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CHAPTER 1 

 

FOREWORD 

 

 

1.1 PTMs contamination 

 

The role of man in the biosphere has been so important recently that it has become necessary 

to distinguish the anthroposphere, the sphere of man’s settlement and activity, which can be 

applied to any part of the biosphere that has been changed under an influence of technical 

civilization. While geological and biological alterations of the earth’s surface have been very 

slow, changes introduced by man have accumulated extremely quickly in recent years 

(Kabata-Pendias and Pendias, 2001). 

Environmental pollution, especially by chemicals, is one of the most effective factors in the 

destruction of the biosphere components. Among all chemical components, potentially toxic 

metals (PTMs) are believed to be of a specific ecological, biological and health significance. 

In soils their forms are strongly determined by their origin and history. Although native 

metals are frequently in highly immobile forms, anthropogenic forms are often more reactive 

and thus are more available to plants. The soil is a dynamic system and any changes in 

environmental conditions, whether natural or anthropogenic, can alter the forms of PTMs, 

thereby affecting their behaviour in soil. The main controlling factors include degradation of 

organic compounds, change of pH, redox potential and ionic strength of the soil solution, 

solid and solution components and their relative concentrations and affinities for an element, 

and time (McLean and Bledsoe, 1992; Misra et al. 1994; Alloway, 1995; Herreweghe et al. 

2002; Jung et al. 2002; Liu et al. 2003; Tahiri et al. 2005). 

The term PTMs includes essential (e.g., Cu, Mn, Se, Zn, Co) and nonessential (e.g., As, Hg, 

Cd, Pb) elements. The elements essential to healthy functioning and reproduction of 

microorganism, plants and animals are required in low concentrations and are also called 

micronutrients, but at high concentrations they may cause direct toxicity or reproductive 

effects for plants, animals, and humans (Bolan and Duraisamy, 2003). Some elements are also 

non-essential and even low concentrations of these elements in the environment can cause 

toxicity to both plants and animals (Alloway, 1995).  

PTMs contamination is widespread, as they are non-biodegradable and therefore persist for 

long periods in aquatic as well as terrestrial environments (Kabata-Pendias and Pendias, 2001; 



 
 

Grandjean and Landrigan, 2006). It is generally accepted that the distribution, mobility, 

bioavailability and toxicity of PTMs in soil depend not simply on their total concentrations 

but, critically, on their forms (Morgan and Stumm, 1995). These may be soluble, readily 

exchangeable, complexed with organic matter, or hydrus oxides, substituted in stoichiometric 

compounds or occluded in mineral structures (Ritchie and Sposito, 2002). 

PTMs can be retained by soils and/or mobilized to soil solution by biological and chemical 

mechanisms with a potential impact on human health (contamination of drinking water 

supplies and agricultural crops and input into the food chain) (Giuliano et al., 2007; Ajmone-

Marsan et al., 2008; El Khalil et al., 2008). 

The fate and transfer of metals are complex and depend on the transport process involved, on 

the mineralogy of eroded particles and on soil and sediment properties (Krishnamurti and 

Naidu, 2003; Razo et al., 2004; D’Amore et al., 2005). The biogeochemical processes that 

control metal mobility and bioavailability include sorption on mineral and organic surfaces, 

dissolution, (bio-)mineralization, redox processes, complexation by biogenic or non-biogenic 

ligands and uptake by the biota (Kraemer and Hering, 2004). These processes could 

determine the metal speciation in the environment and therefore, their bioavailability and 

toxicity. 

 

 

1.2 Speciation in risk assessment 

 

The term “derelict” is commonly used to describe land that has been spoiled by industrial 

operations (e.g. the extraction of minerals) or as a result of general neglect and so is incapable 

of beneficial use without some form of remediation. In many countries some of the worst 

dereliction is associated with old mineral workings. These may take the form of old spoil 

heaps and tailings ponds and associated buildings and structures which may include mine 

shafts, or of open pits and quarries (Bell and Genske, 2000). According to Genske and Thein 

(1994), the key to effective rehabilitation of derelict land involves the harmonized 

management of ground investigation, risk assessment and cleanup strategies. Contamination 

can take many forms and can be variable in its nature across a site and each site has its own 

characteristics. Hazard implies a degree of risk, but the degree of risk varies according to what 

is being risked. It depends, for example, upon the mobility of the contaminant(s) within the 

ground and different types of soils have different degrees of reactivity to compounds that are 

introduced. Also, it is influenced by the future use of a site. 



 
 

Remediation technologies of PTMs contaminated environments are complex and may involve 

a combination of physical, chemical and biological methodologies. These have the purpose of 

immobilizing, containing, isolating, extracting and/or disposing of PTMs (Siegel, 2002). 

Risk management based only on the total content of PTMs in soil is generally used as the first 

reference indicator for comparing pollution level with legislative limits and might be useful to 

detect any net change due to different possible phenomena, such as erosion and leaching to 

groundwater, in order to minimize the risks assuming that pollutants transferring to water 

resources or biota increase with contamination level. Nevertheless total metal content analysis 

is not enough to evaluate the influence of each element in the potential ecosystem pollution 

and gives no idea of the extent to which elements are really transferable or bioavailable 

(Morin et al., 1999; Pagnanelli et al, 2004); the natural occurrence of toxic elements in soils, 

especially in disused mining areas, requires further analyses to detect mobilisation due to 

erosion and leaching to groundwater (Giuliano et al., 2007). 

For a correct assessment of risk/toxicity (according to PTMs’ content and availability) of a 

polluted soil and to predict its decrease after application of remediation techniques, it is 

crucial to establish the speciation, mobility and biogeochemistry of the contaminants 

(Wennrich et al., 2004). 

According to Ure and Davidson (2002), the term “speciation” identifies and quantifies metal 

pools present in soils. Speciation science seeks to characterize the various forms in which 

PTMs occur in soil or, at least, the main metal pools present in soil. Understanding speciation 

is important for assessing the potential of soil to supply micronutrients for plant growth or to 

contain toxic quantities of PTMs, and for determining amelioration procedures for soils at risk 

of causing the PTMs’ contamination of waterways. 

The residence time of an element in a soil depends on the mobility of its predominant forms: 

not all metals are equally reactive, toxic or available to biota and the free ion form of the 

metal seems to be the most available and toxic. Because of the dependence of metal mobility 

on the interaction of metal with soil, several sequential procedures have been developed to 

selectively remove metals from the different geochemical forms (Lake et al., 1984; Allen, 

1997; Song et al., 1998). 

PTMs’ speciation in soil can be achieved using either direct or indirect analytical methods. 

Direct methods, mainly non destructive, are usually qualitative and often not sensitive enough 

to detect forms present in small amounts; furthermore, they are more sophisticated than 

chemical methods and need a high level of specialization to be routinely included in metal 

speciation studies. 



 
 

More widely applied to determine the potential, plant and human bioavailability are the 

methods of PTMs’ speciation which involve selective chemical extractions techniques. 

Estimation of the plant- or human-available element content of soil using single chemical 

extractants is an example of functionally defined speciation, in which the function is plant or 

human availability. One approach to this problem is to apply various chemical extractants, 

either singularly or sequentially in order to assess the forms, or at least the main pools, in 

which metal contaminants occur in solid samples (e.g. Ure and Davidson, 2002; Adamo and 

Zampella, 2008). These procedures are all based on the general principle of reacting a soil 

sample with chemical extractants classified according to their ability to release elements from 

specific soil phases and characterized by increasing strength. 

Partial or sequential extraction methods are among the oldest and most commonly used 

methods of chemical partitioning of environmental solid samples. Perhaps the simplest and 

most standardized sequential extraction method was proposed by the European Community 

Bureau of Reference (BCR) (Ure et al., 1993). These techniques are easy to apply, 

inexpensive, and require little data analysis. However, it is vitally important to realize that the 

original work on sequential extraction was performed on sediment materials with trace metal 

concentrations (Tessier et al., 1979). Since then, many researchers have adapted these 

methods to study anthropogenic metal contamination and to predict or estimate bioavailability 

of various metal forms. The idea behind these extraction methods is based on the assumption 

that a particular extractant is phase or retention mode specific in its chemical attack on a 

mixture of forms. However, it is now widely recognized that the forms determined by 

chemical extractions are inevitably operationally defined (Hillier et al., 2001; Ure and 

Davidson, 2002). 

These procedures present a series of different problems, which play a role in determining the 

success of a given extraction procedure, such as the low reproducibility especially with large 

particles and encapsulated pollutants (Dahlin et al., 2002a), the error propagations (Koeckritz 

et al., 2001), the strong influence of operative conditions (Koeckritz et al., 2001; Ngiam and 

Lim, 2001), the chemical properties and the effective selectivity of the extracting reagents 

(Nirel and Morel, 1990) and the re-adsorption of metals during extraction (Rendell et al., 

1980). 

Further considerations apply if the extraction procedure is a sequential scheme for 

determining a fractionation pattern for a given soil or sediment sample. These include: (i) the 

sequence of steps, (ii) matrix effects (cross contamination and re-adsorption), and (iii) 

heterogeneity and physical associations of the solid components. Lastly, sample procurement, 



 
 

handling, storage, and preparation all affect the results in a crucial way (D’Amore et al., 

2005). 

As a consequence, sequential extraction procedures cannot be used as stand-alone evaluations 

to identify the actual form of metals in soils and should be accompanied by deeper 

experimental investigations and solid matrix characterization (Dahlin et al., 2002a, b). 

However, sequential extractions can be useful to have an operational classification of metals 

in different geochemical fractions (Pagnanelli et al, 2004). Therefore, a complementary use of 

the chemical and mineralogical approaches may provide a more realistic picture of the actual 

forms of PTMs in solid matrices (Adamo et al., 1996; Venditti et al., 2000a, b; Adamo et al., 

2002; Adamo et al., 2003; Hillier et al., 2003; Kirpichtchikova et al., 2006). 

 

 

1.3 PTMs in mining activities 

 

There are a multitude of anthropogenic emissions in the environment. Man’s perturbation of 

nature’s slowly occurring life cycle of metals includes (i) the extraction, smelting, and 

processing of metal bearing ores into products, (ii) the distribution and use of these products 

by industry and consumers, and (iii) the return of these metals in a concentrated form to the 

natural environment through disposal of processing wastes and the discard of spent products. 

Some soils contain high concentrations of metals from geochemical sources (Adriano, 1986), 

while others are contaminated by metals from these anthropogenic activities which have 

increased the prevalence and occurrence of PTMs contamination at the Earth’s surface (Osher 

et al., 2006). Although metal mining can bring much economic prosperity, large areas of 

industrial dereliction often result once mining has ceased. This dereliction includes a legacy 

of abandoned tips, which contain the waste products of both mining and ore processing 

operations; the waste is commonly disposed on the earth’s surface in piles of rock called 

tailings or spoil piles. Such materials are often a major source of PTMs pollution in the local 

environment due to discharge and dispersion into nearby agricultural soils, food crops and 

stream systems (groundwater and surface water) (Tordoff et al., 2000; Jung, 2001). Many 

research studies are devoted to element migration in solid waste and adjoining soil (De Vos et 

al., 1995; Seal and Hammarstrom, 2003), surface waters (Shallari et al., 1998; Tsareva et al., 

1999), ground deposits (Task et al., 1996; Gupta and Karuppiah, 1996) and other 

environmental components (e.g. atmosphere as metal-enriched dust) (Callender E., 2003). 



 
 

Mining is one of the industrial activities that causes the greatest and most persistent 

alterations in nature (Passariello et al., 2002). This activity affects relatively small areas, but 

could have a significant impact on the environment representing a potential danger to the 

health of human populations residing in the vicinity of these mining areas. The pre-existing 

ecosystems in mining areas become subjected to such disturbance that the most common 

consequences is their disappearance; the territories in the vicinity are very vulnerable and 

usually very much affected (Marqués et al., 2001). Following mine closure, the tailings are 

disposed onto surrounding soils, leading to their exposure to environmental factors (El Khalil 

et al., 2008). The impact of mining activity on a given site is controlled by several factors, 

including the climate, mining methods, geological conditions, degree of mineralization of the 

tailings and whether the mine is active or abandoned (Johnson et al., 2000; Bell et al., 2001). 

Several chemical contamination cases have been described in former mining areas, where 

significant amounts of various elements were mobilized by weathering and by leaching from 

abandoned mining wastes (Hartwell et al., 1983; Abrahams et al., 1987; Hamilton, 2000); 

according to Merrington and Alloway (1994), over 100 years after the closure of some Pb-Zn 

mines of Wales, considerable amounts of metals are still being transferred off-site. 

In semi-arid areas, the dispersion of soluble and particulate metals is often enhanced because 

soils are typically scarcely vegetated (Navarro et al., 2008). These areas have severe erosion 

problems caused by wind and water runoff in which soil and mine spoil texture, landscape 

topography and regional microclimate play an important role (Adriano 1986; Johnson et al., 

1994; van Geen et al., 1999; Querol et al., 2000; Chopin et al., 2003; Boularbah et al. 

2006a,b). 

There is an obvious need to restore these disturbed habitats, although they have usually been 

altered to such a degree that they can only be partially restored, land reclamation or 

rehabilitation being the remaining alternatives (NAS, 1992). Environmental managers should 

concern themselves with a detailed knowledge of all potentially mobile and toxic metals 

within the economic, and gangue minerals, and the waste rocks and overburden associated 

with the ore body (Clark, 2001). 

 

 

 

 

 

 



 
 

1.4 Mining activity in Morocco 

 

The mining history of Morocco can thus be summarized by the history of lead prospecting 

within the country (Bouabdli et al., 2005). Morocco has been the most important lead 

producer in north Africa since Roman times (Emberger, 1965). Mining activity started in 

Morocco in the 9th century. Strong mining activity resumed in the 1970s and has been 

maintained since that time, with lead still being the main metal produced. In 1980 its 

production reached about 170,000 tons of concentrated lead, which corresponds to 3.5% of 

the world's production (Wadjinni, 1998). 

Mainly the southern region has large areas covered by metalliferous sites some of which are 

being exploited while others have been abandoned (Chronicle of mineral research and 

exploration, 1998); these sites are concentrated in the region of Marrakech, Ouarzazate and in 

the north of the Anti-Atlas mountains (Abarro et al., 1998; Eddebbi et al., 1998). 

The mining sector plays an important role in Morocco's economy. In 2001, mining products 

accounted for close to 13% of total exports. The sector employs 37445 people. Morocco is the 

leading exporter and the world's third largest producer of crude phosphate, and the second 

largest exporter of solid fertilizer. Baritin, zinc, lead, cobalt, fluorite, bentonite, and smectite 

clays are some of Morocco's other important mining products. 

The mining legislation in effect is to be found in the Dahir of 16 April 1951 containing the 

mining regulations, as amended, together with the implementing texts. The Government's 

strategy in this sector covers all mining activities (upstream and downstream).  Its aim is to 

promote geological and mining potential, develop prospecting, diversify outlets, create a 

climate favourable to partnerships, and adopt legal and fiscal incentives. 

This decree does not provide a regulation concerning the environmental safeguard from risks 

due to the mining exploitation at the present (working mines) and in the past (abandoned 

mines) (El Hachimi, 2006). 

 

 

 

 

 

 

 

 



 
 

1.5 The Upper Moulouya mining district 

 

The Moulouya River is the largest river in Morocco (length: 520 km), draining approximately 

53500 km2 in eastern Morocco between 32° – 35° N and 2° – 6° W. It rises in the Atlas 

Mountains at an altitude of 1770 m and flows into the Mediterranean Sea. 

Due to the presence of mountainous areas (Rif, Middle and High Atlas), the Moulouya River 

basin is characterized by variable relief. The river basin also contains high plateaus (the 

Horsts chain) and low plains (the Missour-Outat El Haj and the Taourirte-Guercif basins). 

This large area can thus be subdivided into three zones designated by the upper, middle and 

lower Moulouya basins (Bouabdli et al., 2005). Topographically, about 3% of the drainage 

basin is mountainous (altitude > 2500 m), 15% is hilly (1500 – 2500 m), 71% extends on 

foothills and a plateau region (500 – 1500 m) and 11% consists of plains and valleys. The 

slope of the stream gradually decreases from about 0.56% in the upper part of the basin, to 

0.32% in the middle part and 0.19% in the lower floodplain. The bedrock consists 

predominantly (97%) of sedimentary rocks (limestones, marls, sandstones, conglomerates, 

etc.); while crystalline and metamorphic rocks crop out only over 3% of the basin area. The 

main human activities in the Moulouya basin are agriculture (138000 km2 of irrigated lands), 

industry, mining and grazing. Agriculture is developed mainly in the lower Moulouya, where 

the soil is fertile and water abundant. The main crops grown are cereals, vegetables, and sugar 

beet. In the more arid zones, the land is used mainly for livestock grazing. Forests are 

developed on the slopes of the Atlas and on the Beni Znassen mountains (Snoussi et al., 

2002). 

The site of interest, the High Moulouya valley, also known as the Upper Moulouya lead 

district, corresponds to the south-western region of the Oranaise Meseta that is bounded by 

the High Atlas on the southeast and by the Middle Atlas on the northwest (Piqué and 

Michard, 1989). The region is composed of two separate Paleozoic massifs (the Bou-Mia and 

the Aouli). The Paleozoic substratum that crops out in these massifs consists of pelitic and 

quartzitic lithotypes intruded by the Hercynian granites and unconformable overlain by a 

Mesozoic cover consisting of Triassic evaporites/clastics and of Jurassic and Cretaceous 

carbonates and shales (Bouabdli et al., 2005). Located in the internal part of the Hercynian 

chain, the Upper Moulouya district contains one of the largest concentrations of lead in 

Morocco, with a total output of more than one million metric tons, and is only exceeded by 

the Pays des Horsts district (Rajlich, 1983). The district displays three main types of lead-

barite ores: (1) Zeïda Permo-Triassic sandstone-hosted mineralization in arkosic sediments 



 
 

(dates of economic ore production: 1972-1985), (2) Mibladen stratabound karstic Pb-Zn 

mineralization in the Liassic carbonates (1936-1985), and (3) Aouli Pb-Zn-Ag vein-type 

deposits hosted in the Hercynian basement (1926-1985) (Fig. 1.1) (Jébrak et al., 1998). 

 

 

 Figure 1.1. Geological map of the study area (modified from Emberger 1961). 
 

 

 

 

The Zeïda mining area (1490 m asl) is located 30 km NW of the small town of Midelt over a 

large area along the Moulouya river’s course. At Zeïda the mineralization occurs as 

stratabound levels in the sub-horizontal Permo-Triassic arkosic sandstones, deposited on the 

granite basement (Emberger, 1965b; Amade, 1965; Schmitt, 1976; Björlykke and Sangster, 

1981; El Jaouani, 2001). The paragenetic association is very simple, with well crystallized 



 
 

cerussite [PbCO3] (70% of extracted Pb) and galena [PbS] (30%), along with minor 

chalcopyrite [CuFeS2], pyrite [FeS2], and large amounts of pink barite [BaSO4] and scarce 

small yellow cubes of fluorite [CaF2]. Barite accounts for approximately 4 wt.% of the ore. 

Minerals occupy interstitial voids between sand grains. The Zeïda deposit also contains 

noneconomic barite-galena vein lets which cross-cut the arkosic sediments and the Aouli 

granite. Minor anglesite [PbSO4], wulfenite [PbMoO4], vanadinite [Pb3(VO4)Cl], 

pyromorphite [Pb(PO4)3Cl] and rare sphalerite [ZnS] were also found (Amade 1965; D.M., 

1990). 

The Mibladen ore deposit (1400 m asl) extends over an area of about 60 km2. The mining area 

is located 15 km ENE of Midelt in a plateau consisting mainly of Mesozoic carbonates 

covering the basement (Felenc and Lenoble, 1965). In Mibladen mainly galena and less 

frequently barite have been mined; but rare chalcopyrite and pyrite have been encountered as 

well (Petris, 1963). The most common oxidation products are cerussite, anglesite and 

vanadinite. Galena, often automorphic and cubic and in association with barite, occurs as 

impregnations, disseminations or layers of variable thickness in a shaly-dolomitic and 

calcareous-dolomitic sediment (Emberger, 1965a, b). The first two deposits may correspond 

to the same Triassic metallogenic event, focused along fault systems or within permeable 

sandstone. Deep fluids were mobilised during the early extensional movements associated 

with the opening of the Atlas rifting basin. The Mississippi Valley type Mibladen 

mineralization is related to a distinct metallogenic event superimposed on the earlier one, and 

represents a remobilization of earlier concentrations, or a more recent leaching of the same 

sources, but with a more pronounced contribution of the local organic matter (Jébrak et al. 

