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ABSTRACT 

 

Background: Studies in humans as well as in animal models 

suggest that interleukin-18 (IL-18) plays a crucial role in vascular 

pathologies. IL-18 is a strong predictor of cardiovascular death in angina 

and is involved in atherotic plaque destabilization. Higher IL-18 plasma 

levels are also associated with restenosis after coronary artery 

angioplasty performed in patients with acute myocardial infarction. We 

investigated the effective role of IL-18 in neointima formation in a rat 

model of vascular injury, known as balloon angioplasty. 

Methods and Results: Endothelial denudation of the left carotid 

artery was performed by using a balloon embolectomy catheter. 

Increased expression of IL-18 and IL-18Rα/β mRNA was detectable in 

carotid arteries from day 2 to 14 after angioplasty. The active form of IL-

18 was highly expressed in injured arteries. Strong immunoreactivity for 

IL-18 was detected in the medial smooth muscle cells at day 2 and 7 after 

balloon injury and in proliferating/migrating smooth muscle cells in 

neointima at day 14. Moreover, serum concentrations of IL-18 were 
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significantly higher among rats subjected to vascular injury. Rats 

treatment with neutralizing rabbit anti-rat IL-18 IgG significantly reduced 

by 27% (P<0.01) neointima formation. In addition, IL-18 neutralization 

reduced number of proliferating cells, inhibited IFN-γ, IL-6, IL-8 mRNA 

expression and nuclear factor-κB activation in injured arteries. 

Conclusions: These results identify for the first time a critical role 

for IL-18 in neointima formation in a rat model of vascular injury and 

suggest a potential role for IL-18 neutralization in reduction of neointima 

development and progression. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

1. INTRODUCTION 

 

Vascular disease constitutes a major cause of death and disability in 

developed countries and will soon become a health threat worldwide. This 

trend motivates major efforts on multiple fronts to fight cardiovascular 

disease, with the goals of prevention as well as improved therapy. One 

prerequisite for success in this quest is increased understanding of the very 

dynamic environment represented by the vascular wall, where several cell 

types interact and undergo profound phenotypic modulation in 

development and in diseases such as restenosis.  

Vascular smooth muscle cells (VSMCs), the major constituent of the 

normal vessel wall, play a pivotal role. In a traditional view, VSMCs were 

considered as differentiated, quiescent cells dedicated to vasomotor 

function. However, VSMCs are now considered to display multiple 

functions including regulation of extracellular matrix (ECM) composition 

as well as producers and targets for growth factors and pro-inflammatory 

cytokines, all important factors in the development of vascular diseases 1. 

Activation of VSMCs results in the production of different cytokines, 
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which are involved in the regulation of several functions in vascular 

inflammation that include both innate and acquired immune responses 2,3,4.  

Interleukin-18 (IL-18) is a nonglycosylated polypeptide member of the 

IL-1 superfamily 5. Studies in humans as well as in animal models have 

suggested that this cytokine plays a crucial role in cardiovascular 

pathologies. Increased IL-18 expression has been reported in human 

atherosclerotic plaque 6. Furthermore, animal models support the 

proatherogenic role of IL-18 7 as well as the beneficial effect of inhibiting 

IL-18 on plaque progression and composition 8. 

To date, however, the expression and function of IL-18 in neointima 

formation has not been investigated. This is of particular relevance, 

because it is well established that long-term failure of arterial stenting is 

due to neointimal formation 9.  

 

 

1.1 Restenosis 

An angioplasty is a safe and effective way to unblock coronary 

arteries. During this procedure, a catheter is inserted into the groin or arm 

of the patient and guided forward through the aorta and into the coronary 

arteries of the heart. There, blocked arteries can be opened with a balloon 
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positioned at the tip of the catheter (fig. 1). There are, however, limitations 

associated with angioplasty, one of which is called “restenosis” 1.  

 

 
 

Figure 1. Balloon Angioplasty 

 

 

Since the first reports of successful angioplasty of human coronary 

atherosclerotic lesions, restenosis has been encountered as a significant 
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limitation to the long-term efficacy of the procedure. In their 1979 

landmark publication “Non-Operative dilatation of Coronary-Artery 

Stenosis,” Gruntzig et al 10 reported that 6 of 32 patients undergoing 

successful initial angioplasty suffered restenosis, a rate of 19%.   

Initially, angioplasty was performed only with balloon catheters, but 

technical advances have been made and improved patient outcome has been 

achieved with the placement of small metallic spring-like devices called 

“stents” at the site of the blockage. The implanted stent serves as a scaffold 

that keeps the artery open. Angioplasty and stenting techniques are widely 

used around the world and provide an alternative option to medical therapy 

and bypass surgery for improving blood flow to the heart muscle.  

Restenosis occurs when the treated vessel becomes blocked again. It 

usually occurs within 6 months after the initial procedure 11. Compared 

with balloon angioplasty alone, where the chance of restenosis is 40%, 

stents reduce the chance of restenosis to 25% 12. Therefore, the majority of 

patients having angioplasty today are treated with stents. Restenosis can 

occur after the use of stents, and physicians refer to this as “in-stent 

restenosis”.  
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1.1.1 Normal artery 

Arteries are made up of three distinct layers: tunica intima, tunica 

media and tunica externa (fig. 2). Tunica intima forms the innermost layer 

(luminal surface) lined by endothelial cells. Tunica media is the thickest 

layer consisting of elastic fibers and smooth muscle cells. A thin layer of 

elastin separates the tunica intima and tunica media. Tunica externa 

consists of elastic connective collagen fibers. 

 

Figure 2. Structure of an artery. 
The structure of arteries is briefly described consisting of three distinct layers of tunica 
containing endothelial cells, smooth muscle cells and connective tissue. 
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1.1.2 Pathogenesis of Restenosis 

Restenosis is a hyperplastic, pathologic reaction involving SMC 

migration and proliferation, ECM formation and remodelling of the arterial 

wall leading finally to reocclusion of the enlarged artery (fig. 3) 13. 

Similarly to early, fibrous atheromas, human restenotic lesions consist 

mainly of fibrocellular tissue 14.  

 

 

 

 
Figure 3. Pathogenesis of restenosis.  
The balloon denudation damage the endothelia. Neointima proliferation can be 
seen before the thrombus is absorbed. SMCs start to migrate toward the intima-
layer from the media-layer. Also, the cell infiltration from the damaged endothelia 
initiates the inflammation process. Internal elastic lamina (IEL), smooth muscle 
cell (SMC), extracellular matrix (ECM). 
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The pathologic reaction of the arterial wall can be divided into four 

phases: (1) a mechanical phase (early elastic recoil in response to the 

mechanical dilatation of the vessel), (2) a thrombotic phase, (3) a 

proliferative phase (neointima formation by proliferation of SMC) and (4) a 

remodelling phase (differentiation of SMC to a synthetic phenotype and 

ECM deposition).   

Table 1 summarizes the molecular mechanism involved in the 

development of restenosis and its regulators. The relative contribution of 

each of these depends on the type of injury. 

 
 
 
 
Table 1. Molecular mechanisms of restenosis and their regulators. 
 

PHASE MOLECULAR MECHANISM REGULATORS 
Mechanical Elastic recoil No molecular regulation 

 
Thrombogenic 

Adherence and activation of platelets  Cytokines, VEGF, NO, 
thrombin, blood flow 

 Recruitment of inflammatory cells: 
expression of adhesion molecules (P-
selectin, ICAM) and chemotactic 
factors (IL-8, MCP-1) 

Cytokines (IL-1, IL-6, 
TNF-α), growth factors 
(PDGF, thrombin) 

 
Proliferative 

SMC migration and proliferation: 
production of MMPs and growth 
factors (PDGF, TGFβ, IGF, FGF, 
VEGF, thrombin, ATII) 

Cytokines (IL-1, IL-6, 
TNF-α, IFN-γ), NO 

 

Remodeling Remodeling (MMPs) and ECM 
deposition 

Cytokines, growth factors 
(PDGF, TGFβ, IGF, 
VEGF) 
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Within minutes following balloon deflation, the artery undergoes 

elastic recoil due to contraction of the elastic fibers of the inner and 

external lamina, causing up to a 40% lumen loss. A thrombotic response 

triggered by endothelial denudation, and medial dissection due to the 

mechanical injury of the angioplasty procedure, lead to platelet adherence 

and aggregation on the exposed subendothelial surface. Neointimal 

formation is complicated process involving the recruitment of 

inflammatory cells to the site of injury, the migration of vascular SMC 

from the media to the intima, and the proliferation of these cells. Growth 

factors and cytokines are the major stimuli for proliferation of SMCs after 

the injury 15. The earliest step in the process of in-stent restenosis, before 

SMC proliferation, is platelet deposition and aggregation 16. Platelets 

release multiple growth and migratory-promoting factors in addition to 

those released from injured vascular cells and surrounding extracellular 

matrix such as thrombin, platelet-derived growth factor (PDGF), 

interleukin (IL)-1, insulin-like growth factor-1 (IGF-1), fibroblast growth 

factor-2 (FGF-2), vascular endothelial cell growth factor (VEGF), and 

others 17-19. This complex interplay of growth factors then regulate SMC 

migration and proliferation through cell surface receptors and intracellular 
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signaling molecules inducing early response genes necessary for cells to 

leave their quiescent state and enter the cell cycle 20. The dynamic process 

of SMC migration involves changes in matrix synthesis such as 

degradation and organization 21. Matrix metalloproteinases, effectors of 

extracellular matrix degradation 22 are upregulated after injury 21 and the 

degradation of the extracellular matrix allows SMCs to migrate to the 

intima.  

