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Introduction

The scientific field of silicon nanostructures is a fascinating area of material

science. It has a huge technological impact, because of the fundamental role

of silicon in the microelectronic revolution which has changed our everyday

lives. On the other side, silicon is a very bad luminescent material. It is char-

acterized by an indirect, low energy fundamental band gap. And this means

that silicon shows very long radiative electron-hole recombination lifetimes,

so that non-radiative recombination paths are preferred, even at cryogenic

temperatures. In the past years, it became clear that silicon nanocrystals

behave in a completely different way. The chance of tuning the optical band

gap and the radiative recombination lifetime with the nanocrystal size is

known as the quantum confinement effect, and is a simple consequence of

the quantum mechanics rules. Nevertheless, the construction in labs all over

the world of nanocrystals with a strong photoluminescence in the entire op-

tical range, have astonished the whole community of solid state scientists.

The research of the last decade has been devoted to the attempts of having

light-emitting silicon devices. Using both the lithographic-epitaxial and the

chemical synthesis techniques, the fabrication of silicon nanocrystals have had

an enormous progress in the last years, and sharper and sharper nanocrystal

size distributions have been obtained. An important goal was the discovery
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6 INTRODUCTION

of a strong photoluminescence from porous silicon, which constituted a very

easy and economic way for having high-performance photoluminescent silicon

structures. Recently, the discovery of optical gain from silicon nanocrystals

have suggested the possibility of a silicon-based laser technology.

From the theoretical point of view, still today the subject is not com-

pletely clear. While the quantum confinement effect has been recognized as

the major cause of the photoluminescence, many doubts remain on the way

in which the phenomenon takes place. This thesis is the result of a deep

work in the understanding of the optical properties of silicon nanocrystals.

The first part of the thesis is dedicated to the making-up of the theoretical

model. The first chapter concerns the Tight Binding method, used in this

work for the study of the nanocrystals. The advantages in the use of such

a method lies in its huge efficiency: Tight Binding is the only method able

to study both small and very large nanocrystals. In fact, its short range

interaction parameters lead to nanocrystal Hamiltonian matrices really very

sparse. This feature has been used through a diagonalization routine having

a computational time which scales linearly with the matrix size. The second

chapter is dedicated to a review of the linear response theory, and to the ex-

tension of the Tight Binding method to the study of the dielectric properties

of a crystalline structure. This is not a trivial matter, in that the method

does not easily allow an explicit knowledge of the basis wave functions. The

method that we have chosen seems to work very well for the Bulk Silicon.

The second part of this thesis is dedicated to the results. In the third chapter,

the optical properties of spherical nanocrystals are illustrated. A comparison

with the experimental results and the other calculation tools are discussed
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in detail. The optical gap, the imaginary part of the dielectric function, the

static dielectric function, and the radiative electron-hole recombination times

have been calculated. An interesting feature is the existence of an energy gap

between the energy of the first transition and the threshold of the absorption

cross section. This is an indication that the electronic features of the bulk

silicon are always reflected into the silicon nanocrystal physics. A very nice

confirmation of this trend is the k-space projection of the nanocrystal states,

which gives a fair explanation of this phenomenon. In the last chapter the

shape effects on the optical properties are shown. Several sets of ellipsoidal

nanocrystals, with different sizes and shapes, have been analyzed, and the ef-

fects of the geometrical anisotropy on the polarization of the dielectric tensor

is discussed.
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Chapter 1

Tight Binding method

1.1 Introduction

Since the fundamental paper of Slater and Koster (SK) [1], the Tight Binding

interpolation scheme (TB) has been a powerful tool for electronic spectra

and density of states calculations of crystalline structures. The method is

based on the expansion of the wave functions into linear combinations of

atomic orbitals (LCAO), with Hamiltonian matrix elements parametrized

in such a way to reproduce first-principles calculations and/or experimental

data. Compared to the methods based on the Plane Wave basis sets (PW),

the TB scheme is very efficient in problems where localized functions are

required. In fact, the method has been widely used especially in impurity

states calculations [2], where it is computationally advantageous because it

only needs a small number of localized orbitals. Over the years, many variants

of the TB have been developed, based on different kinds of parametrizations,

and the possibilities of the method have been extended beyond the simple

band structure calculations [3]. An interesting field has concerned the study
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10 TIGHT BINDING METHOD

of the TB parameters transferability [4], that allows the method to be used

in structural optimization problems. Nowadays, total energy calculations

and Monte Carlo simulations [5, 6] are currently performed within the TB

formalism.

With the increasing of computer performances, ab initio TB models have

been attracting a great interest. In fact, the TB interpolation schemes are

empirical tools, often called Empirical Tight Binding, in which we usually do

not have an explicit knowledge of neither the basis functions, nor the real

space Hamiltonian. On the other hand, the ab initio approaches are based

on the explicit construction of both the localized atomic orbitals and the

Hamiltonian matrix elements. The ab-initio TB models can be very accurate

and powerful, but they are computationally more demanding. Therefore, for

the great simplicity of the original SK formulation, and the huge precision

reached in getting accurate band structures, the Empirical TB models are

still today very attractive calculation tools.

In this chapter, we discuss the ETB scheme as it is usually used in band

structure calculations. As a first step, in the next section the method will

be illustrated, according to the usual Slater-Koster scheme. Then, a brief

description of the Empirical Pseudopotential method (PP), often used as an

important comparison scheme, will be given, trying to explain the reasons for

its great efficiency for the bulk structures, and the huge computational effort

that it requires for the nanocrystals. After this, we will compare several TB

parametrizations available in literature for the crystalline silicon, the material

of major interest in this thesis. Finally, a comparison with the experimental

data of gap energies and effective masses will be shown.
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1.2 The model

The starting point of every Tight Binding model is the definition of a suit-

able set of atomic-like orbitals. In the following we shall only consider bulk

crystalline structures, with atoms located in the positions of a Bravais lattice

with a basis; we indicate with R the lattice vectors, and µ the atomic posi-

tions within the unit cell. Therefore, all the atoms contained in the structure

lie in the positions:

Rµ ≡ R + µ. (1.1)

In the case of the bulk silicon (diamond structure), the Bravais lattice is an

FCC and there are two atoms in the unit cell, whose positions are:

µ = 0,d, (1.2)

where d = a
4
(1, 1, 1)1, and a is the lattice length.

The TB orbitals are localized at the atomic positions, and they are usu-

ally chosen in such a way to transform into each other under the crystal point

group operations, according to a suitable irreducible representation (see Ap-

pendix (A) for more details on symmetries). Each orbital is characterized

by a quantum number σ, which labels its transformation properties. We use

the Dirac notation to represent orbitals, so we write

|σµR〉 (1.3)

to label an orbital centered at the atomic position R + µ, having σ symme-

try. A possible basis set for the study of a bulk structure is obtained from

the orbitals of the isolated, non interacting atoms. This choice leads to a

1 We are using the standard, cubic coordinate system.
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TB model, which is based on functions having the full rotational symmetry2,

which are symmetric by inversion, and where σ labels the quantum numbers

of the single atom states (nlmms). In the case of the silicon, which is a crys-

tal with a single atomic species, this method allows us to choose the basis set

so that all the crystal orbitals are obtained by translations of those orbitals

located in the coordinate origin. This simple method is very nice in that

the basis orbitals have the symmetry of the whole rotation group (they are

eigenstates of the atomic angular momentum operators). On the other side,

it has the disadvantage that the basis functions are not orthogonal. For this

reason, at least two kinds of parameters must be used: Hamiltonian matrix

elements and overlap parameters. The difficulty of this non-orthogonal TB

scheme [1] is in the large number of parameters that enter the fitting pro-

cedure, so that it is difficult to include interactions up to many neighbors

without doing suitable approximations [7]. Another complication arises from

the fact that the energy levels are solutions of a generalized eigenvalue prob-

lem. This is not a big problem in crystalline structures, where we always

have a small number of orbitals in the unit cell. But this can give troubles in

nanostructures, by increasing the computational time, when the Hamiltonian

matrices become very large.

The use of an orthogonal basis set simplifies both the fitting and the

Hamiltonian diagonalization procedures. Starting from a non-orthogonal ba-

sis set, a smart orthogonalization procedure can be performed, as it was

shown by Löwdin [8], in such a way that the resulting orbitals maintain

the same transformation properties of the original basis set under the space

2 Of course, only in the hypothesis of neglecting the small non central corrections to
the isolated atom Hamiltonian, the angular momentum is a good quantum number, and
we can choose atomic functions with the full rotational symmetry.
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group operations [1]. The as-built Löwdin’s orbitals usually have a lower

symmetry than the original functions. If we start from a set of eigenstates

of the angular momentum operators of the isolated atoms, after the orthog-

onalization procedure we obtain a new set of orbitals which are symmetric

only with respect to those (discrete) rotations which transform the crystal

atoms into each other. And so, we eventually retrieve a basis set which is not

symmetric with respect to the full rotational group. Moreover, if the point

group is not symmorphic [9] (there are transformations associated to frac-

tional translations, see Appendix (A)), there are couples of orbitals which

belong to different sublattices that can be no longer related to each other

through a simple spatial translation. In effect, this is the situation for the

bulk silicon, where Löwdin’s orbitals do not have the inversion symmetry,

since the inversion is related to a fractional translation (when the origin has

been taken on a silicon atom). The inversion operation plus the fractional

translation transforms into each other the orbitals which belong to different

sublattices.

In the Orthogonal TB model, the basis set is constituted by Löwdin’s

orbitals, and we have:

〈σµR|σ′
µ

′R′〉 = δσσ′δµµ′δRR′ . (1.4)

The only parameters we need for electronic spectra calculations are the

Hamiltonian matrix elements, that we label as

Hµµ′

σσ′ (R′
µ′ − Rµ) ≡

〈

σµR

∣

∣

∣
Ĥ

∣

∣

∣
σ′

µ
′R′

〉

. (1.5)

As usual in the study of the crystalline structures, we construct a basis set

of Bloch sums, in order to take into account the translational symmetry of
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the lattice. In our scheme we obtain the following orthogonal states:

|σµk〉 =
1√
N

∑

R

eik·(R+µ) |σµR〉 , (1.6)

in which N is the number of lattice sites included into the sum. These func-

tions are invariant (up to a phase factor) by lattice translations, and therefore

they form a basis set in which the Hamiltonian operator Ĥ is diagonal with

respect to k. The Hamiltonian matrix in this new basis set is easily computed

starting from the interaction parameters defined in Eq. (1.5) :

Hµµ′

σσ′ (k) ≡ 〈σµk |H|σ′
µ

′k〉 =
∑

R

eik·(R+µ′−µ) 〈σµ0 |H|σ′
µ

′R〉 (1.7)

The band structure is now obtained solving the eigenvalue problem for the

reciprocal space Hamiltonian matrix of Eq. (1.7), for each k-vector lying

inside the first Brillouin Zone (BZ):

∑

σ′µ′

[

Hµµ′

σσ′ (k) − En(k)δσσ′δµµ′

]

Bµ′

σ′n(k) = 0, (1.8)

and the crystalline eigenstates come from the expansion

|nk〉 =
∑

σµ

Bµ
σn(k) |σµk〉 . (1.9)

The above procedure only requires the knowledge of the interaction parame-

ters (1.5) in order to calculate the single-electron energy levels of bulk struc-

tures. Using symmetries, all these parameters can be reduced to a minimum

number. As we shall see later, two factors enter into the definition of a

TB scheme: the number of species of atomic orbitals (the values that σ can

assume), and the number of nearest neighbors that interact with a single

orbital. These two factors determine the number of independent parame-

ters. By the analysis of the crystal, physical reasons can lead to prefer a, we
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can say, horizontal enlargement, using a small basis set, and interactions up

to many neighbors, or a vertical enlargement, using a few neighbors but a

greater basis set.

Based on a physical ground, approximations can be done in order to

reduce the number of parameters. A widely used one is the so called two-

center approximation [1], that can significantly reduce the number of parame-

ters [10]. The approximation consists in considering the potential energy3 in-

variant by rotations with respect to the axis connecting the two atoms where

the orbitals are located. The problem, in these terms, greatly simplifies, es-

pecially for far enough orbitals, in that a number of terms are automatically

put equal to zero. The used labelling is that of the diatomic molecule spectra,

and all the parameters are reduced to only σ, π . . . interactions. In effect, this

approximation consists in retaining only that part of the crystalline potential

energy which is located in the neighborhood of the two orbitals, and neglect-

ing all the remaining terms (the so-called three center integrals). Some care

should be taken in using this approximation, which often can be too rough

for a quantitative study of crystals.

After that a suitable set of independent interaction parameters has been

chosen, the next step of the Empirical TB scheme is based on calculating

them in such a way to fit, after the diagonalization of Eq. (1.8), experimen-

tal data and/or ab initio calculation results of energy gaps and/or effective

masses, in high symmetry k-points.

3 The potential energy enters the interaction parameters in Eq. (1.5). The two center
approximation leads to a simplification of the problem, with the reduction of the total
number of parameters.
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1.3 Empirical pseudopotentials

In this section we want to spend a few words on the empirical pseudopotential

scheme, that we often use as a comparative computational tool, in order to

address the precision of the Tight Binding method. The scheme is based on

the expansion of the crystalline eigenstates into Plane Waves, organized in

such a way to take into account the translational symmetry of the lattice:

|nk〉 =
∑

G

Ank (G) |k + G〉 . (1.10)

Here, the sum is done on all the reciprocal lattice vectors G, and Plane Waves

are defined in real space as:

〈r|k + G〉 ≡ 1√
V

eı(k+G)·r, (1.11)

where they have been normalized to the crystal volume V . In the local

formulation of the method, the crystalline potential is written as the sum of

atomic spherically symmetric contributions v(r), so that the single-electron

Hamiltonian for silicon is written as:

Ĥ =
p̂2

2m
+

∑

µ,R

v (|r − R− µ|) . (1.12)

The method is very simple, and the Hamiltonian matrix elements are

〈

k + G

∣

∣

∣
Ĥ

∣

∣

∣
k + G′

〉

=
h̄2

2m
|k + G|2 δG,G′ + V (G − G′) , (1.13)

where for silicon4 we have:

V (G) = v(G)
∑

µ

e−ıG·µ = v(G)
(

1 + e−ıG·d
)

. (1.14)

4 Where we use the atomic positions that we have defined in the previous section.
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Here v(G) is the Fourier transform of the atomic potential. The use of

the pseudopotential method as an empirical interpolation scheme consists

in using v(G) as unknown parameters, and fit them in such a way to have

a good agreement with the experimental data. The eigenvalue problem is

written as:

∑

G

[(

h̄2

2m
|k + G|2 − En (k)

)

δG,G′ + V (G − G′)

]

An,k(G) = 0, (1.15)

and is characterized by a great simplicity of calculation of the matrix ele-

ments. The feasibility of this method is based on how many parameters are

needed in order to reproduce a good band structure, as well as on the number

of Plane Waves needed to reach the convergence.

