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Introduction 

 
The primary objective of this thesis is to implement the Lee-Carter 

methodology to analyse and forecast mortality and other vital rates of the 

Italian population. In particular we focus on two alternative approaches to 

forecasting life expectancies at birth.  

   

In the th20  century, the human mortality has declined globally. Such trends 

in mortality reduction present risks for insurers which have planned on the 

basis of tables that do not take these trends into account. To face this risk, it 

is necessary to resort to lifetables that includes forecasts of the future trends 

of mortality: the projected tables. Thus, reasonable mortality forecasting 

techniques have to be used to consistently predict the trends. 

Over the years a number of approaches have been developed for 

forecasting mortality using stochastic models. Lee and Carter (1992) 

proposed a model for describing the secular change in mortality as a 

function of a single index. The method describes a time series of age-

specific log-mortality rates as the sum of an age-specific component that is 

independent on time and a bilinear term, in which one component is a time-

varying parameter reflecting general change in mortality and the second 

one is an age-specific factor, describing the pattern of deviations from the 

age profile.  
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Recently the Lee-Carter model has been widely discussed in the actuarial 

literature [Haberman & Renshaw (1996), Sithole, Haberman, Verrall 

(2000), Renshaw & Haberman (2003a) and Brouhns, Denuit & Vermunt 

(2002a,b)].  

This thesis aims at contributing to this research area by analysing the 

empirical implications of applying the Lee-Carter methodology to the 

Italian population. We analyse, in a Lee Carter mortality context, the 

standard endowment policy under a fair value approach. In order to 

determine an actuarial model for the fair valuation at time t of the 

stochastic stream of cash flows, we base our demographic assumptions on 

the life and death probabilities extracted from the tables constructed using 

the Lee Carter model. The main contributions of this work are as follows. 

Through the Lee-Carter model we generate forecasts both of the level and 

of the age distribution of Italian mortality from 2001 to 2025. On the basis 

of these results we construct a valuation model that fully captures the 

interest and mortality rate dynamics. So far the emphasis has been on 

financial markets; the primary feature of our model is its focus on the 

demographic reference system. 

 

The outline of the thesis is as follows: 

 

Chapter 1: The Historical Review. We describe relevant aspects of the 

development of survival modelling in actuarial mathematics. In particular 

we analyse discrete-time vs continuous-time modelling, single decrements 

vs multiple decrements models and population homogeneity vs population 

heterogeneity.  

We initially present the early actuarial models, proposed in the latter half of 

the 17th century and we discuss their relevant features.  This remaining 

survey is divided in two parts. In the first part we simply focus on specific 
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scientific contribution that we consider as landmarks in the evolution of 

survival modelling. In particular, we discuss concepts and tools used in the 

actuarial field that pertain to the area of survival modelling.  

In the second part, we concentrate our attention on recent literature 

representative of the current trend in actuarial research to also account for 

problems arising in life insurance and pension practice. We also offer 

guidelines in the field of mortality forecasts for consideration. We then 

introduce some recent mortality projections models and research dealing 

with uncertainty in future trends and the relevant actuarial evidence.  

 

Chapter 2: Lee-Carter mortality forecasting: application to the Italian 

population. We investigate the feasibility of using the Lee-Carter 

methodology to construct mortality forecasts for the Italian population. We 

fit the model to the matrix of Italian death rates for each gender from 1950 

to 2000. A time-varying index of mortality is forecasted in an ARIMA 

framework and is used to generate projected life tables. In particular we 

focus on life expectancies at birth and, for the purpose of comparison, we 

introduce an alternative approach for forecasting life expectancies on a 

period basis. The first method allows us to compute life expectancies from 

forecasted mortality rates. In this approach we find an appropriate ARIMA 

time series model for the mortality index tk  and then we use that mortality 

model to generate forecasts of the mortality rates. From the forecasts of 

mortality rates it is straight forward to calculate life tables and life 

expectancy at birth. Next we introduce an alternative approach by 

modelling and forecasting life expectancy directly; we perform a time 

series analysis of the annual life expectancies at age x  to generate forecasts 

directly. The resulting forecasts  generated by the two methods are then 

compared showing that the forecasts based on the LC model are dominated 

by the forecasts obtained under the direct time series approach (for both 
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genders), thus bearing out the conservative nature of the life expectancy 

under the LC approach. Our results are consistent with the findings of Lee 

and Carter (1992) and Renshaw and Haberman (2003a), in their forecasting 

of life expectancies in the USA and in England and Wales, respectively.  

The results are interesting; the a priori assumption would be that they 

would be different, and this is what we find in our analysis. The modelling 

of the underlying mortality rates is a superior method in theoretical terms, 

yet employing the alternative allows us to examine the effect of a different 

approach. Moreover, the difference in results is evident for both genders. 

 

Chapter 3: An application of the Lee-Carter model within the Fair 

Valuation context. Over the last few years the International Accounting 

Standards Board (IASB) in Europe and the Financial Accounting Standards 

Board (FASB) in the US have been considering fair value as an approach to 

valuing insurance contracts. Despite of a number of advantages, the fair 

value of insurance liabilities raises a number of issues. As we know, the 

dependence of payment of benefits on human life means that no regular 

market exists for such liabilities. Thus the market value of these liabilities 

is not readily available and must be estimated. The problem is that the 

demographic valuation is not supported by the hypothesis of the 

completeness of the market as for the financial valuation. It will also 

typically not be possible to find traded securities with a sufficiently close 

similarity to the life insurance and pension obligations such that fair value 

estimates can be obtained. Having seen the problems from not having 

markets for trading insurance liabilities, we need to construct a 

mathematical model of a pricing system that coherently represents the 

insurance realm. Thus we determine an actuarial model for the fair 

valuation of the stochastic stream of cash flows and we apply it to the case 

of an endowment policy with unitary benefits for a male policyholder. For 
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the purpose of comparison we determine the value of the policy at time 0, 

subdividing the analysis into two stages. Firstly, we examine the case of a 

policy for an insured aged 40 at issue with a time to maturity of 15 years. 

Secondly we also apply the model to the case of a policy for an insured 

aged 65 at issue, with the same time to maturity.  We present a comparison 

between the expected present value of the endowment policy in two cases: 

when the mortality rates are derived from the life table obtained with the 

Lee Carter methodology and when the mortality rates are derived from the 

life table SIM’92. What we find is a difference in the results due to the 

capturing of the improvements in mortality rates by the Lee Carter model, 

which determines a stronger projection. 
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Chapter 1 

The Historical Review 
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1.1. Introduction 

In 1762 Equitable Life Assurance Society was established as the first 

mutual life assurance company, based on the inspiration of a man ahead of 

his time – James Dodson. 

It was not until 1750 that James Dodson, Fellow of the Royal Society, 

revolutionised the way that life assurance worked by developing his 

scientific basis for calculating premiums. Dodson used mortality tables and 

probability studies to calculate tables of fair annual premiums. The great 

advantage of these was that the policyholder's premium was fixed 

throughout the term of the policy and the amount paid on death was 

guaranteed. Although Dodson died before Equitable was founded, his ideas 

formed the basis of modern life assurance upon which all life assurance 

schemes were subsequently based. 

In recent years the Society has undergone an exceptionally difficult period. 

During 1999 and the first half of 2000 a legal test case was fought to clarify 

the Society's approach to the Guaranteed Annuity Rates (GAR) offered by 

some with-profits pension policies sold up to the late 1980s. In July 2000 

the House of Lords ruled that the Society's approach was inappropriate. As 

a result the then Board decided that it was in the best interest of members to 

put the Society up for sale. 

After much initial interest in the Society, each potential purchaser 

withdrew.  Without the proceeds of a sale to restore the capital strength of 

the with-profits fund, it was clear that the investment freedom, and so the 

performance of the fund, would be constrained. The former Board decided 

on 8 December 2000 to stop selling new business. 

1.2. Landmarks in the history of actuarial models 

1.2.1. The early actuarial models 
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In the latter half of the 17th century the early actuarial models were 

proposed. In 1671, Jan de Witt, in a report to the States of Holland, showed 

the first attempt to determine scientifically the purchase price of annuities, 

using mortality tables. De Witt’s life table was hypothetical, although his 

report refers to some investigations of mortality of annuitants. He 

considered an immediate life annuity of 1 unit per annum payable in 

arrears; with x  he denoted the present age of the annuitant and xa  the 

expected present value (i.e. the actuarial value) of a whole life annuity-

immediate, such that: 

¬= 1aax ¬+ 21/1 aqx ¬+ 31/2 aqx ......1/3 +xq         ( )1  

where  
x

hx

x

hxhx
xh l

d
l
llq ++++ =

−
= 1

1/  and { }xl  denoting the (expected) number of 

survivors at age x  in a given life table, assumed as a survival model. 

De Witt’s report was forgotten until Hendriks (1852) rediscovered it and 

provided an English translation and commentary.  

         In 1693 Edmund Halley, the famous astronomer, constructed a life 

table from observations of the yearly number of deaths in Breslau (where 

the parish registers were among the first to contain age at death). He 

calculated the first table of values of annuities as a function of the 

nominee’s age and developed formulae for calculating the value of joint 

life annuities (for two and three lives; with geometrical diagrams by way of 

explanation) and emphasised the benefit of using logarithms to reduce the 

volume of calculation. His approach to calculating the present value of 

annuities was through the distribution of the number of survivors, that is 

via the formula: 

......3
3

2
2

1 +++= xxxx pvpvpva           ( )2  

where 
x

hx
xh l

lp += . 
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It is worth noting that this formula is algebraically equivalent to de Witt’s 

although computationally more straightforward, whereas de Witt’s formula 

is much more interesting for further developments. 

Halley remarked that the government was selling annuities too cheaply and 

at a price independent of the age of the annuitant: his advice was ignored. 

As many commentators have noted, the life table function tabulated by 

Halley was what we would call 1−xL  rather than xl . It is noteworthy that the 

Breslau table was reproduced in the updated version of 1737 of the abstract 

of the Amicable Society’s charter and by laws. 

1.2.2.  Survival models: some features 

In a modern perspective, the survival model used for evaluating life 

annuities was: (a) deterministic; (b) time-discrete; (c) single decrement; (d) 

(implicitly) assuming homogeneity; (e) (implicitly) static.  

Early actuarial models for insurance products other than life annuities had 

analogous features. This was the case, for instance, of the model proposed 

by James Dodson in 1755, for calculating level premiums in whole life 

assurance (see Haberman, 1996). Some comments about these aspects 

follow. 

(a) Although de Witt's formula refers to the expected value of a random 

variable, the only language available in the latter half of the 17th century 

for describing probability models was the language from games of chance, 

as pointed out by Hald (1987). Actuarial models for life insurance have 

been explicitly proposed in terms of random variables just in the 1950's. De 

Finetti (1950, 1957) and Sverdrup (1952) first defined the random present 

value, Y, of insurance benefits as a function of the random residual lifetime 

xT .  

Regardless of terminology, it is important to remark that the early survival 

models, albeit referring to random variables, did not allow for the riskiness 
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inherent in insurance contracts, and hence can be considered as 

“deterministic”. 

(b) Halley's formula for the evaluation of life annuities constitutes one of 

the implementations of his life table, constructed from observed numbers of 

deaths in Breslau, whereas de Witt's life table was hypothetical. In both 

cases, since the proposed formulae explicitly refer to survival tables, it is 

quite natural that the adopted model is a time-discrete one. An important 

step towards time-continuous modelling follows from the early mortality 

“laws” originated from the fitting of mathematical formulae to mortality 

data. 

(c) The type of benefits concerned in the early actuarial models, i.e. life 

annuity benefits (and assurances as well), naturally lead to a single-

decrement setting. In the actuarial field, resorting to multiple decrement 

models follows the need to evaluate benefits depending on health status. 

(d) Heterogeneity in respect of mortality is one of the most important issues 

in both survival modelling and actuarial practice. Although the early 

actuarial models did not allow for heterogeneity in populations, the 

problem of adverse selection was carefully considered at that time. As 

pointed out by Hald (1987), de Witt stressed that the nominee of an annuity 

contract usually is a person in “full health, and with a manifest likelihood 

of prolonged existence”, thus a low mortality follows, at least in the initial 

annuity period. 

(e) It was not until the construction of a long series of mortality 

observations that trends in mortality clearly emerged and hence the concept 

of dynamic mortality was achieved, namely at the beginning of the 20th 

century. At present, allowing for mortality trends is one of the most 

important issues in actuarial modelling, especially when life annuities and 

other living benefits are concerned. 
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The contributions underpinning the early survival models were progressed 

further, and actuarial models as well. Development of survival modelling 

required a lot of work, involving actuarial science, probability theory, 

demography, medical statistics, etc. In recent times, numerical approaches 

to actuarial problems gained effectiveness thanks to the availability of high 

speed computers, so paving the way to a new “computational” actuarial 

mathematics, also based on stochastic simulation procedures. It is worth 

noting that, unfortunately, many interesting results were ignored for 

decades and practically forgotten, before being rediscovered and finally 

implemented. Moreover, a number of the results of demographers were 

ignored by actuaries and vice versa.  