In this maladaptative response of the artery to injury, the  

inflammation plays a pivotal role. Angioplasty causes adhesion of 

inflammatory cells at the injury site and their migration into the artery wall 

and the insertion of a foreign body, such as a stent, further increases the 

inflammatory response 23,24. Local inflammation and arterial injury after 

stent deployment and adjunctive balloon angioplasty augments neointimal 

growth of cells 25,26. Nuclear factor-κB (NF-κB) is a transactivator of a 

diverse group of genes whose activation has been strongly associated with 

the cellular response to inflammation. Landry et al., identified that the 

activation of NF-κB is linked to the inflammatory response associated with 

neointima formation after vascular injury 27. 
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1.1.3 Vascular smooth muscle cells 

Vascular smooth muscle cells are among the most plastic of all cells in 

their ability to respond to different stimuli. Specifically, VSMC may 

proliferate (hyperplasia with an increase in cell number), hypertrophy (an 

increase in cell size without change in DNA content), endoreduplicate (an 

increase in DNA content and usually size), and undergo apoptosis. Among 

the mechanisms utilized by VSMC to mediate these varying cellular 

responses are autocrine and paracrine growth pathways. An autocrine 

growth mechanism is one in which the individual cell, in response to a 

growth factor, synthesizes and/or secretes a substance that stimulates that 

same cell type to undergo a growth response. A paracrine growth 

mechanism is one in which the individual cells responding to the growth 

factor synthesize and/or secrete a substance that stimulates neighboring 

cells of another cell type. In many situations, autocrine and paracrine 

growth mechanisms occur simultaneously 28.  

The concept of VSMC auto/paracrine growth was first proposed in the 

late 1970s as a result of work in the laboratories of Gospodarowicz et al. 29, 

Harker and Ross 30, Castellot and co-workers 31, and Chamley-Campbell et 

al. 32. Dzau 33 and Nilsson et al. 34 were the first to use the term autocrine 

growth to describe increased expression of VSMC growth factors by 
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VSMC. It has now become clear that almost all VSMC growth factors elicit 

auto/paracrine growth pathways. However, recent data indicate that many 

other stimuli that modulate VSMC function including extracellular matrix, 

biomechanical forces, reactive oxygen species (ROS), lipids, and other 

proteins alter VSMC growth by inducing auto/paracrine growth 

mechanisms.  

Although many investigators assume that smooth muscle cells in the 

vessel wall are morphologically similar, it has become clear that they are 

phenotypically and functionally heterogeneous, which has obvious 

consequences for responses to various growth factors. A basic question is 

whether this is due to differences in origin or to spatiotemporal 

heterogeneity in expression of differentiation markers due to local 

environmental and hormonal factors. Both developmental and 

environmental factors influence VSMC heterogeneity. 

It is important to note that while the medial layer of the vessel is 

highly enriched in VSMC, other cell types may coexist in this layer. This 

has important implications since migration and growth of medial cells to 

form a neointima is an important pathological process in atherosclerosis 

and restenosis. By implication, not all cells that are present in the neointima 

may be VSMC. For example, Frid et al. 35 were able to isolate at least four 
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phenotypically unique cell subpopulations from the inner, middle, and 

outer compartments of the arterial media. Differences in cell phenotype 

were demonstrated by morphological appearance and by differential 

expression of muscle-specific proteins. The isolated cell subpopulations 

exhibited markedly different growth capabilities. Two SMC subpopulations 

grew slowly in 10% serum and were quiescent in plasma-based medium. 

The other two cell subpopulations, exhibiting nonmuscle characteristics, 

grew rapidly in 10% serum and proliferated in plasma-based medium. 

These differences in growth were subsequently related to production of 

autocrine growth factors 36. Similar VSMC heterogeneity was observed for 

human VSMC 37. Two morphological phenotypes of VSMC are usually 

defined, namely, the epithelioid and the spindle-shaped cell 38. Functionally 

these phenotypes have been suggested to correlate with the synthetic and 

contractile cell types, respectively 32. Contractile VSMC express high 

levels of contractile proteins including myosin and low levels of α-actin. In 

contrast, synthetic VSMC express high levels of α-actin, extracellular 

matrix proteins, and low levels of myosin. In general, the spindle-shaped, 

contractile VSMC are not proliferating or migrating, whereas the 

epitheliod, synthetic VSMC have entered the cell cycle and are 

proliferating.  
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Based on techniques used for cell isolation and growth, there may be 

enrichment of particular subpopulations of VSMC that may explain some 

of the different results that have been reported for in vitro studies of 

autocrine growth mechanisms. With the identification of genes whose 

expression is specific for VSMC (thereby enabling localization in situ by 

mRNA or protein detection), it has become clear that upon development of 

intimal thickening (e.g., during atherosclerosis, restenosis, or closure of the 

ductus arteriosus), there is re-expression of fetal genes. These findings 

suggest that there is significant plasticity in VSMC function. There may 

also be embryonic cells (“progenitors”) left from development 39 similar to 

those isolated from fetal animals. For example, Majesky et al. 40 have 

shown that proliferating smooth muscle cells isolated from the aorta 

express unique cytochrome P-450 enzymes that are typical of embryonic 

smooth muscle cells. Also, the myofibroblast has been proposed to 

transdifferentiate into an endothelial-like cell as well as into synthetic 

phenotype VMSC during intimal thickening 41. Finally, there is increasing 

evidence that differentiated cells can transdifferentiate in other cell types 42.  

Heterogeneity within the vessel wall may be related to alterations in 

the local environment. Variations in the hemodynamic environments may 

modify local gradients in substances (e.g., increased residence time of 
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lipids) or local metabolic requirements (e.g., increased energy metabolism 

or altered cytoskeleton arrangements) 43. The normal blood flow pattern 

may be described as pulsatile and laminar. This ensures that fluid shear 

stress (the dragging frictional force of blood on the vessel luminal surface) 

is maintained within the narrow range of 10–20 dyn/cm2. When the blood 

flow pattern is no longer laminar, it may be described as turbulent, and as a 

consequence pulsatility may be lost resulting in oscillatory flow patterns. 

Intimal proliferation occurs most commonly in these areas of turbulent and 

oscillatory flow such as the human carotid bulb. One explanation for 

intimal proliferation at these sites is related to alterations in EC-derived 

factors; specifically, there may be a decrease in factors that inhibit VSMC 

growth and an increase in factors that stimulate VSMC growth 44. 

Variations in physical forces at a particular site as a consequence of vessel 

architecture and flow pattern may modulate VSMC function 45. While fluid 

shear stress is likely to be the major force that influences EC function, 

mechanical strain may be more important for VSMC. Changes in 

mechanical strain have been shown to induce many VSMC growth factors 

including PDGF, bFGF, IGF-I, and TGF-β 46-49. In addition, mechanical 

strain may make VSMC more sensitive to the mitogenic actions of other 

factors 50.  
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Hyperplasia refers to an increase in VSMC cell number associated 

with DNA synthesis. Entry of VSMC into the cell cycle and proliferation 

appears to be governed by many of the same mechanisms common to all 

cells. Hyperplasia is an important component of hypertension as shown by 

a significant increase in smooth muscle cell proliferation rate and the 

number of cell layers in the media of vessels from animals with chronic 

hypertension 51. It should be noted that hyperplasia is characteristic of 

intermediate and large arterioles, whereas small vessels undergo 

remodeling. Hyperplasia also occurs in many other vascular diseases 

including atherosclerosis, restenosis, and the response to vascular injury. 

Hyperplasia is a slow process in chronic human hypertension. In summary, 

VSMC proliferation is a common response to mechanical stress and injury.  

Perhaps the best studied situation in which hyperplasia of VSMC 

occurs is after injury to the blood vessel. While the rat carotid balloon 

injury model has been investigated extensively for many years 52, the 

pattern of events that leads to vessel repair and intimal thickening appears 

similar in other species (pig, mouse, nonhuman primate, and human) and 

other arteries (aorta, iliac, femoral, and brachial). Many candidate 

molecules that regulate VSMC growth have been studied in the rat carotid 

injury model by use of pharmacological and gene therapy approaches. 
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Results suggest important roles for the renin-angiotensin system, 

catecholamines, ET-1, natriuretic peptides, thrombin, PDGF, TGF-β and 

other activins 53, fibroblast growth factor (FGF), and oxidative stress 

among other stimuli 54. Recent results provide further support for these 

molecules as regulators of VSMC growth after injury as well as IL-1 (17.5 

kDa) and IL-6 (20.5 kDa) 55,56. Both IL-1 and IL-6 have been reported to 

have autocrine growth effects on VSMC. Cellular effects of interleukins are 

also regulated by levels of endogenous inhibitors of the IL-1 receptor and 

by processing of the IL-1 precursor to mature hormone. The growth effects 

of the interleukins are somewhat controversial because other investigators 

have observed that IL-1 inhibited VSMC growth 57. However, cell lines 

constitutively expressing IL-1α precursor demonstrated metabolism to the 

mature peptide and increased growth 58. Levels of IL-1 are regulated 

primarily by inflammatory cytokines such as TNF-α, which induces IL-1 

mRNA in human endothelial cells and VSMC 59. IL-1 can also induce its 

own expression 58 and is upregulated by TGF-β and by hypoxia 60. 