1998). Galena usually appears oxidized and partially or totally replaced by cerussite and 

anglesite (Emberger, 1965a, b). 

The Aouli mine (1130 m asl) is located 26 km NE of Midelt and at 12 km of the village of 

Mibladen, in a narrow gorge cut by the Moulouya river. The Aouli ore zone extends over an 

area of 300 km2 and consists of a network of veins hosted by metamorphic schists and 

granites; minor veins also occur in the cover of Permo-Triassic sedimentary rocks (Emberger, 

1965b). The main ore mineral at Aouli is galena, associated with barite and fluorite in a quartz 

gangue [SiO2]; minor amounts of sphalerite, pyrite, chalcopyrite and rare malachite 

[Cu2(CO3)(OH)2], azurite [Cu3(CO3)2(OH)2] and cerussite have been recorded (Saunier, 1963; 

Nasloubi, 1993). 

In 1975, the Aouli and Mibladen mines were depleted and in 1985 all mines were closed. This 

resulted in large mining districts being abandoned with their mining and metallurgic 



 
 

equipment left on the surface together with all the accompanying waste materials, including 

tailings. This has created an important source of contamination, progressively releasing trace 

elements into the environment (Saïdi, 2002; Bouabdli et al., 2005). 

The mining activity has seriously modified the natural landscape of the High Moulouya. In all 

three mining areas, different sites are devoted to exploitation and processing activities (Fig. 

1.2). Deep excavations filled with ground- and run-off water (used by the locals for irrigation 

and water holes for the cattle), mine adits and abandoned pits occur in the exploitation sites, 

where also mine wastes (tailings and coarser waste rocks) are accumulated in elongated banks 

up to 20 m height. Processing plants, usually built in close proximity to the villages, are 

characterized by the presence of several abandoned (and ruined) facilities and tailings areas. 

Most tailings are accumulated in dumps, preferentially located along fluvial banks without 

safety control. The almost general lack of vegetation cover, coupled with the typical high 

temperatures and strong winds of this part of Morocco, enhance the erosion and transport of 

waste materials. The nearby Moulouya and Mibladen Rivers, along with their tributaries, 

running through the area and periodically subjected to flooding, support the dispersion of 

contaminants (El Hachimi et al., 2006). 

The current climatic conditions in the region are semi arid, with annual precipitation of 100 – 

400 mm and mean annual temperatures of 12 – 14 °C. The most diffuse land use is rough 

grazing for cattle and sheep. Recently planted orchards, containing mainly apple trees, can be 

found in specific areas where the availability of water is less limited due to the occurrence of 

privately-owned wells. 

According to the Global Soil Regions map, based on a reclassification of the FAO-UNESCO 

Soil Map of the World, the soils in the region of the Upper Moulouya valley are mainly 

entisols and inceptisols (USDA, 2005). 

 

 

 

 

 

 

 

 

 

 



 
 

1.5.1 Common minerals occurring in the rock ore 

The main features of the most common mineral phases occurring in the rock ore of the Upper 

Moulouya lead mining district are given in Table 1.1. 

The most common minerals occurring in the rock ore from the High Moulouya valley are: 

calcite, dolomite and quartz.  

The most important lead bearing minerals are anglesite, cerussite and galena. 

Anglesite is a rare lead mineral and can be a beautiful specimen; it has the same structure as 

barite and forms very similar crystals. However, anglesite has a very high density and even 

though barite is a rather heavy mineral, anglesite is nearly 50% more dense. It is a secondary 

mineral, typically formed in the oxidation zone of galena (lead sulphide) ores. 

Cerussite is a popular collection mineral, famous for its great sparkle, great density and 

amazing twinned crystals; the lead is responsible for its increased specific gravity. Cerussite is 

found in the oxidation zone of lead deposits usually associated with galena and anglesite. 

Galena is a common and popular mineral for rock hounds; it is the major ore of lead and 

silver. The solubility of galena is very low (Ksp = 10-28) and so it is inclined to precipitate. 

The most important zinc bearing minerals are: hemimorphite, hydrozincite, smithsonite, 

sphalerite and willemite. 

Hemimorphite is one of the more common sorosilicates. Its most noteworthy characteristic is 

its polar or hemimorphic crystals from where it gets its name. The crystal structure produces a 

different termination at each end of the crystal. One termination, the "bottom" is rather blunt 

being dominated by a pedion face while the opposite end, the "top" is terminated by the point 

of a pyramid. It is a minor ore of zinc as well as hydrozincite, which forms in the oxidation 

zones of zinc deposits as masses or crusts. 

Smithsonite has been and is still being used as an important, although rather minor ore of 

zinc. Smithsonite forms in dry climates as a weathering product of primary sulphide zinc ores 

such as sphalerite; its features is the slight effervescence with warm hydrochloric (HCl) acid. 

Sphalerite (which is also known as blende), is is by no doubt the most important ore of zinc, 

an industrially and at times strategically important metal. Although its importance as an ore of 

zinc is undisputed, it is a very attractive and a very interesting mineral for collectors as well. 

Willemite is a somewhat rare zinc mineral and one of the best examples of a fluorescent 

mineral. Among the zinc minerals, hemimorphite and sphalerite are characterized by lower 

values of solubility product (respectively, 10-24 and 10-21) and so easily inclined to precipitate. 

 



 
 

Table 1.1. The main features of the most common mineral phases occurring in the rock ore of the Upper Moulouya lead mining district 

Mineral name Chemical formula 
Solubility 

product (18 °C) 
Class Colour Associated minerals References 

Anglesite PbSO4 Ksp = 10-7.7 Sulphates 
Usually colourless, white 

and yellow 

Galena, cerussite, barite and 

limonite 
Magalhaes and Silva (2003) 

Barite BaSO4 Ksp = 10-10.0 Sulphates 
Variable but commonly 

colourless or white 

Numerous (calcite, sulphur, 

vanadinite, cerussite) 
Hogfeldt (1982) 

Calcite CaCO3 Ksp = 10-9.0 Carbonates 
Variable but generally white 

or colourless 
Numerous Patnaik and Pradyot (2003) 

Cerussite PbCO3 Ksp = 10-13.0 Carbonates Usually colourless or white Barite, calcite, anglesite Swanson and Fuyat (1953) 

Dolomite CaMg(CO3)2 Ksp = 10-17.0 Carbonates Often pink or pinkish 
Calcite, sulphide ore minerals, 

barite, quartz 

Howie and Broadhurst (1958); 

Halla (1962) 

Galena PbS Ksp = 10-27.5 Sulphides Lead to silver gray 
Calcite, dolomite, sphalerite, and 

other sulfide minerals 
Davis et al. (1993) 

Hemimorphite Zn4Si2O7(OH)2H2O Ksp = 10-24.0 Silicates Blue-green, green, white 
Limonite, aurichalcite, calcite and 

smithsonite 
Swanson and Fuyat (1953) 

Hydrozincite Zn5(CO3)2(OH)6 Ksp = 10-14.9 Carbonates White or clear 
Sphalerite, limonite, smithsonite, 

hemimorphite and calcite 

Jambor and Pouliot (1965) ; 

Alwan and Williams (1979) 

Quartz SiO2 - Silicates Variable Numerous Swanson and Fuyat (1953) 

Smithsonite ZnCO3 Ksp = 10-9.9 Carbonates 
green, lavender, purple, 

yellow and white 

Hemimorphite, cerussite, 

hydrozincite, calcite 
Swanson and Fuyat (1953) 

Sphalerite (Zn, Fe)S Ksp = 10-20.6 Sulphides Black 
Galena, fluorite, quartz, calcite, 

magnetite 
Vaughan and Craig (1978) 

Willemite Zn2SiO4 Ksp = 10-15.7 Silicates Colourless or white Calcite, other rare minerals Swanson and Fuyat (1953) 

 



 
 

1.6 Aim of the study 

 

The presence of abandoned mines along river courses has ever generated several 

environmental problems: mining for metals in terrestrial environments is widely recognized to 

increase metallic elements amounts in the soil and to impact water quality downstream from 

the mines (Schmiermund and Drozd, 1997). In the lead industry, Pb, Zn, Cd, Cu are released 

in substantial quantities (Callender, 2003). 

The main purpose of this whole work was to characterize (in terms of total content and 

speciation) the potentially toxic metals (PTMs) contamination of mine wastes, soils, river 

sediments, surface and ground waters from the former lead mining district of the High 

Moulouya valley (Morocco) in order to correctly assess the risk/toxicity of contamination 

according to the mobility and transferability of the pollutants from wastes into nearby soils, 

stream system and vegetation. 

This aim was achieved through: 

• an analysis of the historical use of the site and its geological setting in relation with ore 

mining; 

• the morphological description of mine wastes and soil profiles in the field; 

• the collection of wastes, soils, sediments and waters; 

• the general chemical characterization of all solid samples; 

• the classification of the waters on the base of their chemical properties; 

• the evaluation of PTMs total content of wastes, soils, sediments and waters; 

• the measurement of the bioavailable or potentially leacheable metal fraction in wastes, 

soils and sediments; 

• the definition of the physical and chemical partitioning of the main metallic 

contaminants (Pb and Zn) in selected contaminated and not contaminated wastes and 

soils; 

• the qualitative and semi quantitative mineralogical analysis of the above selected 

wastes and soils. 

 

 

 



 
 

Chapter 2 presents the waste, soil and sediment general properties (pH, EC, organic matter 

and total carbonates content and texture) and PTMs total and bioavailable (CaCl2-extractable) 

content; morphological features of soil profiles are also described. 

Chapter 3 works on the water properties and contamination of the Moulouya river basin: 

chemical characterization and PTMs total content analyses of surface water and groundwater 

samples collected in the study area are described in order to evaluate the impact of past 

mining activity on the quality of the water. 

Chapter 4 focuses on the comparison between chemical (by sequential chemical extractions) 

and mineralogical (by XRPD) speciation defining forms and phases of Pb and Zn in wastes 

and soils. 

Chapter 5 reports the overall conclusions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

   

 

 

   

 

 

   

Figure 1.2. Mining exploitation and processing areas in the Upper Moulouya district. A, B: 

groundwater filling deep excavation in Zeïda; C, D: waste dumps and processing plant 

facilities in Mibladen; E, F: ruined facilities and abandoned village in Aouli. 
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CHAPTER 2 

 

GENERAL PROPERTIES AND PTMS TOTAL CONTENT OF MINE W ASTES, 

SOILS AND RIVER SEDIMENTS 

 

 

2.1 Introduction 

 

Soil quality can be defined as the degree of sustainability to the specific functions that soils 

perform in a given ecosystem (Diack and Stott, 2001). There is not a single measurement that 

can quantify soil quality (Stewart, 1992), but there are many indicators of soil quality that can 

be measured including microorganism populations, basal and specific respiration rates, 

microbial diversity, enzyme activities (indicative approach), pH, soluble salts, cation 

exchange capacity, organic matter, texture, aggregate stability, water holding capacity 

(descriptive approach) (Diack and Stott, 2001). 

Soil quality is affected by incorporation of external materials or other factors. Contaminants 

are considered to be soil disturbing substances, since they can generate changes in some soil 

properties, i.e. pH, electrical conductivity, PTMs concentration, enzymatic activity, etc. 

(Stamatiadis et al., 1999). Soil provides the nutrient-bearing environment that sustains plant 

growth. Essential nutrient metals and other metals in food crops are translocated through soil 

into the food web. Natural contents of potentially toxic elements in soils are generally low 

unless soils develop from rock with high contents of one or more elements or from ore-

bearing rock. Metal contents in soils may be greatly enhanced by human activities. As an 

environmental geochemistry sample, soil has to be considered in terms of the soil profile 

which develops over time as a temporal but ever changing end product of the interactions of 

physical, chemical and biological processes during weathering. 

The study of soils formed by human activities is one of the concerns of modern pedology 

(Buondonno et al., 1998). The uniqueness of the genesis, characteristics and properties of the 

soils in highly human-influenced environments has been pointed out by pedological 

investigations carried out on urban areas (Agarkova et al., 1991; Burghardt, 1994a,b), mined 

lands (Ciolkosz et al., 1985; Thurman and Sencindiver, 1986) and abandoned pits (Strain and 

Evans, 1994). 

Soil properties, according to the variability in organic and inorganic soil constituents, may 

have a strong influence on progressive PTMs accumulation (Alloway, 1995). 



 
 

An evaluation of the retention, release and distribution of PTMs in soils is a determining step 

in various types of geoenvironmental studies (Adamo et al., 2002). The decrease in mobility, 

or the retention, of PTMs and their distribution among geochemical phases of the soil depends 

upon compositional and state characteristics of the soil solids (mineralogy, grain size, 

compaction, water content, etc.) and of the pore fluid (pH, temperature) (Santillan-Medrano 

and Jurinak, 1975; Farrah and Pickering, 1977, 1978). The complexity of the interactions is 

complicated by the heterogeneous nature of the different soil constituents (Selim and Sparks, 

2001). PTMs movement with water in soils, requires their presence in a soluble state or an 

association with mobile particulates. Particulates could complex metals in the topsoil and 

carry them downward the profile where they would be in an exchangeable form. Movement 

of metals in soil is strongly related to the particular physical-chemical form of the element. 

Soil redox status strongly affects element forms and mobility and, generally, PTMs are less 

soluble in their higher oxidation states (Sposito, 1984; McBride, 1989). 

Critical phases in planning a study to assess the health status of an ecosystem are: 1) 

determining which samples can be used; 2) understanding what the sample represent in space 

and time; 3) knowing how chemical elements may be bound in a sample, physically and 

chemically; 4) establishing an ideal scale of sampling with realistic modifications as a 

function of where a sample type can be collected. There are several factors that must be 

determined in an area before selecting a remediation methodology that is considered to be 

best suited for cleanup of PTMs contaminated soils and then initiating a pilot study. These 

include the extent and thickness of the polluted soils, soil texture (sand, silt, clay contents), 

porosity and permeability, organic matter content, mineralogy, chemical composition and 

how target metals are bound in the soil (extractability). 

In a preliminary phase of pollution assessment, it can be also useful to rationalize the 

information obtained by acid digestion for total concentration. This can be done by comparing 

the concentrations in different solid samples as representatives of various areas of a site: 

natural soils as background samples, tailings from mining and milling activities, stream or 

lake sediments. These comparisons can reveal mobilization phenomena from source points, 

but also from one kind of solid matrix to others (e.g. from metal-bearing tailings to the 

surrounding soil). Further information can also be obtained by relating total concentrations to 

soil texture (Giuliano et al., 2007). It is quite generally observed that size fractions with lower 

dimensions present larger pollutant concentrations according to their higher specific area 

(grain size effect). Consequently, significant correlations between particle size distribution of 



 
 

soil samples and total concentrations can show how surface interactions, associated with 

anthropogenic contributions, predominate (Adamo et al., 1996; Huang and Lin, 2003). 

Physical fractionation is based on the concept that the association of SOM with particles of 

different size and different mineralogical composition differ in structure and function 

(Christensen, 1992). Heavy metals associated with particles of different size can therefore 

differ in their stability and accessibility, e.g. clay-sized particles provide a large surface area 

and numerous reactive sites where SOM and metals can be sorbed by strong ligand exchange 

and polyvalent cation bridges (Sposito et al., 1999), thus determining a greater stability. The 

distribution of heavy metals in different soil fractions can therefore mirrors differences in 

metal availability and environmental impact.  

Maximum contaminant levels (MCLs) for PTMs and other inorganic and organic components 

in water and foods have been set by various organizations. These entities include the World 

Health Organization (WHO), the Pan American Health Organization (PAHO), the 

Environmental Protection Agency (EPA) in the United States, and the European Health Union 

(EHU). The MCLs have been determined from careful and ongoing laboratory investigations 

and from medical records and observations on ingestion of PTMs, their bioaccumulation 

factors and their impact on human health. The MCLs published by one organization do not 

always agree with those from others but are of the same order of magnitude and close in 

value. Data from global and national organizations for allowable concentrations of PTMs in 

soils are not as complete or as uniform as for drinking water. When a metal has 

concentrations that exceed its MCL in published values for others media considered critical to 

human health status, alerted public health authorities work to put remediation action plans 

into operation (Siegel, 2002). 

The main objective of this work was to characterize physically and chemically the wastes, 

soils and river sediments taken from the Zeïda, Mibladen and Aouli mining areas in order to 

assess the main pollutants, their level of contamination, their distribution with depth and 

among different particle size fractions and their mobility/bioavailability as assessed by 0.1M 

CaCl2 extraction. 

 

 

 

 

 

 



 
 

2.2 Material and methods 

 

2.2.1 Sample collection 

Mine waste, soil and river sediment sampling was carried out in three campaigns: February 

2007, November 2007 and April 2008. 

The sampling network was designed collecting surface soil, river sediment and mine waste 

samples in several points (26) in and outside the mining areas and along the Moulouya river 

stream; a total of 41 samples (approximately 1 kg each) were collected at various depth using 

a stainless steel trowel and subsequently transferred to clean polypropylene bags. Sample 

points were located by Global Position System (GPS). 

In Fig. 2.1 and Table 2.1, the location of the sampling sites are given. 

In particular, within the mine areas, particles were sorted into different sizes during the 

construction process: close to the dumping site coarse grained materials were deposited 

(coarse waste rock), while far from it only fine grained materials and precipitates were 

accumulated (tailings). 

Waste samples were collected from the mine waste dumps inside the exploitation and the 

processing sites of the three mines. 

River sediment samples were collected in correspondence of the processing sites of Zeïda and 

Aouli. 

Potentially unaffected surface soil samples and river sediments were also taken randomly at 

various locations outside the mining areas. 

As regard soil, six profiles were opened, described and sampled from each horizon at selected 

locations inside the exploitation and processing sites of Zeïda and Mibladen areas and outside 

Zeïda mine area. 

 

 

 

 

 

 

 

 

 

 



 
 

Table 2.1. Location of studied mine wastes, soils and river sediments 

Latitude Longitude N° Sample code Site 
             N W 

  Mine Z (Zeïda)       
1 ZP1 Expl. 32° 48' 26" 4° 58' 17" 
2 ZC Expl. 32° 48' 10" 4° 58' 32" 
3 ZP2 Proc. 32° 50' 19" 4° 57' 20" 
4 ZT Proc. 32° 50' 24" 4° 57' 05" 
5 ZS Proc. 32° 50' 29" 4° 57' 08" 
6 Zsed Proc. 32° 50' 19" 4° 57' 20" 
7 ZP3 out 32° 47' 27" 4° 57' 51" 
8 SS1 out 32° 50' 45" 4° 54' 02" 
9 SS2 out 32° 45' 30" 4° 59' 32" 
     
 Mine M (Mibladen)     

10 MP1 Expl. 32° 45' 16" 4° 39' 02" 
11 MC2 Expl. 32° 45' 15" 4° 39' 10" 
12 MP2 Proc. 32° 45' 42" 4° 38' 41" 
13 MP3 Proc. 32° 45' 53" 4° 38' 41" 
14 MT Proc. 32° 45' 44" 4° 38' 40" 
15 MC1 Proc. 32° 45' 39" 4° 38' 43" 
16 SS out 32° 40' 57" 4° 37' 27" 
17 SS3 out 32° 38' 47" 4° 46' 24" 
18 SS4 out 32° 41' 56" 4° 42' 58" 
19 SS5 out 32° 43' 52" 4° 40' 57" 
20 SS6 out 32° 43' 29" 4° 40' 33" 
21 SS7 out 32° 43' 54" 4° 43' 22" 
22 SS8 out 32° 45' 37" 4° 47' 36" 
23 sed out 32° 41' 56" 4° 41' 55" 
     
 Mine A (Aouli)     

24 AT Proc. 32° 48' 40" 4° 35' 34" 
25 Ased Proc. 32° 48' 27" 4° 36' 02" 
26 AC Proc. 32° 49' 23" 4° 34' 40" 

P = soil profile; C = coarse waste rock; T = tailing; S = surface soil; sed= river sediment; 
Expl. = exploitation area; Proc.: processing area; out = outside mining area 

 
 

 

 

 

 



 
 

2.2.2 Analytical procedures 

Soil profiles were described soon after opening and the following main properties were 

determined in the field: 

• Horizons boundaries: the change from one horizon to another varies in distinctness 

(abrupt < 2 cm; clear 5 – 10 cm) and outline (smooth = almost straight; wavy = gently 

undulating) and is usually caused by differences in colour. 

