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Introduction

Volterra integral equations (VIEs) are the mathematical model of many

evolutionary problems with memory arising from biology, chemistry, physics,

engineering. For example they arise from population dynamics, epidemic dif-

fusion, viscoelasticity, neurophysiology, feedback control theory, study of the

behaviour of nuclear reactors and from the treatment of special hyperbolic

differential equations. Section 1.3 contains an high number of references on

these applications. It is known that the numerical treatment of VIEs has an

high computational cost, due mainly to the computation of the “lag term”

or “tail term” which contains the past history of the phenomenon. Since it

depends on time t, the “lag term” has to be computed for each time step

and its cost increases when time passes. Among the Volterra equations, the

Hammerstein type ones, are particularly interesting for the applications and

several authors investigated on the construction of stable, accurate and effi-

cient numerical methods for these kind of equations, see for example [27], [52]

and their references.

The aim of this thesis is the construction of numerical methods for VIEs

of Hammerstein type which produce accurate solution at a low computational

cost and “catch” the qualitative behaviour of the exact solution.

V
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The study developed has been concerned at first with the construction and

analysis of efficient methods for the numerical treatment of VIEs of Hammer-

stein type

y(t) = f(t) +

∫ t

0

k(t − τ )g(y(τ ))dτ t ∈ [0, T ], (1)

where the Laplace transform of the kernel rather than the convolution kernel

itself is a priori known. This is not an anomalous or restricting situation, as

a matter of fact these kind of problems arise in chemical absorption kinetics

[69], in the determination of non reflecting boundary conditions [56], [68], and

in general in situations when Laplace transform tecnique are used to reduce

systems of ordinary or partial differential equations in VIEs.

It is known that a classical numerical method for computing the numeri-

cal solution of (1) over Nt time steps requires O (N2
t ) operations and O (Nt)

memory space (see [18]). In [52] and [68] fast algortithms to compute the

solution of (1) have been proposed for the first time. More precisely in [52]

a 4–stage Runge Kutta method for VIE of order p = 4 was developed by

using Fast Fourier Transform tecnique in order to get a computational cost

of O (Nt(log Nt)
2) . Afterwards in [68] a quadrature formula was constructed

for computing evolutionary integrals of convolution type; this formula can be

used as a direct quadrature method for VIEs with a computational cost of

O (Nt log Nt) operations and O (log Nt) memory requirement, however the or-

der of accuracy comes out to be p = 2, and hence, quite low.

In this thesis we construct two classes of fast numerical methods for the

equation (1) based on collocation and Runge–Kutta formulas respectively.

These methods have an high order of accuracy and they have again a compu-

tational cost of O (Nt log Nt) operations and O (log Nt) memory requirement.

In both cases the knowledge of the Laplace transform of the kernel and the
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convolution nature of the kernel itself are exploited in order to obtain a fast

computation of the lag term.

This is possible by using an opportune inverse Laplace transform approxi-

mation formula which is described in [68] for computing the kernel evaluations.

In this thesis such formula has been inserted into “classical” collocation and

Volterra Runge–Kutta (VRK) methods and, in the new resulting methods the

same computational scheme proposed in [68] has been used for the lag-term.

The inverse Laplace transform approximation formula results from applying

the trapezoidal rule to a parametrization of the contour integral for the Rie-

mann inverse Laplace transform formula, where the integration contour is an

opportune Talbot curve ([82] [86]). The error of such formula decreases ex-

ponentially with the number M of the quadrature nodes, uniformly on [0, T ],

and it depends on the distance of the singularities of the Laplace transform of

the function that has to be inverted, to the Talbot contour.

The fast numerical methods constructed in this thesis tend to the corre-

sponding classical methods when the inverse Laplace transfrom approximation

formula is exact, that is when M → ∞. The convergence analysis of the fast

collocation and fast Runge–Kutta methods shows that their order of conver-

gence depends on M, and it is proved that such order coincides with the order

of the corresponding classical methods when M is suitably chosen.

We also analyse the stability properties of the fast Runge–Kutta methods

with respect to the convolution test equation

y(t) = 1 +

∫ t

0

[µ + σ(t− τ )]y(τ )dτ t ∈ [0, T ], µ, σ ∈ R−. (2)

This equation, that misses of course of some typical feature of VIEs, is generally

used by several authors to test the stability properties of numerical methods

for VIEs, see for example [6], [28]. In this thesis we prove that the stability

regions depend on the number of the points M chosen for the approximation
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of the inverse Laplace transform and that for M → ∞ the stability properties

of the classical VRK methods are obtained.

The numerical experiments on some significant problems taken from the

“Test Set” collection project confirm the expected accuracy, computational

cost and the stability properties of the constructed methods. From the ex-

periments it comes out that, since the error of the inverse Laplace transform

approximation formula decreases exponentially with M , relatively few points

on the Talbot contour produce the expected order and stability region.

This research is carried out in collaboration with Dajana Conte (Ph.d stu-

dent, University of Salerno).

The second part of the thesis is concerned with the numerical treatment of

problems of SIS epidemic diffusion with periodic immigration flow [29]. The

mathematical model of such problems is represented by an Hammerstein type

VIE with convolution kernel of the form

y(t) = f(t) + q(t) +

t∫

0

a(s)k(t − s)y(s)(1− y(s))ds. (3)

We consider here problems caracterized by the relapse of the epidemic which

implies that the VIE (3) has an asymptotically periodic solution.

It is clear that an efficient numerical method has to reproduce the asymp-

totically periodic solution whenever applied to equation (3).

For this reason we analyse the discrete Volterra equation (DVE) corre-

sponding to problem (3) and we prove a theorem which establishes the exi-

stence and the uniqueness of the asymptotically periodic solution of the DVE.

Moreover we consider SIS epidemic models with periodic immigration flow

and constant contact rate (a(s) = a = const.). In this case we prove, for

the DVE corresponding to the problem, the existence and the uniqueness of

the asymptotically periodic solution when the DVE satisfies some significant
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hypothesis depending only on its kernel and forcing term.

In order to analyse if the existing numerical methods satisfy these condi-

tions, that is if they are AP-stable, we consider the class of θ–methods and

we prove that they are AP-stable if the integration step satisfies an inequality

depending only on some characteristics of the problem.

The thesis consists of six chapters.

In the first chapter we report the main theoretical results about the exi-

stence, uniqueness and smoothness of the solution of a VIE. This study is the

basis for the numerical treatment of VIEs.

The second chapter is a brief survey of numerical methods for VIEs with

particular attention to collocation methods and Volterra Runge-Kutta me-

thods and it represents an introduction to the problems related to the nume-

rical treatment of VIEs.

The third chapter is a short introduction to the Laplace transform and

its inverse and to some existing numerical methods for the inverse Laplace

transform approximation. Moreover it is illustrated how these methods have

been used for the construction of a fast convolution quadrature formula for the

computation of evolutionary integrals of convolution type in which the Laplace

transform of the kernel is known a priori ([56], [68]). This fast quadrature

formula represents the basic idea for the construction of the fast numerical

methods for VIEs illustrated in Chapters 4 and 5

In the fourth chapter we give the detailed construction of the fast colloca-

tion methods. In particular we describe how we obtain the fast computation

of the lag terms and we give a detailed analisys of the convergence and of the

computational cost of the constructed methods.

The fifth chapter is concerned with the construction of the fast Runge–

Kutta methods. We describe the computation of the lag terms and we give
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a detailed analisys of the convergence, of the computational cost and of the

stability analysis of the constructed methods.

For both classes of fast methods we propose several numerical experiments

in order to validate the theoretical results proved.

In the sixth chapter we prove some theorems for the existence and the

uniqueness of the asymptotically periodic solution of DVEs of Hammerstein

type. Moreover we introduce the basic concepts of asymptotic periodicity for

DVEs of Hammerstein type and we investigate on the AP-stability of the class

of θ-methods.

The thesis was developed within two GNCS research projects: “Metodi nu-

merici e software matematico per problemi di evoluzione” supervised by Prof.

M. Zennaro; “Metodi innovativi per problemi evolutivi con memoria”, super-

vised by Prof. E. Russo and within one research project of Regione Campania:

“Metodi numerici ad alte prestazioni per la risoluzione di problemi di diffu-

sione di epidemie modellizzati da equazioni integrali di Volterra” supervised

by Prof. E. Russo.
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Theoretical background
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1.1 Introduction

An integral equation is a functional equation in which the unknown function

appears under one or several integral signs. The integral equations are the

mathematical model of many problems arising from biology, chemistry, physics

and engineering (see Section 1.3 and the related bibliography).

In this thesis we focus our attention on Volterra Integral Equations (VIEs),

characterized by a variable upper limit of integration.

Even if we are interested in the numerical solution of VIEs and in the

problems related to their numerical treatment, as it will be well explained in

the following chapters, we can not ignore the properties of the exact solution,

since the numerical solution of a VIE must reproduce the behaviour of the

exact solution.

Thus the aim of this chapter is to report the main theoretical results about

the existence, uniqueness and smoothness of the solution of a VIE.
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1.2 Volterra Integral equations

Let I:=[0,T] denote a given closed and bounded interval, with T > 0, and set

S := {(t, s)|0 6 s 6 t 6 T}. The more general VIE (for the unknown function

y) is of the form

θ(t)y(t) = f(t) +

∫ t

0

k(t, s, y(s))ds t ∈ I (1.2.1)

θ, f, y : t ∈ I → IR, k : S × IR → IR

where the function f is referred to as forcing function and k is called the kernel

of the integral equation.

The function θ(t) determines the classification of VIEs in:

- first kind VIEs. If θ(t) = 0 ∀t ∈ I. The equation (1.2.1) becomes:

f(t) = −
∫ t

0

k(t, s, y(s))ds, t ∈ I.

- second kind VIEs. If θ(t) 6= 0 ∀t ∈ I. The equation (1.2.1) can be led

to the form:

y(t) = f(t) +

∫ t

0

k(t, s, y(s))ds t ∈ I. (1.2.2)

- third kind VIEs. If θ is a continuous function possessing a finite number

of zeros in the interval I.

In this thesis we focus our attention on second kind VIEs.

A VIE is said to be linear if its kernel has the form

k(t, s, y) = k̄(t, s)y ∀t, s, y, (1.2.3)
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of convolution type if

k(t, s, y) = k̄(t− s, y) ∀t, s, y, (1.2.4)

of Hammerstein type if

k(t, s, y) := k̄(t, s)g(s, y(s)), (1.2.5)

weakly singular (or of Abel type) if

k(t, s, y) = (t − s)−αγ(t, s, y), 0 < α < 1, (1.2.6)

where γ is a smooth function in S × IR.
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1.3 Models of Volterra integral equations

Volterra integral equations arise in great many branches of science like physics,

biology, chemistry and engineering. They are particularly suitable to describe

evolutionary phenomena with memory and this feature makes the theoretical

study and the numerical treatment complicated, as it will be showed in the

following chapters.

We will not present a full description of VIEs arising in practical applica-

tions, but we refer to the literature and we will analyze in more detail only the

problems which will be taken into consideration throughout the thesis.

The following books and survery papers contain sections with various ap-

plications of VIEs in the physical and biological sciences: Schmeidler (1950),

Bellman and Cooke (1963), Anselone (1964), Miller (1971), Brunner (1982),

Burton (1983), Webb(1985), Okrasiński (1989), Corduneanu (1991), Guy and

Salès (1991), Prüss (1993), Agarwal and O’Regan (2000), Cordunenanu and

Sandberg (2000), Zhao (2003). Most of these also include extensive lists of

references.

As regards the specific applications of second kind VIEs, they are for ex-

ample models of

• population dynamics and spread of epidemics: Brauer (1975, 1976),

Diekmann (1978, 1979), Thieme (1977, 1979), Gripenberg (1981), Brauer

and Castillo-Chávez (2001).

• renewal equations: Feller (1941), Karlin (1955), Bellman and Cooke

(1963), Brauer (1976), Deligonoul and Bilgen (1984).

• reaction-diffusion in small cells: Dixon (1987).
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• wave problems: Levinson (1960) (superfluidity), Gilding (1993) (travel-

ling wave analysis in nonlinear reaction-convection-diffusion problems),

Kabanichin and Lorenzi (1999) (indentification problems for wave phe-

nomena), Franco (1999) (nonlinear waves).

• water percolation: Okrasiński (1978).

• semi-conductor devices: Miller and Unterreiter (1992), Schmeiseer, Un-

terreiter and Weiss (1993), Unterreither (1996) (models for switching

behaviour of PN-diodes).

• inverse problems related to wave propagation: Kabanichin and Lorenzi

(1999).

• identification of memory kernels in viscoelasticity and heat conduction:

Wolfersdorf (1994), Unger and Wolfersdorf (1995), Janno and Wolfers-

dorf (1997), Kiss (1999), Berrone (1995) (modelling of materials that

may undergo a change of phase).

• Heat transfer problems: this is one of the major sources of VIEs with

weakly singular kernels. See for example the papers by Mann and Wolf

(1951), Roberts and Mann (1951), Keller and Olmstead (1972), Olmstead

and Handelsman (1976), Norbury and Stuart (1987), Groetsch (1989,

1991), Jumarhon (1994), Jumarhon and McKee (1996), Ibrahim and

Alnasr (1997).

• Gas absorption: Olmstead (1977).

Many of the evolutionary problems described above (e.g. population dy-

namics, epidemic diffusion, renewal equations) do not depend on the precise
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istant t, but on the whole passed interval, thus the VIEs of convolution type

(1.2.4) are very representative in the applications. Often the convolution ker-

nel is of Hammerstein type (1.2.5) (see e.g. [16] and its references), and it may

be continuous or weakly singular. Examples can be found in neurophysiology

[2], epidemiology [54],[29], feedback control theory [25], study of the behaviour

of nuclear reactors. VIEs of this kind also arise the treatment of special partial

differential equations, see for example the problems regarding an elastic beam

being hit by a sphere [75], the reflection of sound pulses by convex parabolic

reflectors [45], the problem of determining the temperature in a nonlinearly ra-

diating semi-infinite solid [64]. Infact for solving partial differential equations

with several independent variables it is often preferable to recast the given

problem as an integral equation with fewer independent variables.

Moreover, in many applications, as for example in chemical absorption

kinetics [69], in the determination of non reflecting boundary conditions [56],

[68], and in general in situations when Laplace transform tecnique are used

to reduce systems of ordinary or partial differential equations in VIEs, the

equation is of Hammerstein type

y(t) = f(t) +

∫ t

0

k(t − τ )g(y(τ ))dτ t ∈ [0, T ], (1.3.1)

where the Laplace transform K(s) of the kernel k(t) rather than the convolu-

tion kernel itself is known a priori.

Example 1.1. Chemical absorption kinetics. The following example

arises in chemical absorption kinetics (see [69]) and leads to an integral equa-

tion of the form (1.3.1), where only the Laplace transform of the kernel is

known. The problem is to find y(t) given by the coupled system of ordinary

differential equation and the diffusion equation

dy

dt
(t) = −α

∂u

∂r
(1, t), y(0) = y0, (1.3.2)
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where u(r, t) satisfies

∂u

∂t
= β

(
∂2u

∂r2
+

2

r

∂u

∂r

)
in 0 < r < 1, t > 0, (1.3.3)

with nonlinear boundary conditions (b smooth)

u(1, t) = b(y(t)), t > 0, (1.3.4)

∂u

∂r
(0, t) = 0, t > 0,

and initial condition

u(r, 0) = 0, 0 < r < 1. (1.3.5)

Here u(r, t) represents a concentration profile in a spherical absorbing particle,

and y(t) is the concentration in the surrounding aqueous solution.

The above system can be reduced to a single Volterra integral equation by the

following (standard) arguments: taking Laplace transforms in (1.3.3)-(1.3.5)

leads to the boundary value problem

sU = β

(
U ′′ +

2

r
U ′
)

, U ′(0, s) = 0, U(1, s) = B(s)

(
′ =

∂

∂r

)

which can be soolved analitycally for U . In particular, one obtains

U ′(1, s) =
s

β
K(s)B(s) (1.3.6)

with

K(s) =
1√

s/β tanh
√

s/β
− 1

s/β
. (1.3.7)

By (1.3.2) the Laplace transform of y(t) satisfies

sY (s) − y0 = −αU ′(1, s).

Inserting (1.3.6) and applying the inverse Laplace transform gives the (weakly

singular) Volterra integral equation

y(t) = y0 −
α

β

∫ t

0

k(t − τ )b(y(τ ))dτ, t > 0,
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where the laplace transform K(s) of the kernel k(t) is known from (1.3.7),

rather than the kernel itself.

Example 1.2. An SIS epidemic model (Cromer)

This model was proposed by Cromer [29] and it is made of a scalar VIE.

The disavantage of this model is that it ignores the different responses to the

deseas exhibited by males and females, thus a system of VIEs would have been

more suitable.

SIS models are for deseases which confer no immunity and have a negligible

incubation period. In such models there are only two classes of individuals:

susceptibles, denoted as S and infectives, denoted as I. A susceptible moves

from class S to class I upon being infected, and then to class S when cured.

S −→ I −→ S

To derive the model it is necessary to define the following functions:

N(t) is the total population at time t.

I(t) is the fraction of population infected at time t.

M(t) is the fraction of infective immigrants.

S(t) is the fraction of susceptibles at time t.

P (t) is the probability that an individual not have recovering t units of

time after contracting the disease.

a(t) is the contact rate at time t.

f(t) is the fraction of those initially infected who have not recovered by

time t.

It is assumed that a(t)S(t) is the number of effective contacts per infective

per unit time, thus N(t)I(t)a(t)S(t) is the total number of effective contacts

at time t. At time t the total infective population is N(t)I(t) for which we
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have the equation

N(t)I(t) = N(t)f(t) + N(t)M(t) +

t∫

0

a(s)N(s)I(s)S(s)P (t− s)ds.

The first term on the right is the total number of initially infected individuals

who have not recovered. The second term is the total number of infective

immigrants. The integral term gives the number of infectives produced in the

population. If we divide through by N(t) and use the fact that I(t)+S(t) = 1

we obtain the equation

I(t) = f(t) + M(t) +

t∫

0

a(s)P (t− s)
N(s)

N(t)
I(s)(1 − I(s))ds.

In his work Cromer assumes that N(t) = N is a constant thus he studies the

equation

I(t) = f(t) + M(t) +

t∫

0

a(s)P (t − s)I(s)(1− I(s))ds. (1.3.8)

Cromer shows that if the influx of infective immigrants is periodic and the con-

tact rate a(s) is constant the solution of the equation (1.3.8) is asymptotically

periodic, the same hold if a(s) is assumed periodic.

The Volterra integral equation SIS model studied by Cromer contains as

special cases the SIS model studied by Hethcote [54] and by Cooke and Kaplan

[22]. The study of causes of the oscillations in this model is very representa-

tive since this phenomenon is of interest also in models of population growth,

harvesting and economics (see [13], [12], [22]).
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1.4 Review of basic theory for VIEs

with smooth kernel

It is the purpose of this section to present, without proofs, the basic quanti-

tative theory of VIEs of the second kind with smooth kernel, distinguishing

the cases of linear kernel, linear convolution kernel and nonlinear kernel. For

a more detailed analysis see [15], [18].

1.4.1 Linear VIEs

Consider the linear VIE

y(t) = f(t) +

∫ t

0

k(t, s)y(s)ds t ∈ I (1.4.1)

and assume that the kernel k and the forcing function f are real-valued and

continuous on S and I respectively.

The solution of the equation (1.4.1) is expressed in terms of the resolvent

kernel, defined as follows:

Definition 1.1. Let k ∈ C(S). Then the (unique) resolvent kernel R = R(t, s)

corresponding to the given kernel k in the linear VIE (1.4.1) is defined by either

of the resolvent equations:

R(t, s) = k(t, s) +

∫ t

s

k(t, τ )R(τ, s)dτ (t, s) ∈ S (1.4.2)

R(t, s) = k(t, s) +

∫ t

s

R(t, τ )k(τ, s)dτ (t, s) ∈ S. (1.4.3)

It can be shown that the resolvent kernel R is the sum of the so called

Neumann series:

R(t, s) =
∞∑

n=1

kn(t, s)
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where kn are the iterated kernels defined as

k1(t, s) = k(t, s) kn(t, s) =

∫ t

s

k(t, τ )kn−1(τ, s)dτ (t, s) ∈ S.

The following theorem, due to Vito Volterra in his Nota I [91], establishes

the existence and uniqueness of solution to the linear VIE (1.4.1).

Theorem 1.1. Let k ∈ C(S), and let R denote the resolvent kernel associated

with k. Then for any f ∈ C(I) the second kind VIE (1.4.1) has a unique

solution y ∈ C(I), and this solution is given by

y(t) = f(t) +

∫ t

0

R(t, s)f(s)ds, t ∈ I. (1.4.4)

Remark 1.1. The Theorem 1.1 can be straightforwardly extended to the case

of a system of linear VIEs.

1.4.2 Linear convolution equations

A linear VIE with convolution kernel, often encountered in applications, reads:

y(t) = f(t) +

∫ t

0

k(t − s)y(s)ds t ∈ I. (1.4.5)

The resolvent kernel corresponding to (1.4.5) inherits the convolution structure

of the kernel and assumes the form R(t, s) =: ρ(t−s). The resolvent equations

(1.4.2) and (1.4.3) become

ρ(z) = k(z) +

∫ 0

z

k(z − τ )ρ(τ )dτ z ∈ I (1.4.6)

and

ρ(z) = k(z) +

∫ 0

z

ρ(z − τ )k(τ )dτ z ∈ I (1.4.7)

respectively, with z := t − s, and Theorem 1.1 for (1.4.5) may be restated as
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Theorem 1.2. Let k ∈ C(I). Then for any f ∈ C(I) the convolution VIE

(1.4.5) possesses a unique solution y ∈ C(I) which is given by

y(t) = f(t) +

∫ t

0

ρ(t − s)f(s)ds, t ∈ I, (1.4.8)

where the resolvent kernel ρ is defined by the equation (1.4.6) or (1.4.7).

1.4.3 Nonlinear VIEs

In case of the general second kind integral equation (1.2.2) we report two

(global and local) existence and uniqueness theorems under the assumption

that the kernel k satisfies a uniform or punctual Lipschitz condition.

Theorem 1.3. Let k(t, s, y) be continuous for all (t, s) ∈ S and all y, and

suppose that k satisfy the uniform Lipschitz condition,

|k(t, s, y1) − k(t, s, y2)| 6 L|y1 − y2|, ∀(t, s) ∈ S,∀y1, y2 ∈ R,

with Lipschitz constant L being indipendent of y1, y2. Then for each f ∈ C(I)

the nonlinear equation (1.2.2) possesses a unique solution y ∈ C(I).

In many cases, however, the condition imposed on the kernel function

k(t, s, y) will not be satisfied for all y ∈ R, but will hold only in some compact

region. In this case the solution is not guaranteed on the whole interval [0, T ],

as showed in the following result [73]:

Theorem 1.4. Let f ∈ C(I) and assume that k(t, s, y) is continuous in the

region

Ω := {(t, s, y)|(t, s) ∈ S, |y − f(t)| 6 B}.
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In addiction let k satisfy a Lipschitz condition of the form

|k(t, s, y1) − k(t, s, y2)| 6 L|y1 − y2|, ∀(t, s, y1), (t, s, y2) ∈ Ω.

and set

M := max{|k(t, s, y)| | (t, s, y) ∈ Ω} e T0 := min{T,B/M},

Then the nonlinear equation (1.2.2) possesses a unique continuous solution y

in [0, T0].

