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Introduction

For a monochromatic plane wave oscillating at frequency ω, the electric field can be de-

composed in two quadrature components: one with the time dependence cosωt (ampli-

tude quadrature X) and the other one with sinωt (phase quadrature Y ). These quanti-

ties represent the analogous for the electromagnetic field of the position and momentum

of a mechanical oscillator.

Due to quantum nature of light, the precision relative to a quadratures measure-

ment is intrinsically limited. For classical light beams, as generated by a laser source,

the fluctuations on the two quadratures are equal to each other and minimize the uncer-

tainty product given by Heisenberg’s relation. The corresponding quadrature noise is

called standard quantum limit (SQL) since it represents the minimum optical noise al-

lowed by quantum mechanics for classical light. Heisenberg relation only states a lower

bound to the variance product with no restriction to the single quadrature noise. In prin-

ciple, one of the field quadrature can have reduced quantum fluctuations at expense of a

noise enhancement of the other one so to satisfy the uncertainty relation. When the light

fluctuations are distributed in such an asymmetric manner, the e.m.field is said to be in

a squeezed state. Since the quadratures can be distinguished by introducing a suitable

phase, the squeezing is a phase-dependent property. It offers the possibility of beat-

ing the SQL affecting traditional optical measurements, by performing phase-sensitive

measurements using only the quadrature with reduced quantum fluctuations.

The generation of squeezed state requires a non linear phase-dependent interac-

tion. First experimental realization of squeezing was obtained in 1985 by R.E. Slusher

by means of four waves mixing in atomic sodium [1] . Since then many experiments

have been performed by and parametric interaction in a non-linear crystal has been the-

oretically shown to be a very efficient source of nonclassical states of light ([2] , [3] , [6]

, [7] , [8] ).

Among non linear processes, the most versatile for generating squeezed light is

parametric down-conversion [2] . In this case a pump photon at frequency ωp splits in
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two photons at different frequenciesωs andωi (signal and idler ) such thatωp = ωi+ωs.

The effect is called parametric fluorescence, the spontaneous emission being driven by

the vacuum fluctuations of the e.m. field. Signal and idler photons are produced in

pairs, and show strong correlation of energy and momentum.

Light emission in down conversion can be enhanced by using a classical beam of

frequency ωs (seed ) to assist the pump action inside the non linear crystal. In this way

the emission at ωs is strongly stimulated and the input beam undergoes amplification.

Due to the pair production in down conversion, an intense idler beam also appears. This

effect is known as optical parametric amplification (OPA). If the active medium is put

into an optical cavity, under appropriate conditions, the parametric interaction can over-

come the effect of possible losses (i.e. absorption, diffraction..). In this case the system

undergoes an oscillation and intense output beams are obtained without any injected

seed. Such a device is called an Optical Parametric Oscillator (OPO). The OPO intro-

duces a threshold condition; for pump intensity above a certain value, bright signal and

idler beams will be generated (twin beams ), otherwise no macroscopic beams are emit-

ted. Experimentally the threshold can be lowered by setting the cavity to simultaneously

resonate on the signal, the idler and the pump beam (triply resonance condition ).

Twin beams generated by above threshold OPOs exhibit non classical noise reduc-

tion in the intensity difference ([9] , [10] , [11] , [12] and [13] ). The spectrum difference

of the two beams is shaped like a Lorentzian with noise suppression below the classical

value at zero frequency and within a bandwidth of the order of cavity linewidth. Fol-

lowing the seminal idea highlighted in Re.. [9] , twin beams have been used to enhance

performances of optical setup for spectroscopy ([14] , [15] , [16] ).

In this thesis are discussed the cases of OPOs working below threshold and gener-

ating signal and idler photons with the same frequency (ωs = ωi, frequency degenera-

tion ) [2] .

Much interest is paid to unseeded OPOs working in degeneration (DOPO), say

emitting signal and idler with both the same polarizations and frequencies. In this case,

the two generated beams are not distinguishable and collapse into a single one; never-
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theless, the mark of quantum correlation is still somehow visible and this unique beam

exhibits squeezing in one of its quadrature. Since it is generated by processing an in-

put vacuum state, the light state for the output of a DOPO is referred to as a squeezed

vacuum state [17] .

Vacuum squeezed light has found many applications in enhancing the performances

of traditional optical devices. C.M.Caves first proposed to combine coherent and squeezed

vacuum radiation for overcoming the quantum limit in gravitational wave antennas [18]

. Following this original suggestion Grangier et al. [19] up-graded a polarization in-

terferometer by injecting a squeezed vacuum through an empty port. By choosing the

phase of the squeezed light so that the quantum fluctuation entering the empty port were

reduced below the SL, they observed an enhanced visibility of the interference fringes.

In 1992, Polzik et al. [20] provided stunning evidence that a gain of some dB over

the standard quantum limit can be achieved in the resonant interaction of atoms with

squeezed light. Their experiment was performed by combining in a well defined phase

relation a coherent field with the output of an optical parametric amplifier.

Due to its interest for application, the DOPO have been the subject of many exper-

imental and theoretical works ([21] , [22] , [23] , [7] ). The features of an OPO depend

on several parameters, namely, cavity damping coefficients, degree of excitation below

threshold, spurious losses, deviation from resonance condition (detuning), and pump

amplitude/phase fluctuations. Many theoretical model have investigated the effect of

all these factors on the emitted squeezed radiation ([21] , [9] ). In particular when ex-

tralosses (due to crystal absorption, diffraction etc.) are present in the OPO cavity, it has

been shown that its output state is not a pure vacuum squeezed and does not show min-

imum uncertainty on the quadrature product [21] . Much attention has also been paid

to phase transition from below to above threshold regime [24] and to the region very

close to threshold [25] , showing, under limiting conditions, the importance of non linear

contribution to the dynamic of the system.

In the first part of the thesis, these thematics are reproposed by performing and an-

alyzing, in proximity of the threshold, squeezed vacuum measurements relative to dif-
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ferent OPO cavity conditions with continuous waves (CW) radiation. Being a critical

point, the OPO threshold is strongly unstable for its own nature; moreover, it is affected

by residual noises on experimental parameters that determine its value. The effect of

threshold fluctuations on the statistic of the output beam is analyzed, highlighting de-

viations from the Gaussian behaviour expected for ideal squeezed vacuum state. These

deviations are experimentally observed by means of tomographic reconstruction of the

state together with a direct measurement of the quadrature distributions [26] . Start-

ing from the characteristics of the used experimental set-up, it is proposed a theoretical

model to reproduce the observed behaviour as a function of both OPO and detection

parameters.

With regard to application of squeezed light, a method for measuring the transmit-

tivity of optical samples is illustrated [27] . In this scheme a squeezed vacuum field

generated by a below–threshold OPO is propagated through a nondispersive medium

and its quadratures are detected; the variance of the detected quadratures are used for

measuring the transmittivity. With this method it is drastically reduced the number of

photons passing through the sample during the measurement interval, so providing an

useful tool for measuring the transmittivity of highly photosensible materials. The re-

sults of some experimental tests performed to assess the scheme feasibility are reported.

The photons pair generated in parametric down conversion also carry quantum cor-

relations of the Einstein-Podolsky-Rosen type [28] . First suggestion along this direction,

dates from the end of the 1980s, when Reid and Drummond pointed out the possibility

of demonstrating the EPR paradox via quadrature-phase measurements on the beams

outing a non degenerate parametric amplifier (NOPA) [29] . In this case, the two beams

originating from the pump photon splitting, can be distinguished because of their po-

larization and in turn spatially separated. Due to quantum correlation, both the beams

are needed to see the squeezing effect so that their state is usually referred to as a two

modes squeezed state. Under limiting conditions the quadratures of the output beams

become quantum copies of one other so that the results for the signal quadratures can

be inferred by probability 1 from the measurement of the idler’s ones.

8



An experimental demonstration of the EPR paradox with continuous variables refers

to Kimble in 1992 ([30] , [31] ) .

In developing quantum information science, nonlocal quantum entanglement plays

a determining role ([32] [33] [34] ). Unconditional quantum teleportation has been

demonstrated by using continuously entangled EPR pairs resulting from two-mode squeezed

vacuum states [35] . The dense coding for continuous variables has been experimentally

demonstrated [36] on bright EPR beams with anticorrelation of amplitude quadratures

and correlation of phase quadratures, generated from a seeded NOPA operating at deam-

plification. Many cryptographic schemes for secure information sharing have been pro-

posed and experimentally realized [37] , [38] [39] . In these scheme, informations are

written on the signal (usually by means of phase/amplitude modulation); the entangle-

ment permits to check by observing the idler beams if any eavesdropping attempt has

been performed.

Besides mean values of the field operators, the most relevant quantity needed to

characterize an EPR state is its covariance matrix σ [40] . The form of this matrix gives

reason of the involved kind of entanglement and the mutual correlation degree between

the interested observable pair. Once the covariance matrix is known the entanglement

of the state can be evaluated and, in turn, the performances of the state itself as a sup-

port for quantum information protocols. Moreover since entanglement is generally cor-

rupted by the interaction with the environment it becomes crucial to establish whether

or not it has survived the environmental noise. As a consequence, besides being of fun-

damental interest, a simple characterization technique for bipartite states is needed for

experimentally check the accessible entanglement in a noisy channel ([41] , [42] , [43] ,

[44] ) as well as the corresponding state purity and nonclassicality ([45] , [46] ).

The second part of the thesis is devoted to the NOPA analysis and its realization.

It is proposed a novel scheme for measuring σ for the NOPA output by means

of a single quadrature detector plus a polarizing beam splitter (PBS) and a polarization

rotator (λ/2) [47] . By means of the system λ/2+PBS, beside the signal and idler modes,

some linear combinations of them are selected for detection. Moreover together with the
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quadrature X and Y , also their rotation by ±π/4 are measured. By introducing these

extra quantities in is possible to express σ as the sum of the variances for the single

modes quadratures. This scheme can be used to fully characterize bipartite Gaussian

states and to extract relevant informations on generic states.

The experimental implementation of a NOPA is eventually discussed in the last part

of the thesis.

Since the degree of EPR correlation is linked to the distance from threshold, in ex-

perimental realization, threshold must be stabilized as much as possible. This suggests

the use of low noise sources as the Nd:YAG (@1064nm) diode pumped and frequency

duplicated lasers able to minimized pump laser residual noise. At the same time, to

generate cross polarized idler and signal beams type II crystals are required.

For the KTP [48] , the type II crystal with the best optical performances, the fre-

quency degeneration condition for pump at 532nm (Nd:YAG second harmonic) corre-

sponds to cryogenic working temperatures. In order to avoid this problem, the NOPA

implementations has been based up to now on custom laser sources or custom crystals

([49] ). In this thesis it is proposed an alternative and more convenient experimental set

up based on the use of a Nd:Yag source together with a periodically poled KTP crystal

(PKTP) [50] . PKTP can be designed to set the frequency degeneration at a desired tem-

perature, in the present case Tdeg ≈ 35◦C. First tests on the crystal and measurement

of the actual Tdeg are reported and discussed.

The thesis is structured as follows.

In the first chapter the theory of parametric amplifiers degenerate and non degen-

erate is provided, to show the squeezing properties of the output beams.

In the second chapter the case of degenerate parametric oscillator below threshold

is discussed and it is provided an alternative description for the output state, taking into

account the effect of OPO detuning and extra losses.

In the third chapter the technique for quadrature detection and the basics of quantum

state tomography are discussed.
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The following three chapters (4th, 5th and 6th) are devoted to DOPO experimental

realization and relative results. In particular, the experimental setup together with the

homodyne detector are presented in a detailed manner in chapter 4. Chapter 5 is de-

voted to the study both experimental and theoretical of the deviation from Gaussianity

observed close to threshold. Eventually chapter 6 reports the discussion of accuracy and

reliability absorption measurement based on squeezed vacuum, together with relative

experimental results.

Chapter 7 and 8 concern with the NOPA theory and realization. In the 7th chapter

the theory of seed NOPA is illustrated together with its application in measurement of

bipartite state covariance matrix. In the last chapter the principle of poled crystal are

reported and the first experimental results are discussed.
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Chapter 1:
Introduction to non linear optical phenomena and
squeezed light

Non linear optical phenomena occur when a material system, usually a crystal,

responds in a non linear manner to the presence of light. More specifically it can be

considered the dipole moment per unit volume, or polarization P (t) and its dependence

on the amplitude E (t) of the applied optical field. In linear optics P (t) depends upon

the electric field as:

P (t) = χ(1)E (t) (1.1)

being the constant of proportionality χ(1) the linear susceptibility. In non linear optics,

the optical response is described by generalizing Eq. (1.1) and expressing P (t) as a

power series of E (t) as:

P (t) = χ(1)E (t) + χ(2)E2 (t) + χ(3)E3 (t) + ..

The term P (i) (t) ≡ χ(i)Ei (t) is the ith-order induced polarization and χ(i) (i ≥ 2) the

non linear optical susceptibilities. Macroscopically, when a light beam at frequency ωp

is sent to a non linear crystal, beside a beam at the same frequency, originate other light

beams at different frequencies (for instance multiple or submultiple of ωp) depending

on the amplitude of χ(i) coefficient.

Among χ(2) processes, an interesting case is that of the difference frequency gener-

ation, also known as parametric down conversion 1 [2] . A strong beamEp at frequency

ωp and a weak beam Es at frequency ωs (seed ) are injected into the non linear crystal.

Due to non linear effect, the two fields ‘‘mix’’ inside the crystal and a macroscopic wave

1The parameter is represented by the non linear interaction strenght expressed by χ(2) coefficient.
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at frequency ωi = ωp − ωs is generated by the induced P (2) polarization:

P (2) (ωp − ωs) = 2χ
(2)EpE

∗
s

The applied fieldEp is called pump beam, the generated beams respectively signal (Es)

and idler (Ei).

From the quantum point of view, the entire process can be depicted according to

the photon energy-level description. Due to absorption of a photon at frequency ωp an

atomic virtual level is excited. This level decays by a two photon emission process that

is stimulated by the presence of ωs field.

Two photon spontaneous emission occurs even if the ωs-field is not applied. In

this case the pump energy is spread over more signal/idler pair so that the generated

fields are very much weaker. To obtain macroscopical signal and idler beams without

any initial seed, the down conversion process is usually enhanced by placing the crystal

in an optical resonator. By setting the device into resonance at the desired frequencies

ωs and/or ωi, a selective feedback is applied, thus consenting to build up the fields Es
and/or Ei to large values. Such a device is known as Optical Parametric Oscillator

(OPO).

1.1 Non linear Hamiltonian

A simple mathematical quantum description of non linear phenomena can be given

for the crystal without the optical resonator. In this case, since no oscillations at all,

but only single pass phenomena occur, the system acts as a parametric amplifier ; by

pumping the crystal with a beam at ωp, an input seed at ωs is amplified.

Parametric down conversion process can be schematically depicted as the annihi-

lation of a (pump) photon at frequency ωp, into two photons at frequency ωs and ωi.

The energy and momentum conservation require the generated photons to satisfy the
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relations:

ωp = ωs + ωi (1.2)

Okp = Oks + Oki

where Okξ are the wave vector2 for the ξ-field.

The HamiltonianHNL describing the quantum evolution of the involved fields can

be written as [3] :

HNL =
[
ξ

ωξa
†
ξaξ − i χ(2)

�
apa

†
sa
†
i − a†pasai

�
(1.3)

with aξ the bosonic annihilation operator for the electromagnetic field ξ-mode (ξ =

p, s, i) oscillating at frequency ωξ with [aξ, al] = 0 and
k
aξ, a

†
l

l
= δξ,l. HamiltonianS

ξ ωξa
†
ξaξ describes the three independent harmonic oscillators describing the free

evolution for the involved modes. Non linear interaction Hamiltonian−i χ(2)apa
†
sa
†
s+

h.c. expresses the non linear process of annihilation of a pump photon into two signal

and idler photons.

In many cases, the pump beam is a strong coherent one provided by a laser source.

For weak χ(2) interaction the pump amplitude is not significantly depleted by photon

conversion in non linear interaction. This allows substituting the bosonic operator ap
with a classical field amplitude Ap. This approximation is valid in the limit

χ(2)τ → 0, Ap →∞, χ(2)τ Ap = constant

being τ the interaction time with the non linear medium [51] .

2Relations (1.2) express the conditions for constructive interference of the fields generated by the atomic dipoles stimulated
by the pump through the crystal.
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1.2 Degenerate Parametric Amplifier

Modes as and ai can in principle have different frequencies and electric field po-

larizations. If they share the same frequency (ωp/2) and polarization, the system is said

to work in degeneration condition. In this case the two fields are no longer mutually

distinguishable and collapse into a single one (a) exhibiting the common polarization

and frequency. The Hamiltonian (1.3) reduces to:

HNL =
ωp
2
a†a− i χ(2)

2
Ap
�
a2† − a2

�
(1.4)

corresponding to the Heisenberg equations:

da

dt
=

1

i
[a,HNL] = E a† (1.5)

da†

dt
=

1

i

�
a†,HNL

�
= E a

where E = χ(2)Ap.

Most interesting results concern with the field quadratureXθ =
1
2

�
eiθa† + e−iθa

�
.

Because of commutation relation for a, each pair of orthogonal quadratures Xθ and

Xθ+π/2 satisfies: �
Xθ,Xθ+π/2

�
=
i

2

Quadrature corresponding to θ = 0 and θ = π/2 are known respectively as amplitude

(X) and phase quadrature (Y ). In terms ofX and Y equations (1.5) diagonalize into:

dX

dt
= EX dY

dt
= −EY (1.6)

Equations (1.6) demonstrate that the parametric amplifier is phase sensitive : it amplifies

or de-amplifies the quadratures depending on their phase θ. At the crystal outputX and

Y become:

X (τ) = eEτX (0) ; Y (τ) = e−EτY (0)
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with X (0) and Y (0) the input field quadrature and τ the interaction time inside the

crystal.

The parametric amplifier also acts on the quadrature noise. It is interesting to con-

sider the case of a seed initially in a coherent state with quadrature variances∆X (0)2 =

∆Y (0)2 = 1/4 corresponding to the shot noise level. This case accomplishes for both

a seed from a laser source (seed in a bright coherent state [2] ) and no seed at all (seed

in a coherent vacuum state). For the output beam one has:

∆X (τ)2 =
1

4
e2Eτ ; ∆Y (τ)2 =

1

4
e−2Eτ (1.7)

It is worth observing that the quadrature variance product is:

∆X (τ)2∆Y (τ)2 =
1

16

thus showing that the state inherits from the input one the property of a minimum un-

certainty for the quadrature variance product.

Equations (1.7) show that there is a reduction, or squeezing, of phase quadrature

fluctuations below the shot noise level 1/4. A corresponding enhancement of the am-

plitude quadrature fluctuations (anti-squeezing ) is required by Heisenberg uncertainty

relation. Since only one field is generated by non linear interaction the degenerate para-

metric amplified is a source of one mode squeezing.

The squeezing size Eτ = χ(2)Apτ depends on the non linearity of the crystal (via

χ(2)), on the pump amplitude (via Ap) and on the interaction time (τ ). Once χ(2) is

assigned by the choice of the non linear crystal, an enhancement of the squeezing is

obtained by increasing Ap and τ . In particular the interaction time is usually raised by

the use of the resonant cavity.

Other squeezed state properties can be described by introducing the evolution op-

erator linked to the field Hamiltonian:

S (r) = exp
kr
2

�
a2 − a†2

�l
16



with r = Eτ . The mean value of the operator under scrutiny can be obtained by applying

S (r). In particular for an initial coherent state described by the projector |AlkA|, the

state density matrix for the squeezed state is:

ρ (r) = S (r) |AlkA|S† (r)

Correspondingly the number operator n = a†a and its variance ∆n2 = (n− knl)2 are

readily calculated to satisfy relations:

knl = sinh2 r + |A|2

∆n2

�
= |A cosh r −A∗ sinh r|2 + 1

2
sinh2 2r.

If the system is initially in a coherent vacuum state (|Al = |0l), the vacuum fluctuations

are amplified by the non linear interaction and after a time τ , sinh2 r photons are gener-

ated. Interesting results concern with the photon number distribution pn for |Al = |0l
[17] :

p2n+1 = 0 m = 0, 1, 2, ..

p2n =

�
2n
n

�
1

22n cosh r
(tanh r)2n

The suppression of all odd terms in photon number distribution express the physical re-

sult that the squeezed vacuum originates from a two photon process and it thus contains

only pairs of photons.

From the ρ density matrix it is also possible to show that the marginal distribution

for a generic quadratureXθ is a Gaussian given by:

p (x, θ) =
1s

2π∆X2
θ

e
− x2

2∆X2
θ

with ∆Xθ =
1
2

√
e2r sin2 θ + e−2r cos2 θ.

17



1.3 Non degenerate Parametric Amplifier

The non degeneracy condition is achieved when the two fields generated by means

of the non linear interaction are mutually distinguishable. This correspond to the case

of signal and idler at different frequencies or at the same frequency but cross polarized;

in the following the second case will be considered.

The Hamiltonian describing the system is:

HNL =
ωp
2

�
a†sas + a

†
iai
�
− i χ(2)

2
Ap
�
a†ia

†
s − asai

�
(1.8)

The corresponding Heisenberg equations are:

das
dt
= E a†i ;

da†i
dt
= E as (1.9)

In the case of non degenerate parametric amplifier, the system exhibits a two mode

squeezing since both signal and idler beams are needed to observe the squeezing prop-

erties. At this purpose it can be defined the generalized quadratures [3] :

X± (θ) =
1√
2
(Xs (θ)±Xi (θ))

For signal and idler both in initial coherent states (∆X2
ξ (0) = ∆Y 2ξ (0) = 1/4, ξ = s, i),

it can be shown that [3] :

∆X± (θ)
2 =

1

4
(cosh 2r ± cos 2θ · sinh 2r) (1.10)

so that:

∆X2
± =

1

4
e±2r; ∆Y 2± =

1

4
e∓2r (1.11)

The squeezing is due to the quantum correlations which build up in the signal and idler

modes; it possible to show that the individual modes are not squeezed. Equation (1.11)

can be interpreted by saying that the fields actually squeezed are not as and ai but their

18



combinations d+ = (as + ai) /
√
2 and d− = (as − ai) /

√
2 3. In this context, results

obtained for the degenerate parametric amplifier apply to the fields d± and their quadra-

tures.