• Texture: soil particles are divided initially into two size classes with the limit set at 2 

mm to delimit the “fine earth” from the skeleton ( >2 mm). 

• Colour: a very high proportion of the names of soils is based upon colour, since this is 

the most conspicuous property and sometimes the only one that is easily remembered. 

Generally the colour of a soil is determined by the amount and state of iron and/or 

organic matter. The colour was determined on samples using the Munsell Soil Colour 

Charts (Munsell Color, 2000); this semi-quantitative method of colour measurement 

depends on visual matching of a soil sample with standard colour chips. 

• Structure: this refers to the degree and type of aggregation; in many soils the 

individual particles exists as discrete entities but in others the most common 

arrangement is for the particles to be grouped into aggregates with fairly distinctive 

shapes and sizes. The main types of structures found were: platy (the units are flat and 

platelike, generally oriented horizontally), blocky (the structural units are blocklike or 

polyhedral), granular (the structural units are approximately spherical), massive 

(structureless). 

• Carbonate content: based on sample effervescence observed after adding HCl 10% 

(Siebe et al., 1996). 

 

The characterization of all samples was carried out at the Department of Soil, Plant, 

Environmental and Animal Production Science of the University Federico II of Napoli (Italy). 

Solid samples were preliminary characterised to relate their properties to the total 

concentration of toxic elements obtained by acid digestion. 

Once in the laboratory, all bulk samples were air dried at room temperature and sieved at 2 

mm, obtaining the soil skeleton (the >2 mm fraction) and the fine earth (the <2 mm fraction). 

Particle-size analysis was carried out after low-energy ultrasonic treatment at 20 kHz and 75 

W for 15 min with the Andreasen’s pipette method. Particle-size fractionation (2 mm – 10 

µm; 10 µm – 2 µm; <2 µm) was carried out on selected samples by centrifugation. 



 
 

On the fine earth fraction the following analyses were carried out: 

• moisture content at 105 °C; 

• pH (H2O) (1:2.5, soil:water ratio); 

• pH (CaCl2) (1:2.5, soil:0.01M solution ratio); 

• electrical conductivity (EC) (1:5, soil:water extract at 25 °C); 

• organic carbon content (OC) based on rapid dichromate oxidation (Walkley and Black 

method, 1934); 

• inorganic carbon (carbonates) content by pressure Dietrich–Fruehling calcimeter 

method (Loeppert and Suarez, 1996); 

• Al, Si and Fe forms by oxalate (Schwertmann, 1964) and dithionite-citrate (Holmgren, 

1967) extractions. 

• multielement (Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hf, K, La, Li, 

Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Zn, Zr) 

analysis by acid digestion (18:10:3:6 H2O-HF-HClO4-HNO3) on hot plate with 

recover of the residue by dissolution in dilute (15%) aqua regia of 2:2:2 HCl-HNO3-

H2O (ACS grade) heated in a boiling water ( > 95 °C) bath for 30 minutes. Sample 

solutions were analyzed by a Perkin Elmer Elan 6000 ICP mass spectrometer. This 

analysis was carried out at ACME Analytical Laboratories LTD., Vancouver, Canada, 

through Norwest Italia s.r.l.; 

• potentially toxic metal bioavailability by single extraction in 0.01M CaCl2 

(Novozamsky et al., 1993). 

 

2.2.3 Statistical analysis 

Simple correlation analyses were carried out for all obtained data using the commercially 

available software package STATISTICA™. The evaluation of the degree of association 

among variables was based on calculating the value of the Spearman's rank correlation 

coefficient (r) and testing it for 5% significance level. 

 

 

 

 

 

 



 
 

2.3 Results and discussion 

 

2.3.1 Soil profiles morphological features 

The morphological features of the soil profiles are in Figures 2.2 and 2.3 and in Table 2.2. 

 

Zeïda mining area 

In the area of Zeïda mine, three soil profiles were opened: ZP1, ZP2 and ZP3. 

ZP1 was opened in the exploitation area of Zeïda.  The section (Fig. 2.2A), opened until 52 

cm of depth, was described with the following horizons: Ck (0–6 cm), 2Ck (6–36 cm), 3Ck 

(36–52 cm). The surface horizon was characterized by red colour, blocky structure and 

occurrence of few organic matter and roots; it appeared quite different from the others and the 

abrupt boundary suggested for it an anthropic origin. All horizons were characterized by a 

high content of skeleton (30-40%) and by a strong effervescence in HCl indication of 

carbonates occurrence. 

ZP2 was opened in the processing or industrial area of Zeïda, between the Moulouya river and 

a smaller torrent, close to the site where tailings were commonly discharged and stored. This 

area, uncultivated at the sampling time, showed signs of a former agricultural use. Periodic 

overflows of the streams contributed to add coarse grained materials to the area and 

contemporarily to carry away tailings. In ZP2 from the surface to 60 cm of depth, the 

following horizons were found: Ak (0–10 cm), 2Bk1 (10–27 cm), 3Bk2 (27–60 cm) (Fig. 

2.2B). Different colours and clear boundaries evidenced the natural origin of this profile. All 

horizons showed a blocky structure and a lack of organic matter and roots. The skeleton was 

found only in the first two horizons. Also in ZP2 effervescence in HCl was strong indicating 

consistent occurrence of carbonates. 

ZP3 was opened outside the proper Zeïda mining area in a field cultivated with potatoes in the 

proximity of Zeïda city. The section (Fig. 2.2C), opened until 70 cm of depth, was described 

with the following horizons: Ak (0–9 cm), 2Bk1 (9–25 cm), 3Bk2 (25–40 cm), Ck(40–70 

cm). Colour, structure and clear boundaries evidenced that main soil forming factors were 

natural. The first two horizons were characterized by a blocky structure, common occurrence 

of organic matter and roots and low content of skeleton (10%). The deepest horizon showed 

light brown colour, massive structure and lack of organic matter and skeleton. Effervescence 

by HCl in this profile was less pronounced compared with ZP1 and ZP2. 

 



 
 

Table 2.2. Morphological features of the soil profiles 
Depth Main soil Colour O.M. and HCl 

Soil profile Horizon 
(cm) 

Limits 
forming factor [dry] 

Structure Skeleton 
roots 

Mottling 
effervescence 

Zeïda           
ZP1 Ck 0-6 abrupt smooth Anthropic 2.5 YR 4/6 (red) blocky 40% few none strongly 

 2Ck 6-36 clear smooth Natural 7.5 YR 4/6 (strong brown) blocky 40% few none strongly 

 3Ck 36-52  Natural 7.5 YR 4/6 (strong brown) massive 30% absent none strongly 

ZP2 Ak 0-10 clear smooth Natural 5 YR 6/8 (reddish yellow) blocky 10% few none strongly 

 2Bk1 10-27 clear wavy Natural 7.5 YR 5/6 (strong brown) blocky 20% absent none strongly 

 3Bk2 27-60  Natural 5 YR 7/4 (pink) blocky absent absent none strongly 

ZP3 Ak 0-9 clear wavy Natural 5 YR 5/6 (yellowish red) blocky 10% common none slightly 

 2Bk1 9-25 clear smooth Natural 7.5 YR 5/6 (strong brown) blocky 10% common none slightly 

 3Bk2 25-40 abrupt smooth Natural 7.5 YR 6/4 (light brown) blocky absent few none slightly 

 Ck 40-70  Natural 7.5 YR 6/4 (light brown) massive absent absent none slightly 
Mibladen           

MP1 Ak 0-15 abrupt smooth Anthropic 5 YR 5/6 (yellowish red) granular absent many few slightly 

 2Bk 15-45 abrupt smooth Anthropic 5 YR 4/6 (yellowish red) granular absent many few slightly 

 3Ckm 45-75  Natural 7.5 YR 5/6 (strong brown) massive absent few none slightly 

MP2 Ck 0-23 abrupt smooth Anthropic 7.5 YR 6/4 (light brown) granular absent few clear strongly 

 2Ck 23-50 abrupt smooth Anthropic 7.5 YR 7/4 (pink) granular 70% absent none strongly 

 3Ckm 50-90  Anthropic 2.5 YR 4/6 (red) massive 40% absent clear strongly 

MP3 Ck 0-35 abrupt smooth Anthropic 7.5 YR 6/4 (light brown) platy absent few few slightly 

 2Abk 35-45 clear wavy Anthropic 5 YR 7/4 (pink) granular absent common none slightly 

 3Ck 45-72 abrupt smooth Anthropic 7.5 YR 8/3 (pink) platy absent absent few slightly 

 4Ck 72-92 abrupt smooth Anthropic 7.5 YR 7/3 (pink) platy absent common none slightly 

 5Ck 92-150  Anthropic 7.5 YR 8/3 (pink) platy absent absent clear slightly 

 
 



 
 

 

   

Figure 2.2. Soil profiles opened in the Zeïda mining area; A: ZP1, B: ZP2, C: ZP3. 
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Figure 2.3. Soil profiles opened in the Mibladen mining area; A: MP1, B: MP2, C: MP3. 
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Mibladen mining area 

In the area of Mibladen mine three soil profiles were opened: MP1, MP2 and MP3. 

MP1 profile (Fig. 2.3A) was opened just outside the exploitation area of Mibladen. From the 

surface to 75 cm of depth, the following horizons were found, separated by abroupt 

boundaries: Ak (0–15 cm), 2Bk (15–45 cm), 3Ckm (45–75 cm). All horizons were 

characterized by a lack of skeleton and a slight effervescence by HCl. Granular structure was 

found in the first two horizons (Ak and 2Bk) which, although anthropic in origin on the base 

of colour, were enriched in organic matter and roots. The deepest horizon (3Ckm) was 

completely different from the above ones and characterized by massive structure and a lack of 

organic matter; its strong brown colour attested its natural origin. 

MP2 and MP3 were both opened inside the processing or industrial area of Mibladen. They 

were both extremely complex as a consequence of the heavy impact of human activities on 

the site. All their layers did not show any significant evidence of pedogenesis and exhibited 

high variability in colour, structure, compactness, grain-size and mottling pointing out the 

extensive variability of sediment heterogeneity in the area. 

MP2 was opened besides one big dumping site where coarse grained materials were used to 

be deposited. The site was characterized by lack of vegetation, mainly made by shrubs and 

grasses, and by outcropping rocks. The section (Fig. 2.3B) was opened until 90 cm of depth 

and characterized by the following horizons: Ck (0–23 cm), 2Ck (23–50 cm), 3Ckm (50–90 

cm). The stratification and abrupt linear limits between horizons suggested a strong anthropic 

influence on soil formation. The skeleton was absent in the surface horizon, while it largely 

occurred as sub-rounded and sub-angular in the deeper horizons (respectively, 70% and 40%). 

Ck and 2Ck horizons were characterized by fine granular structure and low amount of organic 

matter and roots. The deepest horizon (3Ckm) was characterized by a massive structure; clear 

mottling with typical and strong grey-greenish colour was observed at 80 cm of depth, 

indicating reducing conditions due to drainage occlusion. All horizons were characterized by 

high content of carbonates as showed by HCl effervescence. 

MP3 section (Fig. 2.3C) was opened along the bank of a torrent (dried during the sampling) at 

the bottom slopes of a big tailings dump. Sampling site was characterized by the occurrence 

of numerous trees (conifer) and several grass herbaceous species. The section, opened until 

150 cm of depth, was described with the following horizons: Ck (0–35 cm), 2Abk (35–45 

cm), 3Ck (45–72 cm), 4Ck (72–92 cm), 5Ck (92–150 cm). All C horizons, characterized by a 

lack of pedogenesis evidences and by microlaminations and platy structure, appeared mainly 

made by materials of similar morphology and organized in series of overlying thin layers. 



 

Probably, the transport of sediments and sludge by surface waters contributed to the horizons 

formation. 2Abk horizon had a different colour and lack of laminations and a slight granular 

structure. All horizons were enriched in carbonates. The occurrence of organic matter (leaves, 

pine needles and wooden twigs), roots and, in the surface horizon, clear evidences of 

biological life induced to hypnotise that the area was periodically colonized by vegetation, 

whose stabilization was disturbed by new sludge and river sediments arrivals (i.e. colluvial 

and alluvial processes). The deepest horizon (5Ck) was characterized by the presence of very 

clear mottling. All horizons were characterized by a high content of carbonates. 

 

2.3.2 Main physical and chemical properties of wastes, soils and sediments 

The main chemical properties of mine wastes, soils and river sediments are presented in Table 

2.3. 

As expected, the percentage of fine earth was low in all coarse waste rock samples (ZC: 76%; 

MC1: 28%; MC2: 58%; AC: 8%), while no particles larger than 2 mm were found in the 

tailings, which were crushed during the ore extraction process. Soil samples from the 

exploitation and processing sites were characterized by variable amounts of particles larger 

than 2 mm, according to the variable contribution of coarse and fine wastes to soil formation. 

The content of particles larger than 2 mm was particularly high in the sub-surface horizons of 

MP2 and in all horizons of ZP1; both soil profiles were opened besides coarse waste dumps. 

On the contrary, particles with diameter > 2 mm were not found in all horizons of MP3 which 

was opened in the proximity of a big tailings dump. Sediments were mostly made by fine 

earth particles. 

The pH (CaCl2) of all samples ranged from 7.5 to 8.5 presumably as a consequence of CaCO3 

abundance due to limestone environment. The pH (H2O) was also sub-alkaline or alkaline but 

more variable and ranging from 7.9 to 9.4. Higher values seem to characterize the waste 

materials compared to soil and sediment materials. EC ranges from 0.1 in ZT to 2.1-2.2 in 

MP1. The salt content of the soil solution strongly influences the pH of the soil. As confirmed 

by the Spearman correlation coefficient, the difference between pH (H2O) and pH (CaCl2) 

was strictly correlated with the EC values: such difference decreases with EC increasing, 

indicating that the high content of salt lower the pH (H2O) values (r: - 0.859; p-level < 0.001). 

The highest content of CaCO3 was found is soils (average: 485 g kg-1) and mine wastes (558 g 

kg-1) from the Mibladen processing area; the lowest content of CaCO3 occurred in Zeïda mine 

wastes (ZC: 72 g kg-1 and ZT: 2 g kg-1), because of the granite-sandstone host of the 

mineralization, and in Aouli coarse waste rock (AC: 93 g kg-1). The majority of studied 



 

samples had no or very low content of organic matter, which in only a few cases was higher 

than 10 g kg-1 and reached a maximum value of 36 g kg-1 (SS3). In general, the content of 

organic matter of soils outside the mining areas was always higher than that of samples taken 

from inside the mining areas (average values of 16 g kg-1 > 6 g kg-1, respectively). 

The dissolution data in Table 2.4 may be considered as indicators of crystalline and poorly 

crystalline iron oxides (Buondonno and Coppola, 2005), which frequently represent a 

significant part of the colloidal fractions of soils and sediments and which, according with 

their high specific surface area, disordered network and high charge density react readily with 

anions, cations and organic molecules. According to these data, the Feo/Fed ratio for the 

analysed materials indicated the dominance of crystalline iron oxides. 

  

2.3.3 Multielement analysis of wastes, soils and sediments 

The total content of alkaline and alkaline earth metals (Li, Na, K, Rb, Be, Mg, Ca, Sr, Ba), 

transition metals (Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, Cd), 

lantanides (La, Ce), attinides (Th, U), metals (Al, Sn, Pb) and metalloids (As, Sb, Bi) in all 

samples collected in Zeïda, Mibladen and Aouli mining areas are reported in Tables 2.5, 2.6 

and 2.7. 

The total content of all elements in wastes, soils and sediments was measured both on 

skeleton (fraction A: particles diameter > 2 mm) and fine earth (fraction B: particles diameter 

< 2 mm). The total element content of the whole sample was obtained by summing the values 

determined in the two grain size fractions after multiplying the mg of metal kg-1 of fraction A 

or B for the percentages of A and B fraction in soil. 

Taking into account the lack in literature of ‘consolidated background values’ for the studied 

geographical area, the PTMs concentration limits imposed by the Italian Ministry of 

Environment (DM 152/06) for soils (Table 2.8), were used as possible reference for a 

preliminary ‘contamination’ evaluation. 

In agreement with other results from the literature, the main metallic contaminants in the 

studied area are Pb and Zn which in several samples are associated to high values of Cu, Co, 

As, Cd, Sb, V and Sn (Fig. 2.4 – 2.6). 

Samples from the Zeïda exploitation area did not show any evidence of severe contamination: 

both mine waste (ZC) and soil profile (ZP1) were characterized by Pb and As contents 

slightly higher than the limits (Pb: 100 mg kg-1; As: 20 mg kg-1) imposed for soils of public, 

residential and private areas. 



 

In the processing area of Zeïda the majority of the samples (ZT, ZP2 and ZS) were 

contaminated: in particular, the mine tailings were highly enriched in Pb (4131 mg kg-1) and 

Zn (568 mg kg-1). 

In all soil samples (ZP3, SS1 and SS2) taken from outside the exploitation and processing 

areas of Zeïda, none PTMs content was above maximum concentrations. 

In the Mibladen area all mine wastes (MC1, MC2 and MT) were highly enriched in Pb and 

Zn. Strong contamination of the soil profiles was found in the processing area of Mibladen. 

MP2 showed in the surface horizon the highest value of Zn (189342 mg kg-1) and very high 

contents of Cu (average: 249 mg kg-1), Pb (11875 mg kg-1), As (162 mg kg-1) and Cd (602 mg 

kg-1). MP3 had very high content of Pb and, only in the surface horizon, also high values of 

Cu (348 mg kg-1), Zn (3083 mg kg-1), Cd (16 mg kg-1) and Sb (11 mg kg-1). 

As observed in Zeïda, the soil profile opened in the Mibladen exploitation area (MP1) as well 

as surface soils and river sediment sampled outside Mibladen area were essentially 

uncontaminated; only SS sample had Zn (174 mg kg-1), Co (24 mg kg-1), As (19 mg kg-1), V 

(421 mg kg-1) and Cr (149 mg kg-1) contents slightly exceeding regulatory levels. 

Wastes from Aouli mining area (AC and AT) were also enriched in Pb and Zn; in the coarse 

waste rock sample (AC) also Cu total content was above maximum concentration. 

The analysis of correlation revealed, as shown in Fig. 2.7, statistically significant direct 

relationship between the content of Pb, Sb, Ag and Cu (r = 0.885; r = 0.911; r = 0.757, 

respectively) and between Sb, Ag and Cu (r = 0.916; r = 0.787, respectively). Because of the 

geology of the Upper Moulouya mining district, the occurrence of these metal associations 

was expected. As reported in Chapter 1, galena was the main mined ore mineral and galena 

deposits usually contain significant amounts of silver as included silver sulfide mineral phases 

or as limited solid solution within the galena structure; in addition, zinc, antimony, cadmium, 

copper and arsenic also occur in variable amounts in lead ores. Antimony is geochemically 

categorized as a chalcophile element, occurring with sulphur and the metals lead, copper and 

silver. 

The vertical distribution of metal contaminants in soils is given in Figures 2.8 and 2.9. 

Along ZP1 soil profile, As showed a slight decreasing trend with depth although its values in 

the deeper horizons were still above regulatory limits (in Table 2.8). The values of Pb were 

above regulatory limits in all horizons and strictly correlated (p < 0.001) with those of Zn (r = 

0.977) and Cd (r = 0.846). 



 

In ZP2 Pb was found in high content till 30 cm depth, while it was almost absent below 30 

cm; Cu, Zn and Cd were characterized by a similar behaviour with a slight decreasing trend 

with depth and values always lower than regulatory limits (in Table 2.8). 

In ZP3 all metal contaminants were at all depths below the regulatory limits; nevertheless the 

major contaminants, Pb and Zn, occurred in the surface horizons in higher amounts than in 

the subsurface horizons, suggesting a contribution to metal loads of particles transferred by 

wind. 

In Mibladen, MP1 was essentially uncontaminated and all metals showed a similar behaviour: 

in particular, the content of Pb was strictly correlated (p < 0.001) with those of Cu (r = 0.933) 

and Zn (r = 0.825). 

The most contaminated MP2 soil profile had a very high content of Zn in the surface horizon 

which decreased with depth although it remained above regulatory levels even in the deepest 

horizon; Cu and Pb also showed a decreasing trend with depth and their content was strictly 

correlated (r = 0.938; p < 0.001). Cd and As had an uneven behaviour showing their lowest 

values in the sub-surface horizon (23-50 cm) and their contents were also highly correlated (r 

= 0.999; p < 0.001). 

