is:

LU(t; x)(p) = �ie
�
p

p
i
jxj

4� jxj

the limit at �rst member of (2.20) is explicitely given by:

lim
x
¯
!0
¯

�
iLU(t; x) ~q�(p)� ~q�(p)G�(x)

�
= ~q�(p) lim

x
¯
!0
¯

 
e�
p

p
i
jxj

4� jxj �
e�

p
�jxj

4� jxj

!
=
~q�(p)

4�
(
p
�+

r
p

i
)

then, by substitution into (2.20) we get:

1
p
p
L
�
eit� 0

�
(0) +

~q�(p)

4�
p
i
=

1
p
p
L [q��] (2.21)

Applying the inverse transform and observing that L�1
p
�p
p
= 1p

t
, an equation

for the parameter q(t) is obtained:

4
p
�i

tZ
0

�
eis� 0

�
(0)

p
t� s

ds� q(t) = 4�
p
�i

tZ
0

q(s)p
t� s

ds (2.22)
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In what follows, the complex scalar �eld q(t) will be referred to as the
charge associated to the point interaction H� and to the initial state  0. It
is worthwile notice that dynamics of q does not on the particular choice of �
in the domain representation:
The charge evolution in time is de�ned by an Abel integral equation of

II kind; the existence and uniqueness of solutions for this kind of problem
- depending from the regularity of the nonhomogeneous term - have been
analyzed in Chapter 1.
As an aside we notice that by a simple iteration it is possible to regularize

the integral kernel of the charge equation:

q(t) + 4�
p
�i

tZ
0

q(s)p
t� s

ds = 4
p
�i

tZ
0

�
eis� 0

�
(0)

p
t� s

ds)

) q(t)+4�2
p
�i

tZ
0

1p
t� s

244p�i sZ
0

q(s0)p
s� s0

ds0 + 4
p
�i

sZ
0

�
eis

0� 0
�
(0)

p
t� s0

ds0

35 ds =

= 4
p
�i

tZ
0

�
eis� 0

�
(0)

p
t� s

ds

Applying Dirichlet formula to the double integral we obtain the equation:

q(t)+16�2 �2 i

Z t

0

q(s) ds = �16�2 �2 i
tZ
0

�
eis� 0

�
(0) ds+4

p
�i

tZ
0

�
eis� 0

�
(0)

p
t� s

ds

(2.23)
which describes the motion of a forced armonic obscillator in the complex
plane.

2.4.1 Solving charge equation

The charge equation (2.22) may be considered as a particular case of the
following problem:

q(t) + 4
p
�i �

Z t

0

q(s)p
t� s

ds = 4
p
�i

Z t

0

f(s)p
t� s

ds (2.24)

Oparating a Laplace transform of (2.24), we have:

~q(p)

 
1 +

4���
p
i

p
p

!
=
4�
p
i

p
p
~f(p)) ~q(p) =

4�
p
i

p
p+ 4��

p
i
~f(p)

38



and taking into account the relation:

L�1 1
p
p+ 4��

p
i
=

1p
�t
� (4��

p
i)ei(4��)

2t erfc(4��
p
it) � K�(t) (2.25)

an explicit expression for the solution q(t) is obtained:

q(t) = 4�
p
i

Z t

0

K�(t� s) f(s) ds (2.26)

From (2.26) we get an explicit expressions of the charge q in terms of the
initial state function  0:

q(t) = 4�
p
i

Z t

0

K�(t� s)Us 0(0)ds (2.27)

2.4.2 The charge associated to the bound state

If the particle is in the bound state (2.7) at t = 0, the nonhomogeneous term
in (2.23) may be explicitely computed. The Fourier integral of the function
ei t� � evaluated in the point x = 0 is:

ei t� �(0) =
1

(2�)
3
2

Z
R3
F �(k) e�i k

2 t dk (2.28)

where we denoted withF the Fourier transform of  . As already mentioned,
the bound state  � is proportional to the Green function (2.3) with � =
16�2�2, whose Fourier transform is given by:

G16�
2�2(k) =

1

(2�)
3
2

1

k2 + 16�2�2

By substitution into (2.28) and taking into account (2.7) we get:

ei t� �(0) =
4�
p
2 j�j

(2�)3

Z
R3

1

k2 + 16�2�2
e�i k

2 t dk (2.29)

where C is a suitable constant. Passing to the Laplace Transform L w.r.t.
time and using Fubini�s theorem to change the order of space and time inte-
grations, equation (2.29) reads as:

L
�
ei t� �(0)

�
(p) =

4�
p
2 j�j

(2�)3

Z
R3

1

k2 + 16�2�2
1

ik2 + p
dk
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and, after some calculation, the following Laplace transform is deduced:

L
�
ei t� �(0)

�
(p) =

4�
p
2 j�j

(2�)3
�i�p

ip� 4��
p
i
� (2.30)

Expression (2.30) may be used to evaluate the nonhomogeneous term in
equation (2.22) when  0 =  �; recalling that:

L 1p
t
=

r
�

p

the Laplace transform of the source nonhomogeneous term is:

L

244p�i tZ
0

�
eis� �

�
(0)

p
t� s

ds

35 (p) = 4�p2 j�j p�
1
2

p
1
2 � 4��

p
i

(2.31)

from which we have:

4
p
�i

tZ
0

�
eis� �

�
(0)

p
t� s

ds = 4�
p
2 j�jE 1

2
(4��

p
i t

1
2 ) (2.32)

Then, the charge equation associated to the bound state reads as:

q(t) +
4�
p
i �

�(1
2
)

Z t

0

q(s)p
t� s

ds = q�(0)E 1
2
(4��

p
i t

1
2 ) (2.33)

whose solution is given by (1.37) with � = 4�
p
i �:

q(t) = q�(0) e
i16�2�2t (2.34)

We stress out that relation (2.34) could also be recovered directely from
the Schrodinger equation (2.11). In fact, once assumed the initial condition
 0 =  �, the state function at time t is:

e�itH� � = e�i t �� �

with �� = �16�2 �2. Then from the operator domain representation, (2.4),
it is immediate to conclude once more that the charge associated to the bound
state is given by (2.34).
Another relation, which will be useful for further calculations, is obtained

applying the general formula (2.27) to the case we�re taking into account:

q(t) = 4�
p
i

Z t

0

K�(t� s)Us �(0)ds

from which, using (2.34), we deduce:

4�
p
i

Z t

0

K�(t� s)Us �(0)ds = ei 16�
2 �2 t (2.35)
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2.4.3 The charge associated to a scattering state

From general properties of generator set of L2(R3), we know that any func-
tion � 2 L2(R3) may be represented as the sum of a radial part �s(r) 2
L2(R+; r2), r = jxj, plus a term given by a linear combination of spherical
harmonics:

�p(x) =
+1X
l=1
l 6=0

lX
m=�l

flm(r)Y
m
l (#; ')

which are both in L2(R3):

�(x) = �S(r) + �P (x) (2.36)

This implies also that the charge q associated to the hamiltonian H� and to
the initial state �, can be splitted in two contributions:

q = qS + qP

which satis�e the equations4:8>><>>:
qS(t) + 4�

p
�i

tR
0

qS(s)p
t�s ds = 4

p
�i

tR
0

Us�S(0)p
t�s ds

qP (t) + 4�
p
�i

tR
0

qP (s)p
t�s ds = 4

p
�i

tR
0

Us�P (0)p
t�s ds

(2.37)

Next we observe that, due to the ortogonality relation:Z
d
Y m

l (#; ')Y
l0

m0(#; ') = �ll0�mm0

the free propagator of �P is always null when evaluated in the point x = 0.
From this follows that the source term in the second of equations (2.37) is
zero. By the uniqueness of solution of equation (2.22), we conclude that the
charge associated to any state of �p�kind is zero:

qp = 0 (2.38)

As an aside we notice that from (2.38) and from the de�nition (3.4) follows
that a particle, initially placed in a p state, �p, and subjected to the action

4Here we follows the already introduced notation:

Ut = e
it�

for the free propagator at time t
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of any hamiltonian of type H�, simply evolves under the action of the free
propagator:

 (t) = e�it��p

In these conditions, the particle does not �feel�the interaction and behave
like a free particle.
Now consider the case in which the initial state of system (2.11) is a

scattering state of radial type:

 0 = �r

Using Fourier transform, the action of the free propagator on �r at time t is:

