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1 Introduction

The main objective of this work is twofold. First, we provide a uni�ed analyt-

ical framework within wich impossibility results in abstract social choice can be

stated and proved. Second, we hint at some links between impossibility results on

abstract preference aggregation and implementation of allocation rules for pure ex-

change economies.

In the abstract preference aggregation section we will present the classical impos-

sibility results by Arrow and Gibbard Satthertwaite in a uni�ed way, to point at the

similarities between the two. It is quite interesting that both theorems can be proved

through the ultra�lter property of some subsets of agents, suggesting the existence

of a common mathematical structure behind the two results.

This type of characterization clari�es the main di¤erence between �nite and in-

�nite societies. In particular, aggregation procedures that satisfy the axioms in the

respective settings are proven to exist when society is formed by an in�nite num-

ber of individuals. That is, there is a discontinuity going from the �nite to in�nite

case. However, even though non -dictatorial aggregation procedures can be found by

appealing to the existence of free-ultra�lters on in�nite sets, they admit arbitrarily

small coalitions of agents that are in some sense dictatorial, and converge to a limit

outside the space of agents: the invisible dictator.

Strictly speaking, the implementation problem in exchange economies is a partic-

ular case of a social choice problem. However, the results in the abstract setting do

not directly carry over, because the domain of the social choice function is consider-

ably restricted by the classical assumptions on continuity convexity and smoothness
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of preferences. It is therefore interesting that results that have the �avor of dictato-

rial results hold for �nite societies in this restricted setting as well. In particular, it

is the case that Pareto e¢ ciency when coupled with an incentive compatible require-

ment produces allocation that leave some consumers with consumptions level that is

arbitrarily small. This surprising result represents the parallel to the impossibility

theorems in the abstract setting.

As it is well known, in exchange economies a prominent role is played by the

walrasian mechanism, that is characterized by linear prices and price taking behavior.

This last assumption has been justi�ed by an argument that relies on agents that

have zero measure in economies with a continuum of agents (e.g. Aumann 1964).

However, it was the pioneering article by Hurwicz(1972) that made explicit the link

between preference manipulation and incentives to manipulate equilibrium prices by

showing that walrasian equilibrium is not incentive compatible in �nite economies.

It is therefore the objective of the models that assume pure exchange economies

with in�nite agents to study whether price taking behavior ( and therefore walrasian

equilibrium) can be justi�ed by a zero measure assumption. In this respect, there

seems to be a discontinuity as well. If one assumes a continuum, it is quite easy

to �nd incentive compatible walrasian equilibria. However, the results on sequences

of large but �nite economies are much more limited, suggesting a parallel with the

invisible dictator result.

The sections are organized as follows. Part I deals with abstract social choice.

In section 2 I brie�y summarize the notation and properties of abstract aggregation

procedures. In section 3 the classical impossibility results for social choice and so-
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cial welfare function are presented, and in section 4 the corresponding possibility

results with in�nitely many agents. Section 5 is devoted to the proofs, in particular

the common proof of impossibility based on ultra�lters.Part II deals with incentive

compatible allocation mechanism. Section 6 describe the implementation problem

in pure exchange economies with a �nite number of agents and section 7 treats the

in�nite agents counterpart. Section 8 concludes.

Part I

Abstract social choice

2 De�nitions and properties of aggregation func-

tions

In this sectionwe we summarize the notation and main de�nitions , with the aim at

providing a unifying framework for social choice and social welfare functions.

A preference aggregation problem consists of a triple ((U; v); A;R) and an aggre-

gation function F , whose domain consists of individual information to be aggregated

into an outcome, the value in the codomain, that represents the social aggregation.

U is the set of individuals, A is the set of feasible alternatives and R is the set of

binary preference relations on A. The function v : U ! R0 � R associates each

individual with a preference relation over A; and the set of all possible situations is
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the set of functions V = R0U . Notice in particular that if U is �nite, V is simply

the jU j � fold Cartesian product of R. The advantage of this general formulation is

that it allows to deal with the case of U not �nite (countably or even uncountably)

easily.

While the domain of the aggregation function is always V , the codomain may be

either A or R0, with the following de�nitions:

De�nition 1 A social welfare function is a function FW : V ! R. A social choice

function is a function FC : V ! A

The interpretation is straightforward. The social welfare function, �rst consid-

ered by Arrow(1963) aggregates individual preference relations in a social preference

relation, while the social choice function aggregates individual preferences into a so-

cial choice, that might be interpreted as being the alternative that society prefers

when individuals have preferences v 2 V:

The basic question every aggregation theory wants to answer is the following:

suppose we believe in certain properties of an aggregation procedure, then does it

exists a social welfare or social choice function for which these properties are mutually

compatible?

The literature on social aggregation has focused on institutional and ethical prop-

erties of the aggregation problem.

2.1 Institutional properties

We will name institutional all those properties that refer to the positive environment

to which we apply the aggregation rule. First, the cardinality of A: As we will see
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in the following section, the impossibility result depends crucially on the assumption

that society has the choice among more than 3 alternatives. Second, and more

important, the cardinality of the set of individuals U: Here, the key assumption is

whether this set is �nite or in�nite.

Another important set of assumptions is related to the subset of preferences that

constitutes the domain of the aggregation rule F : R0:Aminimal common assumption

is that R0 is the set of weak orders over A ( with the added technical requirement

that the upper and lower contour sets are closed when A is an in�nite set ). If these

are the only restrictions put on the possible preferences pro�les, the domain is rich.

In general, richness of the domain implies more restrictions on the aggregation rules

that can be implemented, while the opposite is true if we restrict the domain to

include only some particular types of preferences. 1 Since the main focus will be on

the consequences of allowing for in�nitely large societies, we shall not go into the

details of other types of domain restrictions2.

Last, a key institutional assumption is that an hypothetical social planner does

not know the pro�le of individual preferences, implying that he has to rely on aggrega-

tion rules that are incentive compatible . The aggregation rule is individually manip-

ulable if there exists an individual u, a pro�le v and another pro�le v0 di¤ering from v

only for preferences of u (that is to say v(u) 6= v0(u) and v(Unfug) = v0(Unfug) such

that FC(w)v(u)FC(v): The interpretation of this condition is clear: if a social choice

1One much studied restriction that applies when A is an ordered set is single-peakdness:[9a 2 A
s.t. (b; c) with the property a < b < c (or with inequalities reversed) =) aPbPc], where P is the
asymmetric part of R.

2For some recent characterization results, see Nehring Puppe(2002) and Aswal Chatterji
Sen(2003)
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function is individually manipulable, then at some pro�le there is an individual who

�nds pro�table to hide his preferences because the social choice resulting from this

strategic behavior is preferred, according to his true preferences, to the social choice

resulting from sincere revelation of his preference relation. An aggregation rule is

individually incentive compatible if it is not individually manipulable.

2.2 Ethical properties

I will name ethical all those properties that concern the normative implications of

an aggregation rule.

Starting with a social welfare function, we �rst can identify assumptions on

the social preference relation ( that is, the relation FW (v)). Arrow �rst required

FW (v) to be coherent with individual preferences, being itself transitive and com-

plete: FW (v) � R0.. Another important arrovian assumption is independence of

irrelevant alternatives (IIA). FW satis�es IIA i¤ [8a&b 2 A; v&w 2 V; (v = w on

(a; b)) =) FW (v) = FW (w)].

An important set of ethical properties are those related to some form of e¢ ciency

of the aggregation rule. A minimal e¢ ciency requirement is unanimity: [8a; b 2

A; av(U)b =) aFW (v)b]:For a social choice function, the analogous de�nition requires

unanimity in the case in which every individual has the same alternative on top of

his preference relation: [av(U)b8b 2 A ) F (v) = a]: For a social choice function a

stronger property is Pareto-e¢ ciency [av(U)b) F (v) 6= b]

Finally, a social aggregation rule might give decision power to a unique individual.

FW is dictatorial if 9u0 s.t. 8v 2 V , av(u0)b) aFW (v)b. similarly, FC is dictatorial
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if 9u0 s.t. 8v 2 V; av(u0)b for each b 2 A)) a = FC(v)

3 Impossibility results with �nitely many agents

In the previous section,we have summarized properties that is reasonable to impose

on aggregation rules. Unfortunately, starting with the famous Arrow�s theorem,

many of these properties have been proved to be mutually inconsistent when society

is composed by a �nite number of individuals. In order to underline the role of

�niteness,we will describe some quite general formal results, from which Arrow and

Gibbard-Satthertwaite theorems will follow as direct corollaries in the case of a �nite

society.

In �rst place, we need a formal concept of "large" sets (Brown 1975). Let U be

a set. A �lter F on U is a collection of subsets such that:

(F1) S � F ; S � S 0 ) S 0 2 F

(F2)S; S 0 � F ) (S \ S 0) � F

(F3) ; =2 F

An ultra�lter U is a �lter that is not strictly contained in another �lter. For an

ultra�lter, we have the property:

(UF) 8S � U either S � U or its complement Sc � U .

If a �lter has the empty intersection property, \S2FS = ;, it is a free �lter.

Filters that are not free are called �xed :From these de�nitions, the properties in the

following lemma follow easily ( Aliprantis et al. 1999):

Lemma 1 i)If U is an ultra�lter on U and fSigni=1 a �nite partition of U then
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Si 2 U for some i:

ii) If U is a free ultra�lter on U , then it contains no �nite elements of U . In

particular, only in�nite sets admit free ultra�lters

iii) Every �xed ultra�lter on U has the form: Ux = fS � U s.t.x 2 Sg for a

unique x 2 U

When we consider a social aggregation environment, it turns out that some par-

ticular subsets of the space of individuals have the ultra�lter property. For a social

welfare function, we can de�ne the set of decisive coalitions:

De�nition 2 The set of decisive coalitions associated with the social welfare function

FW is UD = fS � U s.t. av(S)b) aFw(v)bg

In words, whenever individuals in a decisive coalition prefer an alternative over

another, the aggregate preference relation agrees with this ordering, independently

of the preferences of other members of the society. An important remark is that if

there is an individual belonging to every decisive coalition, then he is a dictator.

