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Introduction 
 

 

The notion of metric space plays a basic role in several researches addressed to 

process information. Indeed the objects we will investigate are represented by 

points and the distance is a measure of “dissimilarity” between objects. Now, the 

question that arises is if such a notion is the better one in a context in which we are 

not able to obtain complete information about the considered objects. 

This thesis is devoted to face this question, by giving suitable axioms extending 

the usual ones for metric spaces and by considering regions in a suitable space, 

instead of the points. This idea originates from A. N. Whitehead’s researches, 

aimed to define a geometry without the concept of point as primitive (see [46], [47] 

and [48]) and from a metrical version of these researches, proposed by G. Gerla 

(see, for example [23], [24]). Indeed, we can re-interpret the regions as ”incomplete 

pieces of information” and the diameter of a region as a measure of the vagueness 

of the available information: the bigger it is, the more there is uncertainty. Points 

(having zero-diameter) represent complete information.  

Another idea examined in this thesis is the possibility of referring to the 

“logical” notion of closeness instead of the one of distance. Indeed, there is a 

duality between these concepts, that is easily understandable: when comparing 

objects accordingly to their properties, we can use both a measure of how they are 

“similar” and a measure of how they are “dissimilar”; the smaller the distance is, 

the bigger the closeness is. We investigate the notion of closeness in the fuzzy 

domain, examining similarities and fuzzy orders.  

More precisely, the thesis is structured as follows. 

In Chapter 1 we first give some necessary basic notions in multi-valued logics. 

Then we give some information about the metric structures we will start from and 
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we show some already known dualities between the metric notions and the fuzzy 

relations. 

In Chapter 2 we propose an approach to establish a link between point-free 

geometry and the categorical approach to fuzzy sets theory (as proposed by Höhle 

in [28]). In particular, starting from the definition of pointless metric spaces, we 

introduce the pointless ultrametric spaces. Then we define the semimetric spaces, 

the semisimilarities on some spaces, and we verify the relations between these two 

kind of structures. Moreover, we focus on semiultrametric spaces and on the 

semisimilarity with the Gödel t-norm, called G-semisimilarity. We also examine 

the relations existing between pointless metric spaces and semimetric spaces, and, 

in particular, between pointless ultrametric and pointless semiultrametric spaces. 

Besides, we verify the connection between the structures equipped with G-

semisimilarities and the pointless ultrametric spaces. Finally, once we have 

organized the class of pointless ultrametric spaces into a category, we define two 

functors to relate such a category with Höhle’s category, and we exhibit a class of 

examples of G-semisimilarity. 

In Chapter 3 we introduce the concept of approximate distance in agreement 

with the ideas of Interval Analysis, (see, for example, [3] and [27]). Approximate 

distances extend the notion of distance by taking into account errors arising from 

the incomplete knowledge of the points. We do this by using interval-valued maps 

(see [6], [7]). Besides, developing Whitehead’s ideas, we introduce the 

approximate distance between regions (see [5]). Hence, considering an interval-

valued “distance” Δ on an ordered space of regions, we define an abstract structure 

of interval semimetric space. We interpret a region x as representing the 

incompleteness of the knowledge and  Δ(x, y) as an approximate measure of how 

two pieces of information x and y are close; we also define a weight function p, 

intending  p(x) as a measure of the completeness of x. Canonical models of the 

resulting theory are obtained from classes of bounded subsets of pseudometric 

spaces by the minimum and maximum distances. Also we apply the notion of 
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approximate distance to some topics in Computer Science. In particular, we refer to 

Fuzzy Sets Theory, where two definitions of interval-distances between fuzzy 

subsets are proposed (namely, by cuts and by hypographs). Then we define 

interval-distances between rough sets. Finally, as an application to the clustering 

problem, an algorithm based on interval distances between clusters is examined. 

In Chapter 4, among the distances that verifies weaker axioms with respect to 

the metrics, we take into account the quasi-metrics, in which is not required the 

symmetry.  The dual notion of ∗-fuzzy preorder allows us to extend simultaneously 

both the notions, metric in nature, and the ones of ordered set theory. In particular, 

we give fixed points theorems in sets equipped with ∗-fuzzy preorders extending 

both the theorems in metric spaces and the theorems in ordered sets. Finally some 

applications to logic programming are suggested.  
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Chapter 1                                             

Basic notions 
 

 

In this Chapter we give some notions which underlie what we are going to say 

in the remainder of the dissertation. In particular, in order to provide some tools 

useful to deal with information and incomplete information, we give some 

definitions in a logic setting on a side and in a metric one, on the other side. 

We start by introducing some algebraic notions on which many–valued logics 

are based (for a wider study, see for example [26], [35]). Then we examine some 

distances and we show some dualities between the notions introduced in the two 

settings. 

 

1.1 Algebraic structures for multi-valued logic  

Classical logic is based on the bivalence-hypothesis: every proposition is either 

true or else false whereas “non-determinate” truth values are not taken under 

consideration. Another of its basic properties is the truth-functionality of the logical 

connectives: the truth value of a compound formula depends on the truth values of 

its compounds, unambiguously. At the beginning of the XX century some attempts 

were made in order to formalize many-valued logics, whose truth degrees are not 

two yet, but three or more. The work of Jan Lukasiewicz (1920) and that one of 

Heyting (1930) represent some of the first important examples of non-classical 

logic and, also nowadays, many researchers focus their studies on this kind of 

topic.  
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In this section we present some notions concerning the algebraic structures 

utilized for the evaluation of formulas, both in classical logic and in multi-valued 

one. 

Definition 1.1.1  A lattice is a structure (L, ∨, ∧, 0, 1), where ∨ and ∧ are binary 

operations, satisfying, for every x, y, z ∈ L, the following axioms: 

• x∨y = y∨x ;   x∧y = y∧x                                                         (commutativity) 

• x∨(y∨z) = (x∨y)∨z;   x∧ (y∧z) = (x∧ y) ∧z                                (associativity)       

• x∨x=x ;     x∧ x= x                                                                    (idempotency) 

• 0∨ x= x ;     1∧ x= x                                                           (neutral elements) 

 

Lattices coincide with particular kind of ordered sets. 

Proposition 1.1.1  Let (L, ∨, ∧, 0, 1) be a lattice and let ≤  be an order relation 

defined  by  x≤ y  iff  x∧y= x.  Then  (L, ≤, 0, 1)  is an  ordered  set  such  that       

Inf{x, y}= x∧y and Sup{x, y}= x∨y and 0 and 1 are the smallest and the greatest 

element, respectively. Conversely, let  (L, ≤, 0, 1) be an order set with a minimum 

element 0 and a maximum element 1 and such that, for every x, y ∈ L, there exists 

the supremum x∨y and the infimum x∧y. Then (L, ∨, ∧, 0, 1) is a lattice such that 

x≤ y  iff  x∧ y= x.  

 

The order ≤ defined for each lattice (L, ∨, ∧, 0, 1), as in the last proposition, is 

also called the order determined by L. A lattice  (L, ∨, ∧, 0, 1) is complete if  each 

X ⊆L has its sup and inf. As an example, the real interval [0, 1] with the operations 

of maximum and minimum is a complete lattice. 

Important instances of lattices are distributive lattices and lattices with 

complements. 
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Definition 1.1.2  A lattice is called distributive if the following identities hold: 

x∨(y∧z) = (x∨ y)∧(x∨ z) 

 x∧(y∨z) = (x∧ y)∨(x∧ z).                   

Definition 1.1.3  A lattice with complements is a lattice with a unary operation of 

complement − , such that  

• x∨ −x= 1                                                            (law of the excluded middle)   

• x∧ −x= 0                                                                (law of non-contradiction) 

Definition 1.1.4  A Boolean algebra is a distributive lattice with complements and 

it is denoted by  (L, ∨, ∧, −, 0, 1). 

 

Two typical examples of Boolean algebra are the Boolean algebra for classical 

logic and the Boolean algebra of subsets. The first has the set {0,1} as support, 

with only two elements indicating the two values “false” and  “true”. The two 

binary operations are defined by x∨y=max{x,y} and x∧y=min{x,y} and the unary 

operation is defined by −x = 1−x. The second example is a structure (P(S), ∪, ∩, −, 

∅, S), where P(S) is the powerset of S and the operations  ∪, ∩, − are the usual 

union, intersection and complement of sets. 

 

In order to evaluate formulas in multi-valued logic, many structures 

generalizing the Boolean algebra for classical logic, can be considered. An 

important class is the class of residuated lattices. 

Definition 1.1.5  A residuated lattice is a structure (L, ∨, ∧, ∗, →, 0, 1) such that 

• (L, ∨, ∧, 0, 1)  is a lattice; 

• (L, ∗, 1)  is a commutative monoid; 

• ∗ is isotone in both arguments, i.e. 

x ≤ y  ⇒   x ∗ z ≤ y ∗ z, 
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x ≤ y  ⇒   z ∗ x ≤ z ∗ y ; 

• →  is a residuation operation with respect to ∗,  i.e. 

x∗y≤ z     iff    x≤ y→ z. 

We say that (L, ∨, ∧, ∗, →, 0, 1) is complete  provided that the lattice is complete.  

The operation ∗ is called multiplication and → is called residuation. In the case 

that L= {0,1}, these operations coincide with the usual minimum and classical 

implication, respectively. 

We are interested to the residuated lattices in which L coincides with [0,1]. In 

the following, we provide some of the most important examples of such a class, 

depending on the choice of the operation ∗ and its related residuation. 

 

1.The Gödel algebra is the structure ([0,1], ∨, ∧, →G, 0, 1), where ∗ = ∧ and  

x→G y= 
⎩
⎨
⎧

<
≤

xy    iff y         
yx    iff           1

 

2. The Goguen algebra is the structure ([0,1], ∨, ∧, ∗, →P, 0, 1), where ∗ is the 

usual product of reals and the residuation is 

x→P y= 
⎪⎩

⎪
⎨
⎧

<

≤

xy    iff          
x
y

yx    iff           1
 

3. The Lukasiewicz algebra  is the structure ([0,1], ∨, ∧, ∗, →L, 0, 1), where  

x∗y= 0∨(x+y−1)                        (Lukasiewicz conjunction) 

and 

x→L y = 1∧(1−x+y).                   (Lukasiewicz implication) 

 

The following proposition lists the main properties of a complete residuated 

lattice (see [35]). 
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Proposition 1.1.2  Let (L,∨, ∧, ∗, →, 0, 1) be a complete residuated lattice, let x, y, 

z ∈ L and (xi)i∈I  be a family of elements in L. Then the followings hold true:               

  (i)   x→x = 1,                                                  (vii)  Supi∈I (x∗ xi) = x∗(Supi∈I xi), 

  (ii)  (x→y) ∗ (y→z)≤x→z,                              (viii)  Supi∈I (x→xi) ≤ x→ (Supi∈I xi), 

  (iii)  x→y = 1 and   y→x = 1 ⇒   x = y,          (ix) Supi∈I (xi→x) ≤ (Infi∈I xi)→x, 

  (iv)  x→y = 1 ⇔ x≤y,                                      (x) Infi∈I (x ∗ xi) ≥ x∗ (Infi∈I  xi), 

  (v) x→y = Sup{z∈L : x ∗ z ≤ y},                     (xi) Infi∈I (x→xi) = x→ (Infi∈I xi), 

  (vi) (z→y) ∗ z ≤ y,                                           (xii)Infi∈I (xi→x) = (Supi∈I xi)→x.. 

 

1.2 Triangular norms 

In the following we present an overview of a particular kind of operations on 

the real interval [0,1]. In fact they were introduced by Menger (see [32]) and then 

elaborated by Schweizer and Sklar (see [41]) in order to generalize the concept of 

the triangular inequality.  

Definition 1.2.1  A  triangular norm (briefly t-norm) is a  binary operation ∗ on 

[0,1] such that, for all x, y, z, x1, x2, y1, y2 ∈ [0,1] 

• ∗ is commutative, i.e., 

x∗ y = y ∗ x, 

• ∗ is associative, i.e., 

(x ∗ y) ∗ z = x ∗ (y ∗ z), 

• ∗ is isotone in both arguments, i.e., 

x1≤  x2  ⇒  x1∗ y≤ x2 ∗ y, 

y1≤  y2  ⇒  x ∗ y1≤ x ∗ y2, 

• ∗ verifies the boundary conditions, i.e. 

1∗x = x = x∗1  and  0 ∗x = 0 = x∗0. 
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The notion of t-norm is suitable to represent the truth function of the 

conjunction (see [26]). In fact, the intuitive understanding of the conjunction is the 

following: given two formulas α and β, a large truth degree of their conjunction 

α∧β should indicate that both the truth degree of α and the truth degree of β  is 

large, without any preference between α and β. Moreover, a truth function of 

connectives has to behave classically for the values 0 and 1, since any multi-valued 

logic has to be a generalization of the classical logic. The t-norms’ properties of 

isotony in both arguments, of 1 as unit element and 0 as zero element satisfy these 

requirements.    

 

A t-norm ∗ is continuous if it is a continuous map ∗ : [0, 1]2→ [0,1] in the usual 

sense. The most important examples of continuous t-norms are: 

• Gödel t-norm:                  x∗ y = min (x, y),                             (1.1) 

• Product t-norm :              x∗ y = x · y , in the sense of product of reals, (1.2) 

• Lukasiewicz t-norm:        x∗ y = max ( 0, x + y -1).             (1.3) 

They are fundamental in the sense that each continuous t-norm can be expressed as 

a combination of them (see [26]). 

For each continuous t-norm ∗, representing the truth function of conjunction, it 

is possible to consider a map, associate to ∗ , suitable to represent the truth function 

of implication.  

Definition 1.2.2  Let  ∗ be a continuous  t–norm. The associated residuation is the 

operation →∗  defined by 

x→∗ y = sup{a / x ∗ a ≤ y}. 

 

As an immediate consequence, we can observe (see [26]) that, given a 

continuous t- norm ∗, the residuation →∗  is the unique operation satisfying the 

condition    

x ∗ a ≤ y  ⇔  a ≤ x→∗ y. 
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In classical logic, the implication α→β is true if and only if the truth-value of α 

is less than or equal to the truth-value of β. Generalizing, (see [26]) we can say 

that, in a multi-valued logic, a large truth-value of α→β should indicate that the 

truth-value of α is “not too much larger” than the truth value of β. In accordance 

with this interpretation, the notion of residuation, associated to a t-norm, is 

adequate to represent the truth function of the implication. In particular, x→∗ y=1 if 

and only if x ≤ y and 1→∗ x = x, as it happens in the two-valued logic.  

 

Let us observe that the three continuous t-norms (1.1), (1.2), (1.3) are just the 

same operations we have considered in the three algebraic structures defined in 

Section 1.1. Moreover, if we define the related residuations as in Definition 1.2.2, 

we obtain the implications of  the Gödel, Goguen and Lukasiewicz algebras, 

respectively.   

Definition 1.2.3  Let ∗ be a t-norm. The associated biresiduation ↔∗ is the 

operation ↔∗: [0,1]2 → [0,1] defined by  

x↔∗y =  (x→∗ y) ∧(y→∗ x). 

 

The biresiduation operations associated to the three basic norms are so defined, 

for every x, y ∈[0,1]: 

• for the Gödel t-norm : 

x↔G y = 
⎩
⎨
⎧

∧
=

otherwise            yx
ba if                   1

 

• for the product: 

x↔P y = exp
yx
yx

=
∨
∧

(−⎪log x−logy⎪), 

where 0/0=1 and ∞ − ∞ = 0. 
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• for the Lukasiewicz t-norm : 

x↔P y=1−⎪x−y⎪. 

 

Proposition 1.2.1  Let (L,∨, ∧, ∗, →, 0, 1) be a complete residuated lattice, x, y 

and z be elements in L and let ↔∗ be the biresiduation associated to ∗. Let (xi)i∈I  a 

family of elements in L. Then the following hold true: 

(i)    x ↔∗ x = 1,  

(ii)   x ↔∗ y = 1  ⇔ x = y 

(iii)  (x ↔∗  y) ∗(y ↔∗  z) ≤ x ↔∗  z 

(iv)  x ↔∗ y = y ↔∗  x. 

 

Let us consider now a particular class of continuous t-norms, the Archimedean 

t-norms.  

Definition 1.2.4  A continuous t–norm ∗ is called Archimedean if, for any x, y ∈ 

[0,1],  y ≠ 0, an integer n exists such that x (n) < y, where x(n) is defined by  x(1)  = x 

and x (n+1) = x(n) ∗ x . 

The usual product and the Lukasiewicz t-norm are examples of Archimedean 

continuous t-norms, while the minimum is an example of continuous t-norm which 

is not Archimedean. In order to characterize the Archimedean triangular norms, let 

us consider the extended interval [0, ∞] and let us assume that x + ∞ = ∞ + x = ∞ 

and that  x ≤ ∞ for any  x ∈ [0, ∞]. 

Let f: [0, 1]→ [0, ∞] be a  continuous, strictly decreasing function such that  

f(1) = 0. The function f[ -1] : [0, ∞]→ [0,1] defined by 

f[ -1] (y)= 
( ) [ ]( )

⎩
⎨
⎧ ∈−

otherwise               
 ,,fy  if      yf

0
101

 

is called pseudoinverse of  f. 
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Trivially, f [-1] is order-reversing,  f [-1](0) = 1 and f [-1](∞) = 0. Moreover, for any 

x∈[0, 1],  f [-1]( f(x) ) = x and 

f ( f [-1](x) ) = 
[ ]( )

( )⎩
⎨
⎧ ∈

otherwise          f
 ,,fx  if               x

0
10

 

 

Definition 1.2.5  Let f: [0, 1]→ [0, ∞] be a  continuous, strictly decreasing function 

such that  f(1) = 0. Then f is called  additive generator of a t-norm ∗ if it results, for 

every x, y ∈ [0, 1],    

                                             x ∗ y = f[ -1] (f(x) + f(y)),                      (1.4)  

Proposition 1.2.2  A function ∗: [0,1]2→[0,1] is a continuous Archimedean t-norm 

iff it has an additive generator. 

 

As an example, the additive generator of the product t-norm is fp (x) = −ln (x) 

and the additive generator of the Lukasiewicz t-norm is  fL(x) = 1−x .   

Let us observe that, if an additive generator exists for a t-norm ∗, then we can 

write  

x→∗  y = f[ -1] (f(y) – f (x)). 

and  

x↔∗y = f[ -1] (⎪f(x) − f(y)⎪). 

 

1.3 L-subsets 

An extension of classical logic is fuzzy logic. Classical logic holds that 

everything can be expressed in binary terms (0 or 1, black or white, yes or no), 

whereas fuzzy logic replaces boolean truth values with degrees of truth. In fuzzy 

logic the basic notion, which allows us to describe these degrees of truth, is that of  

fuzzy set (see [52]). Fuzzy set theory can be regarded as an extension of the 
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classical set theory, where the membership of elements to a set is estimate in binary 

terms: an element either belongs or does not belong to the set. Fuzzy set theory 

permits the gradual assessment of the membership of elements to a set. This 

property  is described by a membership function. 

 

Let X be a classical set of objects, called the universe, and the let x be a generic 

element of X. A subset A of X  can be represented by its characteristic function 

from X  to {0,1}  

⎩
⎨
⎧

∉
∈

=
A x     iff             
Ax    iff              

xA 0
1

)(χ  

In order to construct a generalized characteristic function, we consider any 

complete  lattice L. 

Definition 1.3.1  Let  L  be a complete lattice and let S be a set. We call L-subset of 

S  any  map s: S → L and we denote by LS  or by ℑ (S) the class of all the L-subsets 

of S. If L is the lattice [0,1] the map s is called fuzzy subset of S. 

 

Given any x in S, the value s(x) is the “degree of membership” of x to s. In 

particular, s(x)=0 means that x is not included in s, whereas 1 is assigned to the 

elements fully belonging to s. The values between 0 and 1 characterize the 

elements with a “non well-defined” membership: the closer to 1 the value of s(x) is, 

the more x belongs to s. Any L-subset s such that s(x) ∈ {0, 1}, for any x∈ S, is 

called crisp set. The support of a fuzzy set s is the classical subset of X,  supp s = 

{x ∈S / s(x) > 0}. The height of s is defined by hgt(s) = sup{s(x) / x ∈ S}. We say 

that a fuzzy set is normal if  there exists an element x of  S such that s(x)=1. 

 

Now we examine how the basic notions of set theory can be naturally extended 

to the fuzzy subsets. 
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Definition 1.3.2  We define the inclusion relation ⊆ by setting, for any s, s’∈ℑ(S) 

and for every x ∈ S,    

s ⊆ s’ ⇔  s(x) ≤  s’(x). 

If s ⊆ s’ we say that s is contained in s’ or that s is a part of s’. 

Definition 1.3.3  We define the union s∪s’, the intersection s∩s’ and the 

complement  ∼s  by setting,  for any s, s’∈ℑ(S) and for every x ∈ S,  

(s ∪ s’)(x) = s(x) ∨ s’(x) 

(s ∩ s’)(x) = s(x) ∧ s’(x). 

                                                      (∼s)(x) =  − s(x). 

 

Let us observe that, in accordance with Zadeh’s formulas, proposed in 1965, 

the symbols ∨, ∧, − are the usual supremum, infimum, complement operations in a 

lattice L, respectively. In such a case, when the lattice is restricted to the set {0,1}, 

the formulas of the last definition give us the usual union, intersection and 

complement of ordinary sets. Let us stress that there are many other ways of 

extending these basic operations and a very reasonable proposal for defining 

intersection between fuzzy sets is given by t-norms, introduced in Section 1.2.  

Proposition 1.3.1  The structure (ℑ(S), ∪, ∩, ∼, s0, s1) is a complete, completely 

distributive lattice which extends the Boolean algebra (P(S) , ∪, ∩, ∼, ∅, S). 

 

Proof. Indeed we can associate any subset X of S  with the related characteristic 

function Xχ . More precisely, the map H: P(S)→ ℑ(S), defined by setting H(X)= 

Xχ  for any  X∈P(S), is an injective lattice homomorphism from P(S) to ℑ(S). So 

we identify the classical subsets of S with the crisp L-subsets of S. Particularly, we 

identify ∅ with the map s0 constantly equal to 0 and S with the  map s1 constantly 

equal to 1. In general, given λ∈L, we indicate by sλ  the map constantly equal to λ. 
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� 

 

For exhibiting an element x of S that typically belongs to a fuzzy set s, we can 

require its membership value s(x) to be greater than some threshold λ∈L. The 

ordinary set of such elements is the closed λ - cut of s  

C(s, λ) = {x∈S / s(x)≥ λ}. 

Analogously, we can define the open λ-cut of an L-subset s of S setting              

O(s, λ) = {x∈S / s(x) > λ}. Let us observe that an L-subset s of S can be expressed 

in terms of the characteristic functions of its λ-cuts  

s(x) = sup {min (λ , ( )λχ ,sC (x)) / λ ∈L}, 

where ( )λχ ,sC (x)  =  
( )
( )⎩

⎨
⎧

∉
∈

λ
λ

s,C x     iff             
s,Cx    iff              

0
1

 .      

The following properties about λ-cuts can be easily deduced. 