Ut�r(x) =
1

(2�)
3
2

Z
R3
F�r(k0)ei(k

0 x�k02t)dk0 (2.39)

Moreover, by de�nition (2.10), the transform F�r may be represented as
follows:

F�r(k0) = ~�(k0)�
4�

(2�)
3
2

Z
R3
~�(k)

1

�� ik
4�

1

k02 � k2
dk (2.40)

where k = jkj. From (2.39) and (2.40), we obtain:

Ut�r(0) =
1

(2�)
3
2

Z
R3
~�(k0)e�ik

02tdk0 � 4�

(2�)3

Z Z
R3�R3

~�(k)

�� ik
4�

e�ik
02t

k02 � k2
dk dk0

(2.41)
The integral representation of the charge qr, then follows from (2.41) and
(2.26):

qr(t) =
4�
p
i

(2�)
3
2

Z
R3
~�(k0)

Z t

0

K�(t� s)e�ik
02sds dk0+

� 16�
2
p
i

(2�)3

Z Z
R3�R3

~�(k)

��� ik
4�

R t
0
K�(t� s)e�ik

02sds

k02 � k2
dk dk0

2.5 A Time Reversed Point Interaction

Consider a particle which moves back in time, under the action of the Schrödinger
operator H��, starting at t = T from the initial state  ��; the state of this
system is described by the equation:�

�i@t = H�� 
 (T ) =  ��

(2.42)
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which admit the following integral form:

 (t) = ei(T�t)� �� + i

tZ
T

U(s� t; x)q(s) ds (2.43)

where U(t; x) is the integral kernel of the free propagator associated to the
Schrödinger equation. If we set:�

� = T � t
g(�) =  (t)

equation (2.43) become:

g(�) = ei��g0 + i

�Z
0

U(� � z)q(T � z) dz (2.44)

The related charge equation comes from a Laplace transform analysis of the
boundary condition on the operator domain. Adopting the representation5:

D(H��) =

(
 2 L2(R3)

����� = '+ qG�; ' 2 H2(R3); '(0) = q

 
��+

p
�

4�

!)

the modi�ed state function, g(�), is splitted into a regular and a singular
part:

'(T � �) = g(�)� q(T � �)G�

and the domain boundary conditions at time � become:

lim
x!0

24ei��g0 + i

�Z
0

U(� � z; x)q(T � �) dz � q(T � �)G�(x)

35 = q(T��)
 
��+

p
�

4�

!

Setting q0(�) � q(T � �), the Laplace transform analysis of this relation,
w.r.t. the variable � , gives:

L
�
ei��g0

�
(0)+ lim

x!0
(iLU(� ; x)~q0(p)� ~q0(p)G�(x)) = ~q

0(p)

 
��+

p
�

4�

!
(2.45)

5For the general form of D(H��) see for instance [7]. Here � is an arbitrary positive real
parameter.
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where ~q0(p) de�nes the Laplace trensform of the charge. The transform of
the free propagator kernel U is given by,

LU(t; x)(p) = �ie
�
p

p
i
jxj

4� jxj
then we have:

lim
x!0
(iLU(� ; x)~q0(p)� ~q0(p)G�(x)) = ~q0(p) lim

x!0

 
e�
p

p
i
jxj

4� jxj �
e�

p
�jxj

4� jxj

!
=

=
~q0(p)

4�
(
p
�+

r
p

i
)

By substitution in (2.45) we get:

L
�
ei��g0

�
(0) +

~q0(p)

4�
(
p
�+

r
p

i
) = ~q0(p)

 
��+

p
�

4�

!
)

) 1
p
p
L
�
ei��g0

�
(0) +

~q0(p)

4�
p
i
=
~q0(p)
p
p

(2.46)

Applying the inverse transform and observing that L�1 1p
p
= 1p

� t
, we �nally

obtain the equation for the charge:

q0(�) + 4
p
�i��

Z �

0

q0(s)p
� � s

ds = 4
p
�i

Z �

0

Usg0(0)p
� � s

ds (2.47)

From (2.27) we know that the solution q0(�) my be expressed as

q0(�) = 4�
p
i

Z �

0

G(� � s)Usg0(0) ds

moreover, being by de�nition: q0(�) = q(t), g0 =  ��, we have:

q(t) = 4�
p
i

Z T�t

0

G(T�t�s)Us ��(0) ds =
s0=T�s

4�
p
i

Z T

t

G(s0�t)UT�s0 ��(0) ds
(2.48)

Now, observing that the solution  (t) of (2.42) is explicitely given in terms
of the time evolution operator associated to H��:

 (t) = e�i(T�t)H�� �� = e�i(T�t)��� ��

and comparing this expression with (2.4), it is easily deduced that the charge
associated to equation (2.43) is:

q(t) =
4�p
2 j��j

e�i(T�t)��� (2.49)

44



From (2.48) and (2.49) we �nally obtain:Z T

t

G(s0 � t)UT�s0 ��(0) ds =
1p
2i j��j

e�i(T�t)��� (2.50)

2.6 Time Dependent Point Interactions

A time dependent point interaction is de�ned, at a formal level, by assigning
the interaction parameter � as a function of time: � = �(t). The Schrodinger
equation associated to the family of hamiltonians H�(t) is:�

i@t (t) = H�(t) (t)
 (0) =  0 2 D(H�(0))

(2.51)

In the weak formulation, the solution of (2.51) can be derived, following the
same lines of previous sections, from (2.13) and (2.21):(

 (t) = eit� 0 + i
R t
0
U(t� s; x)q(s)ds

q(t) + 4
p
�i
R t
0
�(s)q(s)p

t�s ds = 4
p
�i
R t
0
Us 0(0)p

t�s ds
(2.52)

The system (2.51) de�nes properly a quantum dynamics if the condition
� 2 C2loc(0;+1) is satis�ed. It can be proved, indeed, that, under this
condition, H�(t) is the generator of continuous �ux of unitary operators on
D(H�(t)) [8]. As a consequence (2.51) has the unique solution:

 (t) = e�i tH�(t) 0 2 D(H�(t)) 8t (2.53)

which is described explicitely by system (2.52).
In what follows we recall some basic properties of the charge equation

associated to time dependent point interaction.

2.6.1 The charge equation in the time dependent case

The charge associated to a time dependent point interaction H�(t) and to the
initial state  0 (ref. (2.52)) is described by the following equation:

q(t) + 4
p
�i

Z t

0

�(s)q(s)p
t� s

ds = 4
p
�i

Z t

0

Us 0(0)p
t� s

ds (2.54)

This is a equation of type (1.25) and with a nonhomogeneous term given,
once again, by a fractional integral of order 1

2
. From Theorem 1, we have the

following result:
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Corollary 20 Let � 2 L1(R),  0 2 D(H�(0)). Then, equation (2.54) has
an unique continuous solution for any �nite interval of time t 2 [0; T ]. More-
over, the following estimate holds:

kqk1 �
4p�i Z t

0

Us 0(0)p
t� s

ds


L1(0;T )

"
1 +

+1X
n=1

���4p�i���n k�knL1(0;T ) An � n
2 T

n
2

#
(2.55)

Proof From de�nition (2.4), any function  0 2 D(H�(0)) is the sum of a
regular part plus a bound state term:

 0 = '+ q(0) �(0); ' 2 H2(R3); '(0) = 0; q 2 C (2.56)

Then the source term in (2.54) may be splitted in two components:Z t

0

Us 0(0)p
t� s

ds =

Z t

0

Us'(0)p
t� s

ds+ q(0)

Z t

0

Us �(0)(0)p
t� s

ds (2.57)

We want to prove that (2.57) de�nes a bounded function on �nite
time intervals. To this aim we consider the two contributions of (2.57)
separately.