A result of the above type is called a local existence theorem since it guar-

antees the existence of a solution to (1.2.2) only on a sufficiently small interval

[0, T0]. However it is possible to construct a continuation of the solution be-

yond T0. How far the solution can be continued will depend on the constants

B and M . Details concerning this question can be found in [19], [73].

As discussed in Section 1.3, often in the applications the nonlinear equation

(1.2.2) is of Hammerstein type

y(t) = f(t) +

∫ t

0

k(t, s)g(s, y(s))ds t ∈ I. (1.4.9)

Here g : I×R → R is smooth, while the kernel function k (often of convolution

type) may be continuous (bounded) or weakly singular. General results on the

existence of solutions to Hammerstein integral equations (1.4.9) can also be

found in [14] and [41].
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1.5 Review of basic theory for VIEs

with weakly singular kernel

The more general weakly singular VIE or of Abel type reads

y(t) =

∫ t

0

(t− s)−αk(t, s, y(s))ds + f(t), t ∈ I (1.5.1)

0 < α < 1,

f, y : t ∈ I → IR, k : S × IR → IR, S = {(t, s)|0 6 s 6 t 6 T},

where k is supposed to be continuous in its domain of definition. The results

presented in this section may be found in [15], [18].

1.5.1 Linear VIEs

When the equation (1.5.1) is linear, that is of the form

y(t) = f(t) +

∫ t

0

(t− s)−αk(t, s)y(s)ds, t ∈ I (1.5.2)

it is possible to express the solution of (1.5.2) depending on the resolvent kernel,

as for linear VIEs with smooth kernel, according to the following theorem

Theorem 1.5. Assume that the function f and k are continuous on I and S,

respectively and α ∈ (0, 1). Then the equation (1.5.2) has a unique solution

y ∈ C(I) given by

y(t) = f(t) +

∫ t

0

R(t, s;α)f(s)ds, t ∈ I (1.5.3)

where the resolvent kernel R(t, s;α) has the form

R(t, s;α) = (t − s)−αQ(t, s;α), (t, s) ∈ S
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with Q(t, s;α) ∈ C(S) for each α ∈ (0, 1). Furthermore Q satisfies the identi-

ties

Q(t, s;α) = (t− s)α

∫ t

s

(t − τ )−α(τ − s)−αk(t, τ )Q(τ, s;α)dτ + k(t, s) =

= (t− s)α

∫ t

s

(t − τ )−α(τ − s)−αQ(t, τ ;α)k(τ, s)dτ + k(t, s),

for all (t, s) ∈ S.

1.5.2 Nonlinear VIEs

Since the singular term (t − s)−α in (1.5.1) is integrable, it can be shown in

a straightforward way that the existence and uniqueness result of Theorem

1.4 remains valid. However the number T0 defining the existence interval now

depends on α.

Now we report some relevant result on the smoothness of the exact solution

of a VIE of Abel type since this information is important when analyzing the

order of convergence of a numerical method.

Theorem 1.6. Let m be a nonnnegative integer, let α be a real number with

0 < α < 1 and suppose that the real-valued function f is analytic in a neigh-

borhood of I. Let h(t, y) be real-valued and analytic on an open set containing

I × IR. Then the solution of

y(t) = f(t) +

∫ t

0

(t− s)m−αh(s, y(s))ds, t ∈ I

a) is real analytic in a neighborhood of the left-open interval (0, T ];

b) if α is a rational number, written in lowest terms, α = p/q, then y(tq) is

analytic in a neighborhood of t = 0.
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Theorem 1.7. Consider the equation

y(t) = f1(t) + t1/2f2(t)

∫ t

0

(t − s)−1/2k(t, s, y(s))ds, t ∈ I (1.5.4)

and assume that

(i) fi ∈ Cm([0, t]), i = 1, 2;

(ii) k(t, s, y) is continuous with respect to (t, s) ∈ S and satisfies a (uniform)

Lipschitz condition with respect to y in IR;

(iii) k(t, s, y) has continuous partial derivatives of order m with respect to t

and s and of order 2m with respect to y, for all (t, s) ∈ S and all y in

some open neighborhood of y(t).

Then the solution of (1.5.4) has the form

y(t) = v(t) + t1/2w(t), t ∈ I, v, w ∈ Cm(I) (1.5.5)

where (v,w) is the solution of the following system of VIEs:

v(t) = f1(t) +
∫ t

0
p1(t, s)k1(t, s, v(s), w(s))ds

w(t) = f2(t) +
∫ t

0
p2(t, s)k2(t, s, v(s), w(s))ds

t ∈ I

with

p1(t, s) = (s/(t − s))1/2, p2(t, s) = t−1/2,

k1(t, s, v, w) = (k(t, s, v + s1/2w) − k(t, s, v − s1/2w))/(2s1/2),

k2(t, s, v, w) = (k(t, s, v + s1/2w) + k(t, s, v − s1/2w))/2.

An analogous result for arbitrary α ∈ (0, 1) may be found in [70].
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2.1 Introduction

Volterra integral equations are particularly suitable to describe evolutionary

phenomena that remember their past history thanks to the presence of a me-

mory term in the integral operator. In fact the solution of a VIE at time t

depends on the solution on the whole interval [0, t]. This important feature

makes difficult the theoretical study of such equations and only in some spe-

cial case it is possible to know the analitycal solution of a VIE. In all other

cases if one is interested in the knowledge of the qualitative or quantitative

behaviour of the solution, a numerical method has to be used to approximate

the analytical solution.

In this chapter, for seek of completeness, we illustrate collocation and

Runge-Kutta methods for VIEs and their connections, since they represent the

most important classes of numerical methods for VIEs. Moreover they repre-

sent the basis for the construction of the new methods developed throughout

the thesis. Both classes of methods are based on a discretization of the given

interval I = [0, T ] by a uniform mesh

Ih = {tn := nh, n = 0, ..., Nt, h ≥ 0, Nth = T} .

The integral equation (1.2.2) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) +

∫ t

tn

k(t, s, y(s))ds t ∈ (tn, tn+1], (2.1.1)

where

Fn(t) := f(t) +

∫ tn

0

k(t, s, y(s))ds (2.1.2)

and

Φn(t) =

∫ t

tn

k(t, s, y(s))ds (2.1.3)
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represent respectively the “lag term” and the “increment function”. The “lag

term” or “tail term” contains the past history of the phenomenon. Since it

depends on time t, it has to be computed for each time step and its cost

increases when time passes. Thus the “lag term” computation makes the

numerical integration of VIEs very expensive in terms of computational cost.

This problem will be well analyzed in the following chapters since one of the

aim of this thesis is to look for accurate and efficient numerical methods for

solving VIEs.
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2.2 Collocation methods

A collocation method is based on the idea of approximating the exact solution

of a given integral equation with a suitable function belonging to a chosen finite

dimensional space such that the approximated solution satisfies the integral

equation on a certain subset of the interval on which the equation has to be

solved (called the set of collocation points). Here we consider as the approxi-

mating space the polynomial spline space of degree m− 1 and continuity class

d = −1 on the set Ih that is we look for an approximated solution u belonging

to nonsmooth piecewise polynomial space

S
(−1)
m−1(Ih) =

{
u : u(t)|t∈(tn,tn+1] =: un(t) ∈ πm−1, n = 0, ..., Nt − 1

}
, (2.2.1)

where πm−1 denotes the space of polynomials of degree not exceeding m − 1.

Let us fix m collocation parameters 0 ≤ c1 < ... < cm ≤ 1 and let tn,i :=

{tn + cih, n = 0, ..., Nt − 1, i = 1, ...,m} be the collocation points. Setting

Yn,i := un(tn,i), the restriction of u to each subinterval (tn, tn+1] can be written

as:

un(tn + νh) =
m∑

j=1

Lj(ν)Yn,j ν ∈ (0, 1] n = 0, ..., Nt − 1 (2.2.2)

where Lj(ν) is the j − th Lagrange fundamental polynomial with respect to

the collocation parameters c1, ..., cm. The m unknowns Yn,j are the solution of

the linear system

Yn,i = F̄n(tn,i) +
∫ tn,i

tn
k(tn,i, s, un(s))ds i = 1, ...,m (2.2.3)

obtained by imposing that u satisfies exactly the integral equation (2.1.1) at

the collocation points tn,i.

Here

F̄n(t) = f(t) +

∫ tn

0

k(t, s, u(s))ds (2.2.4)
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represents the approximation to the exact lag term (2.1.2).

By considering the change of variable s = tn + νh the formulas (2.2.3) and

(2.2.4) can be equivalently written as

Yn,i = F̄n(tn,i) + h

∫

0

ci

k(tn,i, tn + νh, un(tn + νh))dν i = 1, ...,m (2.2.5)

and

F̄n(t) = f(t) + h
n−1∑

k=0

∫ 1

0

k(t, tk + νh, uk(tk + νh))dν (2.2.6)

When the equation is linear, i.e. of the form (1.4.1), the formulas (2.2.5)

and (2.2.6), after employing the local representation (2.2.2), can be written as

Yn,i = F̄n(tn,i) + h
m∑

j=1

(∫

0

ci

k(tn,i, tn + νh)Lj(ν)dν

)
Yn,j i = 1, ...,m

(2.2.7)

and

F̄n(tn,i) = f(tn,i) + h
n−1∑

k=0

m∑

j=1

(∫ 1

0

k(tn,i, tk + νh)Lj(ν)dν

)
Yk,j. (2.2.8)

Let Ȳn := (Yn,1, ..., Yn,m)T , F̄n :=
(
F̄n(tn,1), ..., F̄n(tn,m)

)T
and define the ma-

trix

B(k)
n :=



∫ 1

0
k(tn,i, tk + νh)Lj(ν)dν 0 ≤ k < n ≤ Nt − 1

∫ ci

0
k(tn,i, tn + νh)Lj(ν)dν k = n


 . (2.2.9)

The system (2.2.7) then assumes the form

(
I − hB(n)

n

)
Ȳn = F̄n n = 0, ..., Nt − 1, (2.2.10)

where I denotes the identity matrix of dimension m and

F̄n = h
n−1∑

k=0

B(k)
n Ȳk. (2.2.11)

Theorem 2.1. Assume that f and k in (1.4.1) are continuous on their respec-

tive domains. Then there exists h̄ > 0 so that for any mesh Ih with stepsize
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h ∈ (0, h̄) each of the linear algebraic system (2.2.10) has a unique solution

Ȳn (n = 0, ..., Nt−1). Hence the equations (2.2.7) and (2.2.8) define a unique

collocation solution u ∈ S
(−1)
m−1(Ih) with local representation given by (2.2.2).

Remark 2.1. In the computational use of piecewise collocation methods the

value of m does usually not exceed m = 4. Hence the obvious candidate for

the local representation of the collocation solution on (tn, tn+1] is the local

Lagrange basis corresponding to the {ci}.

Remark 2.2. Note that for m ≥ 2 the choice c1 = 0 and cm = 1 leads to a

continuous approximation

u ∈ S
(−1)
m−1 (Ih) ∩ C(I) = S

(0)
m−1 (Ih) (2.2.12)

Remark 2.3 (Computational cost). For each fixed time step tn, the lag terms

computation (2.2.6) or (2.2.8) requires a sum involving all the previous time

steps, leading to a computational cost proportional to n operations. On the

other hand the computation of the solution of the nonlinear system (2.2.5) or

of the linear system (2.2.7) requires a number of operations depending only on

m. As m is fixed and independent of Nt (generally in concrete applications it is

m ≤ 4, as observed in Remark 2.1), the total cost for computing the numerical

solution over Nt time steps is of O (N2
t ) operations and O (Nt) memory.

Example 2.1. Approximation in S
(−1)
0 (Ih).

Here we have m = 1, 0 < c1 =: θ ≤ 1, and un(tn + νh) = Yn,1, for all

ν ∈ (0, 1]. Setting yn+1 := Yn,1 the collocation solution is determined by the

equation (
yn+1 − h

∫ θ

0

k(tn,1, tn + νh, yn+1)dν

)
= F̄n(tn,1)
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with n = 0, ..., Nt − 1, tn,1 = tn + θh and with the lag term given by

F̄n(tn,1) = f(tn,1) + h
n−1∑

k=0

∫ 1

0

k(tn,1, tk + νh, yk+1)dν.

Example 2.2. Approximation in S
(−1)
1 (Ih).

Here we have m = 2, 0 ≤ c1 < c2 ≤ 1, and

un(tn + νh) =
1

c2 − c1
[(c2 − ν)Yn,1 + (ν − c1)Yn,2)] .

with Yn,j = un(tn,j) j = 1, 2. The system (2.2.3) becomes

Yn,1 = F̄n(tn,1) + h
∫ c1

0
k(tn,1, tn + νh, un(tn + νh))dν

Yn,2 = F̄n(tn,2) + h
∫ c2

0
k(tn,2, tn + νh, un(tn + νh))dν.

(2.2.13)

where

F̄n(tn,1) = f(tn,1) + h
n−1∑
k=0

∫ 1

0
k(tn,1, tk + νh, uk(tk + νh))dν

F̄n(tn,2) = f(tn,2) + h
n−1∑
k=0

∫ 1

0
k(tn,2, tk + νh, uk(tk + νh))dν.

(2.2.14)

In particular if c2 = 1, then un(tn+1) = Yn,2. Furthermore for the particular

choice of c1 = 0 and c2 = 1, we generate a continuous piecewise approximation

such that Yn,1 = un(tn) = un−1(tn).

2.2.1 Convergence results for smooth kernel

Let e = y − u, denote its restriction to the interval (tn, tn+1] by en and

‖e‖∞ := sup {|en(t)| : t ∈ (tn, tn+1], n = 0, ..., Nt − 1} .

The following theorem establishes the global convergence order of a collocation

method.
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Theorem 2.2. Suppose that the function f and k are m times continuously

differentiable on their domain of definition and ky(t, s, .) is continuous and

bounded. Then the error e satisfies, for every choice of the collocation param-

eters 0 ≤ c1 < ... < cm ≤ 1,

‖e‖∞ ≤ Chm (2.2.15)

where the finite constant C is indipendent of h but depending on the {ci} and

‖ym‖∞.

This theorem shows that if we choose a collocation approximation u ∈

S
(−1)
m−1(Ih) the global order of convergence p = m is the best attainable. It is

possible to increase this order of convergence only in the mesh points with a

particular choice of the collocation parameters according to the following local

superconvergence theorem.

Theorem 2.3. Let u ∈ S
(−1)
m−1(Ih), f , k ∈ C2m−v, with v ∈ {0, 1, 2} and

m ≥ bν/2c + 1.

(a) If the collocation parameters {ci} are the Radau II points for (0, 1], then

for v = 1,

max
tn∈Ih−{0}

|e(tn)| = O(h2m−1)

(b) If the collocation parameters {ci} are the Lobatto points for [0, 1], then for

v = 2,

max
tn∈Ih−{0}

|e(tn)| = O(h2m−2).

(c) If the collocation parameters {ci} are the Gauss points for (0,1), then for

v = 0

max
tn∈Ih−{0}

|e(tn)| = O(hm),

in other words Gauss collocation does not lead to superconvergence.
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(d) If the collocation parameters {ci} are the the m−1 Gauss points for (0,1),

cm = 1, then for v = 2

max
tn∈Ih−{0}

|e(tn)| = O(h2m−2).

Remark 2.4. Local order O(h2m) can be attained on Ih−{0} by using iterated

collocation and employing Gauss points as collocation parameters (see [15],

[18]).

2.2.2 Convergence results for weakly singular kernel

The Theorem 2.2 remains valid if the kernel k(t, s, y) is of the form (t −

s)−αk(t, s)y(s) with 0 < α < 1 and k ∈ C(S) and if the exact solution y

is in Cm(I); the nonhomogeneous term f need not to be smooth. However,

as we have seen in Section 1.5, such a situation represents an exception rather

than the rule. In general smooth f and k now yield to a solution whose first

derivatives near t = 0 behaves like y
′
(t) ∼ t−α. As a consequence if we employ

a uniform mesh the global order of convergence of the collocation approxima-

tion drops to p = 1−α, regardless of how we choose its degree m−1, as stated

by the following result [18] for the equation (1.5.2).

Theorem 2.4. Let the function f and k in (1.5.2) belong to Cm(I) and Cm(S),

respectively, with m ≥ 1, and assume that neither function vanishes identically.

Then there exists an h̄ > 0 such that the error of the the collocation approxi-

mation satisfies, for every choice of the collocation parameters {ci}

‖e‖∞ = O(h1−α).

In order to restore the optimal order of convergence the underlying mesh

has to be graded so to replace the structure of y(t) near the origin. If we
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still want to employ a uniform mesh, then we must consider nonpolynomial

spline collocation spaces. For more details on these two possible alternative

approaches for dealing with this order reduction problem see [15], [18].

2.2.3 Discretized collocation methods and related con-

vergence results

In the previous sections we assumed that the integrals occurring in (2.2.5) and

(2.2.6) can be evaluated analitically. Since in the applications this is rarely

possible it is important to establish how to approximate these integrals.

By choosing a suitable quadrature formula and by disregarding the quadra-

ture error terms, the equations (2.2.5) and (2.2.6) become

Ȳn,i = F̄n,i + h

µ0∑

l=1

wi,lk(tn,i, tn + di,lh, ūn(tn + di,lh)) i = 1, ...,m (2.2.16)

F̄n,i = f(tn,i)+h
n−1∑

k=0

µ1∑

l=1

wlk(tn,i, tk +dlh, ūk(tk +dlh)) i = 1, ...,m. (2.2.17)

Here µ0 and µ1 are positive integers. Generally the quadrature formulas chosen

are interpolatory ones, with the quadrature parameters di,l and dl satisfying

0 ≤ di,1 < ... < di,µ0 ≤ ci and 0 ≤ d1 < ... < dµ1 ≤ 1. The quadrature weights

are then given by

wl =

∫ 1

0

µ1∏

r=1
r 6=l

v − dr

dl − dr
dv, l = 1, ..., µ1 (2.2.18)

and

wi,l =

∫ ci

0

µ0∏

r=1
r 6=l

v − di,r

di,l − di,r
dv, l = 1, ..., µ0 i = 1, ...,m. (2.2.19)
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The formulas (2.2.16) and (2.2.17) yield an approximation ū ∈ S
(−1)
m−1(Ih) which

is different from u and whose local representation is

ūn(tn + νh) =
m∑

j=1

Lj(ν)Ȳn,j ν ∈ (0, 1] n = 0, ..., Nt − 1, (2.2.20)

with Ȳn,j := ūn(tn,j). The error of this approximation is given by

|ē(t)| =
∣∣y(t) − ¯u(t)

∣∣ ≤ |y(t)− u(t)|+ |u(t)− ū(t)| .

Setting e(t) = y(t) − u(t) and ε(t) = u(t) − ū(t), by theorem 2.2 we have

|e(t)| ≤ Chm uniformly on I. The order of ε(t) will depend on the choice the

quadrature formulas according to the following theorem

Theorem 2.5. Let f and k be at leat m times continuously differentiable

on I and S respectively, and u ∈ S
(−1)
m−1(Ih) denote the approximation to the

solution y defined by (2.2.3) and (2.2.4). Assume to discretize the integrals

with quadrature formulas satisfying

∫ 1

0

φ(tj + τh)dτ −
µ1∑

l=1

wlφ(tj + dlh) = O(hr1),

and for i = 1, ..,m

∫ ci

0

φ(tn + τh)dτ −
µ0∑

l=1

wi,lφ(tn + di,lh) = O(hr0),

whenever the integrand is a sufficiently smooth function. If ū ∈ S
(−1)
m−1(Ih) is the

approximation given by the discrete collocation equations (2.2.16) and (2.2.17),

then there exists a finite constant Q such that ε satisfies

‖ε‖∞ ≤ Qhr r = min{r0 + 1, r1}.

The proof of this theorem makes use of the following result concerning the

discrete Gronwall-type inequalities, which we report because we will need it in

later applications:
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Theorem 2.6. Let zn ≥ 0 for n = 0, ..., N and suppose that the sequence zn

obeys the inequality

zn ≤ hC1

n−1∑

i=0

zi + C2, n = k, ...,N, (2.2.21)

where k > 0, Ci > 0, i = 1, 2, and h > 0. Then the elements of this sequence

can be bounded by

zn ≤ (hC1z + C2)(1 + hC1)
n−k, n = k, ...,N,

provided the starting values z0, ..., zk−1 satisfy zj ≤ z/k.

The following result is an immediate consequence of the Theorem 2.5.

Corollary 2.1. Let the assumptions of Theorem 2.5 hold. If the quadrature

formulas chosen to dicretize the integrals are of interpolatory type with µ0 =

µ1 = m, then the approximation ū ∈ S
(−1)
m−1(Ih) defined by (2.2.16) and (2.2.17)

leads to an error ē(t) satisfying

‖ē‖∞ = O(hm)

for every choice of collocation parameters {ci}.

Now we will deal with the question of local superconvergence in approxi-

mation ū ∈ S
(−1)
m−1(Ih).

Theorem 2.7. Let ū ∈ S
(−1)
m−1(Ih), f , k ∈ C2m−v, with v ∈ {1, 2}, and with

m ≥ bν/2c + 1.

(a) If the collocation parameters {ci} are the Radau II points for (0, 1] and

the quadrature formulas are of interpolatory type with µ0 = µ1 = m, dl = cl,

di,l = cicl then for v = 1,

max
tn∈Ih−{0}

|ē(tn)| = O(h2m−1).
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(b) If the collocation parameters {ci} are the Lobatto points for [0, 1], if the

quadrature formulas are in the form described in (a) then for v = 2,

max
tn∈Ih−{0}

|ē(tn)| = O(h2m−2).

(c) Let the first m − 1 collocation parameters {ci} are the Gauss points for

(0,1) and let cm = 1. Suppose that the quadrature formulas are interpolatory

m−1-point formulas with µ0 = µ1 = m−1, dl = cl, di,l = cicl (l = 1, ...,m−1,

i = 1, ...,m) then for v = 2

max
tn∈Ih−{0}

|ēn| = O(h2m−2).

The following illustration is the discrete counterpart of the exact collocation

method described in Example 2.1.

Example 2.3. Approximation in S
(−1)
0 (Ih).

Here we have m = 1, 0 < c1 =: θ ≤ 1. Setting ȳn+1 := ūn(tn + νh) = Ȳn,1

the collocation solution is determined by the equation

(
ȳn+1 − θhk(tn,1, tn + θ2h, ȳn+1)

)
= F̄n,1

with n = 0, ..., Nt − 1, tn,1 = tn + θh and with the lag term given by

F̄n,1 = f(tn,1) + h

n−1∑

k=0

k(tn,1, tk + θh, ȳk+1).
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2.3 Volterra Runge-Kutta methods

Runge-Kutta methods for the numerical solution of Volterra integral equations

were introduced by Pouzet and Bel’tyukov about the mid-1960s.

A Volterra Runge-Kutta (VRK) method is based on an approximation

scheme for the increment function (2.1) that will be called a Volterra Runge-

Kutta (VRK) formula and denoted by Φ̄n(t), and on an approximation scheme,

F̄n(t), for the lag term (2.1.2) that will be called lag term formula.

The approximation of the equation in the mesh point tn+1 leads to the

discrete method of the form:

yn+1 = F̄n(tn + h) + Φ̄n(tn + h) n = 0, ..., Nt − 1. (2.3.1)

As concern this thesis we will consider extended VRK methods of Pouzet

type and the modified methods of de Hoog and Weiss.