A quantum interpretation of the two modes squeezing is given by considering that

in parametric down conversion the pump photon is split into a pair of photons so that its

noise can be imagined to be equally distributed on generated signal and idler photons.

Results for the non degenerate parametric amplifier can be obtained by introducing

the two modes squeezing operator:

S2 (ζ) = exp

�
1

2

�
ζ∗asas − ζa†sa

†
i

��
The state wave function, as well as the ρ density matrix or other operator for the output

field are obtained by application of S2 (ζ) to the initial states for the signal and idler

modes.

1.4 Gaussian States

Squeezed states make part of the larger class of Gaussian states, say states charac-

terized by a Gaussian wave function. This result is readily demonstrated by applying

evolution operator S (ζ) and S2 (ζ) to the input state and examining the state wave func-

tion. As an example, the wave function associated to the squeezed vacuum is given by

S (ζ) |0l where |0l represents the ground state for an harmonic oscillator. In the posi-

tion representation q, |0l has Gaussian wave function ψ0 (q) =
1
4√π
e−

q2

2 and S (ζ) |0l

becomesψζ (q) =
1
4√π
e−

ζ
2 e
−
�
e−2ζ q

2

2

�
[17] . For Gaussian states, quadrature distributions

along each direction θ is Gaussian shaped.

This result is quite general. Gaussian state are obtained each time harmonic oscilla-

tors in their ground states are subjected to particular kinds of time-dependent potentials

or interaction Hamiltonians. The most general N-mode Gaussian state can be formally

expressed as UN |0l with UN ≡ exp
�
− iHN t

�
unitary operator with Hermitian gener-

3In this wayX+ (θ) = 1
2

�
d+e−iθ + d

†
+e

iθ
�

is the θ-quadrature for the field d+ and analogouslyX− (θ) the θ-quadrature
for d−.

19



ator HN . It is possible to show that the requirement of Gaussian shaped wave function

implies that HN consists only of linear and bilinear combinations of annihilation and

creation operators aξ (ξ = 1, ..N) with no further restrictions [52] . UN factorizes into

unitary operators whose generators are linear combinations of aξ and a†ξ and unitary

operators whose generators are bilinear combinations of aξ and a†ξ.

Single and two modes squeezing operator are part of the unitary operator whose

generators are bilinear combination of the annihilation and creation (see Eqs (1.4-1.8)).

Unitary operators whose generator only depends on linear combination of aξ and a†ξ are

called displacement operators for the ξth mode. These are the operators that applied to

an initial vacuum state give rise to coherent states.
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Chapter 2:
Squeezed radiation from degenerate OPOs

2.1 OPO and input output relations

So far an open ended model of parametric amplifier has been considered. When

the non linear medium is placed within an optical cavity acting as resonator, oscillation

builds up inside and the system becomes an optical parametric oscillator (OPO). Con-

fining the light in a cavity helps to obtain a sizable effect by increasing considerably the

interaction time [2] so that squeezing can be generated even if non linear interaction is

very weak.

In order to describe the effect of the OPO cavity, the whole system has to be imag-

ined as merged into an heat bath made up of infinite harmonic oscillators representing

different modes of the electro-magnetic field [51] . At zero, or ambient temperatures,

the harmonics oscillator can be considered in their ground states since at involved fre-

quencies, the mean photon number for thermal states are negligible. The heat bath acts

as a passive system with whom the system inside the cavity tends to balance. The cou-

pling between the two systems is provided by imperfect cavity mirrors or losses. These

mechanisms act as ports allowing the photons inside the cavity to escape and the vac-

uum noise outside it to enter inside.

For each loss, the Hamiltonian describing the interaction of the external bosonic

modes b (ω) with a single mode a inside the cavity is:

Hin−out = i

] +∞

−∞
dω κ (ω)

�
b† (ω) a+ b (ω) a†

�
with κ (ω) describing the strength of the interaction. κ (ω) can be considered approxi-

mately frequency independent for a wide interval around the cavity resonance frequency

where it reaches its maximum. The effect of Hin−out on the a mode evolution, is sum-
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marized by the Langevin Equations for the mode inside the cavity [3] :

da

dt
= − i [a (t) ,H]− γa (t) +

s
2γain (t) (2.12)

with H the Hamiltonian for the system inside the cavity. The term −γa (t) represents

the damping due to loss (γ ∼ κ (ω) is the photon damping rate ), while the driving

term
√
2γain (t) describes the input vacuum modes entering into the cavity from the

environment. The field ain (t) can be expressed in terms of the heat bath modes b0 (ω)

at the initial instant, as ain (t) =
U +∞
−∞ dωe−iωtb0 (ω) and represents an additional noise

term. In the frequency domain its commutation rules are:

�
ain (ω) , ain† (ω�)

�
= δ (ω + ω�)�

ain (ω) , ain (ω�)
�
= 0 (2.13)

thus indicating that input vacuum at different frequencies are mutually uncorrelated 4.

At zero or ambient temperature the field described by ain can be depicted as a coherent

vacuum state with Gaussian quadrature distribution.

The mode a and its trasmitted outside the cavity aout are linked by the input-output

relation [3] :

aout (t) + ain (t) =
s
2γ a (t) (2.14)

2.2 Linearization Procedure

Equation (2.12) can be applied to the case of a non linear Hamiltonian H ≡ HNL

as described in the previous chapter. The quantum Langevin equation for the pump (ap)

4ain presence is mathematically required to preserve the commutation rules for a and it is an expression of the fluctuation-
dissipation theorem.
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γ1

Figure 2.1. A schematic representation of the cavity field and the input output fields for a single-ended cavity. The
only loss mechanism is due to the input mirror (with damping γ1)
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and signal (as) and idler (ai) modes can be written as:

daξ
dt

= −γaξ + χ(2)apa
†
ξ� +

s
2γainξ (t) (ξ, ξ� = s, i) (2.15)

dap
dt

= −γpap −
�
χ(2)

�∗
aξaξ� +

s
2γpa

in
p (t) +Ap

where Ap represent the external coherent pump field and losses for signal and idler

modes have been considered equal. These equations are non linear in the bosonic oper-

ator and are usually solved by linearization of operators â around the stationary values,

â→ α+δâ [53] . The steady state complex amplitudes α 5 are retrieved by (2.15) when

considering da/dt = 0 = ain (t). Letting r = αs = αi, the algebraic system for the

signal and idler αs can be reduced to equation:

0 = r3 −
χ(2)Ap − γγp

(χ(2))
2 r (2.16)

By analyzing (2.16) it can be seen that its solutions depend on the pump amplitude Ap.

For Ap ≤ Ath ≡ γpγ/χ
(2), it admits one stable solution, corresponding to r = 0. In

this case the system is said to be below threshold and the pump stationary amplitude

is αp = Ap/γp. If Ap ≥ Ath the system undergoes a phase transition; the steady state

values for αs and αi exhibit a pitchfork bifurcation and Eq. (2.16) admits non null

stable solutions describing the amplitude of the classical signal and idler beams built up

in parametric oscillation. The existence of a threshold condition express the fact that

in presence of losses, the pump has to be strong enough for the effect of parametric

interaction to exceed the losses effect and bright signal and idler mode to be visible.

In the following the system below threshold will be considered. In this case the

non linear Eqs. (2.15) are linearized by considering the pump as a classical undepleted

beam of amplitude αp = Ap/γp and neglecting the quantum equation for the mode ap.

5It is worth stressing that the amplitude is no longer an operator, the operator character in â is only preserved in the fluctuating
part δâ.
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Figure 2.2. Steady state solutions of the intracavity amplitude for the DOPO as a function of the pump coherent
amplitude normalized to the threshold (Ap/Ath). ForAp/Ath ≤ 1, the sole stable solution is the one corresponding
the αs = αi = 0. Above threshold the null solution is no longer stable (dashing line) and the system admits two
stable positive (blu) and negative (red) solutions corresponding to the classical amplitudes of bright signal and idler
beams. The plot refers to unit such that γpγ/

�
χ(2)

�2
= 1
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Since αξ = 0, equations for the operator aξ and those for their fluctuations coincide:

daξ
dt
= −γaξ + Ea†ξ� +

s
2γξa

in
ξ (t) (ξ, ξ� = s, i) (2.17)

with E = χ(2)Ap/γp.

2.3 Squeezing at the degenerate OPO output

In case of degenerate OPO (DOPO) equation for as and ai become indistinguish-

able as previously discussed.

An ideal cavity with only one loss mechanism, as considered up to now, is called

single-ended cavity. Obtained results can be extended to a more realistic double-ended

cavity where more losses are present. In the following γ1 will indicate the damping

associated to cavity input mirror and γ2 the damping associated to other losses mech-

anisms (other mirror transmission or crystal absorption and diffraction). Langevin Eq.

(2.17) generalizes into [21] :

da

dt
= Ea† − (γM + iψ) a (t) +

s
2γ1a

in (t) +
s
2γ2b

in (t)

being γM = γ1+γ2 the overall loss rate, ψ the detuning of mode awith respect to perfect

cavity resonance and ain and bin the input fields due to γ1 and γ2. In the frequency

domain the Langevin equations for a and a† turn into algebraic equations and are easily

solved.

Experimentally the field actually measured is the one outside the cavity. By making

use of (2.14) with γ ≡ γ1, the solution for the field aout outing the cavity through the

input mirror is shown to be [21] :

aout (ω) =

�
(γ1 − iψ)2 − (γ2 − iω)2 + E2

�
ain (ω) + 2Eγ1ain† (−ω)

(γM − iω)2 + ψ2 − E2
(2.18)

+2
√
γ1γ2

(γM − iω − iψ) bin (ω) + Ebin† (−ω)
(γM − iω)2 + ψ2 − E2
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2.4 Quadrature Properties

The squeezing properties are discussed by looking at the field quadrature Xθ (ω).

By making use of commutation relations, it is possible to rewrite k∆Xθl2 as:

k∆Xθl2 =
1

4

�
1 + 4k:∆X2

θ :l
�

(2.19)

the symbol :: indicates the normal ordering. For a coherent vacuum state, as the one

at cavity input (ain or bin), k:∆X2
θ :l = 0 and the quadrature noise reduces to the shot

noise k∆Xθl2 = 1/4. For fields generated by non linear interaction, k:∆X2
θ :l can be

both positive or negative, thus giving rise to a non classical modulation below and above

the shot noise 6.

By exploiting (2.13) and (2.18), amplitude and phase quadrature spectra are calcu-

lated for the output field. For zero detuning (ψ = 0) it is possible to show that [21] :



∆Xout (ω)

�2
=

1

4

�
1 + 4

γ1E
(γM − E)2 + ω2

�
(2.20)



∆Y out (ω)

�2
=

1

4

�
1− 4 γ1E

(γM + E)2 + ω2

�

with the quadrature variance product:



∆Xout (ω)

�2 

∆Y out (ω)

�2
=
1

16

#
1 +

16γ1γ2E2�
(γM − E)2 + ω2

� �
(γM + E)2 + ω2

�$
(2.21)

For E = 0 (i.e. Ap = 0) the non linear interaction is not switched on and the quadrature

variances as well as their product simply reduce to those for the input coherent vac-

uum (k∆Xout (ω)l2 = k∆Y out (ω)l2 = 1/4 and k∆Xout (ω)l2 k∆Y out (ω)l2 = 1/16).
Otherwise, previous equations show that for the field outside the cavity exhibits noise

enhancement on the amplitude quadrature (anti-squeezing ) and noise reduction on the

6It is worth stressing that below the oscillation threshold the quadrature mean value is 'Xθ� = 0 for each angle θ and the
quadrature variances simply reduce to '∆Xθ�2 =



X2
θ

�
. The normally ordered spectrum



:X2

θ (ω) :
�
=
U
eiωt':Xθ (t)Xθ (0):�dt

represents the Fourier transform of the two time autocorrelation function for the operator Xθ. It can be equivalently obtained by
performing the integration

U
':Xθ (ω)Xθ (ω

�):�dω�.
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phase quadrature (squeezing ). Condition of minimum uncertainty is satisfied only for

γ2 = 0. Best noise modulation is achieved for pump amplitude equal to threshold,

say for E = γ
M

. The corresponding squeezing spectrum is Lorentzian shaped with

width 2γM and maximum height 1
4

�
1− γ1

γM

�
. Optimal noise reduction corresponds

to ω = 0, say to cavity resonance, where fluctuations on the antisqueezed quadrature

Xout. For the ideal case of single ended cavity (γ2 = 0), the OPO output is perfectly

phase squeezed with complete noise suppression k∆Y out (0)l2
���
E=γ

1

= 0. Since be-

low threshold no macroscopic (coherent) amplitude is exhibited by the OPO output, the

state can be described as an ideal squeezed vacuum one (see first chapter). The cor-

responding squeezing parameter is linked to the distance from the threshold E/γ1 as

r = ln
�
1+E/γ1
1−E/γ1

�
. This description is consistent with the observation that for γ2 = 0,

k∆Xoutl2 k∆Y outl2 = 1
16

and the state reduces to a minimum uncertainty one.

In case of double ended cavity, squeezing is optimized for γ1 = γ2 9= 0 (symmet-

rical cavity) where it reaches the maximum value of 1
8
, say one half of the input state

noise 1
4
. This result can be shown to be the best obtainable for the field inside the cavity,

given any choice of γ1 and γ2.

For non perfect resonance, the effect of detuning ψ must be considered and the

expression for the field quadrature variances are:



∆Xout (ω)

�2
=

1

4

#��(γ1 − iψ)2 − (γ2 − iω)2 + E (E + 2γ1)��2 + 4γ1γ2 |γM − iω + E − iψ|2��(γM − iω)2 + ψ2 − E2
��2

$



∆Y out (ω)

�2
=

1

4

#��(γ1 − iψ)2 − (γ2 − iω)2 + E (E − 2γ1)��2 + 4γ1γ2 |γM − iω − E − iψ|2��(γM − iω)2 + ψ2 − E2
��2

$
(2.22)

For double ended cavity the effect of detuning is overcome by extra losses; the

greater γ2 the less influential is ψ. When γ2 � γ1 the low frequencies behaviour for
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Figure 2.3. Spectral behaviour of the output field quadratures for single ended cavity for different detuning (φ = 0
[green], φ = 0.15 [blu] and φ = 0.25 [red]). Plor refer to the system very close to threshold (E =0.995γM ). The
effect of detuning is significant only in the low frequency region of the spectrum.

k∆Xoutl2 and k∆Y outl2 is spoiled by the introduction of ψ. In the limit of single ended

cavity, at the threshold k∆Xout (0)l2 is no longer diverging and decreases for increasing

ψ while k∆Y out (0)l2 deviates from zero and sharply increases with ψ. When E/γ1 1

for both γ2 = 0 and 9= 0, the closer the system is to the threshold the stronger is the

effect of ψ. The same behaviour is shown by the uncertainty product, where deviations

from minimum (k∆Xoutl2 k∆Y outl2 = 1/16) are strongly sensitive to ψ for γ2 ≈ 0 and

E/γ1 ≈ 1.
Shown results are obtained by means of linearized theory. An evident drawback

of the linear approximation is the prediction of zero noise level at threshold for single

ended cavities with zero detuning. This is an unphysical result since it implies an infinite

amount of phase information, which is impossible since the coherent pump that drives

the parametric oscillator can only supply a finite quantity of phase information. Many

investigations based on correction to linear theory have been performed to establish the

ultimate limit to the noise reduction of a parametric oscillator near the threshold. In

Re. [25] it is shown that the best squeezing in the zero-frequency part of the squeezing

spectrum scales like N−2/3 just below threshold provided the two field have similar

damping rates beingN the number of photon inside the cavity. It is worth stressing that

non linear correction become evident only in the region extremely close to the threshold.
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2.5 Double ended cavity and STV

Equations (2.21) and (2.22) show that deviations from minimum uncertainty in-

crease with the size of extra losses γ2 and with the detuning ψ and when approaching

the threshold (E → γM ). This result makes no longer satisfactory the output of real

OPOs, the ideal squeezed vacuum description.

The most general description of squeezed Gaussian7 vacuum state is provided by

squeezed thermal vacuum state (STV) [54] . Corresponding quadrature variances are

given by ∆X2
θ = ∆X2 sin2 θ +∆Y 2 cos2 θ with:

∆X2 =
1

4
(2nth + 1) e

2r (2.23)

∆Y 2 =
1

4
(2nth + 1) e

−2r

where parameters nth (average thermal photons) and r (squeezing coefficient) mutually

independent.. It is worth stressing that as for the output of real DOPOs the quadrature

variances product do not satisfy the minimum uncertainty. By assuming the OPO output

state to be in a STV, Eqs. (2.23) and (2.20) allow writing nt and r. In the simple case

ψ = 0:

nth =
1

2

yxxw#1 + 16γ1γ2
γ2M

(E/γM)2�
1− (E/γM)2

�2
$
− 1

r =
1

2
ln

⎛⎜⎝1 + E/γM
1− E/γM

yxxxw
�
1− 2

�
1− 2γ1

γM

�
E/γM
1+E/γ2M

�
�
1 + 2

�
1− 2γ1

γM

�
E/γM
1+E/γ2M

�
⎞⎟⎠

For non zero detuning the behaviour of nt and r is affected in a sensible manner by ψ

only close to threshold and for γ2 � γ1. The expression for nth and r as a function of

ψ are obtained by Eqs. (2.23) and (2.22) for ω = 0.

7It is worth reminding that also in case of detuning or extra losses the form of the process Hamiltonian preserves state
gaussianity.
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Figure 2.4. Parameters nth and r as functions of the ratio γ1/γM for three different detunings (ψ = 0.0

[green], 0.15 [blu], 0.25 [red]). Plot refers to E =0.7γM . The detuning plays a more significant role in proximity
of γ1/γM s 1, that is for a single-ended cavity configuration.

nth and r parameters are increasing function of γ2 and the distance from threshold

E/γM . Once again, when γ2 = 0, nth = 0 and the state reduces to a pure squeezed one.

The state density matrix for a STV is:

� = S(r)νS†(r) (2.24)

where ν = (nth + 1)
−1 [nth/(nth + 1)]

a†a is a thermal state (nth average photons). Ex-

pression (2.24) allows deriving all the state properties. In particular, the total photon

number is given by:

Ntot = [� a
†a] = sinh2 r + nth + 2nth sinh

2 r

The photon number distribution is:

pn =
Cn

An+
1
2

Pn

�
B

C

�
(2.25)

being Pn(x) the n-th Legendre function of the first kind and

A = (1 + nth)
2 − (2nth + 1) sinh2 r

B = nth(1 + nth)
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C =
t
n2th(1 + nth)

2 − (2nth + 1)2 sinh2 r cosh2 r

Analysis of (2.25) shows that conversely to pure squeezed vacuum states, the odd terms

in pn are no longer suppressed. This is consistent with the interpretation of STV as

originated from pure squeezed vacuum when introducing OPO extra losses. Absorption

or diffraction could destroy one photon of the couple generated by the non linear (two

photon) process, thus originating single photons outside the cavity.
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Chapter 3:
Quantum State Detection

3.1 Homodyne Detector

The squeezing behaviour shown by below threshold OPOs, can be observed by

detecting the output field quadratures in a balanced homodyne detector. This device

is based on controlled interference of the field under scrutiny (homodyne signal field )

with a strong coherent beam called local oscillator ( LO) with the same frequency and

spatial properties. The emerging beams are detected by linear response photodetector;

the difference of relative photocurrents yields the signal quadrature amplitudeXθ in unit

of the LO amplitude.

The optical mixing between the signal and LO fields is provided by a 50:50 beam

splitter (BS), splitting each impinging beam in two equal parts (1/2 of the intensity is

trasmitted, 1/2 is reflected). In the Heisenberg representation, its action on two orthog-

onally propagating fields (as, aLO) is described as [17] :�
a�s
a�LO

�
=

� √
t −

√
1− t√

1− t
√
t

�
·
�
as
aLO

�
(3.26)

with the transmission coefficient t equal to 1/2.

Expression (3.26) shows that the BS is a four-port device with two inputs and two

outputs; to preserve bosonic commutator for output beams, in case a single input beam

is sent to the BS, the presence of a coherent vacuum field, acting as a second input, is re-

quired. Althrought not acting on the amplitude mean value, the vacuum field introduces

additional noise, linked to the size of the input field attenuation. This is a consequence

of fluctuation-dissipation theorem [40] .
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For strong enough LO, aLO can be substituted with the complex amplitude ALO =

|ALO| eiθ, with the result:

a�s = (as −ALO) /
√
2

a�LO = (as +ALO) /
√
2

Beams a�s and a�LO outing the BS are each directed to a photodetector measuring the field

intensity. The interference term between the LO and the signal is actually contained in

the photocurrents difference Is�−LO� that is in turns proportional to the photon number

difference n�s − n�LO:

n�s − n�LO = A∗LOas +ALOa
†
s (3.27)

= 2 |ALO|Xθ

This expression shows that subtracting the two photocurrents relative to a�s and a�LO
the detection the quadrature Xθ of the signal is obtained. The reference phase θ is

provided by the LO phase that can be experimentally driven providing measurements

of the quadratures at different angles. The quantity Xθ in (3.27) is multiplied by the

LO amplitude |ALO|. Homodyne detector amplifies coherently the scale of the signal

so that linear response detector are significantly influenced also by single photons of

the signal. This provides an important technical advantage since, provided a LO strong

enough, there is no need for single photon detector even in the measurement of vacuum

fields.

