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Introduction

It is well known that the set of unblocked allocations, the core, and

the set of Walras allocations coincide in an atomless economy when

all measurable coalitions are allowed to form. Clearly, if only a subset

of the set of all coalitions is allowed to form, the set of unblocked

allocations enlarges, and generally we can merely say that this larger

set contains the set of Walrasian allocations.

In reality the lack of communication restricts the set of coalitions

that can be formed. The purpose of our work is investigate the Core-

Walras equivalence by imposing to the set of all coalitions some restric-

tions.

The notion of the core is based on the premise that any group

of agents can cooperate and agree upon a coordinated set of actions

which can then be enforced. In the context of a differential information

economy, an allocation should be seen as a state-contingent allocation

satisfying physical resource constraints in each information state. A

central role is played by the information set of each agent. Agents

which enter into a coalition contract at the ex-ante stage, i.e. before

any agents receives private information, or at the interim, i.e. after

each agent has received her private information. It is well known that

the ex-post stage, i.e. decisions are made after the information state

is known, is no different from a model with complete information. An

appropriate notion of the core must take into account of whether the

coalition decisions stage is ex-ante or interim.

The definition of cooperative solution concept, the core, differs with

the information sharing rule used by agents in a coalition. In an econ-

omy with differential information, the set of allocation that a coalition

can block depends upon the initial information and the communication
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opportunities of the members of a coalition.

In the main literature, there are three kinds of information sharing

rule in a coalition:

i) pooling information, introduced by Wilson [50], that is an alter-

native allocation that a coalition prefer must be enforced in an

event which they all can discern;

ii) private information, introduced first by Yannelis [51], such that

the set of feasible allocations for a blocking coalition must involve

a net trade of each member of the coalition that is measurable

with respect to his information partition;

iii) common knowledge information, that is net trades are measurable

with respect to the joint partition of all members of the coalition

and agents can discern only the events in the fine field.

Both with the coarse and fine core problems arises associated with

existence and incentive compatibility. On the contrary, it has been

shown that if the economy has a finite number of traders, the private

core has some interesting properties: it exists under standard continu-

ity and concavity assumptions on utility functions, it is coalitionally

incentive, i.e. there is truthful revelation of information in each coali-

tion, and it takes into account the information superiority of traders.

From the non cooperative side, we deal with two main equilibrium

concepts:

iv) the rational expectations equilibrium which is an interim concept

in which prices are referred to as signals reflecting and transferring

information;

v) the competitive private equilibrium, which is closer to the Walrasian

equilibrium notion in the deterministic case: this non-cooperative

solution concept presumes that agents maximize their ex-ante ex-

pected utility subject to their budget constraint in which infor-

mation constraints, besides the classical ones, are considered.
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In Rational expectations equilibria prices do not reflect the informa-

tion asymmetries among agents. More precisely, assuming that each

agent makes her consumption decisions according to rules which use

whatever private information is available when the market takes place,

one would expect equilibrium prices to depend on the state of the world

and to reflect some or all of the prior private information possessed by

agents.

On the contrary, competitive private equilibria exist for finite economies

under the standard assumptions which guarantee the existence of Wal-

rasian equilibria.

We will consider a differential information exchange economy ob-

tained by introducing in the classical Arrow-Debreu model both un-

certainty and asymmetries in information. In these model, uncertainty

is exogenous and is represented by a measure space (Ω,F) where Ω

denotes the finite set of all possible states of nature and F is the set of

all possible events.

We will assume that agents make coalitional decisions at the ex-ante

stage but each agent receives private information which is not publicly

verifiable before consumption takes place. In particular, agents trades

with the anonymous market rather than with other agents directly and

it becomes very natural to require that agents’ trade be measurable

with respect to their private information. This notion of the core, the

Private Core, was first introduced and studied by Allen [4], Yannelis

[51], Koutsougheras and Yannelis [36].

In Section 3.4, we briefly consider the interim stage of coalitions

formation. We will refer to Wilson [50] model, in which the utility

function is the conditional expected utility function. We will consider

the restriction that objections be coordinated on a common knowledge

event. In this case, we will refer to the concept of Fine Core.

We characterize in terms of decentralizing prices several notions of

core allocations resulting from different possible restrictions imposed
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to the set of blocking coalitions. Reciprocal relations among cores are

also studied.

It is shown by Scmeidler [45] that if in an atomless pure exchange

economy, for arbitrary ε > 0, only coalitions with measure less than

ε are allowed to form, we still have the identity between the set of

unblocked allocations and the set of Walras allocation.

Furthermore, Grodal [27] has shown that if the coalitions which are

allowed to form consists of relatively ”‘few”’ agents, and that agents in

the coalition are ε similar, then the core-Walras equivalence still holds.

Finally, in Vind [49] shows that if the allocation is determined by

a vote among the traders, the only allocations for which we will not

have few agents suggesting and voting for some other allocation are the

competitive allocations.

Mas Colell [38] has attempted to give some economic interpretation

of this results. Specifically, he argued that we need not tether (link)

ourselves to credulity-stretching informational requirements of the ide-

alized notion of free Edgeworthian recontract. If whatever can be done

by a coalition, can be done by any arbitrarily small coalition, then one

only needs a few well informed people to take us to Walrasian equi-

librium. He also suggests that we think of these few as arbitrageurs.

With the rest of people in the economy remaining passive, it is enough

for this small, profit seeking group to do their duty and take us to

equilibrium.

Another issue we have investigated in our work, starting from the

reality restrictions of coalitions due by various rules imposed over the

society (i.e. information, transportation, legal and institutional con-

straints), is the number and composition of the set of blocking coali-

tions.

The more general treatment of the problem under smoothness as-

sumption for large finite pure exchange economies has been provided

by Mas-Colell [37], who showed that nearly half of all coalitions block

a Pareto optimal allocation which is “bounded away from being Wal-
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rasian”. Since Pareto optimality of a given allocation rules out the

possibility of being blocked by a coalition as well as its complement,

the 50% of all coalitions represents an upper bound on the number of

blocking coalitions.

Thus, the result of Mas-Colell [37], implies that if the number of

individuals in an economy rises, the proportion of blocking coalitions

within the entire set of coalitions would approach this upper bound.

The result of Mas-Colell [37] can be restated in an alternative man-

ner: if one puts the uniform distribution on the space of two coalition

partitions of the set of all individuals and chooses such a partition

at random, then with probability one it contains a blocking coalition.

This conclusion has been generalized by Greenberg and Weber [25] who

considered partitions of all individuals into several coalitions. Under

the uniform distribution on the set of partitions that contain a given

number J ≥ 2 of coalitions, Greenberg and Weber [25] show that the

probability of such a partition to contain a coalition that blocks a given

non-Walrasian allocation, is arbitrarily close to one. The extension of

this result is shown in Section 3.5

Shitovitz [47] initiated the study of the number or the measure of

blocking coalitions in atomless economies. He analyzed economies with

a finite number of types and identified a coalition with its profile. By

considering profiles that represents coalitions with the same propor-

tion of types as in the whole economy, Shitovitz [47] proved a local

result, that for every equal treatment Pareto optimal allocation which

is not Walrasian, there is a ball in the type profile space around the

given type profile so that nearly half of the profiles in the ball are block-

ing. Following the Shitovitz’s approach, Graziano [23] investigated this

problem in atomless economies with a continuum of commodities.

The work is organized as follows.

In Section 2.1, we formulate and extend results of Okuda and Shi-

tovitz [39] in a differential information framework. Then, we can classi-

fying core allocations with respect to the family of all coalitions that in-
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clude one of the members of partition. Specifically, for a given coalition

R, we consider the allocation that cannot be blocked by any coalition

that includes (or exclude) R.

Starting from a finite partition P of the whole set of agents, we

classify the core allocations with respect to the family of all coalitions

that include one of the members of the partition.

The blocking mechanism we consider in our results depends on the

measure space of agents. We start, Section 3.1, considering continuum

atomless economies in which only a finite number of characteristics can

be observed. For such economies, the set of traders is partitioned into a

finite number of coalitions such that individuals belonging to the same

coalition have identical densities of initial bundles and final bundles,

the same random utilities, the same private information and priors.

We define the profile of a coalition as the finite dimensional vector that

valuates the weight of each type in the coalition. Then, starting from

the private blocking mechanism, we define the set of all blocking profile

for a fixed Pareto optimal allocation that is not a Radner equilibrium.

We show that for every profile π in which the proportion of different

types in the same as in the whole society, almost half of the profiles

around π are privately blocking. In particular, we extend to economies

with asymmetries results proved in Shitovitz [47].

In the case of finite differential information economies, Section 3.3,

the cooperative characterization of Radner equilibria via private core

notions is possible enlarging the coalition formation mechanism. The

notion of generalized (or fuzzy) coalition introduced by [7] allows to

show private core equivalence theorems even in finite and atomic case

(see [24], [31]). In this framework, we show that for a Pareto optimal

allocation of a finite differential information economy that is not a Rad-

ner equilibrium, to any symmetric fuzzy coalition there corresponds a

ball centered in the coalition such that “almost half” of the coalitions it

contains are privately blocking. Mainly the result follows from a suit-

able correspondence between blocking coalitions of the finite economy

vii



and blocking profiles of a continuum associated economy.

Finally, Section 3.4, we underly the rule played by information shar-

ing inside a blocking coalition. An appropriate notion of the core must

take account of whether the coalition decision stage is ex-ante, i.e., be-

fore the agents learn their types, interim, i.e., when every agent only

knows his own type, or ex-post, i.e., when all types are revealed publicly.

In Section 3.5, the analogous of Theorems 3.2.1 and 3.3.4 are inves-

tigated in connection with the notion of social coalition structure.

Following [23], we introduce for a finite differential information

economy a social coalition structure in the form of a finite set of gen-

eralized coalitions. A coalition can be formed if and only if it belongs

to the given structure. Moreover, any trader is required to redistribute

is initial endowment among the coalitions in the given structure. The

need of imposing a social coalition structure on the society is motivated

by the fact that, although many coalitions can block an allocation that

is not in the private core, it is not true that such coalitions will re-

ally formed. In particular, in economies with differential information,

the interest in such structures is connected with costs of communica-

tion and information that may reduce the possibility of free coalition

formation.

Finally, in Chapter 4 we have found a sufficient condition for the

equivalence between the following concept of supporting price:

* xi Âi x
∗
i implies p · xi ≥ p · x∗i ,

* xi Âi x
∗
i implies p · xi > p · x∗i .

where x∗i is the optimal demand for all i. Moreover, we prove an equiv-

alence result between:

* zi ºi xi implies p · zi ≥ p · xi,

* zi Âi xi implies p · zi > p · xi.
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Chapter 1

The Model and Main
Definitions

In this chapter we introduce the theoretical framework for studying

restriction on coalition formation. By one side, we will extend some

consolidated results in an economy with differential information related

to Core - Walras equivalence. By the other side, we will deal with

equilibria concepts for the economy E used throughout our study.

The organization of Chapter 1 is as follows. In Section 1.1 we set

the basic economic model, describing its component. In Section 1.2 we

furnish the basic definitions of the main part of the solution concepts

used throughout the work. Other concepts will be introduced when

required.
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1.1 Economic Model

We consider a Radner-type exchange economy E with differential in-

formation that takes place over two time periods. At time t = 0 there

is uncertainty about the state of nature that is going to be realized. At

this period agents make contracts that may be available on the realized

state of nature at time t = 1. At the second period consumption takes

place. It is modeled by the following set:

E = {(ω,F); (T, σ, µ); IB+; (Πt, qt, ut, et)t∈T}

Following [40], the exogenous uncertainty is modeled by a measur-

able space (Ω,F), where Ω denotes a finite set of states of nature and

the field F represents the set of all events. The space of traders is de-

scribed by a measure space (T,Σ, µ), where T is the set of all traders,

Σ is a σ-field of all coalitions, the measure µ defines the weight of

each coalition on the market. With respect to the traders space, the

situations that will be significant in the sequel are those of finite and

continuum economies. The former will be characterize by µ to be the

counting measure over a finite set T of traders. The latter will be given

by a finite atomless measure space, typically the unit interval [0, 1] with

its Lebesgue measure.

The physical commodity space will be represented, in each state, by

an ordered separable Banach space IB whose positive cone IB+ is as-

sumed to have non empty norm interior. The dual space of IB, denoted

by IB
′
, will represent the price space.