The answer was given already many years ago, when it was shown that

very few parameters and a not too large basis set succeeded in getting a

quite good agreement with the experimental data, for a huge class of semi-

conductors [11, 12]. The physical motivations of this very nice behavior lie

in the idea which is behind a pseudopotential [13]. In semiconductors, the

whole space can be divided into a core region, quite close to the ions, and an

interstitial region, constituted by the space between ions. We expect that

the lower energy electrons (the so called core electrons), are mainly localized

in the core region, while the higher energy electrons (the valence electrons)

lie in the interstitial region. It is easy to realize that these latter electrons

determines the band structures near the Fermi level, and therefore the opti-

cal properties of the crystal.

The explicit form of the potential inside the core region is not impor-

tant in studying the optical properties, and we can use a fictitious potential

(the pseudopotential) which is smoother than the real potential in the core
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region, and equal to this one in the interstitial region. It has been widely

demonstrated (in many different forms) that such pseudopotentials lead to

the same optical properties of the real crystal, but, being very smooth in

the core region, they have Fourier transforms v(G) which rapidly go to zero.

Within the Empirical Pseudopotential Method (EPM), in the form it was

first proposed [11,12], an excellent band structure of bulk silicon is obtained

with only three independent parameters. It has been shown that this pa-

rameter set is indeed the best choice for taking into account in an effective

way all the higher G contributions [14,15]. Moreover, it has been shown that

EPM form factors can be calculated starting from an ab initio LDA screened

pseudopotential [16]. This theoretical ground is the best reason for using the

EPM as a comparative tool.

The method is very nice, elegant and very simple to implement. It does

not require a great computational effort for bulk crystals and, more impor-

tantly, the convergence with respect to the basis set size is under control.

We want to point out that this is a great advantage over the TB models.

In fact, within a Pseudopotential method the convergence is obtained in a

very simple way, by including into the basis set as many Plane Waves as we

need. On the contrary, enlarging a TB basis set is not an easy task, and it

is closely related to the parametrization, the number of parameters rapidly

increasing with the number of basis functions (the only inclusion of the d

orbitals requires an huge effort).

Unfortunately, the EPM, although very attracting for studying bulk crys-

tals, gives rise to some difficulties when applied to nanostructures [16]. The

usual way to study a finite structure within a plane waves approach is that
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of building a fictitious periodic system, by placing infinite replicas of the

original structure on the sites of a Bravais lattice, and therefore keeping us-

ing k as a good quantum number. The structure that we want to study

constitutes the unit cell (the supercell) of such a fictitious crystal, and the

problem is equivalent to the isolated structure problem in the limit of choos-

ing a lattice constant large enough to avoid any interaction between the

replicas. The great computational difficulty raises from the necessity of leav-

ing very much vacuum space between two replicas, having indeed very large

lattice constants. In order to simulate the annihilation of the nanocrystal

wavefunctions inside the vacuum zone, a great number of short-wavelength

plane waves must be included into the basis set. On increasing the size of

the structure, the supercell size increases, and so the Hamiltonian matrix

size. With standard techniques, PW methods can hardly afford the study of

nanostructures with more than a few hundreds of atoms. The TB methods,

on the contrary, in a natural way take into account the vacuum zone outside

the structure. The size of the TB basis set is linear in N , and this allows to

study structures with thousands of atoms with a low computational effort.

1.4 Parametrizations

In this section we discuss different kinds of parametrizations currently used

in the TB interpolation schemes. We only consider the case of bulk silicon,

namely crystals with the diamond structure. The different parametrizations

are characterized by the choice of both the basis set, formed by atomic or-

bitals up to a maximum quantum numbers σ, and the number of neighbors

taken into account in the Hamiltonian matrix. These two factors determine
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the parameters used for a given scheme.

A first, very simplified model could be an sp3 TB with nearest neighbor

interactions. In this model only Löwdin’s orbitals built by the external 3s

and 3p silicon atomic states are included into the scheme (minimal basis set).

We can label the basis orbitals with σ = s, x, y, z; with the meaning that s

labels a totalsymmetrical function, while (x, y, z) label three basis functions

of the T1u irreducible representation of the point group Oh (Appendix (A)).

In this model we only include interactions up to nearest neighbors. Using

symmetries, it is not difficult to reduce all the Hamiltonian matrix elements

to the six independent parameters5:

H00
ss (0) , H00

xx (0) , H0d
ss (d) , H0d

sx (d) , H0d
xx (d) , H0d

xy (d) . (1.16)

For the sake of simplicity, in the following we shall use E, V, W, U symbols

for on-site, first, second and third nearest neighbors (a/4 units are used for

the positions)6:

Eσ ≡ H00
σσ′ (000) , Vσσ′ ≡ H0d

σσ′ (111) , Wσσ′ ≡ H00
σσ′ (220) , Uσσ′ ≡ H0d

σσ′ (311)

(1.17)

and in this new notation we write the six parameters for the previous model

as:

Es, Ep, Vss, Vsx, Vxx, Vxy. (1.18)

This simple model, based on a small set of fitting parameters, has generally

failed; in particular, it has been shown that it is not able to reproduce the

indirect fundamental gap in silicon [18]. In order to overcome this serious

5 Notation like in Eq. (1.5) has been used.
6 A similar notation for the TB parameters can be found in the literature [17], with

the difference of a multiplicative constant in the definition of the parameters.



1.4. PARAMETRIZATIONS 21

problem, Vogl [18] proposed an enlargement of the Löwdin’s orbital basis

set, including an excited s state (the so called s∗ state), for each atom.

This nearest neighbor sp3s∗ model requires a greater number of independent

parameters than the previous one, and between all the parameters Vogl, on

a physical ground, only retained the following:

Es, Ep, Es∗, Vss, Vsx, Vxx, Vxy, Vs∗x. (1.19)

Based on this larger set of fitting parameters, this model for silicon has been

shown to correctly describe not only the energy levels at the Γ point, but the

lowest indirect energy gap, and the first conduction band at ∆ (Γ − X) and

Λ (Γ−L) lines. On the other side, the behavior of the bands in the proximity

of the X points in directions different from ∆, such as the Z (X − W ) line,

is not good. The largest disagreement is obtained close to the W point, and

along the Σ (Γ−K) symmetry line. All these discrepancies likely arise from

the truncation of the interaction at a very low order of neighbors. We are

motivated in thinking that a first neighbor model cannot fair reproduce the

band structure in the whole first Brillouin Zone.

The overall behavior of the energy levels is well described by the density of

states (DOS). In figure (1.1) the bulk silicon band structure and DOS have

been shown, computed both with Vogl model [18] and a Pseudopotential

method. All the above considerations can be noticed; in particular it is

worth noting that the TB density of states is close to the pseudopotential

curve only for the highest energy valence bands. For the unoccupied states,

instead, the TB model largely overestimates the pseudopotential density of

states. The Vogl model still today is largely used, whereas, as we have just

shown, it should be used with care.
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Before going ahead, we want to spend a few words on the density of

states. For a generic system with Ns single-electron states, each one having

an energy Ei, we define the density of states at energy E as7:

g(E) =
1

Ns

∑

i

δ(E − Ei). (1.20)

In the case of a bulk crystal, the sum is done on all the Nk vectors which

lie inside the first Brillouin Zone, and all the band complex, getting the final

formula:

g(E) =
1

8Nk

∑

n,k

δ(E − En(k)). (1.21)

In order to compute the DOS, a grid in the first Brillouin Zone has to be

constructed, dense enough to guarantee the convergence of the sum. The sim-

plest way to build the grid consists in choosing periodic boundary conditions

for the crystal surface, like the largely used Born-von Karman conditions. In

this case, each primitive translation vector ai (i = 1, 2, 3) is replied N times,

and one chooses the k vectors according to the conditions:

eıNk·ai = 1. (1.22)

Using values of N larger and larger, the sum finally converges to its end

value. However, there are much better ways to perform such an integration

procedure. Over the years, very smart grids have been invented, constituted

by special points of the Brillouin zone, chosen in such a way that the sum

rapidly reaches the convergence on increasing Nk. A very efficient grid is

7 Actually, we here define the density of states for each state. It is normalized to the
unity, when the integration on all the energy range is considered. The current definition
differs in a multiplicative factor from the usual definition of density of states for unit
volume.
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Figure 1.1: Bulk silicon band structure (left) and density of states (right) calcu-

lated with the Vogl sp3s∗ nearest neighbor model [18] (magenta lines), compared

to a local empirical pseudopotential calculation (green lines), performed with the

parameters of Ref. [12].

obtained with the Monkhorst and Pack scheme [19], that we have used to-

gether with the Born-von Karman grid to perform integrations over the first

Brillouin zone.

In the recent years, computer performances have incredibly improved,

allowing more complex fitting procedures than in the past. In this way, fit-

ting of a band structure with many independent parameters is now possible,

with the result of making TB band structures very close to ab initio results.

Even if the first neighbor sp3s∗ TB is nowadays very used [20–25], because of

its simplicity in considering only nearest neighbor interactions, better results

are obtained using the minimal basis set sp3 and increasing the number of
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Figure 1.2: Bulk silicon band structure. Blue and red lines refer to, respectively,

Niquet [28] and Tserbak [27] TB model; green lines come from a Pseudopotential

calculation, with the Chelikowsky and Cohen parameters [12].

neighbors interacting with a single orbital.

The 3rd nearest neighbor sp3 TB model is based on 20 independent pa-

rameters [26]. Tserbak et al. [27] found an optimum fit for these parame-

ters, comparing the main band gaps computed with TB and pseudopotential

method. Tserbak parameters lead to a band structure and a density of states

that are indeed accurate over the whole first Brillouin Zone, not only at the

lowest energies, in the valence band energy range, but also at the highest

energies. In fact, the first conduction band agrees well to the pseudopoten-

tial curve over the most main symmetry lines. In figure (1.2) we report

the bulk silicon band structure calculated with the pseudopotential method

and the Tserbak model. We also show the band structure from the Niquet
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Figure 1.3: Bulk Silicon Density of States. Red and blue lines refer, respectively,

to the Tserbak [27] and Niquet [28] TB parametrization; green line comes out from

a pseudopotential calculation [12].

parametrizations, that we are going to discuss in the following.

The Tserbak model fails just on predicting very precisely the effective

masses near the highest symmetry k-points. Especially when dealing with

nanostructures, it is desirable that, in the limit of very large systems, the

TB results merge with those coming from the Effective Mass Approximation

(EMA) theory. For this reason, very precise values of the effective masses

are required. Niquet et al. [28], starting from the Tserbak model, proposed a

new set of parameters, obtained imposing the further condition that the main

electron and hole calculated effective masses were equal to their experimen-

tal values. This new set of parameters leads to an overall less accurate band

structure than that one of Tserbak, but they give good values of the hole and

the electron effective masses. A comparison between the two parametriza-
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Parameter Tserbak Niquet Parameter Tserbak Niquet

Es -6.3193 -6.17334 Wxy -0.0378 -0.05462

Ep 2.2494 2.39585 Wxz 0.0829 0.12754

Vss -1.8376 -1.78516 Wzz -0.2646 -0.24379

Vsx 1.0087 0.78088 Uss -0.0674 -0.06857

Vxx 0.3209 0.35657 Usx 0.2717 0.25209

Vxy 1.4889 1.47649 Usy -0.1262 -0.17098

Wss 0.1940 0.23010 Uxx 0.0869 0.13968

Wsx -0.1840 -0.21608 Uxy 0.0152 -0.03625

Wsz -0.0395 -0.02496 Uyy 0.0094 -0.04580

Wxx 0.0626 0.02286 Uyz 0.0952 0.06921

Table 1.1: Interaction parameters in the 3rd nearest neighbor sp3 TB model, from
Tserbak [27] and Niquet [28] parametrizations. All the parameters are in eV .

tions is in the DOS curves, that we report in figure (1.3).

In table (1.1) the two sets of parameters have been reported, while table

(1.2) shows an accurate comparison between the various methods and the ex-

perimental data. It comes out from table (1.2) that the Tserbak parameters

give energy values close to both the pseudopotential and the experimental

band gaps, and indeed the DOS graph in figure (1.3) shows an overall agree-

ment between the Tserbak’s TB and the pseudopotential curves. The Niquet

parameters, on the contrary, lose in precision at low energies. But they give

a much better agreement in the neighborhood of the band gap, with a good

prediction for the fundamental band gap and the conduction effective masses.

Even for the hole effective masses the agreement with experiments is not too

bad, when compared to the other theoretical calculations. For example, even
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Niquet Tserbak EPM CC Experimental

Γc
2′ 4.57 4.14 4.14 4.15

Γc
15 3.24 3.41 3.37 3.35

Γv
25′ 0.0 0.0 0.0 0.0

Xc
1 1.32 1.16 1.19 1.13

Xv
4 −3.09 −2.89 3.03 −2.9

Lc
1 2.19 2.17 2.10 2.04

Lv
3′ −1.09 −1.19 −1.27 −1.2

Egap 1.16 1.05 1.06 1.17

ml 0.919 0.567 0.912 0.916

mt 0.191 0.173 0.195 0.191

mlh[100] 0.200 0.147 0.167 0.17

mhh[100] 0.283 0.533 0.274 0.46

mlh[111] 0.138 0.133 0.097 0.16

mhh[111] 0.712 0.854 0.681 0.57

Table 1.2: Transition energies and effective masses from different methods.

a recent more sophisticated DFT calculation [29] gives only a value of 0.26 for

the heavy hole along the (100) direction. A good discussion about the hole

effective masses and the TB predictions, together with the k · p parameters,

can be found in Ref. [17]. The conclusions of the authors, who compare the

Tserbak and Niquet sp3 models and the sp3d5s∗ Jancu parametrization [10],

is that, among all these schemes, the Niquet model gives the best hole effec-

tive masses, and the best k · p parameters.
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Chapter 2

Linear Response Theory

2.1 Introduction

In this chapter we are going to discuss the interaction of a crystalline struc-

ture with the electromagnetic field. First of all, we shall give a general

definition of the dielectric tensor, in order to describe not only the cubic

crystals (like bulk silicon), but also optical anisotropic media, with a lower-

than-cubic symmetry. In the following section we shall state the problem,

and underline the approximations at the basis of the calculation. Then we

shall recover the constitutive relationships of a crystal, within a microscopic

full quantum mechanical formulation. In the second part of this chapter, the

extension of the TB interpolation scheme to the linear response theory is

discussed. We will give the statement of the problem, with a brief overview

of the methods that have been proposed over the years to solve it. Then

we will focus on the approximation that we use, trying to show advantages

and limits, in particular with the study of the longitudinal component of the

dielectric function. Finally, we will show the calculated bulk silicon dielec-

29
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tric properties, comparing the TB calculations to the EPM results and the

experimental data.