3.2 Mode mismatch and homodyne efficiency

Since the LO serves as coherent amplifier, it also acts as an optical gate and picks

out for detection only the signal mode whose spatial temporal profile matches the local

oscillator’s one. This gate can be very localized in space and time and its shape can be

tailored to allow the investigation of a desired quantum field.
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Figure 3.1. Schematic scheme of homodyne detector. The signal and the local oscillator beams are mixed on the
beam splitter (BS). The output beams are detected by linear photodiodes (PD1 and PD2) and the relative photocurrent
are subtracted to yield the signal quadratureXθ
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For single mode light beams, the actual field amplitude, including spatial-temporal

contributions, isφ(x,t) = u (x, t)·awhere a is the field bosonic operator and u (x, t) =

v (x) e−iωt with ω field frequency and v (x) solution of the (spatial) Helmholtz equa-

tion [17] . The photocurrent IPD provided by the detector, is given by the photon flux

integrated on the acquisition time τ and on the sensible region areaD.When including

these effects, Eq. (3.27) turns into [17] :

Is�−LO� ∝ A∗LOaMM +ALOa†MM (3.28)

where the field aMM can be expressed in terms of the signal operator as as:

aMM = η
1/2
M as + (1− ηM)

1/2aV

The mode matching coefficient

η
1/2
M =

] τ

0

dt

]]
D

u∗LO(xD,t)uS(xD, t)dxDdyD

describes spatial-temporal superposition of the signal and LO modes as described in

classical optical interference. Overall field phases can be chosen so that 0 ≤ ηM ≤ 1,
with ηM = 1 when the two beams perfectly overlap (perfect mode matching ). The

additional term

(1− ηM)
1/2 aV=

τ]
0

dt

]]
D

φ0(xD,t)u
∗
LO(xD, t)dxDdyD

physically represent the superposition between the LO and a vacuum field φ0 account-

ing for other potential modes included in φs.

The mode mismatch effect can be described by imagining an effecting beam split-

ter of transmittivity t = ηM before the homodyne detector: the transmitted beam is de-
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tected, the reflected is lost. The meaning of ηM is that the possibility for the signal beam

to be trasmitted and hence detected is linked to the size of its matching with the LO.

Other disturbs are introduced by non perfect photodetectors. For non unitary quan-

tum efficiency (ηPD < 1), a fraction 1− ηPD of the photons impinging on homodyne

photodiodes is lost. The statistic of the fields actually measured is affected by this ef-

fect and additional noise is introduced. This situation can be reproduced by represent-

ing each (real) photodetector as an ideal photodetector (ηPD = 1) preceded by a beam

splitter of transmittivity t = ηPD. Provided the two photodetectors have the same ηPD,

the overall effect can be described by introducing a single beam splitter of transmittivity

ηPD just before an ideal homodyne detector.

The effect of mode mismatch and non perfect detector can be combined by substi-

tuting the cascade of the BSs with transmittivity ηM and ηPD with a single BS whose

transmittivity is the overall quantum efficiency η = ηPDηM .

3.3 Quantum Homodyne Tomography

If the LO phase θ is spanned over a 2π interval, homodyne detector can also be used

to reconstruct the Wigner function W (x, y) and the state density matrix of the signal

field. Marginal distributions p (x, θ) for quadratures Xθ are projections of the Wigner

function on the plane in the quantum phase space, orthogonal to the (x, y) plane and

individuated by the angle θ. The collection of all these ’’shadows’’ for different θ can be

used to obtain the whole 3-dimensional Wigner function. More specifically the p (x, θ)s

are connected toW (x, y) through the Radon transform [17] :

p (x, θ) =

] +∞

−∞
W (x cos θ − y sin θ, x sin θ + y cos θ)dy (3.29)

By exploiting this relation, experimental histograms for the quadrature measurement re-

sults (θ ∈ [0, 2π]) can be processed by filtered back-projection algorithm to reconstruct

the quantum Wigner function. The procedure is called quantum homodyne tomography

(QHT).
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Y

W(x,y)
p(x,0)

Figure 3.2. Principle of homodyne detection. The quadrature distribution p (x, θ) is retrieved as projection of the
Wigner function W (x, y) on the plane at angle θ with respect to the X axes (θ = 0 in the present picture). The
collection of p (x, θ) for different θ allows reconstructing the 3-dim shape ofW (x, y).
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First attempts to access the Wigner function where based on inversion of Eq. (3.29)

[17] . Unfortunately, in order to be applied to experimental discrete values, the technique

requires the introduction of regularization procedure and a cutoff on the Kernel for the

inverse Radon operator. Imposing a cutoff is equivalent to make a priori hypotheses on

the state with bad effect on the Wigner function recostruction. Moreover, onceW (x, y)

has been reconstructed, it has to be integrated with respect to certain functions to obtain

the density matrix, ρ and the observable mean values.

The entire QHT procedure is simplified by skipping the intermediate passage through

the Wigner function and reconstructing directly ρ and the mean values of interesting

quantities8. The method is called pattern functions QHT [55] . The expectation value

kÔl of field operator Ô is obtained as statistical average of an appropriate kernel func-

tion over experimental homodyne data expressed by p (x, θ). For non unitary homodyne

efficiency (η < 1), kÔl is retrieved as [56] :

kÔl =
] π

0

dθ

π

] −∞

+∞
dxpη (x, θ)Rη[O](x; θ) (3.30)

where the pattern function Rη[Ô](x; θ) is state independent and pη (x, θ) is the marginal

distribution for Xθ corrected by the effect of non perfect detector. In particular for

Gaussian state, pη (x, θ) reads [17] :

pη (x, θ) =
1s

π (1− η)

] +∞

−∞
dq p (q, θ) exp

�
− η

1− η
(q −√ηx)2

�
(3.31)

that is a convolution of p(x, θ)with a Gaussian distribution of width σ = 1
2

s
(1− η) /η.

The mean value kÔl described in (3.30) is experimentally retrieved by averaging

the kernel Rη

k
Ô
l

over the experimental homodyne data (xi; θi) as:

kÔl = R
k
Ô
l
=
1

N

N[
i=1

Rη

k
Ô
l
(xi; θi)

8Basic idea is that since density matrix elements ρnm can be expressed as linear integral transformation of theW (x, y) and
the inverse Radon trasform is also a linear integral transformation, there is a linear expression for the density matrix in terms of the
quadrature distributions p (x, θ) .
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where N is the total number of samples. Every datum (xi, θi) individually contributes

to the average, so that the operator mean value is gradually built up, till statistical confi-

dence in the sampled quantity is sufficient. The procedure allows determining expecta-

tion values of observables inaccessible to direct homodyne detection including ρ matrix

elements. It can be shown that regularization procedure of the inverse Radon transform

is avoided [56] . Since the method does not require any filter it allows avoiding a priori

hypotheses on the state, but as a counterpart it is more sensitive to statistical errors [56] .

The kernel function for the normal ordered product of power of a and a† is:

Rη

�
a†nam

�
(x; θ) = ei(m−n)θ ·

Hn+m
�√
2x
�t

(2η)n+m
�
n+m
n

� (3.32)

where Hl is the l-order Hermite polynomial. It can be shown that, for this formula to

be valid, η has to satisfy the lower bound η > 1/2 [56] .

From (3.32), it is possible to obtain:

Rη

�
a†a
�
(x; θ) = 2x2 − 1

2η

Rη

k�
a†a
�2l
(x; θ) =

8

3
x4 − 2x2

Rη

k
X̂φ

l
(x; θ) = 2x cos (φ− θ)

Rη

k
X̂2

φ

l
(x, θ) =

1

4

�
1 +

�
4x2 − 1

η

��
4 cos2 (φ− θ)− 1

��

3.4 Added noise in tomographic measurements

The tomographic measurement of a quantity Ô is defined as the average of the

kernel R
k
Ô
l

over the homodyne data. In principle, a precise knowledge of the density

matrix would require an infinite number of measurements on identical preparations of

radiation. However, in real experiments one has only a finite number N of data at his

disposal, and thus statistical analysis and errors estimation are needed. Provided that

the kernel function satisfied the hypotheses of the central limit theorem, the confidence
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interval on the tomographic reconstruction of
G
Ô
H

is ([57] [58] ):

δO =
1√
N
∆Rη

k
Ô
l

where ∆Rη

k
Ô
l

represents the precision of the measurement and it is the variance of

the kernel over the tomographic data:

∆Rη

k
Ô
l
=

v] π

0

dφ

π

] +∞

−∞
dx p (x,φ)R2η

k
Ô
l
(x,φ)− kÔl2 (3.33)

It is worth saying that ∆Rη

k
Ô
l

depends on η.

An example of application of (3.33) is provided in Re.. [55] where the error for

diagonal density matrix elements ρnn is computed to be:

σn =
2√
N

When the quantity Ô can also be directly measured by a specific setup, the tomo-

graphic precision ∆Rη

k
Ô
l

can be compared with the corresponding quantum fluctua-

tion
t
k∆Ô2lη. It is worth noticing that for η < 1, due to the smearing effect of non unit

quantum efficiency, the noise
t
k∆Ô2lη is larger than the ideal quantum fluctuation. It

is possible to show [57] that the tomographic measurement is always more noisy than

the corresponding direct measurement for any observable and any value of the detector

quantum efficiency η.

For the field quadrature, the confidence interval on direct measurement of the

quadrature, according with Eq. (3.31), reads:

G
∆X̂2

θ

H
η
=
G
∆X̂2

θ

H
+
1− η

4η
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This can be compared with the error for the tomographic reconstruction:

∆Rη

k
X̂θ

l
(x,φ)2 =

G
∆X̂2

θ

H
+
1

2
knl+ 2− η

4η

corresponding to an extra noise:

N
k
X̂θ

l
= +

1

2

�
knl+ 1

2η

�
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Chapter 4:
Experimental realization of DOPO and homodyne
detection

4.1 Threshold and frequency degeneration

In this chapter, the implementation of the degenerate optical parametric oscillator

(DOPO) and the homodyne detector are described. The OPO is controlled to work be-

low threshold and in condition of frequency and polarization degeneration by choosing

a proper non linear crystal and suitably setting its working point. At the same time the

homodyne detector has to be set to optimize the detection of the DOPO output.

Since the ability of an OPO to squeeze the input quantum noise is linked to the

distance from threshold, a stable and well controlled threshold is required.

DOPO results reported in previous chapters refer to the ideal case of plane wave and

do not take into account the spatial temporal distribution for the interacting fields. Light

beams actually involved in the process are Gaussian beam, whose transverse profile, is
9 [2] :

v (x) =
wmin
w (z)

e
−r2

k
ik

2R(z)
+ 1
w2(z)

l
e−i(kz−β(z)) (4.34)

where z is the propagation direction, r2 = x2 + y2 and k = 2π/λ is the wavevector.

Quantities w (z) and R (z) respectively represent the spot size and the radius of curva-

ture of the beam in z:

w2 (z) =
λ

π

%
b+

(z − zmin)2

b

&

R (z) = z

�
1 +

b2

(z − zmin)2
�

9It is possible to show that beams generated from a traditional laser source or from a generic optical cavity are Gaussian
beams.
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where b is called confocal parameter and zmin corresponds to the position of the min-

imum spot size wmin = λb/π (beam waist ). The phase β (z) = arctan
�
z−zmin
b

�
. The

confocal parameter b is strictly determined by the geometry of the cavity from which

the Gaussian beam is emitted 10. Modes described by (4.34) are in the so-called TEM 00

(transverse electro-magnetic mode ) and correspond to minimum diffraction loss.

When considering beam Gaussian profile in the equations ruling signal, idler and

pump modes evolution, the effective size of non linear effect depends on superposition

integral of the three fields [59] . A full detailed analysis taking into account the effect

of diffraction and different refraction indexes seen by the waves is reported in reference

[59] ; the most interesting result concerns with the expression for the pump threshold

power:

Pth =
π2

4FsFiBupENL
(4.35)

In (4.35) Fs/i is the cavity finesse at the signal/idler wavelength λs/i
11 and Bup the

build up parameter for the pump at λp 12. The non linear conversion coefficient, ENL,

depends on χ(2), on the ratio of the non linear crystal length L over the pump confocal

parameter bp and on the phase matching parameter ∆k :

∆k = kp − ks − ki

being kξ the wavevector for the mode ξ. The functionENL (∆k) is bell-shaped with the

maximum for ∆k ≡ ∆kopt and the half-height width given by |∆k| π
L

. For the OPOs

discussed in this thesis, ∆kopt ≈ 0 so that in the following the ENL optimization will

be considered as corresponding to a perfect phase matching ∆k = 0. The quantity ∆k

expresses the phase mismatch between the three waves propagating inside the crystal,

due to differences in the optical paths; since λp 9= λi,s the wave inside the crystal travel

at different phase velocities because of normal dispersion in the material. Requiring

10In case of laser outputs the cavity is the one in which the active medium is pumped
11For degenerate OPO the equation simplifies inPth = π2

4F2B0ENL
as long as all the cavity parameter for the signal coincide

with those for the idler.
12The build up parameter is defined as the ratio of the power circulating inside the cavity over the input power.
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a perfect phase matching is equivalent to impose the condition for constructive inter-

ference between the suharmonic optical waves generated in the different points of the

crystal. Among all possible pair of signal and idler waves satisfying the energy conser-

vation condition (ωp = ωi + ωs), the most favoured and in turn the actually generated

one, is that satisfying the relation ∆k = 0 (corresponding to the lower threshold).

Since the pump power is experimentally limited by the used laser source, the best

way to reduce the OPO threshold is to adjust parameters Fξ, Bup and ENL in (4.35).

Finesses are determined by a proper choice of the cavity mirror trasmittances while the

build up is enhanced by setting cavity resonance on pump mode. In the present setupPth
is addictionally lowered by ensuring triple resonance on pump, signal and idler modes

(see following sections). Eventually, the non linear coupling is optimized by a suitable

cavity geometry (mirrors radius of curvature and relative distance) and ensuring∆k = 0

at the desired wavelengths..

Degeneracy condition is obtained by using a type I non linear crystal, generating

signal and idler beams with the same polarization, and by properly setting the OPO

working point. The frequency degeneration condition is equivalent to requiring an op-

timum non linear coupling for signal and idler modes at λs = λi = 2λp. For experi-

mentalist, this translates into the phase matching condition:

∆k (λ, T ) =
2π

λp
[n (λp, T )− n (2λp, T )] = 0 (4.36)

with λ = (λp,λs,λi). In previous equation, it is stressed the dependence of refraction

indexes n on both the beam wavelength and the crystal temperature T . Since n (λ, T ) is

a strictly monothonic function of λ, the phase matching condition is achieved by choos-

ing a suitable temperature T = Td so to satisfy Eq. (4.36). The degeneration tempera-

ture Td is strictly determined by the crystal thermal properties. An active temperature

control is required to guarantee T = Td against the environment temperature fluctua-

tion.
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4.2 OPO experimental set up

The entire experimental setup is based on a continuous wave (CW) commercial

Nd:Yag laser (LightWave model 142 dual wavelength) internally frequency doubled.

The source emits both the fundamental (≈50mW @1064nm), used as homodyne LO,

and the second harmonics (≈150mW @532nm), employed as DOPO pump. In this

condition, the DOPO output beam at frequency degeneracy are generated exactly at

1064nm.

Just after leaving the laser head, the pump beam passes through an electro-optical

phase modulator (EOM) and a Faraday rotator (FR) [62] . Phase modulation is necessary

to the control of the cavity length, implemented by a standard Pound-Drever technique

[63] . The insulator (FR) protects the source from cavity back-reflected light by sending

it to a photodiode whose photocurrent is electronically processes to generate the Drever

Pound error signal.

An half-wave plate, λ/21 together with a polarizing BS just before the FR, allows

controlling the pump intensity sent to the OPO cavity. A second half-wave plate, λ/22,

at the FR output is used to adjust the polarization of the injected pump beam (see fig.

(4.1)).

Before entering the cavity, the beam impinges on a beam steering (HR@532) for the

fine alignment of the injection axis. The following dichroic mirror DCR is transparent

@532 nm and reflecting @1064 nm. On it impinges, together with the pump, a fraction

of the laser output @1064nm that is used as IR seed for the cavity. The seed is obscured

while the quadrature measurement on the DOPO output are performed.

An injection lens f2 matches the pump beam TEM00 to the TEM00 mode of the

cavity, say to the TEM00 whose b is given by the DOPO cavity geometry. This ensures

that the available pump power is utilized to the maximum extent.

4.2.1 OPO cavity properties

The squeezed light source that has been implemented is a triply resonant DOPO

(below threshold), based on a type I Lithium Niobate non-linear crystal (LiNbO3:MgO)
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control
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Figure 4.1. Experimental set-up for the OPO implementation. The laser output @532nm is used as OPO pump.
The electro-optic modulator (EOM) introduces on the pump beam the phase modulation needed for the Drever Pound
control. The half wave plate (λ/21) and the first PBS of the Faraday Rotator (FR) form a variable attenuator con-
trolling the pump power sent to the OPO. The λ/22 and the matching lens (fM ) adjust the pump polarization and
geometry. The laser output @1064nm is split by the system λ/2IR+PBSIR: the transmitted beam is used as LO
for the homodyne detector (not reported ), the reflected one as seed for the OPO cavity. The seed is sent to a beam
streering, driven by a piezoelectric crystal (PZTIR) to provide small changes in the optical path. Eventually it is in-
jected into the OPO after reflection on the dicroic (DCR) beam splitter. The OPO back-reflected beam is sent by the
FR to the phodiode PD connected to the Drever Pound system.
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placed inside a two mirrors optical resonator. This configuration has been chosen in-

stead of more stable monolithic or seminimonolithic configurations in order to achieve

the maximum extent of versatility of the device. OPO cavity is made up of two mir-

rors with curvature radius R = 51.68 mounted on Aluminium plates spaced by Super-

INVAR rods for mechanical isolation from the environment acoustic noise. Input mir-

ror is HR at degenerate wavelength Tin (@1064nm)= 0. 750/00, with Tin (@532nm)=

0. 163%. Two choices are possible for the output mirror with T Iout (@1064nm)= 2.9%

or T IIout (@1064nm)= 4.6%; in both cases Tout (@532nm) ≈ 10/00. Considering the total

measured loss per pass inside the crystal (A =2% @1064nm), the corresponding cavity

couplings for the two configurations are respectively ηIout =
Tout

(Tout+Tin+2A)
= 0.4 and

ηIIout = 0.5 with cavity linewidth@1064nm of 15MHz and 18MHz. The cavity length

is set at ∼102.5 mm, not far from the concentric configuration to exploit the best con-

dition for the non-linear interaction, expressed by ENL.

The pump resonance condition, needed to enhance the build up, is ensured by the

Drever Pound active control of the cavity length [63] . The loop actuator is provided

by a piezoelectric crystal mounted behind the cavity output mirror. The obtained length

stability is 0.7nm.

The OPO cavity is aligned by adjusting the geometry in order to transfer all pump

power into the TEM00 mode, by minimizing the other orders TEM by reducing the

asymmetries and properly setting the matching lens f2. Resonance is achieved by lock-

ing the OPO cavity to the pump TEM00: this reduces diffraction effects and maximize

the coupling of the pump beam with the crystal.

The obtained threshold for the system for the mirror configurations employing T Iout
is 48mW with for the DOPO with T Iout it is 68mW. The observed quadrature squeezing

for ηIout is 2.4dB.

4.2.2 Temperature control

Due to LNB properties, the frequency degeneration temperature is Td ≈112◦C. To

work stably at this temperature the non-linear crystal is holded in an Aluminium oven,
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temperature stabilized by means of an active control. The heater is a thermoresistor wire

(Thermocoax ) winded around the holder. The system is fitted with two temperature

sensors. The first one, an AD590 chip, delivers a current proportional to the measured

temperature. The difference between such an output and a reference value provides the

error signal. The control is based on a PID (proportional integrative derivative) filter

implemented digitally by a VME station.

The AD controller is assisted by a finer one, based on a Negative Thermistor Coef-

ficient sensor (NTC), inserted in a resistive Wheatstone-like bridge. Temperature fluc-

tuation induces changes in the NTC resistance and turns out in a deplacement of the

bridge working point with respect to perfect balance. The current flowing through the

unbalanced bridge is used as a signal error and is sent to a PID implemented by the

VME.

Residual temperature fluctuations are < 1m◦C over one hour.

4.2.3 Triply Resonance condition

The temperature control is also used to achieve triply resonance of the pump and

the signal/idler modes. This configuration offers the advantage of a lower threshold for

parametric oscillation and provides additional frequency selectivity in the OPO opera-

tion.

The resonance condition translates into a precise choice of the cavity length; since

the Drever-Pound system locks the cavity to the pump mode TEM00, small adjustments

for triply resonance are obtained by finely tuning the crystal temperature around Td
while preserving the pump locking. Since signal and idler become indistinguishable, at

degeneracy the triply resonance condition is equivalent to a double resonance one.