1.3. Mortality: Old versus Modern Assumptions 

1.3.1.  Some basic ideas 

Actuarial calculation in life insurance and pension funds involves the use of 

mortality assumptions, commonly expressed by the annual probabilities of 

death xq , or the force of mortality xμ . Within a traditional framework, these 

quantities are usually determined from period mortality observations. From 

the xq ’s, a survival table is then derived as follows:  

(1) ),1(1 xxx qll −=+    ,1,....,1,0 −= ωx           

where ω  is the assumed maximum age (105 or 110, say) and, for example, 

,000.1000 =l  or 10 =l  as we assume in what follows. Using the force of 

mortality, the survival function is given, for x  > 0 , by  

(2) .0
0

∫
=

−
x

ttd

x ell
μ

 

Formulae (1) and (2) implicitly assume that the xq  and the function xμ  can 

provide an appropriate representation of the age pattern of mortality over a 

period of, say, 110 years (namely, the maximal life span of humans).  
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In many countries, statistical evidence shows that human mortality declined 

over the 20th century, and in particular over its last decades. So, an 

hypothesis of “static” mortality, as implicitly involved by (1) and (2), 

cannot be assumed in principle. In actuarial practice, however, it is worth 

distinguishing between different calculation purposes. When mortality 

assumptions are required for pricing and reserving death benefits, the 

period-based xq  (or the xμ ) are on the safe-side for the insurer. Moreover, 

where term insurance is concerned, a short period (5–10 years) is usually 

involved. Conversely, when life annuities and other insurance living 

benefits are dealt with, calculations using period-based assumptions induce 

underestimation of insurer’s or pension fund’s liabilities because of 

mortality improvements. 

1.3.2. Rectangularisation and expansion phenomena 

Recent changes in mortality contribute in defining a moving scenario 

which clearly affects life insurance covers and annuities. Mortality trends at 

adult ages reveal two different features: at old ages probabilities of death 

are decreasing, whilst at young ages probabilities of death higher than in 

the past are observed, in particular, in the range 20–40. As far as life 

insurance valuations are concerned, the former aspect mainly affects living 

benefits, whilst the latter affects death benefits. In both cases, the 

calculation of expected present values (needed in pricing and reserving) 

requires an appropriate mortality projection in order to avoid 

underestimation of future costs. However, the projection itself is affected 

by uncertainty, since future changes in mortality are not known at the time 

of valuation; this uncertainty should be specifically considered in the 

appraisal. 

The analysis of mortality over the last decades (see for example Benjamin 

and Soliman, 1993; Macdonald, 1997; Macdonald et al., 1998) shows 
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various aspects which affect the shape of curves such as the curve of deaths 

and the graph of the survival function. In particular: 

1. an increasing concentration of deaths around the mode (at adult and 

old ages) of the curve of deaths1 is evident; so the graph of the 

survival function moves towards a rectangular shape, whence the 

term “rectangularization” to denote this aspect; 

2. the mode of the curve of deaths (which, owing to the 

rectangularization, tends to coincide with the maximum age ω ) 

moves towards very old ages, originating the so-called “expansion” 

of the survival function.  

3. More recently, a further aspect, called young mortality hump, has 

been observed: higher levels and a larger dispersion of accidental 

deaths at young ages (primarily due to AIDS and drugs). 

The above mentioned mortality trends clearly affect claim frequencies in 

life insurance. In particular, aspects 1 and 2 in the above list affect living 

benefits, whilst aspect 3 affects death benefits. In order to avoid 

underestimation of future costs, mortality projections are required in 

discounting the benefits. 

Further aspects of mortality trends can be captured looking at the 

behaviour, for each integer age x , of the annual probability of death xq  

drawn from a sequence of life tables pertaining to the same kind of 

population (e.g. males living in a given country). The graph constructed 

plotting the xq ’s against time is usually called “mortality profile”. Mortality 

profiles are often decreasing, in particular at adult and old ages. 

1.3.3. Mortality in a dynamic context 

Mortality improvements could induce underestimation of liabilities related 

to life annuities and other living benefits. So, trends in mortality imply the 

                                                 
1 The graph of the probability density function of the random life, in an age-continuous setting 
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use of “projected” survival models for several actuarial purposes, e.g. for 

pricing and reserving as well as for assessing solvency in life offices and 

pension plans. A projected survival model aims at describing future age 

patterns of mortality, on the basis of the experienced mortality trend. 
In actuarial practice, a common approach to mortality projections consists 

of choosing a model and estimating the relevant parameters simply aiming 

at extrapolating recent trends, as far as these can be perceived from 

mortality statistics.  

In a different approach, models are adopted which allow one to express the 

basic characteristics of the evolving scenario in which mortality changes 

take place. For this purpose, analytical laws should be used, with 

parameters assumed to be functions of the calendar year. 

A dynamic approach to mortality underpins projected survival models. 

When working in a dynamic context (in particular when projecting 

mortality), the basic idea is to express mortality as a function of the (future) 

calendar year y . Where a single-figure representation of mortality is 

concerned, a dynamic model is a real-valued function ( )yΨ . For example, 

the expected lifetime for a newborn, denoted by 0

o

e  in a non dynamic 

context, is represented by ( )ye0

o

, a function of the calendar year y  (namely 

the year of birth), when the mortality trend is allowed for. Similarly, the 

general death rate in a given population can be represented by a function 

( )yq , where y  denotes the calendar year in which the population is 

considered. 

In actuarial calculations, age-specific measures of mortality are usually 

needed. Then in a dynamic context, mortality is assumed to be a function of 

both the age x  and the calendar year y . In a rather general setting, a 

dynamic survival model is a function ( )yx,Γ , usually with real values. 
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However, a vector-valued function is concerned if, for example, causes of 

death are allowed for. 

In concrete terms, a real-valued function ( )yx,Γ  may represent mortality 

rates, mortality odds, a force of mortality, a survival function, some 

transform of the survival function, etc. The projected survival model is 

given by the restriction ( ) '\, yyyx >Γ , where 'y  denotes the current calendar 

year, or possibly the year for which the latest (reliable) period life table is 

available. The projected survival model is constructed (and, in particular, 

the relevant parameters are estimated) by applying appropriate statistical 

procedures to past mortality experience. 

Although age-specific functions are needed in actuarial calculations, the 

interest of single-figure indices as functions of the calendar year should not 

be underestimated. In particular, important features of past mortality trends 

can be singled out focussing on the behaviour of some indices meant as 

“markers” of the probability distribution of the random lifetime at birth, 0T  

(or at some given age x , xT ). Examples of markers providing a “location” 

measure are as follows (the notation refers to a non-dynamic context): 

(1) the expected lifetime for a newborn, 
o

0e ; 

(2) the expected lifetime at some fixed age 0x , 
o

0e ; 

(3) the mode (at adult ages) of the curve of deaths, also called the Lexis 

point. 

Turning back to age-specific functions, assume now that both age and 

calendar year are discrete variables. Hence, ( )yx,Γ  can be represented by a 

matrix whose rows correspond to ages and columns to calendar years. For 

example, let ( ) ( )yqyx x=Γ , . Then, the annual probabilities of death in the 

matrix can be read according to three arrangements: 

(a) a “vertical” arrangement (i.e. by columns), 
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(3) ( ) ( ) ( ),....,,........., 10 yqyqyq x           

corresponding to a sequence of period life tables, each table referring to a 

given calendar year y ; 

(b) a “diagonal” arrangement, 

(4) ( ) ( ) ( ),....,.....,1, 10 xyqyqyq x ++            

corresponding to a sequence of cohort life tables, each table referring to the 

cohort born in year y ; 

(c) a “horizontal” arrangement (i.e. by rows), 

(5) ( ) ( ) ( ),....1,,1....., +− yqyqyq xxx            

yielding the mortality profiles, each profile referring to a given age x . 

As will emerge from the discussion of some of the contributions, thinking 

in terms of the various arrangements can also help in understanding 

different approaches to the interpolation of mortality data. 

1.4. Mortality forecasts: seminal contributions 

1.4.1.  The forerunners 

As noted by Cramér and Wold (1935), the earliest attempt to project 

mortality is probably due to the Swedish astronomer H. Gyldén. In a work 

presented to the Swedish Assurance Association in 1875, he fitted a 

straight line to the sequence of general death rates of the Swedish 

population during the years 1750 to 1870. A similar graphical interpolation 

was proposed in 1901 by T. Richardt for sequences of the annuity values 

60a  and 65a , calculated according to various Norwegian life tables, and then 

projected via extrapolation for application to pension plan calculations. 

Note that, as in the proposal by Gyldén, this case also concerned the 

projection of a single-figure index. 

Mortality trends and the relevant effects on life assurance and pension 

annuities were clearly perceived at the beginning of the 20th century, as 
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witnessed by various initiatives in the actuarial field. In particular, it is 

worth noting that the subject “Mortality tables for annuitants” was one of 

the topics discussed at the 5th International Congress of Actuaries, held in 

Berlin in 1906. Nordenmark (1906), for instance, points out that 

improvements in mortality must be carefully considered when pricing life 

annuities and, in particular, cohort mortality should be addressed to avoid 

underestimation of the related liabilities.  

The 7th International Congress of Actuaries, held in Amsterdam in 1912, 

included the subject “The course, since 1800, of the mortality of assured 

persons”. Here a “dynamic” approach to mortality analysis was established. 

As Cramér and Wold (1935) note, a life table for annuities was constructed 

in 1912 by A. Lindstedt, who used data from Swedish population 

experience and, for each age x , extrapolated the sequence of annual 

probability of death, namely the mortality profile ( )yqx , hence adopting a 

“horizontal” approach. Probably, this work constitutes the earliest 

projection of age-specific functions. 

1.4.2.  Mortality forecast: the earliest models 

Blaschke (1923) proposed a Makeham-based projected survival model. A 

dynamic Makeham's law was defined as follows: 

(6) ( ) ( ) ( ) ( )x
x yyyy γβαμ +=            

Hence, the three parameters are functions of the calendar year y . For the 

projection, a “vertical” method was proposed, consisting in the estimation 

of the constants for each period table (or “cross sectional” table) based on 

the experienced mortality, and then in fitting the estimated values; 

projected values of the three parameters are obtained via extrapolation. 

As Cramér and Wold (1935) note, in 1924 the Institute of Actuaries in 

London proposed an “horizontal” method for mortality projection, 

assuming for the annual probability of death the following expression: 
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(7) ( ) y
xxxx cbayq +=            

thus, ( )yqx  is an exponential function of the calendar year y , from which 

the name “exponential formula” is commonly used to denote this approach 

to mortality projections. Parameters xa , xb  and xc  are estimated on the 

basis of observed mortality profiles. 

It is worth noting that projection formulae currently used by UK actuaries 

for annuitants and pensioners tables are particular cases of formula (8). For 

instance, with 0=xa , ( ) '' y
xxx ryqb −= , xx rc = , where 'y  denotes the current 

year and xr  represents the annual rate of mortality improvement (if 1<xr ) at 

age x , the so-called “reduction factor”, we obtain 

(8) ( ) ( ) '' yy
xxx ryqyq −=            

Moreover, with ( )'yqa xxx λ= , ( ) ( ) ''1 y
xxx ryqb −−= λ , rcx = , we find 

(9) ( ) ( ) ( )[ ]'1' yy
xxxx ryqyq −−+= λλ            

where ( )'yqxxλ  represents (if 1<r ) the asymptotic mortality at age x ; in this 

case the speed of convergence, and hence r , is assumed to be independent 

of age. CMIR10 (1990) and CMIR17 (1999) can be referred to for more 

details. The formula proposed in 1929 by the German actuary C. W. Sachs 

also represents a particular case of (8), being as follows: 

(10) ( ) ( ) bx
yy

xx ayqyq +
−

=
'

'            

where a and b are constants. 

Let us turn to the “diagonal” approach. In 1927 A. R. Davidson and A. R. 

Reid proposed a Makeham-based model, with a dynamic Makeham's law 

defined as follows: 

(11) ( ) ( ) ( ) ( )x
x y τψτϕτδμ +=            

where xy −=τ  denotes the year of birth. In the implementation, ( ) ψτψ =  

was assumed for all τ , whereas the functions ( )τδ  and ( )τϕ  were estimated 

via a cohort graduation (see Davidson and Reid, 1927). 
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The use of Makeham-based projected survival models is discussed by 

Cramér and Wold (1935), dealing with graduation and extrapolation of 

Swedish mortality. In particular, the diagonal and the vertical approach are 

compared. 