2.2 Response of a crystal to an external field

When an electromagnetic wave travels through a dielectric non-magnetic

medium, polarization effects induce currents and charges that interact with

the external field. The macroscopic statement of the problem is based on the

Maxwell equations inside the medium, that we write here for convenience,

assuming that inside the medium there are neither external charges nor cur-

rents [30]:

∇ · D = 0 (2.1)

∇ · B = 0 (2.2)

∇× E = −1

c

∂B

∂t
(2.3)

∇× B =
1

c

∂D

∂t
. (2.4)

Here, D is the external electric field, B is the magnetic field, while E is

the total electric field inside the medium. All the quantities considered here

depend on the space and the time. We assume that all the fields are slowly

varying in space with respect to the lattice constant of the structure. From

the Maxwell equations, the following wave equation can be obtained:

∇2E−∇(∇ · E) − 1

c2

∂2

∂t2
D = 0. (2.5)

Starting from the constitutive equations of the medium, that define the re-

sponse of the system to an external field, the dispersion relationships can be
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obtained from the latter equation. For an anisotropic medium, the general

relation that relates D and E can be written as1:

Dα(rt) =

∫

dr1dt1εαβ(r, r1; t − t1)Eβ(r1, t1). (2.6)

Eq. (2.6) can be thought of as a definition of the dielectric tensor ε in real

space. Fourier-transforming Eq. (2.6), and using the crystal translational

symmetry, we obtain the reciprocal space definition of the dielectric tensor

[31]:

Dα(q + G, ω) =
∑

G′

εαβ(q + G,q + G′, ω)Eα(q + G′, ω). (2.7)

Here, G and G′ are two crystal reciprocal space vectors, while q belongs to

the first Brillouin Zone. The G 6= G′ components of the dielectric tensor

give the so called local field effects (LFE). They take into account the fact

that the effective perturbing field acting in a particular zone of the crystal,

is not the bare external field but a local field which includes effects from

all the charges within the medium, macroscopically far from that zone. In

this real space formulation, neglecting the LFE is equal to assuming that the

dielectric tensor depends only on the vector difference r − r′. LFE should

be analyzed for each material, in that they could be of great importance.

However, in the case of bulk silicon crystals, it has been shown that they do

not significantly change the form of the dielectric function [32].

In the following, we shall use the so called Random Phase Approxima-

tion (RPA) for the dielectric tensor, treating the crystal as an homogeneous

electron gas and neglecting the local field effects. In this approximation, we

have:

Dα(q, ω) = εαβ(q, ω)Eα(q, ω). (2.8)

1 We assume here sum over the repeated indices.
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Inserting this constitutive relations inside the wave equation (2.5), we obtain

the system of equations:

∑

β

(

q2δα,β − qαqβ − ω2

c2
εαβ(q, ω)

)

Eβ = 0, (2.9)

which has non-trivial solutions when the determinant nullifies [30]:

det

∣

∣

∣

∣

q2δα,β − qαqβ − ω2

c2
εαβ(q, ω)

∣

∣

∣

∣

= 0. (2.10)

This gives the so called Fresnel equation [30], whose solutions are the disper-

sion relationships for the crystal.

Defining e and q as, respectively, the polarization and the propagation

versors of an electromagnetic wave traveling inside the medium, we find con-

venient to separate the longitudinal component of the field (El · e = 0) by

the transverse component (Et · q = 0). The dielectric tensor gives the most

general information for the linear response of the system to an external field.

In fact, starting from it, the longitudinal-longitudinal and the transverse-

transverse dielectric components can be deduced from the equations:

εll(q, ω) = q̂αεαβ(q, ω)q̂β (2.11)

εtt(q, ω) = êαεαβ(q, ω)êβ. (2.12)

They represent the longitudinal (transverse) response to a longitudinal (trans-

verse) external field. For non-cubic crystals, these two terms are not suf-

ficient, and also the longitudinal-transverse and the transverse-longitudinal

components have to be calculated, in order to study the response to a generic

external field. In the cubic case, instead, the problem is fully separable into

a longitudinal and a transverse part, and the dispersion relations ω(q) can
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be obtained from the Fresnel equations, which become:

εll(q, ω) = 0 (2.13)

ω2εtt(q, ω) = q2c2. (2.14)

The first of this couple of equations gives the plasmon dispersion curve, the

second one describes an external wave travelling inside the medium. We are

mainly interested in the second equation, which gives the relations between

the real and the imaginary part of the dielectric function and the optical

properties of the medium (refraction index, extinction coefficient, reflection

and transmission functions, absorption coefficient). In the limit q → 0, in

the cubic case the two dielectric components are equal, and therefore the

response of the system to both a longitudinal and a transverse external field

is exactly the same.

The linear response problem consists in the calculation of the constitutive

equations of a medium starting from a microscopic ground. The current

induced by an external field, in reciprocal space, is related to the total electric

field by means of the following relationships:

δJα(q, ω) = − ıω

4π
[εα,β(q, ω) − δα,β] Eβ(q, ω). (2.15)

Starting from this statement, in the next paragraphs we are going to derive

a microscopic formulation of the dielectric tensor within the RPA.
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2.3 Interaction picture and correlation func-

tions

In the Schrödinger picture of quantum mechanics, the state of a system is

represented by the vector of an Hilbert space, which explicitly depends on

time. Using the Dirac notation, we write the state vectors and the operators

in the Schrödinger picture as:

|ΨS(t)〉 , ÔS. (2.16)

The operators in the Schrödinger picture do not have an explicit time depen-

dence, which is fully included into the state vectors through the Schrödinger

equation

ıh̄∂t |ΨS(t)〉 = Ĥ |ΨS(t)〉 , (2.17)

which contains the Hamiltonian operator Ĥ. Once that the initial conditions

of the problem have been fixed (namely, the state vector at t0), the formal

solution of Eq. (2.17) is

|ΨS(t)〉 = e−ıĤ(t−t0)/h̄ |ΨS(t0)〉 . (2.18)

In the linear response problems, a quantum system is subject to an exter-

nal field, small enough to allow a perturbative approach. The Hamiltonian

operator has the form:

Ĥ = Ĥ0 + V̂ , (2.19)

where Ĥ0 is the unperturbed Hamiltonian of the isolated system, while the

V̂ term is due to the external field action. In these situations an extremely
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useful picture is the interaction picture, whose basic idea consists in splitting

the time dependence between state vectors and operators. Using the unitary

transformation:

|ΨI(t)〉 = eıĤ0t/h̄ |ΨS(t)〉 , (2.20)

and the corresponding operator transformation:

ÔI(t) = eıĤ0t/h̄ÔSe−ıĤ0t/h̄, (2.21)

it is easy to verify that only the perturbation term contributes to the time

dependence of the state vector, through the equation:

ıh̄∂t |ΨI(t)〉 = V̂I(t) |ΨI(t)〉 , (2.22)

while Ĥ0 gives the time dependence of the operators, through the motion

equation:

ıh̄∂tÔI(t) =
[

ÔI(t), Ĥ0

]

. (2.23)

The formal explicit solution of Eq. (2.22) is2:

|ΨI(t)〉 = T̂ exp

{

− ı

h̄

∫ t

t0

dt1VI(t1)

}

|ΨI(t0)〉 , (2.24)

which is an expression well suitable to a series expansion. We assume that

the external potential is switched on at a finite instant of time τ . Therefore,

in the limit t0 → ∞, the starting state of the system is an eigenstate of Ĥ0.

Let us label the unperturbed states with the notation |Φm〉:

Ĥ0 |Φm〉 = E0
m |Φm〉 . (2.25)

2 T̂ is the Time-ordering operator, defined as:

T̂
[

Ô(t1)B̂(t2)
]

≡ θ(t1 − t2)Ô(t1)B̂(t2) − θ(t2 − t1)B̂(t2)Ô(t1),

θ is the Heaviside function.
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We assume that the system is in its fundamental state |Φ0〉 before the per-

turbation is switched on, and so we can put

|ΨI(−∞)〉 = |Φ0〉 . (2.26)

In this way, we can write the state vector at the first perturbative order,

starting from the fundamental unperturbed state, as:

|ΨI(t)〉 =

(

1 − ı

h̄

∫ t

−∞

dt1VI(t1)

)

|Φ0〉 . (2.27)

The main quantities in the study of a physical quantum system are the

expectation values of hermitian operators. These are picture-independent

functions, and we shall see in the following the utility of using the interaction

picture. Let us consider a physical variable O, represented by an hermitian

operator Ô. In the perturbed system, the expectation value of Ô is

〈

Ô
〉

(t) ≡
〈

ΨI(t)
∣

∣

∣
ÔI(t)

∣

∣

∣
ΨI(t)

〉

. (2.28)

By substituting Eq. (2.27), we can calculate the linear response of O to an

external field, and we find the result

〈

Ô
〉

(t) =
〈

Ô
〉

0
+

ı

h̄

∫ t

−∞

dt1

〈[

V̂I(t1), ÔI(t)
]〉

0
, (2.29)

where the right side expectation values have been calculated on the unper-

turbed fundamental state:

〈

Ô
〉

0
≡

〈

Φ0

∣

∣

∣
Ô

∣

∣

∣
Φ0

〉

0
. (2.30)

Therefore, we obtain the quite general formula of the variation of a physical

quantity when the system is subject to the action of an external field:

δO(t) =
ı

h̄

∫ ∞

−∞

dt1

〈[

V̂I(t1), ÔI(t)
]〉

0
Θ(t1 − t). (2.31)
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2.4 The dielectric tensor

In this section, we shall see in detail the linear response of an electron non-

magnetic system subject to an external electromagnetic field. In order to

study the dielectric tensor for a generic medium, we consider an external

field, having both a longitudinal and a transverse component. We know that

the optical properties of a crystal are gauge-independent [31], so we choose

the gauge in which there is not any scalar potential. In this case the electric

field is related to the only vector potential through the relationship:

E(r, t) = −1

c

∂A

∂t
(r, t). (2.32)

or, in the conjugate space,

E(q, ω) =
ıω

c
A(q, ω). (2.33)

The microscopic current density operator Ĵ(r), for a many body system

in an electromagnetic field, is defined as the sum of two terms [33]:

Ĵ(r) = Ĵ1(r) + Ĵ2(r), (2.34)

where


























Ĵ1(r) = − e2

mc

N
∑

i=1

A(ri, t)δ(r − ri)

Ĵ2(r) = − e

2m

N
∑

i=1

[p̂iδ(r − ri) + δ(r − ri)p̂i] .

(2.35)

N is the total number of electrons inside the crystal. When considering

the interaction with an external field, among the two components, only the

second term in Eq. (2.35), which we called Ĵ2(r), gives a linear contribution
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to the energy. We can write the potential energy operator as3:

V̂ (t) =
1

c

∫

drĴ2(r, t) · A(r, t). (2.36)

The current density linear response is the sum of the variations of its two

components. Using Eq.(2.31), we can write the induced current as:

δJα(r, t) = − e2N

mcΩ
Aα(r, t) +

1

h̄c

∫

dr1dt1Π
R
α,β (rt; r1t1)Aβ(r1, t1), (2.37)

where the first term comes out from the Ĵ1 contribution (Ω is the structure

volume), while the second term comes out from Ĵ2. We have introduced the

retarded current-current correlation tensor

ΠR
α,β (rt; r′t′) ≡ −ı 〈[J2α(rt), J2β(r′t′)]〉0 Θ(t − t′). (2.38)

Using the well known Lehmann representation [34], by inserting a complete

set of unperturbed many-body eigenstates, we obtain the Fourier transform

of Eq. (2.38). In the following we neglect the local field effects, assuming a

local response in q-space, and we come to the result:

ΠR
α,β (q; ω) =

∑

m

[

J2α(q)0mJ2β(−q)m0

ω − ωm + ıη
− J2β(q)0mJ2α(−q)m0

ω + ωm + ıη

]

. (2.39)

We have defined the Fourier-transformed current operator Ĵ2(q):

Ĵ2α(q) = − e

2m

N
∑

i=1

[

p̂ie
−q·ri + e−q·rip̂i

]

. (2.40)

The current density matrix elements between a couple of unperturbed many-

body states, whose transition frequency is ωm = (Em − E0)/h̄, are:

J2α(q)0m ≡
〈

Φ0

∣

∣

∣
Ĵ2α(q)

∣

∣

∣
Φm

〉

. (2.41)

3 Here and in the following expressions, all the time-dependent operators are taken in
the interaction picture.
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We consider here the one-electron approximation, in which the unper-

turbed states are Slater determinants of single particle functions, and the

induced current versus the electric field relationship becomes 4:

δJα(q, ω) =
ıe2N

mΩω
Eα(q, ω)− ı

Ωω

∑

n,n′

(fn′−fn)

[

j2α(q)nn′j2β(−q)n′n

h̄ω − Enn′ + ıη

]

Eβ(q, ω).

(2.42)

We have introduced the single particle current density matrix elements:

j2α(q)nn′ ≡ − e

2m

〈

φn

∣

∣p̂αe−ıq·r + e−ıq·rp̂α

∣

∣φn′

〉

, (2.43)

where |φn〉 is an unperturbed single particle state. We define fn as the

occupation of the nth unperturbed single particle level. At zero temperature,

for a semiconductor in its ground state, we know that fn = 1 for all the

occupied, valence states, while fn = 0 for the conduction states. In this

single particle picture, En is the single particle unperturbed energy, and we

have taken Enn′ ≡ En′ − En. Thus the final form for the dielectric tensor in

the RPA is [31]:

εα,β(q, ω) = (1 − 4πe2N

mΩω2
)δα,β +

4π

Ωω2

∑

n,n′

(fn′ − fn)

[

j2α(q)nn′j2β(−q)n′n

h̄ω − Enn′ + ıη

]

.

(2.44)

From this equation we can easily find the longitudinal-longitudinal compo-

nent of the dielectric tensor, that is a basic quantity needed for the study

of the crystal screening properties, and the transverse-transverse component,

related to the optical properties of the crystal. The longitudinal-longitudinal

component can be written in terms of the matrix elements of the charge

4 We use Eα as the α component of the external electric field E.
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density operator, that we define as

ρ(q) = −ee−ıq·r. (2.45)

The charge conservation equation is the link between a linear response based

respectively on a current density or on a charge density formulation, as we

shall see later. It is not difficult to verify the following generalized sum rule:

∑

n,n′

(fn′ − fn)
|q · j2(q)nn′ |2

Enn′

= −e2
∑

n

fn = −Ne2, (2.46)

that leads us to write down the longitudinal-longitudinal dielectric function

in the following way:

εll(q, ω) = 1 +
4πh̄2

Ω

(

E + iη

E

)2
∑

n,n′

(fn′ − fn)

E2
nn′

[

j2α(q)nn′j2β(−q)n′n

h̄ω − Enn′ + ıη

]

.

(2.47)

In the limit of negligible broadening η, this latter equation can be well ap-

proximated by the following one, that is a fundamental result of the linear

response theory:

εll(q, ω) = 1 +
4πh̄2

Ω

∑

n,n′

(fn′ − fn)

E2
nn′

[

j2α(q)nn′j2β(−q)n′n

h̄ω − Enn′ + ıη

]

. (2.48)

The longitudinal-longitudinal component could also be obtained starting

from the Coulomb Gauge (q · A = 0), and working only in terms of the

scalar potential. In this case, by studying the charge density response, and

introducing a density-density correlation function, a different relationship is

obtained for the longitudinal-longitudinal dielectric function. These two dif-

ferent formulations give identical results, because they only differ in a choice

of gauge, and the dielectric tensor is a gauge-invariant quantity. The way for
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getting one formulation from the other is the charge conservation equation.