Proposition 1.3.2  Let s, s’∈ ℑ (S). Then,  for every λ ∈L  the following properties 

hold: 

a) C(s, 0) = s, 

b) λ ≤ λ’  ⇒  C(s,λ ) ⊇ C(s,λ’ ), 

c) s ⊆ s’   ⇒  C(s,λ ) ⊆ C(s’ ,λ ) 

d) C(s∪s’ ,λ ) = C(s,λ ) ∪ C(s’,λ )      and     C(s ∩ s’ ,λ ) = C(s,λ ) ∩ C(s’,λ). 

 

Given a fuzzy set s: S → L  and a  λ-cut C(s, λ) of s, it is possible to define, for any   

λ ∈L,  another fuzzy set (see [38]),  

λC~ : C(s, λ)→L 

such that λC~ (x)= s(x). In this way, we obtain a particular class of fuzzy sets called 

level fuzzy sets of the fuzzy set s. 
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1.4 Fuzzy orderings 

It is possible to generalize in a natural way the notion of crisp relation by the 

concept of L-relation, defined as an L-subset of a Cartesian product. More 

precisely, given two set S1 and S2, an L- relation from S1 to S2 is a map R: S1 × S2→ 

L. If L is the interval [0,1], the map R  is called  fuzzy relation. In this section we 

examine a particular class of binary L-relations, the L- orderings on a set S.  

 

  Let ∗ be a triangular norm and let ord: S×S → L be an L- relation on S. Then 

we are interested to the following properties (see [22] ) : 

(1)  ord(x,x) = 1                                                                                  (reflexivity) 

(2)  ord(x,y) = ord(y,x)                                                                        (symmetry) 

(3)  ord(x,y) ∗ ord(y,z) ≤ ord (x,z)                                                 (∗- transitivity) 

(4)  ord(x,y) = ord(y,x) = 1 ⇒  x = y                                             (antisymmetry) 

where x, y, z ∈ S. 

Definition 1.4.1  An L- relation on S  ord : S×S→ L is called: 

-   L - preorder if it satisfies (1)  and (3)  , 

-   L- order, provided that it satisfies (1), (3) and (4), 

-   L -similarity, provided that it satisfies (1), (2) and (3) 

-  strict L- similarity, provided that it satisfies (1), (2), (3) and (4). 

If L  is the lattice [0,1] then we call these relations fuzzy preorder, fuzzy order and 

fuzzy similarity, respectively.   

 

The L-preorders are also called graded preference relations, since S can be 

interpreted as a set of possible choices and ord(x, y) as a measure of the preference 

of y with respect to x. 

We say that ord is crisp provided that it assumes values only in the Boolean 

algebra {0, 1}. The notions proposed in Definition 1.4.1 extend the classical ones. 

It means that the crisp preorders (orders, similarities, strict similarities) coincide 
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with the characteristic functions of the preorders (orders, equivalence relations, 

identity, respectively). By the λ-cuts we can establish a link between the L-

orderings and the classical orderings.   

 

Given an L-preorder ord, the cut C(ord, 1)={(x, y)∈S×S / ord(x, y)=1} is 

always a preorder relation we denote by ≤ and we call the preorder associated with 

ord. In other words, ≤ is defined by setting x ≤ y if and only if ord(x,y) = 1. So, an 

L-preorder is an L-order if and only if ≤ is an order relation. Also, if ord is a 

similarity, then C(ord,1) is an equivalence relation and if ord is a strict similarity, 

then C(ord,1) is the identity relation. Let us remark that if λ ≠ 1,  then the closed λ-

cut C(ord, λ)={(x,  y)∈S×S / ord(x, y) ≥ λ} is not a preorder, in general.  

Conversely, let ≤ be a preorder (order) relation, then its characteristic function is a 

L-preorder (L-order).    

 

It is well known that any preorder ≤ on a set S induces an equivalence relation 

≡ defined by setting x ≡ y provided that x ≤ y and y ≤ x. In this way, in the quotient 

S/≡ we obtain an order relation by setting [x]≤[y] if x ≤ y. Likewise, if ord  is an L- 

preorder on S, considering the preorder ≤ associated with ord, we obtain an 

equivalence relation by setting 

x ≡ y  ⇔  x ≤ y    and    y ≤ x. 

It means that x and y are equivalent if and only if  ord (x, y) =  ord(y, x) = 1 and we 

say that x is similar to y. Then once considered  the quotient S’ = S∕≡, it is 

immediate to prove that the mapping  

ord’: S’× S’ → L  such that  ord’ ([x], [y]) = ord (x, y)  

is well defined and it is an L-order on S’.  By this identification, it is always 

possible to change from an L-preorder  relation  to  an  L-order one. In particular, if 

ord  is an L-similarity, on the quotient S’  we still obtain an L-similarity ord’ such 

that   ord’ (x, y) = ord’ (y, x)  = 1 ⇒  x = y. 
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Let us observe that, in literature, we can also find other methods useful to 

construct an L-order  relation from an L-preorder relation. As an example (see 

[22]), let us consider a fuzzy preorder ord on a set S. It is possible to define a fuzzy 

similarity eq on S as eq(x, y) = ord(x, y)∧ord(y, x). Then, by considering the 

equivalence relation ≡ associated with eq, we obtain a fuzzy order ord’ on the 

quotient S/≡, defined as ord’([x], [y]) = ord(x, y).  

 

We conclude this section by listing some useful propositions. First, let us recall 

that, given two sets equipped with two L-relations, (S, r) and (S', r'), a map h : S → 

S' is called homomorphism  from (S, r) to (S', r')  if    

r(x, y) = r’ (h(x), h(y)). 

We say that h is an isomorphism if h is a one-to-one homomorphism. 

Proposition 1.4.1  If (S, ord) is an L-order, then any homomorphism defined in       

(S, ord) is injective. 

 

In the following proposition we show that any L-order on L induces an L-order 

on the class LS of all the L-subsets of S. 

Proposition 1.4.2  Let ord : L×L→L be an L-order on L whose associated order is 

the natural one on L, and define Incl : LS × LS → L by setting 

Incl(s1, s2) = Inf{ord(s1(x), s2(x)) / x∈S}.         

Then Incl is an L-order on LS  whose associated order is the usual inclusion 

between L-subsets (see Definition 1.3.2) . 

 

Moreover,  
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Proposition 1.4.3  Let L be a complete residuated lattice (see Definition 1.1.5) and 

S a nonempty set. Then the L-relation on LS  defined by setting: 

                             Incl(s1, s2) = Inf{s1(x) → s2(x) /  x∈S}                            (1.5) 

is an L-order whose associated order is the Zadeh inclusion between L-subsets. 

Definition 1.4.2  Let L be a complete residuated lattice and S a nonempty set. Then 

we call implication-based inclusion the L-relation Incl defined by (1.5) and 

implication-based inclusion space any structure (C, Incl) where C is a class of      

L-subsets of S  (see also [1] ). 

 

Let us observe that this definition is logic in nature. Indeed, in the first order 

multivalued logic, based on residuated lattices, the universal quantifier is 

interpreted by the operator Inf. And so, we can interpret the number Incl(s1, s2) as 

the valuation of the claim "for every x, if x belongs to s1 then x belongs to s2”. 

 

1.5 Fuzzy similarities 

The concept of similarity relation is essentially a generalization of an 

equivalence relation (see [51]). Moreover, by means of the notion of λ-cut, we can 

move from a similarity to a classical equivalence relation and vice versa. In the 

following, we make some observations referring to a similarity valued in [0,1]. 

 

As usual for a  fuzzy set, also for a fuzzy similarity E on a set S, given λ∈[0, 

1], we can consider the closed (open) λ-cut C(E, λ)=(x,y)∈S× S / E(x,y)≥ λ}           

(O(E, λ)={(x,y)∈S× S / E(x,y) > λ}, respectively). It can be proved that, if E is a 

fuzzy similarity, for every λ∈[0,1], each λ- cut  C(E, λ) is an equivalence relation 

on S. More precisely, given λ ∈[0, 1], we obtain an equivalence relation Rλ  by 

setting,  x Rλ y ⇔ (x, y) ∈ C(E, λ)  , for every x, y∈S.  Conversely, if  {Rλ  / λ 

∈(0,1]} is a nested family of distinct equivalence relations on S  (i.e. α > β    iff   Rα 
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⊂  Rβ  ), then, for any choice of  λ’ s in (0,1] which includes λ =1, E = ∪λ (λ, Rλ )  is 

a similarity relation on S defined as  

E(x, y)= sup{min(λ,  
λ

χ R (x, y)) / λ ∈(0,1]} 

where min(λ,  
λ

χ R (x, y))= 
( )

⎩
⎨
⎧ ∈

 otherwise.       
Ryx,   if       

0
λλ

 

 

In accordance, given a similarity E on S, we can consider the partition Pλ 

induced on S by C(E, λ). If α ≥ β, then Pα is a refinement of Pβ . Moreover, a 

similarity can be interpreted in terms of fuzzy similarity classes E[xj], defined, for 

every element xj  of the universe as E[xj] (xi ) = E (xi , xj) , which is the grade of the 

membership of xi in the fuzzy class E[xj] .  

 

Let us briefly recall that, given a first order language ℒ, we can define a fuzzy 

model for ℒ as a pair (D, I) where, for any n-ary relation name r, R = I(r) is a fuzzy 

subset of Dn, i.e. an n-ary fuzzy relation. Let us assume that the language ℒ 

contains a binary relation name r and let us consider the following axioms, basic to 

define the notion of equivalence in classical set theory: 

• ∀x  r(x, x), 

• ∀x∀y (r(x, y) → r(y, x)), 

• ∀x∀y∀z (r(x, y) ∧ r(y, z) → r(x, z)); 

It is evident that an interpretation R = I(r) satisfies the above axioms if and only 

if the properties of reflexivity, symmetry and transitivity are satisfied, i.e. R = I(r) 

is a fuzzy similarity. Let us observe that if we also consider the axiom  ∀x∀y ( (r(x, 

y)) ∧ (r(y, x)) → x = y) then the interpretation R = I(r) satisfies the added axiom if 

and only if the property of antisymmetry (i.e. R(x, y) = 1 and R(y, x) = 1 ⇒ x = y )is 

satisfied. 
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1.6 Distances 

In this section we give some information about structures consisting of a set 

equipped of a distance, which can be finite or infinite. 

Let M be a non-empty set and d: M × M → [0, ∞) be a mapping. Also, let us 

consider the following axioms for any x, y, z ∈ M : 

(d1)  d(x, y) = 0 ⇒ x = y,                                                          

(d'1)  d(x, x) = 0,                                                                             (reflexivity) 

(d2)  d(x, y) = d(y, x),                                                                     (symmetry) 

(d3)  d(x, z) ≤  d(x, y) + d(y, z),                                   (triangular inequality) 

(d'3) d(x, z) ≤  d(x, y) ∨ d(y, z),                       (strong triangular inequality) 

(d4)  d(x, y) = 0   and   d(y, x) = 0  ⇒   x = y. 

                                     

Then (M, d) is called   

       -  metric space                          if it satisfies (d1), (d'1), (d2) and (d3); 

       -  pseudometric space               if it satisfies (d'1), (d2) and (d3);   

       -  quasi-metric space                if it satisfies (d1), (d'1), (d3) and (d4); 

       - quasi-pseudometric space      if it satisfies (d'1), (d3) and(d4); 

       - semi- metric space                 if it satisfies (d2), (d3) and (d4). 

Likewise, if we have the axiom (d'3) instead of (d3) then (M, d) is called 

        -  ultrametric space,                             

        -  pseudo ultrametric space,                  

        -  quasi- ultrametric space,                   

        - quasi - ultrapseudometric space,       

        - semi-ultrametric space, 

respectively. Finally, if the axiom (d4) is not required, then they are called 

generalized spaces (metric, ultrametric, pseudometric, etc.) 

Then, as the word “generalized” refers to the lack  of the axiom (d4), by 

relating to the usual definition of metric space: 
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• the word “pseudo” refers to the lack of the axiom (d1);  

• the word “quasi” refers to the lack of the symmetric property (d2);  

• the word “semi” refers to the lack of reflexivity; 

• the word “ultra” refers to the fact that we consider the strong triangular 

inequality with the maximum operation ∨ instead of the sum. 

Moreover, let us observe that (d'3) entails (d3). So, any ultrametric space is a 

metric space. 

 

In the case that the map d takes values in the closed interval  [0, ∞] the spaces 

are called extended. In other words, the word "extended" indicates the possibility 

that a distance is infinite. In such a case, we can define the diameter of any subset 

X of M. 

Definition 1.6.1  The diameter D(X) of a subset X of M is the number in [0,∞] 

defined by setting 

D(X) = Sup{d(x,y) / x, y∈X}. 

If D(X) ≠ ∞, then we say that X is bounded. We say that the space (M, d) is 

bounded provided that M  is bounded. 

Definition 1.6.2  Let (M’,d’) and (M, d) be two structures, where d’: M’× 

M’→[0,∞] and d: M ×M→[0,∞]  are two distances. Then a map i: M’→M is called 

isometry provided that  

d’(x, y) = d(i(x), i(y)), 

for any x, y ∈M’. An isomorphism is an one-to-one isometry. 

 

1.7 Ultrametrics and quasi-metrics 

Now we focus our attention to ultrametric spaces and to quasi-metric soaces 
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 Ultrametric distances are not much known, but they are used in a lot of 

applications. Indeed, an ultrametric space can be represented by a tree-structure 

and so, these kind of distances are suitable for classification processes (see [29]). 

Ultrametric spaces verify some interesting anomaluos properties, such as   

(U1) If two open balls intersect, then a ball is included in the other one.  

(U2) If two closed balls intersect, then a ball is included in the other one. 

(U3) Every point in an open ball is a centre of the ball (egocentricity). 

(U4) Every point in a closed ball is a centre of the ball (closed egocentricity). 

(U5) Every open ball is closed and every closed ball is open. 

(U6) Every triangle is isosceles and its base is less than or equal to the other two 

sides.  

 

If we imagine an ultrametric space as having its points on a line or in a plane, 

we cannot appeal to our usual intuition for distance. Instead, it is useful to have a 

new framework for visualizing the ultrametric space, the tree-structure. In this way, 

it is easier to understand the properties. As an example,  the fact that “triangles are 

always isoceles” is demonstrated by drawing the few different possible relative 

positions of three points, as in Figure 1. If two points q and r are close to one 

another, then their distances to a more distant point s must be the same. 

 

 

 
Figure 1 
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The picture of a ball is also simple. Given a point q and a distance γ, the set {x / 

d(x, q) ≤ γ} is represented in an ultrametric tree by the set of all leaves in the 

subtree descending from a certain node  (see Figure 2) 

 

 
Figure 2 

 

With this picture, it is easy to see why every point in a given ball is actually a 

centre of the ball. Let us suppose r is an arbitrary point in the ball of Figure 2. Then 

the ball centred at r, {x / d(x, r) ≤ γ}, is represented by the set of leaves in the 

subtree descending from the (unique) node above r at level γ . But this node is the 

same as that above q at level γ , giving the same ball. 

 

Examples. Let M ≠ ∅ and let d  be the discrete metric on M defined by 

d(x, y) =  
⎩
⎨
⎧

≠
=

 yx  if       
yx  if       

1
0

 

Then (M, d) is an ultrametric space. 

Let X be the set  defined as X = {1/2n / n∈ ℕ} ∪{0} and let d be a map defined 

by d(x, y)= max {x, y} if x ≠ y. Then (X, d) is an ultrametric space.  
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Now let us examine the second kind of distances covered in this section. We 

have seen in the previous section, that a quasi-metric on a set X is a distance 

function somewhat like a metric, but with significant weakening of the metric 

axioms. In particular, quasi-metrics are characterized by the lack of the symmetry 

axiom. We enunciate some interesting properties of this kind of distances and we 

furnish some examples of them. 

Let us begin by observing that if d is a quasi-pseudometric on X, then the 

function d-1, defined on X×X by d-1(x, y)=d(y, x), is still a quasi-pseudometric on X. 

Besides, we have 

Proposition 1.7.1  Any quasi-metric d: X×X→ℝ+ is order-preserving with respect 

to the first variable and order-reversing with respect to the second variable.  

  

The quasi-metric spaces are related with the partial orders (see [10]) and we 

have: 

Proposition 1.7.2  Let (X, d) be a quasi-metric space, then the relation ≤ defined 

by setting, for any x, y∈X: 

x ≤ y ⇔ d(x, y) = 0 

is a partial order. Conversely, let ≤ be any partial order in a set X  and let us 

define the map d: X×X→ℝ+  by setting  

                                                      0    if  x ≤ y 

                             d(x,y) = 

                                                      1    otherwise. 

Then (X, d) is a quasi-metric space whose associated partial order is ≤. 

 

An interesting class of quasi-metric spaces is related to the Hausdorff distance. 

Indeed, given a metric space (M,δ), let x∈M and X be a nonempty subset of M. We 



 Distance and closeness measures in information spaces 

 31

define δ(x, X) by setting δ(x, X) = Inf{δ(x, y) / y ∈ X}. Also, we can define the 

excess function eδ by setting, for any X and Y in P(M)-{∅}, 

eδ(X, Y) = supx∈Xδ(x, Y). 

The excess function results to be a quasi-metric. 

Let us recall that the Hausdorff distance between two sets, X and Y, is defined by 

                                      δH(X, Y) = max{eδ (X, Y), eδ(Y, X)}.    (1.6) 

  

Let us give another example of quasi-metric distance (see [42]). Let (D, ≤) be a 

Scott domain, i.e. an algebraic, bounded complete partial ordered set, and let BD be 

the set of compact elements of D. Let us define a function r: BD→ ℕ such that r-

1(n) is a finite set, for every n. Then the map D defined by 

                            D(X, Y)=inf{2-n / Z≤X ⇒ Z≤Y  for every Z of rank ≤n}   (1.7)  

is a quasi-metric. 

 

Finally let us observe that, given a quasi-metric d on a set X, it is possible to 

define an associate  metric d’ on X, by setting d’(x, y) = max{d(x, y), d(y, x)}. We 

can call d’ the symmetrization of d.    

             

1.8 Some dualities between “closeness” and “distance” 

There is an easy understandable duality between the notions of “closeness” and 

the one of “distance”. Indeed, if one wants to compare some objects accordingly to 

their properties, it is possible to use or a measure of how they are “similar” or a 

measure of how they are “distant”. Obviously, the smaller the distance is, the 

bigger the closeness is. More precisely, it is well-known that the notion of fuzzy 

similarity is connected to the non-fuzzy concept of pseudometric . The first notion 

seems more suitable than the second one in dealing with situations in which the 

objects involved do not verify sharply defined properties, but “vague” properties. 
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We start this section by analyzing the most simple case: the case in which the 

considered t-norm is the minimum t-norm. 

The following proposition, whose proof is immediate, extends (to fuzzy orders 

and quasi-ultrametric distances) a connection between similarities and metrics 

proved in [45]. 

Proposition 1.8.1  Let ∗  be the Gödel  t-norm, let  d: M×M → [0, 1] be  a map, 

and let us set  

ord (x, y) = 1 - d(x, y). 

Then:  

(i) ord  is a fuzzy  similarity if and only if d is an pseudo ultrametric; 

      (ii) ord  is a fuzzy preorder if and only if d is a generalized quasi  ultrametric; 

(iii) ord  is a fuzzy order if and only if d is a quasi-ultrametric. 

 

As in the case of the fuzzy relations, if d is a generalized metric (ultrametric) 

space, the position  

x≡y   ⇔   d(x, y) = 0 and d(y, x) = 0 

defines an equivalence relation. Then  it  is  possible  to  divide  the space into the 

classes [x] = {y ∈ M / d(x, y) = d(y, x) = 0}. Moreover, it is immediate to prove that 

the mapping  

d': (M∕≡) × (M∕≡) → [0,1]   such that   d'([x], [y]) = d(x, y)  

is well defined and it is a generalized metric (ultrametric) distance satisfying (d1) 

on the space of equivalence classes. By this identification it is possible to change 

from a pseudometric structure to a metric one. So, from Proposition 1.8.1  it 

follows that ord'  is a similarity if and only if d' is an ultrametric distance.  

 

The fuzzy similarity with the Gödel t-norm is a limited notion because it is 

equivalent to a restricted class of metrics, the class of ultrametrics. For similarities 
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with a t-norm different from the Gödel one it is possible to obtain an analogous 

result to Proposition 1.8.1. To this aim, it is useful the notion of additive generator 

of a t-norm and the notion of  its pseudoinverse (Definition 1.2.5). By means of the 

Archimedean t-norms’ characterization we are able to extend a connection between 

pseudometrics and  fuzzy-similarities exposed in [45].  

Proposition 1.8.2  Let  ∗  be  a  continuous  Archimedean   t-norm  and                   

f: [0, 1] → [0, ∞] an additive generator of  ∗.  Moreover, let d: M×M →[0, 1] be a 

map and define the fuzzy relation ordf(d): M×M → [0, 1] by setting 

ordf(d)(x, y) =  f [-1](d(x,y)). 

Then: 

(i) d is an extended (generalized) pseudometric   ⇒   ordf(d)  is a ∗-fuzzy similarity 

(ii) d is an extended  quasi-metric    ⇒     ordf(d)  is a ∗-fuzzy order. 

(iii) d is an extended generalized quasi-metric     ⇒    ordf(d) is a ∗-fuzzy preorder; 

(iv) d is an extended metric     ⇒    ordf(d) is a strict ∗-fuzzy  similarity. 

 

Proof. (i) The reflexivity is immediate, since ordf(d)(x,x) = f [-1](d(x,x))= f [-1](0) 

 = 1. The symmetry  follows from definitions, trivially. To prove the ∗ -transitivity, 

i.e. 

            ordf(d) (x, y) ∗ ordf(d) (y, z) ≤ ordf(d) (x, z)          (1.6) 

let us observe that, by the definition of pseudoinverse, in the case d(x,y)∉ f([0,1]) 

we have that ordf(d)(x, y)= f [-1] (d(x,y)) = 0 and in the case d(y,z)∉ f([0,1]), we 

have that ordf(d)(y, z) = f [-1] (d(y,z)) = 0. In both the cases, (1.6) is trivial. If we 

take x, y, z ∈ M such that both d(x,y) and d(y,z) ∈ f([0,1]), then, by  (1.4), we have 

ordf(d) (x, y) ∗ ordf(d) (y, z)  = f [-1] (d(x,y)) ∗  f [-1] (d(y,z))=  

                                              = f [-1]( f(f [-1] (d(x,y)) ) + f(f [-1] (d(y,z)) ) ) = 

                                              = f [-1]( d(x,y) + d(y,z) ) ≤  f [-1](d(x, z)) = ordf(d)(x, z),  

because f [-1] is strictly decreasing. 



 Distance and closeness measures in information spaces 

 34

(ii) We have to prove the antisymmetry of ordf(d). So, let x, y ∈ M such  that  

ordf(d)(x, y) = 1= ordf(d)(y, x). From  this  condition follows  that  f [-1](d(x, y)) = 1 

= f [-1](d(y, x)), and therefore f −1(d(x,y)) = 1 = f −1(d(y,x)). Then d(x,y) = 0 = d(y,x) 

and, by the antisymmetry of d, x = y. 

(iii) (iv) The proofs are analogue to the previous ones. 

� 

 

Examples. Let d be the usual distance in an Euclidean space and let f(x) = 1−x. 

Then ordf(d)(x,y) = 1−d(x,y) if d(x,y) ≤1, and ordf(d)(x,y) = 0 otherwise. ordf(d) is a 

∗-fuzzy order where ∗ is the Lukasiewicz norm.  