The assumption formulated in 1934 by Kermack, McKendrick and 

McKinlay constitutes another example of the diagonal approach to 

mortality projections. 

As Pollard (1949) notes, these authors showed that, for some countries, it 

was reasonable to assume that the force of mortality depended on the 

attained age x  and the year of birth τ , and they deduced that 

(12) ( ) ( ) ( )τμ RxQyx =            

where xy += τ , ( )xQ  is a function of age only and ( )τR  is a function of the 

year of birth only. 

1.4.3.  Some contributions from demography   

Seminal contributions to survival modelling and mortality projections have 

been produced by demographers throughout the latter half of the 20th 

century. The “optimal” table, model tables and relational methods probably 

constitute three of the most influential proposals in recent times, in the 

framework of survival analysis. 

As aforementioned, it clearly emerges that a number of projection methods 

are based on the extrapolation of observed mortality trends. Important 

examples are provided by formulae (6), (7) and (11). Albeit it seems quite 

natural that mortality forecasts are based on past mortality observations, 

different approaches to the construction of projected tables can be adopted. 

Let us suppose that the existence of an “optimal” life table is assumed. The 

relevant age pattern of mortality must be meant as the limit to mortality 

improvements. Let ∗
xq  denote the limit probability of death at age x , 
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whereas ( )'yqx  denotes the current mortality. Assume then that the 

projected mortality ( )yqx  is expressed as follows: 

(13) ( ) ( )[ ]', yqqFyq xxx
∗=            

where the symbol F  denotes some interpolation formula. In particular, an 

exponential interpolation can be adopted, leading for example to: 

(14) ( ) ( )( ) '' yy
xxxx rqyqqyq −∗∗ −+=            

with 1<r . Note that formula (9) can be easily linked to (14), choosing xλ  

such that ( ) ∗= xxx qyq λ' . 

The idea of an “optimal” table was proposed by Bourgeois-Pichat (1952). 

The question was: “can mortality decline indefinitely or is there a limit, and 

if so, what is this limit?” Determining a limit table requires a number of 

assumptions about the trend in various mortality causes, so that an analysis 

of mortality by causes of death is required. 

When a mortality law is used to fit observed data, the age pattern of 

mortality is summarised by parameters (two or three, for Gompertz's law 

and Makeham's law respectively). Then, the projection procedure can be 

applied to the set of parameters (instead of the set of age-specific mortality 

rates). This results in a dramatic reduction in the “dimension” of the 

forecasting problem – namely in the number of “degrees of freedom”. 

However, the age pattern of mortality can be summarized without resorting 

to mathematical laws (and hence avoiding the choice of appropriate laws). 

In particular, some typical values, or “markers”, of the mortality pattern 

can be used to this purpose, as mentioned before. 

The possibility of summarising the age pattern of mortality by using some 

markers underpins the use of “model tables” in mortality projections. The 

first set of model tables was constructed in 1955 by the United Nations. 

The set was indexed on the expectation of life at birth, 
o

0e , so that each table 

was summarized by the relevant value of this marker. 
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Model tables can be used for mortality forecasts as follows. A set of model 

tables is chosen, representing the mortality in a given population at several 

epochs, and assumed to also represent future mortality for that population. 

Trends in some markers are analysed and then projected, possibly using 

some mathematical formula, to predict their future values. Projected age-

specific mortality rates are then obtained entering the system of model life 

tables for the various projected values of the markers. 

A new way to mortality forecasts was paved by the “relational method” 

proposed by W. Brass (see Brass, 1974), who focussed on the logit 

transform of the survival function, namely 

(15) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=Λ

xS
xS

x
1ln

2
1            

Brass noted empirically that xΛ  can  be expressed in the terms of the logit, 
ds

x
tanΛ , pertaining to a “ standard” population via a linear relation, i.e. 

(16) ds
xx
tanΛ+=Λ βα            

whose parameters are (almost) independent of age. 

For the purpose of forecasting mortality, equation (16) can be used in a 

dynamic sense. In a dynamic survival modelling context, the Brass logit 

transformation is particularly interesting when applied to cohort data, as the 

logits pertaining to successive birth-year cohorts seem to be linearly related 

(see Pollard, 1987). Hence, denoting ( )τxΛ  as the logit of the survival 

function for the cohort born in the calendar year τ , ( )τ,xS , we have: 

(17) ( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=Λ

τ
ττ

,
,1ln

2
1

xS
xS

x            

Referring to a couple of birth years, κτ and 1+kτ , assume 

(18) ( ) ( )kxkkkx τβατ Λ+=Λ +1            
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So, the problem of projecting mortality reduces to the problem of 

extrapolating the two series kα  and kβ . Projected values of various life 

table functions can be derived from the inverse logit transformation: 

(19) ( ) ( )[ ]τ
τ

x

xS
Λ+

=
2exp1
1,            

A different transform of the survival function S(x) has been addressed by 

Petrioli and Berti. The proposed transform is the “resistance function” (see 

Petrioli and Berti, 1979; Keyfitz, 1982), defined as follows: 

(20) ( )
( )

( )
x

xS
x

xS

xr
−
−= 1

ω             

where ω  denotes the maximum age. Thus, the transform is the ratio of the 

average annual probability of death beyond age x  to the average annual 

probability of death prior to age x . The resistance function has been 

graduated with the curve: 

(21) ( ) ( ) CBxAxexxxr ++−=
2βα ω       

and, in particular, with the three-parameter curve: 

(22) ( ) ( )βα ω xkxxr −=             

Model tables have been constructed on combinations of the three 

parameters, focussing on the values of some markers. 

In a dynamic context, the mortality trend is calculated assuming that a 

number of the parameters of the resistance function depend on the calendar 

year y. 

Experienced mortality trends lead to parameters fitting through time, so 

that, referring to equation (22), we have: 

(23) ( ) ( ) ( )( ) ( )yy xxykyxr βα ω −=,            

Note that, assuming a model for the resistance function (see (21) and (22)) 

means that the resulting projection model can be classified as an analytical 

model, even though it does not directly address the survival function. 
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The Petrioli-Berti model has been used to project the mortality of the 

Italian population, and has thus been adopted by the Italian Association of 

Insurers to build projected mortality tables for annuity business. 

1.4.4.  Modern contributions to mortality forecast 

In the last decades of the 1900's, various mortality law-based projection 

models have been proposed. In 1980 Heligman and Pollard proposed the 

following law to model mortality odds: 

(24) ( ) ( ) xFxEBx

x

x GHDeA
p
q C

++= −−+ 2lnln            

where the 
x

x

p
q ’s are the so-called “odds”. As far as the meaning of the law 

is concerned,  the first term in (24), ( ) ,
CBxA +  describes infant mortality, the 

second term, ( ) ,
2lnln FxEDe −−  mortality at young ages and the third term, xGH , 

mortality at old ages. 

Forfar and Smith (1988) have performed mortality projections using the 

Heligman-Pollard law, assuming that various relevant parameters are 

functions of the calendar year: ( ) ( ),...., yByA (see also Benjamin and Soliman, 

1993). Poulin (1980) has proposed a Makeham-based projection formula, 

whereas Wetterstrand (1981) has used Gompertz's law. 

In the 1990's, a new method for forecasting the age pattern of 

mortality was proposed and then extended by L. Carter and R.D. Lee (see 

Lee and Carter, 1992; Lee, 2000). The Lee-Carter (LC) method used the 

central death rate to represent the age-specific mortality. Let ( )ymx  be the 

central death rate for age x  at time y . The model is as follows: 

(25) ( ) yxyxxx ekbaym ,ln ++=  

where the xa ’s describes the age pattern of mortality averaged over time, 

whereas the xb ’s describes the deviations from the averaged pattern when 
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the coefficient yk  varies. The variation in the level of mortality with y  is 

described by yk . Finally, the quantity yxe ,  denotes the error term. 

Parameters xa , xb  and yk  are estimated from experienced mortality, 

obtaining the estimates 
^

xa , 
^

xb , 
^

yk  (see also Renshaw and Haberman, 

2002). Forecasts follow by modelling the values of yk  as a time series, e.g. 

a random walk with drift. 

Starting from a given year 'y , forecasts of mortality rates are then 

computed, for ,....,2,1=s  as follows: 

(26) ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=+ ++

^
^

''

^
^

' exp'exp' ysyxxsyxxx kkbymkbasym  

An important feature of the LC methodology should be stressed. 

Traditional projections models provide the forecaster with point estimates 

of future mortality rates (or other age-specific quantities). On the contrary, 

the LC method allows for uncertainty in forecasts. In fact, ( )ymx  is 

modelled as a stochastic process driven by the stochastic process yk , 

whence interval estimates can be computed for the projected values of 

mortality rates. 

The LC methodology represents one of the most influential proposals of 

mortality forecasting models in recent times. Much of the most recent 

research and many applications to actuarial problems are directly related to 

this methodology.  

In 2002, Brouhns, Denuit and Vermunt, inspired from a comment made by 

Alho (2000) on Lee (2000), proposed an improvement of the LC method, 

using Poisson random variation for the number of deaths, instead of using 

the error term. They kept the Lee-Carter log-bilinear form for the force of 

mortality but replaced ordinary least-squares regression with Poisson 

regression for the death counts. In order to circumvent the problems 
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associated with the OLS method, they considered that the random number 

of deaths was given by 

(27) ( ) ( ) ( )( )yyEPoissonyD xxx μ≅  

with ( )yEx  the central number of exposed to risk, and ( )yxμ  the force of 

mortality. The force of mortality is thus assumed to have the log-bilinear 

form 

(28) ( ) txxx y κβαμ +=ln . 

The meaning of the xα , xβ , and tκ  parameters is essentially the same as in 

the classical Lee-Carter model. 

Renshaw and Haberman (2003)  suggested ways in which the Lee-Carter 

methodology of fitting and forecasting mortality trends might be adopted 

for the construction of mortality reduction factors.  

Whereas the LC mortality forecasting approach had a homoscedastic 

additive Gaussian error structure, Renshaw and Haberman (2003) and 

Brouhns et al. (2002), had each implemented similar alternative approaches 

to mortality forecasting, based on heteroscedastic Poisson (non additive) 

error structures. A key difference between Renshaw and Haberman (2003) 

and the method proposed by Brouhns et al. (2002) centres on the 

interpretation of time, which, in the Lee-Carter and Brouhns et al. (2002) 

approach is modelled as a factor and estimated by the singular value 

decomposition (SVD), and under the approach proposed by Renshaw and 

Haberman (2003), is modelled as a known covariate. 

1.5.   Concluding remarks 

Methods for mortality projections can be classified according to various 

points of view. For brevity, we only focus on two criteria. Whatever the 

approach may be, mortality forecasts are obviously based on observed data, 

which usually consists of (cross-sectional) mortality tables. As regards the 
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“use” of data in extrapolating observed trends, the following classification 

seems to be interesting. 

I. Age-specific data can be directly used for mortality forecasts. Thus, 

the projection procedure is applied to quantities such as mortality 

rates xq  (see, for example, the exponential formula (7)), central 

mortality rates xm  (see the LC methodology), mortality odds 
x

x

p
q , etc. 

II. Data can be “summarized” in several ways. Important examples are 

provided by the use of mortality laws (for instance Makeham's law), 

by model tables and by the Brass relational method. In these cases, 

the projection procedure is applied to the parameters of the law, or 

the markers associated to the model tables, or the parameters of the 

Brass linear relation. 

As far as the link between experience data (i.e. mortality tables) and 

projected mortality is concerned, it is worth noting that: 

• mortality tables provide estimates of random mortality in a (past) 

population; 

• mortality in a future population is random, also because of its unknown 

trend. 

The stochastic nature of mortality should not be disregarded, particularly 

when forecasts are considered. As regards the allowance for stochastic 

mortality, we can note what follows. 

1) Traditional projection methods disregard the stochastic nature of 

(observed) mortality and provide the forecaster only with “point” 

estimates of future mortality. 

2) The stochastic model underlying the LC methodology recognises the 

observed mortality rates as estimates, and allows for interval estimation 

of future mortality rates. 
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3) Uncertainty in future mortality rates is first attributable to random 

fluctuations around the relevant point estimates, namely to “process 

risk”. Moreover, deviations may also be attributed to the choice of the 

projection model, because the relevant parameters or the structure of the 

model itself do not reflect the actual mortality trend. Hence, “parameter 

risk” and “model risk” should both be allowed for when projecting 

mortality.  
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Lee-Carter mortality forecasting: 

application to the Italian population 
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2.1. Introduction and motivation 

2.1.1. Mortality on the move 

During the 20th century life expectancy has increased dramatically. 