We write here such equation in the single particle operator form, connecting

the longitudinal component of the current density to the commutator be-

tween the Hamiltonian (ĥ is the one-electron Hamiltonian) and the charge

density:

h̄q · ĵ2(q) = [ρ̂(q), ĥ] = ı
∂

∂t
ρ̂(q). (2.49)

Using the expression (2.48) obtained before, together with the charge conser-

vation equation (2.49), we find the longitudinal-longitudinal dielectric func-

tion that is obtained within a charge density response formulation:

εll(q, ω) = δα,β +
4πe2

q2Ω

∑

n,n′

(fn′ − fn)

[

|〈φn |e−ıq·r|φn′〉|2
h̄ω − Enn′ + ıη

]

. (2.50)

Coming back to Eq. (2.44), it is useful to derive the limit of very long

wavelengths, when q → 0, and we obtain the dielectric tensor5:

εα,β(ω) = δα,β +
4πe2h̄2

Ωm2

∑

n,n′

(fn′ − fn)

E2
nn′

[〈n|p̂α|n′〉 〈n′|p̂β|n〉
h̄ω − Enn′ + ıη

]

. (2.51)

In the case of a cubic crystal, such as bulk silicon, the q → 0 dielectric tensor

reduces to the unit tensor times a scalar quantity, that is usually defined as

the dielectric function6:

ε(ω) = 1 +
4πe2h̄2

3Ωm2

∑

n,n′

(fn′ − fn)

E2
nn′

|〈n|p|n′〉|2
[h̄ω − Enn′ + ıη]

. (2.52)

5 In order to obtain this equation, we have used a procedure similar to that shown
before for the longitudinal component of the dielectric function.

6 We use the following short notation for the square modulus of complex vector quan-
tities:

|A|2 ≡
3

∑

α=1

|Aα|2 .
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As we have already pointed out, for cubic crystals, in the limit of long wave-

lengths, both the longitudinal and the transverse components of the dielectric

tensor give the same dielectric function defined in the fundamental equation

(2.52).

In the case of a bulk crystal, we explicitly write down the k-dependent

expressions. The longitudinal dielectric response, taking into account the

spin degeneracy through a 2 factor, is:

εll(q, ω) = δα,β+
8πe2

q2Ω

∑

n,n′,k

[fn′(k + q) − fn(k)]

[

|〈nk |e−ıq·r|n′k + q〉|2
h̄ω − En′(k + q) + En(k) + ıη

]

,

(2.53)

while the dielectric function is (limit of long wavelengths):

ε(ω) = 1 +
8πe2h̄2

3Ωm2

∑

n,n′,k

[fn′(k) − fn(k)] |〈nk|p|n′k〉|2
Enn′(k)2 [h̄ω − Enn′(k) + ıη]

. (2.54)

It is useful introducing, for each allowed transition, the Oscillator Strength

(OS), defined as:

Fnn′(k) =
2 |〈nk |p|n′k〉|2

3mEnn′(k)
. (2.55)

In terms of the OS, we can write the dielectric function in the form:

ε(E) = 1 +
4πe2h̄2

Ωm

∑

n,n′,k

[fn′(k) − fn(k)]Fnn′(k)

Enn′(k) [E − Enn′(k) + ıη]
. (2.56)

2.5 Linear response and TB

The Tight Binding method, used as an empirical interpolation scheme, has

been a simple and powerful calculation tool for many years. In the form it

was first stated in the classical paper of Slater and Koster [1], the method

has been used to compute no more than crystalline band structures. Many

authors have been trying to enlarge the model in order to make it more
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flexible. Indeed, the great simplicity of the SK approach, consisting in only

including into the scheme a (more or less) small number of Hamiltonian pa-

rameters, becomes an annoying limit when one asks something more than a

simple one-electron energy level calculation! The problem is the lacking of

an explicit knowledge of the basis wave functions, so that calculations of im-

portant quantities, such as, for example, charge densities, oscillator strengths

and dielectric properties, Coulomb and exchange interaction terms, are for-

bidden within this primitive scheme.

Over the years, many methods have been proposed, with the hope of

approximating the TB atomic orbitals, or, at least, the momentum matrix

elements, without rejecting the simple and powerful empirical way. A typi-

cal approach consists in performing an explicit calculation of the orthogonal

basis functions, by using, for instance, a Löwdin transformation of a basis

set of Gaussian or Slater orbitals, and choosing between a Slater-Koster or a

Pseudopotential Hamiltonian [25,35–39]. These approaches represent the at-

tempts of preserving the simplicity of the Empirical Tight Binding avoiding

the complications of an ab initio scheme, which requires a greater number of

basis orbitals [40], or the cumbersome study of localized functions [41, 42],

and the explicit construction of the Hamiltonian matrix.

A different method, much simpler, consists in directly fitting the mo-

mentum matrix elements, parametrized in such a way to reproduce oscillator

strengths, dielectric function, or k·p coefficients [22,43]. A recent usage, that

we shall analyze in detail in the following, starts from writing the momentum
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operator using the relationship7:

p̂ =
ım

h̄

[

Ĥ, r̂
]

, (2.57)

therefore changing the problem into the search of a suitable approximation for

the position matrix elements. The difference of this approach with respect to

the direct parametrization of the momentum matrix elements consists in the

inclusion of the Hamiltonian parameters into the Eq.(2.57). In other words,

we define the momentum using the informations on the Hamiltonian coming

out from the fitting of the band structure. This is a crucial point, because

the risk of each of the above mentioned methods is the setting of momentum

parameters disconnected from the Hamiltonian parametrization. In fact, the

use of the SK scheme for the energy levels calculations, together with a new

completely arbitrary parametrization for the momentum operator (or even

for the wave functions or the position operator) for the dielectric response

calculations can lead to problems of self-consistency with the theory, such

as, for example, the breaking of the gauge invariance of the dielectric tensor,

or the breaking of the charge conservation [44, 45]. A good setting of the

problem, from this point of view, was the one proposed by Hanke [36], who

used Gaussian functions for simulating atomic orbitals, choosing the Gaus-

sian coefficients in such a way to satisfy the charge conservation equation,

and this guaranteed the equality between charge density and current density

linear response. This is a good self-consistency check which each method

should comply to. Later, we shall come back on this point, showing how

much density and current response can change when charge conservation is

not verified.

7 From now on, we shall only consider single particle operators.
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2.6 The approximation

Between the many proposed approximations, we have used a very simple

one, that nevertheless allows us to get a good estimation of the bulk silicon

dielectric function. Although the method has been proposed some time ago

[27, 46], it has raised a new interest in recent years, with several researchers

that have been trying to give it a more formal justification [45, 47–49].

The starting point consists in writing the position operator as the sum of

two contributions [48]:

r̂ = r̂c + r̂inter. (2.58)

that we define through their matrix elements in the TB basis set8:

〈σµR |̂rc| σ′
µ

′R′〉 = Rµδσσ′δµµ′δRR′ (2.59)

〈σµR |̂rinter| σ′
µ

′R′〉 = D
µµ′

σσ′ (R′
µ′ − Rµ) . (2.60)

The first term r̂c contains the diagonal part of the position operator in the

basis set. The atomic orbitals are its eigenstates, with eigenvalues given by

the atomic positions. The second term, instead, takes into account the off-

diagonal contributions. The D vector matrix, defined in Eq. (2.60), rapidly

goes to zero on increasing the distance between the atoms. Its most important

contribution comes from the on-site terms D
µµ
σσ′(0). For the sp3 bulk silicon

basis set, there is only one independent off-diagonal on-site parameter:

(

D(x)
)00

sx
(0). (2.61)

Therefore, we can divide all the position matrix elements into three different

contributions: (1) on-site, diagonal terms; (2) on-site, off-diagonal terms; (3)

8 We follow the formalism introduced in chapter (1) for TB atomic orbitals, using the
labelling Rµ = R + µ.
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off-site, off-diagonal terms.

The approximation that we use consists in retaining only the first contri-

bution, and consequently treating the atomic orbitals as eigenstates of the

position operator in the dielectric properties calculations:

r̂ ≈ r̂c. (2.62)

In this approximation, the third contribution with off-site terms, is supposed

to be of little importance, the main part of the position operator coming from

the on-site terms. There is an open discussion on whether or not including

the contribution (2) of on-site, off-diagonal terms [24,48–50]. From one point

of view, this is important in order to retrieve a non-null isolated-atom dipole

matrix element in the limit of very large lattice constant [24, 50]. From

another point of view, it has been shown that the inclusion of this term could

lead to troubles of consistency with the gauge-invariance of the theory [48,49].

In the case of an sp3 third neighbor basis set, we have verified that including

the additional term (2.61) only slightly modifies the bulk silicon dielectric

function (an almost rigid shift in the intensities is observed, while the peaks

positions are unchanged). For these reasons we have chosen to neglect such

contribution.

Starting from the approximation in Eq. (2.62) for the position, we define

the momentum matrix elements in the TB basis set via Eq. (2.57) :

〈σµR |p̂|σ′
µ

′R′〉 =
ım

h̄
(R′

µ′ − Rµ)
〈

σµR

∣

∣

∣
Ĥ

∣

∣

∣
σ′

µ
′R′

〉

. (2.63)

We want to point out that the present approximation, performed on the po-

sition operator, allows us to include into the momentum all the informations

coming from the Hamiltonian parametrization, resulting into a momentum
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operator with many off-diagonal terms. We expect that this approach is for-

mally more correct than a direct parametrization of the momentum matrix

elements.

Within this on-site diagonal approximation for the position operator, p̂

assumes a very simple k-space representation, being proportional to the gra-

dient of the Hamiltonian matrix:

〈σµk| p̂ |σ′
µ

′k〉 =
m

h̄
∇kH

µµ′

σσ′ (k) . (2.64)

2.7 The charge conservation

We have seen in a previous section that the charge conservation condition

can be written as9:
[

ρ̂(q), Ĥ
]

= h̄q · ĵ2(q). (2.65)

Because of the translational symmetry of the Bravais lattices, for a bulk crys-

tal the operator equation (2.65) has the following matrix elements between

couple of Bloch states:

〈

nk

∣

∣

∣
h̄q · ĵ(q)

∣

∣

∣
n′k + q

〉

= 〈nk |ρ̂(q)|n′k + q〉 [En′(k + q) − En(k)] . (2.66)

Starting from the well known Baker-Hausdorff formula

eÂB̂e−Â = 1̂ +
[

Â, B̂
]

+
1

2!

[

Â,
[

Â, B̂
]]

+
1

3!

[

Â,
[

Â,
[

Â, B̂
]]]

. . . , (2.67)

it is easily verified that the charge conservation is equivalent to imposing two

conditions on the commutators between r̂ and Ĥ:

[

r̂α, Ĥ
]

=
ıh̄

m
p̂α (2.68)

[r̂α, p̂β] = ıh̄δα,β. (2.69)

9 We have written here again the charge conservation Eq. (2.49), with the definition
of charge density and current density given in Eqs. (2.45) and (2.40).
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In the limit of long wavelengths (q → 0), only the first one of this couple of

equations is needed to verify Eq. (2.65).

Within the approach presented here, we approximate the position r̂ with

r̂c, whose eigenstates are exactly the TB atomic orbitals, and then we define

the momentum operator from Eq. (2.57). Therefore, by construction our

model verifies the charge conservation equation in the limit q → 0, and so it

is fully self-consistent in calculations of the long wavelength dielectric tensor

in Eq. (2.51). Instead, it does not verify the canonical commutator relations

in Eq. (2.69) between position and momentum operators. This means that,

for finite values of q, the charge conservation is not verified and we expect a

density response different from the current response.

In order to give a quantitative estimation of their relative shift, we have

analyzed both the current- and the density-derived longitudinal dielectric

function, with the help of Eq. (2.48) and (2.50), in the static limit ω = 0. In

figure (2.1) we show the longitudinal dielectric function that we have com-

puted using TB and EPM methods, in current and density representation.

It is clear that there is a unique EPM curve, because within the Local Pseu-

dopotential method the charge conservation is well defined, and both the

density and current responses give the same result. On the contrary, our TB

approach is charge-conserving only in the limit of long wavelengths, explain-

ing why we retrieve a unique static dielectric constant (q = 0). On the other

side, as Fig (2.1) clearly shows, the results are quite different on increasing

values of the transferred momentum. From a comparison between the TB

and EPM curves, it can be noticed that the TB current-derived dielectric

function is very close to the pseudopotential curve. Quite surprisingly, the
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Figure 2.1: Longitudinal dielectric function along the (100) direction, calculated

within both the density and current response approaches. We have used the Niquet

parametrization [28] for TB and the Chelikowsky Local form factors [12] for EPM

calculations. The green line refers to the EPM result, the blue and the red lines

are, respectively, the TB current and density responses.

difference between the two curves is almost a simple vertical shift. Instead,

the density response overestimates the EPM result. Somehow, this means

that for finite values of q the method gives a better estimation of current

than density operator.
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2.8 Results

In this section we are going to show the bulk silicon dielectric function, cal-

culated using the so far described approximation, compared to EPM results

and experimental data. We write here again the complex dielectric function

for a bulk structure:

ε(E) = 1 +
4πe2h̄2

Ωm

∑

n,n′,k

[fn′(k) − fn(k)]Fnn′(k)

Enn′(k) [E − Enn′(k) + ıη]
. (2.70)

where we have used the oscillator strengths defined in Eq.(2.55). In particu-

lar, the imaginary part of the dielectric function can be written in the general

form:

ε2(E) =
4π2e2h̄2

Ωm

∑

n,n′,k

[fn′(k) − fn(k)]Fnn′(k)

Enn′(k)
S (E − Enn′(k)) , (2.71)

where S(x) is a broadening function, which is not necessarily a Lorentzian

function, depending on the sort of broadening that the electronic levels feel.

We here consider a Lorentzian broadening, and define S(x) as:

S(x) =
η/π

x2 + η2
. (2.72)

Starting from the commutation relations in Eq. (2.69), it is simple to show

that the following sum rule for the oscillator strengths holds:

∑

n′

Fnn′(k) = 1. (2.73)

Unfortunately, the present approximation does not verify Eq. (2.69), and

so the sum rule neither. The calculation of the right hand of Eq.(2.73) is a

good quantitative check on whether or not the oscillator strengths are well

reproduced within our method. The sum rule (2.73) can be written as an
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overall condition on the dielectric function imaginary part (N is the number

of electrons contained inside the volume Ω)10:

mΩ

2Nπ2e2h̄2

∫ ∞

0

Eε2(E)dE = 1. (2.74)

In the case of the bulk silicon, we obtain for the left side of this equation

the value of 1.077, with both sets of TB parameters (Niquet and Tserbak

parameters), showing that the sum rule is satisfied to within 8%.

In figure (2.2) we report the imaginary part of the bulk silicon dielectric

function, calculated with EPM and TB. The experimental data are shown for

comparison. Only no-phonon transitions are considered in the calculation.

Phonon assisted transitions are expected to give a negligible contribution to

ε2. Indeed, the measured dielectric function does not show any significant

contributions at energies near the bulk Si indirect gap (at about 1.1 eV),

which are dipole-forbidden. The analysis of the experimental ε2(E) shows

two main peaks, that lie at energies of about 3.5 eV and 4.2 eV. Using both

empirical [36] and ab initio models [32], it is nowadays clear that the first

peak is due to excitonic effects, and can be theoretically calculated by only

inserting the electron-hole interaction inside the dielectric function. This is

not a simple task, and is well beyond the RPA approximation we are using.