As another example, let us assume that f(x) = −log(x). Therefore, we set 

ordf(d)(x,y) = e−d(x,y) and we obtain a ∗-fuzzy order, where ∗ is the product t-norm. 

As a matter of fact, in both the examples ordf(d) is a strict  ∗-similarity. 

 

Conversely, we can associate any fuzzy order with an extended metric. 

Proposition 1.8.3  Let f:[0, 1] → [0, ∞] be an additive generator and ∗ be the 

related t-norm. Let ord: M × M→ [0, 1]  be a map and consider the function 

df(ord): M × M → [0, ∞]  defined by setting 

df(ord)(x, y) = f(ord(x, y)) 

Then: 

(i’) ord is a ∗- fuzzy similarity ⇒  df(ord) is an extended generalized pseudometric; 

(ii’) ord  is a ∗- fuzzy order  ⇒    df(ord)  is an extended  quasi-pseudometric; 

(iii’)ord is a ∗- fuzzy preorder ⇒ df(ord) is an extended generalized quasi-

pseudometric; 

(iv’) ord is a strict ∗- fuzzy similarity  ⇒   df(ord) is an extended  metric.  
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Proof. (i’)  For any x∈M,  df(ord)(x,x) = f(ord(x,x)) = f(1) = 0 and so the 

reflexivity is proved The symmetry of df(ord) follows from definitions, 

immediately. Before proving the triangular inequality of df(ord), i.e.  

f(ord(x,y)) + f(ord(y,z)) ≥ f(ord(x,z)), 

we recall that 

 

                    x               if x∈ f ([0, 1] 

 f (f [-1](x)) =  

                   f (0)          otherwise 

where f(0) is the maximum of the function. Then, since f is decreasing and ord is  

∗- transitive, we observe that,  

f( ord(x, y)∗ord(y, z) ) ≥ f(ord(x, z)) and therefore, by (1.4), 

f ( f [−1]( f(ord(x, y)) + f(ord(y, z)) )) ≥ f(ord(x, z)). 

Now, if f(ord(x, y)) + f(ord(y, z)) ∈ f([0,1]), we obtain that 

f(ord(x, y)) + f(ord(y, z)) ≥ f(ord(x, z)). 

Otherwise, 

f(ord(x, y)) + f(ord(y, z)) ≥  f(0)  ≥  f(ord(x, z)). 

(ii’) We have to prove the antisymmetry of df(ord). Let x, y ∈ M such  that  

df(ord)(x, y) = 0 and df(ord)(y, x) = 0. Then f(ord(x,y)) = 0 = f(ord (y,x)), and hence 

ord(x,y) = 1 = ord(y,x). From the antisymmetry of ord  it follows that x = y.  

(iii’) (iv) The proofs are analogue to the previous ones.  

� 

Let us provide in the following table some examples.  

 

T-NORM 
ADDITIVE 

GENERATOR 
DISTANCE 

Product 

a∗b = a·b 
f(x)= −log(x) df(ord)(x,y)= −ln (ord(x,y))  
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Lukasiewicz 

a∗b=max(0, a+b−1) 
f(x)= 1−x df(ord)(x,y)= 1− ord(x,y) 

Table 1 

 

The established connection in the last two propositions is not completely 

satisfactory, in a sense. In the next proposition we observe that, while 

ordf(df(ord))= ord, it results df(ordf(d)) ≠ d, in general. Indeed, we have the 

following. 

Proposition 1.8.4  Let f be an additive generator of a t-norm ∗.  Then, for any fuzzy 

preorder ord, 

ordf(df(ord))= ord. 

Moreover, for any extended generalized quasi-metric d : S×S → [0, ∞],we have 

df(ordf(d))= d∧f(0). 

 

Proof. Observe that f( f[-1](d(x,y))) = d(x,y) if d(x,y)≤ f(0) and f(f[-1](d(x,y))) = 

f(0) otherwise.  

� 

 

Then, given an additive generator f, the resulting connection among ∗-fuzzy 

preorders and extended generalized quasi-metrics works well only for the extended 

generalized quasi-metrics (M, d) such that the diameter D(M)≤ f(0). As an example, 

if f coincides with –log, then since f(0) = ∞, all works well. Instead, if f(x) = 1−x, 

and d is the usual Euclidean distance, then df(ordf(d))(x,y) = d(x,y) if d(x,y) ≤ 1 and 

df(ordf(d)) (x,y) = 1 otherwise. 
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Chapter 2                                   

Incomplete and fuzzy information spaces 
 

 

The dualities examined in Chapter Chapter 1 allow us to establish a link 

between some “metric” structures, in the context of point-free geometry, and some 

structures equipped with fuzzy relations. These notions are defined on suitable 

spaces of “regions”.      

 

2.1 Point-free geometry and incomplete pieces of information 

The aim of point-free geometry is to give an axiomatic basis to geometry in 

which the notion of point is not assumed as a primitive. In this direction, geometry 

can be built up by assuming as primitive the notions of  region or solid and, 

thereafter defining the points in a suitable way. If we want to refer to pointless 

geometry in terms of the vocabulary of  logic, we say that regions are considered as 

individuals, i.e., first order objects, while points are represented by classes (or 

sequences), i.e. second order objects.   

Several authors addressed their researches to attempts of building a geometry 

“without points”. One of the first  example in such a direction was furnished by 

Whitehead’s researches,  where the primitive notions are the regions and the 

inclusion relation between regions (see [46], [48]). Anyhow, this approach seems 

more suitable as a basis for a "mereology", i.e. an investigation about the set 

theoretical part-whole relation, rather than about a point-free geometry. So, it is not 

surprising the fact that, later, Whitehead proposed a different approach, topological 

in nature, in which the primitives are the regions and the connection relation, that 
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is, the relation between two regions that either overlap or have at least a common 

boundary point (see [47]). 

Recently the increased interest in point-free geometry is due to the different 

reasons. As an example, one of them is related to the complexity, from a 

computational point of view, of the Euclidean geometry based on the notion of 

point. Our interest in the point-free approach mainly derived from the adequacy of 

the notion of region to represent incomplete information. Indeed, given a region, 

the measure of its diameter can be interpreted as a measure of the incompleteness 

of the available information: the bigger the diameter is, the less complete the 

information is. Points, having zero-diameter, represent precise information.    

 

2.2 Metrical approach to point-free geometry 

In accordance with Whitehead ideas, Gerla proposed in [23], [24] a system of  

axioms for the pointless spaces theory in which regions, inclusion, distance and 

diameter are assumed as primitives and, in order to give a metric approach to 

point-free geometry, defined the notion of pointless metric space.                

Definition 2.2.1  A pointless pseudometric space, briefly ppm-space,  is a structure 

(R, ≤, δ, | |), where 

• (R, ≤) is an ordered set; 

• δ : R×R→[0,∞) is an order-reversing map, i.e. x ≥ y ⇒ δ(y, z) ≤ δ(x, z), for every 

x, y, z ∈ R; 

• | |:R →[0, ∞] is an order-preserving map, i.e. x ≥ y ⇒ |x| ≥ |y| for every x, y ∈ R 

and, for every x, y, z ∈ R  the following axioms hold: 

(a1) δ(x, x) = 0 

(a2) δ(x, y) = δ(y, x) 

(a3) δ(x, y) ≤ δ(x, z) + δ(z, y) + |z|   (generalized triangle inequality). 
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The elements in R are called regions, the relation ≤ inclusion, the number δ(x, 

y) the distance between the regions x and y and the number |x| the diameter of x. A 

region x is bounded if  its diameter |x|  is finite. 

Definition 2.2.2  We call atoms the minimal elements of R, with diameter equal to 

zero. 

 

Let us observe that ppm-spaces generalize pseudometric spaces; indeed 

pseudometric spaces coincide with the ppm- spaces for which every region is an 

atom, that is the order relation coincides with the identity relation and | | is 

constantly equal to zero. 

To define pointless metric spaces, let us recall that a metric space (M, d) is a 

pseudometric space such that x=y ⇔ d(x, y)= 0; in other words the identity relation 

can be defined via the distance function. In accordance, we give the following 

Definition 2.2.3  A  pointless metric space, briefly pm-space, is a ppm-space (R, ≤, 

δ, | |), such that 

x ≥ y ⇔ |x| ≥ |y| and δ(x, z) ≤ δ(y, z) for every z ∈ R.. 

 

As we will show in Proposition 2.5.1, this equivalence supports a way to define the 

inclusion from a distance and a diameter. 

Metric spaces coincide with the pm-spaces such that all the regions are atoms. 

 

We introduce now a particular class of pointless metric spaces, related with the 

notion of ultrametric spaces: the class of pointless ultrametric spaces (see [20]). 

Definition 2.2.4  A pointless ultrametric space, briefly pu-space, is a pm-space    

(R, ≤, δ, | |) such that 

(A3) δ (x, y) ≤ δ(x, z)∨δ(z, y) ∨| z| (generalized strong triangle inequality),  

where ∨  is the maximum. 
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Let us observe that, since 

δ(x, z) ∨δ(z, y) ∨ |z| ≤ δ (x, z) + δ (z, y) + |z|, 

then (A3) entails (a3).  

 

In a  ppm-space it is possible to define points by means of a procedure similar 

to the completion of a metric space by Cauchy sequences. Let us describe such a 

procedure by the introduction of the notion of abstraction process. 

Definition 2.2.5  An abstraction process of a ppm-space R is a sequence  〈 pn 〉n∈ℕ 

of nonempty bounded regions such that  

a) lim n→∞| pn | = 0, 

b) ∀ε > 0 ∃ν∈ℕ  such that  ∀h, k ≥ ν, δ(ph, pk) < ε.      

 

We denote by AP(R)  the class of the abstraction processes of R. 

Decreasing sequences of nonempty regions with vanishing diameters are 

examples of abstraction processes. It is possible that in a ppm-space there is no 

abstraction process. Let us enunciate the following proposition, whose proof we 

omit.  

Proposition 2.2.1  Let (R, ≤, δ, | |) be a ppm-space and let AP(R) be nonempty.Let 

us define the map dis: AP(R) × AP(R)→ [0, ∞)  by  

dis(〈 pn 〉n∈ℕ, 〈 qn 〉n∈ℕ) = limn→∞δ(pn, qn), 

for every 〈 pn 〉n∈ℕ, 〈 qn 〉n∈ℕ ∈ AP(R). Then (AP(R), dis) is a pseudometric space. 

 

We denote by (M(R), dis) the metric space obtained as a quotient of (AP(R), 

dis),  modulo the relation ≡ defined by 〈 pn 〉 ≡ 〈 qn 〉 ⇔ dis(〈 pn 〉, 〈 qn 〉) = 0. In 

accordance, we call point every element of M(R), i.e. a point P is a class 

[〈 pn 〉] = {〈 qn 〉 ∈ AP(R) /  〈 qn 〉 ≡ 〈 pn 〉}. 
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The distance between points dis: M(R)× M(R)→ [0, ∞) is defined by setting, for 

every P, Q ∈ M(R)    

dis(P, Q) = dis(〈 pn 〉n∈ℕ, 〈 qn 〉n∈ℕ) = limn→∞δ(pn, qn), 

where 〈 pn 〉, 〈 qn 〉 ∈ AP(R) are representatives of P and Q, respectively.  

 

2.3 Canonical pm-spaces 

A class of basic examples of pm-spaces and pu-spaces is obtained by starting 

from a class of subsets of a  pseudometric space, with the usual inclusion relations 

⊆ between subsets. 

Proposition 2.3.1  Let (M, d) be a pseudometric space and let C be a nonempty 

class of bounded and nonempty subsets of M. Define δ and | | by setting 

δ(x, y) = inf{d(X,Y) / X∈x, Y∈y} 

and 

|x|= sup{d(X, Y) / X, Y∈x}, 

for every x, y ∈ C. Then (C, ⊆, δ, | |) is a pm-space. Besides, if (M, d) is a 

pseudoultrametric space, then (C, ⊆, δ, | |) is a pu-space. 

 

Proof. (a1) and (a2) are immediate. To prove (a3), let x, y and z be subsets of 

M, X∈x, Y∈y, Z and Z’∈z; then 

δ(x, y) ≤ d(X,Y) ≤ d(X, Z) + d(Z, Z’) + d(Z’, Y) ≤  d(X, Z) + d(Z’, Y) + |z|. 

Consequently, 

δ(x, y) ≤ δ(x, z) + δ(z, y) + |z|. 

Now assume that (M, d) is a pseudoultrametric space. Then 

δ(x, y) ≤ d(X, Y) ≤ d(X, Z) ∨ d(Z, Z’) ∨ d(Z’,Y) ≤ d(X, Z) ∨ d(Z’, Y) ∨ |z|, 

and therefore (C, ⊆, δ, | |) is a pu-space. 

� 
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The so obtained spaces are called canonical. 

Thanks to these models, it is possible to clarify the meaning of the generalized 

triangular inequality (axiom (a3) of Definition 2.2.1). Let us observe Figure 3: 

 
Figure 3 

 

We can guess that in such a case δ(x, y)≥δ(x, z)+δ(z, y), so it is necessary to 

consider |z|. In other words, it is necessary to take in account the incompleteness of 

the information represented by the region z, more precisely, by the measure of its 

diameter. 

 

2.4 Semimetrics and semisimilarities   

In this section we introduce two new classes of structures. The structures in the 

first one are based on distances which satisfy symmetry and a triangular inequality, 

whereas reflexivity is not required. In other words, we consider semimetrics in the 

context of point-free geometry. The second class is made up of structures with a 

particular fuzzy relation. We find also a connection between these two classes, 

which result to be dual. 

Definition 2.4.1  A semi-metric space, briefly sm-space, is a structure (R, d) where 

R is a set whose elements are called regions and d:R×R→[0, ∞] is a function we 

z

x 

δ(z, y) δ(x, z) 

y 

δ(x, y) 
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call semi-distance, verifying, for any x, y, z∈R  axioms (d2) and (d3) of Section 

1.6: 

(d2) d(x, y) = d(y, x), 

(d3) d(x, y) ≤ d(x, z) + d(z, y) . 

 

Let us remark that the condition d(x, y)=0 is not required. Given a semi-distance d, 

we define a diameter by setting: 

                                                          |x|d =d(x, x) .                                          (2.1) 

 

Let us observe that by setting y = x and z = y in (d3), we obtain that  

d(x, x)≤ d(x, y)+d(y, x) 

and therefore, by (d2), that  d(x, x)≤ 2d(x, y). Likewise we have that d(y,  y)≤ 2d(x, 

y) and therefore it results 

d(x, y) ≥ 
22

dd
yx

∨ . 

So we can have d(x, y) = 0 only in the case both x and y have zero-diameter. 

As we saw in Section 1.8 of Chapter Chapter 1, in literature it is possible to 

find a duality between the notion of metric and the notion of similarity (for 

example in [26]). Likewise we can give the next definition as a dual concept of 

semidistance.  

Definition 2.4.2  Let ∗ be a t-norm. A semisimilarity is a fuzzy relation E on R 

such that 

(e1) E(x, y) = E(y, x)         (symmetry) 

(e2) E(x, z) ∗ E(z, y) ≤ E(x, y)   (transitivity) 

for every x,  y, z ∈R.  

 

Let us recall that a similarity is a semisimilarity such that  

(e3) E(x, x) = 1. 
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E(x, y) is regarded as truth-value of a statement like x =R y. Semisimilarities are 

used to give a general approach to fuzzy sets theory based on the notion of 

category (see also M. Fourman and D.S. Scott [18]), and it is possible to show that 

they are strictly related with sm-spaces. Two cases regarding Definition 2.4.2 are 

examined: the case of Archimedean t-norms and the case of the Gödel t-norm. In 

the first one we use, (as in Gerla, [25]), the connection examined in Section 1.8 of 

Chapter Chapter 1. We have: 

Proposition 2.4.1  Let f: [0, 1]→[0, ∞] be an additive generator of an 

Archimedean t-norm ∗ and let d be a semidistance on a set R..Then the fuzzy-

relation Ef(d) defined by  

Ef(d)(x, y) = f[-1](d(x, y)) 

is a semisimilarity with respect to the t-norm ∗. 

Conversely, let E be a semisimilarity on R with respect to the t-norm ∗, then the 

structure  (R, df (E)) where df(E) is defined by 

df (E)(x, y) = f (E(x, y)), 

is a sm-space. 

 

Proof. It is analogous to that one of Proposition 1.8.2 and Proposition 1.8.3. 

 

If  the t-norm is the Gödel t-norm the transitivity becomes 

(e2*) E(x, z) ∧ E(z, y) ≤ E(x, y). 

In such a case, we call the semisimilarity G-semisimilarity and, setting y = x in 

(e2*), we obtain that 

E(x, z) ∧ E(z, x) ≤ E(x, x) 

and therefore that E(x, z) ≤ E(x, x). Then 

E(x, z) ≤ E(x, x) ∧ E(z, z). 



 Distance and closeness measures in information spaces 

 45

Since the Gödel t-norm is not Archimedean, Proposition 2.4.1 doesn’t hold for 

it. So, in this case, we consider a subclass of sm-spaces, shrinking the codomain of 

the semidistance  and adding an axiom. 

Definition 2.4.3  A semi-ultrametric space, briefly su-space, is a sm-space (R, d), 

where the semi-distance is a function d: R×R→[0, 1], such that, for any x, y, z ∈ R: 

(d’3) d(x, y) ≤ d(x, z) ∨ d(z, y) . 

 

Obviously, (d’3) entails (d3). Let us observe that by setting y = x and z = y in 

(d’3), we obtain that  d(x, x)≤d(x, y) ∨ d(y, z) and therefore, by (d2), that d(x, x)≤ 

d(x, y). Likewise we have that d(y, y)≤ d(x, y) and therefore it results 

d(x, y) ≥ |x|d ∨|y|d. 

 

Now we are able to describe the relation between the G-semi-similarities and 

the su-spaces. 

Proposition 2.4.2  Let d be a semi-ultrametric on a set R, then the fuzzy-relation Ed 

defined by 

                                                Ed(x, y) = 1-d(x, y)                                                (2.2) 

is a G-semi-similarity. Conversely, let E be a G-semisimilarity on R, then the 

structure (R, dE), defined by 

                                               dE(x, y) = 1-E(x, y)                                                 (2.3) 

is a su-space. 

Proof. Let Ed be defined by (2.2). Then (e1) is immediate. To prove (e2*) 

observe that 

Ed(x, y) ∧ Ed(y, z) = (1- d(x, y)) ∧ (1- d(y, z)) 

= 1-(d(x, y) ∧ d(y, z))≤ 1- d(x, z) = Ed(x, z). 

Now let us consider dE defined by (2.3). Then (d2) is immediate. To prove (d’3) it 

is sufficient to observe that 
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d(x, y) = 1- E(x, y) ≤ (1-E(x, z)) ∨ (1-E(z, y)) 

= d(x, z) ∨ d(z, y). 

� 

 

Now we give a characterization of G-semisimilarities in terms of related cuts 

and by means of the notion of semiequivalence. 

Definition 2.4.4  Let S be a nonempty set. A (classical) relation R on S is called 

semiequivalence provided that it is symmetric and transitive. 

 

Let us denote by DR = {x∈S / there is an element  y∈S : (x, y)∈R} the domain 

of R. Then,  

Proposition 2.4.3  A relation R on a set S is a semiequivalence if and only if is 

symmetric and it is an equivalence relation on its domain. 

 

Proof.  Let R be a semi-equivalence relation. It results that if x∈DR, then (x, 

x)∈R, that is, R is reflexive in DR. Indeed, if y is such that (x, y)∈R, by the 

symmetry (y, x)∈R and, in account of the tranisitivity, we have (x, x)∈R. 

Therefore, every semiequivalence relation R on S is an equivalence relation on its 

domain DR. 

Vice versa, if R is an equivalence relation on DR and if it is symmetric on S, 

then R is a semiequivalence relation on S. Indeed let x, y, z ∈ S such that (x, y)∈R 

and (y, z)∈R. By the symmetry (z, y)∈R and by the definition of DR it results that x, 

y, z ∈ DR. By the transitivity on DR it results (x, z)∈R. 

� 
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Definition 2.4.5  A family (Rλ)λ∈[0,1] of semiequivalence relations on a set S is 

called order-reversing if it results that 

• Rβ ⊆ Rα for every α ≤ β, α, β∈ [0,1]; 

• R0 = S × S. 

Proposition 2.4.4. A fuzzy relation E is a G-semisimilarity if and only if the cuts of  

E define an order-reversing family (C(E, λ))λ∈ [0,1] of semiequivalences. 

 

Also, any order-reversing family of semiequivalence relations defines a G-

semisimilarity. 

Proposition 2.4.5  Let (Rλ)λ∈[0,1] be an order-reversing family of semiequivalence 

relations. Then the fuzzy relation E defined by setting 

E(x, y) = Sup{λ /(x, y) ∈ Rλ}      

is a G-semisimilarity. 

Proof. Condition (e1) is immediate by the symmetry of Rλ. To prove (e2*), let 

us consider 

E(x, z) = Sup{λ / (x, z) ∈ Rλ } = μ 

E(z, y) = Sup{λ / (z, y) ∈ Rλ } = ξ 

E(x, y) = Sup{λ / (x, y) ∈ Rλ } = η. 

Let us suppose μ ≤ ξ (likewise ξ ≤ μ). Since (Rλ)λ∈[0,1] is an order-reversing family 

of relations, it results Rξ ⊆ Rμ. Therefore we have (x, z) ∈ Rμ and (z, y) ∈ Rμ and 

then, by transitivity, (x, y) ∈ Rμ.  But η =Sup{λ / (x, y) ∈ Rλ }, then η ≥ μ and, since 

μ ∧ ξ=μ, the condition (e2*)  

E(x, z) ∧ E(z, y) ≤ E(x, y) 

is verified. 

� 
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2.5 Connections between pointless metric spaces and semimetric spaces 

        In order to establish a connection between pm-spaces and sm-spaces, we 

observe that in defining pm-spaces we can consider the inclusion relation as a 

derived notion. In fact, as proved in [24], the following holds true: 

Proposition 2.5.1  Let (R, δ, | |) be a structure satisfying (a1), (a2) and (a3) (of 

Definition 2.2.1) and let us define ≤  by setting 

x ≤ y  iff  | x | ≤  | y | and δ(x, z) ≥ δ(y, z), 

for any z∈R.. Then (R, δ, | |)  is a pm-space. 

 

Proof. We observe only that Definition 2.2.3 is trivially satisfied.  

� 

 

In accordance with such a proposition, in the following we denote by (R, δ, | |) a 

pm-space whose order relation is defined as in Proposition 2.5.1.  

 

Now let us see how it is possible to associate any pm-space with a sm-space. 

Proposition 2.5.2  Let (R, δ, | |)  be a pm-space and let  dδ:R×R→[0, 1] be defined 

by setting, for any x, y ∈ R, 

                                             dδ (x, y) = δ(x, y)+ 
2
x

+
2
y

.                                   (2.4) 

Then the structure (R, dδ) is a sm-space whose diameter coincides with | |. 

Proof. (d2) and the equality | |d = | | are trivial. Besides, 

dδ (x, y) = δ(x, y)+ 
2
x

+
2
y

≤ δ(x, z)+ δ(z, y) + |z|+
2
x

+
2
y

 

= (δ(x, z)+ 
2
x

+
2
z

) + (δ(z, y)+ 
2
z

+
2
y

) 

= dδ(x, z) + dδ(z, y). 
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� 

 

Conversely, it is possible to associate any sm-space with a pm-space. 

