Universita Degli Studi di Napoli Federico |1

Dottorato di Ricerca in Fisica Fondamentale ed Applicata
18°ciclo

Dott.ssa Virginia D’ Auria

Dynamics and Behaviour of Triply
Resonant OPOs below the threshold

Il coordinatore
Prof. Arturo Tagliacozzo

Novembre 2005



ACKNOWLEDGMENTS. ... e 4

INTRODUCTION . .o e e e 5
1. Introduction to non linear optical phenomena and squeezed light ........ 12
11 Nonlinear Hamiltonian . . ... 13
12 Degenerate Parametric Amplifier .......... .. i 15
13 Non degenerate Parametric Amplifier............. ... ... ... ... ... 18
14 GaUSSIAN SEAES . . . . o 19
2. Squeezed radiation from degenerateOPOS. . ...t 21
21 OPOandinputoutput relations . . . ...t 21
2.2 Linearization Procedure. . . .. ... ..o 22
2.3 Squeezing at the degenerate OPO OUtpUL . ... .o oo 26
2.4 Quadrature Properties .. .....co i e e 27
25 Doubleendedcavity and STV . ... ... ... e 30
3. Quantum StateDetection. . ... ...t e 33
31 Homodyne Detector. . . ...t e e 33
3.2 Mode mismatch and homodyne efficiency .......................... 34
3.3 Quantum Homodyne Tomography .. ........oouiininnnenan. 37
34 Added noiseintomographic measurements . ...............ccoouun... 40
4. Experimental realization of DOPO and homodyne detection ............ 43
41 Threshold and frequency degeneration . ............... ..., 43
4.2 OPO experimental SEtUP . ......coi i e 46
421 OPO cavity properties. . .. ..o vt e e 46
422 Temperaturecontrol . .......... .. . 48
4.2.3 Triply Resonancecondition ................ccciiiiiinnnnn... 49
4.3 Parametricgainmeasurement . ...ttt 51
4.4 TheHomodynedetector .............c.cciiiiii i 54
44.1 Detectorbalancing ........... ... i 54
442 Mode matching between LOandsignal ......................... 56

1



4.5 Homodyne dataproCessing . .. ..o v it 60

5. Deviationsfrom Gaussianity for DOPO closetothreshold .............. 64
51 Photon number distributionmeasurement . .. ......... ..o 64
5.2 Quadrature statisticsmeasurement . ... 65
53 Theoretical model . ....... .. . 70
54 Zeroth order generationof STV states ...........cocovviiinnn... 72
55 Perturbative solution .. ... ... 73
551 QUAIEIUNES . . . ot ottt e e 75
56 Kurtosiscalculation . .. ... 76
5.6.1 Quantum averagecalculation ............. i 77
5.6.2 TIMEAVEIA0R . . . . ettt e e 79
56.3 Numerical smulationsresults. . ............ .. i 81
6. Transmittivity measurement with squeezed vacuum ................... 87
6.1 Propagation of STV statesthroughthesample .. ..................... 88
6.1.1 State parameters evolution ...t 91
6.2 Accuracy of theestimationof 7 . ............ ... .. i 92
6.2.1 7T estimation via quantum homodynetomography ... .............. 93
6.2.2 Comparison with intensity measurement accuracy . .. .. ............ 95
6.3 Experimental test . . ... . 97
7. Squeezed radiation from non degenerateOPO . ...ttt 101
71 Seeded NORA thEOTY . . ..ottt 101
711 Fluctuations for the NOFA output field ........................ 104
7.1.2 NORA and EPRparadoX ... ..... ..o 106
7.2 Covariance matrix measurement . .. ............ieirierneennaan.. 108
721 Experimental implementation. ............... .. ... .. ... ... .. 111
8. NOPA experimental realization. ...............co .. 114
8.1 Phase matchingcondition ............... .. ... .. .. ... ... 114
8.1.1 Quasi-PhaseMatching .............. . i 115



8.2 NORA redization With PKTP . ... e e e e 116

8.2.1 Degeneration temperaturemeasurement. . ... ..o 119
8.2.2 Triply Resonance Condition and crystal misalignment ............ 123
CONCLUSIONS . . e 127
REFERENCES . ... . e e e 130



Acknowledgments

My deep gratitudeis addressed to my Advisor, Prof. Salvatore Solimeno for his contin-
uous support in theresearch work undertaken in thisthesis. Continuous, stimulating and
lively discussions with him have been precious for my professional and human growth.
I’m grateful to Alberto Porzio and Matteo G.A. Paris, for their intensive supports and
exchanges since the very beginning of my work. Their professional advises but also
their great kindness have been strongly encouraging and hel ped me to overcome many
difficulties.

| would like to thank Antonino, Maddalena, 1olanda, Martina, Fabio G., Genni and
Simong; they have been first of al friends more than ssimple colleagues.. I'll always
feel very grateful for their constant and patient help in running my bad moods as well
as my good days.

Eventually, | wish to express my gratitude to Raffaele Rocco and the technicians of
the mechanica workshop and to Bruno Piccirillo from the non linear optics laboratory.
Their gentleness and helpfulness have been crucia in many ” experimental emergen-

cies”.



| ntroduction

For amonochromatic plane wave oscillating at frequency w, the electric field can be de-
composed in two quadrature components. one with the time dependence cos wt (ampli-
tude quadrature X') and the other one with sin wt (phase quadrature Y’). These quanti-
tiesrepresent the analogousfor the el ectromagnetic field of the position and momentum
of amechanical oscillator.

Due to quantum nature of light, the precision relative to a quadratures measure-
ment isintrinsicaly limited. For classical light beams, as generated by alaser source,
the fluctuations on the two quadratures are equal to each other and minimize the uncer-
tainty product given by Heisenberg's relation. The corresponding quadrature noise is
called standard quantum limit (SQL) since it represents the minimum optical noise al-
lowed by quantum mechanicsfor classical light. Helsenberg relation only statesalower
bound to the variance product with no restriction to the single quadrature noise. In prin-
ciple, one of thefield quadrature can have reduced quantum fluctuations at expense of a
noise enhancement of the other one so to satisfy the uncertainty relation. When the light
fluctuations are distributed in such an asymmetric manner, the em.field issaid to bein
a squeezed state. Since the quadratures can be distinguished by introducing a suitable
phase, the squeezing is a phase-dependent property. It offers the possibility of beat-
ing the SQL affecting traditional optical measurements, by performing phase-sensitive
measurements using only the quadrature with reduced quantum fluctuations.

The generation of squeezed state requires a non linear phase-dependent interac-
tion. First experimental realization of squeezing was obtained in 1985 by R.E. Slusher
by means of four waves mixing in atomic sodium [1] . Since then many experiments
have been performed by and parametric interaction in anon-linear crystal has been the-
oretically shown to be avery efficient source of nonclassical states of light ([2] , [3] , [6]
(7, 18]).

Among non linear processes, the most versatile for generating squeezed light is

parametric down-conversion [2] . In this case a pump photon at frequency w, splitsin
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two photonsaat different frequenciesw, and w; (signal andidler ) suchthat w, = w;+ws.
The effect is called parametric fluorescence, the spontaneous emission being driven by
the vacuum fluctuations of the em. field. Signal and idler photons are produced in
pairs, and show strong correlation of energy and momentum.

Light emission in down conversion can be enhanced by using a classical beam of
frequency w, (seed) to assist the pump action inside the non linear crystal. In thisway
the emission at w, is strongly stimulated and the input beam undergoes amplification.
Dueto the pair production in down conversion, an intense idler beam also appears. This
effect is known as optical parametric amplification (OFA). If the active medium is put
into an optical cavity, under appropriate conditions, the parametric interaction can over-
come the effect of possiblelosses (i.e. absorption, diffraction..). In this case the system
undergoes an oscillation and intense output beams are obtained without any injected
seed. Such adeviceis caled an Optical Parametric Oscillator (OPO). The OPO intro-
duces athreshold condition; for pump intensity above a certain value, bright signal and
idler beamswill be generated (twin beams), otherwise no macroscopic beams are emit-
ted. Experimentally thethreshold can belowered by setting the cavity to simultaneously
resonate on the signal, the idler and the pump beam (triply resonance condition).

Twin beams generated by above threshold OPOs exhibit non classical noise reduc-
tion in the intensity difference ([9] , [10] , [11] , [12] and [13] ). The spectrum difference
of the two beamsis shaped like a L orentzian with noise suppression below the classical
value at zero frequency and within a bandwidth of the order of cavity linewidth. Fol-
lowing the seminal idea highlighted in Re.. [9] , twin beams have been used to enhance
performances of optical setup for spectroscopy ([14] , [15] , [16] ).

In thisthesis are discussed the cases of OPOs working below threshold and gener-
ating signal and idler photons with the same frequency (ws = w;, frequency degenera-
tion) [2] .

Much interest is paid to unseeded OPOs working in degeneration (DOPO), say
emitting signal and idler with both the same polarizations and frequencies. In this case,

the two generated beams are not distinguishable and collapse into a single one; never-



theless, the mark of quantum correlation is still somehow visible and this unique beam
exhibits squeezing in one of its quadrature. Since it is generated by processing an in-
put vacuum state, the light state for the output of a DOPO is referred to as a squeezed
vacuum state [17] .

Vacuum squeezed light hasfound many applicationsin enhancing the performances
of traditional optical devices. C.M.Cavesfirst proposed to combine coherent and squeezed
vacuum radiation for overcoming the quantum limit in gravitational wave antennas[18]
. Following this origina suggestion Grangier et al. [19] up-graded a polarization in-
terferometer by injecting a squeezed vacuum through an empty port. By choosing the
phase of the squeezed light so that the quantum fluctuation entering the empty port were
reduced below the SL, they observed an enhanced visibility of the interference fringes.
In 1992, Polzik et a. [20] provided stunning evidence that a gain of some dB over
the standard quantum limit can be achieved in the resonant interaction of atoms with
squeezed light. Thelr experiment was performed by combining in awell defined phase
relation a coherent field with the output of an optical parametric amplifier.

Dueto itsinterest for application, the DOPO have been the subject of many exper-
imental and theoretical works ([21] , [22] , [23] , [7] ). The features of an OPO depend
on severa parameters, namely, cavity damping coefficients, degree of excitation below
threshold, spurious losses, deviation from resonance condition (detuning), and pump
amplitude/phase fluctuations. Many theoretical model have investigated the effect of
all these factors on the emitted squeezed radiation ([21] , [9] ). In particular when ex-
tralosses (dueto crystal absorption, diffraction etc.) are present in the OPO cavity;, it has
been shown that its output state is not a pure vacuum squeezed and does not show min-
Imum uncertainty on the quadrature product [21] . Much attention has aso been pad
to phase transition from below to above threshold regime [24] and to the region very
closeto threshold [25] , showing, under limiting conditions, the importance of non linear
contribution to the dynamic of the system.

Inthefirst part of the thesis, these thematics are reproposed by performing and an-

alyzing, in proximity of the threshold, squeezed vacuum measurements relative to dif-



ferent OPO cavity conditions with continuous waves (CW) radiation. Being a critical
point, the OPO threshold is strongly unstable for its own nature; moreovey, it is affected
by residual noises on experimental parameters that determine its value. The effect of
threshold fluctuations on the statistic of the output beam is analyzed, highlighting de-
viations from the Gaussian behaviour expected for ideal squeezed vacuum state. These
deviations are experimentally observed by means of tomographic reconstruction of the
state together with a direct measurement of the quadrature distributions [26] . Start-
ing from the characteristics of the used experimental set-up, it is proposed a theoretical
model to reproduce the observed behaviour as a function of both OPO and detection
parameters.

With regard to application of squeezed light, a method for measuring the transmit-
tivity of optical samples isillustrated [27] . In this scheme a squeezed vacuum field
generated by a below-threshold OPO is propagated through a nondispersive medium
and its quadratures are detected; the variance of the detected quadratures are used for
measuring the transmittivity. With this method it is drastically reduced the number of
photons passing through the sample during the measurement interval, so providing an
useful tool for measuring the transmittivity of highly photosensible materials. The re-
sults of some experimental tests performed to assess the scheme feasibility are reported.

The photons pair generated in parametric down conversion also carry quantum cor-
relations of the Einstein-Podol sky-Rosen type[28] . First suggestion along thisdirection,
dates from the end of the 1980s, when Reid and Drummond pointed out the possibility
of demonstrating the EPR paradox via quadrature-phase measurements on the beams
outing a non degenerate parametric amplifier (NOPA) [29] . In this case, the two beams
originating from the pump photon splitting, can be distinguished because of their po-
larization and in turn spatially separated. Due to quantum correlation, both the beams
are needed to see the squeezing effect so that their state is usualy referred to as atwo
modes squeezed state. Under limiting conditions the quadratures of the output beams
become quantum copies of one other so that the results for the signal quadratures can

be inferred by probability 1 from the measurement of the idler's ones.



An experimental demonstration of the EPR paradox with continuousvariablesrefers
to Kimblein 1992 ([30] , [31] ) .

In devel oping quantum information science, nonlocal quantum entanglement plays
a determining role ([32] [33] [34] ). Unconditional quantum teleportation has been
demonstrated by using continuously entangled EPR pairsresulting from two-mode squeezed
vacuum states[35] . The dense coding for continuous variables has been experimentally
demonstrated [36] on bright EPR beams with anticorrelation of amplitude quadratures
and correlation of phase quadratures, generated from aseeded NOFA operating at deam-
plification. Many cryptographic schemesfor secureinformation sharing have been pro-
posed and experimentally realized [37] , [38] [39] . In these scheme, informations are
written on the signal (usually by means of phase/amplitude modulation); the entangle-
ment permits to check by observing the idler beams if any eavesdropping attempt has
been performed.

Besides mean values of the field operators, the most relevant quantity needed to
characterize an EPR stateisits covariance matrix o [40] . Theform of thismatrix gives
reason of the involved kind of entanglement and the mutual correlation degree between
the interested observable pair. Once the covariance matrix is known the entanglement
of the state can be evaluated and, in turn, the performances of the state itself as a sup-
port for quantum information protocols. Moreover since entanglement isgenerally cor-
rupted by the interaction with the environment it becomes crucial to establish whether
or not it has survived the environmental noise. As aconsequence, besides being of fun-
damental interest, a ssimple characterization technique for bipartite states is needed for
experimentally check the accessible entanglement in a noisy channel ([41] , [42] , [43] ,
[44] ) aswell as the corresponding state purity and nonclassicality ([45] , [46] ).

The second part of the thesisis devoted to the NORA analysis and its realization.

It is proposed a novel scheme for measuring o for the NOFA output by means
of asingle quadrature detector plus a polarizing beam splitter (PBS) and a polarization
rotator (\/2) [47] . By meansof the system A\ /2+PBS, besidethe signal and idler modes,

somelinear combinations of them are selected for detection. Moreover together with the



quadrature X and Y, also their rotation by +x /4 are measured. By introducing these
extra quantities in is possible to express o as the sum of the variances for the single
modes quadratures. This scheme can be used to fully characterize bipartite Gaussian
states and to extract relevant informations on generic states.

The experimental implementation of aNOPA iseventually discussed inthelast part
of thethesis.

Since the degree of EPR correlation islinked to the distance from threshold, in ex-
perimental realization, threshold must be stabilized as much as possible. This suggests
the use of low noise sources as the Nd: YAG (@1064nm) diode pumped and frequency
duplicated lasers able to minimized pump laser residual noise. At the same time, to
generate cross polarized idler and signal beamstype |1 crystals are required.

For the KTP [48] , the type Il crystal with the best optical performances, the fre-
guency degeneration condition for pump at 532nm (Nd:YAG second harmonic) corre-
sponds to cryogenic working temperatures. In order to avoid this problem, the NORA
implementations has been based up to now on custom laser sources or custom crystals
(1491 ). Inthisthesisit is proposed an aternative and more convenient experimental set
up based on the use of a Nd:Yag source together with a periodically poled KTP crystal
(PKTP) [50] . PKTP can be designed to set the frequency degeneration at adesired tem-
perature, in the present case Ty, ~ 35°C'. First tests on the crystal and measurement
of the actual T, are reported and discussed.

Thethesisis structured as follows.

In the first chapter the theory of parametric amplifiers degenerate and non degen-
erate is provided, to show the squeezing properties of the output beams.

In the second chapter the case of degenerate parametric oscillator below threshold
Isdiscussed and it is provided an alternative description for the output state, taking into
account the effect of OPO detuning and extra losses.

Inthethird chapter thetechniquefor quadrature detection and the basi cs of quantum
state tomography are discussed.
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The following three chapters (4th, 5th and 6th) are devoted to DOPO experimental
realization and relative results. In particular, the experimental setup together with the
homodyne detector are presented in a detailed manner in chapter 4. Chapter 5 is de-
voted to the study both experimental and theoretical of the deviation from Gaussianity
observed closeto threshold. Eventually chapter 6 reportsthe discussion of accuracy and
reliability absorption measurement based on squeezed vacuum, together with relative
experimental results.

Chapter 7 and 8 concern with the NOFA theory and redlization. In the 7th chapter
the theory of seed NORA is illustrated together with its application in measurement of
bipartite state covariance matrix. In the last chapter the principle of poled crystal are

reported and the first experimental results are discussed.



Chapter 1.
Introductiontonon linear optical phenomenaand
squeezed light

Non linear optical phenomena occur when a material system, usualy a crystal,
responds in a non linear manner to the presence of light. More specifically it can be
considered the dipole moment per unit volume, or polarization P (t) and its dependence
on the amplitude E (¢) of the applied optical field. In linear optics P () depends upon
the electric field as:

P(t)=xWE (1) (11)

being the constant of proportionaity x(! the linear susceptibility. In non linear optics,
the optical response is described by generdizing Eq. (1.1) and expressing P (t) as a

power seriesof E (t) as.
Pt)=xWE@®) +xPE* () + xPE*(t) + ..

Theterm PY (t) = Y E? (t) isthe i*"-order induced polarization and x¥ (i > 2) the
non linear optical susceptibilities. Macroscopically, when alight beam at frequency w,
issent to anon linear crystal, beside a beam at the same frequency, originate other light
beams at different frequencies (for instance multiple or submultiple of w,) depending
on the amplitude of ¥ coefficient.

Among x? processes, an interesting caseisthat of the difference frequency gener-
ation, also known as parametric down conversion ! [2] . A strong beam F, at frequency
w, and aweak beam E; at frequency w, (seed) are injected into the non linear crystal.

Dueto non linear effect, thetwo fields“ mix” inside the crystal and amacroscopic wave

1The parameter is represented by the non linear interaction strenght expressed by x(2) coefficient.
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a frequency w; = w, — w; is generated by the induced P polarization:
P® (w, —w,) = 2xPE,E?

Theappliedfield £, iscalled pump beam, the generated beamsrespectively signal ( £;)
andidler ( E)).

From the quantum point of view, the entire process can be depicted according to
the photon energy-level description. Due to absorption of a photon at frequency w,, an
atomic virtual level isexcited. Thislevel decays by atwo photon emission process that
is stimulated by the presence of w, field.

Two photon spontaneous emission occurs even if the w,-field is not applied. In
this case the pump energy is spread over more signa/idler pair so that the generated
fields are very much weaker. To obtain macroscopical signal and idler beams without
any initial seed, the down conversion processis usually enhanced by placing the crystal
in an optical resonator. By setting the device into resonance at the desired frequencies
w, and/or w;, a selective feedback is applied, thus consenting to build up the fields E,
and/or E; to large values. Such a device is known as Optical Parametric Oscillator
(OPO).

1.1 Non linear Hamiltonian

A simple mathematical quantum description of non linear phenomena can be given
for the crystal without the optical resonator. In this case, since no oscillations at all,
but only single pass phenomena occur, the system acts as a parametric amplifier ; by
pumping the crystal with abeam at w,, an input seed at w, is amplified.

Parametric down conversion process can be schematically depicted as the annihi-
lation of a (pump) photon at frequency w,, into two photons at frequency w; and w;.

The energy and momentum conservation require the generated photons to satisfy the

13



relations;

wp = ws+w; (1.2
PR
where k. are the wave vector? for the ¢-field.

The Hamiltonian H y;, describing the quantum evolution of theinvolved fields can

be written as[3] :

Hnr = Z hwgazag — z'hX(Q) (apaZai — a;asai> (1.3)
3

with a, the bosonic annihilation operator for the electromagnetic field £&-mode (¢ =
p, s,i) oscillating at frequency w, with [ag, a;] = 0 and [af,aﬂ — §¢;. Hamiltonian
D¢ hbdgazag describes the three independent harmonic oscillators describing the free
evolution for theinvolved modes. Non linear interaction Hamiltonian —ihyx® a,alal +
h.c. expresses the non linear process of annihilation of a pump photon into two signal

and idler photons.
In many cases, the pump beam is astrong coherent one provided by alaser source.
For weak x(? interaction the pump amplitude is not significantly depleted by photon
conversion in non linear interaction. This allows substituting the bosonic operator a,,

with aclassical field amplitude A,,. This approximation isvalid in the limit
x@71 =0, A, — oo, x@7 A, = constant

being 7 the interaction time with the non linear medium [51] .