The Human Mortality Database shows that Italian life expectancy at birth 

from 1900 to 1999 rose from 41.90 to 82.26 years for females and from 

41.65 to 76.12 for males. Moreover, the trends in mortality rates for many 

industrialised countries have also been downwards for several years. 

Usually we view such mortality improvements in an optimistic way: 

according to the statistics we live longer than our ancestors. But these 

changes clearly affect pricing and reserve allocation for life annuities and 

represent one of the major threats to a social security system that has been 

planned on the basis of more modest life expectancy. Even when using 

updated mortality tables, these trends in mortality reduction present risks 

for insurers. This is because these tables do not take these trends into 

account. Put otherwise, the risk is of underestimating the survival 

probability, thus determining inappropriate premiums. This risk, is known 

in the actuarial literature as Longevity Risk, that being the risk derived 

from a future mortality rate which, ex post, does not reflect the forecasted 

one: see Brouhns, Denuit, Vermunt (2002b). To face this risk, it is 

necessary to build projected tables including this trend. Thus, reasonable 

mortality forecasting techniques have to be used to consistently predict the 

trends (see Brouhns, Denuit, Vermunt (2002a). 

2.1.2. Previous literature 

Over previous years a rapidly increasing body of literature has dealt with 

the issue of uncertainty in population forecasting and a number of 

approaches have been developed for forecasting mortality using stochastic 

models (Alho (1990), Alho & Spencer (1985), Bell & Monsell (1991)). In 

their article Alho and Spencer developed measures of uncertainty for 
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forecasts of the national population for up to 15 years in the future when 

the forecasts were made by a popular projection method, the linear 

(“Leslie”) model for population growth, adjusted for migration. Errors in 

population forecasts arise from errors in the jump-off population and errors 

in the predictions of future vital rates. Alho and Spencer studied the 

propagation of these errors through the linear growth model and developed 

prediction intervals for future populations. They compared the prediction 

intervals for U.S. national forecasts with the U.S. Census Bureau’s high-

low intervals. To assess the accuracy of the predictions of future vital rates, 

they derived the predictions from a parametric statistical model and 

estimated the extent of model misspecification and errors in parameter 

estimates. A novel aspect of their research was the incorporation of “expert 

opinion” into their statistical modelling. The mechanism they used to 

incorporate expert opinion was the “mixed estimation” regression model, 

which used expert opinion as a future observation distributed independently 

of all the other past and future observations. 

Alho (1990) in his paper presented a stochastic version of the demographic 

cohort-component method of forecasting future population. The cohort-

component method of population forecasting typically projects future 

numbers of annual births, deaths and migration by one-or five-year age-sex 

groups, adds them to form a new population vector, and repeats the 

calculations for each forecast year. The stochastic version of the cohort-

component method treated the vital rates as realisations of random 

processes. This yields high-low intervals that have a given probability of 

covering the true size of an age-sex group in a given future year.  

Alho compared the use of expert opinion in mortality forecasting with 

simple extrapolation techniques to see how useful each approach has been 

in the past.  



 
 

38

 An interesting alternative for forecasting mortality was proposed in 

1992 by Lee and Carter, who published a new method extrapolating long-

run forecasts of the level and age pattern of mortality, based on a 

combination of statistical time series methods and parametric approach. 

Recently the Lee-Carter model has been widely discussed in the actuarial 

literature. Haberman & Renshaw (1996), Sithole, Haberman, Verrall 

(2000) and Renshaw & Haberman (2003a) have implemented an alternative 

approach to mortality forecasting based on generalised linear models and 

heteroscedastic Poisson error structures. Brouhns, Denuit & Vermunt 

(2002a,b) kept the Lee-Carter log-bilinear form for the force of mortality, 

but replaced the ordinary least-squares regression structure with a Poisson 

regression model for the death counts. 

2.1.3. Our motivations 

There were two reasons for selecting the Lee-Carter model in our work. 

Firstly, this model represents one of the most influential recent 

developments in the field of mortality forecasts. Secondly, the important 

feature of this model is that for a precise value of the time index k , we can 

define a complete set of death probabilities that allow us to calculate all of 

the life table. Once we estimate the parameters, depending on age { }xx βα , , 

they stay constant and invariant through time. Hence, when we know k , we 

can use the parameters for any year of interest. Another important feature 

that drove us to choose this model is that traditional projection models 

provide the forecaster with point estimates of future mortality rates. On the 

contrary, the LC method allows for uncertainty in forecasts (the so-called 

longevity risk). 
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2.2. Lee-Carter mortality forecasting methodology 

2.2.1. The model  

The Lee-Carter method is a powerful approach to mortality projections 

which describes the log of a time series of age-specific death rates txm ,  as 

the sum of an age-specific component xα , that is independent on time and 

another component that is the product of a time-varying parameter tk , 

reflecting the general level of mortality, and an age-specific component xβ , 

that represents how rapidly or slowly mortality at each age varies when the 

general level of mortality changes. 

In this contribution we consider the Lee-Carter model, which 

represents mortality level by a single index and we fit this demographic 

model to the matrix of Italian death rates, from year 1950 to 2000. We 

follow the methodology of Renshaw and Haberman (2003a), which is the 

inspiration for this chapter. Then we use the forecasts of this single 

parameter to generate forecasts both of the level and of the age distribution 

of mortality for the next 25 years. In particular we focus on life 

expectancies at birth and, for the purpose of comparison, we introduce an 

alternative approach for forecasting life expectancies on a period basis. 

2.2.2. Notation, data and model fitting    

The data for the Italian population, supplied by the Human Mortality 

Database, is divided by gender (Wilmoth et Al., 2000). Rather than using 

the entire dataset, we consider a subgroup of death rates for five-year age 

groups under 105 years old, so as to only cover five-year groups with a 

sample size significant enough for our analysis. The same is repeated for 

the corresponding exposure to risk.   

 To estimate the model for a given matrix of rates txm , , we seek the 

least squares solution to the equation: 
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(1) ( ) txtxxtx km ,,ln εβα ++=  
 

The model cannot be fitted by ordinary regression methods, because there 

are no given regressors; on the right side of the equation there are only 

parameters to be estimated and the unknown index tk .  

The data is comprised of the “Number of deaths” and the “Exposure to 

risk” denoted by two 15×  matrices supplied by The Human Mortality 

Database. In this notation, the first number refers to the age interval, and 

the second number refers to the time interval (Elandt-Johnson and Johnson, 

1980). For each gender and for each calendar year: 

,1,,.........1, 111 nthtttt =−++=  where ,11 +−= tth n  we consider all the ages 

,,.......,, 21 kxxxx =  grouped in classes as 

[ ]104100,9995,,.........1410,95,41,0 −−−−− . From these data we construct an 

array of crude rates of deaths 
tx

tx
tx e

d
m

,

,
, = . 

             In order to find a least squares solution we use a close 

approximation, suggested by Lee and Carter (1992), to the singular value 

decomposition (SVD) method, assuming that the errors are 

homoschedastic. To obtain a unique solution, we impose that the sum of 

the xβ  coefficients is equal to 1.0, and that the sum of the tk  parameters is 

equal to zero.  

 Under these assumptions, it can be seen that the xα  coefficients must 

be simply the average values over time of the ( )txm ,ln  values for each x .  

We estimate xα  as the logarithm of the geometric mean of the crude 

mortality rates, averaged over all t , for each x :  

(2) ⎥
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⎢
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Furthermore, tk  must equal the sum over age of ( )( )xtxm α−,ln . All that 

remains, is to estimate the sxβ . We found each xβ  by regressing 

( )( )xtxm α−,ln  on tk , without a constant term, separately for each age group x . 

More precisely, we estimate xβ  from ( ) ( ) '1ln xttxxxt kbam ε+=−  (where ( )1
tk  

refers to tk  above) using the least squares estimation, i.e. choosing xb  to 

minimize ( )( )∑ −−
tx

txxxt km
,

21ln βα
( )( )

( )∑

∑
=⇒

=

=

−

tn

tt
t

tn

tt
xxtt

k

mk

x

1

21

1

1 ln α

β . The raw estimates of xα , 

xβ  and tk  are inserted in the Appendix A.  

Here xα  describes the general age shape of the age specific death rates txm , , 

while tk  is an index that describes the variation in the level of mortality to 

t .  The xβ  coefficients describe the tendency of mortality at age x  to 

change when the general level of mortality ( tk ) changes. When xβ  is large 

for some x , then the death rate at age x  varies substantially when the 

general level of mortality changes (as with 0=x  for infant mortality, for 

example) and when xβ  is small, then the death rates for that age vary little 

when the general level of mortality changes (as is often the case with 

mortality at older ages). 

The Lee Carter model also assumes that all the age specific death 

rates move up or down together, although not necessarily by the same 

amounts, since all are driven by the same period index, tk . Although  not 

all occurrences of xβ  need to have the same sign, in practice all the xβ  do 

have the same sign, at least when the model is fit over fairly long periods. 

As shown in the Appendix A, the sxβ  for both females and males have the 

same sign, which is positive. In Fig. 1, the values of xβ , as determined with 

the SVD, are plotted against x , for each case separately i.e. by gender.  
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Fig. 1. Beta versus age 

From Fig.1 we can see that when xβ  is large for some x , then the 

death rate at age x  varies significantly when the general level of mortality 

changes (again, as with 0=x  for infant mortality) and when xβ  is small, 

then the death rate at that age varies little when the general level of 

mortality changes. This often the case with mortality at older ages. 

2.2.3. Reestimating kt 

Because the first stage estimation is based on logs of death rates rather than 

the death rates themselves, sizable discrepancies can occur between 

predicted and actual deaths. To guarantee that the fitted death rates will 

lead to the actual numbers of deaths, when applied to given population age 

distribution, we have reestimated tk  in a second step, taking the xα  and xβ  

estimates from the first step. To correct for this, we apply the methodology 

from Section 3 of Lee and Carter (1992). We thereby find a new estimate 

for k  by an iterative search, adjusting the estimated tk  so that the actual 

total observed deaths ∑
=

xk

xx
xtd

1

 equal the total expected deaths ∑
=

+
xk

xx

k
xt

txxee
1

)( βα , for 

each year t . 

The iterative method proceeds as follows: 
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1) We compare the total expected deaths ( )

∑
=

+
xk

xx

k
xt

txxee
1

)( 1βα  to the actual total 

observed deaths ∑
=

xk

xx
xtd

1

 in each period. 

2) This comparison reveals one of three possible states: 

(i) If ( )

∑∑
==

+ >
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we need to decrease the expected 

deaths, adjusting the estimated tk  so that the new estimate 

of tk , say ( )2
tk , will be: ( ) ( )( ),112 dkk tt −=  if ( ) 01 >tk  (where ( )1

tk  

is the first estimate of tk ) ; ( ) ( )( )dkk tt += 112 , if ( ) 01 <tk , where 

d  is a small number. 

(ii) If ( )

∑∑
==

+ =
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we stop here the iterations. 

(iii) If ( )

∑∑
==

+ <
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we need to increase the expected 

deaths adjusting the estimated tk  so that : ( ) ( )( ),112 dkk tt +=  if 
( ) 01 >tk ; ( ) ( )( ),112 dkk tt −= , if ( ) 01 <tk . 

3) Go back to Step 1. 

 

As Lee and Carter (1992) point out, this approach differs from the direct 

SVD estimates. This is because the low death rates of youth contribute far 

less to the total deaths, yet when fitting the log-transformed rates they are 

weighted equivalently to the high death rates of the older ages. It is also 

worth noting that differences in population age group sizes also results 

in different weights in the second-stage estimation of k.   

2.2.4. First application and comments 

We have run this iterative process 1000 times using a VBA macro 

and Microsoft Excel to find the new estimate of k , shown in the Appendix 

B.  
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                    Fig.2  Re-estimates of k  

Fig. 2 plots estimates of k , for females and males; as shown, k  declines  

roughly linearly from 1950-2000, more for females than for males. If we 

look at the values of k , shown in Appendix B, k  declines at about the same 

pace during the first half of the period as it does during the second half. It 

also is striking that short-run fluctuations in k  do not appear much greater 

in the first part of the period than they do in the second, with the exception 

of the male series in the first years. Both these features of k  (its linear 

decline and its relatively constant variance) are very convenient for 

forecasting purposes. 