For a given temperature the width of the function ENL (∆k) is given by the condi-

tion |∆k| π
L

[59] . This introduces a certain tolerance on phase matching condition: all

the signal/idler frequencies satisfying the energy conservation and the phase matching

within a domain 2π/L can oscillate. The maximum of theENL (∆k) curve corresponds

to the pair λs/i satisfying exactly the phase matching condition for given λp and crystal
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Figure 4.2. Giordmain and Miller diagram. Signal resonances are plotted as a function of signal frequency ωs on
ordinary linear scale, with frequency increasing from left to right. Idler frequency scale is determined by the signal
one through the energy conservation realtion so to have ωp = ωi +ωs along each vertical line. Idler resonances are
diplayed as increasing from right to left. A signal-idler pair with both resonances centered on the same vertical line,
together with energy conservation, will satisfy double resonance condition. Resonance superposition must occur
within the linewidth (insert on the left).

temperature T . For T ≈ Td this pair is the one with λs = λi = 2λp. When the pump

level is above the threshold the most favourite pair of signal and idler is the one below

the gain curve with the frequencies closest to the maximum gain.

When the crystal is inserted in a cavity, a further selection on the beam frequencies

is introduced and only the frequency corresponding to cavity resonances can oscillate
13. Since the signal/idler optical length is function of the index of refraction, the position

of the signal resonances as well as the free spectral range are different from those for the

idler. Small changes of T determines a replacement of the resonances and free spectral

ranges. Experimentally by adjusting the temperature the two ’’combs’’ are mutually

shifted until the signal and idler resonances are superimposed. In this case both signal

and idler will oscillate at the same frequency inside the cavity and the simultaneous

resonance condition will be satisfied [60] . This situation is explained in the Giordmaine

Miller diagram [61] ; signal and idler cavity resonances are plotted against the respective

frequencies, with free spectral ranges (FRS) δωs and δωi. Theωs andωi axes are set so to

13It is worth stressing that for the cavities used in the present set up the ENL width expressed in frequency is two orders of
magnitude greater that the cavity FSR for both the signal and idler beams. This implies that there are more FSRs for the IR beams
that can exploit the effect of the non linear interaction.
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have the signal frequency increasing from left to right and the idler’s one in the opposite

direction with scales adjusted to have the frequency conservation relation (ωs+ωi = ωp)

satisfied along each vertical line. If a signal-idler resonance pair lies on the same vertical

line it satisfies the simultaneous resonance condition. When the temperature is changed

the position of the resonance will advance along the scales, one to the left the other to

the right at slightly different rates because of dispersion, but the scale will not change.

Condition for the triply resonance must be satisfied within the cavity linewidths,

that are in turns function of the cavity finesse for the signal and idler. By taking into

account the properties of n (λ, T ), cavity linewidths can be expressed in terms of the

crystal temperature. For the present case, assuming perfect degeneracy for the signal

and idler beams, minimum width of the cavity resonance for the IR is ≈ 1.5m◦C. This

values, imposing the ultimate limit for the crystal temperature stability, is well above

the one obtained with the used controller.

4.3 Parametric gain measurement

An estimation of the squeezing degree and in turn of the distance from threshold

is provided by the study of parametric gain for the system below threshold. This mea-

surement is based on phase dependent amplitude amplification/deamplification experi-

enced by an input seed at degeneracy wavelength (i.e. 1064 nm). Experimentally, the

seed amplification is measured as a function of the phase relative to the pump. At this

purpose the seed optical path is linearly scanned in time by reflection on a piezoelectric

(PZT) mounted mirror driven by a linear ramp. As a reference for the seed amplitude,

it is taken the value relative to the infrared beam transmitted by the cavity in absence of

the pump (say when the non linear process is completely switched off).

The parametric gain oscillatory behaviour is directly seen by sending the DOPO

output to a linear photodiode. The minimum of the gain curve, corresponding the best

deamplification, is independent on the seed power and is linked to the distance from
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threshold by relation [64] :

Gmin =

%
1 +

u
P

Pth

&−2
(4.37)

whereGmin is the curve minimum andP is the pump input power. The limiting value for

Gmin corresponds to 0.25 for P = Pth. By inverting formula (4.37), from the measured

Gmin, it is possible to obtain the DOPO working point. The maximum Gmax shows

a sharper dependence on P/Pth and increases when the threshold is approached of an

amount inversely proportional to the seed power [64] .

For a certain OPO working point, Gmin also provides an estimation of the best

obtainable squeezing S, say the spectral noise at zero frequency for the DOPO output

normalized to shot noise:

1 + S = 1− 4
s
Gmin

�
1−

s
Gmin

�
At the threshold perfect squeezing at zero frequency is achieved.

Parametric gain is also used to determine the degeneracy temperature. Since the

gain itself depends on the non linear interaction size, it is optimized when ∆k is set to

zero at the frequency of the seed, say, in the present case, at T = Td. The search for Td
is performed by checking the amplification and deamplification of the seed at different

temperature and choosing the one ensuring the best Gmin for the same Pωp.

At T ≈ Td, the best Gmin experimentally obtained with the used setups is Gmin =

0.275, corresponding to 82% of distance from threshold and a theoretical optimum

squeezing of -26 dB. Approaching more closely the threshold the parametric gain mea-

surement becomes unreliable due to resolution problems of the photodiode signal. In

this case the measurement of Pωp/Pth is done by directly measuring the threshold and

the green power injected inside the DOPO.
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Figure 4.3. Seed amplification and deamplification normalized to the reference value (seed transmitted by the cav-
ity in absence of the pump). Time variation linearly corresponds to seed phase variation. The curve refers to a
minimum Gmin =0.33 (P/Pth ≈ 0.55).
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4.4 The Homodyne detector

The DOPO output is sent to an homodyne detector. It consists of a beam splitter

(BS), two focusing lenses and a pair of high quantum efficiency photodiodes (Epitaxx

ETX300, indicated as PD1 and PD2). Each photodiode is matched to a low–noise trans–

impedance AC (> few kHz) amplifiers based on CLC425. The two AC outputs are

connected to an hybrid power splitter/combiner giving both sum and difference of the

incoming signals. The difference photocurrent is further amplified by a low noise high

gain amplifier (Miteq AU1442 G=34dB, noise figure 1.2) [26] . The DC components of

each photocurrent are sent to an additional output used to check the homodyne balanc-

ing.

The homodyne local oscillator (LO), propagating orthogonally to the signal, is pro-

vided by the laser output @1064nm.

Electronics has been carefully checked for what concerns extra-noise sources and

RF pick-up. In particular, the photodiodes and all the amplifiers are powered by low

noise isolated DC voltage generators.

The overall detection efficiency depends on detector balancing (i.e. how equal are

the two photocurrents) and mode matching between signal and LO. Accordingly many

efforts are required to reach these conditions.

4.4.1 Detector balancing

To optimize the detection, electrical signals for the two BS outputs must have the

same amplitude. This task is achieved by matching the two homodyne photodiodes and

their downstream electronics and by aligning the BS so to have trasmittivity t = 1/2

(balanced BS)

First of all, it is chosen a pair of photodiode heads with the closest quantum ef-

ficiencies ηPDj (ηPD1 ≈0.91 , ηPD2 ≈0.90 for the used pair) and dark currents IPDj
(IPD1=15nA, IPD1=11nA). Moreover electronic components in the two photodiode tran-

simpedance amplifiers are matched: a characterization of the response for different

power of the input radiation has given for the photodiodes DC conversion coefficient
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Figure 4.4. A picture of the homodyne detector showing the beam splitter (BS), the two photodiodesPD1/2 (each
preceeded by a focusing lens), the MC cavity, the prisms of the optical delay line and the half wave plate for polar-
ization matching.
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GPD1= 323±1 mV/mW and GPD2= 321±1 mV/mW. Differences for the AC output, ac-

tually used in the homodyne detection are negligible. The saturation power is 6mW for

both PD1 and PD2.

The BS is balanced only when oriented exactly at 45◦ with respect to both signal

and LO propagation directions. Small BS rotations are allowed by a rotatory stage with

micrometric screws. Unbalance is estimated by comparing, for different BS angle, the

transmitted P1 and reflected P2 powers on the homodyne photodiodes:

∆P =
|P1 − P2|
P1 + P2

% (4.38)

with Pj =
Vj−Vjdark

GPDj
taking into account different photodiode gains GPDj and dark volt-

age Vjdark. BS orientation is modified till perfect balancing ∆P = 0 is reached simul-

taneously for the signal and the LO beams.

Experimentally the alignment is performed by obscuring the LO and the OPO pump

and sending on the BS the output of the seeded OPO locked to IR TEM00 resonance.

Powers measured by each homodyne photodiode over long time interval (≥ 0.5 h) are

compared by (4.38) and unbalance is estimated by time averaging ∆P (t). Since the

seed transmitted by the OPO is very feeble (≈ 30µW powered), the power measurement

is badly affected by photodiode noise. Relative error on ∆P estimation is reduced by

sending the LO on the BS to check the quality of the balance. Small corrections to the

BS orientation can eventually be performed. Best obtained value for ∆P is accurate

within 3%± 1%.

4.4.2 Mode matching between LO and signal

Spatio-temporal mode matching condition is the most critical parameter in homo-

dyne setting. As previously shown, the LO acts as an optical filter selecting for the de-

tection only the field with its same properties. In experimental homodyne, the situation

is reversed and the LO profile is tailored to match exactly the OPO output properties,

so to optimize its detection. In the entire mode matching procedure the OPO pump is

obscured and the LO oscillator is compared with the transmitted beam for the IR seeded
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OPO resonant on the IR TEM00. The LO amplitude is kept to be equal to the OPO out-

put one, to be augmented only when the homodyne is aligned and ready to be used.

The superposition between two Gaussian beams is maximum when differences in

the beam waists and in the radii of curvature are reduced to zero. Since w (z) andR (z)

are fully determined by b and the optical path z− zmin, the condition of optimum mode

matching translates into the coincidence on these parameters for the two beams.

The matching of the two confocal parameters b is obtained by sending the LO

through an empty cavity (mode cleaner, MC) with the same geometry of the OPO one.

MC mirrors have the same (nominal) radius of curvature as the OPO’s (R = 51.68). By

means of a micrometric translation stage (100µm sensible) mounted below the output

mirror, the MC length is set to be equal to the measured OPO one (@1064nm) 14 with

typical residual differences of ≈200µm. The MC is set to resonate on the TEM00 by

means of a Drever Pound system identical to the OPO’s one.

Second requirement is the matching of optical paths z− zmin to the BS for the two

beams outing the MC and OPO. If this condition is not satisfied, at a point z the beams

will exhibit different radii of curvature and destructive interference can arise between

the points of the two wave fronts. Optical paths are matched by adjusting the LO’s one

with an optical delay line. This is made up of three prisms whose relative distance can

be varied with a resolution of 100µm by means of a micrometric translation stage. PZT-

driven small changes of the optical delay line length control the LO phase θ. The phase

is continuously spanned between 0 and 2π by applying a linear ramp to the PZT.

Eventually an half-waves-plate on LO path guarantees polarization matching.

The last, obvious, condition for optimum superposition is the coaxiality of the

beams downstream BS so to prevent from spatial spread. The LO propagation direction

is aligned with a beam steering (HR@1064 nm).

A quantitative measurement of the interference is provided by intensity measure-

ment on the homodyne PDs. When introducing a dephase θ between LO and signal,

14The optical length @1064nm is obtained by looking at the IR transmission of the cavity when its length is linearly varied.
The transmission shows peaks corresponding to the istantaneous resonance of the TEM00. The optical length is provided by the
relative distance between them.
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the intensity for each BS outputs shows an oscillatory behaviour. A measurement of the

beams superposition is the contrast CNT [62] :

CNT ≡ Imax − Imin
Imax + Imin

with Imax /min the maximum/minimum of the experimentally measured oscillation. As-

suming initially equal intensities of the LO and the signal (ILO = Is = I), for perfect

mode matching, the system turns from perfect constructive interference (Imax = 2I) to

perfect destructive interference (Imin = 0), so that CNT = 1 15. The mode matching

quality is measured by deviations of the actual CNT from 1. The measurement is si-

multaneously performed on both the homodyne PDs, by correcting the effect of dark

currents. The confocal parameter, the optical paths and the polarization of the LO are

progressively adjusted to optimize the CNT.

The entire procedure is done by controlling the coaxiality of the beams on a CCD

camera (TM-745 Spiricon ) set at one of the two BS outputs. For perfectly coaxial

beams, the interference figure on the CCD exhibits cylindrical symmetry and its central

maximum expands when improving the mode matching.

Typical final values CNT=0.97±0.02 have been repeatedly obtained. The overall

computed quantum efficiency (imperfect detectors+CNT effects) is η =0.88±0.02.

The very last part of the procedure is to set the homodyne detector in working

condition. The LO power is increased up to 5.5mW. The phase is continuously spanned

between 0 and 2π by applying a linear ramp to the optical delay line PZT, so that the

phase is linearly varied with the time. The ramp period is set to be 200ms. During the

measurement the DOPO is not seeded and only the pump is injected in it.

15When considering initial unbalance in the beam intensities (Is �= ILO) it is more convenient to use the visibility, V IS :

V IS =
2
√
IsILO

Is + ILO
· CNT

For perfect balancing V IS reduces to CNT .
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Figure 4.5. The inteference curve detected on one of the homodyne phodiodes. The time coordinate linearly cor-
responds to a variation of the LO phase. The measured contrast, obtained by a non linear fit of the data (red line)
gives CNT = 0.97.

Figure 4.6. Typical interference patterns recorded by the CCD camera at one of the BS outputs. On the left the first
interference ring around the central maximum is well visible. On the right, the mode matching has been improved
and the power re-distributes from the first ring to the central maximum.
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4.5 Homodyne data processing

The output of the homodyne detector provides the DOPO output quadratures. Ac-

quired samples consist ofN homodyne data {xi, θi}, j = 1, ..., N with phases θi equally

spaced. Since the piezo ramp is active during the whole acquisition time, to each θi cor-

responds a single value xi.

The data can be processed in different ways. A first measurement is performed

by looking at quadrature noise spectrum of the field outing the DOPO, as a function

of the phase. As expected a sub-shot noise character is shown for the LO phase θ =

π/2. Spectral measurements are performed by sending the photocurrent difference to

a spectrum analyzer (Tektronix-2712, working range 1KHz-10GHz) set to zero-span

operation (following only one spectral component). It has to be noted that the low

frequency region of the spectrum is affected by the laser source noise (shot noise limited

@2.5MHz). Moreover to see the squeezing effects it is necessary to follow the DOPO

output behaviour well inside the cavity bandwidth (18MHz and 15MHz for ηout = 0.5

and 0.4 respectively). These conditions determined the choice of looking at the spectral

component at 3MHz. Acquisition is triggered by a linear ramp applied to the PZT,

that drives θ. The ramp is adjusted to obtain a 2π variation in an acquisition window.

Eventually data are normalized to the shot noise level measured by obscuring the DOPO

output.

A different analysis is performed by sampling the homodyne output to acquire to-

mographic data to be used in state parameters reconstruction [26] . In this case, to avoid

the laser low frequency noise, data sampling is moved away from the optical carrier fre-

quency by mixing the homodyne current with signal of frequency Ω. Different values

of Ω ranging from 2.7 to 8 MHz have been acquired to investigate the field state at dif-

ferent points of the cavity bandwidth. The ramp spans the 2π LO phase in 200 ms. The

resulting current, is filtered by a cascade of low–pass filters with total bandwidth B.

Eventually the filter output is sampled by a digital acquisition PC based module

(Gage 14100) able to acquire up to 1M–points per run with 14 bits resolution.

60



0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11

-1

0

1

2

3

Q
ua

dr
at

ur
e 

N
oi

se
 (d

bm
)

LO phase (a.u.)

              shot noise level

Figure 4.7. Variance ∆X2
θ (@3MHz) against the local oscillator phase θ linearly scanned with the time. The noise

is normalized to the shot noise, value (red trace). It is possible to see the non classical reduction of the noise, below
the shot noise.
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Figure 4.8. Tomographic data: quadratures outcomes against the LO phase θ scanned over 2π in 200ms. It is
possible to see the enhancement and reduction of the noise corresponding respectively to the anti-squeezed and
squeezed quadratures. By selecting a small fraction of the whole distribution, the phase θ can be considered to be
approximately constant (θ ≈ θ̄), so that the data give the hystogram of the measured quadratureXθ̄ .
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Calibration with respect to the noise of the coherent vacuum state is obtained by

acquiring a set of data by obscuring the signal while scanning the LO phase θ. The total

electronic noise power has been measured to be 15 dBm below the shot–noise level,

corresponding to a signal to noise ratio of ≈ 40.
The reconstruction are carried out by dr. M.G.A. Paris by means of pattern function

technique.
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Chapter 5:
Deviations from Gaussianity for DOPO close to thresh-
old

The experimental set-up illustrated in previous chapters permits to investigate the

behaviour of the squeezed radiation emitted by the DOPO for different working condi-

tions. In particular data are acquired at different distances from threshold E , by chang-

ing the OPO cavity end mirror so to have two different value for the cavity escape effi-

ciency ηIout = 0.4 or ηIIout = 0.5 (see previous chapter). These measurements permit to

test for the DOPO output, the effect of threshold fluctuation, due to crystal temperature

fluctuation, pump intensity instability and cavity detuning.

The data analysis is performed by means of both pattern function tomography and

direct statistical analysis of the quadrature histograms obtained by homodyning the

DOPO output.

Tomographic measurements are performed at Ω = 3MHz. The resulting current,

is filtered by a cascade of low–pass filters with total bandwidth B * 1MHz, and it is

eventually sampled by the digital acquisition PC based module. The sampling rate ν

is fixed to 5Msamples/s for experimental convenience. It is worth noting that a ratio
B
ν
< 1 reduces the number of totally uncorrelated samples. In this way the number of

effective samples is given byNeff = N× B
ν

. Being the measured process stationary the

filtering-sampling procedure does not alter the statistics of the outcomes. In this way

the effective number of samples has been privileged with respect to a better defined

spectral selection.

5.1 Photon number distribution measurement

The first set of data is relative to ηout = ηIout = 0.4 and E = 0.5, 0.8 and 0.95.

The distance from threshold is experimentally estimated by direct measurement, at the

end of the data acquisition, of the power injected inside the cavity. It is worth stressing
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that, to our knowledge, no previous squeezing measurement on DOPO output have been

performed so close to threshold.

For each value of E typically 5 homodyne traces are acquired. For each, by means

of state tomographic reconstruction, are reconstructed the diagonal density matrix ele-

ment ρnn (up to n = 5) and the amplitude/phase quadrature variances (∆X, ∆Y ) nor-

malized to the shot–noise level obtained in homodyne calibration (see previous chapter,

last section).

The reconstructed ∆X and ∆Y are used to compute the photon number probabil-

ity pn for a STV state (see 2nd chapter), under the assumption of Gaussian state. The

obtained results, pn can be compared, for each n with the reconstructed ρnn Since pat-

tern function tomography is able to reconstruct the real state properties, without any a

priori hypothesis on it (see 3rd chapter), the aim of this test is to compare the results

expected for the DOPO output with the actual experimental finding [26] .

In Fig. (5.1) are report ρnn and pn for E = 0.5 (lower plot), 0.8 and 0.95 (upper

plot). As it can be seen the two determinations are sensibly different, their difference

being larger the closer the OPO is to the threshold. As an example, for E = 0.5 (lower

plot) �00 = 0.780 and p0 = 0.743 (< 3% difference), while for E = 0.95 (upper plot)

�00 = 0.585 and p0 = 0.533 (10% difference). For E = 0.8 (middle plot) is 8%.

This behavior has been confirmed by a second set of measurements performed with

higher coupling efficiency (ηout = 0.5). In this case data refer to E = 0.5, 0.60, 0.65,
0.70, and 0.8. Similarly to the previous case, the relative deviation between �00 and p0
increases with E , but, for equal E , the discrepancy is less evident than for the case of

ηout = 0.4. The maximum deviation is less than 6% for E = 0.8. In Fig. (5.2) the

relative deviation between �00 and po for both coupling efficiencies are reported.

5.2 Quadrature statistics measurement

The origin of these differences can be related to the fakeness of the model used to

describe the DOPO output. To give a more quantitative estimation of the reliability of

the STV state model, it is tested the Gaussian character of the state by analyzing the
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Figure 5.1. Photon number distribution for E = 0.5 (a), 0.8 (b) and 0.95 (c) as recovered by pattern function
tomography ( �nn black columns) and in the Gaussian state hypothesis (pn grey columns). The two determinations
are different with a deviation increasing with pump power. Confidence intervals (not shown) are much smaller that
the difference between the two determinations.
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Figure 5.2. Relative difference between the two experimental determinations of �00 (by pattern function tomogra-
phy) and p0 (Gaussian hypothesis). The reported deviations correspond to E = 0.5, 0.6, 0.65, 0.7, and 0.8 ( ηout
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Figure 5.3. Kurtosis of p (x, θ) for homodyne data corresponding to the coherent vacuum maesurement, obtained
obscuring the signal port of the homodyne detector. The Kurtosis distribution is flat with mean value practically
equal to 0 for every value of θ as expected for Gaussian beams.

data statistics at a fixed θ. It is worth remembering that indeed for a Gaussian state, the

Wigner function is Gaussian and so is the marginal distribution p (x, θ) at fixed θ: any

deviation of p (x, θ) from a Gaussian is an indication of the deviation of the state itself.

The deviation of a statistical distribution from a Gaussian can be evaluated by means of

the Kurtosis [40]

K =
1

N

N[
i=1

(xi − x̄)4

σ4
− 3

which vanishes in the Gaussian case.

Each data set refers to a LO phase θ spanning between 0 and 2π corresponding

to 106 points acquired in 200 ms. In order to test the statistics at a fixed θn the entire

tomographic set is divided in 100 phase bins (10000 data each, lasting 2 ms). For each

bin the LO phase con be considered approximately constant so that the histogram of the

data describes p (x, θn) for a givenX (θn).