The �rst term at second member is the one half integral of Ut'(0). Making
use of the representation (2.36) we have:

Ut'(0) = Ut'r(0)

where 'r 2 H2(R3) denotes the radial part of '. The Fourier integral
of Ut' evaluated in x = 0 is:

Ut'(0) =
1

(2�)
3
2

Z
R3
F'r(k) e�i k

2 t dk (2.58)

Next observe that the Fourier transform of a radial function 'r 2
H2(R3) has the following characterization:

F'r 2 L2(R3) : k2F'r(k) 2 L2(R3) (2.59)

which implies:(
F'r 2 L1(
) 8
 � R3; j
j <1
limk!+1

F'r(k)
k
7
2

= 0
) F'r 2 L1(R3) (2.60)

Relations (2.58) and (2.60) allow us to conclude that Ut'(0) as well as
the �rst source term

R t
0
Us'(0)p
t�s ds are continuous functions of time.
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The second source term of (2.57) may be evaluated explicitely; from (2.30)
we get:

Ut �(0)(0) = L�1
��
2

� 1
2 �iC�p

ip� i4��(0)
� =

= C 0
�
1p
�t
+ (4��(0)

p
i)ei(4��(0))

2t erfc(4��(0)
p
it)

�
(2.61)

where C and C 0 are a suitable complex constants. Then the second
contribution of (2.57) is:

q(0)

Z t

0

Us �(0)(0)p
t� s

ds = q(0)C 0

"
p
� + (4��(0)

p
i)

Z t

0

ei(4��(0))
2t erfc(4��(0)

p
it)p

t� s
ds

#
(2.62)

From the boundedness of the function ei(4��(0))
2t erfc(4��(0)

p
it), we

conclude that q(0)
R t
0

Us �(0)(0)p
t�s ds is continuous.

The continuity of the nonhomogeneous term (2.57), allows us to apply
Theorem (1) to equation (2.54) for any �nite time interval.

�
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Chapter 3

Energy Transfer Control via
Point Interaction

In this Chapter we build up a point interaction model of a time dipendent
Schrödinger operator; this interaction will be used as a control for the energy
transfer between continuous and discrete spectrum of a one body quantum
system. We will investigate the possibility of �nding a time dipendence pro�le
such that part of the energy of a particle, initially placed in a scattering state,
moves on the bound state in �nite time.

3.1 Introduction

Any state belonging to the domain of a Schrödinger operator H may be
represented as the sum of two ortogonal contributions: the �rst one,  B, is
given by the projection of  on the stationary states of H; the other one,  S,
is a scattering state simply de�ned as the rimainder:  S =  �  B. Then,
consider a quantum particle subject to the action of the hamiltonian H and
assume that the initial state of this system is given by

 0 =  B0 +  S0 ;
�
 B0 ;  

S
0

�
L2
= 0

Due to the ortogonality relation between  B and  S, the unitary evolution
e�itH preserves indipendently the L2 norms of these vectors, and the mass
conservation law for the system can be written in the following form:�  Bt 2 =  B0 2 St 2 =  S02 8t 2 R (3.1)

where  Bt and  
S
t are the bound state and scattering state components of

e�itH 0 respectively.
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This relation does not hold anymore if a time dependent Schrödinger
operator is considered. In this case - altough the total mass is still preserved
- the spectrum of H(t) may change at any time and it is not possible, in
principle, to identify state components of constant mass.
In what follows we consider a quantum system de�ned by an hamiltonian

operator H which depends on time through a real parameter �:8<:
H = H(�)
� 2 R� [0; T ] (control function)
�(0) = �(T ) = �� 2 R (boundary condition)

(3.2)

Let us suppose that, for any possible choice of � in a suitable space of control
functions B, is well de�ned the propagator associated to H(�), given at a
formal level by:

UH(�);t = e�i
R t
0 H(�)(s)ds

This is equivalent to assume that exists an unique solution for the Schrodinger
equation: �

i d
dt
 = H(�) 

 (0) =  0 2 D(H(��))
in the strong sense.
By virtue of the boundary condition in (3.2), the propagator associated

to H(�) at time T maps the initial operator domain into itself:

UH(�);T : D(H(��))! D(H(��))

For the space D(H(��)) we may use the decomposition already introduced:

 2 D(H(��)))  =  B +  S (3.3)

Let  0;  T 2 D(H(��)) be the initial state and its evolution at time T ; using
(3.3), they can be written in the form:�

 0 =  B0 +  S0
 T =  BT +  ST

Then, for any � 2 B, it results to be de�ned an application F (�; �; �) de-
�ned on the sector R+ � R+ which maps the couple

� B0 2 ; S02� into� BT 2 ; ST2�.
De�nition 1 F (�; �; �) is controllable in the point (x1; x2) if for any:

(y1; y2) 2 R+ � R+ :
y = kxk

does exist � 2 B such that:

F
�
�;
 B0 2 ; S02� = (y1; y2)
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This propertie implies the possibility of transfer mass between stationary
states and scattering states of the operator H(��), by using a monodimen-
sional time dependent control �.
In what follows we will make use of the weaker concept of local control-

lability:

De�nition 2 Set (x1; x2) 2 R+ � R+ and let (y1; y2) be he value of F in x
for a �xed control �� 2 B:

F (��; x1; x2) = (y1; y2)

Then F is locally controllable in (x1; x2) if exists a neighborhood I(y1;y2) of
(y1; y2) such that:

I(y1;y2) � C

8 (y01; y02) 2 I(y1;y2) ) 9� 2 B : F (�; x1; x2) = (y01; y02)

with:
C =

�
z 2 R2 : kzk = kxk

	
The local controllability of F allows to reach points in a neighborhood of

(y1; y2) by choosing a suitable control.
It is trivial notice that controllability properties are strongly connected

to the speci�c form of the interaction taken into account. The problem we�re
going to study is the partial transfer on the discrete spectrum of the energy
of a quantum particle which at time t = 0 is placed in a scattering state and
which evolves under the action of a time dependent 3-D point interaction.

3.2 The Model

Consider a quantum particle subject to the action of a point interaction
placed into the origin of the 3-D space1; its state,  , at time t is de�ned by
the equations (2.52) that we recall here:(

 (t) = eit� 0 + i
R t
0
U(t� s; x)q(s)ds

q(t) + 4
p
�i
R t
0
�(s)q(s)p

t�s ds = 4
p
�i
R t
0
Us 0(0)p

t�s ds
(3.4)

where U(t; x) is the kernel of the free propagator for the Schrödinger equation,
 0 is the initial state and �(t) is a real valued function which characterizes
the time dependence of the point ineraction Hamiltonian H�(t). We refer to

1We adress to the Albeverio�s book [7] for an extended treatement of this subject.
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the previous chapter for an introduction to time dependent point interactions
in particular for what concern the properties of the charge equation in (3.4).
As already metioned in system (3.4) de�nes properly a quantum dynamics

if the condition � 2 C2loc(0;+1) is satis�ed. In what follows we will always
assume, for the function �(t), regularity hypothesis strong enough to garantee
the validity of this result.
Fix a real value �� < 0 of the parameter �; the discrete spectrum of

the point interaction operator H�� contains a single point, given by: ��� =
�16�2��2. The eigenstate related to ��� is:

 �� =

p
2 j��je4���jxj

jxj (3.5)

Moreover H�� has an absolute continuous spectrum which coincides with the
set of nonnegative real numbers.
Our purpose is to analyze the possibility of an energy transfer from con-

tinuous to point spectrum of H�� by the use of a control interaction of the
type H�(t).
Let us suppose that at time t = 0 the particle is placed in some scattering

state of the Hamiltonian H��:

 0 = � 2 D(H��) : (�;  ��)L2 = 0 (3.6)

Then, choosing a suitable �(t) in a control function space B, we look for
a control interaction able to stress the system into a state, with non null
component along  �� for t � T .
We will use a control interaction of the form: H�+��, where �� is �xed and

� belongs to the space:

B =
�
� 2 H3(0; T ;R) j�(0) = �(T ) = 0

	
(3.7)

the boundary conditions on � guarantee that at the inital and �nal times the
Hamiltonian is H��.
The projection on the bound state,  ��, of the solution at time T of

equations (3.4) for a system evolving under the action of the operator H�+��,
is given by:8<: F (�) :=

�
eiT��+ i

R T
0
U(T � s; x)V (�)(s)ds;  ��(x)

�
L2(R3)

V (�) = q(t) : q(t) + 4
p
�i
R t
0
[�(s)+��] q(s)p

t�s ds = 4
p
�i
R t
0
Us�(0)p
t�s ds

(3.8)

This is a complex valued map on B such that2: F (0) = 0. In order to
move some energy on the discrete spectrum, or, as it is equivalent, a part of

2For �(t) = 0, our system evolves under the action of H��, remaining in a scattering
state.
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the mass on the bound state, it is necessary (and in fact su¢ cient) to have
F (�) 6= 0 for a suitable choice of � 2 B. Then, a su¢ cient condition for the
solvability of our problem results to be the local surjectivity of the map:�

F (�) = z 2 C
� 2 B (3.9)

around the point � = 0.
The main goal of this Chapter is to demonstrate the following:

Theorem 21 Let � be a scattering state of the Hamiltonian H�� ful�lling the
condition:

� 2
�
� 2 L2(R3) j� =  � (;  ��)L2  ��;  = (jxj) 2 C1c (0;+1)

	
(3.10)

Then the functional F : B ! C, de�ned by (3.8), (3.7), is a locally surjective
map around the point � = 0.