In the context of a social choice function, we have an analogous de�nition of

families of preventing sets (Batteau et al. 1981)

De�nition 3 The family of preventing sets for an alternative b by an alternative a

associated with a social choice function FC is UabC = fS � U s.t. av(S)b) FC(v) 6=

bg

Agents in a preventing set have veto power. They are able to block the choice of

an alternative if they all prefer another alternative over it.
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The main results of this section are the following theorems, showing that the

ultra�lter property of decisive coalitions (Kirman Sondermann 1972) and of (the

unique) family of preventing set (Batteau et al. 1981) descends directly from the

assumptions described in the previous discussion.

Theorem 1 Let j A j� 3, R0
rich, FW a social welfare function such that FW (V ) =

R0
and satisfying Unanimity and IIA , then the set of decisive coalitions UD is an

ultra�lter.

The analogous theorem for a social choice function is slightly more involved,

since we have de�ned a family of preventing set for an alternative over another. In

principle, these families may vary with the considered alternatives. However, in the

case of an incentive compatible rule, the following theorem tells us that there is a

unique family of preventing sets, and it has the ultra�lter property.

Theorem 2 Let j A j� 3, R0
rich, FC a social welfare function such that FC(V ) =

A. Then:

i)FC is incentive compatible in dominant strategies if and only if for each v; w 2 V

and a 6= b s.t. FC(v) = a and av(u)b) aw(u)b, it is true that FC(w) 6= b (property

of monotonicity)

ii)If FC is incentive compatible in dominant strategies then it satis�es unanimity

and Pareto e¢ ciency.

iii)If FC is incentive compatible in dominant strategies then for each pair of alter-

natives (a; b) the families of preventing sets are identical: UabC = U baC � UC ::Moreover,

UC is an ultra�lter.
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Property i) is a result of independent interest. The monotonicity property says

that, if going from a pro�le v to a pro�lew the set of individuals who prefer alternative

a to alternative b does not shrink, and if alternative a was chosen for the pro�le v,

then alternative b cannot be chosen for pro�le w.

From these two theorems, the famous Arrow and Gibbard-Satterthwaite results

descend as direct corollaries in the case of a �nite society.

Corollary 1 (Arrow 1963) Under the assumptions of Theorem 1, if U is �nite FW

is dictatorial.

The logic is straightforward. We know from Lemma 1 that every ultra�lter on

a �nite set is �xed. Moreover, �xed ultra�lters on the space of individuals U have

the property that there is a unique individual belonging to every set of the ultra�l-

ter. Since the set of decisive coalitions is an ultra�lter, there is a unique individual

belonging to each decisive coalition. Therefore, he is a dictator.

The analogous result for a social choice function is the Gibbard-Satthertwaite

theorem:

Corollary 2 (Gibbard 1973 Satterthwaite 1975) Under the assumptions of Theorem

2, if FC is incentive compatible, then it is dictatorial.

Again, from the ultra�lter property we know that there is a unique individual

that belongs to every set of the unique family of preventing sets. This individual

is able to veto every alternative, in particular every alternative di¤erent from his

most preferred one. Therefore, he is able to impose his most preferred alternative no
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matter what the preferences of other members of society are. This is precisely the

relevant de�nition of a dictator for a social choice function.3

4 In�nitely many agents and the invisible dicta-

tor

In �nite societies, the ultra�lter structure of decisive coalitions produces necessarily a

dictatorial result. The scenario changes dramatically in the case of an in�nite society

(Fishburn 1970, Kirman Sondermann 1972) . The reason is that a free ultra�lter

always exists over in�nite sets.

Lemma 2 Assume Zorn�s Lemma (or equivalently the Axiom of Choice). Every �l-

ter is included in at least one ultra�lter. Every in�nite set has at least one ultra�lter.

Since it will be useful in giving an example of a non dictatorial aggregation rules

over in�nite societies, I brie�y describe the logic of this mathematical result. If one

considers a generic �lter F over U , the collection C = fG s.t. G is a �lter and F � Gg

is partially ordered by inclusion. Therefore if one considers a chain in C it will have

an upper bound in C and, by Zorn�s Lemma, a maximal element, that, by de�nition,

is an ultra�lter including F . When the set U is in�nite we can consider the collection

of subsets that are complement of �nite sets Fcofinite = fS � U s.t. j Sc j< 1g;
3The close relationship between the two theorems has been recently studied by Reny(2001), who

was able to provide a word-by-word unique proof adapting the procedure introduced by Geanako-
plos(1996) to �nd a pivotal individual, who turns out to be a dictator.Interestingly, that procedure
works only in the �nite case.
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that is easily seen to be a free �lter over U:By the preceding argument, this will be

included in at least one ultra�lter.

Going back to the aggregation setting, by Lemma 2, there exists a free ultra�lter

UD� over the in�nite set of individuals U: Then de�ne a social preference relation by:

aF �W (v)b() S0 � fu0 2 U s.t. av(u0)bg 2 UD�

According to this aggregation rule, society prefers a over b if and only if the coali-

tion of individuals who prefer a over b belongs to the free ultra�lter UD�. Intuitively,

F �W gives decision power only to large coalitions4. By construction, it is clearly non

dictatorial and satis�es unanimity. The relevance of the following theorem is then

the assertion that F �W is actually a preference relation and satis�es IIA.

Theorem 3 Assume Zorn�s Lemma. Then when U is in�nite there exists a non dic-

tatorial social welfare function F �W , such that F �W (V ) = R
0
that satis�es Unanimity

and IIA.

Again, for a social choice function an analogous result, holds, where the construc-

tion of a non-dictatorial rule follows the same logic of the previous case. However, it

will be important to assume that the set of alternatives is �nite.

It is quite easy to construct a non dictatorial individually incentive compatible so-

cial choice function. It will su¢ ce to de�ne for each alternative aj 2 A = fa1; ::; amg

and pro�le of preferences v 2 V the set of individuals for which alternative aj is the
4This interpretation is reinforced considering a measure theoretic representation of ultra�lters. It

is a fact that to every ultra�lter corresponds a f0; 1g-measure over the set on which the ultra�lter
is de�ned, and takes value 1 on the elements of the ultra�lter. The social welfare function F �W
therefore assigns decisive power only to coalitions of full measure, giving a precise meaning to what
a large set is.
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most preferred one:D(aj; v) and set the social choice F �C( v) = aj� where j� is the �rst

index for which D(aj; v) is an in�nite set. Since no individual can alter the �niteness

of the sets D, it will clearly be individually incentive compatible, and it will satisfy

unanimity by de�nition.

Through a free ultra�lter we can go even further and construct a coalitionally

incentive compatible social choice function(Pazner Wesley 1977). A social choice

function is coalitionally incentive compatible if it is not manipulable by a subset

of agents that jointly hide their preferences. In �rst place, notice that the sets

fD(aj; v)gmj=1 form a �nite partition of the in�nite set U , that admits a free ultra�lter

UC�5. By part i) of Lemma 1 one of the elements of the partition is an element of

the free ultra�lter. So D(aj0 ; v) 2 UC� for some aj0 :Let this alternative be the social

choice. The social choice function we have constructed is therefore:

F �C(v) = aj0 () [D(aj0 ; v) 2 UC for a free ultra�lter UC� ]

F �C is by construction non dictatorial, since an element of the free ultra�lter

cannot be �nite, and it satis�es unanimity. Pazner Wesley(1977) prove that it is also

coalitionally incentive compatible.

Theorem 4 Let U in�nite, A �nite6 and assume Zorn�s Lemma. Then there exists a
5Clearly, as in the previous case, Zorn�s Lemma needs to be assumed. For a constructive proof

without the use of the Axiom of Choice, but restricting the set of admissible pro�les to be a Boolean
algebra, see Mijara(2001)

6When A is not �nite, Pazner Wesley(1977) show that the theorem continues to hold, however
the social choice function is not Pareto e¢ cient. Moreover, if U is countably in�nite and A in�nite,
there exists no coalitionally incentive compatible social choice function that are Pareto e¢ cient
and non dictatorial. Quite interestingly, the problem of whether there exists a set of individuals
(with higher cardinality than N) for which a Pareto e¢ cient coalitionally incentive compatible non
dictatorial social choice function exists is linked to the existence of a set of measurable cardinality.
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coalitionally incentive compatible social choice function that satis�es unanimity and

is non dictatorial.

Up to this point, it may seem that going from a �nite society to an in�nite

society solves the problem of aggregation nicely. However, some further insight in

the structure of the rules we have constructed for the in�nite case casts some doubt

on what non dictatorship really means for an in�nite society.

Let us specialize our discussion and consider a social welfare function setting

assuming that we have an atomless measure space of agents (U;
; �), where 
 is a

� � algerba of coalitions and � a non negative measure over 
:By the properties of

an atomless measure, the set U can be partitioned in a �nite collection of sets each

of measure less than an arbitrarily small " > 0. Using property i) of Lemma 1 again,

one of the element of this partition will belong to the ultra�lter of decisive coalitions.

Therefore, even though there is no individual dictator, it is true that:

Proposition 5 A social welfare function that satis�es Unanimity and IIA over an

atomless measure space of agents admits an arbitrarily small coalition of decisive

individuals.