The initial information of traders t ∈ T is described by a measurable

partition Πt ∈ Ω. We denote by Ft the field generated by Πt. If

ω0 is the true state of nature that is going to be realized, trader t

observes the member of Πt which contains ω0. Every trader t ∈ T

has a probability measure qt on F representing his prior beliefs, i.e.

probability conditioned by his information set.

The preference of a trader t ∈ T is represented by a state dependent

utility function, ut : Ω × IB+ → IR. In each state ω ∈ Ω and for all

t ∈ T , the function ut(ω, ·) : IB+ → IR is assumed to be continuous,
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concave and strictly monotone. Moreover, for all ω ∈ Ω the mapping

(t, x) → ut(ω, x) is Σ × B-measurable, where B is the σ-field of Borel

subsets of IB+.

The initial endowment of physical resources of a trader t ∈ T is a

specification of the quantity of physical commodities in each state of

nature. It is represented by a function e : T × Ω → IB+ such that

e(·, ω) is µ-integrable in each state ω ∈ Ω. By integral of the function

e(·, ω) : T → IB with respect to µ, we mean the Bochner integral as

defined in [14]. To represent the fact that traders do not acquire any

new information from their initial endowments, the function e(t, .) :

Ω→ IB+ is assumed to be Ft-measurable for µ-almost all t ∈ T . This

assumption implies, since Ω is a finite set, that it is a constant function

on each element of Ft. Finally, we shall assume that e(t, ω) À 0, for

µ-almost all t ∈ T and for all ω ∈ Ω. We remind that a vector v ∈ IB+

is strictly positive (v À 0) if for any non zero p ∈ IB
′

+, p · v > 0.

For any function x : Ω→ IB+, we will denote by

ht(x) =
∑

ω∈Ω

qt(ω)ut(ω, x(ω))

the ex-ante expected utility from x of trader t. It will represent the

agent’s utility function in the complete information economy associated

with E .
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1.2 Definitions

In this section we furnish the definitions of the main concept analyzed

in our study for the economy E .

Specifically, we introduce here the two main equilibria concept used

throughout the paper: from a cooperative point of view, the concept of

private core and from the non cooperative one, the concept of compet-

itive private equilibria. All the definition stated at this level are pre-

sented in the unified framework represented by the basic model showed

in Section 1.1.

Definition 1.2.1 A feasible private allocation for the economy E is a

function

x : T × Ω→ IB+

such that

i) x(·, ω) is µ-integrable over T , for all ω ∈ Ω;

ii) x(t, ·) is Ft-measurable, for µ-a.e. t ∈ T ;

iii)

∫

T

x(t, ω) dµ ≤

∫

T

e(t, ω) dµ, for all ω ∈ Ω.

Condition ii) above is interpreted as informational feasibility of the

allocation x while condition iii) refers to its physical feasibility (see

[31]). Any function x : T × Ω → IB+ that satisfies conditions i) − ii)

is said to be a (private) allocation. When conditions i)− ii) refer to a

coalition S, we say that x is a private allocation over the coalition S.

The free disposability requirement contained in iii), is usually re-

quired to ensure the existence of Radner equilibrium allocations sup-

ported by non-negative prices (see [17]). This assumption is, generally,

not replaced in the main literature. See, for example, Yannelis [51],

Koutsougeras and Yannelis [36], Allen and Yannelis [5]. From a tech-

nical view point and economic mean, the assumption of free disposal is

required for the positiveness of prices for Radner equilibria, as showed

by Glycopantis, Muir and Yannelis [21] and Einy and Shitovitz [18].
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Now, we turn to give the definition of cooperative solution concept,

the core, which differ with the information sharing rule used by agents

in a coalition. In an economy with differential information, the set

of allocation that a coalition can block depends upon the initial in-

formation and the communication opportunities of the members of a

coalition. In the main literature, there are three kinds of information

sharing rule in a coalition:

i) pooling information, introduced by Wilson [50], that is an alter-

native allocation that a coalition prefer must be enforced in an

event which they all can discern;

ii) private information, introduced first by Yannelis [51], such that

the set of feasible allocations for a blocking coalition must involve

a net trade of each member of the coalition that is measurable

with respect to his information partition;

iii) common knowledge information, that is net trades are measurable

with respect to the joint partition of all members of the coalition

and agents can discern only the events in the fine field.

Throughout our study, we have focused attention on the notion

of private core, which is non-empty under appropriate assumptions.

Moreover, if there is a finite number of traders, the private core is

coalitionally incentive compatible. In sections following, we will briefly

show some results related to the different cooperative concept discussed

above.

Definition 1.2.2 A coalition S ∈ Σ with µ(S) > 0 privately blocks an

allocation x : T × Ω → IB+, if there exists a private allocation y over

S such that:

i)

∫

S

y(t, ω) ≤

∫

S

e(t, ω), for all ω ∈ Ω;

ii) ht(y(t, ·)) > ht(x(t, ·)), for µ-a.e. t ∈ S.

The private core of the economy E , Cp(E), is accordingly defined as

the set of all feasible private allocations that are not privately blocked
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by any coalition. In other words, if it is not possible for agents to join

a coalition, redistribute their endowment among themselves and using

his own private information to obtain a strictly preferred allocation for

each member of the coalition The notion of private core, introduced in

[51], is the most appropriate when traders have no access to any com-

munication system, and are not able to share their own informations.

Definition 1.2.3 The feasible private allocation x : T × Ω → IB+ is

Pareto Optimal if it cannot be privately blocked by the full coalition of

traders.

It is clear that allocations in the private core are Pareto optimal.

The characterization of private core and Pareto optimal allocations in

terms of supporting prices is possible via the notion of efficient and

competitive prices.

Definition 1.2.4 A price system is a non-zero function p : Ω→ IB
′

+.

Let us introduce for any trader t ∈ T the set Mt formed by all

assignments reflecting his private information, that is:

Mt = {x : Ω→ IB+ : x is Ft-measurable}.

Definition 1.2.5 A non-zero price system p is an efficient price vector

for the allocation x : T × Ω→ IB+ if:

i) µ-a.e. in T the function x(t, ·) is the maximal element of ht in the

efficiency set

B∗
t (p) =

{

z : z ∈Mt and
∑

ω∈Ω

p(ω) · z(ω) ≤
∑

ω∈Ω

p(ω) · x(t, ω)

}

.

After the definition of price system for the economy E we can pro-

ceed to the non-cooperative context by furnishing the notion of com-

petitive private equilibria

Definition 1.2.6 Let p be a non-zero price system and x be a feasible

private allocation. The pair (x, p) is said to be a Radner equilibrium if
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i) µ-a.e. in T the function x(t, ·) is the maximal element of ht in the

budget set

Bt(p) =

{

z : z ∈Mt and
∑

ω∈Ω

p(ω) · z(ω) ≤
∑

ω∈Ω

p(ω) · e(t, ω)

}

;

ii)
∑

ω∈Ω

p(ω) ·

∫

T

x(t, ω) dµ =
∑

ω∈Ω

p(ω) ·

∫

T

e(t, ω) dµ.

Usually condition ii) is not used in the definition of supporting

prices. We add it because the definition of feasible private allocation

allows free disposability.

Clearly, under an efficient or a competitive price system, agents

maximize ex-ante their expected utilities over their budget sets inde-

pendently one to each other. Moreover, given the structure of the sets

B∗
t (p) and Bt(p), the notion of supporting price system takes into ac-

count the better information of an agent. Indeed, agents that are better

informed will be in general better off.

Definition 1.2.7 We say that a feasible private allocation x : T×Ω→

IB+ satisfies the smoothness assumption if, aside from scalar multiples,

there exists a unique efficient price vector p for x.

Throughout the paper there will be some technical modification of

this model, justified by a deeper analysis of an economy with differential

information and its equilibria concepts. In particular, in Chapter 2, we

consider a finite and measurable partition P = (R1, ..., Rk) of the grand

coalition, with k large enough. Starting from this partition we define

a new cooperative concept, which is more general.

In Chapter 3, we shall limit consideration to continuum atomless

economy in which it is possible to distinguish only finitely many differ-

ent traders’ types [47]. Precisely, we will assume that the set T can be

partitioned into a finite number of coalitions, S1, ..., Sm, such that

◦ e(t, ω) = ei(ω),∀ω ∈ Ω and t ∈ Si;

◦ ut(ω, x) = ui(ω, x),∀t ∈ Si, x ∈ IB+ and ω ∈ Ω;

7



◦ Ft = Fi, ∀t ∈ Si.

Moreover, we will use different information sharing rules which inflects

consequences over equilibria measurability.

It is very clear, that the partition considered in Chapter 2 is more

general, and it includes the partition considered in Chapter 3.
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Chapter 2

The Restricted Mechanism
of Coalition Formation

The restriction of coalition formation is inflated by incomplete infor-

mation. In an economy with N people, a person will only know the

preferences and endowments of a subset K ⊆ N of people and can

decide only to form coalitions with people from this group. There is

an upper maximum to the size of possible coalitions in the economy.

Moreover, another interpretation can be the presence of transaction

costs to coalition formation.

We want investigate how people can aggregate and form a coali-

tion. It becomes more real to think on a limit of the size of a coalition.

In other word, we take in account of some difficulties to join a coali-

tion. We consider an ε-core concept. We think about an economy with

uncertainty and differential information.

There are some consequences of placing an upper limit on the size

of possible coalitions. Intuitively the core will be larger. We call a core

with an upper maximum a restricted core.

The first study on this direction were made by Schmeidler [45], Vind

[49] and Grodal [27].

Schmeidler’s theorem [45] says that if we have a coalition S which

blocks an allocation x(t, ω) with an allocation y(t, ω), then we can

find an arbitrarily small sub-coalition E that can also blocks allocation

x with y. Thus, in an atomless economy, C(E) = Cε(E) for any ε.
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Schmeidler’s theorem is surprising for it says, in a continuum economy,

that the work that is done by huge coalitions can be also done by very

small coalitions.

Schmeidler’s original results were strengthened by Vind [49], he

demonstrated that if there is a coalition S which can block allocation

x with the allocation y, then not only there is a smaller coalition which

blocks that allocation, but we can find a smaller coalition of any size

to block it, i.e. for any δ where δ ≤ µ(S), we can find a coalition T of

size µ(T ) = δ that can block allocation x with allocation y.

Brigit Grodal [27] imposing a different type of restriction: she not

only restricted the size but also the composition of the coalition. She

restricted coalitions to a radius of neighboring agents, i.e. people with

similar preferences and endowments. She showed that we obtain the

same result for a continuum economy: any allocation x that can be

blocked by a coalition S can be blocked by a smaller coalition of less

diverse people.

Mas Colell [38] has attempted to give some economic interpretation

of this results. Specifically, he argued that we need not tether (link)

ourselves to credulity-stretching informational requirements of the ide-

alized notion of free Edgeworthian recontract. If whatever can be done

by a coalition, can be done by any arbitrarily small coalition, then one

only needs a few well informed people to take us to Walrasian equi-

librium. He also suggests that we think of these few as arbitrageurs.

With the rest of people in the economy remaining passive, it is enough

for this small, profit seeking group to do their duty and take us to

equilibrium.

In this section, we formulate and extend results of Okuda and Shi-

tovitz [39] in a differential information framework. Then, we can clas-

sifying core allocations with respect to the family of all coalitions that

include one of the members of partition.
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2.1 Restricted Process

We have remarked that the formation of a coalition may imply some

theoretical difficulties. It is not suffice to say that a coalition can be

formed by several agents. We must take into account all limits imposed

by society to the aggregation in coalition. It is very simple to thing that

agents are not free to form any coalition, especially in our framework.

In fact, it is usually argued that the costs, which arise from forming a

coalition, are not all negligible. Moreover, traders will form a coalition

only if they know each other. Incompatibilities among different agents

may arise and a big amount of information an communication might be

needed to form a coalition. Thus, it will be not enough to say merely

that several agents form a coalition.

We define a set of all possible coalition as the set of those coalition

that can be formed and joint by any agent. There exists, in this way,

a rule imposed over coalition formation. We assume that only a subset

S of Σ are allowed to be formed. In such way, we fix over the set of

agents a rule of aggregation for which the coalitions can be formed only

if belonging to this subset. We have restricted the set of coalitions that

can be joined by traders.