2Relations (1.2) express the conditions for constructive interference of the fields generated by the atomic dipoles stimulated
by the pump through the crystal.
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1.2 Degenerate Parametric Amplifier

Modes a, and a; can in principle have different frequencies and electric field po-
larizations. If they share the same frequency (w,,/2) and polarization, the systemissaid
to work in degeneration condition. In this case the two fields are no longer mutually
distinguishable and collapse into a single one (a) exhibiting the common polarization

and frequency. The Hamiltonian (1.3) reduces to:
W o x® 2 2
Hyr = hgpaTa - ZHTAP (a f_q ) (14

corresponding to the Heisenberg equations:

d 1

d_‘z = oMy =€ (15)
dal 1

E = E [GT,HNL} = g a

where & = yP 4,

Most interesting results concern with the field quadrature Xy = 3 (¢?a’ + e *a).
Because of commutation relation for a, each pair of orthogonal quadratures X, and
Xoin/o saisfies: .

(X6, Xo1nj2] = %

Quadrature corresponding to # = 0 and 6 = /2 are known respectively as amplitude
(X) and phase quadrature (Y). Intermsof X and Y equations (1.5) diagonalize into:

dX

ay

o= =&Y (1.6)

Equations(1.6) demonstrate that the parametric amplifier isphase sensitive: it amplifies
or de-amplifiesthe quadratures depending on their phase 6. At the crystal output X and
Y become:

X(1)=e"X(0); Y (1) =e 7Y (0)
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with X (0) and Y (0) the input field quadrature and 7 the interaction time inside the
crystal.

The parametric amplifier also acts on the quadrature noise. It isinteresting to con-
sider the case of aseed initially in acoherent statewith quadrature variances AX (0)* =
AY (0)> = 1/4 corresponding to the shot noise level. This case accomplishes for both
a seed from alaser source (seed in a bright coherent state [2] ) and no seed at all (seed

In a coherent vacuum state). For the output beam one has:

AX (1) = 26257—; AY (1)° = 38_257 @7

It is worth observing that the quadrature variance product is:

AX (rf AY () = o
thus showing that the state inherits from the input one the property of a minimum un-
certainty for the quadrature variance product.

Equations (1.7) show that there is a reduction, or squeezing, of phase quadrature
fluctuations below the shot noise level 1/4. A corresponding enhancement of the am-
plitude quadrature fluctuations (anti-squeezing) is required by Heisenberg uncertainty
relation. Since only onefield isgenerated by non linear interaction the degenerate para-
metric amplified is a source of one mode sgqueezing.

The squeezing size £ = X2 A, depends on the non linearity of the crystal (via
x?), on the pump amplitude (via A,) and on the interaction time (7). Once x@ is
assigned by the choice of the non linear crystal, an enhancement of the squeezing is
obtained by increasing A, and 7. In particular the interaction time is usually raised by
the use of the resonant cavity.

Other squeezed state properties can be described by introducing the evolution op-
erator linked to the field Hamiltonian:

r

S (r) = exp [5 (a® — am)}
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withr = £7. Themean vaueof the operator under scrutiny can be obtained by applying
S (r). In particular for an initial coherent state described by the projector |A)(A|, the
state density matrix for the squeezed stateis:

p(r) =5 (r)|A){AIS (r)
Correspondingly the number operator n = a'a and its variance An? = (n — (n))” are
readily calculated to satisfy relations:

(n) = sinh?r + \A|2
1
(An*) = |Acoshr — A*sinh r)? + 5 sinh? 2r.

If the systemisinitially in acoherent vacuum state (| A) = |0)), the vacuum f luctuations
areamplified by the non linear interaction and after atime , sinh? » photons are gener-

ated. Interesting results concern with the photon number distribution p,, for |A) = |0)
[17]:

Pony1 = O m=0,1,2,..

2n 1 2n
n = = t h
b2 ( n ) 227 coshr (tanhr)

The suppression of all odd termsin photon number distribution express the physical re-
sult that the squeezed vacuum originates from atwo photon process and it thus contains
only pairs of photons.

From the p density matrix it is also possible to show that the marginal distribution

for ageneric quadrature X, isaGaussian given by:

1 22

z,0) = ———e %
p(z.9) V2rAXZ

with A X, = %\/62’" sin? @ + e—27 cos? 6.
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1.3 Non degenerate Parametric Amplifier

The non degeneracy condition is achieved when thetwo fields generated by means
of the non linear interaction are mutually distinguishable. This correspond to the case
of signal and idler at different frequencies or at the same frequency but cross polarized;
in the following the second case will be considered.

The Hamiltonian describing the systemis:

2)
Hyr = h% (aias + alai> — ihXTAp (alal — asai> (1.8)

The corresponding Heisenberg equations are:

da da!
s pu— T' _Z pu—
7 Eal; 7 € ag (19)

In the case of non degenerate parametric amplifier, the system exhibits a two mode
sgueezing since both signal and idler beams are needed to observe the squeezing prop-

erties. At thispurpose it can be defined the generalized quadratures [3] :

X, (0) = % (X, (6) + X, (6))

For signal andidler bothininitial coherent states(AX¢ (0) = AY? (0) = 1/4,£ = s, 1),
it can be shown that [3] :

1
AX,(0)? = 2 (cosh 2r 4 cos 20 - sinh 2r) (1.10)

S0 that;
1

AX3 = 1eﬂ’"; AY? =~ (111)
4 4

The sgueezing is due to the quantum correlations which build up in the signal and idler

modes; it possible to show that the individual modes are not squeezed. Equation (1.11)

can be interpreted by saying that the fields actually squeezed are not a, and a; but their
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combinations d;, = (as + a;) /vV2 andd_ = (a, — a;) /v/2 3. In this context, results
obtained for the degenerate parametric amplifier apply to thefieldsd.. and their quadra-
tures.

A quantum interpretation of the two modes squeezing is given by considering that
in parametric down conversion the pump photon is split into apair of photons so that its
noise can be imagined to be equally distributed on generated signal and idler photons.

Resultsfor the non degenerate parametric amplifier can be obtained by introducing

the two modes sgueezing operator:
1
_ 2 _ratat
82 (C) = exp |:2 (C Qs Casai>:|

The state wave function, as well asthe p density matrix or other operator for the output
field are obtained by application of .S, (¢) to the initial states for the signal and idler

modes.
1.4 Gaussian States

Squeezed states make part of the larger class of Gaussian states, say states charac-
terized by a Gaussian wave function. This result is readily demonstrated by applying
evolution operator S (¢) and S; (¢) totheinput state and examining the state wave func-
tion. Asan example, the wave function associated to the squeezed vacuum is given by
S (€) |0) where |0) represents the ground state for an harmonic oscillator. In the posi-

1

tion representation ¢, |0) has Gaussian wave function ¢, (¢) = Tﬁe_é and S (¢) |0)

becomes, (q) = %ﬁe—éef (6_%%) [17] . For Gaussian states, quadrature distributions
along each direction ¢ is Gaussian shaped.

Thisresult isquite general. Gaussian state are obtained each time harmonic oscilla-
torsin their ground states are subjected to particular kinds of time-dependent potentials
or interaction Hamiltonians. The most general /N-mode Gaussian state can be formally

expressed as Uy|0) with Uy = exp [—% Hy t] unitary operator with Hermitian gener-

3Inthisway X+ (0) = % (d+e—i9 + die“’) isthe#-quadraturefor thefield d 4 and analogously X _ (0) the9-quadrature
ford_.
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ator Hy. It is possible to show that the requirement of Gaussian shaped wave function
implies that Hy consists only of linear and bilinear combinations of annihilation and
creation operators a. (§ = 1,../N) with no further restrictions [52] . Uy factorizes into
unitary operators whose generators are linear combinations of a. and ag and unitary
operators whose generators are bilinear combinations of a, and az.

Single and two modes squeezing operator are part of the unitary operator whose
generators are bilinear combination of the annihilation and creation (see Egs (1.4-1.8)).
Unitary operators whose generator only depends on linear combination of a, and aiﬁ are
called displacement operators for the £ mode. These are the operators that applied to
an initial vacuum state give rise to coherent states.
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Chapter 2:
Squeezed radiation from degenerate OPOs

2.1 OPO and input output relations

So far an open ended model of parametric amplifier has been considered. When
the non linear medium is placed within an optical cavity acting as resonator, oscillation
builds up inside and the system becomes an optical parametric oscillator (OPO). Con-
fining thelight in acavity helpsto obtain a sizable effect by increasing considerably the
interaction time[2] so that squeezing can be generated even if non linear interaction is
very weak.

In order to describe the effect of the OPO cavity, the whole system has to be imag-
ined as merged into an heat bath made up of infinite harmonic oscillators representing
different modes of the electro-magnetic field [51] . At zero, or ambient temperatures,
the harmonics oscillator can be considered in their ground states since at involved fre-
guencies, the mean photon number for thermal states are negligible. The heat bath acts
as a passive system with whom the system inside the cavity tends to balance. The cou-
pling between the two systemsis provided by imperfect cavity mirrors or losses. These
mechanisms act as ports allowing the photons inside the cavity to escape and the vac-
uum noise outside it to enter inside.

For each loss, the Hamiltonian describing the interaction of the external bosonic

modes b (w) with asingle mode « inside the cavity is:

+o0
Hin—out = zh/ dw k& (w) (0" (w) a + b (w)al)

o0

with « (w) describing the strength of the interaction. « (w) can be considered approxi-
mately frequency independent for awideinterval around the cavity resonance frequency

where it reaches its maximum. The effect of H;,,_... 0n the a mode evolution, is sum-
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marized by the Langevin Equations for the mode inside the cavity [3] :

% = —% [a(t),H] — va (t) + \/2va™ (t) (2.12)
with H the Hamiltonian for the system inside the cavity. The term —~a (¢) represents
the damping due to loss (y ~ « (w) is the photon damping rate), while the driving
term /2va™ (t) describes the input vacuum modes entering into the cavity from the
environment. Thefield o™ (¢) can be expressed in terms of the heat bath modes b, (w)
at theinitial instant, as a™ (t) = [ dwe~**b, (w) and represents an additional noise

term. In the frequency domain its commutation rules are:

[a™ (), a™ ()] = §(w+w)

[ (w),a™ (W)] = 0 (2.13)

thus indicating that input vacuum at different frequencies are mutually uncorrelated #.
At zero or ambient temperature the field described by o™ can be depicted as a coherent
vacuum state with Gaussian quadrature distribution.
The mode a and its trasmitted outside the cavity a°“* are linked by the input-output
relation [3] :
a® () 4+ a™ (t) = /27 a (t) (2.14)

2.2 Linearization Procedure

Equation (2.12) can be applied to the case of anon linear Hamiltonian H = Hyy,

as described in the previous chapter. The quantum Langevin equation for the pump (a,)

4a* presence is mathematically required to preserve the commutation rules for a and it is an expression of the fluctuation-
dissipation theorem.
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N1

Figure 2.1. A schematic representation of the cavity field and the input output fields for asingle-ended cavity. The
only loss mechanism is due to the input mirror (with damping ;)
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and signal (a,) and idler (a;) modes can be written as.

da ; -

dtg = —yag + xPayal, + \/2yag (1) (£,¢ = s,4) (2.15)
da * in

d—tp R (X<2>) agag + /27,0, (t) + Ap

where A, represent the external coherent pump field and losses for signal and idler
modes have been considered equal. These equations are non linear in the bosonic oper-
ator and are usually solved by linearization of operators a around the stationary values,
a — a+6a [53] . The steady state complex amplitudes o ° areretrieved by (2.15) when
considering da/dt = 0 = a™™ (t). Lettingt = a, = «;, the algebraic system for the

signa and idler as can be reduced to equation:

s X4 -y,

0=rv 5
(x®)

(2.16)
By analyzing (2.16) it can be seen that its solutions depend on the pump amplitude A,
For A, < Ay, = v,7/x'?, it admits one stable solution, corresponding to v = 0. In
this case the system is said to be below threshold and the pump stationary amplitude
isa, = A,/v,. It A, > Ay, the system undergoes a phase transition; the steady state
values for o, and «; exhibit a pitchfork bifurcation and Eq. (2.16) admits non null
stable solutions describing the amplitude of the classical signal and idler beams built up
in parametric oscillation. The existence of a threshold condition express the fact that
in presence of losses, the pump has to be strong enough for the effect of parametric
interaction to exceed the losses effect and bright signal and idler mode to be visible.

In the following the system below threshold will be considered. In this case the
non linear Egs. (2.15) are linearized by considering the pump as a classical undepleted

beam of amplitude o, = A, /~,, and neglecting the quantum equation for the mode a,,.

51tisworth stressing that the amplitudeis no longer an operator, the operator character in & isonly preserved in thefluctuating
part a.
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Figure 2.2. Steady state solutions of the intracavity amplitude for the DOPO as a function of the pump coherent
amplitude normalized to thethreshold (A4, /A+x). For A, /A« < 1, the sole stable solution is the one corresponding
the as = a; = 0. Above threshold the null solution is no longer stable (dashing line) and the system admits two
stable positive (blu) and negative (red) solutions corresponding to the classical amplitudes of bright signal and idler
beams. The plot refers to unit such that -,/ (X(2)) ‘o
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Since o = 0, equations for the operator a, and those for their fluctuations coincide:

dag _

— = % + Eaz, + 4 /27@2” (t) (&&= s,19) (2.17)

with & = X(Q)Ap/q/p.
2.3 Sgueezing at the degenerate OPO output

In case of degenerate OPO (DOPO) equation for a, and a; become indistinguish-
able as previoudy discussed.

An ideal cavity with only one loss mechanism, as considered up to now, is called
single-ended cavity. Obtained results can be extended to a more realistic double-ended
cavity where more losses are present. In the following v, will indicate the damping
associated to cavity input mirror and -y, the damping associated to other |osses mech-
anisms (other mirror transmission or crystal absorption and diffraction). Langevin EQ.
(2.17) generalizesinto [21] :

d | |
d_(tl = gaT - <7M + ”L"lb) a(t) + 2’)/1(1”1 (t) + \/Ebm (t)

being~,, = v, +7, theoveral lossrate, 1) thedetuning of mode a with respect to perfect
cavity resonance and ™ and b™ the input fields due to v, and ~,. In the frequency
domain the Langevin equations for a and a' turn into algebraic equations and are easily
solved.

Experimentally thefield actually measured isthe one outside the cavity. By making
use of (2.14) with v = ~,, the solution for the field a°* outing the cavity through the
Input mirror is shown to be [21] :

[(71 - “/’)2 — (72— z'w)2 + 52] a’ (w) + 25’71amT (—w)
(s — iw)* +9* — €2

(Yar — iw — ) U™ (w) + EL™ (—w)
(Yar — iw)? + 9 — €2
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2.4 Quadrature Properties

The squeezing properties are discussed by looking at the field quadrature X, (w).

By making use of commutation relations, it is possible to rewrite <AX9)2 as.

(AXg)? =~ (1+40AXE)) (2.19)

e

the symbol :: indicates the normal ordering. For a coherent vacuum state, as the one
at cavity input (a™ or ™), (:AX2:) = 0 and the quadrature noise reduces to the shot
noise (AXy)> = 1/4. For fields generated by non linear interaction, (:AX2:) can be
both positive or negative, thusgiving riseto anon classical modulation below and above
the shot noise .

By exploiting (2.13) and (2.18), amplitude and phase quadrature spectra are calcu-
lated for the output field. For zero detuning (v = 0) it is possible to show that [21] :

1 E
AXCt ()N = = (1 14 N ) 2.20
(Ax ()" = 5 T (2.20)

armay - H1e—2)

(yu +E)” +w?

with the quadrature variance product:

16 ((var — €7 +?) ((yas + €)* + w?)
(2.21)

(X (@) (AY* (W) = = (1 . 167,7,¢” )

For £ =0 (i.e. A, = 0) thenon linear interaction is not switched on and the quadrature
variances as well as their product simply reduce to those for the input coherent vac-
uum ((AX° (w))? = (AY " (w))? = 1/4 and (AX " (w))? (AY " (w))* = 1/16).
Otherwise, previous equations show that for the field outside the cavity exhibits noise

enhancement on the amplitude quadrature (anti-squeezing) and noise reduction on the

61t isworth stressing that below the oscillation threshold the quadrature mean value is (X, ) = 0 for each angle 6 and the
quadraturevariancessimply reduceto (A X4)? = (X2). Thenormally ordered spectrum (: X7 (w) ) = [ €%*(:Xp (t) Xp (0):)dt
represents the Fourier transform of the two time autocorrel ation function for the operator Xy. It can be equivalently obtained by
performing the integration [ (: X (w) Xg (w'):)dw’.
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phase quadrature (squeezing). Condition of minimum uncertainty is satisfied only for
v, = 0. Best noise modulation is achieved for pump amplitude equal to threshold,
say for £ = ~,,. The corresponding squeezing spectrum is Lorentzian shaped with
width 2v,, and maximum height i (1 — ]—;4) Optimal noise reduction corresponds
to w = 0, say to cavity resonance, where fluctuations on the antisqueezed quadrature
X, For the idea case of single ended cavity (v, = 0), the OPO output is perfectly

2

phase squeezed with complete noise suppression (AY°“ (0)) = 0. Since be-

low threshold no macroscopic (coherent) amplitudeis exhibited by:tvhle OPO output, the
state can be described as an ideal squeezed vacuum one (see first chapter). The cor-
responding squeezing parameter is linked to the distance from the threshold £ /v, as
r = 1In (%ﬂi) This description is consistent with the observation that for v, = 0,
(AXoH? (AY)? = L and the state reduces to a minimum uncertainty one.

In case of double ended cavity, squeezing is optimized for v, = v, # 0 (Symmet-
rical cavity) where it reaches the maximum value of 3, say one half of the input state
noise i Thisresult can be shown to be the best obtainablefor the field inside the cavity,
given any choice of v, and .

For non perfect resonance, the effect of detuning ¢ must be considered and the

expression for the field quadrature variances are:

(AX (W)

. . 2 . .
1| —i) = (v —iw)* + EE+29)| + e lvar —iw+E — iy
4 [var = iw)® 0 — €2

<Ayout (w)>2

1| =)’ = (12— iw)* + £ (€ = 29)|" + 4y1%s byas — iw = € — g
4 |(yar —iw) + 42 — €2

(2.22)

For double ended cavity the effect of detuning is overcome by extra losses; the

greater v, the lessinfluential is . When v, < ~, the low frequencies behaviour for
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Figure 2.3. Spectral behaviour of the output field quadratures for single ended cavity for different detuning (¢ = 0
[green], ¢ = 0.15 [blu] and ¢ = 0.25 [red]). Plor refer to the system very close to threshold (€ =0.995v,,). The
effect of detuning is significant only in the low frequency region of the spectrum.

(AX°)* and (AY*)* is spoiled by theintroduction of 1. In the limit of single ended
cavity, at thethreshold (A X (0))? isno longer diverging and decreasesfor increasing
 while (AY* (0))* deviates from zero and sharply increaseswith ). When £ /~, < 1
for both v, = 0 and # 0, the closer the system is to the threshold the stronger is the
effect of ¢». The same behaviour is shown by the uncertainty product, where deviations
from minimum ((AX°u)* (AY°u*)* = 1 /16) are strongly sensitiveto ¢ for v, ~ 0 and
E /v, =~ 1.

Shown results are obtained by means of linearized theory. An evident drawback
of the linear approximation is the prediction of zero noise level at threshold for single
ended cavitieswith zero detuning. Thisisan unphysical result sinceitimpliesaninfinite
amount of phase information, which isimpossible since the coherent pump that drives
the parametric oscillator can only supply afinite quantity of phase information. Many
investigations based on correction to linear theory have been performed to establish the
ultimate limit to the noise reduction of a parametric oscillator near the threshold. In
Re. [25] it isshown that the best squeezing in the zero-frequency part of the squeezing
spectrum scales like N—2/3 just below threshold provided the two field have similar
damping ratesbeing N the number of photon inside the cavity. It isworth stressing that

non linear correction become evident only in theregion extremely closeto the threshold.
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2.5 Double ended cavity and STV

Equations (2.21) and (2.22) show that deviations from minimum uncertainty in-
crease with the size of extralosses vy, and with the detuning ) and when approaching
the threshold (£ — ~,,). This result makes no longer satisfactory the output of real
OPOs, the ideal squeezed vacuum description.