Within RPA, we are only able to predict a shoulder in correspondence of the

first peak. Moreover, all the transition energies are slightly overestimated,

because the excitonic effects make the one-electron energy levels closer. Keep-

ing in mind these intrinsic limitations of RPA, we think, looking at figure

(2.2), that there is a good agreement between the two TB parametrizations,

EPM and experiments. Within the RPA, the solution we have chosen for

10 The real and imaginary part of dielectric function are indicated with ε1 and ε2 re-
spectively.
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Figure 2.2: Imaginary part of the bulk silicon dielectric function. The empty

circles are experimental data [51], the red and the blue lines are the Tight Binding

curves calculated using, respectively, Tserbak [27] and Niquet [28] parameters, the

green line refers to a Local Empirical Pseudopotential calculation performed with

the Chelikowsky-Cohen parameters [12]. A Lorentzian broadening of η = 0.04 eV

has been used.

approximating the position operator gives very good results, and can give a

right prediction of the highest peak in the imaginary part of the bulk silicon

dielectric function.

Another interesting quantity is the static dielectric constant, which can

be calculated either as the ω → 0 limit of the real dielectric function, or

starting from the knowledge of ε2(E) through the relation:

εs = 1 +
2

π

∫ ∞

0

ε2(E)

E
dE. (2.75)
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In table (2.8) we report on a comparison between the calculated values of

εs and the experimental value. Calculations have been performed with Ni-

quet [28] and Tserbak [27] parametrizations and with the Chelikowsky Local

Pseudopotential form factors [12], the experimental data is taken by [52]. An

error of about 10% is usually ascribed to excitonic effects.

Method εs

TB Niquet 10.74

TB Tserbak 10.63

EPM CC 10.53

Exp 11.40

Table 2.1: Bulk Si static dielectric constant.
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Chapter 3

Spherical nanocrystals

3.1 Introduction

In this chapter we apply the Empirical Tight Binding method to the study

of Silicon spherical nanocrystals. In a first step, the nanocrystal energy lev-

els are calculated. The energy gap between the Highest Occupied Molecular

Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO)

is compared to the experimental data and to other theoretical results avail-

able in literature. The situation that comes out is quite chaotic, and a large

scatter of the many measured and calculated energy gaps can be observed.

Nevertheless, the ETB is seen to fit quite well most of the data, both for

small and large nanocrystals.

The second part of the chapter concerns the optical properties. A com-

parison of a nanocrystal extinction coefficient with an experimental result is

shown. This is a good check that the ETB works well. Then, the imagi-

nary part of the nanocrystal dielectric function is studied. On increasing the

nanocrystal size, the energy gap between the first transition energy and the

55
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threshold of the absorption spectrum rapidly increases with it. This is an

interesting feature of the Si nanocrystals, and is related to the fast annihila-

tion of the oscillator strengths and to the rise of the radiative recombination

time. The matter is discussed in detail, investigating the projection of the

nanocrystal states on the bulk states. It comes out that the k-space overlap

between the HOMO and LUMO states rapidly nullifies, when the nanocrys-

tal size increases. This behavior can well explain the exponential increase

of the radiative recombination times. Finally, the static dielectric constant

has been studied, and a comparison with other theoretical calculations is

discussed.

3.2 The method

The application of the ETB to the nanocrystals is very simple. A nanocrystal

can be thought of as composed by three parts: (1) an inner core, (2) a relaxed

shell, and (3) a passivant layer. Inside the inner core the atoms behave as

in the bulk, being the surface far enough that its effects are negligible. The

relaxed shell covers the nanocrystal core, and the surface effects have to be

taken into account. The atoms in the shell relax from their bulk positions,

and a modulation of the Hamiltonian parameters is expected. Finally the

nanocrystal is covered by a passivant layer, usually constituted by Hydrogen,

Oxygen or Si dioxide. From an experimental point of view, the nanocrystals

are always passivated, and the species covering the structures are determined

by the experimental setup. The inclusion of the passivant layer into a theo-

retical model is very important, in order to avoid the appearance of dangling

bonds (uncovered Si atoms), or bonds with other species (for instance, a sin-
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gle Oxygen on a fully Hydrogenated surface). The presence of even a single

dangling bond on the nanocrystal surface leads to the formation of a local-

ized state with energy well inside the gap. These localized states work as

electron traps, decreasing the nanocrystal optical efficiency and activating

non-radiative recombination channels.

The ETB approximation in the study of nanocrystals consists on mod-

elling the nanocrystal as formed by only an inner core and a passivant layer.

Therefore, the method neglects the surface effects, and we shall not take

into account the relaxation effects on the atomic positions, with the con-

sequent modulation of the Hamiltonian parameters. This idea of transfer-

ability [4] of the Hamiltonian parameters from the bulk to the nanostruc-

tures indeed works well, as it has been shown by years of applications of

ETB [21, 23, 24, 28, 43, 53–57].

For our calculations, we have used the sp3 3rd nearest neighbor ETB [28],

which give a good estimation of the Bulk Si fundamental band gap and ef-

fective masses. We have studied spherical nanocrystals with a Si atom in

the center, with the surface passivated by Hydrogen atoms. We have taken

for Hydrogen only the 1s orbital, using the Si-H interaction parameters from

Niquet [28], which have been chosen in such a way to reproduce the SiH4

absorption spectra.

From the computational point of view, we have factorized the Hamilto-

nian matrix according to the five irreducible representations of the Td sym-

metry group. Using the group theory, we have been able to reduce the size of

the diagonalization problem, label the energy levels of the nanocrystal, and

therefore use the selection rules for studying the dipole-allowed transitions.
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The ETB method is a very efficient tool in the study of nanocrystals. In fact,

the method needs very few atomic orbitals for each atom in the structure.

Within the sp3 parametrization, only 4 functions are required for each silicon

atom. This leads to very small matrices compared, for instance, to the Plane

Wave methods, where at least one hundred basis functions are required for

each atom. Moreover, the TB matrices show a huge degree of sparsity, which

can be used to further reduce the computational effort1. This has been done

using an iterative diagonalization routine, which makes a heavy use of the

sparsity for calculating the first m eigenvectors of a N ×N matrix. Starting

from the Hamiltonian matrix H, we have applied a folding procedure, near

a reference energy ε. We calculate the square matrix:

H2 = (H − ε)2, (3.1)

and from the eigenvalues of H2 we easily retrieve the H eigenvalues. With

this procedure we reduce the problem of calculating a set of eigenvalues in

the neighborhood of an energy reference, to the problem of calculating the

first m eigenvalues of a given matrix. Making use of the sparsity, the overall

computational time is reduced to a linear scaling:

t ∝ m2N, (3.2)

which is much faster than the t ∝ N 3 trend of the standard computational

routines. In order to have an idea of the ETB efficiency, we want to give some

numbers. Let us consider Si1707H628, a spherical nanocrystal with a 4 nm

1 We have seen that an interaction up to 3rd neighbors allows us to well reproduce
the Si-Si Hamiltonian matrix elements, as it results from the fair agreement of the gap
energies and the effective masses with the experimental results. Moreover, the use of a
finite interaction range allows to put equal to zero all the further interactions, leading to
very sparse matrices.
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Figure 3.1: HOMO and LUMO states for spherical nanocrystals on varying their

diameter. The lines are guides for the eyes.

diameter. The Hamiltonian matrix for this nanocrystal has a size N = 7456,

with 664448 non null elements. This means that only the 1.2% of the whole

matrix is different from zero! A larger nanocrystal is Si5707H1372, with a

d = 6 nm diameter. In this case the size of the problem is N = 24200, and

the number of non null elements is only the 0.4% of the whole matrix.

3.3 Energy levels

In a first step, we have calculated the energy levels for a set of hydrogenated

spherical nanocrystals, with increasing size. For each nanocrystal, the effec-

tive diameter is calculated as follows [28,58]. In the bulk, ideal structure, the

volume associated to each Si atom is vSi = a3/8 (a ' 0.5431 nm is the Si lat-
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tice constant). A good estimation of the nanocrystal volume can be vSiNSi

from which, assuming a spherical shape, the diameter is easily calculated

using the relation [28]:

d = a

(

3

4π
NSi

)1/3

= 0.33691N
1/3
Si . (3.3)

In Fig. 3.1 we show the energy levels, labelled according to the five irreducible

representations of the Td symmetry group. The quantum confinement effect

is well visible. In fact, on increasing the nanocrystal size, the HOMO energies

increase, while the LUMO energies decrease, and the gap energy goes down

to the bulk value of 1.1 eV.

In figure 3.2 we show the calculated first transition energy for spherical

nanocrystals with increasing diameter. Our theoretical results have been

indicated by means of crosses, while the solid line is a fit of the numerical

data [28]. We compare the first transition energy to different sets of exper-

imental results, coming from both photoluminescence (PL) and absorption

(Abs) measurements. We want to point out the great difficulty in such a

comparison. In fact, in literature there is a large scatter of the experimen-

tal data, caused by the different experimental setup that make the repro-

ducibility of the measurements a formidable task. For instance, we expect

different results between Porous Silicon (PSi) samples2, and Si nanocrystal

(Si nc) samples. Another point is the kind of measurements performed on

the samples. As a matter of fact, it is generally observed an energy differ-

ence, named the Stokes shift, between the absorption threshold and the main

photoluminescence emission peak energy, with an effect that is stronger for

smaller nanocrystals [57, 60–62]. It is of great interest to compare both the

2 PSi has been shown with many experimental evidences to be constituted by Si
nanocrystals [59].
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Figure 3.2: The first dipole-allowed transition energy (optical gap) for different

nanocrystals with increasing size (crosses). The solid line is a fit of the calcu-

lated data. The experimental absorption (open symbols) and photoluminescence

emission (filled symbols) are also shown for comparison. Squares are from [63],

triangles-up from Ref. [64], open diamonds from [65], triangles-down from [66],

filled circles from [67], filled diamonds from [68].

absorption and the photoluminescence data. In Fig. 3.2 we have included

two couples of absorption and photoluminescence measurements (triangles-

up and squares) performed on the same sample. From the theoretical point

of view it is not completely clear the origin of the Stokes shift, even if many

models have been proposed.

In the recent years, the fundamental role of the surface on the optical

properties of nanocrystals has been becoming clearer. The presence of even

just one Oxygen atom on an Hydrogenated surface can lead to a significantly
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Figure 3.3: Spherical nanocrystals optical gap: comparison with other calcu-

lations. We have shown our calculated first dipole-allowed transition energies by

open circles, while the solid line is a fit. Density functional data: red squares

are taken from [70], green diamonds from [71], triangles-up from [72], triangles

left from [73], yellow triangles-down from [74], green squares from [62]; Empirical

Pseudopotential: triangles-right from [16], blue squares from [75]; the Quantum

Monte Carlo results (pink triangles-down) are taken from [76].

red-shift of the optical gap, especially for small nanocrystals [69]. And an

exposure in air of a sample, even for a few minutes, can decrease the PL

peaks energies up to 1 eV [66]. In this respect, the triangles-down data of

Wolkin [66] come out from carefully cleaned, Oxygen-free samples. The fair

agreement of the present calculation with the Wolkin data is indeed an im-

portant experimental check that the method does indeed work well.

In Fig. 3.3 we show a comparison between our results and other theo-

retical results for Hydrogenated, spherical Si-nc. Also in this case there is
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a large scatter of the calculated data, and this is especially true for the ab

initio methods. Some considerations can be inferred by the graph. First

of all, there is a good agreement with the other important semiempirical

method, based on the Pseudopotentials (PP). In figure, PP calculations with-

out (triangles-right) [16] or with the inclusion of the Coulomb e-h interaction

(squares) [75], have been shown in blue. It is worth noting that the PP trend

is very similar to our results, with a better agreement for larger nanocrys-

tals. The situation for small nanocrystals is more complicated. Even for

data reproduced within the same approach, like the Time Dependent Den-

sity Functional Theory (TDDFT), we can have quite different results. For

instance, the Garoufalis [72] and Vasiliev [70] results are at higher energies

then the Benedict [74] calculations. The methods differ in the choice of the

Exchange-Correlation Kernel, and for an alternative definition of the optical

gap, in the case of Ref. [70]. Instead, for the local density approximation

(LDA), the problem consists in the lacking of an exact theoretical definition

of the optical gap. The various approaches are based on a different definition

of the optical gap [62, 71, 73], and there is an open debate on the subject.

Looking at Fig. 3.3, it is interesting to note that our curve goes through

all these data. In particular, we want to underline the fair agreement of our

calculation with the most recent TDLDA calculations of Benedict [74], and

the LDA results of Degoli [62].

3.4 Dielectric function

We have applied our TB method to the study of the nanocrystal dielec-

tric function. As a check of our method, we have considered the Si159H124
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nanocrystal (which has an equivalent diameter of 1.83 nm), and compared

the calculated extinction coefficient (related to the dielectric function) to

an experimental curve, given by Wilcoxon for a silicon nanocrystal with a

diameter of about 1.8 nm. In Fig. 3.4 the two curves are shown. The ar-

row indicates the first calculated transition energy. We have rescaled our

theoretical data in such a way the two curves have the same height of the

main peak. We want to point out the great similarity of the two curves. In

fact, an overestimation of the calculated dielectric function is intrinsic of our

parametrization, as it was clear already for the bulk, from Fig. 2.2. Never-

theless, there is a fair agreement in the relative intensities of the two main

peaks, and in the overall broadening of the two curves.

In Fig. 3.5 we show the imaginary part of the dielectric function for a set

of spherical silicon nanocrystals. A black solid arrow shows the first dipole

allowed transition energy. On increasing the nanocrystal size, the first tran-

sition energy goes down quite fast, approaching the electron-forbidden bulk

indirect band gap of 1.1 eV. On the other hand, the onset of the imaginary

part of the dielectric function (and the threshold of the absorption coefficient)

is much less sensitive to the size. A quantitative evaluation of the absorp-

tion threshold can be done using an experimental technique, consisting in

calculating the integral absorption cross section. In fact, for molecules and

direct gap semiconductors the absorption threshold is usually defined as the

energy of the first allowed transition. However, in the case of Si, which has

an indirect-gap behavior, we find a large number of very weak transitions at

low energy. The indirect-gap behavior is well visible even for Si nanocrystals,

leading to an experimentally observed onset of the absorption well above the
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Figure 3.4: Extinction coefficient for a d = 1.8 nm Si nanocrystal from absorption

measurements [67], compared to a Si159H124 nanocrystal (d=1.83nm) studied with

our TB method. The arrow label the first calculated transition energy.

first dipole allowed transition energy. Therefore, a different definition of the

absorption gap is needed in this case.