We will adopt here a standard procedure in the analysis of nonlinear
systems. First we prove the surjectivity of the linearized map d0F . To this
aim we will study a non controllability condition for the linearized system;
it will be shown that, under the hypothesis (3.10) on the initial state, this
condition is never satis�ed, obtaining, in this way, a controllability result.
Then we conclude using a Rank Theorem for functional de�ned on Banach
spaces.

3.3 The Linearized System

We�re intrested into study the controllability properties of the system:�
d0F (u) = z
u 2 B (3.11)

where d0F is the Frechét derivative of functional F evalueted in � = 0. Our
aim is to prove the following result:

Theorem 22 In the assumption of Theorem 21, the map de�ned by (3.11),
(3.7) is surjective.

The proof of Theorem 22 will be given in Sections 3-6 following an ad
absurdo procedure.
First we set the functional (3.11) into an explicit form:
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8<: d0F (u) = i
�R T

0
U(T � s; x) d0V (u)(s)ds;  ��(x)

�
L2(R3)

d0V (u) = q(t) : q(t) + 4
p
�i ��

R t
0

q(s)p
t�sds = �4

p
�i
R t
0
u(s)V (0)(s)p

t�s ds

(3.12)
The dependence of d0F (u) on the charge of the umperturbed system, V (0)(t),
may be obtained by observing that the function d0V (u) satis�e an equation
of type (2.24), whose solution may be expressed through (2.26) in the form:

d0V (u)(t) = 4�
p
i

Z t

0

G(t� s)u(s)V (0)(s) ds (3.13)

Making use of (3.13) plus the Fubini Theorem - to invert time and space
integrations in (3.12) - we get:

d0F (u) = i

Z T

0

(UT�s;  ��)L2(R3) d0V (u)(s)ds =

= �4�i 32
Z T

0

(UT�s;  ��)L2(R3)

Z s

0

G(s� s0)V (0)(s0)u(s0) ds0ds

and applying Dirichlet formula to the double integral we �nally obtain:

d0F (u) = �4�i
3
2

Z T

0

ds0 V (0)(s0)u(s0)

Z T

s0
(UT�s;  ��)L2(R3)G(s� s0)ds

(3.14)
Let us suppose that d0F : B ! C is not a surjective map; then d0F (u)

should have a constant direction in the complex plane for any u 2 B. We
can express this as a non-controllability condition:

9 C 2 C :
�
C 6= 0
C �
R T
0
ds0 V (0)(s0)u(s0)

R T
s0 (UT�s;  ��)L2(R3)G(s� s0)ds = 0

8u 2 B

where ���indicates the scalar product in C. In particular, being this condition
true for any real valued u 2 C10 (0; T ), it results equivalent to:

9 C 2 C :
�
C 6= 0
C � V (0)(t)

R T
t
(UT�s;  ��)L2(R3)G(s� t)ds = 0

8t 2 [0; T ]

(3.15)
Making use of (2.50), we get:

9 C 2 C :
�
C 6= 0
C � V (0)(t)e�i(T�t)��� = 0 8t 2 [0; T ] (3.16)

Next we will investigate the small time asymptotic properties of condition
(3.16)
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3.4 Small Time Asymptotics for the Charge

The charge of unperturbed system, V (0), satis�es an Abel equation of the
second kind:

q(t) +
4���

p
i

�(1
2
)

Z t

0

q(s)p
t� s

ds = 4
p
�i

Z t

0

Us�(0)p
t� s

ds

where the source term - according with our hypothesis on the initial state
(3.10) and with relation (2.33) - is given by:

4
p
�i

Z t

0

Us�(0)p
t� s

ds = 4
p
�i

Z t

0

Us(0)p
t� s

ds� (;  ��)L2 q��(0)E 1
2
(4���

p
i t

1
2 )

Then, the solution V (0)(t) may be written (see (2.27) and (2.34)) in the
following form:

V (0)(t) = 4�
p
i

Z t

0

K��(t� s)Us(0) ds� (;  ��)L2 q��(0) ei16 ��
2 �2t (3.17)

and its small time behaviour is connected to the limiting behaviour of K��(t)
and Ut(0) for t! 0. To study this problem we need the following Lemma:

Lemma 23 Let  belong to the space of functions of rapid decrease S(R3).
If we assume that:

D0 =

�
n 2 N[f0g : d

n

dtn
Ut(0)

����
t=0

6= 0
�

(3.18)

is a non empty set, then the function
R t
0
Us(0)p
t�s ds admit the expansion:Z t

0

Us(0)p
t� s

ds = am t
m+ 1

2 + o(tm+
3
2 ); am 6= 0 (3.19)

with ��o(tm+1)�� � c2 t
m+1 c2 2 R+ (3.20)

for t 2 [0; �), � 2 R+, m 2 N.

Proof First recall that the Fourier transform operator, that we shall indicate
with F , is an homeomor�sm of the space S into itself (e.g. [9]). It acts
on Ut(0) as follows:

FUt(k) = F(k) e�ik
2t
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Then we may represent Ut(0) in the integral form:

Ut(0) =
4�

(2�)
3
2

Z +1

0

k2F(k) e�ik2t dk (3.21)

From the regularity assumptions on , we have F(k) 2 S(R3) and
Ut(0) 2 C1(0;+1). Now, setting m = minD0 - whose existance
is assured by our hypothesis - dm

dtm
Ut(0)

��
t=0

is the �rst derivative of
Ut(0) which is di¤erent from zero in the origin and the Taylor�s ex-
pansion of Ut(0) up to order m in a right neighborhood of the origin,
t 2 [0; �), is:

Ut(0) = rm t
m + o(tm+1)

with am explicitely given by 1
m!

dm

dtm
Ut(0)

��
t=0
, which, from (3.21), is:

rm =
4�

(2�)
3
2

(�i)m

m!

Z +1

0

k2m+2F(k) dk

Moreover, the reminder term, o(tm+1), can be evaluated using Taylor�s
formula:

o(tm+1) =
1

(m+ 1)!

dm+1

dtm+1
Ut(0)

����
t=�t

tm+1; �t 2 (0; t)

from which follows the estimate:

9 c1 2 R+ :
��o(tm+1)�� � c1 t

m+1 8 t 2 [0; �)

The one-half integral of the function Ut(0) is given for any t 2 [0; �)
by the following relation:Z t

0

Us(0)p
t� s

ds = rm

Z t

0

tmp
t� s

ds+

Z t

0

o(tm+1)p
t� s

ds

from which a simple calculation lead us to the result:Z t

0

Us(0)p
t� s

ds = amt
m+ 1

2 + o(tm+
3
2 )

with: ���o(tm+ 3
2 )
��� � c2t

m+ 3
2 ; c2 > 0 8 t 2 [0; �)

and:

am =
p
� rm

�(m+ 1)

�(m+ 3
2
)
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�

We will use this result to get an expansion in power of t
1
2 for the charge

(3.17). First we notice that assumptions (3.10) on the regular part, , of the
initial state are consistent with the hypothesis:  2 S(R3), of Lemma 23. If
we assume condition (3.18) to hold, then relation (3.19) may be applied to
our case (with the only restriction m 6= 0 due to the boundary condition:
(0) = 0 of de�nition (2.4)): this allows us to use the formula (1.42) with
� = 4���

p
i in order to obtain a power expansion of the solution V (0) in a

right neighbourhood of the origin:

V (0)(t) + (;  ��)L2 q��(0) e
�i���t =

�
�
4���

p
i
�
am

�(1
2
)

2m+1m!