For a Gaussian state the kurtosis distribution with the phase bins is expected to be

flat with mean value consistent with zero. This is what actually observed for the calibra-

tion vacuum noise, obtained when obscuring the signal port of the homodyne detector.
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2/πθ = 0=θ

Figure 5.4. Distribution of Xθ values measured for E=0.95. Full lines (green) represent Gaussian with the same
mean and variance. As it can be see for θ = 0 the data are not in agreement with the Gaussian distribution.The
measured kurtosesK for the two distributions are respectively equal to 0.005 and 0.5.
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Kθ for calibration data is zero within 5 ∗ 10−3. This result releases from the hypothesis

of any spurious effects of the detection apparatus on the observed distributions.

In case the DOPO output is measured, the kurtosis distribution is no longer flat and

exhibits an oscillating behaviour. For the squeezed quadrature the kurtosis is approxi-

mately equal to zero, but clear deviations from a Gaussian (Kθ > 0) are observed for

the anti–squeezed quadrature. This behaviour becomes more and more evident when

the threshold is approached. In Fig. (5.5) are reported the p (x, θn) variance and Kurto-

sis versus the phase BIN. For low pump level the Kurtosis keeps below 0.15 for any θn

while for powers close to the threshold (upper plot)Kθ reaches 0.4÷ 0.5 in correspon-

dence of the two variance maxima. In all the acquisitions Kθ is practically 0 in corre-

spondence of variance minima. Even in the Kurtosis analysis, deviations from Gaus-

sianity are less evident when ηout = 0.5. This could indicate a less critical influence of

E as the coupling efficiency is enhanced.

5.3 Theoretical model

The experimental behavior can be connected to residual fluctuations of the OPO

parameters. Due to small changes in the crystal temperatureT , the laser pump amplitude

Ap or the cavity resonance ψ, the effective threshold Pth fluctuates.

These fluctuations transform a constant coefficient Langevin equation [21] into a

time dependent one:

da

dt
= (E + δE (t)) a† − (γM + iψ + iδψ (t)) a+

s
2γ1a

in
1 +

s
2γ2a

in
2 (5.39)

with γM = γ1 + γ2 the total damping rate and ain1/2 is the delta correlated vacuum

entering in the cavity due to the output mirror/extra losses. The time dependent terms

δψ (t) and δE (t) are Gaussianly distributed and represent respectively the fluctuations

around the stationary detuning ψ and parametric gain E . Ignoring the fluctuations the

field a generated inside the OPO inherits the Gaussian statistics of the input vacuum

ain thus giving rise to squeezed vacuum. When δψ (t) and δE (t) are switched on, in
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Figure 5.5. Kurtosis of p (x, θ) (red triangles) for three homodyne data sets: E = 0.5 (a), 0.8 (b) and 0.95 (c) and
ηout =0.4. Empty circles indicate the quadrature variance (given in a.u.) for the same E . The phase BIN at which the
variance and the Kurtosis are maximum coincides. The Kurtosis goes practically to 0 in correspondance of variance
minima. The highest Kurtosis is K = 0.5 for E= 0.95. In this case the relative deviation between �00 and p0 (see
text for details) reaches 10%.
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the explicit expression of a they are multiplied the input ain; since the product of two

Gaussian process is no longer Gaussian [40] , a deviates from the Gaussian state the

more the greater δψ2 and δE2 are.

The contribution δψ (t) in (5.39) is physically due to the residual errors of the sys-

tem controlling the OPO cavity length.

The parametric gain E linearly depends on the laser pump amplitude Ap times the

non linear coefficient ENL that is in turn a function of the phase mismatch ∆k (λ,T )

(see previous chapters) [59] . The fluctuation δE can be written as,

δE (t) = E
�
δAp
Ap
− δT 2

∆T 2

�

where it is stressed the dependence on the pump amplitude δAp
Ap

and on the crystal tem-

perature δT 2

∆T 2
fluctuations. In the following the latter ones will be ignored since fluctuate

much more slowly than δAp and δψ.

5.4 Zeroth order generation of STV states

By ignoring δψ and δE , Eq. (5.39) and its adjoint reduce to the time independent

DOPO ones so that the zeroth order solutions a(0) are the STV states seen in previous

chapters. In the frequency domain, with the matrix formalism ã (ω)≡
�

ã (ω)
ã† (−ω∗)

�
they can be expressed as:

ã(0) = G̃ ·
s
2γM b̃

in

with s
2γM b̃

in =
s
2γ1ã

in
1 +

s
2γ2ã

in
2

and G̃ the matrix of the Fourier transformed Green functions for (5.39). It can be re-

expressed as G̃ = g̃/D̃ (ω) with:

g̃ (ω) =

�
γM + i (ω − ψ) E

E γM + i (ω + ψ)

�
,
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D̃ (ω) = −
�
ω − iωOPO+

� �
ω − iωOPO−

�
where

ωOPO± = γM ±
t
E2 − ψ2 (5.40)

5.5 Perturbative solution

Time dependent Eq. (5.39) can be solved by means of an iterative procedure. To

this end, it is convenient to introduce the matrix:

∆̃ =

�
iδψ δE
δE −iδψ

�
(5.41)

representing the Gaussian processes δψ and δE . The fluctuating terms are characterized

by spectral densities

δE (ω) δE (ω�) = SE (ω) δ (ω + ω�)

δψ (ω) δψ (ω�) = Sψ (ω) δ (ω + ω�) (5.42)

proportional respectively to the laser pump technical noise and the spectral density of

the error signal for the OPO cavity length controller. In (5.42), and it what follows, the

bar indicate the average over the δψ and δE degrees of freedom.

Solution of Eq. (5.39) can be expressed in the frequency domain as:

ã =
∞[
i=0

ã(i) (5.43)

with the terms ã(i) obtained by the recursive formula:

ã(i) = G̃ ·
�
∆̃⊗ ã(i−1)

�
(5.44)
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The symbol ⊗ denotes the convolution in the frequency domain. By repeated applica-

tion of (5.44), ã(i) in terms of the input vacuum field is:

ã(i) (ω1) =
s
2γM

] ∞

−∞
dωi+1 A

(i) (ω1,ωi+1) · b̃in (ωi+1) i ≥ 1

with the kernels of the integral operator:

A(i) (ω1,ωi+1) =
iT

ι=2

] ∞

−∞
dωι

g̃(i) (ω1, . . . ,ωi,ωi+1)

D̃ (ω1) ...D̃ (ωi+1)

and

g̃(i) (ω1, . . . ,ωi,ωi+1) = g̃ (ω1) · ∆̃ (ω1 − ω2) · ... · g̃ (ωi) · ∆̃ (ωi − ωi+1) · g̃ (ωi+1)
(5.45)

being δ (ω − ω�) the Dirac delta function.

The field outside the cavity, obtained by means of the input output relations, is:

ã
out

=
s
2γ1 ã− ãin1 =

∞[
i=0

ã
out (i)

where

ã
out (0) =

s
2γ1

�√
2γM
D̃ (ω)

g · b̃in − 1√
2γ1

ãin1

�
ã
out (i) =

s
2γ1ã

(i)

Although an accurate examination of the range of convergence of the series expan-

sion (5.43) goes beyond the limits of the present discussion, it is worth discussing quali-

tatively the problem by recalling the Fubini-Tonelli inequality for two generic functions

f, g ∈ C (R):

] ∞

−∞

����] ∞

−∞
f (x− y) g (y) dy

���� dx ≤ ] ∞

−∞
|f (x)| dx

] ∞

−∞
|g (y)| dy
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This result implies that the series (5.43) is convergent if

] ∞

−∞

���g̃ (ω + ω̄) · ∆̃ (ω̄) /D̃ (ω + ω̄)
��� dω̄ < 1

Since
���D̃ (ω + ω̄)

��� ≥ ωOPO+ ωOPO− then a sufficient condition for the convergence is

] ∞

−∞

���g̃ (ω + ω̄) · ∆̃ (ω̄)
��� dω̄ < ωOPO+ ωOPO−

Then, approximating ∆̃ (ω̄) as:

∆̃ (ω̄) ≈
s
SE (ω)

�
0 1
1 0

�
+ i
t
Sψ (ω)

�
1 0
0 −1

�
one obtains

] ∞

−∞

����g̃ (ω + ω̄) ·
�s

SE (ω)

�
0 1
1 0

�
+ i
t
Sψ (ω)

�
1 0
0 −1

������ dω̄ � γ2M−E2+ψ2

that is SE (ω) and Sψ (ω) are upper bounded by the distance from the threshold.

5.5.1 Quadratures

The field quadrature can be expanded in a perturbative series similar to (5.43),

X̃θ (ω) =
∞[
i=0

X̃
(i)
θ (ω) = θ ·

∞[
i=0

ã(i) (ω) (5.46)

with θ the row vector

θ =
�
1
2
e−iθ 1

2
eiθ
�

Explicitly:

X̃
(i)
θ (ω1) =

s
2γM

] ∞

−∞
dωi+1 X

(i)
θ (ω1,ωi+1) · bin (ωi+1) (5.47)
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with the kernel of the integral operator in (5.47) expressed as:

X
(i)
θ (ω1,ωi+1) =

iT
ι=2

] ∞

−∞
dωι

θ · g̃(i) (ω1, . . . ,ωi,ωi+1)
D̃ (ω1) ...D̃ (ωi+1)

The output state quadrature is:

X̃
out

θ =
s
2γ1

∞[
i=0

X̃
(i)
θ −

u
γ1
γM
X̃
(in)
θ (5.48)

The quantity actually measured is reproduced from (5.48) by accounting for the de-

tection effect. Quadratures X̃out

θ are detected by a balanced optical homodyne and the

relative current is demodulated at the frequency Ω and integrated for a time 1/γf . the

resulting output signal is:

sθ (t) =

] t

−∞
e−γf (t−t

�)X
out

θ (t�) cos (Ωt�) dt�

=

] ∞

−∞
HSA (ω1, t) X̃

out

θ (ω1) e
iω1tdω1

with

HSA (ω, t) = HSA ‡ (ω, t) = −i
�

e−iΩt

ω − Ω− iγf
+

eiΩt

ω + Ω− iγf

�

5.6 Kurtosis calculation

The Gaussianity of the OPO output state is checked by looking at the KurtosisKθ

for the quadrature distribution. In terms of s (t) the Kurtosis is:

Kθ =
s4θ − 3

�
s2θ

�2
�
s2θ

�2 (5.49)
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where the quantities s2θ and s4θ are respectively the second and fourth order moments for

X̃
out

θ . By making use of (5.46):

s2θ =
[
n

[
i,j

i+j=n

s
(i,j)
θ (t)

s4θ =
[
n

[
i,j,k,l

i+j+k+l=n

s
(i,j,k,l)
θ (t) (5.50)

being n the order of the expansion for the moment under scrutiny and:

s
(i,j)
θ (t) =

II\
m=I

] +∞

−∞
dωm1 H

SA (ωm1 , t) e
i(ωI1+ωII1 )t

G
X̃

out(i)
θ

�
ωI1
�
X̃

out(j)
θ

�
ωII1
�H

and

s
(i,j,k,l)
θ (t) =

IV\
m=I

] +∞

−∞
dωm1 H

SA (ωm1 , t) e
i(ωI1+ωII1 +ωIII1 +ωIV1 )tG

X̃
out(i)
θ

�
ωI1
�
X̃

out(j)
θ

�
ωII1
�
X̃

out(k)
θ

�
ωIII1

�
X̃

out(l)
θ

�
ωIV1

�H
In the previous expressions k..l denotes the quantum average.

Without loosing in generality the denominator of (5.49) can be approximated with

the 0-th order solution s(0,0)θ (t). In general, s2θ and s4θ are computed by exploiting the

properties of Gaussianity for the quantity bin (ω) and δE (t) and δψ (t). The details

of the calculation will not be reported here, only a qualitative analysis of them being

proposed (for a more exhaustive analysis see Re.. [66] ).

5.6.1 Quantum average calculation

To computeKθ the quantum averages
G
X̃

out(i)X̃
out(j)

H
and

G
X̃

out(i)X̃
out(j)X̃

out(k)X̃
out(l)

H
must be evaluated. As shown by relation (5.47), X̃θ is given by applying an integral op-

erator to the input vacuum bin. This means that the quadrature products in (5.50) are

proportional to the product of two or four vacuum operator b̃in (ω), b̃in† (−ω∗) respec-
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tively. Since bin is Gaussian distributed the quantum average product of four quadra-

tures can be reduced to the sum of three products of two quadratures [40] :

G
X̃
�
ωI
�
X̃
�
ωII
�
X̃
�
ωIII

�
X̃
�
ωIV

�H
= 3

G
X̃
�
ωI
�
X̃
�
ωII
�HG

X̃
�
ωIII

�
X̃
�
ωIV

�H
(5.51)

so that only two quadratures product quantum averages must be calculated.

The properties of the input vacuum also guarantee that, in each product
G
X̃
(i)
θ X̃

(j)
θ

H
,

only the terms with b̃in on the left and b̃in† on the right will survive with b̃in delta corre-

lated. The product of two quadratures is thus simplified into:

G
X̃
(i)
θ

�
ωI1
�
X̃
(j)
θ

�
ωII1
�H
= X̃

(i,j)
θ

�
ωI1,ω

II
1

�
where:

X̃
(i,j)
θ

�
ωI1,ω

II
1

�
= 2γ

] ∞

−∞
dω̄ X

(i)
θα

�
ωI1, ω̄

�
X
(j)
θβ

�
ωII1 ,−ω̄

�
(5.52)

having indicated with

X
(i)
θα/β

�
ωI1, ω̄

�
= X

(i)
θ

�
ωI1,ωi+1

�
·α/β

with α =
�
1
0

�
,β =

�
0
1

�
.

In particular for the field outside the cavity:

X̃
out(i,j)
θ

�
ωI1,ω

II
1

�
= 2γ1X̃

(i,j)
θ

�
ωI1,ω

II
1

�
+
1

4
δ
�
ωI1 + ωII1

�
+

−
u

γ1
2
eiθδ0j

] +∞

−∞
dωII1 X

(i)
θα

�
ωI1,−ωII1

�
−
u

γ1
2
e−iθδ0i

] +∞

−∞
dωI1X

(j)
θβ

�
ωII1 ,−ωI1

�
where δ0j is the Kronecker delta.
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5.6.2 Time average

A further simplification concerns with the average over δE and δψ degree of free-

dom. Since the quantities δE and δψ are Gaussian processes the odd moments for their

distributions are all equal to zero and do not contribute to the calculus of the kurtosis.

Since each term of order i in the expression (5.46) contributes with a power i of δE and

δψ, the expansion (5.50) for s2θ and s4θ simplify to:

s2θ =
[
n

[
i,j

2n=i+j

s
(i,j)
θ (t)

s4θ =
[
n

[
2n=i+j+k+l

s
(i,j,k,l)
θ (t)

In the following expansion up to the 2-th order will be considered (n ≤ 1). The case of

higher orders is discussed in reference [66] .

For n ≤ 1, the only terms admitted in the second order moment are s(0,0)θ and s(1,1)θ ,

while contribute to the s4θ, all the s(i,j,k,l)θ whose indexes (i, j, k, l) are permutation of

the vector (0, 0, 1, 1). However, since the Kurtosis is given by the difference between

s4θ and
�
s2θ

�2
the terms (0, 0, 1, 1) and (1, 1, 0, 0) in s4θ while cancel with those obtained

by evaluating
�
s2θ

�2
=
�
s
(0,0)
θ + s

(1,1)
θ

�2
so that the only contribution will come fromG

X
out(1)
θ X

out(0)
θ

H
and

G
X

out(0)
θ X

out(1)
θ

H
.

Since δψ and δE are delta correlated, results similar to those for the quantum aver-

age are obtained for the arguments of the ∆ matrixes contained in (5.45). Moreover, it

is in particular possible to show [66] that the frequency sums
S

m ωm1 are equal to zero,

so that the fluctuating terms ei(ω
I
1+ω

II
1 )t and ei(ω

I
1+ω

II
1 +ω

III
1 +ωIV1 )t will be skipped in the

following.

Eventually the time average in the moments s4θ and
�
s2θ

�2
must be performed. By

considering the explicit expression for HSA (ωm1 , t), it is readily seen that in the prod-

uct
T
mH

SA (ωm1 , t) will appear terms proportional to 1, e±i2Ωt and e±i4Ωt. Since the

demodulation frequency Ω is usually very high (∼MHz), only the terms proportional
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to 1 will give a significatively non zero mean value in the time average. The product

HSA
�
ωI1, t

�
HSA

�
ωII1 , t

�
is thus rewritten as:

HSA
�
ωI1, t

�
HSA

�
ωII1 , t

�
=

[
σI ,σII

σI+σII=0

ei(σ
I+σII)Ωt�

ωI1 + σIΩ− iγf
� �

ωI1 + σIIΩ− iγf
�

with the right sides summed over σp = ±1, and an analogous expression holding forTIV
m=I H

SA (ωm1 , t). By taking into account these simplifications, it is convenient to

introduce the quantities:

s
(i,j)

θ,(σI ,σII)
=

II\
m=I

] +∞

−∞
dωm1

ei(σ
I+σII)Ωt X̃

out (i,j)
θ (ωI1,ω

II
1 )�

ωI1 + σIΩ− iγf
� �

ωII1 + σIIΩ− iγf
� (5.53)

and

s
(i,j,k,l)

θ,(σI ,σII ,σIII ,σIV )

= 3
II\
m=I

] +∞

−∞
dωm1

ei(σ
I+σII+σIII+σIV )Ωt X̃

out(i,j)
θ (ωI1,ω

II
1 ) X̃

out(k,l)
θ (ωIII1 ,ωIV1 )�

ωm1 + σmΩ− iγf
�

(5.54)

The Kurtosis can be easily rewritten in terms of (5.53) and (5.54) as:

Kθ =
s4θ − 3s2θ

2�
s
(0)2
θ

�2
=

1S
σ s

(0,0)
θ,(σ1,σ2)s

(0,0)
θ,(σ3,σ4)

2[
n=0

[
i,j,k,l
i�=j,k �=l

2n=i+j+k+l

[
σ

�
s
(i,j,k,l)
θ,(σ1,σ2,σ3,σ4) − 3s

(i,j)
θ,(σ1,σ2)s

(k,l)
θ,(σ1,σ2)

�

Poles of the integrands of (5.53) and (5.54) are due to product of
�
ωm1 + σmΩ− iγf

�
in HSA (ωm1 , t) with

T
i D̃ (ω

m
i ) contained in the X̃

out (i,j)
θ

�
ωI1,ω

II
1

�
. The integrations

in Kθ can thus be simply calculated, by means of the residues theory, taking into ac-
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count the delta correlation due to δE2 and δψ2 (see (5.42)). It is worth saying that no

correlation is expected between δE and δψ so that two contributions can be considered

separately.

For a generic perturbative order n, after performing the integration, the Kurtosis

takes the form [66] :

Kθ =
4S

σ R
out(0,0)

θ(σI ,σII)
R
out(0,0)

θ(σIII ,σIV )

�] ∞

−∞
dω∆R̃

(1)
θ (ω) +

] ∞

−∞
dv1

] ∞

−∞
dv2∆R̃

(2)
θ (v1, v2) + · · ·

�
(5.55)

where R
out(i,j)

θ,(σI ,σII)
are the sums of residues of s(i,j)

θ,(σI ,σII)
with respect to all the poles. The

functions ∆R̃(n)θ (ω) in (5.55) can be expressed in terms of R
out (i,j)

θ,(σI ,σII)
as:

∆R̃
(n)
θ (ω1,ω2, . . . ,ωn) =

[
i,j,k,l

2n=i+j+k+l

[
σ

�
R̃
out(i,j)

θ,(σI ,σII)
R̃
out(k,l)

θ,(σIII ,σIV )
− 3 R̃out(i,j)

θ,(σI ,σII)
R̃
out(k,l)

θ,(σIII ,σIV )

�

For n ≤ 1 expression (5.55) becomes:

Kθ ≈
4S

σ R
out(0,0)

θ(σI ,σII)
R
out(0,0)

θ(σIII ,σIV )

] ∞

−∞
dω
�
SE (ω)∆R̃

(1)
θE (ω) + Sψ (ω)∆R̃

(1)
θψ (ω)

�
(5.56)

where the function ∆R̃(1)θE (ω) and ∆R̃(1)θψ (ω) are obtained by collecting in the ∆R̃(1)θ the

terms proportional to SE (ω) and Sψ (ω)

5.6.3 Numerical simulations results

The behaviour of (5.56) is strongly dependent on the shape of the spectral densi-

ties SE (ω) and Sψ (ω). Nevertheless, some preliminar results can be obtained by the

analysis of functions ∆R̃(1)θE/ψ for different OPO parameters.

In fig. (5.6) are reported the behaviour of ∆R̃(1)θE (ω) and ∆R̃
(1)
θψ (ω) as functions

of the quadrature angle θ and the frequency ω for zero detuning. The parameters in the

simulations have been chosen equal to the experimental ones for ηout = 0.4, with a filter

bandwidth γf ≡ B =1MHz and the demodulation frequency Ω =3MHz. The distance

from threshold is E = 0.8. As seen by the plots, the deviations from Gaussianity are
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Figure 5.6. Spectral behaviour of ∆R̃
(1)
θE (left) and ∆R̃

(1)
θψ (right) as function of the quadrature angles for

ηout = 0.4, γf = 0.07, E = 0.8 and Ω = 3MHz. The frequencies ω are normalized to the cavity bandwidthγM .
The positive values for ∆R̃(1)θE/ψ , indicating a deviation from gaussianity, are more evident in the lower frequency
region of the spectra and reduce to zero at approximately one half of the cavity bandwidth.

expected to be more evident in the lower part of the spectrum. In general the effect

of ∆R̃(1)θE/ψ (ω) vanishes for frequency higher than one half of the cavity bandwidth. It

is worth saying that in this region also the effect of the laser pump noise contained in

SE (ω) is more evident.