2.3.1 Extended VRK methods of Pouzet type

An extended VRK method of Pouzet type (PVRK method) uses an m-stage

Pouzet VRK formula (PVRK formula), which has the form

Φ̄n(t) = h
m∑

i=1

bik(t, tn,i, Yn,i) (2.3.2)

with

Yn,i = F̄n(tn,i) + h
m∑

s=1

ai,sk(tn + cih, tn + csh, Yn,s) i = 1, ...,m. (2.3.3)

Here, the vectors c = (ci), b = (bi) and the square matrix A = (ai,s) are

completely determined by the ”Butcher array” for ODEs

c A

bT
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and tn,i := tn + cih. The lag term formula is given by

F̄n(t) = f(t) + h
n−1∑

r=0

m∑

s=1

bsk(t, tr,s, Yr,s). (2.3.4)

The following steps describe how to compute the approximate solution yn+1:

• evaluate the lag terms F̄n(tn,i) i = 1, ...,m + 1, using the expression

(2.3.4), having set cm+1 = 1;

• compute the increment term Φ̄n(tn+h) after solving the nonlinear system

(2.3.3) for Yn,i i = 1, ...,m;

• determine the approximate solution yn+1 through the expression (2.3.1).

A PVRK formula is

(i) explicit if ai,s = 0 for s ≥ i

(ii) diagonally implicit if ai,s = 0 for s > i

(iii) implicit if it is neither explicit or diagonally implicit.

Remark 2.5. Observe that an extended m-stages PVRK method with Butcher

array
c A

bT
can be seen as a discrete collocation method (2.2.16)-(2.2.17)

using m+1 collocation parameters with {ci}m
i=1 given by the Butcher array and

cm+1 = 1. The quadrature formulas involved are not necessarily interpolatory

ones, as the number of nodes is µ0 = µ1 = m, the nodes are dil = cl for

i = 1, ...,m + 1, l = 1, ...,m, dl = cl for l = 1, ...,m, and the weights are

wil = ail for i = 1, ...,m, l = 1, ...,m, wm+1,l = bl for l = 1, ...,m, wl = bl for

l = 1, ...,m.



Chapter 2 33

2.3.2 Modified VRK methods of de Hoog and Weiss

An implicit PVRK formula generally employs kernel values k(t, s, y) with s > t.

In this case the domain of k(t, s, y) must be extended to include the required

points outside S, but in general a continuation of the kernel, even if it is

smooth, is arbitrary and non related to the original equations. The problem

can be avoided by a modification of the VRK part in an implicit Pouzet method

due to de Hoog and Weiss [31] characterized by 0 ≤ c1 < ... < cm = 1,

bk =

∫ 1

0

Lk(s)ds, where Lk(t) are the Lagrange fundamental polynomials in

[0, 1] with respect to ci. These methods do not employ kernel values k(t − s)

with s > t and, while the lag term formula (2.3.4) is unchanged, the system

(2.3.3) assumes the form

Yn,i = F̄n(tn,i) + hci

m∑
l=1

blk

(
tn,i, tn + clclh,

m∑

s=1

Ls(cicl)Yn,s

)
i = 1, ...,m.

(2.3.5)

and (2.3.1) becomes

yn+1 = Yn,m n = 0, ..., Nt − 1. (2.3.6)

In this case the steps for the computation of the approximate solution yn+1

are:

• evaluate the lag terms F̄n(tn,i) i = 1, ...,m, using the expression (2.3.4);

• solve the nonlinear system (2.3.5) for Yn,i i = 1, ...,m;

• determine the appproximate solution yn+1 through (2.3.6).

Remark 2.6 (Computational cost). As observed in Remark 2.3 for collocation

methods, also VRK methods (either of Pouzet type or of de Hoog and Weiss)
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require O(N2
t ) operations and O(Nt) memory for computing the numerical

solution over Nt time steps.

Remark 2.7. Observe that a modified VRK method of de Hoog and Weiss

can be seen as a discrete collocation method (2.2.16)-(2.2.17) using interpo-

latory quadrature formulas with µ0 = µ1 = m, nodes dl = cl, di,l = cicl and

corresponding weights wl = bl, wi,l = cibl.

Remark 2.8. Let us consider a modification of a VRK method of de Hoog

and Weiss consisting of the formulas (2.3.4) and (2.3.5) respectively for the

lag terms computation and for the determination of the stages, and of the

formulas (2.3.1)-(2.3.2) for the computation of the approximated solution. This

method can be seen as a discrete collocation method (2.2.16)-(2.2.17) with m+

1 collocation parameters, cm+1 = 1, using interpolatory quadrature formulas

with µ0 = µ1 = m, nodes dl = cl, di,l = cicl, and corresponding weights wl = bl,

wi,l = cibl l = 1, ...,m, i = 1, ...,m + 1.

2.3.3 Convergence results

For an easy analysis of the convegence of a PVRK method it is convenient

to introduce the discrete increment operator Φn associated with (2.3.2)-(2.3.4)

and defined by Φn[F̄n](= Φn[F̄n; t, h]) := Φ̄n(t), n = 0, ..., Nt − 1.

The following theorem holds

Theorem 2.8. If the following assumptions hold

1. A = (ai,j), b = (bi) (i, j = 1, ...,m) define an m-stage RK method of

order p for a first order ODE,
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2. the increment operator Φn satisfies the Lipschitz condition

|Φn[fn]− Φn[gn]| ≤ L |fn − gn| , t ∈ [tn, T ], n = 0, ..., Nt − 1,

for all real fn, gn with L indipendent of n and h.

Then the approximation yn generated by the PVRK method (2.3.1)-(2.3.4)

satisfies, for all sufficiently differentiable functions f and k,

max
1≤n≤Nt

|y(tn) − yn| = O(hp) (2.3.7)

As regards the convergence analysis of a modified VRK method of de Hoog

and Weiss, from Remarks 2.7 and 2.8 and from Theorem 2.7, it follows the

local superconvergence result

Corollary 2.2. Let f , k ∈ C2m−v, with v ∈ {0, 1, 2} with m ≥ bv/2c + 1,

(i) If the nodes {ci} are the Radau II points for (0, 1], then the VRK method

of the Hoog and Weiss (2.3.4)-(2.3.6) satisfies, for v = 1,

max
1≤n≤Nt

|y(tn) − yn| = O(h2m−1)

(ii) If the nodes {ci} are the Lobatto points for [0, 1], then the VRK method of

the Hoog and Weiss (2.3.4)-(2.3.6) satisfies, for v = 2,

max
1≤n≤Nt

|y(tn) − yn| = O(h2m−2)

(iii) Let the nodes {ci} are the the m Gauss points for (0,1), cm+1 = 1. Fur-

themore, suppose to consider the modification of the VRK method of the Hoog

and Weiss described in Remark 2.8. Then, for v = 0,

max
1≤n≤Nt

|y(tn) − yn| = O(h2m)
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3.1 Introduction

The numerical inversion of a Laplace Transform function arises in many ap-

plications of science and engineering, such as fluid mechanics, circuit theory,

spectroscopy, metereology, medical imaging, etc., in which data delivered by

an instrumental system mathematically represent the Laplace transform of

the unknown object, that is of the “cause” which determined such effects. The

interpretation of the physical system requires the restoration of the unknown

object, i.e. the inverse Laplace function, from the measured experimental data,

i.e. its Laplace function.

On the other hand there are many other situations in which methods based

on integral transforms are used as instruments for the resolution of mathema-

tical models which describe the real phenomena. For example the Laplace

transform is employed to solve ordinary and partial differential equations, in-

tegral equations of convolution type and so on. In the image domain of the

Laplace transformation such kind of equations are usually considerably sim-

pler than the original ones (they are algebraic equations) and their solution is

often a function of quite simple structure. Then, finally, one has to go back

to the original domain inverting one or more Laplace functions. The inverse

Laplace transform is, therefore, the computational kernel of the overall solution

procedure.

In this chapter we first give the definition of Laplace transform and its

inverse, showing their main properties. Then we examine some existing nu-

merical methods for the inverse Laplace transform approximation ([56], [68],

[82], [86]), which will be useful in the construction of the fast methods treated

in this thesis. Finally we describe how these inverse Laplace transform appro-

ximation methods have been used for the construction of a fast convolution
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quadrature formula for the computation of evolutionary convolution integrals

in which the Laplace transform of the kernel is known a priori ([56], [68]). This

fast quadrature formula represents the basic idea for the construction of the

fast numerical methods for VIEs illustrated in Chapters 4 and 5.



Chapter 3 39

3.2 The Laplace transform

In this section we will use a notation taken from the specialized literature on

the Laplace transform [39],[40],[46],[53].

Definition 3.1. Let f : R → C be a function such that f(t) = 0 for all t < 0.

Let s ∈ C. The integral ∫ ∞

0

e−stf(t)dt (3.2.1)

is said to be the Laplace integral of the function f(t) at the point s.

Definition 3.2. Let C(f) be the subset of C where the integral (3.2.1) is

convergent. Then the Laplace transform of f(t) is defined to be the function

£(f) : C(f) → C obtained by setting

£(f)(s) :=

∫ ∞

0

e−stf(t)dt s ∈ C(f). (3.2.2)

The set C(f) ⊆ C is said to be the region of convergence of £(f).

In the following a lower-case letter will be used to denote the function being

transformed and the corresponding capital letter will be employed to represent

the Laplace transform of this function: F := £(f). We will say that a function

f is Laplace transformable (L–transformable) if its Laplace transform exists

for at least one point s ∈ C.

The region of convergence C(f) of an L–transformable function is the whole

complex plane or it is a complex half-plane of the form:

C(f) = {s ∈ C : Re(s) > s0} ,

where s0 ∈ R is called the abscissa of convergence of F .
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Theorem 3.1. The Laplace transform of an L–transformable function f is

holomorphic in the region of convergence of the Laplace integral. The deriva-

tives can be computed by derivating under the integration sign

F (n)(s) = (−1)n

∫ ∞

0

e−sttnf(t)dt.

As the Laplace transform is analitic in its half-plane of convergence, it is

possible to give a characterization of the abscissa of convergence in terms of the

singularities of the function F̃ , obtained by extending the Laplace transform

F to all the complex plane. Infact

s0 = sup
{
Re(s) : s ∈ C, s singularity of F̃

}
. (3.2.3)

Definition 3.3. The function f(t) is said to be of exponential order γ for

t → ∞ if there exist real numbers γ, M > 0, and t0 such that

|f(t)| < Meγt ∀t ≥ t0. (3.2.4)

The following theorem estabisishes a sufficient condition for the existence

of the Laplace transform.

Theorem 3.2. Let f(t) be a piecewise continuous function in every bounded

interval in the range 0 ≤ t ≤ t0. If f(t) is of exponential order γ for t > t0,

then the Laplace transform F (s) of f(t) exists for all s > γ.

Now we report the main properties of the Laplace transform:

Property 3.1 (Linearity). Let f and g be L–transformable functions and let

α and β be real numbers. Then: £(αf + βg) = α£(f) + β£(g)

Property 3.2 (Differentiation). Let the (n− 1)− th derivative of the func-

tion f be locally absolutely continuous in R+
0 and its n − th derivative be L–

transformable for Re(s) > s0. Then the function f is L–transformable at least

for Re(s) > max(0, s0) and

£(f (n))(s) = sn£(f)(s) − sn−1f(0) − sn−2f ′(0) − ...− sf (n−2)(0) − f (n−1)(0)
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Property 3.3 (Integration). Let f be L–transformable for Re(s) > s0, Then

the function:

g : t ∈ R+
0 →

∫ t

0

f(x)dx

is L–transformable at least for Re(s) > max(0, s0) and

£(g)(s) = s−1£(f)(s)

Property 3.4 (Convolution). Let f be L–transformable in the half-plane

{Re(s) > σ0} and g be L–transformable in the half-plane {Re(s) > σ1} . Let

(f ∗ g)(t) =
∫ t

0
f(t − τ )g(τ )dτ =

∫ t

0
f(τ )g(t − τ )dτ be the convolution between

f and g. Then f ∗ g is L–transformable at least in the half-plane

{Re(s) > max(σ0, σ1)} and

£(f ∗ g) = £(f) · £(g)
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3.3 The inverse Laplace transform

The Laplace transform of an L–transformable function is obviously unique.

On the other hand there are infinite functions f whose Laplace transform is

equal to a fixed function F , and they only differ on a subset of measure 0. So

we can speak of the invertibility of the operator £, provided that we identify

two functions which coincide almost everywhere.

The following theorem gives an inversion formula, on which most of the

methods of numerical inversion are based.

Theorem 3.3. (Inversion formula of Bromwich-Mellin or Riemann-Fourier).

Let f be an L–transformable function with Laplace transform F and abscissa

of convergence s0. For any real number α > s0 it results

f(t) = £−1(F )(t) =
1

2πi

∫ α+i∞

α−i∞
estF (s)ds (3.3.1)

for each t > 0 in which f(t) is continuous.

If f(t) has a discontinuity of the first kind in t > 0, then

1

2

[
f(t+) + f(t−)

]
=

1

2πi

∫ α+i∞

α−i∞
estF (s)ds.

The integral in the second hand side of the formula (3.3.1) is an improper

integral defined as follows:

∫ α+i∞

α−i∞
= lim

β→∞

∫ α+iβ

α−iβ

The inversion formula (3.3.1) requires the integration of a complex function

along the vertical line whose equation is x = α. This line is called Bromwich

line. Note that the formula does not depend on α, provided that α > s0.
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3.4 Methods for numerical inversion

The Riemann inversion formula (3.3.1) represents a valid instrument for the

construction of numerical inversion methods, expecially thanks to the fact that

the integration contour can be arbitrarily translated, on the only condition

that it remains at the right of the singularities of the Laplace transform. This

possibility leads to important consequences from the computational point of

view. For example, as we will see, the approximation obtained through the

numerical integration of Riemann inversion formula highly depends on the

position of the integration contour.

3.4.1 Talbot’s method

The main numerical difficulties in the direct integration of the Riemann in-

version formula are caused by the obscillations of the exponential est when

Im(s) tends to infinity. In Talbot’s method [86] this difficulty is overcome by

replacing the vertical line x = α by a contour Γ, starting and ending in the

left half-plane, so that Im(s) keeps finite and Re(s) → −∞ at each end. In

this way the exponentials decay rapidly along such contour.

This replacement is permissible, i.e. Γ is equivalent to the line x = α in

the computation of the integral (3.3.1), if

• Γ is situated at the right of all singularities of F (s).

• |F (s)| → 0 uniformly in Re(s) ≤ s0 as |s| → ∞.

An example of integration contour proposed by Talbot is shown in Figure

3.1, whose parametrical representation is of the kind

(−π, π) → Γ

ϑ → γ(ϑ) = σ + µ(ϑ cot(ϑ) + iνϑ). (3.4.1)



Chapter 3 44

Figure 3.1: Talbot contour (3.4.1)

The real parameters σ, µ and ν have to be chosen such that the contour

Γ = Γ(σ, µ, ν) is

• as much as possible shifted to the left, in order to reduce the obscillations

in the exponentials;

• not too near to the singularities of F (s), in order to avoid obscillations

in F (s).

As shown in Figure 3.1, an appropriate choice of the parameters σ, µ and

ν permits to adapt the integration contour to the geometrical arrangement of

the singularities of F (s): σ permits to shift the contour, µ permits to effect a

radial dilatation of Γ, ν permits to effect a vertical dilatation.

After replacing the line x = α with the contour Γ defined by (3.4.1), the

Riemann integral (3.3.1) becomes

f(t) =
1

2πi

∫ π

−π

f(γ(ϑ))etγ(ϑ)γ′(ϑ)dϑ. (3.4.2)
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By applying the composite trapezoidal rule in [−π, π] with stepsize h = π
N+1

and nodes
{
ϑj = jπ

N+1
, j = −(N + 1), ..., N + 1

}
, and by observing that the

integrand function vanishes at θ = −π, π, the (3.3.1) leads to the appproxima-

tion

f̃(t) =
1

2πi
h

N∑

j=−N

f(γ(ϑj))e
tγ(ϑj)γ′(ϑj),

and hence

f̃(t) =

N∑

j=−N

ωjF (λj)e
tλj, (3.4.3)

where λj = γ(ϑj) are the nodes on the Talbot contour and ωj = − i
2(N+1)

γ′(ϑj)

are the corresponding weights.

Let us denote M = 2N+1 the total number of points on the Talbot contour

and

E(t,M) = f̃ (t)− f(t)

the error of Talbot’s method. In [82] [86] it has been shown that lim
M→∞

E(t,M) =

0 for all t > 0, and it decays exponentially with M . In fact

|E(t,M)| ≤ CM2eσt+c1µt−c2
√

µtM (3.4.4)

where the constant C > 0 depends on the geometrical parameters µ, σ, ν and

on bounds on F , and the constants c1, c2 > 0 depend on the distance of the

singularities of the analytic function F to the contour Γ. In [86] a deep analysis

of the discretization and round off error has been carried out, leading to the

determination of

• the optimal geometrical parameters µ = µ(t), σ = σ(t), ν = ν(t), and

hence the optimal contour Γ = Γ(t) which minimizes the discretization

error E(t,M);
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• the optimal value of M = M(t, ε) dependent not only on t but also on the

accuracy (O(10−ε)) required in the computation of f̃ (t) (for this reason

M is also referred to as the accuracy parameter).

This method has been implemented in a FORTRAN subroutine TAPAR,

which is available on the library of the Collected Algorithms of ACM TOMS

[74].

3.4.2 Modified Talbot’s method (Rizzardi)

Unfortunately a disadvantage in Talbot’s method is that it needs to repeat

all computation for each t, and this may become very inefficient when we

have to compute the inverse Laplace transform in an interval [tmin, tmax]. A

modification of Talbot’s method has been proposed in [82]: the parameters µ,

σ, ν, M are chosen at a point t∗ ∈ [tmin, tmax] and used for the computation

of f(t) on the whole interval. The error analysis has permitted to estabilish a

further correction to produce on the parameter M and to choose the optimal

t∗ = 1
2
(tmin + tmax).

The computational strategy consists in the following algorithm:

• by a call to the subroutine TAPAR [74] the parameters µ, σ, ν, M

according to Talbot’s method are computed for t = t∗.

• a correction to the accuracy parameter M is computed by choosing M∗ =

max {M1,M2}, with

M1 = M +
1

2
(tmin − tmax)

(
µ

ν + 1

2
+

σ

ρ

)

M1 = M +
1

2
(tmin − tmax)

(
σ + µ

ρ
− µ

ν − 1

2

)
,

where ρ is obtained from the solution of the nonlinear equation

ρ > 0 : ρ

(
1

eρ − 1
− ν − 1

2

)
=

1

2

(
1 − σ − s0

µ

)
,



Chapter 3 47

with s0 abscissa of convergence of F (see (3.2.3)).

• use the parameters µ(t∗), σµ(t∗), νµ(t∗) and M∗ to compute the appro-

ximation (3.4.3) for all t ∈ [tmin, tmax]: a unique Talbot contour Γ(t∗) is

associated to the whole interval [tmin, tmax].

3.4.3 Modified Talbot’s method (Lubich-Schädle)

When the interval [tmin, tmax] is large, the modified Talbot’s method described

in the previous subsection has the limitation that a uniform approximation of

f(t) on the whole interval would require a rather large number M of points

on the Talbot contour (this because of t at the exponent in the error estimate

(3.4.4)).

Figure 3.2: Talbot contour (3.4.6)

The idea proposed in [56], [68] has been that of splitting a large interval

into a sequence of subintervals, and in each of them to use a suitably chosen

Talbot contour.
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More precisely let us consider an interval of the form [0, T ] and let h >

0. Then f(t) is approximated locally on a sequence of fast growing intervals

covering [0, T ]

I0 = [0, h], Il = [Bl−1h, (2Bl − 1)h], (3.4.5)

where B > 1 is a fixed integer and l = 1, ..., L with (2BL − 1)h ≥ T . A Talbot

contour Γl

(−π, π) → Γl (3.4.6)

ϑ → γl(ϑ) = σ + µl(ϑ cot(ϑ) + iνϑ),

is associated to each subinterval Il, and is obtained by opportunely choosing

the geometrical parameters:

• the parameter µl := µ0/Tl depends on Il via its end-point Tl = (2Bl−1)h,

• the parameters ν and σ depend on the singularities of F (s) and have

to be chosen in a way such that all the singularities lie on the left of

the contour and such that they are not too “close” to the contour. In

particular σ is chosen to be purely immaginary (instead of being real),

so that it permits to vertically shift the Talbot contour and ν is chosen

of the form ν = ν0(1+ω/β), β = πµlν0/2 and permits to effect a vertical

dilatation (see Figure 3.2).

The choice of the parameters µ0, ν0, ω and σ has been done experimentally

in [56], [68] by minimizing the error of the inverse Laplace transform appro-

ximation. The curve Γl can either be composed by only one Talbot contour

enclosing all the singularities of F (s), or it can also be composed by more Tal-

bot contours each enclosing a certain number of singularities. Namely, if the

singularities are “sufficiently close” to each other then Γl is composed by only

one Talbot contour, as shown in Figure 3.3. If they are “far” from each other
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Figure 3.3: One contour enclosing all singularities.

Figure 3.4: Two contours enclosing all singularities.
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Figure 3.5: Four contours enclosing all singularities.

we may choose Γl composed by more Talbot contours, the number depending

on the distance among the singularities, as shown in Figures 3.4-3.5. All the

pictures show that the choice of σ and ω is done in a way such that the distance

between the intersections of the Talbot contour with the immaginary axis and

each singularity is at least equal β. This will be illustrated in the following

examples, which will be useful in the subsequent chapters. In all of them the

parameters µ0 and ν0 are chosen to be µ0 = 8, ν0 = 0.6 (see [56], [68]).

Example 3.1. Let us assume that F (s) has two singularities at the points

s = ±iα. Then if β < α (that is the two singularities are “sufficiently far”

from each other) we choose two contours with σ = ±iα and ω = 0, as shown

in Figure 3.6. If β > α we choose one contour with σ = 0 and ω = α, as shown

in Figure 3.7.

Example 3.2. Let us assume that F (s) has four singularities at the points

s = ±iα, s = ±iγ. Then we distinguish four cases:
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Figure 3.6: Two contours enclosing the singularities s = ±iα.

Figure 3.7: One contour enclosing the singularities s = ±iα.
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Figure 3.8: One contour enclosing singularities at s = −λ, λ ≥ 0.

1. β > α, β ≥ (γ − α)/2. In this case we choose one contour with σ = 0,

ω = γ as shown in Figure 3.3.

2. β ≤ α, β < (γ−α)/2. In this case we choose four contours with σ = ±iα,

ω = 0; σ = ±iγ, ω = 0, as shown in Figure 3.5.

3. α < β < (γ − α)/2. In this case we choose three contours with σ = 0,

ω = α; σ = ±iγ, ω = 0.

4. (γ − α)/2 < β < α. In this case we choose two contours with σ =

±i(γ + α)/2, ω = (γ − α)/2, as shown in Figure 3.4.

Example 3.3. Let us assume that F (s) has singularities on the real non positive

semiaxe, i.e. s = −λ, λ ≥ 0. Then we choose σ = 0, ω = 0, as shown in figure

3.8.

The approximation of f(t) on Il results from (3.4.3) and reads

f(t) ≈
N∑

j=−N

ω
(l)
j F (λ

(l)
j )etλ

(l)
j t ∈ Il (3.4.7)
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with ω
(l)
j = − i

2(N+1)
γ′

l(ϑj), λ
(l)
j = γl(ϑj), ϑj = jπ

N+1
. The number of quadrature

points M = 2N + 1 is chosen on Γl is independent of l and it is much smaller

than it would be required for a uniform approoximation on the whole interval

[0, T ].