For a �nite set of alternatives, some topological considerations allow us to say

more about the nature of dictatorship in an in�nite society. In that case the set of

preference relations R is a �nite set, endowed with the discrete topology. Recall

also that the set of possible pro�les of preferences for the society is the set of of

functions V = fv : U ! Rg. The Stone-Cech compacti�cation of U is a compact

set ` ~U such that U is dense in ~U and ( what is important for the present discussion)
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every v 2 V can be uniquely extended to a continuos function from ~U into R. The

key observation is that the ultra�lter of decisive coalitions for the in�nite set U has

a unique limit ~u0in ~U whose preferences are represented by the unique extension

v(~u0) = limu;UDv(u):Since R is discrete, it will exists a set S in the ultra�lter of

decisive coalitions whose preferences are exactly the preference of the limit point

~u0 : v(~u0) = v(S):This discussion implies that there will be an element in ~U that has

the properties of a dictator:

Theorem 6 (Kirman Sondermann "The invisible dictator" 1972) A social welfare

function that satis�es Unanimity and IIA over an in�nite set of agents U and a �nite

set of alternatives admits an "invisible dictator" ~u0 in the Stone-Cech compacti�ca-

tion of U , whose preferences are the limit preferences of an arbitrarily small set of

decisive individuals in U:

This beautiful and elegant theorem clari�es the nature of dictatorship in the

in�nite case. Even though in large societies the weight of each individual is small

enough (actually zero), there exists arbitrarily small hierarchies of agents that are

as decisive as a traditional dictator, and are represented by an agent "behind the

scenes" ( the invisible dictator).

5 Proofs

In this section we prove th main results stated in the previous discussion on abstract

aggregation. The �rst part is devoted to the proof of the impossibility results in a

�nite society. The objective is to prove Arrow and Gibbard Satthertwaite theorem in
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a uni�ed fashion, where the unifying theme is represented by the ultra�lter property

of decisive coalitions and of preventing sets. To that end, we need two preliminary

steps. The �rst, provided by theorem 2- i) allows us to substitute the incentive com-

patibility property with the equivalent property of monotonicity. The second step,

theorem 2-ii); shows that Pareto e¢ ciency and unanimity are implied by incentive

compatibility and the onto assumption.

Proof of Theorem 2 i)-ii)

i)Suppose FC is not incentive compatible. Then there exists an individual u0

and pro�les v and w di¤ering only in the preferences of u (that is v(u0) 6= w(u0)

and v(Unfu0g) = w(Unfu0g)) such that FC(v) 6= FC(w) and FC(w)v(u0)FC(w).

Since w and v di¤er only on u0, and at v this agent prefers FC(w) to FC(v) we

have [FC(v)v(u)FC(w) =) FC(v)w(u)FC(v)]:Since FC(v) 6= FC(w) this social choice

function is not monotonic. In the other direction, suppose FC is incentive compatible.

We want to prove that it is monotonic. That is: for each v; v0 2 V and a 6= b s.t.

FC(v) = a and av(u)b ) av0(u)b, it is true that FC(v0) 6= b:Pick v,w satisfying

[av(u)b) av0(u)b] and FC(v) = a. De�ne the following sets:

S1 � fu 2 U : av(u)bg

S2 � fu 2 U : bv0(u)ag

Form a new pro�le v00according to the following:
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S1 S2 S1 \ S2

a b a

b a b

. . .

. . .

. . .

or

S1 S2 S1 \ S2

a b b

b a a

. . .

. . .

. . .

In pro�le v00 we have moved fa; bg to the top of the each preference pro�le in v and

v0 while preserving their relative order. First notice that FC(v00) 2 fa; bg otherwise

individuals in S1 would gain by misrepresenting their preferences.

ii) Let v be a pro�le for which the set of individuals who prefer b to a is empty

and suppose FC(v) = b. Since for any other pro�le v0 we would have that the

set of individuals who prefer b to a contains the empty set, monotonicity would

require FC(v0) 6= a ; thus excluding a from the range of FC , contradicting the onto

assumption. Therefore FC(v) 6= b, and Pareto e¢ ciency is proved. Now if every

individual prefers a to all every other alternative b by unanimity we must have

FC(v) 6= b for each b 6= a .Therefore FC(v) = a and unanimity is proved.

A direct corollary of Pareto e¢ ciency is the following tops only property:

Corollary 3 (Tops only) Let B � A, FC satis�es the assumptions of theorem (???).

If [b =2 B &a 2 B =) av(U)b] then FC(v) 2 B:
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In words, if a subset of alternatives is on top of each agent�s pro�le, then the

social choice must belong to this subset, if the aggregation function is to be incentive

compatible and onto.

Proof of theorem 1 and theorem 2-iii) (Ultra�lter property)

The two previous steps allow us to use in the proof the fact that FC satis�es

monotonicity, e¢ ciency and tops only. Let us de�ne the following system of subsets:

UabD = fS � U : 8v 2 V av(S)b&bv(Sc)a =) aFW (v)bg

U 0abD = fS � U : 9v 2 V s.t. av(S)b&bv(Sc)a&aFW (v)bg

UabC = fS � U : 8v 2 V . av(S)b) FC(v) 6= bg

U 0abC = fS � U : 9v 2 V s.t. av(S)b&FC(v) = ag

First, let�s prove that UabD = U 0abD and UabC = U 0abC : The inclusion U 0abD � UabD
follows easily from IIA and U 0abC � UabC from monotonicity. In the other direction,

the inclusion UabD � U 0abD is trivial, while the inclusion UabC � U 0abC follows from the

observation that we can always �nd a pro�le

S Sc

a b

b a

: .

. .

. .

. .

with fa; bg on top of each agent preference relation and S 2 UabC ; implying FC(v) 2

fa; bg and FC(v) 6= b, therefore FC(v) = a and S 2 U 0abC :
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Next we show that both the families of decisive coalitions;UabD ; and the family of

preventing sets, UabC ;do not depend on the speci�c alternative, which implies, in both

settings, the existence of a unique family of agents with decisive power. We want to

prove that UabD = U baD and UabC = U baC .

We begin with the inclusion Uab � Uac for c =2 fa; bg: Let S 2 UabD ; T 2 U bcD and

S 2 UabC , T 2 U bcD and de�ne the following pro�le v:

S � T T \ S T � S (T [ S)c

a a b c

c b c b

b c a a

. . . .

. . . .

. . . .

Now S 2 UabD implies aFW (v)b and T 2 U bcD implies bFW (v)c, and by transitivity

of the social preference relation it follows that aFW (v)c. We have then found a

pro�le for which av(S)c&cv(Sc)a&aFW (v)c, so S 2 U 0acD = UacD : For the social choice

function, tops only implies FC(v) 2 fa; b; cg, S 2 UabC implies FC(v) 6= b and T 2 U bcD
implies FC(v) 6= c, therefore FC(v) = a. Again we have found a pro�le for which

av(S)c&FC(v) = a ; then S 2 U 0acC = UabC .

By swapping b and c we obtain Uac � Uab, which implies Uab = Uac for each

c 6= a. Moreover by �xing the second alternative the same proof can be used to show

that Uab = U eb for each e 6= b. Therefore Uac = U eb for c 6= a and e 6= b: Letting c = b

and e = a we obtain Uab = U ba, therefore there exists a unique family of decisive
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coalitions. Notice that the result holds both for a social choice function and for a

social welfare function.

We can now prove that the systems UabD and UabC form an ultra�lter on V:

� 8 S � V; either S 2 Uab or Sc 2 U ba: Consider the following pro�le

S Sc

b a

a b

. .

. .

. .

If S 2 U baC then FC(v) 6= a , by tops only FC(v) = b and this implies Sc =2 UabC .

Also, if S 2 U baD then bFW (v)a which implies Sc =2 UabD :

� V 2 Uab .This is simply a consequence of unanimity, which is an assumption

for the social welfare function, while its a property of an incentive compatible

social choice function by ii) in theorem 2. . Consequently, ? =2 Uab , since

? = V c.

� S; T 2 Uab =) S \ T 2 Uab:Consider the following pro�le v:
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S � T T \ S T � S (T [ S)c

a c b b

b a c a

c b a c

. . . .

. . . .

. . . .

� S 2 UabC implies FC(v) 6= b, T 2 UabC = U caC (by the fact that there exists a

unique family of preventing sets) implies FC(v) 6= a, tops only then requires

FC(v) = c: We have found a pro�le for which cv(T \ S)b&F (v) = c, so T \

S 2 U 0cbC = U cbC = UabC . For the social welfare function, S 2 UabD implies

aFW (c)b and T 2 UabD = U caD implies cFW (v)a , then by transitivity cFW (v)b.

We have found a pro�le such that cv(T \ S)b&bv((T \ S)c)c&cFW (v)b, that

is T \ S 2 U 0cbD = U cbD = UabD :

We have thus proved that for the social choice function the family UabC does not

depend on (a; b), and it is an ultra�lter on the space of agents. The last step is to

prove that for the social welfare function if a coalition belongs to the system UabD ,

which does not depend on (a; b) and has the ultra�lter property;then it is a decisive

coalition.That is, S 2 UabD =) [av(S)b =) aFW (v)b]:Consider the following partition

for a given pro�le v and alternatives (a; b):

S1 � fu 2 U : av(u)bg

S2 � fu 2 U : bv(u)ag

S3 � (S1 [ S2)c
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De�ne the following pro�le w for c 6= fa; bg :

S1 S2 S3

a b a b

c c c

b a

. . .

. . .

. . .

Suppose S 2 UabD . It is true that S � S1 and S � S1 [ S3, implying that S1 2

UabD = U cbD and S1 [ S3 2 UabD = U caD by the properties of an ultra�lter and the fact

that the system does not depend on (a; b). Therefore, cFW (w)b and aFW (w)c, thus

by transitivity aFW (w)b. Since v and w agree on fa; bg; by IIA aFW (v)b: S is a

decisive coalition.