Since most interesting results concern the low frequency behaviour in fig. (5.7) are

reported ∆R̃
(1)
θE/ψ (0), as functions of the quadrature phase θ (Ω =3MHz, γf =1MHz,

ηout =0.4, ψ =0) at different distances from threshold E = 0.95, 0.8, 0.5 and for zero

cavity detuning ψ.
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Figure 5.7. Behaviour of ∆R̃(1)θE (left) and ∆R̃
(1)
θψ (right) as functions of the quadrature angle θ for different dis-

tance from threshold E = 0.95 (up), 0.8 (center), 0.5 (down). The simulation parameters have been chosen equal
to the experimental ones for the ηout = 0.4 with a filter bandwidth γf =1MHz and the demodulation frequency
Ω =3MHz. ∆R̃(1)θE/ψ deviations from zero are stronger when the threshold is approached accordingly with experi-
mental finding. Moreover it is possible to recognized in ∆R̃

(1)
θE the oscillatory behaviour seen for the kurtosis, with

minima for the squeezed quadrature and maxima for the antisqueezed one.
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Accordingly with experimental findings for Kθ, the contribution from ∆R̃
(1)
θE/ψ

sharply increases in proximity of the threshold, where the relative effect of threshold

fluctuations is stronger. The simulations show that the most important contribution to

the Kurtosis is given by the parametric gain fluctuations (two order of magnitude higher

than the δψ’s one). Moreover ∆R̃(1)θE shows the oscillatory behaviour as a function of the

quadrature phase θ with minima (∆R̃(1)θE ≈ 0) corresponding to the squeezed quadrature

and maxima to the antisqueezed one.

Functions ∆R̃(1)θE/ψ have period equal to π. This a consequence of factors e±i4θ and

e±i2θ present in the explicit shape of the function ∆R̃
(1)
θE/ψ [66] :

∆R̃
(1)
θE/ψ ≈ 1 + Re

�
AE/ψe

i4θ +BE/ψe
i2θ
�

(5.57)

Coefficients AE/ψ and BE/ψ in (5.57) are determined by the OPO and the detection

parameters. Since in general AE/ψ and BE/ψ can be complex, the functions ∆R̃(1)θE/ψ are

not symmetric around π/2. This behaviour is widely evident in the shape of ∆R̃(1)θψ (see

fig. (5.7-right column) ) and it is accentuated when a non zero detuning ψ is introduced.

In fig. (5.8) are reported the behaviour of∆R̃(1)θE/ψ (0) forψ =0, 0.15, 0.25 (E = 0.8,
Ω =3MHz, γf =1MHz, ηout = 0.4). For increasing detuning, the effect of δE is

reduced. This is due to the fact that for non perfect resonance, the interference for each

wave bouncing back and forth inside the cavity is not optimized. This effect turns out in

a lower effective cavity Q-factor and in turn an higher threshold; for the same injected

pump power, the greater is ψ, the more the system is far from its effective threshold.

Eventually the effect of the detector is evaluated by considering three different

choices of the filter bandwidth γf =1MHz, 2.5MHz, 100kHz (see fig. (5.9)) (E = 0.8,
Ω =3MHz, ηout = 0.4, ψ = 0) Most interesting results concern with ∆R̃

(1)
θE that is

drastically reduced when the filter is clenched around the demodulation frequency Ω.

This effect is due to the fact that for wider γf , more spectral components are included in

the integration performed by the detector, so enhancing the obtained noise. It is worth

noting that when the demodulation frequency is moved in the spectral region on the
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(1)
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0.15 (red), 0.25 (blu) (E =0.8, Ω =3MHz, γf =1MHz, ηout =0.4). The detuning enhances the asimmetry around
π/2 for ∆R̃(1)θψ and due to its effect on the effective threshold, reduces ∆R̃(1)θE .
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Figure 5.9. Behaviour of ∆R̃(1)θE as function of the quadrature angle θ (E = 0.8, Ω =3MHz, ηout = 0.4, ψ = 0)
for γf = 2.5MHz (green),1MHz (blu) and 100kHz (red).

border of the cavity linewidth (Ω ≈ γM ), the use of a wide γf will suffer of the effect

of cavity filter, that flattens the spectral component to the shot noise level and corrupt

the ∆R̃(1)θE/ψ shape with respect to the case of narrower γf .

After these preliminar results, the computation of the kurtosis for assigned SE/ψ (ω)

will be considered. It is worth noting that the entire iterative procedure can be also

applied to the case of non degenerate OPO, so to evaluate the effect of fluctuations on

the entangled between the generated signal and idler modes. Work along this direction

is in progress.
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Chapter 6:
Transmittivity measurement with squeezed vac-
uum

Traditional optical measurements of the transmittivity T are performed by sending

on the absorbing sample a probe beam in a coherent state. The value of T is retrieved

by detecting the beam intensity up and down-stream the sample and comparing the ob-

tained results. Sufficient accuracy is achieved by using beams so intense to contrast

the shot-noise effect and provide a good signal to noise ratio SNR. However, in some

circumstances, using high input intensity is either not useful (in case of very low ab-

sorption) or unwise (strongly non-linear materials or samples whose structure may be

altered by intense photon fluxes).

Many experimental schemes have provided an upgrade of traditional one by mak-

ing use of squeezed light radiation. Most of them, used as probe beam a combination

of squeezed vacuum with a coherent field set in a well defined phase relation [19] , [20] .

Even in these cases, the observable is the field intensity but, due to the presence of the

squeezing, the ultimate the limit of shot noise level is beaten..

A further enhancement, in terms of the dose transferred to the sample, is proposed

by neglecting the coherent component and using as a probe directly the squeezed vac-

uum radiation [27] .

As discussed above, below–threshold DOPOs produce e.m. radiation in squeezed–

thermal–vacuum states (STV) with a Gaussian statistics [54] . Propagation through non

resonant media transforms an STV state into another one with different quadrature vari-

ances ∆X2
θ ; the trasmittivity T of the sample can be measured by exploiting the change

of ∆X2
θ . The combination with the coherent light is deplaced down-stream the sample,

where it acts as local oscillator in a balanced homodyne detector. Since the detected sig-

nal is proportional to Xθ times the LO amplitude, the detection noise can be neglected

also in case of very weak beams so that the effects of the SNR on the accuracy can be

disregarded.
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Essential to the proposed method is the use of a Gaussian distributed quadrature

Xθ. This means that for testing the method it is necessary to preliminarily measure the

distribution function by sampling Xθ an adequate number N of times. In alternative,

it is also possible to determine the whole Wigner function with quantum homodyne

tomography (QHT) using samples uniformly distributed over the whole interval (0, 2π).

6.1 Propagation of STV states through the sample

The OPO output is characterized by means of the adimensional parametersnth, nsq =

sinh2 r representing the average number of thermal and squeezed photons, respectively

(see previous chapters). The values of nth and nsq are set by the OPO working condi-

tions. In terms of nth and nsq, the mean total photon number is given by:

Ntot = nsq + nth + 2nsqnth , (6.58)

while the variance of the generic quadratureXθ reads:

∆X2
θ =

(2nth + 1)

4

�
1 + 2nsq + 2

t
(1 + nsq)nsq cos 2θ

�
. (6.59)

The STV states are described by a Gaussian Wigner function centered at the origin

[67] :

W (α) =
1

2π
√
∆X2∆Y 2

exp

#
−? [α]

2

2∆X2
− @ [α]

2

2∆Y 2

$
=

2

π

]
P (β) exp

�
−2 |α− β|2

�
d2β ,

with P (β) the corresponding P-representation:

P (β) =
1

2π
t�

∆X2 − 1
4

� �
∆Y 2 − 1

4

� exp
#
− ? [β]2

2
�
∆X2 − 1

4

� − @ [β]2

2
�
∆Y 2 − 1

4

�$
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corresponding to a density matrix:

� =

]
P (α) |αl kα| d2α

If the STV is sent through a medium of transmittivity T , the density matrix for the state

down stream the sample modifies as

�T =

]
P (α)

���√T αHG√T α��� d2α = ] PT (α) |αl kα| d2α ,

with

PT (α) =
1

T P
�

α√
T

�
=

1

2π
t�

∆X2
T − 1

4

� �
∆Y 2T − 1

4

� exp
#
− ? [α]2

2
�
∆X2

T − 1
4

� − @ [α]2

2
�
∆Y 2T − 1

4

�$ ,
and

∆X2
T −

1

4
= T

�
∆X2 − 1

4

�
. (6.60)

A similar expression is found for ∆Y 2T 16. Introducing the subfixes 0 and T for labelling

up– and down–stream quantities, respectively, Eq. (6.60) generalizes for a generic

quadratureXθ into:

∆X2
θ,T −

1

4
= T

�
∆X2

θ,0 −
1

4

�
(6.61)

Previous equations show that after the propagation through the sample, the STV state

is transformed into a new STV with quadrature variances given by (6.61). Physically

∆X2
θ − 1

4
quantifies the deviation of the actual STV variance from the vacuum state

case (shot–noise). The absorber deteriorates the quality of the squeezed state; in the

16In principle, in the absence of multiple reflections within the sample, the transmittivity T is given by T = T1TslabT2,
where T1 and T2 are the Fresnel transmission coefficients at the input and output faces of the sample respectively and Tslab is the
sample internal transmittivity.
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OPO Absorber

Homodyne Detector

LO

Figure 6.1. Schematic set-up for absorption measurement via quadrature detection. The STV state generated by the
OPO is sent to the absorber. The quadrature of the transmitted STV state are characterized by a homodyne detector
to retrieve the sample transmittivity.

limit case of T = 0 (complete absorption), the squeezing is completely degraded and

the state reduces to a coherent vacuum with shot noise 1/4.

Equation (6.61) provides a simple way to obtain the sample transmittivity T by

measuring the up– and down–stream quadrature variances:

T =
∆X2

θ,T − 1
4

∆X2
θ,0 − 1

4

(6.62)

By means of Eqs.(6.59) and (6.62), T can be also expressed as:

T =
(2nth,T + 1)

�
1 + 2nsq,T + 2

s
(1 + nsq,T )nsq,T cos 2θ

�
− 1

(2nth,0 + 1)
�
1 + 2nsq,0 + 2

s
(1 + nsq,0)nsq,0 cos 2θ

�
− 1

. (6.63)
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6.1.1 State parameters evolution

The expression for the density matrix of the transmitted state allows writing the

evolution of all the state parameters. The mean photon numberNtot transforms propor-

tionally to T as for a classical field:

Ntot,T = T Ntot,0 (6.64)

and nth,T and nsq,T can be expressed in terms of T and of the initial values nth,0 and

nsq,0 as:

2nth,T + 1 = v
[1− T + T (1 + 2nth,0) (1 + 2nsq,0)]2 −

�
2T (1 + 2nth,0)

t
(1 + nsq,0)nsq,0

�2

2nsq,T + 1 =

1− T + T (2nth,0 + 1) (1 + 2nsq,0)
2nth,T + 1

. (6.65)

These equations provide alternative ways to estimate T . In the measurements dis-

cussed below, T is determined through a direct measurement of the parameters nth and

nsq by QHT technique based on pattern functions. This choice is motivated by the fact

that for the STV state used in the experimental test (nth,0 = 0.55 and nsq,0 = 0.11),

nth,T and nsq,T are practically linear in T , so that:

nth,T
nth,0

= Ath +BthT
nsq,T
nsq,0

= Asq +BsqT . (6.66)

The coefficients A and B can be calculated by linearizing Eqs.(6.65) as a function of

T for fixed nth,0, nsq,0. In table (6.1) computed A and B have been reported (first

two columns) together with the corresponding values obtained experimentally (last two
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A B A(QHT) B(QHT)

Ntot 0 1 -0.05±0.07 1.1±0.1
nth 0.12 0.89 0.07±0.05 0.85±0.07
nsq -0.12 1.14 -0.16±0.05 1.14±0.07

Table 6.1. Coefficients A and B computed by equation (6.69) (left) and experimental ones measured by
QHT (right)

columns). For the sake of completeness the measured ratio Ntot,T /Ntot,0 has been re-

ported as well, in order to evidence the agreement with the theoretical value of Eq.(6.64).

In conclusion, it is worth remarking that the above transformation laws and in turn

expressions (6.62) for T are valid only for Gaussian state. As showed before a Gaussian

statistics follows from the assumption of time independent gain and detuning of the OPO

with relative deviations decreasing when the DOPO is driven far from threshold. For

the used OPO the correctness of Gaussianity assumption is discussed by measuring the

kurtosis parameterKθ.

6.2 Accuracy of the estimation of T
The limit of the uncertainty on the estimate of T expressed by Eq.(6.62) depends

on the confidence interval δ [∆X2
θ ] in the measurement of ∆X2

θ . Explicitly, the relative

error on T is [27] :

δT
T =

1��∆X2
θ,0 − 1

4

��
v

δ
�
∆X2

θ,T
�2

T 2 + δ
�
∆X2

θ,0

�2
. (6.67)

In case of Gaussian distributed Xθ, as for the STV, is possible to write:

δ
�
∆X2

θ

�
=

u
2

N
∆X2

θ ,

with N the number of acquired data, so that:

δT
T =

u
2

N

1��∆X2
θ,0 − 1

4

��
v
1

16

�
1− 1

T

�2
+
1

2

����∆X2
θ,0 −

1

4

���� � 1T + 3 + 4
����∆X2

θ,0 −
1

4

����� .
(6.68)
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Figure 6.2. Relative error δT
T

t
N
2

(a) and (b) number N of photons hitting the sample for δT
T = 0.01 and κτs= 6

vs. transmittivity T . The plots refer to the STV state parameter calculated at ω = 0 for the output of a DOPO with
zero detuning, at half the threshold (E = 0.5) and γ1/γM= 0.5, 0.75, 1) (dot-dashed, dashed and full lines)

This expression gives, for a fixed T , the relative error as a function of N and ∆X2
θ,0

in turns depending on the OPO working condition (distance from the threshold, output

coupling and cavity detuning). On the other hand, the total number of photonsN hitting

the sample during the measurement is:

N = Ntot γM N τ s , (6.69)

with τ−1s the sampling rate, γM the cavity overall damping ratio and Ntot given by

Eq.(6.58). Physically Ntot γM expresses the flux of photons outing the cavity (γ−1M is

the cavity lifetime) and N τ s the time needed to acquire the N samples.

In Fig. (6.2-a) δT
T

t
N
2

(see Eq. 6.68)) has been plotted as a function of the trans-

mittivity T for ω = ψ = 0, E = 0.5, and three different escape efficiencies (ηout = 0.5,

0.75, 1). The relative error increases for T approaching zero. Fig.(6.2–b) gives the pho-

ton doseN necessary to obtain a relative error δT
T = 0.01 as a function of T . The OPO

parameter are set as in Fig.(6.2-a) and γMτ s = 6 (as in the experimental test). The plot

evidences the increase ofN by more than an order of magnitude for T less than 0.01.

6.2.1 T estimation via quantum homodyne tomography

A different analysis is performed by uniformly varying the LO angle in the interval

0 ≤ θ ≤ 2π so spreading the N data over more quadratures. Experimentally, this
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procedure presents the advantage that it does not require sophisticate phase locking set-

up to keep θ constant during the N samples acquisition.

Data over 2π be processed by QHT for obtaining the Wigner function and the state

parameters mean value (i.e. Ntot, nth and nsq). In this case Eq. (6.67) is still valid with

δ [∆X2
θ ] replaced by δQHT [∆X

2
θ ]. For the operator Ô = ∆X2

θ the QHT confidence

interval reads (see previous chapters)

δQHT
�
∆X2

θ

�
=

1√
N

t
∆R2 [∆X2

θ ] , (6.70)

By considering the explicit expression of the kernel for Xθ and X2
θ it is simple to find

with some algebra that:

∆R2
k
∆X̂2

θ

l
= C0 + C1 cos (2θ) + C2 cos (4θ) , (6.71)

with the coefficients C0, C1 and C2 given by:

C0 =
1

4

�
27

2

�
∆X4 +∆Y 4

�
+ 9∆X2∆Y 2 +

�
1− 3

η

��
∆X2 +∆Y 2

�
+
1

4

�
3

η2
− 2

η
+ 1

��
C1 =

1

2

�
∆X2 −∆Y 2

� �
3
�
∆X2 +∆Y 2

�
− 1
�

C2 =
3

8

�
∆X2 −∆Y 2

�2
.

In previous chapters, it is shown that the confidence interval on ∆X2
θ obtained via QHT

reconstruction is greater than the one obtained in direct measurements. However for the

variances ∆X2,∆Y 2 relative to OPO devices similar to that used in the experimental

test, δQHT [∆X2
θ ] differs from δ [∆X2

θ ] only by some percents. This means that collect-

ing N samples in the interval (0, 2π) reduces the accuracy with respect to the case of

constant phase by only a few percent. This slight loss is largely compensated by a three

dimensional characterization of the STV state in the phase space.
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6.2.2 Comparison with intensity measurement accuracy

Conventional measurements of T use a coherent CW probe beams and the radiation

power, P , as observable. In this case the estimation of T is retrieved as the ratio of the

power down– and up–stream the sample:

T = PT
P0

(6.72)

The more the dose transmitted to the sample is reduced, the more the measurement is

blurred by the shot noise and by the detector noise equivalent power (NEP ). The error

on P reads:

δP =
s

ω0B P +NEP , (6.73)

with ω0 the radiation frequency, and B the detection bandwidth. The corresponding to

a relative error on T given by (6.72) is:

δT
T =

1

SNR

yxxw 1

T 2

#
1 +

u
ω0B

NEP

SNR T
N

$2
+

#
1 +

u
ω0B

NEP

SNR

N

$2
, (6.74)

with SNR = P0/NEP and N the number of acquired data.

In analogy with Eq. (6.69), the total number of photons passing through the sample

during the measurement interval is given by

N = SNR
NEP

ω0
Nτ s (6.75)

Equation (6.75) allows replacing the factor ω0B
NEP N

in Eq. (6.74) with SNRBτs
N (with

Bτ s > 1). In this way the ratio Bτs
N can be expressed as a function of δT

T , T and SNR.

Using for SNR the limiting value (corresponding to N → +∞)

SNR ≥
�
δT
T

�−1u
1

T 2 + 1 ,
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Figure 6.3. Photon dose passing through the sample against T for transmission measurements based on power
measurement up- and down-stream the sample under scrutiny using a coherent beam as a probe. The curve refer to
Bτs = 10 and δT /T = 0.01. The required dose increases for low transmittivity but it is always much more intense
than the one required for measurement based on quadrature detection (see fig.(6.2))

it has been obtained the plot of Fig. (6.3) representing N vs. T for δT
T = 0.01 and

Bτ s = 10. Comparing it with Fig. (6.2–b) it appears evident that for obtaining the same

accuracy a much lower photon dose (two order of magnitude smaller) is required by the

method via quadrature measurement. This results is linked to the fact that in the limit of

low photon flux (few pW) with the present detector technology, the NEP on intensity

measurement is not negligible so that to achieve a good accuracy the dose has to be

raised to guarantee a SNR 1. This problem is completely by-passed in homodyne

detection where since the LO amplifies the signal, the effect of detector noise can be

neglected even for low doses transferred to the sample.

Concerning with the use of squeezed light in transmittivity measurement, it is worth

mentioning the case Re.. [20] . In this case the probe beam is given by a coherent

beam (aα) mixed with a squeezed thermal vacuum one (aST V ) with θ their locked phase

difference; the total field is described by:

atot = e
iθaST V + aα ,

The transmittivity of the sample is then retrieved via power measurements.
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It can be shown after some algebra that the addition of the squeezed component

slightly modifies Eq. (6.73) by replacing B with

Beff = B

�
1 + nsq + nth + 2nsqnth +

t
(1 + nsq)nsq cos 2θ

�
.

For cos 2θ = −1 and
s
(1 + nsq)nsq > nsq + nth + 2nsqnth the squeezed vacuum

component reduces the effective detector bandwidth. The reduction of B (typically

Beff .5B) implies a proportional decrease of N in (6.75) for assigned δT
T and T .

6.3 Experimental test

The reliability and accuracy of the method is tested with a sample of know variable

transmittivity. The T values obtained via QHT are compared to those measured, with

an accuracy of 10−4, with standard techniques employing 1 mW coherent beam at λ =

1064 nm.

STV states are generated by a degenerate type–I OPO and characterized by a ho-

modyne detector, both described in details in previous chapters [26] ; in the present

case, cavity mirrors are in configuration II (cavity linewidth of 15 MHz). Fixing

E = 0.50 the reference STV state has Ntot,0 = 0.79 ± 0.06, nth,0 = 0.55 ± 0.02
and nsq,0 = 0.11 ± 0.01, corresponding to a photon flux of 107 s−1. For this state the

measured kurtosis resultedKθ 0.01 for any θ, thus indicating that the corresponding

quadrature statistics was very close to the Gaussian one.

The OPO output is propagated through a variable neutral density filter, which

changes T without introducing misalignment, that could reduce the homodyne effi-

ciency. The transmittivity T is varied between 0.45 and 1 in discrete steps. The beam

passing through the non–absorbing zone (T = 1) of the filter is used as a reference state.

The field leaving the absorber is sent to the homodyne detector (η = 0.88± 0.02). The

average electrical signal level at the homodyne output is 15 dB higher than the electronic

noise. This prevent from the influence of the NEP on the quadrature measurement.
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Tomographic data are acquired by sampling the homodyne signal. To avoid laser

technical noise, data sampling is performed by demodulation the homodyne current at

Ω = 5 MHz. Then, the resulting current is low–pass filtered, with a cut–off frequency

of 2.5 MHz, and 106 samples are collected at 2.5 Msample/s (τ s = 400 ns).