Taking in consideration the expression (3.4.4) for the error of Talbot’s ap-

proximation method, exploiting the fact that µ = µ0/Tl and σ ∈ iR, it follows

that in this case:

|E(t,M)| ≤ ClM
2ec1µ0−c2

√
µ0M t ∈ Il

and thus, by putting C = max
l=1,...,L

Cle
c1µ0 , c = −c2

√
µ0, it follows that |E(t,M)| ≤

CM2e−c
√

M for all t ∈ [0, T ], and then

‖E(t,M)‖t∈[0,T ] = O(e−c
√

M ) (3.4.8)

for M → ∞, uniformly on [0, T ].
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3.5 Fast convolution quadrature formulas

The inverse Laplace transform approximation (3.4.7) described in section (3.4.3)

has been used in [56], [68] for the construction of a fast algorithm for the com-

putation of the temporal convolution

∫ t

0

k(t− τ )y(τ )dτ t ∈ [0, T ] (3.5.1)

on the grid Ih = {tn := nh, n = 0, ..., Nt, h ≥ 0, Nth = T} with stepsize h,

in the assumption that the Laplace transform of the kernel K(s) rather the

kernel itself is known a priori. It has been taken in consideration the case in

which the evaluation of y(τ ) at τ = nh requires the knowledge of the values

of the convolution up to (n − 1)h, so that the required values of y(τ ) cannot

be computed in advance. This is the situation in Volterra-type convolution

equations.

A naive implementation of a quadrature formula would require O(N2
t ) op-

erations and O(Nt) memory for computing the temporal convolution over Nt

time steps. The fast convolution algorithm, instead, takes O(Nt log Nt) oper-

ations and O(log Nt) memory.

3.5.1 Approximation of definite integrals

Let us split the interval [0, T ] according to (3.4.5).

For a definite integral
∫ b

a
k(t − τ )y(τ )dτ , if [t− a, t− b] ⊆ Il, using (3.4.7)

we obtain:

∫ b

a

k(t− τ )y(τ )dτ ≈
N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(t−b)λ

(l)
j

∫ b

a

e(b−τ)λ
(l)
j y(τ )dτ
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and thus, setting z(b, a, λ) =
∫ b

a
e(b−τ)λy(τ )dτ, we have

∫ b

a

k(t − τ )y(τ )dτ ≈
N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(t−b)λ

(l)
j z(b, a, λ

(l)
j ). (3.5.2)

Note that z(b, a, λ) can be recognized as the solution at time b of the scalar

linear initial value problem





z′ = λz + y

z(a) = 0.
(3.5.3)

Remark 3.1. Since
∫ b

a
k(t − τ )y(τ )dτ = 1

2πi

∫
Γl

K(λ)e(t−b)λz(b, a, λ)dλ, the for-

mula (3.5.2) represents the approximation of the inverse Laplace transform

of the function K(λ)z(b, a, λ) with the formula (3.4.7). Thus, according to

(3.4.8), the error of the quadrature formula (3.5.2) satisfies

∣∣∣∣∣

∫ b

a

k(t − τ )y(τ )dτ −
N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(t−b)λ

(l)
j z(b, a, λ

(l)
j )

∣∣∣∣∣ = O(e−ρM ).

(3.5.4)

The 2N + 1 differential equations (3.5.3) with λ = λ
(l)
j are then solved ap-

proximately by replacing the function y with its piecewise linear approximation

and then solving exactly.

More precisely, we split the interval [a, b] in subintervals [a + tk, a + tk+1],

k = 0, ..., n̄ − 1, n̄ = (b − a)/h. We denote with zk = z(a + tk, a, λ) the exact

solution at the point a+ tk. The differential problem (3.5.3), restricted to each

of these subintervals, reads





z′(t) = λz(t) + y(t)

z(a + tk) = zk

t ∈ [a + tk, a + tk+1], (3.5.5)

whose exact solution is given by the variation-of-constant formula:

zk+1 = eλhzk + h

∫ 1

0

e(1−θ)λhy(a + tk + θh)dθ k = 0, ..., n̄− 1. (3.5.6)
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Denoting by ỹk = y(a + tk) and replacing y(t) by its linear approximation

u(t) in [a + tk, a + tk+1] :

u(a + tk + θh) = θỹk+1 + (1 − θ)ỹk θ ∈ (0, 1] (3.5.7)

we obtain the following approximation z̄k ≈ z(a + tk, a, λ):

z̄k+1 = eλhz̄k + h

∫ 1

0

e(1−θ)λhu(a + tk + θh)dθ k = 0, ..., n̄− 1. (3.5.8)

By exactly computing the integral in (3.5.8), we can obtain the approximation

z̄k recursively via

z̄k+1 = z̄k +
ehλ − 1

hλ

(
hλz̄k + hỹk + h

ỹk+1 − ỹk

hλ

)
− h

ỹk+1 − ỹk

hλ
. (3.5.9)

3.5.2 The fast convolution algorithm

The integral (3.5.1) for t = tn+1 is splitted as

∫ tn+1

0

k(tn+1 − τ )y(τ )dτ =

∫ tn+1

tn

k(tn+1 − τ )y(τ )dτ +

∫ tn

0

k(tn+1 − τ )y(τ )dτ.

(3.5.10)

1. The first integral in the second hand side of (3.5.10) can be computed

by approximating y(τ ) linearly:

∫ tn+1

tn

k(tn+1 − τ )y(τ )dτ ≈ y(tn)

∫ tn+1

tn

k(tn+1 − τ )dτ +

+
y(tn+1) − y(tn)

h

∫ tn+1

tn

k(tn+1 − τ ) · (τ − tn)dτ.

The remaining integrals are approximated as the inverse Laplace trans-

forms of F (s)/s and F (s)/s2 respectively:

Φ1 =

∫ tn+1

tn

k(tn+1 − τ )dτ =

∫ h

0

k(h − τ )dτ ≈
N∑

j=−N

ωj
K(λj)

λj
ehλj

Φ2 =

∫ tn+1

tn

k(tn+1 − τ ) · (τ − tn)dτ =

∫ h

0

k(h − τ )τdτ ≈
N∑

j=−N

ωj
K(λj)

λ2
j

ehλj ,
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where the weights ωj and nodes λj are associated to the Talbot contour

Γ0 that corresponds to the interval I0 of (3.4.5). Thus we obtain

∫ tn+1

tn

k(tn+1 − τ )y(τ )dτ ≈ Φ1y(tn) + Φ2
y(tn+1) − y(tn)

h
(3.5.11)

2. Let us consider L as the smallest integer for which tn+1 < 2BLh and, for

l = 1, 2, ..., L− 1, we determine the integer ql ≥ 1 such that τl = qlB
Lh

satisfies

tn+1 − τl ∈ [Blh, (2Bl − 1)h] l = 1, ..., L− 1 (3.5.12)

and set τ0 = tn, τL = 0. Note that tn = τ0 > τ1 > ... > τL−1 > τL = 0, so

[0, tn] =

L⋃

l=0

[τl, τl−1] (3.5.13)

and this decomposition depends on n.

Then the second integral in the second hand side of (3.5.10) can be

splitted as

∫ tn

0

k(tn+1 − τ )y(τ )dτ =

L∑

l=1

∫ τl−1

τl

k(tn+1 − τ )y(τ )dτ

It is easy to verify, thanks to (3.5.12), that [tn+1 − τl−1, tn+1 − τl] ⊆ Il,

thus it is possible to use the approximation (3.5.2) for each integral over

[τl, τl−1], obtaining

∫ tn

0

k(tn+1 − τ )y(τ )dτ ≈
L∑

l=1

N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(tn+1−τl−1)λ

(l)
j z(τl−1, τl, λ

(l)
j ),

(3.5.14)

where ω
(l)
j and λ

(l)
j are the weights and the quadrature points for the

Talbot contour Γl that corresponds to the interval Il of (3.4.5).

The fast convolution algorithm consists in an appropriate scheme in the

computation of the approximation (3.5.11),(3.5.14) of (3.5.1). This algorithm
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Figure 3.9: Decomposition for B = 2

is best explained by describing the first steps for B = 2 in (3.4.5), which leads

to I0 = [0, h], I1 = [h, 3h], I2 = [2h, 7h], I3 = [4h, 15h],... and so on.

Figure 3.9 represents the decomposition of the triangle {(t, τ ) : 0 ≤ τ ≤ t ≤ T}

in L−shaped regions, according to the decomposition (3.5.13): along any ver-

tical line, i.e. for any fixed t = (n+1)h, there are at most log2 Nt such regions,

and they are represented by different textures in Figure 3.9. Thus, the different

textures correspond to different values of l, and so to different Talbot contours

Γl, which in turn correspond to different approximation intervals Il.

Example 3.4. For example, in correspondence of t = t8, according to (3.5.12),

we have L = 3, τ0 = 7h, τ1 = 6h, τ2 = 4h, τ3 = 0, as shown in Figure (3.10).

First step. At the first step we have n = 0, tn+1 = h, L = 0 and τ0 = 0.

Thus the integral
∫ h

0
k(h − τ )y(τ )dτ is approximated by (3.5.11).

Second step. At the second step we have n = 1, tn+1 = 2h, L = 1, τ0 = h

and τ1 = 0. Thus the integral
∫ 2h

h
k(2h − τ )y(τ )dτ is approximated by
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Figure 3.10: Decomposition for B = 2 in correspondence of t = t8.

(3.5.11), while we approximate

∫ h

0

k(2h − τ )y(τ )dτ ≈
N∑

j=−N

ω
(1)
j K(λ

(1)
j )ehλ

(1)
j z(h, 0, λ

(1)
j )

according to (3.5.14). The computation of z(h, 0, λ
(1)
j ) requires solving

M differential equations (3.5.3) with λ = λ
(1)
j ∈ Γ1 by one step of (3.5.9),

using the values of y(0) and y(h).

At this step we also compute z(h, 0, λ
(l)
j ), by solving for all l ≥ 1 the

differential equations (3.5.3) with λ = λ
(l)
j ∈ Γl:

y(0), y(h)
one step of (3.5.9)→ z(h, 0, λ

(l)
j ) ∀l ≥ 1. (3.5.15)

This quantities will be used in the next time steps, without needing to

keep in memory y(0).

Third step. Now we have n = 2, tn+1 = 3h, L = 1, τ0 = 2h and τ1 = 0.

As before, the integral
∫ 3h

2h
k(3h− τ )y(τ )dτ is approximated by (3.5.11),
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while (3.5.14) leads to

∫ 2h

0

k(3h − τ )y(τ )dτ ≈
N∑

j=−N

ω
(1)
j K(λ

(1)
j )ehλ

(1)
j z(2h, 0, λ

(1)
j ).

The computation of z(2h, 0, λ
(1)
j ) requires advancing the solutions of the

differential equations for Γ1 from h to 2h by mean of one step of (3.5.9),

using the values z(h, 0, λ
(1)
j ) calculated at the previous step and the values

y(h) and y(2h).

At this step we also advance the solution on all the other Talbot contours

Γl:

z(h, 0, λ
(l)
j )

y(h) , y(2h)

one step of (3.5.9)→ z(2h, 0, λ
(l)
j ) ∀l ≥ 1. (3.5.16)

This quantities will be used in the next time steps, without needing to

keep in memory y(h).

Fourth step. Now n = 3, tn+1 = 4h, L = 2, τ0 = 3h, τ1 = 2h and τ2 = 0.

The integral
∫ 4h

3h
k(4h − τ )y(τ )dτ is approximated by (3.5.11), while,

according to (3.5.14), we obtain:

∫ τ0

τ1

k(tn+1 − τ )y(τ )dτ =

∫ 3h

2h

k(4h − τ )y(τ )dτ ≈

≈
N∑

j=−N

ω
(1)
j K(λ

(1)
j )ehλ

(1)
j z(3h, 2h, λ

(1)
j ) (l = 1)

∫ τ1

τ2

k(tn+1 − τ )y(τ )dτ =

∫ 2h

0

k(4h − τ )y(τ )dτ ≈

≈
N∑

j=−N

ω
(2)
j K(λ

(2)
j )e2hλ

(2)
j z(2h, 0, λ

(2)
j ) (l = 2)

The computation of z(2h, 0, λ
(2)
j ) has already been done at the previous

time step by mean of (3.5.16), while the computation of z(3h, 2h, λ
(1)
j )
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requires the solution of the differential equations for Γ1 with initial point

a = 2h, by one step of (3.5.9):

y(2h), y(3h)
one step of (3.5.9)→ z(3h, 2h, λ

(l)
j ) l = 1. (3.5.17)

At this step we also advance

z(2h, 0, λ
(l)
j )

y(2h) , y(3h)

one step of (3.5.9)→ z(3h, 0, λ
(l)
j ) ∀l ≥ 2 (3.5.18)

according to Figure (3.9). This quantities will be used in the next time

steps, without needing to keep in memory y(2h). In this way, instead of

proceeding step-wise from bottom up in the triangle, we proceed from

left to right.

Fifth step. It is now clear that at the fifth step we need z(4h, 2h, λ
(1)
j ) and

again z(2h, 0, λ
(2)
j ). Thus we evaluate:

z(3h, 2h, λ
(l)
j )

y(3h) , y(4h)

one step of (3.5.9)→ z(4h, 2h, λ
(l)
j ) l = 1 (3.5.19)

and

z(3h, 0, λ
(l)
j )

y(3h) , y(4h)

one step of (3.5.9)→ z(4h, 0, λ
(l)
j ) ∀l ≥ 2 (3.5.20)

which we will use in the subsequent time steps.

As described in the first time steps, the differential equations (3.5.3) de-

termining z(τl−1, τl, λ
(l)
j ) are solved approximately by mean of (3.5.9) and are

advanced by one step of (3.5.9) for all required values λ
(l)
j , j = −N, ...,N on

all Talbot contours in every time step tn → tn+1. In this way the past values of

y(t) need not to be kept in memory. Thus the operations counts and memory
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requirements are proportional to MNtLt and MLt respectively, where Nt is

the number of time steps, Lt ≤ logB Nt is the number of different contours, and

M = 2N + 1 is the number of quadrature points on each contour. Thus the

computational cost is of O (Nt logB Nt) operations and memory requirements

of O (Nt).
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Fast Collocation methods for

Volterra Integral equations of

convolution type

63
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4.1 Introduction

This Chapter concerns with the numerical solution of VIEs of Hammerstein

type

y(t) = f(t) +

∫ t

0

k(t − τ )g(y(τ ))dτ t ∈ I := [0, T ], (4.1.1)

where only the Laplace transform of the kernel K(s) rather than the convo-

lution kernel itself is known a priori. We have seen in Section 1.3 that this

kind of equations are the mathematical model of several real problems. The

fuctions f , g in (4.1.1) are assumed to be sufficiently smooth on I so that

the solution y(t) is smooth, too. As we previously observed, the numerical

treatment of a VIE leads to an high computational cost, since, for each time

step, we have to compute the “lag term”, which contains the past history of

the phenomenon. In order to compute the numerical solution of (4.1.1) with

a classical numerical method over Nt time steps it would be required O (N2
t )

operations and O (Nt) memory (see Chapter 2). In the special case of convolu-

tion type equations in [52] was proposed a fast algorithm with a computational

cost of O (Nt(log Nt)
2).

In this chapter we construct fast discrete collocation methods for the equa-

tion (4.1.1), which directly involve the evaluations of the Laplace transform of

the kernel, using the basic idea underlying the quadrature formulas illustrated

in Section 3.5 and proposed in [68]. It will be shown that these methods, as in

[68], can be implemented with a computational cost of O (Nt log Nt) operations

and O (log Nt) memory. Moreover they keep the same order of accuracy of the

corresponding classical collocation methods.

In Section 4.2 we give the detailed construction of the fast collocation me-

thods and the calculation of the computational cost. The convergence analysis

is given in Section 4.3.
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Section 4.4 contains numerical results for some significant test examples

taken from the literature, which confirm the expected accuracy and computa-

tional cost of the constructed methods. In Section 4.5 some concluding remarks

are reported.

Some of the results of this chapter are reported in [21].
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4.2 Fast collocation methods

We want to solve the equation (4.1.1) by a discrete m-point collocation method,

constructed taking into account the peculiarity of the considered equation.

Only for ease of exposition we shall refer to the linearized form of (4.1.1)

y(t) = f(t) +
∫ t

0
k(t − τ )y(τ )dτ t ∈ I, (4.2.1)

since it is possible to extend in a natural way the same results to the more

general equation (4.1.1).

Let us fix m collocation parameters c1, ..., cm and let us consider a uniform

mesh of the temporal interval I denoted by

Ih = {tn := nh, n = 0, ..., Nt, h ≥ 0, Nth = T} .

An m-point collocation method applied to the equation (4.2.1), according to

the formulas (2.2.3), (2.2.4), reads

Yn,i = F̄n(tn,i) +
∫ tn,i

tn
k(tn,i − τ )un(τ )dτ i = 1, ...,m (4.2.2)

where

F̄n(tn,i) = f(tn,i) +

∫ tn

0

k(tn,i − τ )u(τ )dτ. (4.2.3)

and

un(tn + θh) =
m∑

j=1

Lj(θ)Yn,j θ ∈ (0, 1] n = 0, ..., Nt − 1. (4.2.4)

In order to obtain a discrete collocation method we have to choose suitable

quadrature formulas to approximate the integrals in (4.2.2) and (4.2.3). For

the peculiarity of the equation (4.1.1), the quadrature formulas have to involve

the evaluations of the Laplace transform of the kernel. For the computation

of (4.2.2) and (4.2.3) we will use a generalization of the quadrature formulas
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described in Section 3.5, and then we will show that the constructed numerical

methods have a computational cost of O(Nt log Nt) instead of O(N2
t ) opera-

tions, their order of accuracy is the same as the corresponding exact collocation

method.

4.2.1 Fast computation of the lag terms

First we will illustrate how to approximate the integral arising in the lag-terms

(4.2.3).

As shown in Section 3.5.2, in order to split the integral over [0, tn] in (4.2.3),

we consider L as the smallest integer for which tn+1 < 2BLh and, for l =

1, 2, ..., L − 1, we determine the integer ql ≥ 1 such that τl = qlB
Lh satisfies

tn+1 − τl ∈ [Blh, (2Bl − 1)h], with τ0 = tn and τL = 0. Thus the integral over

[0, tn] in (4.2.3) is split into the following way

F̄n(tn,i) = f(tn,i) +
L∑

l=1

∫ τl−1

τl

k(tn,i − τ )u(τ )dτ. (4.2.5)

Since we do not know the evaluations of the kernel, but of its Laplace trans-

form, we use the formula (3.5.2) for approximating the lag terms. In order

to apply this formula it is necessary that the condition [t − a, t − b] ⊆ Il

is verified, where Il is an opportune chosen interval to which corresponds

a Talbot contour Γl for the inverse Laplace transform approximation for-

mula. In our case we can not use the same Il of the formula (3.4.5) since

[tn,i − τl−1, tn,i − τl] 6⊆ Il = [Bl−1h, (2Bl − 1)h]. Thus the intervals Il then need

to be modified according to Ĩl = [Bl−1h + (c1 − 1)h, (2Bl − 1)h + (cm − 1)h].

Now it is easy to verify that [tn,i − τl−1, tn,i − τl] ⊆ Ĩl. As a matter of fact,

being by construction [tn+1 − τl−1, tn+1 − τl] ⊆ Il, it follows that

[tn,i−τl−1, tn,i−τl] = [tn+1−τl−1 +(ci −1)h, tn+1−τl +(ci −1)h] ⊆ Ĩl. (4.2.6)
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Thus it is possible to use the formula (3.5.2), for approximating each integral

over [τl, τl−1], obtaining

∫ τl−1

τl

k(tn,i − τ )u(τ ) ≈
N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λ

(l)
j z(τl−1, τl, λ

(l)
j ) (4.2.7)

and thus F̄n(tn,i) ≈ F̄n,i

F̄n,i := f(tn,i) +
L∑

l=1

N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λj

(l)

z(τl−1, τl, λ
(l)
j ) i = 1, ...,m

(4.2.8)

where z(τl−1, τl, λ
(l)
j ) =

∫ τl

τl−1

e(τl−τ)λ
(l)
j u(τ )dτ .

If we denote by Lt the total number of different Talbot contours, we can

observe that by construction

L ≤ Lt ≤ logB(Nt).

A direct implementation of the formula (4.2.8) would still lead to a com-

putational cost of O(N2
t ). The idea proposed in [68] (and described in Section

3.5.2) to reduce the computational cost was based on a new organization in

the computation of the function z at each time step, which could exploit its

evaluations at the previous time steps. In order to reach the same goal we

split the interval [τl, τl−1] in subintervals [τl + tk, τl + tk+1], k = 0, ..., n̄ − 1,

n̄ = (τl−1 − τl)/h. We denote with zk := z(τl + tk, τl, λ
(l)
j ) the integral over

[τl, τl + tk], thus

zk+1 = ehλ
(l)
j zk +

∫ τl+tk+1

τl+tk

e(τl+tk+1−τ)hλ
(l)
j u(τ )dτ (4.2.9)

= ehλ
(l)
j zk + h

∫ 1

0

e(1−θ)hλ
(l)
j u(τl + tk + θh)dθ k = 0, ..., n̄− 1.

Denoting by Ỹk,r := u(τl + tk,r), the local representation (4.2.4) leads to

u(τl + tk + θh) =
m∑

r=1

Lr(θ)Ỹk,r θ ∈ (0, 1]. (4.2.10)
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Now it is easy to prove the following property of the Lagrange polynomials

which is useful for computing the integrals in (4.2.9).

Property 4.1. The Lagrange polynomials may be expanded in powers of θ

according to

Lr(θ) =
m∏

j=1
j 6=r

θ − ci

cr − ci

= Br

m−1∑

s=0

(−1)m−1−sσr,m−1−sθ
s (4.2.11)

where

Br =
m∏

s=1
r 6=s

1

cr − cs
(4.2.12)

and σr,i represents the sum of all possible products of i distinct elements taken

in the set {ci}m
i=1,i 6=r:

σr,0 = 1, σr,i =
m∑

n1<...<ni=1

nk 6=r

cn1cn2...cni. (4.2.13)

By substituting (4.2.10)-(4.2.11) in (4.2.9), we obtain the following one step

formula for the evaluation the function z in the mesh points from τl to τl−1:





z0 = 0,

zk+1 = ehλ
(l)
j

(
zk + h

m−1∑
s=0

Is(hλ
(l)
j )

m∑
r=1

(−1)m−1−sσr,m−1−sBrỸk,r

)

k = 0, ..., n̄− 1,

(4.2.14)

where Br and σr,i are respectively given by (4.2.12) and (4.2.13), and the

integrals Is(hλ) =
∫ 1

0
e−θhλθsdθ s = 0, ...,m−1, can be computed exactly via

the following recursive formula





I0(hλ) = 1−e−hλ

hλ

Is(hλ) = − e−hλ

hλ
+ s

hλ
Is−1(hλ) s = 1, ...,m− 1.

(4.2.15)
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Remark 4.1. The formula (4.2.9) differs from (3.5.8) because here u(t) repre-

sents a piecewise polynomial interpolant of degree m−1 instead of the piecewise

linear approximation. In the special case of m = 2 and collocation parameters

c1 = 0, c2 = 1, the function u(t) given by (4.2.10) reduces to the piecewise

linear approximation (3.5.7) and the recursive formula (4.2.14) coincides with

(3.5.9), provided that we set a = τl, λ = λ
(l)
j .