In MP3, Cu, Zn and Cd were very high and above regulatory levels till 35 cm depth and 

almost absent in the following horizons; Pb and As showed values strongly changing from 

one to another horizon: horizons 2Abk (35-45 cm) and 4Ck (72–92 cm) were the most highly 

contaminated ones (respectively, Pb: 14264 and 17205 mg kg-1; As: 19 and 23 mg kg-1), while 

the surface horizon (Ck, 0-35 cm), the horizon in between (3Ck, 45-72 cm) and the deepest 

one (5Ck, 92-150 cm) were all less contaminated. 

According with data given in Table 2.3 relative to the percentage of the fine earth in collected 

samples, for all elements the contribution of the particles with diameter  > 2 mm (skeleton 

fraction) to the total metal content (Tables 2.5, 2.6, 2.7) was relevant in all coarse waste rock 

samples (ZC: 24%; MC1: 72%, MC2: 42%; AC: 92%) and in soil profile from the 

exploitation area of Zeïda (ZP1: 36%). In all tailings, river sediments and soil profiles MP1 

and MP3, particles greater than 2 mm were absent and so the total metal content was 

exclusively made up by the fine earth fraction. In all other samples the majority of the 

element total content originated from the fine earth fraction. 

 

 

 

 



 

Table 2.3. Main chemical properties of mine wastes, soil and river sediments from the 
Moulouya river valley 

Depth Fine earth pH pH EC O.M. Carbonates 
Sample code 

[cm] [%] (CaCl2) (H2O) [dS m-1] [g kg-1]  [g kg-1] 
        
Mine Z (Zeïda)             
ZC 0-20 76 8.0 8.3 1.2 4.0 72 
        
ZT 0-20 100 7.9 9.2 0.1 3.0 2 
        
ZP1 0-6 63 8.3 8.9 1.7 absent 204 
 6-36 62 8.1 8.8 1.6 absent 259 
 36-52 66 8.1 8.5 1.9 absent 266 
        
ZP2 0-10 75 8.1 9.2 0.2 13.0 427 
 10-27 79 8.1 8.8 0.3 11.0 400 
 27-60 89 8.1 8.8 0.3 9.0 696 
        
ZP3 0-9 88 8.0 8.7 0.8 28.0 276 
 9-25 81 8.0 8.6 0.6 24.0 274 
 25-40 94 8.0 8.6 0.5 20.0 280 
 40-70 100 8.1 8.8 0.9 16.0 236 
        
ZS 0-10 100 7.9 8.1 1.8 27.0 244 
        
SS1 0-10 59 7.9 8.4 0.9 12.0 144 
        
SS2 0-20 96 7.9 8.6 0.9 20.0 150 
        
Zsed 0-10 100 7.8 8.6 0.2 10.0 263 
        
        
Mine M (Mibladen)           
MC1 0-20 28 8.2 9.4 0.1 2.0 603 

MC2 0-20 58 8.1 8.5 0.3 6.0 437 
        
MT 0-20 100 8.0 9.1 0.1 1.0 513 
        
MP1 0-15 100 7.7 7.9 2.2 9.0 231 
 15-45 100 7.9 8.0 2.1 12.0 209 
 45-75 100 7.9 8.1 2.2 7.0 154 

MP2 0-23 92 7.6 8.3 0.3 6.0 452 
 23-50 34 7.8 8.6 0.1 4.0 500 
 50-90 32 7.9 8.8 0.2 absent 350 

MP3 0-35 100 8.5 9.3 0.2 4.0 470 
 35-45 98 8.4 9.2 0.1 6.0 514 
 45-72 100 8.1 9.2 0.2 4.0 540 
 72-92 100 8.4 8.6 1.8 8.0 456 
 92-150 100 8.5 8.9 0.8 5.0 604 
        
        
 



 

Table 2.3 (continued). Main chemical properties of mine wastes, soil and river 
sediments from the Moulouya river valley 

Depth Fine earth pH pH EC O.M. Carbonates 
Sample code 

[cm] [%] (CaCl2) (H2O) [dS m-1] [g kg-1] [g kg-1] 
        
Mine M (Mibladen)             
SS 0-10 100 8.0 8.8 1.3 5.0 211 
        
SS3 0-10 100 7.5 8.1 0.5 36.0 441 
        
SS4 0-10 100 7.8 8.3 0.2 9.0 367 
        
SS5 0-10 90 8.0 8.6 0.5 10.0 158 
        
SS6 0-10 84 7.8 8.7 0.3 14.0 287 
        
SS7 0-15 99 8.0 8.4 0.7 11.0 151 
        
SS8 0-5 82 7.7 8.3 0.5 9.0 155 
        
sed 0-5 84 7.6 8.1 0.6 8.0 354 
        
Mine A (Aouli)           
AC 0-20 8 7.9 8.5 0.1 3.0 93 
        
AT 0-20 100 8.1 8.4 1.3 5.0 337 
        
Ased 0-20 100 7.9 8.8 0.2 5.0 350 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2.4.  Fe content (mg kg-1) extractable in ammonium-oxalate and dithionite 
(Feo, Fed) of selected soils, river sediments and wastes from the mining areas of 
the Moulouya valley.  Feest = estimated ferrihydrite content 

Depth Feo Fed Feo/Fed Feest Sample code 
(cm) (mg kg-1) (mg kg-1)  (mg kg-1) 

      
ZT 0-20 1.42 3.11 0.455 2.41 
ZP1 0-6 1.15 17.05 0.068 1.96 

 6-36 1.37 18.48 0.074 2.32 
 36-52 1.70 22.81 0.074 2.88 

ZP2 0-10 0.65 14.41 0.045 1.11 
 10-27 0.55 14.36 0.039 0.94 
 27-60 0.23 8.27 0.028 0.39 

ZP3 0-9 1.87 19.60 0.095 3.17 
 9-25 2.01 18.35 0.110 3.42 
 25-40 1.26 19.70 0.064 2.14 
 40-70 2.33 22.25 0.105 3.97 

ZS 0-10 1.10 12.95 0.085 1.87 
Zsed 0-10 1.02 21.79 0.047 1.74 

      
MC1 0-20 1.09 8.11 0.134 1.85 
MT 0-20 0.91 5.85 0.156 1.55 
MP1 0-15 0.70 9.87 0.071 1.19 

 15-45 1.13 11.11 0.101 1.91 
 45-75 1.01 10.22 0.099 1.72 

MP2 0-23 1.23 10.65 0.115 2.08 
 50-90 1.55 12.05 0.128 2.63 

MP3 0-35 1.40 10.45 0.134 2.38 
 35-45 2.19 11.46 0.191 3.73 
 45-72 1.86 4.85 0.383 3.16 
 72-92 4.08 20.21 0.202 6.93 
 92-150 1.87 7.20 0.260 3.18 

SS 0-10 1.76 30.13 0.059 3.00 
SS6 0-10 0.82 10.37 0.080 1.40 

      
AT 0-20 1.20 11.04 0.109 2.04 

Ased 0-20 1.72 14.73  2.92 
 

 

 

 

 



 

Table 2.5. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: < 2 
mm) of the wastes, soils and sediments from Zeïda mining area and total amounts (A + B) 

Depth Li Na K Rb Be Mg Ca Sr Ba Sc Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 

ZC 0-20 A 50.2 1.13 15.2 79.0 8 14.8 80.7 322 927 8 

  B 56.1 1.27 15.2 79.2 7 15.9 29.5 357 1474 9 

  Tot 54.7 1.24 15.2 79.1 7 15.7 41.9 349 1341 9 

ZT 0-20 B 64.8 6.36 45.2 167.1 4 1.5 12.4 1128 2746 2 

ZP1 0-6 A 25.8 0.86 9.5 58.1 2 8.6 260.6 562 632 5 

  B 61.8 1.60 22.3 111.6 4 10.6 99.4 291 1234 7 

  Tot 48.4 1.32 17.5 91.6 3 9.8 159.4 392 1010 6 

 6-36 A 35.3 1.13 14.0 83.0 3 10.6 217.0 576 946 6 

  B 50.2 1.55 21.3 122.2 3 10.3 99.4 410 990 7 

  Tot 44.6 1.39 18.5 107.3 3 10.4 143.9 473 973 7 

 36-52 A 44.3 1.30 15.7 109.8 5 12.1 190.0 640 1442 6 

  B 61.8 1.60 21.0 152.5 6 14.1 109.1 591 762 8 

  Tot 55.8 1.50 19.2 137.8 6 13.4 136.8 608 995 7 

ZP2 0-10 A 17.8 0.52 7.0 29.9 <1 6.1 235.7 217 1126 3 

  B 27.9 1.52 11.5 46.9 1 8.6 154.5 259 2965 5 

  Tot 25.4 1.27 10.4 42.7 1 7.9 174.5 249 2511 5 

 10-27 A 18.5 0.71 7.9 34.8 <1 7.3 237.7 223 1136 4 

  B 28.7 1.69 11.7 50.0 1 9.8 146.0 269 3316 6 

  Tot 26.5 1.48 10.9 46.8 1 9.2 165.5 260 2852 6 

 27-60 A 17.1 0.41 6.1 24.4 <1 5.7 282.1 250 299 3 

  B 19.5 0.57 7.6 31.8 <1 6.4 258.3 271 361 3 

  Tot 19.2 0.55 7.4 31.0 <1 6.3 260.9 269 354 3 

ZP3 0-9 A 56.0 2.64 19.9 92.8 2 17.0 110.6 276 433 12 

  B 54.5 2.66 19.4 89.4 1 17.3 112.5 282 473 11 

  Tot 54.6 2.66 19.5 89.8 1 17.2 112.2 282 469 11 

 9-25 A 54.4 3.18 20.1 93.2 2 18.3 116.0 288 534 11 

  B 60.4 2.95 20.5 91.7 1 18.3 113.2 275 441 11 

  Tot 59.3 2.99 20.5 92.0 1 18.3 113.7 278 459 11 

 25-40 A 55.2 3.58 21.3 98.2 1 17.3 114.9 276 422 11 

  B 52.7 3.05 21.9 97.9 2 19.5 113.3 292 432 12 

  Tot 52.9 3.08 21.9 97.9 2 19.3 113.4 291 431 12 

 40-70 B 59.2 2.79 21.8 96.5 2 20.4 102.7 263 372 12 

ZS 0-10 B 38.0 1.99 23.9 92.9 2 17.9 104.9 757 1010 5 

SS1 0-10 A 33.3 3.41 17.0 105.7 2 6.8 197.3 626 2910 3 

  B 43.9 9.11 30.4 203.9 3 5.2 56.8 201 1082 5 

  Tot 39.5 6.76 24.8 163.4 3 5.9 114.8 376 1836 4 

SS2 0-20 A 47.7 2.59 21.8 100.6 2 24.3 106.8 251 349 11 

  B 58.2 2.55 22.7 100.8 2 25.6 100.8 247 341 11 

  Tot 57.8 2.55 22.7 100.8 2 25.5 101.1 247 341 11 

Zsed 0-10 B 42.2 1.03 14.3 54.6 <1 25.1 104.1 218 654 8 

 

 

 

 



 

Table 2.5. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: < 2 
mm) of the wastes, soils and sediments from Zeïda mining area and total amounts (A + B) 

Depth Y Ti Zr Hf V Nb Ta Cr Mo W Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

ZC 0-20 A 16.8 3.00 96.6 2.6 81 8.4 0.6 57.4 2.8 1.0 

  B 17.7 3.49 105.5 2.9 91 8.6 0.6 61.5 3.4 1.5 

  Tot 17.5 3.37 103.4 2.9 88 8.5 0.6 60.5 3.3 1.4 

ZT 0-20 B 15.6 0.75 35.7 1.4 33 6.6 1.0 4.9 2.3 3.0 

ZP1 0-6 A 19.9 1.96 58.9 1.5 58 10.5 0.4 28.0 3.1 1.1 

  B 19.4 2.89 91.4 2.6 95 9.9 0.4 42.3 10.1 1.3 

  Tot 19.6 2.54 79.3 2.2 81 10.1 0.4 37.0 7.5 1.2 

 6-36 A 19.6 2.30 72.3 2.2 70 9.8 0.4 29.0 4.3 1.2 

  B 16.9 2.77 83.4 2.4 81 9.4 0.5 39.3 7.1 1.3 

  Tot 18.0 2.59 79.2 2.3 77 9.5 0.5 35.4 6.0 1.3 

 36-52 A 29.4 2.71 78.3 2.2 80 12.3 0.5 37.0 8.6 2.4 

  B 23.8 3.02 96.4 2.7 72 11.8 0.5 43.5 5.2 1.9 

  Tot 25.7 2.92 90.2 2.5 75 12.0 0.5 41.3 6.3 2.1 

ZP2 0-10 A 8.0 0.99 26.6 0.9 35 2.3 0.2 23.2 0.6 0.3 

  B 11.2 2.03 47.7 1.3 65 4.2 0.4 40.3 1.0 0.6 

  Tot 10.4 1.78 42.5 1.2 58 3.8 0.4 36.1 0.9 0.5 

 10-27 A 10.5 1.18 31.5 0.8 39 3.3 0.2 27.2 0.8 0.3 

  B 10.9 2.13 51.3 1.2 60 4.9 0.4 43.7 3.5 0.5 

  Tot 10.8 1.93 47.1 1.1 56 4.5 0.4 40.2 2.9 0.5 

 27-60 A 5.1 0.92 23.0 0.5 31 1.9 0.2 22.1 0.5 0.2 

  B 6.2 1.17 28.0 0.8 40 2.6 0.2 27.3 0.6 0.7 

  Tot 6.0 1.14 27.4 0.8 39 2.5 0.2 26.7 0.6 0.7 

ZP3 0-9 A 18.8 3.77 81.6 2.2 96 11.5 0.6 62.0 0.9 0.9 

  B 18.0 3.81 78.0 2.3 92 11.9 0.6 67.1 0.9 1.0 

  Tot 18.1 3.81 78.5 2.3 93 11.8 0.6 66.4 0.9 1.0 

 9-25 A 19.1 3.74 77.0 2.3 95 11.2 0.6 66.0 0.9 1.0 

  B 18.0 3.84 78.7 2.4 94 11.6 0.6 58.7 0.9 0.9 

  Tot 18.2 3.82 78.4 2.4 94 11.6 0.6 60.1 0.9 0.9 

 25-40 A 17.0 3.56 79.4 2.1 93 12.8 0.6 61.0 0.8 0.9 

  B 20.3 3.90 86.7 2.5 91 11.8 0.6 62.8 1.0 0.9 

  Tot 20.1 3.88 86.3 2.5 91 11.8 0.6 62.7 1.0 0.9 

 40-70 B 19.4 3.87 93.8 2.6 98 12.4 0.6 64.9 1.0 1.0 

ZS 0-10 B 15.5 1.81 50.2 1.5 60 7.5 0.6 39.2 1.8 1.3 

SS1 0-10 A 14.5 0.99 34.6 1.0 29 5.1 0.4 16.0 1.1 1.2 

  B 14.7 1.87 57.8 1.8 45 10.0 0.8 24.1 1.2 1.5 

  Tot 14.6 1.51 48.2 1.5 39 7.9 0.6 20.8 1.2 1.4 

SS2 0-20 A 19.9 3.90 78.3 2.2 92 12.4 0.6 65.0 1.0 0.8 

  B 18.5 3.89 95.1 2.4 96 11.8 0.7 63.7 1.0 1.0 

  Tot 18.6 3.89 94.4 2.4 96 11.9 0.7 63.8 1.0 1.0 

Zsed 0-10 B 12.6 2.60 67.4 2.0 73 5.9 0.5 47.4 1.5 0.7 

 

 

 

 



 

Table 2.5. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction 
B: < 2 mm) of the wastes, soils and sediments from Zeïda mining area and total amounts (A + 
B) 

Depth Mn Fe Co Ni Cu Ag Zn Cd La Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

ZC 0-20 A 2030 30.83 7.7 23.4 13.0 0.3 73 0.3 29.4 

  B 2201 34.40 7.9 23.6 18.4 0.3 82 0.2 33.6 

  Tot 2160 33.53 7.8 23.6 17.1 0.3 79 0.2 32.6 

ZT 0-20 B 200 4.45 3.6 2.0 46.7 3.0 568 1.1 13.2 

ZP1 0-6 A 2109 17.90 13.9 24.9 41.5 0.1 57 0.9 25.2 

  B 5948 27.08 28.8 43.3 55.6 0.3 140 0.5 27.4 

  Tot 4518 23.66 23.2 36.4 50.3 0.2 109 0.7 26.6 

 6-36 A 3662 19.60 18.0 30.7 46.0 0.1 64 0.6 24.8 

  B 4514 24.01 22.3 33.2 55.2 0.2 100 0.4 26.3 

  Tot 4191 22.34 20.7 32.2 51.7 0.2 86 0.5 25.7 

 36-52 A 4983 32.50 29.3 41.0 71.8 0.1 98 0.9 28.4 

  B 3016 28.61 21.3 34.8 62.6 0.2 101 0.5 28.4 

  Tot 3690 29.94 24.1 36.9 65.7 0.2 100 0.6 28.4 

ZP2 0-10 A 278 9.38 6.3 12.2 13.5 0.1 35 0.4 10.4 

  B 440 17.86 10.1 21.0 25.8 0.2 63 0.4 17.0 

  Tot 400 15.77 9.2 18.8 22.8 0.2 56 0.4 15.4 

 10-27 A 399 10.97 7.4 14.5 12.8 <0.1 44 0.5 12.0 

  B 540 18.19 10.6 21.2 24.8 0.2 60 0.2 17.8 

  Tot 510 16.65 9.9 19.8 22.2 0.2 57 0.3 16.5 

 27-60 A 161 8.24 5.4 10.6 7.1 <0.1 26 0.2 7.8 

  B 163 10.51 6.3 13.4 8.7 0.1 31 0.1 9.3 

  Tot 162 10.26 6.2 13.1 8.5 0.1 31 0.1 9.1 

ZP3 0-9 A 887 30.90 16.2 31.2 30.2 0.1 123 0.3 26.6 

  B 918 32.41 17.8 32.9 32.6 0.1 129 0.3 28.2 

  Tot 914 32.23 17.6 32.7 32.3 0.1 128 0.3 28.0 

 9-25 A 885 31.30 15.9 30.1 31.2 0.1 117 0.5 26.3 

  B 932 31.38 17.2 30.8 30.1 <0.1 116 0.4 26.2 

  Tot 923 31.36 17.0 30.6 30.3 <0.1 117 0.4 26.2 

 25-40 A 866 31.00 16.6 29.3 28.9 <0.1 111 0.4 25.3 

  B 896 31.31 16.0 33.4 32.6 0.1 116 0.3 25.7 

  Tot 894 31.29 16.0 33.2 32.4 0.1 115 0.3 25.7 

 40-70 B 987 32.85 17.1 34.9 33.8 0.1 118 0.3 27.6 

ZS 0-10 B 561 17.53 7.6 15.0 27.9 0.7 88 0.3 20.7 

SS1 0-10 A 771 10.40 8.7 13.0 17.9 0.1 29 0.5 16.7 

  B 476 15.98 7.5 13.6 20.8 0.2 40 0.1 21.7 

  Tot 598 13.68 8.0 13.3 19.6 0.2 36 0.3 19.6 

SS2 0-20 A 1079 31.20 19.3 33.8 35.2 <0.1 112 0.3 26.4 

  B 1327 29.93 16.9 35.6 34.8 0.1 113 0.4 26.7 

  Tot 1316 29.98 17.0 35.5 34.8 0.1 113 0.4 26.7 

Zsed 0-10 B 1143 24.42 10.5 25.5 13.3 0.1 158 0.3 23.3 

 

 

 



 

Table 2.5 (continued). Total element content in the skeleton (fraction A: > 2 mm) and fine 
earth (fraction B: < 2 mm) of the wastes, soils and sediments from Zeïda mining area and total 
amounts (A + B) 