A coalition S is a measurable subset of T , such that µ(S) > 0 which

represents the size of coalition S. In the case of atomless economy, the

size of a coalition S can be interpreted, following [45], as the amount of

information and communication, or costs, needed in order to form the

coalition S. Then, may be meaningfully to consider those coalitions

whose size converges to zero or, symmetrically, to one; that is, the

coalitions that do not involve high costs can be formed.

The difficulty to argue that coalition formation is costless leads to

consider a restricted mechanism. That is, we restrict the set of coali-

tions considering a subset S ∈ Σ of all admissible coalitions. Following

[10], we introduce a new concept of core solution in a private framework

that we call S-private core.

Definition 2.1.1 Let S ∈ Σ be the subset of all admissible coalitions,

11



with µ(S) > 0 for every S ∈ S. A feasible allocation x(t, ω) belongs

to the S-private core of E if it is not privately blocked by any coalition

S ∈ S.

We denote this core as S-Cp(E). This core concept is a generaliza-

tion of the core defined in definition 3.4.1. In particular, if S = Σ then

two concepts coincide.

In each coalition S belonging to the subset S agents do not share

their information, accordingly with definition of private allocation.

Traders joint a coalition which belongs to S, and they choose a pri-

vate allocation over S which improves upon the allocation x.

From the definition of S-core given S1, S2 ⊆ Σ we can easily infer

the following properties:

i) if S1 ⊆ S2 then S2-Cp(E)⊆S1-Cp(E);

ii) S1-Cp(E)∩S2-Cp(E) = (S1 ∪ S2)-Cp(E)

From the property i) it is deduced that if the private core is non-empty,

then so is the S-private core. The property ii) implies that if Σ =
⋃

i Si,

then
⋂

i(Si−Cp(E)) = Cp(E). That is, for any partition P of the whole

coalition set Σ the allocations belonging to the private core are those

allocations that belong to every S-private core, with S ∈ P , and the

intersection of the S-private cores of a partition P does not depend on

P .

In this framework, we can replace results of Schmeidler, Vind and

Grodal [1972]. The restricted mechanism we have defined above, in

fact, allows to formalize Schmeidler [45] result in terms of S-private

core. Vind’s result can also be formulated in terms of S- private core.

Precisely, if for almost all t ∈ T the preference relation ºt is continuous,

monotone and measurable, then Sε-Cp(E) = C(E).

12



2.2 Some new definitions

Given a fixed coalition R ∈ Σ, let

QR = {S ∈ Σ : R ⊆ S}

be the set of all coalitions which contain R. This structure define the

only coalitions that can be formed as those containing R.

Define with T\QR={S ∈ Σ : R ∩ S = φ}.

If P is any partition of the whole set Σ, then the allocation belonging

to the core are those that belong to every C(S) with S ⊆ P .

Now we define the appropriate core concept for these information

structure:

Definition 2.2.1 Let R be a fixed coalition. An allocation x(t, ω) is

said to belong to the R-inclusive private core if it cannot be privately

improved upon by any coalition S ∈ QR; i.e. if there is no coalition

S and an assignment y, F t-measurable, y : S × Ω → IB+ such that

R ⊆ S, µ(S) > 0,
∫

S
y(t, .)dµ ≤

∫

S
e(t, .)dµ and ht(y(t, .)) > ht(x(t, .))

for almost every t in S.

Definition 2.2.2 A feasible allocation x(t, ω) is individually rational

if ht(x) ≥ ht(e) for almost every t in T .

Definition 2.2.3 A non-zero vector p : Ω→ IB
′

+ is an efficient price

vector for the allocation x(t, ω) if µ a.e. in T , x(t, ω) is the

maximal element of ht over the efficiency set

B∗
t (p) =

{

z ∈Mt |
∑

ω∈Ω

p(ω) · z(ω) ≤
∑

ω∈Ω

p(ω) · x(t, ω)

}

.

We denote the cone of all efficiency price vectors for an allocation

x(t, ω) by

P (x,Ât ) =

{

p ∈ IB
′

+ : x Ât y ⇒
∑

ω∈Ω

p(ω) · x(t, ω) ≥
∑

ω∈Ω

p(ω) · y(t, ω)

}

and its linear dimension by r = dimP 1.
1As shown in Grodal [27], it is always true that the linear dimension of the cone P of

the efficiency price vectors r ≤ l, where l is the number of commodities in the market,
and that under classical assumption of differentiability and interiority r = 1

13



We consider a finite and measurable partition P = (R1, ..., Rk) of

the grand coalition, with k large enough2. We have defined in the

previous section, the concept of R-inclusive core, or S-inclusive core.

We prove that an optimal allocation x belongs to the core if and only

if it cannot be improved upon by any coalition of the subset S that

includes at least one of the Ri.

Lemma 2.2.4 Let x(t, ω) be a strictly positive allocation for almost all

t ∈ T and for all ω ∈ Ω and let p be a non negative price, p ∈ IB
′

+.

Then (p, x) is an efficient equilibrium if and only if p · G∗(t) ≥ 0 for

almost all traders t.

proof: The first implication is trivial: if (p, x) is an efficient equilib-

rium, necessarily p ·G∗(t) ≥ 0.

Conversely, suppose that there exists a supporting price for the set

G∗(t). We want to show that x(t, ω) is the maximal element of the

efficiency budget set B∗
t (p): i.e, all z(t, ω) such that ht(z) > ht(x) for

almost all t ∈ T does not belong to the efficiency budget set B∗
t (p).

Suppose that z ∈ B∗
t (p), then

∑

ω∈Ω

p(ω) ·z(ω) ≤
∑

ω∈Ω

p(ω) ·x(t, ω). By

continuity, there exists α < 1 such that ht(αz) > ht(x) for almost all

t ∈ T , therefore,
∑

ω∈Ω

p(ω) ·αz(ω) >
∑

ω∈Ω

p(ω) ·x(t, ω) ≥
∑

ω∈Ω

p(ω) ·z(ω) ≥
∑

ω∈Ω

p(ω) · αz(ω). Since α > 1,
∑

ω∈Ω

p(ω) · z(ω) =
∑

ω∈Ω

p(ω) · x(t, ω) = 0.

But x(t, ω) À 0 for almost all t ∈ T , then p = 0 for almost all t ∈ T ,

which is a contradiction. Then, x is the maximal element of the efficient

budget set. ¤

Lemma 2.2.5 For a given allocation x(t, ω), let F be a set-valued

function such that G∗(t) ⊆ F (t) for almost all traders t. If p is a

non negative price such that p ·
∫

F ≥ 0, then

i) (p, x) is an efficiency equilibrium,

ii) p · f(t) ≥ 0 for all integrable selection f and almost all t ∈ T .

2We refer to Okuda and Shitovitz [39]
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proof: For each z(t, ω) ∈ ..., let G∗−1(z) = {t : z ∈ G∗(t)} be the

set of all agents t for which the allocation z belongs to the preferred

set. Define with G∗−1(x) = {t : ht(z + x) > ht(x)}, this set is measur-

able for each x. Let N be the set of all rational points r ∈ <l for

which G∗−1(r) is null. Obviously, N is denumerable. Define with S =
⋃

r∈<l

G∗−1(r). Then S is a null coalition. Suppose that for some t /∈ S,

there is a bundle z(t, ω) ∈ G∗(t) with
∑

ω∈Ω

p(ω) · [z(t, ω)− x(t, ω)] < 0.

By continuity, we may find a rational point r ∈ G∗(t) sufficiently close

to z,so that we still have
∑

ω∈Ω

p(ω) · r < 0. Defined with A = G∗−1(r)

then µ(A) > 0. By desirability, for each ε > 0, we have an integrable

selection f = rχA + εeχT\A from G∗(t). Hence, f ∈ F (t). Therefore

0 ≤
∑

ω∈Ω

p(ω)·

∫

f =
∑

ω∈Ω

p(ω)·rµ(A)+ε
∑

ω∈Ω

p(ω)·e(t, ω)µ(T\A) −→ε→0

∑

ω∈Ω

p(ω)·rµ(A) < 0

a contradiction. Therefore,
∑

ω∈Ω

p(ω) · G∗(t) ≥ 0 for almost all traders

t, and by Lemma 2.2.4, (p, x) is an efficiency equilibrium.

Let f be an integrable selection from F (t). Define with A =
{

t :
∑

ω∈Ω

p(ω) · f(t, ω) > 0

}

, then, for each ε > 0, the integrable func-

tion f = rχA+ εeχT\A belongs to F (t). Therefore 0 ≤
∑

ω∈Ω

p(ω) ·
∫

f =
∑

ω∈Ω

p(ω) ·
∫

A
f + ε

∑

ω∈Ω

p(ω) · e(t, ω)µ(T\A) −→ε→0

∑

ω∈Ω

p(ω) ·
∫

A
f .

Therefore,
∑

ω∈Ω

p(ω) ·
∫

A
f ≥ 0, which implies by the definition of A that

µ(A) > 0. This completes the proof of the Lemma.

¤
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2.3 The equivalence Cp(E) = S − Cp(E)

Proposition 2.3.1 Let x(t, ω) be an individually rational allocation.

Then x is supported by a price p (p 6= 0) if and only if x is a Pareto

optimal allocation.

proof: By contrary, suppose that x is not a Pareto optimal allocation.

Then there exists an allocation y : T × Ω → IB+, with y(t, ω) ∈ Mt

such that
∫

T
y(t, .) ≤

∫

T
e(t, .) and ht(y) > ht(x) for almost all t ∈ T .

For assumption, there exists a supporting price p : Ω→ IB
′

+ such that
∑

ω∈Ω

p(ω) · y(t, ω) >
∑

ω∈Ω

p(ω) · x(t, ω). By integrability,
∫

T
p(.) · y(t, .) >

∫

T
p(.) · x(t, .) and y is feasible. The contradiction follows.

For the converse, we define a correspondence G from T in IB+ by

setting for all t ∈ Ri, G(t) = {z ∈Mt : ht(z(·)) > ht(x(t, ·))} and we de-

note by G∗(t) the correspondence defined by G∗(t) = G(t)−x(t, ·) ∀t ∈

Ri. Under classical assumption these sets are convex. We can define

the integral
∫

T
G∗(t) which is convex, and by Pareto optimal assump-

tion, we know that 0 /∈
∫

T
G∗(t). Therefore, by Separation hyperplane

Theorem, there exists a price p 6= 0 such that p ·
∫

T
G∗ ≥ 0, i.e. (p, x)

is an efficient equilibrium. ¤

Theorem 2.3.2 Let x(t, ω) be an individual rational allocation with

r = dimP and let P= (R1, ..., Rk) be a measurable partition of T . If

k ≥ r + 1, then x belongs to the core if and only if x belongs to each

Ri-inclusive core for all i, i = 1, ..., k.

The proof of our results needs the following result:

Theorem 2.3.3 Let x(t, ω) be an individual rational allocation and

let R be a fixed coalition whose complement T\R is atomless. Then x

belongs to the R-inclusive core if and only if there exists an efficiency

price vector p(ω) such that
∑

ω∈Ω

p(ω) · x(t, ω) ≤
∑

ω∈Ω

p(ω) · e(t, ω) for

almost each t in T\R.
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proof: For the proposition 2.3.1 x is a Pareto optimal allocation, than

x is in the R-inclusive core. Let us looking at the “only if” part. For the

proposition 2.3.1 and for hypothesis x is a Pareto optimal allocation

and there exists a price p such that (p, x) is an efficient equilibrium on

T .

Define with F (t) the correspondence:

F (t) =

{

G(t) for t ∈ R
G(t) ∪ [e(t, ω)− x(t, ω)] otherwise

where G∗(t) = {z(ω)− x(t, ω)|z(ω) ∈Mt and ht(z(ω)) > ht(x(t, ω))},

∀ t ∈ T . By Pareto optimality 0 /∈
∫

F (t).

From supporting Theorem there exists a price p : Ω → IB
′

+ such that
∑

ω∈Ω

p(ω) ·
∫

F (t) ≥ 0 and (p, x) is an efficient equilibrium. By mono-

tonicity , there exist a measurable and integrable selection f(t, .) =

(e(t, .) − x(t, .))χT\R
+ z(.)χR

, with f(t, .) ∈ F (t) for almost all t ∈ T .