Now we analyse the computational cost of the lag terms computation given

by (4.2.8) and (4.2.14).

As in Section 3.5.2, we can advance the values (4.2.14) of z by one step for

all required values λ
(l)
j on all Talbot contours in every time step tn → tn+1.

Note that the function z in (4.2.8) does not depend on i, so we have to evaluate

it only one time at each step tn → tn+1 independentely the number m of

collocation points. Observing that the computation of zk+1 through (4.2.14)

only requires the value zk of z at the previous step and the values Ỹk,r =

u(τl + tk,r) of the polynomial approximation in the interval [τl + tk, τl + tk+1],

we do not need to keep in memory all the past values, thus we need a memory

requirement of O (logB Nt).

In this way we have obtained the same computational scheme of Section

3.5.2, whose computational cost is proportional to MNtLt, where Nt is the

number of time steps, Lt ≤ logBNt is the number of different contours and M

is the number of quadrature points on each contour. As it will be specified in

Remark 4.2 the method proposed in Section 3.5.2 can be recognized as a fast

discrete collocation method with collocation parameters c1 = 0 and c2 = 1. On

the contrary in our case we have m collocation parameters, hence the lag terms

(4.2.8) have to be computed for i = 1, ...,m and the computation of (4.2.14)

requires a double summation over m. Thus we obtain the same computational

cost of the method proposed in Section 3.5.2 except for a multiplicative factor of
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m+m2. As m is fixed and independent of Nt (generally in concrete applications

it is m ≤ 4, as observed in Remark 2.1), the total cost of the lag terms

computation is O (Nt logB Nt).

4.2.2 Computation of the increment term

In this section we develop the formulas for the approximation of the increment

term in (4.2.2). As

∫ tn,i

tn

k(tn,i − τ )un(τ )dτ =

∫ cih

0

k(cih − τ )un(tn + τ )dτ i = 1, ...,m,

substituting the expression (4.2.4) for the piecewise polynomial u(t) and ex-

panding the Lagrange fundamental polynomials as powers of τ , we obtain

∫ tn,i

tn
k(tn,i − τ )un(τ )dτ = (4.2.16)

=
m∑

r=1

BrYn,r

m−1∑

s=0

(−1)m−1−sσr,m−1−s

hs

∫ cih

0

k(cih − τ ) · τ sdτ i = 1, ...,m.

where Br and σr,n are respectively given by (4.2.12) and (4.2.13).

Since ∫ cih

0

k(cih − τ ) · τ sdτ = q(cih)

where q(t) represents the inverse Laplace transform of Q(λ) = K(λ) s!
λs+1 , the

approximation (3.4.7) leads to

∫ cih

0

k(cih − τ ) · τ sdτ ≈
N∑

j=−N

ωj
s!

λj
s+1K(λj)e

cihλj =: Φi,s (4.2.17)

where the weights ωj and nodes λj are associated to the Talbot contour Γ0

that corresponds to the interval Ĩ0 = [0, h].

Finally, the increment term approximation becomes
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∫ tn,i

tn
k(tn,i − τ )un(τ )dτ ≈ (4.2.18)

≈
m∑

r=1

(
Br

m−1∑

s=0

(−1)m−1−sσr,m−1−s

hs
Φ

i,s

)
Yn,r i = 1, ...,m.

4.2.3 Determination of the approximate solution

Previously we determined the formulas (4.2.8), (4.2.14) to approximate the

lag term (4.2.3) and (4.2.17)-(4.2.18) to approximate the increment term in

(4.2.2), thus the approximate solution of (4.2.1) is

ūn(tn + θh) =

m∑

j=1

Lj(θ)Ȳn,j θ ∈ (0, 1] n = 0, ..., Nt − 1, (4.2.19)

where Ȳn,i are given by the solution of the linear system

Ȳn,i = F̄n,i +
m∑

r=1

di,rȲn,r ı = 1, ...,m (4.2.20)

with

di,r = Br

m−1∑

s=0

(−1)m−1−sσr,m−1−s

hs
Φi,s. (4.2.21)

Setting D = (di,r)i,r=1,...,m, Ȳn =
(
Ȳn,1, ..., Ȳn,m

)T
, and F̄n =

(
F̄n,1, ..., F̄n,m

)T
,

the linear system (4.2.20) can be written in a matrix form as

(I− D)Ȳn = F̄n n = 0, ..., Nt − 1, (4.2.22)

where I denotes the identity matrix of order m.

Obviously, the approximate solution of (4.2.1) at the mesh points is obtained

by setting θ = 1 in the expression (4.2.19).

Remark 4.2. A special case occurs when c1 = 0, cm = 1, because, setting

Ȳn,1 = Ȳn−1,m, the linear system (4.2.20) has to be solved for Ȳn,i, i = 2, ...,m,
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thus becoming of dimension m−1. In particular, if m = 2, taking into account

what observed in Remark 4.1, the (4.2.8), (4.2.19)-(4.2.21) reproduce the ap-

proximate solution of (4.2.1) obtained by applying a direct quadrature method

which straightforwardly employs the fast quadrature formulas (3.5.11),(3.5.14),

ilustrated in Section 3.5.

The linear system (4.2.22) is characterized by a nonstructured full coef-

ficient matrix I − D of order m. What’s more we can prove the following

theorem

Theorem 4.1. Assume that f and k in the VIE (4.2.1) are continuous. Then

there exists an h̄ > 0 so that for any mesh Ih with h ∈ (0, h̄) the linear system

(4.2.22) has a unique solution.

Proof. We have to prove that the inverse of the matrix I − D exists for h

sufficiently small. It is known that if ‖D‖ < 1 then the inverse of the matrix

I − D exists and is bounded in norm (see [4], p. 492). Let us rewrite D as

D = hD1, with

(D1)i,r = Br

m−1∑

s=0

(−1)m−1−sσr,m−1−s

hs+1
Φi,s.

We have only to prove that the elements of the matrix D1 are all bounded since

it is sufficient to choose h < 1
‖D1‖ . The coefficients Br and σr,m−1−s, given by

(4.2.12) and (4.2.13), depend on {ci} which are bounded. Thus it is necessary

to prove that
Φi,s

hs+1 are bounded for some matrix norm for i = 1, ...,m, and

s = 0, ...,m− 1. Since the kernel k is supposed to be continuous, the integrals
∫ ci

0
k(cih − θh)θsdθ are all bounded.

Moreover, with the change of variable τ = θh we obtain

∣∣∣∣
Φi,s

hs+1
−
∫ ci

0

k(cih − θh)θsdθ

∣∣∣∣ =

∣∣∣∣∣
Φi,s −

∫ cih

0
k(cih − τ )τ sdτ

hs+1

∣∣∣∣∣ ≤
c1e

−c
√

M

hs+1,



Chapter 4 74

since, according to the formula (4.2.17),
∣∣∣Φi,s −

∫ cih

0
k(cih − τ )τ sdτ

∣∣∣ represents

the error of the inverse Laplace transform approximation formula (3.4.7). Now

it is possible to choose the number of points M on the Talbot contour in order

that c1e
−c

√
M ≤ c2h

m is verified. Since h < 1 we obtain
∣∣∣∣
Φi,s

hs+1

∣∣∣∣ ≤ c2 +

∣∣∣∣
∫ ci

0

k(cih − θh)θsdθ

∣∣∣∣

and thus the thesis holds.

As observed in Remark 2.1, in concrete applications the value of m does not

usually exceed m = 4. This allows us to solve the linear system (4.2.22) with a

direct method obtaining a computational cost over Nt time steps proportional

to m3Nt, and thus of O(Nt).

Remark 4.3. Observe that when the VIE is of the Hammerstein type (4.1.1),

then (4.2.19) still holds where Ȳn,i are now the solution of the nonlinear system

Ȳn,i = F̄n,i +
m∑

r=1

di,rg(Ȳn,i) ı = 1, ...,m, (4.2.23)

where F̄n,i is given by (4.2.8), (4.2.14), by replacing Ỹk,r with g(Ỹk,r). Such

system can be solved by an iterative method with a computational cost over Nt

time steps proportional to m2kNt, where k represents the number of iterations

required. Thus, as in the linear case, the cost for solving the nonlinear system

is O(Nt).

Remark 4.4 (Computational cost). As concerns the total computational cost

of the fast collocation method, we observe that it consists of the cost of the

lag terms computation and the cost of the increment term, which includes the

resolution of the (non)linear system (4.2.22)-(4.2.23). From what we mentioned

above and in Section 4.2.1, it follows that the total cost of the fast collocation

method is O(Nt log Nt).
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4.3 Convergence analysis

The fast collocation method described in Section 4.2 is a discretized collocation

method based on the quadrature formula (4.2.8) for the lag term and (4.2.18)

for the increment term. For the discussion of the order of convergence of

the classical collocation methods refer to Theorems 2.2 and 2.3. In order to

estabilish the order of convergence of the fast discrete collocation method, we

need the following result:

Lemma 4.1. Let

E
(i)
n,l[u] =

∫ τl−1

τl
k(tn,i − τ )u(τ )−

N∑
j=−N

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λ

(l)
j z(τl−1, τl, λ

(l)
j )

E(i)
n,n[u] =

∫ tn,i

tn
k(tn,i − τ )un(τ )dτ −

m∑
r=1

(
Br

m−1∑
s=0

(−1)m−1−sσr,m−1−s

hs Φ
i,s

)
Yn,r

respectively denote the error of the quadrature formulas (4.2.7) and (4.2.18).

Then
∣∣∣E(i)

n,l[u]
∣∣∣ = O(e−c

√
M) (4.3.1)

∣∣E(i)
n,n[u]

∣∣ = O(e−c
√

M). (4.3.2)

Proof. It immediately follows from (3.5.4) that
∣∣∣E(i)

n,l[u]
∣∣∣ = O(e−c

√
M). More-

over, observing that Φi,s are obtained by a direct application of (3.4.7) to the

function s!
λs+1 K(λ), we obtain

∣∣∣E(i)
n,n[u]

∣∣∣ = O(e−c
√

M ).

We are now ready to prove the following theorem

Theorem 4.2. Let ū(t) be the approximate solution of (4.2.1) obtained through

the discrete collocation method (4.2.8), (4.2.19)-(4.2.20). Then the error ē(t) =

y(t)− ū(t) satisfies

‖ē‖∞ = O(hm) (4.3.3)

for every choice of the collocation parameters 0 ≤ c1 < ... < cm ≤ 1 with

sufficiently large number M of points on the Talbot contour.
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Proof. Denoting by u the solution of the exact collocation method we have

|ē(t)| ≤ |y(t)− u(t)|+ |u(t) − ū(t)| = |e(t)|+ |ε(t)| t ∈ [0, T ].

For Theorem 2.2 we have that |e(t)| ≤ C1h
m uniformly on I.

Let εn(t) denote the restriction of ε(t) to the subinterval (tn,tn+1], n =

0, ..., Nt − 1. Subtracting (4.2.20) from (4.2.2), we obtain

εn(tn,i) =
m∑

r=1

di,rεn(tn,r)+h
n−1∑

k=0

m∑

r=1

q
(n,k)
i,r εk(tk,r)+E(i)

n,n[u]+
L∑

l=1

E
(i)
n,l[u] i = 1, ...,m

(4.3.4)

where

q
(n,k)
i,r =

N∑

j=−N

ω
(l)
j K(λ

(l)
j )

∫ 1

0

e(n−k+ci−θ)hλj
(l)

Lr(θ)dθ, k = 0, ..., n−1, i, r = 1, ...,m.

By writing down equation (4.3.4) in vectorial form we have

(I − D)ηn = h
n−1∑

k=0

Q(n,k)ηk + rn,n +
L∑

l=1

rn,l (4.3.5)

where ηk = (εk(tk,1), ..., εk(tk,m))T , rn,l = (E
(1)
n,l [u], ..., E

(m)
n,l [u])T and Q(n,k) is

a square matrix whose elements are q
(n,k)
i,r for i, r = 1, ...,m. It follows from

Lemma 4.1 that ‖rn,n‖1 ≤ C2e
−c

√
M and ‖rn,l‖1 ≤ C3e

−c
√

M . In Theorem

4.1 we proved that, for sufficiently small h > 0, the inverse (I − D)−1 exists

and is bounded, thus there exists a constant D0 such that ‖(I −D)−1‖1 ≤ D0.

Ananalogously there exists a constant D1 such that that
∥∥Q(n,k)

∥∥
1
≤ D1. Thus

(4.3.5) leads to

‖ηn‖1 ≤ D0

{
hD1

n−1∑

k=0

‖ηk‖1 + C2e
−c

√
M + LC3e

−c
√

M

}
. (4.3.6)

This represents a discrete Gronwall inequality for ‖ηn‖1,

‖ηn‖1 ≤ hC4

n−1∑

k=0

‖ηk‖1 + C5e
−c

√
M , (4.3.7)
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where C4 = D0D1, C5 = D0(C2 + LC3). Thus, by Theorem 2.6, it follows that

‖ηn‖1 ≤ Q1e
−c

√
M . To complete the proof if Λm := max

{
m∑

i=1

|Li(ν)| : 0 ≤ ν ≤ 1

}

denote the Lebesgue constant associated with the collocation parameters {ci},

then we have

|εn(tn + νh)| ≤
m∑

i=1

|εn(tn,i)| |Li(ν)| ≤ ‖ηn‖1 Λm ≤ Qe−c
√

M

with Q = Q1Λm.

This is equivalent to ‖ε‖∞ ≤ Qe−c
√

M and hence, by choosing M such that

Qe−c
√

M ≤ C1h
m, the assertion of Theorem 4.2 now follows.

Since the error due to the approximation of the inverse Laplace transform

decreases exponentially with M it is sufficient to fix a not too high number of

points on the Talbot contour in order to make this error negligible. Moreover if

M → +∞, that is the formula for approximating the inverse Laplace transform

is exact, we return to the exact collocation method.

Obviously it is possible to achieve local superconvergence at the mesh points

by opportunely choosing the collocation parameters {ci}, and sufficiently large

M , in analogy to the Theorem 2.7

Corollary 4.1. Let f , k ∈ C2m−v, with v ∈ {0, 1, 2} with m ≥ bv/2c + 1,

(a) If the collocation parameters are the Radau II points for (0, 1], then for

v = 1

max
tn∈Ih

|ē(tn)| = O(h2m−1)

(b) If the collocation parameters are the Lobatto points for [0, 1], then we

obtain then for v = 2

max
tn∈Ih

|ē(tn)| = O(h2m−2)
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(c) If the first m − 1 collocation parameters are the Gauss points for (0, 1)

and cm = 1, then for v = 2

max
tn∈Ih

|ē(tn)| = O(h2m−2).
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4.4 Numerical results

In this section we illustrate the performances of the fast m-point collocation

methods in order to validate the convergence results proved in Section 4.3

and the reduction of the computational cost to O(NtlogBNt) (Remark 4.3).

The fast collocation methods have been implemented in MATLAB and the

numerical experiments have been performed on different test examples. Here

we report the results obtained on the three test problems:

• the linear Volterra integral equation taken from [18]:

y(t) = et +

∫ t

0

2 cos(t − τ )y(τ )dτ t ∈ [0, 1], (4.4.1)

with K(s) = 2s
1+s2 and exact solution y(t) = et(1 + t)2;

• the nonlinear equation given in [52], arising in the analysis of neural

networks with post inhibitory rebound:

y(t) = 1+

∫ t

0

(t− τ )3(4− t+ τ )e−t+τ y4(τ )

1 + 2y2(τ ) + 2y4(τ )
dτ, t ∈ [0, 10],

(4.4.2)

with K(s) = 24s
(1+s)5

and reference solution y(10) = 1.25995582337233;

• the nonlinear Abel equation given in [69] and described in Example 1.1,

arising in chemical absorpion kinetics:

y(t) = y0 −
α

β

∫ t

0

k(t − τ )
y(τ )

1 + y(τ )0.75
dτ, t ∈ [0, 1], (4.4.3)

with y0 = 10, α = 1, β = 10−2, K(s) = 1√
s/β tanh(

√
s/β)

− 1
s/β

and reference

solution y(1) = 1.65087150782378.

The reference solutions for problems (4.4.2) and (4.4.3) have been obtained

numerically by using different codes with very stringent tolerances.
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Remark 4.5. We remind that, in order to apply the fast collocation methods,

we have to choose a family of Talbot contours. This choice is done according

to Section 3.4.3. Namely, in problem (4.4.1) K(s) has singularities in s = ±i,

thus it corresponds to Example 3.1. In problems (4.4.2), (4.4.3) K(s) has

only one singularity respectively at s = −1 and s = 0, thus it corresponds to

Example 3.3. The number M = 2N + 1 of quadrature points on each Talbot

contour is chosen to be M = 501.

4.4.1 Convergence

The following fast collocation methods for the approximation of the solution

of each equation have been used, where p denotes the order of the method,

according to Corollary 4.1:

L2 : 2 points Lobatto collocation (c1 = 0, c2 = 1), p = 2

R2 : 2 points Radau collocation (c1 = 1/3, c2 = 1), p = 3

L3 : 3 points Lobatto collocation (c1 = 0, c2 = 1/2, c3 = 1), p = 4

R3 : 3 points Radau collocation (c1 = 4−
√

6
10

, c2 = 4−
√

6
10

, c3 = 1), p = 5

G4 : 3 points Gauss collocation + c4 = 1

(c1 = 5−
√

15
10

, c2 = 1/2, c3 = 5+
√

15
10

), p = 6

The accuracy is defined by the number of correct significant digits cd at

the end point, i.e. the value

cd := −log10 (|y(T )− yNt|/|y(T )|)

The order of the method is estimated with the formula p(h) = cd(h)−cd(2h)
log102

for

a fixed h. For each test problem we plot the number of cd versus Nt.
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Figure 4.1: Number of correct significant digits for problem (4.4.1)

Table 4.1: Number of correct significant digits for problem (4.4.1) at
t=T=1.

method Nt = 8 Nt = 16 Nt = 32 Nt = 64 p(h = 1
64

)
L2 2.01 2.61 3.22 3.82 1.99
R2 3.41 4.33 5.24 6.15 3.02
L3 5.11 6.33 7.65 8.66 3.36
R3 6.83 8.34 9.85 11.36 5.02
G4 8.81 10.63 12.44 14.51 6.88

Table 4.2: Number of correct significant digits for problem (4.4.2) at
t=T=10.

method Nt = 32 Nt = 64 Nt = 128 Nt = 256 p(h = 10
256

)
L2 3.00 3.61 4.21 4.81 1.99
R2 5.11 6.01 6.92 7.83 3.02
L3 6.21 7.49 8.71 9.92 4.02
R3 7.06 8.54 10.03 11.54 5.02
G4 8.21 10.00 11.80 13.70 6.31
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Figure 4.2: Number of correct significant digits for problem (4.4.2)

Figure 4.3: Number of correct significant digits for problem (4.4.3)
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Table 4.3: Number of correct significant digits for problem (4.4.3) at
t=T=1.

method Nt = 128 Nt = 256 Nt = 512 Nt = 1024
L2 3.07 3.32 3.42 3.59
R2 5.33 5.77 6.21 6.67
L3 3.64 3.86 3.94 4.09
R3 5.91 6.37 6.84 7.36
G4 6.14 6.60 7.09 7.70

The Figures 4.1-4.2 and the results listed in Tables 4.1-4.2 clearly show

that our methods produce the desidered order according to the Corollary 4.1,

since the functions involved are sufficiently regular. Only for equation (4.4.3),

as Figure 4.3 and Table 4.3 show, the methods do not achieve the order of

convergence of Corollary 4.1, since the inverse Laplace transform of K(s) has

a weak singularity of Abel type. This is not a surprising behaviour since we

know from Section 2.2.2 that even a classical collocation method produces a

drastic fall in its order of convergence when it is applied to Abel VIEs.

4.4.2 Computational cost

In order to verify that our methods have a computational cost of order O(NtlogBNt),

in Figure 4.4 we plot the cpu–time in seconds versus Nt obtained from an Intel

Pentium 4/3,2 GHz. The experiments have been made on the test problem

(4.4.1), enlarging the integration interval to t ∈ [0, 200]. The rhombuses corre-

spond to the fast collocation method R3, and in the picture it clearly appears

that the computational cost is between the cost of an algorithm of order O(Nt)

and one of order O(N2
t ). More precisely, our algorithm perfeclty follows the

behaviour of the dashed line, which represents the function CNtlogBNt.

In order to show the gain in efficiency of the fast collocation method versus
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Figure 4.4: Computational cost

the classical one, in Table 4.4 we compare the cpu–time obtained by the fast

collocation method with that of the existing solver COLVI2 (see [9],[10]), using

the same collocation parameters of R3. The corresponding plot is reported in

Figure 4.5. We choose COLVI2 because it is a FORTRAN implementation

of an m-point classical collocation method and it is one of the most used

among the few available software for VIEs. The picture shows that, as we

expected, the cpu–time performed by COLVI2 is clearly proportional to N2
t .

We can observe that at the beginning COLVI2 is more efficient, but when

Nt increases (more precisely when Nt = 4 · 103, corresponding to a stepsize

h = 1/20), then the efficiency of the fast collocation method becomes superior.

Similar results occur with different test problems. We would like to underline

that the MATLAB code implementing the fast collocation method is only

a prototypal one. We intend to implement it in a compilative programming

language expecting more satisfactory results in terms of efficience. As a matter
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Table 4.4: Cpu–time in seconds for (4.4.1) with T=200.
Nt R3 FAST R3 COLVI2
128 0.29 0.02
256 0.59 0.06
512 1.46 0.23
1024 2.55 0.92
4.00E+03 11.75 14.04
1.00E+04 35.24 86.80
2.00E+04 63.03 348.50
5.00E+04 168.58 2159.44
1.00E+05 356.46 8716.53

Table 4.5: Cpu–time in seconds for (4.4.1) with T=200.
Nt R3 FAST R3 CLASSICAL
16 0.05 0.02
32 0.08 0.05
64 0.15 0.19
128 0.29 0.70
256 0.59 2.77
512 1.46 11.00
1024 2.55 43.71
4.00E+03 11.75 828.2910
1.00E+04 35.24 5918.27

of fact in Table 4.5 and in Figure 4.6 we compare the cpu–time of the fast

collocation method R3 with that of a MATLAB implementation of the classical

collocation method R3, when applied to test problem (4.4.1) with T = 200.

In this case we can observe that the fast method is more efficient than the

classical one already when Nt = 64.
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Figure 4.5: Fast collocation vs COLVI2

Figure 4.6: Fast collocation vs classical collocation
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4.5 Concluding remarks

In this chapter we have developed fast discrete collocation methods (4.2.8),

(4.2.14)-(4.2.15), (4.2.19)–(4.2.21) for the equations (4.1.1). Such methods

taking into account the knowledge of the Laplace transform of the kernel in-

stead of the kernel itself, differ form classical numerical methods since they

involve the evaluations of K(s). The quadrature formulas used to discretize

the integrals appearing in the exact collocation method are a generalization of

those introduced in [68] and illustrated in Section 3.5.

We proved that our methods can be implemented with the same scheme of

such quadrature formulas which leads the computational cost to O (Nt log Nt),

the memory requirements to O (log Nt) and have an order of accuracy which

concides with the order of the exact collocation methods with an opportune

choice of the number of points M on the Talbot’s contour.

The numerical experiments proposed clearly show that computational cost

and the order of accuracy of our constructed methods are those expected.

The fast collocation methods are more efficient than classical collocation

methods even for equations of which both kernel and its Laplace transform are

known, thus the methods that we constructed are suitable for a wide class of

equations.