Recently, the mechanism by which IL-1β is produced by VSMC has been 

elucidated 61. VSMC express the IL-1β precursor upon stimulation and the 

IL-1β-converting enzyme (ICE) constitutively, but do not produce mature 

IL-1β or express ICE activity.  
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IL-1 has been reported to stimulate expression of PDGF-A chain 56, 

bFGF 62, and IL-1 itself, while IL-6 induces PDGF-A chain 55. Other 

autocrine factors induced by IL-1 and IL-6 remain to be identified. In vivo, 

both IL-1 and IL-6 would be anticipated to show increased expression in 

atherosclerosis and in injured vessels. The strongest data for a role of IL-1 

in neointima formation is the differential but concomitant expression of IL-

1 system components after balloon angioplasty 63. Cytokines such as IL-1 

and TNF-α have been proposed as primary mediators of the inflammatory 

component of atherosclerosis 59 and can regulate the production of MCP-1, 

a potential signal for directed migration of monocytes into the intima. 

Cytokines can also regulate genes that encode other growth factors and 

cytokines themselves. TNF-α can induce IL-1 mRNA in human endothelial 

cells and VSMC. IL-1 and TNF-α can augment the production by vascular 

cells of macrophage-colony stimulating factor, which may promote growth 

and activation of mononuclear phagocytes. Because these activated 

macrophages are powerful producers of ROS, this process may generate 

additional VSMC autocrine growth mechanisms. Another autocrine 

mechanism for IL-6 has been proposed that involves the release of 60-kDa 

heat shock protein (HSP60) from apoptotic VSMC 28. More recently, it has 

been reported that another pro-inflammatory cytokine, intelukine-18, is 
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mitogenic for aortic SMC and induces the release of a chemokine, 

CXCL16, upregulated in vascular injury 64.   

Despite this long history, the exact origin of the cell type that leads to 

formation of the neointima (dedifferentiated VSMC, VSMC progenitor 

cell, or myofibroblast) remains unknown.  

 

1.1.4 Prevention and treatment 

The biological processes in pathogenesis of restenosis suggest a 

number of targets for pharmacological intervention. These therapies can be 

divided into categories based on mechanisms of action: anti-thrombotic, 

anti-inflammatory, anti-mitotic and pro-mitotic agents for targeting of 

unwanted SMC proliferation or desiderable endothelial cell re-growth, 

respectively. Traditional pharmacological agents including antiplatelet 

agents, anticoagulants, angiotensin-converting enzyme inhibitors, calcium 

channel blockers and lipid-lowering agents have failed to reduce restenosis 

rates in clinical studies 65 mainly because the concentrations required for 

effective action at the site of injury have not been achieved.  

Probucol is the first pharmacological agent showing to reduce 

coronary restenosis after angioplasty and the mechanism of preventing 

restenosis appears to be independent of its lipid-lowering effect 66. The 
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positive results obtained with probucol suggest that restenosis process is 

associated with oxidative stress. Reactive oxygen species are produced 

after angioplasty and the generation of reactive oxygen species and 

oxidation of lipids impairs endothelial function. Oxidative stress exerts 

toxic effects on VSMC which leads to the activation of inflammatory 

reactions 67.  

While restenosis can often be easily treated non surgically with the use 

of balloons, atherectomy devices, and the use of intracoronary radiation 

therapy 68, the prevention of restenosis remains a highly desirable goal. 

Recent technology has created a method of “coating” stents: using a 

coronary stent for local delivery of drugs combines scaffolding with 

targeted drug action. The initial research and clinical trials have been 

concentrated on sirolimus (rapamycin), a macrolide antibiotic with 

immunosuppressive and anti-mitotic properties 69. Stents are coated with 

polymer containing low dose sirolimus then a layer of drug-free polymer, 

which serves as a barrier to diffusion. While stents may almost eliminate 

elastic recoil and negative remodelling, they can induce a more pronounced 

vascular response than angioplasty alone 70. Also, after stent implantation 

restenosis occurs because of the formation of soft scar tissue in the center 

of the stent, which blocks coronary blood flow. With the increased usage of 
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the stents, there are reports of problems, such as late stent malapposition, 

subacute and late thromboses and aneurysm formations due to the toxicity 

associated with this method of treatment. In addition, the long term effects 

of stents are still unknown. 

Gamma or beta radiation (brachytherapy) has been proposed as 

potential way of reducing restenosis, especially in-stent restenosis, because 

it is well known that low-dose radiation is highly effective and safe for 

preventing keloids and treating benign vascular malformations 71. Also, 

low-dose radiation can delay normal would healing and impair SMC 

function. A number of clinical trials have been completed examining the 

use of intravascular radiation to prevent restenosis; the most positive results 

have come from treatment of in-stent restenosis 72,73. The suggested 

beneficial effect of brachytherapy is the inhibition of SMC proliferation 

and the favourable arterial remodelling. Although brachytherapy is 

technically simple, it posses several difficulties concerning safety issues 

and side effects. A well documented consequence of brachytherapy is the 

aneurismal dilatation of the arterial wall and subacute and late stent 

thrombosis 71. 
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It is most important to note that all of these exciting developments 

only allow us to buy time for an individual but it is too far to consider these 

“the beginning of the end of restenosis”. 

 

 

1.2 Interleukin-18 

Interleukin (IL) 18 was first described as an interferon (IFN) γ-

inducing factor1 which circulated during endotoxaemia in mice 

preconditioned with an infection of Propionibacterium acnes. Because of 

its ability to induce IFN-γ, IL-18 is by default a member of the T cell 

helper type I (Th1)-inducing family of cytokines (IFN-γ, IL-2, IL-12, IL-

15). However, because antibodies to IL-18 also reduced the hepatotoxicity 

of endotoxaemia, IL-18 was considered to possess other biological 

properties beyond that of inducing IFN-γ. It has become clear that IL-18 is 

a proinflammatory cytokine and that its mechanism of action can be 

independent of its ability to induce IFN-γ 74.  

IL-18 is related to IL-1β more than any other cytokine. The 

similarities between IL-1β and IL-18 exist at several levels. Firstly, the IL-

18 precursor form (pro-IL-18), like pro-IL-1β, does not contain a signal 

peptide, and pro-IL-18 requires cleavage to an active cytokine by the IL-1β 
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converting enzyme (ICE, caspase-1). IL-1β and IL-18 are structurally 

related because both cytokines are primarily all β-pleated sheet folded 

molecules 75. This structural relationship is significant because there are 

very few all-β sheet molecules among the different cytokines.  

At the receptor level, the activity of IL-18 is through a heterodimeric 

complex, the IL-18 receptor (IL-18R) complex. The IL-18R binding chain 

is termed IL-18Rα. IL-18Rα is a member of the IL-1 receptor family, 

previously identified as the IL-1R related protein (IL-1Rrp). A signalling 

chain (IL-18Rβ), also termed accessory protein-like (AcPL), is related to 

the IL-1R accessory protein. Although similar to the IL-1 receptor 

accessory protein in that the IL-18Rβ does not itself bind its ligand in 

solution, the IL-18Rβ chain is part of the IL-18 receptor complex. After 

binding of IL18 to the IL-18Rα, the IL-18R AcPL binds to form a high 

affinity heterodimeric complex with the ligand. The high affinity IL-18R 

complex recruits the IL-1 receptor activating kinase (IRAK), resulting in 

phosphorylation of nuclear NF-κB-inducing kinase (NIK) with subsequent 

translocation of NF-κB to the nucleus. Initially identified as part of the IL-

1R signalling events, IRAK is recruited to the IL-1R complex after 

exposure to IL-1. In cells possessing both the IL-18Rα and β chains, 

nuclear translocation of NF-κB is seen after incubation with IL18, and this 
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property helps to explain the pleotropic nature of IL-18. In IL-18 deficient 

mice, production of IFN-γ and cytotoxic T cells is markedly diminished 

despite ample amounts of IL-12. A similar finding exists in mice deficient 

in ICE. The role of IL-12 in IFN-γ production therefore seems to require 

IL-18 74.  

Cells known to express IL-18 include monocytes/macrophages, 

dendritic cells, Kupffer cells, keratinocytes, glucocorticoid-secreting 

adrenal cortex cells, and osteoblasts 76. 