In order to reduce the influence of residual fluctuations of the STV state, each

experimental point was averaged over multiple (∼5) tomographic acquisitions. In the

present conditions the QHT error was negligible with respect to the standard deviations

of the STV state parameters.

To assess the robustness of the method, the transmittivity, TQHT , obtained by to-

mographic reconstruction was compared with the corresponding value, Tst, provided by

standard intensity measurements.

In Fig. (6.4), TQHT = Ntot,T /Ntot,0 (see Eq.(6.64)) is plotted vs. Tst together with

the expected behavior TQHT = Tst (straight line). A linear regression of the data with

TQHT = A(QHT )tot +B
(QHT )
tot Tst, givesA(QHT )tot = −0.05± 0.07 andB(QHT )tot = 1.1± 0.1

in good agreement with the expected values of Atot = 0 and Btot = 1 respectively.

The measured value of nsq,T /nsq,0 versus Tst is plotted in Fig. 5 together with the

linear approximation of Eq. (6.66–b). Linear regression on experimental data gives

A
(QHT )
sq = −0.16 ± 0.05 and B(QHT )sq = 1.14 ± 0.07, values in good agreement with

Asq = −0.12, Bsq = 1.14. Each experimental point of Fig. 5 represents an average

value obtained over multiple acquisitions. In the inset the different values of TQHT ,

corresponding to four acquisitions at Tst = 0.64 are reported. The bar indicates the

quantum limit error, calculated by using Eq. (6.68). As it can be seen, all the points are

spread over a range comparable to the quantum limit.

Finally, an identical behavior is observed for nth,T /nth,0 (not plotted) resulting in

A
(QHT )
th = 0.07± 0.05, B(QHT )th = 0.85± 0.07 (Ath = 0.12, Bth = 0.89).

A summary of the experimental findings is reported in Table (6-1).

The photon flux at the OPO output F = Ntot/τ , with τ the cavity photon lifetime

(τ ≡ γ−1M ), is less than 107 s−1, for Ntot 0.7 and τ ≈ 6.6 × 10−8, corresponding to

an optical power 4.2 pW. The method has been tested for different input states, by
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Figure 6.4. Tomographic reconstruction of the sample transmittivity TQHT obtained by via mean photon number
reconstruction against the reference values Tref measured with standard intensity measurement. Experimental points
are compared with the expected behaviour (straight line). Each point referes to more tomographic acquisition.

varying E and hence the photon flux by showing a good reliability down to a photon

flux F ∼ 5× 106 s−1 (i.e. ∼2.2 pW and Ntot,0 = 0.37).

With N = 106 δQHT [∆X
2] ∼ 1. 3 × 10−3 and δQHT [∆Y

2] ∼ 0.8 × 10−3 cor-

responding to δT /T ∼ 0.0024 and ∼ 0.056 for T = 1. These QHT estimates were

slightly less accurate than those one could obtain by concentrating N/2 data on X and

N/2 on Y quadratures and computing their variances.
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Figure 6.5. Tomographic reconstruction of the mean photon number normalized to the reference value
(nsq,T /nsq,0) against the sample transmittivity. Experimental points are compared with the expected behaviour ob-
tained by linearizing equation (6.68-b). The points in the inset are relative to four measurements for the fixed attenu-
ator transmittivity Tref =0.64. They are compared with the error bar obtained by using Eq. (6.71) for the reference
state.
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Chapter 7:
Squeezed radiation from non degenerate OPO

7.1 Seeded NOPA theory

The case of non degenerate parametric down conversion is considered. In the fol-

lowing the system will be assumed to work below threshold in frequency degeneracy

condition with cross polarized signal and idler fields. The experimental realization of

such a system is provided by the output of a frequency degenerate OPO based on a type

II non linear crystal (NOPO). For simplicity the case of zero detuning and single ended

cavity will be considered; results for double ended cavity are reported in [30] .

In analogy with the degenerate OPO, when the pump stationary amplitude αp is be-

low a threshold value, the system acts as non degenerate parametric amplifier (NOPA)

with appreciable gain only over a limited bandwidth. Interesting application of the

NOPA are relative to the case of two coherent beams (seed s) injected inside the cav-

ity as inputs for the signal and idler modes (seeded NOPA ). Non linearized Langevin

equation for the involved intracavity modes are:

daξ
dt

= −γaξ + χ(2)apa
†
ξ� +

s
2γAξ (t)

�
ξ, ξ

�
= s, i

�
dap
dt

= −γpap − χ(2)asai +Ap +
s
2γpa

in
p (t) (7.76)

where the input signal/idler fields entering through the mirror (γ) are:

Aξ (t) = A
� + ainξ (t) ξ = s, i

A� representing the non-zero mean amplitude of the seed and ainξ (t) the vacuum fluc-

tuations contribution. Equations (7.76) can be linearized around the steady state value.

Letting r = αs = αi, steady state solutions for the signal/idler and pump modes are
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expressed as a function of A = A�
√
2γ by equations:

αp =
γ

χ(2)
− A

χ(2)r

0 = r3 −
χ(2)Ap − γγp

(χ(2))
2 r−

γpA

(χ(2))
2 (7.77)

For A = 0 (no seed) equations for the signal and idler amplitude reduces to those

for a traditional NOPO (unseeded) and the corresponding threshold is γγp/χ
(2) (see

previous chapters) 17. In case of non zero subharmonic input (A 9= 0) Eq. (7.77) is a

cubic equation whose solution describes the classical behaviour of the system: steady

state solution undergoes a pitchfork bifurcation when the pump reaches the threshold.

The addiction of the non zero coherent input (A 9= 0) destroys the symmetry of the

standard parametric oscillator. The threshold itself is turned into [69] :

Aseedth =
γγp
χ(2)

+ 3

�
A2γp
4χ(2)

�1/3
(7.78)

For low pumping Eq. (7.77) has only one real root of the same sign asA. It is possible to

show that this solution remains stable even above threshold. For Ap ≥ Aseedth , two other

solutions of signs opposite to A’s appear, only one of them being stable [69] . When the

pump and the seed are not in phase, the equations of motion can be solved numerically.

In this case the amplitude r for the field below threshold shows an oscillatory behaviour

with the relative phase ζ . Maxima occur when ζ = 2nπ (n = 0, 1, 2..), corresponding

to perfect phase matching for the down conversion process. Conversely minima occur

for ζ = (2n+ 1)π (n = 0, 1, 2..), corresponding to a breaking of the phase matching

condition [68] .

17For zero input seed (A = 0) the equation for the pump steady state value is no longer described by equation (7.77-a) but
coincides with the one reported in the previous chapter. The statedy state value for the pump below threshold is αp = Ap/γp
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Figure 7.1. Steady state solutions of the intracavity amplitude for the seeded NOPO (seed amplitude A/γ = 0.2

) as functions of the pump coherent amplitude, normalized to the threshold for the unseeded NOPO (Ap/Ath), with
γpγ/

�
χ(2)

�2
= 1. For Ap/Aseedth ≤ 1, only one stable solution, with the same sign as the seed exists (red).This

solution remains stable even above threshold (Ap/Aseedth > 1) where the system admits two other solutions of sign
opposite to A’s, one stable(blu) and the other unstable(yellow, dashing).
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7.1.1 Fluctuations for the NOPA output field

The field outing the NOPA will be described by the sum of the steady state and

fluctuation contributionαξ+δaξ. In the following it will be considered the system below

threshold, with the zero dephase between seed and pump (ζ = 0). In this condition, the

system is said to work in amplification condition. Linearized equations for the field

fluctuations δa are:

dδaξ
dt

= −γ δaξ + χ(2)αp δa
†
ξ� + r δap +

s
2γainξ (t)

dδap
dt

= −γp δap − χ(2)[δas + δai] +
s
2γpa

in
p (t)

Coupled equations for signal and idler modes diagonalize by introducing the fields d± =
1√
2
(as ± ai) and their quadratureX± and Y±. For the caseA = 0, the evolution of δX±

and δY± is ruled by equations:

dδX±
dt

= −
�
γ ∓ χ(2)αp

�
δX± +

s
2γX in

±

dδY±
dt

= −
�
γ ± χ(2)αp

�
δY± +

s
2γY in± (7.79)

The spectra of squeezing for δX± and δY± for the field d± outside the cavity can be

calculated to be [30] :



∆δXout

+ (ω)
�2

= S+ (ω) =


∆δY out− (ω)

�2

∆δY out+ (ω)

�2
= S− (ω) =



∆δXout

− (ω)
�2

with:

S± (ω) =
1

4

�
1± 4 Eγ

(γ ∓ E)2 + ω2

�
(7.80)

having put E = χ(2)αp. Equations (7.80) show that d+ exhibits antisqueezing and

squeezing on the amplitude and phase quadratures respectively. Conversely d− is squeezed
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on the amplitude quadrature and anti-squeezed on the phase quadrature. By making use

of Eqs. (7.79), it is also possible to retrieve the spectral behaviour for the signal and

idler modes; the fluctuations of the two single output fields are phase insensitive and

satisfy the relation:



∆δXout

s (ω)
�2
=


∆δY outs (ω)

�2
=


∆δXout

i (ω)
�2
=


∆δY outi (ω)

�2
= G (ω)

(7.81)

with:

G (ω) =
1

4

(γ2 + E2 + ω2)
2
+ 4γ2E2

(γ2 − E2 − ω2)2 + 4γ2ω2

It is worth noting that G (0) → ∞ as approaching the threshold (E → γ); therefore

the system amplifies the vacuum noise of the input ainξ (ω) and generates two outputs

aoutξ (ω)with large noises. Equation (7.81) states that each single NOPA output does not

show any squeezing; to see non classical effect, both beams are needed and the sum or

difference d± fields must be measured. The quantum state describing the system is a

two-modes squeezed state.

In case of non zero seed amplitude (A 9= 0), equations for the d+ field quadrature

slightly modify into:

dδX+
dt

= −
�
γ − χ(2)αp

�
δX+ + r δXp +

s
2γX in

+

dδY+
dt

= −
�
γ + χ(2)αp

�
δY+ + r δYp +

s
2γY in+

The corresponding variances for the output field are [68] :



∆
�
δXout

+

�
(ω)
�2

=
1

4

#
4γ
�
χ(2)r

�2
(γ − χ(2)αp)

2
+ ω2

+

�
γ + χ(2)αp

�2
+ ω2

(γ − χ(2)αp)
2
+ ω2

$


∆
�
δY out+

�
(ω)
�2

=
1

4

#
4γ
�
χ(2)r

�2
(γ + χ(2)αp)

2
+ ω2

+

�
γ − χ(2)αp

�2
+ ω2

(γ + χ(2)αp)
2
+ ω2

$
(7.82)
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The terms proportional to r in Eqs. (7.82) represent the contributions deriving from the

correlation for δXp, instead the other term arises from the correlation of X in
+ for the

field outside the cavity.

For A = 0, below threshold r = 0 and (7.82) reduce respectively to (7.80). For

A 9= 0 the first term can not be neglected and the field d+ is squeezed when the output

variance


∆
�
δY out+

�
(ω)
�2 is less then 1/4.

For the mode d−, there is not dependence on field stationary amplitudes and treat-

ment retraces that of A = 0. Since fluctuation properties for d± are similar, with the

only macroscopic difference is that d− has zero mean intensity i.e. it is a squeezed vac-

uum. Therefore the system below threshold generates bright and vacuum squeezing on

two different polarizations.

For phase between the pump and the seeds equal to ζ = π/2 the system is said to

work in deamplification condition. The fluctuations analysis show that the behaviour

for d− and d+ is inverted with respect to the case ζ = 0.

7.1.2 NOPA and EPR paradox

From the physical point of view, since the signal and idler field originate from pump

photons splitting in the amplification process, the fluctuations of their optical ampli-

tudes are strongly correlated so that, under a limiting condition, they become quantum

copies of each other. Since the signal and idler beams are spatially separable this cor-

relation is non local. Due to its experimental application (see [30] ), it is worth consid-

ering, as an example, the case of the unseeded NOPA working at deamplification. For

the field amplitude, it is possible to show [30] that, at threshold:

Xs (0) = Xi (0)
Ys (0) = −Yi (0)

�
(7.83)

Since Eq. (7.83) is an operator equation, the quadrature phase amplitudes of the out-

put beams become quantum copies of one other. Equation (7.83-a) states that without

disturbing the signal beam, the result for Xs (0) can be inferred by a measurement of

Xi (0) with certainty. Alternatively from (7.83-b) Ys (0) can be inferred by a measure-
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χ(2)pump (2ω)
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idler (ω)

(Xi,Yi)

(Xs,Ys)
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Xs

Xi
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Figure 7.2. A) Non degenerate parametric down conversion via χ(2). For the unseeded NOPA the noise for the
input signal/idler vacuum field are amplified. B) Schematic representation of the fluctuating field amplitudes in the
unseeded NOPA output in deamplification condition. Due to the correlation between signal and idler, their quadra-
tures become quantum copies of each other (Xs = Xi, Ys = −Yi).
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ment of−Yi (0). In other words, depending on which idler quadrature is measured, the

corresponding signal quadrature is derived with probability 1, so that the signal beam

can be thought as having in principle simultaneously a definite value of both amplitude

and phase quadrature. As long as [X,Y ] 9= 0 this contradicts the Heisenberg uncertainty

principle [29] .

By considering amplitude and phase quadratures as the analogous of particle po-

sition and momentum, the correlation between the NOPA outputs is equal to that in the

original Einstein Podolsky Rosen paradox where, depending on the observable mea-

sured on a particle 1, the state of a correlated particle 2 can be eigenstate of different op-

erators [28] . This analogy is experimentally demonstrated in reference [30] where from

measurement of the spatially separated idler beam, the two quadrature-phase amplitudes

of the signal are inferred. The product of the inferred quadratures is then measured and

observed to be below the limit associated with the Heisenberg uncertainty relation, in

apparent contradiction with quantum mechanics as predicted by the argument of EPR.

7.2 Covariance matrix measurement

Bipartite (entangled) states of two modes of the radiation field, as the output of

NOPA, have been widely used as basic tools for experimental realizations of continuous

variables quantum information processing (see teleportation or dense coding [32, 33, 34]

). It goes without saying that, in order to provide reliability to the use of these states,

it is fundamental to find a manner to measure the amount of initial correlation. More-

over, since entanglement is generally corrupted by interaction with the environment,

entangled states available in experiments are usually mixed states and it is important to

establish whether or not entanglement has survived to the environmental noise effect

[41, 42, 43, 44] .

Besides mean values of the field operators, the most relevant quantity character-

izing a bipartite state made of two entangled modes a and b, is its covariance matrix

σ 18.The covariance matrix is a real symmetric positive matrix; in terms of the field

18The characteristic function of a quantum state ρ is defined as the expectation values χ(λ1,λ2) = 'D(λ1) ⊗ D(λ2)�
where λj ∈ C, j = 1, 2 andD(λ) = exp

�
λa† − λ∗a

�
is the displacement operator. The most general bipartite Gaussian state
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quadratureX, Y , it is expressed as:

σ =

⎛⎜⎜⎜⎜⎝
∆X2

a ∆XaYa ∆XaXb ∆XaYb

∆YaXa ∆Y 2a ∆YaXb ∆YaYb

∆XbXa ∆XbYa ∆X2
b ∆XbYb

∆YbXa ∆YbYa ∆YbXb ∆Y 2b

⎞⎟⎟⎟⎟⎠ ,

where diagonal terms∆X2 = kX2l−kXl2 denote the variance of the observableX and

∆XY = 1
2
k[X,Y ]+l− kXlkY l, with [X,Y ]+ = XY +Y X the anticommutator, is the

mutual correlations between observables X and Y . If the two states are not correlated

the matrix σ reduces to the sole diagonal elements.

The matrix σ can be conveniently expressed as:

σ = −M+V

where the meanM and the varianceV matrices are respectively:

M =

⎛⎜⎜⎜⎜⎝
kXal2 kYalkXal kXalkXbl kXalkYbl
kYalkXal kYal2 kYalkXbl kYalkYbl
kXblkXal kXblkXal kXbl2 kXblkYbl
kYblkXal kYblkYal kYblkXbl kYbl2

⎞⎟⎟⎟⎟⎠ . (7.84)

corresponds to a characteristic function of the form

χ (λ) = exp

�
−1
2
Oλ
T
σOλ− iOλTX

�

where Oλ=(λ1,λ2)T and (· · ·)T denotes transposition. The vectorX = ('Xa�, 'Ya�, 'Xb�, 'Xb�)T contains the mean value of
the Cartesian mode operators. The characteristic function fully specifies a quantum state, i.e. any expectation value may be obtained
as a phase space integral. Since for a Gaussian state the first two moments specify the characteristic function, their knowledge fully
characterizes a bipartite Gaussian state.
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and

V =

⎛⎜⎜⎜⎜⎝
kX2

al 1
2
k[Ya,Xa]+l kXaXbl kXaYbl

1
2
k[Ya,Xa]+l kY 2a l kYaXbl kYaYbl
kXbXal kXbXal kX2

b l 1
2
k[Xb, Yb]+l

kYbXal kYbYal 1
2
k[Yb, Xb]+l kY 2b l

⎞⎟⎟⎟⎟⎠ , (7.85)

The matrix M only contains the first order moments and can be reconstructed by

measuring the four quadraturesXk and Yk, k = a, b. Since the modes are separable, the

measurement of their quadrature can be done by means of a single detector, measuring

alternatively a and b.

Traditional schemes to measureV, and in particular its off diagonal elements, em-

ploy two homodyne detectors acting separately on the modes a and b. To simplify the

measurement procedure, it is proposed a new scheme, based on repeated measurements

of single-mode quadratures with a single homodyne detector [47] . The price to be paid

is the measurement of four quadratures instead of the sole X and Y , and the introduc-

tion of further optical modes beside a and b.

The set of modes used is:

a, b, c =
a+ b√
2
, d =

a− b√
2
, e =

ia+ b√
2
, f =

ia− b√
2
. (7.86)

If a and b correspond to vertical and horizontal polarizations of the light (parallel re-

spectively to versor Ov and Oh), c and d are rotated polarization modes at ±π/4, whereas

e and f correspond to left- and right-handed circular polarizations. It is worth noting

that, for the output of a NOPA (a ≡ as, a ≡ ai), c and d coincide with d± introduced in

the previous paragraph. In terms of the quadratures of modes (7.86):

V =
1

2

⎛⎜⎜⎜⎜⎝
2kX2

al kZ2al − kT 2a l kX2
c l − kX2

dl kY 2e l − kY 2f l
kZ2al − kT 2a l 2kY 2a l kX2

f l − kX2
e l kY 2c l − kY 2d l

kX2
c l − kX2

dl kX2
f l − kX2

e l 2kX2
b l kZ2b l − kT 2b l

kY 2e l − kY 2f l kY 2c l − kY 2d l kZ2b l − kT 2b l 2kY 2b l

⎞⎟⎟⎟⎟⎠ .
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where the quadrature Z and T are Z = Xπ/4 and T = X−π/4. Furthermore, since

V14 = V41 =
1

2

�

Y 2e
�
−


Y 2f
��
=


Y 2e
�
− 1
2

�

X2
a

�
+


Y 2b
��

V23 = V32 =
1

2

�

X2
f

�
−


X2
e

��
=
1

2

�

X2
b

�
+


Y 2a
��
−


X2
e

�
the measurement of the quadratures pertaining to mode f is not essential. Overall, in the

proposed scheme, the reconstruction of the covariance matrix requires the measurement

of at least fourteen quadratures, e.g. the following ones (of course measuring also the f -

quadratures, being additional independent measurements, would improve the accuracy

of the reconstruction):

Xk, Yk with k = a, b, c, d, e

Zk� , Tk� with k� = a, b

Notice that the number of parameters needed to characterize a bipartite Gaussian state

is fourteen.

7.2.1 Experimental implementation

Since the mode f is not necessary to reconstruct the covariance matrix, its experi-

mental realization will not be considered.

Frequency degenerate, bright continuous-wave beams generated by a seeded NOPA

below threshold, are orthogonally polarized and excited in a continuous variable bipar-

tite entangled state. This means that the experimental realization of modes a and b is

provided by the output of the NOPA (a ≡ as and b ≡ ai). The mode k under scrutiny

is selected by inserting suitable components on the optical path of fields a and b, before

the detector. To obtain modes a, b, c, d, the two modes a and b, both pass through a ro-

tator of polarizationRϑ, namely a λ/2 waveplate, and a polarizing beam splitter (PBS).

The action of the rotator Rϑ on the basis {Ov,Oh} is given by

Rϑ Ov = cosϑ Ov − sinϑ Oh
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Figure 7.3. Experimental setup for the measurement of the covariance matrix. The cross polarized signal-idler
beams from a seeded NOPA are sent to a single Homodyne detector measuring the quadratures X,Y, Z, T . The
polarizing beam splitter (PBS) transmits to the detector the sole vertically polarized component of its input beam. To
select for detection the modes a, b, c, d a polarization rotator Rϑ (a λ/2 wave plate) is inserted on the beams path to
the PBS. To realize the mode e an addictional λ/4-wave plate is needed.

Rϑ
Oh = sinϑ Ov + cosϑ Oh

The PBS is set to send to the homodyne detector only the projection of its input along

the Ov direction. The combined action of these optical components for a given ϑ realize

different modes k. In particular for ϑ = 0, Rϑ reduce to the identity and the sole mode

a (vertically polarized), is sent to the detector. For ϑ = π/2, the polarization of a and b

is exchanged and the mode b is measured. In the intermediate case of ϑ = ±π/4, 1/
√
2

of each mode is reflected thus realizing mode c and d.