The methods presented in this chapter are highly parallelizable and we

think that they can be extended in a natural way to systems of Volterra integral

equations.

In the near future we intend to study the stability properties of the fast

collocation methods, and we espect that, for an opportune choice of M , they

reflect the same properties of the corresponding classical ones.
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5.1 Introduction

As in Chapter 4, this chapter concerns about the numerical solution of non-

linear convolution VIEs of Hammerstein type

y(t) = f(t) +

∫ t

0

k(t − τ )g(y(τ ))dτ t ∈ I := [0, T ], (5.1.1)

where the Laplace transform of the kernel rather than the convolution kernel

itself is known a priori.

Now the fuctions f , g, k are assumed to be sufficiently smooth on I.

While in Chapter 4 we have introduced fast collocation methods for the

equation (5.1.1), here we deal with the construction of fast VRK methods. We

know that a naive implementation of a VRK method (see Section 2.3) would

require O (N2
t ) operations and O(Nt) memory for the computation of the nu-

merical solution over Nt time steps. In [52] it was constructed a VRK method

for (5.1.1) of order 4 which reduced the computational effort to O (Nt(log Nt)
2)

operations and kept memory requirements of O (Nt). In this Chapter we will

present fast VRK methods of generical order p for the equation (5.1.1), that

requires only O (Nt log Nt) and O (log Nt) cost in time and space respectively.

In Section 5.2 we give the detailed construction of the fast VRK methods.

The basic idea is inspired on the scheme described in Section 3.5.2 and also

used in Chapter 4 for the fast collocation methods. Section 5.3 contains the

calculation of the computational cost. The choice of a VRK method may

be preferred to a collocation one when the VRK method is explicit, since it

is possible to avoid the resolution of the non linear system appearing in the

determination of the solution at each time step. The error analysis is given in

Section 5.4.
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In Section 5.5 the stability properties of the constructed methods are in-

vestigated with respect to the convolution test equation

y(t) = 1 +

∫ t

0

[µ + σ(t− τ )]y(τ )dτ t ∈ [0, T ], µ, σ ∈ R−. (5.1.2)

This equation, that misses of course of some typical feature of VIEs, is typically

used in the literature to test the VRK methods (see for example [6], [28]). We

prove that the stability regions depend on the number of the points M chosen

for the approximation of the Inverse Laplace Transform and if M → ∞ then

they tend to that of the classical VRK methods.

Section 5.6 contains numerical results that confirm the expected perfor-

mances of the fast VRK methods in terms of accuracy, computational cost

and stability properties. In Section 5.7 some concluding remarks are reported.

Some of the results of this chapter are reported in [20].
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5.2 Fast VRK methods

In order to construct fast VRK (FVRK) methods for equation (5.1.1) we shall

refer to explicit extended PVRK methods and implicit VRK methods of de

Hoog and Weiss, described in Section 2.3, and we will opportunely modify them

taking into account of the peculiarity of the considered equation. Namely, we

will organize the computation of the lag terms both for involving the eval-

uations of the Laplace transform of the kernel and in order to reduce the

computational cost, thus obtaining explicit extended fast PVRK (FPVRK)

methods and implicit FVRK methods of de Hoog and Weiss.

Let us fix the vectors c = (ci)
m
i=1, b = (bi)

m
i=1 and the square matrix A =

(ai,s)
m
i,s=1, determined by the ”Butcher array” for ODEs

c A

bT

and let us fix cm+1 = 1.

Let us consider the uniform mesh Ih = {tn := nh, n = 0, ..., Nt, h ≥ 0, Nth = T}

and set tn,i := tn + cih , i = 1, ...,m + 1.

An explicit m-stage PVRK method (2.3.1)-(2.3.4) applied to the Hammer-

stein equation (5.1.1) reads:

yn+1 = F̄n(tn,m+1) + Φ̄n(tn,m+1) n = 0, ..., Nt − 1, (5.2.1)

where the increment term is given by:

Φ̄n(tn,m+1) = h
m∑

i=1

bik((1 − ci)h)g(Yn,i). (5.2.2)

The stages Yn,i are explicitely computed through

Yn,i = F̄n(tn,i) + h
i−1∑

s=1

ai,sk((ci − cs)h)g(Yn,s) i = 1, ...,m (5.2.3)
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and the lag term is given by

F̄n(tn,i) = f(tn,i) + h
n−1∑

r=0

m∑

s=1

bsk(tn,i − tr,s)g(Yr,s) i = 1, ...,m + 1. (5.2.4)

An m-stage VRK method of de Hoog and Weiss (2.3.4)-(2.3.6), applied to

equation (5.1.1) reads:

yn+1 = Yn,m n = 0, ..., Nt − 1 (5.2.5)

with Yn,i determined by the solution of the nonlinear system

Yn,i = F̄n(tn,i) + hci

m∑

l=1

blk(ci(1 − cl)h) · g

(
m∑

s=1

Ls(cicl)Yn,s

)
i = 1, ...,m

(5.2.6)

where the lag terms F̄n(tn,i) are given by (5.2.4) for i = 1, ...,m, and we remind

that in this case is cm = 1.

Remark 5.1. Note that the stages Yn,i can be regarded as an approximation of

the exact solution in the point tn,i, i. e. Yn,i ≈ y(tn,i).

5.2.1 Fast computation of the lag terms

As regards the lag terms computation both PVRK methods and VRK methods

of de Hoog and Weiss refer to formula (5.2.4). Since we only know the Laplace

transform of the kernel k, we use the formula (3.4.7) for its approximation.

To this aim let us define Īl = [Bl−1h + (c1 − 1)h, (2Bl − 1)h], differing from

Il = [Bl−1h, (2Bl − 1)h] defined in (3.4.5) for the dependence on c1. As in

Section 3.5.2 let L be the smallest integer for which tn+1 < 2BLh and for

l = 1, 2, ..., L − 1 determine the integer ql ≥ 1 such that τl = qlB
Lh satisfies

tn+1 − τl ∈ [Blh, (2Bl − 1)h], and set τ0 = tn and τL = 0. Similarly to (4.2.6)

it is easy to verify that [tn,i − τl−1, tn,i − τl] ⊆ Īl.
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In order to use the formula (3.4.7) for the approximation of the kernel, we

have to split the sum over r in (5.2.4) as

F̄n(tn,i) = f(tn,i) + h

L∑

l=1

τl−1
h

−1∑

r=
τl
h

m∑

s=1

bsk(tn,i − tr,s) · g(Yr,s) i = 1, ...,m + 1.

(5.2.7)

In this way for each fixed l the arguments tn,i − tr,s of the kernel k, belong to

the same Īl for all r = τl/h, ..., τl−1/h − 1. In fact

r ∈ [
τl

h
,
τl−1

h
− 1] =⇒ tr ∈ [τl, τl−1 − h] =⇒ tr,s ∈ [τl, τl−1]

=⇒ tn,i − tr,s ∈ [tn,i − τl−1, tn,i − τl] ⊆ Īl.

By inserting in (5.2.7) the formula (3.4.7) evaluated in t = tn,i − tr,s, we

obtain the approximation F̄n,i of F̄ (tn,i)

F̄n,i = f(tn,i)+
L∑

l=1

N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λ

(l)
j z(τl−1, τl, λ

(l)
j ) i = 1, ...,m+1,

(5.2.8)

where

z(τl−1, τl, λ
(l)
j ) := h

τl−1
h

−1∑

r=
τl
h

m∑

s=1

bse
(τl−1−tr,s)λ

(l)
j · g(Yr,s). (5.2.9)

Remark 5.2. The VRK methods of de Hoog and Weiss have cm = 1, and thus

the index i in (5.2.8) should arrive only up to i = m.

The implementation of the formula (5.2.8) by mean of the direct compu-

tation of (5.2.9) would still lead to a computational cost of O(N2
t ). The idea

proposed in [68] (and described in Section 3.5.2) to reduce the computational

cost was based on a new organization in the computation of the function z at

each time step, which could exploit its evaluations at the previous time steps.

In order to reach the same goal we split the interval [τl, τl−1] in subintervals
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[τl + tk, τl−1 + tk+1] of length h and we denote with zk = z(τl + tk, τl, λ
(l)
j ) and

we prove that the following one step formula for the evaluation the function z

in the mesh points from τl to τl−1 holds.

Proposition 5.1. Let z(τl−1, τl, λ
(l)
j ) be given by (5.2.9), with τl = m̄h, τl−1 =

τl + n̄h, then




zk+1 = eλ
(l)
j hzk + h

m∑
s=1

bse
(1−cs)hλ

(l)
j · g(Ỹk,s) k = 0, ..., n̄− 1

z0 = 0

(5.2.10)

where Ỹk,r = Ym̄+k,r.

Proof. From (5.2.10) we obtain :

z1 = h
m∑

s=1

bse
(1−cs)hλ

(l)
j · g(Ỹ0,s)

z2 = h

m∑

s=1

bse
((1−cs)+1)hλ

(l)
j · g(Ỹ0,s) + h

m∑

s=1

bse
(1−cs)hλ

(l)
j · g(Ỹ1,s)

z3 = h
m∑

s=1

bse
((1−cs)+2)hλ

(l)
j · g(Ỹ0,s) + h

m∑

s=1

bse
((1−cs)+1)hλ

(l)
j · g(Ỹ1,s)+

+ h
m∑

s=1

bse
(1−cs)hλ

(l)
j · g(Ỹ2,s)

....

zn̄ = h
m∑

s=1

bse
((1−cs)+(n̄−1))hλ

(l)
j · g(Ỹ0,s) + h

m∑

s=1

bse
((1−cs)+(n̄−2))hλ

(l)
j · g(Ỹ1,s) + ...

... + h
m∑

s=1

bse
(1−cs)hλ

(l)
j · g(Ỹn̄−1,s) =

= h

m̄+n̄−1∑

k=m̄

m∑

s=1

bse
(τl−1−tk,s)λ

(l)
j · g(Yk,s) = z(τl−1, τl, λ

(l)
j ).

Thus the thesis holds.

We can advance the values (5.2.10) of z by one step for all required values

λ
(l)
j on all Talbot contours in every time step tn → tn+1, according to the scheme
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illustrated in Section 3.5.2. So the computational cost of our algorithm is of

O (Nt logB Nt) operations (see Section 5.3 for the detailed calculation). Note

that the function z in (5.2.8) does not depend on i, so we have to evaluate it

only one time at each step tn → tn+1 independentely on the number stages m.

Moreover the computation of zk+1 through (5.2.10) only requires the value zk

of z at the previous step and the values of the stages Ỹk,r, which represent an

approximation of the exact solution at the point τl + tk,r ∈ [τl + tk, τl + tk+1]

(as observed in Remark 5.1). So we do not need to keep in memory all the

past values, thus leading to a memory requirement of O (logB Nt).

5.2.2 Determination of the approximate solution

Once approximated the lag-terms in the points tn,i, the next step to follow

is to solve the nonlinear system (5.2.3) or (5.2.6), after inserting the inverse

Laplace transform approximation (3.4.7).

Explicit extended FPVRK methods

Now we can use the approximations:

k((ci − cs)h) ≈
N∑

j=−N

ωjK(λj)e
(ci−cs)hλj =: Ψis (5.2.11)

where the weigths ωj and the nodes λj correspond to the Talbot contour Γ0

associated to the interval Ī0 = [0, h]. As concerns the increment term (5.2.2)

the evaluations of k are approximated by

k((1 − ci)h) ≈
N∑

j=−N

ωjK(λj)e
(1−ci)hλj =: Ψi.

We can explicitely compute the new stages Ȳn,i through the formula
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Ȳn,i = F̄n(tn,i) + h
i−1∑

s=1

ai,sΨisg(Yn,s) i = 1, ...,m (5.2.12)

obtained by inserting the approximation (5.2.11) in the formula (2.3.3). The

approximate solution of (5.1.1) in the mesh points Ih is thus obtained by

ȳn+1 = F̄n,m+1 + h
m∑

i=1

biΨi · g(Ȳn,i) n = 0, ..., Nt − 1. (5.2.13)

The formula (5.2.12) can be written in vectorial form

Ȳn = F̄n + hD · g(Ȳn) (5.2.14)

where D = (di,s) is a strictly lower triangular square matrix of dimension m

whose elements are di,s = aisΨis, F̄n =
(
F̄n,1, ..., F̄n,m

)T
, Ȳn =

(
Ȳn,1, ..., Ȳn,m

)T

and g(Ȳn) =
(
g(Ȳn,1), ..., g(Ȳn,m)

)T
.

Implicit FVRK methods of de Hoog and Weiss

As before we can use the approximations:

k(ci(1 − cl)h) ≈
N∑

j=−N

ωjK(λj)e
ci(1−cl)hλj =: Ψil

where the weigths ωj and the nodes λj correspond to the Talbot contour Γ0

associated to the interval Ī0 = [0, h].

Thus the nonlinear system (5.2.6) becomes

Ȳn,i = F̄n,i + hci

m∑

l=1

blΨilg

(
m∑

s=1

Ls(cicl)Ȳn,s

)
, (5.2.15)

and the approximate solution of (5.1.1) in the mesh points Ih is obtained by

ȳn+1 = Ȳn,m n = 0, ..., Nt − 1. (5.2.16)

The nonlinear system (5.2.15) has the following vectorial form

Ȳn = F̄n + hH(Ȳn) (5.2.17)
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where H is a vector valued function whose components are Hi(Ȳn) = ci

m∑
l=1

blΨil·

g(
m∑

s=1

Ls(cicl)Ȳn,s), i = 1, ...,m and Ȳn =
(
Ȳn,1, ..., Ȳn,m

)T
, F̄n =

(
F̄n,1, ..., F̄n,m

)T
.

Remark 5.3 (Linear case). In the case of linear VIEs the nonlinear systems

(5.2.14) and (5.2.17) become linear, an they can be both written in the form

(I − D)Ȳn = F̄n (5.2.18)

where I denotes the identity matrix of order m and D = (di,s) is a square

matrix of dimension m whose elements are

di,s =





aisΨis FPVRK methods

ci

m∑
l=1

blΨilLs(cicl) FVRK of de Hoog and Weiss
,

Ψil =





N∑
j=−N

ωjK(λj)e
(ci−cl)hλj FPVRK methods

N∑
j=−N

ωjK(λj)e
ci(1−cl)hλj FVRK of de Hoog and Weiss

.
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5.3 Computational cost

In this section we will give the calculation of the computational cost of the

FVRK methods in function of the number Nt of mesh points, proving that it

is of O(Nt log(Nt)) operations. We will only take into consideration the FVRK

method of the Hoog and Weiss, since for the FPVRK methods the same result

can be obtained in a similar way.

In the subsequent computations m will represent the number of stages, Lt

the total number of different Talbot contours, M = 2N + 1 the number of

points on each Talbot contour. The FVRK method of de Hoog and Weiss

consists, for each time step tn, n = 0, ..., Nt − 1, in the following steps:

STEP 1 Evaluate the lag terms (5.2.8) for i = 1, ...,m+1, using all the values

of the function z, already computed in the previous time steps.

We can observe that, by construction, the integer L in (5.2.8) satisfies

L ≤ Lt ≤ logB(Nt).

As the formula (5.2.8) involves, for each i = 1, ...,m, a double sum for

l = 1, ..., L and j = −N, ...,N , the number of floating point operations

FLOPlag for the lag terms computation is proportional to mML, where

M = 2N + 1. Thus

FLOPlag ≤ C1mM logB(Nt).

STEP 2 Determine the approximate solution ȳn+1 = Ȳn,m by mean of (5.2.16).

Thus we need to solve the nonlinear system (5.2.15) for the stages Yn,i,

i = 1, ...,m.

If we solve such system by an iterative method, then each iteration re-

quires the computation, for each stage Yn,i, i = 1, ...,m, of a double sum



Chapter 5 99

for i = l, ...,m and for s = 1, ...,m. Thus the computational cost for the

solution of the nonlinear system is of

FLOPsist = C2km3

operations, where k is the number of iterations required by the iterative

method.

STEP 3 Advance by one step the formula (5.2.10) for l = 1, ..., Lt (on all

Talbot contours) and for j = −N, ...,N . This values will be used for the

computation of the lag terms in the subsequent time steps.

The formula (5.2.10) requires, for each l and for each j, the computation

of a sum for s = 1, ...,m, thus requiring a number of floating point

operations FLOPadvance proportional to mMLt. Thus

FLOPadvance ≤ C3mM logB(Nt).

Thus the total number of floating point operations FLOPtot in function of

the time steps Nt is given by

FLOPtot = Nt(FLOPlag + FLOPsist + FLOPadvance) ≤

≤ (C1 + C3)mM · Nt logB(Nt) + C2km3 ·Nt

and then

FLOPtot = O(Nt logB(Nt)).
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5.4 Convergence analysis

Let us consider a classical explicit PVRK method or an implicit VRK method

of De Hoog and Weiss of order p (for the discussion of the order of convergence

of the classical VRK methods refer to Theorem 2.8 and Corollary 2.2). The

following theorem estabilishes the order of convergence of the corresponding

FVRK methods.

Theorem 5.1. Let ēn = y(tn)− ȳn be the error of the FVRK methods (explicit

FPVRK or implicit FVRK methods of De Hoog and Weiss). If the function

g ∈ C1(I) then

max
1≤n≤Nt

|ēn| = O(hp), (5.4.1)

with sufficiently large number M of points on the Talbot contour.

Proof. Now we prove the thesis for the fast implicit De Hoog and Weiss me-

thods, since in the case of explicit PVRK methods the proof is similar. Let

en = y(tn)−yn and ēn = y(tn)− ȳn, n = 1, ..., Nt respectively denote the error

of the classical de Hoog and Weiss VRK method (2.3.4), (2.3.5), (2.3.6) and

of the corresponding fast VRK method (5.2.8), (5.2.15), (5.2.16), and define

εn = yn − ȳn.

According to our notation we have

max
1≤n≤Nt

|ēn| ≤ max
1≤n≤Nt

|en| + max
1≤n≤Nt

|εn| n = 1, ..., Nt

Since the classical methods we are considering are of order p, it follows that

max
1≤n≤N

|en| ≤ C1h
p. As regards εn, subtracting (5.2.15) from (5.2.6) and apply-

ing the Lagrange theorem to the fucntion g we obtain

ηn,i = h
m∑

s=1

di,sηn,s + h
n−1∑

k=0

m∑

s=1

q
(n,k)
i,s ηk,s + hE(i)

n,n + h
L∑

l=1

E
(i)
n,l i = 1, ...,m

(5.4.2)
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where

ηn,i = Yn,i − Ȳn,i, i = 1, ...,m

q
(n,k)
i,s =

N∑

j=−N

ω
(l)
j K(λ

(l)
j )bse

(tn,i−tk,s)λj
(l)

g′(ξk,s) k = 0, ..., n− 1, i, s = 1, ...,m

E
(i)
n,l =

τl−1
h

−1∑

r=
τl
h

m∑

s=1

bs

(
k(tn,i − tr,s) −

N∑

j=−N

ω
(l)
j K(λ

(l)
j )e(tn,i−tr,s)λj

(l)

)
g(Yr,s)

E(i)
n,n = ci

m∑

l=1

bl (k(ci(1 − cl)h) − Ψil) g

(
m∑

s=1

Ls(cicl)Yn,s

)

di,s = ci

m∑

l=1

blΨilLs(cicl)g
′(ξ

(n)
i,l ).

From this point on the proof is parallel to that of Theorem 4.2 and hence we

shall provide a sketch only of the main steps. By writing down equation (5.4.2)

in vectorial form, through (3.4.8) we obtain the discrete Gronwall inequality

‖ηn‖1 ≤ hC3

n−1∑

k=0

‖ηk‖1 + C2e
−c

√
M , n = 0, ..., Nt−1 (5.4.3)

where ηk = (ηk,1, ..., ηk,m)T . Applying the Gronwall Theorem 2.6 to (5.4.3), it

follows that ‖ηn‖1 ≤ C2e
−c

√
M and hence, being εn = ηn,m, we obtain the thesis

by choosing M such that C2e
−c

√
M ≤ C1h

p.

Since the error due to the approximation of the inverse Laplace transform

decreases exponentially with M it is sufficient to fix a not too high number of

points on the Talbot contour in order to make this error negligible. Moreover if

M → +∞, that is the formula for approximating the inverse Laplace trasform

is exact, we return to the corresponding VRK method.

It immediately follows by Theorem 5.1, using Corollary 2.2, that it is pos-

sible to achieve local superconvergence at the mesh points by opportunely

choosing the parameters of the VRK method:
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Corollary 5.1. Let f , k ∈ C2m−v, with v ∈ {0, 1, 2} with m ≥ bv/2c + 1,

(i) If the nodes {ci} are the Radau II points for (0, 1], then the fast VRK

method of the Hoog and Weiss (5.2.8), (5.2.10), (5.2.15), (5.2.16) satisfies,

for v = 1,

max
1≤n≤Nt

|ēn| = O(h2m−1)

(ii) If the nodes {ci} are the Lobatto points for [0, 1], then the fast VRK method

of the Hoog and Weiss (5.2.8), (5.2.10), (5.2.15), (5.2.16) satisfies, for v = 2,

max
1≤n≤Nt

|ēn| = O(h2m−2)

(iii) Let the nodes {ci} are the the m Gauss points for (0,1), cm+1 = 1. Fur-

themore, suppose to consider a modification of the fast VRK method of the

Hoog and Weiss given by (5.2.8), (5.2.10), (5.2.15) for the computation of the

stages, but with the approximate solution calculated by mean of (5.2.13), then,

for v = 0,

max
1≤n≤Nt

|ēn| = O(h2m)
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5.5 Stability analysis

In this Section we will study the stability properties of the FVRK methods

with respect to test equations usually employed in literature for the stability

analysis (see for example [6] [28] and their references), namely the basic test

equation and the convolution test equation.

5.5.1 Basic test equation

The basic test equation assumes the form

y(t) = 1 + µ

∫ t

0

y(τ )dτ t ∈ [0, T ], µ ∈ C. (5.5.1)

Since the exact solution y(t) of (5.5.1) tends to zero when t goes to +∞

if and only if Re(µ) < 0, it is natural to require that the numerical solution

yn produced by the FVRK method when applied to the equation (5.5.1) with

stepsize h, has the same behaviour. Thus we recall the following definition of

numerical stability.

Definition 5.1. A numerical method is said to be stable for given z := hµ ∈ C

if the numerical solution yn, resulting from applying the method to (5.5.1) with

fixed stepsize h, tends to zero when n → +∞. The region of absolute stability

of the method is the set of all values z ∈ C for which the method is stable.

Furthermore the method is said A-stable if its region of absolute stability

includes the negative complex half plane C−.

Let us first recall the main results in the stability analysis of classical VRK

methods. We shall refer in particular to the two classes of methods:
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1. The PVRK method of the form (2.3.1)-(2.3.4) with Butcher’s array

c A

bT
. (5.5.2)

2. The VRK method of de Hoog and Weiss (2.3.4)-(2.3.6) defined by the

real parameters 0 ≤ c1 < ... < cm ≤ 1 and with

bk =

∫ 1

0

Lk(θ)dθ k = 1, ...,m, ais =

∫ ci

0

Ls(θ)dθ = ci

m∑

j=1

bjLs(cicj).

(5.5.3)

In [6] the following result was proved.

Theorem The classical VRK method applied to the test equation (5.5.1) leads

to the following two terms relation

Yn = R(z)Yn−1 (5.5.4)

with

R(z) = 1 + zbT (I − zA)−1u. (5.5.5)

Here Yk = (Yk,1, ..., Yk,m)T , u = (1, ..., 1)T and the matrices bT and A are

defined by (5.5.2) for PVRK methods and by (5.5.3) for VRK methods of de

Hoog and Weiss.