By studying the integral absorption cross section, we are able to take into

account the cumulative effect of this great number of weak transitions, that

lie in the vicinity of the band edge [70, 77]. We use the following definition

of the photoabsorption cross section [78]:

σ(E) = 2
Fe

4NSi

∑

n,n′

fn(1 − fn′)Fnn′S (E − Enn′) , (3.4)

where Enn′ and Fnn′ are the transition energy and the oscillator strength for

the n → n′ transition, fn is the nth level occupation, and the factor 2 takes

into account the spin degeneracy. We have defined the so called complete
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Figure 3.5: Imaginary part of spherical nanocrystals dielectric function, on

increasing diameters. A 0.1 eV Lorentzian broadening has been used. The black

arrows show the first dipole allowed transition, while the red arrows show the

absorption threshold.

one electron oscillator strength Fe [77, 79] as:

Fe =
2π2h̄e2

mc
' 1.098eV A2. (3.5)

We suppose that the nanocrystal is embedded in a dielectric medium with a

refraction index n = 1, and we neglect local field effects. Starting from the

one electron cross section in Eq.(3.4), we define the absorption gap as the

energy Eg such as:
∫ Eg(p)

0

σ(E)dE = pFe. (3.6)

This procedure allows the determination of an energy Eg(p), that depends on

the external parameter p. We expect that p is related to the precision of the
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experimental set up (in other words to the smallest oscillator strength which

can be detected). We use the value p = 10−4, which is consistent with the

experimental measurements [79,80]. For each nanocrystal we have calculated

the absorption gap. In Fig. 3.5, for each nanocrystal, we use a red dashed

arrow to show the absorption gap. As we expected, the absorption gap

lies exactly on the threshold of the imaginary part of the dielectric function.

While for small structures, Eg lies quite close to the first transition energy, for

large nanocrystals the energy gap between the two curves becomes very large.

This is due to a huge number of very weak low energy transitions that, on

increasing the nanocrystal size, tend to become zero. This interesting feature

of Si nanocrystals will be analyzed in more detail in the next sections.

3.5 Oscillator strengths

In order to better understand the optical behavior in the vicinity of the

band edge, we have calculated the first Oscillator Strengths (OS) and the

radiative recombination times. In Fig. 3.6, on the right side, we show the

OS versus the transition energies. On increasing the nanocrystal diameter,

the quantum confinement effects lead to a decrease of the transition energies.

At the same time, also the OS decrease, but much faster. This result is in

a good agreement with the first DFT calculations of Delley [81]. Moreover,

very recently Dovrat has reported on OS measurements as a function of

the transition energy, which show an exponential dependence [80]. Even if

the experimental conditions are quite different (nanocrystals embedded in

a silicon dioxide matrix) and the considered sizes are larger than the ones

studied here, it seems that both the trend and the order of magnitude are
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Figure 3.6: First lowest-energies recombination rates (left) and oscillator

strengths (right) of spherical silicon nanocrystals on varying the diameter. Si29H36

(d = 1.0 nm), squares; Si87H76 (d = 1.5 nm), circles; Si191H148 (d = 1.9 nm),

triangles-up; Si465H252 (d = 2.6 nm), triangles-right; Si705H300 (d = 3 nm), dia-

monds.

in a good agreement with our results. For instance, Dovrat finds an OS of

about 4×10−3 for a transition energy of about 1.9 eV, where we find a value

of 5 × 10−3 at 1.95 eV.

On the left side of Fig. 3.6, we show our calculated recombination rates,

that we define as the inverse of the radiative recombination time [78]:

1

τrad

=
2e2

h̄2mc3
E2

vcFvc. (3.7)

We have calculated it for the lowest energies transitions from occupied to un-

occupied states. On increasing the nanocrystal size, the transition energies

decrease, their recombination rates decrease and the radiative recombination
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time increases. Already for a 3 nm nanocrystal, with energies at about 2

eV, we have the recombination time τrad ' 10µs. When the nanocrystals

size changes from a few Å to several nanometers, the radiative recombina-

tion times change from the range of the ns (d ' 1 nm) to the µs (d ' 3

nm) to the ms (bulk Si). Even in this case a comparison with the experi-

mental data would be of huge interest. Radiative recombination times for

Si Hydrogenated spherical nanocrystals have already been calculated in the

past [53], and a comparison between experiments and theoretical results has

been recently tried [73].

3.6 k-space projections

The decrease of the oscillator strengths and the increase of the radiative re-

combination times, on increasing the nanocrystal size, can be well explained

looking at the projection of the nanocrystal eigenvectors on the bulk states.

The TB interpolation scheme gives the eigenfunctions of the bulk Si Hamil-

tonian in terms of the atomic orbital basis set. In ket notation, joining the

equations (1.6) and (1.9), we can write:

|nk〉 = C
∑

σ,R,µ

Bµ
σn(k)eık·Rµ |σµR〉 , (3.8)

where C is a normalization constant depending on the structure volume,

and the sum is done all over the atomic orbitals. Instead, we can write the

expansion:

|mλ〉 =
∑

σ,R,µ

Cλ
σm(Rµ) |σµR〉 , (3.9)

for the mth nanocrystal state of the λ irreducible representation of the Td

symmetry group, where the eigenvectors come out from the diagonalization
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procedure. In order to quantitatively understand how much a nanocrystal

state is far from a bulk state, we define the projection operator:

P̂ (k) =
∑

n

|nk〉 〈nk| . (3.10)

The sum is done on the whole band-complex constituted by the top valence

and the lowest conduction bands. We sum over the 8 calculated Tight Bind-

ing bands. This projection operator gives the nanocrystal states component

on Bloch states with a fixed value of the crystalline momentum k. It is im-

portant to note that for the confined systems the crystalline momentum is

not a good quantum number, due to the lack of periodicity. Nevertheless,

being both the bulk crystal Bloch states and the nanocrystal states expressed

as a linear combination of the same atomic wavefunctions (see Eqs. (3.8) and

(3.9)) the projection operator (3.10) allows to understand the size for which

bulk states are almost retrieved. It is expected that beside a threshold size,

the quantum confinement effects become negligible, and almost Bloch-like

states are observed.

From Fig. 3.1 the behavior of spherical nanocrystal HOMO and LUMO

states was visible. While the HOMO states have a quite size-independent T2

symmetry, the LUMO states indifferently show an A1, E1 or T2 symmetry,

according to the diameter [28,82]. Nevertheless, it is quite clear that, except

for very small structures (with a few Si atoms), we have a 6 quasi-degenerate

LUMO level, where the first six A1 + E1 + T2 states are very close in energy.

This is fully consistent with the EMA theory, which gives the prediction of

such sixfold degenerate LUMO states, due to the existence of six minima

in the Bulk Si first conduction band. So, we have calculated the k-space

projection for both (1) the threefold degenerate HOMO states and (2) the
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Figure 3.7: k-space projection of the eigenstates for nanocrystals with different

sizes. The dashed and the solid lines are respectively the projections of the HOMO

and LUMO states. The normalization has been done in such a way that the HOMO

states projection is 1 in Γ.

sixfold quasi-degenerate LUMO states:

P (k) =
∑

m,λ

〈

mλ
∣

∣

∣
P̂ (k)

∣

∣

∣
mλ

〉

. (3.11)

The sum is done over all the 3 degenerate (or the 6 quasi-degenerate) states.

In Fig. 3.7 the ∆ line projection is shown for both the HOMO and

LUMO states, for our set of spherical nanocrystals. The HOMO states have

component especially at Γ, whereas the LUMO states have fundamentally an

X behavior. It is worth noting that, on increasing the nanocrystal diameter,

the overlap between HOMO and LUMO states annihilate in a quite fast way.
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Together with this, we want to point out that the LUMO projection is well

centered on X when the nanocrystal size is smaller than a certain threshold.

For diameters higher than this threshold, the maximum of the LUMO states

goes away from X, tending to the bulk limit of about 0.83. Therefore, we can

differentiate the behavior of Si nanocrystals. For small sizes, there is a good

k-space overlap of the HOMO and LUMO states, leading to non negligible

OS strengths, recombination times of µs or ns and the absorption gap close

to the HOMO-LUMO transition energy. For large sizes, instead, there is

a very small overlap of the HOMO and LUMO states, the LUMO states

tend to be centered at k = 0.83, the OS are very small, while the radiative

recombination time becomes of the order of ms. The nanocrystals retrieve

the bulk Si indirect gap behavior. This is very clearly understood from Fig.

3.7.

3.7 Dielectric constant

In recent years, a huge interest has been devoted to the study of the Si

nanocrystal screening properties [58, 83–85]. This is an important task, be-

cause it is related to the calculation of the electron-hole interaction energy.

We have calculated the static dielectric constant εs for our spherical nanocrys-

tals. In Fig. 3.8 we show our results (with circles), together with other the-

oretical curves. We have rescaled the values in order to retrieve the experi-

mental bulk limit. We have shown in figure the Empirical Pseudopotential

calculations (PP) of Ref. [58], the generalized Penn model (GPM) [58], and

the self-consistent TB results of Ref. [83]. The PP calculations have been per-

formed using the same procedure that we have used here, starting from the
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Figure 3.8: Calculated static dielectric constant for Si spherical nanocrystals.

Circles correspond to our Tight Binding results (the line is only a guide for the

eyes). The green lines are the Pseudopotential fits from Ref. [58] The black line

corresponds to the generalized Penn model [58] while the red line is a calculation

performed within a self-consistent potential Tight Binding model [83]. The bulk

limit of 11.4 has been shown for comparison.

imaginary part of the RPA dielectric function and calculating the dielectric

constant through Eq. (2.75). Indeed the agreement is quite good. The GPM

is a model based on the nearly free electron gas for the band energies [86],

and is expected to give good results in the limit of large nanocrystals. In-

stead, the self consistent TB [83] is applied to the problem of the nanocrystal

screening by an hydrogenic impurity, and gives quite different results.



74 SPHERICAL NANOCRYSTALS



Chapter 4

Ellipsoidal nanocrystals

4.1 Introduction

In this chapter the optical and infrared properties of silicon ellipsoidal nanocrys-

tals are illustrated. First, the anisotropy of the Photoluminescence from

Porous Silicon samples is briefly described. This phenomenon can be con-

sidered as the experimental evidence of the realization of silicon ellipsoids,

motivating our interest in this field. The nanocrystals that we have studied

have a revolution axis along the [001] lattice direction. In a first step, the

ellipsoidal axes lying in the plane perpendicular to the [001] direction have

been kept fixed to a value of 2 nm, while the axis along the symmetry direc-

tion has been varied.

The optical properties of these nanocrystals have been studied, and the

dependence of the dielectric tensor anisotropy on the geometrical anisotropy

has been carefully analyzed. A particular interest has been focused on the

onset of the absorption cross section, which has a significant dependence on

the structure aspect ratio. A comparison between ellipsoids and quantum

75
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wires is illustrated, showing that the quantum wire limit is reached for not

large values of the aspect ratio. Next the static dielectric constant has been

investigated. This is the first time that a similar calculation is performed. It

can be of great importance in the study of the screening properties of ellip-

soidal nanocrystals.

A second part of the work has been focused on the LUMO states and

the infrared intraband transitions for very large ellipsoidal nanocrystals. A

set of fixed semiaxes nanocrystals, and a set of fixed volume ellipsoids have

been studied. The equivalent diameter of the structures is about 6 nm, and

nanocrystals with up to tens of thousands of Si atoms have been analyzed.

We have verified that for such huge sizes the Empirical Tight Binding gives

results fairly consistent with the Effective Mass Approximation predictions.

4.2 Porous Silicon Photoluminescence

We want to begin the discussion on the optical properties of Si ellipsoids by

pointing out their experimental evidence. Since its discovery in 1990 [88],

the huge Photoluminescence (PL) from Porous Silicon samples (PSi) was

explained in terms of Quantum Confinement Effect (QCE), assuming that

quantum wires or, better, small photoluminescent nanoparticles are respon-

sible of the Photoluminescence from porous silicon. Over the years, many

alternative models have been suggested as at the origin of the PSi PL, such

as hydrogenated amorphous silicon, defects, luminescent molecules or surface

states [59]. But, after years of experimental and theoretical work, nowadays

the QCE hypothesis is the most accepted one to explain the PL. Among the

many proofs, TEM images have clearly shown the presence of Si nanocrystal-
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Figure 4.1: PL Anisotropy from a Porous Silicon layer (results taken from Ref.

[87]). The sample has been exposed to an exciting radiation with a polarization

vector parallel (upper figure) or perpendicular (lower figure) to the [100] growth

direction. The PL radiation, with either parallel or perpendicular polarization

with respect to that one of the exciting light, has been detected. The resulting

degree of linear polarization of the detected light with respect to the exciting light,

defined in Eq. (4.1), is also shown in figure.

lites in PSi samples. In addition, the great similarity of the PL from PSi and

Si nanocrystals (Si-nc) has been supported by numerous evidences [89]. Nev-

ertheless, an important difference exists between the two kinds of PL. While

in the case of Si-nc an isotropic PL is observed, PSi samples are characterized
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by a strong PL anisotropy. The reason at the basis of this phenomenon is

quite clear, in that a porous silicon layer has a preferred orientation along the

growth direction. We expect the formation of quantum wires, and pores, and

elongated structures with a revolution axis parallel to the growth direction.

In an important paper, Kovalev [87] measured the PL polarization for a PSi

layer having a [100] growth direction. In Fig. 4.1 we report on the results of

that paper. The degree of linear polarization has been defined as:

ρ =
I‖ − I⊥
I‖ + I⊥

, (4.1)

where I‖ (I⊥) is the PL radiation polarized parallel (perpendicular) to the

exciting light polarization. From Fig. 4.1 it clearly results a change of sign of

ρ, when the exciting radiation changes its polarization from parallel to per-

pendicular, with respect to the [100] direction. This behavior is a clear proof

of the strong PL anisotropy from PSi, whose emission radiation has a pre-

ferred [100] polarization. Kovalev [87] showed that the degree of anisotropy

could be fairly fitted assuming that the PSi PL comes from a distribution

of ellipsoidal Si nanocrystals, which can have either an elongated or a flat-

tened shape. Most of the ellipsoids have a symmetry axis parallel to the [100]

growth direction.

4.3 Silicon ellipsoids

We have applied our TB method to the study of Si ellipsoidal nanocrystals,

having a rotational symmetry axis along the [100] direction. The ellipsoid

surface is defined by the equation:

x2 + y2

a2
+

z2

c2
= 1, (4.2)
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where the origin of the coordinates has been taken on a Si atom. Here, a

and c are the semi-axes along, respectively, the parallel and the perpendic-

ular direction with respect to the symmetry axis. An important feature of

the structures is χ = c/a, the ellipsoid aspect ratio, which is a measure-

ment of their geometric anisotropy. The ellipsoid symmetry group, within

the TB approximation (in which the atoms do not relax from their bulk posi-

tions), is D2d, a subgroup of the full Bulk Si point group. D2d is constituted

by 8 elements, and 5 irreducible representations (IR): the unidimensional

A1, A2, B1, B2 and the unique bi-dimensional E1 (see Appendix B for the

character table and the symmetries related to the IR). The irreducible repre-

sentations will be used to label the energy levels, and to define the transition

rules.