Proof of theorem 3

By lemma 2 we know there always exists a free ultra�lter, UD� ;on U in the

in�nite case. Since U 2 UD� by property of an ultra�lter (therefore F �W (v) satis�es

unanimity), IIA is satis�ed by construction and a free ultra�lter does not contain

�nite sets, that is F �W (v) is non -dictatorial, we are left to prove that aF
�
W (v)b ()

S0 � fu0 2 U s.t. av(u0)bg 2 UD� is a weak order. If S 2 UD� then Sc =2 UD� ;

therefore aF �W (v)b implies not bF
�
W (v)a so F

�
W (v) satis�es asymmetry. Now suppose

not aF �W (v)b and not bF
�
W (v)c. By the de�nition of the social relation this implies

S1 = fu0 2 U s.t. av(u0)bg =2 UD� and S2 = fu0 2 U s.t. bv(u0)cg =2 UD�. Therefore
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Sc1 2 UD� and Sc2 2 UD�, so that Sc1 \ Sc2 = (S1 [ S2)c 2 UD� and S1 [ S2 =2 UD� :Since

v is a weak order, av(u)c implies for each b 6= fa; cg either av(u)b or bv(u)c so that

fu0 2 U s.t. av(u0)cg � S1 [ S2 =2 UD� implying not aFW�(v)c and proving negative

transitivity.

Proof of theorem 4

F �C satis�es Pareto e¢ ciency since U 2 UC� and it is non dictatorial since a

free ultra�lter does not contain a �nite set. We then need to prove that it is coali-

tionally incentive compatible. We will prove the proposition for pro�les of strict

preferences. Suppose F �C is not coalitionally incentive compatible. Then there exists

a coalition S � V and pro�les v ,v0 such that v(S) 6= v0(S); v(UnS) = v0(UnS)

and F �C(v
0)v(S)F �C(v):Now consider the set D(F

�
C(v); v) de�ned in the above section,

which by de�nition belongs to the ultra�lter UC� : Suppose D(F �C(v); v) \ S 6= ?:

Then for u0 2 D(F �C(v); v) \ S we have both F �C(v0)v(u0)F �C(v) and F �C(v) maximal

for v(u0), a contradiction. Suppose instead that D(F �C(v); v) \ S = ?: D(F �C(v); v)

and D(F �C(v
0); v0) both belong to UC� and since the empty set does not belong to the

ultra�lter, there exists u0 2 D(F �C(v); v) \ D(F �C(v0); v0). Since u0 2 D(F �C(v0); v0),

F �C(v
0) is maximal for v0(u0):In particular F �C(v

0)v0(u0)F
�
C(v):On the other hand, since

D(F �C(v); v) \ S = ?, u0 =2 S implying v(u0) = v0(u0); so F �C(v
0)v(u0)F

�
C(v) which is

a contradiction since u0 2 D(F �C(v); v) and we are considering only strict orders.
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Part II

Implementation in economic

domains

6 Economic domains: characterization and impos-

sibility results with �nitely many agents

The discussion so far has involved a generic aggregation setting, where the nature of

the set of alternatives and the preferences of individuals were not speci�ed. In this

and the following section, I specialize the discussion to an environment pertaining

resource allocation of economic goods. To be concrete, suppose a society formed

by economic agents, who privately own endowments ,and have preferences over con-

sumption, of bundles of pure private goods. The object of choice is the allocation

of consumption among consumers. A mechanism of resource allocation associates

to each economy a �nal feasible allocation of consumption . Suppose, in addition,

that a wise social engineer suggests that, given preferences and endowments, the

�nal allocation must have some e¢ ciency property, say the Pareto property. The

�rst question is whether there exists a mechanism of resource allocation whose set

of equilibria, however de�ned, coincides with the set of Pareto e¢ cient allocations.

The answer, in the form of the two welfare theorems, is well known: under relatively
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mild7 assumptions, the Walrasian price system does the job. However, the previ-

ous discussion on incentive compatibility should warn us that something is missing.

In particular, suppose agents�endowments and preferences are private information.

The mechanism then has to rely on messages sent by agents on their own private

characteristics, therefore adding a new constraint in the form of incentive compat-

ibility. The question then becomes whether there exists a mechanism of resource

allocation that is Pareto e¢ cient and incentive compatible. Hurwicz(1972) was the

�rst to notice, through a counterexample, that the walrasian mechanism performs

badly in this respect, i.e. it is Pareto e¢ cient but it is not incentive compatible.

Example 1 (Hurwicz 1972 in Jackson 2001). Suppose an economy with 2 goods

and 2 agents , with endowments (eA; eB) = ((1; 0); (0; 1)) Agent A might have pref-

erences vA(x1; x2) = xA1 x
`A
2 or ~vA(x1; x2) = xA1 � 1

1+xA2
, while agent B has pref-

erences vB(x1; x2) = xB1 x
`B
2 . At (vA; vB) the Walrasian equilibrium allocation is

xA = xB = (1
2
; 1
2
), while at (~vA; vB) it is ~xA = (1

2
; 7
9
) and ~xB = (1

2
; 2
9
). Therefore at

(vA; vB) agent A would misreport his preferences.

From the informal description given above, it is clear that, in addition to pref-

erences, agents have another piece of private information, namely their own endow-

ment. This implies another possibility of manipulation: agents can withhold their

endowment from the market (Yi 1991, Postlewaite 1979). The following example

7Here the adjective is attributed to standard explicit assumptions, such as monotonicity and
convexity of preferences. The result depends also on several more or less hidden assumptions, such
as absence of externalities or complete markets (in economies with uncertainty), that are for sure
not mild.
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shows that every mechanism that yields Pareto e¢ cient allocations is subject to

manipulation via endowment withholding:

Example 2 Suppose an economy with two goods and two agents, A and B. Let

0 < " � 1, utility functions are

vA(x1; x2) =

8><>: 3x1 + "x2 if x2 � "
2

3x1 +
6
"
x2 + (

"
2
� 3) if x2 < "

2

vB(x1; x2) =

8><>: "x1 + 3x2 if x1 � "
2

6
"
x1 + 3x2 + (

"
2
� 3) if x1 < "

2

and endowments !A = (1; 0) !B = (0; 1):Suppose the allocation rule assigns to

each individual a bundle on the intersection of the contract curve with the set of

"�individually rational allocations, that is allocations such that vi(x) � vi("!i) for

i = A;B: This set is the segment KHL in the following �gure:
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Now suppose the allocation is in the subset KH and consider the possibility of

agent A of withholding 1
2
of his endowment. This new economy is depicted in the

following �gure

30



Now agent A can obtain an allocation on the segment K0H0. If he can consume

the endowment he withheld from the market, his utility will be higher than the utility

he can obtain in the truthful economy, so he has incentive to manipulate via endow-

ment withholding. A parallel argument applies for agent 2. This example shows that

every allocation mechanism that yields Pareto e¢ cient and "�individually rational

allocations is subject to manipulation via endowment withholding. This is also true

in the particular case in which " = 1 ( standard individual rationality)

The �rst of these examples illustrate the logic of how manipulation a¤ects wal-

rasian equilibria. The idea behind "walrasian behavior" is that individuals express

demands in the market taking prices as given, and the market, through some form

of virtual adjustment process, expresses equilibrium prices on the basis of expressed

demands. The key assumption is that individuals take prices as given, or, stated

di¤erently, they behave as if they were not able to modify their �nal consumption

of goods through some sort of strategic behavior. However, there is a simple way

they can do that, as the example shows: they can behave in the market as if they

had di¤erent preferences or a di¤erent endowment. This kind of strategic behavior

will be pro�table if it implies a di¤erent �nal allocation of consumption that gives

them a higher utility. The bottom line of this brief informal discussion is that incen-

tive compatibility embodies a more stringent strategic rationality requirement than

walrasian behavior.

Let us turn now to the more general question of whether there exists mechanisms,

di¤erent from the walrasian one, that yield Pareto e¢ cient allocations, are incentive
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compatible (with respect to preference manipulation) and satisfy some form of non

dictatorship property. It turns out that in economies with �nitely many agents the

answer seems to be negative, although the literature has come just short of proving

it. To illustrate formally the results , let us describe more precisely the environment

of the analysis.

There are N agents in the economy, each having consumption set RM+ and utility

function vi : RM++ ! R. Denote the set of all possible utility functions that satisfy the

standard assumptions of continuity, monotonicity and quasi-concavity by V . Notice

that, compared with the abstract social choice setting of the previous section, we

are restricting in a sensible way the domain of admissible preferences. There is a

total endowment of the M goods in the economy given by ! 2 RM++; that might be

privately owned, in which case ! = �Ni=1!
i. Denote the set of feasible bundles by

A = fx 2 RMN
+ : �Ni=1x

i � !g:The object of social choice is allocation of consumption

among consumers. Therefore a mechanism is a function F : V ! _A. Notice that the

same notation of section 3 is used here, to stress the fact that we are in a particular

"concrete" case of social choice. This implies that the de�nition of an incentive

compatible aggregation function is the same as before, with the slight adaptation

due to the fact that now agents have utility indexes. Moreover, F is Pareto e¢ cient

if F (v) is a Pareto e¢ cient allocation for each v.

Recall that a dictator is an agent who always obtains his most preferred al-

ternative, no matter what the preferences of other agents are.Therefore, in a pure

exchange economy with monotonic preferences a dictator is an agent who always

obtains the whole endowment. F is dictatorial if there exists an i such that, for each
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v; F i(v) = !.

In the case of privately owned endowments, dictatorship is related to the concept

of individual rationality (Serizawa 2002). F is individually rational if vi(F i(v)) �

vi(!i) for each i and v. Suppose that each agent has a strictly positive endowment

of at least some good. Then an individually rational social choice function is also

non dictatorial, while the converse is not true. The �rst impossibility result assumes

individual rationality:

Theorem 7 Suppose the economy has N individuals, M goods and endowments are

privately owned. Let V contain all utility functions that are continuos, strictly

monotonic, strictly quasi-concave, smooth and homotetic8. Then there is no social

choice rule F on V that is Pareto e¢ cient, incentive compatible and individually

rational.