Now we investigate the numerical stability of FVRK methods. To this aim

we apply the FVRK method to the equation (5.5.1), and consequentely the

stages are determined by the solution of the linear system

Ȳn,i = F̄n,i + z

m∑

s=1

di,sȲn,s ı = 1, ...,m (5.5.6)

where

F̄n,i = 1+z
L∑

l=1

τl−1
h

−1∑

k=
τl
h

N∑

j=−N

ω
(l)
j

λ
(l)
j

e(tn,i−τl−1)λ
(l)
j

m∑

s=1

bse
(τl−1−tk,s)λ

(l)
j Ȳk,s, ı = 1, ...,m,

(5.5.7)
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di,s =





aisΨis FPVRK methods

ci

m∑
l=1

blΨilLs(cicl) FVRK of de Hoog and Weiss
, (5.5.8)

Ψil =





N∑
j=−N

ωj

λj
e(ci−cl)hλj FPVRK methods

N∑
j=−N

ωj

λj
eci(1−cl)hλj FVRK of de Hoog and Weiss

. (5.5.9)

The formula (5.5.7) can be written in vectorial form as

F̄n = u + z
L∑

l=1

τl−1
h

−1∑

k=
τl
h

Q
(l)
n,kȲk, (5.5.10)

where Ȳk =
(
Ȳk,1, ..., Ȳk,m

)T
, F̄n =

(
F̄n,1, ..., F̄n,m

)T
, u = (1, ..., 1)T and

Q
(l)
n,k =

(
bs

N∑

j=−N

ω
(l)
j

λ
(l)
j

e(tn,i−tk,s)λ
(l)
j

)

i,s=1,...,m

(5.5.11)

is a square matrix of dimension m.

Consequently, assuming that det(I − zD) 6= 0, (5.5.6) becomes

Ȳn = (I − zD)−1(u + z

L∑

l=1

τl−1
h

−1∑

k=
τl
h

Q
(l)
n,kȲk), (5.5.12)

where the elements of the matrix D are defined by (5.5.8). The double sum in

(5.5.12) can be written as one single sum over the index k:

Ȳn = (I − zD)−1(u + z
n−1∑

k=0

Q
(l)
n,kȲk), (5.5.13)

provided that the index l of the Talbot contour is determined by n and k in

such a way that tk ∈ [τl, τl−1]. By subtracting the expressions of Ȳn and Ȳn−1

given by (5.5.13) and by opportune manipulations we obtain, for n ≥ 1,

Ȳn = (I + z(I − zD)−1Q
(1)
1 )Ȳn−1 +

n−2∑

k=0

z(I − zD)−1
[
Q

(l)
n,k − Q

(l)
n−1,k

]
Ȳk

(5.5.14)
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with

Ȳ0 = (I − zD)−1u.

Now let F (s) =
bj

s
be the Laplace transform of the constant function

f(t) = bj, and let f̌ (t) be the inverse Laplace transform approximation of F (s)

obtained through the formula (3.4.7), from (5.5.11) it follows that
(
Q

(l)
n,k

)
i,j

=

f̌(tn,i − tk,j) and
(
Q

(l)
n−1,k

)
i,j

= f̌ (tn−1,i − tk,j). Now, at the same way as it is

done for the local truncation error in the treatment of numerical stability for

ODEs (see [66], p. 76), we can freeze the relative error of the inverse Laplace

transform approximation f̌ (t) obtained through the formula (3.4.7) in the ap-

proximation interval, as this error is of order O(e−c
√

M ). As f(t) is a constant

function, this implies that f̌ (t) is a constant function, too. It follows that

Q
(l)
n,k = Q

(l)
n−1,k and so the the following theorem is proved.

In this way we have proved the following theorem:

Theorem 5.2. A FVRK method applied to the test equation (5.5.1) leads to

the following two terms relation:

Ȳn = R(z)Ȳn−1 (5.5.15)

where

R(z) = (I + z(I − zD)−1Q
(1)
1 ) (5.5.16)

is a square matrix of dimension m, with Q
(1)
1 = Q

(1)
n,n−1 given by (5.5.11) and

D defined by (5.5.8).

The next result is an immediate consequence of Theorem 5.2 and of the

Definition 5.1.

Corollary 5.2. If the eigenvalues of R(z) are within the unit circle, then the

FVRK method is stable. The region of absolute stability of the method is thus
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the set

S = {z ∈ C : |R(z)| < 1},

where the stability matrix R(z) is defined by (5.5.16).

Remark 5.4. The stability regions of the FVRK methods tend, as M → ∞, to

the stability regions of the corresponding classical ones. Infact we can at first

observe that, when M → ∞,

Q
(1)
1 → ubT

D → A

where bT and A are defined by (5.5.2) for FPVRK methods and by (5.5.3) for

FVRK methods of de Hoog and Weiss. It immediately follows that

R(z) → I + z(I − zA)ubT

This is an m×m matrix whose eigenvalues are λ1 = 1+ zbT (I− zA)−1u with

multeplicity 1 and λ2 = 1 with multeplicity m − 1. As Ȳ0 = (I − zD)−1u is

an eigenvector associated with the eigenvalue 1 + zbT (I − zA)−1u, it follows

that the two terms recursion (5.5.15) of the FVRK method tends to that of

the classical one (5.5.4).

Remark 5.5. For the the implicit Euler FVRK method, characterized by m = 1,

c1 = 1, b1 = 1, a11 = 1, we have R(z) = 1 + z(1 − zd11)
−1Q

(1)
1 , where Q

(1)
1 =

N∑
j=−N

ω
(1)
j

λ
(1)
j

ehλ
(1)
j =: β and d11 = c1b1Ψ11L1(c1c1) = Ψ11 =

N∑
j=−N

ωj

λj
=: α. Thus it

follows that

R(z) = 1 +
zβ

1 − zα

and an easy computation shows that |R(z)| < 1 if and only if z is outside the

circle Cα,β centered in C =
(

1
2α−β

, 0
)

and with radious r = 1
|2α−β|. We can
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observe that when M → ∞ then α, β → 1 and the stability region tends to

that of classical Euler method, that is the region outside the circle centered in

(1, 0) and with radious equal to 1. Moreover we would like to underline that

the implicit Euler VRK method is A-stable for all values of M , being the circle

Cα,β all contained in the right complex plane.

5.5.2 Convolution test equation

Now we will study the stability properties of the FVRK methods with respect

to the convolution test equation

y(t) = 1 +

∫ t

0

[µ + σ(t− τ )]y(τ )dτ t ∈ [0, T ], µ, σ ∈ R. (5.5.17)

Since the exact solution of (5.5.17) y(t) goes to zero when t → +∞ if and only

if µ < 0 and σ ≤ 0, it is natural to require that the numerical solution yn,

produced by the FVRK methods when applied to (5.5.17) with stepsize h, has

the same behaviour.

Thus we recall the following definition of numerical stability.

Definition 5.2. A numerical method is said to be stable for given z := hµ,

w := h2σ if it yields an approximate solution yn which satisfies yn → 0 as

n → ∞ whenever it is applied with a fixed stepsize h > 0 to the test equation

(5.5.17). The region of stability of the method is the set of all values (z,w) for

which the method is stable.

The following theorem refers to classical VRK methods and can be derived

from [6].

Theorem The classical VRK method applied to the test equation (5.5.17) leads
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to the following three terms relation

NȲn+2 =
(
2N + (z + w)ubT + wθbT − wurT

)
Ȳn+1

−
(
N + zubT + wθbT − wurT

)
Ȳn, (5.5.18)

with

N = I − zA − wĀ.

Here Yk = (Yk,1, ..., Yk,m)T , u = (1, ..., 1)T, the matrices bT and A are defined

by (5.5.2) for PVRK methods and by (5.5.3) for VRK methods of de Hoog and

Weiss,

r = [r1, ..., rm]T ri = bici

θ = [θ1, ..., θm]T θi = ci

Ā = (āi,k)i,k=1...m āi,k =





aik(ci − ck) PVRK methods

ci

m∑
l=1

blci(1 − cl)Lk(cicl) VRK of de Hoog and Weiss
.

Now, in order to investigate the stability of FVRK methods, we apply the

FVRK method to the test equation (5.5.17), obtaining

Ȳn,i = F̄n,i + z

m∑

s=1

di,sȲn,s + w

m∑

s=1

d̄i,sȲn,s ı = 1, ...,m, (5.5.19)

where

F̄n,i = 1 + z

L∑

l=1

τl−1
h

−1∑

r=
τl
h

m∑

s=1

(Q(l)
n,r)i,sȲr,s + w

L∑

l=1

τl−1
h

−1∑

r=
τl
h

m∑

s=1

(n − r)(Q̄(l)
n,r)i,sȲr,s

(5.5.20)

+ w
L∑

l=1

τl−1
h

−1∑

r=
τl
h

m∑

s=1

(ci − cs)(Q̄
(l)
n,r)i,sȲr,s i = 1, ...,m,
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di,s are given by (5.5.8)-(5.5.9),

d̄i,s =





aisΨ̄is FPVRK methods

ci

m∑

l=1

blΨ̄ilLs(cicl) FVRK of de Hoog and Weiss
,

Ψ̄il =





N∑

j=−N

ωj

λ2
j

e(ci−cl)hλj

h
FPVRK methods

N∑

j=−N

ωj

λ2
j

eci(1−cl)hλj

h
FVRK of de Hoog and Weiss

,

Q
(l)
n,r are given by (5.5.11), and

(Q̄(l)
n,r)i,s = bs

N∑

j=−N

ω
(l)
j(

λ
(l)
j

)2

e(tn,i−tr,s)λ
(l)
j

tn,i − tr,s
.

Assuming that detN 6= 0, the formulas (5.5.19), (5.5.20) can be written

equivalently in vectorial form as

Ȳn = N−1F̄n (5.5.21)

F̄n = u +
L∑

l=1

τl−1
h

−1∑

r=
τl
h

[
zQ(l)

n,r + w(n − r)Q̄(l)
n,r + wθ̄Q̄(l)

n,r −wP(l)
n,r

]
Ȳr, (5.5.22)

having set Ȳr =
(
Ȳr,1, ..., Ȳr,m

)T
, F̄n =

(
F̄n,1, ..., F̄n,m

)T
, u = (1, ..., 1)T .

Here N = I − zD − wD̄, (P
(l)
n,r)i,s = cs(Q̄

(l)
n,r)i,s, θ̄ = diag(c1, ..., cs) are square

matrices of dimension m.
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From (5.5.21) and (5.5.22) it is possible to obtain the following relation

Ȳn+2 = N−1
(
2N + zQ1

(1) + wQ̄
(1)
1 + wθ̄Q̄

(1)
1 − wP

(1)
1

)
Ȳn+1+

− N−1
(
N + zQ

(1)
1 + wθ̄Q̄

(1)
1 − wP

(1)
1

)
Ȳn+

+ N−1

n∑

r=0

[
z(Q

(l)
n+2,r − Q

(l)
n+1,r) + (n + 2 − r)w

(
Q̄

(l)
n+2,r − Q̄

(l)
n+1,r

)
+

+ wθ̄
(
Q̄

(l)
n+2,r − Q̄

(l)
n+1,r

)
−w

(
P

(l)
n+2,r − P

(l)
n+1,r

)]
Ȳr+

+ N−1

n−1∑

r=0

z(Q(l)
n,r −Q

(l)
n+1,r) + (n − r)w

(
Q̄(l)

n,r − Q̄
(l)
n+1,r

)
+

+ wθ̄
(
Q̄(l)

n,r − Q̄
(l)
n+1,r

)
− w

(
P(l)

n,r − P
(l)
n+1,r

)]
Ȳr. (5.5.23)

In this formula the index l of the Talbot contour is determined by n and r

in such a way that tr ∈ [τl, τl−1].

Now, at the same way as it is done for the local truncation error in the

treatment of numerical stability for ODEs (see [66], p. 76), we can freeze the

relative error of the inverse Laplace transform approximation f̌(t) obtained

through the formula (3.4.7) in the approximation interval, as this error is of

order O(e−c
√

M ). As in Section 5.5.1 we have Q
(l)
n,r = Q

(l)
n−1,r. Similarly we

obtain that Q̄
(l)
n,r = Q̄

(l)
n−1,r and P

(l)
n,r = P

(l)
n−1,r. Thus the relation (5.5.23)

becomes a difference equation of fixed order and we have proved the following

theorem:

Theorem 5.3. A FVRK method applied to the test equation (5.5.17) leads to

the following recurrence relation

Ȳn+2 = N−1
(
2N + zQ

(1)
1 + wQ̄

(1)
1 + wθ̄Q̄

(1)
1 −wP

(1)
1

)
Ȳn+1

− N−1
(
N + zQ

(1)
1 + wθ̄Q̄

(1)
1 −wP

(1)
1

)
Ȳn. (5.5.24)

where Q
(1)
1 = Q

(1)
n+2,n+1, Q̄

(1)
1 = Q̄

(1)
n+2,n+1 and P

(1)
1 = P

(1)
n+2,n+1.
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Let

E = N−1
(
2N + zQ

(1)
1 + wQ̄

(1)
1 + wθ̄Q̄

(1)
1 − wP

(1)
1

)
,

F = −N−1
(
N + zQ

(1)
1 + wθ̄Q̄

(1)
1 −wP

(1)
1

)
,

the relation (5.5.24) can be written in the form


 Ȳn+1

Ȳn


 = S


 Ȳn

Ȳn−1


 (5.5.25)

for n = 1, 2, ..., where

S =


 E F

I 0


 (5.5.26)

Now the next result immediately follows from relations (5.5.25)-(5.5.26)

and from the Definition 5.2.

Corollary 5.3. If the eigenvalues of S are within the unit circle, then the

FVRK method is stable. The stability region of the method is thus the set

R = {z,w ∈ R− : |eig(S)| < 1}.

Remark 5.6. As observed in Remark 5.4 for basic test equation (5.5.1), also in

the case of the convolution test equation (5.5.17) the stability regions of the

FVRK methods tend, as M → ∞, to the stability regions of the corresponding

classical ones. Infact it is easy to verify that the three term recursion (5.5.24)

tends to the three terms recursion (5.5.18).

Remark 5.7. Obviously when w = 0 we obtain again the region of stability

associated to the basic test equation.
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Remark 5.8. As in Remark 5.5 for basic test equation, let us consider the

implicit Euler FVRK method characterized by m = 1, c1 = 1, b1 = 1, a11 = 1.

In this case we have

d11 = c1b1Ψ11L1(c1c1) = Ψ11 =
N∑

j=−N

ωj

λj

=: α

d̄11 = c1b1Ψ̄11L1(c1c1) = Ψ̄11 =

N∑

j=−N

ωj

h(λj)2
=: ᾱ

Q
(1)
1 =

N∑

j=−N

ω
(1)
j

λ
(1)
j

ehλ
(1)
j =: β

Q̄
(1)
1 =

N∑

j=−N

ω
(1)
j(

λ
(1)
j

)2

ehλ
(1)
j

h
=: β̄

P
(1)
1 = Q̄

(1)
1 = β̄

N = 1 − αz − ᾱw,

from which it follows that

S =




(β−2α)z+(β̄−2ᾱ)w+2
1−αz−ᾱw

− (β−α)z+ᾱw+1
1−αz−ᾱw

1 0


 .

An easy computation shows that |eig(S)| < 1 if and only if

w >
4α − 2β

β̄ − 2ᾱ
z − 4

β̄ − 2ᾱ

and the stability region is shown in Figure 5.2. We can observe that when

M → ∞ then α, β, β̄ → 1, ᾱ → 0, and the stability region tends to that of

classical Euler method, that is the region characterized by

w > 2z − 4

and represented in Figure 5.1.
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Figure 5.1: Stability region of the classical implicit Euler VRK method

Figure 5.2: Stability region of the implicit Euler FVRK method
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Remark 5.9. We present below the stability regions of the Radau II FVRK

method with respect the convolution test equation (5.5.17). In Figure 5.3 we

report the plot of the stability region of the 3-points classical Radau II VRK

method, while in Figures 5.4-5.6 we report the plots of the stability regions

of the corresponding Radau II FVRK method, with different values of the

number M of points on the Talbot contour. The plots show as for M not very

large (i.e. M = 61) the stability region of the FVRK method is very close to

that of the corresponding classical method.

Figure 5.3: Stability region of the classical Radau II VRK method
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Figure 5.4: Stability region of the Radau II FVRK method (M = 7).

Figure 5.5: Stability region of the Radau II FVRK method (M = 11).



Chapter 5 117

Figure 5.6: Stability region of the Radau II FVRK method (M = 61).
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5.6 Numerical results

In the numerical experiments we tested the performances of the FVRK me-

thods in terms of order of convergence and computational cost, in order to

validate the theoretical results of Sections 5.3 and 5.4. The methods were im-

plemented in MATLAB and the numerical experiment have been performed

on different text examples. Here we report the results obtained on the two test

problems:

• the linear Volterra integral equation of renewal theory taken from [18],[32]:

y(t) = 1− e−λt(1+λt)+

∫ t

0

λ2(t− τ )e−λ(t−τ)y(τ )dτ t ∈ [0, 10], (5.6.1)

with K(s) =
(

λ
λ+s

)2
, λ = 1/2, and exact solution y(t) = 1

4
(2λt−1+e−2λt);

• the nonlinear equation given in [52], arising in the analysis of neural

networks with post inhibitory rebound:

y(t) = 1+

∫ t

0

(t− τ )3(4− t+ τ )e−t+τ y4(τ )

1 + 2y2(τ ) + 2y4(τ )
dτ, t ∈ [0, 10],

(5.6.2)

with K(s) = 24s
(1+s)5

and reference solution y(10) = 1.25995582337233,

obtained numerically by using different codes with very stringent toler-

ances.

Remark 5.10. We remind that the application of the FVRK methods requires

the choice of a family of Talbot contours, and this choice is carried out as

described in Section 3.4.3. We observe that the functions K(s) of test examples

(5.6.1) and (5.6.2) have only one singularity respectively at s = −λ and s = −1.

Thus, in both cases, the Talbot contours are chosen as in Example 3.3. The

number M = 2N + 1 of quadrature points on each Talbot contour is chosen

to be M = 501.
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5.6.1 Convergence

The following FVRK methods have been used, where p denotes the order of

the method, according to Theorem 5.1 and Corollary 5.1:

IMPLICIT METHODS:

L2 : 2-points Lobatto (c1 = 0, c2 = 1), p = 2;

R3 : 3-points Radau II (c1 = 4−
√

6
10

, c2 = 4−
√

6
10

, c3 = 1), p = 5;

G3 : 3-points Gauss (c1 = 5−
√

15
10

, c2 = 1/2, c3 = 5+
√

15
10

), p = 6.

EXPLICIT METHODS:

E3 : 3-points with Butcher array:

0 0 0 0

2/3 2/3 0 0

2/3 5/12 1/4 0

1/4 −1/4 1

, p = 3;

E4 : classical 4-points with Butcher array:

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

0 0 0 1 0

1/6 1/3 1/3 1/6

, p = 4.

The number of correct significant digits cd at the end point is defined to

be

cd := −log10 (|y(T )− yNt|/|y(T )|) .
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Figure 5.7: Number of correct significant digits for problem (5.6.1)

Table 5.1: Number of correct significant digits for problem (5.6.1) at
t=T=10.

method Nt = 16 Nt = 32 Nt = 64 Nt = 128 p(h = 10
128

)
L2 1,82 2,41 3,01 3,61 1,99
E3 3,23 4,07 4,94 5,83 2,96
E4 3,78 4,93 6,10 7,29 3,95
R3 6,18 7,66 9,16 10,67 5,02
G3 7,98 9,76 11,56 13,35 5,95

Table 5.2: Number of correct significant digits for problem (5.6.2) at
t=T=10.
method Nt = 16 Nt = 32 Nt = 64 Nt = 128 Nt = 256 p(h = 10

256
)

L2 2,82 3,27 3,84 4,44 5,04 1,99
E3 3,05 4,14 5,27 6,41 7,35 3,12
E4 3,38 4,96 6,51 7,20 8,26 3,52
R3 4,73 6,45 8,33 9,91 11,41 4,98
G3 6,35 8,62 9,26 11,53 13,17 5,45



Chapter 5 121

Figure 5.8: Number of correct significant digits for problem (5.6.2)

In Figures 5.7-5.8 we report the value of cd obtained by the application of

each method respectively to the equations (5.6.1) and (5.6.2), with respect the

number Nt of mesh points. In Tables 5.1-5.2 we report the numerical results

and we compute a numerical estimation of the order of the method with the

formula p(h) = cd(h)−cd(2h)
log102

for a fixed h, which shows that our methods produce

the expected order.

5.6.2 Computational cost

In order to verify that our methods have a computational cost of order O(NtlogBNt)

in Figure 5.9 we plot for equation (5.6.1) the cpu-time in seconds versus Nt

obtained from an Intel Pentium 4/3,2 GHz. The rhombuses correspond to R3,

while the solid line correspond to algorithms of order O(Nt) and O(N2
t ). The

dashed line represents the function CNtlogBNt, and the picture shows that our
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method perfectly follows its behaviour.

Figure 5.9: Computational cost
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5.7 Concluding remarks

In this chapter we constructed fast VRK methods for the equation (5.1.1) of

order p that can be implemented with a computational cost of O(NtlogNt)

operations and with a memory requirement of O(logNt) to compute the nume-

rical solution over Nt time steps. This was possible exploiting the knowledge

of the Laplace transform of the kernel and that the equation is of convolution

type.

We proved that the accuracy and stability properties depend on the number

M of points chosen on the Talbot contour for the inverse Laplace transform

approximation. In particular with a suitable choice of M , the order of con-

vergence p is the same of the corresponding classical VRK methods, and the

stability regions, for M → ∞, tend to the classical ones.

The numerical experiments show that computational cost, the order of ac-

curacy and stability regions of our constructed methods reflect the theoretical

results.

The methods presented in this chapter are highly parallelizable and we

think that they can be extended in a natural way to systems of Volterra integral

equations.
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6.1 Introduction

Nonlinear Volterra integral equation of the form

y(t) = f(t) + q(t) +

∫ t

0

a(s)k(t− s)G(y(s))ds t ∈ I := [0, T ] (6.1.1)

are of great interest in the applications. For example SIS epidemics with

periodic immigration flow which confer no immunity and have a negligible

incubation period have as mathematical model (see Example 1.2) a VIE with

convolution kernel of the form

y(t) = f(t) + q(t) +

t∫

0

a(s)k(t − s)y(s)(1− y(s))ds. (6.1.2)

Such problems are caracterized by the relapse of the epidemic which implies

that the VIE (6.1.2) has an asymptotically periodic solution. In this chapter we

are concerned with the approximate solution of (6.1.1) by means of efficient me-

thods which “catch” the qualitative characteristics of the problem. In partic-

ular we are interested in numerical methods which generate an asymptotically

periodic solution whenever the analytical solution shows this behaviour. For

this reason we introduce discrete Volterra equations (DVEs) and we develop

a theory equivalent to the one in [29] for difference equations of unbounded

order. Section 6.2 contains the main results concerning the analytical solution

of (6.1.1). In Section 6.3 we introduce the basic concepts of asymptotic perio-

dicity for DVEs. In Section 6.4 we investigate the stability properties for DVEs

of Hammerstein type and, in the case of constant contact rate, in Section 6.5,

we give results on the asymptotical periodicity for problem (6.1.2). In Section

6.6 we investigate AP-stability of a class of numerical methods for (6.1.2) with

constant contact rate.
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6.2 Representation of analytical solution

In order to analyse the behaviour of numerical solutions of (6.1.1) we, of course,

need information about the behaviour of its analytical solution. Since we are

concerned with asymptotic periodicity we report here the existing analytical

theory, mainly contained in [29], which represents the starting point of our

discrete analysis. First we report the definition of asymptotically periodic

function.