In the first part of the work, a set of ellipsoidal nanocrystals, having a

fixed value of the semiaxes lying in the xy plane, has been studied. A value

a = 1 nm has been chosen, and the optical properties of the ellipsoids have

been investigating on varying the aspect ratio χ. From a geometrical point

of view, the nanocrystals tend to a quantum disk, in the limit of very small

values of χ. In the opposite limit, χ → ∞, the ellipsoids go to the cylindrical

quantum wire, having a circular radius of 1 nm. The number of Silicon atoms

increases almost linearly with the aspect ratio. Therefore, the signature of

both the anisotropy due to the different sizes of the ellipsoids along different

directions, and a quantum confinement effect, caused by the increase of the

total number of atoms, is expected to be found in the optical properties.

In Fig. 4.2 the energy levels for the ellipsoids are shown. It is worth

noting that, at least in the studied range of aspect ratios, both the LUMO
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Figure 4.2: Energy levels for a set of silicon ellipsoidal nanocrystals, with a = 1

nm, as a function of the aspect ratio χ. The lines are guides for the eyes.

and the HOMO energy levels have a well defined symmetry, as we already

noted for spherical nanocrystals. In fact, the lowest unoccupied states form a

quasi-degenerate energy level, with the 4 states coming from the A1+B1+E1

representation. Instead, the top of the occupied states has a bi-dimensional

E1 symmetry. And both the first LUMO and HOMO states are well sepa-

rated from the other levels1. From Fig. 4.2 it clearly appears the quantum

confinement effect, related to the increase of the number of Si atoms with

1 It is worth noting that, as we have recently shown [90,91], there is a correspondence
of the LUMO states calculated within TB, and within the EMA. Each EMA state comes
out from a single bulk conduction band minimum in the first Brillouin Zone. The analysis
of the k-space projections of the LUMO states confirms this feature. We shall come back
in the next section on this point.
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Figure 4.3: Lowest interband transition energies for a set of ellipsoids with a = 1

nm. The circles represent the parallel polarized transitions, while the squares

represent the perpendicular polarization, with respect to the ellipsoid symmetry

axis. The lines highlight the first dipole-allowed transition.

χ. In fact, as we have seen in the previous chapter for spherical nanocrys-

tals (see Fig. 3.1), the quantum confinement effect consists in a decrease of

the LUMO energy, and an increase of the HOMO energy, on increasing the

number of atoms. However, while in the limit of huge number of atoms, the

sphere energy levels tend to the bulk band energies, the ellipsoid levels tend

to the quantum wire limit, as we have verified. In fact, while for small values

of χ the energy levels have an oscillating behavior, already for χ > 2 the edge

curves become very flat, tending to a constant value.

In Fig. 4.3 the transition energies are shown. Using the dipole selection
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rules for the ellipsoid symmetry group, the polarization of each transition

has been inferred. Even in this case the transition energy tends to become

flatter and flatter for increasing values of the aspect ratio, tending to the

quantum wire limit. The polarization of the first allowed transition depends

very little on the geometrical aspect ratio, with a very small energy difference

of the curves associated to a polarization parallel and perpendicular to the

symmetry axis, shown in Fig. 4.3.

4.4 Dielectric properties

The silicon ellipsoids are non spherical structures. The ellipsoids that we

have studied have a preferred direction, the ellipsoid symmetry axis, parallel

to the [001] direction. Because of the D2d symmetry, they behave as uni-

axial birefringent structures, and their dielectric tensor has two independent

components. According to the two kinds of polarization, there is a parallel

and a perpendicular component of the dielectric tensor, with respect to the

symmetry axis. The left panel of Fig. 4.4 shows the imaginary part of the

dielectric tensor components. The arrow points to the first transition energy.

The anisotropy effects are especially pronounced in the oblate case (χ < 1)

where the structure has a lower number of Si atoms. For the spherical case

(χ = 1) we retrieve the isotropic case, and the dielectric tensor is diagonal.

Instead, for prolate structures (χ > 1), the anisotropy increases until reach-

ing the quantum wire limit. In the right panel of Fig. 4.4 the density of

states is shown for this set of ellipsoids, giving an estimation of the quantum

confinement effect. Indeed, the more the nanocrystals are elongated, the

more the wave-shaped, oscillating behavior becomes smooth and flat, while
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Figure 4.4: On the left: principal components of the imaginary part of the

ellipsoids dielectric tensor. The red line is the perpendicular component to the

symmetry axis, the blue line is the parallel component. On the right: density of

states of the ellipsoids.

the HOMO and LUMO levels get closer to each other.

In order to check the convergence of the ellipsoid dielectric tensor on in-

creasing the aspect ratio, we have explicitly calculated the quantum wire

dielectric tensor. A comparison between the χ = 3 prolate ellipsoid, and

the 1 nm radius quantum wire, is shown in Fig. 4.5, for both the dielectric

tensor and the HOMO-LUMO gap. This is not a trivial check, being the two
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Figure 4.5: Comparison between an ellipsoid with a = 1 nm, χ = 3 and a

cylindrical quantum wire having the symmetry axis along the [001], and a circular

section whose radius measures r = 1 nm. The imaginary part of the dielectric

function is shown, and the arrows point to the HOMO-LUMO transition energy.

results derived from independent calculations. It comes out that the χ = 3

ellipsoid essentially behave as the wire. This is not surprising, in that the

number of Si atoms along the z direction is huge, and so we expect that the

quantum confinement has a non negligible effect only along the other direc-

tions. It is worth noting that our calculated dielectric tensor is consistent

with recent ab-initio calculations. In Ref. [92], using a Density Functional

approach, Zhao has studied the imaginary part of the dielectric tensor for

Si wires with different orientations. His results for a d = 2.2 nm quantum

wire are in a fair agreement, both in the curves intensities and in the peaks
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energies, with our TB results.

It is useful to give a quantitative estimation of the optical anisotropy ef-

fects by introducing the degree of linear polarization for the imaginary part

of the dielectric function2:

ρ =
Im

[

ε‖ − ε⊥
]

Im
[

ε‖ + ε⊥
] . (4.3)

The degree of linear polarization ρ is a good measurement of the anisotropic

ratio of the ellipsoidal nanocrystal optical properties. In fact, ρ = 0 means

that the imaginary part of the dielectric tensor is diagonal and therefore

isotropic. Positive values of ρ are for a polarization along the z direction,

while negative values of ρ are found when there is a preferred xy plane po-

larization of the absorbed light. In Fig. 4.6 the calculated ρ(E) is shown for

our set of a = 1 nm ellipsoidal nanocrystals. It is clear that, in the spherical

case, we have an isotropic dielectric tensor, with ρ = 0 (dashed line). It is

interesting to study the variations of ρ when the nanocrystal shape changes.

First of all, Fig. 4.6 shows a change of symmetry, for each nanocrystal, at a

constant energy of nearly 5 eV. This is a nice feature, and a comparison with

experimental data would be of great interest. A symmetry change of sign is

observed when the nanocrystals change their shape from oblate to prolate.

In the range of energies lower than 5 eV, oblate nanocrystals have a negative

degree of linear polarization. Instead, ρ is positive for prolate ellipsoids. This

behavior reflects the features of Fig. 4.4.

Finally, we have calculated the absorption gap starting from the integral

absorption cross section, using the expressions defined in the previous chap-

ter. In Fig. 4.7 we show the calculated cross section for our set of a = 1

2 This definition has been given according to the definition in Eq. (4.1) usually used
for the PL intensity [87, 93].
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Figure 4.6: Degree of linear polarization ρ for the imaginary part of the ellipsoids

dielectric function, for different values of the aspect ratio. In the case of oblate

structures, the anisotropic ratio is negative, greater in modulus for more oblate

ellipsoids. In the opposite case (prolate structures), the ratio is positive.

nm ellipsoids. These curves are obviously very similar to the imaginary part

of the dielectric function, but the cross section has the advantage of being

a measurable quantity. Starting from the definition given in Eq. (3.6), we

have calculated the absorption threshold for ellipsoidal nanocrystals. In Fig.

4.7 we show both the first dipole-allowed transition energy (black arrow) and

the absorption gap (red-blue arrows). The interesting result is that, while

the first transition is almost independent of the polarization of the radiation,
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Figure 4.7: Absorption cross section for a set of Si ellipsoids having a = 1 nm,

as a function of the aspect ratio χ. The red and the blue curves refer respectively

to the perpendicular and the parallel polarization, with respect to the ellipsoid

axis. The black arrow is the first transition energy, which depends very little on

the polarization. Instead, the red and the blue arrows indicate the absorption

thresholds for polarization respectively perpendicular and parallel to the z axis.

as we have already observed in Fig. 4.3, there is a significant dependence of

the absorption gap on it.

Starting from the dielectric tensor, we have calculated the static dielec-

tric constant for our ellipsoids. Our results are shown in Fig. 4.8. It is worth

noting that, while the first-transition energy depends very weakly on the po-

larization (except that for very flattened structures), the dielectric constant

can change quite a lot, just like we have seen for the optical gap. As in the
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Figure 4.8: Principal components of the static dielectric tensor for a set of

ellipsoids with a fixed semi-axis a = 1 nm. The circles and the squares corre-

spond, respectively, to the perpendicular and parallel component with respect to

the ellipsoid symmetry axis.

previous figures, the largest effects are visible for oblate structures (χ < 1),

while in the limit of very elongated nanocrystals the curves retrieve the quan-

tum wire limit.

We want to mention here that the RPA calculations usually overestimate

the perpendicular component of the dielectric tensor. In fact, we are not

taking into account the local field effects, that can play an important role

when the size becomes very small, as it has been shown for small Si clus-

ters [74, 79]. In the case of an elongated structure, we have a confinement

effect only along a single direction, and so the local field effects are important

especially for the perpendicular components, with respect to the symmetry
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axis. This feature has been recently shown for carbon nanotubes (see, for

example, Ref. [94]). From a physical point of view, the depolarization ef-

fects are due to the charge accumulation on the nanocrystal surface which,

for non spherical nanocrystals, gives different contributions for the different

components of the external electric field [30].

4.5 Energy levels of large ellipsoids

In the second part of this chapter we discuss the LUMO states of huge ellip-

soidal nanocrystals. First, we have studied a set of fixed-volume ellipsoidal

nanocrystals. We define the ellipsoid equivalent radius as the radius of a

sphere having the same volume of the ellipsoid. For these structures, the

number of Si atoms is almost constant. In Fig. 4.9 we show, as an example,

an elongated nanocrystal having an equivalent radius of 2 nm and an aspect

ratio χ = 2. It is constituted by 1675 Silicon and 660 Hydrogen atoms.

We have studied ellipsoids with an equivalent radius of 3 nm, having a

symmetry axis along the [001] lattice direction. This size has been suggested

by the fact that in most cases this is the average nanocrystal dimension ob-

tained with different growth methods [59]. In Fig. 4.10 we show the results

for the six LUMO states as a function of the aspect ratio χ. We label the

energy levels with the irreducible representations of the D2d symmetry group.

The energies are measured from the bottom of the first bulk conduction band.

In the same figure we also show the Effective Mass Approximation results.

We know that, according to the EMA, each nanocrystal state can have ori-

gin from either the 2 bulk conduction band minima which lie along the [001]

direction (the kz valleys), or the 4 minima lying in the perpendicular plane
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Figure 4.9: This is the Si1675H660 TB nanocrystal. It is an ellipsoid, having

a = 1.59 nm, and c = 3.18 nm. It has an equivalent radius req = 2 nm, and an

aspect ratio χ = 2.

to [001] (the kx − ky valleys). Within the EMA, we are able to calculate

all the LUMO energy states coming from the kz valleys (solid line in fig-

ure) and a unique point coming from the kx − ky valleys (filled circle), by

reducing the EMA equations to a Schrödinger-like equation with hard-wall

ellipsoidal boundary conditions [90,95]. From an analysis based on the EMA
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Figure 4.10: LUMO states for a set of volume-fixed ellipsoidal nanocrystals. The

equivalent radius is 3 nm. The energies have been measured from the lowest bulk

conduction band energy. The solid line is a EMA result. The states have been

labelled according to the irreducible representations of the D2d symmetry group.

The lines are a guide for the eyes.

equations [90], it comes out a symmetry change for the LUMO states, when

the shape changes from oblate to prolate. In fact, as it can be argued from

Fig. 4.10, for flattened ellipsoids the first LUMO levels are 2-degenerate, and

they come from the kz valleys (solid line), while they are 4-degenerate for
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Figure 4.11: k-space projection of the first LUMO state, for a flattened ellipsoid

with an equivalent radius of r = 3 nm and an aspect ratio χ = 0.5.

elongated ellipsoids, with states coming from kx − ky valleys (dashed line).

For the sphere (χ = 1) we retrieve a 6-fold degenerate LUMO level. A nice

feature of such huge structures is the close agreement of the TB calculations

with the EMA results.

From the TB point of view, we see that the LUMO states have the sym-

metry either of the two 1D A1, B2 (the points labelled as (1) in figure), or of

the two 1D A1, B1 and the 2D E1 irreducible representations (the points la-

belled as (2) in figure), when the ellipsoids are, respectively, oblate or prolate.

A nice confirmation of the behavior of the states, that we have argued from

the correspondence with the EMA results, is the k-space projection. In Fig.

4.11 we show the projection in the ky = 0 plane of the first Brillouin zone, of

the first A1 LUMO state, for the oblate ellipsoid with χ = 0.5. The only non

null components come out from the k points in the vicinity of the kz valleys,
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which lie at about ±(0, 0, 0.83)2π/a. On the other hand, we have verified

that the first A1 LUMO state, for prolate ellipsoids, has non null compo-

nents only in the neighborhood of the 4 valleys lying in the kz = 0 plane.

An interesting feature of the curves in Fig. 4.10 is that the minimum energy

is not in correspondence of the spherical nanocrystal. Instead, the structure

with the minimum energy is a flattened ellipsoid with χ ∼ 0.5. This non

obvious feature is a consequence of the Effective Mass tensor anisotropy in

the bulk silicon. We want to point out that, once again, we find out that the

bulk features of a material are reflected into the nanocrystalline electronic

properties.

In a second step, we have studied a set of [001] ellipsoid nanocrystals,

keeping fixed the a semiaxis, and varying the aspect ratio χ. Even in this

case, we consider very huge structures, choosing a = 3 nm. The number of

silicon atoms for these nanocrystals increases almost linearly with χ. There-

fore, flattened ellipsoids have less atoms, while in the limit of large values of

χ, we expect to retrieve the quantum wire limit. In Fig. 4.12 we show our TB

results, including even in this case the EMA results coming from the kz val-

leys (solid lines). We point out the change of symmetry. While for flattened

ellipsoids the LUMO states are twofold quasi-degenerate, coming from the

kz valleys (indicated as (1) in figure), the prolate ellipsoid LUMO states are

fourfold quasi-degenerate, and they come from the kx − ky valleys (indicated

as (2) in figure). While for oblate ellipsoids, the LUMO curves are very steep,

on increasing the aspect ratio they become more and more flattened, and we

expect that they tend to a constant value, corresponding to the quantum

wire limit, on the basis of the comparison that we have done in the previous
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Figure 4.12: LUMO states for a set of a = 3 nm Si ellipsoids. The states have

been labelled according to the irreducible representations of the D2d symmetry

group. The lines are a guide for the eyes. The solid lines are EMA results for the

states derived from the kz valleys.

section. Even in this case we have verified that the TB nanocrystal states

essentially come out from either the kz or the kx − ky valleys. Therefore,

there is a non null overlap of the wavefunctions only for states associated to

the same valley. This behavior allows us to give a criterion for the calculation
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of the infrared, intraband transition energies. In fact, only states with a non

null k-space overlap corresponds to an allowed transition, with non negligible

oscillator strengths (as we have seen in the previous chapter). Therefore, we

have calculated, on increasing χ, the infrared transition energies involving the

lowest unoccupied state, only considering the transitions between states de-

rived from the same valley (EMA allowed transitions). Then, between all the

EMA-allowed transitions, we have selected the D2d dipole allowed ones, and

we have calculated the TB transition energies. Using the symmetry group

selection rules we have then inferred the polarization associated to each tran-

sition. In Fig. 4.13 we show our results. According to the (1) − (2) ground

state change of symmetry, we have a change of polarization of the lowest

transition energy from the first LUMO state. Indeed, Fig. 4.13 shows that

the polarization of the transition from the first lowest energy state changes

from z (χ < 1) to x − y (1 < χ < 2) to z (χ > 2). The large size of

these nanocrystals leads to small transition energies, which would be diffi-

cult to detect experimentally. However, such huge structures show that the

EMA results are retrieved, which gives a further confirmation of the theory.