Because of its ability to stimulate IFN-γ release by both natural killer 

(NK) cells and T lymphocytes, IL-18 is considered to be a key cytokine in 

both innate and acquired immunity 77. IL-18 has been shown to be capable 

of directly inducing expression of proinflammatory cytokines such as 

tumor necrosis factor (TNF-α) and IL-1β in mature Th1 cells, 

macrophages, and natural killer cells 77-79, to up-regulate production of both 

CC and CXC chemokines 80, to stimulates gene expression and synthesis of 

Fas ligand 81, to enhance expression of costimulatory molecules such as 

CD40L and CD86 82, and to induce tissue damage through the induction of 

cell-mediated cytotoxicity 5 (fig. 4). 
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Figure 4. The inflammatory orchestra conducted by IL-18.  
IL-18 is produced by several cells from the innate (MØ and DC) and adaptive (T, B 
cells) immune systems, on stimulation by lipopolysaccharide (LPS), FasL or 
interferons. IL-18 signals recruits MyD88 and leads to the activation of the NF-κB and 
AP-1 transcription factors (right inset). IL-18 signaling drives (top inset) the 
transcription of a set of cytokines, chemokines, growth factors and enzymes.  
MØ indicates macrophages; DC, dendritic cells; NOS, NO synthase; COX2, 
cyclooxygenase 2; MMP3, stromelysin; TIR, Toll/IL-1R domain; IL-18BP, IL-18 
binding protein; IRAK, IL-1 receptor–associated kinase; TRAF6, TNF receptor-
associated factor 6; IL-18Rα,β, α and β chains of IL-18 receptor. 
[from Caligiuri et al., Arterioscler Thromb Vasc Biol. 2005; 25: 55-657] 
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The biological activity of interleukins is partially regulated by anti-

cytokine antibodies, soluble cytokine receptors, and cytokine-binding 

proteins, the elaboration of which is frequently controlled by the interleukin 

concerned 83,84.  IL-18 binding protein (IL-18BP) is a secreted protein that 

binds IL-18 and neutralizes its biological activities. IL-18BP is induced by 

IFN-γ in various cells, suggesting that it serves as a negative feedback 

inhibitor of the Th1 immune response 85. Numerous recent in vivo studies 

using both IL-18-gene-targeted mice and neutralising agents such as anti-

IL-18 antibody or IL-18 binding protein, implicate IL-18 in components of 

host defence and in responses in autoimmune models of disease 86-88, 

increasing interest in it as a therapeutic target 5. 

 

1.2.1 Interleukin-18 and cardiovascular disease 

Binding to the IL-18 receptor results in enhanced secretion of many 

cytokines and proteins involved in vascular pathologies, among which IL-

6, IL-8, intercellular adhesion molecule-1 (ICAM-1), and various matrix 

metalloproteinases (MMPs) 89. IL-18 and its receptor are expressed in 

human atheroma-associated endothelial cells, vascular smooth muscle cells 

(SMCs), and macrophages 89. IL-18 binding to IL-18R activates the DNA-
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binding activity of transcriptional factors, such as (NF-κB) and activator 

protein 1 (AP-1) in VSMCs 81,90,91. 

Studies in humans as well as in animal models have suggested that this 

cytokine plays a crucial role in vascular pathologies. Increased IL-18 

expression has been reported in human atherosclerotic plaque 6, mediating 

IFN-γ release locally 89. Furthermore, animal models support the 

proatherogenic role of IL-18 7. Mallat et al. 8, using a mouse model of 

human-like atherosclerosis, establish an unsuspected and crucial role for 

IL-18 signaling pathway in atherosclerotic plaque development, 

progression, and stability. While preventing early lesion formation in the 

thoracic aorta, inhibition of IL-18 signaling by IL-18BP supplementation 

also profoundly affected advanced lesion composition in the aortic sinus, 

inducing a switch toward a stable plaque phenotype. 

After myocardial infarction (MI) in mouse, increased production of 

cardiac IL-18 mRNA and pro-IL-18, as well as circulating IL-18 occurs 92. 

Increased levels of circulating IL-18 have been demonstrated in patients 

with acute coronary syndromes 93-95, and congestive heart failure 96,97. 

Further, an epidemiologic study 98 had suggested that IL-18 can predict 

cardiovascular death in patients with stable and unstable angina. 

Interestingly, Yamagami et al. 99 found that the elevated serum IL-18 levels 
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are associated with increased carotid intima-media thickness as evaluated 

by B-mode ultrasound inpatients without histories of cardiovascular 

accidents. Also, the association was independent of traditional 

atherosclerotic risk factors, IL-6 and hs-CRP levels. In this study, IL-18 

were higher in hypertensive patients and smokers than in those who were 

not, and had significant carrelations with traditional atherosclerotic risk 

factors such as sex, body mass index, diabetes and dyslipidemia. These 

findings are in line with those Ferrucci et al.100, who showed associations of 

higher IL-18 levels with such risk factors. Also in accordance with 

previous studies 98,101,102, IL-18 levels had modest correlation with other 

inflammatory markers. Nevertheless, studies that examined the associations 

of IL-18 levels with atherosclerotic risk factors and other inflammatory 

markers are limited, requiring further studies to clarify their linkages. 

Although elevated IL-18 levels can predict the development of 

cardiovascular disease 98,101, their association with carotid intima-media 

thickness remains to be examined. Moreover, Kawasaki et al. 103 showed 

that higher IL-18 plasma levels were associated with restenosis after 

emergency coronary angioplasty performed in patients with acute 

myocardial infarction. 
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To date, however, the expression and function of IL-18 in neointima 

formation has not been investigated. This is of particular relevance, 

because it is well established that long-term failure of arterial stenting is 

due to neointimal formation, whereas a combination of arterial remodelling 

and proliferation of SMCs is responsible for restenosis following balloon 

angioplasty in humans 9. In addition, VSMCs proliferation is a hallmark of 

restenosis and recent studies have provided strong evidence for an 

important role of IL-18 on SMCs proliferation and migration in vitro 91, 104.  

 

 

1.3 Animal models for restenosis research 

Animal models are important in understanding the arterial response to 

coronary injury following interventions and are essential for testing new 

treatment modalities to prevent restenosis. The ideal experimental model 

for assessing restenosis preventive strategies should reliably predict the 

outcome of clinical trials. However, differences in the severity of injury 

and substantial interspecies differences in the healing response and 

metabolism make conclusions about humans based on the animal data 

tenuous 105.  
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The healthy vessel in an experimental animal differs fundamentally 

from the diseased atherosclerotic coronary artery of the typical human. 

Experimental models do not display the features of complex atheroma, 

such as calcification, central necrosis, ulceration, thrombus formation, and 

plaque haemorrhage. It is unknown whether these characteristics of human 

plaque have an impact on the development of restenosis 106. 

Although neointimal formation through smooth muscle cell migration, 

proliferation, and matrix synthesis is the unifying response to injury in each 

species, the generated neointima volume following injury differs 

immensely across species. Each animal model is valuable for its 

specific characteristics. The limits and strengths of each model should be 

used to maximum advantage before examining specific therapies in 

humans. It is crucial to describe precisely the mechanism of neointima 

formation specific for each species to improve the reliability of 

animal data. Although the molecular biology of smooth muscle cell 

proliferation is best understood in the rat carotid artery model (balloon 

angioplasty) 105. 

The rat common carotid artery angioplasty model involves inducing 

fibroproliferative lesions within a long unbranched segment of artery using 

a 2F Fogarty catheter 107. After denudation of the endothelium, a 
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hyperplastic neointimal response to injury is induced following repeated 

withdrawal of an inflated balloon catheter. Because this model was one of 

the first described and is not as technically challenging, it rapidly became 

extensively used. Classically, the response to injury in this model is 

referred to as the “three-wave paradigm”, whereby endothelial denudation 

produces medial smooth muscle cell proliferation (peaking 3 days after 

injury), smooth muscle cell migration (from the media to the 

subendothelial/intimal border 4 days following injury), and finally, intimal 

proliferation coincidental with matrix synthesis (resulting in neointima 

formation, peaking 1 to 2 weeks after injury) 52,108. 

Rats have been used extensively for restenosis research and have also 

figured prominently in the study of the contributions of thrombosis and 

hyperplasia to luminal narrowing following arterial injury 109. Some of the 

reasons for the frequent use of  rat models in restenosis research include, a) 

low cost, b) ready availability, c) reduced ethical concern compared to 

large animals and d) small size that limits the quantities of new agents 

required for in vivo screening. These characteristics have permitted rapid 

evaluation of new agents in sufficiently large populations to perform 

meaningful statistical analyses. In addition to these practical indications for 
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their use, small animal models have the added advantage of well-defined 

genetic characterization. 

Despite the favorable characteristics of rat models, the predictive value 

of the data obtained from the study has been very limited. Greater than 40 

large-scale clinical trials, that included thousands of patients, failed to 

establish significant effectiveness of multiple pharmacological agents in the 

prevention of restenosis following human angioplasty 110, even though most 

of the agents evaluated had been found to reduce luminal narrowing 

following arterial injury in rat models. 