Therefore, by lemma 2.2.5 0 ≤ p ·f(t, .) = p ·e(t, .)−p ·x(t, .) for almost

all t ∈ T\R ¤

Let us try to give an interpretation. If we consider a partition of T into

two sets, namely R and its complement, non atomic, we will say that

an individually rational allocation, and in particular a core allocation,

belongs to the R-inclusive core if and only if it can be possible for

individuals belonging to T\R to chose the efficiency price vector p(ω),

in each state of nature, so that the value of their bundle is less than or

equal to the value of initial bundle. So that, despite of the measure of

the fixed coalition R, agents in R are not willing to leave this coalition

to join its complement and to gain.

Now we can show the demonstration of the main theorem:

proof: (Theorem 2.3.2)

Suppose that x belongs to each Ri-inclusive core. By theorem 2.3.3

there are efficient price vectors pi ≥ 0 for x, one for each Ri such that:
∑

ω∈Ω

pi(ω) · x(t, ω) ≤
∑

ω∈Ω

pi(ω) · e(t, ω)

∀ i = 1, ...k and for almost all t ∈ T\Ri. Such pi(ω) are linearly de-

pendent for all ω ∈ Ω, i.e., there exist α1(ω), ...αk(ω) not all vanishing,
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with
k
∑

i=1

αi(ω)pi(ω) = 0 for all ω ∈ Ω. Let I+ = {j : αj(ω) > 0} and

I− = {j : αj(ω) < 0}. Since pi ≥ 0 for all i = 1, ..., k, I+ and I−are

both nonempty. Let us define P by

P (.) =
∑

i∈I+
αi(.)pi(.) =

∑

i∈I−
(−αi)(.)pi(.)

P is the competitive price vector for x. Indeed,

i) P is an efficient price vector for x since by definition P is a convex

cone.

ii)
∑

ω∈Ω

P (ω)·x(t, ω) ≤
∑

ω∈Ω

P (ω)·e(t, ω) for almost each t ∈ T . In fact,

let t be in T . Since (R1, ..., Rk) is a partition of T , there exists i0

such that t ∈ Ri0 . Assume, w.l.o.g., that i0 /∈ I+. Therefore, for

every j ∈ I+, we have j 6= i0, in particular t /∈ Rj and therefore,

by definition of the pj(.), we have
∑

ω∈Ω

pj(ω) · x(t, ω) ≤
∑

ω∈Ω

pj(ω) ·

e(t, ω). Since αj(ω) > 0 for j ∈ I+, we have
∑

ω∈Ω

αj(ω)pj(ω) ·

x(t, ω) ≤
∑

ω∈Ω

αj(ω)pj(ω) · e(t, ω). Summing over I+, we obtain

the inequality

∑

ω∈Ω

P (ω) · x(t, ω) =
∑

ω∈Ω

∑

j∈I+
αj(ω)pj(ω) · x(t, ω) ≤

∑

ω∈Ω

∑

j∈I+
αj(ω)pj(ω) · e(t, ω) =

∑

ω∈Ω

P (ω) · e(t, ω).

for almost each t ∈ T .

Now, by Theorem 2.3.3, x is a core allocation. ¤
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Chapter 3

The Measure of the Set of
Blocking Private Coalition

It is well known that in the case of finite economies that are “large

enough” or in the case of atomless exchange economies, the set of al-

locations for which blocking coalitions do not exist (core allocations)

coincides with the set of Walras (or competitive) allocations. As a

natural consequence, many authors have investigated the interesting

problem of valuating the number or the “proportion” of coalitions po-

tentially blocking a non competitive allocation. Mas-Colell in his paper

[37] showed that any Pareto optimal allocation which is “bounded away

from being competitive” in a differentiable pure exchange economy can

be blocked by a number of coalitions which is arbitrarily closed to one

half of the total number of coalitions. Related results in large finite

economies have been proved in Greenber and Weber [25] and Graziano

[23]. In the case of atomless economies, the problem of the measure of

blocking coalitions is investigated in Shitovitz [47] and Grodal [28].

Private core equivalence results proved in Einy et al. [17], Hervés-

Beloso et al. [31] and [32], Graziano and Meo [24], show that in

economies with differential information the set of Radner equilibrium

allocations is equivalent to some private core notion. Consequently,

for any allocation that is not a Radner equilibrium, there exists a pri-

vately blocking coalition. Going further, we investigate the problem of

the measure of coalitions that privately block a non-competitive allo-
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cation. Related results in the case of economies with complete infor-

mation are covered by papers of [47], [25], [28], [23]. They all originate

from the question first raised in Mas-Colell [37], in which the author

asked for the number of coalition that blocks a certain given Pareto op-

timal allocation which is “bounded away from being competitive”. The

starting point there is the equivalence for finite economies between the

core and the set of competitive equilibria when the number of agents

is large enough.

The blocking mechanism we consider in our results depends on the

measure space of agents. We start, Section 3.1, considering continuum

atomless economies in which only a finite number of characteristics can

be observed. For such economies, the set of traders is partitioned into a

finite number of coalitions such that individuals belonging to the same

coalition have identical densities of initial bundles and final bundles,

the same random utilities, the same private information and priors.

We define the profile of a coalition as the finite dimensional vector that

valuates the weight of each type in the coalition. Then, starting from

the private blocking mechanism, we define the set of all blocking profile

for a fixed Pareto optimal allocation that is not a Radner equilibrium.

We show that for every profile π in which the proportion of different

types in the same as in the whole society, almost half of the profiles

around π are privately blocking. In particular, we extend to economies

with asymmetries results proved in Shitovitz [47].

In the case of finite differential information economies, Section 3.3,

the cooperative characterization of Radner equilibria via private core

notions is possible enlarging the coalition formation mechanism. The

notion of generalized (or fuzzy) coalition introduced by [7] allows to

show private core equivalence theorems even in finite and atomic case

(see [24], [31]). In this framework, we show that for a Pareto optimal

allocation of a finite differential information economy that is not a Rad-

ner equilibrium, to any symmetric fuzzy coalition there corresponds a

ball centered in the coalition such that “almost half” of the coalitions it

contains are privately blocking. Mainly the result follows from a suit-
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able correspondence between blocking coalitions of the finite economy

and blocking profiles of a continuum associated economy.

Finally, Section 3.4, we underly the rule played by information shar-

ing inside a blocking coalition. An appropriate notion of the core must

take account of whether the coalition decision stage is ex-ante, i.e., be-

fore the agents learn their types, interim, i.e., when every agent only

knows his own type, or ex-post, i.e., when all types are revealed publicly.
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3.1 The setting

The equivalence theorems for the set of Radner equilibrium allocations

and the private or the Aubin private core are the starting point of this

section. Given a Pareto optimal allocation that is not a Radner equi-

librium allocation, equivalence theorems ensure that there exists for

this allocation a privately blocking coalition (or a generalized coalition

in the case of finite economy). Our aim is to evaluate the measure of

the set of coalitions privately blocking the given allocation.

As we have defined in previous sections, we shall limit consideration

to continuum atomless economies in which it is possible to distinguish

only finitely many different traders’ types. For this purpose, we need

the following

Assumption 3.1.1 A private allocation x : T ×Ω→ IB+ satisfies the

finiteness assumption, if there exist the measurable functions xi ∈ Mi,

i = 1 . . .m, such that x(t, ω) = xi(ω) for each t ∈ Si and ω ∈ Ω.

The profile of a coalition S ⊆ T is defined as the vector

π (S) ≡ (πi(S))
m

i=1 = (µ(S ∩ Si))
m

i=1

that evaluates the weights of the different types in the coalition S.

Let us denote by f = (f1., ..., fm), with fi = µ(Si) > 0, the profile of

the full coalition T . Due to the non-atomicity of the Lebesgue measure

µ, the set of all the profiles of coalitions in T is the closed interval

Π ≡ [0, f ] ⊆ IRm
+ . We say that a coalition S is symmetric if there exists

α ∈ (0, 1), such that π(S) = αf . Finally, we call the support of a

profile π ∈ Π the set supp π = {i ∈ {1, . . . ,m} : πi > 0}.

For a given profile π ∈ Π, let S be any coalition with π (S) = π.

Given a feasible private allocation x with the finiteness assumption, we

denote by E and X the functions defined on Π×Ω with values in IB+

defined by:

E(π, ω) ≡
m
∑

i=1

πi · ei(ω) =
m
∑

i=1

πi(S) · ei(ω) =

∫

S

e(t, ω) dµ,
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X(π, ω) ≡
m
∑

i=1

πi · xi(ω) =
m
∑

i=1

πi(S) · xi(ω) =

∫

S

x(t, ω) dµ.

We define a correspondence G from T in IBΩ
+ by setting for all t ∈ Si,

G(t) = {z ∈Mi : hi(z(·)) > hi(xi(·))}

and denote by G∗(t) the correspondence defined by

G∗(t) = G(t)− xi(·) ∀t ∈ Si.

Note that G(t), G∗(t) e G∗(t)+IBΩ
+ are all convex sets. Denote by G(S)

and G∗(S) the Aumann integrals of the correspondences G and G∗ over

the coalition S (see [14]). For any profile π ≡ (π1, ..., πm), denote by

G(π) the convex set

G(π) =
m
∑

i=1

πi · {z ∈Mi : hi(z(·)) > hi(xi(·))} .
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3.1.1 Some preliminary “technical” results

Before establishing the main Theorems of the Chapter 3, we need some

preliminary results.

Lemma 3.1.2 Let S ⊆ Si be a coalition with µ(S) > 0, h : S × Ω →

IB+ be a function such that hi (h(t, ·)) > hi (xi(·)) for every t ∈ S.

Then the function

h̄(·) =
1

µ(S)

∫

S

h(t, ·) dµ

satisfies hi
(

h̄(·)
)

> hi (xi(·)).

proof: The statement follows from [31, Lemma 3.1]. Note that this

Lemma is stated for IB finite dimensional but its proof is valid for the

general commodity space considered here. ¤

We list in the following Lemma some properties of the correspon-

dence G(π).

Lemma 3.1.3 The correspondence G : [0, f ]→ IBΩ
+ satisfies the prop-

erties:

i) G(π) = G(S), for any coalition S such that π(S) = π;

ii) G(απ) = αG(π), for any π ∈ [0, f ] and α ∈ (0, 1);

iii) G(π1) +G(π2) = G(π1 + π2), for any π1 and π2 ∈ [0, f ] such that

π1 + π2 ∈ [0, f ].

proof: It is clear that G(π) ⊆ G(S). To show i), consider an inte-

grable selection h of the correspondence G over the coalition S. Then

h(t, ·) ∈ Mt for µ-almost all t ∈ S and hi (h(t, ·)) > hi (xi(·)), for µ-

almost all t ∈ S ∩ Si, i = 1, . . . ,m. Denote by A the support of π.

Then
∫

S

h(t, ·) dµ =
∑

i∈A

∫

S∩Si

h(t, ·) dµ =
∑

i∈A

πi·

(

1

π

∫

S∩Si

h(t, ·) dµ

)

∈ G(π),

where the last inclusion follows from Lemma 3.1.2.
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The property ii) is obvious. Property iii) immediately follows from

the linearity of the sum, the concavity of the expected values and the

convexity of set Mi. ¤

Lemma 3.1.4 Let S ⊆ R be coalitions such that supp π(S) = supp π(R\

S). Then G∗(S) ⊆ G∗(R).

proof: Clearly the claim is proved if the support of S is empty. As-

sume that µ(S) > 0. Let a be an element of G∗(S) and denote by A

the set supp π(S) = supp π(R \ S). Lemma 3.1.3 allows us to write

a(·) =
∑

i∈A

π · hi(·)−
∑

i∈A

π · xi(·)

where hi(·) ∈Mi and Vi (hi(·)) > Vi (xi(·)), for all i ∈ A. By continuity

assumption, there exists ε ∈ (0, 1) such that Vi (ε · hi(·)) > Vi (xi(·)),

for all i ∈ A. Define an assignment k : R× Ω→ IB+ by means of

k(t, ·) =







ε · hi(·) t ∈ S ∩ Si, i ∈ A

xi(·) + wi t ∈ (R \ S) ∩ Si, i ∈ A

where

wi =
(1− ε) · µ(S ∩ Si)

µ ((R \ S) ∩ Si)
hi(·).