We can see from the re-estimated kt that mortality improved in Italy.  For 

the purposes of comparison with other countries, for example Britain (as 

presented in Renshaw and Haberman, 2003), we can see that the Italian 

improvement is more pronounced. This is probably due to the fact that 

mortality was initially higher in Italy than in Britain, making the relative 

improvement greater and therefore more apparent. If we compare male to 

female mortality we might expect to see the same effect. Male mortality is 

higher than female mortality, thus possible improvements in male mortality 
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could again be more evident than improvements in female mortality in an 

analogous way to the country comparison.  

2.3. ARIMA methodology 

2.3.1.  Modelling mortality index 

The estimated time-dependent parameter tk  can be modelled as a 

stochastic process; we thus used the standard Box and Jenkins 

methodology (identification-estimation-diagnosis) to generate an 

appropriate ARIMA (p,d,q) model for the mortality index tk  (Box and 

Jenkins; Hamilton, 1994). 

Considering the time series given by the reestimated tk , we need to 

identify a correct model, for our series, among the general class of ARIMA 

models. The procedure to construct the model goes through different 

iterative phases to arrive at a model that fits our data well (Francis X. 

Diebold, 2004; Makridakis, Wheelwright, Hyndman, 1998). The phases are 

the following: 

1) Preliminary analysis of the series and  possible transformation. 

2) Identification of the order of the model. 

3) Parameter estimation. 

4) Evaluation of the model. 

In the first step, we analyse the general pattern of the time series, as is 

illustrated in Fig. 2.  A clear, almost linear, trend emerges, indicating that 

mortality enjoyed a steady erosion over the years. 

The input series for an ARIMA needs to be stationary, that is, it should 

have a constant mean, variance, and autocorrelation through time. 

Therefore, the series usually needs to be differenced first until it is 

stationary. The number of times the series needs to be differenced to 

achieve stationarity is reflected in the d  parameter. In order to determine 

the necessary level of differencing, one should examine the plot of the data 
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and autocorrelogram, that displays graphically and numerically the 

autocorrelation function (ACF). We examine the ACF of the series and 

choose the value of d  that gives rise to a rapid decrease of the ACF 

towards zero.  

2.3.2.  Identification phase 

In the Identification phase, after we made the series stationary, we also 

need to decide how many autoregressive parameters ( )p  and/or moving 

average parameters ( )q  are necessary to yield an effective, but still 

parsimonious model of the process. In practice, the numbers of the p  or q  

parameters very rarely need to be greater than 2. 

The major tools used in the Identification phase are plots of the series, 

correlograms of autocorrelation (ACF) and partial autocorrelation (PACF). 

The decision is not straightforward, and in less typical cases requires not 

only experience but also a good deal of experimentation with alternative 

models (as well as the technical parameters of ARIMA models). We 

experimented with twelve models, based on combinations of the p  and q  

parameters varying between zero and two. The sample autocorrelations and 

partial autocorrelations, together with related diagnostics, provided 

graphical aids to model selection. This complemented our automatic 

identification criteria, the Akaike and Schwarz information criterion per 

model. To guide model selection we use these two criterions even though 

the SIC usually selects more parsimonious models due to its greater 

concern over the number of parameters to be estimated. Using a model 

selection strategy involving not just examination of AIC and SIC, but also 

examination of autocorrelations and partial autocorrelations, we are led to 

choose the ARIMA (0,1,0) for males and an ARIMA (0,1,1) for female. 

For males a model with an ar(1) term added could be marginally superior, 

but we preferred a random walk with drift on grounds of parsimony. We 
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examine the general pattern of the time series for both genders in Fig.2, and 

we saw that a clear, decreasing trend emerges for each, indicating that the 

series are not stationary in mean. We are led to the same conclusions if we 

look at the autocorrelation function or the partial autocorrelation functions 

in Fig.3 (females) and 4 (males).  
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       Fig.3 Female autocorrelation and partial autocorrelation function 
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       Fig.4 Male autocorrelation and partial autocorrelation function 
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       As we can see, if we look at the graph of the autocorrelation function 

(ACF), this approaches zero gradually rather than abruptly. On the 

contrary, the partial autocorrelation function (PACF) cuts off abruptly; 

specifically, at displacement 1, the partial autocorrelations are significant 

while coefficients on all longer lags are zero. This is a clear sign of a 

nonstationary series. 

Thus, following the Box and Jenkins methodology, we considered the 

differenced series, which we show in Fig.5 
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       Fig.5 Differenced females and males series 

After differencing the series, the nonstationarity in mean seems to be 

eliminated. Also the autocorrelation and partial autocorrelation functions 

(Fig.6), become consistent with the hypothesis of a stationary series. 

Because of the decreasing trend, when we estimated our model we also 

took a constant into consideration.   
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  Fig.6 Autocorrelation and partial autocorrelation functions after differencing the series 

2.3.3. Parameters estimation   

Concerning the third phase, there are several different methods for 

estimating parameters. All of them should produce very similar estimates, 

but may be more or less efficient for any given model. Model parameters 

are estimated using statistical software, in our case time series estimation 

was performed by EViews using a least squares procedure. The tk  index 

for males was modelled as an ARIMA (0,1,0) process, i.e.:  

ttt KK ελ ++= −1  

and for females as an ARIMA (0,1,1) process, i.e.:  

111 −− −++= tttt KK εθελ  

The constant terms λ  indicate the average annual change of tk . It is this 

change that drives the forecasts of the long-run change in mortality. θ  

represents the moving average term. 

The estimated parameters for both genders, and their standard errors, 

appear in the table below: 
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Male ARIMA (0,1,0) 

Variable Coefficient Std. Error t-Statistic Prob. 

λ  -0.424882 0.137488 -3.090321 0.0033 

     

Female ARIMA (0,1,1) 

Variable Coefficient Std. Error t-Statistic Prob. 

λ  -0.566485 0.045168 -12.54168 0.0000 

θ  -0.644956 0.108801 -5.927839 0.0000 

     

The autoregressive parameter ϕ  is equal to zero in both cases; as we see 

from the t-statistics, the parameters are significant. Furthermore, the Ljung-

Box test and the residual plot guides us towards retaining the chosen model 

due to its good fit to the data. 

For comparison, we note that Renshaw and Haberman (2003a), fitted the 

same ARIMA (1,1,0) process for males and females using the LC model, 

obtaining a parameters estimates of 532,0−=ϕ  and 3041,0−=λ  for males 

and of 572,0−=ϕ  and 3525,0−=λ   for females. This was based on data for 

England and Wales over the period 1950-1998, and results in parameters 

which are comparable with our above estimates. 

2.3.4. Evaluation of the model 

The evaluation of the model aims at verifying that the model identified 

and estimated in the previous phases is adequate. If it is not, we have to 

suggest an alternative model. The objective of diagnostic checking is to 

ascertain whether the model "fits" the historical data well enough. This 

diagnostic checking is undertaken analysing the residuals of the estimated 

model: if the model is adequate, the residuals should reflect the features of 

white noise. One way to check for adequacy is to use the model to forecast 

all of the known values of the data series, compute the differences (i.e., the 

residuals) between the known and forecasted values, and generate the 
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simple autocorrelation correlograms for the residuals. If none of the 

residuals autocorrelations is significantly different from zero, the model 

may be judged adequate. Another approach to diagnostic checking is to 

estimate a model with higher-ordered autoregressive and moving average 

terms, then observe (i.e., draw an inference from the t-statistic) whether the 

regression coefficients of the additional terms are statistically significant. 

Yet another approach to diagnostic checking is to employ the Chi-square 

statistic as a diagnostic criterion. We may compute a test statistic 

employing the equation ( ) ∑−= 2* RdnQ , where n  is the number of 

observations in the series, d  is the degree of differencing, 2R  is the square 

of the autocorrelation coefficient, and the sum is taken over the range of 1 

to k , the order of autocorrelation. The appropriate number of degrees of 

freedom is 1−− dk . If the computed value of Q  is less than the Chi-square 

statistic for 1−− dk  degrees of freedom, the model is judged adequate.  

To verify that the model we have previously identified and estimated fits 

the historical data well, we perform a number of analyses. We fit different 

models to the matrix of Italian death rates from 1950 to 1985, thereby using 

a 35 years in-sample period, to generate out-of-sample forecasts for the 

next 15 years. After fitting a range of models in-sample, we compute the 

Root of Mean Square Error (RMSE) for each ARIMA model and we find 

that the models we have chosen (ARIMA (0,1,0) for males and ARIMA 

(0,1,1) for females) are the ones with the lowest RMSE. This indicates that 

these are the models which best approximate the historical data.  

2.4. Projecting lifetables 

2.4.1. Traditional method 

Now we can use the ARIMA (0,1,1) and ARIMA (0,1,0) models to 

generate the forecasts, for the next 25 years based on the period 1950-2000, 

of the index of mortality tk . Appendix C lists these values for both genders. 
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Figure 7 and 8, instead, plot the past values of k  along with the forecasts 

based on the time series model and the associated confidence intervals, for 

females and males respectively. It is worth noticing that we have used the 

Lee-Carter method for calculating the prediction intervals that concentrates 

just on variability due to kappa. The other sources of variability could be 

allowed for by using a bootstrap method: see Brouhns, N., Denuit, M., Van 

Keilegom (2005). 

 

 

Fig. 7 Forecasts of Female Mortality Index k  with confidence interval 
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Fig. 8 Forecasts of Male Mortality Index k  with confidence interval 

Once we have forecasted the index of mortality, we can generate associated 

life table values at five-years intervals. First we insert the projected ,2000 sk +  

,25,.....,2,1=s  into the formulas  

(3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−= +

°

+

°

2000

^

2000

^

2000,
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2000, exp kkmm sxxsx β  

to compute forecast mortality rates by alignment to the latest available 

empirical mortality rates  2000,

^

xm .  

Figure 9 shows the shapes of the mortality rates that we forecast for the 

females generations born in years 2001 and 2025. It is worth noticing that 

the mortality rates  for age groups 1 - 4 and 5 - 9 become virtually identical 

by 2001 and 2025. 
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Fig. 9 Forecasted mortality rates for the female generations born in years 2001 and 2025         

From these projected mortality rates, we can build projected life tables and 

compute life expectancy at birth: see Keyfitz N. (1977).  

Thus, we convert the life table death rates, xm , into probabilities of death, 

xq . Let xf  be the average number of years lived within the age interval 

[ )1, +xx  for people dying at that age. As in Renshaw and Haberman 

(2003a), we assume that 2
1=xf  for all age group except age 0  (for 0=x  we 

fix 15,0=xf  for males and 16,0=xf  for females). We then compute  xq  

from xm  and xf according to the formula,  

(4) 
xxx

xx
x mwf

mwq
'1+

≅ ,                     ,,....,, 210 −= kxxxx      

  

for 104100,......,95,41,0 −−−=x , iixi xxw −= +1 , 22=k  and xx ff −=1' .  

  To complete the life table calculation, let xp  be the probability of 

surviving from age x  to 1+x .   

Therefore, 

(5) xx qp −= 1 , 

for all five-year age groups up the age of 104.  
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From xq  calculated by (4) and an arbitrary 0l  (in our case we make it equal 

to 100000) the life table is constructed by working down the column of l ’s 

and d ’s, applying the recurrence equations 

(6) ( )xxwxx qll −=+ 1 ,                      ,,....,, 210 −= kxxxx  

(7) ,xxwxxx qllld
x
=−= +                 ,,....,, 210 −= kxxxx    

where xl  indicates the number of survivors and xd  is the distribution of 

deaths by age in the life table population. 

The person-years lived by the life-table population in the age interval 

[ )1, +xx  are 

(8) ( ),' xxxxx dflwL −=                       .,....,, 210 −= kxxxx  

The person-years remaining for individuals of age x  equal  

(9) ∑
−

=

=
1k

i

i

x

xx
xx LT  

imply that life expectancy is given by 

(10) .
i

i
i x

x
x l

Te =  

Appendix D lists forecasts of life expectancy at birth obtained using the 

Lee-Carter model and also shows forecasts obtained with the alternative 

method which will be discussed later.  

2.4.2. The alternative approach to forecast life expectancy 

The method seen above allowed us to compute life expectancies from 

forecasted mortality rates. In that approach we found an appropriate 

ARIMA time series model for the mortality index tk  and then we used that 

mortality model to generate forecasts of the mortality rates. From the 

forecasts of mortality rates it was straight forward to calculate life tables 

and life expectancy at birth.  

Now we introduce an alternative approach by modelling and forecasting 

life expectancy directly; we perform a time series analysis of the annual life 
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expectancies at age x  to generate forecasts directly. In particular, we 

consider annual life expectancies at birth for the Italian population, 

supplied by the Human Mortality Database and divided by gender, from 

1950 to 2000. As before, we use the standard Box and Jenkins 

methodology to generate an appropriate ARIMA (p,d,q) model for our time 

series, represented in this case by the males and females life expectancies at 

birth.  