(2m+ 1)!!
tm+

1
2 +

�
4���

p
i
�2

am
tm+1

m+ 1
+ o(tm+

3
2 ) (3.22)

with: ���o(tm+ 3
2 )
��� � c3 t

m+ 3
2 c3 2 R+ (3.23)

3.5 The Non Controllability Condition in the
limit t! 0

Here we study condition (3.16) in a neighborhood [0; �) of the origin with
� < T . First, we set the problem in the form:

9K 2 [0; 2�) : arg V (0)(t)e�i(T�t)��� = K 8t 2 [0; T ] (3.24)

which is equivalent to (3.16). Making use of (3.17), we see that:

arg V (0)(t)e�i(T�t)��� =

= arg

��
4�
p
i

Z t

0

K��(t� s)Us(0) ds� (;  ��)L2 q��(0)e�it���
�
e�i(T�t)���

�
=

= arg

�
4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� � (;  ��)L2 q��(0)e�iT���

�
Then, condition (3.24) implies also:

9K 0 2 [0; 2�) : arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� = K 0 8 t 2 [0; T ]

(3.25)
In order to analyze (3.25), we prove the following:
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Lemma 24 In the assumptions of Lemma23 the function:

arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)���

admit the following expansion:

arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� =

=
�

4
+ arg am + c sin(arg b0) t

1
2 � c2

1

2
sin (2 arg b0) t� (T � t)��� + o(t

3
2 )

(3.26)

for t 2 [0; �).

Proof We make use of the following relations, regarding the argument of
a sum of complex numbers, whose proof is straghtforward: set z1 =
�1e

i'1and z2 = �2e
i'2; Taylor expansions of arg(z1+ z2) w.r.t. the ratio

" = �2
�1
up to �rst order are given by:

arg(z1 + z2) = '1 +R1(�") " (3.27)

R1(x) =
sin('2 � '1)

1 + x2 + 2x cos('2 � '1)
(3.28)

arg(z1 + z2) = '1 + sin('2 � '1) "�
1

2
sin (2('2 � '1)) "

2 +R3(�") "
3(3.29)

R3(x) = �1
6
sin('2 � '1)

(1 + x2 + 2x cos('2 � '1))

(1 + x2 + 2x cos('2 � '1))
3 +

+
1

6
sin('2 � '1)

4 (x+ cos('2 � '1))
2

(1 + x2 + 2x cos('2 � '1))
3 (3.30)

where the remainders Ri are evaluated in a suitable point �" 2 [0; ").
Now, setting Am = � 4���

�( 1
2
)
2m+1m!
(2m+1)!!

and Bm =
16�2��2

m+1
in (3.22), and using

(3.17) we have:

arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� =

= arg
h�
Amam

p
itm+

1
2 +Bmam i t

m+1 + o(tm+
3
2 )
�
e�i(T�t)���

i
; t 2 [0; �)

(3.31)

The right hand side of (3.31) can be expanded again using (3.27) and

(3.28); �rst, we apply (3.27) and with " = mod o(tm+
3
2 )

mod(Amam
p
itm+

1
2+Bmam i tm+1)

,
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obtaining:

arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� =

= arg
h�
Amam

p
itm+

1
2 +Bmam i t

m+1
�
e�i(T�t)���

i
+

+R1(x)
mod o(tm+

3
2 )

mod(Amam
p
itm+

1
2 +Bmam i tm+1)

(3.32)

with x 2
�
0; mod o(tm+

3
2 )

mod(Amam
p
itm+

1
2+Bmam i tm+1)

�
; then expand by (3.28) the

�rst term at second member of (3.32) w.r.t " = mod Bm
Am

t
1
2 :

arg
�
Amam

p
itm+

1
2 +Bmam

p
ib0t

m+1
�
=

=
�

4
+ arg am + c sin(

�

4
) t

1
2 � c2

1

2
sin
��
2

�
t+R3(x

0) c3t
3
2 (3.33)

with c = mod Bm
Am

and x0 2
�
0; c3t

3
2

�
. Equation (3.26) is a straightfor-

ward consequence of (3.32) and (3.33).

�

Lemma 24 leads us to an asymptotic formulation of the non controlla-
bility condition; from relations (3.26) and (3.25), indeed, we have:

cp
2
t
1
2 +

�
��� �

c2

2

�
t+ o(t

3
2 ) = 0 8 t 2 [0; �t) (3.34)

Here we note that c is a real positive constant di¤erent from zero, given
explicitely by:

c = �(
1

2
)4� j��j (2m+ 1)!!

2m+1 (m+ 1)!

while, by de�nition, ��� is real and negative de�ned. Then the di¤erence�
��� � c2

2

�
is always di¤erent from zero.

Relation (3.34) is an evident contaddiction we approached to by supposing
system (3.11) to be not surjective. This concludes the proof of Theorem 22
for all choices of initial states satisfying condition (3.18) of Lemma 23.
In the next section we will study an extension of the proof to those cases

in which Lemma 23 does not hold.
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3.6 Finite Time Asymptotics for the Charge
and Proof of Theorem 22

If condition (3.18) does not hold, we may still recover our results just by
changing the point in which perform the expansions of (3.17) and (3.24).We
claim the following:

Lemma 25 Let  2 S(R3) - S being the space of functions with rapid de-
crease - and  6= 0. There exists a t0 2 [0; T ] such that the expansion:Z t

0

Ut0+s(0)p
t� s

ds = am (t� t0)
m + o((t� t0)

m+1); am 6= 0 (3.35)

with: ��o((t� t0)
m+1)

�� � c4 t
m+1 c4 2 R+

holds for t 2 [t0; t0 + �), � 2 R+, m 2 N.

Proof De�ne the set:

Dt =

�
n 2 N[f0g : d

n

dtn
Ut(0)

����
t

6= 0
�

It is trivial noticing that:

Dt = ? 8 t 2 [0; T ])  = 0

Then, if  6= 0 as we suppose, it is always possible to �nd a t0 2 [0; T ]
such that Dt0 6= ?.
The proof can be concluded following the same line of the proof of
Lemma 23.

�

Next we observe that, starting from de�nition (2.27), a simple change of
variables provide us an equation for the charge V (0) when the initial time
t = t0 is assigned:

q(t) +
4���

p
i

�(1
2
)

Z t

0

q(s)p
t� s

ds = 4
p
�i

Z t

0

Ut0+s�(0)p
t� s

ds

where the source term - according with our hypothesis on the initial state
(3.10) and with relation (2.33) - is given by:

4
p
�i

Z t

0

Ut0+s�(0)p
t� s

ds = 4
p
�i

Z t

0

Ut0+s(0)p
t� s

ds�(;  ��)L2 q��(t0)E 1
2
(4���

p
i (t+ t0)

1
2 )
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Once more, according to the relation (2.35), the charge V (0) may be written
in the following form:

V (0)(�) = 4�
p
i

Z �

0

K��(� � s)Ut0+s(0) ds� (;  ��)L2 q��(0) e�i(�+t0)���

(3.36)
and, taking into account the results of Lemma 25 and the formula (1.42), an
expansion of the charge in half integer power of time around the point t = t0
is obtained:

V (0)(�) + (;  ��)L2 q��(0)e
�i(�+t0)��� =

= �� am
�(1

2
)

2m+1m!

(2m+ 1)!!
tm+

1
2 + �2 am

tm+1

m+ 1
+ o(tm+

3
2 ); � 2 [t0; t0 + �) (3.37)

with: ���o(�m+ 3
2 )
��� � c5 �

m+ 3
2 c5 2 R+ (3.38)

Now, proceeding on the same line of Section 5, it is easy to proof the following:

Lemma 26 In the assumptions of Lemma 25 the function arg 4�
p
i
R t
0
K��(t�

s)Us(0) ds e
�i(T�t)��� admit the following expansion:

arg 4�
p
i

Z t

0

K��(t� s)Us(0) ds e
�i(T�t)��� =

=
�

4
+ arg am + c sin(

�

4
) (t� t0)

1
2 � c2

1

2
sin
��
2

�
(t� t0)� (T � t)��� + o(t

3
2 )

(3.39)

for t 2 [t0; t0 + �).