Then k is a private allocation over R and, by monotonicity, Vi(k(t, ·)) >

Vi(xi(·)) for µ-almost all t ∈ R ∩ Si, i ∈ A. Moreover,
∫

R

k(t, ·) dµ−

∫

R

x(t, ·) dµ =

∫

R\S

k(t, ·) dµ+

∫

S

k(t, ·) dµ−

∫

R\S

x(t, ·) dµ−

∫

S

x(t, ·) dµ =

=
∑

i∈A

∫

(R\S)∩Si

k(t, ·) dµ+
∑

i∈A

∫

S∩Si

ε·hi(·) dµ−
∑

i∈A

∫

(R\S)∩Si

xi(·) dµ−
∑

i∈A

∫

S∩Si

xi(·) dµ =

=
∑

i∈A

∫

S∩Si

hi(t, ·) dµ−
∑

i∈A

∫

S∩Si

xi(·) dµ = a

that proves the desired inclusion. ¤

We say that a profile π ∈ Π privately blocks an allocation x, if there

exists a coalition S with the given profile that privately blocks the
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allocation. By Lemma 3.1.3, a profile π privately blocks an allocation

x if and only if the function E(π, ·) : Ω → IB+ belongs to G(π) + BΩ
+.

This inclusion depends only on the profile π. Therefore, the notion of

blocking profile is well posed since two coalitions with the same weights

in the different types behave in the same way.

We denote by K the subset of [0, f ] formed by all blocking profiles

for a given feasible private allocation x.

Proposition 3.1.5 K is a convex subset of [0, f ].

proof: First assume that π ∈ K and α ∈ [0, 1]. Then, by Lemma

3.1.3, ii), E(απ, ·) = αE(π, ·) ∈ αG(π) + IBΩ
+ = G(απ) + IBΩ

+ and

απ ∈ K. Again Lemma 3.1.3, iii) ensures that if π1 and π2 are blocking

profiles and π1+π2 ∈ [0, f ], then E(π1, ·)+E(π2, ·) ∈ G(π1)+G(π2)+

IBΩ
+ = G(π1 + π2) + IBΩ

+. Then π1 + π2 is a blocking profile and the

claim is proved. ¤

We say that the feasible private allocation x with the finiteness

assumption is strictly positive, or x À 0, if xi(ω) À 0 for each i =

1, . . . ,m and for each ω ∈ Ω. The next result furnishes a direct proof

of the Second Welfare Theorem for a Pareto optimal allocation in our

differential information economy with a finite number of types. Note

that an indirect proof would follow from [24, Theorem 5.2]. As usual,

the strict positivity assumption on the allocation x could be replaced

by irreducibility assumptions like those formulated in Einy et al. [17].

Proposition 3.1.6 Let x be a strictly positive Pareto optimal alloca-

tion with the finiteness assumption. Then there exists an efficient price

vector for the allocation x satisfying the additional condition

(?)
∑

ω∈Ω

p(ω) ·
m
∑

i=1

fixi(ω) =
∑

ω∈Ω

p(ω) ·
m
∑

i=1

fiei(ω).

proof: Define the convex set F ⊆ IBΩ by

F = G(f)− E(f, ·).
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By Pareto optimality of allocation x, the intersection F ∩IBΩ
− is empty.

Applying one of the infinite dimensional versions of the separation the-

orem (note that both sets are convex and IBΩ
− has non-empty norm in-

terior), we find a non-zero function p : Ω→ IB
′
such that p ·F ≥ p ·IBΩ

−.

Since IBΩ
− is a cone, p is non negative. Moreover, p · F ≥ 0. By conti-

nuity assumption,

p ·
m
∑

i=1

fi · xi(·) ≥ p ·
m
∑

i=1

fi · ei(·).

Then feasibility of allocation x ensures that condition (?) is satisfied.

Consider now a function z ∈ Mk such that hk (z(·)) > hk (xk(·)).

By monotonicity, for any i 6= k we find a function zi ∈ Mi such that

hi (zi(·)) > hi (xi(·)).

By concavity, for any α ∈ (0, 1), the function of Mk defined by

zk(·) = αzk(·)+(1−α)z(·) satisfies the inequality hk(zk(·)) > hk(xk(·)).

Concavity and monotonicity assumptions ensure that the functions

zi(·) = αzi(·)+(1−α)xi(·)+αei(·), for i 6= k, satisfy hi(zi(·)) > hi(xi(·).

Then,

p ·

(

m
∑

i=1

fi · zi(·)−
m
∑

i=1

fi · xi(·)

)

≥ 0.

The last inequality implies that for any α ∈ (0, 1)

α·
∑

i6=k

fi·p·(zi(·))+(1−α)·
∑

i6=k

fi·p·xi(·)+α·
∑

i6=k

fi·p·ei(·)+α·fk·p·zk+(1−α)fk·p·z ≥

∑

i6=k

fi · p · xi(·) + fk · p · xk.

Letting α goes to zero, we find that p · z ≥ p · xk. Assume now that

p · z = p · xk. Choose α ∈ (0, 1) such that hk (αz(·) + (1− α)xk(·)) >

hk (xk(·)). By strict positivity of allocation x, we get

p · (αz(·) + (1− α)xk(·)) < p · (αx(·)) + p · ((1− α)xk(·)) = p · xk(·)

and a contradiction. ¤

In a similar manner we can prove the next Proposition.
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Proposition 3.1.7 Let x be a strictly positive Pareto optimal alloca-

tion satisfying the finiteness assumptions. Then a non-zero function

p : Ω→ IBΩ is an efficient price vector for the allocation x if and only

if p ·
(

G∗(I) + IBΩ
+

)

≥ 0.

proof: One implication is clear. Conversely, consider a non-zero func-

tion p : Ω → IB
′
such that p ·

(

G∗(I) + IBΩ
+

)

≥ 0. Since IBΩ
+ is a cone,

p is non-negative and p · (G∗(I)) ≥ 0. Now, with the same arguments

of Proposition 3.1.6, one shows that p is an efficient system of prices

for the allocation x. ¤
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3.2 Private core: the measure of the set K

In this section we state the main results concerning the measure of

blocking coalitions in a continuum economy with finitely many types.

Denote by B(a, ε) the ball of IRm with a as its center and radius ε.

By λ the Lebesgue measure on IRm.

Theorem 3.2.1 Let x : T × Ω → IB+ be a strictly positive Pareto

optimal allocation that is not a Radner equilibrium allocation. Assume

that x satisfies the finiteness and the smoothness assumptions. Then

for any symmetric profile αof ∈ [0, f ]

lim
ε→0

λ (K ∩ B(α0f, ε))

λ (B(α0f, ε))
=

1

2
.

We show Theorem 3.2.1 via a series of Lemmas.

Lemma 3.2.2 Let π be a profile such that
∑

ω∈Ω

p(ω)·X(π, ω) >
∑

ω∈Ω

p(ω)·

E(π, ω), where p is the unique normalized efficiency price vector for the

allocation x. Then there exists ε0 ∈ (0, 1) such that for any ε ∈ (0, εo]

ε (X(π, ·)− E(π, ·)) ∈ G∗(I) + IBΩ
+.

proof: Define the convex set B = {ε (X(π, ·)− E(π, ·)) : ε ∈ (0, 1)}.

We claim that B has a non-empty intersection with the convex set

G∗(I) + IBΩ
+. Assume on the contrary that B ∩

(

G∗(I) + IBΩ
+

)

= ∅.

By separation theorem, there exists a q : Ω → IB
′
, ‖q‖ = 1, such that

q ·B ≤ q ·
(

G∗(I) + IBΩ
+

)

.

Since 0 belongs to the closure of B, then q ·
(

G∗(I) + IBΩ
+

)

≥ 0,

i.e., by Proposition 3.1.6, q is a normalized efficiency price vector

for x. Consequently, by smoothness assumption, q = p. Since 0

belongs to the closure of G∗(I) + IBΩ
+, it is true that p · B ≤ 0,

that contradicts hypothesis. Then there exists εo ∈ (0, 1) such that

εo (X(π, ·)− E(π, ·)) ∈ G∗(I) + IBΩ
+. Finally, Lemma 3.1.4 ensures

that α
(

G∗(I) + IBΩ
+

)

= G∗(αI) + IBΩ
+ ⊆ G∗(I) + IBΩ

+ and the desired

conclusion. ¤
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Lemma 3.2.3 Let π be a profile such that

ε (X(π, ·)− E(π, ·)) ∈ G∗(I) + IBΩ
+

for ε ∈ (0, εo], where εo ∈ (0, 1). Then f − 1
2
επ ∈ K.

proof: We show the statement for ε = εo.

It follows from

εo (X(π, ·)− E(π, ·)) ∈ G∗(I) + IBΩ
+

and Lemma 3.1.4, that

1

2
εo (X(π, ·)− E(π, ·)) ∈

1

2

(

G∗(f) + IBΩ
+

)

⊆ G∗

(

1

2
f

)

+ IBΩ
+ ⊆

G∗

(

1

2
f +

1

2
f −

1

2
εoπ

)

+ IBΩ
+ = G∗

(

f −
1

2
εoπ

)

+ IBΩ
+.

By feasibility, X(f, ·) ≤ E(f, ·). Hence the inequality

E

(

f −
1

2
εoπ, ·

)

−X

(

f −
1

2
εoπ, ·

)

≥ X

(

1

2
εoπ, ·

)

−E

(

1

2
εoπ, ·

)

∈ G∗

(

f −
1

2
εoπ

)

+IBΩ
+

implies that

E

(

f −
1

2
εoπ, ·

)

−X

(

f −
1

2
εoπ, ·

)

∈ G∗

(

f −
1

2
εoπ

)

+ IBΩ
+

and the conclusion. ¤

Let C be a convex cone in IRm with full dimension and vertex co.

We say that a convex subset K ⊆ C satisfies the contraction property

with respect to C and co, if for any c ∈ C there exists δc > 0 such that

(1− δ)co + δc ∈ K for δ ∈ (0, δc].

Lemma 3.2.4 The set K of blocking profiles satisfies the contraction

property with respect to the symmetric profile αof and the cone C de-

fined by

C =
{

π ∈ IRm
+ : p ·X(π, ·) < p · E(π, ·)

}

,

where p is the unique normalized efficiency price vector for the alloca-

tion x.
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proof: Clearly the convex set K is contained in C. Let π ∈ C be a

profile. By smoothness assumption and Proposition 3.1.6, p ·X(f, ·) =

p · E(f, ·) and hence p ·X(f − π, ·) > p · E(f − π, ·). By Lemma 3.2.2

and Lemma 3.2.3, there exists εo ∈ (0, 1) such that f − 1
2
εf + 1

2
π ∈ K,

for each ε ∈ (0, εo]. Then, by a suitable εo ∈ (0, 1), (1− ε)f + επ ∈ K,

for each ε ∈ (0, εo]. As in [47, Corollary 3] one can use this fact to show

that (1 − δ)αof + δoπ ∈ K for any δ ∈ (0, δo] and then the Lemma is

proved. ¤

proof: (of Theorem 3.2.1) By Lemma 3.2.4 and [47, Lemma page

254], we can write that

lim
ε→0

λ (K ∩ B(α0f, ε))

λ (B(α0f, ε))
= 1.

On the other hand, the set IRm
+ \ C can be written as

IRm
+\C =

{

π ∈ IRm
+ : p ·X(π, ·) = p · E(π, ·)

}

∪
{

π ∈ IRm
+ : p ·X(π, ·) > p · E(π, ·)

}

where the first set is an hyperplane and then has measure zero. By

smoothness and Proposition 3.1.6, p · X(αof, ·) = p · E(αof, ·) and

consequently p ·X(π, ·) < p · E(π, ·) if and only if p ·X(αof − π, ·) >

p ·E(αof−π, ·). Since the Lebesgue measure λ is translation invariant,

we find that

λ
({

π ∈ IRm
+ : p ·X(π, ·) = p · E(π, ·)

})

= λ
({

π ∈ IRm
+ : p ·X(π, ·) > p · E(π, ·)

})

and then

λ (B(αof, ε)) = 2λ (C ∩B(αof, ε))

that gives the desired conclusion. ¤
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3.3 The case of finite economies

The standard relations between core allocations and competitive equi-

libria in the framework of complete information economies, can be gen-

eralized to private core allocations and Radner equilibria of differential

information economies. It is easy to show that every Radner equilib-

rium is in the private core. Actually, it is possible to show that in the

case of continuum atomless economies, the private core coincides with

the set of Radner equilibria (see [17], [31], [24]). When the differen-

tial information economy E has a finite number of traders (or more

generally, when it admits atoms) private core allocations may not be

decentralized by prices. The notion of Aubin private core allows to

restore the equivalence. It is based on the following generalized notion

of coalition.