Depth Ce Th U Al Sn Pb As Sb Bi Sample 
code 

cm 
Fraction 

mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

ZC 0-20 A 55 8.3 4.2 54.0 1.7 43.3 14 3.5 0.3 

  B 64 9.5 4.7 61.6 2.2 126.2 21 4.0 0.4 

  Tot 62 9.2 4.6 59.8 2.1 106.1 19 3.9 0.4 

ZT 0-20 B 24 8.2 4.5 46.8 1.8 4130.6 19 11.5 1.8 

ZP1 0-6 A 37 4.0 2.3 20.8 0.5 213.8 20 0.9 0.1 

  B 58 8.1 2.6 40.1 1.3 198.6 46 1.6 0.3 

  Tot 50 6.5 2.5 32.9 1.0 204.3 37 1.3 0.2 

 6-36 A 43 5.2 2.9 28.7 1.1 163.9 31 1.3 0.2 

  B 55 7.3 2.9 38.7 1.2 182.7 31 1.4 0.3 

  Tot 51 6.5 2.9 34.9 1.2 175.6 31 1.4 0.3 

 36-52 A 47 5.9 4.0 31.2 1.1 220.0 26 1.4 0.2 

  B 53 7.5 3.9 44.7 1.7 170.8 27 1.7 0.3 

  Tot 51 6.9 4.0 40.1 1.5 187.6 27 1.6 0.3 

ZP2 0-10 A 18 2.3 0.8 15.8 0.4 87.0 6 0.5 0.1 

  B 34 4.1 1.2 29.6 0.9 166.4 8 1.2 0.3 

  Tot 30 3.7 1.1 26.2 0.8 146.8 8 1.1 0.3 

 10-27 A 21 2.7 1.1 19.5 0.6 90.1 4 0.6 0.2 

  B 35 4.7 1.3 30.9 0.7 185.7 7 1.5 0.5 

  Tot 32 4.3 1.3 28.5 0.7 165.4 6 1.3 0.4 

 27-60 A 15 1.9 1.0 14.4 0.5 5.4 10 0.3 <0.1 

  B 18 2.3 1.1 18.3 0.6 8.0 8 0.3 <0.1 

  Tot 18 2.3 1.1 17.9 0.6 7.7 8 0.3 <0.1 

ZP3 0-9 A 50 7.8 1.9 54.3 2.0 54.0 7 0.6 0.2 

  B 52 8.2 1.8 57.4 2.1 51.5 7 0.6 0.2 

  Tot 52 8.2 1.8 57.0 2.1 51.8 7 0.6 0.2 

 9-25 A 50 8.9 2.0 57.8 2.0 52.6 8 0.6 0.2 

  B 49 7.6 1.8 54.1 2.2 55.3 7 0.5 0.2 

  Tot 49 7.8 1.9 54.8 2.2 54.8 7 0.5 0.2 

 25-40 A 48 7.3 1.7 52.5 2.0 44.1 8 0.6 0.3 

  B 50 7.8 1.7 54.5 1.9 48.1 8 0.6 0.2 

  Tot 50 7.8 1.7 54.4 1.9 47.9 8 0.6 0.2 

 40-70 B 50 7.6 1.8 55.3 2.0 31.9 7 0.6 0.2 

ZS 0-10 B 38 7.0 2.0 33.4 1.0 1286.7 22 6.5 3.2 

SS1 0-10 A 16.0 4.4 1.8 29.4 1.3 52.6 8 1.1 0.4 

  B 24.1 8.7 2.3 51.9 1.9 56.7 10 1.2 0.5 

  Tot 20.8 7.0 2.1 42.6 1.7 55.0 9 1.2 0.5 

SS2 0-20 A 65.0 7.2 1.9 53.6 1.9 30.9 9 0.7 0.2 

  B 63.7 8.1 2.0 54.2 2.4 31.2 9 0.6 0.4 

  Tot 63.8 8.0 2.0 54.2 2.4 31.2 9 0.6 0.4 

Zsed 0-10 B 45 6.5 1.7 45.0 1.2 38.3 10 0.7 0.2 

 

 

 



 

Table 2.6. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: < 
2 mm) of the wastes, soils and sediments from Mibladen mining area and total amounts (A + B) 

Depth Li Na K Rb Be Mg Ca Sr Ba Sc Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 

MC1 0-20 A 7.9 0.36 3.3 14.8 2 91.1 177.2 1018 1065 3 

  B 10.3 0.47 5.9 29.8 1 73.5 131.1 1251 833 4 

  Tot 8.6 0.39 4.0 19.0 2 86.2 164.4 1083 1001 3 

MC2 0-20 A 15.0 0.28 9.9 45.5 2 29.0 102.1 943 498 5 

  B 16.5 0.44 13.2 64.1 2 39.1 118.8 287 3862 7 

  Tot 15.9 0.37 11.8 56.4 2 34.9 111.8 561 2458 6 

MT 0-20 B 16.2 0.27 3.5 17.1 <1 58.0 123.1 2188 590 2 

MP1 0-15 B 15.9 0.84 9.2 31.2 <1 17.7 96.0 258 259 3 

 15-45 B 22.6 1.04 12.4 44.8 <1 20.2 88.1 276 275 5 

 45-75 B 17.2 0.88 10.3 36.9 <1 20.1 70.2 210 338 5 

MP2 0-23 A 14.5 0.50 5.6 24.8 2 50.5 119.2 351 3375 4 

  B 8.9 0.24 3.1 13.8 1 25.6 100.8 291 4037 2 

  Tot 9.4 0.26 3.3 14.6 1 27.6 102.3 296 3986 2 

 23-50 A 7.9 0.36 2.6 11.1 1 92.4 172.5 596 1201 2 

  B 28.4 0.64 13.9 59.5 2 28.1 82.7 210 1403 10 

  Tot 14.8 0.46 6.4 27.5 1 70.7 142.2 465 1270 5 

 50-90 A 26.2 0.70 14.7 59.9 1 34.3 107.1 251 1371 10 

  B 9.0 0.30 4.4 17.9 <1 37.7 111.2 740 1025 3 

  Tot 20.7 0.57 11.4 46.5 1 35.4 108.4 407 1261 8 

MP3 0-35 B 41.9 0.29 4.4 20.7 1 43.7 99.2 1920 667 2 

 35-45 A 16.2 0.41 8.2 37.9 <1 43.3 142.2 1213 1309 4 

  B 13.0 0.29 4.6 22.2 1 53.0 108.8 1744 944 3 

  Tot 13.0 0.30 4.6 22.5 1 52.9 109.4 1735 950 3 

 45-72 B 5.2 0.28 1.8 8.1 <1 54.8 115.0 2491 444 2 

 72-92 B 19.7 1.37 9.6 47.0 1 44.1 97.3 1231 611 5 

 92-150 B 7.3 0.77 3.0 12.3 <1 53.6 126.5 2076 435 2 

SS 0-10 B 32.0 6.18 23.4 69.3 4 11.4 117.4 1144 1815 7 

 10-20 B 42.3 5.83 35.1 106.6 3 13.9 99.5 897 1357 8 

SS3 0-10 B 23.4 1.31 11.4 42.5 1 7.4 266.5 367 249 7 

SS4 0-10 B 26.9 1.49 15.6 58.7 1 16.0 147.7 346 790 5 

SS5 0-10 A 9.7 0.28 4.5 13.8 <1 7.5 291.4 283 395 2 

  B 27.4 0.88 13.8 56.6 <1 12.9 67.2 187 375 6 

  Tot 25.6 0.81 12.8 52.2 <1 12.3 90.5 197 377 6 

 10-20 A 20.3 0.61 10.9 44.1 <1 11.9 166.9 240 348 6 

  B 25.1 0.81 13.5 58.7 <1 13.3 78.8 211 425 7 

  Tot 24.8 0.80 13.4 57.9 <1 13.2 83.6 213 421 7 

SS6 0-10 A 9.2 0.30 4.0 11.1 <1 11.4 305.1 281 115 2 

  B 24.1 1.26 11.9 42.3 <1 14.7 104.1 221 318 4 

  Tot 21.8 1.11 10.6 37.5 <1 14.2 135.4 231 286 4 

SS7 0-15 B 57.8 2.14 25.0 110.2 2 19.1 64.8 174 557 15 

SS8 0-5 A 65.0 2.01 17.2 74.2 3 4.2 173.6 726 6394 9 

  B 87.6 3.93 19.6 69.5 3 5.9 61.5 284 4377 8 

  Tot 83.6 3.59 19.2 70.3 3 5.6 81.3 362 4734 8 

sed 0-5 A 26.3 3.04 19.9 66.5 2 10.4 151.8 416 492 6 

  B 30.9 2.61 17.4 63.9 1 11.1 145.4 394 490 7 

  Tot 30.2 2.68 17.8 64.3 1 11.0 146.4 397 490 7 

 



 

Table 2.6. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: < 2 
mm) of the wastes, soils and sediments from Mibladen mining area and total amounts (A + B) 

Depth Y Ti Zr Hf V Nb Ta Cr Mo W Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

MC1 0-20 A 5.5 0.75 20.0 0.6 47 3.0 0.2 20.9 3.5 2.2 

  B 6.3 1.42 32.1 1.0 67 5.3 0.3 36.4 3.9 3.2 

  Tot 5.7 0.94 23.4 0.7 52 3.7 0.2 25.2 3.6 2.5 

MC2 0-20 A 8.3 1.64 39.7 1.1 56 3.6 0.3 28.6 2.0 0.9 

  B 11.9 2.46 66.2 1.8 83 5.7 0.4 39.4 2.6 1.1 

  Tot 10.4 2.12 55.1 1.5 72 4.8 0.4 34.9 2.4 1.0 

MT 0-20 B 4.4 0.66 14.5 0.5 28 2.4 0.2 8.6 2.2 1.6 

MP1 0-15 B 8.9 1.46 37.6 1.0 47 4.1 0.2 22.2 1.1 0.3 

 15-45 B 11.7 2.02 57.3 1.7 50 5.0 0.3 35.4 1.3 0.6 

 45-75 B 9.9 1.71 46.3 1.3 46 4.1 0.2 23.2 1.1 0.4 

MP2 0-23 A 6.7 1.16 28.5 0.9 50 5.0 0.2 31.4 4.1 1.5 

  B 4.5 0.65 16.1 0.6 43 3.0 0.2 19.5 3.7 0.5 

  Tot 4.6 0.69 17.1 0.6 43 3.2 0.2 20.4 3.8 0.6 

 23-50 A 4.9 0.64 14.5 0.5 46 2.1 0.2 15.9 4.0 8.0 

  B 10.7 3.22 81.2 2.6 105 12.1 0.8 61.1 2.1 3.6 

  Tot 6.8 1.51 37.0 1.2 66 5.5 0.4 31.2 3.3 6.5 

 50-90 A 11.2 3.28 73.9 2.5 104 11.6 0.7 61.1 2.3 3.7 

  B 5.4 0.98 22.4 0.7 54 3.7 0.2 26.3 6.2 1.0 

  Tot 9.3 2.55 57.5 1.9 88 9.1 0.6 50.0 3.5 2.8 

MP3 0-35 B 6.5 0.80 18.2 0.5 65 1.9 0.2 16.1 4.3 2.1 

 35-45 A 7.5 1.65 38.5 1.2 62 3.9 0.3 34.1 5.5 2.4 

  B 5.7 1.10 26.4 0.7 48 2.4 0.1 22.3 8.3 1.9 

  Tot 5.7 1.10 26.6 0.7 48 2.5 0.1 22.5 8.3 1.9 

 45-72 B 4.5 0.49 15.6 0.5 24 1.3 <0.1 11.0 1.9 0.8 

 72-92 B 7.7 2.06 48.7 1.4 90 5.4 0.3 35.2 9.6 3.7 

 92-150 B 5.2 0.82 22.3 0.6 31 2.0 0.1 14.0 3.3 0.9 

SS 0-10 B 33.7 10.75 246.5 4.6 421 136.2 2.1 148.7 14.8 8.3 

 10-20 B 32.6 9.38 232.4 4.0 344 107.8 1.5 112.0 11.5 6.7 

SS3 0-10 B 12.2 1.99 45.5 1.2 60 9.0 0.5 39.1 0.6 2.2 

SS4 0-10 B 10.0 2.03 45.4 1.4 76 9.8 0.6 39.0 1.5 1.1 

SS5 0-10 A 14.2 0.68 20.7 0.6 25 2.1 0.1 18.0 1.0 0.2 

  B 15.7 2.41 69.9 1.9 62 8.1 0.3 36.3 1.4 0.6 

  Tot 15.6 2.23 64.8 1.8 59 7.4 0.3 34.4 1.4 0.6 

 10-20 A 17.1 1.92 57.7 1.7 59 6.3 0.3 30.0 1.3 0.4 

  B 15.6 2.57 69.1 2.0 69 8.4 0.3 39.0 1.4 0.6 

  Tot 15.7 2.53 68.5 2.0 68 8.3 0.3 38.5 1.4 0.6 

SS6 0-10 A 8.7 0.60 17.0 0.4 21 2.1 <0.1 18.0 1.0 0.2 

  B 12.6 2.43 71.7 2.0 44 9.3 0.4 33.2 1.0 0.6 

  Tot 12.0 2.15 63.2 1.8 41 8.1 0.3 30.8 1.0 0.5 

SS7 0-15 B 23.0 4.42 103.8 3.3 122 16.8 0.8 81.5 1.6 1.5 

SS8 0-5 A 10.8 3.17 51.6 1.6 77 9.5 0.5 35.0 1.2 11.8 

  B 14.2 4.14 78.3 2.3 80 13.1 0.7 45.2 1.2 9.8 

  Tot 13.6 3.97 73.6 2.2 80 12.4 0.7 43.4 1.2 10.2 

sed 0-5 A 15.7 3.42 84.1 2.2 101 30.3 0.6 38.0 5.3 2.7 

  B 16.2 3.70 91.1 2.4 96 29.5 0.6 43.3 3.2 2.6 

  Tot 16.1 3.65 90.0 2.4 97 29.6 0.6 42.5 3.5 2.6 

 



 

Table 2.6. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: 
< 2 mm) of the wastes, soils and sediments from Mibladen mining area and total amounts (A + 
B) 

Depth Mn Fe Co Ni Cu Ag Zn Cd La Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

MC1 0-20 A 2485 10.87 15.7 34.1 211.3 0.9 304 2.2 8.8 

  B 2140 13.54 11.8 26.5 65.4 2.3 632 3.8 11.1 

  Tot 2389 11.61 14.7 32.0 170.7 1.3 395 2.7 9.5 

MC2 0-20 A 1667 20.36 7.8 16.8 712.4 38.2 44 0.3 13.7 

  B 1819 26.04 10.1 21.0 59.0 0.4 81 0.3 20.5 

  Tot 1755 23.67 9.1 19.2 331.7 16.2 66 0.3 17.7 

MT 0-20 B 1781 8.28 9.4 15.0 78.0 1.4 1063 5.1 6.6 

MP1 0-15 B 475 11.21 8.4 14.3 13.0 0.1 46 0.4 13.0 

 15-45 B 489 15.95 8.5 19.2 16.9 <0.1 66 0.4 17.3 

 45-75 B 494 13.40 8.2 16.7 13.8 <0.1 54 0.4 14.7 

MP2 0-23 A 1589 19.63 9.6 20.5 412.5 2.7 91426 404.5 11.3 

  B 808 19.56 5.9 13.1 364.5 3.5 189342 1071.0 7.3 

  Tot 869 19.56 6.2 13.7 368.3 3.5 181705 1019.0 7.6 

 23-50 A 2182 11.75 9.4 17.2 359.1 1.3 9053 55.9 7.4 

  B 527 31.66 4.6 13.1 20.9 0.2 2227 4.8 26.7 

  Tot 1623 18.48 7.8 15.8 244.8 0.9 6746 38.6 13.9 

 50-90 A 794 32.29 5.6 16.4 23.3 0.2 1868 14.0 27.8 

  B 1103 20.12 6.5 15.2 362.7 5.7 793 731.2 9.1 

  Tot 893 28.41 5.9 16.0 131.5 2.0 1525 242.8 21.8 

MP3 0-35 B 1307 8.84 13.2 17.8 348.0 1.8 3083 16.2 9.0 

 35-45 A 1227 13.45 9.8 32.4 65.2 3.2 125 1.7 13.3 

  B 1855 10.04 10.8 27.7 70.7 3.3 215 2.2 7.6 

  Tot 1845 10.10 10.7 27.8 70.6 3.3 214 2.2 7.7 

 45-72 B 1651 5.70 9.9 16.9 34.6 0.6 223 3.6 3.9 

 72-92 B 1661 15.57 11.9 33.4 76.0 4.4 123 1.5 12.8 

 92-150 B 1269 6.61 7.3 13.8 32.5 1.3 116 2.7 5.3 

SS 0-10 B 2154 52.44 23.8 52.2 24.5 0.3 174 0.8 100.9 

 10-20 B 2065 49.10 23.6 58.3 29.1 0.1 181 0.8 99.3 

SS3 0-10 B 885 22.78 12.4 17.8 19.7 0.1 84 0.5 22.7 

SS4 0-10 B 520 22.78 7.7 16.2 14.7 0.1 64 0.5 18.5 

SS5 0-10 A 227 6.90 3.9 7.1 13.5 0.2 25 0.8 12.1 

  B 435 18.94 11.7 22.0 34.5 0.1 50 0.2 21.0 

  Tot 414 17.69 10.9 20.4 32.3 0.1 48 0.3 20.0 

 10-20 A 422 18.20 11.4 21.8 30.2 0.1 50 0.5 20.2 

  B 433 20.90 12.7 22.8 37.6 0.1 49 0.3 21.9 

  Tot 432 20.75 12.6 22.7 37.2 0.1 49 0.3 21.8 

SS6 0-10 A 187 4.90 2.2 6.5 3.9 0.2 18 0.5 9.8 

  B 382 14.89 8.6 16.7 14.2 0.1 39 0.2 19.8 

  Tot 352 13.33 7.6 15.1 12.6 0.1 36 0.2 18.3 

SS7 0-15 B 1022 41.77 18.3 42.3 41.4 0.1 132 0.7 40.2 

SS8 0-5 A 272 30.50 7.7 8.2 19.2 0.2 52 0.2 35.3 

  B 591 31.43 12.2 22.0 24.3 0.2 77 0.3 36.6 

  Tot 535 31.27 11.4 19.6 23.4 0.2 73 0.3 36.3 

sed 0-5 A 592 21.80 13.0 20.7 20.6 <0.1 56 0.3 34.9 

  B 602 23.68 13.6 22.8 21.8 <0.1 58 0.2 34.6 

  Tot 601 23.38 13.5 22.4 21.6 <0.1 58 0.2 34.6 

 



 

Table 2.6 (continued). Total element content in the skeleton (fraction A: > 2 mm) and fine 
earth (fraction B: < 2 mm) of the wastes, soils and sediments from Mibladen mining area 
and total amounts (A + B) 