Sketch of proof: The proof of the theorem goes by showing that the conclusion

is true for the restricted domains of utilities with the stated characteristics, while

the theorem is in general true for any domain that contains those utilities. This easy

observation comes from the fact that if it was not true for the containing superset,

then it would be false also for the restriction of F on the subdomain.

To illustrate the role of homothetic preferences, and how they interact with

strategy-proofness, I will sketch the proof for only one case, that is when there

8Smooth preferences are such that at each point there is a unique vector generating the sup-
porting hyperplane of the upper contour set at that point.
Homothetic preferences are such that the preference relation is preserved along proportional

bundles.
These de�nitions are standard.
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is some individual i that has endowment vector !i not proportional to the total en-

dowment _!. Suppose there exists an F that is Pareto e¢ cient, incentive compatible

and individually rational. Suppose �rst that at pro�le v all individuals have the

same utility function v(x; �) = [�Mm=1(!m)
1��(xm)

�]�
�1
It is quite easy to see that, by

Pareto e¢ ciency, the social choice function, on this pro�le, must assign to individu-

als bundles along the diagonal [0; !], that is proportional to ! : F (v(x; �)) 2 [0; !]..

Now consider another bundle w proportional to ! such that �Ni=1 w
i = �Ni=1!

i Since

w is proportional to ! and preferences are homothetic, the pair fw; (1; 1; ::; 1)g con-

stitute a walrasian equilibrium for utility functions v. Also, since there exists some

individual that has endowment vector not proportional to !, for this individual the

set M(i) = fm 2 M s.t. wim < !
i
mg will be non empty. Assign a di¤erent "price"

vector for each individual so that for goods m 2 M(i), pim = 2 while the other

prices stay at 1. Denote each of these vectors by pi, and let a new utility function be

v̂i(x;�) = [�Mm=1p
i
m(!m)

1��(xm)
�]�

�1
Last, let �wi be another vector proportional to

! and such that pi � �wi = pi �!i Now we can derive some conclusions and the desired

contradiction from these de�nitions.

First notice that as � ! 1, v̂i converges to the linear preference relation, with

normal vector pi, while as � ! �1, v converges to Leontief preferences. Together,

these facts imply that if individual i has preferences v̂i(x; �) and all other individuals

have common preference v, the set of Pareto e¢ cient allocations, as � ! 1 and

�! �1; converges to the segment [0; !]:9Moreover, since F is Pareto e¢ cient and
9This assertion would require a proof. It is directly true if there were only 2 agents. In the

N � 2 case, a lemma in the paper shows that the set of Pareto e¢ cient allocations when all other
individuals have common homothetic preferences, from i0s point of view, is equivalent to the set
of Pareto e¢ cient allocations of an economy in which there are only 2 agents, in which the agent
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individually rational, F i( v̂i(x; �); v�i(x; �)) will converge to the segment [ �wi; !] =

[0; !] \ fx 2 RM+ s.t. pi � x � pi!ig::Notice that set at the right of the intersection

symbol is the requirement for individual rationality for the limiting linear utility.

Now notice that for an individual i such that M(i) 6= ;, we have pi � (!i � wi) =

2�m2M(i) p
i � (!im � wim) + �m=2M(i) p

i � (!im � wim) > �Mm=1(!im � wim) = 0 Therefore

pi � !i > pi � wi:But since wi and �wi are both proportional to !, and pi � wi = pi � !i

this implies that �wim > wim for each m. Since F i( v̂i(x; �); v�i(x; �)) converges to

�wi; there will be (�0; �0) such that F
i(v̂i(�; �0); v�i(�; �0)) > wi and by monotonicity,

v(F i(v̂i(�; �0); v�i(�; �0)); �0) > v(wi; �0 _):Finally, individual rationality implies10 that

F i(v(�; �0)) � wi for each i. But then, since there is some i
0
whose endowment

is not proportional to !, this implies F i
0
(v(�; �0)) � wi

0
:Putting these observations

together, we get the following inequalities: v(F i(v̂i(�; �0); v�i(�; �0)); �0) > v(wi; �0 _) �

v(F i
0
(v(�; �0)); �0) for an individual i for some (�0; �0) In words this means that i,

when he has preferences v(�; �0); �nds pro�table to deviate and reveal preferences

v̂i(�; �0) therefore contradicting incentive compatibility.

As already mentioned, individual rationality is related to non dictatorship. In

fact, the dictator is someone who always imposes his most preferred alternative,

among all the alternative in the feasible set. If preferences are monotonic the dictator

will always receive the entire aggregate endowment of the economy. If endowments

are privately owned, and each agent has a strictly positive endowment of at least

some good, individual rationality immediately implies non dictatorship. The natural

j 6= i has that common preference.
10Again, this assertion would require a proof, through a lemma in the paper.
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question to ask is whether weakening the assumption from individual rationality to

non dictatorship restores some sort of possibility result. Notice that non dictatorship

represents a weaker assumption in a slightly di¤erent sense as well. In fact, if we

interpret the social choice problem as a (re)distribution problem, individual ratio-

nality takes into account, at least to a minimal extent, private ownership of initial

endowments. Instead, requiring non-dictatorship and taking into account only ag-

gregate endowments concerns exclusively �nal allocations, regardless, we might say,

of individual starting points.

Unfortunately, even with non dictatorship there might seem to be little hope for

possibility Zhou(1991). The following result shows impossibility for an economy with

an arbitrary number of goods and 2 agents:

Theorem 8 Suppose an economy with M goods and 2 agents. Suppose V contains

continuous monotonic strictly-quasi concave and smooth utility functions. There is

no social choice function F : V ! A that is Pareto-e¢ cient, incentive compatible

and non-dictatorial.

Sketch of proof. Let us �rst notice that in the 2 agents case, the social choice

function, by feasibility, needs to specify only the allocation of one of the agents, the

other being the residual. Consequently, wlog, let F 1 � F , and F 2 � ! � F:and a

dictatorial social choice function is such that either F � 0 or F � ! for each v:A

useful device to track how the social choice must change (in an incentive compatible

way ) as preferences change is by allowing transformations of utility functions that

imply a "shrinking" of the upper contour set at a particular point. This type of

transformations are usually referred to in the literature asMonotonic. Formally, at a
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point a and utility function v1, the transformed utility v̂1 is such that v̂1(x) � v̂1(a)

and x 6= a implies v1(x) > v1(a), Clearly, a dictatorial social choice function is

trivially incentive compatible ( being constant). However, if F is not constant,

then it can never give the zero endowment to one of the agents without violating

incentive compatibility, because otherwise the agent can manipulate via a monotonic

transformation of his preferences. Therefore, 0 << F (v1; v2) << ! for each (v1; v2).

A quite intuitive fact, although requiring a separate proof, omitted here, is that each

strictly increasing curve (in RM) going from 0 to the aggregate endowment ! is the

contract curve for some pair of utility functions. Now consider �rst the segment 0!.

There is a unique bundle d that belongs both to the range of F and to 0!:Existence

can be proven by e¢ ciency of F and considering the vector of utilities v1(x) =

v2(x) = �pm(xm + !m) where pm > 0 _ m: Uniqueness derives from the following

observation. Suppose d = F (v1; v2) and 0 << d � b << !; and by contradiction,

suppose that b = F (u1; u2) for some pair of utilities (u1; u2). Consider a monotonic

transformation (in the sense outlined above) v̂1 of v1 Incentive compatibility then

requires v1(d) = v1(F (v1; v2)) � v1(F (v̂1; v2)) and v̂1(F (v̂1; v2)) � v̂1(F (v1; v2)) =

v1(F (v1; v2)) = v1(d) ( by de�nition of monotonic transformation).

But then d = F (v̂1; v2): Similarly, at pro�le (u1; u2) ; we must have b = F (û1; u2)

for a monotonic transformation û1 of u1Normalize the two transformations such

that v1(d) = v̂1(d) and u1(b) = û1(b) and take ~v1 = minf û1; v̂1g:Clearly ~v1 is a

monotonic transformation of both v1 at d and v̂1 at b. Therefore, F (~v1; v2) = d and

F (~v1; u2) = b and so F (~v1; v2) � :F (~v1; u2). But this implies u2(! � F (~v1; u2)) <

u2(F (~v1; v2)_), violating incentive compatibility. Since along the segment 0! we have
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either x � y or y � x; we have uniqueness.

Take now any other allocation 0 << e << ! and consider the curve 0e!: This

will be the contract curve for some vector of utilities. Take any point b 2 0e!. If

b � d then the previous discussion shows that we cannot have b belonging to the

range of F . If b � d it can also be proved that b is not in the range of F by �nding

a particular utility function such that ~u1(b) > ~u1(d) and through which agent 1 can

manipulate. But together these observations imply that for the contract curve 0e!

there is no allocation in the range of F; contradicting e¢ ciency of F .

Although it might seem a reasonable generalization,a proof of dictatorial result

for an arbitrary number of agents has not been established yet. When one has more

than 2 agents, Zhou proposed the property of inverse dictatorship: an agent is an

inverse dictator if he always receives the zero bundle. Notice that in the 2 agents

case, dictatorship and inverse dictatorship are equivalent. He conjectured that with

N � 2 agents there is no social choice function for a pure exchange economy that is

e¢ cient, incentive compatible and non-inversely dictatorial. However, this conjecture

has been proved wrong when there are at least 4 agents, by the following non inversely

dictatorial mechanism, proposed by Kato Ohseto(2002):

Kato Ohseto mechanism: Suppose #N � 4 and consider a partition of the pref-

erences into 2 subsets VA and VB. Let the social choice function be F i(v) = ! for

all v 2 V if there exists an i such that vj 2 VA for all j 2 Nnfi� 1; i; ng ( the n in

parenthesis refers to the Nth agent) and vi�1 2 VB, and F n(v) = ! otherwise.