This concludes the proof of Theorem 22

3.7 The Nonlinear System

Here we study the regularity properties of the nonlinear functional (3.9). To
this aim, we introduce the following lemma:

Lemma 27 Let V : B ! L1(0; T ) be the map such that 8� 2 B ) V (�) =
q :

q(t) + 4
p
�i

Z t

0

[�(s) + ��] q(s)p
t� s

ds = 4
p
�i

Z t

0

Us�(0)p
t� s

ds

with �� real constant.
Then V is a functional of class C1.
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Proof Let �; � 2 B; the di¤erence V (�)(t)�V (�)(t) integrates the equation:

q(t) + 4
p
�i

Z t

0

[�(s) + ��] q(s)p
t� s

ds = 4
p
�i

Z t

0

[�(s)� �(s)] V (�)(s)p
t� s

ds

whose solution satis�es the estimate (see (2.55)):

kqk1 �
���4p�i��� kV (�)k1 k� � �k1 2T

1
2

"
1 +

+1X
n=1

���4p�i���n k�+ ��kn1 An �
n
2 T

n
2

#
(3.40)

Taking into account the Sobolev inequality (see for instance [11]):

k�kL1(0;T ) � C k�kH1(0;T ) (3.41)

and the trivial bound:

k�kH1(0;T ) � k�kH3(0;T ) (3.42)

we recover from (3.40) the continuity of the functional on the space B
in the topology of H3(0; T ).

The Frechét derivative of V in the point � is the map d�V whose action
on u 2 B is given by the solution of the integral equation:

q(t) + 4
p
�i

Z t

0

[�(s) + ��] q(s)p
t� s

ds = �4
p
�i

Z t

0

u(s)V (�)(s)p
t� s

ds

The continuity of d�V onB is, once again, a consquence of the estimates
(2.55), (3.41).

�
From Lemma27 and de�nition (3.8) easily follows:

Theorem 28 The functional (3.9) de�ned by (3.8) is a C1 class map: B !
C

Proof Let � and � be a couple of points in B; from the de�nition of F (3.8)
we have tha the di¤erence:

F (�)� F (�) = i

Z T

0

UT�s ��(0) (V (�)(s)� V (�)(s)) ds

satis�es the estimate:

jF (�)� F (�)j � kV (�)(s)� V (�)(s)k1
Z T

0

jUT�s ��(0)j ds (3.43)

The continuity of F then follows directely form Lemma 27.

The same proof allows for d�F .

�
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3.8 Proof of the Main Result

In previous sections we have shown that the functional F , (3.9), is a C1 map
between a Banach space B and a �nite dimensional linear space C (Theorem
28), whose di¤erential evaluated in the point � = 0 is surjective. Then, using
Rank Theorem (e.g. [12]), we prove the existence of neighborhood I0 of z = 0
in C and C1 class map G : I0 ! B such that:

F (G(z)) = z 8z 2 I0 (3.44)

This conclude the proof of Theorem 21.

3.9 Remarks and Conclusions

Our main remark is about the assumptions (3.10) on the initial state. It is
clear that, by taking functions with radial symmetry, we exclude all scattering
state which are of p type (see section 2.4.3):

�P (r; #; ') =
+1X
l=1
l 6=0

lX
m=�l

flm(r)Y
m
l (#; ')

This fact does not represent merely a thecnical restricion. Infact we already
observed that, for these states, the following relation holds:

Ut�P (0) = 0 8t

Then from the de�nition (3.4) and the uniqueness of solution of the charge
equation, follows that a particle, initially placed in the state �P and subjected
to the action of any hamiltonian of type H�(t), results to have a null charge
and evolves under the action of the free propagator: it means that, in these
conditions, the particle doesn�t feel the interaction at all. In this case any
transfer of energy is physically impossible.
On the other hand, we stress out that our proof, although not taking into

account all scattering state of radial type, has been performed on the set:

f� 2 C1c (0;+1)� f ��g : (�;  ��) = 0g

which is dense in the space of scattering radial functions.
In conclusion, we have proved the local controllability of a process of

energy-mass transfer, from scattering to bound states, for a one body quan-
tum system under the action of a time dependent point interaction. Further
development of this studies may regard the global controllability of the same
process, as well as the inverse problem of �nite time ionization.
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Chapter 4

Ionization for Three
Dimensional Time-dependent
Point Interactions

4.1 Introduction

We shall study the time evolution of a three dimensional system with time-
dependent Hamiltonian given by

H(t) = H0 +HI(t)

where the �perturbation�HI(t) is a zero-range interaction with time-dependent
(periodic) �strength�. In particular we are interested in proving complete
ionization of the system as t!1, starting from an initial condition at t = 0
given by a bound state of the system. By complete ionization one can mean
two di¤erent statements. The weaker one is that the survival probability of
the bound state, i.e. the square modulus of the scalar product of the state
at time t with the bound state, goes to zero as t ! 1. The stronger one
is that every state 	 in the Hilbert space of the system is a scattering state
(see for example [21, 24]) of H(t), i.e. for every compact set S � R3,

lim
t!1

1

t

Z t

0

d�

Z
S

d3~x j	� (~x)j2 = 0

	t denoting the time evolution of the state 	. The last statement is related
to the absence of eigenvalues of the Floquet operator associated to H(t) (see
[25, 23, 29]).
The usual way to deal with problems of this kind is by means of time-
dependent perturbation theory and Fermi�s golden rule, which gives for the
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survival probability the well known exponential decay for each order n in the
perturbative expansion. On the other hand simple examples of regular per-
turbations show that the survival probability decays to zero as a power-law
(i.e. the limits t ! 1 and n ! 1 can not be interchanged). When the
perturbation is not small, it is in general very di¢ cult to solve the problem
and �nd the law of decay. Therefore it is interesting to �nd models in which
a non-perturbative solution exists and study the survival probability. In this
paper we study one such model, in which HI(t) is given by a three dimen-
sional point interaction. We shall see that it is possible to prove asymptotic
complete ionization and �nd a power law decay for the survival probability,
under generic condition on the scattering length1.
The one-dimensional version of the same problem has been widely analyzed
in [14][15][16][17], where complete ionization is proved under a suitable and
very weak condition on the Fourier coe¢ cients of the strength of the inter-
action. We shall see that the same genericity condition is also su¢ cient in
three dimensions to have complete ionization of the system.
From a physical point of view, the model we are going to study is related
to the strong laser ionization of Rydberg atoms2, showing many features of
experimental data. Indeed, despite of the simplicity of the model, as in the
one-dimensional case, it is possible to reproduce many e¤ects of multipho-
ton ionization of excited hydrogen atoms by microwave �eld, with a good
agreement with experiments (see [18]).

4.2 The Model

The model we are going to study is a quantum particle subjected to a time-
dependent point interaction �xed at the origin in three dimensions, namely
a system de�ned by the time-dependent self-adjoint Hamiltonian H�(t),

D(H�(t)) = f	 2 L2(R3) : 9 q�(t) 2 C;
�
	(~x)� q�(t)G�(~x)

�
2 H2(R3);�

	� q�(t)G�
���
x=0

=

 
�(t) +

p
�

4�

!
q�(t)g�

H�(t) + �
�
	 = (H0 + �)

�
	� q�(t)G�

�
(4.1)

where � 2 R, � > 0 and

G�(~x� ~x0) = e�
p
�j~x�~x0j

4�j~x� ~x0j
1In three dimensions the parameter �(t) is proportional to the inverse of the scattering

length.
2See the discussion contained in [14, 18] and references therein.
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is the Green function of the free Hamiltonian H0 = ��.
As already mentioned in Chapter 2, it is well known (see [19, 20, 22, 28,
8]) that, under suitable hypothesis of regularity on �(t), the operator (4.1)
de�nes a time propagation U(t; s) given by a two-parameters unitary family,
solving the time-dependent Shrödinger equation (2.51); the state at time t
may be also de�ned as the solution of equations (2.52), that we recall here:

	t(~x) = U(t; s)	s(~x) = U0(t� s)	s(~x) + i

Z t

s

d� q(�)U0(t� � ; ~x) (4.2)

q(t) + 4
p
�i

Z t

s

d�
�(�)q(�)p
t� �

= 4
p
�i

Z t

s

d�
(U0(�)	s) (0)p

t� �
(4.3)

where U0(t) = exp(�iH0t), U0(t; ~x) is the kernel associated to the free prop-
agator and the charge q(t) satis�es the usual Volterra integral equation for
t � s. We are interested in studying complete ionization of the system de-
�ned by (4.1) and (2.51), starting from initial conditions

	0(~x) = '�(0)(~x) (4.4)

'�(0)(~x) being the bound state
3 of H�(0).