Definition 6.1. An asymptotically ω-periodic function v(t) is a bounded con-

tinous function for which there exists a continous ω-periodic function r(t) such

that :

v(t + nω) − r(t) → 0 n ∈ N

uniformly on [0,ω] as n → +∞.

Consider the limit equation associated to (6.1.1)

z(t) = q(t) +

t∫

−∞

a(s)k(t− s)G(z(s))ds, t ∈ IR (6.2.1)

The following theorem gives conditions for the solution of (6.1.1) to be

asymptotically ω-periodic.

Theorem 6.1. Assume that k ∈ L1(0,∞), a, f , G and q are continous func-

tion, a and q are ω-periodic and f(t) → 0 as t → +∞. Suppose that (6.2.1)

has an unique continous solution satisfying 0 < α ≤ z(t) ≤ β for some α, β

with α < β. Suppose also that (6.1.1) has a unique continous solution satis-

fying 0 < α ≤ y(t) ≤ β for all sufficiently large t. Then z(t) is ω-periodic

and y(t + nω) − z(t) → 0 uniformly on [0,ω] as n → +∞ that is y(t) is

asymptotically ω-periodic.
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Remark 6.1. See [29] for a detailed proof.

Remark 6.2. Similar theorem can be found in Diekmann [38], Diekmann and

Kaper [37]

As we have already observed, the situations when the function G assumes the

form G = y(1 − y) are often encountered in the applications. In [29] two

interesting cases of equation (6.1.2) that arise in the applications are analized.

One is the case of periodic contact rates and another is the case of periodic

immigration flow and constant contact rates. In both cases it is possible to

prove the existence and the uniqueness of the asymptotically periodic solution

of (6.1.2).

a) Periodic contact rates

Consider the equation

y(t) = f(t) +

∫ t

0

a(s)k(t− s)y(s)(1 − y(s))ds t ∈ I := [0, T ] (6.2.2)

and assume that

1. a is a bounded, continuous, ω-periodic and positive function;

2. k is differentiable and k(t) > 0, k(0) = 1, k
′
(t) ≤ 0 and k(t) ∈ L1(0,∞);

3. f(t) is positive, differentiable and f(t) → 0 as t → +∞.

Assume also that ‖f‖ + (sup
t≥0

t∫
0

a(s)k(t − s)ds)/4 ≤ 1
2
, ā ≤ a(s) ≤ ¯̄a and let

x̄ = 1 − (1/
∞∫
0

āk(t)dt) and ¯̄x = 1 − (1/
∞∫
0

¯̄ak(t)dt).

With this assumptions it is possible to prove the following theorem

Theorem 6.2. If x̄ > ¯̄x/2 and 1 <
∞∫
0

āk(t)dt ≤
∞∫
0

¯̄ak(t)dt < 2 then the

equation 6.2.2 has a nonzero asymptotically periodic solution. If
∞∫
0

¯̄ak(t)dt ≤ 1

then the solution of 6.2.2 tends to 0 as t → ∞.
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b) Periodic Immigration

Consider the equation

y(t) = f(t) + q(t)

∫ t

0

ak(t− s)y(s)(1 − y(s))ds t ∈ I := [0, T ]. (6.2.3)

Here the contact rate a is constant while the fraction of infective immigrants

q is assumed ω-periodic.

Theorem 6.3. Let A =
+∞∫
0

ak(t)dt. Assume that A > 1 and k(t) is a dif-

ferentiable function such that k(t) = 0, k(0) = 1, k′(t) ≤ 0, k(t) ∈ L1(0,∞).

Also assume that f(t) → 0 as t → ∞; q(t) is a positive ω-periodic function

and ‖f + q‖+ A
4
≤ 1

2
. Then (6.2.3) has a positive ω-periodic solution.

Remark 6.3. See [29] for a detailed proof.
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6.3 DVEs with asymptotically periodic solu-

tion

Now first of all we give the definition of asymptotically periodic sequence and

then we make clear what we mean for discrete Volterra equations to have an

asymptotically periodic solution.

Definition 6.2. A sequence vn is asymptotically M-periodic if it is bounded

and if there exists a M-periodic sequence rn such that

vn+νM − rn → 0 n = 0, ...,M as ν → +∞

For example

vn = e−nπ + α sin(n
2π

M
).

is a bounded sequence and vn+νM → rn for ν → +∞ where rn = +α sin(n2π
M

)

which is obviusly an M-periodic sequence. Hence vn is asymptotically M-

periodic.

A general discrete Volterra equation reads

yn = fn +

n∑

j=0

wnjk(tn, tj, yj) n ≥ 0 (6.3.1)

The motivation for studing DVEs stands in the fact that most of the numerical

methods for VIEs fit into this class.

Now the solution of (6.3.1) is asymptotically periodic if yn is an asymptot-

ically periodic sequence.

In [26], [42] sufficient conditions for a DVE to have a unique asymptotically

periodic solution are given for the linear case. In the next section we will see

how to extend the theory to a special class of nonlinear DVEs.
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6.4 Asymptotical periodicity for Hammerstein

type DVEs

We consider the discrete analogue of (6.1.1)

yn = fn +
n∑

j=0

ajkn−jG(yj) n ≥ 0 (6.4.1)

with fn = qn + gn, and we make the following assumptions: qn and an are

M-periodic sequences and gn → 0 n → +∞.

In order to find conditions for the solution of (6.4.1) to be asymptotically

M-periodic we need the following lemma:

Lemma 6.1. Suppose fn and an are bounded,
∑+∞

j=0 kj < +∞ and G is a

bounded and uniformly continous function on R+. Then for any sequence

mk → +∞ there exist three sequences zn, qn, aj and a subsequence mkp such

that

yn+mkp
→ zn

fn+mkp
→ qn (6.4.2)

aj+mkp
→ aj.

Moreover zn is the solution of

zn = qn +

n∑

j=−∞

ajkn−jG(zj). (6.4.3)

Proof. The boundness of yn easily follows from the hypothesis. Consider the

sequence of the translated equations

yn+mk
= fn+mk

+

n+mk∑

j=0

ajkn+mk−jG(yj) = fn+mk
+

n∑

j=−mk

aj+mk
kn−jG(yj+mk

).

where mk is such that mk → +∞.
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If n + mk > 0 then of course yn+mk
, fn+mk

and an+mk
are bounded and thus

(6.4.2) is proved.

Now we have to show that


n∑

j=−mkp

aj+mkp
kn−jG(yj+mkp

) −
n∑

j=−∞

ajkn−jG(zj)


→ 0, p → +∞.

Since an and the function G are bounded there exist two positive constants H

and K such that


n∑

j=−mkp

aj+mkp
kn−jG(yj+mkp

) −
n∑

j=−∞

ajkn−jG(zj)


≤

HK

−p∑

j=−mkp

|kn−j | + H
n∑

j=−p

|kn−j |
G(yj+mkp

) − G(zj)
− HK

−p∑

j=−∞

|kn−j | ≤

≤ 2HK

mkp+n∑

j=n+p

|kj | + H
n∑

j=−p

|kn−j |
G(yj+mkp

) − G(zj)


The last expression goes to zero when p tends to infinity. Hence zn is the

solution of (6.4.3).

Remark 6.4. From this proof it is clear that (6.4.3) corresponds to the limit

equation of (6.4.1).

The following theorem is the discrete analogue of Theorem 6.1 and gives

conditions under which (6.4.1) has an asymptotically M-periodic solution.

Theorem 6.4. In the hypothesis of the previous lemma if (6.4.3) has a unique

solution zn satisfying 0 < α ≤ zn ≤ β for some α, β with α < β and (6.4.1)

has a unique bounded solution yn satisfying 0 < α ≤ yn ≤ β for all sufficiently

large n, then zn is M-periodic and yn is asymptotically M-periodic.
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Proof. To see that zn is M-periodic we look at zn+M

zn+M = qn+M +

n∑

j=−∞

aj+Mkn−jG(zj+M )

Since an and qn are M-periodic both zn+M and zn are solutions of (6.4.3) and

by uniqueness

zn+M = zn.

Now we have to prove that

yn+νM − zn → 0 as ν → +∞ forn = 0, ...,M,

that is:

∀ε > 0 ∃pε : |yn+νM − zn| < ε ∀ν > pε.

Suppose this is not true, so

∃ε > 0 ∃νk ∃nk ∈ {0, ...,M} : |ynk+νkM − znk
| > ε. (6.4.4)

Since for all sufficiently large n, 0 < α ≤ yn ≤ β we may assume that 0 < α ≤

ynk+νkM ≤ β for all k. By Lemma 6.1 there exists a subsequence νkj of νk such

that yn+νkj
M → zn with zn satisfying (6.4.3) that is

∀ε > 0 ∃pε :
yn+νkj

M − zn

 < ε ∀νkj > pε.

This is in contradiction with (6.4.4), so yn+νM − zn → 0.
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6.5 Applications

In this section we suppose that the function G in (6.4.1) has the form G(yj) =

yj(1 − yj) and consider the particular case where the sequence a is constant

then the equation (6.4.1) reads

yn = fn + qn +

n∑

j=0

akn−jyj(1 − yj). (6.5.1)

Observe that (6.5.1) is the discrete analogue of (6.2.3).

Here we suppose that

1. fn is a bounded and nonnegative sequence, fn → 0 for n → +∞

2. qn is a bounded, nonnegative and M-periodic sequence,

3. kn is a positive and non increasing sequence such that k0 = 1 and
+∞∑
j=0

kj <

+∞,

4. a is a positive constant.

Define A =
+∞∑
j=0

akj, ‖fn‖ = supnfn, x̂ = 1− 1
+∞∑
j=0

akj

and assume that ‖fn +qn‖+

A
4
≤ 1

2
.

With these assumptions we are able to state the main result in this section.

Theorem 6.5. The equations (6.5.1) has a positive asymptotically M-periodic

solution.

Remark 6.5. With this theorem it is possible to study the asymptotic periodi-

city of yn without passing through the knowledge of the behaviour of the limit

equations.

Proof. The theorem is proved using Theorem 6.4 whose hypothesis are estab-

lished by the following lemmas.
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Lemma 6.2. One of the solution ŷn of (6.5.1) is such that 0 ≤ ŷn ≤ 1
2

∀n ≥

0.

Proof. First we prove that (6.5.1) has a positive solution. We proceed by

induction over n. For n = 0 we have

y0 = f0 + q0 + ak0y0(1 − y0).

It is easy to show that one of the two roots of this quadratic equation is

positive. Let ŷ0 be this positive root and assume that for n = 1, ..., k (6.5.1)

has two roots one of which positive. Let ŷi be this positive root for i = 1, ..., k.

Now we look at n = k + 1

yk+1 = fk+1 + qk+1 +

k∑

j=0

akk−j ŷj(1 − ŷj) + ak0yk+1(1 − yk+1) (6.5.2)

Here ∆ = (1 − ak0)
2 + 4ak0(fk+1 + qk+1 +

k∑
j=0

akk−j ŷj(1 − ŷj) and for our

induction hypothesis ŷn > 0, ∀n. Since

ŷn ≤ fn + qn +
n∑

j=0

akn−j
1

4
≤ supn(fn + qn) +

n∑

j=0

akj
1

4
≤ (6.5.3)

≤ supn(fn + qn) +

+∞∑
j=0

akj

4
≤ 1

2
.

then for each n = 1, 2, ... 0 ≤ ŷn ≤ 1
2

and the assertion of the lemma is

proved.

Lemma 6.3. Let

xn = vn +
n∑

j=0

akn−jxj(1 − xj)

yn = gn +
n∑

j=0

akn−jyj(1 − yj)

with vn, gn > 0. If vn > gn ∀n ≥ 0, then xn > yn ∀n ≥ 0.
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Proof. By induction over n. For n = 0 it is easy to prove that x0 > y0. Now

we assume that xn > yn n = 0, ..., k. For n = k + 1 we have

xk+1 =

−(1 + a) +

√
(1 + a)2 + 4a(vk+1 +

k∑
j=0

akk−jxj(1 − xj)

2a

yk+1 =

−(1 + a) +

√
(1 + a)2 + 4a(gk+1 +

k∑
j=0

akk−jyj(1 − yj)

2a

And thus by our induction hypotesis xn > yn, ∀n ≥ 0.

Lemma 6.4. Let

zn = qn +
n∑

j=−∞

akn−jzj(1 − zj) (6.5.4)

be the limit equation associated to (6.5.1), then (6.5.4) has a unique solution

satisfying bx̂ ≤ zn ≤ 1
2
, where 1

2
< b < 1.

Proof. Let BC(R) be a closed ball of radius R and S = {xn ∈ BC(R) : bx̂ ≤

xn ≤ 1
2
, 1

2
< b < 1}. Define the operator T as

Txn = qn +

n∑

j=−∞

akn−jxj(1 − xj).

Consider zn ∈ S and apply T on zn

Tzn = qn +

n∑

j=−∞

akn−jzj(1 − zj) ≥
n∑

j=−∞

akn−jmin(zj(1 − zj) =(6.5.5)

= bx̂(1 − bx̂)

+∞∑

j=0

akj = bx̂(1 − bx̂)
1

1 − x̂
≥ bx̂,

the last inequality coming from the fact that 1−bx̂
1−x̂

≥ 1. What’s more

Tzn ≤ supnqn +

n∑

j=−∞

akn−jmax(zj(1 − zj)) ≤
1

4

+∞∑

j=0

akj +
1

2
−

+∞∑

j=0

akj ≤
1

2
,

so Tzn belongs to S.
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We also prove that T is a contraction over S. Let u, v in S

‖Tun − Tvn‖ ≤ supn

n∑

j=−∞

|akn−j(uj − vj)(1 − uj − vj)| (6.5.6)

≤ supn

n∑

j=−∞

|akn−j(uj − vj)(1 − 2bx̂)|

≤ 1 − 2bx̂

1 − x̂
‖un − vn‖.

Thus T : S −→ S is a contraction since 1−2bx̂
1−x̂

≤ 1. So there exists a unique

zn ∈ S such that Tzn = zn with bx̂ ≤ zn ≤ 1
2
.

Lemma 6.5. For all sufficiently large n, the solution yn of (6.5.1) is such that

bx̂ ≤ yn ≤ 1
2
.

Proof. Let m be a positive number such that 0 < m < minn{qn}. Let rn be a

solution of

rn = fn + m +
n∑

j=0

akn−jrj(1 − rj)

By Lemma 6.3 yn > rn for n ≥ 0. Moreover rn → r̂ where r̂ is the positive

solution to r = m +
+∞∑
j=0

akjr(1 − r) and r̂ > x̂ where x̂ is the positive solution

to x =
+∞∑
j=0

akjx(1 − x). Thus for any b such that 1
2

< b < 1, bx̂ ≤ yn if n is

sufficiently large.
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6.6 A class of AP-stable methods

In the previous section we prove sufficient conditions for the existence and the

uniqueness of the asymptotically periodic solution of the DVE (6.5.1).

In this section we investigate the properties of a numerical method to pre-

serve the asymptotic periodicity of the solution of (6.2.3). We consider the

class of θ–methods applied to the equation (6.2.3) and we prove that they

produce an asymptotically periodic solution if the integration step satisfies an

inequality depending only on some parameters that are characteristic of the

problem. First of all we need the following definitions.

Definition 6.3. A numerical method for (6.2.3) is AP-stable if it produces

an asymptotically periodic solution whenever applied to a Volterra integral

equation with asymptotically periodic solution.

Definition 6.4. A numerical method for (6.2.3) is conditionally AP-stable if

it is AP-stable for all h < h0 with h0 > 0.

We focus our attention to the one-point collocation method described in Exam-

ple 2.1 and we analyse the behaviour of the corresponding numerical solution

when applied to the equation (6.2.3).

Let Ih = {tn := nh, n = 0, ..., N, h ≥ 0} be a uniform mesh on [0, T ], we

approximate the unique solution of (6.2.3) by elements in piecewise polynomial

space

S
(−1)
0 (Ih) =

{
u : u|(tn,tn+1)=const, n ≥ 0

}
,

of dimension N . The approximation u ∈ S
(−1)
0 (Ih) will be required to satisfy

the given integral equation (6.2.3) on the set of collocation points

{tn,1 := tn + θh, 0 ≤ θ ≤ 1 n = 0, ..., N − 1}.
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Let us denote yn+1 = un(tn + νh) ν ∈ [0, 1], then we are looking for the

solution of

yn+1 = f(tn1)+h
n−1∑

l=0

ωn−l(θ)(yl+1(1 − yl+1))+hω0(θ)(yn+1(1− yn+1)) (6.6.1)

where 



ωn−l(θ) =
1∫
0

ak((n + θ − l − s)h)ds l < n

ω0(θ) =
θ∫
0

ak((θ − s)h)ds.

If the integrals in (6.6.1) cannot be found analytically, we have to resort to

suitable quadrature formulas for their approximation. Here we choose the

interpolatory one point quadrature formulas whose abscissas are, respectively,

tl + θh if l < n, and θ2h (fully discretized) or θh (discretized) if l = n.

The discretized version of (6.6.1) is thus given by

ŷn+1 = f(tn1) + h
n−1∑

l=0

ω̂n−lŷl+1(1 − ŷl+1) + hω̂0(θ)ŷn+1(1 − ŷn+1) (6.6.2)

where we have defined

ω̂n−l = ak((n − l)h) l < n




ω̂0(θ) = θak(θ(1 − θ)h) fully discretized

ω̂0(θ) = θak(0) discretized.

Notice that, since the integral equation (6.2.3) is of convolution type, ω̂n−l

does not depend on θ. Now we derive some useful properties for the weights

ωj in (6.6.1).

Lemma 6.6. If equation (6.2.3) satisfies the hypothesis of Theorem 6.3, then

0 < ωn−l(θ) < a and ωn+1−l(θ) − ωn−l(θ) ≤ 0 l ≤ n.

Proof. Since a > 0 and k(t) is a nonnegative function then ωn−l(θ) > 0. What’s

more since k(t) is a nonincreasing function

1∫

0

k((n + θ − l − s)h)ds ≤
1∫

0

k(0)ds = 1
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thus 0 < ωn−l(θ) < a. In order to prove the second part of the lemma we

observe that

1∫

0

ak((n + 1 + θ − l − s)h)ds ≤
1∫

0

ak((n + θ − l − s)h)ds

and hence

ωn+1−l(θ) ≤ ωn−l(θ).

Remark 6.6. The same result holds for ω̂n,l(θ).

6.6.1 AP-stability of the exact collocation method

Here we assume that the integrals in (6.6.1) can be found analytically and we

suppose that equation (6.2.3) has an asymptotically periodic solution, that is

it satisfies the hypothesis of Theorem 6.3. In this case we are able to state the

following result:

Theorem 6.6. The class of methods (6.6.1) is AP-stable.

Proof. Let us rewrite the method (6.6.1) as

yn+1 = f(tn1) + q(tn1) +
n∑

l=0

Akn−lyl+1(1 − yl+1) (6.6.3)

where 



Akn−l =
tl+1∫
tl

ak(tn + θh − s)ds

Ak0 =
tn+θh∫

tn

ak(tn + θh − s)ds.

From the hypothesis of Theorem 6.3 for the equation (6.2.3) immediately fol-

lows that in (6.6.1) f(tn1) → 0 t → ∞, q(tn1) is positive and ω-periodic, kn
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is a positive and nonincreasing sequence such that k0 = 1,
+∞∑
j=0

kj < +∞. In

order to apply Theorem 6.5 we only need to show that

‖f(tn1) + q(tn1)‖ +

n∑
l=0

Akn−l

4
≤ 1

2
(6.6.4)

Since k(t) is a positive decreasing kernel we have

n−1∑

l=0

tl+1∫

tl

ak(tn + θh − s)ds <
n−1∑

l=0

tl+1∫

tl

ak(tn − s)ds

and
tn+θh∫

tn

ak(tn + θh − s)ds <

tn+θh∫

tn

ak(tn − s)ds.

Observing that

n−1∑

l=0

tl+1∫

tl

ak(tn − s)ds +

tn+θh∫

tn

ak(tn − s)ds ≤
T∫

0

ak(tn − s)ds <

+∞∫

tn

ak(t)dt,

then

‖f(tn1) + q(tn1)‖ +

n∑
l=0

Akn−l

4
≤ ‖f + q‖+

A

4

thus by Theorem 6.3, (6.6.4) holds.

6.6.2 AP-stability of the discretized collocation method

Now we analyse the AP-stability property of the discretized collocation method

(6.6.2), when applied to the equation (6.2.3) satisfying the hypothesis of The-

orem 6.3.

Theorem 6.7. The discretized collocation method (6.6.2) is AP-stable for

h ≤ 4

aθ




1

2
− ‖f + q‖ −

+∞∫
0

ak(t)dt

4


 ,

that is (6.6.2) is conditionally AP-stable.
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Proof. Equation (6.6.2) can be rewritten as

yn+1 = f(tn1) + q(tn1) +

n∑

l=0

Akn−lyl+1(1 − yl+1) (6.6.5)

where

Akn−l = ahk((n− l)h) l < n




Ak0 = aθhk(θ(1 − θ)h) fully discretized

Ak0 = aθhk(0) discretized

Like in Theorem 6.6 we only have to show that

‖f(tn1) + q(tn1)‖ +

n−1∑
l=0

Akn−l + Ak0

4
≤ 1

2
(6.6.6)

For a positive decreasing kernel k

n−1∑

l=0

Akn−l + Ak0 ≤
∫ t

0

ak(t)dt + Ak0 ≤
∫ +∞

0

ak(t)dt + Ak0.

Since Ak0 = aθh (k(0) = 0 for Theorem 6.3) for the discretized version and

Ak0 ≤ aθ for the fylly discretized one, it follows that (6.6.6) holds if

h ≤ 4

aθ




1

2
− ‖f + q‖ −

+∞∫
0

ak(t)dt

4


 .

Notice that the expression in the square brakets is certainly positive by

Cromer’s Theorem 6.3.
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6.7 Concluding remarks

This chapter is concerned with the numerical treatment of problems of SIS

epidemic diffusion with periodic immigration flow [29]. The mathematical

model of such problems is represented by an Hammerstein type VIE with

convolution kernel of the form

y(t) = f(t) + q(t) +

t∫

0

a(s)k(t − s)y(s)(1− y(s))ds. (6.7.7)

We consider here problems caracterized by the relapse of the epidemic which

implies that the VIE (6.7.7) has an asymptotically periodic solution.

We analyse the discrete Volterra equation (DVE) corresponding to pro-

blem (6.7.7) and we prove a theorem which establishes the existence and the

uniqueness of the asymptotically periodic solution of the DVE.

Moreover we consider SIS epidemic models with periodic immigration flow

and constant contact rate. Also in this case we prove, for the DVE correspond-

ing to the problem, the existence and the uniqueness of the asymptotically pe-

riodic solution when the DVE satisfies some significant hypothesis depending

only on its kernel and forcing term.

In order to analyse if the existing numerical methods satisfy these condi-

tions, that is if they are AP-stable, we consider the class of θ–methods and

we prove that they are AP-stable if the integration step satisfies an inequality

depending only on some parameters that are characteristic of the problem.
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