In this case the life expectancies are intrinsically viewed as a stochastic 

process and are estimated and forecasted within an ARIMA time series 

model. We find that an appropriate model for males and females is ARIMA 

(1,1,1): 

1111 −− −++∇=∇ tttt ee εθελϕ  

where ∇  is the differencing operator and { }tε  denotes white noise. 

The fitted ARIMA (1,1,1) model generates sex-specific life expectancy 

forecasts directly. Appendix D shows forecasts of life expectancy at birth, 

comparing the results obtained using the Lee-Carter methodology and the 

alternative approach. Both approaches are illustrated in Figure 10, which 

shows life expectancy at birth from 1950 to 2000 and forecasts from 2001 

to 2025. As shown the forecasts based on the LC model are dominated by 

the forecasts obtained under the direct time series approach (for both 

genders), thus bearing out the conservative nature of the life expectancy 

under the LC approach. We want to stress that our results are consistent 

with the findings of Lee and Carter (1992) and Renshaw and Haberman 

(2003a), in their forecasting of life expectancies in the USA and in England 

and Wales, respectively.   
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Fig. 10 Life Expectancy at birth and Forecasts    

2.5. Conclusions 

We have presented an application of the model underpinning the Lee-

Carter methodology for forecasting vital rates. In particular we have 

focused on forecasting life expectancies on a period basis and we have 

compared the life expectancies forecasted under the LC model, with the 

time-series-based forecast. The results are interesting; the a priori 

assumption would be that they would be different, and this is what we find 

in our analysis. The modelling of the underlying mortality rates is a 

superior method in theoretical terms, yet employing the alternative allows 

us to examine the effect of a different approach. Moreover, the difference 

in results is evident for both genders. 
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Appendix A: raw estimates of xα , xβ and tk  

Estimation αx

Age Group Females Males
0 -4,033699707 -3,835790179

1-4 -7,213929985 -7,10874839
5-9 -8,160779498 -7,8680444

10-14 -8,26407312 -7,813319463
15-19 -7,864148005 -6,945887141
20-24 -7,651584535 -6,717847306
25-29 -7,452283749 -6,677807228
30-34 -7,176244489 -6,52591061
35-39 -6,82668437 -6,267172662
40-44 -6,42665121 -5,857718365
45-49 -5,97721047 -5,367224209
50-54 -5,5362239 -4,85898577
55-59 -5,099981417 -4,371698852
60-64 -4,618943106 -3,908334419
65-69 -4,091446245 -3,46120974
70-74 -3,513642443 -3,004627826
75-79 -2,91609241 -2,533438599
80-84 -2,340328469 -2,054049223
85-89 -1,816543952 -1,608759955
90-94 -1,360558507 -1,204260676
95-99 -0,98275526 -0,858826013

100-104 -0,683975682 -0,571001792  
Estimation βx

Age Group Females Males
0 0,102499919 0,141392134

1-4 0,115756234 0,154637924
5-9 0,076369591 0,1048845

10-14 0,06054872 0,077513092
15-19 0,046862446 0,036496079
20-24 0,052411099 0,027122682
25-29 0,052634309 0,028254762
30-34 0,049035161 0,029940744
35-39 0,046391497 0,03824621
40-44 0,041574381 0,043840993
45-49 0,0371411 0,043890003
50-54 0,035471203 0,040208161
55-59 0,034728713 0,034730071
60-64 0,036185567 0,029289642
65-69 0,038141047 0,024775806
70-74 0,03928069 0,024092927
75-79 0,03702842 0,024840021
80-84 0,031747846 0,024819726
85-89 0,025296883 0,023897241
90-94 0,018481342 0,021030037
95-99 0,013483991 0,018642631

100-104 0,00892984 0,007454613  
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Raw kt

Year Females Males
1950 14,76794409 8,583743518
1951 14,89155126 9,913426279
1952 13,408219 8,394651321
1953 12,52239962 7,846443414
1954 10,62992411 6,157210056
1955 9,842540872 6,678494859
1956 10,87206043 7,63722919
1957 9,952250993 6,926523736
1958 8,333794839 5,760670293
1959 7,666052493 4,684290325
1960 7,514274804 5,502144527
1961 6,452023934 4,67497325
1962 7,350708893 5,924349376
1963 7,437428484 6,008580608
1964 5,035484367 4,149811148
1965 5,574608009 4,440954214
1966 3,765069333 3,160189717
1967 4,097046229 2,997962203
1968 4,145444986 3,741762929
1969 3,538285116 3,239875422
1970 2,803734674 2,594174948
1971 2,15831635 2,1059274
1972 1,746190265 1,687278316
1973 1,709463933 2,05402866
1974 0,043476874 0,49638264
1975 0,085074077 1,008839268
1976 -0,48958581 0,302168793
1977 -1,406965414 -0,064006487
1978 -2,454922639 -0,523079984
1979 -2,794406103 -0,942828408
1980 -1,942370504 -0,584121479
1981 -3,91343144 -1,793326397
1982 -4,657875266 -2,739795273
1983 -4,248820047 -2,475348897
1984 -5,901708476 -3,960446015
1985 -5,964310903 -4,129592882
1986 -6,714897273 -4,911413514
1987 -7,42132546 -5,417138884
1988 -7,575054175 -5,531328024
1989 -8,556732355 -6,055195481
1990 -8,365313614 -5,705874419
1991 -8,247115251 -5,245437366
1992 -8,664645546 -5,975670242
1993 -8,610286143 -6,494699583
1994 -9,306065233 -7,242041819
1995 -9,841560985 -7,062980989
1996 -10,14304994 -8,138229592
1997 -11,10687368 -9,046047702
1998 -11,81185036 -9,821817576
1999 -12,90587746 -11,02581041
2000 -13,29832396 -11,78585499  
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Appendix B: tk  re-estimated 

Reestimated kt

Year Females Males
1950 12,239065 7,127597
1951 13,261274 8,301183
1952 12,594144 7,754879
1953 12,055052 7,318683
1954 9,651698 5,478459
1955 9,163218 5,265724
1956 11,254295 7,463961
1957 9,853836 6,647819
1958 7,950729 4,876913
1959 7,034265 4,145711
1960 7,632881 5,196660
1961 6,159950 4,190676
1962 7,683678 5,772402
1963 7,480289 5,813922
1964 5,299921 4,079973
1965 6,234911 4,901331
1966 4,399276 3,478168
1967 4,684472 3,650243
1968 5,330330 4,475201
1969 4,693498 4,603788
1970 3,442278 3,068314
1971 2,802146 2,750540
1972 2,117816 2,410300
1973 2,955119 3,103914
1974 1,363817 2,088754
1975 1,885872 2,989996
1976 0,000000 2,486175
1977 0,000000 0,000000
1978 -0,767902 0,000000
1979 -1,524324 0,000000
1980 -1,043566 0,000000
1981 -1,971115 0,000000
1982 -3,159363 -0,890456
1983 -2,010931 0,000000
1984 -4,507087 -1,983047
1985 -4,416243 -2,085719
1986 -5,308517 -2,968874
1987 -6,862385 -4,323954
1988 -7,192844 -4,789860
1989 -8,570573 -5,953422
1990 -8,606526 -6,217906
1991 -9,022171 -6,417020
1992 -10,235814 -7,592074
1993 -10,703506 -7,944450
1994 -11,313666 -8,573662
1995 -12,367972 -9,549911
1996 -13,367315 -10,741046
1997 -13,494783 -11,336797
1998 -13,349057 -11,294018
1999 -14,263166 -12,552274
2000 -15,503808 -14,116502  

 



 
 

65

Appendix C: Forecasted tk  

Years Kt_Females Kt_Males
2001 -16,07029342 -14,54138354
2002 -16,63677847 -14,96626551
2003 -17,20326352 -15,39114747
2004 -17,76974857 -15,81602944
2005 -18,33623361 -16,2409114
2006 -18,90271866 -16,66579337
2007 -19,46920371 -17,09067533
2008 -20,03568876 -17,5155573
2009 -20,60217381 -17,94043926
2010 -21,16865886 -18,36532123
2011 -21,73514391 -18,79020319
2012 -22,30162895 -19,21508515
2013 -22,868114 -19,63996712
2014 -23,43459905 -20,06484908
2015 -24,0010841 -20,48973105
2016 -24,56756915 -20,91461301
2017 -25,1340542 -21,33949498
2018 -25,70053924 -21,76437694
2019 -26,26702429 -22,18925891
2020 -26,83350934 -22,61414087
2021 -27,39999439 -23,03902284
2022 -27,96647944 -23,4639048
2023 -28,53296449 -23,88878677
2024 -29,09944953 -24,31366873
2025 -29,66593458 -24,7385507

Forecasted kt
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Appendix D: Comparison between the two different approaches  

Alternative Method Lee-Carter method
Years Female(1,1,1) Female(0,1,1)
2001 82,72917824 82,67351256
2002 82,99835649 82,86201097
2003 83,26753473 83,04787938
2004 83,53671298 83,23118379
2005 83,80589122 83,41198693
2006 84,07506946 83,59034841
2007 84,34424771 83,76632497
2008 84,61342595 83,93997054
2009 84,8826042 84,11133649
2010 85,15178244 84,28047172
2011 85,42096068 84,44742281
2012 85,69013893 84,61223418
2013 85,95931717 84,77494818
2014 86,22849542 84,93560524
2015 86,49767366 85,09424397
2016 86,7668519 85,25090125
2017 87,03603015 85,40561236
2018 87,30520839 85,55841107
2019 87,57438664 85,70932971
2020 87,84356488 85,85839928
2021 88,11274312 86,00564951
2022 88,38192137 86,15110895
2023 88,65109961 86,29480504
2024 88,92027786 86,43676419
2025 89,1894561 86,57701179

Alternative Method Lee Carter method
Years Males (1,1,1) Males (0,1,0)
2001 76,78736631 76,74722129
2002 77,02473263 76,8981853
2003 77,26209894 77,04728176
2004 77,49946526 77,19458884
2005 77,73683157 77,34018047
2006 77,97419788 77,48412656
2007 78,2115642 77,62649319
2008 78,44893051 77,76734287
2009 78,68629683 77,90673464
2010 78,92366314 78,04472435
2011 79,16102945 78,18136473
2012 79,39839577 78,31670564
2013 79,63576208 78,45079417
2014 79,8731284 78,58367483
2015 80,11049471 78,71538963
2016 80,34786102 78,84597827
2017 80,58522734 78,97547824
2018 80,82259365 79,10392494
2019 81,05995997 79,23135178
2020 81,29732628 79,35779032
2021 81,53469259 79,48327033
2022 81,77205891 79,60781993
2023 82,00942522 79,73146564
2024 82,24679154 79,85423249
2025 82,48415785 79,9761441  
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Chapter 3 

An application of the Lee-Carter 
model within the Fair Valuation 
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3.1. Introduction 

Placing a value on life insurance liabilities is not easy. In the twenty-first 

century there are still debates on how to value the liabilities arising from 

life insurance policies and the International Accounting Standards Board is 

making efforts to design an international financial reporting standard for 

insurance contracts, to be used in insurers’ accounts.  

If we look back a decade or so, we can see that financial accounting was an 

area not regarded as critical by managers of life insurance and pension 

companies (L&P companies) to their business. This has changed drastically 

in the new millennium. Today the attention of the top management of L&P 

companies is focused primarily on the new international accounting 

standards for insurance, some of which have been defined during the first 

half of 2004 and some of which are still undergoing much disputed 

revision.  

3.2. Accounting standards and Fair value 

3.2.1. Background on Accounting Standards  

Accounting standards are rules and guidelines which should be followed by 

those who prepare financial statements of companies. The firm’s accounts 

are valued according to specific methods depending on the rules applicable 

to accounts in the jurisdiction concerned. There are national accounting 

standard-setting bodies that issue standards on the preparation of accounts 

along side the International Accounting Standards Board (IASB). These 

standards are sometimes referred to as “general purpose” financial 

statements; in any case, the common purpose of the accounting standards is 

to define what is meant by a true and fair view in various contexts and 

circumstances. There is also the  objective of narrowing the differences that 

exist between countries. Some of these bodies have developed standards 
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specific to insurance, although an international standard that applies to 

insurance contracts is now being developed by IASB. Indeed, with 

increasing internationalisation of business and the globalisation of capital 

markets has come the need for international harmonisation of accounting 

rules. In April 2001 the IASB was formed as a new standard setting 

authority, the successor body to the International Accounting Standard 

Committee (IASC), which was initiated as a private organisation back in 

1973. 