The most general description of squeezed Gaussian’ vacuum state is provided by
squeezed thermal vacuum state (STV) [54] . Corresponding quadrature variances are
givenby AX? = AX?sin? 0 + AY?2 cos? § with:

1

AX? = 1 (2ng, + 1) e*" (2.23)
1
AYQ = Z (2nth + 1) 6_2r

where parameters n,;, (average thermal photons) and r (squeezing coefficient) mutually
independent.. It isworth stressing that as for the output of real DOPOs the quadrature
variances product do not satisfy the minimum uncertainty. By assuming the OPO output

state to be in a STV, Egs. (2.23) and (2.20) allow writing n; and r. In the simple case

Y =0
2
ng, = % 1+16712’72 (€/vu) - 2) _1
M (1= (E/7m)7)
27, E/vm
o (e [0 E) )
1—5/7M (1+2<1_m> E/vm >

M ) 1+E/73,

For non zero detuning the behaviour of n, and r is affected in a sensible manner by
only close to threshold and for v, < ~,. The expression for n,, and r as afunction of
1 are obtained by Egs. (2.23) and (2.22) for w = 0.

7]t is worth reminding that also in case of detuning or extra losses the form of the process Hamiltonian preserves state
gaussianity.
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Figure 2.4. Parameters ns, and r as functions of the ratio ~y, /~y,, for three different detunings (v» = 0.0
[green], 0.15 [blu], 0.25 [red]). Plot refersto £ =0.7v,,. The detuning plays a more significant role in proximity
of v, /v =~ 1, that isfor asingle-ended cavity configuration.

ny, and r parameters are increasing function of ., and the distance from threshold
E /v - Onceagain, when~, = 0, n,, = 0 and the state reducesto apure squeezed one.
The state density matrix for aSTV is:

o= S(r)vSi(r) (2.24)

where v = (ng, + 1)~ [ng/ (ng, + 1)]‘”“ isathermal state (n,, average photons). Ex-
pression (2.24) allows deriving all the state properties. In particular, the total photon

number is given by:
Nt = [0 a'a] = sinh® r + ny, + 2nyy, sinh® r
The photon number distribution is:
cn B
w=——DP, (= 2.25
m=—rt (2) )
being P, (x) the n-th Legendre function of the first kind and

A = (1+n4)*— 20y +1)sinh®r

= nth(l + nth)
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C = \/nfh(l + 14p)2 — (204, + 1)2 sinh® r cosh? r

Analysisof (2.25) showsthat conversely to pure squeezed vacuum states, the odd terms
In p, are no longer suppressed. This is consistent with the interpretation of STV as
originated from pure squeezed vacuum when introducing OPO extralosses. Absorption
or diffraction could destroy one photon of the couple generated by the non linear (two

photon) process, thus originating single photons outside the cavity.
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Chapter 3.
Quantum State Detection

3.1 Homodyne Detector

The sgueezing behaviour shown by below threshold OPOs, can be observed by
detecting the output field quadratures in a balanced homodyne detector. This device
Is based on controlled interference of the field under scrutiny (homodyne signal field)
with a strong coherent beam called local oscillator ( LO) with the same frequency and
gpatia properties. The emerging beams are detected by linear response photodetector;
the difference of relative photocurrentsyieldsthe signal quadrature amplitude X in unit
of the LO amplitude.

The optical mixing between the signal and LO fields is provided by a 50:50 beam
splitter (BS), splitting each impinging beam in two equal parts (1/2 of the intensity is
trasmitted, 1/2 isreflected). In the Helsenberg representation, its action on two orthog-

onally propagating fields (as, aro) isdescribed as[17] :

a, vt =Tt a
(i )= (A= ) () o
with the transmission coefficient t equal to 1/2.

Expression (3.26) shows that the BS is a four-port device with two inputs and two
outputs; to preserve bosonic commutator for output beams, in case a single input beam
Issent tothe BS, the presence of acoherent vacuum field, acting asa second input, isre-
quired. Althrought not acting on the amplitude mean value, the vacuum field introduces

additional noise, linked to the size of the input field attenuation. Thisis a consequence

of fluctuation-dissipation theorem [40] .
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For strong enough LO, ar,o can be substituted with the complex amplitude A;o =

|Azol e?, with the result:

ag = (as— Aro) /\/§
ao = (as+ Apo)/V2

Beamsa/, and a'; , outing the BS are each directed to a photodetector measuring thefield
intensity. The interference term between the LO and the signal is actually contained in
the photocurrents difference I, _ 1o that isin turns proportional to the photon number
difference n), — n/ o:

n,—nl, = Aioas+ Apoal (3.27)

= 2|Aro| Xy

This expression shows that subtracting the two photocurrents relative to o/, and o/,
the detection the quadrature X, of the signal is obtained. The reference phase 6 is
provided by the LO phase that can be experimentally driven providing measurements
of the quadratures at different angles. The quantity X, in (3.27) is multiplied by the
LO amplitude |ALo|. Homodyne detector amplifies coherently the scale of the signal
so that linear response detector are significantly influenced also by single photons of
the signal. This provides an important technical advantage since, provided a L O strong
enough, thereisno need for single photon detector even in the measurement of vacuum
fields.

3.2 Mode mismatch and homodyne efficiency

Since the LO serves as coherent amplifier, it also acts as an optical gate and picks
out for detection only the signal mode whose spatial temporal profile matchesthe local
oscillator's one. This gate can be very localized in space and time and its shape can be
tailored to allow the investigation of a desired quantum field.
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Figure 3.1. Schematic scheme of homodyne detector. The signal and the local oscillator beams are mixed on the
beam splitter (BS). The output beams are detected by linear photodiodes (PD; and PD-) and the rel ative photocurrent
are subtracted to yield the signal quadrature X
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For single mode light beams, the actual field amplitude, including spatial-temporal
contributions, is¢(x,t) = u (x,t)-a wherea isthefield bosonic operator and u (x, t) =
v (x) e~ with w field frequency and v (x) solution of the (spatial) Helmholtz equa-
tion [17] . The photocurrent I, provided by the detector, is given by the photon flux
integrated on the acquisition time 7 and on the sensible region area D. When including
these effects, Eq. (3.27) turnsinto [17] :

Is’—LO’ X A*LOCLMM + ALOa}L\/[M (3.28)

wherethefield a,,,, can be expressed in terms of the signal operator a, as.

apqm = 77}\//12% +(1— UM)1/2GV

The mode matching coefficient
77}\42 :/ dt//uzO(XD,t)uS(XD,t)dedyD
0
D

describes spatial-temporal superposition of the signal and LO modes as described in
classical optical interference. Overal field phases can be chosen so that 0 < 7,, < 1,
with n,, = 1 when the two beams perfectly overlap (perfect mode matching). The
additional term

T

(1 =) "? aV:/dt // ¢o(xp,t)uj o (xp, t)dxpdyp
0 D
physically represent the superposition between the LO and avacuum field ¢, account-
ing for other potential modesincluded in ¢..
The mode mismatch effect can be described by imagining an effecting beam split-

ter of transmittivity t = n,, before the homodyne detector: the transmitted beamis de-
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tected, thereflected islost. Themeaning of n,, isthat the possibility for the signal beam
to be trasmitted and hence detected is linked to the size of its matching with the LO.

Other disturbs are introduced by non perfect photodetectors. For non unitary quan-
tum efficiency (npp < 1), afraction 1 — np, of the photons impinging on homodyne
photodiodes islost. The statistic of the fields actually measured is affected by this ef-
fect and additional noise isintroduced. This situation can be reproduced by represent-
ing each (real) photodetector as an ideal photodetector (1, = 1) preceded by a beam
splitter of transmittivity t = 7. Provided the two photodetectors have the same ),
the overall effect can be described by introducing asingle beam splitter of transmittivity
npp just before an ideal homodyne detector.

The effect of mode mismatch and non perfect detector can be combined by substi-
tuting the cascade of the BSs with transmittivity n,, and n,, with asingle BS whose

transmittivity is the overall quantum efficiency n = nppn,,-
3.3 Quantum Homodyne Tomography

If the LO phasef is spanned over a2 interval, homodyne detector can also be used
to reconstruct the Wigner function W (z, y) and the state density matrix of the signal
field. Margind distributions p (x, #) for quadratures X, are projections of the Wigner
function on the plane in the quantum phase space, orthogonal to the (z, y) plane and
individuated by theangle 6. The collection of all these "shadows” for different § can be
used to obtain the whole 3-dimensional Wigner function. More specifically thep (x, 6)s
are connected to W (z, y) through the Radon transform [17] :

+o0
p(x,0) = W(xcosf — ysin6, xsinf + y cos0)dy (3.29)

—00

By exploiting thisrelation, experimental histogramsfor the quadrature measurement re-
sults (¢ € [0, 27]) can be processed by filtered back-projection algorithm to reconstruct
the quantum Wigner function. The procedure is called quantum homodyne tomography

(QHT).
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Figure 3.2. Principle of homodyne detection. The quadrature distribution p (z, §) is retrieved as projection of the
Wigner function W (z,y) on the plane at angle 6 with respect to the X axes (¢ = 0 in the present picture). The
collection of p (z, 0) for different 6 alows reconstructing the 3-dim shape of W (z, y).
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First attemptsto accessthe Wigner function where based on inversion of Eq. (3.29)
[17] . Unfortunately, in order to be applied to experimental discrete values, the technique
requires the introduction of regularization procedure and a cutoff on the Kernel for the
inverse Radon operator. |mposing a cutoff isequivaent to makea priori hypotheseson
the state with bad effect on the Wigner function recostruction. Moreover, once W (z, y)
has been reconstructed, it hasto be integrated with respect to certain functionsto obtain
the density matrix, p and the observable mean values.

Theentire QHT procedureissimplified by skipping theintermediate passagethrough
the Wigner function and reconstructing directly p and the mean values of interesting
quantities®. The method is called pattern functions QHT [55] . The expectation value
<O> of field operator O is obtained as statistical average of an appropriate kernel func-
tion over experimental homodyne dataexpressed by p (x, #). For non unitary homodyne

efficiency ( < 1), (O) isretrieved as[56] :

(0) = / d@/ dzp, (z,0) R,[O](z;0) (3.30)

wherethe pattern function R, [O](z; ) isstateindependent and p,, (z, #) isthe marginal
distribution for X, corrected by the effect of non perfect detector. In particular for
Gaussian state, p,, (z, ) reads[17]

1 oo Ui 2
py(z,0) = \/ﬁ /_OO dq p(q,0)exp <_1T77 (g — /1) ) (3.31)

that isaconvolution of p(z, #) withaGaussian distribution of widtho = 5/(1 — n) /.
The mean value (O) described in (3.30) is experimentally retrleved by averaging
the kernel R, [O} over the experimental homodyne data (z;; ;) as:

0= = £ 3o [o] oo

8Basicideaisthat since density matrix elements p,,,, can be expressed as linear integral transformation of the W (z, v) and
theinverse Radon trasform is also alinear integral transformation, thereisalinear expression for the density matrix in terms of the
quadrature distributions p (z, 9) .
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where N isthe total number of samples. Every datum (x;, 8;) individually contributes
to the average, so that the operator mean valueis gradually built up, till statistical confi-
dence in the sampled quantity is sufficient. The procedure allows determining expecta-
tion values of observablesinaccessible to direct homodyne detection including p matrix
elements. It can be shown that regularization procedure of the inverse Radon transform
isavoided [56] . Since the method does not require any filter it allows avoiding a priori
hypotheses on the state, but as a counterpart it is more sensitive to statistical errors[s6] .

The kernel function for the normal ordered product of power of ¢ and a' is:

Hym (V22)
(2" ( nrm )

where H, isthe [-order Hermite polynomial. It can be shown that, for this formulato

R, [a™a™] (z;0) = '™ (332)

be valid,  hasto satisfy the lower bound > 1/2 [56] .
From (3.32), it is possible to obtain:

R, [d'a] (z;6) = QmQ—%
R, [(aTa)Q: (x;0) = 8m4 222

%] (@0) = 23xcos<¢—e>
(%3] @.0) = i{1+(4x2—%> [4cos2(¢—9)—1}}

R,
R

n

3.4 Added noisein tomographic measurements

The tomographic measurement of a quantity O is defined as the average of the
kernel R [O] over the homodyne data. In principle, a precise knowledge of the density
matrix would require an infinite number of measurements on identical preparations of
radiation. However, in real experiments one has only a finite number NV of data at his
disposal, and thus statistical analysis and errors estimation are needed. Provided that
the kernel function satisfied the hypotheses of the central limit theorem, the confidence
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interval on the tomographic reconstruction of <O> Is([57] [59] ):

1

80
VN

]

where AR, [O} represents the precision of the measurement and it is the variance of
the kernel over the tomographic data:

AR, [O} — \/ /0 W‘i—d) / :o da p (z,6) R [O] (z, ) — (0)? (333)

It is worth saying that AR, [O} depends on 7.
An example of application of (3.33) is provided in Re.. [55] where the error for

diagonal density matrix elements p,,,, is computed to be:

Op = \/_N
When the quantity O can also be directly measured by a specific setup, the tomo-

graphic precison AR, [O] can be compared with the corresponding quantum fluctua-
tion (AOQ)n. Itisworth noticing that for » < 1, dueto the smearing effect of non unit
guantum efficiency, the noise <A02>n islarger than theideal quantum fluctuation. It
is possible to show [57] that the tomographic measurement is always more noisy than
the corresponding direct measurement for any observable and any value of the detector
quantum efficiency 7.

For the field quadrature, the confidence interval on direct measurement of the
guadrature, according with Eq. (3.31), reads:

<AX02>n _ <AX3> + 14;7]"
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This can be compared with the error for the tomographic reconstruction:

AR, [50] 5.0 = (853) + S + 221

corresponding to an extra noise:
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Chapter 4.
Experimental realization of DOPO and homodyne
detection

4.1 Threshold and frequency degener ation

In this chapter, the implementation of the degenerate optical parametric oscillator
(DOPO) and the homodyne detector are described. The OPO is controlled to work be-
low threshold and in condition of frequency and polarization degeneration by choosing
aproper non linear crystal and suitably setting its working point. At the same time the
homodyne detector has to be set to optimize the detection of the DOPO output.

Since the ability of an OPO to sgueeze the input quantum noise is linked to the
distance from threshold, a stable and well controlled threshold is required.

DOPO resultsreported in previous chaptersrefer to theideal case of planewaveand
do not take into account the spatial temporal distribution for theinteracting fields. Light
beams actually involved in the process are Gaussian beam, whose transverse profile, is

12 |
v (x) _ Wmin eiﬂ{#@ﬁw%@} o~ i(kz—p(2)) (4.34)
w(2)
where 2 is the propagation direction, r? = z? + y? and k = 27 /) is the wavevector.
Quantitiesw (z) and R (z) respectively represent the spot size and the radius of curva-

ture of thebeamin z:

9t is possible to show that beams generated from a traditional laser source or from a generic optical cavity are Gaussian
beams.
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where b is called confocal parameter and z,,;, corresponds to the position of the min-
imum spot size wy,i, = Ab/m (beamwaist). The phase § (z) = arctan (=5=»). The
confocal parameter b is strictly determined by the geometry of the cavity from which
the Gaussian beam is emitted *°. Modes described by (4.34) arein the so-called TEM
(transverse electro-magnetic mode) and correspond to minimum diffraction loss.
When considering beam Gaussian profile in the equations ruling signal, idler and
pump modes evolution, the effective size of non linear effect depends on superposition
integral of the three fields [59] . A full detailed analysis taking into account the effect
of diffraction and different refraction indexes seen by the wavesisreported in reference
[59] ; the most interesting result concerns with the expression for the pump threshold

power:

71'2

" AF,FBuEni

Py, (4.35)

In (4.35) F,,; is the cavity finesse at the signal/idler wavelength \;,; * and B, the
build up parameter for the pump at ), *2. The non linear conversion coefficient, Ex,
depends on x(?, on the ratio of the non linear crystal length L over the pump confocal

parameter b, and on the phase matching parameter Ak :
Ak =k, —ks—k;

being k. the wavevector for themode¢. Thefunction Eyy, (Ak) is bell-shaped with the
maximum for Ak = Ak, and the half-height width given by |Ak| < 7. For the OPOs
discussed in this thesis, Ak,,; ~ 0 o that in the following the £}, optimization will
be considered as corresponding to a perfect phase matching A%k = 0. The quantity Ak
expresses the phase mismatch between the three waves propagating inside the crystal,
dueto differencesin the optical paths; since A, # \; ; the wave inside the crystal travel

a different phase velocities because of normal dispersion in the material. Requiring

101n case of laser outputs the cavity is the one in which the active medium is pumped
11 For degenerate OPO the equation simplifiesin P, = F% aslongasall thecavity parameter for thesignal coincide
with those for theidler.

12The build up parameter is defined as the ratio of the power circulating inside the cavity over the input power.
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a perfect phase matching is equivalent to impose the condition for constructive inter-
ference between the suharmonic optical waves generated in the different points of the
crystal. Among all possible pair of signal and idler waves satisfying the energy conser-
vation condition (w, = w; + w;), the most favoured and in turn the actually generated
one, isthat satisfying the relation Ak = 0 (corresponding to the lower threshold).

Since the pump power is experimentally limited by the used laser source, the best
way to reduce the OPO threshold is to adjust parameters F;, B,,, and Ey, in (4.35).
Finesses are determined by a proper choice of the cavity mirror trasmittances while the
build up isenhanced by setting cavity resonance on pump mode. Inthe present setup P,
is addictionally lowered by ensuring triple resonance on pump, signal and idler modes
(see following sections). Eventually, the non linear coupling is optimized by a suitable
cavity geometry (mirrorsradiusof curvature and relative distance) and ensuring Ak = 0
at the desired wavelengths..

Degeneracy condition is obtained by using atype | non linear crystal, generating
signal and idler beams with the same polarization, and by properly setting the OPO
working point. The frequency degeneration condition is equivalent to requiring an op-
timum non linear coupling for signal and idler modes at A\, = \; = 2\,,. For experi-

mentalist, this translates into the phase matching condition:

Ak(AT) = QA—: 0\, T) —n (22, T)] = 0 (439)
with A = (A, A5, Ai). In previous equation, it is stressed the dependence of refraction
indexesn on both the beam wavelength and the crystal temperature 7. Sincen (A, T') is
astrictly monothonic function of )\, the phase matching condition is achieved by choos-
Ing a suitable temperature T' = T, so to satisfy Eq. (4.36). The degeneration tempera-
ture T, is strictly determined by the crystal thermal properties. An active temperature
control isrequired to guarantee ' = T, against the environment temperature fluctua-

tion.
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4.2 OPO experimental set up

The entire experimental setup is based on a continuous wave (CW) commercial
Nd:Yag laser (LightWave model 142 dual wavelength) internally frequency doubled.
The source emits both the fundamental (=50mW @1064nm), used as homodyne L O,
and the second harmonics (=150mW @532nm), employed as DOPO pump. In this
condition, the DOPO output beam at frequency degeneracy are generated exactly at
1064nm.

Just after leaving the laser head, the pump beam passes through an el ectro-optical
phase modulator (EOM) and aFaraday rotator (FR) [62] . Phase modulation is necessary
to the control of the cavity length, implemented by a standard Pound-Drever technique
[63] . Theinsulator (FR) protects the source from cavity back-reflected light by sending
it to a photodiode whose photocurrent is electronically processesto generate the Drever
Pound error signal.

An half-wave plate, \/2; together with a polarizing BS just before the FR, alows
controlling the pump intensity sent to the OPO cavity. A second half-wave plate, \/2,,
at the FR output is used to adjust the polarization of the injected pump beam (see fig.
(4.2)).

Before entering the cavity, the beam impinges on abeam steering (HR@532) for the
fine alignment of the injection axis. The following dichroic mirror DCR is transparent
@532 nm and reflecting @1064 nm. On it impinges, together with the pump, afraction
of thelaser output @1064nm that is used as IR seed for the cavity. The seed is obscured
while the quadrature measurement on the DOPO output are performed.

An injection lens f, matches the pump beam TEMy, to the TEMy, mode of the
cavity, say to the TEMy, whose b is given by the DOPO cavity geometry. This ensures

that the available pump power is utilized to the maximum extent.