Depth Ce Th U Al Sn Pb As Sb Bi Sample 
code 

cm 
Fraction 

mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

MC1 0-20 A 14 2.0 1.1 10.7 20.5 3709.4 34 14.8 0.2 

  B 20 3.1 1.6 22.3 0.6 7050.7 24 6.6 0.1 

  Tot 16 2.3 1.3 13.9 15.0 4638.3 31 12.5 0.2 

MC2 0-20 A 27 4.1 1.7 26.9 0.9 10083.2 5 16.6 0.2 

  B 39 5.9 1.3 39.2 1.2 1155.3 6 1.2 0.1 

  Tot 34 5.2 1.5 34.1 1.1 4128.1 6 7.6 0.1 

MT 0-20 B 11 1.4 1.7 10.0 0.4 7116.2 16 9.3 0.1 

MP1 0-15 B 25 3.7 0.9 18.8 0.6 41.7 2 0.2 0.1 

 15-45 B 36 5.5 1.4 28.6 0.7 72.8 4 0.4 0.1 

 45-75 B 29 4.6 1.1 24.7 0.7 34.5 4 0.3 <0.1 

MP2 0-23 A 18 3.1 2.5 18.2 2.9 9143.6 124 8.5 0.2 

  B 11 2.1 2.3 10.8 0.9 13629.5 274 7.8 0.1 

  Tot 12 2.2 2.3 11.4 1.1 13279.6 262 7.9 0.1 

 23-50 A 11 1.6 1.3 8.6 31.0 5030.7 31 13.2 0.2 

  B 42 9.1 1.6 51.7 2.3 21679.7 12 2.3 0.2 

  Tot 22 4.1 1.4 23.2 21.3 10658.1 25 9.5 0.2 

 50-90 A 45 9.1 1.7 47.9 2.1 412.0 12 2.3 0.2 

  B 15 2.4 2.4 14.3 0.8 315.7 201 11.4 0.1 

  Tot 36 7.0 2.0 37.2 1.7 381.3 73 5.2 0.2 

MP3 0-35 B 19 1.4 2.0 12.1 0.8 6561.4 18 11.3 1.7 

 35-45 A 25 3.2 2.4 27.9 1.3 13389.0 21 11.1 0.1 

  B 16 1.4 1.8 18.7 0.7 14263.6 19 8.9 <0.1 

  Tot 16 1.4 1.8 18.8 0.7 14263.6 19 9.0 <0.1 

 45-72 B 9 0.9 1.0 7.0 0.3 2779.5 11 4.4 <0.1 

 72-92 B 27 3.6 2.8 34.8 1.1 17205.4 23 13.6 0.1 

 92-150 B 12 1.3 1.1 9.3 0.2 5176.2 10 3.9 <0.1 

SS 0-10 B 148 20.6 4.7 55.8 2.0 49.0 19 1.5 0.3 

 10-20 B 146 18.4 3.8 60.4 2.2 46.5 19 1.4 0.3 

SS3 0-10 B 39 6.1 1.2 28.4 2.5 56.3 8 0.5 0.1 

SS4 0-10 B 31 5.6 1.4 29.9 0.9 57.6 1.5 0.4 0.1 

SS5 0-10 A 17 1.8 1.2 10.0 0.5 14.9 4 0.2 0.1 

  B 40 5.9 1.4 30.7 1.0 27.7 7 0.4 0.2 

  Tot 38 5.5 1.4 28.6 1.0 26.4 7 0.4 0.2 

 10-20 A 36 5.1 1.4 26.1 0.8 26.8 6 0.3 0.1 

  B 42 6.1 1.4 32.1 0.9 28.4 9 0.4 0.2 

  Tot 42 6.0 1.4 31.8 0.9 28.3 9 0.4 0.2 

SS6 0-10 A 14 1.6 0.9 7.8 0.1 5.5 3 0.1 <0.1 

  B 35 4.9 1.3 25.3 0.8 16.8 6 0.3 <0.1 

  Tot 32 4.4 1.2 22.6 0.7 15.0 6 0.3 <0.1 

SS7 0-15 B 73 10.7 2.0 79.7 2.6 96.5 13 0.8 0.3 

SS8 0-5 A 64 7.1 1.9 51.7 2.6 28.7 12 1.3 0.1 

  B 69 9.1 1.8 54.0 2.3 36.6 11 1.4 0.3 

  Tot 68 8.8 1.8 53.6 2.4 35.2 11 1.4 0.3 

sed 0-5 A 52 8.1 1.5 36.4 0.9 18.7 7 0.5 0.2 

  B 54 8.2 1.7 35.7 0.9 19.2 7 0.5 0.2 

  Tot 54 8.2 1.7 35.8 0.9 19.2 7 0.5 0.2 

 



 

Table 2.7. Total element content in the skeleton (fraction A: > 2 mm) and fine earth (fraction B: 
< 2 mm) of the wastes, soils and sediments from Aouli mining area and total amounts (A + B) 

Depth Li Na K Rb Be Mg Ca Sr Ba Sc Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 

AC 0-20 A 62.3 0.31 5.6 26.3 1 5.5 19.5 604 580 2 

  B 59.7 2.20 18.9 75.4 2 6.8 42.1 268 3821 7 

  Tot 62.1 0.47 6.8 30.4 1 5.6 21.4 576 852 2 

AT 0-20 B 17.8 3.17 10.1 46.0 1 29.9 112.2 1489 341 4 

Ased 0-20 B 33.1 8.24 19.0 82.0 2 11.5 135.5 730 2519 5 

 

 

Depth Y Ti Zr Hf V Nb Ta Cr Mo W Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

AC 0-20 A 12.3 0.64 11.7 0.5 20 2.2 0.1 8.2 0.4 1.3 

  B 14.6 2.51 65.5 1.9 59 8.9 0.6 31.1 1.4 2.1 

  Tot 12.5 0.79 16.2 0.6 23 2.8 0.1 10.1 0.5 1.4 

AT 0-20 B 8.3 1.76 37.9 1.0 44 5.6 0.3 21.1 2.3 1.7 

Ased 0-20 B 11.3 2.86 43.6 1.4 59 18.0 1.1 32.8 2.4 3.1 

 

 

Depth Mn Fe Co Ni Cu Ag Zn Cd La Sample 
code 

cm 
Fraction 

mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

AC 0-20 A 1943 9.18 6.7 7.5 1066.6 6.4 297 1.8 25.5 

  B 2642 26.83 9.7 18.2 223.0 4.6 248 1.0 37.5 

  Tot 2002 10.66 6.9 8.4 995.7 6.2 293 1.7 26.5 

AT 0-20 B 1027 15.04 9.4 18.6 52.5 0.7 508 2.7 17.9 

Ased 0-20 B 861 24.64 9.0 14.4 20.7 0.2 164 0.8 25.3 

 

 

Depth Ce Th U Al Sn Pb As Sb Bi Sample 
code 

cm 
Fraction 

mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

AC 0-20 A 41 1.9 1.4 13.6 40.4 3474.7 6 9.9 18.7 

  B 61 8.3 3.1 38.4 2.1 2258.7 14 4.7 13.6 

  Tot 43 2.5 1.6 15.7 37.2 3372.5 7 9.4 18.2 

AT 0-20 B 37 5.1 1.1 23.6 1.1 2360.4 8 1.8 0.3 

Ased 0-20 B 40 6.6 1.5 37.8 1.5 783.3 10 0.8 0.2 

 

 

 

 

 

 



 

Table 2.8. PTMs concentration limits imposed by the Italian Ministry of 

Environment for soils based on the use (DM 152/06). 

PTMs 
Soils for public, residential 

and private use 
(mg kg-1) 

Soils for commercial 
and industrial use 

(mg kg-1) 

As 20 50 

Be 2 10 

Cd 2 15 

Co 20 250 

Cr 150 800 

Cu 120 600 

Hg 1 5 

Ni 120 500 

Pb 100 1000 

Sb 10 30 

Se 3 15 

Sn 1 350 

Tl 1 10 

V 90 250 

Zn 150 1500 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 2.4. Main PTMs concentrations in the samples from Zeïda area; dotted lines 
indicate the limit imposed by the Italian Ministry of Environment (DM 152/06) for soils. 
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Figure 2.5. Main PTMs concentrations in the samples from Mibladen area; dotted lines 
indicate the limit imposed by the Italian Ministry of Environment (DM 152/06) for soils. 
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Figure 2.6. Main PTMs concentrations in the samples from Aouli area; dotted lines 
indicate the limit imposed by the Italian Ministry of Environment (DM 152/06) for soils. 
 

 

 

 

 



 

 

 

 

 

 

 

Figure 2.7. Relationships between Pb, Sb, Ag and Cu concentration in all samples from 
Upper Moulouya mining district (*** level of significance, p < 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
 

r = 0.885***  

r = 0.911***  

r = 0.757***  

r = 0.785***  

r = 0.787***  
r = 0.916***  



 

Table 2.9. Individual amounts of metal contaminants in the clay fraction (< 2 µm) expressed in mg of metal kg-1 of < 
2 µm fraction of selected wastes, soils and sediments 

Depth Li Na K Rb Be Mg Ca Sr Ba Sc Y Ti Zr 
Sample code 

cm mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 

ZT 0-20 109.4 0.335 2.93 152.3 7 0.53 0.91 2852 2015 3 28.1 2.491 75.5 

ZS 0-10 62.7 0.072 1.85 82.5 3 1.83 8.92 677 8470 11 15.9 0.629 71.0 

MC1 0-20 30.2 0.067 2.04 107.2 3 3.25 5.55 648 7637 11 12.4 0.474 97.5 

MT 0-20 50.1 0.073 3.13 157.7 4 2.45 3.04 2776 2239 10 11.2 0.413 94.5 

MP2 0-23 34.3 0.052 1.67 78.9 3 1.57 2.31 273 4968 9 14.0 0.382 87.0 

AC 0-20 61.2 0.445 1.86 107.4 3 1.21 11.64 601 6554 9 14.9 0.669 53.9 

Ased 0-20 87.9 0.285 3.19 158.5 7 1.18 0.52 162 3122 16 22.8 0.901 114.0 

Depth Hf V Nb Ta Cr Mo W Mn Fe Co Ni Cu Ag 
Sample code 

cm mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

ZT 0-20 2.3 342 9.4 1.3 29 701.1 15.1 399 1.32 14.1 15.9 223.1 5.6 

ZS 0-10 1.9 121 7.2 0.5 93 121.7 2.0 715 3.57 17.9 42.4 51.0 0.9 

MC1 0-20 2.8 156 8.7 0.6 87 26.2 9.2 1320 3.36 16.3 57.7 108.7 1.9 

MT 0-20 2.6 171 8.1 0.6 89 24.0 9.6 1110 3.10 20.1 77.8 383.6 10.0 

MP2 0-23 2.4 138 7.7 0.6 93 33.2 6.2 1148 5.07 23.7 58.9 1121.4 6.7 

AC 0-20 1.5 114 9.0 0.5 57 140.3 4.6 1256 3.85 20.6 39.6 50.6 1.0 

Ased 0-20 2.9 180 13.6 0.9 93 136.3 6.6 4415 6.76 27.7 60.6 186.4 3.9 

Depth Zn Cd La Ce Th U Al Sn Pb As Sb Bi 
Sample code 

cm mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 

ZT 0-20 2785 2.4 23.9 51 13.4 10.2 6.74 7.5 10036 49 33.2 5.2 

ZS 0-10 209 0.6 27.1 52 7.1 2.4 6.59 2.4 1526 20 6.3 2.8 

MC1 0-20 774 3.2 28.3 51 7.9 3.1 7.40 3.1 4797 31 8.9 0.2 

MT 0-20 3290 5.5 25.0 44 7.3 7.0 7.34 3.1 9993 53 40.1 0.7 

MP2 0-23 181019 354.5 27.6 52 8.3 6.3 6.25 3.5 13281 285 21.1 0.5 

AC 0-20 309 1.2 27.0 52 6.4 1.5 5.14 3.2 1535 12 1.8 0.4 

Ased 0-20 555 1.9 47.3 90 13.1 4.3 9.54 4.3 1913 21 3.4 6.3 

 

 



 

 

 

 
Figure 2.8. The vertical distribution of the total content of the main metal contaminants in soils from Zeïda. 
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Figure 2.9. The vertical distribution of main metal contaminants in soils from Mibladen. 
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2.3.4. Total content  of metal contaminants in the clay fraction (< 2 µm) 

On the fine earth fraction separated from a selected number of wastes, soils and sediments, a 

particle-size fractionation (2 mm – 10 µm; 10 µm – 2 µm; < 2 µm) was carried out by 

centrifugation (Fig. 2.10). In the majority of the samples the 2 mm – 10 µm was the dominant 

fraction. The < 2 µm fraction was above 10% only in Zeïda tailings (16%), in MP2 (11%) and 

in the river sediment collected in Aouli (18%). The 10 µm – 2 µm fraction occurred in 

consistent amount only in the ZS sample (36%). The finest fractions can give indication about 

the contribution of waste and soil materials to PM2.5 and PM10 for inhalation, while the 

coarsest fraction can adhere to the skin and be orally ingested. 

The individual amounts of all analyzed elements in the clay fraction (< 2 µm), expressed in 

mg of metal kg-1 of < 2 µm fraction, are shown in Table 2.9. Elements are expected to 

increase in concentration with the decrease in particle-size. This can be attributed to the 

greater reactivity of the fine particles and to the accumulation of metals’ precipitates in this 

fraction. 

This trend for metal contaminants Pb, Zn, Cu, As, Cd, Sb, V and Sn is graphically shown in 

Fig. 2.11, where the < 2 µm fraction values are compared with the amounts of metal 

contaminants in the skeleton (if present) (∅ > 2 mm) and fine earth (∅ < 2 mm) of the same 

samples (values in Tables 2.5, 2.6, 2.7). 

In the majority of the samples, but more pronounced in the tailings, the clay fraction was 

enriched in metal contaminants compared with fine earth and skeleton. For Pb and Zn the 

average content in tailings was Pb: 10015 mg kg-1 of clay fraction > 5623 mg kg-1 of fine 

earth; Zn: 3038 mg kg-1 of clay fraction > 815 mg kg-1 of fine earth. The other elements 

followed the same behaviour. In particular, the clay fraction from all analyzed materials had 

contents of As and V above regulatory levels indicating a contamination which did not occur 

in fine earth and skeleton [average values: As: 67 mg kg-1 of clay fraction > 51 mg kg-1 of fine 

earth = 50 mg kg-1 of skeleton; V: 175 mg kg-1 of clay fraction > 45 mg kg-1 of fine earth > 39 

mg kg-1 of skeleton]. 

In coarse rock wastes (MC1 and AC) and in MP2 soil which was localized in the proximity of 

a big coarse waste dump, the content of metals in fine earth and skeleton was in several cases 

higher than that of the clay fraction; in particular, the highly contaminated MP2 sample had a 

fine earth more enriched in Cd (1019 mg kg-1) than the clay fraction (355 mg kg-1) and the 

skeleton (404 mg kg-1). This is probably the consequence of the treatments of the ores which 

were depleted of the parts containing the economically important metals. 



 

Among the other elements, they usually occurred in high concentrations in the clay fraction of 

most analyzed materials; in particular, Ni, Co and Cr always showed higher values in clay 

fraction than those in the coarser ones. When the overall average is considered, the content of 

Ni in each fraction was: 50 mg kg-1 of clay fraction > 15 mg kg-1 of fine earth > 9 mg kg-1 of 

skeleton; the content of Co in each fraction was: 20 mg kg-1 of clay fraction > 8 mg kg-1 of 

fine earth > 5 mg kg-1 of skeleton; the content of Cr in each fraction was: 77 mg kg-1 of clay 

fraction > 20 mg kg-1 of fine earth > 9 mg kg-1 of skeleton. 

The contribution of the particles with diameter < 2 µm to the total concentration of metal 

contaminants in the fine earth is given in Table 2.10. The contribution was calculated 

multiplying the mg of metal kg-1 of < 2 µm fraction for the percentages of clay fraction in the 

< 2 mm soil. 

Only in the tailings from Zeïda and in the river sediment from Aouli, the clay fraction 

contributed consistently to the total content of all metal contaminants in the fine earth (from 

37% for Cd to 96% of V in ZT; from 22% for AS to 44% of Cu in Ased). In all other cases 

clay contribution never was above 25% and in the most contaminated samples (MC1, MT and 

AC) it was very low (below 7% for the main metal contaminants Pb and Zn). The clay 

contribution was also relevant for Pb and Sb in ZS soil sample (97 and 98%, respectively). 

 

2.3.5 Pb and Zn bioavailability as assessed by 0.1M CaCl2 extraction 

The amounts of Pb and Zn extracted by 0.1M CaCl2 from selected contaminated fine earths 

samples are given in Fig. 2.12. These amounts were always very low (Pb ranging from 0.5 mg 

kg-1 in ZP2 Ak to 4.2 mg kg-1 in ZT; Zn ranging from 0.02 mg kg-1 in ZP2 Ak to 7.3 mg kg-1 

in MP2 Ck) and, with the exception of Pb in MP1 Ak, represented only a very small 

percentage (< 0.3%) of the total content of the fine earth. 

 
 
 
 
 
 
 
 
 
 
 



 

Table 2.10. Concentration of metal contaminants in the clay fraction (< 2 µm) 

expressed as % of the respective total content in the fine earth of selected 

wastes, soils and sediments 

Sample Depth (cm) V Co Cu Zn Cd Sn Pb As Sb 

ZT 0-20 96 63 77 79 37 67 39 42 47 

ZS 0-10 10 15 22 21 7 17 97 10 98 

MC1 0-20 11 4 2 7 4 1 4 4 3 

MT 0-20 10 3 8 5 2 12 2 5 7 

MP2 0-23 21 25 20 6 2 21 7 7 17 

AC 0-20 12 6 0 3 2 0 1 5 1 

Ased 0-20 35 41 44 34 27 38 35 22 40 

 

 

 

 
Figure 2.10. Particle-size fractionation of selected samples. 

 
 
 
 
 
 
 
 



 

 

 

 

 
Fig. 2.11. Concentrations of main PTMs in the skeleton (> 2 mm), fine earth (< 2 mm) and 
clay fraction (< 2 µm) of selected samples. 
 
 
 
 



 

 
Figure 2.12. Amounts of Pb and Zn extracted by 0.1M CaCl2 from selected contaminated 
fine earths samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 3 

 

IMPACT OF PAST MINING ACTIVITY ON THE QUALITY OF RI VER WATER 

AND GROUNDWATER 

 

 

3.1 Introduction 

 

Mining activities have a significant influence on the quantity and quality of water resources in 

their surrounding environment (Schmiermund and Drozd, 1997; Cidu et al., 2009). Although 

water-quality related problems may arise during the phase of active mining, it is often the case 

that the most adverse impact is felt once exploitation of the mine has been discontinued 

(Banks at al., 1997). 

The potential impact of mining works and their cessation on the quality of water resources is a 

primary concern in local communities. In many mining regions, even in some arid 

environments, pits may intercept groundwater, and require pumping during exploitation (Cidu 

et al., 2001). The rebound after the mine closure degrades the quality of groundwater and it 

may not be suitable for further uses (Gandy and Younger, 2007; Van Tonder et al., 2007). 

The aim of this work was to characterize surface water and groundwater samples in order to 

evaluate the impact of past mining activity on the quality of the waters. 

 

3.1.1 Moulouya River 

The Moulouya basin represent a very important water potential, which can contain up to 1179 

Mm3/year (633 Mm3/year moved by the High Moulouya), i.e. the 12% of the surface water 

reservoir of Morocco (D.G.H., 2003). 

Before flowing toward the Mediterranean sea, Moulouya river receives many tributaries. In 

the High Moulouya valley, the right-side tributaries arisen from the High Atlas are: Oudrhès, 

Ansegmir, Outat, Adeghoual, Mibladen, Bousselloum, Bou-Adil; the left-side tributaries 

arisen from the Middle Atlas are: Kiss, Aguercif, Boulajoul, Sidi Ayad e Amrhid. 

Most of them, with very low or absent flow for several months, are intermittent and flow 

occasionally only after long and protract rainfalls in torrential regime because of the presence 

of impervious rocks and the lack of vegetation (Ngadi, 1995). In the High Moulouya the 

droughts occur between May and January (mainly in July and August); the floods occur in 



 

spring, mainly March and April for the Atlas Mountains snowmelt, and autumn, mainly 

September and October, following storms (El Hachimi, 2006). 

Like all semi-arid regions with contrasting climatic seasons, Morocco periodically faces a 

rainfall deficit caused by recurrent droughts. In order to better manage these shortages, over 

the last decades a large-scale program for the construction of dams has been carried out to 

provide drinking water, irrigation and hydroelectric power (Direction de la Recherche et de la 

Planification de l’Eau, 1994). However, these reservoirs have suffered from siltation due to 

the hinterlands high rate of natural and accelerated erosion. According to Lahlou (1996), the 

annual sedimentation rate in Moroccan reservoirs reached 50 million m3/year. This huge 

siltation has a serious environmental and socio-economical impact, since it reduces the 

reservoirs capacity, and could affect the morphological equilibrium of the coastline (Snoussi 

et al., 2002). 

The transport of solid material after floods was very relevant for Moulouya River: the average 

was 12 g/l and the dams collection rate around 10 Mm3/year (D.R.H.M., 1996). The annual 

average of Moulouya solid flows, mainly originated from Zeïda-Mibladen-Aouli abandoned 

mines, varied from 2000 ton/year in the upstream station (Zeïda) to 80000 ton/year in the 

downstream station (Melgeloidane): Moulouya river and some its tributaries (Mibladen, 

Adeghoual, Bousselloum, Bou-Adil, Sidi Ayad) drain those abandoned mines in the High 

Moulouya, stream in the Middle and Low Moulouya and flow toward the Mediterranean sea 

(Bendahou, 1995). 

Since April 2001, the construction of the Sidi Saïd dam (capacity: 40 Mm3) was carried out 

from the Moroccan kingdom in the High Moulouya valley, 20 km downstream of Zeïda mine; 

this dam, opened in April 2008, controls a water volume of 100 Mm3 from Moulouya river 

(D.G.H., 2001). The dam mainly allowed to: a) manage the shortages; b) supply the request of 

irrigation water from Low Moulouya (around 717 Mm3/year); c) defend downstream district 

(Middle and Low Moulouya) from floods; d) preserve the Mohammed V dam (Middle 

Moulouya) from overflows. 