Proposition 2.5.3  Let (R, d) be a sm-space and let δd:R×R→[0, 1]be  defined by 

setting  

δd(x, y)= 
⎪⎩

⎪
⎨

⎧
+≥−−

otherwise                                     

yx
yxd if         

yx
yxd dddd

0
22

),(
22

),(  

 

Then the structure (R, δd, | |d), where | |d is defined by (2.1), is a pm-space . 

Proof. Axioms (a1) and (a2) are immediate. If  d(x, y)< 
2

d
x

+
2

d
y

, then (a3) 

is trivial. Otherwise, by (d3), 

δd(x, y) = d(x, y) -
2

d
x

-
2

d
y

 ≤ d(x, z) + d(z, y) -
2

d
x

-
2

d
y

+ (
d

z -
2

d
z

-
2

d
z

) 

= δd(x, z) + δd(z, y) + 
d

z . 

� 

 

Let us observe that the definitions of dδ and δd in Proposition 2.5.2 and in 

Proposition 2.5.3 are not the unique possible ways to associate a pm-space with a 

sm-space and vice versa. For example, it is possible to associate any pu-space (R, δ,  

| |) with a su-space (R, dδ) by setting  

                                       dδ (x, y) = δ(x, y) ∨ |x| ∨ |y|,                                     (2.5) 

for any x, y ∈ R. Thus, we have: 

Proposition 2.5.4  Let (R, δ, | |) be a pu-space, then the structure (R, dδ) defined by 

(2.5) is a su-space whose diameter coincides with | |. 
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Proof. (d2) and the equality | |d = | | are trivial. Besides, 

dδ(x, z) = δ(x, z) ∨ |x| ∨ |z| ≤ δ(x, y) ∨ δ(y, z) ∨ |y| ∨ |x| ∨ |z| 

= (δ(x, y) ∨ |x| ∨ |y|) ∨ (δ(y, z) ∨ |y| ∨ |z|) = dδ(x, y) ∨ dδ(y, z). 

� 

 

Conversely, we can associate any su-space (R, d) with a pu-space (R, δd, | |d) by 

setting, for any x, y ∈ R, 

                       δd(x, y)= 
⎪⎩

⎪
⎨
⎧

∨>

∨=

dd

dd

yxyxd if                

yxyxd if        yxd

),(0

),(),(
                    (2.6) 

In such a way, we obtain: 

Proposition 2.5.5  Let (R, d) be a su-space, then the structure (R, δd, | |d) defined 

by (2.6) and (2.1) is a pu-space . 

 

Proof. Axioms (a1) and (a2) are immediate. To prove that   

δd(x, z) ∨ δd(z, y) ∨ |z|d ≥ δd(x, y) 

let us assume that d(x, z) ≥ d(z, y). Now, in the case δd(x, y) = 0 and in the case |z|d≥ 

d(x, y) such an inequality is trivial. So, it is not restrictive to assume that d(x, y) 

>|x|d ∨ |y|d , and therefore that  δd(x, y) = d(x, y) and that d(x, y)>|z|d. In such a case, 

by (d’3), we have 

d(x, z) = d(x, z) ∨ d(z, y) ≥ d(x, y)  > |x|d ∨ |z|d 

and therefore 

δd(x, z) ∨ δd(z, y) ≥ δd(x, z) = d(x, z) ∨ d(z, y) ≥ d(x, y) = δd(x, y). 

Likewise we proceed in the case d(x, z) ≤ d(z, y). 

� 

 

Besides, we can also set 
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δd(x, y)= 
⎪⎩

⎪
⎨
⎧

=

∨>

yx if                

yxyxd if        yxd
dd

0

),(),(
 

instead of (2.6). 

 

2.6 Pointless ultrametric spaces and the category of fuzzy sets  

In order to establish a link between point-free geometry and the categorical 

approach to fuzzy sets theory proposed by Höhle in [28] we propose a direct 

connection between pu-spaces and structures with G-semisimilarity. 

 

In accordance with Proposition 2.4.2, Proposition 2.5.4 and Proposition 2.5.5,  

any connection between su-spaces and pu-spaces is also a connection between 

structures with semisimilarities and pu-spaces. 

Proposition 2.6.1  Let E be a G-semi-similarity, let us define | |E:R → [0, 1] by 

setting 

|x|E = 1 – E(x, x)         

and δE :R×R→[0, 1] by setting 

δE(x, y)= 
⎩
⎨
⎧

∧<−
∧=

),(),(),(),(1
),(),(),(

yyExxEyxE if           yxE
yyExxEyxE if                          0

         

for every x, y ∈R. Then (R, δE , | |E) is a pu-space. 

Conversely, let (R, δ , | |) be a pu-space and let us  define Eδ, | |:R×R → [0,1] by 

setting 

                                     Eδ, | |(x, y) = 1 – (δ(x, y) ∨ |x| ∨ |y|)                             (2.7) 

Then Eδ, | | is a G-semi-similarity. 

 

This last proposition will be useful to describe the link of point-free geometry 

with fuzzy sets theory by a categorical point of view. 
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Before proceeding, let us summarize in a scheme all the structures we 

presented and all the connections between them we found. 

 

 
 

 

Figure 4. Scheme of the connections 

 

 

In order to organize the class of semisimilarities into a category, we refer to the 

category M*-SET described by Hőhle in [28]. Namely, while Hőhle defines this 

category for any GL-monoid, we are interested only with the particular GL-monoid 

in [0,1] defined by the Gödel t-norm. In such a case we have the following 

simplified definition. 

Definition 2.6.2  The category of the G-semisimilarities is the category GSS such 

that: 

- the objects are structures (R, E) in which E is a G-semisimilarity; 

- a morphism from (R, E ) to (R’, E’) is a map f : R → R’ satisfying the axioms 

(M1) E’(f(x), f(x)) ≤ E(x, x) 

(M2) E(x, y) ≤ E’(f(x), f(y)) 

for every x,  y ∈ R . 

 

pm-space 

pu-space 

sm-space 

su-space 

semisimilarity 

G-semisimilarity 



 Distance and closeness measures in information spaces 

 53

Let us observe that from (M2) we have that 

E(x, x) ≤ E’(f(x), f(x)) 

and therefore, by (M1), 

E(x, x) = E’(f(x), f(x)). 

 

Now we define a category based on the class of pu-spaces. 

Definition 2.6.3  The category PU of the pu-spaces is the category such that 

- the objects are pu-spaces; 

- a morphism from (R, δ, | |) to (R', δ’,| |') is a map f: R→R' such that 

(1) δ(x, y) ≥ δ’(f(x), f(y)) 

(2) |x| ≥ |f(x)|' 

for every x,  y ∈ R . 

 

In both the categories the composition is the usual composition of maps and the  

identities are the identical maps.  

Let us briefly observe that in the category PU, morphisms preserve the 

definition of point we have given in Section 2.1. In fact, let us consider two 

abstraction processes 〈xn〉n∈ℕ, 〈yn〉n∈ℕ and a morphism f  in the category PU. Then,  

if  〈xn〉 ≡ 〈yn〉 ∈[〈xn〉], it results that lim n→∞δ(xn, yn) = 0. Since δ(xn, yn) ≥ δ’(f(xn), 

f(yn)) holds, then also lim n→∞δ’(f(xn), f(yn)) = 0. Therefore, 〈 f(xn) 〉≡〈 f(yn) 〉 ∈[〈 f(xn) 

〉].  

 

Proposition 2.6.1 enables us to associate any G-semisimilarity with a pu-space 

(R, δE, | |E). This suggests the definition of a suitable functor from GSS to PU. 

Proposition 2.6.2  Let us define the map F from GSS to PU by setting 

• F((R, E)) = (R, δE , | |E) 

• F(f) = f. 
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Then F is a functor from GSS to PU. 

 

Proof. We have only to prove that if f is a morphism from (R, E) to (R', E'), 

then f is a morphism from (R, δE , | |E) to (R', δE' , | |E'). Indeed, it is immediate that 

|f(x)|E’ = 1-E’(f(x), f(x)) = 1-E(x, x) = |x|E. 

To prove that 

                                            δE(x, y) ≥ δE’(f(x), f(y))                                        (2.8) 

it is not restrictive to assume that δE’(f(x), f(y)) ≠ 0 and therefore that 

E’(f(x), f(y)) < E’(f(x), f(x)) ∧ E’(f(y), f(y)) 

and  

δE’(f(x), f(y)) = 1-E’(f(x), f(y)). 

In such a case, since 

E(x, y) ≤ E’(f(x), f(y)) < E’(f(x), f(x)) ∧ E’(f(y), f(y)) = E(x, x)  ∧ E(y, y), 

we have that δE(x, y) = 1-E(x, y). So, (2.8) is a trivial consequence of (M2). 

� 

 

Let us observe that in proving that F is a functor we obtain that  

                                                     |f(x)|E’ = |x|E .                                              (2.9) 

On the other hand, it is easy to find a morphism h in PU such that |f(x)|E’ < |x|E for a 

suitable region. Then, the proposed functor is faithful, but not full. We can consider 

the subcategory PU* of PU obtained by considering only the morphisms f 

satisfying (2.9). Proposition 2.6.1 suggests a definition of a functor from PU* to 

GSS. 

Proposition 2.6.3  Let us define the map F’ from PU* to GSS by setting 

• F’((R, δ , | |)) = (R, Eδ, | |) 

• F(f) = f. 

Then F’ is a functor from PU* to GSS. 
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Proof. Let (R, δ, | |) and (R’, δ’, | |’) be two pu-spaces, let (R, E) and (R’, E') be 

the structures, where the semi-similarities E and E’ are defined by (2.7), and let f be 

a morphism from (R, δ, | |) to (R’, δ’ , | |’). Then  

E'(f(x), f(x)) = 1-|f(x)|’ = 1-|x| = E(x, x). 

Moreover, 

E(x, y) = 1-(δ(x, y) ∨ |x| ∨ |y|) ≤ 1-(δ’(f(x), f(y)) ∨ |f(x)|’ ∨ |f(y)|’) = E’(f(x), f(y)). 

� 

 

2.7 A G-semisimilarity on the class of partial functions  

Given two nonempty sets X and Y we denote by F(X, Y) the class of partial 

functions from X to Y. If  f ∈ F(X, Y) we denote by Df the domain of f and by Uf the 

complement of Df, i.e. the set of elements in which f is not defined. Let f, g be 

elements of F(X, Y), then the equalizer of  f and g , is defined by 

eq(f, g) = {x ∈ X / x ∈ Df ∩Dg , f(x)=g(x)}. 

The contrast between f and g is defined as the complement of the equalizer, i.e. 

contr(f, g) = - eq(f, g). 

Let us observe that  

contr(f, g) = Cfg ∪ Uf ∪ Ug, 

where 

Cfg = {x∈X / x ∈ Df  ∩ Dg  and  f(x) ≠ g(x)}.     

 

In other words, contr(f, g) contains the elements on which f and g “contrast” and 

the elements in which either f or g is not defined. We can also interpret contr(f, g) 

as the set of the elements in which either f and g actually contrast or they could 

contrast in successive extensions. In particular 

contr(f, f) = Uf. 
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Definition 2.7.1  Let us consider a map irl: X→[0,1] we call fuzzy subset of 

irrelevant elements. Then the irrelevancy degree of a set S, is 

Irl(S)= Inf{irl(x) / x∈ S}.      

 

We interpret irl(x) as the “degree of irrelevancy” of an element x and Irl(S) as a 

measure of the degree of validity of the claim “all the elements in S are irrelevant”. 

Trivially, we have that for any pair S1, S2 of subsets of  X, 

Irl(S1∪S2) = Irl(S1) ∧ Irl(S2). 

Proposition 2.7.1  Let F(X, Y) be the class of partial functions and let E: F(X, 

Y)×F(X, Y)→[0, 1] be defined by 

E(f, g) = Irl(contr(f, g)).     

Then E is a G- semi-similarity. 

 

Proof. (e1) is immediate. To prove (e2*), let us observe that for every f, g, 

h∈Χ, 

Cfg  ⊆ Cfh ∪ Chg ∪ Uh 

and therefore, 

contr(f, g) ⊆ contr(f, h) ∪ contr(h, g). 

This entails 

E(f, g) ≥ E(f, h) ∧ E(h, g). 

� 

 

We interpret E(f, g) as a measure of the truth degree of the claim “in all the 

relevant elements f and g are defined and coincide”. Let us observe that 

E(f, f) = Irl(Uf) 

and therefore E(f, f) is the valuation of the claim that f is defined in all the relevant 

elements. In particular, if f is total, then E(f, f) is equal to 1, if f is totally undefined, 

i.e. Uf = X, then E(f, f) = 0. 
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Chapter 3                                

Approximate distances and incomplete 

information 
 

 

Interval analysis is a basic tool to face the question of the errors arising either 

in measure processes or in approximate calculations, providing an upper and a 

lower bound for the exact solution of a problem (see, for example, [3] and [27]). In 

agreement with the ideas of interval analysis, in this chapter we introduce the 

concept of approximate distance, which extends the notion of distance taking into 

account the errors arising from the incomplete knowledge of the points. We do this 

by using interval-valued maps, which do not assign, to a pair of objects, a single 

value, but an interval representing the range in which the exact value lies. 

Moreover, developing Whitehead’s ideas we introduce the approximate distance on 

spaces of regions, representing the incompleteness of the knowledge. Hence, we 

define an abstract structure of interval semimetric space, based on an interval-

valued “distance”. 

Then, this construction is extended to the fuzzy setting, defining approximate 

distances between fuzzy sets. By means of interval sets, we also define 

approximate distances between rough sets. Finally an application of our interval 

approximation to a clustering procedure is given (see [6], [7]). 

 

3.1 Preliminaries 

We denote by ℝ and ℝ0
+, I(ℝ) and I(ℝ0

+) the set of real numbers, the set of 

non-negative real numbers, the set of closed intervals in ℝ, the set of closed 
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intervals in ℝ0
+, respectively. Also, we denote by w([u, v]), the width v - u of a 

nonempty interval [u, v] and by π1: I(ℝ0
+)→ℝ0

+ and π2: I(ℝ0
+)→ℝ0

+  the first and 

the second projection of an interval, respectively, i.e. the functions defined by 

π1([u, v]) = u and π2([u, v]) = v.  

In general it is possible to lift any operation on elements of a given set to an 

operation on its subsets  (see, for example, [2] and [50]). In the same way, if ⊥ is a 

total defined binary arithmetic operation in ℝ, then it is possible to extend this 

operation to the intervals (see [27], [34]):  

[u, v] ⊥ [u’, v’] = {x ⊥ y / u ≤ x ≤ v  and  u’≤ y ≤ v’}, 

for any [u, v] and [u’, v’]∈I(ℝ0
+). In the case of the addition we simply have: 

[u, v] + [u’, v’] = [u + u’, v + v’]. 

In the case of the difference, since -[u’, v’] = [-v’, -u’], we have 

[u, v] - [u’, v’] = [u – v’, v – u’]. 

In the case of the product we have 

[u, v]∗[u’, v’]=[min(u ∗ u’, u ∗ v’, v ∗ u’, v ∗ v’), max(u ∗ u’, u ∗ v’, v ∗ u’, v ∗ v’)]. 

Let us remark that if 0 ∉ [u’, v’], then also the division [u, v] / [u’, v’] is definable 

in an analogous way. In such a case we have 

[u, v] / [u’, v’] = [u, v]∗ [1/ u’, 1/ v’]. 

Similar definitions are proposed for unary operations. 

In addition to the usual inclusion relation ⊆, we consider the following partial 

order: 

                                   [u, v] ≤I [u’, v’]  iff  u ≤ u’  and  v ≤ v’.                       (3.1) 

 

Let us consider the map e: u∈ℝ → [u, u]∈I(ℝ). Then e is an embedding of   

(ℝ, +, ∗, 0, 1, ≤) into (I(ℝ),+, ∗, 0, 1, ≤I ). In accordance, we call interval extension 

of (ℝ, +, ∗, 0, 1, ≤) the structure (I(ℝ),+, ∗, 0, 1, ≤I ). Hence, we will use u or the 
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degenerate interval [u, u], indistinctly. In particular, we write 0 and 1 to denote [0, 

0] and [1, 1], respectively. Let us observe that, in dealing with intervals, some of 

the classical arithmetic rules fail. As an example, an interval has neither additive 

nor multiplicative inverse. Also, the distributive rule fails, whereas the operations 

+ and ∗ are associative and commutative and they have as neutral elements 0 and 

1, respectively. 

We can organize the set of real intervals as a metric space. Given two intervals 

[u, v] and [u’, v’]∈I(ℝ), a distance between them is defined as 

d([u, v], [u’, v’]) = max {|u – u’|, |v – v’|}. 

It is easy to show that d is a metric in I(ℝ). We can use this metric distance in order 

to introduce the notion of convergence of a sequence of intervals. 

Definition 3.1.1  A sequence of intervals 〈[un, vn]〉n∈ℕ in I(ℝ) converges to [u, v] if 

limn→∞ d([un, vn], [u, v])=0. 

 

From the definition of the distance d, it follows that  〈[un, vn]〉n∈ℕ converges to [u, 

v] if limn→∞ un = u and if limn→∞ vn = v, i.e. the end points of 〈[un, vn]〉n∈ℕ converge 

to the end points of the limit interval. Particularly, if 〈[un, vn]〉n∈ℕ is a decreasing 

sequence of intervals with respect to the inclusion, then 〈[un, vn]〉n∈ℕ converges to  

∩ n∈ℕ [un, vn] = [Sup n∈ℕ un, Inf n∈ℕ vn]. If limn→∞ w([un, vn]) = 0, then the sequence 

〈[un, vn]〉n∈ℕ converges to a degenerate interval [l, l] and so we write limn→∞ ([un, 

vn]) = l. 
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3.2 Interval semimetric spaces  

We define an abstract structure on a partially ordered set (R, ≤R) by introducing 

a non-negative, interval-valued map Δ on R×R. This structure, defined by a set of 

axioms, results a generalization, in terms of intervals, of pseudometric spaces. The 

intended interpretation is that the elements in R are regions in a geometrical space, 

≤R is the inclusion relation and that Δ is an ”approximate” distance. 

Definition 3.2.1  An interval semimetric space, briefly ISM-space, is a structure 

(R, ≤R, Δ), where (R, ≤R) is a partially ordered set, Δ: R×R → I(ℝ0
+) is an interval-

valued map, such that, for every x, y, z ∈ R, the following axioms hold: 

A1) Δ(x, x) ∗ [0, 1] = Δ(x, x), 

A2) Δ(x, y) = Δ( y, x); 

A3) Δ(x, y) - Δ(z, z) ≤I  Δ(x, z) + Δ(z, y); 

A4) Δ(x, y) -Δ(x, y) ≤I  Δ(x, x) + Δ(y, y); 

A5) x ≤R x’, y ≤R y’ ⇒  Δ(x, y) ⊆ Δ(x’, y’). 

 

We call regions the elements in R and we call weight function the map  p: R → ℝ0
+ 

defined by 

p(x) = π2(Δ(x, x)), 

for every x ∈ R. 

Also, we can interpret an element in R as an ”incomplete piece of information” 

and Δ(x, y) as an approximate measure of how two pieces of information x and y 

are close, i.e. as the available knowledge about the actual but unknown distance 

between them. Then, we can interpret weight p(x) as a measure of the degree of 

information carried on by a region, that is, in other words, a measure of the 

completeness of x. 

From axioms A1),  A4) and A5) we can derive the following properties of p: 

• Δ(x, x) = [0, p(x)];                                                                        (3.2) 
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• w(Δ(x, y)) ≤  p(x) + p(y);                                                              (3.3) 

• x ≤R y ⇒ p(x) ≤ p(y).                                                                      (3.4) 

By setting x ≤R x and x ≤R y in A5), it results that 

• x ≤R y ⇒ π1(Δ(x, y)) = 0. 

 

Let us briefly explain the meaning of the axioms we propose. Axiom A1) is a 

sort of weakening of reflexivity for the distance Δ, taking in account the 

completeness of the information x. More precisely, it states that the information we 

have about a region x is between 0 and p(x), as we can also see in the deriving 

property (3.2). We have the reflexivity only in the case of complete information. 

Axiom A2) gives the symmetry for Δ. Axiom A3) represents a generalized 

triangular inequality, in which we consider also the measure of the completeness of 

the middle region z. Axiom A4) can be interpreted as a sort of constraint for the 

width of the interval Δ(x, y), as we can realize also from the deriving property 

(3.3). In other words, the more complete the information about the regions, the less 

approximate the distance between them. Finally, axiom A5) indicates the order-

preserving characteristic of Δ, with respect to the inclusion relation between 

intervals. 

Definition 3.2.2  Two ISM-spaces (R, ≤R, Δ) and (R’, ≤R’, Δ’) are isomorphic if 

there exists a bijective map ϕ: R → R’ which preserves the structure, i.e., for every 

x, y ∈ R: 

1) x ≤R y ⇒ ϕ (x) ≤R’ ϕ (y) 

2) Δ’(ϕ (x), ϕ (y)) = Δ(x, y) 

 

If (R, ≤R, Δ) and (R’, ≤R’, Δ’) are isomorphic, then p’(ϕ (x)) = p(x), where p and p’ 

are the corresponding weight functions. 
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Definition 3.2.3  An interval metric space, briefly IM-space, is an interval 

semimetric space which satisfies the axiom: 

A6) Δ(x, y) = 0 ⇔ x = y and x and y are atoms, 

where we call atoms the minimal elements x of R such that p(x) = 0. 

 

Let us observe that, as in the case of metric spaces, any subset of an ISM-space is 

an ISM-space, too. ISM-spaces (IM-spaces) can be regarded as a generalization of 

pseudometric spaces (metric spaces). 

Proposition 3.2.1  Pseudometric spaces (metric spaces) coincide with the ISM-

spaces (IM-spaces) in which all the regions are atoms, i.e. the order relation is the 

identity and all the weights are equal to zero. 

 

Now we enunciate a Theorem in order to emphasize that the notion of ISM-

space can be presented in two different but equivalent ways: either by two real 

valued-maps d and D or by an interval-valued map Δ. 

 

Theorem 3.2.1  Let (R, ≤R, Δ)  be an ISM-space and let d and D be defined, for 

any x, y ∈ R, by: 

d(x, y) = π1(Δ(x, y))  and  D(x, y) = π2(Δ(x, y)). 

Then, for x, y ∈ R, d(x, y) ≤ D(x, y), d and D are order-reversing and order-

preserving, respectively. Moreover, for x, y, z ∈ R, the following properties hold 

P1) d(x, x) = 0, 

P2a) d(x, y) = d(y, x), 

P2b) D(x, y) = D(y, x), 

P3) d(x, y) ≤ d(x, z) + d(z, y) + D(z, z), 

P4) D(x, y) ≤ D(x, z) + D(z, y), 

P5) 0 ≤ D(x, y) - d(x, y) ≤ D(x, x) + D(y, y). 
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Conversely, let d and D be two maps from R × R to ℝ0
+ order-reversing and order-

preserving, respectively, such that d(x, y) ≤ D(x, y), for any x, y ∈ R, and verifying 

P1) - P5). Let Δ be defined, for any x, y ∈ R, by: 

Δ(x, y) = [d(x, y), D(x, y)]. 