We shall assume that �(t) is a real periodic continuous function with
period T .
The meaningful parameter of the system is the negative lower bound of

�(t). Indeed, if inf(�(t)) � 0, the wave operator associated to (H0; H�(t))
is unitary (see [8]) so that any initial state evolves into a scattering state.
Hence we require for �(t) the validity of assumptions (1.47), (1.48) and (1.54)
and adopted in Section 1.3-1.4.

4.3 Complete Ionization in the Generic Case

In what follows we shall prove asymptotic complete ionization of the system
(4.2)-(4.3) under generic conditions on �(t).
A straightforward consequence of Theorem 12 (and of the analogous re-

sults for the case �0 � 0) is that the scalar product (and thus the survival
probability of the bound state)

�(t) =
�
'�(0);	t

�
L2(R3)

tends to 0 when t!1:
3In order to do this analysis we shall require that �(0) < 0.
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Corollary 29 If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , the system shows asymptotic complete ionization and, as
t!1,

j�(t)j � D t�
3
2 + E(t)

where D 2 R and E(t) has an exponential decay.

Proof: Using the decomposition of the wave function at time t de�ned by
(4.2), we can write the survival probability in the following way:

�(t) �
�
'�(0);	t

�
L2(R3) =

�
'�(0); e

�iH0t'�(0)
�
L2(R3)+ (4.5)

+i

�
'�(0)(~x);

Z t

0

d� q(�)U0(t� � ; ~x)

�
L2(R3)

Let us de�ne
Z1(t) �

�
'�(0); e

�iH0t'�(0)
�
L2(R3)

By the usual dissipative estimate for the free propagator, one has

jZ1(t)j � c1t
� 3
2

as t ! 1 for some constant c1 2 R. Hence Z1(t) belongs to L1(R+) and
then its Laplace transform ~Z1(p) is analytic at least for <(p) � 0.
The second piece of the scalar product is given by

Z(t) � i

�
'�(0)(~x);

Z t

0

d� q(�)U0(t� � ; ~x)

�
L2(R3)

=

= i

Z t

0

d� q(�)
�
e�iH0(t��)'�(0)

�
(0)

and taking the Laplace transform of Z(t), we have

~Z(p) = ~Z2(p) ~q(p)

where

~Z2(p) � �
4
p
2�j�(0)j

4��(0)�
p
�ip

is analytic for <(p) > 0 and never equal to 0, because of condition (1.47).
Hence the Laplace transform of �(t) is given by

~�(p) = ~Z1(p) + ~Z2(p) ~q(p)
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where ~Z1(p) is analytic on the closed right half plane and ~Z2(p) has only a
branch point at the origin of the form a1 + a2

p
p.

Hence ~�(p) has the same singularities as ~q(p) and then its asymptotic behavior
coincides with that of q(t), i.e.

j�(t)j � D t�
3
2 + E(t)

for some constant D 2 R and for a bounded function E(t) with exponential
decay.

�

In the following we shall prove a stronger result about complete ionization
of the system, namely that every state 	 2 L2(R3) is a scattering state4 for
the operator H�(t), i.e.

lim
t!1

1

t

Z t

0

d� kF (j~xj � R)U(� ; 0)	k2 = 0 (4.6)

where F (S) is the multiplication operator by the characteristic function of
the set S � R3 and U(t; s) the unitary two-parameters family associated to
H�(t) (see (2.51)).
In order to prove (4.6), we �rst need to study the evolution of a generic
initial datum in a suitable dense subset of L2(R3) and then we shall extend
the result to every state using the unitarity of the evolution de�ned by (2.51)
(see e.g. [19]).

Proposition 30 Let 	 2 C10 (R3 n f0g) a smooth radial function compactly
supported away from 0 and q(t) be the solution of equation (4.3) with initial
condition 	0 = 	. If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , as t!1,

jq(t)j � A t�
3
2 +R(t) (4.7)

where A 2 R and R(t) has an exponential decay, R(t) � Ce�Bt for some
B > 0.

Proof: First we notice that, using the decomposition of the wave func-
tion at time t de�ned by (4.2), we can write the survival probability in the
following way:

�(t) � (	;	t)L2(R3) =
�
	; e�iH0t	

�
L2(R3)+ (4.8)

4For the de�nition of scattering states of a time-dependent operator see e.g. [21, 24].
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+i

�
	(~x);

Z t

0

d� q(�)U0(t� � ; ~x)

�
L2(R3)

Let us de�ne
Z1(t) �

�
	; e�iH0t	

�
L2(R3)

By the usual dissipative estimate for the free propagator, one has

jZ1(t)j � c1t
� 3
2

as t ! 1 for some constant c1 2 R. Hence Z1(t) belongs to L1(R+) and
then its Laplace transform ~Z1(p) is analytic at least for <(p) � 0.
The second piece of the scalar product is given by

Z(t) � i

�
	(~x);

Z t

0

d� q(�)U0(t� � ; ~x)

�
L2(R3)

=

= i

Z t

0

d� q(�)
�
e�iH0(t��)	

�
(0)

and taking the Laplace transform of Z(t), we have

~Z(p) = ~Z2(p) ~q(p)

where
~Z2(p) � L

��
e�iH0t	

�
(0)
�
(p)

The function of time
�
e�iH0t	

�
(0) may be represented as a fourier integral:

�
e�iH0t	

�
(0) =

1

(2�)
3
2

Z
R3
e�ik

2t	̂(k) dk

which is continuous in the variable t, due to the regularity of 	̂ 2 S (class of
Schwartz functions). The dispersive estimate:e�iH0t	1 �

t!1
t�

3
2 k	k1

assures once more that e�iH0t	 2 L1(R+). This implies that ~Z2(p) is analytic
for <(p) > 0.
Furthermore we notice that:

L
��
e�iH0t	

�
(0)
�
(p) =

1

(2�)
3
2

Z
R3

	̂(k)

p+ ik2
dk
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If we suppose that this function has a zero in the point �p of the complex
plane, then it should results also that:

�pn
Z
R3

	̂(k)

�p+ ik2
dk = 0 8n 2 N0 (4.9)

But, from our hypothesis on 	 we know that:

L
�
dn

dtn
�
e�iH0t	

�
(0)

�
(p) =

pn

(2�)
3
2

Z
R3

	̂(k)

p+ ik2
dk+

1

(2�)
3
2

n�1X
j=0

Z
R3

�
�ik2

�j
	̂(k) dk =

=
pn

(2�)
3
2

Z
R3

	̂(k)

p+ ik2
dk +

1

(2�)
3
2

n�1X
j=1

(i)j �j	(0) =
pn

(2�)
3
2

Z
R3

	̂(k)

p+ ik2
dk

Replacing this relation in (4.9) we get:

L
�
dn

dtn
�
e�iH0t	

�
(0)

�
(�p) = 0

From Schrödinger equation this is equivalent to:

L
�
(�iH0)

n �e�iH0t	� (0)� (�p) = 0) 1

(2�)
3
2

Z
R3

�
k2
�n 	̂(k)

�p+ ik2
dk = 0

Next, recalling that the fourier transform of a radial function is still radial,
we have: Z +1

0

k2n+2
	̂(k)

�p+ ik2
dk = 0 8n 2 N0

which implies, from the unicity of solutions of the Hamburger moment equa-
tion,

~	 = 0

Then, if 	 6= 0, as we suppose, the function ~Z2(p) has no �nite zeros in the
complex plane.
The Laplace transform of �(t) is given by

~�(p) = ~Z1(p) + ~Z2(p) ~q(p)

But �(t) is a bounded function5, because of unitarity of the evolution (2.51),
and then its Laplace transform is analytic on the open right half plane. From
analyticity of ~Z1(p), ~Z2(p) and absence of zeros of ~Z2(p) follows that the
Laplace transform of q(t), solution of (4.3), is analytic at least for <(p) > 0.