4.2.1 OPO cavity properties

The squeezed light source that has been implemented is a triply resonant DOPO
(below threshold), based on atype | Lithium Niobate non-linear crystal (LiNbOs;:MgO)
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Figure 4.1. Experimental set-up for the OPO implementation. The laser output @532nm is used as OPO pump.
The electro-optic modulator (EOM) introduces on the pump beam the phase modul ation needed for the Drever Pound
control. The half wave plate (A/21) and the first PBS of the Faraday Rotator (FR) form a variable attenuator con-
tralling the pump power sent to the OPO. The A\ /2, and the matching lens () adjust the pump polarization and
geometry. The laser output @1064nm is split by the system \/2;r+PBS;r: the transmitted beam is used as LO
for the homodyne detector (not reported ), the reflected one as seed for the OPO cavity. The seed is sent to a beam
streering, driven by a piezoelectric crystal (PZT; r) to provide small changesin the optical path. Eventualy it isin-
jected into the OPO &fter reflection on the dicroic (DCR) beam splitter. The OPO back-reflected beam is sent by the
FR to the phodiode PD connected to the Drever Pound system.
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placed inside a two mirrors optical resonator. This configuration has been chosen in-
stead of more stable monolithic or seminimonolithic configurationsin order to achieve
the maximum extent of versatility of the device. OPO cavity is made up of two mir-
rors with curvature radius R = 51.68 mounted on Aluminium plates spaced by Super-
INVAR rods for mechanical isolation from the environment acoustic noise. Input mir-
ror is HR at degenerate wavelength T, (@1064nm)= 0. 75%, with T;,, (@532nm)=
0.163%. Two choices are possible for the output mirror with 72 , (@1064nm)= 2.9%
or T1L (@1064nm)= 4.6%; in both cases T,,,; (@532nm) = 1°/4,. Considering thetotal
measured |oss per passinside the crystal (A =2% @1064nm,), the corresponding cavity
couplings for the two configurations are respectively ! , = m = 0.4 and
nfl, = 0.5 with cavity linewidth@1064nm of 15MHz and 18MHz. The cavity length
isset at ~102.5 mm, not far from the concentric configuration to exploit the best con-
dition for the non-linear interaction, expressed by Ey .

The pump resonance condition, needed to enhance the build up, is ensured by the
Drever Pound active control of the cavity length [63] . The loop actuator is provided
by a piezoelectric crystal mounted behind the cavity output mirror. The obtained length
stability is0.7nm.

The OPO cavity is aligned by adjusting the geometry in order to transfer all pump
power into the TEMy, mode, by minimizing the other orders TEM by reducing the
asymmetries and properly setting the matching lens f,. Resonance is achieved by |ock-
ing the OPO cavity to the pump TEM,: this reduces diffraction effects and maximize
the coupling of the pump beam with the crystal.

The obtained threshold for the system for the mirror configurationsemploying 77,
is48mW with for the DOPO with T2 , it is 68mW. The observed quadrature squeezing
for n!,, is2.4dB.

4.2.2 Temperature control

Due to LNB properties, the frequency degeneration temperature is 7; ~112°C. To

work stably at this temperature the non-linear crystal is holded in an Aluminium oven,
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temperature stabilized by meansof an active control. The heater isathermoresistor wire
(Thermocoax) winded around the holder. The system is fitted with two temperature
sensors. Thefirst one, an AD590 chip, delivers a current proportional to the measured
temperature. The difference between such an output and a reference value provides the
error signal. The control is based on a PID (proportional integrative derivative) filter
implemented digitally by aVME station.

The AD controller isassisted by afiner one, based on a Negative Thermistor Coef-
ficient sensor (NTC), inserted in aresistive Whesatstone-like bridge. Temperature fluc-
tuation induces changes in the NTC resistance and turns out in a deplacement of the
bridge working point with respect to perfect balance. The current flowing through the
unbalanced bridge is used as a signal error and is sent to a PID implemented by the
VME.

Residual temperature fluctuations are < 1m°C over one hour.

4.2.3 Triply Resonance condition

The temperature control is aso used to achieve triply resonance of the pump and
the signal/idler modes. This configuration offers the advantage of alower threshold for
parametric oscillation and provides additional frequency selectivity in the OPO opera-
tion.

The resonance condition tranglates into a precise choice of the cavity length; since
the Drever-Pound system locks the cavity to the pump mode TEM g, small adjustments
for triply resonance are obtained by finely tuning the crystal temperature around T
while preserving the pump locking. Since signal and idler become indistinguishable, at
degeneracy the triply resonance condition is equivalent to a double resonance one.

For a given temperature the width of the function £y, (Ak) isgiven by the condi-
tion|Ak| < 7 [59] . Thisintroducesacertain tolerance on phase matching condition: all
the signal/idler frequencies satisfying the energy conservation and the phase matching
withinadomain 27/ L can oscillate. The maximum of the £y, (Ak) curve corresponds

to the pair )\, /; satisfying exactly the phase matching condition for given A, and crystal
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Figure 4.2. Giordmain and Miller diagram. Signal resonances are plotted as a function of signal frequency w, on
ordinary linear scale, with frequency increasing from left to right. Idler frequency scale is determined by the signal
one through the energy conservation realtion so to have w, = w; + w, along each vertical line. Idler resonances are
diplayed asincreasing from right to left. A signa-idler pair with both resonances centered on the same vertical line,
together with energy conservation, will satisfy double resonance condition. Resonance superposition must occur
within the linewidth (insert on the left).
temperature T'. For T' ~ Tj this pair isthe one with A, = \; = 2),. When the pump
level is above the threshold the most favourite pair of signal and idler is the one below
the gain curve with the frequencies closest to the maximum gain.

When the crystal isinserted in a cavity, afurther selection on the beam frequencies
Is introduced and only the frequency corresponding to cavity resonances can oscillate
13, Sincethesignal/idler optical lengthisfunction of theindex of refraction, the position
of the signal resonances aswell asthe free spectral range are different from thosefor the
idler. Small changes of 7" determines a replacement of the resonances and free spectral
ranges. Experimentally by adjusting the temperature the two ”combs’ are mutually
shifted until the signal and idler resonances are superimposed. In this case both signal
and idler will oscillate at the same frequency inside the cavity and the simultaneous
resonance condition will be satisfied [60] . Thissituation isexplained in the Giordmaine
Miller diagram[61] ; signal and idler cavity resonances are plotted against the respective

frequencies, with free spectral ranges(FRS) éw, and éw;. Thew, and w; axesare set soto

13t isworth stressing that for the cavities used in the present set up the En 1, width expressed in frequency is two orders of
magnitude greater that the cavity FSR for both the signal and idler beams. Thisimplies that there are more FSRsfor the IR beams
that can exploit the effect of the non linear interaction.
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have the signal frequency increasing from left to right and the idler's one in the opposite
direction with scales adjusted to have the frequency conservation relation (w;+w; = w,)
satisfied along each vertical line. If asignal-idler resonance pair lieson the samevertical
line it satisfies the simultaneous resonance condition. When the temperature is changed
the position of the resonance will advance along the scales, one to the | eft the other to
the right at dightly different rates because of dispersion, but the scale will not change.
Condition for the triply resonance must be satisfied within the cavity linewidths,
that are in turns function of the cavity finesse for the signal and idler. By taking into
account the properties of n (A, T"), cavity linewidths can be expressed in terms of the
crystal temperature. For the present case, assuming perfect degeneracy for the signa
and idler beams, minimum width of the cavity resonance for the IR is~ 1.5m°C. This
values, imposing the ultimate limit for the crystal temperature stability, is well above

the one obtained with the used controller.
4.3 Parametric gain measurement

An estimation of the squeezing degree and in turn of the distance from threshold
is provided by the study of parametric gain for the system below threshold. This mea-
surement is based on phase dependent amplitude amplification/deamplification experi-
enced by an input seed at degeneracy wavelength (i.e. 1064 nm). Experimentally, the
seed amplification is measured as a function of the phase relative to the pump. At this
purpose the seed optical path islinearly scanned in time by reflection on apiezoelectric
(PZT) mounted mirror driven by alinear ramp. As areference for the seed amplitude,
it istaken the value relative to the infrared beam transmitted by the cavity in absence of
the pump (say when the non linear processis completely switched off).

The parametric gain oscillatory behaviour is directly seen by sending the DOPO
output to alinear photodiode. The minimum of the gain curve, corresponding the best
deamplification, is independent on the seed power and is linked to the distance from
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threshold by relation [64] :

-2

Gmin = (4.37)

P
144/ 5
=

where G i, isthecurve minimumand P isthe pump input power. Thelimiting valuefor

Gmin COrrespondsto 0.25 for P = P,,. By inverting formula (4.37), from the measured
Gmin, It IS possible to obtain the DOPO working point. The maximum G, shows
a sharper dependence on P/ P,;, and increases when the threshold is approached of an
amount inversely proportional to the seed power [64] .

For a certain OPO working point, G,,;, aso provides an estimation of the best
obtainable squeezing S, say the spectral noise at zero frequency for the DOPO output

normalized to shot noise:

1+S=1-4 Gmin(1—m)

At the threshold perfect squeezing at zero frequency is achieved.

Parametric gain is also used to determine the degeneracy temperature. Since the
gain itself depends on the non linear interaction size, it is optimized when Ak is set to
zero at the frequency of the seed, say, in the present case, at 7' = 1,. The search for T
Is performed by checking the amplification and deamplification of the seed at different
temperature and choosing the one ensuring the best G...;,, for thesame F,,, .

At T ~ Ty, the best G,,,;,, experimentally obtained with the used setupsis G, =
0.275, corresponding to 82% of distance from threshold and a theoretical optimum
squeezing of -26 dB. Approaching more closely the threshold the parametric gain mea-
surement becomes unreliable due to resolution problems of the photodiode signal. In
this case the measurement of F,, /P, is done by directly measuring the threshold and

the green power injected inside the DOPO.
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Figure 4.3. Seed amplification and deamplification normalized to the reference val ue (seed transmitted by the cav-
ity in absence of the pump). Time variation linearly corresponds to seed phase variation. The curve refers to a
minimum Gin =0.33 (P/ Py, ~ 0.55).
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4.4 The Homodyne detector

The DOPO output is sent to an homodyne detector. It consists of a beam splitter
(BS), two focusing lenses and a pair of high quantum efficiency photodiodes (Epitaxx
ETX300, indicated as PD; and PD,). Each photodiode is matched to alow-—noise trans—
impedance AC (> few kHz) amplifiers based on CLC425. The two AC outputs are
connected to an hybrid power splitter/combiner giving both sum and difference of the
incoming signals. The difference photocurrent is further amplified by alow noise high
gain amplifier (Miteq AU1442 G=34dB, noisefigure 1.2) [26] . The DC components of
each photocurrent are sent to an additional output used to check the homodyne balanc-
ing.

The homodynelocal oscillator (LO), propagating orthogonally to thesignal, is pro-
vided by the laser output @1064nm.

Electronics has been carefully checked for what concerns extra-noise sources and
RF pick-up. In particular, the photodiodes and al the amplifiers are powered by low
noise isolated DC voltage generators.

The overall detection efficiency depends on detector balancing (i.e. how equal are
the two photocurrents) and mode matching between signal and LO. Accordingly many

efforts are required to reach these conditions.

4.4.1 Detector balancing

To optimize the detection, electrical signals for the two BS outputs must have the
same amplitude. Thistask isachieved by matching the two homodyne photodiodes and
their downstream electronics and by aligning the BS so to have trasmittivity t = 1/2
(balanced BS)

First of all, it is chosen a pair of photodiode heads with the closest quantum ef-
ficiencies pp, (npp1 ~0.91 ,7pp, ~0.90 for the used pair) and dark currents Ipp,
(Ipp,=15nA, Ipp,=11nA). Moreover el ectronic componentsin the two photodiodetran-
simpedance amplifiers are matched: a characterization of the response for different

power of the input radiation has given for the photodiodes DC conversion coefficient

54



_.___._\5: :

ile

B "H?Ian:!e .Rl_a__ie .‘.GF @ﬁ

-
-

A §

Figure 4.4. A picture of the homodyne detector showing the beam splitter (BS), the two photodiodesPD; /, (each
preceeded by afocusing lens), the MC cavity, the prisms of the optical delay line and the half wave plate for polar-
ization matching.
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Gpp,=323+1 mV/mW and Gpp,= 321+1 mV/mW. Differences for the AC output, ac-
tually used in the homodyne detection are negligible. The saturation power is 6mW for
both PD; and PD,.

The BSis balanced only when oriented exactly at 45° with respect to both signal
and L O propagation directions. Small BS rotations are allowed by arotatory stage with
micrometric screws. Unbalance is estimated by comparing, for different BS angle, the
transmitted P, and reflected P, powers on the homodyne photodiodes:

AP = %% (4.38)
with P; = “="= taking into account different photodiode gains Gpp, and dark volt-
age Vjgak. BS o;ientation ismodified till perfect balancing AP = 0 is reached smul-
taneoudly for the signal and the LO beams.

Experimentally the alignment isperformed by obscuring the L O and the OPO pump
and sending on the BS the output of the seeded OPO locked to IR TEM, resonance.
Powers measured by each homodyne photodiode over long time interval (> 0.5 h) are
compared by (4.38) and unbalance is estimated by time averaging AP (t). Since the
seed transmitted by the OPO isvery feeble (~ 30u1V powered), the power measurement
is badly affected by photodiode noise. Relative error on AP estimation is reduced by
sending the LO on the BS to check the quality of the balance. Small correctionsto the
BS orientation can eventually be performed. Best obtained value for AP is accurate
within 3% + 1%.

4.4.2 Mode matching between LO and signal

Spatio-temporal mode matching condition is the most critical parameter in homo-
dyne setting. As previously shown, the LO acts as an optical filter selecting for the de-
tection only the field with its same properties. In experimental homodyne, the situation
is reversed and the LO profile is tailored to match exactly the OPO output properties,
SO to optimize its detection. In the entire mode matching procedure the OPO pump is

obscured and the LO oscillator is compared with the transmitted beam for the IR seeded
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OPO resonant on the IR TEM,. The LO amplitudeis kept to be equal to the OPO out-
put one, to be augmented only when the homodyne is aligned and ready to be used.

The superposition between two Gaussian beams is maximum when differences in
the beam waists and in the radii of curvature are reduced to zero. Sincew (z) and R (z)
are fully determined by b and the optical path z — z,,;,,, the condition of optimum mode
matching trandates into the coincidence on these parameters for the two beams.

The matching of the two confocal parameters b is obtained by sending the LO
through an empty cavity (mode cleaner, MC) with the same geometry of the OPO one.
MC mirrors have the same (nominal) radius of curvature asthe OPO’'s (R = 51.68). By
means of a micrometric trandation stage (100um sensible) mounted below the output
mirror, the MC length is set to be equal to the measured OPO one (@1064nm) ** with
typical residual differences of ~200um. The MC is set to resonate on the TEMq by
means of a Drever Pound system identical to the OPO’s one.

Second requirement is the matching of optical paths = — z,,,;, to the BSfor the two
beams outing the MC and OPO. If this condition is not satisfied, at a point z the beams
will exhibit different radii of curvature and destructive interference can arise between
the points of the two wave fronts. Optical paths are matched by adjusting the LO’s one
with an optical delay line. Thisis made up of three prisms whose relative distance can
be varied with aresolution of 100.:m by means of amicrometric trandation stage. PZT-
driven small changes of the optical delay line length control the LO phase 6. The phase
Is continuously spanned between 0 and 27 by applying alinear ramp to the PZT.

Eventually an half-waves-plate on LO path guarantees polarization matching.

The last, obvious, condition for optimum superposition is the coaxiality of the
beams downstream BS so to prevent from spatial spread. The LO propagation direction
Is aligned with a beam steering (HR@1064 nm).

A quantitative measurement of the interference is provided by intensity measure-

ment on the homodyne PDs. When introducing a dephase 6 between LO and signal,

14The optical length @1064nm is obtained by looking at the IR transmission of the cavity when its length is linearly varied.
The transmission shows peaks corresponding to the istantaneous resonance of the TEMqg. The optical length is provided by the
relative distance between them.
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the intensity for each BS outputs shows an oscillatory behaviour. A measurement of the
beams superposition is the contrast CNT [62] :

Iinax — Imin
CNT = m
With 1. / min the maximum/minimum of the experimentally measured oscillation. As-
suming initially equal intensities of the LO and the signal (1.0 = I, = I), for perfect
mode matching, the system turns from perfect constructive interference (I, = 27) to
perfect destructive interference (I, = 0), sothat CNT = 1 ®. The mode matching
quality is measured by deviations of the actual CNT from 1. The measurement is Si-
multaneously performed on both the homodyne PDs, by correcting the effect of dark
currents. The confocal parameter, the optical paths and the polarization of the LO are
progressively adjusted to optimize the CNT.

The entire procedure is done by controlling the coaxiality of the beams on a CCD
camera (TM-745 Spiricon) set at one of the two BS outputs. For perfectly coaxia
beams, the interference figure on the CCD exhibits cylindrical symmetry and its central
maximum expands when improving the mode matching.

Typical final values CNT=0.974+0.02 have been repeatedly obtained. The overall
computed quantum efficiency (imperfect detectors+tCNT effects) isn =0.88+0.02.

The very last part of the procedure is to set the homodyne detector in working
condition. The LO power isincreased up to 5.5mW. The phaseis continuously spanned
between 0 and 27 by applying a linear ramp to the optical delay line PZT, so that the
phase is linearly varied with the time. The ramp period is set to be 200ms. During the

measurement the DOPO is not seeded and only the pump isinjected in it.

15When considering initial unbalance in the beam intensities (I # I10) it is more convenient to use the visibility, VIS :

211
s1LO .CN
Is+110

VIS =

T

For perfect balancing V' 1.S reducesto CNT'.
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Figure 4.5. The inteference curve detected on one of the homodyne phodiodes. The time coordinate linearly cor-
responds to a variation of the LO phase. The measured contrast, obtained by a non linear fit of the data (red line)

Figure 4.6. Typical interference patterns recorded by the CCD cameraat one of the BS outputs. On the left thefirst

interference ring around the central maximum is well visible. On the right, the mode matching has been improved
and the power re-distributes from the first ring to the central maximum.
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4.5 Homodyne data processing

The output of the homodyne detector provides the DOPO output quadratures. Ac-
quired samplesconsist of N homodynedata{z;,6;},7 = 1, ..., N with phasesf, equally
spaced. Sincethe piezo ramp is active during the whole acquisition time, to each 6, cor-
responds asingle value z;.

The data can be processed in different ways. A first measurement is performed
by looking at quadrature noise spectrum of the field outing the DOPO, as a function
of the phase. As expected a sub-shot noise character is shown for the LO phase § =
7/2. Spectral measurements are performed by sending the photocurrent difference to
a spectrum analyzer (Tektronix-2712, working range 1K H z-10G H z) set to zero-span
operation (following only one spectral component). It has to be noted that the low
frequency region of the spectrum is affected by the laser source noise (shot noiselimited
@2.5MHz). Moreover to see the squeezing effects it is necessary to follow the DOPO
output behaviour well inside the cavity bandwidth (18MHz and 15MHz for 7,,, = 0.5
and 0.4 respectively). These conditions determined the choice of looking at the spectral
component at 3M Hz. Acquidition is triggered by a linear ramp applied to the PZT,
that drives . The ramp is adjusted to obtain a 27 variation in an acquisition window.
Eventually dataare normalized to the shot noise level measured by obscuring the DOPO
output.

A different analysisis performed by sampling the homodyne output to acquire to-
mographic data to be used in state parameters reconstruction [26] . In this case, to avoid
the laser low frequency noise, data sampling is moved away from the optical carrier fre-
guency by mixing the homodyne current with signal of frequency (2. Different values
of ©2 ranging from 2.7 to 8 MHz have been acquired to investigate the field state at dif-
ferent points of the cavity bandwidth. The ramp spansthe 27 LO phasein 200 ms. The
resulting current, isfiltered by a cascade of low—pass filters with total bandwidth B.

Eventually the filter output is sampled by a digital acquisition PC based module
(Gage 14100) able to acquire up to IM—points per run with 14 bits resolution.
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Figure 4.7. Variance AX} (@3MHz) against the local oscillator phase 8 linearly scanned with the time. The noise
is normalized to the shot noise, value (red trace). It is possible to see the non classical reduction of the noise, below
the shot noise.
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Figure 4.8. Tomographic data: quadratures outcomes against the LO phase § scanned over 27 in 200ms. It is
possible to see the enhancement and reduction of the noise corresponding respectively to the anti-squeezed and
squeezed quadratures. By selecting a small fraction of the whole distribution, the phase 6 can be considered to be
approximately constant (9 ~ 6), so that the data give the hystogram of the measured quadrature X7.
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Calibration with respect to the noise of the coherent vacuum state is obtained by
acquiring aset of data by obscuring the signal while scanning the LO phase . Thetotal
electronic noise power has been measured to be 15 dBm below the shot-—noise level,
corresponding to asignal to noise ratio of ~ 40.