Then (R, ≤R, Δ) is an ISM-space. 

 

Proof. Properties P1), P2a) and P2b) follow from A1) jointly with A2), 

trivially. Moreover, by definition of d and D, A3) becomes 

[d(x, y), D(x, y)] - [d(z, z), D(z, z)] ≤I [d(x, z), D(x, z)] + [d(z, y), D(z, y)], i.e. 

[d(x, y) - D(z, z), D(x, y) - d(z, z)] ≤I [d(x, z) + d(z, y), D(x, z) + D(z, y)]. 

Therefore properties P3) and P4) can be easily deduced applying property P1) and 

the definition of ≤I , given in (3.1). Similarly, axiom A4) becomes 

[d(x, y), D(x, y)] - [d(x, y), D(x, y)] ≤I  [0, D(x, x)] + [0, D(y, y)], i.e., 

[d(x, y) - D(x, y), D(x, y) - d(x, y)] ≤I  [0, D(x, x) + D(y, y)]. 

Therefore, again by the definition of ≤I , we obtain P5). Finally, axiom A5) ensures 

d and D to be order-reversing and order-preserving, respectively. 

To prove the second part of the theorem, let us observe that axioms A1) - A4) 

follow from properties P1) - P5), trivially. Axiom A5) can be easily deduced 

applying the definition of Δ and the attribute of d and D to be order-reversing and 

order-preserving, respectively.  

� 

 

3.3 Abstraction processes in ISM-spaces 

In point-free ISM-spaces, i.e. without atoms, a suitable definition of abstraction 

process enables us to define points and a distance between them (see [5]). Thus, a 

metric space can be associated to any interval semimetric space. 
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Definition 3.3.1  Let (R, ≤R, Δ) be an ISM-space. An abstraction process is a 

sequence 〈xn〉n∈ℕ  in (R, ≤R, Δ)  such that 

a) 〈xn〉n∈ℕ is order-reversing; 

b) limn→∞p(xn) = 0. 

For such a 〈xn〉n∈ℕ by this definition,  by the property (3.2) of p and by axiom A5), 

we also have the following: 

c) ∀ε>0, ∃ ν / ∀n, m>ν, π2(Δ(xn, xm))<ε   (or, analogously, Δ(xn, xm) ⊆ [0, ε]). 

 

We denote by AP(R) the class of abstraction processes of (R, ≤R, Δ).  

In order to define a pseudometric in AP(R), we need to require the following 

axiom: 

A7) AP(R) ≠∅. 

 

Proposition 3.3.1  Let (R, ≤R, Δ) be an ISM-space such that A7) holds and for any 

pair 〈xn〉n∈ℕ, 〈yn〉n∈ℕ of abstraction processes, let δ: AP(R)× AP(R)→ ℝ+be a map 

defined by 

δ(〈xn〉n∈ℕ, 〈yn〉n∈ℕ) = limn→∞Δ(xn, yn). 

Then (AP(R), δ) is a pseudometric space. 

 

Proof. Let us observe that, if 〈xn〉n∈ℕ  and 〈yn〉n∈ℕ are abstraction processes, then, 

by A5), 〈Δ(xn, yn)〉n∈ℕ is a decreasing sequence of intervals, whose limit is              

∩ n∈ℕ Δ(xn, yn); besides, by (3.3), when n→∞, the width w(Δ(xn, yn)) → 0 and so the 

sequence 〈Δ(xn, yn)〉 n∈ℕ is convergent to a real number. Let 〈xn〉n∈ℕ be an element of 

AP(R). By definition of δ, by axiom A1) and by b) of the Definition 3.3.1, we have 

δ(〈xn〉n∈ℕ, 〈xn〉n∈ℕ) = limn→∞Δ(xn, xn) = limn→∞([0, p(xn)] = 0. So, the reflexivity for δ 
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is proved. The symmetry is trivial by axiom A2). Finally, to prove the triangular 

inequality, let us observe that, if 〈xn〉n∈ℕ, 〈yn〉n∈ℕ and 〈zn〉n∈ℕ are elements of AP(R), 

then, by axiom A3) and by b) of the Definition 3.3.1, we have  

δ(〈xn〉n∈ℕ, 〈yn〉n∈ℕ) = limn→∞Δ(xn, yn) ≤I  limn→∞(Δ(xn, zn) + Δ(zn, yn) + p(zn)) 

=limn→∞Δ(xn, zn) + limn→∞Δ(zn, yn) + limn→∞p(zn) 

=δ(〈xn〉n∈ℕ, 〈zn〉n∈ℕ) + δ(〈zn〉n∈ℕ, 〈yn〉n∈ℕ) 

� 

Definition 3.3.2  Given an interval semimetric space (R, ≤R, Δ), we call metric 

space associated to (R, ≤R, Δ) the metric space (M, δ’) obtained as a quotient of 

(AP(R), δ) modulo the relation ≡ defined by setting 

〈xn〉n∈ℕ ≡ 〈yn〉n∈ℕ  iff  δ(〈xn〉n∈ℕ, 〈yn〉n∈ℕ)= 0. 

 

We call points the elements of M, i.e. the equivalence classes 

[〈xn〉n∈ℕ] = {〈yn〉n∈ℕ ∈ AP(R) / 〈xn〉n∈ℕ ≡ 〈yn〉n∈ℕ}. 

As a consequence, we can define a distance between two points P and Q by setting 

δ’(P, Q) = δ(〈xn〉n∈ℕ, 〈yn〉n∈ℕ) = limn→∞Δ(xn, yn), 

where 〈xn〉n∈ℕ, 〈yn〉n∈ℕ, belonging to AP(R), are two representatives of P and Q, 

respectively. In this way, it is always possible to associate any interval semimetric 

space with a metric space. 

Let us note that every atom defines a point with respect to the definition above. 

3.4 Canonical models of ISM-spaces   

Now we yield models of ISM-spaces by using the canonical lower and upper 

distances between subsets of a pseudometric space (M, δ). Really, to search for a 

suitable system of axioms of interval-valued distances, we referred just to these 

particular examples.  
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Let C be a nonempty class of bounded, nonempty subsets of M. The canonical 

infimum and supremum distances d and D are defined, respectively, by setting  

              d(x, y) = inf{δ (X, Y) : X ∈ x, Y ∈ y}     (3.5) 

and 

              D(x, y) = sup{δ (X, Y) : X ∈ x, Y ∈ y}          (3.6) 

for every x, y ∈ C. Besides we call diameter 

⏐x⏐ = sup{δ (X, Y) : X, Y ∈ x } = D(x, x). 

Proposition 3.4.1  Given a nonempty class C of bounded, nonempty subsets of a 

pseudometric space (M, δ), let d and D be the infimum and supremum distances 

and let ⊆ be the usual inclusion relation between subsets. Let Δ: C × C →I(ℝ0
+) be 

defined by  

Δ(x, y) = [d(x, y), D(x, y)]. 

Then (C, ⊆, Δ) is an ISM-space, whose weight function coincides with the 

diameter. 

 

Proof. By the equivalence shown in Theorem 3.2.1, we have to prove that d 

and D satisfy P1) - P5). Now, P1), P2a) and P2b) are immediate. To prove P3), let 

x, y and z be subsets of M, X ∈ x, Y ∈ y, Z and Z’∈ z; then  

d(x, y) ≤ δ(X, Y ) ≤ δ(X, Z) + δ(Z, Z’) + δ(Z’, Y ) ≤ δ (X, Z) + δ(Z’, Y ) + |z|. 

Consequently, 

d(x, y) ≤ d(x, z) + d(z, y) + |z|. 

To prove P4), let x, y and z be subsets of M, X ∈ x, Y ∈ y, Z∈ z; then  

δ(X, Y ) ≤ δ(X, Z) + δ(Z, Y ) ≤  D(x, z) + D(z, y); 

hence  

D(x, y) ≤  D(x, z) + D(z, y). 

To prove P5), let x and y be subsets of M, X, X’∈ x, Y, Y’∈ y; then  

δ(X, Y )≤δ(X, Y’)+δ(Y’, Y ) ≤ δ(Y’, X’ ) + δ(X’, X) + δ(Y’, Y ) ≤  δ(Y’, X’ ) +|x| +|y|. 
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It follows that 

δ(X, Y ) ≤ inf{δ (X, Y) : X ∈ x, Y ∈ y}+|x| +|y| = d(x, y)+|x| +|y|. 

Further, it follows that 

D(x, y) = sup{δ (X, Y) : X ∈ x, Y ∈ y}≤ d(x, y)+|x| +|y|. 

Besides, by definition, d(X, Y ) ≤ D(x, y). So 

0 ≤ D(x, y) - d(x, y) ≤ |x| +|y|. 

� 

 

Let us observe that if C is closed with respect to the union, then there are two 

further interesting properties verified by d and D, a sort of distributive laws: 

      d(x1∪ x2, y1∪ y2) =  d(x1, y1) ∧ d(x1, y2) ∧ d(x2, y1) ∧ d(x2, y2)        (3.7) 

and 

    D(x1∪ x2, y1∪ y2) = D(x1, y1) ∨ D(x1, y2) ∨ D(x2, y1) ∨ D(x2, y2).             (3.8) 

 

If we interpret two sets x and y in C as constraints on two unknown points X 

and Y , then the ”approximate” distance Δ(x, y) yields a constraint on the possible 

distance between X and Y. 

Definition 3.4.2  The structure (C, ⊆, Δ) is said to be a canonical ISM-space.  

It is possible to construct several canonical spaces, depending on the choice of 

C. Particularly, we are interested in the class C of all closed, bounded, regular, 

nonempty subsets of a pseudometric space (M, δ). We make this choice because, in 

according to Whitehead’s works (see [46], [47], [48]), we exclude the ”abstract” 

geometrical entities like points, lines that can be obtained by an abstraction 

process. 

Henceforth, in this section and in the following ones, we denote by C such a 

class, even though some of the following results can be obtained in larger classes. 
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Let us observe that one of the most well-known distances between sets, the 

Hausdorff distance (see (1.6)), falls just into the interval whose end points are the 

infimum and supremum distances, as we are going to show in the next proposition.  

Proposition 3.4.2Let C be a nonempty class of bounded, nonempty subsets of a   be 

a pseudometric space (M, δ) and let δH  be the related Hausdorff  distance. Then           

d(x, y) ≤ δH(x, y) ≤ D(x, y), for every x, y ∈ C. 

 

Proof. By definition of δH, we have 

δH(x, y) ≥ supX∈x δ(X, y) ≥ δ(X, y) for every X∈x, i.e. 

δH(x, y) ≥ infY∈yδ(X, Y) for every X∈x. Hence, 

δH(x, y) ≥ inf{δ(X, Y) / X∈x, Y∈y} = d(x, y). 

On the other hand, 

D(x, y) ≥ δ(X, Y), for every X∈x, and Y∈y. Therefore, 

D(x, y) ≥ infY∈yδ(X, Y) for every X∈x, i.e. D(x, y) ≥ δ(X, y), for every X∈x. 

Particularly D(x, y) ≥ supX∈xδ(X, y) = eδ(x, y). Analogously this inequality holds for 

eδ(y, x), so  

D(x, y) ≥ δH(x, y). 

� 

 

Now we want  to show that, starting form a complete pseudometric space, (M, 

δ), the resulting metric space associated to (C, ⊆, Δ) is isometric to (M, δ), 

recalling that we call two metric spaces isometric if there exists a bijective 

isometry between them. 

So, let us denote by (MC, δ’) the metric space associated to the canonical model 

(C, ⊆, Δ). 



 Distance and closeness measures in information spaces 

 69

Trivially, if (M, δ) is a metric space, then for every isolated point P ∈ M, the 

sequence constantly equal to P is an abstraction process. Particularly, if δ is the  

discrete metric, then this happens for every P ∈ M.    

 

Given P ∈ M and n ∈ ℕ , let us denote by Bn(P) the closure of the open ball 

centered in P, with radius 1/n. Let us observe that 〈Bn(P)〉n∈ℕ is an order-reversing 

sequence of regular sets such that  limn→∞|Bn(P)| = limn→∞〈2/n〉 = 0. Therefore 

〈Bn(P)〉n∈ℕ is an abstraction process and so it also results that ∀ε>0, ∃ ν / ∀n, m>ν, 

π2(Δ(Bn(P), Bm(P))) = D(Bn(P), Bm(P))) <ε (or, equivalently, Δ(Bn(P), Bm(P)) ⊆ [0, 

ε]). 

We can define the map i: M  → MC  such that  

i(P) = [〈Bn(P)〉n∈ℕ].      (3.9) 

 

Proposition 3.4.3  Let (M, δ) be a pseudometric space and let  (MC, δ’) be the 

metric space associated to the canonical ISM-space (C, ⊆, Δ). Let i be the map 

defined as in (3.9). Then 

i) δ (P, Q) = δ’(i(P), i(Q)), for every P, Q ∈ M, i.e. i is an isometry; 

ii) if (M, δ) is a metric space, then i is an injection; 

iii) if (M, δ) is a complete metric space, then the isometry i is a bijection, i.e.  

(M, δ) and (MC, δ’) are isometric. 

 

Proof. To prove i), let P, Q ∈ M, hence [〈Bn(P)〉n∈ℕ] = i(P) and [〈Bn(Q)〉n∈ℕ] =  

i(Q); then we have 

δ(i(P), i(Q)) = limn→∞Δ(Bn(P), Bn(Q))  

=limn→∞[d(Bn(P), Bn(Q)), D(Bn(P), Bn(Q))] = δ(P, Q). 
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Indeed, since the two sequences of end points 〈d(Bn(P), Bn(Q))〉n∈ℕ and 〈D(Bn(P), 

Bn(Q))〉n∈ℕ both converge to the real number δ(P, Q), by Definition 3.1.1, the limit 

interval is just δ(P, Q). 

To prove ii), let us recall that an isometry between a metric space and a  

pseudometric space is always injective. So, the map i results injective, trivially. 

Finally, in order to show that i is surjective, let us take a point Q ∈ (MC, δ’) 

represented by the sequence 〈xn〉n∈ℕ and  let us fix Pn ∈ xn for each n∈ℕ. Since  

evidently δ(Pn, Pm) ≤  D(xn, xm) for each n, m∈ℕ and [〈xn〉n∈ℕ] is an abstraction 

process, then 〈Pn〉n∈ℕ, where Pn ∈ xn for each n∈ℕ, is a δ-Cauchy sequence in M. 

So the hypothesis of completeness for (M, δ) implies that 〈Pn〉n∈ℕ converges to a 

point P ∈ M. Now  i(P) = Q. Indeed, considered the ball Bn(P) for each n∈ℕ, if we 

observe that d(xn, yn) ≤ δ(Pn, P) we have limn→∞Δ(xn, yn) = limn→∞d(xn, yn) = 0. 

� 

 

We concude this section by observing that the construction of an ISM-space, 

starting from a metric space, suggests to organize the class of ISM-spaces into a 

category and to find a link between this one and a category of metric spaces. 

We can consider the category M in which the objects are metric spaces (M, δ) 

and the morphisms are bijective isometries between metric spaces. Besides, we can 

consider the category ISM in which the objects are ISM-spaces and the morphisms 

are isomorphisms between these structures. In both the categories the composition 

is the usual composition of maps and the identities are the identical maps. 

Proposition 3.4.4  Let i: (M1, δ1) → (M2, δ2) be a morphism in the category M. Let 

F be a map from M to ISM, defined by setting 

• F((M, δ)) = (C, ⊆, Δ) obtained as in Proposition 3.4.1, for every object 

(M, δ) in M; 
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• F(i): x ∈ F((M1, δ1))→ i(x) ∈ F((M2, δ2)), for every morphism i in M. 

Then, F is a functor from M to ISM. 

 

Proof. By Proposition 3.4.1, the image (C, ⊆, Δ) via F of a metric space (M, δ) 

is an ISM-space; so it is an object of the category M. The map F(i) results to be an 

isomorphism between ISM-spaces, so it is a morphism in the category ISM. 

Trivially, F preserves the identity and the composition between the morphisms. 

� 

 

3.5 Approximate distances between fuzzy sets 

In this section we define approximate distances between fuzzy sets by means of 

closed λ-cuts of fuzzy subsets and of hypographs.  

First, let us observe that the notion of closed λ-cut gives a general way to 

extend maps from sets into real numbers, for instance distances between sets, 

measures, diameters and so on. This procedure is different from the one based on 

Zadeh’s extension principle, as we will see. 

Definition 3.5.1  Let S1,…, Sn  be nonempty sets and let Df ⊂P(S1)×,…, ×P(Sn) be 

the domain of a real-valued monotone map f : Df → ℝ. Then the canonical 

extension of f  is the map  f*: D*f → ℝ, where  

D*f={(s1,…,sn)∈F(S1)×…×F(Sn) /(C(s1,λ),…, C(sn, λ)) ∈ Df  for any λ∈ [0,1]} 

and 

f*(s1,…,sn) = ∫
1

0
 f(C(s1, λ),…, C(sn, λ))dλ. 
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Let us observe that the function f(C(s1, λ),…, C(sn, λ)) is monotone, then the 

Lebesgue integral, we are considering, always exists. Moreover f* extends f in the 

sense that  

f(X1,…, Xn) = f*(
1Xχ ,…, Xnχ ), 

for every X1 ∈ P(S1),…, Xn ∈ P(Sn). 

Particularly, let (M, δ) be a metric space and let d and D be the canonical 

infimum and supremum distances, defined in (3.5) and in (3.6). 

Then, their extensions d* : C*× C*→ ℝ  and  D*:C*×C*→ ℝ are defined, 

respectively, by 

dp*(s, s’)= ( ∫
1

0
d (C(s,λ), C(s’, λ))pdλ)1/p 

and 

Dp*(s, s’)= ( ∫
1

0
D (C(s,λ), C(s’, λ))pdλ)1/p, 

for every s, s’∈ C*, where C* = {s ∈F(M): C(s,λ) ∈C for any λ∈ [0,1]}. 

The extension of the diameter function is defined by 

|s|p* = ( ∫
1

0
p((C(s,λ))p dλ)1/p. 

Proposition 3.5.1  Let Δp*: C*× C*→ I(ℝ0
+) be a map defined by 

Δp*(s, s’) = [dp*(s, s’), Dp*(s, s’)]. 

Then (C*, ⊆, Δp*) is an ISM-space which extends the canonical ISM-space (C, ⊆, 

Δ) and whose weight is the canonical extension of the diameter function.  

 

Proof. To prove that (C*, ⊆, Δp*) is an ISM-space, it suffices to observe that 

properties of d and D are extended to dp* and  Dp* by properties of integrals. 

Successively, to prove that this space is an extension of the canonical one, it is 
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enough to consider the embedding e: C→ C* defined by e(x) = Xχ , for every x ∈ 

C, where Xχ  is the characteristic function related to x. Besides, 

• Xχ ≤ yχ  ⇔ x ⊆ y; 

• Δp*( Xχ , yχ )=[dp*( Xχ , yχ ), Dp*( Xχ , yχ )]=[d(x, y), D(x, y)]=Δ(x, y). 

� 

 

Let us point out that in literature we find another distance based on λ-cuts, the 

dp-metric. It is defined on the class of normal, convex, upper-semicontinous fuzzy 

sets having support with compact closure, as (see[11]): 

dp(s, s’)= ( ∫
1

0
δH(C(s,λ), C(s’, λ))pdλ)1/p, 

for every 1≤ p< ∞ and 

d∞(s, s’) = sup0≤λ≤1δH(C(s,λ), C(s’, λ)), 

where δH  is the Hausdorff metric. Let us observe that, as an obvious consequence 

of Proposition 3.4.2, the following inequality holds: 

dp*(s, s’) ≤ dp(s, s’) ≤ Dp*(s, s’). 

This is not the only way of operating. In literature we can find different 

methods to extend non-fuzzy mathematical concepts to a fuzzy setting, such as the 

methods based on the Zadeh’s extension principle, which is one of the most basic 

ideas of fuzzy set theory. According to it, we find other distances between fuzzy 

sets, such as the fuzzy distance, defined as (see [12]): 
*

)',( ssd (r) = supδ(P, Q)=r  min(s(P), s’(Q)), 

for every r ∈ ℝ+ and for every s, s’ fuzzy sets on M. The distance *d  is a mapping 

from ℑ(M)×ℑ(M) to the set of fuzzy sets on ℝ+ and it can be viewed as a fuzzy 

measure of dissimilarity between fuzzy sets. For connected (classical) subsets of 

M, this distance, as Δ1* (obtained from Δp*, with p=1), becomes an ordinary 

interval, whose end points are the shortest and greatest distance between the 
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subsets, respectively, and then it coincides with the canonical approximate distance 

Δ. 

 

Now, we can construct, as usual, the metric space of points associated to the 

ISM-space we have defined. In order to do this, let us shrink to the case of  p=1, 

which can be generalized. So we consider the ISM-space (C*, ⊆, Δ1*). Let us first 

observe that the set of the abstraction processes of C*, that we denote by AP(C*), 

is nonempty. In fact, the sequence 〈 )( 0PBn
χ 〉, where )( 0PBn

χ  is the characteristic 

function related to the closure of the open ball in M with radius 1/n and center P0, 

is an abstraction process. Precisely, we have that limn→∞ p1*( )( 0PBn
χ ) = limn→∞ 

D1*( )( 0PBn
χ , )( 0PBn

χ )  = limn→∞ D(Bn(P0), Bn(P0)) = limn→∞|Bn(P0)| = limn→∞2/n = 0; 

besides 〈 )( 0PBn
χ 〉 is a decreasing sequence. Thus, we can define the pseudometric 

distance 

δ*(〈sn〉, 〈s’n〉) = limn→∞Δ1*(sn, s’n), 

for every sn, s’n ∈ C*, and the associated metric space, denoted by (MC*, δ’*). 

 

Proposition 3.5.2  Let (M, δ) be a metric space. The metric spaces (MC,, δ’) and 

(MC*, δ’*), associated to (C*, ⊆, Δ1*) and (C, ⊆, Δ), respectively, are isometric. 

 

Proof. Let us define the map ϕ : (MC,, δ’) → (MC*, δ’*) by 

ϕ([〈xn〉n∈ℕ]) = [〈
nxχ 〉n∈ℕ]. 

It’s a routine to show that ϕ  preserves distances. In fact, it suffices to observe that 

δ’*(〈
nxχ 〉n∈ℕ,〈

nyχ 〉n∈ℕ)=limn→∞Δ1*(
nxχ ,

nyχ )=limn→∞Δ(xn, yn)=δ(〈xn〉n∈ℕ, 〈yn〉n∈ℕ). 

Moreover, let Q* = [〈sn〉 n∈ℕ] ∈ MC*, where 〈sn〉 n∈ℕ is a decreasing sequence of 

fuzzy normal subsets such that limn→∞ p*(sn) = 0. 
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Since 〈sn〉 n∈ℕ is decreasing, there exists a point P in M such that sn(P) = 1, ∀n ∈ℕ. 

Let Bn(P) be the closed ball in M centered in P with radius 1/n. The image          

ϕ([〈 Bn(P)〉n∈ℕ]) = [〈sn〉 n∈ℕ]. Equivalently limn→∞Δ1*( )(PBn
χ , sn) = 0. Let us observe 

that d1*( )(PBn
χ , sn) = 0, ∀n ∈ℕ, and, by property |D1*(s, s’) - d1*(s, s’)| ≤ | s| +      

| s’|, it follows D1*( )(PBn
χ , sn) ≤ | )(PBn

χ | + | sn | and therefore limn→∞ D1*( )(PBn
χ , 

sn) = 0. 