Definition 3.3.1 Define the set

A = {γ : T → [0, 1] : γ is simple, measurable and µ({t ∈ T : γ(t) > 0}) > 0} .

We call any element γ in the set A a generalized (or fuzzy) coalition

and the set {t ∈ T : γ(t) > 0} the support of γ.

The set A can be interpreted as a generalized coalitions in the sense

that γ(t) represents the share of resources employed by agent t in the

coalition γ. Ordinary coalitions form a subset of A since they can be

identified with their characteristic functions. In the case the set T is

formed by m traders, a generalized coalition is a vector (γ1, . . . , γm))

of [0, 1]m.

Definition 3.3.2 The coalition γ ∈ A of support A privately blocks

an allocation x : T × Ω → IB+, if there exists a private allocation

y : A× Ω→ IB+ over A s.t.

i)

∫

A

γ(t)y(t, ω) dµ ≤

∫

A

γ(t)e(t, ω) dµ, for all ω ∈ Ω;

ii) ht(y(t, ·)) > ht(x(t, ·)), µ-a.e. on A.
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The Aubin private core of the economy E is accordingly defined as

the set of all feasible private allocations which are not privately blocked

by a fuzzy coalition (see [24], [32]). Since the set of coalitions has been

enlarged with respect to the field Σ, the private core contains the Aubin

private core. It is easy to show that Radner equilibrium allocations are

in the Aubin private core. Conversely, [24, Theorem 3.1] ensures the

equivalence between the Aubin private core and Radner equilibria in

the case of the general measure space of traders treated here and hence,

in particular, in the case of finite differential information economies.

The main aim of this section is to extend the result of Mas-Colell on

the measure of blocking coalitions in a large economy with complete in-

formation, to generalized coalitions of finite economies with differential

information.

Let us consider a finite differential information economy E with

m traders as described in Section 1.1. Given a generalized coalition

γ : {1, . . . ,m} → [0, 1] with non-empty support, we say that γ is

symmetric if γ is a constant function, that is all traders employ the same

non-zero share of their initial endowments in the given coalition. We

denote by Kf the subset of [0, 1]m formed by all generalized coalitions

that privately blocks a feasible private allocation x ≡ (x1, . . . , xm).

By a standard procedure, we shall associate to the finite differential

information economy E , a continuum differential information economy

Ec with a finite number of types.

Let us consider the m consecutive disjoint sub-intervals {S1, . . . , Sm}

of the real unit interval [0, 1] of equal length 1
m
, that is:

Ii =

[

i− 1

m
,
i

m

)

, if i 6= m and Im =

[

m− 1

m
, 1

]

.

We consider the continuum economy E c by assuming [0, 1] as the agents

space and:

e(t, ·) = ei, Ft = Fi, ut = ui, qt = qi, ∀ t ∈ Si.

To a feasible private allocation x ≡ (x1, . . . , xm) of E we associate

the feasible private allocation x̂ : T × Ω → IB+ with the finiteness
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assumption defined by

x̂(t, ω) = xi(ω), t ∈ Si.

Denote by K the set of blocking profiles for the allocation x̂.

Lemma 3.3.3 Let the set of blocking coalitionsKf be non-empty. Then

Kf = mK.

proof: Assume that the fuzzy coalition γ : {1, . . . ,m} → [0, 1] pri-

vately blocks the allocation x. Let us denote by A its support. Ac-

cording to Definition 3.3.2, there exist functions zi ∈Mi such that

∑

i∈A

γi · zi(ω) ≤
∑

i∈A

γi · ei(ω), ∀ ω ∈ Ω

and

hi (zi(·)) > hi (xi(·)) , ∀ i ∈ A.

Consider the coalition S of E c defined by S =
⋃

i∈A

[

i

m
−
γ(i)

m
,
i

m

]

. Then

π(S) =
1

m
γ and π(S) ∈ K. Indeed, denoted by ẑ the allocation of E c

with the finiteness assumption corresponding to z, we have that

Ẑ(
1

m
γ, ω) =

∑

i∈A

γi
m
· zi(ω) ≤

∑

i∈A

γi
m
· ei(ω) = E(

1

m
γ, ·), ∀ ω ∈ Ω

and

hi (ẑi(·)) > hi (x̂i(·)) , ∀ i ∈ A.

Conversely, consider a profile π ∈ K, a coalition S with π(S) = π and

a feasible private assignment ẑ over S such that ẑ privately blocks the

allocation x̄. Define a feasible private allocation of the finite economy

E by means of

zi(·) =
1

πi

∫

S∩Si

ẑ(t, ·) dµ, i ∈ supp π.

Then
∑

i∈A

πi · zi(ω) ≤
∑

i∈A

πi · ei(ω), ∀ ω ∈ Ω
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and, by Lemma 3.1.2,

hi (zi(·)) > hi (xi(·)) , ∀ i ∈ supp π.

It follows that π ∈ Kf and then mπ ∈ Kf . ¤

If an allocation x of the finite economy E is not a Radner equilib-

rium, by [24, Theorem 3.1], it is not in the Aubin private core. Then

the set Kf of blocking fuzzy coalitions is non-empty.

Theorem 3.3.4 Let x : {1, . . . ,m} × Ω → IB+ be a strictly positive

Pareto optimal allocation that is not a Radner equilibrium allocation.

Assume that x satisfies the smoothness assumptions. Then for any

symmetric fuzzy coalition γ ∈ [0, 1]m

lim
ε→0

λ (Kf ∩ B(γ, ε))

λ (B(γ, ε))
=

1

2
.

proof: The result follows from Theorem 3.2.1. Indeed, once we have

observed that the allocation x̂ is Pareto optimal and non competitive,

the result follows from Lemma 3.3.3 and the fact that the Lebesgue

measure λ is translation invariant, that is:

lim
ε→0

λ (Kf ∩ B(γ, ε))

λ (B(γ, ε))
= lim

ε→0

λ
(

mK ∩ mB( 1
m
γ, ε

m
)
)

λ
(

mB( 1
m
γ, ε

m
)
) =

= lim
ε→0

λ
(

K ∩ B( 1
m
γ, ε

m
)
)

λ
(

B( 1
m
γ, ε

m
)
) =

1

2
.

¤
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3.4 Fine Core and Ex-post Core

In previous section we have analyzed the case of ex-ante decision rule.

Now, we briefly focus our attention on a new information sharing rule.

An appropriate (interim) notion of the core for an economy with incom-

plete information depends on the amount of information that coalitions

can share. In particular we study a notion of a core that involving an

arbitrary information sharing.

We assume that by pooling their information, agents could discern

the events in the fine field. That is, when different agents in a coalition

have different information their opportunities to take blocking actions

jointly are necessarily contingent upon events which they can all dis-

cern.

The ex-post stage, where decisions are made after the information

state is known, is no different from a model with complete information.

In fact, in Einy et al. [16], the Ex-post Core of an economy E is defined

as all the selections from the core correspondence of the associated

family of complete information economies {E(ω)}ω∈Ω.

Einy, Moreno and Shitovitz [16] provide conditions for the conver-

gence of the ex- post core to the set of fully revealing rational expec-

tations equilibrium allocations. Starting from a theorem of Vind [49]

that establishes that if an allocation is not in the core of an atomless

economies with full information, then it can be blocked by an arbi-

trarily large coalition, they assume that full information corresponds

to joint information of traders in an economy, then a sufficiently large

coalition can discern any state of nature.
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3.4.1 Ex-post blocking mechanism and equilibria

Remind that, as described above, F is a field of subsets of Ω. The

information of trader t ∈ T is described by a measurable partition Πt

of Ω. We denote by Ft the field generated by Πt. Since Ω is finite,

there is a finite subfamily (Fi)
m
i=1 of (Ft)t∈T such that for all t ∈ T

there is i ∈ {1, ...,m} with Ft = Fi.

For all i ∈ {1, ...,m}, we assume that the set

Ti = {t ∈ T |Ft = Fi}

is measurable and µ(Ti) > 0. In such way, the set {T1, ..., Tm} is a

measurable partition of the agents set T . Throughout this section we

will assume that

i) for all ω ∈ Ω,
∫

T
e(t, ω)À 0, which ensures that each commodity is

present;

ii) for all t ∈ T and ω ∈ Ω the function ut(t, ·) is continuous and

strictly increasing on IB+;

iii) F =
∨m

i=1Fi, which ensures that F contains no superfluous events

about which no trader has information and therefore cannot affect

anyone’s consumption decision.

In the rest of this section, E is an economy with asymmetric information

as described above. For any economy E and a state of nature ω ∈ Ω,

we will denote by E(ω) the complete information economy in which the

commodity space is IB+, the space of traders is (T,Σ, µ), and for every

trader t ∈ T , his initial endowment is e(t, ω) and his utility function is

ut(·, ω).

Definition 3.4.1 Let x be an allocation,let S ∈ Σ be a coalition and

let ω0 ∈ Ω. We say that an assignment y is an ex-post improvement of

S upon x at the state ω0 if

i) µ(S) > 0;

ii)
∫

S
y(ω0, t)dµ ≥

∫

S
e(ω0, t)dµ;
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iii) ut(y(ω0, t), ω0) > ut(x(ω0, t), ω0) µ-a.e. in S.

The Ex-post Core of E , denoted by Ex-PC(E), is the set of all feasible

allocation that are not blocked by any coalition in each state of nature

ω ∈ Ω the ex-post allocation of E .

Theorem 3.1 in Einy et al. [16] shows the non-emptiness of the

Ex-post Core under assumption of our model, and moreover that

Ex-PC(E) = {x ∈Mt|x(·, .ω) ∈ C(E(ω))∀ω ∈ Ω}.

If p : Ω→ IB
′

+ is a price system defined in 1.2.4, we denote by σ(p)

the smallest subfield G of F for which p is G-measurable. The atoms of

σ(p) are the elements of the partition of Ω generated by the function

p. The ex-post budget set is defined state by state

Definition 3.4.2 The budget set of a trader t ∈ T at the state ω ∈ Ω

with the price system p is given by

Bt(ω, p) = {z ∈ IB+| p(ω) · z ≤ p(ω) · e(ω, t)}

Note that is the ex-post budget set. We can also introduce the efficient

budget set state by state

Definition 3.4.3 A non-zero price system p is an efficient price vector

for the allocation x : T × Ω→ IB+ at the state ω ∈ Ω if:

i) µ-a.e. in T the function x(t, ·) is the maximal element of ht in the

efficiency set

B∗
t (ω, p) =

{

z : z ∈Mt and
∑

ω∈Ω

p(ω) · z(ω) ≤
∑

ω∈Ω

p(ω) · x(t, ω)

}

.

If G is a subfield of F , f : Ω → IB+ is an F -measurable function,

and t ∈ T , we denote by Et(f |G) the conditional expectation of f with

respect to qt. As stated in Theorem 4.5 by Einy et al. [16], we con-

sider the Rational expectation equilibria as the competitive equilibrium

concept coinciding with the Ex-post Core.

38



Definition 3.4.4 Let p be a non-zero price system and x be a feasible

allocation. The pair (x, p) is said to be a Rational Expectation Equilib-

rium (REE) if

i) for almost every t ∈ T , x(t, ·) is σ(p) ∨ Ft-measurable;

ii) for all ω ∈ Ω and almost all t ∈ T , x(t, ω) ∈ Bt(ω, p);

iii) for almost all t ∈ T , if y : Ω → IB+ is σ(p) ∨ Ft-measurable and

satisfies y(ω) ∈ Bt(ω, p)∀ω ∈ Ω, then

Et (ut(., x(., t))| σ(p) ∨ Ft) (ω) ≥ Et (ut(., x(.))| σ(p) ∨ Ft) (ω),

pointwise on Ω.

A rational expectation equilibrium (p, x) is fully revealing if σ(p) =

F1.