This mechanism is e¢ cient and incentive compatible. However, as noted by the

authors in the paper, it has some quite non desirable properties. First, even though
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it is non inversely dictatorial, there is always an agent who receives the zero bundle,

but his identity is pro�le-dependent. Second, it is bossy, that is there is an agent that

can change the allocation of consumption to other agents without changing his own.

Third, there is a dummy agent, someone who can never a¤ect the �nal allocation of

consumption.

The last result in this section gives a �nal hint on the kind of impossibility

theorem that one obtains in the general N �M case. In the previous paragraph,

I have noticed that the Kato Ohseto mechanism always has some agent consuming

the zero bundle. One natural question is whether there are mechanisms that are

Pareto e¢ cient , incentive compatible and can always guarantee a minimum level of

consumption to each individual for each pro�le of preferences. Serizawa Weymark

(2002) show, using techniques similar to Serizawa(2002), that such a mechanism does

not exist:

Theorem 9 Let all the assumptions of theorem 7 hold. There is no social choice

function F : V ! A that is Pareto e¢ cient, incentive compatible, and such that, for

" > 0; kF i(v)k � " for each i 2 N and v 2 V:

This last theorem gives a representation of the so long recognized ( and too

often neglected) con�ict between the concept of Pareto e¢ ciency and some minimal

requirement of distributional justice.

39



7 Economies with in�nitely many agents

In this �nal section, which is the parallel of section 4,we will present some results

on incentive compatibility in pure exchange economies when the number of agents

is arbitrarily large. The reason for studying large economies rests on the intuitive

idea that incentives to misrepresent preferences might vanish as the number of agents

increases, as the in�uence each agent has on the �nal allocation of resources becomes

arbitrarily small. As we remarked in the previous section, walrasian equilibrium is a

speci�c mechanism to allocate resources, and we have seen that it performs poorly

in terms of incentives when there are a �nite number of agents. The possibility of

manipulating walrasian equilibria rests on the ability to in�uence equilibrium prices.

Studying incentive compatibility of walrasian equilibrium with many agents is, there-

fore, a check on the "folk justi�cation" of price taking behavior in terms of individual

agents having negligible size. In this respect, on one hand, economies with a contin-

uum of agents satisfy incentive compatibility almost by de�nition, each agent having

zero measure. On the other hand, the real signi�cance of the continuum hypothesis

rests on the possibility of it being the limit of a sequence of economies with a �-

nite, but arbitrarly large, number of agents. A remark here is in order to informally

clarify the di¤erence between convergence for an incentive compatible mechanism

to the set of walrasian equilibria and the concept of core convergence . It is clear

that both approaches de�ne an equilibrium concept restricting the set of attainable

allocations to be stable with respect to deviations. The di¤erence rests on the kind

of deviations that are allowed. For the core, individuals are allowed to block a par-

ticular allocation only consuming their own endowment, while (individual) incentive
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compatibility permits deviations to arbitrary preferences, or, in the speci�c case of

walsarian equilibrium, deviations to arbitrary demand functions.

In the following subsections we will �rst describe results that have the �avor of

possibility results in economies with a continuum of agents. We will see that in

an in�nite society the walrasian mechanism is the only symmetric, Pareto e¢ cient

(obviously) and incentive compatible, if it involves no lump sum transfers.When we

pass to the asymptotics, matters are much less straightforward. First, if we require

the mechanism to be walrasian along the sequence of economies, then incentive com-

patibility is obtained only for large enough economies . Second, we will describe a

mechanism that is in the spirit of Vickrey-Clarke-Groves, therefore incentive com-

patible even in �nite ordinal economies.

7.1 Continuum

In the following we will refer to this basic model of an economy with a continuum

of agents. The set of agents is assumed to be a measurable space (I;
; �) with

�(I) = 1. As in the �nite model, ! 2 RM++ represents the total endowment of goods

in the economy. Each agent is characterized by a vector of individual characteristics

�i 2 �, which determines the consumption set X(�i) and the utility index U(x; �i).

In this context an allocation mechanism is a function F : I�� �! RM satisfying

the feasibility conditions Fi(�) 2 X(�i) a.e. and
R
I
Fi(�)d� � ! where � represents

the vector of agents�characteristics.

An incentive compatible mechanism is such that there does not exist an agent i

and characteristics �i; �
0
i such that U(Fi(�

0
i; ��i); �i)) > U(Fi(�i; ��i); �i):
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A Pareto e¢ cient mechanism is such that F (�) is a Pareto e¢ cient allocation.

From the de�nition of the space of agents we can derive a distribution � on the

space of characteristics � by de�ning �(�; A) = �(fi 2 I : � 2 Ag) :Notice that

with an atomless space of agents the distribution on the space of characteristics does

not depend on the characteristics of a single agent. By requiring the mechanism to

be symmetric (the allocation does not depend on the name of the agent, but only

on his characteristic) , we can let it depend only on the distribution of characteris-

tics(Hammond 1979, 1987). with the obvious feasibility conditions F (�; �) 2 X(�)

and
R
�
Fd� � !. It is true then:

Theorem 10 i) if F is symmetric then it is incentive compatible if and only if there

exist a set B(�) such that , for each � and i , F (�; �) 2 argmaxx2B(�)\Xi(�) U(x; �i)

ii)Suppose that � is path-connected, U is strictly quasi-concave, monotone, C1

in (x; �); agent�s�demand function is C1 in (x; �);agents�marginal utility of money

is strictly positive and F 2 intX then F is incentive compatible and Pareto e¢ cient

only if the set B(�) is a walrasian budget set with no lump sum transfers.

The �rst of these statements is obtained from a simple argument. In one direction,

if F (�; �) maximizes U(x; �i) over B(�)\Xi(�) then, since the set B(�) does not de-

pend on individual characteristics, it is also true that by misrepresenting preferences

agents cannot improve upon F (�; �) , obtaining in this way incentive compatibility.

In the other direction, if the mechanism is incentive compatible it su¢ ces to de�ne the

set B(�) � fF (�; �) : � 2 �g and notice that U(F (�; �); �) � U(F (�; �); �0) for each

�0 2 �, by incentive compatibility and the fact that � does not change when a singe

agent deviates and misreports. Therefore F (�; �) 2 argmaxx2B(�)\Xi(�) U(x; �i).
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The second statement says two things. First, by a standard argument based on

the second welfare theorem with a continuum of agents, Pareto e¢ ciency implies

the existence of a supporting price vector p(�) and transfer system T (�; �) such that

the set B(�) = fx 2 RM : p(�)x � T (�; �)g is a walrasian competitive budget set.

Second, if we insist on requiring incentive compatibility then the tranfers T must

be identically equal to zero. In fact, �x the distribution � so that we can drop the

dependence of equilibrium variables on it, and let x(p; T (�); �) be the demand func-

tion and V (p; T (�); �) the indirect utility function. Incentive compatibility requires

for �0 6= �:

U(x(p; T (�0); �0); �) � V (p; T (�); �)

U(x(p; T (�); �); �0) � V (p; T (�0); �0)

On the other hand, since V is di¤erentiable, by the mean value theorem there

exists (T1(�
0); T2(�

0)) 2 [T (�); T (�0)]2 such that:

V (p; T (�0); �)� V (p; T (�); �) = [T (�0)� T (�)] @
@T
V (p; T1(�

0); �)

V (p; T (�0); �0)� V (p; T (�); �0) = [T (�0)� T (�)] @
@T
V (p; T2(�

0); �0)

Therefore we obtain:

U(x(p;T (�);�);�0)�U(x(p;T (�);�0);�0)
@
@T
V (p;T2(�

0);�0)
� [T (�0)� T (�)] � U(x(p;T (�0);�);�)�U(x(p;T (�0);�0);�)

@
@T
V (p;T1(�

0);�0)

Dividing all terms by �0 � �, we obtain

lim�0�!�
T (�0)�T (�)

�0�� = � [rxU(x(p;T (�);�);�)]TD�x(p;T (�);�)
@
@T
V (p;T (�);�)

:
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Since [rxU(x(p; T (�); �); �)] = p @
@T
V (p; T (�); �) by the properties of the value

function of consumer maximization we �nally obtain @
@�
T (�) = �pTD�x(p; T (�); �).

Now by the budget constraint T (�) = pTx(p; T (�); �), so @
@�
T (�) = pTD�x(p; T (�); �) =

�pTD�x(p; T (�); �) = 0. Clearly, transfers can be indipendent of characteristic only

if they are everywhere identically equal to zero , T (�) = 0:

The �rst part of this theorem sheds light on the role of the number of agents for

incentive compatibility. As it is clear, by assuming that each agent is of negiglible size

a mechanism can be found that does not depend on individual actions, being based

only on the distribution of characteristics in the economy. Notice here the link with

the kind of aggregation rule we were able to �nd in section 4. There, the mechanism

gave decision power only to coalitions belonging to an ultra�lter, or equivalently to

coalitions of full measure, thereby ruling out the possibility that individual might ma-

nipulate the social outcome. Here, in a similar fashion, the mechanism forces agents

to maximize over a set that does not depend on their announced characteristics,

thereby excluding the possibility of manipulation. There is however a restriction,

represented by the the second part of the theorem. In this pure exchange economy

setting, since the outcome of the mechanism in Pareto e¢ cient, it will be walrasian

with tranfers. However, transfers must depend on individual characteristics, and the

possibility of transfers kills incentive compatibility. The bottom line is that the set

of allocations that can be implemented is restricted to the walrasian ones without

tranfers.
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7.2 Restricted domain: the "magni�cation principle"

This subsection tackles informally the problem of incentive compatibility from a

slightly di¤erent perspective. As we have seen, incentive compatibility for the wal-

rasian mechanism is related to the ability to in�uence equilibrium prices. In the

continuum, this is obtained easily since each agent, having zero measure, does not

in�uence the distribution of characteristics in the economy. Asymptotically, since we

are considering deviations by single agents, the true and apparent economy converge

to the continuum, again an argument based on the weight of individual consumers

(and relying on the continuity of the price correspondece). In this subsection we

take a di¤erent view. We start from a price selection of walrasian equilibria, and we

ask ourself whether at an equilibrium, single person deviations might change equi-

librium prices. If that is not the case (and if there are no lump sum transfers) it is

natural to call the corresponding economy (measure) a perfectly competitive economy

(Makowsky Ostroy and Segal 1999). In other words, it is an economy for which sin-

gle agent deviations do not change the hyperplane containing the equilibrium price.