Any enthusiasm for more advanced testing of molecules should be 

tempered with the following caveats: (a) balloon angioplasty of the rat 

carotid artery is a model of restenosis far from perfect, and any effects 

observed may not predict outcome in more complex settings of vascular 

narrowing; (b) this model offers a way to better describe the mechanism of 

neointima formation. 

 

1.4 Specific aims 

It is not feasible to artificially regulate IL-18 in humans to determine 

its association with restenotic diseases, therefore, dissection of the role of 

this cytokine in lesion development will be dependent on animal models. 
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The aims of the present study were, first, to evaluate the expression of IL-

18 and its related receptor, distribution and specific localization of IL-18 

active form in rat carotid arteries subjected to vascular injury. Second, we 

assessed the relationship between IL-18 neutralizing and neointima 

formation in damaged arteries. 
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2. METHODS 

 

2.1 Animals 

Male Wistar rats (Harlan Italy, S. Pietro al Natisone, Udine, Italy) 

weighing 250g were used for the present study. Animals were housed in 

propylene cages with food and water ad libitum. The light cycle was 

automatically controlled (on at 7:00 AM and off at 7:00 PM), and the room 

temperature was thermostatically controlled to 22 ± 1°C. Before the 

experiments, the animals were housed in these conditions for 4 or 5 days to 

become acclimatized. Animal care was in accordance with Italian and 

European regulations on protection of animals used for experimental and 

other scientific purposes. 

 

2.2 Balloon angioplasty 

Animals were anesthetized with an intraperitoneal injection of 

ketamine (100 mg/kg) and xylazine (5 mg/kg) (Sigma, Milan, Italy). 

Endothelial denudation of the left carotid artery was performed by using a 

balloon embolectomy catheter (2F, Fogarty; SEDA, Trezzano s/Naviglio, 
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Milan, Italy). In brief, a catheter was introduced through the external 

branch of the carotid, advanced into the aortic arch, and inflated at 2 

atmospheres with a calibrated inflation device (Indeflator Plus 20, 

Advanced Cardiovascular System, Inc). The vessel was damaged by 

passing inflated balloon catheter back and forth through the lumen three 

times. This sequence produced complete endothelial denudation of the left 

common carotid.  Naive animals were used as control. Some animals were 

subjected to anesthesia and surgical procedure without balloon injury 

(sham-operated rats). Rats were euthanized 0, 4 and 24h and 2, 7 and 14 

days after vascular injury, and carotid arteries were removed and processed 

as described below. 

 

2.3 Anti-IL-18 treatment 

To neutralize endogenous IL-18, rats were subjected to balloon 

angioplasty followed by i.p. injection of 3 mg of purified rabbit anti–rat IL-

18 IgG, prepared by PRIMM (Milan, Italy). Subsequent injections were at 

days 4, 8 and 12. Control rats received normal rabbit IgG. The biological 

activity of the antibody was tested in vitro. A dose of 200 μg of anti-IL-18 

antibody was shown to completely block IFN-γ inducing activity of 50 ng 

of IL-18 in rat spleen cells stimulated with Con A. 
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2.4 Morphology 

At the time of the final experiments, the animals were anesthetized 

with an intraperitoneal  injection of ketamine 100 mg/kg and xylazine 5 

mg/kg, and the carotid arteries were fixed by perfusion at 120 mm Hg with 

100 mL of PBS (pH 7.2) followed by 80 mL of prepared PBS containing 

4% paraformaldehyde through a large cannula placed in the left ventricle.  

The carotid arteries were removed. Paraffin-embedded sections were cut (6 

μm thick) from the approximate midportion of the artery and stained with 

hematoxylin and eosin to demarcate cell types, three sections were stained 

with aldehyde fuchsin and counterstained with van Gieson’s solution to 

demarcate the internal elastic lamina (IEL). Ten sections from each carotid 

artery were reviewed and scored under blind conditions. Both the 

circumference and the cross-sectional area of external elastic lamina (EEL), 

internal elastic lamina (IEL), lumen, media and neointima were measured 

carefully, by using an image analysis system (Qwin Lite 2.2, Leica, Milan, 

Italy). 

 

2.5 Total RNA isolation 

Total RNA was isolated from the carotid arteries using TRIzol 

(Invitrogen, Milan, Italy). The carotid arteries (n=3 per group) were frozen 
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in liquid nitrogen, pooled and crushed into powder in a mortar with a 

pestle, transferred to a microcentrifuge tube and immediately suspended in 

TRIzol. The tissue suspensions were centrifuged at 7500g for 10 min. The 

supernatant was transferred to a new microcentrifuge tube and 

homogenized by passing 5-10 times through 20 gauge  needle fitted onto a 

3 ml syringe. 0.2 ml of chloroform was then added and the tube was shaken 

for 15s, followed by centrifugation at 12.000 g for 15 min. The aqueous 

phase was transferred to a new microcentrifuge tube, and the total RNA 

was precipitated using 0.5 ml of isopropyl alcohol. RNA was allowed to 

precipitate at room temperature for 10 min and centrifuged at 12.000  g for 

10 min. The supernatant was removed, and the RNA pellet was washed 

with 1 ml of 70% ethanol followed by centrifugation at 7,500g for 5 min. 

The RNA pellet was air-dried for 5 min, resuspended in diethyl 

pyrocarbonate (DEPC)-treated water and then heated at 55°C for 15 min. 

The final amount of RNA was determined by absorbance at 260 nm. 

 

2.6 RT-PCR of IL-18, IL-18Rα/β, IFN-γ, IL-6 and IL-8 

Total RNA was reverse-trascribed into complementary DNA and then 

amplified by PCR using Taq polymerase (Promega, Madison, WI) 

according to manufacturer’s instructions. Parallel amplification of rat 
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housekeeping gene β-Actin was performed as internal control. The primers 

were as follows: IL-18: sense: 5’-TGCAATACCAGAAGAAGGC-3’, 

antisense: 5’-CCCCATTTTCATCCTTCC-3’ 111; IL-18Rα: sense 5’-

CCAACGAAGAAGCCACAGACA-3’, antisense: 5’-

CTCAGGATGACACTCTCTCAG-3’; IL-18Rβ: sense 5’-

CCTATCTGATGTCCAGTGGT-3’, antisense: 5’-

GGGGGCTCCTAATTCTGGG-3’ 112, IFN-γ: sense 5’-

GAAAGCCTAGAAAGTCTGAAGAAC-3’, antisense: 5’-

GCACCGACTCCTTTTCCGCTTCCT-3’; IL-6: sense: 5’-

ATACCACCCACAACAGACCAGT-3’, antisense: 5’-

GATGAGTTGGATGGTCTTGGT-3’; IL-8: sense 5’-

GAAGATAGATTGCACCGATG-3’, antisense: 5’-

CATAGCCTCTCACACATTCC-3’; β-Actin: sense 5’-

ATGAAGATCCTGACCGCGCGT-3’, antisense: 5’-

AACGCAGCTCAGTAACAGTCCG-3’. The amplified fragments were 

536bp, 270bp, 164bp, 366bp, 467bp, 365bp, and 584bp, respectively. The 

PCR reaction was performed under the following conditions: a first cycle 

of denaturation at 94°C for 1 min 40 sec, then 30 (IL-6, IL-8 and β-Actin) 

or 36 (all others) cycles of denaturation at 94°C for 40 sec, annealing at 

50°C (IL-18) or 56°C (IL-8 and β-Actin) or 58°C (IL-18Rα, IL-18Rβ and 
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IFN-γ) or 60°C (IL-6) for 40 sec, extension at 72°C for 1 min and 1 

additional cycle of extension at 72°C for 8 min. The PCR products were 

run on a 2% agarose gel and visualized by ethidium bromide staining. 

Subsequently, the relative bands were quantified by densitometric scanning 

of the pictures with with GS-700 Imaging Densitometer (Bio-Rad, Milan, 

Italy) and a computer program (Molecular Analyst, IBM, Milan, Italy). 

mRNA expression levels were normalized to expression levels of 

housekeeping gene β-actin and expressed as densitometric arbitrary units. 

 

2.7 Preparation of cytosolic and nuclear extracts 

All the extraction procedures were performed on ice with ice-cold 

reagents 113. Briefly, carotid arteries crushed into powder as described 

above were resuspended in adequate volume of hypotonic lysis buffer, and 

chilled on ice for 5 min. Then, the homogenates were vigorously shaken for 

15 sec in the presence of 100 µl of 5% Nonidet P-40, and incubated on ice 

for 15 min. The nuclear fraction was precipitated by centrifugation at 1500 

g for 10 min and the supernatant, containing the cytosolic fraction, was 

removed and stored at -80°C. The nuclear pellet was resuspended in 

adequate volume of high salt extraction buffer and incubated with shaking 

at 4°C for 30 min. The nuclear extract was then centrifuged for 15 min at 
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13,000 g and supernatant was aliquoted and stored at -80°C. Protein 

concentration was determined by the Bio-Rad protein assay kit (Bio-Rad, 

Milan, Italy). 

 

2.8 Western blot analysis 

The level of IL-18 was evaluated in cytosolic extracts by immunoblot 

analysis. β-Actin immunoblot analysis was performed to ensure equal 

sample loading. Equivalent amounts of protein (60 μg) from each sample 

were electrophoresed in an 12% discontinuous polyacrylamide minigel. 