Thereconstruction are carried out by dr. M.G.A. Parisby means of pattern function

technique.
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Chapter 5:
Deviationsfrom Gaussianity for DOPO closetothresh-
old

The experimental set-up illustrated in previous chapters permits to investigate the
behaviour of the squeezed radiation emitted by the DOPO for different working condi-
tions. In particular data are acquired at different distances from threshold £, by chang-
ing the OPO cavity end mirror so to have two different value for the cavity escape effi-
ciency !, = 0.4 or n’l, = 0.5 (see previous chapter). These measurements permit to
test for the DOPO output, the effect of threshold fluctuation, due to crystal temperature
fluctuation, pump intensity instability and cavity detuning.

The data analysisis performed by means of both pattern function tomography and
direct statistical analysis of the quadrature histograms obtained by homodyning the
DOPO output.

Tomographic measurements are performed at {2 = 3 MHz. The resulting current,
is filtered by a cascade of low—pass filters with total bandwidth B ~ 1 MHz, and it is
eventually sampled by the digital acquisition PC based module. The sampling rate v
is fixed to BSMsamples/s for experimental convenience. It is worth noting that a ratio
% < 1 reduces the number of totally uncorrelated samples. In this way the number of
effectivesamplesisgivenby N ;s = N x %. Being the measured process stationary the
filtering-sampling procedure does not alter the statistics of the outcomes. In this way
the effective number of samples has been privileged with respect to a better defined
spectral selection.

5.1 Photon number distribution measurement

The first set of dataisrelativeton,,, = ., = 0.4 and £ = 0.5, 0.8 and 0.95.
The distance from threshold is experimentally estimated by direct measurement, at the

end of the data acquisition, of the power injected inside the cavity. It isworth stressing



that, to our knowledge, no previous squeezing measurement on DOPO output have been

performed so close to threshold.

For each value of £ typically 5 homodyne traces are acquired. For each, by means
of state tomographic reconstruction, are reconstructed the diagonal density matrix ele-
ment p,,,, (Up to n = 5) and the amplitude/phase quadrature variances (A X, AY’) nor-
malized to the shot—noise level obtained in homodyne calibration (see previous chapter,
last section).

The reconstructed AX and AY are used to compute the photon number probabil-
ity p, for aSTV state (see 2"¢ chapter), under the assumption of Gaussian state. The
obtained results, p,, can be compared, for each n with the reconstructed p,,,, Since pat-
tern function tomography is able to reconstruct the real state properties, without any a
priori hypothesis on it (see 3" chapter), the aim of this test is to compare the results
expected for the DOPO output with the actual experimental finding [26] .

In Fig. (5.1) arereport p,,, and p,, for £ = 0.5 (lower plot), 0.8 and 0.95 (upper
plot). Asit can be seen the two determinations are sensibly different, their difference
being larger the closer the OPO isto the threshold. Asan example, for £ = 0.5 (lower
plot) gy, = 0.780 and p, = 0.743 (< 3% difference), while for £ = 0.95 (upper plot)
000 = 0.585 and py = 0.533 (10% difference). For £ = 0.8 (middle plot) is8%.

Thisbehavior has been confirmed by asecond set of measurements performed with
higher coupling efficiency (n,,, = 0.5). In this case datarefer to £ = 0.5, 0.60, 0.65,
0.70, and 0.8. Similarly to the previous case, the relative deviation between g, and p,
increases with &, but, for equal &£, the discrepancy is less evident than for the case of
Nowt = 0.4. The maximum deviation is less than 6% for £ = 0.8. In Fig. (5.2) the
relative deviation between o, and p, for both coupling efficiencies are reported.

5.2 Quadrature statistics measurement

The origin of these differences can be related to the fakeness of the model used to
describe the DOPO output. To give a more quantitative estimation of the reliability of
the STV state mode, it is tested the Gaussian character of the state by analyzing the
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Figure 5.1. Photon number distribution for £ = 0.5 (a), 0.8 (b) and 0.95 (c) as recovered by pattern function
tomography ( o,,,, black columns) and in the Gaussian state hypothesis (p,, grey columns). The two determinations
are different with a deviation increasing with pump power. Confidence intervals (not shown) are much smaller that
the difference between the two determinations.
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Figure 5.2. Relative difference between the two experimental determinations of g, (by pattern function tomogra
phy) and po (Gaussian hypothesis). The reported deviations correspond to £ = 0.5, 0.6, 0.65, 0.7, and 0.8 ( 77,,,,,
=0.5), and £ =0.5,0.8and 0.95 ( n,,,, = 0.4). In both cases deviation encrease when approaching the threshold,

however they are more evident when the output coupling islowered.
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Figure 5.3. Kurtosis of p (z, §) for homodyne data corresponding to the coherent vacuum magsurement, obtained
obscuring the signal port of the homodyne detector. The Kurtosis distribution is flat with mean value practically
equal to O for every value of 6 as expected for Gaussian beams.

datastatistics at afixed 6. It isworth remembering that indeed for a Gaussian state, the
Wigner function is Gaussian and so is the marginal distribution p (x, 6) at fixed 6: any
deviation of p (z, §) from aGaussian is an indication of the deviation of the state itself.
Thedeviation of astatistical distribution from a Gaussian can be evaluated by means of

the Kurtosis [40]
—\4

1 & (x; — T)
K =— X 3
N; ot

which vanishesin the Gaussian case.

Each data set refers to a LO phase 6 spanning between 0 and 27 corresponding
to 10°% points acquired in 200 ms. In order to test the statistics at a fixed 0,, the entire
tomographic set is divided in 100 phase bins (10000 data each, lasting 2 ms). For each
bin the L O phase con be considered approximately constant so that the histogram of the
data describes p (z, 6,,) for agiven X (6,,).

For a Gaussian state the kurtosis distribution with the phase binsis expected to be
flat with mean value consistent with zero. Thisiswhat actually observed for the calibra-

tion vacuum noise, obtained when obscuring the signal port of the homodyne detector.
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Figure 5.4. Distribution of X, values measured for £=0.95. Full lines (green) represent Gaussian with the same

mean and variance. As it can be see for § = 0 the data are not in agreement with the Gaussian distribution.The
measured kurtoses K for the two distributions are respectively equal to 0.005 and 0.5.
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K, for calibration dataiis zero within 5 x 103, Thisresult releases from the hypothesis
of any spurious effects of the detection apparatus on the observed distributions.

In case the DOPO output is measured, the kurtosisdistribution isno longer flat and
exhibits an oscillating behaviour. For the squeezed quadrature the kurtosis is approxi-
mately equal to zero, but clear deviations from a Gaussian (Ky > 0) are observed for
the anti—squeezed quadrature. This behaviour becomes more and more evident when
the threshold is approached. In Fig. (5.5) are reported the p («x, §,,) variance and Kurto-
sisversusthe phase BIN. For low pump level the Kurtosis keeps below 0.15 for any 6,,
while for powers close to the threshold (upper plot) K, reaches 0.4 + 0.5 in correspon-
dence of the two variance maxima. In all the acquisitions K is practically 0 in corre-
spondence of variance minima. Even in the Kurtosis analysis, deviations from Gaus-
Sanity areless evident when n,,, = 0.5. This could indicate aless critical influence of

& asthe coupling efficiency is enhanced.
5.3 Theoretical model

The experimental behavior can be connected to residual fluctuations of the OPO
parameters. Dueto small changesinthe crystal temperatureT’, thelaser pump amplitude
A, or the cavity resonance v, the effective threshold P, fluctuates.

These fluctuations transform a constant coefficient Langevin equation [21] into a

time dependent one:

d ) )
= (E+ 88 (W) ! — (yyg i+ 8% (1) 0+ /el + el (539

with v,, = ~v; + 7, the total damping rate and a?;z is the delta correlated vacuum
entering in the cavity due to the output mirror/extralosses. The time dependent terms
61 (t) and 6& (t) are Gaussianly distributed and represent respectively the fluctuations
around the stationary detuning ) and parametric gain £. Ignoring the fluctuations the
field a generated inside the OPO inherits the Gaussian statistics of the input vacuum

a™ thus giving rise to squeezed vacuum. When §v (t) and 6& (t) are switched on, in
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the explicit expression of a they are multiplied the input a™; since the product of two
Gaussian process is no longer Gaussian [40] , a deviates from the Gaussian state the
more the greater 542 and 6€2 are.

The contribution 6v (t) in (5.39) is physically due to theresidual errors of the sys-
tem controlling the OPO cavity length.

The parametric gain £ linearly depends on the laser pump amplitude A, times the
non linear coefficient £, that isin turn afunction of the phase mismatch Ak (A, T')

(see previous chapters) [59] . The fluctuation 6€ can be written as,

(84, T
oelt)=¢ (A_ - ATQ)

P

whereit is stressed the dependence on the pump amplitude % and on the crystal tem-

5T
AT?

much more slowly than 6 A,, and 6.

perature

fluctuations. Inthefollowing thelatter oneswill beignored sincefluctuate

5.4 Zeroth order generation of STV states

By ignoring 6 and 6&, Eq. (5.39) and its adjoint reduce to the time independent
DOPO ones so that the zeroth order solutions () are the STV states seen in previous

chapters. In the frequency domain, with the matrix formalism a (w) = [ &Ta( (_wa))*) }

they can be expressed as:

with

Vb = B + /B

and G the matrix of the Fourier transformed Green functions for (5.39). It can bere-
expressed as G = g/ D (w) with:

(w> — 7M+i(w_¢) &
£ Y ti(w+) |7
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D(w) = — (w—iw?9) (w — W)
where

WP =y £/ E2 - (5.40)

5.5 Perturbative solution

Time dependent Eq. (5.39) can be solved by means of an iterative procedure. To

thisend, it is convenient to introduce the matrix:

< [isy 6€
A_[ o —iéw} (5.41)

representing the Gaussian processes 6 and 6€. Thefluctuating terms are characterized
by spectral densities

o (w) 6 (W) = Sy (w)b(w+w) (5.42)

proportional respectively to the laser pump technical noise and the spectral density of
the error signal for the OPO cavity length controller. In (5.42), and it what follows, the
bar indicate the average over the v and 6€ degrees of freedom.

Solution of Eg. (5.39) can be expressed in the frequency domain as.

o0
a=>) a® (543)
with the terms 2 obtained by the recursive formula:

a = G- (A ® 5“‘1)) (5.44)

73



The symbol ® denotes the convolution in the frequency domain. By repeated applica-

tion of (5.44), a® in terms of the input vacuum field is:

A" (w) = v 27M/ dwity AY (W1, wip1) D" (Wig)  P>1
with the kernels of the integral operator:

. '3 o0 "'(’L) o i i
AD (W wi) =1 [ dw, B= (Wi Wiy Wig1)
=2 J -0 D (Wl) ..D (u)iJrl)

and

g (Wi wis wis) = g (wi) - A (W1 —w2) + oo B (wy) - A (Wi — wit1) - & (Wi1)
(5.45)
being 6 (w — ') the Dirac delta function.
The field outside the cavity, obtained by means of the input output relations, is:

o0
a" =2y a-ar=> a""
i=0
where
2 ~ 1 )
=out (0) __ TMm in ~m)
a = 2 = -b a
Y1 (D () g o 1

a™t o = /24,80

Although an accurate examination of the range of convergence of the series expan-
sion (5.43) goes beyond the limits of the present discussion, it isworth discussing quali-
tatively the problem by recalling the Fubini-Tonelli inequality for two generic functions
f,9€C(R):

/Z'/Zf(fﬂ—y)g(y)dy

i< [Ir@lds [ lgwldy

o0 —00
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Thisresult impliesthat the series (5.43) is convergent if

Since ‘D (w+ @)‘ > wPP0wOPO then a sufficient condition for the convergenceis

/ E(w+)- A @) db < w00

Then, approximating A (@) as:

A @)~ Ss(w)“) (1)]“ Sw(w)[(l) —011

one obtains
/_Z'é(erw).( Sg(w){(l) é}+zm{é _()1D‘dw<<’ﬁw—52+¢2

that is S¢ (w) and S, (w) are upper bounded by the distance from the threshold.

5.5.1 Quadratures

The field quadrature can be expanded in a perturbative series similar to (5.43),
Xp(w) =Y X (w)y=0->" a () (5.46)

with 8 the row vector

0 = [ %e—iﬁ %ew }
Explicitly:
X3 (1) = /27u / dwisy X() (@1,wi41) - D™ (i) (547)
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with the kernel of the integral operator in (5.47) expressed as.

x (@) (Wi, wis1) = 11[ o do, 0. gji) (w1, . 2 , Wi, Wit1)
? 7 =2.J o0 D (w1) ...D (wit1)
The output state quadratureis:
Xout _ \/TZX(U . LX(m) (5 48)
0 Y1 0 Y 0 -
=0

The quantity actually measured is reproduced from (5.48) by accounting for the de-
tection effect. Quadratures X';“t are detected by a balanced optica homodyne and the
relative current is demodulated at the frequency €2 and integrated for atime 1/+,. the
resulting output signal is:

t
sg(t) = / e~ X0 () cos (Q) di!

—00

- / HSA(wl,t)f(;m(wl)ei“’ltdwl

o0

with

o~ i
H (w,t) = H5 (w,t) = —i — + ‘
w—Q =iy, w+Q—iyy

5.6 Kurtosis calculation

The Gaussianity of the OPO output state is checked by looking at the Kurtosis K

for the quadrature distribution. Interms of s (¢) the Kurtosisis:

_ —\2
53 -3 (s%)
Ky= ———% (5.49)

(%)
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wherethe quantiti&es_g and s_;% are respectively the second and fourth order momentsfor
- By making use of (5.46):

X9
EED 3 IERIT

H—] n

3= Z > SR (1) (5.50)

1,7,k,1
z+]+k‘+l n

being n the order of the expansion for the moment under scrutiny and:

J) H / dw HSA (W™, 1) ei(w{+w{1>t <X;ut(i) (w{) X;ut(j) (w{1)>
and

sg’j’kl H/ dw H5 (W, 1) ol el ol o]V )t
(370 () 270 @) X7 (011) 2,70 (o))

In the previous expressions (..) denotes the quantum average.

Without loosing in generality the denominator of (5.49) can be approximated with
the O-th order solution s\ (¢). In general, s2 and s3 are computed by exploiting the
properties of Gaussianity for the quantity b (w) and 6& (t) and 6v (t). The details
of the calculation will not be reported here, only a qualitative analysis of them being

proposed (for a more exhaustive analysis see Re.. [66] ).

5.6.1 Quantum average calculation

To compute K, thequantum averages< X0 X J)> and < X0 X7 0) X k) X °“t<l)>
must be evaluated. Asshown by relation (5.47), X, isgiven by applying an integral op-
erator to the input vacuum b®*. This means that the quadrature products in (5.50) are

proportional to the product of two or four vacuum operator b (w), b (—w*) respec-
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tively. Since b™ is Gaussian distributed the quantum average product of four quadra-

tures can be reduced to the sum of three products of two quadratures [40] :

so that only two quadratures product quantum averages must be calcul ated.

(X (@) X (@) X (@) X (@) =3(X (&) X (7)) (X (") X ("))

(5.51)

Thepropertiesof theinput vacuum al so guaranteethat, in each product < Z)X >

only the termswith b on the left and ™t on the right will survive with b delta corre-

lated. The product of two quadraturesis thus ssimplified into:
(X (wl) X9 (1)) = X5 (], wl)

where:
X9 (] wl1) = 29 / do X (!, 0) X9) (i, ~)

having indicated with
X0, (6h.8) = X (@l wi0n) - /8

with o = é),ﬂ:

In particular for the field outside the cavity:

K709 (ol = 2,0 (o) + 2ol 5

“\/ 9 n Z650)/ dW{IXea wlv_wl )
,/71 e 80, / dwl w{l, —w{)

where 6, isthe Kronecker delta
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5.6.2 Timeaverage

A further simplification concerns with the average over 6€ and 6+ degree of free-
dom. Since the quantities € and 61 are Gaussian processes the odd moments for their
distributions are all equal to zero and do not contribute to the calculus of the kurtosis.
Since each term of order 7 in the expression (5.46) contributes with a power i of 6 and

&, the expansion (5.50) for s2 and s2 simplify to:

=3 > sy

n 7’7.]
2n=i+j

s5= >, > st

n 2n=itj+k+l

In the following expansion up to the 2-th order will be considered (n < 1). The case of

higher ordersis discussed in reference [66] .

For n. < 1, the only terms admitted in the second order moment are s and s{"",

while contribute to the s2, all the si""*" whose indexes (i, j, k, [) are permutation of
the vector (0,0, 1,1). However, since the Kurtosis is given by the difference between
— —\ 2 .

sg and (sg) theterms (0,0,1,1) and (1, 1, 0, 0) in s3 while cancel with those obtained

—\ 2 2
by evaluating <s§> = (sg‘)’“) + sl
out 1 out 0 out 0 out 1
<X0 W ()>and<X9 0! <>>_

Since 61 and 6€ are delta correlated, results similar to those for the quantum aver-

so that the only contribution will come from

age are obtained for the arguments of the A matrixes contained in (5.45). Moreover, it
isin particular possible to show [66] that the frequency sums) " are equal to zero,
s0 that the fluctuating terms ¢ (“1+¢1')t and ¢i(wi+et’ +1!+1")t il be skipped in the
following.

Eventually the time average in the moments s3 and (s_§> " must be performed. By
considering the explicit expression for H54 (W, t), it is readily seen that in the prod-
uct [T,, H54 (wi, t) will appear terms proportional to 1, e*2? and e*. Since the

demodulation frequency €2 is usualy very high (~MHz), only the terms proportional
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to 1 will give asignificatively non zero mean value in the time average. The product
H54 (wi, t) H9* (wif, t) isthus rewritten as:

ei(oIJrUH)Qt

H54 H% (wi 1) =
COR 0= Y T
oot~
with the right sides summed over o? = +1, and an analogous expression holding for
H;V:I H54 (W, ). By taking into account these simplifications, it is convenient to
introduce the quantities:

- II %) ’io’I O.II Q out
G / g XD (o ) 559
0,(ct,0th) 41 ) (w{+aIQ—i7f) (u){I—Fa”Q—wf)
and
(4,7,k,0)

0 O'I O-II olll O-IV)

I+O.II+0.III+O.IV)Qt X;ut(’i,j) (w1’w1 )X (W{H w{V)
= 3 H dwl m m() —
(wl +to wf)

(5.54)

The Kurtosis can be easily rewritten in terms of (5.53) and (5.54) as.

)
4 2

2
S
1 i,5,k,l) (4,9) (k,1)
- Z (0, 0) 0) Z Z Z ( (o1 02 a3,01) 389 (a1, 02)80 (o1, 02)>

s
9( )9(5304)710 %,7,k,1
1#£j,k#l
2n=i+j+k+1

Ky =

Poles of the integrands of (5.53) and (5.54) are due to product of (w’ln + o™ — iy f)
in H54 (wr, t) with [T, D () contained in the X, ) (!, w!!). The integrations

in K, can thus be smply calculated, by means of the residues theory, taking into ac-
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count the delta correlation due to §€2 and 6—¢2 (see (5.42)). It isworth saying that no
correlation is expected between 6€ and 61 so that two contributions can be considered
separately.

For a generic perturbative order n, after performing the integration, the Kurtosis
takes the form [66] :

4
K9 out out </ dWAR / dvl/ dUQAR Ul) 1)2)
Z R 10 011 R@(JS%PLIV) —oo

(5.55)

WhereR ,’J),, are the sums of residues of s 1 oI1) with respect to al the poles. The

functions ARé") (w) in (5.55) can be expressed in terms of RQ( ,’J),,) as.

~ ~ out ~ out out ~out
ARén) (Wlu w2, ... 7wn) = Z Z ( 0 (UI 11) (]Iclll) oIVy 3 Rg (UI II)RO’(O(.]IC}II)JIV)

0,7,k,1 o
In=i4jth+l

For n < 1 expression (5.55) becomes:

: ) R AL
K@ out out / dw Sg w AR( w + S W AR w
Z RQ(O-IOO(.)I)I R 0(2?)01‘/) oo ( ( ) 0E ( ) % ( ) O ( )>

(5.56)

wherethefunction AR} (w) and ARY)) (w) are obtained by collectinginthe AR} the

terms proportional to Sg (w) and Sy, (w)

5.6.3 Numerical smulationsresults

The behaviour of (5.56) is strongly dependent on the shape of the spectral densi-
ties Sg (w) and Sy, (w). Nevertheless, some preliminar results can be obtained by the

analysis of functions ARY for different OPO parameters.