Almost by de�nition, a perfectly competitive economy is incentive compatible (in

addition of being individually rational and Pareto e¢ cient). The interesting result

is that by putting a restriction on the domain of preferences to which the mecha-

nism applies, the converse is also true. The restriction is quite a simple one: if a

point (preference pro�le) is in the domain then all pro�les for which utilities have

the same marginal rate of substitution of the original preference pro�le must be in

the domain as well. Moreover, the domain must contain all possible one agent devi-

ations. Provided these two conditions are met, and provided there is a �nite number
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of equilibria, we have a characterization of incentive compatibility in terms of perfect

competition, that is, no ability to in�uence equilibrium prices.

The perfect competition characterization of incentive compatible mechanisms

holds in �nite and continuum economies. However, it should be intuitive why the

existence of perfectly competitive economies is non generic in �nite economies, there-

fore incentive compatible mechanisms are non generic. If an agent is not to modify

equilibrium prices by deviating, it has to be true that, from his perspective, the

allocation he can obtain must lie on a �at segment. In �nite economies, this is the

case only if other agents have a �at segment in their indi¤erence curve, an instance

which is rare. In continuum, things change dramatically. Due to smoothness, at

least locally, the range of possible allocation that an agent can obtain can generi-

cally be approximated by a �at surface, implying genericity for perfectly competitive

economies. Rather than the argument based of negigible size, here the focus is on the

smoothness properties of continuum economies. This is called by Makowski, Ostroy

and Segal the magini�cation principle: the �at segments required by perfect com-

petition in �nite economy magnify the economy how the economy looks like from a

perfect competitor perspective in a continuum.

7.3 Asymptotics

The interest for limiting behavior stems from the fact that in continuum economies,as

we have seen in the previous section, incentive compatibility is somewhat trivially

satis�ed if one assumes that each agent is of measure zero. A natural question is

therefore if there is a sequence of �nite economies approaching the continuum one
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such that incentives to misrepresent get arbitrarily small as the economy grows large

Assume that strategies for each agent are correspondences from prices into net trades

that satisfy the budget constraint. To each pro�le of strategies corresponds a vector

of equilibrium prices (not necessarily deriving from truthful revelation of individual

information) that clear the market, inducing an equilibrium correspondence between

economies and price vectors, Therefore, walrasian demand correspondence is a par-

ticular strategy (i.e. net trade that maximizes the individual preference relation on

the budget set induced by linear prices). A competitive equilibrium is incentive com-

patible if each agent best response to walrasian demand of others is the walrasian

correspondence, and prices clear the market. It turns out that the limiting incen-

tive properties of competitive mechanism depend in a crucial way on the way the

sequence of �nite economies approaches the limit one.

7.3.1 Limiting Incentive compatibility

Let us consider �rst replica economies, that is economies in which there is a �nite

number of M agents�characteristics and the number of agents is kM , with k ap-

proaching in�nity. In this case, if the consumption set of each agent is convex and

bounded below, if a price is attainable (possibly through misrepresentation) in k it

is also attainable in k� < k, where aggregate demand is a fraction of the larger econ-

omy. This leads to the key property that the set of prices that appear in equilibrium

form a decreasing sequence whose intersection is the set of "true" competitive prices.

Assume in addition that these sets are closed, then for each sequence of equilibrium

prices there exists a subsequence pk that converges to the true competitive equilib-
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rium price �p:But then suppose that for each true competitive allocation x to an agent

i there exists another allocation xk that i strictly prefers and is able to induce by

misrepresenting his preferences : U�(xk) > U�(x) + ", " > 0:Denoting V� his indi-

rect utility function we would have V�(pk) � U�(xk) Appealing to the continuity of

the V function we have lim supU�(x
k) � V�(�p) � U�(x), in contradiction with the

de�nition of xk. Therefore this discussion establishes the following:

Theorem 11 Let Ek a sequence of economies, with corresponding equilibrium prices

pk belonging to a closed and nested family of sets. If agent� i has preferences that

are represented by continuous direct and indirect utility functions then for each equi-

librium allocation xk in Ek for i and each " > 0, there exists a competitive allocation

y for i and a k� such that for k > k�, U(y) > U(xk)� ".

. Unfortunately this limiting incentive compatibility (Roberts Postlewaite 1976)

property of the competitive mechanism cannot be generalized to arbitrary sequence

of economies, as it can be shown by example. The key property needed to restore

the result is a form of continuity of the correspondence that maps economies into

equilibrium prices. To be more precise, let S be the set of all correspondences from

prices P into RN , where each correspondence S(�; p) represents a possible (excess

demand )response by an agent � to price p. Each economy can be represented by

a measure � on the Borel subsets F of S, e.g. if the economy has M agents, then

�(F ) = jF\fS1;::;SMgj
M

. Equilibrium prices P (not necessarily deriving from truthful

representation of individual characteristics) associated with an economy � satisfy

the market clearing condition:

P (�) = fp 2 �N : 0 2
R
S S(p)d�g
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where �N is the N-dimensional simplex and S are intended as excess demands.

Therefore we can construct a correspondence from measures (i.e. economies) into

equilibrium prices �� Q(�) � P . Endowing the set of measures with the topology

of weak convergence we can speak of continuity of this map. Since it will be needed

in the sequel, a precise de�nition of continuity of a correspondence is given:

De�nition 4 A correspondence ' : X � Y between topological spaces is continuous

at x if the following two conditions hold:

i) for any open set U s.t.'(x) � U there is a neighborhood Vx of x with the

property [x0 2 Vx =) '(x0) � Vx] (upper hemi-continuity)

ii)for any open set U s.t. U \ '(x) 6= ? there is a neighborhood Vx of x with the

property [x0 2 Vx =) '(x0) \ Vx 6= ?] (lower hemi-continuity)

A correspondence ' : X � Y , on the other hand, can be seen as a function

f : X ! 2Y :The argument below will be based on the fact that continuity implies

equilibrium prices getting "close". We then need a metric on 2Y : The Hausdor¤

distance is of common use in economics since Hildenbrand(1970). Suppose (Y; d) is a

metric space, the distance between a point x and a set E � Y is given by d(x;E) =

infy2E d(x; y) and an "� neighborhood of a subset E is given by B"(E) = fx 2 Y

s.t. d(x;E) < "g: Then:

De�nition 5 The Hausdor¤ distance is the function �(P; P 0) = inff" 2 (0;1] :

P � B"(P 0) and P 0 � B"(P )g

Bymeans of the Hausdor¤distance, we can de�ne a topology on the closed subsets

of 2Y by de�ning the "� ball around E 2 2Y : H"(E) = fC 2 2Y : �(C;E) < "g and
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let the collection of them be the base of a topology. It is then true that:

Lemma 3 i) The collection of " � balls H"(E) with E 2 2Y and " 2 (0;1] forms

the base of a �rst countable Hausdor¤ topology on 2Y (Hausdor¤ metric topology)

ii) Let ' : X � Y be a non-empty compact-valued correspondence. Let f :

X �! KY , where KY are the compact subsets of Y endowed with the Hausdor¤

metric topology and f(x) = '(x), then ' is continuous according to de�nition 4 if

and only if f is continuous as a function between metric spaces. 11

Now let �k be the sequence of true economies (associated with response corre-

spondences fSk1 ; ::; SkMg for each �nite economy k) converging to the limit economy

�, and consider a deviation by a single agent through a correspondence S
0k . This

de�nes a new apparent economy whose simple measure is given by:

vk(F ) = jF\[(support �k)[fS
0kg~fSkgj

j(support �k)j

With this construction it is now easy to see why continuity is su¢ cient for limiting

incentive compatibility. The apparent sequence vk converges to the true measure �,

since by assumption we are considering only deviation by single agents, whose mea-

sure goes to zero.Therefore the true and apparent economy get arbitrarily close. On

the other hand, continuity of the equilibrium price correspondence implies that, as the

apparent economy converges to the true one, equilibrium prices get arbitrarly close

in the Hausdor¤ distance, In fact, given " > 0;for true economies �(Q(�k); Q(�)) < "
2

and for apparent economies �(Q(vk); Q(�)) < "
2
, for k large enough. Therefore

11Aliprantis et al (1999).
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the triangle inequality implies that �(Q(vk); Q(�k)) < ". So the true and appar-

ent economies prices are close to each other and within a neighborhood of the true

limiting economy. Then the same limiting argument used to establish the previous

theorem can be applied here to obtain:

Theorem 12 Suppose fEkg is a sequence of economies such that j EK j�! 1,

with corresponding sequence of simple measures �k �! �. If the equilibrium price

correspondence Q is continuous at � and the inverse utility functions are continuous

then for each equilibrium allocation xk in Ek for i and each " > 0, there exists a

competitive allocation y for i and a k� such that for k > k�, U(y) > U(xk)� ".