The proteins were transferred onto nitrocellulose membranes, according to 

the manufacturer’s instructions (Bio-Rad). The membranes were saturated 

by incubation with 10% non-fat dry milk in PBS-0.1% Triton X-100 (ICN 

Biomedicals Inc.) for three hours at room temperature and then incubated 

with anti-IL-18 goat antibody (0.2 μg/ml) (R&D System) or anti-β-Actin 

(1:5000) (Sigma) mouse antibody over night at 4°C. The membranes were 

washed three times with 0.1% Tween 20 in PBS and then incubated with 

anti-goat or anti-mouse (1:1000) immunoglobulins coupled to peroxidase 

(DakoCytomation) for 1 hour at room temperature. The immune complexes 

were visualized by the enhanced chemiluminescence method (Amersham, 

Cologno Monzese, Italy). Subsequently, the relative intensities of the bands 
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were quantified by densitometric scanning of the X-ray films with GS-700 

Imaging Densitometer (Bio-Rad) and a computer program (Molecular 

Analyst, IBM, Milan, Italy). IL-18 protein levels were expressed as 

arbitrary densitometric units. 

 

2.9 IL-18 immunohistochemistry 

Carotid arteries were snap frozen in liquid nitrogen in OCT embedding 

medium (Tissue Tek, Sakura Finetek Europe, The Netherlands) and stored 

at -80°C. Cross sections were cut (6 μM) from the approximate midportion 

of the artery and used for IL-18 detection by immunohistochemistry (IHC). 

For staining, sections were incubated in acetone for 10 min, air dried and 

rehydrated with PBS before incubation in 0.3% H2O2 50% methanol in 

PBS for 15 min. Protein block serum free (DakoCytomation, Milan, Italy) 

was added for 30 min. To detect IL-18, sections were stained with 15 μg/ml 

anti-rat IL-18 Ab (goat IgG, R&D Systems, Minneapolis, MN) in PBS 

overnight, before being washed in PBS. Sections incubated with an 

isotype-matched control antibody were used as negative control. 

Subsequently, sections were incubated with 1/400 polyclonal rabbit anti-

goat immunoglobulins/biotinylated (DakoCytomation) before washing. 

Streptavidin-HRP (LSAB kit, DakoCytomation) was added for 15 min 
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before washing as before. Enzymatic activity was detected with 3,3’-

diaminobenzidine substrate (DakoCytomation) before washing in dH2O. 

Hematoxylin was used to counterstain before rinsing in H2O. Sections were 

subsequently exposed to 70%, 80%, 95%, then 100% ethanol for 

dehydration before clearing in xylene (Kaltek, Padova, Italy) and 

immediate mounting in Entellan (Merck, Darmstadt, Germany). 

 

2.10 IL-18 and anti-α-smooth muscle actin immunofluorescence 

Carotid arteries were snap frozen in liquid nitrogen in OCT embedding 

medium (Tissue Tek, Sakura Finetek Europe, The Netherlands) and stored 

at -80°C. Ten cross sections were cut (6 μM) from the approximate 

midportion of the artery and used for IL-18 and anti-α-smooth muscle actin 

(anti-α-SMA) detection by immunofluorescence. For staining, sections 

were fixed in acetone for 10 min, air dried and rehydrated with PBS before 

incubation in Protein Block serum free (DakoCytomation, Milan, Italy) for 

30 min. To detect IL-18, sections were stained with 15 μg/ml anti-rat IL-18 

Ab (goat IgG, R&D Systems, Minneapolis, MN) diluted in 1% blocking 

reagent (Perkin Elmer, Milan, Italy)/0.3% Triton X-100 (MP Biomedicals, 

Verona, Italy) in PBS overnight, before being washed in TNT wash buffer 

(Tris-HCl pH 7.5, 0.15 M NaCl, and 0.05% Tween 20; Sigma). Sections 
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incubated with an isotype-matched control antibody were used as negative 

control. Subsequently, sections were incubated with 1/75 Texas Red-

donkey anti-goat IgG (Jackson ImmunoResearch Laboratories, United 

Kingdom) for 30 min, before washing. Monoclonal anti-α-smooth muscle 

actin FITC conjugate (1/250, clone 1A4, Sigma) was added in blocking 

buffer for 1 h before washing as before. Dapi was used for identification of 

nuclei. Images were taken by an AxioCam HRc video-camera (Zeiss, 

Arese, Milan, Italy) connected to an Axioskop fluorescence microscope 

(Zeiss), using the AxioVision 3.1 software. 

Neointimal α-SMA positive cells number was determined by counting 

all nucleated cells with FITC fluorescence present on a carotid section. For 

each group studied carotid arteries obtained from 5 different rats per group 

were analyzed. Six sections from each carotid artery and 10 fields per 

section were reviewed and scored under blind conditions. 

 

2.11 Proliferating Cell Nuclear Antigen Analysis 

Proliferating cell nuclear antigen (PCNA) analysis was used to 

quantify the proliferative activity of cells at the balloon injury sites. After 

deparaffinization and rehydration the section were washed in a solution of 

0.3% H2O2 in 50% methanol/PBS for 15 min. Sections were then washed 
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five times for 1 minute in PBS. Before incubation protein block serum free 

(DakoCytomation, Milan, Italy) was added for 30 min. To detect PCNA, 

sections were incubated with anti-PCNA (Signet Laboratories, Inc., 

Dedham, MA) antibody used overnight in 1:200 dilution. Subsequently, 

sections were washed in PBS and incubated with 1/400 polyclonal rabbit 

anti-goat immunoglobulins/biotinylated (DakoCytomation) before washing. 

Streptavidin-HRP (LSAB kit, DakoCytomation) was added for 15 min 

before washing as before. Enzymatic activity was detected with 3,3’-

diaminobenzidine substrate (DakoCytomation) before washing in dH2O. 

Hematoxylin was used to counterstain before rinsing in H2O. Sections were 

subsequently dehydratated before clearing in xylene (Kaltek, Padova, Italy) 

and immediate mounting in Entellan (Merck, Darmstadt, Germany). 

For each group studied carotid arteries obtained from 5 different rats 

were analyzed. Six sections from each carotid artery and 10 fields per 

section were reviewed and scored under blind conditions. Number of 

PCNA-positive cells counted in media and neointima 7 days following 

angioplasty was calculated. 
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2.12 Electrophoretic Mobility Shift Assay  

Electrophoretic Mobility Shift Assay (EMSA) studies were performed 

on nuclear extract obtained as previously described. Briefly, double-

stranded NF-κB consensus oligonucleotide probe (5’ AGC TTC AGA 

GGG GAC TTT CCG AGA GG 3’ 114) was end-labelled with [32P]γ-ATP. 

Nuclear extract (10 μg protein from each sample) was incubated for 20 min 

with radiolabelled oligonucleotides (2.5-5.0x104 cpm) in 20 μl reaction 

buffer containing 2 μg poly dI-dC, 10 mM Tris-HCl (pH 7.5), 100 mM 

NaCl, 1 mM EDTA, 1 mM dithiothreitol, 1 μg/μl bovine serum albumin, 

10% (v/v) glycerol. Nuclear protein-oligonucleotide complexes were 

resolved by electrophoresis on a 5% non-denaturing polyacrylamide gel in 

0.5 x Tris-borate/EDTA at 150 v for 2 h at 4°C. The gels were dried and 

autoradiographed with intensifying screen at -80°C for 24 hours.  

 

2.13 Enzyme-linked immunosorbent assay (ELISA) 

Serum IL-18 levels (2-7-14 days after angioplasty) were measured by 

ELISA. Briefly, 96-well plates (Maxisorb, Nunc-Immuno, Roskilde, 

Denmark) were coated with anti-rat IL-18 Ab (1 μg/ml in 0.1 M NaH2CO3; 

R&D Systems) overnight at 4°C, blocked and serial dilution of sera were 

added. Bound IL-18 was detected with 1/20000 polyclonal rabbit anti-goat 
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immunoglobulins/biotinylated (DakoCytomation), followed by 1/200 

streptavidin-peroxidase polymer (Sigma) and developed with 

tetramethylbenzidine substrate (Sigma). Plates were read at 630 nm. The 

results expressed as pg/ml. 

 

2.14 Statistical Analysis 

Results are expressed as mean ± SEM of n samples for in vivo 

experiments and mean ± S.E.M. of multiple experiments for molecular 

biology. Student t tests were used to compare 2 groups, or ANOVA with 

the Dunnett’s post tests for multiple groups using Prism software (Graph 

Pad, San Diego, CA). The level of statistical significance was 0.05 per test. 
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3. RESULTS 

 

3.1 Time course of neointima formation 

Balloon angioplasty led to a time-dependent increase in neointima 

formation (fig. 5). In normal rats (n=5) there was no neointimal formation. 