The IASB has adopted and will continue to promote and improve the 

International Accounting Standards (IASs) issued by IASC and has already 

issued new ones called International Financial Reporting Standards (IFRS). 

According to the current plans, all listed companies in the EU must prepare 

their consolidated financial statements in accordance with international 

accounting standards from 2005 onwards. 

In 1997 the IASC launched an Insurance Project, the only accounting 

standards entirely devoted to insurance and pensions: IAS 19, IAS 32 and 

IAS 39. These were the only ones of particular relevance to pension funds 

and life insurers. The first phase of the Insurance Project has been 

completed by the issuance of the International Financial Reporting 

Standards 4 Insurance Contracts (IFRS 4) at the end of March 2004. 

The IFRS 4 provided guidance on accounting for insurance contracts for 

the first time. This also marked the first step in the IASB’s project to 

achieve the convergence of widely varying insurance industry accounting 

practices around the world.  

The basic idea emerging from the new guidelines is to depict the firm’s 

economic profile as realistically as possible. This simple insight has 

generated increased interest in the concept of fair value in relation to 

financial reporting in all areas of business. 
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3.2.2. The fair valuation problem 

Over the last decade, there has been a gradual reformation of accounting 

conventions from being largely based on historical cost to being 

increasingly based on fair value. Applying fair value in L&P companies’ 

balance sheets means that assets and liabilities will have to be marked to 

market. Nevertheless, as the American Academy of Actuaries (2003) 

clearly states, market valuations do not exist for many items on the 

insurance balance sheet; this leads to the reliance on entity specific 

measurements for determining insurance contracts and asset fair values. 

Several definitions of fair value have been proposed; one common 

definition of fair value in relation to financial instruments has been “the 

amount of the consideration that would be agreed upon in an arm’s length 

transaction between knowledgeable, willing parties who are under no 

compulsion to act”. 

This definition has been recently revised by the FASB now defining fair 

value as ([FASB, 2004]) “the price at which an asset or liability could be 

exchanged in a current transaction between knowledgeable unrelated 

willing parties”.  

In the new IFRS 4 the definition of fair value is essentially identical and 

reads ([IASB, 2004]) “the amount for which an asset could be exchanged, 

or a liability settled, between knowledgeable, willing  parties in an arm’s 

length transaction”. What is new in the FASB and IASB definitions of fair 

value, compared to previously, is that both organisations now explicitly 

state that the definition is intended to apply for all assets and liabilities and 

not just financial instruments. Yet what is really an innovation is the 

introduction of a fair value hierarchy for the valuation techniques [(FASB, 

2004]). This hierarchy states that valuation techniques used to estimate fair 

values should maximise the use of market inputs and it prioritises the 

market inputs that should be used. In general, quoted prices in active 
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markets are preferred and should be used whenever available. Fair value 

estimates are classified by three quality levels: 

• The first one where estimates are obtained using quoted prices for 

identical assets or liabilities in active markets to which an entity has 

immediate access;  

• the second level using quoted prices for similar assets or liabilities in 

active markets, adjusted as appropriate for differences.  

• The third level will include estimates based on valuation models, 

where there are products with no appropriate market to help define 

prices. 

 

In practice, we do not have markets for trading insurance liabilities where 

we can readily observe prices, particularly because of the dependence of 

payments on human life. It is in these situations that company accountants 

will have to use Level 3 estimates for insurance and pension liabilities. This 

inevitably will involve some kind of estimation process based on financial 

valuation models.  

The fair value of life insurance liabilities has been a recent point of 

discussion. However we still have debates on how a fair value system 

might actually function in practice.  

Key issues in this debate are: should the fair value framework allow for the 

possibility of gain or loss at contract issue? What are the estimated cash 

flows from a life policy? What discount rate should be applied to the cash 

flows to derive a present value? Under what circumstances should 

assumptions about future cash flows liabilities be updated? 

For marketable securities, the definition of fair value is unambiguous. 

However, for some assets and virtually all insurance and annuity liabilities, 

the definition is less than clear, especially after acquisition of the asset or 

liability. This is because these assets and liabilities are thinly traded post 
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acquisition, so there are few or no examples of actual transactions. Price 

are therefore difficult to define unambiguously.  

3.2.3. Valuation of Life insurance liabilities 

Skerman (1966) suggested five principles for the valuation of actuarial 

liabilities, forming a suitable underlying basis for a solvency standard. 

According to these principles:  

• The liabilities should be valued by a net premium method. 

• An appropriate reserve would be acceptable in order to allow for 

initial expenses. 

• Adequate margins over the current rate of expenses should be kept in 

the valuation of liabilities, in order to provide for future renewal 

expenses.  

• Appropriate recognised tables of mortality should be employed. 

• The valuation of liabilities should be at rates of interest lower than 

implicit in the valuation of the assets. 

The Skerman principles have been influential; they have been taken into 

account by regulators, and have been used to put forward practical 

proposals for valuations. There is no uniform set of valuation rules made by 

regulators. However, the International Association of Insurance 

Supervisors has issued principles on prudential regulation, the first of 

which is that the technical provisions of an insurer have to be adequate, 

reliable, objective, and allow comparison across insurers.  

As we do not yet have an international standard setting out how to value 

liabilities from insurance contracts in accounts, it is not surprising that 

there is a wide variety of practices on how this is done. Actuaries need to 

understand accounting so that they can appreciate what is needed in life 

insurers’ accounts to meet accounting standards. 

In carrying out the valuation, the actuary needs to choose a method of 
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valuation and also a valuation basis, that is a set of assumptions to be used. 

Fair value liability valuation methods can be divided into two primary 

families: direct and indirect methods.  

Under the former, the fair value of the liability is the discounted value of 

future liabilities. Under the latter, the fair value of liabilities is calculated as 

the fair value of assets supporting the liabilities less the actuarial appraisal 

value of the block of business.  

The fundamental premise of the indirect method is that the appraisal value 

and the fair value of equity are equal. This is really a definition of fair 

value of equity. But the fair value of equity is also the fair value of assets 

less liabilities, so that the fair value of liabilities is a derived value under 

the indirect approach. 

According to the direct method the liability value is the value of the cash 

flows to the reporting entity, so that it is possible to value the liabilities 

directly without first determining the fair value of equity. 

The indirect approach to liability fair value is inconsistent with accounting 

principles, because the approach confuses the value of a business to an 

investor with the separately determinable values of the asset and liability 

cash flows. Thus the direct approach seems to be the appropriate one for 

financial reporting purpose. 

As far as the fair value allowing for the possibility of gain or loss at 

contract issue is concerned, some believe that this possibility is 

fundamentally inconsistent with fair value. Insurance and annuity contracts 

are sold in a free market, and policyholders choose to purchase them in 

“arm’s length transaction”. The price of a contract in an unforced sale is the 

best indication of the fair value of the contract at the point of sale. 

Others believe that only coincidentally will the fair value of a contract at 

issue equal its price. They believe that liabilities should be valued based on 

discounted cash flows, possibly with adjustments for risk, and that a gain or 
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loss at issue will emerge depending on the specific facts and circumstances. 

Contracts with different expected cash flows but the same price would have 

different fair values. 

An important part of the valuation process is forecasting the future cash 

flows to be valued. This can require assumptions on matters such as the 

contingency on which payment of the benefits under the policy depends 

(death, sickness, etc.); factors that determine the amount of payment (such 

as bonuses added under participating policies); expenses, investment 

returns, tax, the rate of early discontinuances, and so on.  

A number of issues arise and are discussed in the literature: if the 

assumptions that should be used are those used when the product was 

priced, or those current at the date of valuation; if the cash flows should be 

best estimates, should they be prudent or should they allow for risk. 

There are two principal approaches to projecting future cash flows. 

According to the first approach we can project interest rates using the 

implied forward curve, that is the set of future interest rates consistent with 

today’s yield curve. Then we can project expected cash flows consistent 

with this scenario. This also happens also under the second scenario, but in 

this case a large number of future interest rate scenarios are projected in 

such a way that the collection of scenarios is arbitrage-free. This type of 

projection has the advantage of capturing the optionality in the cash flows 

and is consistent with established asset valuation.  

It must be pointed out that the expected cash flows produced by a 

stochastically generated set of interest rate scenarios are not equal to the 

expected cash flows in the single scenario. The stochastic approach is 

complex and in practice it can lead to somewhat erratic earnings patterns. 

Another key question in the valuation of life insurance liabilities is which 

rate should the actuary use to discount future cash flows. Numerous 

possibilities exist for defining the discount rate. In some cases the rate used 
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to discount liabilities is based on the Treasury rates. They are objectively 

determinable and reflect the certain nature of the obligations. Others 

believe that the asset earnings rate should be used as the discount rate. The 

calculated fair value would vary when asset earnings rates change even if 

there were no change in future liability cash flows or in the economic 

environment. Additionally, this approach does not lend itself well to 

valuing stochastically generated cash flows. Many would say that the value 

of a liability is independent of the assets held to back it, which is the 

approach taken when assessing fair value. 

A third approach is to calculate a liability spread at issue and lock it in for 

the life of the contract. One way of determining the liability spread is to 

calculate it in such a way that there is no gain or loss at issue. This 

approach has several advantages. Firstly, it gives the correct value at issue. 

Secondly, it implicitly incorporates the company’s evaluation of risk. 

Finally, the approach is well suited to use with stochastically generated 

cash flows for pathwise discounting.  

In determining the fair values, best-estimate assumptions as to future 

experience must be made. Those best estimates are inherently imprecise, 

because they will change over time with mortality. Under a fair value 

approach, these changes in best estimates should be reflected in the fair 

values. Given the inherent uncertainty and imprecision in selecting best 

estimate assumptions for insurance liabilities it is important to ensure 

consistency in approach over time. If there are differences or 

inconsistencies in the approach used to develop best estimates, the entire 

present value of the impact of those differences can flow into earnings for 

the period in which that change in best estimates is made. 

3.2.4. Choice of valuation method: background hypotheses 

The stochastic nature of life policies cash flows is such that a valuation 
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method that merely derives one value from deterministic assumptions will 

be inappropriate in some cases. A number of authors have used stochastic 

models to value liabilities. This need for stochastic methods has led to the 

development of models to use in such situations. 

We need some way of using the probability distribution of liabilities from a 

stochastic projection to determine the liabilities to use in the valuation. 

To this end and aforementioned, the IASB has been considering fair value 

as an approach to valuing insurance contracts. 

Despite of a number of advantages, the fair value of insurance liabilities 

raises a number of issues, both whether using market values or models. In 

particular, while our concern is the value in a transaction to exchange 

liabilities, what type of transaction are we envisaging? It could be, for 

example, the price a policyholder would pay for the benefits being offered 

by the policy; this may imply that, at the outset, the value of the liabilities 

would equal the present value of the premiums. Or it might be the value 

payable if the policyholder wished to surrender the policy, or that he could 

obtain by selling the policy in the open market. We must note that only 

certain contracts can be sold in the open market. Alternatively, it could be 

the amount that the insurer would have to pay to a third party to take over 

the liabilities under the policy. 

As we know, the dependence of payment of benefits on human life means 

that no regular market exists for such liabilities. Thus the market value of 

these liabilities is not readily available and must be estimated. The problem 

is that the demographic valuation is not supported by the hypothesis of the 

completeness of the market as for the financial valuation. As suggested in 

[De Felice and Morriconi, 2004] the problem of the hypothesis of market 

completeness in the demographic framework can be overcome by 

constructing an appropriate probability measure, in order to guarantee the 

relevant properties of the price function. 



 
 

77

It will also typically not be possible to find traded securities with a 

sufficiently close similarity to the life insurance and pension obligations 

such that fair value estimates can be obtained. Having seen the problems 

from not having markets for trading insurance liabilities, we can see that 

we need to construct a mathematical model of a pricing system that 

coherently represents the insurance realm. 

So far the emphasis has been on financial markets; in this contribution we 

construct a valuation model that fully captures the interest and mortality 

rate dynamics. The primary feature of our model is its focus on the 

demographic reference system. We base our demographic assumptions on 

the results of chapter 2, where we obtain the forecasts to construct life 

tables using the Lee Carter model. 

Because reserves cannot be set within a reference market, we consider it 

reasonable to express their current valuations by means of the expectation 

framed within the best prediction of the demographic scenario. For this 

reason, referring to evaluations consistent with the model, we obtain only 

proxies of the reserve market value. Hence, a market-based valuation for 

them would produce irrelevant information; thus we will no longer refer to 

a “marked to market” valuation of the outstanding liabilities, but to a 

“marked to model” valuation. 