0E
In fig. (5.6) are reportZJI the behaviour of AR (w) and AR}, (w) as functions
of the quadrature angle 6 and the frequency w for zero detuning. The parametersin the
simulations have been chosen equal to the experimental onesfor n,,, = 0.4, with afilter
bandwidth v, = B =1MHz and the demodulation frequency (2 =3MHz. The distance

from threshold is £ = 0.8. As seen by the plots, the deviations from Gaussianity are
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Figure 5.6. Spectral behaviour of AR{ (left) and AR, (right) as function of the quadrature angles for
Noue = 0.4, 7, = 0.07, £ = 0.8 and Q = 3M Hz. Thefrequenciesw are normalized to the cavity bandwidthry .

The positive values for AR(S? o indicating a deviation from gaussianity, are more evident in the lower frequency

region of the spectraand reduce to zero at approximately one half of the cavity bandwidth.

expected to be more evident in the lower part of the spectrum. In genera the effect
of Aﬁiglg)/ » (w) vanishes for frequency higher than one half of the cavity bandwidth. It
Is worth saying that in this region also the effect of the laser pump noise contained in
Se (w) ismore evident.

Since most interesting results concern the low frequency behaviour infig. (5.7) are
reported AR(S?M (0), as functions of the quadrature phase ¢ (2 =3MHz, v, =1MHz,
Nowr =0-4, 1 =0) at different distances from threshold £ = 0.95, 0.8, 0.5 and for zero

cavity detuning ).
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Figure 5.7. Behaviour of Af%élg) (left) and AR((,L) (right) as functions of the quadrature angle 6 for different dis-
tance from threshold £ = 0.95 (up), 0.8 (center), 0.5 (down). The simulation parameters have been chosen equal
to the experimental ones for the ,,,,, = 0.4 with afilter bandwidth v, =1MHz and the demodulation frequency
Q =3MHz. AR[Y,,
mental finding. Moreover it is possible to recognized in AR&) the oscillatory behaviour seen for the kurtosis, with

minimafor the squeezed quadrature and maxima for the antisqueezed one.

deviations from zero are stronger when the threshold is approached accordingly with experi-
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Accordingly with experimental findings for Kj, the contribution from AR(S? I
sharply increases in proximity of the threshold, where the relative effect of threshold
fluctuations is stronger. The simulations show that the most important contribution to
the Kurtosisisgiven by the parametric gain f luctuations (two order of magnitude higher
than the $7)’sone). Moreover AR(S? showsthe oscillatory behaviour asafunction of the
quadrature phase # with minima (AR((,? ~ () corresponding to the squeezed quadrature
and maximato the antisqueezed one.

Functions AR,
e29 present in the explicit shape of the function ARSS) 1 166]

have period equal to 7. Thisaconsequence of factors e**4? and

AR

0 /o) ~ 1+ Re [Ag/w@ZAe + Bg/d,eiw] (5.57)

Coefficients A¢,,, and Bg/y, in (5.57) are determined by the OPO and the detection
parameters. Sincein general A, and B, can be complex, the functions Afié? 1y A€
not symmetric around /2. This behaviour iswidely evident in the shape of AR&) (see
fig. (5.7-right column) ) and it is accentuated when anon zero detuning ¢ isintroduced.
Infig. (5.8) arereported the behaviour of AR((,?W (0) for¢y =0,0.15,0.25(€ = 0.8,
Q) =3MHz, v, =1MHz, n,, = 0.4). For increasing detuning, the effect of 6¢ is
reduced. Thisisdue to the fact that for non perfect resonance, the interference for each
wave bouncing back and forth inside the cavity isnot optimized. Thiseffect turnsout in
alower effective cavity Q-factor and in turn an higher threshold; for the same injected
pump power, the greater is ¢, the more the system is far from its effective threshold.
Eventually the effect of the detector is evaluated by considering three different
choices of thefilter bandwidth v, =1MHz, 25MHz, 100kHz (seefig. (5.9)) (€ = 0.8,
1 =8MHz, n,,, = 0.4, ¢» = 0) Most interesting results concern with ARSS) that is
drastically reduced when the filter is clenched around the demodulation frequency (2.
Thiseffect isdueto thefact that for wider ~ ;, more spectral components areincluded in
the integration performed by the detector, so enhancing the obtained noise. It is worth

noting that when the demodulation frequency is moved in the spectral region on the
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Figure 5.8. Behaviour of AR} (up) and AR.) (down) as function of the quadrature angle 6 for v =0 (green),
0.15 (red), 0.25 (blu) (£ =0.8, 2 =3MHz, v; =1MHz, 5, =0.4). The detuning enhances the asimmetry around
/2 for ARY,) and dueto its effect on the effective threshold, reduces ARy .
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Figure 5.9. Behaviour of Af%élg) as function of the quadrature angle 6 (€ = 0.8, 2 =3MHz, n,,,, = 0.4, ¢¥» = 0)
for v, = 2.5MHz (green),1IMHz (blu) and 100kHz (red).

border of the cavity linewidth (€2 ~ ~,,), the use of awide ~y, will suffer of the effect
of cavity filter, that flattens the spectral component to the shot noise level and corrupt
the AR

0E /¢
After these preliminar results, the computation of thekurtosisfor assigned Sg/;, (w)

shape with respect to the case of narrower ;.

will be considered. It is worth noting that the entire iterative procedure can be also
applied to the case of non degenerate OPO, so to evaluate the effect of fluctuations on
the entangled between the generated signal and idler modes. Work along this direction

ISin progress.

86



Chapter 6:
Transmittivity measurement with squeezed vac-
uum

Traditional optical measurements of the transmittivity 7 are performed by sending
on the absorbing sample a probe beam in a coherent state. The value of 7 isretrieved
by detecting the beam intensity up and down-stream the sample and comparing the ob-
tained results. Sufficient accuracy is achieved by using beams so intense to contrast
the shot-noise effect and provide a good signal to noise ratio SNR. However, in some
circumstances, using high input intensity is either not useful (in case of very low ab-
sorption) or unwise (strongly non-linear materials or samples whose structure may be
atered by intense photon fluxes).

Many experimental schemes have provided an upgrade of traditional one by mak-
ing use of squeezed light radiation. Most of them, used as probe beam a combination
of squeezed vacuum with a coherent field set in awell defined phase relation[19] , [20] .
Even in these cases, the observable is the field intensity but, due to the presence of the
sgueezing, the ultimate the limit of shot noise level is beaten..

A further enhancement, in terms of the dose transferred to the sample, is proposed
by neglecting the coherent component and using as a probe directly the squeezed vac-
uum radiation [27] .

Asdiscussed above, below—threshold DOPOs produce em. radiation in squeezed—
thermal—vacuum states (STV) with a Gaussian statistics [54] . Propagation through non
resonant mediatransformsan STV state into another one with different quadrature vari-
ances A X3; thetrasmittivity 7 of the sample can be measured by exploiting the change
of AX?. The combination with the coherent light is deplaced down-stream the sample,
whereit actsaslocal oscillator in abalanced homodyne detector. Since the detected sig-
nal is proportional to X, times the LO amplitude, the detection noise can be neglected
also in case of very weak beams so that the effects of the SNR on the accuracy can be
disregarded.

87



Essential to the proposed method is the use of a Gaussian distributed quadrature
Xy. Thismeans that for testing the method it is necessary to preliminarily measure the
distribution function by sampling X, an adequate number N of times. In alternative,
it is aso possible to determine the whole Wigner function with quantum homodyne

tomography (QHT) using samples uniformly distributed over thewholeinterval (0, 27).
6.1 Propagation of STV statesthrough the sample

The OPO output ischaracterized by meansof the adimensional parametersn,y,, ny, =
sinh? r representing the average number of thermal and squeezed photons, respectively
(see previous chapters). The values of n, and n,, are set by the OPO working condi-

tions. In terms of n,, and n,, the mean total photon number is given by:
Ntot = Nsq + Nyp + 2nsqnth s (658)

while the variance of the generic quadrature X, reads:

2nth + ].)

AX92 — ( 1 (1 + 215 + 24/ (1 4 ngy) Ngq cOS 29) ) (6.59)

The STV states are described by a Gaussian Wigner function centered at the origin
[67] :

Wi(a) = ! ex —%[Q]Q - Slof
T ar/AxeAY? P\ T2AX? T 2AY?
_ %/pw)exp(_m—m?) &3,

with P (3) the corresponding P-representation:

P(B) =

! eXp(— RSP )
on\/(AX2 - 1) (Av2 - 1) 2(Ax2—3)  2(AY2—3)
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corresponding to adensity matrix:

o— / P (a)|a) (o] da

If the STV is sent through amedium of transmittivity 7, the density matrix for the state

down stream the sample modifies as

QT:/P@M¢ﬁg<¢iqfa:/pﬂwmﬂﬂfm

with
1
e = 7¢(J7)
B 1 ew(_ Rla)> S )
om /(X3 - 1) (AvZ - 1) 2(0X7-3) 2(AY2-3) )"
and
AXQ—E—T AX2—1 6.60

A similar expressionisfound for AY.2 6. Introducing the subfixes0 and 7 for labelling
up— and down-stream quantities, respectively, Eq. (6.60) generalizes for a generic
guadrature X, into:

AXGr — i =T (AXQ%O - i) (6.62)

Previous equations show that after the propagation through the sample, the STV state
Is transformed into a new STV with quadrature variances given by (6.61). Physically
AX7 — 1 quantifies the deviation of the actual STV variance from the vacuum state

case (shot—oise). The absorber deteriorates the quality of the squeezed state; in the

16| principle, in the absence of multiple reflections within the sample, the transmittivity 7" is given by T' = T1 T4 T3,
where T; and T are the Fresnel transmission coefficients at the input and output faces of the sample respectively and T’ isthe
sample internal transmittivity.
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Homodyne Detector

OPO Absorber

/
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Figure 6.1. Schematic set-up for absorption measurement viaquadrature detection. The STV state generated by the
OPO is sent to the absorber. The quadrature of the transmitted STV state are characterized by a homodyne detector
to retrieve the sample transmittivity.
limit case of 7 = 0 (complete absorption), the squeezing is completely degraded and
the state reduces to a coherent vacuum with shot noise 1/4.

Equation (6.61) provides a smple way to obtain the sample transmittivity 7 by

measuring the up— and down—stream quadrature variances:

AXZ -1
T 0T 4 (6.62)
1

TAXZ, -

By means of Egs.(6.59) and (6.62), 7 can be also expressed as.

(2 + 1) (1 + 2N 7 + 2\/(1 + Ngg7) NsgT COS 29) -1

(6.63)

(2nyp + 1) (1 + 2ng00 + 2\/(1 + Nsq,0) Msq,0 COS 29) -1
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6.1.1 State parametersevolution

The expression for the density matrix of the transmitted state allows writing the
evolution of all the state parameters. The mean photon number V,,; transforms propor-

tionally to 7 asfor aclassical field:
Niot,t =T Niotp (6.64)

and ny, + and n,, 7 can be expressed in terms of 7" and of the initial values ny, o and

Tsq,0 OS.

2y +1=

2
\/[1 — T + T(l + 2nth70) (1 + 2’[’L5q70)]2 — lQT(l + 2nth70)\/(1 + TLS(L()) nsq’0‘|

277,5(177 +1=
1-7 + T(znthp + 1) (1 + 2718(1,0)
27’Lth7']' + 1

_ (6.65)

These equations provide alternative ways to estimate 7. In the measurements dis-
cussed below, 7 is determined through a direct measurement of the parametersn,;, and
nsq Dy QHT technique based on pattern functions. This choice is motivated by the fact
that for the STV state used in the experimental test (n., o = 0.55 and ny, o = 0.11),

nun,7 aNd ng, 7 are practically linear in 7°, so that:

Niw T

= Ay, + By, T
Nth,0
Nsq, T

Dol — Ayt By T . (6.:66)

nsq,O

The coefficients A and B can be calculated by linearizing Egs.(6.65) as a function of
T for fixed nyp0, nsq0. 1N table (6.1) computed A and B have been reported (first
two columns) together with the corresponding val ues obtained experimentally (last two
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A B AQHAT) B(QHT)
Nit | O 1 -0.05+0.07 | 1.1+£0.1

ny, | 012 | 0.89 | 0.07+£0.05 | 0.85+0.07
nsg |-0.12 ] 1.14 | -0.164-0.05 | 1.14+0.07

Table 6.1. Coefficients A and B computed by equation (6.69) (left) and experimental ones measured by
QHT (right)
columns). For the sake of completeness the measured ratio N, 7/Niot0 has been re-
ported aswell, in order to evidence the agreement with the theoretical value of Eq.(6.64).
In conclusion, it isworth remarking that the above transformation laws and in turn
expressions (6.62) for 7 arevalid only for Gaussian state. Asshowed before aGaussian
statisticsfollowsfrom the assumption of timeindependent gain and detuning of the OPO
with relative deviations decreasing when the DOPO is driven far from threshold. For
the used OPO the correctness of Gaussianity assumption is discussed by measuring the

kurtosis parameter K.
6.2 Accuracy of the estimation of 7

The limit of the uncertainty on the estimate of 7 expressed by Eq.(6.62) depends
on the confidence interval § [A X7] in the measurement of AX7. Explicitly, the relative

erroron 7 is[27] :

2

5T \/ AX37
— O IAXZ |7, (6.67)
R Te e FO[ANR]

In case of Gaussian distributed X, asfor the STV, is possible to write:

JISOENENG

with NV the number of acquired data, so that:

57 10, 1][1 , 1
-5 »szo |\/16 2‘“9’0‘4‘(T”’”'M&WD

(6.68)
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Figure 6.2. Relative error £& \/g (a) and (b) number A of photons hitting the sample for 2= 0.01 and x7.= 6
vs. transmittivity 7. The plots refer to the STV state parameter calculated at w = O for the output of a DOPO with
zero detuning, at half the threshold (£ = 0.5) and v, /v,,= 0.5, 0.75, 1) (dot-dashed, dashed and full lines)

This expression gives, for afixed 7, the relative error as a function of N and AX3,
in turns depending on the OPO working condition (distance from the threshold, output
coupling and cavity detuning). On the other hand, thetotal number of photons V" hitting

the sample during the measurement is:
N = Ny vy N5, (6.69)

with 7! the sampling rate, v,, the cavity overal damping ratio and N;,; given by
Eq.(6.58). Physically N, v, expresses the flux of photons outing the cavity (v, is
the cavity lifetime) and N 7, the time needed to acquire the NV samples.

InFig. (6.2-a) & \/g (see Eqg. 6.68)) has been plotted as a function of the trans-
mittivity 7 for w = ¢» = 0, & = 0.5, and three different escape efficiencies (,,,; = 0.5,
0.75, 1). Therelative error increasesfor 7 approaching zero. Fig.(6.2—b) givesthe pho-
ton dose V' necessary to obtain arelative error % = 0.01 asafunction of 7. The OPO
parameter are set asin Fig.(6.2-a) and y,,7s = 6 (asin the experimental test). The plot

evidences the increase of ' by more than an order of magnitude for 7 less than 0.01.

6.2.1 7 estimation via quantum homodyne tomography

A different analysisis performed by uniformly varying the LO anglein the interval
0 < 0 < 27 so spreading the N data over more quadratures. Experimentally, this
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procedure presents the advantage that it does not require sophisticate phase locking set-
up to keep 6 constant during the N samples acquisition.

Data over 27 be processed by QHT for obtaining the Wigner function and the state
parameters mean value (i.e. Ny, ny, and ng,). Inthis case Eq. (6.67) istill valid with
§ [AX?2] replaced by 6on7 [AXZ]. For the operator O = AXZ the QHT confidence

interval reads (see previous chapters)

Sour [AXG] = \/—1N\/AR2 [AXZ], (6.70)

By considering the explicit expression of the kernel for X, and X7 it is simple to find
with some algebra that:

AR? [AXg} = Cp + C cos (20) + Cy cos (46) , (6.72)

with the coefficients Cyy, C; and C; given by:

1[27 3 1/3 2

Co = 3 [7 (AX*+ AY?) + 9AXPAY? + <1 — ;) (AX? +AY?) + 1 (? —=+1
1

Ci = 5 (AX?—AY?) [3(AX? +AY?) - 1]
3

Cy = Z(AX?- AY?)?

In previous chapters, it is shown that the confidence interval on A X2 obtained viaQHT
reconstruction is greater than the one obtained in direct measurements. However for the
variances AX?, AY? relative to OPO devices similar to that used in the experimental
test, Sorr [AX7] differsfrom 6 [AXZ] only by some percents. This meansthat collect-
ing NV samplesin the interval (0, 27) reduces the accuracy with respect to the case of
constant phase by only afew percent. Thisdlight lossislargely compensated by athree

dimensional characterization of the STV state in the phase space.
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6.2.2 Comparison with intensity measurement accuracy

Conventiona measurementsof 7 use acoherent CW probe beams and the radiation
power, P, asobservable. In this case the estimation of 7 isretrieved as the ratio of the

power down— and up-stream the sample:

7T
Py

(6.72)

The more the dose transmitted to the sample is reduced, the more the measurement is
blurred by the shot noise and by the detector noise equivalent power (N E P). Theerror
on P reads:

6P = \/hwoB P+ NEP, 6.73)

with w, the radiation frequency, and B the detection bandwidth. The corresponding to
arelative error on 7 given by (6.72) is:

6T _ 1 |1 [, [WwBSNRT\ [ [lBSNE\
T SNR\| 72 NEP N NEP N » (674

with SNR = Fy/NEP and N the number of acquired data.
Inanalogy with Eq. (6.69), the total number of photons passing through the sample

during the measurement interval is given by

NEP

0

N =SNR N7, (6.75)

Equation (6.75) allows replacing the factor s22- in Eq. (6.74) with 28257 (with
Bty > 1). Inthisway theratio % can be expressed as a function of % 7 and SNR.

Using for SN R the limiting value (corresponding to N — +00)

ST\ ' [1
swn> (40) " [,
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Figure 6.3. Photon dose passing through the sample against 7 for transmission measurements based on power
measurement up- and down-stream the sample under scrutiny using a coherent beam as a probe. The curve refer to
Br,=10and §7 /7 = 0.01. Therequired dose increases for low transmittivity but it is always much more intense
than the one required for measurement based on quadrature detection (see fig.(6.2))

it has been obtained the plot of Fig. (6.3) representing V' vs. 7 for % = 0.01 and
Bts = 10. Comparing it with Fig. (6.2-b) it appears evident that for obtaining the same
accuracy amuch lower photon dose (two order of magnitude smaller) isrequired by the
method via quadrature measurement. Thisresultsislinked to the fact that in the limit of
low photon flux (few pW) with the present detector technology, the N E P on intensity
measurement is not negligible so that to achieve a good accuracy the dose has to be
raised to guarantee a SNR>> 1. This problem is completely by-passed in homodyne
detection where since the LO amplifies the signal, the effect of detector noise can be
neglected even for low doses transferred to the sample.

Concerning with the use of squeezed light in transmittivity measurement, it isworth
mentioning the case Re.. [20] . In this case the probe beam is given by a coherent
beam (a,,) mixed with asqueezed thermal vacuum one (as7+) with 6 their locked phase
difference; the total field is described by:

aor = €’ asry + aa
The transmittivity of the sample is then retrieved via power measurements.
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It can be shown after some algebra that the addition of the squeezed component
dightly modifies Eq. (6.73) by replacing B with

Besr =B (1 + Nsq + Mup + 2Nggnun + 1/ (1 4 Ngg) Mgq COS 2&) .

For cos20 = —1 and /(1 + nsg) nsg > Nsg + M + 21404, the squeezed vacuum
component reduces the effective detector bandwidth. The reduction of B (typicaly
B.ss 2 .5B) implies aproportional decrease of A/ in (6.75) for assigned % and 7.

6.3 Experimental test

Thereliability and accuracy of the method istested with asample of know variable
transmittivity. The 7 values obtained via QHT are compared to those measured, with
an accuracy of 10~*, with standard techniques employing 1 mW coherent beam at \ =
1064 nm.

STV dtates are generated by a degenerate type-| OPO and characterized by a ho-
modyne detector, both described in details in previous chapters [26] ; in the present
case, cavity mirrors are in configuration 77 (cavity linewidth of 15 MHz). Fixing
&€ = 0.50 the reference STV gtate has Niy o = 0.79 £ 0.06, ny,o = 0.55 = 0.02
and ny, o = 0.11 & 0.01, corresponding to a photon flux of 107 s™*. For this state the
measured kurtosisresulted K, < 0.01 for any ¢, thusindicating that the corresponding
guadrature statistics was very close to the Gaussian one.