The function ϕ  is injective because it is an isometry defined on a metric space. 

� 

Corollary 3.5.1  If (M, δ) is a complete metric space, then (MC*, δ’*) is isometric 

to (M, δ). 

 

Proof. If (M, δ) is a complete metric space, then the diagram 

      (M, δ) 

 

                                         i                                                ϕ ◦ i 

 

                                                                ϕ  

                 (MC, δ’)                                                                            (MC*, δ’*) 

is commutative.  

� 

 

A different definition of approximate distance between fuzzy subsets can be 

obtained by the notion of hypographs. Let (M, δ) be a pseudometric space and let 

us consider the class ℑ(M) of the fuzzy subsets of M with bounded support. Let δ 

be a pseudometric on the interval [0, 1]. We denote by δbox the box-pseudometric 

product in M × [0, 1] defined by setting 

δbox [(x1, y1), (x2, y2)] = max {δ (x1, x2), δ (y1, y2)}, 
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for every x1, x2 ∈ M and y1, y2 ∈ [0, 1]. For every s ∈ ℑ(M)  the hypograph of s is 

the set 

H(s) = {(x, y) ∈ M × [0, 1] / y < s(x)}. 

Since 

s ⊆ s’ ⇔ H(s) ⊆ H(s’), 

for every s, s’ ∈ ℑ(M), the map H: ℑ(M) → P(M × [0, 1]) is an embedding from 

the lattice ℑ(M) into the lattice P(M × [0, 1]). So, we can identify each fuzzy set s 

with its hypograph H(s) and this suggests to define the distances between two 

fuzzy sets as the distances between the related hypographs: 

dH(s, s’) = d(H(s), H(s’)) = 

= inf{δbox [(x1, y1), (x2, y2)] / (x1, y1) ∈ H(s), (x2, y2) ∈ H(s’)} 

and 

DH(s, s’) = d(H(s), H(s’)) = 

= sup{δbox [(x1, y1), (x2, y2)] / (x1, y1) ∈ H(s), (x2, y2) ∈ H(s’)}. 

 

Proposition 3.5.3  Let ΔH: ℑ(M)× ℑ(M) → I(ℝ0
+) be a map defined by 

ΔH (s, s’) = [dH(s, s’), DH(s, s’) ]. 

Then, (F(M), ⊆, ΔH) is an ISM-space in which the weight of a fuzzy set s coincides 

with the diameter of its hypograph, i.e. pH(s) =| H(s) |. 

 

Let us stress that this space does not extend the previously defined space  (C*, 

⊆, Δp*), as the following example shows: 

Example 1. Let M the euclidean line and s = Xχ  the characteristic function related 

to X ={(x, y): 0≤ x≤ 1, y=0}. Then pH(s) = 2 , while p1*(s) = 1. Therefore, ΔH(s, 

s)≠ Δ1*(s, s) and so, (ℑ(M), ⊆, ΔH) is not an extension of (C*, ⊆, Δ1*). 
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In order to construct the related metric space of points, recall that an abstraction 

process in (ℑ(M), ⊆, ΔH) is a decreasing sequence 〈sn〉n∈ℕ in ℑ(M) such that   

limn→∞ pH(sn) = 0. Let us observe that in (C*, ⊆, Δ1*) there exist abstraction 

processes which fail to be abstraction processes in (ℑ(M), ⊆, ΔH), i.e. limn→∞ 

p1*(sn) = 0 does not imply that  limn→∞ pH(sn) = 0, for some decreasing sequences  

〈sn〉 n∈ℕ, as in the following examples: 

 

Example 2. Let M be the Euclidean line and P0 ∈ M. The sequence of normal fuzzy 

sets 〈 )(PBn
χ 〉n∈ℕ, where )(PBn

χ  is the characteristic function related to the closed 

ball Bn(P0) of radius 1/n and center P0, is an abstraction process with respect to the 

space (C*, ⊆, Δ1*), but limn→∞ pH( )(PBn
χ )= 1. 

 

Example 3. Let M be the interval [0, 1]. We can consider the sequence 〈sn〉 n∈ℕ in 

ℑ(M) defined by sn(P) = Pn for every P ∈ M. We obtain that limn→∞ pH(sn) = 2 , 

while limn→∞ p1*(sn) = 0. 

 

Now we need to show that AP(ℑ(M), ⊆, ΔH) ≠ ∅. So, let P0 ∈ M  and, for 

every n∈ℕ, let us define the map  

                                0P
ns (P) = 

⎩
⎨
⎧

∉
∈

).(0
)(/1

0

0

PBP if           
 PBP if        n

n

n                 (3.10) 

We call 0P
ns  the fuzzy set centered in P0. Clearly, the sequence 〈 0P

ns 〉n∈ℕ
 is an 

abstraction process with respect to the space (ℑ(M), ⊆, ΔH). As usual, since 

AP(ℑ(M), ⊆, ΔH) ≠ ∅, we can define a pseudometric distance on it: 

δH(〈sn〉n∈ℕ, 〈s’n〉n∈ℕ) = limn→∞ΔH(sn, s’n), 

and the induced metric distance: 
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δ’H([〈sn〉n∈ℕ], [〈s’n〉n∈ℕ]) = δH(〈sn〉n∈ℕ, 〈s’n〉n∈ℕ). 

We denote by (MH, δ’H) the metric space associated to (ℑ(M), ⊆, ΔH). 

Proposition 3.5.4  Let (M, δ) be a metric space and ℑ(M) be the class of the fuzzy 

subsets of M. Then (M, δ) is isometric to (MH, δ’H). 

 

Proof. Let us define the following map ϕ : (M, δ) → (MH, δ’H) such that 

P→ [〈sn
P〉], 

where sn
P  is the fuzzy set centered in P, defined as in (3.10). Let P, Q ∈M; since, 

for n→∞, it results that H(sn
P) → P and H(sn

Q) → Q, we have that  

δ’H([〈sn
P〉],  [〈sn

Q 〉]) = limn→∞ΔH(sn
P, sn

Q) = limn→∞[dH(sn
P, sn

Q), DH(sn
P, sn

Q)]    

=limn→∞ [D(H(sn
P), H(sn

Q))] = δ(P, Q). 

Moreover, ϕ  is injective, since it is an isometry defined on a metric space. Finally 

let 〈sn〉 ∈ AP(ℑ(M), ⊆, ΔH), then H(sn) converges to a point P ∈ M, otherwise 

limn→∞ pH(sn)>0. Therefore [〈sn〉] = [〈sn
P〉], and so ϕ is surjective. 

� 

 

Let us observe that the resulting metric space of points is always isometric to 

the starting one, without requiring its completeness. Called )ˆ,ˆ( δM the completion  

of (M, δ), we can construct two spaces: )ˆ,ˆ( ** δCM isometric to )ˆ,ˆ( δM  and (MH, 

δ’H)  isometric to (M, δ).Therefore, if (M, δ) is not complete, we have two non 

isometric models )ˆ,ˆ( ** δCM and (MH, δ’H)  But, if (M, δ) is complete then the two 

spaces are isometric. 
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3.6 Applications to rough sets through interval sets 

In this section we define approximate distances between rough sets through 

approximate distances between interval sets. The theory of rough sets, developed 

since the early 1980s (see [36]), is an extension of the set theory, different from 

and complementary to other generalizations, such as fuzzy sets. It is useful to 

handle incomplete information. There are different approaches to interpret the 

theory of rough sets and all can be explained using the notions of lower and upper 

approximation in an approximation space (see [49]). So, let us introduce these 

notions.  

Let U be a nonempty set and θ  be an equivalence relation on U. The pair (U, 

θ) is called approximation space (see [14]). The objects in U are approximated in 

the sense that they can only be distinguished up to their equivalence classes while 

the objects in the same equivalence class are indistinguishable. The notion of rough 

set is based on that of approximation space (see  [14] and [15]). It represents a 

situation in which we are not able to describe precisely a given subset of the 

universe, using the available information, that is, equivalence classes of the 

equivalence relation on the universe. Instead we can form a pair of approximations. 

More precisely, given an approximation space (U, θ) and X⊆U, denoted by [x]θ the 

equivalence class of x modulo θ, for every x ∈ U, then 

⎯ X  = ∪{[x]θ : [x]θ ∩ X ≠ ∅}     

is the upper approximation of X, and 

X = ∪{[x]θ : [x]θ  ⊆ X }         

is the lower approximation of X. If X ⊆ U,  is the extension of a property P, then  

• x ∈ X  means that x possibly has  the property P, 

• x ∈ X means that x certainly has the property P. 

The area of uncertainty extends over ⎯X \ X . 

The idea is that we are interested in X, but in many real-life situations the only 

information we have is that X is between the set X of all points that definitely have 
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the property P and the set ⎯X of all points that may have the property P. So the 

available information about the unknown set X can be given by (X, ⎯X).    

Let us observe that  X, and⎯X represent respectively the closure and the interior 

of X in the topology τθ, induced on U  by the relation θ, i.e. the topology having as 

a basis the equivalence classes modulo θ. In such a topology the class of closed 

sets coincide with the class of open sets.    

Definition 3.6.1  Let (U, θ) be an approximation space. For every X ⊆ U, a rough 

set is a pair (X, ⎯X). X is called θ-definable if  X =⎯X. 

 

It follows that if X is θ-definable, then it is either empty or a union of equivalence  

classes of θ  and it is an open set in the topology τθ. In this case, the area of 

uncertainty is ∅. 

In the collection ℜ of all rough sets in U we can define the order relation  

(X, ⎯X)  ≤  (Y, ⎯Y)  iff  X  ⊇  Y  and ⎯X  ⊆ ⎯Y. 

 

The theory of rough sets can be related with the one of interval sets. Let us 

recall this notion. 

Definition 3.6.2  Let A1, A2 be subsets of U. A closed interval set is the subset of 

P(U) 

[A1, A2] = {X∈ P(U) / A1  ⊆  X ⊆ A2}. 

The set A1 is called the lower bound and the set A2 the upper bound. In the class of 

all closed interval sets I(P(U)), we consider the usual an inclusion relation. 

Obviously, we have: 

[X1, X2] ⊆ [Y1, Y2]  iff  X1 ⊇ Y1  and  X2 ⊆ Y2. 

 

Any rough set (X, ⎯X) produces an interval set [X, ⎯X] in which the lower and 

upper bounds are θ-definable sets. In fact, there exists an homomorphism from 
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rough sets algebra to interval sets algebra (see [49]). More precisely, if we consider 

the subalgebra of the interval sets with θ-definable lower and upper bounds, a 

rough set can be viewed as an interval set. 

Let us assume that in U a pseudometric δ is defined and let us consider the 

related Hausdorff distance between sets. Then we can define two maps between 

interval sets by setting: 

dI(P(U))([X1, X2], [Y1, Y2]) = inf{δH(A, B) / X1 ⊆ A ⊆ X2  and  Y1 ⊆ B ⊆ Y2} 

and 

DI(P(U))([X1, X2], [Y1, Y2]) = sup{δH(A, B) / X1 ⊆ A ⊆ X2  and  Y1 ⊆ B ⊆ Y2}. 

Since it seems natural to assume that (U, δ) is bounded, DI(P(U)) is always finite. In 

accordance we can define the interval valued map ΔI(P(U)): I(P(U)) × I(P(U)) → 

I(ℝ0
+) as:  

ΔI(P(U)) ([X1, X2], [Y1, Y2]) = [dI(P(U))([X1, X2], [Y1, Y2]), DI(P(U))([X1, X2], [Y1, Y2])]. 

Proposition 3.6.1  The space (I(P(U)), ⊆, ΔI(P(U))) is an ISM-space, where the 

weight of an interval set pI(P(U)) ([X1, X2]) is equal to δH(X1, X2). 

 

Proof. We observe only that  

pI(P(U)) ([X1, X2]) = sup{δH(A, B) / X1 ⊆ A ⊆ X2  and  X1 ⊆ B ⊆ X2} 

=sup{eδ(A, B), eδ(B, A) / X1 ⊆ A ⊆ X2  and  X1 ⊆ B ⊆ X2} 

=eδ(X2, X1) = δH(X2, X1). 

� 

 

According to what we stated regarding the relations between interval sets and 

rough sets, we can define in an analogous way an interval valued map between 

rough sets Δℜ : ℜ ×ℜ  → I(ℝ0
+) as: 

Δℜ((X,⎯X), (Y,⎯Y )) = [dℜ ((X,⎯X), (Y, ⎯Y )), Dℜ ((X,⎯X), (Y,⎯Y ))]. 

Thus, we have the following  
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Proposition 3.6.2  The space (ℜ, ≤, Δℜ)  is an ISM-space, in which the weight of  a 

rough set is given by 

pℜ(X, ⎯X) = δH(X,⎯X). 

 

The roughness of (X,⎯X) becomes as weaker as the lower and the upper  

approximations get closer. So, the weight pℜ indicates how much the 

approximation of X is rough, i.e. it provides a measure of the area of uncertainty, 

evaluating the distance between  X  and⎯X. 

 

Evidently, if we consider the metric space associated to (ℜ, ≤, Δℜ), we denote 

by (Mℜ, δ’ℜ), the points in this space are just the exact sets, i.e. the open sets in the 

topology τθ, that represent complete information. 

Thus we can define the map Φ: (τθ,δH) → (Mℜ, δ’ℜ) by 

Φ(X) =  [〈(Xn, ⎯Xn)〉n∈ℕ], 

where Xn = X  for each n∈ℕ. 

 

Proposition 3.6.3   The following hold 

i) Φ  is surjective and  δ’ℜ(Φ(X), Φ(Y)) = δH(X, Y), for every X, Y ∈τθ; 

ii) if any open set in τθ is closed in the topology induced by the metric δ, then 

Φ is a bijection, i.e. the metric spaces (τθ,δH) and (Mℜ, δ’ℜ) are isometric. 

 

3.7 Approximate distances between E-rough sets 

In this section we examine rough sets based on approximation spaces obtained 

considering a graded notion of equivalence. 
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Let E:U×U → [0, 1] be a similarity with the ∧ t-norm. E defines an order-

reversing family of equivalence relations (θλ)λ∈[0, 1], by its λ-cuts C(E, λ) = {(x, y)/ 

E(x, y)≥λ}. Indeed we set  

x θλ   y  ⇔  (x, y) ∈ C(E, λ), 

for every x, y ∈ U and λ ∈ [0, 1]. For any λ1, λ2 ∈ [0, 1], λ1 ≤ λ2 entails that 

1λϑ ⊇
2λϑ , thus every class of 

1λϑ  is a union of classes of 
2λϑ . The finest 

equivalence relation we can obtain is 1ϑ , while 0ϑ  is the universal relation U×U.   

Let us call fuzzy approximation space the pair (U, E). Given X ⊆ U, for each λ 

∈ [0, 1], the equivalence θ¸ defines a rough set (Xλ,⎯Xλ)  we call λ-level rough set. 

We have an order-reversing family of rough sets ((Xλ,⎯Xλ))λ∈[0,1] and for λ1, λ2 ∈ 

[0, 1], λ1 ≤ λ2, it results that 
1λX ⊆ 

2λX ⊆ 2λX ⊆ 1λX .  

For λ → 1, i.e. for the equivalence relations tending to the finest one, in such a 

family of rough sets, the weights pℜ((Xλ,⎯Xλ)) decrease. If the similarity we 

consider is such that E(x, y) = 1 ⇔  x = y, the finest equivalence relation we can 

obtain is the identity relation and X1 =⎯X2. In this case, for λ → 1 the weights of the 

λ-level rough sets tend to zero and so the rough sets (Xλ,⎯Xλ) tend to the set X.  

To evaluate the approximate distance Δℜ  between two rough sets of the same 

family, let us observe that for λ1 ≤ λ2 it results that dℜ (( 1λX , 1λX ), (
2λX , 2λX ))= 

0, trivially. Since for any sets A ⊆ B,  δH(A, B ) = eδ (B, A), it results                     

Dℜ (( 1λX , 1λX ), (
2λX , 2λX ))=eδ ( 2λX ,

1λX ) ∨ eδ ( 1λX ,
2λX ). 

 

Definition 3.7.1  Given a similarity E: U×U → [0, 1], we call E-rough set any 

family ((Xλ,⎯Xλ))λ∈[0,1] defined by a subset X of U. 
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We can extend the approximate distance between rough sets to an approximate 

distance between two E-rough sets. Indeed we set 

RFd (((Xλ,⎯Xλ))λ∈[0,1], ((Yλ,⎯Yλ))λ∈[0,1] ) = ∫
1

0

 dℜ((Xλ,⎯Xλ), (Yλ,⎯Yλ)) dλ 

and  

RFD (((Xλ,⎯Xλ))λ∈[0,1], ((Yλ,⎯Yλ))λ∈[0,1] ) = ∫
1

0

 Dℜ((Xλ,⎯Xλ), (Yλ,⎯Yλ)) dλ. 

If we define an inclusion ≤ between E-rough sets as 

((Xλ,⎯Xλ))λ∈[0,1]   ≤  ((Yλ,⎯Yλ))λ∈[0,1]  ⇔  (Xλ,⎯Xλ)  ≤  (Yλ,⎯Yλ) for every λ∈[0, 1], we 

obtain 

Proposition 3.7.1  Let Fℜ be the class of the E-rough sets and let 
RFΔ  be defined 

by 
RFd  and 

RFD . Then, the space (Fℜ , ≤, 
RFΔ )  is an ISM-space. 

 

Proof. Properties of dℜ and Dℜ are extended to 
RFd  and 

RFD  by properties of 

integrals. 

� 

 

3.8 Applications to clustering 

Clustering is a process of distributing data (or objects) into groups called 

clusters, so that objects in the same cluster are more similar to each other than to 

objects in any other group. Sorting happens on the basis of similarities or, 

equivalently, distances between data. In order to group data, there are two ways of 

choosing distances. It is possible either to define a punctual distance between the 

initial data, at first, and then a distance between sets of grouped data, or to define a 

distance between sets of data and then to regard the punctual distance as a special 

case of this one. In this section, we choose to use a distance between sets, the 
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approximate distance Δ defined in Proposition 3.4.1, extending a classical 

clustering procedure. 

Let us see how, generally, a clustering technique works. 

Let X = {x1,…, xn} be the set of n objects to be clustered into K clusters. The 

set G = {G1,…, GK} (called clustering) of the clusters must be a partition of X, i.e. 

U
K

i 1=

 Gi = X,  Gi ∩ Gj = ∅, for i ≠ j  and Gi ≠ ∅. 

Clustering algorithms are divided into two wide groups: hierarchical and 

optimization algorithms. Proceeding by either a series of successive mergers or a 

series of successive divisions, hierarchical algorithms produce a hierarchy of 

related clusterings which can be arranged in a tree-like structure known as 

dendogram. Instead, optimization techniques produce a single clustering which 

optimizes a pre-fixed criterion or objective function. 

We focus on the Agglomerative Hierarchical Technique, whose characteristic 

is that a pair of clusters Gi, Gj  is selected and merged at a time, whereby the 

number of clusters is reduced by one. Now we examine this method. 

 

Agglomerative Hierarchical Clustering Procedure 

Let us suppose to have a family of n data X = {x1,…, xn} to be clustered and let us 

assume that a distance d: P(X)×P(X) → ℝ is defined. 

Step 0 

Set every data in its own cluster, i.e. set K = n and Gi = {xi}. 

Step 1 

Compute the matrix of the distances between the clusters (d(Gi, Gj))i,j . 

Step 2 

Select a pair of clusters Gp and Gq such that 

d(Gp, Gq) = mini≠j d(Gi, Gj). 

Step 3 
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Merge the clusters selected in Step 2: 

Gr = Gp ∪ Gq 

and set K = K - 1. 

Step 4 

If K = 1, stop, else go to Step 1 to update the matrix of the distances. 

 

Every iteration of the algorithm yields as output a clustering; we obtain a hierarchy 

starting from the first clustering consisting of singletons up to the last clustering 

which is just the set X. Let us observe that Step 2 is not deterministic. So, some 

selection strategy is also necessary. 

 

There are many different definitions we can choose for the distance and many 

different ways of updating it. For example, in the single linkage method the 

distance between two clusters is the minimum distance; the complete linkage 

method uses the maximum distance, whereas the average linkage method utilizes 

the distance between the centroids of two clusters. As another example, the 

distance used in [44] is the Hausdorff  metric. In this case, since for the excesses it 

results 

eδ(Gp∪Gq, Gi) = eδ(Gp, Gi) ∨ eδ(Gq, Gi) 

eδ(Gi ,Gp∪Gq) = eδ(Gi, Gp) ∧ eδ(Gi, Gq,), 

we can update the distances in the following way:  

δH(Gr, Gi) = δH (Gp∪Gq, Gi) =  eδ(Gp∪Gq, Gi) )∨ eδ(Gi, Gp∪Gq) 

= eδ (Gr, Gi) ∨  eδ( Gi, Gr). 

Since the Hausdorff distance is defined on sets and since it falls just into the 

interval whose end points are the infimum and supremum distances, as we showed 

in Proposition 3.4.2, it seems natural to utilize in the procedure above described the 

approximate distance Δ between subsets we defined in Proposition 3.4.1. In such a 

case, Δ provides the range in which the distance between two clusters can vary. 
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We start with the same initial situation in Step 0 and the same situation of 

computing the distances in Step 1.Namely, to update the distances, we have to 

calculate, for every i ≠r 

Δ(Gr, Gi) = Δ(Gp∪Gq, Gi) = [d(Gp∪Gq , Gi), D(Gp∪Gq, Gi)], 

where 

d(Gp∪Gq, Gi) =  d(Gp, Gi) ∧ d(Gq, Gi) 

and 

D(Gp∪Gq, Gi) = D(Gp, Gi)∨D(Gq, Gi) 

by properties (3.7) e (3.8).  Moreover, in Step 2 we have to select Gp and Gq in 

such a way that 

Δ( Gp, Gq) = mini≠jΔ(Gi, Gj), 

where the minimum is defined with respect to a suitable pre-order between 

intervals. As an example, we can define linear pre-orders on the set I(ℝ0
+), 

profiting by the usual order relation on ℝ. Indeed, let f be a map f: I(ℝ0
+)→ ℝ, then 

we set 

[u, v] ≤f  [u’, v’]  iff  f([u, v] ≤ f([u’, v’]). 

 

In such a way Step 2 becomes 

Step 2 

Select Gp and Gq in such a way that 

f(Δ(Gp, Gq)) = mini≠j f(Δ(Gi, Gj)). 

 

Obviously, we can choose the map f in different ways. By considering the first 

and second projections, we obtain the just exposed infimum and maximum 

distances based procedures. As an other example, we can use as f the map that 

associates each interval [u, v] with its middle point (u + v)/2. 