Smaller nanocrystals show larger transition energies, within hundreds meV.

For example, in Fig. 4.14 we show the infrared transition energies for a set

of a = 1.5 ellipsoids. The comparison with Fig. 4.13 shows that, due to the

smaller size, higher transition energies are retrieved, even if the same trend

with the aspect ratio is observed. The k-space overlap is responsible for the

significant breaking of the degeneracy.
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Figure 4.13: Infrared transition energies for ellipsoids with a = 3 nm, on in-

creasing the aspect ratio. The first LUMO states corresponds to (1) and (2), for,

respectively, oblate and prolate structures. In the considered range of aspect ra-

tios the lowest transition allowed from the ground state changes from (1)-(3) (z

polarization) to (2)-(3) (x − y polarization) to (2)-(4) (z polarization), when the

aspect ratio changes from χ < 1 to 1 < χ < 2 to χ > 2. The connecting lines are

guides for the eyes.
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Figure 4.14: Infrared transition energies for ellipsoids with a = 1.5 nm, on

increasing the aspect ratio. The connecting lines are guides for the eyes.
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Conclusions

The quantum confinement effect is a well known feature of semiconductor

nanocrystals. It especially consists in an increase of both the band gap and

the radiative electron - hole recombination rate on decreasing the nanocrystal

size. In silicon structures this effect is especially pronounced, and it has spec-

tacular consequences, as the huge observed photoluminescence from silicon

nanocrystals has demonstrated. Nevertheless, the mechanisms at the basis

of the photoluminescence phenomena have not been completely understood.

We have analyzed in detail the optical properties of spherical structures,

investigating the role of the bulk silicon indirect band gap. A fruitful com-

parison between the electron-hole radiative recombination times, the oscilla-

tor strengths and the k-space projections into bulk silicon Bloch functions

has demonstrated a different behavior between small and large nanocrystals.

Small nanocrystals have a direct gap - like behavior, with very short radia-

tive lifetimes (ns) and huge k-space overlaps between HOMO and LUMO

states. On the opposite hand, large nanocrystals retrieve the indirect band

gap features of the bulk silicon, large radiative lifetimes (ms) and very small

oscillator strengths. This behavior is confirmed by the experiments. We

have verified the goodness of our theoretical framework showing very inter-

esting comparisons with the experimental data. Indeed, our calculation tool,
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an sp3 3rd nearest neighbor Tight Binding method, gives an excellent band

structure and a good dielectric function for the bulk silicon. The method

has been shown to be very efficient in the study of nanocrystals, because of

its real space formulation, that leads to very sparse Hamiltonian matrices.

This feature has been used, together with the group theory, to largely reduce

the overall computational time. Within the Tight Binding method, we have

shown to be able to study both very small and very large structures, ranging

from a few atoms to several thousands atoms, keeping a good consistency

with the other theoretical models and the experimental data.

While the quantum confinement effect due to the silicon nanocrystals

change of size is a subject studied since many years ago, the shape effects are

a quite recent issue. From the experimental point of view, silicon ellipsoidal

nanocrystals have been recognized as the sources of the photoluminescence

anisotropy of porous silicon samples. The nanocrystals that we have stud-

ied have a revolution axis along the [001] lattice direction. We have studied

them keeping fixed the semiaxes in the plane orthogonal to the symmetry

direction, and changing the ellipsoid aspect ratio. These structures have

properties which range, on increasing the aspect ratio, from the quantum

disk, to the spherical nanocrystal, to the quantum wire limit. We have ana-

lyzed the energy levels and the optical properties for a set of small ellipsoidal

nanocrystals, focusing our work on the optical anisotropy of the dielectric

tensor on changing the geometrical anisotropy. A nice check has been the

comparison between an elongated ellipsoid and its quantum wire limit, which

shows that, already for a not too large anisotropic ratio, the ellipsoid essen-

tially behaves as a quantum wire. This feature is related to the number of
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silicon atoms which lies along the ellipsoid revolution direction.

Next, we have studied the LUMO energy levels for a set of large silicon

ellipsoids. A nice goal has been the merging of our TB results to the Ef-

fective Mass Approximation results. This has been a further confirmation

of the goodness of our computational method. Because of the anisotropy of

the bulk silicon Effective Mass tensor in the conduction band minima, the

nanocrystal LUMO states and infrared transition energies have a non trivial

trend on increasing the ellipsoid aspect ratio. It has been the first time that

such a study has been performed.
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Appendix A

Symmetries

An ideal crystal is characterized by having all the atoms located in regular

positions, in such a way to form a periodic structure. All the atomic positions

are related by means of a discrete set of transformations, that forms the

symmetry group of the crystal, that in the following we shall call the crystal

space group G. The space group is formed by translations and rotations, and

the most general transformation can be written in the form {α|a}, that we

intend acting on vectors (spatial transformations) or on functions (operators)

according to the following prescription1:

{α|a}v = αv + a (A.1)

{α|a}f (r) = f
(

{α|a}−1(r)
)

= f
(

α−1(r − a)
)

. (A.2)

In this notation, α is the rotational part, while a is a space displacement

vector. The crystal atomic positions transform into each other under the

space group operations. Therefore, the crystal geometry is characterized by

1 For a general view on the group theory, we suggest the reading of the book [96]. A
good review on the use of symmetries in solid state physics can be found in [9].
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the relationships:

{α|a}vi = vj, (A.3)

where the symmetry operations {α|a} span the whole space group G, while

vi (i = 1 . . .N , with N atoms inside the structure) runs on all the crystal

atomic positions. In the case of an infinite structure, the lattice is invariant

under a set of discrete translations. So, the space group has two fundamental

subgroups. The first one contains all the lattice translations, which have the

form:

TR = {1|R}, (A.4)

where 1 is the identity transformation (or the identity operator). It is easy

to verify that TR transforms as a vector following the relation:

{α|a}TR{α|a}−1 = TαR. (A.5)

All the remaining operations form the so called point group of G, which

contains elements in the form

{α|fi}, (A.6)

and, in general, to each rotation α is usually associated an appropriate frac-

tional translation vector fi. The lattice translation group is an abelian group,

and it only has one-dimensional irreducible representations, which can be la-

belled using a k vector. The irreducible representation basis functions satisfy

the Bloch relation:

T̂Rfk (r) = e−ık·Rfk (r) . (A.7)

Instead, the irreducible representations of the crystal point group are char-

acterized by sets of transformation matrices Γ(α), and the basis functions
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satisfy the transformation rules:

{α|fi}gσ (r) =
∑

σ′

Γσσ′

(

α−1
)

gσ′ (r) . (A.8)

The irreducible representations of the whole space group are characterized

by both a k vector and a n quantum number, and we can write their basis

functions in the form fnk. From Eq. (A.5) and assuming still true Eq. (A.7),

it follows that:

T̂R{α|a}−1fnk = {α|a}−1T̂αRfnk = e−ıα−1k·R{α|a}−1fnk, (A.9)

and therefore {α|a}−1fnk belongs to the α−1k irreducible representation of

the translation subgroup. The irreducible representations of the whole space

group are defined by the transformation matrices Dk(α), which depend on

the k vector, and they transform in the following way:

{1|R}fnk = e−ık·Rfnk (A.10)

{α|fi}fnk =
∑

n′

Dnn′

(

α−1
)

k
fn′αk. (A.11)

The TB atomic orbital basis set is usually constructed in such a way that

the orbitals contained inside a unit cell are the basis functions for a given

point group representation. Using the Dirac notation for the orbitals, we can

write the transformation properties of the TB basis set as:

{α|a} |σ, µ,R〉 =
∑

σ′

Γσσ′

(

α−1
)

|σ′, {α|a}µ, αR〉 . (A.12)

Γ is the transformation matrix of a point group representation. For exam-

ple, in the case of diamond-like crystals, point group is the cubic Oh group,

and the s and p functions are chosen in such a way to transform as the

totalsymmetric A1g and the 3-dimensional T1u irreducible representations.
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The character of a representation with respect to a symmetry operation

is defined as the trace of the transformation matrix of a basis function set of

that representation. For instance, let’s consider a group G = {αi}i=1,h, and

a representation µ of G, having lµ basis functions gµ
n which transform as:

α̂ig
µ
n =

∑

m

D (αi)
µ
mn gµ

m. (A.13)

The character of the representation is defined as the trace of D:

χµ (αi) =
∑

n

D (αi)
µ
nn . (A.14)

A fundamental result of the group theory is that the projection operator into

the space spanned by the representation basis functions, can be written as

P̂ µ =
lµ
h

h
∑

i=1

χµ (αi) α̂i. (A.15)

The huge importance of the projection operators in physics lies in the fact

that the Hamiltonian eigenstates are basis functions of an irreducible repre-

sentation of the symmetry group. This means that the Hamiltonian matrix

is formed by independent blocks, when it is written in a symmetrized func-

tion basis set. Using the projection operators, we have symmetrized the

TB atomic orbitals with respect to the irreducible representations of the

nanocrystal symmetry group. In the symmetrized TB basis set the Hamil-

tonian is constituted by independent blocks, each one with a smaller size

than the original matrix. In this way we have largely reduced the overall

diagonalization computational time.
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Character Tables

In this section we report the symmetry group character tables of the nanocrys-

tals that we have studied1. Oh is the point group of the bulk silicon structure,

Td is the symmetry group of the TB spherical nanocrystals, while D2d is the

symmetry group of the ellipsoidal nanocrystals. Oh is constituted by 48 el-

ements, Td and D2d are, respectively, 24- and 8-dimensional. For D2d we

explicitly write the group elements, as transformations of the cartesian co-

ordinate system. On the left of the irreducible representations, we report

their symmetry with respect to the group transformations, in terms of first-

or second-order polynomials. For an explicit definition of the character ta-

ble, and for a clarification of the crystallographic notation, see [96]. Then,

we report the compatibility relations between the irreducible representations

of the Td and D2d symmetry groups. The compatibility table is important

for understanding how the energy levels split when the nanocrystal shape

changes from spherical to ellipsoidal.

1 The character tables have been taken from the Bilbao Crystallographic Server, at the
link: http://www.cryst.ehu.es/rep/point.
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Td E 8C3 3C2 6σd 6S4

x2 + y2 + z2 A1 1 1 1 1 1

A2 1 1 1 -1 -1

(2z2 − x2 − y2, x2 − y2) E1 2 -1 2 0 0

(jx, jy, jz) T1 3 0 -1 -1 1

(x, y, z), (xy, xz, yz) T2 3 0 -1 1 -1

Table B.1: Character table of the Td symmetry group.

D2d E C2 2S4 2C ′
2 2σd

(xyz) (x̄ȳz) (ȳxz̄),(yx̄z̄) (xȳz̄),(x̄yz̄) (yxz), (ȳx̄z)

x2 + y2, z2 A1 1 1 1 1 1

jz A2 1 1 1 -1 -1

x2 − y2 B1 1 1 -1 1 -1

z, xy B2 1 1 -1 -1 1

(x, y), (xz, yz), (jx, jy) E1 2 -2 0 0 0

Table B.2: Character table of the D2d symmetry group.

Td A1 A2 E1 T1 T2

D2d A1 B1 A1 + B1 E1 + A2 E1 + B2

Table B.3: Compatibility relations between the Td and D2d symmetry groups.
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Oh E 6C4 3C2 8C3 6C ′
2 i 6S4 3σd 8S3 6σ′

d

x2 + y2 + z2 A1g 1 1 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2g 1 -1 1 1 -1 1 -1 1 1 -1

A2u 1 -1 1 1 -1 -1 1 -1 -1 1

(2z2 − x2 − y2, x2 − y2) Eg 2 0 2 -1 0 2 0 2 -1 0

Eu 2 0 2 -1 0 -2 0 -2 1 0

T2u 3 -1 -1 0 1 -3 1 1 0 -1

(xy, xz, yz) T2g 3 -1 -1 0 1 3 -1 -1 0 1

(x, y, z) T1u 3 1 -1 0 -1 -3 -1 1 0 1

(jx, jy, jz) T1g 3 1 -1 0 -1 3 1 -1 0 -1

Table B.4: Character table of the Oh symmetry group.
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[8] P. O. Löwdin. J. Chem. Phys., 18:365, 1950.

[9] F. Bassani and G. Pastori Pallavicini. Electronic states and optical tran-

sitions in solids. Pergamon Press, 1975.

[10] J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani. Phys. Rev. B,

57:6493–6507, 1998.

113



114 BIBLIOGRAPHY

[11] M. L. Cohen and T. K. Bergstresser. Phys. Rev., 141:789–796, 1966.

[12] J. R. Chelikowsky and M. L. Cohen. Phys. Rev. B, 10:5095, 1974.

[13] J. R. Chelikowsky. J. Phys. D, 33:R33, 2000.

[14] V. Heine. Solid State Physics, 24:1, 1970.

[15] M. L. Cohen and V. Heine. Solid State Physics, 24:38, 1970.

[16] L. W. Wang and A. Zunger. J. Phys. Chem., 98:2158, 1994.

[17] D. Helmholz and L. C. L. Yan Voon. Phys. Rev. B, 65:233204, 2002.

[18] P. Vogl, H. P. Hjalmarson, and J. D. Dow. J. Phys. Chem. Solids, 44:365,

1983.

[19] H. J. Monkhorst and J. D. Pack. Phys. Rev. B, 13:5188–5192, 1976.

[20] A. Selloni, P. Marsella, and R. DelSole. Phys. Rev. B, 33:8885, 1986.

[21] S. Y. Ren and J. D. Dow. Phys. Rev. B, 45:6492, 1992.

[22] Fu Huaxiang, Ye Ling, and Xia Xide. Phys. Rev. B, 48:10978, 1993.

[23] N. A. Hill and K. B. Whaley. Phys. Rev. Lett., 75:1130–1133, 1995.

[24] M. Cruz, M. R. Beltrám, C. Wang, J. Tagüeña-Mart́ınez, and Y. G.
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