In rats subjected to angioplasty the neointimal area was not detectable at 

day 1 (n=10), while it was 0.013 ± 0.001 mm2 (n=10) at day 7 and 0.213 ± 

0.010 mm2 (n=10) at day 14. In sham-operated rats (n=5) not subjected to 

vascular injury, there was no neointimal formation at all time points 

analyzed. Medial area (0.145 ± 0.008 mm2 in Sham group) was not affected 

by vascular injury at all time points analyzed . 

 

3.2 Expression of IL-18, IL-18Rα/β, IFN-γ, IL-6 and IL-8 mRNA in rat 

carotid arteries after balloon angioplasty 

To determine whether IL-18 and IL-18Rα/β mRNA were expressed in 

rat carotid arteries after balloon angioplasty, RT-PCR was performed (fig. 

6). Both IL-18 and IL-18Rα/β mRNA were detected in carotid arteries 

subjected to vascular injury (L, lesion), whereas their expression was very  
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  Figure 5. Time course of neointima formation. 
 

 

low in controlateral (CL) carotid arteries at all time points analyzed (day 2, 

7, and 14 after angioplasty) (fig. 6). Little expression was detected in 

normal arteries. The expression of both IL-18 and IL-18Rα/β mRNA was 
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found to reach a peak level at 7 days and diminished 14 days following 

angioplasty (fig. 6).  

 

 

Figure 6. Expression of IL-18 and IL-18Rα/β mRNA in rat carotid arteries 
after balloon angioplasty. 
(Upper panel) PCR amplification of reverse-transcribed mRNA was performed on 
total RNA isolated from pooled (n=3 per group) normal carotid arteries (N), 
controlateral arteries (CL) and injured carotid arteries (L, lesion) at different time 
point after angioplasty. Data shown are representative of three different 
experiments performed. 
(Lower panel) Densitometric analysis of IL-18 mRNA expression, normalized to 
expression of the housekeeping gene β-Actin, was determined by computer 
program. The results are expressed as mean ± S.E.M. of n=3 experiments. 
***P<0.001 vs normal carotid arteries. 
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A similar pattern of expression was evident for all cytokines/chemokines 

analyzed. IFN-γ and IL-8 mRNA were mostly evident at day 7. IL-6 

mRNA expression reached a peak level at day 2 diminishing thereafter (fig. 

7).  

 

 

 
Figure 7. Expression of IFN-γ, IL-6 and IL-8 mRNA in rat carotid arteries 
after balloon angioplasty. 
PCR amplification of reverse-transcribed mRNA was performed on total RNA 
isolated from pooled (n=3 per group) normal carotid arteries (N), controlateral 
arteries (CL) and injured carotid arteries (L, lesion) at different time point after 
angioplasty. Parallel amplification of rat housekeeping gene β-Actin was 
performed as internal control. Data shown are representative of three different 
experiments performed. 

 

3.3 Time course of IL-18 protein expression in rat carotid arteries after 

balloon angioplasty 

Western blot assays were performed on cytosolic protein extracts from 

carotid arteries. The active form of IL-18 was highly expressed in carotid 



50 

arteries subjected to angioplasty. No expression was detected in normal 

arteries (fig. 8). Densitometric analysis of IL-18 levels showed a peak of 

IL-18 expression intensity at day 7 (fig. 8), concomitantly with the 

beginning of neointima formation. 

 

 
 
Figure 8. Time course of IL-18 protein expression in rat carotid arteries after 
balloon angioplasty. 
(Upper panel) Western blot analysis was performed on cytosolic extracts of 
pooled (n=3 per group) carotid arteries at different time point after angioplasty. 
Equal loading was confirmed by β-Actin staining. Data shown are representative 
of three different experiments.  
(Lower panel) Densitometric analysis of IL-18 protein expression levels, 
normalized to expression levels of the housekeeping gene β-Actin, was 
determined by computer program. The results are expressed as mean ± S.E.M. of 
n=3 experiments. **P<0.01 vs normal carotid arteries. 
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3.4 Localization of IL-18 in rat carotid arteries by 

immunohistochemistry  

To determine the temporal expression, spatial distribution and cellular 

localization of IL-18, immunohistochemical studies were performed on 

carotid arteries subjected to vascular injury. Non-injured arterial tissue 

lacked immunoreactive IL-18 (not shown). In contrast, injured carotid 

arteries stained strongly for IL-18 (fig. 9). 

Control IgG showed no signal (fig. 9, a). In preliminary data no IL-18 

positive staining was detectable in injured vessel up to day 2 (0h-24h, data 

not shown). Whereas, strong immunoreactivity for IL-18 was detected in 

the medial SMCs at day 2 after balloon injury (fig. 9, b). At day 7 IL-18 

was also expressed in some medial cells and in occasional neointimal cells 

(fig.9, c). At day 14 IL-18 was observed only in neointima (fig. 9, d). 

 

3.5 Cellular localization of IL-18 and α-SMA in rat carotid arteries  

A clear immunoreactivity for IL-18 was detected in the medial α-actin 

positive SMCs at day 2 after balloon injury (fig. 10). Intriguingly, at day 7 

medial SMCs started to loose α-actin staining and to increase IL-18 

expression (may be a consequence of changes in phenotype), in addition 

IL-18 was detected in neointimal cells (fig. 10).  
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Figure 9. Localization of IL-18 in rat carotid arteries. 
Results illustrated are from a single experiment and are representative of three 
separate experiments. (a): Negative Control; (b): 2 days after angioplasty; (c): 7 
days after angioplasty; (d): 14 days after angioplasty. Original magnification: 400x. 
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Figure 10. Cellular localization of IL-18 and α-SMA in rat carotid arteries. 
Immunofluorescence visualization of α-smooth muscle actin (α-SMA, green) and IL-18 
(red) in rat carotid arteries 2, 7, and 14 days following balloon angioplasty. Serial 
sections were stained with Dapi (blue) to locate nuclei. Results illustrated are from a 
single experiment and are representative of three separate experiments. (N): Normal 
carotid artery; (A): Adventitia, (L): Lumen, (M): Media, (Ni): Neointima. Original 
magnification: x 400. 
 

 



54 

Immunoreactivity for IL-18 was mostly observed in neointima at day 

14 (fig. 10), also at this stage co-localization of IL-18 and α-actin was 

evident in some cells (fig. 10). SMCs in the neointima, although stained 

with the anti-α-actin antibody, typically showed weaker signal than 

contractile-state cells. No IL-18 expression was seen in the adventitia at all 

time points analyzed. These results suggest that IL-18 is mainly expressed 

in proliferating-migrating SMCs cells highly contributing to neointima 

formation. 

 

3.6 IL-18 serum levels 

Serum IL-18 levels were measured by ELISA to determine whether 

balloon angioplasty could affect circulating levels of IL-18 (fig. 11). Serum 

concentration of IL-18 was higher in rats subjected to vascular injury than 

among naïve rats. IL-18 was slightly increased in serum at day 2 after 

angioplasty, reached to a maximal level at day 7 (113 ± 18 pg/ml P<0.01, 

n=10) and diminished at day 14 (83 ± 6.5 pg/ml P<0.05, n=10) compared 

to naive rats (40 ± 7 pg/ml, n=10) (fig. 11). Serum concentrations of IL-18 

in sham-operated rats were similar to naive rats 2, 7 and 14 days following 

surgical procedure (data not shown). 
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Figure 11. IL-18 serum levels 
Serum IL-18 concentration in rats 2, 7 and 14 days following angioplasty. N: naive 
rats. Data are expressed as mean (pg/ml) ± S.E.M. of 10 rats per group. *P<0.05, 
**P<0.01 vs naive group. 

 

 

3.7 Neutralization of IL-18 inhibits neointima formation 

Finally, we tested the hypothesis that endogenous IL-18 affects 

neointima development and progression by using neutralizing rabbit anti–

rat IL-18 IgG. Several group of rats (n=5) were treated with neutralizing 

anti-rat IL-18 IgG or normal rabbit IgG (Control) beginning at the time of 

angioplasty, the antibody injections were repeated at day 4, 8 and 12. A 
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remarkable increase in the number of PCNA positive cells was 

demonstrated in the media and intima 7 days after injury in control rats, 

which was much higher than the number of PCNA-positive cells in anti-IL-

18 IgG treated group at the same time (fig. 12).  

 

 

Figure 12. PCNA positive cells 
Injured carotid arteries (n=5 per group) were harvested at day 7 after angioplasty. 
Extent of proliferative cells was determined by counting PCNA-positive cells in 
intima and media (10 fields per section). **P<0.01 vs Control group (C).  

 

 

Intriguingly, IL-18 neutralization caused a significant inhibition of 

neointima formation by 27% (P<0.01) at day 14, compared to control 

group (fig. 13), concomitantly, anti-IL-18 IgG treated rats exhibited 

significantly (P<0.01) diminished neointimal content of α-SMA positive 
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cells (fig. 14), clearly suggesting a potential role of IL-18 in balloon 

induced SMCs proliferation. 