The OPO output is propagated through a variable neutral density filter, which
changes 7 without introducing misalignment, that could reduce the homodyne effi-
ciency. The transmittivity 7 is varied between 0.45 and 1 in discrete steps. The beam
passing through the non—-absorbing zone (7 = 1) of thefilter isused asareference state.
Thefield leaving the absorber is sent to the homodyne detector (n = 0.88 + 0.02). The
averagee€lectrical signal level at the homodyne output is15 dB higher than the el ectronic

noise. This prevent from the influence of the NEP on the quadrature measurement.
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Tomographic data are acquired by sampling the homodyne signal. To avoid laser
technical noise, data sampling is performed by demodulation the homodyne current at
2 = 5 MHz. Then, the resulting current is low—pass filtered, with a cut—off frequency
of 2.5 MHz, and 10° samples are collected at 2.5 Msample/s (7, = 400 ns).

In order to reduce the influence of residua fluctuations of the STV state, each
experimental point was averaged over multiple (~5) tomographic acquisitions. In the
present conditionsthe QHT error was negligible with respect to the standard deviations
of the STV state parameters.

To assess the robustness of the method, the transmittivity, 7,7, obtained by to-
mographic reconstruction was compared with the corresponding value, 7;, provided by
standard intensity measurements.

INFig. (6.4), Tour = Niot,7/Nioto (Se€ EQ.(6.64)) is plotted vs. 7, together with
the expected behavior 7o+ = 7, (straight line). A linear regression of the data with
Tonr = A9 4 BOFD T, gives AHT) — _0.05+0.07and B9 =1.1+0.1
in good agreement with the expected values of A;,; = 0 and B;,; = 1 respectively.

The measured value of n,, /14,0 Versus 7, isplotted in Fig. 5 together with the
linear approximation of Eq. (6.66-b). Linear regression on experimental data gives
AgffHT) = —0.16 £ 0.05 and ng?HT) = 1.14 £ 0.07, values in good agreement with
Ay = —0.12, B,, = 1.14. Each experimental point of Fig. 5 represents an average
value obtained over multiple acquisitions. In the inset the different values of 7y,
corresponding to four acquisitions at 7,, = 0.64 are reported. The bar indicates the
guantum limit error, calculated by using Eq. (6.68). Asit can be seen, all the points are
spread over arange comparabl e to the quantum limit.

Finally, an identical behavior is observed for n, /1.0 (NOt plotted) resulting in
ACHT) — 0,07 +£0.05, BI*PT) = 0.85 4 0.07 (A, = 0.12, By, = 0.89).

A summary of the experimental findingsis reported in Table (6-1).

The photon flux at the OPO output F' = N, /7, with 7 the cavity photon lifetime
(t = v;31), islessthan 107 s71, for N;,; < 0.7 and 7 ~ 6.6 x 1078, corresponding to

~Y

an optica power < 4.2 pW. The method has been tested for different input states, by
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Figure 6.4. Tomographic reconstruction of the sample transmittivity 7o obtained by via mean photon number
reconstruction against the reference values 7,..  measured with standard i ntensity measurement. Experimental points
are compared with the expected behaviour (straight ling). Each point referes to more tomographic acquisition.
varying £ and hence the photon flux by showing a good reliability down to a photon
flux F ~ 5 x 10° st (i.e. ~2.2 pW and N, o = 0.37).

With N = 10° 6QH’T [AXQ] ~ 1.3 x 1072 and 6QH’T [AY2] ~ 0.8 x 103 cor-
responding to 67 /7 ~ 0.0024 and ~ 0.056 for 7 = 1. These QHT estimates were
dightly less accurate than those one could obtain by concentrating N/2 dataon X and

N/2 onY quadratures and computing their variances.
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Figure 6.5. Tomographic reconstruction of the mean photon number normalized to the reference value
(nsq,7/Msq,0) aQ@NSt the sample transmittivity. Experimental points are compared with the expected behaviour ob-
tained by linearizing equation (6.68-b). The pointsin the inset are relative to four measurements for the fixed attenu-
ator transmittivity 7,..; =0.64. They are compared with the error bar obtained by using Eq. (6.71) for the reference
state.
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Chapter 7.
Squeezed radiation from non degenerate OPO

7.1 Seeded NOPA theory

The case of non degenerate parametric down conversion is considered. In the fol-
lowing the system will be assumed to work below threshold in frequency degeneracy
condition with cross polarized signal and idler fields. The experimental realization of
such asystem is provided by the output of afrequency degenerate OPO based on atype
[1 non linear crystal (NOPO). For ssmplicity the case of zero detuning and single ended
cavity will be considered; results for double ended cavity are reported in [30] .

In analogy with the degenerate OPO, when the pump stationary amplitude o, is be-
low athreshold value, the system acts as non degenerate parametric amplifier (NOFA)
with appreciable gain only over a limited bandwidth. Interesting application of the
NORA are relative to the case of two coherent beams (seed s) injected inside the cav-
ity as inputs for the signal and idler modes (seeded NORA ). Non linearized Langevin

equation for the involved intracavity modes are:

da ! -

d_: = —vyag+ X(2)apaz, + /27 A¢ (1) (575 =S, Z)

da '

dtp = “plp — X(2) asa; + Ap + /27,0, () (7.76)

where the input signal/idler fields entering through the mirror () are:
Ac(t) = A +af" (t)  E=s,i

A’ representing the non-zero mean amplitude of the seed and ag” (t) the vacuum fluc-
tuations contribution. Equations (7.76) can be linearized around the steady state value.
Lettingt = a, = «;, Steady state solutions for the signal/idler and pump modes are
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expressed as afunction of A = A’\/2v by equations:

_ A
W T ® T Y@
@4, — A
0 = $_2 QW%— o . (7.77)
(x®) (x®)

For A = 0 (no seed) equations for the signal and idler amplitude reduces to those
for a traditional NOPO (unseeded) and the corresponding threshold is yv,/x® (see
previous chapters) 1. In case of non zero subharmonic input (A # 0) Eq. (7.77) isa
cubic equation whose solution describes the classical behaviour of the system: steady
state solution undergoes a pitchfork bifurcation when the pump reaches the threshold.
The addiction of the non zero coherent input (A # 0) destroys the symmetry of the
standard parametric oscillator. The threshold itself is turned into [69] :

1/3
A = g 48 (jxg)) / (779
For low pumping Eq. (7.77) hasonly onereal root of thesamesignas A. Itispossibleto
show that this solution remains stable even above threshold. For A, > A::*?, two other
solutions of signs opposite to A’s appear, only one of them being stable[69] . When the
pump and the seed are not in phase, the equations of motion can be solved numerically.
In this case the amplitude r for the field below threshold shows an oscillatory behaviour
with the relative phase (. Maxima occur when ¢ = 2nrw (n = 0, 1, 2..), corresponding
to perfect phase matching for the down conversion process. Conversely minima occur
for{ = (2n+1)7 (n = 0,1,2..), corresponding to a breaking of the phase matching

condition [68] .

17For zero input seed (A = 0) the equation for the pump steady state value is no longer described by equation (7.77-a) but
coincides with the one reported in the previous chapter. The statedy state value for the pump below threshold is o, = Ay /7p
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Figure 7.1. Steady state solutions of the intracavity amplitude for the seeded NOPO (seed amplitude A/y = 0.2
) as functions of the pump coherent amplitude, normalized to the threshold for the unseeded NOPO (A, /A:r), with
Y/ (X(Q)) *Z 1 For A, /Aseed < 1, only one stable solution, with the same sign as the seed exists (red). This
solution remains stable even above threshold (A, /Asse? > 1) where the system admits two other solutions of sign
opposite to A’s, one stable(blu) and the other unstable(yellow, dashing).
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7.1.1 Fluctuationsfor the NOPA output field

The field outing the NOFA will be described by the sum of the steady state and
fluctuation contribution s +éae. Inthefollowingitwill beconsidered the system below
threshold, with the zero dephase between seed and pump (¢ = 0). In thiscondition, the
system is said to work in amplification condition. Linearized equations for the field

fluctuations 6a are:

dba mn
7'5 = —ydag +x%a, 5&2, + 7 bap + \/2vag" (t)
dba in

dtp = =7 0ap — x® [0as + da;] + 27,0, (1)

Coupled equationsfor signal and idler modesdiagonalize by introducingthefieldsd. =
% (as £ a;) and their quadrature X and Y. For thecase A = 0, theevolution of 6 X,
and ¢Y isruled by egquations:

do X
dti = (’V¢X )5Xi+\/_XjE”
d?t/i = —(y£xPay) 6YL + /27Yi" (7.79)

The spectra of squeezing for 6 X, and ¢Y.. for the field d,. outside the cavity can be
calculated to be [30] :

(A6X7 (@))° = Sy (w) = (A6Y™ ()’
(ASY (w)>2 = S (w :<A5Xf“t (w)>2

with:

1 Ey
S =- (14— 7.80
having put £ = x®a,. Equations (7.80) show that d, exhibits antisqueezing and

squeezing on theamplitude and phase quadraturesrespectively. Conversely d_ issqueezed
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on the amplitude quadrature and anti-squeezed on the phase quadrature. By making use
of Egs. (7.79), it is also possible to retrieve the spectral behaviour for the signal and
idler modes; the fluctuations of the two single output fields are phase insensitive and
satisfy the relation:

(A6X (W) = (ASY (W) = (A6XP (w))° = (ASY" (w))° = G (w)
(7.81)

with: )
(7 + &+ W) + 49282
(72 _&2_ w2)2 + 474202

GW=1

It is worth noting that G (0) — oo as approaching the threshold (€ — ~); therefore
the system amplifies the vacuum noise of the input ag" (w) and generates two outputs
ag“t (w) with large noises. Equation (7.81) statesthat each single NOPA output does not
show any squeezing; to see non classical effect, both beams are needed and the sum or
difference d.. fields must be measured. The quantum state describing the system is a
two-modes squeezed state.

In case of non zero seed amplitude (A # 0), equations for the d, field quadrature
dightly modify into:

ds X |
dt* = — (v xPap) 86Xy + 76X, + /27X
Y. |

d‘; t* — (v + xPap) 6y + 1 8Y, + \/29Y "

The corresponding variances for the output field are [68] :

@)p)? @ \2 12
(A (exe @)y - 2(ab) . Oaade) 1
G @) e x@ay)
(2) @ )2 2

TN 0 N0} S (R ¢ S M € S i RN
A\ (v+xPa,)" +w? (74 xPa,)” + w?
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Theterms proportional to » in Egs. (7.82) represent the contributions deriving from the
correlation for 6.X,, instead the other term arises from the correlation of X" for the
field outside the cavity.

For A = 0, below threshold » = 0 and (7.82) reduce respectively to (7.80). For
A # 0 thefirst term can not be neglected and the field d, is squeezed when the output
variance (A (§Y") (w)>2 islessthen 1/4.

For the mode d_, thereis not dependence on field stationary amplitudes and treat-
ment retraces that of A = 0. Since fluctuation properties for d,. are similar, with the
only macroscopic differenceisthat d_ has zero mean intensity i.e. it isasqueezed vac-
uum. Therefore the system below threshold generates bright and vacuum squeezing on
two different polarizations.

For phase between the pump and the seeds equal to ( = /2 the system is said to
work in deamplification condition. The fluctuations analysis show that the behaviour

for d_ and d, isinverted with respect to the case ¢ = 0.

7.1.2 NOPA and EPR paradox

Fromthe physical point of view, sincethesignal andidler field originate from pump
photons splitting in the amplification process, the fluctuations of their optical ampli-
tudes are strongly correlated so that, under a limiting condition, they become quantum
copies of each other. Since the signal and idler beams are spatially separable this cor-
relation isnon local. Dueto its experimental application (see[30] ), it is worth consid-
ering, as an example, the case of the unseeded NOFA working at deamplification. For
the field amplitude, it is possible to show [30] that, at threshold:

0~ 0 | 789

Since Eq. (7.83) is an operator equation, the quadrature phase amplitudes of the out-

put beams become quantum copies of one other. Equation (7.83-a) states that without

disturbing the signal beam, the result for X (0) can be inferred by a measurement of

X; (0) with certainty. Alternatively from (7.83-b) Y; (0) can be inferred by a measure-
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@) : signal @)
pump (29 i e) — ~
0" T O idier @
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Xs Ys

Figure 7.2. A) Non degenerate parametric down conversion via x(?. For the unseeded NOPA the noise for the
input signal/idler vacuum field are amplified. B) Schematic representation of the fluctuating field amplitudesin the
unseeded NOFA output in deamplification condition. Due to the correlation between signal and idler, their quadra-
tures become quantum copies of each other (X = X;, Ys = —-Y)).
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ment of —Y; (0). In other words, depending on which idler quadrature is measured, the
corresponding signal quadrature is derived with probability 1, so that the signal beam
can be thought as having in principle simultaneously a definite value of both amplitude
and phase quadrature. Aslongas|.X, Y| # 0 thiscontradictsthe Hei senberg uncertainty
principle [29] .

By considering amplitude and phase quadratures as the analogous of particle po-
sition and momentum, the correlation between the NORA outputsis equal to that in the
original Einstein Podolsky Rosen paradox where, depending on the observable mea-
sured on aparticle 1, the state of acorrelated particle 2 can be eigenstate of different op-
erators[28] . Thisanalogy isexperimentally demonstrated in reference[30] wherefrom
measurement of the spatially separated idler beam, the two quadrature-phase amplitudes
of thesignal areinferred. The product of the inferred quadratures is then measured and
observed to be below the limit associated with the Heisenberg uncertainty relation, in

apparent contradiction with quantum mechanics as predicted by the argument of EPR.
7.2 Covariance matrix measurement

Bipartite (entangled) states of two modes of the radiation field, as the output of
NORA, have been widely used as basic toolsfor experimental realizations of continuous
variables quantum information processing (see tel eportation or dense coding [32, 33, 34]
). It goes without saying that, in order to provide reliability to the use of these states,
it is fundamental to find a manner to measure the amount of initia correlation. More-
over, since entanglement is generaly corrupted by interaction with the environment,
entangled states available in experiments are usually mixed states and it is important to
establish whether or not entanglement has survived to the environmental noise effect
[41, 42, 43, 44] .

Besides mean values of the field operators, the most relevant quantity character-
izing a bipartite state made of two entangled modes a and b, is its covariance matrix

o 8.The covariance matrix is a real symmetric positive matrix; in terms of the field

18The characterigtic function of a quantum state p is defined as the expectation values x(A1, A2) = (D(A\1) ® D(A2))
where \; € C,j = 1,2 and D(X) = exp {A\al — X*a} isthe displacement operator. The most general bipartite Gaussian state
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quadrature X, Y, it isexpressed as:

AXg AX,Y, AX, X, AX,Y,
AY,X, AY? AY,X, AV
AXy X, AXWY, AXbQ AXpY,
A X, AYY, AYX, AYbQ

wherediagona terms A X? = (X?) — (X)? denotethe variance of the observable X and
AXY = $([X,Y]) —(X)(Y), with[X, Y], = XY + Y X theanticommutator, isthe
mutual correlations between observables X and Y. If the two states are not correlated
the matrix o reducesto the sole diagonal elements.

The matrix o can be conveniently expressed as:
oc=-M+YV

where the mean M and the variance V matrices are respectively:

(Xa)? (Yol (Xa) (Xa)(Xp) (Xa)(V3)

vo | &) ()t (Fa)X) (k) .80
(X)(Xa) (Xp)(Xa)  (Xp)*  (X,)(V3)
(V) (Xa) (V) (Ya)  (Vo)(Xp)  (V3)?

corresponds to a characteristic function of the form
lor - oT
X (\) = exp 75/\ oA —iN X

where X=(A1, A2)7T and (- - -)T denotes transposition. Thevector X = ((X,), (Ya), (Xp), (X;))T contains the mean value of
the Cartesian mode operators. The characteristic function fully specifiesaquantum state, i.e. any expectation value may be obtained
asaphase spaceintegral. Since for aGaussian state the first two moments specify the characteristic function, their knowledge fully
characterizes a bipartite Gaussian state.
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and

<X3> %<Dfa,Xa]+> <XaXb> <XaYEJ>

v — 3 ([Ya, Xal1) (Y2) (Yo Xs) (YaYs) | 785
(X, X,) (XpXa) (X3 (X Yly)
<YE)Xa> <Y22Ya> %<D/I77Xb]+> <Y;)2>

The matrix M only contains the first order moments and can be reconstructed by
measuring the four quadratures X, and Yy, £ = a, b. Since the modes are separable, the
measurement of their quadrature can be done by means of a single detector, measuring
aternatively a and b.

Traditional schemesto measure V, and in particular its off diagonal elements, em-
ploy two homodyne detectors acting separately on the modes a and . To smplify the
measurement procedure, it is proposed anew scheme, based on repeated measurements
of single-mode quadratures with a single homodyne detector [47] . The priceto be paid
Is the measurement of four quadratures instead of the sole X and Y, and the introduc-
tion of further optical modes beside a and b.

The set of modes used is:

_a+b _a—b _ia+b ia—b

— d = = : 7.86
\/§ Y \/§ Y € \/§ Y f ( )

a, b7

If a and b correspond to vertical and horizontal polarizations of the light (paralel re-
spectively to versor v and ﬁ), c and d are rotated polarization modes at 4+ /4, whereas
e and f correspond to left- and right-handed circular polarizations. It is worth noting
that, for the output of aNORA (a = as, a = a;), c and d coincide with d. introduced in
the previous paragraph. In terms of the quadratures of modes (7.86):

AXD)  (Z— T (XD -

o1 @ 2 -
2l - (- A (B -
Y2 - () OD-0) (B -T2
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where the quadrature Z and T" are Z = X,y and T' = X_ 4. Furthermore, since

Vie = Va= 5 ((V2) = (V) = () — 5 (X2) + ()

(X3) — (X2)) = 5 (X) + (¥2)) = (x2)

N~ DN~

V23 = V32 =

the measurement of the quadratures pertaining to mode f isnot essential. Overall, inthe
proposed scheme, the reconstruction of the covariance matrix requires the measurement
of at least fourteen quadratures, e.g. thefollowing ones (of course measuring also the f-
guadratures, being additional independent measurements, would improve the accuracy

of the reconstruction):

Xe, Yy withk = a,bc,d,e
Ly, Ty with = a,b

Notice that the number of parameters needed to characterize a bipartite Gaussian state

is fourteen.

7.2.1 Experimental implementation

Since the mode f is not necessary to reconstruct the covariance matrix, its experi-
mental realization will not be considered.

Freguency degenerate, bright continuous-wave beams generated by a seeded NORA
below threshold, are orthogonally polarized and excited in a continuous variable bipar-
tite entangled state. This means that the experimental realization of modes a and b is
provided by the output of the NOFA (a = a, and b = a;). The mode £ under scrutiny
Is selected by inserting suitable components on the optical path of fieldsa and b, before
the detector. To obtain modesa, b, ¢, d, thetwo modesa and b, both passthrough aro-
tator of polarization Ry, namely a A\ /2 waveplate, and a polarizing beam splitter (PBS).
The action of the rotator Ry onthe basis {#, 1} is given by

RyU = cosdv—sindh
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Polarization rotation /
XY,
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Figure 7.3. Experimental setup for the measurement of the covariance matrix. The cross polarized signal-idler
beams from a seeded NOFA are sent to a single Homodyne detector measuring the quadratures X,Y, Z, T. The
polarizing beam splitter (PBS) transmitsto the detector the sole vertically polarized component of itsinput beam. To
select for detection the modes a, b, ¢, d apolarization rotator Ry (a A/2 wave plate) isinserted on the beams path to
the PBS. To realize the mode e an addictional \/4-wave plate is needed.

-

Ry h = sind ¥ + cos 9 h

The PBSis set to send to the homodyne detector only the projection of itsinput along
the v direction. The combined action of these optical components for a given ¢ realize
different modes k. In particular for 9 = 0, Ry reduce to the identity and the sole mode
a (vertically polarized), is sent to the detector. For ¢ = /2, the polarization of a and b
is exchanged and the mode b is measured. Intheintermediate case of ¥ = +7/4,1/1/2
of each mode isreflected thus realizing mode ¢ and d.

In order to select mode e an additional \/4 wave-plate should be inserted just be-
fore the rotator Ry with v = 7/4. The \/4 wave-plate produces a /2 shift between
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Mode A\/4 Ry

a no O

b no +m/2
c no +n/4
d no —n/4
e yes +m/4

Table 7.2. Experimental setting of the rotator Ry and the A /4 waveplate to select the different modes k.
Thetable refersto the elements of fig.1. The modes aand b are assumed to be respectively vertically and
horizontally polarized
horizontal and vertical polarization components, thus turning the polarization from lin-
ear into circular.

Table (7.2) summarizes the settings needed to select the five modes. Overall, the
vertically polarized mode £ arriving at the detector can be expressed in terms of the

initial modes as follows

k = exp{ip}costa+sindb,

where ¢ = 7/2 when the /4 wave-plateisinserted, ¢ = 0 otherwise.