3.3. The model 

In this contribution we analyse, in a Lee Carter mortality context, the 

standard endowment policy. This has been one of the most common life 

insurance policies sold in Italy during the last two decades. This policy is 

priced in a standard way, given an interest rate and a mortality table from 

which the life and death probabilities are extracted. In order to determine 

an actuarial model for the fair valuation at time t of the stochastic stream of 

cash flows, that is the stochastic loss at time t, we maintain the standard 
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assumptions of market efficiency. We assume perfectly competitive, 

frictionless and arbitrage-free securities market, populated by rational 

agents, all sharing the same information, without restrictions on borrowing 

or short-sales and with zero-coupon bonds and stocks both infinitely 

divisible.  

Let us define { }Ttrt ,....,1; =  and { }Ttm tx ,....,1; =+  the random spot rate and the 

mortality process measurable by means of the filtrations rF  and mF  

respectively. We assume that the randomness in mortality is independent of 

fluctuations of interest rates. These random processes are defined by a 

unique probability space ( )PF mr ,, ,Ω , such that the σ-algebra mrmr FFF ∪=,  

contains both the information about mortality and financial history. 

Let us denote by jN  the number of claims (the survivors or the dead 

according to the kind of life contract) at time j  within a portfolio of 

identical policies and by nntttt
t XNXNXNX ,....,, 2211 ++++=  the stochastic stream 

of cash flows (Coppola, Di Lorenzo, Sibillo, 2005).   

Applying risk-neutral valuation, the fair value at time t  of the stochastic 

loss, can be calculated as: 

 

(1) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Ε=ℜ ∑

>tj
tjjt FjtvXN ,                 

 

where Ε  denotes the expectation under some risk-neutral probability 

measure, tF  is the information flow at time t  and ( )jtv ,  represents the 

present value at time t of one monetary unit due at time  j . 

If we indicate by c  the number of policies at time 0 from equation (1), that 

computes the stochastic loss at time t for a portfolio, we can define a 

formulation for each policy. For simplicity, we consider the specific case of 

a single policy ( )1=c , which provides for payments of a life annuity as long 
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as the beneficiary lives or it provides for payments at the end of the death 

year. 

Consequently, equation (1) can be rewritten as follow: 

 

(2) { } { }( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+Ε=ℜ ∑

>
=> t

tj
jk

d
jjk

s
jt FjtvXX

txtx
,11

,,
 

 

where s
jX  and d

jX  are the cash flows at time j in the case of survival and 

in the case of death respectively. The indicator functions { }jk tx >,
1  and { }jk tx =,

1  

are Boolean; they take the value of 1 if the curtate future lifetime of the 

insured, aged x  at issue, is equal to or greater than jt +  ( ),.....2,1=j , 

respectively, or 0 otherwise. 

We follow this line of reasoning and extend the above to the case of an 

endowment policy issued at time 0  and maturing at time n , for a life aged 

x  at inception (time 0 ). This contract assumes that the sum insured is 

payable at the end of the year of death, if this occurs within the first n  

years, otherwise at the end of the n th year. 

On the basis of the information the insurer has at time t , we can write the 

fair value of the loss at t  of the endowment policy as: 

 

(3) { } ( ) { } ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
+Ε=ℜ ∑

>
−>−=

tj
ttnk

s
njk

d
jt FntvXjtvX

txtx
,1,1

,, 1  

 

where the indicator functions { }1,
1 −= jk tx

 and { }tnk tx −>,
1  take the value of 1 if 

1, −= jk tx  or tnk tx −>, , that is that the insured aged tx +  dies within the 

time jt +  or survives to the time n  respectively, or 0 otherwise. 

By virtue of the basic assumptions on the risk sources, we get: 
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(4) { }[ ] ( )[ ] { }[ ] ( )[ ]{ }∑
>

−>−= ΕΕ+ΕΕ=ℜ
tj

tttnk
s
nttjk

d
jt FntvFXFjtvFX

txtx
,1,1

,, 1  

 

( )[ ] ( )[ ]{ }∑
>

+−+− Ε+Ε=
tj

ttxtn
s
nttxj

d
j FntvpXFjtvqX ,,11  

 

where xt p  denotes the probability that a life aged x  will survive at least t  

years and xts q  denotes the probability that the life aged x  will survive s  

years and subsequently die within t  years.  

The terms on the right side of the equation show that the expected 

discounted value of the stochastic stream can be regarded as the valuation 

of zero coupon bonds with maturities in j .  

In a fair valuation approach, we can regard the price of the endowment 

policy at time t  as the market price of the zero coupon bonds. We 

specifically  use market prices for determining the current value. 

3.3.1. Determining mortality risk stochastically  

As far as the dynamics of the process { },......2,1; =+ tm tx  is concerned, we 

choose a model based on the Lee Carter methodology. This method allows 

us to extrapolate long-run forecasts of the level and age pattern of 

mortality, using a combination of statistical time series methods and a 

parametric approach. 

Using the traditional actuarial approach, we define xT  to be a random 

variable which represents the remaining lifetime of a life aged x  at time t . 

Under the probability measure Ρ , we can express the survival function of 

the random variable xT  as: 

 

(5) ( )m
xxy FyTp >Ρ=  
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where mF  contains the information flow about mortality. 

If we observe ttxm :+  in year t , namely the stochastic mortality for a life aged 

tx + , and we explicitly allow for the hypothesis of time dependence in 

mortality, the formulation (5) can be re-written as: 

 

(6) ⎥
⎦

⎤
⎢
⎣

⎡ ∫Ε= +− mdt

xy Fep
y

ttx0 :μ  

 

To project mortality rates we consider the Lee-Carter model which has 

been widely used in actuarial literature. The reason behind our choice is 

that traditional projection models provide the forecaster with point 

estimates of future mortality rates. On the contrary, the LC method allows 

for uncertainty in forecasts, the so-called longevity risk. 

This model has traditionally been formulated as: 

 

(7) ( ) txtxxtx kbam ,,ln ε++=  
 

where the log of a time series of age-specific death rates txm ,  is the sum of:  

• xa , an age-specific component that is independent of time  

     and another component that is the product of: 

• tk , a time-varying parameter reflecting the general level of mortality 
and  

• xb , an age-specific component, that represents how rapidly or slowly 
mortality at each age varies when the general level of mortality 
changes. 

 
The error term tx,ε , with mean 0  and variance 2

εσ  reflects particular 
age-specific historical influences not captured in the model. 

 
Usually for uniqueness of the model specification the following constrains 

are imposed: 
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0=∑
t

tk  and ∑ =
x

xb 1 

 

We fit this model to historical data (see chapter 2). The resulting estimates 

of the time-varying parameter is then modelled and forecast as a stochastic 

time series using the standard Box-Jenkins methodology. From this 

forecast of the general level of mortality, the actual age specific rates are 

derived using the estimated age effects.   

Denoting the resulting forecasts by { }0: >+ sk sT , we use the following model  

for the evolution of the forecast mortality rates: 

 

(8) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
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⎩

⎪
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⎨

⎧

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−= +

°

+

°

TsTxTxsTx kkmm
^^

,

^

, exp β  

This model allows us to compute forecasted mortality rates 
o

sTxm +,  by 

alignment to the latest available empirical rates 
^

,Txm .  

If the latest empirical mortality rates appear atypical, an alternative would 

be to average across a few years at the end of the observed period. 

While the last method was the one used from Lee and Carter (1992), the 

method of forecast alignment reflects Lee’s current thinking (Lee, 2000).  

3.3.2. Financial risk modelling 

We provide a closed analytical formula for equation (4) modelling the 

financial risk making use of the Cox-Ingersoll-Ross model for the term 

structure rates. 

The spot rate tr  is a diffusion process described by the stochastic 

differential equation: 
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(9) ( ) ( ) r
tt

r
t

r
t dZtrgdttrfdr ,, +=  

 

where r
tZ  is a standard Brownian motion; ( )trf t

r ,  is the drift function from 

the CIR (Cox-Ingersoll-Ross) model: 

 

( ) ( ),, tt
r rtrf −= γα      0, >γα  

 

and the diffusion function is defined by: 

 

( ) ,, tt
r rtrg σ=      0>σ  

 

We estimate the term structure on the basis of a Cox-Ingersoll-Ross square 

root model according to a simple discretisation (Chan et al., 1992; Deelstra 

et al., 1995), in which the continuous centred interest rate is defined by the 

stochastic differential equation 

 

(10) ( ) tttt dBrdtrdr σγα +−−=      with    0, >σα , 

 

where it is assumed that we have mean-reverting drift, with a long term 

mean of γ  and speed of adjustment of α , and “square root” diffusion with 

a volatility parameter of σ . 

The interest rate behaviour implied by this structure has some empirically 

relevant properties: negative interest rates are precluded; if the interest rate 

reaches zero, it can subsequently become positive; when the interest rate 

increases, the absolute variance of the interest rate itself increases. 

Even if the Vasicek model is more simple than the CIR model, for our 

application we use the latter. This is because it offers a useful trade-off 
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between economic consistency and mathematical tractability. It must be 

pointed out that despite its wide use for pricing interest rate derivatives, the 

Vasicek model appears inadequate to life insurance applications. It assigns 

positive probabilities to negative values of the spot rate. This produces 

relevant effects for long maturities, such as discount factors greater than 

one. 

3.4. Applications of the model 

In this section, we consider equation (4) and apply it to the case of an 

endowment policy with unitary benefits for a male policyholder. For the 

purpose of comparison we determine the value of the policy at time 0, 

subdividing the analysis into two stages. 

Firstly, we examine the case of a policy for an insured aged 40 at issue with 

a time to maturity of 15 years. Secondly we also apply the model to the 

case of a policy for an insured aged 65 at issue, with the same time to 

maturity.   

The term structure is estimated on the basis of a Cox-Ingersoll-Ross square 

root process, using the equation (cf. Deelstra et al., 1995): 

 

 

2

2

2

22

2

2
coth

2
coth1

2
sinh

2
cosh

σ
γ

σ
γ

σσ

k

tkxk

w
kwt

wt
w
k

wx

dur

wt
w
kwt

eeE
t

o u

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=⎥
⎦

⎤
⎢
⎣

⎡ ∫

++
+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

−

 

 

in which 0rx =  and 22 2σ+= kw . 

As far as the data is concerned, we assume a long term mean of  0452,0=γ , 

a volatility parameter of 0053,0=σ  and an initial value of 01724,00 =r . 



 
 

85

We use the interest rates from 3-month Treasury Bills from January 1996 

until January 2004, extracted from Bank of Italy official statistics.   

Mortality effects are taken into consideration through the survival 

probabilities which have been derived from the life table, calculated using 

the Lee-Carter model (cf. chapter 2) and considering the data for the Italian 

population, between the years 1950 and 2000.  

In order to express the range of possible values the contract can assume 

around each age, we consider three sets of probabilities according to 

different age groups. More particularly, we split our analysis between 

x=35-39, x=40-44 and x=45-49. We then consider x=60-64, x=65-69 and 

x=70-74. 

On the basis of equation (4), we ascertain the fair price of the endowment 

policy for both cases and for each group separately.   

In Table 1 we report the results obtained for the ages around 40 and in 

Table 2 the results for the ages around 65. We compare the results obtained 

using a stochastic rate (CIR+LC), with another two cases both calculated 

with a contractual annual rate of 0,04. It should be noted that in the first 

case the mortality rates are derived from the life table obtained with the Lee 

Carter methodology, and in the latter the mortality rates are derived from 

the life table SIM’92. 

3.5. Conclusions  

Focusing on the demographic scenario, it is worth noticing the general 

increase of the expected present value of the endowment policy as age 

increases. This is due to a higher probability of paying out at the end of the 

year of death, before the policy expires. Moreover we can observe this 

phenomenon both horizontally, that is as the age increases, and comparing 

the results obtained for the age group around 40 with the ones around 65. 

Furthermore this rise in the expected present value is evident both in the 
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case of a stochastic rate (CIR+LC) and when the rate is deterministic. 

Further examination of the Tables 1 and 2 reveals that the values obtained 

by “FIX RATE+LC” are always larger than the corresponding values 

calculated on the basis of the life table SIM’92. This is due to the capturing 

of the improvements in mortality rates by the Lee Carter model, which 

determines the stronger projection. 

 
          Table 1  

X=35-39 X=40-44 X=45-49
CIR+LC 0,73006 0,733434 0,741662
FIX RATE(4%)+LC 0,565025 0,569842 0,581584
FIX RATE(4%)+SIM'92

Endowment policy x=40, n=15

0,56268  
 

 
          Table 2 

X=60-64 X=65-69 X=70-74
CIR+LC 0,805376 0,845429 0,887555
FIX RATE(4%)+LC 0,673369 0,732329 0,796162
FIX RATE(4%)+SIM'92

Endowment policy x=65, n=15

0,634246  
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