This result establishes limiting incentive compatibility of the walrasian mech-

anism. Before commenting on the restrictions imposed by the continuity of the

equilibrium price correspondence, it is worth mentioning a complementary limit-

ing result. Limiting incentive compatibility asserts that the utility gain of deviat-

ing from competitive behavior becomes arbitrarly small as the number of agents

goes to in�nity. A related question is whether by allowing deviations along the

expanding sequence of economies the allocation itself becomes nonetheless close to

the walrasian competitive allocation (Jackson 1992). It is then useful to distin-

guish between the competitive demand of each agent when taking prices as given,

that is x�(p) 2 argmaxx"X(�)\B(p) U(x; �), and the (individually) feasible deviations

d�(p) 2 D� = fx : �N ! X(�) \ B(p)g; where B(p) denotes the walrasian budget

set. Assuming for simplicity continuity and strict quasi-concavity, we can work with
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functions12. In order to de�ne closeness, the space of demands D = [�2�D� has

to be endowed with a metric � : D � D ! R+. As before, each economy is de-

�ned by a measure � on the Borel subsets of D, and the resulting space of measures

can be endowed with the topology of weak convergence. We let a sequence of true

economies �k approach the limiting continuum economy �. In order to stress the

fact that an agent deviates by using a demand function d, we denote the apparent

economy induced by such a deviation by vkd . A key hypothesis, which will play the

same role played the previous theorem by the continuity of the equilibrium price

correspondence , is the �niteness of the set of equiliubrium prices arising in the true

limiting economy. The following de�nition is standard:

De�nition 6 An economy E, represented by a measure �, is regular if there exists

a neighborhood of � where the set fpi(�) : pi(�) 2 P (�)g of equilibrium prices is

�nite and each pi(�) is continuous.

We let a sequence of �nite economies �k converge to the continuum economy

�. We wish to prove that, when k is large enough, for each agent � and for each

possible deviation d 2 D there exists a demand function d0� arbitrarily close to

the competitive demand function x� that the agent prefers. First notice that the

same argument used for the previous theorem establishes that the true and apparent

economy get arbitarily close together (we might add, in the Prohorov metric), while

both converging to the continuum economy �: In particular, this implies that for k

larger than a �nite integer K, vkd lies, for each d 2 D, within the neighborhood of �
12Notice here strict concavity implies single-valued competitive demand, while single-valued de-

viations is a further restriction.
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where economies are regular.Fix " > 0 and de�ne the desired function d� as follows:

d�(p) =

8><>: d(p) if p is an equilibrium price at vkd and kd(p(vkd)� d(pi(�kx�))k < "

x�(p) otherwise

Because vkd and �
k
x�
are both regular , the set of equilibrium prices is �nite and each

equilibrium price function is continuous. Therefore, for each 'i > 0 we can �nd a K
0

large enough so that k > K 0 implies kpi(vkd)�pi(�kx�))k < 'i for all d 2 D and all equi-

librium price functions pi. On the other hand, because of continuity and strict quasi

concavity of preferences, we can choose 'i such that if kd(p(vkd)� d(pi(�kx�))k � " ,

then d(p(vkd) satis�es the budget constraint at p(v
k
d) and U�(x(p(�

k
x�
)) > U�(d(p(v

k
d)):

But then , if k > maxfK;K 0g;agent � weakly prefers the allocation d� over the devia-

tion d. FInally observe that by choosing the metric �(d; d0) = supp2�++ kd(p)�d0(p)k,

the de�nition of d�(p) implies that �(x�; d�) < ", so d� is arbitrarily close to the com-

petitive demand function. This proves the following result:

Theorem 13 Suppose fEkg is a sequence of economies such that j EK j�! 1, with

corresponding sequence of simple measures �k �! �, where � is regular. Suppose

preferences are strictly convex and continuos. Let d be a possible deviation by an

agent � belonging to each economy of the sequence. Then for each " > 0 there exists

a demand function d� such that �(x�; d�) < " and U�(d�) � U�(d):

It is worth commenting on the restrictiveness of the assumption of regularity of

the limiting measure (or the continuity of the equilibrium price correspondence). In

particular, is the set of regular economies a "large" subset of the universe of possible

53



economies? The answer turns out to be positive, whenever the heterogeneity among

consumers is not too large. As we described before, an economy can be seen as a

measure on the space of all possible demand functions. By assuming di¤erentiability,

this space can be made into a topological space by considering the topology of uniform

convergence on compacta. In turn, suppose we restrict attention to a compact subset

of this space , and the relative space of Borel measures on it, endowed with weak

convergence topology. With these assumptions, the measures (i.e. economies) that

posses the regularity property form an open and dense subset (Hildebrand 1974). In

this sense, regularity is quite an attractive assumption, and moreover, an assumption

that cannot be easily dismissed.

On the other hand, limiting incentive compatibility is not quite incentive com-

patibility. As we have seen in the previous theorems, the walrasian mechanism is

incentive compatible for su¢ ciently large economies, while there is still room for

gain from misrepresentation in the "small". The natural question we now approach

is whether there exists mechanisms di¤erent from the walrasian one that are incentive

compatible and e¢ cient along the entire sequence of economies, while approaching

the walrasian one in the limit.

7.3.2 A Vickrey-Clarke-Groves type mechanism

As it is well known in the literature on incentive compatibility in quasi-linear envi-

ronments, there exists a particularly attractive mechanism for this class of economies

that guarantees incentive compatibility and some form of e¢ ciency: the Vickrey -

Clarke- Groves mechanism (VCG for brevity). It is therefore natural to look for a
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mechanism in the spirit of VCG, applied to a general class of non transferable utility

economies, while working through some form of price system (Kovalenkov 2002). In

our pure exchange economy setting, the message each consumer sends is a continuous

demand function d�(p), while the measure �(d) represents the fraction of consumer

reporting demand function d. Also, from the walrasian equilibrium price correspon-

dence, �x a continuous selection p�(�), that is p�(�) is single valued, continuous and

such that p�(�) 2 Q(�) for each economy �. Consumer � is then allocated the con-

sumption vector d
0
�(p

�(���)), where ��� is the economy without consumer �, with the

relative equilibrium price p�(���), and d
0
� is the demand function he or she declared.

The resemblance with VCG is clear: each consumer�s allocation is "insulated" from

his message , thereby ensuring incentive compatibility in dominant strategies.

Let �k be a sequence of economies converging to the continuum economy �.

Along the sequence each consumer will truthfully report his demand function, but

nevertheless the mechanism is not walrasian, since in general p�(���k ) 6= p�(�k):

However, ���k and �k get close together ( again, this is basically the same argument

used in the previous subsection on limiting incentive compatibility). Since we have

chosen the price selection to be continuos, we obtain that the price used by the

mechanism converges to walrasian equilibrium price:

limk sup� kp�(���k )� p�(�k)k = 0

By basically the same reasoning, the allocation appearing in equilibrium converge

to the walrasian one:

limk sup� kd(p�(���k ))� d(p�(�k))k = 0
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However, and here is the main drawback of the mechanism, since we are not

requiring any market clearing condition along the sequence, the mechanism creates

an imbalance of some of the goods, just like VCG mechanism requires either out-

side funding of the numeraire good or a balancing agent. One might think that

imbalance will vanish in the limit, however this is not the case. The limited result

that can be obtained is that per capita imbalance, 1
jEkjk

P
� d�(p

�(���k ))k; vanishes in

the limit. In fact, 1
jEkjk

P
� d�(p

�(���k ))k = 1
jEkjk

P
�[d�(p

�(���k )) � d(p�(�k))]k; sinceP
� d(p

�(�k)) = 0;

by the fact that p�(�k) is walrasian at �k. But
1
jEkjk

P
�[d�(p

�(���k ))�d(p�(�k))]k �

sup� kd(p�(���k ))� d(p�(�k))k, and the right end side of this inequality converges to

zero by the previous argument.

Compared to the limiting incentive compatibility result, the VCG mechanism

studied in this section has the desirable property of being incentive compatible for

each �nite economy. The drawback is its lack of balancedness. In fact, although per

capita imbalance converges to zero, there is still room for large total imbalance as

the economy grows large. Last, notice that we have not gained anything in terms

of genericity. In fact, the mechanism requires the existence of a continuous selection

from the equilibrium price correspondence. Existence of such a selection can be

proved only for an open and dense subset of the domain of regular measures (Mas

Colell 1985).
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8 Conclusions

In this work, we have attempted to establish some common threads in two contiguous

strands of literature: social aggregation and implementation of allocation rules in

pure exchange economies.

First, social aggregation impossibility/possibility results for social welfare func-

tions and social choice functions can be stated in a strikingly similar fashion. Gib-

bard�s proof of the Gibbard-Satthertwaite theorem relies on Arrow�s theorem. Re-

cently, Reny(2001) provided a word-by-word unique proof for impossibility (i.e. the

�nite case) in the two settings. Here , we have provided a unique proof via ultra�lter

property of some subset of agents, because it allows to treat the �nite and in�nite

case in a uni�ed way. All this suggests the intriguing possibility of �nding a unique

common mathematical structure from which the results would follow as corollaries

in the respective specialized settings.

Second, in both abstract social aggregation and aggregation in economic domains,

there is a con�ict between some form of e¢ ciency and some form of justice, when one

takes into account incentive compatibility in �nite societies. It is quite interesting

to notice that the abstract concept of democratic justice violated in the abstract

aggregation setting corresponds to the violation of a more concrete requirement of

minimal distributive justice in the allocation of resources.

Third, a folk justi�cation for competitive behavior rests on large economies. At a

�rst glance, it might seem that atomless spaces of agents restore possibility in both

setting. However, the invisible dictator result should warn us that there is a real

di¢ culty in extending this result to large but �nite societies (sequences converging to
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the continuum,). In this work we have provided hints that this di¢ culty carries over

to the economic domain. In particular, if we insist on the mechanism be walrasian,

then incentive compatibility can be obtained only for large enough economies, while

leaving ample space for incentives to misrepresent for small numbers. If we abandon

the realm of walrasian mechanisms, we can An interesting topic for future research

is to build a model for the economic domain that allows the study of the �nite and

in�nite case in a uni�ed way, much in the spirit of the Kirman Sondermann paper.

This would give an exact meaning to the discontinuity between the �nite and in�nite

case, just like the invisible dictator result in the abstract social choice setting.
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