In the case in which the pre-order associated with f is not sufficient we can also 

introduce a second map g: I(ℝ0
+)→ ℝ in addition to f and set 
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[u, v] ≤fg  [u’, v’]  iff  
⎪
⎩

⎪
⎨

⎧

≤=

<

]).','([]),([])','([]),([

])','([]),([

vugvug  and  vufvuf
or               

vufvuf
 

 

By taking as f and g the first and the second projection, respectively, we obtain a 

total order, the so called lexicographical order. In such a case 

[u, v] ≤I  [u’, v’]  iff   u < u’ or  (u = u’  and  v ≤ v’) 

 

Generally, if a method of Agglomerative Clustering, with a distance δ satisfies 

the property 

δ(Gp∪Gq,Gi) ≥ δ(Gp, Gi) ∧ δ(Gq, Gi), 

then, the method does not induce any reversal in the dendogram (see ). Let us 

remark that the procedure utilizing Δ satisfies this property, with respect to the 

lexicographical order. In fact, it results 

[d(Gp, Gi) ∧ d(Gq, Gi), D(Gp, Gi) ∨ D(Gq, Gi)] ≥ 

[d(Gp, Gi) ∧ d(Gq, Gi), (D(Gp, Gi) ∧ D(Gq, Gi)) ∨ D(Gp, Gi)] 

i.e. 

[d(Gp∪Gq, Gi), D(Gp∪Gq, Gi)] ≥  [d(Gp, Gi), D(Gp, Gi)] ∧ [d(Gq, Gi), D(Gq, Gi)]. 

 

Let us observe that selecting two clusters Gp and Gq according to 

lexicographical order means that at first we check the minimum distances between 

the clusters and we individuate the class of the pairs which have the smallest 

minimum distance; successively, in such a class we select a pair which have the 

smallest maximum distance. 

We conclude this section by observing that there are several further 

possibilities. As an example, we can define a (total) order relation between 

intervals checking first their middle points and then their widths, i.e. 
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[u, v] ≤I  [u’, v’]  iff  
⎪
⎩

⎪
⎨

⎧

≤+=+

+<+

]).','([]),([2/)''(2/)(

2/)''(2/)(

vuwvuw  and  vuvu
or               

vuvu
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Chapter 4                                             

Fixed points, quasi-metrics and fuzzy 

orders  
 

 

In this chapter, among the distances verifying weaker axioms than the ones of 

metrics, we focus on quasi-metics and on their dual notion of fuzzy order. In 

particular we take under consideration fixed points theory, both in a metric setting 

and in ordered sets, and its application to logic programming. 

 

4.1 Preliminaries  

Fixed point theory for operators in a lattice is a basic tool for formal logic. In 

fact, if we have a lattice L whose elements represent “pieces of information”, in a 

logical apparatus it is usually possible to define an immediate consequence 

operator T. The order in L can be intended with respect to the informative content. 

In other words, saying that x ≤ y means that y represents more complete 

information than x. In accordance with this interpretation, given x ∈ L, T(x) is the 

information we can obtain from x by one step of the inferential process, and the 

fixed points of T represent the deductively closed pieces of information. The least 

fixed point of T greater than or equal to x represents the theory generated by x (as 

an example, see [12] for crisp logic and [4] or fuzzy logic).  

In particular, fixed point theory is very useful in logic programming. In such a 

field, the lattice L is the power set P(BP), where BP is the Herbrand base associated 

with a program P, and T is the single-step operator, T: P(BP) → P(BP), associated 
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with the program P. The fixed points of T are the Herbrand models for P and, 

therefore, the least fixed point of T is the least Herbrand model of P.  

If the logic under consideration is monotone, in particular, if the program P is 

positive, T is a monotone operator, and therefore it is possible to apply the fixed 

point theorem of Knaster and Tarski, for ordered sets. Nevertheless, when the 

single-step operator T is not monotone, for instance if T is associated with a 

program containing negation, fixed point theorems for ordered set appear to be 

insufficient. In such case, it can be helpful to consider an approach metric in nature 

and to apply fixed point techniques in metric spaces, which are derived from 

Banach-Caccioppoli’s contraction theorem (see [13], [37]). Another reason 

suggesting the opportunity to refer to metric spaces comes from fuzzy logic. 

Indeed, the process leading to a fuzzy set of consequences from a fuzzy set of 

hypotheses happens in a continuous environment. Such a process cannot finish by 

giving the exact output. Rather is an endless approximation of the ideal output. 

From here the need arises to define someway the notion of “approximation”. This 

is possible only in a metric setting. 

On the other hand, fixed point theory in ordered sets and fixed point theory in 

metric spaces can be unified. Indeed, the notion of fuzzy order allows us to extend 

simultaneously both the metric notions and the ones of ordered sets theory. The 

notion of fuzzy order is dual to the one of quasi-metric, which also combines the 

basic usefulness of metrics in measuring the distance between two objects and the 

advantages of order in order-theoretic arguments, (see [37], [39], [43]). In 

accordance with this duality, it is possible to demonstrate a theorem simultaneously 

generalizing the fixed point theorem of Knaster and Tarski for ordered structures 

and the theorem of Banach- Caccioppoli for metric spaces. 
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4.2 Operators   

We start with some hints of the theory of operators in the lattice of all the 

subsets of a given nonempty set. Afterwards we extend the related notions to any 

complete lattice.  

Let S be a nonempty set and let us denote by P(S) the lattice of all the subsets 

of S. We call operator in S any map J from P(S)  into P(S).  

Definition 4.2.1 An operator J:P(S)→ P(S) is called closure operator if, for every 

X, Y ∈ P(S), it satisfies: 

i)  X ⊆ Y ⇒ J(X) ⊆ J(Y);   

ii) X ⊆ J(X);            

iii) J(J(X)) = J(X). 

 

An almost closure operator, briefly a-c-operator, is an operator J satisfying i) and 

ii) of the previous definition.  

 

Let us enunciate some important properties for operators. We can introduce the 

notion of compactness, which is a very useful property, since it corresponds to the 

notion of a finite “construction process”. 

Definition 4.2.2 Let J: P(S) → P(S) be an operator in S. Given X∈P(S), J is 

compact if for every x ∈ J(X), there exists a finite subset Xf  of X such that x ∈ 

J(Xf), that is                                

J(X)=∪{J(Xf) / Xf  finite subset of X}. 

 

Now let us refer, for the above introduced notions, to any lattice. Let us denote, 

in the following, by L a complete lattice whose minimum and maximum we denote 

by 0 and 1, respectively.  
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Definition 4.2.3 An operator J: L→L is called a closure operator if, for every x, 

y∈L 

i) x ≤ y ⇒ J(x) ≤ J(y)    (monotony) 

ii) x ≤ J(x)                          (inclusion) 

iii) J(J(x)) = J(x)            (idempotence). 

 

 Since the notion of finite subset is not defined in a generic lattice L, we have to 

search for a different notion of compactness. In order to do this, let us introduce the 

notion of directed class. A nonempty class C = (xi)i∈I  of elements of L is called 

directed  if  

∀ i, j∈I ,  ∃ h∈I  such that  xi≤ xh  and xj≤ xh. 

The chains are typical examples of directed classes. We say that z = Sup(C) is the 

limit of  C and we write z = limC. If J is an order-preserving operator and C is a 

directed family, then also its image J(C) = {J(x) / x∈ C} is directed, obviously. 

Definition 4.2.4  An operator J is called continuous if it is order preserving and, for 

every directed class C, 

J(limC) = limJ(C).  

 

A continuous closure operator is also called an algebraic closure operator.  

It is possible to prove that if L is the lattice P(S) of all the subsets of a given set 

S, then J is continuous if and only if J is compact.  

 

4.3 Fixed points in ordered sets 

Let H be a continuous a-c-operator. The following famous theorem states that 

for every x∈L, the least fixed point of H greater or equal to x, c(H), is given by 

Supn∈ℕHn. 
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Theorem  4.2.1 (Fixed-point Theorem) Let H be a continuous a-c-operator. Then 

c(H) = Supn∈ℕHn. 

           

Proof. We have to prove that, for every x∈L,  Supn∈ℕHn(x) is the least fixed 

point of H greater than or equal to x. Now, since H(x) ≥ x we have also that H n+1(x) 

≥ Hn(x) for every n, and hence the family (Hn(x))n∈ℕ is directed. Since H is 

continuous 

H(Supn∈ℕHn(x)) = Supn∈ℕHn+1(x) = Supn∈ℕHn(x) 

and Supn∈NH n(x) is a fixed point for H greater than or equal to x. If y is any fixed 

point such that y ≥ x, then for every n∈ℕ, y = Hn(y) ≥ Hn(x) and hence y ≥ 

Supn∈ℕHn(x). This proves that Supn∈ℕHn(x) is the least fixed point of H greater or 

equal to x.  

  � 

 

Let us consider now some applications of the theory of closure operators to the 

logic. We define an abstract deduction system as a pair (L, D) where L is a 

complete lattice and D a closure operator in L. The elements in L are called pieces 

of information and D the deduction operator. A theory is defined as  a  fixed point 

of  D, i.e., as a  piece  of  information τ  such  that τ ≥ D(τ). So the theories are the 

deductively closed pieces of information.  

For example, the classical first order logic is an abstract logic in which the 

pieces of information are the sets of formulas (systems of axioms), D(x) is the set 

of formulas we can derive from x, a theory τ is a set of formulas containing the 

logical axioms and closed under the inference rules .  

A deduction operator D is usually obtained starting from a suitable set A of 

logical axioms and a suitable set of inference rules. Namely, let us denote by J(X) 
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the set of the formulas that can be obtained by one application of the inference 

rules to the formulas in X, and let us set  

H(X) = J(X)∪A∪X, 

i.e., α∈ H(X) if: either α  is obtained by applying an inference rule to the formulas 

in X, or α  is a logical axiom, or α is an element in X.   

It is immediate that H is an almost closure operator and D(X)=∪H n(X). For a 

natural number n, H n(X) represents the set of the formulas we can obtain from X 

by an n-step inferential process. 

 

Now, we consider the application of closure operators to a particular kind of 

theories, the programs. Given a first order language ℒ and a program P, it is 

possible to associate to P a closure operator, the single step operator, which allows 

to obtain the Herbrand models of the program. These notions can be applied in the 

logic programming field. 

 

4.4 Logic programming by fixed points approach  

Logic programming concerns both logic and programming, so several kind of 

semantics have been developed for it. In this context we are interested to the 

application of fixed points theory to logic programming.  

Let P be a definite program and BP the Herbrand basis associated with it. Then, 

it is possible to introduce a continuous map on the complete lattice P(BP) and it is 

possible, by means of this map, to have a fixed point characterization of the least 

Herbrand model of P. 

In order to examine the case of logic programming with negation, we prefer to 

consider {false, true} PB , instead of P(BP). In accordance we give the following 
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Definition 4.4.1  A (classical) valuation is a mapping v: BP→{false, true} from the 

set of ground atoms to the set of classical truth values. 

 

Indeed, it is common in the logic programming literature to identify a valuation v 

with the set of ground atoms which are true by v.  The standard approach in logic 

programming is to take false as the default. It is possible to assign to the space 

{false, true} the truth-based ordering ≤t, which asserts false ≤t true. This ordering 

is pointwise extended to valuation: v1 ≤t v2 if and only if  v1(A) ≤t  v2(A), for every 

ground atom A. Moreover, it is possible to define a single-step operator for a 

program P, in the usual way (see [16]). It is a map TP, from valuations to 

valuations, such that TP(v) makes a ground atom A true in the case that A is the 

head of a ground instance of some clause in P, and v makes the body of that ground 

instance true. Formally, given a program P, we have first to define P∗ as the set 

associated to P, constructed by: taking all the ground instances of members of P, 

replacing the possible clauses A← with empty body with A← true, adding 

A←false, if the ground atom A is not the head of any member of P∗.  Then we can 

give the following 

Definition 4.4.2  A single-step operator for a program P is a map TP: {false, 

true} PB →{false, true} PB , defined by TP(v)=w, where, for a ground atom A, w is 

the unique valuation determined by the following:  

(i) w(A) = true  if there is a ground clause A ← B1, …, Bn in P∗ with head 

A such that v(B1) = true, and …, and v(Bn) = true. 

(ii) w(A) = false otherwise. 

 

What we would like to obtain is a fixed point for the single-step operator, that 

is, a valuation that the program cannot edit. For any definite program, the 

associated single-step operator is monotone, i.e. 
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v1 ≤t v2  implies TP(v1) ≤t TP(v2). 

Since it is possible to verify that TP is continuous, in this case, the well-known 

Knaster-Tarsky Theorem assures that the single step operator has smallest (and 

largest) fixed points. The smallest fixed point of TP is the smallest Herbrand model. 

 

4.5 Non monotone logics and fixed points 

Let us now examine one of the most, at the same time controversial and 

worthwhile, addition to the basic logic programming mechanism: the negation. In a 

simple database language, negation is not a problem: it is possible to report the 

facts that either an item is in a database, or it is not. But if a system is built on 

classical first-order logic, negation can be a serious problem, (see [16]). A weaker 

version of negation can be used: negation as failure, that is, one concludes not X if 

X is not a logical consequence of a program. Negation as failure is essentially non 

monotonic: if X is not a consequence of the program, we say that not X is a 

conclusion, but if X is added to the program, then the conclusion not X must be 

removed. The addition of new axioms can decrease the set of theorems that 

previously held.  

For a general logic program P the definition of the single-step operator could 

be extended from the one of definite programs, essentially requiring that v(not X ) 

has the truth value ¬v(X ). Nevertheless, this is not a satisfactory way to proceed; 

indeed, since the presence of negations destroys monotonicity, the existence of 

smallest and biggest fixed points is no longer guaranteed. Moreover, it can happen 

that also for a very simple program, such as P← not P, it does not exist any fixed 

point. So, it seems necessary to bring some changes to the above described 

approach.  

A possibility examined in literature is to consider partial valuation, or three-

valued valuations. 
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Definition 4.5.1  A partial valuation is a mapping v: BP→{⊥, false, true } from the 

set of ground atoms to the set {⊥, false, true}.  

Once again it is common in the literature to work with sets, rather than with maps. 

The meaning is that if it is not possible to deduce if the value of a ground atom A is 

true or false, we take the value for A undefined, or ⊥. In this case, the approach is 

to take ⊥ as the default. More precisely, considering the smallest and the biggest 

fixed points of the single-step operator associated to a logic program, if they agree 

on one of the classical truth value for a ground atom A, then this value is taken to 

be the value of A. Otherwise, the value of A is undefined.  

In the space {⊥, false, true} it is possible to introduce the knowledge-based 

ordering ≤k, that is an ordering based on the “degree of information” instead of the 

“degree of truth”. It asserts ⊥ ≤k false and ⊥ ≤k true. Again this ordering is 

pointwise extended to partial valuations, i.e. v1 ≤k  v2 if and only if  v1(A) ≤k v2(A), 

for every ground atom A.    

Now it is possible to define a new single-step operator ΦP, from partial 

valuations to partial valuations, associated with a program P. In this case we need 

to specify when both the values true and false are assigned, otherwise ⊥ is the 

default. So we have: 

Definition 4.5.2  Given a program P, the single-step operator ΦP is a map ΦP: {⊥, 

false, true} PB →{⊥, false, true} PB , defined by ΦP(v)=w, where, for a ground atom 

A, w is the unique partial valuation determined by the following:   

(i) w(A) = true  if there is a general ground clause A ← B1, …, Bn in P∗ 

with head A such that v(B1) = true, and …, and v(Bn) = true. 

(ii) w(A) = false  if for every general ground clause A ← B1, …, Bn in P∗  

with head A, v(B1) = false, or …, or v(Bn) = false. 

(iii) w(A) =⊥, otherwise. 
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In such a case, for a general program P, the operator ΦP is monotone with 

respect to the ordering ≤k. Since {⊥, false, true} does not result a complete lattice, 

the Knaster-Tarski theorem cannot help us, but the algebraic structure is rich 

enough to ensure the existence of smallest fixed point (though not biggest) for 

monotone maps. Sometimes the three-valued approach results natural, but there are 

cases in which it is quite awkward. So in some situations it is more advantageous to 

introduce different techniques based on metric spaces, which result, when 

applicable, simpler, also from a computational point of view.   

 

4.6 Metric methods for logic programming 

The existence of a model for a logic program is generally established by lattice-

theoretic arguments, as we saw. But it is often possible to use metric methods 

instead. In this section we examine some of these methods useful to handle general 

logic programs and some problems arising from them. We refer again to the 

approach based on fixed points theory. So, the aim is to find a fixed point for the 

single-step operator associated with a program.   

One of the most significant metric approach is that of Fitting (see [16], [17]), 

who proved the existence of fixed points of the immediate consequence operator 

for some non-positive programs applying the Banach Contraction Theorem, as a 

replacement for the Knaster-Tarski Theorem. In this  application it turned out that 

the metric defined was actually an ultrametric. More precisely he involved the 

notion of level mappings.  

Definition 4.6.1  A level mapping for a program P is a function l: BP → ℕ from 

ground atoms to natural numbers. We say that  l(A) is the level of the ground atom 

A. 

Given n ∈ℕ, we denote by ln the set l-1(n) of all the atoms of level n. 
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It is possible to define a metric, between (classical) valuations, associated with a 

level mapping. 

Definition 4.6.2  Let v and w be valuations and let l be a level mapping. Let us 

define the associated metric d as d(v, w) = 0, if v = w; otherwise, d(v, w) = 1/2n, 

where v and w differ on some ground atom of level n, but agree on all ground 

atoms of lower levels.  

 

It is quite a routine to show that d results an ultrametric. Moreover, it results that 

the space of valuations, using such a metric, based on a level mapping, is a 

complete metric space.  

It is possible to have many possible metrics on the set of valuations, since 

every level mapping determines one. The aim is to find a metric with respect to 

which the single-step operator TP of a program is a contraction: so it will be 

possible to resort to the well-known Banach Contraction Theorem to find fixed 

points. Indeed, by this Theorem, if TP is a contraction on the space of valuations, it 

has a unique fixed point. Let us stress that this reasoning often holds also if we 

define a metric on the three-valued valuations space, in other words, also the ΦP 

operator often results a contraction.  

Sometimes, as we have illustrated, the three-valued single step operator ΦP 

results monotonic with respect to some orderings and, then, by the usual lattice-

theoretic approach, it is possible to prove that it converges to a fixed point. 

Nevertheless, this operator may need in general more than ω steps to rich its fixed 

point, whereas the Banach theorem, when it is applicable, gives convergence in ω 

steps. 

 

Now let us report some example (see[16], [17]) of simple logic programs in 

order to show how the described metric approach works. 
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Example 1 – P1  

even(0) ← 

even(s(x)) ← ¬ even(x) 

We are considering numbers represented as numerals, a constant symbol 0, a 

successor function symbol s. 

Let us represent some of the first steps of this program in explicit form: 

TP1(∅)=BP  

T2
P1(∅)={even(0)} 

T3
P1(∅)={even(0), even(s2(0)), even(s3(0)), even(s4(0)), even(s5(0)), … } 

     =BP \ {even(s(0))} 

T4
P1(∅)={even(0), even(s2(0))} 

T5
P1(∅)={even(0), even(s2(0)), even(s4(0)), even(s5(0)), … } 

            =BP \ {even(s(0)), even(s3(0))} 

… 

 

It is possible to define a level mapping simply by setting l(even(sn(0))) = n. Then, 

we can define the rising ultrametric by: d(v, v) = 0 and d(v, w) = 1/2n, where n is 

such that v(even(sn(0))) ≠ w(even(sn(0))), but v(even(sk(0)))= w(even(sk(0))), for 

every k<n. With such a distance the space of valuations results a complete 

ultrametric space and TP1 is a contraction. In fact, we can easily observe that if the 

valuations v and w agree on even(sk(0)), then TP1(v) and TP1(w) will agree on 

even(sk+1(0)). So, if the distance between v and w is 1/2n, then the distance between 

TP1(v) and TP1(w) will be 1/2n+1. Thus, d(TP1(v), TP1(w)) ≤ 
2
1

d(v, w), and, by the 

Banach Theorem, TP1 has a unique fixed point.   

 

Example 2 – P2  

Let us suppose to have a game, with positions denoted by constants a, b, … and 

let us assume that impossibility of moving for a player means loosing. The program 
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starts with the list of all the legal moves of the game move(a, b), move(c, d), …. 

We can write the program as follows: 

move(ai, aj)  ←  (for all legal moves ai to aj ) 

win(x) ← move(x, y), ¬win(y) 

To show explicitly some steps of this programs, we examine a simple case. Let us 

suppose to have move(a, b), move(b, c), move(b, e), move(c, d): 

                                                               

                
In such a case it would be: 

TP2(∅)={move(a, b), move(b, c), move(b, e), move(c, d)} 

T2
P2(∅)={move(a,b), move(b,c), move(b, e), move(c, d), win(a), win(b), win(c)} 

T3
P2(∅)={move(a, b), move(b, c), move(b, e), move(c, d), win(b), win(c)} 

T4
P2(∅)={move(a, b), move(b, c), move(b, e), move(c, d), win(b), win(c)}. 

 

In general we can say that if we assume that the program has no loops, the 

associated single-step operator has a unique fixed point. Indeed, it is possible to 

define a level mapping by setting l(move(a, b))=1, for every a, b, and l(win(p)) 

equal to the height of the tree having p at the root and each node labelled with a 

position, in such a way that the children of a node are labelled with the positions 

reachable in one move from the position labelling the parent. The finiteness of the 

game trees is guaranteed by the assumption that the program has no loops. It  is 

c 

  a 

b

d 

e 
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easy to verify that TP2 results a contraction, with respect to the ultrametric 

corresponding to this level mapping. 

 

Despite the success of metric methods with simple programs, various problems 

remain. Indeed, the applications of metric techniques has been extended in several 

directions. For example, Seda (see [42], [43]) examined a process to find fixed 

points of immediate consequence operator, utilizing quasi-metrics. This approach 

is carried out in order to overcome some restrictions of the previous approaches 

and it results much more general. Indeed, by quasi-metrics, characterized, as we 

saw in Chapter 1, by the lack of symmetric property, it is possible to combine both 

the lattice-theoretic approach and the metric one and, in a sense, unify fixed points 

theory in ordered sets and fixed points theory in metric spaces.  

Also in this approach the metric functions are defined by means of level 

mappings l, with the property for ln to be a finite set for each n. Besides, given a 

level mapping l, Seda defines the function rank, r: BD → ℕ, where BD is the set of 

all finite subsets of BP, by setting r(I)=maxA∈I(l(I)), for nonempty I∈BD, and 

r(∅)=0. Equivalently, we can refer to the valuations, as usual. So we denote by BD 

the set of all valuations v such that v(A) is true only for a finite set of atoms. In such 

a case, the definition of r(v) is obvious. We have 

Definition 4.6.3  Let u1 and u2 be valuations and let l be a level mapping and r be 

the corresponding rank function. Let us define the associated metric d as           

d(u1, u2)=inf{1/2n / v ≤ u1 ⇒ v ≤ u2 holds for every valuation v with r(v)≤n}.  

 

The so defined distance d results to be a quasi-ultrametric and the space of 

valuations with d results complete and totally bounded. If the single-step operator 

results non-expansive, it is possible to refer to the Rutten-Smyth theorem for quasi-

metrics. But, differently from the previous case, now the single-step operator 
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associated with a program P does not always result non-expansive. As an example 

let us take up the Program P1 of Example 1: 

even(0) ← 

even(s(x)) ← ¬ even(x) 

 

We define a level mapping in the same way, l(even(sn(0))) = n, but we have now 

that TP1 is not non-expansive with respect to the corresponding quasi-metric. 