 

3.1.2 Groundwater 

The High Moulouya hydrogeological basin is characterized by four main aquifer layers 

(Derrar, 1996): 

1. the deep layer of Lias limestones which gives rise to some important sources (1 m3/s); 

2. the layer of Cretaceous limestones which gives rise to several little sources (600 l/s), 

for irrigation and watering; 



 

3. the layer of Miocene conglomerates, used by more than 400 wells; 

4. the layer of quaternaries alluvial sediments. 

The general lack of current and accurate hydrogeological data leaded to difficulties in the 

study of groundwater setting of the  Zeïda-Mibladen-Aouli abandoned mines area: sometimes 

the aquifer is in the quaternaries alluvial sediments and is a shallow aquifer (10-12 m) 

connected to the floods of the Moulouya river, sometimes it is a basal flow draining faults and 

joints of the sandstones and granites (Zeïda) or dolomites and metamorphic schists (Aouli) 

filling deep excavations (Mibladen). 

 

 

3.2 Material and methods 

 

3.2.1 Sample collection 

All data reported here refer to sampling campaigns undertaken in 2007 and 2009. 

The sampling network was designed collecting surface water and groundwater samples in 

several points (20) in and outside the mining areas and along the Moulouya river stream; in 

Fig. 3.1 and Table 3.1, the location of the sampling sites is given. 

In order to investigate the impact of the mine activity in the High Moulouya valley, the 

sampling campaigns were directed to collecting water samples from: i) Moulouya river and its 

tributaries in and outside the three mining areas; ii) private wells outside the mining areas 

used for watering and irrigation; iii) abandoned wells occurred in the exploitation and 

processing sites; iv) deep excavations filled with groundwater and surface water. 

During the first campaign, November 2007, five samples were taken into the Moulouya river 

and its tributary Mibladen approximately 15 cm below the surface of the water. In detail: 

o a small dam localized outside Zeïda city centre (5); 

o an area included between Mibladen and Aouli mines (1 and 2); 

o the processing area of Aouli mine (3); 

o downstream the mining sites in an agricultural area of Ksabi city (4) (external to the 

map in Fig. 3.1). 

The second campaign was carried out in March 2009 in order to collect surface water and 

groundwater samples of the Moulouya basin. Fifteen samples were collected; in particular: 

o groundwater samples from Moulouya basin upstream the mining areas (15, 16) 

(external to the map in Fig. 3.1); 

o surface sample from Moulouya river in a small village outside Zeïda mining area (6); 



 

o groundwater samples from groundwater filling deep excavations in processing and 

exploitation sites of Zeïda (8- 11; 13, 14) and Mibladen (19); 

o groundwater samples from private wells area used for irrigation and watering in Zeïda 

(12, 17) and in Midelt area (20); 

o surface water sample from the Sidi Saïd dam basin (7); 

o groundwater sample from spring flowing from Aouli mine galleries (18). 

Each sampling was carried out collecting water in three polyethylene bottles for the different 

analyses: 

• SAMPLING A (1 L): for CO2, HCO3 content and ionic composition analyses; 

• SAMPLING B (25 mL): for PTMs analysis; 

• SAMPLING C (100 mL): for Fe and Mn content analysis. 

In order to analyze metals content, polyethylene bottles for samplings B and C were 

previously acidified by nitric acid: respectively, ultra-pure HNO3 (0.5 mL) and HNO3 (2 mL). 

A total of twenty samples of surface water and groundwater were collected in the two 

sampling campaigns; all sampling points were georeferenced by GPS in WGS84 geographical 

coordinates (latitude; longitude). 

 

3.2.2 Analytical procedures 

Some water parameters were measured on site: 

� TEMPERATURE 

Water temperature was obtained using a specific thermometer which gives temperature values 

expressed as °C. Temperature of water affects the solubility and hence the mobilization of 

chemical elements. At near neutral pH, solubility of chemical elements from their solid hosts 

generally increases with higher temperature. 

� pH 

The pH was measured using a portable pH-meter. Some PTMs will be mobilized by acid 

conditions and others under basic conditions. The pH then affects an environment’s heavy 

metals status. For example, elements such as Cu and Zn are essentially immobile under basic 

pH conditions whereas Mo is mobile. 

� CONDUCTIVITY 

Used method consisted in direct determination of electrical conductivity measured by portable 

EC-meter  which gives conductivity values expressed as µS cm-1. 

Other analyses were carried out in the laboratory of Dr. Trifuoggi (Chemistry Department – 

University Federico II of Napoli). All the samples were analyzed for CO2, major ions (Na+, 



 

K+, Ca2+, Mg2+, Cl-, SO4
2-, HCO3

-, NO3
-, NO2

-, NH4
+) , Fe and Mn content and PTMs total 

content. 

� CO2 CONTENT 

CO2 content in water samples (200 mL) was obtained by titration with NaOH 0.1223 M 

(indicator: phenolphthalein). 

� HCO3
- CONTENT 

Bicarbonates content in water samples (100 mL) was obtained by titration with HCl 0.1029 M 

(indicator: bromocresol green). 

� ANIONS AND CATIONS CONTENT 

Anions and cations were determined by ion chromatography HPLC. The anions detected 

were: F-, Br-, Cl-, SO4
2-, NO3

-, NO2
-. For cationic composition determination, the water 

samples were previously acidified (pH=3) by nitric acid (0.5 M); the anions detected were: 

Li+, Na+, K+, Ca2+, Mg2+, NH4
+. The ions concentration was expressed as mg L-1. 

� IRON AND MANGANESE CONTENT  

Water samples were previously acidified and filtered; Fe and Mn concentration was 

determined by atomic absorption spectroscopy and expressed as mg L-1. 

� PTMs TOTAL CONTENT 

PTMs total content was determined by ICP-MS spectrophotometer. PTMs analyzed were: Al, 

As, Ba, Be, B, Br, Cd, Co, Cr, Cs, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Rb, Se, Si, Sr, Ti, Th, U, V, 

W, Zn, Zr. The results were expressed as mg L-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3.1. Location of studied water samples 
Latitude Longitude 

N° Sample code Mine Altitude 
        N W 

 Surface waters     
1 MR1 Mibladen 1164 32° 48' 79" 4° 36' 92" 
2 MR2 Mibladen 1141 32° 48' 58" 4° 35' 73" 
3 MR3 Aouli 1139 32° 48' 86" 4° 34' 91" 
4 MR4 outside mining areas 1039 32° 50' 12" 4° 24' 32" 
5 MR5 Zeïda 1462 32° 49' 03" 4° 57' 55" 
6 MR6 Zeïda 1478 32° 47' 14" 4° 57' 56" 
7 MR7 outside mining areas 1397 32° 47' 05" 4° 46' 13" 
 Groundwaters     
8 gw1 Zeïda 1477 32° 47' 09" 4° 57' 36" 
9 gw2 Zeïda 1478 32° 46' 38" 4° 57' 53" 
10 gw3 Zeïda 1482 32° 46' 41" 4° 57' 58" 
11 gw4 Zeïda 1443 32° 46' 58" 4° 57' 50" 
12 gw5 Zeïda 1467 32° 49' 40" 4° 57' 29" 
13 gw6 Zeïda 1466 32° 47' 31" 4° 58' 20" 
14 gw7 Zeïda 1452 32° 50' 05" 4° 57' 11" 
15 gw8 outside mining areas 1761 32° 56' 03" 5° 03' 19" 
16 gw9 outside mining areas 2141 33° 01' 44" 5° 04' 15" 
17 gw10 Zeïda 1602 32° 53' 54" 5° 00' 49" 
18 gw11 Aouli 1140 32° 48' 39" 4° 35' 35" 
19 gw12 Mibladen 1329 32° 46' 31" 4° 36' 53" 
20 gw13 outside mining areas 1576 32° 38' 42" 4° 46' 04" 

 
 

 

3.3 Results and discussion 

 

3.3.1 Chemical characterization 

Physical and chemical parameters and concentrations of dissolved components are reported in 

Table 3.2. 

According to the literature (Hachimi et al., 2006), all waters were alkaline (pH: 7.2-9.4) due 

to the leaching from the mining areas. 

Conductivity in groundwater was much higher (average: 2392 µS cm-1) than that measured in 

surface waters (799 µS cm-1) especially because of two samples from the processing area of 

Zeïda: 13 (15000 µS cm-1) and 14 (5380 µS cm-1). 

As evidenced by the Piper diagram (Fig. 3.2), the majority of the waters were in calcium-

magnesium-bicarbonate facies. Only few samples moved away from this behaviour: in detail, 



 

samples 1, 12 and 19 were in calcium-sulphate facies; samples 13 and 14 were in sodium-

chloride facies. 

The ionic composition of the water samples is also displayed using the Schoeller-Berkaloff 

diagrams (Fig. 3.3). Most of the studied waters were in calcium-magnesium-bicarbonate 

facies with a Mg/Ca molar ratio close to 1 (Fig. 3.4); in two samples (6, 11) lower 

concentrations of the alkaline ions were detected. The Mg/Ca molar ratio increased in the 

spring water samples collected upstream of the mining areas (15, 16, 17) which were 

characterized by outcrop of dolomite rocks; however, a rilevant analytical error occurred in 

the samples 15 and 17. Also groundwater samples 18 and 19, which were collected 

downstream the mining areas in a dolostone plateau, exhibited high concentration of Mn, but 

the bicarbonate ion was substituted by the sulphate ion. 

Samples 13 and 14 were in sodium-chloride facies with very high values of conductivity; 

possibly, these samples are not groundwater flowing towards lower piezometric levels but 

they are stagnant and represent brackish inland water bodies with very high salinity. 

The difference between these waters and brackish waters is in the high content of HCO3, 

which is the major anion in all the samples. 

A significant content of SO4 occurred in Mibladen in samples 1 (579 mg L-1) and 19 (1007 

mg L-1); the highest content of NO3 occurred in sample 12 (124 mg L-1). 

Also for the anionic composition the samples 13 and 14 were very different from the other 

groundwater samples: in particular, they displayed a much greater content of Cl (respectively, 

2470 and 952 mg L-1). 

The content of Na and Cl was strictly correlated (r: 0.958; p-level: 0.000); the Na versus Cl 

plot in Fig. 3.5 shows that the most surface samples are aligned along a trendline which does 

not follow the seawater Na/Cl ratio line. 

 

3.3.2 PTMs total content 

Main PTMs total content in all water samples is reported in Table 3.3. 

According to other results from the literature (Bouabdli, 2005), the main metallic 

contaminants in the studied area are Pb and Zn which in several samples are associated to 

high values of Cu, As and Cd. 

The spring water samples collected upstream of the mining areas (15, 16, 17) were essentially 

uncontaminated. 

Figure 3.6 shows the correlation graphs Zn/SO4 (a) and Pb/SO4 (b). All samples were 

characterized by low content of dissolved Zn average value in surface water samples (30.5 µg 



 

L-1) was higher than that in groundwater samples (7.7 µg L-1). That depends on the solubility 

of zinc in water, which is a function of pH and total inorganic carbon concentrations; the 

solubility of basic zinc carbonate decreases with increase in pH and concentrations of 

carbonate species (WHO, 2008). 

Most contaminated samples were collected in Mibladen (1 and 2) where Zn showed the 

highest values (respectively, 60 µg L-1 and 80 µg L-1)  and Pb values were 0.010 mg L-1 and 

0.030 mg L-1. 

Several samples were contaminated by high values of Pb. Taking into account that the normal 

content of Pb in the natural waters is < 1-3 µg L-1 (Bowen, 1979; Hem, 1985), with the 

exception of samples 7, 16 and 20, all samples were characterized by higher values of Pb. 

Comparing the total content of Pb with the limit defined by the WHO (2008) for the drinking 

water (10 µg L-1), only seven samples taken from Zeïda (6, 9, 11 and 12) and Mibladen (1, 2, 

19) exceeded that limit (Fig. 3.7a). Moreover, Moroccan legislation allows a limit content of 

50 µg L-1 for Pb in the waters: only the groundwater sample 19, collected from a deep 

excavation lake outcropping a Pb vein in Mibladen site (see Fig. 3.1), exceeded that limit. 

With the exception of two samples (13 and 14), the concentration of As was always lower 

than the limit suggested by WHO (2008) for the drinking water (10 µg L-1) (Fig. 3.7a); on the 

contrary, in almost all samples, the content of As exceeded the limit of 0.45 µg L-1 indicated 

by Casiot (1999) for fresh water. 

A high content of Al and Fe was found in samples 6 and 11 from Zeïda area; as indicated by 

the Schoeller-Berkaloff chart (Fig. 3.3), the ionic composition of these samples was very 

similar. A contamination of Al was also detected in outcropping groundwater samples (14) 

collected in the mine tailings store of Zeïda (Fig. 3.7b). The amount of Fe was still high in the 

surface water samples 2, 4 and 5. 

Fluoride in most samples was < 0.77 mg L-1. The surface water sample with higher amount of 

F was sample 1, collected in Mibladen area (1.16 mg L-1); the only samples with very high 

values of F were from the processing area of Zeïda (13: 6.97 mg L-1; 14: 2.39 mg L-1), where 

several cases of dental fluorosis occur in the population. 

With regard to other elements, a high content of Ni was found in the sample 6 (0.028 mg L-1) 

collected from Moulouya river in Zeïda area; groundwater sample 13 showed also a high 

content of B (1.4 mg L-1). In all samples, dissolved Ba content ranged from 20 to 250 µg L-1 

(average: 110 µg L-1). 

 



 

Table 3.2. Physical and chemical parameters and concentrations of dissolved components in surface and groundwater samples 
T Cond pH Na K Ca Mg Cl SO4 HCO3 NO3 F Br NO2 NH4 Li 

Sample 
°C µS cm-1  mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 

error 
mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 

1 10.0 1401 8.3 82.54 11.44 165.04 80.66 92.46 579.04 163.24 16.80 -3.14 1.16 0.00 0.00 0.00 0.04 

2 10.0 585 8.2 27.31 4.98 77.93 27.07 40.84 87.49 263.70 16.18 0.85 0.55 0.00 0.00 0.00 0.01 

3 10.0 690 8.6 34.79 4.21 82.07 35.65 53.81 88.42 301.37 19.72 -0.18 0.66 0.00 0.00 0.00 0.02 

4 9.0 849 8.2 43.70 3.78 103.50 46.22 60.98 175.36 313.93 12.57 -1.12 0.67 13.67 0.00 0.00 0.03 

5 9.0 952 7.7 97.84 11.59 65.94 33.39 98.26 107.09 364.16 0.00 1.77 0.66 0.00 0.00 19.96 0.11 

6 15.4 630 8.3 7.40 1.63 68.79 23.29 10.38 39.06 262.37 15.71 -0.45 0.08 0.00 0.00 0.00 0.04 

7 15.1 486 8.6 12.81 2.33 53.56 18.96 12.39 32.62 213.56 8.40 -1.94 0.08 0.00 0.00 0.00 0.02 

                  

8 17.3 401 9.2 9.66 3.04 32.22 13.64 10.30 26.30 140.34 5.73 0.05 0.20 7.44 0.00 0.00 0.02 

9 17.3 506 8.6 13.57 3.79 44.12 14.42 16.64 32.95 164.75 9.94 -0.72 0.22 0.06 0.00 0.00 0.03 

10 18.0 773 8.5 31.62 3.40 42.69 29.36 33.24 58.65 219.66 5.83 -1.30 0.77 0.05 0.00 0.00 0.10 

11 19.5 713 8.3 7.59 1.51 80.02 22.96 10.93 38.10 268.47 14.98 -4.22 0.03 0.10 0.00 0.00 0.02 

12 18.5 2330 7.2 85.45 5.09 132.19 148.59 155.12 419.90 335.59 124.32 -4.71 0.48 0.46 0.00 0.00 0.07 

13 20.5 15000 9.1 3430.82 78.55 9.50 136.15 2469.50 1244.35 3612.19 4.01 -2.53 6.97 4.22 0.00 0.00 6.22 

14 18.0 5380 9.3 1267.26 23.88 15.70 52.63 951.46 1146.71 683.39 0.13 0.88 2.39 1.24 2.76 0.00 1.32 

15 15.6 772 7.4 28.93 1.04 62.76 40.35 35.50 21.97 439.32 5.43 6.14 0.07 0.00 0.04 0.00 0.01 

16 17.7 448 9.4 17.32 0.59 27.11 30.35 25.71 13.32 213.56 0.87 -1.10 0.05 0.00 0.00 0.00 0.01 

17 15.2 990 7.6 39.78 0.04 56.51 58.55 77.48 25.16 475.93 24.04 7.38 0.13 0.21 0.00 0.00 0.02 

18 17.6 748 8.4 23.43 6.80 38.27 48.50 42.41 57.52 292.88 1.24 0.86 0.33 0.18 0.00 0.00 0.09 

19 15.1 2420 8.3 88.45 21.06 171.84 183.28 98.68 1007.08 244.07 18.04 0.02 0.63 0.37 0.00 0.00 0.11 

20 13.5 612 7.6 21.61 1.70 79.00 22.06 44.79 23.58 244.07 27.43 -4.19 0.23 0.30 0.00 0.00 0.02 

 

 



 

Table 3.3. Main PTMs total content in water samples 
Al As Ba B Cd Cr Fe Mn Hg Ni Pb Cu Se Si Sr U Zn 

Sample 
mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 µg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 µg L-1 µg L-1 µg L-1 

1 - < 0,001 0,06 0,15  < 0,0003 < 0,002 1 < 0,005 < 0,0005 < 0,001 0,010 < 0,010 < 0,001 4,5 2300 5,5 60,0 

2 - 0,001 0,25  < 0,10  < 0,0003 < 0,002 3000 0,150 < 0,0005 < 0,001 0,030 < 0,010 < 0,001 13,0 1400 2,5 80,0 

3 - 0,001 0,12 0,11  < 0,0003 < 0,002 150 0,020 < 0,0005 < 0,001 0,005 < 0,010 < 0,001 4,0 1800 3,0 8,0 

4 - 0,001 0,12 0,11  < 0,0003 < 0,002 500 0,050 < 0,0005 < 0,001 0,006 < 0,010 < 0,001 5,5 2100 3,8 10,0 

5 - 0,003 0,10 0,15  < 0,0003 < 0,002 250 0,150 < 0,0005 < 0,001 0,004 < 0,010 < 0,001 6,2 1200 15,0 40,0 

6 11,25 0,002 0,15 < 0,10  < 0,0003 0,027 17332 0,472 < 0,0002 0,028 0,015 0,015 < 0,001 28,9 956 < 1,0 14,0 

7 0,15 0,001 0,14 < 0,10  < 0,0003 < 0,001 88 0,018 < 0,0002 < 0,001 0,002 < 0,001 0,001 3,3 910 1,1 1,8 

                  
8 0,05 0,003 0,07 < 0,10  < 0,0003 < 0,001 24 0,029 < 0,0002 < 0,001 0,026 < 0,001 < 0,001 3,0 637 2,0 10,0 

9 0,16 0,002 0,12 < 0,10  < 0,0003 < 0,001 97 0,036 < 0,0002 < 0,001 0,012 0,002 < 0,001 2,9 730 2,0 13,0 

10 0,09 0,004 0,09 0,10  < 0,0003 < 0,001 50 0,018 < 0,0002 < 0,001 0,005 < 0,001 0,001 3,7 2475 8,0 < 1,0 

11 2,59 0,002 0,10 < 0,10  < 0,0003 0,005 2511 0,190 < 0,0002 0,006 0,010 0,003 0,001 10,0 616 < 1,0 14,0 

12 0,04 0,002 0,04 0,10  < 0,0003 0,001 28 0,004 < 0,0002 < 0,001 0,028 < 0,001 0,005 12,0 1782 7,0 < 1,0 

13 0,15 0,096 0,07 1,40  < 0,0003 0,003 33 0,027 < 0,0002 < 0,001 0,007 0,040 0,007 7,2 2935 20,0 < 1,0 

14 0,30 0,018 0,07 0,60  < 0,0003 0,003 130 0,025 < 0,0002 < 0,001 0,002 0,039 0,001 4,6 2699 14,0 < 1,0 

15 < 0,02 < 0,001 0,03 0,10  < 0,0003 < 0,001 < 20 0,003 < 0,0002 < 0,001 0,004 0,014 < 0,001 3,9 138 < 1,0 5,3 

16 0,05 < 0,001 0,02 < 0,10  < 0,0003 < 0,001 44 0,010 < 0,0002 < 0,001 0,002 0,004 0,001 0,3 96 < 1,0 8,5 

17 < 0,02 < 0,001 0,24 < 0,10  < 0,0003 < 0,001 < 20 0,002 < 0,0002 < 0,001 0,003 < 0,001 0,002 9,4 405 < 1,0 < 1,0 

18 < 0,02 0,004 0,06 < 0,10  < 0,0003 < 0,001 < 20 < 0,001 < 0,0002 < 0,001 0,006 0,002 0,002 6,4 1145 3,6 < 1,0 

19 0,07 0,002 0,17 0,40  < 0,0003 < 0,001 64 0,028 < 0,0002 0,013 0,078 < 0,001 0,018 4,0 4358 8,2 7,7 

20 0,02 < 0,001 0,08 < 0,10  < 0,0003 < 0,001 < 20 0,003 < 0,0002 < 0,001 0,002 < 0,001 0,002 6,0 1594 1,3 34,0 
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Figure 3.2. Piper diagram of the water samples (sample codes are in Table 3.1). 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 3.3. Shoeller-Berkaloff diagrams of the water samples. 