Once the mode £ has been selected, a homodyne detector is used to measure the
generic quadrature X . Indeed, to access X o the local oscillator phase 6 has to be
suitably tuned. As stated before, optimization of the detection efficiency is provided by
matching the LO mode to the mode k. The mode matching requires precise control of
the LO frequency, spatial and polarization properties. Remarkably, the detected mode
Isaways vertically polarized, thus avoiding any need of tuning the LO polarization.
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Chapter 8:
NOPA experimental realization

8.1 Phase matching condition

As stated in previous chapters the working condition of an OPO is conditioned by
the perfect satisfaction of phase matching condition. In term of the pump (), signa
(A\s) andidler (\;) wavelengths the phase matching condition for anon degenerate OPO

is explicitly written as:

ny O T) 15 (A, T) ”z“i’T)):o (®87)

Ak(NT) =27 ( N Ry -
with A = (\,, A, \;). The crystal refractive index n (A, T') as afunction of the wave-
length A and the crystal temperature T is provided by the empirical Sellmeier relation

[70] :

B,

T—ow Do X’ + (Fud + Go /N 4+ Ho /A + 1) (T — To)

Ne (A, T) = \/Aa +

(8.88)

where o = x, y, 2z label the crystallographic axes directions and 7,=35°C is areference

temperature. The Sellmeier coefficients (A,,,B.,C,....) are determined experimentally
for suitable ranges of temperature and wavelength..

Once ), is fixed, the non linear interaction is optimized for the pair signal-idler
satisfying relation (8.87) and the energy conservation (w, = w, + w;). When Ak #
0, there exists a characteristic length [. = 7w/ Ak (coherence length) representing the
distance over which, due to dispersion in the non linear medium, the relative phase
between pump and signal/idler changes by 7. After a coherence length, the efficiency
of energy transfer from pump to subharmonic reduces and the energy flows back from

the signal/idler to the pump. The energy transfer inverts again after a /., so that the

14



conversion efficiency shows an oscillatory behaviour. Conversely for Ak — 0, [, —

+o0 and the subharmonic intensities grow with the square of the interaction length [2] .

In traditional devices, phase matching condition is satisfied by exploiting crysta
birefringence; refraction indexes n (A, T') in (8.87) are adapted so to have Ak = 0 for
adesired pair of \, and \; 1°. In critical phase matching, the pump incidence angle is
varied with respect to the crystal axes. This technique is highly affected by Poynting
vector walk off and crystal disalignments [2] . These problems are overcome in non
critical phase matching [2] where the n (A, T") dependence on the crystal temperature
Isexploited. Thisisthe technique discussed for the LNB in previous chapters. For each
choice of A, by exploiting (8.88), Eq. (8.87) can be inverted so to obtain the crystal
temperature producing the perfect phase matching for the desired process. Non critical
phase matching imposes strict contraints to the experimental setup, regarding both the
temperature range and the relative stability around the working point. Moreover, it is
worth stressing that there are situations in which the simple mathematical inversion of
formula (8.87) for agiven X leads to non physical working temperature. In these cases
birefringent phase matching can not be used and alternative ways are needed.

8.1.1 Quasi-Phase Matching

Quasi-phase matching ( QPM) overcomes some of the limitations of traditional
phase matching methods.

In QPM, the phase mismatch Ak, accumulated by the interacting beams, is com-
pensated along the interacting length by a suitable phase delay introduced by the crystal
itself [50] . Although the efficiency isnot as good as for the perfect phase matching, this
technique has the advantage that can be applied practically to every choice of Ak, the
only restrictions on A being determined by the material transparency range.

More specifically, given a certain non linear process characterized by A and fixed
the desired working temperature T', the corresponding coherence length is computed as
l. = m/Ak (X, T) and the crystal non linear coefficient d (~ 2x® for used crystal) is

19t isobviousthat thewavelenghts \ s and \; must be chosen within the set of those satisfying the energy conservation relation
for afixed Ap.

15



modulated as a square function with period A multiple of 21..:

+oo 9

d—d(z)=d- Z — sin (E) P (8.89)

The crystal can be thought of as a wafer made up of different dices, with the sign of
the non linear coefficient in each slab reversed with respect to the adjacent ones. These
crystals are called poled ; they present the greatest advantage of providing non critical
phase matching for anon linear process at atemperature chosen by the customer. From
the physical point of view, thefieldsis dephased by 7 (dueto crystal dispersion) at each
coherence length; the crystal periodicity introduces an extra dephase 7 (expressed by
the sign change of d) that cancels out the destructive interference effect.

The effective phase matching condition for a poled crystal is given by [50] :

- = 2mm
Aky, = Ak (A, T) — = 0 (8.90)
Theindex m, theorder of QPM, referstothetermin (8.89) giving the major contribution
intheintegration of subharmonicfieldsequations. For apoling of order m thenon linear
period A = 2ml,.; for m = 1, the sign of the non linear coefficient isinverted each I..

and the conversion efficiency is the best achievable.
8.2 NOPA realization with PKTP

In order to provide cross polarizations for the signal and idler beams, the crystal
used for the NOFA must be a type-1l one. However, properties of commercia type-11
crystals do not allow working in frequency degeneracy condition at \,;; = 1064nm.
Thislimit was overcomein previous implementations of NORA, either acustom crystal
[49] or acustom source[?] .

In the proposed setup, the problem is bypassed by combining a commercial dou-
bled Nd:YAG laser with a periodically poled a-cut KTP crystal (PKTP). In this way

the generated signal/idler beams exhibit frequency degeneration, still preserving cross
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Pint A) Perfect PM

A) AK=0
C) QuasiPM
B) No PM

Interactionlenght

Figure 8.1. Comparison of the conversion efficiency against the interaction lenght for the perfect phase matching
(blu), non phase matching (green) and quasi phase matching (red). In perfect phase matching the wavevectorsfor the
signal andidler beams perfecly compensated the pump one, corresponding to perfect momentum conservation for the
system of signal, idler and pump photons. In this case the efficiency is proportional to the squared interaction lenght.
For non perfect phase matching the momentum conservation is not satisfied so that the conversion efficiency shows
an oscillatory behaviour determinated by the coherence lenght I.. For quasi phase matching the missing momentum
is provided by the crystal periodic structure. The conversion efficiency increases with the interaction lenght more
slowly than for the perfect phase matching.
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Figure 8.2. Computed behaviour of the emitted signal/idler wavelenghts as functions of the crystal temperature for
the used PK TR The two lines have the same slope (absol ute value) and cross at Tieg =35°C.

polarization characteristic because of type-I11 phase matching. This solution is econom-
ically much more stable and easy to obtain with respect to previous ones.

The PKTP is designed by solving Eq. (8.90) for \; = A\, = 2)\, =1064nm as
afunction of the working temperature 7' with KTP Sellmeier coefficient given in ref-
erence [70] . The corresponding poling period, for T =35°C' (~room temperature) is
A =448.4,m. Once A\, and A are fixed, the behaviour \,/; (T) of the emitted sig-
nal/idler wavelengths against the crystal temperature can be computed by inserting ex-
pression (8.88) in (8.90) and exploiting energy conservation relation. The shape of
As/i (T') strongly depends onthe crystal characteristics viathe (8.88). For the used crys-
tal the computed \,/; (T') are straight lines intersecting themselves at 7' = 35°C with
slope +£0.0558 nm/°C [71] .

The experimental setup required for the NOPA redlization is the same used for the
DOPO, except for the temperature control system. The cavity mirror have been cho-
sen with trasmittivity 7;,, (@1064nm)= 0. 75% g (T}, (@532nm)= 0.163%) for theinput
mirror and T, (@1064nm)= 3.4% (T;, (@532nm)= 1%) for the output one. Absorp-
tion losses in the crystal are 0.8% for the IR and 4.5% for the green. The cavity length
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is < 100 mm, thus ensuring agood cavity stability and alonger confocal parameter, so
to simplify the homodyne alignment procedure. The measured threshold for the crystal
1S40 mW.

The NOFA seeds for the covariance matrix measurement is provided by an extra
half wave plate that rotates the polarization of the IR seed at 45° with respect to the
polarizations of the KTP output. Due to the PZT on the IR seeds beam steering the
dephase between seeds and pump can be driven so to achievethe NOFA inamplification
or deamplification. Beside the parametric gain measurement, this permits to look at
specific quadratures of d., and, varying the seeds phase ¢, to move the squeezing from
X, (amplification condition) to Y, (deamplification condition).

In view of low working temperature sophisticate temperature controls are replaced
by a Peltier element with short response time. Moreover, due to the slow thermal re-
sponse of the KTR the required stability is of the order of 10m°C, essentially imposed
by the triple resonance condition. The controller sensor isan NTC resistor inserted in a
Winston bridge. The achieved stability is of ~1m°C well the below the required one.

The homodyne set up is the same as for the DOPO.

8.2.1 Degeneration temperature measurement

To characterize the performances of the PK TR beside standard absorption measure-
ments, particular attention is paid to the estimation of the actual degeneration tempera-
ture T}, for the emitted signal/idier beams. To this aim, the unseeded NOFA is driven
above threshold and the generated beams are sent to a grating. An halfwave plate fol-
lowed by a polarizing beams splitter permit to select the sole signal/idler beam or equal
fractions of both. For T" # Ty, bright signal and idler beams are generated at the wave-
lengths satisfying the energy conservation and the phase matching condition for that
temperature. The greater isthedistance of 7" from 7., the greater the distance between
As and \;. WhenT' ~ T, the signal and idler beams have the same wavelengths and

they are no longer resolved.
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Temperature
controller

grating

Figure 8.3. Experimental set-up for the measurement of the degeneration temperature Ty., by means of the dif-
fraction grating. The above threshold NOPO generates bright signal and idler beams. Its working point is changed
by acting on the crystal temperature. The beams outing the NOPO are sent to a system \/2+PBS that selects for
reflection on the grating a signle beam or both ones. The beams reflected by the grating are sent to a CCD camera
that records their positions. For T' # Tae, the signal and idler separate in two spots.
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T=18C T=20C T=29C

T=34C T =44C

Figure 8.4. Signa and idler spots recorded by the CCD camera as functions of the crystal temperature. At low
temperature (18°C), the spots appear well separated, indicating that the beams have different wavelenghts. When
the temperature is increased the spots become closer and for T' &~50° C' they are no longer distinguishable.
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The grating used in the experiment is a blazed one (DG; Jobin-Yvon 1200 mm1,
optimized @1064 nm). It is set to provide an optimal resolution of ~ 1nm (computed
@1880nm) with aspatial dispersion of 1.4mrad/nm. The beamsreflected by the grating
are sent to the CCD camera and their positions recorded; the behaviour of the spot
position on the CCD is areplica of the wavelength’s one.

A preliminary rough estimation of 7., is obtained by sending both signal and idler
tothecamera. Thecrystal temperatureis scanned 25°C--70°C . For temperature around
25°C the signal and idler spots appear spatially separated, they become closer when the
temperatureisincrease and at 7' ~50°C they are no longer resolved. If the temperature
is still increased they separate again, thus suggesting an actual 7., ~50°C (see fig.
(8.4)).

A more detailed check is done by sending to the camera only one beam (signal or
idler) and changing the crystal temperature. The spot position of each beam isrecorded
with respect to the camera center and plotted as function of 7'. Experimental data for
both signal and idler show a linear behaviour %°; by performing linear regression the
slopes of the two curves are found to be equal (within the error bars) except for the
sign. The cross point gives for the degeneration temperature 7., ~54°C. The observed
symmetrical behaviour isan expression of the energy conservation relation linking A, /;
and )\, in agreement with theory. By using the grating properties to retrieve the ex-
perimental behaviour of emitted wavelengths from the spot curves, the slopes of the
straight lines A, ; () are found to be of the same order of magnitude of the theoretical
one (+0.03nm/°C). Not perfect consistency with the theoretical value can be dueto the
uncertainty in determining the exact distance between the grating and the CCD plane.

The difference between the experimental (54°C) and the theoretical (35°C) values
of Thee Can be due to both impuritiesin the crystal or error in the poling period.

In real crystals an excess of impurities can induce deviations of Sellmeier coeffi-
cientsfrom the values used in designing the poled crystal. The effect of small variations

of Sellmeier coefficient on 75, Ccan be evaluated by substituting expression (8.88) in

20\When variyng the crystal temperature the spot counter propagate in the horiizontal direction, with constant vertical position.
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(8.87) and solving for T" the Eq. (8.90) with A\, = \;. It isseen that avariation of 3.5%
intheindexes of refraction is sufficient to explain the observed changein ;.. The cor-
responding behaviour of \,/; (T') isonly slightly changed with respect to the reference
one. Thissituation is analogous to that reported in reference [60] , where the observed
degeneration temperature for the LNB was different from the expected one; by assum-
ing small changesin the A, coefficient the authors were able to reproduce both the ob-
served T4, and the tuning curve for asingly resonant OPO. In that case the variation of
the Sellmeler equation was attributed to the crystal doping.

A second possible reason of changesin Ty, can be dueto manufacture error in the
poling period. Eveninthiscase, ;. can be computed as afunction of A; the observed
Taeg COrrespondsto apoling period of A =432, mwithavariation of ~3.6% with respect
to the nominal value[71] .

A precise analysis of both the crystal impurities degree and the poling period is
beyond the instrumentation present in the laboratory. However the previous estimations
alow concluding that the observed 7., could probably be attributed to a co-action of
both explained effects.

8.2.2 Triply Resonance Condition and crystal misalignment

Asfor the DOPO thetriply resonance of pump and signal/idler isrequired for alow
threshold of the NOPO. Since the Drever Pound locks the cavity lengths on the pump
resonance, the triply resonance condition is obtained by fine temperature tuning.

With respect to the LNB, the PKTP crystal suffers of great sensibility to small mis-
alignments. For perfect triple resonance, the beams outing the cavity are al in phase
and the peaks of the pump signal and idler resonances coincide. If the crystal isslightly
misaligned, the optical path of each beam will depend on the angle 6 between the crystal
optical axis and the cavity one (assumed to coincide with the beams propagation direc-

tion). With respect to 6 = 0 (perfect crystal alignment), the beams acquire at the crystal
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Figure 8.5. Computed behavioursof the degeneration crystal for theused PK TP crystal asfunctionsof therefractive
indexes (up) and the poling period (down) variations. In both cases, parameter variations of the order of few percents
are enough to explain the deviations of the observed degeneration temperature from the nominal one.

124



output an extra phase:

2rL 1
Yo~ )\_gn (A, T) (1 B cos@)

with L the crystal length. In the limit of small 6, ¢, can be expressed in terms of the

angle 6 corresponding to ¢, =

92

0%
At the degeneration temperature, taking into account the different index of refraction
for thebeams %, for the PKTP at A\, = A\, = 2\, =1064nm:

6, = 6.17 mrad
6, = 8.62mrad
0, = 8.82mrad (8.92)

The differencein 8, and 6, are due to the different index of refraction for the two cross
polarizations. If the system temperature is set to guarantee the superposition of the
signd, idler and pump resonances for ¢ = 0, aphase ¢, = 7 (0 = f¢) on one of
the beams will not spoil the triply resonance. This in general true aso for 0, # 6,
provided the relative dephase @, - = ¢, — ¢, acquired by the beams, are within the
cavity linewidths (expressed in radiant):

e

A (mcl)£ = ?& (8.93)

21The Sellmeier coefficient used in the present calculation are the nominal one used in the PKTP project. This choice is
justified by the fact that the modification of 6, corresponding to the A, variations imposed to give reason of the experimental
Tqeg arenegligible.
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In (8.93), F isthe cavity finesse at A\ and 7 correspondsto a FSR. For the used cavity
at degeneration:

A(rad), = 52mrad

A(rad),,; = 18mrad

Itissimpleto show (cfr (8.92) and (8.91) for expression of @, /) thatfor 6 2 1.2mrad,
P,/ p > A(rad), so that the signal/idler beam is shifted outside the pump resonance
and the NOPO is driven out of triply resonance condition. For the same angle the IR
resonances can still be considered asfor 6, = 6, = 0 (®,; < A (md)s/i). The walk-off
effect corresponding to crystal disalignment of the present order of magnitude is com-
pletely negligible compared with the beam spot size.

The extreme sensitivity of the system to crystal misalignment, introduces a great
hindrance to the triply resonance fulfillment; small changesin crystal orientation can
seriously compromise the reliability of the entire NOPO setting procedure. In order to
overcome this problem, the combined action of temperature and crystal orientation tun-
ing will be exploited. Work along thisdirectionisstill in progress. Oncethetriply reso-
nance will be reached the measurement of the OPO output will be performed by means
of a single homodyne detector, to reconstruct the state covariance matrix as explained

in previous chapter.
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Conclusions

The subject matter of this Thesis is the study of optical parametric oscillators (OPO)
below threshold as sources of non classical radiation. In the first part of the Thesis a
degenerate OPO (DOPO) has been examined with signal and idler beams having the
same frequency and polarization. When the cavity extra losses are not negligible, the
DOPO output beam is in a squeezed thermal vacuum state (STV) with noise reduction
on the phase quadrature. The DOPO output properties are examined by means of an ho-
modyne detector able to measure the state quadratures at different phases. The acquired
dataare analyzed by looking directly at the statistics or by means of the quantum homo-
dyne tomography via pattern function, able to reconstruct the state properties without
any hypothesisapriori onit. The experimental set up for the DOPO and homodyneim-
plementation is accurately described, by stressing the strategies used to optimize them.
Results relative to the detection of the DOPO output for different cavity losses and dis-
tances from threshold are reported. Operating the OPO away and closeto the threshold,
the measured density matrix elements deviate in a more or less pronounced way from
those of avacuum squeezed thermal Gaussian state. These deviationsfrom the Gaussian
state are confirmed by directly analyzing the distribution functions of the quadratures
X (6) for 100 values of §. Plotting the Kurtosis (i) of each distribution as a function
of 6 for different distances from the threshold it is found an oscillatory behaviour with
Ky maximum(minimum) for the anti—squeezed (squeezed) quadrature. In general the
maximum Ky ., decreases by moving away from the threshold. A theoretical model
explaining the observed behaviour in terms of threshold fluctuations is reported. The
DOPO output iscomputed for small fluctuations of parametric gain and cavity detuning
respectively due to residual noise in the laser pump amplitude and in the cavity length
control and the detection effect is considered. The kurtosisis calculated by means of an
iterative procedure. First results of numerical simulations are reported, showing agood

qualitative agreement with the experimental findings.
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A scheme for measuring the optical transmittivity of a sample by using squeezed
vacuum radiation is also illustrated. Main advantage of this method is a number of
photons hitting the sample during the measurement some orders of magnitude smaller
than that relative to standard techniques based on intensity measurements of coherent
beams.

The core of the method consi stsin the measurement, viahomodyne detection, of the
variance A X} of ageneric quadrature of asgueezed vacuum field, generated by abelow
threshold OPO and passing through the sample under investigation. The accuracy of the
method iscompared with that based on absorption of coherent beams (with and without a
sgueezed vacuum component) as afunction of sampletransmittivity, number of dataand
detection bandwidth. In the case alow number of photons interacting with the sample
during the measurement is required, the proposed method is the most accurate. An
experimental test of the procedure is reported. X, is obtained by scanning the interval
6 € (0, 2m) so allowing acomplete reconstruction of the state Wigner function. Sinceit
Isessential to the scheme, the assumption of Gaussian statisticsfor the squeezed vacuum
field is checked. The experimenta findings show that, for photon fluxes of the order
of few pW (at 1064 nm), the accuracy is of the order of the quantum limit, that is the
method does not suffer substantially from other technical noise sources.

In the second part of the thesis the case of non degenerate parametric oscillator
(NOPO) below threshold is treated. The signal and idler from a seeded NOPO below
threshold are spatially separable and form an EPR pair, the entanglement properties
depending on the NOPO parameter. The correlation between them can be measured
in terms of the covariance matrix. A simple scheme is suggested to reconstruct the
covariance matrix of two-mode states of light using a single homodyne detector plus
a polarizing beam splitter and a polarization rotator. The scheme requires the local
measurements of 14 different quadratures pertaining to five field modes. It can be used
to fully characterize bipartite Gaussian states and to extract relevant informations on

generic states.
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Eventually the problem of the experimental implementation of a NOPO based on
commercia pump laser source and periodically poled KTP (PKTP) crystal isdiscussed.
The PKTP is designed in order to generate cross polarized and frequency degenerate
signa and idler, by using as pump beam the output @532nm of a duplicate Nd:Yag
source. Theresultsof thefirst teststogether with the procedurefor finding the frequency
degeneration crystal temperature are reported.
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