In order to select mode e an additional λ/4 wave-plate should be inserted just be-

fore the rotator Rϑ with ϑ = π/4. The λ/4 wave-plate produces a π/2 shift between
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Mode λ/4 Rϑ

a no 0
b no +π/2
c no +π/4
d no −π/4
e yes +π/4

Table 7.2. Experimental setting of the rotator Rθ and the λ/4 waveplate to select the different modes k.
The table refers to the elements of fig.1. The modes a and b are assumed to be respectively vertically and
horizontally polarized

horizontal and vertical polarization components, thus turning the polarization from lin-

ear into circular.

Table (7.2) summarizes the settings needed to select the five modes. Overall, the

vertically polarized mode k arriving at the detector can be expressed in terms of the

initial modes as follows

k = exp{iϕ} cosϑ a+ sinϑ b ,

where ϕ = π/2 when the λ/4 wave-plate is inserted, ϕ = 0 otherwise.

Once the mode k has been selected, a homodyne detector is used to measure the

generic quadrature Xk,θ. Indeed, to access Xk,θ the local oscillator phase θ has to be

suitably tuned. As stated before, optimization of the detection efficiency is provided by

matching the LO mode to the mode k. The mode matching requires precise control of

the LO frequency, spatial and polarization properties. Remarkably, the detected mode

is always vertically polarized, thus avoiding any need of tuning the LO polarization.
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Chapter 8:
NOPA experimental realization

8.1 Phase matching condition

As stated in previous chapters the working condition of an OPO is conditioned by

the perfect satisfaction of phase matching condition. In term of the pump (λp), signal

(λs) and idler (λi) wavelengths the phase matching condition for a non degenerate OPO

is explicitly written as:

∆k (λ, T ) ≡ 2π
�
np (λp, T )

λp
− ns (λs, T )

λs
− ni (λi, T )

λi

�
= 0 (8.87)

with λ = (λp,λs,λi). The crystal refractive index n (λ, T ) as a function of the wave-

length λ and the crystal temperature T is provided by the empirical Sellmeier relation

[70] :

nα (λ, T ) =

v
Aα +

Bα

1− Cα/λ
2 −Dαλ

2 +
�
Fαλ+Gα/λ

2 +Hα/λ+ Iα
�
(T − T0)

(8.88)

where α = x, y, z label the crystallographic axes directions and T0=35◦C is a reference

temperature. The Sellmeier coefficients (Aα,Bα,Cα....) are determined experimentally

for suitable ranges of temperature and wavelength..

Once λp is fixed, the non linear interaction is optimized for the pair signal-idler

satisfying relation (8.87) and the energy conservation (ωp = ωs + ωi). When ∆k 9=
0, there exists a characteristic length lc = π/∆k (coherence length ) representing the

distance over which, due to dispersion in the non linear medium, the relative phase

between pump and signal/idler changes by π. After a coherence length, the efficiency

of energy transfer from pump to subharmonic reduces and the energy flows back from

the signal/idler to the pump. The energy transfer inverts again after a lc, so that the
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conversion efficiency shows an oscillatory behaviour. Conversely for ∆k → 0, lc →
+∞ and the subharmonic intensities grow with the square of the interaction length [2] .

In traditional devices, phase matching condition is satisfied by exploiting crystal

birefringence; refraction indexes n (λ, T ) in (8.87) are adapted so to have ∆k = 0 for

a desired pair of λs and λi
19. In critical phase matching, the pump incidence angle is

varied with respect to the crystal axes. This technique is highly affected by Poynting

vector walk off and crystal disalignments [2] . These problems are overcome in non

critical phase matching [2] where the n (λ, T ) dependence on the crystal temperature

is exploited. This is the technique discussed for the LNB in previous chapters. For each

choice of λ, by exploiting (8.88), Eq. (8.87) can be inverted so to obtain the crystal

temperature producing the perfect phase matching for the desired process. Non critical

phase matching imposes strict contraints to the experimental setup, regarding both the

temperature range and the relative stability around the working point. Moreover, it is

worth stressing that there are situations in which the simple mathematical inversion of

formula (8.87) for a given λ leads to non physical working temperature. In these cases

birefringent phase matching can not be used and alternative ways are needed.

8.1.1 Quasi-Phase Matching

Quasi-phase matching ( QPM) overcomes some of the limitations of traditional

phase matching methods.

In QPM, the phase mismatch ∆k, accumulated by the interacting beams, is com-

pensated along the interacting length by a suitable phase delay introduced by the crystal

itself [50] . Although the efficiency is not as good as for the perfect phase matching, this

technique has the advantage that can be applied practically to every choice of ∆k, the

only restrictions on λ being determined by the material transparency range.

More specifically, given a certain non linear process characterized by λ̄ and fixed

the desired working temperature T̄ , the corresponding coherence length is computed as

lc = π/∆k
�
λ̄, T̄

�
and the crystal non linear coefficient d (∼ 2χ(2) for used crystal) is

19It is obvious that the wavelenghtsλs and λi must be chosen within the set of those satisfying the energy conservation relation
for a fixed λp.
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modulated as a square function with period Λ multiple of 2lc:

d→ d (z) = d ·
+∞[

m=−∞

2

mπ
sin
�mπ

2

�
ei

2πm
Λ
z (8.89)

The crystal can be thought of as a wafer made up of different slices, with the sign of

the non linear coefficient in each slab reversed with respect to the adjacent ones. These

crystals are called poled ; they present the greatest advantage of providing non critical

phase matching for a non linear process at a temperature chosen by the customer. From

the physical point of view, the fields is dephased by π (due to crystal dispersion) at each

coherence length; the crystal periodicity introduces an extra dephase π (expressed by

the sign change of d) that cancels out the destructive interference effect.

The effective phase matching condition for a poled crystal is given by [50] :

∆km = ∆k
�
λ̄, T̄

�
− 2πm

Λ
= 0 (8.90)

The indexm, the order of QPM, refers to the term in (8.89) giving the major contribution

in the integration of subharmonic fields equations. For a poling of orderm the non linear

period Λ = 2mlc; for m = 1, the sign of the non linear coefficient is inverted each lc
and the conversion efficiency is the best achievable.

8.2 NOPA realization with PKTP

In order to provide cross polarizations for the signal and idler beams, the crystal

used for the NOPA must be a type-II one. However, properties of commercial type-II

crystals do not allow working in frequency degeneracy condition at λs/i = 1064nm.

This limit was overcome in previous implementations of NOPA, either a custom crystal

[49] or a custom source [?] .

In the proposed setup, the problem is bypassed by combining a commercial dou-

bled Nd:YAG laser with a periodically poled α-cut KTP crystal (PKTP). In this way

the generated signal/idler beams exhibit frequency degeneration, still preserving cross
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Figure 8.1. Comparison of the conversion efficiency against the interaction lenght for the perfect phase matching
(blu), non phase matching (green) and quasi phase matching (red). In perfect phase matching the wavevectors for the
signal and idler beams perfecly compensated the pump one, corresponding to perfect momentum conservation for the
system of signal, idler and pump photons. In this case the efficiency is proportional to the squared interaction lenght.
For non perfect phase matching the momentum conservation is not satisfied so that the conversion efficiency shows
an oscillatory behaviour determinated by the coherence lenght lc. For quasi phase matching the missing momentum
is provided by the crystal periodic structure. The conversion efficiency increases with the interaction lenght more
slowly than for the perfect phase matching.
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ls, li  (m)

Tdeg=35°C

Figure 8.2. Computed behaviour of the emitted signal/idler wavelenghts as functions of the crystal temperature for
the used PKTP. The two lines have the same slope (absolute value) and cross at Tdeg =35◦C.

polarization characteristic because of type-II phase matching. This solution is econom-

ically much more stable and easy to obtain with respect to previous ones.

The PKTP is designed by solving Eq. (8.90) for λi = λs = 2λp =1064nm as

a function of the working temperature T̄ with KTP Sellmeier coefficient given in ref-

erence [70] . The corresponding poling period, for T̄ =35◦C (∼room temperature) is

Λ =448.4µm. Once λp and Λ are fixed, the behaviour λs/i (T ) of the emitted sig-

nal/idler wavelengths against the crystal temperature can be computed by inserting ex-

pression (8.88) in (8.90) and exploiting energy conservation relation. The shape of

λs/i (T ) strongly depends on the crystal characteristics via the (8.88). For the used crys-

tal the computed λs/i (T ) are straight lines intersecting themselves at T = 35◦C with

slope ±0.0558 nm/◦C [71] .

The experimental setup required for the NOPA realization is the same used for the

DOPO, except for the temperature control system. The cavity mirror have been cho-

sen with trasmittivity Tin (@1064nm)= 0. 750/00 (Tin (@532nm)= 0.163%) for the input

mirror and Tout (@1064nm)= 3.4% (Tin (@532nm)= 1%) for the output one. Absorp-

tion losses in the crystal are 0.8% for the IR and 4.5% for the green. The cavity length
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is 100 mm, thus ensuring a good cavity stability and a longer confocal parameter, so

to simplify the homodyne alignment procedure. The measured threshold for the crystal

is 40 mW.

The NOPA seeds for the covariance matrix measurement is provided by an extra

half wave plate that rotates the polarization of the IR seed at 45◦ with respect to the

polarizations of the KTP output. Due to the PZT on the IR seeds beam steering the

dephase between seeds and pump can be driven so to achieve the NOPA in amplification

or deamplification. Beside the parametric gain measurement, this permits to look at

specific quadratures of d+ and, varying the seeds phase ζ , to move the squeezing from

X+ (amplification condition) to Y+ (deamplification condition).

In view of low working temperature sophisticate temperature controls are replaced

by a Peltier element with short response time. Moreover, due to the slow thermal re-

sponse of the KTP, the required stability is of the order of 10m◦C, essentially imposed

by the triple resonance condition. The controller sensor is an NTC resistor inserted in a

Winston bridge. The achieved stability is of ≈1m◦C well the below the required one.

The homodyne set up is the same as for the DOPO.

8.2.1 Degeneration temperature measurement

To characterize the performances of the PKTP, beside standard absorption measure-

ments, particular attention is paid to the estimation of the actual degeneration tempera-

ture Tdeg for the emitted signal/idler beams. To this aim, the unseeded NOPA is driven

above threshold and the generated beams are sent to a grating. An halfwave plate fol-

lowed by a polarizing beams splitter permit to select the sole signal/idler beam or equal

fractions of both. For T 9= Tdeg bright signal and idler beams are generated at the wave-

lengths satisfying the energy conservation and the phase matching condition for that

temperature. The greater is the distance of T from Tdeg, the greater the distance between

λs and λi. When T ≈ Tdeg, the signal and idler beams have the same wavelengths and

they are no longer resolved.
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Figure 8.3. Experimental set-up for the measurement of the degeneration temperature Tdeg by means of the dif-
fraction grating. The above threshold NOPO generates bright signal and idler beams. Its working point is changed
by acting on the crystal temperature. The beams outing the NOPO are sent to a system λ/2+PBS that selects for
reflection on the grating a signle beam or both ones. The beams reflected by the grating are sent to a CCD camera
that records their positions. For T �= Tdeg the signal and idler separate in two spots.
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T = 18°C T = 20°C T = 29°C

T = 34°C T = 44°C T = 50°C

Figure 8.4. Signal and idler spots recorded by the CCD camera as functions of the crystal temperature. At low
temperature (18◦C), the spots appear well separated, indicating that the beams have different wavelenghts. When
the temperature is increased the spots become closer and for T ≈50◦C they are no longer distinguishable.
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The grating used in the experiment is a blazed one (DG; Jobin-Yvon 1200 mm−1,

optimized @1064 nm). It is set to provide an optimal resolution of ∼ 1nm (computed

@1880nm) with a spatial dispersion of 1.4mrad/nm. The beams reflected by the grating

are sent to the CCD camera and their positions recorded; the behaviour of the spot

position on the CCD is a replica of the wavelength’s one.

A preliminary rough estimation of Tdeg is obtained by sending both signal and idler

to the camera. The crystal temperature is scanned 25◦C÷70◦C . For temperature around

25◦C the signal and idler spots appear spatially separated, they become closer when the

temperature is increase and at T ≈50◦C they are no longer resolved. If the temperature

is still increased they separate again, thus suggesting an actual Tdeg ≈50◦C (see fig.

(8.4)).

A more detailed check is done by sending to the camera only one beam (signal or

idler) and changing the crystal temperature. The spot position of each beam is recorded

with respect to the camera center and plotted as function of T . Experimental data for

both signal and idler show a linear behaviour 20; by performing linear regression the

slopes of the two curves are found to be equal (within the error bars) except for the

sign. The cross point gives for the degeneration temperature Tdeg ≈54◦C. The observed

symmetrical behaviour is an expression of the energy conservation relation linking λs/i

and λp in agreement with theory. By using the grating properties to retrieve the ex-

perimental behaviour of emitted wavelengths from the spot curves, the slopes of the

straight lines λs/i (T ) are found to be of the same order of magnitude of the theoretical

one (±0.03nm/◦C). Not perfect consistency with the theoretical value can be due to the

uncertainty in determining the exact distance between the grating and the CCD plane.

The difference between the experimental (54◦C) and the theoretical (35◦C) values

of Tdeg can be due to both impurities in the crystal or error in the poling period.

In real crystals an excess of impurities can induce deviations of Sellmeier coeffi-

cients from the values used in designing the poled crystal. The effect of small variations

of Sellmeier coefficient on Tdeg can be evaluated by substituting expression (8.88) in

20When variyng the crystal temperature the spot counter propagate in the horiizontal direction, with constant vertical position.
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(8.87) and solving for T the Eq. (8.90) with λs = λi. It is seen that a variation of 3.5%

in the indexes of refraction is sufficient to explain the observed change in Tdeg. The cor-

responding behaviour of λs/i (T ) is only slightly changed with respect to the reference

one. This situation is analogous to that reported in reference [60] , where the observed

degeneration temperature for the LNB was different from the expected one; by assum-

ing small changes in the Aα coefficient the authors were able to reproduce both the ob-

served Tdeg and the tuning curve for a singly resonant OPO. In that case the variation of

the Sellmeier equation was attributed to the crystal doping.

A second possible reason of changes in Tdeg can be due to manufacture error in the

poling period. Even in this case, Tdeg can be computed as a function of Λ; the observed

Tdeg corresponds to a poling period ofΛ= 432µm with a variation of≈3.6% with respect

to the nominal value [71] .

A precise analysis of both the crystal impurities degree and the poling period is

beyond the instrumentation present in the laboratory. However the previous estimations

allow concluding that the observed Tdeg could probably be attributed to a co-action of

both explained effects.

8.2.2 Triply Resonance Condition and crystal misalignment

As for the DOPO the triply resonance of pump and signal/idler is required for a low

threshold of the NOPO. Since the Drever Pound locks the cavity lengths on the pump

resonance, the triply resonance condition is obtained by fine temperature tuning.

With respect to the LNB, the PKTP crystal suffers of great sensibility to small mis-

alignments. For perfect triple resonance, the beams outing the cavity are all in phase

and the peaks of the pump signal and idler resonances coincide. If the crystal is slightly

misaligned, the optical path of each beam will depend on the angle θ between the crystal

optical axis and the cavity one (assumed to coincide with the beams propagation direc-

tion). With respect to θ = 0 (perfect crystal alignment), the beams acquire at the crystal
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Figure 8.5. Computed behaviours of the degeneration crystal for the used PKTP crystal as functions of the refractive
indexes (up) and the poling period (down) variations. In both cases, parameter variations of the order of few percents
are enough to explain the deviations of the observed degeneration temperature from the nominal one.
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output an extra phase:

ϕξ =
2πL

λξ
n (λξ, T )

�
1− 1

cos θ

�
with L the crystal length. In the limit of small θ, ϕξ can be expressed in terms of the

angle θ̄ξ corresponding to ϕξ = π:

ϕξ = π
θ2

θ̄
2
ξ

(8.91)

At the degeneration temperature, taking into account the different index of refraction

for the beams 21, for the PKTP at λs = λs = 2λp =1064nm:

θ̄p = 6.17 mrad

θ̄s = 8.62 mrad

θ̄i = 8.82 mrad (8.92)

The difference in θ̄s and θ̄i are due to the different index of refraction for the two cross

polarizations. If the system temperature is set to guarantee the superposition of the

signal, idler and pump resonances for θ = 0, a phase ϕξ = π (θξ = θ̄ξ) on one of

the beams will not spoil the triply resonance. This in general true also for θξ 9= θ̄ξ,

provided the relative dephase Φξ,ξ� = ϕξ − ϕξ� acquired by the beams, are within the

cavity linewidths (expressed in radiant):

∆ (rad)ξ =
π

Fξ
(8.93)

21The Sellmeier coefficient used in the present calculation are the nominal one used in the PKTP project. This choice is
justified by the fact that the modification of θ̄ξ corresponding to the Aα variations imposed to give reason of the experimental
Tdeg are negligible.
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In (8.93), Fξ is the cavity finesse at λξ and π corresponds to a FSR. For the used cavity

at degeneration:

∆ (rad)p = 52 mrad

∆ (rad)s/i = 18 mrad

It is simple to show (cfr (8.92) and (8.91) for expression ofΦξ,ξ�) that for θ 1.2mrad,

Φs/i, p > ∆ (rad)p so that the signal/idler beam is shifted outside the pump resonance

and the NOPO is driven out of triply resonance condition. For the same angle the IR

resonances can still be considered as for θs = θi = 0 (Φs,i � ∆ (rad)s/i). The walk-off

effect corresponding to crystal disalignment of the present order of magnitude is com-

pletely negligible compared with the beam spot size.

The extreme sensitivity of the system to crystal misalignment, introduces a great

hindrance to the triply resonance fulfillment; small changes in crystal orientation can

seriously compromise the reliability of the entire NOPO setting procedure. In order to

overcome this problem, the combined action of temperature and crystal orientation tun-

ing will be exploited. Work along this direction is still in progress. Once the triply reso-

nance will be reached the measurement of the OPO output will be performed by means

of a single homodyne detector, to reconstruct the state covariance matrix as explained

in previous chapter.
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Conclusions

The subject matter of this Thesis is the study of optical parametric oscillators (OPO)

below threshold as sources of non classical radiation. In the first part of the Thesis a

degenerate OPO (DOPO) has been examined with signal and idler beams having the

same frequency and polarization. When the cavity extra losses are not negligible, the

DOPO output beam is in a squeezed thermal vacuum state (STV) with noise reduction

on the phase quadrature. The DOPO output properties are examined by means of an ho-

modyne detector able to measure the state quadratures at different phases. The acquired

data are analyzed by looking directly at the statistics or by means of the quantum homo-

dyne tomography via pattern function, able to reconstruct the state properties without

any hypothesis a priori on it. The experimental set up for the DOPO and homodyne im-

plementation is accurately described, by stressing the strategies used to optimize them.

Results relative to the detection of the DOPO output for different cavity losses and dis-

tances from threshold are reported. Operating the OPO away and close to the threshold,

the measured density matrix elements deviate in a more or less pronounced way from

those of a vacuum squeezed thermal Gaussian state. These deviations from the Gaussian

state are confirmed by directly analyzing the distribution functions of the quadratures

X (θ) for 100 values of θ. Plotting the Kurtosis (Kθ) of each distribution as a function

of θ for different distances from the threshold it is found an oscillatory behaviour with

Kθ maximum(minimum) for the anti–squeezed (squeezed) quadrature. In general the

maximum Kθmax decreases by moving away from the threshold. A theoretical model

explaining the observed behaviour in terms of threshold fluctuations is reported. The

DOPO output is computed for small fluctuations of parametric gain and cavity detuning

respectively due to residual noise in the laser pump amplitude and in the cavity length

control and the detection effect is considered. The kurtosis is calculated by means of an

iterative procedure. First results of numerical simulations are reported, showing a good

qualitative agreement with the experimental findings.
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A scheme for measuring the optical transmittivity of a sample by using squeezed

vacuum radiation is also illustrated. Main advantage of this method is a number of

photons hitting the sample during the measurement some orders of magnitude smaller

than that relative to standard techniques based on intensity measurements of coherent

beams.

The core of the method consists in the measurement, via homodyne detection, of the

variance∆X2
θ of a generic quadrature of a squeezed vacuum field, generated by a below

threshold OPO and passing through the sample under investigation. The accuracy of the

method is compared with that based on absorption of coherent beams (with and without a

squeezed vacuum component) as a function of sample transmittivity, number of data and

detection bandwidth. In the case a low number of photons interacting with the sample

during the measurement is required, the proposed method is the most accurate. An

experimental test of the procedure is reported. Xθ is obtained by scanning the interval

θ ∈ (0, 2π) so allowing a complete reconstruction of the state Wigner function. Since it

is essential to the scheme, the assumption of Gaussian statistics for the squeezed vacuum

field is checked. The experimental findings show that, for photon fluxes of the order

of few pW (at 1064 nm), the accuracy is of the order of the quantum limit, that is the

method does not suffer substantially from other technical noise sources.

In the second part of the thesis the case of non degenerate parametric oscillator

(NOPO) below threshold is treated. The signal and idler from a seeded NOPO below

threshold are spatially separable and form an EPR pair, the entanglement properties

depending on the NOPO parameter. The correlation between them can be measured

in terms of the covariance matrix. A simple scheme is suggested to reconstruct the

covariance matrix of two-mode states of light using a single homodyne detector plus

a polarizing beam splitter and a polarization rotator. The scheme requires the local

measurements of 14 different quadratures pertaining to five field modes. It can be used

to fully characterize bipartite Gaussian states and to extract relevant informations on

generic states.
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Eventually the problem of the experimental implementation of a NOPO based on

commercial pump laser source and periodically poled KTP (PKTP) crystal is discussed.

The PKTP is designed in order to generate cross polarized and frequency degenerate

signal and idler, by using as pump beam the output @532nm of a duplicate Nd:Yag

source. The results of the first tests together with the procedure for finding the frequency

degeneration crystal temperature are reported.
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