 

 

Figure 13. Effect of IL-18 neutralization on neointima formation 
Photomicrographs showing the effect of IL-18 neutralization on neointima 
formation in rat carotid arteries after balloon angioplasty at day 14. Original 
magnification: x 50. Effect of IL-18 neutralization (Anti-IL-18 IgG, n=5) on 
neointimal areas of rat injured carotid arteries. Control animals (n=5) were treated 
with normal rabbit IgG following angioplasty as described in methods section. 
Results are expressed as mean ± S.E.M. **P<0.01 vs Control group (C). 
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Figure 14. Neointimal α-SMA positive 
Neointimal α-SMA positive cells number was determined 14 days following 
angioplasty as described in methods section. For each group studied carotid arteries 
obtained from 5 different rats were analyzed. Six sections from each carotid artery 
and 10 fields per section were reviewed and scored under blind conditions. 
**P<0.01 vs Control group (C). 

 
 

 
3.8 Neutralization of IL-18 inhibits cytokines production and NF-κB 

activation 

In order to provide mechanistic insights, the effect of IL-18 

neutralization on several factors involved in neointima formation was 

investigated. Interestingly, IL-18 neutralization inhibits IFN-γ, IL-6 and 

chemokine IL-8 mRNA expression 7 days following angioplasty (fig. 15), 

in addition anti-IL-18 IgG treatment reduced balloon-induced NF-κB 

activation in injured arteries.  
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Figure 15. Effect of IL-18 neutralization on IFN-γ, IL-6 and IL-8 mRNA 
expression 
Effect of IL-18 neutralization (Anti-IL-18 IgG) on IFN-γ, IL-6 and IL-8 mRNA 
expression in rat carotid arteries 7 days following balloon angioplasty. Control 
animals were treated with normal rabbit IgG following angioplasty as described in 
methods section. PCR amplification of reverse-transcribed mRNA was performed 
on total RNA isolated from pooled (n=3 per group) controlateral arteries (CL) and 
injured carotid arteries (L, lesion). Parallel amplification of rat housekeeping gene 
β-Actin was performed as internal control. Data shown are representative of two 
different experiments. In densitometric analysis IFN-γ, IL-6 and IL-8 mRNA 
expression levels were normalized to expression levels of housekeeping gene β-
actin and expressed as densitometric arbitrary units. Results are expressed as mean 
± S.E.M. of n=2 experiments. *P<0.05, **P<0.01 vs Control group (C).  
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At day 14 a low level of NF-κB/DNA binding activity was detected in 

nuclear protein extracts from controlateral carotid arteries (CL) and from 

carotid arteries of sham-operated rats (n=5) (fig. 16). Conversely, a 

retarded band was clearly shown in injured carotid arteries (L, lesion) from 

control rats treated with normal rabbit IgG (n =5). Treatment of rats with 

neutralizing anti-rat IL-18 IgG (n=5), as described above, caused a marked 

inhibition of NF-κB activation in injured carotids (Fig. 16). 

 

 

Figure 16. Effects of IL-18 neutralization on NF-κB/DNA binding activity  
Effects of IL-18 neutralization on NF-κB/DNA binding activity in rat carotid 
arteries after balloon angioplasty. EMSA was performed on nuclear extracts of 
sham carotid arteries (S), controlateral (CL) and injured (L, lesion) carotid arteries 
from control rats treated with normal rabbit IgG or rats treated with neutralizing 
anti-rat IL-18 (Anti-IL-18 IgG), collected 14 days after angioplasty. Data shown are 
representative of three different experiments. 
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4. DISCUSSION 

 

The present results identify, for the first time, a critical role for IL-18 

in neointima formation in a rat model of vascular injury and suggest a 

potential role for IL-18 neutralization in reduction of neointima 

development and progression. In this study, we examined the temporal 

expression of IL-18 and IL-18Rα/β mRNA, and IL-18 active form in rat 

carotid artery after balloon angioplasty. We report increased expression of 

the pro-inflammatory cytokine IL-18 and of its signaling receptor, IL-18R 

(α/β-chain), in rat carotid arteries after vascular injury. Moreover, the levels 

of circulating IL-18 were found to be increased. IL-18 and IL-18Rα/β 

mRNA were equally expressed during the time course of neointima 

formation. A clear induction of IL-18 and IL-18Rα/β mRNA and active 

peptide was observed 2 days after balloon angioplasty and the elevated 

levels were sustained up to 14 days, with maximal expression evident at 

day 7 concomitant with the beginning of neointima formation. 

Our in situ findings indicate that carotid arteries strongly express IL-

18 after angioplasty, in contrast, non-injured arterial tissue did not contain 
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IL-18. It is interesting to note that expression of IL-18 is primarily located 

in SMCs that are actively involved in proliferation and migration, 

suggesting its potential role related to the neointimal formation 9. SMCs IL-

18 positive staining agrees with previous reports, demonstrating IL-18 

expression by intimal SMCs in human atherosclerotic plaques 6. 

Several cells in injured-arteries may express the IL-18 receptor, 

namely ECs, SMCs, macrophages and T lymphocytes, as demonstrated 

elsewhere 2. Unfortunately, unavailability of appropriate antibodies 

hampered immunohistochemical analysis of IL-18Rα/β expression in situ. 

Low level of IL-18Rα/β mRNA in non-injured tissue, supported by RT-

PCR data, suggested modest basal expression of the receptor on vascular 

cells a finding consistent with reports of constitutive expression of the IL-

18 receptor on hematopoetic cell lines 115. Interestingly, the combination of 

several cytokines found in neointima, namely IL-1β, TNF-α could promote 

the expression of both IL-18 receptor chains 89. 

Increased serum levels of IL-18 in animals subjected to vascular injury 

is in keeping with an active role for this cytokine in the tissue pathogenesis 

and correlates well with epidemiological evidence showing higher IL-18 

plasma levels associated with human restenosis 103,116. 
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To clearly elucidate the precise contribution of IL-18 involvement in 

development of vascular damage following balloon angioplasty we 

examined the effect of IL-18 neutralization on neointima formation. 

Animals treated with neutralizing IL-18 IgG exhibited a significant 

reduction in the size of neointima, concomitantly showing diminished 

neointimal content of α-SMA positive cells. Intriguingly, IL-18 

neutralization diminished number of PCNA positive proliferating cells in 

the media and intima 7 days after injury, concomitantly with the beginning 

of neointima formation, clearly suggesting a potential role of IL-18 in 

balloon induced SMCs proliferation. 

The precise molecular pathways responsible for the inhibitory effect of 

IL-18 neutralization on neointima formation in vivo remain to be 

elucidated. Several hypotheses can be put forward to explain these results. 

Recent studies have provided strong evidence for an important role of IL-

18 on SMCs proliferation and migration in vitro. Sahar et al. 91 showed that 

IL-18 activates several key signaling pathways including MAPKs, 

transcription factors NF-κB and AP-1, and induces the expression of 

proinflammatory cytokines and chemokines such as IL-6, IL-8 and 

Monocyte Chemoattractant Protein-1 (MCP-1) in vascular SMCs. 

Activation of these signaling kinases may also be related to vascular SMCs 



64 

migration. Effects of IL-18 on cell survival and proliferation are cell type 

dependent. Unlike in endothelial cells 104, IL-18 in vitro failed to induce 

SMCs death. In fact, IL-18 induced SMCs proliferation in CXCL16-

dependent manner 64. 

Interestingly, we demonstrate, for the first time in vivo in a rat model 

of vascular injury, that IL-18 neutralization inhibits balloon induced 

cytokines (IFN-γ, IL-6) and chemokine (IL-8) mRNA expression, in 

carotid arteries 7 days following injury. 

Furthermore, IL-18 neutralization reduced NF-κB activation, a 

transcription factor involved in neointimal development and progression 

117,118. A recent study suggests that angioplastic injury elicits an early, 

transient vascular NF-κB activation in media and a late, persistent 

activation in intima, critical in controlling intimal hyperplasia and the 

associated vascular inflammation 118. 

The induced expression of IL-18 in neointima formation may involve 

additional functions. For example, IL-18 production may induce the 

expression of adhesion molecules 119,120, matrix metalloproteinases 121, as 

well as growth factors (e.g., GM-CSF), inducible nitric oxide synthase, or 

inducible cyclooxygenase 77, all factors regulated at transcriptional level by 
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NF-κB 122. This could explain why at day 14 cytokine is decreasing while 

pathology is maximal. 

There are some limitations for the current study. The rat balloon 

angioplasty model could be considered ideal to study the proliferation of 

smooth muscle cells in vivo, but is not a reliable experimental model of 

human angioplasty, because the injury is performed on a normal 

nonatheromatous arterial bed, this method doesn’t take into account the 

contribution of vascular remodeling in human restenotic process, in 

addition, the carotid is not similar to other arterial beds (e.g. coronary 

arteries) with respect to its reaction to stimuli. Although it is not feasible to 

artificially regulate IL-18 in humans to determine its association with 

restenotic diseases, therefore, dissection of the role of this cytokine in 

lesion development is dependent on animal models. 

In conclusion, these results identify, for the first time, a critical role for 

IL-18 in neointima formation in a rat model of vascular injury and suggest 

a potential role for IL-18 neutralization in reduction of neointima 

development and progression. The disease modifying activity of IL-18 

neutralization in this model can offer a clue to better understand the role of 

IL-18 in human restenotic process.  
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