5Actually j�(t)j � 1, since the initial state is normalized.
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Consider the Laplace transform of equation (4.3), which has the form
(1.52) with

f(p) =

r
2

�

s
i

p

Z 1

0

dt e�pt
Z
R3
d3~k 	̂(~k) e�ik

2t

where 	̂(~k) is the Fourier transform of 	(~x).
The equation for ~q(p) is then given by

~q(p) = � 4�

4��0 +
p
�ip

X
k2Z
k 6=0

�k ~q(p+ i!k) +
g(p)

4��0 +
p
�ip

where

g(p) =

r
2

�

Z 1

0

dt e�pt
Z
R3
d3~k 	̂(~k) e�ik

2t

It is now su¢ cient to show that the solution ~q(p) is also analytic on the
imaginary axis except at most square root branch points at p = i!n as in
the discussion of section 3.3.2 and 3.3.3.
For every smooth function 	 with compact support, 	̂(~k) is a smooth func-
tion with an exponential decay as k !1, so that

g(is) = lim
r!0+

r
2

�

Z
R3
d3~k

	̂(~k)

r + (s+ k2)i
= �i

r
2

�

Z
R3
d3~k

	̂(~k)

s+ k2

is a bounded function for s > 0. Hence the function g(p) has no pole for
=(p) 2 (0; !) and therefore the result contained in Proposition 8 still holds.
Moreover

g(0) =

r
2

�

Z
R3
d3~k 	̂(~k)

Z 1

0

dt e�ik
2t = �i

r
2

�

Z
R3
d3~k

	̂(~k)

k2

which is again bounded, so that g(p) has at the origin at most a branch point
singularity of the form a(p) + b(p)

p
p: following the proofs of Proposition 9

and 11, we can show that ~q(p) has the same behavior at the origin.
In conclusion the solution is analytic on the closed right half plane except
branch points at p = i!n, n 2 Z, of the form a(p)+b(p)

p
p� i!n. The proof

of Theorem 12 then implies that q(t) has the prescribed behavior as t!1.

�
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Theorem 31 If f�ng satis�es (1.48) and the genericity condition (1.56)
with respect to T , every 	 2 L2(R3) is a scattering state of H�(t), i.e.

lim
t!1

1

t

Z t

0

d� kF (j~xj � R)U(� ; 0)	k2 = 0

Proof: We shall restrict the proof to the dense subset of L2(R3) given
by smooth functions with compact support and then we shall extend the
result to every state using the unitarity of the evolution de�ned by (4.2) (see
e.g. [19]). Actually we are going to prove an equivalent but slightly di¤erent
statement, i.e. 8" > 0, there exists t0 such that 8t > t0,

kF (j~xj � R)U(t; 0)	k � "

The evolution of an initial state 	 according to (4.2) is given by

	t(~x) = U(t; s)	s(~x) = U0(t� s)	s(~x) + i

Z t

s

d� q(�)U0(t� � ; ~x) (4.10)

Moreover, since 	t 2 D(H�(t)), the following decomposition holds

	t(~x) = 't(~x) +
q(t)

4�j~xj (4.11)

where q(t) is the solution of (4.3), 't 2 H2
loc(R3) and

't(0) = �(t)q(t)

We are going to show that, if q(t) 2 L1(R+), 	t satis�es the required property.
Let us start analyzing the second term in (4.10): imposing the unitarity
condition of the evolution we have

k	sk2 = k	tk2 =
U0(t� s)	s(~x) + i

Z t

s

d� q(�)U0(t� � ; ~x)

2
and thenZ t

s

d� q(�)U0(t� � ; ~x)

2 = 2=�Z t

s

d� q(�)U0(t� � ; ~x); U0(t� s)	s(~x)

�
=

= 2=
�Z t

s

d� q�(�)
�
e�iH0(��s)	s

�
(0)

�
but, using the decomposition (4.11),�

e�iH0(s��)	s
�
(0) =

�
e�iH0(s��)'s

�
(0) +

Z
R3
d3~k e�ik

2(��s) q(s)

(2�)3k2
=
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=
�
e�iH0(s��)'s

�
(0) +

q(s)

4�
p
�i
p
� � s

Since 's 2 H2
loc(R3), the absolute value of the �rst term on the right hand

side is bounded by a constant c(� ; s) <1 such that c(s; s) = q(s) and

lim
�!1

c(� ; s) = 0

Hence there exists s1(") > 0 such that, 8s > s1,

2

����Z t

s

d� q�(�)
�
e�iH0(s��)'s

�
(0)

���� � 2"2

9

if q(t) 2 L1(R+). Moreover by the same reason there exists s2(") > 0 such
that 8s > s2,

2

����Z t

s

d� q�(�)
q(s)

4�
p
�i
p
� � s

���� � 2"2

9

Setting s0(") = max(s1("); s2(")), one has 8s > s0Z t

s

d� q(�)U0(t� � ; ~x)

 � 2"

3
(4.12)

so that the whole L2�norm of the second term in decomposition (4.10) is
suitably small for s > s0.
On the other hand the �rst term in (4.10) is the free evolution of a L2�function
and hence there exists �(") > 0 such that 8t > s+ � and 8R <1,

kF (j~xj � R)U(t� s)	sk �
"

3
(4.13)

Setting t0(") = s0(") + �("), from (4.10), (4.12) and (4.13) one has

kF (j~xj � R)	tk � "

8t > t0, if q(t) 2 L1(R+).
By Proposition 30 the inequality is then satis�ed by every 	 2 C10 (R3nf0g):
unitarity of the family U(t; s) allows to extend the result to the whole Hilbert
space L2(R3).

�

Corollary 32 If f�ng satis�es (1.48) and the genericity condition with re-
spect to T (1.56), the discrete spectrum of the Floquet operator associated to
H�(t),

K � �i @
@t
+H�(t)

is empty.
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Proof: The result is a straightforward consequence of Theorem 31: every
eigenvector of K di¤ers from a periodic function by a phase factor and hence
can not satisfy (4.6).

�

4.4 Further Remarks

We have proved that, under the genericity condition on �(t), the system
de�ned in Section 2 shows asymptotic complete ionization.
If inf(�(t)) < 0, the genericity condition may be a necessary condition to have
complete ionization: for example, in one dimension, it is possible to exhibit
(see [14]) explicit functions �(t) for which the genericity condition fails6 and
the ionization is not complete. On the other hand, also in one dimension, it
is not known whether the condition is necessary. It would be interesting to
check if non generic �(t) give rise to asymptotic partial ionization in three
dimensions.
A possible way to investigate this problem is the analysis of the discrete
spectrum of the Floquet operator. If one can �nd an explicit relation between
existence of eigenvalues of the Floquet operator and the genericity condition,
it would be probably easy to check if the condition is truly necessary.
On the other hand, as we expected, if �(t) is positive at any time, no further
condition on �(t) is required to prove complete ionization.
Two interesting future applications of these methods can be the problem of
complete ionization for moving point interactions and for N time-dependent
point interactions.

6A simple example of �(t), for which the genericity condition is not satis�ed is the
geometric series, �n = �

jnj for some � < 1.
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Conclusions and Perspectives

The asymptotic properties of solutions of fractional integral equations - as
it also emerges from this work - have a great relevance in the applications
perspective. Unfortunately most of the results obtainable in this direction
are closely connected with the tools of the Laplace transform analysis (never-
theless see the work of D.R. Yafaev [30]: "On the asymptotics of solutions of
Volterra integral equations", and the book of V. Kiryakova ([31]) for Erdélyi-
Kober fractional integral operators). As a matter of fact, in many relevant
cases the application of Laplace transform technique does not work due to the
presence of nonconstant coe¢ ciets or nonlinearities in the integral operator,
leaving the problem of the asymptotic analysis as an open question.
In this work we studied the large time asymptotic properties of equation

(1.44) with �(t) periodic; this may be considered, to some extent, as a bound-
ary case for the utilization of the Laplace transform. Our results have shown
an interesting lack of continuity in the behavior of solutions between the
"generic" and the "non generic" case7. For �(t) generic, indeed, we proved
that the solution of (1.44) goes to zero as t ! 1 with a negative power
law. On the other hand, the same proof does not work anymore for periodic
coe¢ cients of non generic kind; in this last case, there are no general results
regarding the large time behavior of the solutions, although simple examples
of this type8 are known in which equation (1.44) is explicitely solvable and
the solution exhibit a non vanishing limit for t!1.
In order to extend the analysis presented in this work to more general

cases - i.e. Abel equations with time dependent bounded coe¢ cients or of
non linear type - it seems to be necessary the developing of a new investigation
strategy based upon di¤erent tools such as operator analysis.

7In the sense expressed by relation (1.56).
8See the discussion for the case � = cost: in Section 2.4 of this work. See also [14] for

a less trivial example of non generic periodic function.
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