We want to extend the results of Shitovitz [47], as in the previous

section, to our model with this new concept of competitive and co-

operative equilibria. It is very clear that in the definition of blocking

concept, the ex-post one is an extension state by state of the case of

an economy without uncertainty.

We replace the correspondence G as in the previous section by set-

ting for all t ∈ Ti. The properties of the correspondence are the same,

noting that G(t) is defined over the preferences of all agents. Moreover,

we define the profile π for a coalition S in he same way and the sup-

port for such coalition as I(S) = {i ∈ {1, ...,m} |µ(S ∩ Ti) > 0}. We

say that a profile π ∈ Π blocks ex-post an allocation x, if there exists

a coalition S with the profile π that blocks the allocation at the state

ω0 ∈ Ω. In the same way, by Lemma 3.1.3, we will say that a profile π

blocks ex-post an allocation x if and only if the function E(π, ) belongs

to G(π) + IB+

We denote by K(ω0) the subset of [0, f ] formed by all blocking profiles

at the state ω0 ∈ Ω, for a given feasible allocation. It is very easy

1The assumption of fully revealing equilibrium is needed for the equivalence result, [16].
Moreover, it is also required that each trader knows his state-dependent utility function,
i.e. his utility function is measurable with respect to his information field.

39



to recognize in K(ω0) for all ω0 ∈ Ω the set defined in [47], i.e. the

set of all blocking profiles in a complete information economy. In such

way, the results is proved without many difficulties. It will be more

interesting to focus our attention on a new convex set. We consider

the convex hull of all K(·) as C = co

{

⋃

ω∈Ω

K(ω)

}

. This set is convex

and non empty. The propositions 3.1.6, 3.1.7 and lemmas 3.2.2, 3.2.3

hold with the set C.

Note that K(ω0) ⊆ C ⇒ K(ω0) ∩ B(α0f, ε) ⊆ C ∩ B(α0f, ε) and

µ[K(ω0) ∩B(α0f, ε)] ≤ µ[C ∩B(α0f, ε)], then lim
ε→0

µ(C ∩ B(α0f,ε))
µ(B(α0f,ε)

≥ 1
2
.
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3.4.2 Fine blocking mechanism and equilibria

The difficulty that economies with asymmetric information raise stems

from the fact that agents evaluate bundles after they have received their

information and that not all of them have the same information. Wilson

[50] notes that when information is asymmetric it is not enough for each

member of a coalition to know that he prefers one allocation to another

in order for a coalition to improve upon the latter. It must be commonly

known by all members of the coalition that this is so. The requirement

that the improvement be common knowledge is needed because agents

necessarily learn that they are improving upon an allocation when they

are doing so and they must be willing to transact after they have learned

everything they learn.

When opportunities for communication are allowed on the other

hand the relevant information should be the initial information refined

by the information transmission that has taken place. Therefore a

coalition improves upon an allocation when it becomes common knowl-

edge among its members that they can enforce something better after

the permitted communication has taken place. Wilson’s Fine Core

takes this into account and allows for unlimited communication among

agents. As Wilson [50] notes the opportunities for communication may

disrupt arrangements for mutual insurance causing the emptiness of

the Core.

The definition of Fine Core presumes that traders can share their

information. A coalition blocks if it has a feasible allocation that is pre-

ferred by every member of the coalition in an event which the coalition

can jointly discern. In Einy et al. [16] it is established that the Fine

Core is a subset of the Ex-post Core of an economy with differential

information, it can be applied to any economy in which the state can be

identified by pooling the information of agents in some coalition with

an ex post objection. Then, the Fine Core is also related to the core of

a full information economy and to the rational expectation equilibrium.

Einy et al. [16] show that this is generally the case in an atomless econ-

omy with a finite number of states. The proof is based on the argument
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that in an atomless economy, if there is an objection in a certain state,

there exists an objection by an arbitrarily large coalition. With a finite

number of states it is then possible to construct such a coalition in

which the state can be discerned by pooling the private information

in the large coalition. The Fine Core allowing for arbitrary forms of

information pooling. In our framework, there are only finitely many

different information fields, and since we assume that full information

corresponds to joint information of traders in the economy.

For an allocation y to be a fine improvement upon x it should be

possible to redistribute the information initially held by the members

of the coalition in a way that nobody learns more than what can be

learned by pooling all the information nobody forgets what he knows

and that makes it common knowledge that y is strictly preferred to x.

Consider the economy E defined in the previous section. For every

S ∈ Σ let

I(S) = {i ∈ {1, ...,m} |µ(S ∩ Ti) > 0}

be the support of a coalition S, where the set Ti = {t ∈ T |Ft = Fi} is

measurable for all i ∈ {1, ...,m}, and µ(Ti) > 0. Note that,
m
⋃

i=1

Ti = T ,

i.e. (T1, ..., Tm) is a measurable partition of the agents set T .

Definition 3.4.5 An information structure for a coalition S ∈ Σ is a

family (Ht)t∈S of subfield of F such that for every subfield G of F the

set {t ∈ S|Ht = G} is in Σ.

We can define a scheme for sharing information among the members

of a coalition

Definition 3.4.6 A communication system for a coalition S ∈ Σ is

an information structure (Ht)t∈S for S such that, for all t ∈ S, Ft ⊆

Ht ⊆
∨

i∈I(S)

Ft.

In particular we consider a full communication system for a coalition

S, i.e. Ht =
∨

i∈I(S)

Ft.
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Let S be a coalition and let (Ht)t∈S be a communication system

for S. Since Ω is finite, there is a finite subfamily (Hi)
k
i=1 of (Ht)t∈S

such that for every t ∈ S there is 1 ≤ i ≤ k with Ht = Hi and for all

1 ≤ i ≤ k we have µ ({t ∈ S|Ht = Hi}) > 0

Definition 3.4.7 An event A ∈ F is called common knowledge for S

with respect to the communication system (Ht)t∈S if A ∈
k
∧

i=1

(Hi).

In this framework we can give the definition of the cooperative equi-

librium concept.

Definition 3.4.8 An allocation x is a Fine Core allocation for the

economy E if there does not exist a coalition S, µ(S) > 0, an assignment

y : T × Ω → IB+, a communication system (Ht)t∈S for S and a non-

empty event A which is common knowledge for S with respect to the

communication system, such that:

i)
∫

S
y(t, ω)dµ =

∫

S
e(t, ω)dµ for all ω ∈ A;

ii) Et[ut(·, y(t, ·))|Ht] > Et[ut(·, x(t, ·))|Ht], on A for almost all t ∈ S.

We can observe that a coalition S can block an allocation x only in an

event A which is common knowledge for each member with respect to

an admissible communication system.

We say that a profile π ∈ Π blocks an allocation x, if there exists a

coalition S with the given profile that blocks the allocation, with the

communication system(Ht)t∈S in the common knowledge event A.

By lemma 3.1.3, a profile π blocks an allocation x for the event

A ∈
∧

S

Ht if and only if the function E(π, ·) belongs to G(π) + IB+ for

all ω ∈ A. We can note that this results is the same related to the

different framework defined because it depends only on the definition

of profile of a fixed coalition.

Now we can denote with K(A) the set of all blocking profile in the

fine sense with respect an event A ∈
∧

S

Ht, which is a convex set. Now

we can use the definition 1.2.3 for a Pareto optimal allocation, and it
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is very simple to replace the results. Moreover, because the relation

between the Fine ore and the Ex-post Core is known, it is clear that

lim
ε→0

µ(K(A)) ∩ B(α0f, ε))

µ(B(α0f, ε)
≥ lim

ε→0

µ(K(ω0)) ∩ B(α0f, ε))

µ(B(α0f, ε)
=

1

2

for all ω0 ∈ A and A ∈
∧

t∈T

Ht.

Wilson [50] proposed a new definition for a fine efficient allocation,

that is an allocation is fine efficient if and only if in each event of a full

communication system there is no allocation which each agent prefers

given his own information. Fine objections are based on events that

can be discerned by pooling the information of the members of the

coalition. The agents are cooperating on their own in Wilsons theory.

Objections emerge from coalitions. We can give this new

Definition 3.4.9 An allocation x : Ω × R → IB+ is fine efficient if

there does not exist, for each event E ∈
∨

t∈T

Ft, an allocation y such

that

i) Et

(

ut(·, y(·))|
∨

t∈T

Ft

)

> Et

(

ut(·, x(t, ·))|
∨

t∈T

Ft

)

for µ-almost all t ∈ T .

A fine efficient allocation is obtained from
∨

t∈T

Ft-measurable weights,

not all zero on any event, i.e. constant over the whole set of states. We

must define a fine efficient price system in such way

Definition 3.4.10 A non-zero price system p is a fine efficient price

vector for the allocation x on the event A ∈
∨

t∈T

Ft if µ-a.e. in T the

function x(t, ·) is the maximal element of ht in the efficiency set

B∗
t (ω, p) =

{

z : z ∈Mt and
∑

ω∈A

p(ω) · z(ω) ≤
∑

ω∈A

p(ω) · x(t, ω)

}
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3.5 Social Coalition Structure and Differential In-
formation

In this section the analogous of Theorems 3.2.1 and 3.3.4 are investi-

gated in connection with the notion of social coalition structure.

Following [23], we introduce for a finite differential information

economy a social coalition structure in the form of a finite set of gen-

eralized coalitions. A coalition can be formed if and only if it belongs

to the given structure. Moreover, any trader is required to redistribute

is initial endowment among the coalitions in the given structure. The

need of imposing a social coalition structure on the society is motivated

by the fact that, although many coalitions can block an allocation that

is not in the private core, it is not true that such coalitions will re-

ally formed. In particular, in economies with differential information,

the interest in such structures is connected with costs of communica-

tion and information that may reduce the possibility of free coalition

formation.

Definition 3.5.1 In a finite differential information economy E with

m traders and for any integer j ≥ 2, we call a social coalition structure

any non-negative matrix Γ = (γkh) of dimension j×m such that
j
∑

h=1

γkh =

1, for all k = 1, ...,m.

Each row of Γ represents a generalized coalition. The elements

γkh describe the levels of participations of trader k in any sub-coalition.

Then in a social coalition structure any trader is required to redistribute

in full his initial endowment.

Extending the notion of blocking social coalition structure intro-

duced in [23], we will say that the social coalition structure Γ privately

blocks a private allocation x if there exists at least one subcoalition of

Γ that blocks x.

For a fixed feasible private allocation x that is not competitive, we

denote with Πj
f the set of social coalition structure of Γ and with K j

f

the subset of Πj
f formed by blocking social structures. For any integer
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j ≥ 2, we denote by Γj the symmetric social structure defined by γhk = 1
j

for all h,k.

In order to valuate the relative measure of social coalition structures

that privately blocks a non competitive allocation, we define a corre-

spondence between social coalition structures of the finite economy and

ordered partitions of an associated continuum economy. We extend in

particular [47, Result 2] to an atomless economy with a finite number

of types and differential information.

Let us consider an atomless differential information economy E c

whit a finite numberm of types, and a feasible private allocation x(t, ω)

with the finiteness assumption that is not a Radner equilibrium. For

an integer j ≥ 2 and for any ordered partition B ≡ (B1, ..., Bj) of T

into j coalitions, we define the profile of B as the vector of profiles

Π(B) ≡ (Π(B1), ...,Π(Bj)).

Definition 3.5.2 The profile Π(B) privately blocks the allocation x(t, ω)

if at least one of the profiles Π(Bh) (h = 1, ..., j) is blocking.

Let Πj be the set of all possible profiles of the ordered partitions

of T into j coalitions, and denote with K j the subset of ΠJ formed by

blocking profiles. Clearly, Πj and Kj can be considered as subsets of

IR(j−1)m. Denote by f j ≡ (f, ..., f) ∈ IR(j−1)m the vector of profiles of

the full coalition. Then Πj ⊆ [0, f j]. Following [23, Theorem 5.2] we

find

Theorem 3.5.3 Let x be a feasible private allocation that is Pareto

optimal and non-competitive. Assume that x satisfies the finiteness

and smoothness assumptions. Then, for all α0 ∈
(

0, 1
j−1

)

,

lim
ε→0+

µ (Kj

⋂

B(α0f
j, ε))

µ (B(α0f j, ε))
= 1.

proof: As in [47, Result 2], one defines for h = 1, . . . , j, the sets

Kh =
{

π ∈ Πj : p ·X(πr, ·) > p · E(πr, ·), r = 1, . . . , h− 1 and πh ∈ K
}

,
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Ch =
{

π ∈ Πj : p ·X(πr, ·) > p · E(πr, ·), r = 1, . . . , h− 1 and p ·X(πh, ·) < p · E(πh, ·)
}

.