Indeed, let us consider u1 and u2 corresponding to I1={even(0), even(s(0))} and 

I2={even(0), even(s(0)), even(s2(0))}, respectively. If we apply the single-step 

operator, we obtain that TP1(u1) corresponds to {even(0), even(s3(0)), even(s4(0)), 

…} and TP1(u2) corresponds to {even(0), even(s4(0)), even(s5(0)), …}. Therefore, 

we have d(u1, u2)=0 (since I1⊆I2), but d(TP1 (u1), TP1(u2))=2-2. In such a case, we 

can solve the problem by considering Tn
P1(∅): it is possible to verify that 

d(Tn
P3(∅), Tn+1

P3(∅)=0, if n is even, and d(Tn
P3(∅), Tn+1

P3(∅)=2-n+1, if n is odd. 

Thus, Tn
P3(∅) is a Cauchy sequence and it converges to a fixed point.   

 

It is possible to find programs whose single-step operators are never non-

expansive, for any choice of the level mapping and corresponding distance (see, for 

instance [43]).  

    

4.7 Fixed point theorems for fuzzy orders 

We have seen how the notion of quasi-metric is involved in some problem 

regarding the search of fixed points. Due to what suggested by Valverde in [45] 

and examined in Chapter Chapter 1, the notion of fuzzy order is a dual one of the 

notion of quasi-metric distance. Then it should be interesting to investigate the 

possibility of a fixed points theory in the rather general framework of the theory of 

fuzzy orders.  
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Definition 4.7.1  Let M be a set. Given a map f : M → M and a fuzzy relation R we 

say that x ∈ M is a fixed point for f  (with respect to R) provided that  

R(x, f(x)) = R(f(x), x) = 1. 

In the case that R is a ∗-fuzzy order, x is a fixed point if and only if f(x) = x (see 

Definition 1.4.1). 

 

Now we give the dual notion of forward Cauchy sequence in a quasi-metric 

space (see, for example, [43]), by binary relations and in particular by fuzzy orders. 

Proposition 4.7.1  A sequence (xn)n∈ℕ  in a set M is said to be forward Cauchy if, 

for every 0 ≤ ε < 1, there exists a natural number n such that R(xn, xm) ≥ ε whenever 

m ≥ n ≥ n. 

 

Let us remark that when R is a fuzzy order, a sequence is forward Cauchy if and 

only if for each 0 < ε < 1, there exists a natural number n such that R(xn+1, xn) ≥ ε 

for all n ≥ n. 

Definition 4.7.2  Let (xn)n∈ℕ be a forward Cauchy sequence. We say that  ℓ ∈ M  is 

a limit of (xn)n∈ℕ, if, for every x ∈ M, we have  

R(ℓ, x) = limR(xn, x). 

We say that  the forward Cauchy sequence (xn)n∈ℕ converges to ℓ in M and we 

write limxn = ℓ. 

The structure (M, R) is called complete if every forward Cauchy sequence 

converges to a limit.  
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The proposed convergence depends on the convergence defined in ℝ, so it 

inherits lots of properties of the convergence in ℝ. As an example, if (xn)n∈ℕ is a 

forward Cauchy sequence and ℓ is a limit of the sequence, an extract sequence of 

(xn)n∈ℕ converges to the same limit ℓ. 

 

For instance,  let us assume that R is a partial order ≤. A sequence (xn)n∈ℕ is 

forward Cauchy if and only if ∃ N, ∀n ≥ N,   xn ≤ xn+1, i.e. if and only if it is 

“eventually a chain”. Moreover, the statement  limxn = ℓ  is equivalent to  

∀x ∈ M   (ℓ ≤ x  ⇔  ∃m ∀n ≥ m,   xn ≤ x). 

In particular, if xn is order-preserving, then limxn = ℓ if and only if ℓ = Sup{xn / n ∈ 

ℕ}. 

Proposition 4.7.2  Let R be a ∗-fuzzy preorder. Then, two limits of a given 

sequence  (xn)n∈ℕ are similar. If R is a ∗-fuzzy order, then limit is unique. 

 

Proof. Let us assume that limxn = ℓ and  limxn = ℓ'. Then, by definition, R(ℓ, x) 

= limR(xn, x) and R(ℓ', x) = limR(xn, x) for  every  x ∈ M. In  particular, by  setting x 

= ℓ,  1 = R(ℓ, ℓ) = limR(xn, ℓ) = R(ℓ', ℓ) and, by setting x = ℓ', 1 = R(ℓ', ℓ') = limR(xn, 

ℓ') = R(ℓ, ℓ'). Then 1 = R(ℓ', ℓ) = R(ℓ, ℓ') and ℓ is similar with ℓ'. Trivially, when R is 

a ∗-fuzzy order, by the antisymmetry limits coincide.                  

� 

 

Let us give, now, some other definitions which are dual of some well-known 

notions in metric spaces theory. Let M be a set and f: M → M be a map. 
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Definition 4.7.3  Let R be a ∗-fuzzy preorder. The map f is called continuous if 

from  limxn = ℓ  it follows limf(xn) = f(ℓ), for every forward Cauchy sequence 

(xn)n∈ℕ in M. 

Obviously, when M is a partially ordered set,  f is continuous if and only if it 

preserves upper bounds of chains. 

Definition 4.7.4  We say that f is non-expansive if for every x, y ∈ M, 

R(f(x), f(y)) ≥ R(x, y). 

 

Let us observe that if R is a ∗-similarity, then a non-expansive map is a function 

“compatible” with the ∗-similarity R. If R is a ∗-fuzzy preorder, then a non-

expansive map is in a sense an order-preserving map. 

 

Definition 4.7.5  We say that f is contractive if there exists c > 1 such that  

(R(f(x), f(y))) c  ≥ R(x, y). 

 

In other terms, a contraction is a map that increases the similarity-degree 

between elements. 

The following theorem is a dual version of the first part of Rutten-Smyth 

theorem regarding quasi-metrics, so it can be viewed as a unification of both metric 

notions and the ones of ordered sets theory. 

Theorem 4.7.1.  Let R be a ∗-fuzzy preorder such that (M, R) is complete and let 

f: M → M be a non-expansive continuous map such that R(x, f(x)) = 1, for a 

suitable x ∈ M. Then f has a fixed point. 
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Proof. Let us consider the sequence (x, f(x), f 2(x),....). Since f is non-expansive, 

such a sequence is a forward Cauchy one. Indeed, trivially we have that  

1 = R(x, f(x)) ≤ R(f(x), f 2(x)) ≤ ... ≤ R(f n(x), f n+1(x)), 

and so, by ∗-transitivity, it results, for every m ≥ n, 

R(f n(x), f m(x)) ≥ R(f n(x), f n+1(x)) ∗ ... ∗ R(f m-1(x), f m(x)) ≥  

≥ 1 ∗ ... ∗1 = 1 

 

Moreover, from the hypothesis of completeness of (M, R), it follows that the 

sequence (f n(x))n∈ℕ has a limit ℓ . Also, since f  is continuous, we have that  f(ℓ) is 

a limit of (f n+1(x))n∈ℕ, and therefore of (f n(x))n∈ℕ. Finally, since R is a ∗-fuzzy 

preorder, limits are similar, i.e. R(f(ℓ), ℓ) = 1 = R(ℓ, f(ℓ)). Then ℓ is a fixed point for 

f.                            

� 

The following theorem is dual of fixed points theorems with contractive maps 

in metric settings and the proof makes use of some transpositions from the Banach 

contraction principle. 

Theorem 4.7.2. Let ∗ be  a t-norm greater than or equal to the usual product. Let 

R be a ∗-fuzzy order such that (M, R)  is complete and  f: M → M be a continuous 

and contractive map. Then f has a unique fixed point. 

 

Proof. Let us observe that it is sufficient to prove the theorem with  the t-norm 

of the product ⋅. Indeed, if ∗ is a t-norm greater or equal to the product, then the 

∗-transitivity implies the ⋅-transitivity: R(x, z) ≥ R(x, y)∗R(y, z) ≥ R(x, y) ⋅R(y, z). 

Therefore, any ∗-fuzzy order is a ⋅-fuzzy order. Let x0 be any element of M, and 

let (xn)n∈ℕ be the sequence defined as follows: x1= f(x0), x2= f(x1), …, xn+1= f(xn), ... .  
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Let us prove that this sequence is forward Cauchy. Let us observe that by 

hypothesis there exists c,  0 < c < 1, such that: 

R(x1, x2) = R(f(x0), f(x1)) ≥ (R(x0, x1)) c  = (R(x0, f(x0))) c   

R(x2, x3) = R(f(x1), f(x2)) ≥ (R(x1, x2)) c  ≥ (R(x0, x1))
2c = (R(x0, f(x0)))

2c   

……. 

R(xn, xn+1) = R(f(xn-1), f(xn)) ≥ (R(xn-1, xn)) c  ≥ (R(x0, x1))
nc = (R(x0, f(x0)))

nc  . 

Then, we have that  

R(xn, xn+r) ≥ R(xn, xn+1) ⋅R(xn+1, xn+2) ⋅ … ⋅R(xn+r-1, xn+r)≥ 

≥(R(x0, f(x0)))
nc  ⋅ (R(x0, f(x0)))

1+nc  ⋅ … ⋅ (R(x0, f(x0)))
1−+rnc = 

=(R(x0, f(x0))) 
11 ... −++ +++ rnnn ccc . 

Let us observe that 

cn + cn+1 + .... + cn+r-1 = 
c

cc rnn

−
− −+

1

1

 = 
( )

c
cc rn

−
− −

1
1 1

 ≤ 
c

cn

−1
. 

Let us set  d = R(x0, f(x0)). For every ε,  such that 0 < ε < 1, it is logd(ε) > 0 and 

since limn→∞ c
cn

−1
 = 0, there exists a natural number n0 such that 

c
cn

−1
 ≤ logd(ε) 

for any n ≥ n0. Therefore, we have cn + cn+1 + .... + cn+r-1 ≤ logd(ε),  for any n ≥ n0. 

Consequently, for any n ≥ n0 and r ∈ℕ,  

R(xn, xn+r) ≥ R(xn, xn+1) ⋅ R(xn+1, xn+2)  ⋅ … ⋅ R(xn+r-1, xn+r)≥ 

≥ d
nc  d

1+nc  …  d
1−+rnc = d

11 ... −++ +++ rnnn ccc  ≥ )(log εdd  = ε. 

Then (xn)n∈ℕ is forward Cauchy. From the hypothesis of  the completeness of (M, 

R), it follows that there is a limit ℓ of  the  sequence (xn)n∈ℕ. Since f  is continuous, 

f(ℓ) = limf(xn) = limxn+1 = ℓ, and then ℓ is a fixed point for f. Now let us suppose 

that there is another fixed point ℓ1. Then 

R(ℓ, ℓ1) = R(f(ℓ), f(ℓ1)) ≥ (R(ℓ, ℓ1)) c , 

hence necessarily R(ℓ, ℓ1) = 1. In the same way we have R(ℓ1, ℓ) = 1, so from 

antisymmetry it follows ℓ = ℓ1.                    
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� 

           

Let us observe that, in particular, the previous theorem holds for the t-norm of 

the minimum, which is the greatest  t-norm, as it is possible to prove immediately. 

 

4.8 Examples of fuzzy orders 

In order to give some applications of the notions we discussed above, let us 

consider some particular fuzzy relations. 

Given a set M, we can extend the set theoretical  inclusion  by means of fuzzy 

orders defined in a power set P(M). We define a generalized ∗-fuzzy inclusion as 

a ∗-fuzzy preorder,  i.e. as a reflexive,  ∗-transitive fuzzy relation Incl: P(M)× 

P(M)→[0,1],  such that X ⊆ Y ⇒ Incl(X, Y) = 1. Incl gives the degree of inclusion 

of X  in Y. If Incl is a generalized ∗-fuzzy inclusion, we have that:  

a) X1 ⊆ X2 ⇒ Incl(X1, Y) ≥ Incl(X2, Y); 

b) Y1 ⊆ Y2 ⇒ Incl(X, Y1) ≤ Incl(X, Y2). 

Let us observe that a) follows trivially from the ∗- transitivity: 

Incl(X1, Y) ≥ Incl(X1, X2) ∗ Incl(X2, Y) ≥ 1 ∗ Incl(X2, Y) = Incl(X2, Y), 

and analogously  it is possible to prove b).  

We say that Incl is a ∗-fuzzy inclusion if Incl is a ∗-fuzzy order.  

 

Now let us provide some examples of fuzzy inclusion. 

Given a set M, let us define the fuzzy subset of the relevant element rel: M → 

[0, 1]. It is possible to associate to such a fuzzy subset a map μ: P(M) → [0, 1], 

defined, for every X ≠ ∅ by  

                                            μ(X) = Sup{rel(x) / x ∈ X},    (4.1) 
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and  

μ(∅) = 0. 

We call such a map the possibility measure defined by rel.  

We interpret rel(x) as the “degree of relevancy” of an element x and,  since it is 

possible to interpret the existential quantifier in [0,1] by the least upper bound, we 

interpret μ(X) as a measure of the truth degree of the claim “there is a relevant 

element in X”. 

Proposition 4.8.1  Let μ be the possibility measure defined in (4.1) and let us 

define the fuzzy relation Incl: P(M)×P(M) → [0, 1], by setting    

                                                Incl(X, Y) = 1 - μ(X - Y). (4.2)  

Then, Incl is a generalized fuzzy inclusion. Besides, if rel(x) ≠ 0 for any x ∈ M, 

then Incl is a fuzzy inclusion. 

 

Proof. First let us observe that if X ⊆ Y, then X-Y = ∅, and therefore Incl(X, Y) 

= 1. This proves that Incl is an extension of ⊆. Now let us consider d(X,Y) = μ (X-

Y). Proposition 1.8.1 (in Chapter Chapter 1) assures us that proving that Incl is a 

fuzzy preorder is equivalent to prove that d is a generalized quasi-ultrametric. So, 

we have to prove axioms (d1), (d’1), (d’3) (see Section 1.6) characterizing a 

generalized quasi-ultrametric. Reflexivity follows trivially by the definition. To 

prove that  μ(X-Z) ≤ μ(X-Y) ∨ μ(Y-Z), let us observe that     

 X-Z ⊆ ((X-Y)∪(Y- Z)). (4.3) 

In fact, let x ∈ X- Z. If x∈Y , then we have that x∈Y- Z, otherwise, if x∉Y , we have 

that x∈X-Y. Therefore, thanks to (4.3) we can write 

Sup{rel(x) / x∈X-Z} ≤ Sup{rel(x) / x∈(X-Y)∪(Y- Z)} 

= Sup{rel(x) / x∈X-Y} ∨ Sup{rel(x) / x∈Y- Z}, 

so the triangular inequality is satisfied and Incl is a fuzzy preorder. 
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To prove the remainder of the proposition, let us assume that rel(x) ≠ 0 for 

every x∈M. Then μ(X) = 0 entails that X = ∅. Thus, from μ(X-Y) = 0 it follows that  

X-Y = ∅, and therefore X ⊆ Y. Similarly, from μ(Y-X) = 0 it follows that Y-X = ∅ 

and  Y ⊆ X. So, in such a case  d(X, Y) =μ (X-Y) satisfies also (d4) and so Incl 

results a  fuzzy inclusion.              

� 

 

In accordance with the interpretation of rel and μ, we interpret Incl(X,Y) as the 

truth degree of the claim “there is no relevant element belonging in X and not in 

Y”, or, in other words, “all the relevant elements of X are in Y”.   

Let us provide a different way to define such a fuzzy inclusion, utilizing the 

notion of λ-cuts of fuzzy subsets. Given λ∈[0, 1], we call λ-relevant any element 

x∈M such  that  rel(x) ≥ λ and we identify the set of all λ-relevant elements with 

the λ-cut  Mλ = C(rel, λ) of the fuzzy subset rel. Following this interpretation, a 

condition like X ∩ Mλ ⊆ Y means that “every λ-relevant element of X belongs to 

Y”. Let us define d: P(M)× P(M) → [0, 1] by setting  

 d(X, Y) = Inf{λ∈[0,1] / X ∩ Mλ ⊆ Y }.     (4.4) 

Proposition 4.8.2  Let Incl: P(M)×P(M) → [0, 1] be defined by 

Incl(X, Y) = 1- d(X, Y). 

Then Incl coincides with the generalized fuzzy inclusion defined by (4.2).  

 

Proof. Obviously, from the condition X ∩ Mλ ⊆ Y, if we have μ ≥ λ it follows 

X ∩ Mμ ⊆ Y. This means that {λ ∈[0, 1]/ X ∩ Mλ ⊆ Y} is an interval. Thus, 

Inf{λ ∈[0, 1] / X ∩ Mλ ⊆ Y } = 

 = Sup{λ ∈[0, 1]/ X ∩ Mλ is not contained in Y} 

= Sup{λ ∈[0, 1] / x∈X exists such that x∈ Mλ and x∉Y} 

= Sup{λ ∈[0, 1]/ x∈X-Y exists such that rel(x) ≥ λ}  
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= Sup{rel(x) / x∈X-Y} = μ(X-Y).  

� 

 

The just defined class of fuzzy inclusions extends the class given by Seda in the 

framework of logic programming (see Definition 4.6.3), in a sense. Namely, let n: 

M → N be any map and let us set, for every subset X of M, 

I(X, λ) = {x∈X / n(x) ≤ λ}. 

Then, we can write the distance defined by Seda  in an equivalent way, as the map 

d': P(M) × P(M) → [0, 1] such that 

                                  d'(X, Y) = Inf {2 -λ / I(X, λ) ⊆ I(Y, λ)}. (4.5) 

We saw that this distance results to be a quasi-ultrametric.  

If we choose in a suitable way the map rel  and we define a distance d as in (4.4), 

we prove that such a distance coincides with that defined by Seda. Indeed, we have 

the following 

Proposition 4.8.3  Let us consider the  fuzzy set rel: M → [0, 1] defined as  

rel(x) = 2-n(x), 

and let d and d' be the maps defined in (4.4) and (4.5), respectively. Then d = d'. 

 

Proof. Let us observe that     

d(X, Y) = Inf {λ∈[0, 1] / {x / 2-n(x) ≥ λ} ∩ X ⊆ Y } 

= Inf {λ∈[0, 1] / {x / log22-n(x) ≥ log2(λ)} ∩ X ⊆ Y}  

= Inf {λ∈[0, 1] / {x / n(x) ≤ -log2(λ)} ∩ X ⊆ Y}  

= Inf {2-λ / {x / n(x) ≤ λ} ∩ X ⊆ Y} = d'(X, Y).  

� 

Another class of  ∗-fuzzy inclusions  is  obtained by assuming that rel: M → 

[0,1] satisfies ∑
∈Mx

rel(x) = 1. Then, we can define the finitely additive probability 

with density “rel” i.e. the map η: P(M) → [0,1] such that η(∅) = 0 and, if X ≠ ∅,  
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                                                  η(X) = ∑
∈Xx

rel(x). (4.6) 

Differently from μ(X), η(X) takes in account the number of relevant elements 

in X and therefore we can interpret η(X) as a measure of the truth degree of the 

claim “there are several relevant elements in X”.  

Proposition 4.8.4  Let f be an additive generator and set  

                                        Incl(X, Y) = f [-1](η(X - Y)).                         (4.7) 

Then Incl is a generalized ∗-fuzzy inclusion with respect to t-norm generated by f. 

If rel(x) ≠ 0 for any x∈M, then Incl is a ∗-fuzzy inclusion. 

 

Proof.  By Proposition 1.8.2, if we prove that d(X, Y) = η(X-Y) is a generalized 

quasi-metrics, it follows that Incl is a  ∗-fuzzy preorder. Reflexivity follows from 

the definition. To prove (d3) (see Section 1.6), i.e. that  η(X-Z) ≤ η(X-Y) + η(Y-

Z), let us recall the relation (4.3). Since η is a measure and (X-Y) ∩ (Y-Z) = ∅, we 

have 

η(X- Z) ≤ η((X-Y) ∪ (Y- Z)) = η(X-Y) + η(Y- Z). 

So Incl results a ∗ generalised fuzzy inclusion. 

To conclude the proof, let us observe that if rel(x) ≠ 0 for any x∈M, then η(X) = 0 

entails that X = ∅ for any X ⊆ M. So from η(X-Y) = 0 we have that X-Y = ∅, and 

therefore X ⊆ Y. Likewise, from η(Y-X) = 0 we have that Y-X = ∅ and so Y⊆ X. 

Therefore d(X, Y) = η(X-Y) satisfies also (d4) and Incl results a ∗-fuzzy inclusion 

� 
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Conclusions and future work 
 

 

The thesis is devoted to the consideration of two kinds of structures which 

seem to be useful theoretical tools for information processing. The structures of the 

first kind are metric in nature and they are obtained by weakening the usual system 

of axioms for metric spaces in several ways. The structures of the second kind, 

logical in nature, are strictly related with the interpretation of the equivalences and 

of the orders in a multi-valued logic (see the notions of similarity, fuzzy order, ...). 

A duality principle enables us to establish a link between the two classes of 

notions, i.e. between the metric universe and the logic one.  

The researches on the resulting structures are at an initial state and several 

questions remain open both from a theoretical point of view and with respect to the 

possible applications. We list some of the issues we will investigate in future work.  

On the theoretical side, it is an open question to go on for a point-free approach 

to geometry in the spirit of Whitehead’s ideas. In fact, as sketched in Chapter 2, the 

notion of pm-space is adequate for a point-free approach to the theory of metric 

spaces. Indeed we can associate any pm-space with a metric space and any metric 

space can be obtained in such a way. Then, it should be interesting searching for a 

suitable system of axioms to add to the theory of pm-spaces, in order to 

characterize, for instance, the Euclidean three dimensional pm-spaces, i.e. the pm-

spaces whose associated metric space is (isometric with) the three dimensional 

Euclidean metric space.  

 A further field of investigation is related with the quoted duality between 

notions in a metric setting and notions in a logic one. Indeed this duality gives 

interesting suggestions both in the metric side and in the logic one. For example, in 

multi-valued logic there is a long time interest for valuation structures different 

from the ones based on the interval [0, 1]. In accordance, the logical notions of 
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similarity, fuzzy order and so on can be defined in a larger class of structures (for 

example the class of residuated lattices). So the duality suggests to extend in a 

suitable way the notion of metric space by admitting distances with values in 

structures different from the usual set of positive reals. On the other hand the 

notions of approximate distances and semimetric interval spaces should be dualized 

into an interesting notion of interval-valued similarity. 

 With respect to the possible applications of the proposed structures, we are 

persuaded that whenever the notion of metric space is used in information science, 

it looks natural to try for an application of the pm-spaces when the available 

information is not complete. For example, the notion of distance in the recognition 

and classification processes presupposes the identification of the available images 

with points in a metric space. Now this is correct only in the case of complete 

information about these images. In the case in which only partial pieces of 

information are available, then it should be better to refer to the regions in a pm-

space or in an interval-valued metric space.   

 Another application is related with logic programming and, in particular, with 

the question of the deduction in the case of non-monotonic logic. Indeed, the fact 

that we can unify fixed points theory in an ordered set and fixed points theory in a 

metric space maybe furnishes news tools for the logic programming field.  

Finally, further applications of the proposed distances are, at the present 

moment, being considered. For instance a distance obtained by the symmetrization  

of a non-symmetric one was utilized as a tool for improving empirical methods for 

menu clustering and supporting menu designers for automotive systems (see [4]). 
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