The set Kh (and Ch) are pairwise disjoint. Moreover any Kh is a subset

of the corresponding Ch. With the same arguments of Lemma 3.2.4, it

is possible to show that Kh has the contraction property with respect

to Ch and αof
j. Then

lim
ε→0+

µ (Kh

⋂

B(α0f
j, ε))

µ (Ch
⋂

B(α0f j, ε))
= 1.

Since
⋃

hKh = Kj and the sets
⋃

hCh and Πj has the same measure

(see [47, Result 2]) the conclusion follows. ¤

Let us state the result for a social coalition structure of a finite

economy.

Theorem 3.5.4 Let x : {1, . . . ,m} × Ω → IB+ be a feasible private

allocation that is Pareto optimal and non-competitive. Assume that x

satisfies the smoothness assumption. Then, for all α0 ∈ (0, 1),

lim
ε→0+

µ
(

Kj
f

⋂

B(α0Γ
j, ε)
)

µ (B(α0Γj, ε))
= 1.

proof: Let us denote by x̂ the private allocation with the finiteness

assumption defined by x in the continuum economy E c associated with

E . We claim that Kj
f = mKj. Indeed, for any coalition structure

Γ ∈ Kj
f let us denote by A1 the support of coalition γ1 contained in

Γ and by Ah the set

{

i :
h
∑

r=1

γir 6= 0

}

, h = 2, . . . j. Then,
1

m
Γ is the

profile of the ordered partition

B1 =
⋃

i∈A1

(

i

m
−
γi1
m
,
i

m

]

, Bh =
⋃

i∈Ah

(

i

m
−

∑h

r=1 γ
i
r

m
,
i

m
−

∑h−1
r=1 γ

i
r

m

]

, h = 2, . . . j

and, as in the proof of Theorem 3.3.4, this profile blocks the allocation

x̂. Conversely, it is clear that any profile Π(B) ∈ K j gives rise to a
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social coalition structure mΠ(B) ∈ K j
f . Then by Theorem ... and

property of the Lebesgue measure we have that

lim
ε→0+

µ
(

Kj
f

⋂

B(α0Γ
j, ε)
)

µ (B(α0Γj, ε))
= lim

ε→0+

µ
(

mKj
⋂

mB(α0

j
f j, ε

mj
)
)

µ
(

mB(α0

j
f j, ε

mj
)
) =

= lim
ε→0+

µ
(

Kj
⋂

B(α0

j
f j, ε

mj
)
)

µ
(

B(α0

j
f j, ε

mj
)
) = 1.
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Remark 3.5.5 The assumption of smoothness on the Pareto optimal

allocation x that we made in the main Theorems is standard if we

look to economies with complete information. The uniqueness (aside

of scalar multiples) of the supporting price is guaranteed if at least

one preference relations is represented by a differentiable utility func-

tion. The uniqueness of supporting prices in infinite dimensional setting

again follows from differentiability of at least one utility function (see

[8] for a discussion of this topic). In the case of economies with dif-

ferential information, the smoothness assumption is satisfied if ui(·, ω)

is differentiable in each state ω ∈ Ω, given the form of the expected

value.

Remark 3.5.6 Notice that, differently from results proved in [23] for

complete information economies, we assume in the paper that the com-

modity space has non-empty norm interior. Indeed, in presence of dif-

ferential information, properness assumptions on preferences used in

[23] to compensate for the lack of interior points, do not work. This

is true in general for private core equivalence results (see [24, Remark

5.6].

¤
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Chapter 4

Some Remarks on the
Second Welfare Theorem

The second fundamental welfare theorem (SWT) gives conditions under

which a Pareto optimal allocation can be supported by an equilibrium

price. It tells us that we can achieve any desired Pareto optimal allo-

cation as a market equilibrium. In an Economy with a finite number

of agents, characterized by a consumption set that coincides with the

positive orthant, it’s sufficient the convexity of the preference to guar-

antee the theorem. The convexity assumption plays a central role in

this theorem. But, the interpretation of the second welfare theorem is

strongest when the number of economic agents become large, because

the price-taking assumption is most realistic. We now observe that,

the second welfare theorem can be viewed as a special case of the ex-

istence of a Walrasian equilibrium for economies in which endowments

are distributed in a particular manner.

Proposition 4.0.7 If

∀ i Xi ⊂ Rl
+ is convex;

∀ i xi, x
′
i, x

′′
i ∈ Xi, x

′′
i Âi x

′
i ⇒ (1− t)x′′i + txi Âi x

′
i ∀ 0 < t < 1;

∀ ºi are continuous,

then, any Pareto optimal allocation (x0i )
m
i=1 is supported by a price p

s.t: ∀ i, xi ∈ Xi, xi ºi x
0
i ⇒ p · xi ≥ p · x0i .
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Under the classical assumption on the agents’ preferences (contin-

uous, convex, strongly monotone, and locally non satiated), and if the

initial endowments are strictly positive for all the agents (ei À 0) the

existence of walrasian equilibrium is guaranteed. So, now we can show

that the SWT is a particular case of this existence result. To see this,

suppose that x = (x1, ..., xm) is a Pareto optimal allocation of a pure

exchange economy, then a Walrasian equilibrium (p, x̂) existS for the

economy in which endowments are ∀ i ei = xi. In fact, x̂ ºi xi , and xi

is affordable at price p for every consumer i. It follows, from the Pareto

optimality of x, that x̂ ∼i xi ∀i. But since x̂i is the optimal demand

given prices p, p · ei = p · x̂i = p · xi, xi must be an optimal demand for

consumer i for price p. Hence, the price vector p support the allocation

x . The SWT insures us on the existence of a supporting hyperplane

for a given Pareto optimal allocation. From the First welfare theorem

we know that if xi Âi x
∗
i then p ·xi > p ·x∗i , and it’s easy to verify that,

under the same assumption, p ·xi ≥ p ·x∗i . Now we provides a sufficient

condition under which the condition “xi Âi x
∗
i implies p · xi ≥ p · x∗i ”

is equivalent to preference maximization condition “xi Âi x
∗
i implies

p · xi > p · x∗i ”.

Proposition 4.0.8 Assume that Xi is convex and ≥i is continuous.

Suppose, also, that the consumption vector x∗i ∈ Xi, the price vector

p are such that xi Âi x
∗
i implies p · xi ≥ p · ei. Then, if there is a

consumption vector x′i ∈ Xi such that p · x
′
i < p · ei, it follows that

xi Âi x
∗
i implies p · xi > p · ei.

proof: Assume that p ·x∗i = p ·ei. Suppose by the contrary that there

is an xi Âi x
∗
i with p·xi = p·ei. By the cheaper point assumption, there

exist an x′i ∈ Xi such that p ·x′i < p ·ei. Then, for all α ∈ [0, 1(, we have

αxi + (1− α)x′i ∈ Xi and p · αxi + (1− α)x′i < p · ei. But, if α is close

enough to 1, the continuity of ºi implies that αxi + (1 − α)x′i Âi x
∗
i ,

which is a contradiction because we have found a consumption bundle

that is preferred to x∗i and costs less.
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Moreover, if x∗i = ei, then the proposition 4.0.8 gives a sufficient

conditions for the equivalence between this two problems:

x∗i minimizes the expenditure in the set {xi ∈ Xi : xi º x∗i }

and

x∗i maximizes ºi in the budget set {xi ∈ Xi : p · xi ≤ p · x∗i }

¤

Turn now to the case of an economy with a large number of con-

sumers. It’s well known the equivalence result between the core alloca-

tions and the walrasian equilibrium. In particular, the asserting that

the core allocations are Walrasian constitutes a version of the SWT.

Our interest is in economy with differential information. In par-

ticular, we give our attention to the characterization of Radner equi-

librium allocations as those random consumption plans which are not

blocked by grand coalition. In fact, if the initial endowments is such

that ei = xi ∀i, the SWT is a particular case of the equivalence theo-

rem. We can observe that, with this hypothesis, the economy E(a, x)

is equivalent to the economy E(0, x), and xi is its endowments for all

agents. So xi is a Pareto optimal allocation such that
∑

i xi =
∑

i ei,

and it is not blocked by grand coalition. It is not so hardly to prove

that an equivalent result is true for economies with a continuum of

agents.
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4.1 Supporting Price

In the previous section, we have found a sufficient condition for the

equivalence between the following concept of supporting price:

* xi Âi x
∗
i implies p · xi ≥ p · x∗i ,

* xi Âi x
∗
i implies p · xi > p · x∗i .

where x∗i is the optimal demand for all i. Now we want to prove an

equivalence result between:

* zi ºi xi implies p · zi ≥ p · xi,

* zi Âi xi implies p · zi > p · xi.

We focus our attention on two cases: the first (a), the consumption

set Xi ≡ Rl
+; the second (b), instead, the consumption set, Xi, differs

among the agents.

For our proof, is necessary to look at the result present in Debreu

1954 on these propositions:

Proposition 4.1.1 Under classical assumption on preferences and on

consumption sets, with every Pareto optimum (x0i )
m
i=1, where some x

0
i

is not a saturation point, is associated a continuous linear price p such

that, for every i

xi ∈ Xi, xi ºi x
0
i ⇒ p · xi ≥ p · x0i

Definition 4.1.2 Let p a linear continuous function. (x0i )
m
i=1 is an

equilibrium with respect to p if:

i) (x0i )
m
i=1 is attainable;

ii) For every i, xi ∈ Xi, p · xi ≥ p · x0i ⇒ xi ºi x
0
i

We want to show that, under the classical assumption on convexity

of Xi and of the preference relation, if there is, for every i, an x′i ∈ Xi

such that p · x′i < p · x0i , then 4.1.1 implies 4.1.2
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proof: Consider an xi ∈ Xi s.t. p·xi ≤ p·x0i . Let xi(t) = (1−t)xi+tx
0
i .

For all t, 0 < t < 1, p ·xi(t) ≤ p ·x0i , and thus, by 4.1.1, x0i Â xi(t). For

t converging to 0, follows that x0i º xi(t).

With these results in mind, we can prove:

Case a

Consider z, x ∈ <l+, z Âi xi ∀ i⇒ p · z > p · xi. For the convexity,

for all 0 < t < 1, tz + (1− t)xi Âi xi
1 ⇒ tp · z + (1− t)p · xi > p · xi.

As t→ 0, we have the assert.

Consider, now, z, x ∈ <l+, z ºi xi ⇒ p·z ≥ p·xi. For the convexity

and for the locally non satiation, there always exists a strictely preferred

bundle. Thus, given y 6= 0 ∈ <l+, z + y Âi xi and p · z + p · y > p · xi.

Case b

Consider z, x ∈ Xi, Xi convex and closed set. From continuity of

preferences and from convexity of Xi, if z Âi xi ∀ i, there exists an

α ∈ (0, 1] such that αz+(1−α)xi Âi xi. As α→ 0, we have the assert.

Consider z, x ∈ Xi, z ºi xi implies p · z ≥ p · xi. Inlight proposition

4.0.8, if there exists a gi ∈ Xi, p · g < p · xi, with xi = ei, we can write

that gi º xi ∀i. By this, the contradiction, because if gi º xi, then

p · g ≤ p · xi. ¤

1For the completness of the preferences, we know that if x Â x
′ then x º x

′.
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4.1.1 Considerations on Cheaper Consumption

Finally, we want to appoint some consideration on the existence of

cheaper bundle. First, we can note that closeness, convex assumptions

on the consumption set Xi, and the locally nonsatiation of the prefer-

ences ensure us on the nonemptyness of Xi. But, for the existence of a

cheaper bundle is not suffice.
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[31] Hervés-Beloso C., Moreno-Garćıa, E. and N.C. Yannelis, 2002, A

characterization of competitive equilibrium allocations in differen-

tial information economies , forthcoming.

[32] Hervés-Beloso C., Moreno-Garćıa, E. and N.C. Yannelis, 2005,
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