 

 
Figure 3.4. Dissolved Mg versus Ca concentrations in the waters; dotted line shows the 
Mg/Ca molar ratio equal to 1 (sample codes are in Table 3.1). 
 

 
Figure 3.5. Dissolved Na versus Cl concentrations in the surface waters; dotted line 
shows the Na/Cl molar ratio in seawater (sample codes are in Table 3.1). 
 



 

 

 

 

Figure 3.6. Dissolved Zn (a) and Pb (b) versus SO4 concentrations in the water samples 

(sample codes are in Table 3.1). 

a) 

b) 



 

 

 

 

Figure 3.7. Concentration of Pb and As (a) and Al (b), in the water samples (sample 

codes are in Table 3.1); the line shows the limits for the drinking water (WHO, 2008). 
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(b) 



 

3.4 Conclusions 

 

The water chemical facies depends strictly on the embanking type of rock. Almost all waters 

are in calcium-magnesium-bicarbonate facies. Moreover, surface waters and groundwater are 

characterised by very high pH values and high levels of HCO3 in all the samples due to the 

leaching from the mining areas. 

Generally, the amount of metals occurring in the water is low. The main contaminants 

occurring in some samples are prevalently Pb, As and Al. 

The highest concentrations, especially of Pb, are recorded in the water samples collected 

downstream from the mines of Zeïda and Aouli. 

The high levels of Zn recorded in soil profiles are not detected in groundwater because the 

solubility of zinc in water decreases with increase in pH and concentrations of carbonate 

species, both very high in groundwater. The higher values of Zn in surface waters depend on 

the transfer occurring by particles water and wind erosion. 

Anyway, the contamination is restricted in the mining sites: surface water and groundwater 

samples collected outside do not show any evidence of contamination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 4 

 

CHEMICAL AND MINERALOGICAL SPECIATION OF LEAD AND Z INC IN 

SOILS AND MINE WASTES 

 

 

4.1 Introduction 

 

One of the common aims of studies that deal with soils or sediments contaminated with PTMs 

is to assess the fate and potential mobility of the contaminants, with respect to the 

environmental conditions that pertain to them now or in the future (e.g. Houba et al., 1996). 

For such purposes it is essential to determine the physical and chemical forms in which the 

metals reside, i.e. their speciation, not just the amounts of the various metals present (Ure and 

Davidson, 1995; Morin et al., 1999). From the perspective of risk assessment the following 

example illustrates the importance of speciation. Using total metal concentration as the index 

of risk it follows that a site with a concentration of 5000 mg kg-1 of Pb is significantly more 

toxic than one which is 500 mg kg-1 of Pb. However, suppose that the only species of Pb in 

the first soil was galena (lead sulfide, PbS; Ksp =
 10-27.5), while the only species of Pb in the 

second one was cerussite (lead carbonate, PbCO3; Ksp = 10-13.0). In absolute terms, from 

simple thermodynamic calculations alone, a greater amount of Pb is likely to be both mobile 

under water transport and bioavailable in soluble form to organisms in the soil with the lower 

Pb concentration, because cerussite is vastly more soluble than galena. Mobility is clearly 

dependent on chemical form. And although bioavailability and toxicity are complex processes 

and are biological species dependent as well as even genetically dependent within species, 

this example indicates that the chemical form of a metal contaminant is an important factor in 

assessing human health or ecological risks (D’Amore et al., 2005). 

Most commonly the problem has been approached using either chemical or direct 

instrumental methods. Chemical methods seem to be the most popular, probably because they 

can readily provide a quantitative result. Chemical characterization includes not only the 

determination of total content of pollutants but also an estimation of chemical state which are 

bounded to wastes (easily exchangeable ions, metal carbonates, oxides, sulphides, 

organometallic compounds), which determine their mobility and pollution (Weisz et al., 2000; 

Yu et al., 2001). Typically, chemical methods are applied in various sequential extraction 

schemes (e.g. Li et al., 1995). Sequential extractions introduced by Tessier et al. (1979), based 



 

on the use of selective phase-dissolving extractants, have allowed to identify the pools of 

elements of varying solubilities and mobilities (Renella et al., 2004). To simplify and 

harmonize the several existing procedures and improve the determination of extractable 

contents of trace metals in soil prior to certification, the European Community Bureau of 

Reference (Ure et al., 1993) established a four-step sequential extraction scheme based on the 

use of 0.11M acetic acid as first extractant. 

However, it is now widely recognized that the forms determined by sequential extractions are 

inevitably operationally defined. As a consequence of such problems, instrumental methods 

such as X-ray diffraction, among many others, are often used to elaborate on the data obtained 

by chemical extraction schemes (e.g. Schön, 1995; Hudson-Edwards et al., 1996). X-ray 

powder diffraction (XRPD) is amongst the most versatile and useful of any instrumental 

technique for the identification of crystalline phases. Many aspects of clay mineral 

identification, such as interstratification of two or more types, are not readily accessible by 

any other technique (Hillier, 2003). The study of clay minerals is always most fruitful when a 

range of complementary techniques is utilized (Wilson, 1987). Nonetheless, XRPD is 

undoubtedly one of the most powerful techniques for the analysis of clay minerals. 

In addition to identification XRPD can also be used to make quantitative analyses of the 

amount of any phase present in a mixture (Zevin and Kimmel, 1995; Jenkins and Snyder, 

1996). Many different procedures can be used to obtain quantitative information from XRPD 

data but they have traditionally required a considerable investment of time compared to the 

relatively straightforward use of XRPD for phase identification (Hillier et al., 2001) based on 

searching and matching reference XRPD patterns to those of unknown materials. Quantitative 

analysis by XRPD is a more difficult undertaking, especially when the samples contain 

complex mixtures of phases, as is often the case with samples from contaminated sites or 

from waste materials (Winburn et al., 2000; Hillier et al., 2001). Despite their limits to define 

and quantify the mineralogical associations when metals are present in very small amounts 

(Essington and Mattigod 1991), these methods appeared pertinent when coupled with 

chemical and physical approaches to provide a better understanding of contamination history 

and to improve assessment of environmental risks and remediation feasibility (Hillier et al., 

2003). Therefore, even though both sequential extraction and direct methods have severe 

limitations, a combination of the two approaches may provide a more realistic picture of the 

actual forms of PTMs in soils. 

In this Chapter heavy metal speciation by sequential chemical extractions and quantitative 

mineralogical determination by XRPD were applied to define Pb and Zn chemical and 



 

mineralogical forms and phases in the mine wastes and soils from the former lead mining 

district of the High Moulouya valley (Morocco).  The aim was to provide base line data 

required to  assess metal mobility and transferability. 

 

 

4.2. Materials and Methods 

 

4.2.1 Chemical speciation 

The fractionation of Pb and Zn among geochemical phases was carried out on the fine earth of 

selected samples: the mine wastes from all three mining areas (ZT, MT, MC1, AT), surface 

soil samples from the exploitation areas of Zeïda and Mibladen (ZP1, MP1), surface and deep 

soil samples from the processing area of Mibladen (MP2, MP3) and surface soil sample 

collected outside Mibladen site (SS). In Fig. 2.1 and Table 4.1, the location of these sampling 

sites are given. 

The four-step sequential extraction procedure developed by the Measurement and Testing 

Program of the European Commission (Ure et al., 1993) was modified according to Renella et 

al. (2004) in order to differentiate the carbonate bound fraction (Table 4.2) by introducing a 

preliminary step based on the shaking of soils with 1M NH4NO3 buffered at pH7 which is 

suitable for measuring available metals in sequential extractions (Krishnamurti et al., 2000). 

Acetic acid has been considered unsuitable for studying PTM speciation in calcareous soils 

because it gives poorly reproducible results (Carlton-Smith and Davis, 1983) and dissolves 

carbonates and makes it difficult to discriminate between the adsorbed and carbonate 

fractions; even if dilute acetic acid does not dissolve well crystallized carbonates such as 

calcite and aragonite (Ray et al., 1957) it could dissolve the highly reactive fine carbonate 

present. 

In this work the sequential extraction procedure consisted of five steps; the metal phases 

which are presumed to be sequentially extracted are: 

1. Sample (1 g) was placed in 100-ml volume Teflon bottles with 40 mL of 1M 

NH4NO3 shaken for 2 hours, and then the mixture was centrifuged at 3000 rpm for 20 

minutes. The extract was stored at 4 °C until analysis; the residue was washed with 20 

ml of deionized water and centrifuged at 3000 rpm for 20 minutes. This fraction 

(labile pool) is the most labile pool bonded to the wastes, and therefore, the most 

dangerous and bio-available for the environment. It consists of exchangeable and 

soluble metals in calcareous soil. 



 

2. Forty mL of 0.11M acetic acid (pH=2.5) was added to the residue and the mixture 

was shaken for 16 h at room temperature. The extract was separated from the solid 

residue by centrifugation (3000 rpm for 20 minutes), decanted into a polyethylene 

bottle and stored at 4 °C until analysis. The residue was washed with deionized water 

(by centrifugation at 3000 rpm for 20 minutes) and the washings discarded. This 

fraction (HOAc-extractable) corresponds to carbonate-bound metals. 

3. Forty mL of 0.1M hydroxylamine hydrochloride (adjusted to pH of around 2 by 

adding HNO3) was added to the residue in the same centrifuge tube. Again, the 

extraction was performed as described in 2nd step. This fraction (reducible) represents 

Pb and Zn bound to Fe and Mn oxides that can be released if conditions change from 

oxic to anoxic state. 

4. Ten mL of 8.8M H2O2 (pH 2.0–3.0) was added carefully in small aliquots into the 

residue. The tubes were covered and the contents digested for 1 h at room temperature 

and 1 h at 85 °C in a water bath. Then, volume was reduced to around 2–3 ml by 

further heating the uncovered tube. This step was performed twice (e.g., more details 

in Sahuquillo et al., 1999). At the end of the oxidation the H2O2 was allowed to 

evaporate completely. After cooling, 50 mL of 1.0M ammonium acetate (adjusted to 

pH 2 by adding HNO3) was added to the residue, which was extracted as described in 

2nd step. This fraction (oxidizable) is made up of metals bound to sulphides and 

organic matter, which may be released under oxidizing conditions. 

5. Soil residues were transferred to the microwave reaction bombs for complete 

mineralization. The residue was digested adding 16 mL of aqua regia (a mixture of 

12M HCl and 15.8M HNO3 in the ratio 3:1), 4 mL of HF and 6 mL of H3BO3. The 

extract was separated from the solid residue by filtering, decanted into a polyethylene 

bottle and stored at 4 °C until analysis. This residual fraction (residual) includes Pb 

and Zn tightly associated with crystalline oxides and in the mineral lattice structure 

which are therefore unlikely to be released from the mining wastes. 

It is important to emphasize that these metal phases are nominal target only, operationally 

defined by the extraction used. The concentration of Pb and Zn in the various extracts was 

determined by a Perkin Elmer AAnalyst 700 spectrometer; the efficacy of the extraction 

procedure and the analytical quality of the AA data were controlled by including one sample 

of a BCR Standard Reference Material (BCR701 – lake sediment) of known composition in 

each analytical batch of samples. 

 



 

Table 4.1. Location of selected soil and mine waste samples 

Latitude Longitude N° Sample code Site 
             N W 

  Mine Z (Zeïda)       
1 ZP1 Expl. 32° 48' 26" 4° 58' 17" 
4 ZT Proc. 32° 50' 24" 4° 57' 05" 
     
 Mine M (Mibladen)     

10 MP1 Expl. 32° 45' 16" 4° 39' 02" 
12 MP2 Proc. 32° 45' 42" 4° 38' 41" 
13 MP3 Proc. 32° 45' 53" 4° 38' 41" 
14 MT Proc. 32° 45' 44" 4° 38' 40" 
15 MC1 Proc. 32° 45' 39" 4° 38' 43" 
16 SS out 32° 40' 57" 4° 37' 27" 
     
 Mine A (Aouli)     

24 AT Proc. 32° 48' 40" 4° 35' 34" 
P = soil profile; T = tailing; C = coarse waste rock; SS = surface soil; 
Expl. = exploitation area; Proc.: processing area; out = outside mining area 

 
 

 

 

 

Table 4.2. Sequential extraction procedure for the fractionation of PTMs 
STEP Extractant Presumed metal forms 

1 1 M NH4NO3 Soluble and exchangeable (labile pool) 

2 0.11M HOAc Carbonates bound (HOAc-extractable) 

3 0.5 M NH2OH HCl Occluded in ‘easily reducible’ Mn and Fe oxides (reducible) 

4 1M H2O2 / NH4OAc Organic matter associated and sulphides (oxidizable) 

5 HCl / HNO3 / HF 3:1:1 Mainly in primary minerals lattice structure (residual) 
 
 
 
 
 
 
 
 
 
 
 
 



 

4.2.2 Mineralogical analysis 

Mineralogical analysis was undertaken on the fine earth of all solid samples and on selected 

clay fractions. For X-ray powder diffraction (XRPD) all samples were prepared by two 

different procedures. The first procedure involved the spray-drying sample preparation and 

the quantitative determination of phases; the second procedure involved only hand grinding of 

the dry samples in an agate mortar and pestle and was made essentially to check that the wet 

milling and spray drying procedure had not resulted in any noticeable phase changes. 

Spray drying is a samples preparation method capable of producing truly random powder 

samples for X-ray powder diffraction (XRPD). Essentially samples are prepared as an 

aqueous slurry and sprayed through the airbrush into a heated chamber; in the chamber the 

spherical spray droplets dry forming spherical granules. Both the spherical shape of the 

granules and the way spheres pack together in a powder holder ensures random arrangement 

of the component particles. In addition, indeed as a consequence of eliminating preferred 

orientation, the XRPD pattern of spray dried samples are extremely reproducible (Hillier, 

1999). Sample preparation is a crucial step and if the properties of the slurry are not suitable 

the process is likely to fail: the slurry needs to have as high a content of solids as possible in 

order to minimise drying time and to ensure that the droplets retain a spherical shape as they 

dry; moreover, the slurry must still be dilute enough to be sprayed easily through the airbrush 

at low pressures without clogging it up. The solid samples (3 g) were placed in a McCrone 

micronising mill together with an appropriate amount of ethanol and the mixture was milled 

for 12 min to reduce the particle size to normally less than 10 µm. Ethanol was chosen as the 

slurry liquid rather than water to allow spray-drying at a lower temperature in case the 

samples contained temperature sensitive phases such as sulfates. The resulting slurries were 

spray dried directly from the mill at a temperature of 60 ºC (Hillier, 1999). 

The resulting powder samples were top loaded into 2.5 cm diameter circular cavity holders 

and XRPD patterns recorded on a Siemens D5000 with a θ/θ goniometer and Co Kα 

radiation, chosen with a diffracted beam monochromator. Diffraction patterns were obtained 

by step scanning from 2 to 75° 2θ, with a step size of 0.02°. 

Additionally, in order to aid identification of the clay minerals present in the samples, the < 2 

µm size fractions were also prepared as oriented mounts using the filter peel method (Drever, 

1973) and scanned in the air-dried state, after ethylene glycol solvation by vapor pressure 

overnight followed by heating at 300 ºC for 1 h. These scans were recorded from 2 to 45º 2θ 

in 0.02º steps. 



 

Qualitative analysis was the first step used to identify the phases present in the samples and 

was accomplished using reference patterns from the International Center for Diffraction Data 

(ICDD) powder diffraction (1998) file and Bruker Diffract Plus EVA™ software, together 

with consideration of data from the < 2 µm clay fraction analysis. 

Quantitative analysis was made only on the bulk spray-dried samples using two different 

approaches. At first, the Rietveld method of quantitative analysis was applied to the 

diffraction data using the commercially available software package Siroquant V3 (Taylor, 

1991). Essentially, the Rietveld method involves fitting the observed diffraction pattern with a 

synthetic pattern which is a sum of patterns calculated for each phase in the sample from 

which the relative abundances are obtained. 

A further quantitative analyses was carried out using full-pattern fitting in order to better 

evaluate the content of clay minerals. Standard reference patterns were prepared by spray-

drying mineral phases as pure samples and as samples spiked with 50 wt.% corundum as an 

intensity reference. Where necessary, detectable impurities were subtracted electronically 

from the reference patterns and allowance was made for their concentration in the spiked 

standards when calculating full-pattern RIRs. The fullpattern fitting was done using an 

EXCEL™ spreadsheet and the SOLVER™ add-in to minimize an objective function 

dependent on the difference between the observed diffraction pattern and a pattern composed 

of a sum of single-phase reference patterns (Omotoso et al., 2006). 

The spreadsheet-based method is essentially a variant of those implemented in FULLPAT 

(Chipera and Bish, 2002) and ROCKJOCK (Eberl, 2003) spreadsheets. In the first cycle of 

the fitting process, the proportions of the reference patterns were allowed to vary; in the 

second cycle, all patterns, including the unknown, were allowed to shift independently by a 

fraction of a step (±0.02º) along 2θ; in the third and final cycle the proportions were again 

allowed to vary. Shifts along 2θ were accommodated by a cubic spline function, as suggested 

for differential XRD by Schulze (1986). Several fitting runs were made for each sample. 

Reference minerals were obtained from the Macaulay Institute mineral collection and from 

private mineral collectors. Trace phases which had not been recognized initially were added 

and/or different reference patterns of the same phase were tried in attempts to improve the fit. 

For some phases, several reference patterns of the same phase were used simultaneously to 

aid in accounting for differences between the phases present in the samples and the standards. 

 

 

 



 

4.2.3 X-Ray fluorescence spectrometry 

In this study the determination of total metal content was carried out on the selected samples 

listed in Table 4.1 by X-ray fluorescence spectroscopy (XRF) in order to compare these 

concentrations to those obtained from the mineralogical analysis by fullpattern fitting method. 

X-Ray fluorescence spectrometry was carried out under contract at GAU-Radioanalytical 

Laboratories, Southampton University, UK. Analysis was carried out using a Philips Magix-

PRO XRFS, end-window 4kW rhodium target tube and SuperQ4 software. Calibration of the 

instrument was carried out using the Trail Lachance matrix correction. The flux used was 

ICPH Fluore-X 65 containing 66% lithium tetraborate and 34% lithium metaborate. Samples 

were prepared as pressed powder pellets by mixing the flux and the dried sample at a ratio of 

10:1, with the addition of two drops of potassium iodide. The mixture was fused at 1150 °C 

for 10 min and cast into a Pt-5Au tray. Loss-on-ignition was carried out separately on a 

duplicate sample. 

 

 

4.3 Results and discussion 

 

4.3.1 Chemical speciation 

The Pb and Zn fractions operationally defined by the sequential extraction are here in referred 

to as ‘labile pool’, ‘HOAc-extractable’, ‘reducible’, ‘oxidizable’ and ‘residual’, respectively. 

The distribution of Pb and Zn in the tailings and selected soil and mine waste samples within 

the operationally defined fractions is reported in Tables 4.3a and 4.3b. The relative amounts 

of Pb and Zn expressed as a per cent of the cumulative total extracted are given in Fig. 4.1. 

For Pb a satisfactory agreement (r = 0.991665; p < 0.001) was found between the gross total 

obtained by a single determination (in Table 4.4b) and the cumulative total as extracted by the 

sequential extraction scheme (Table 4.3a). Thus the Pb cumulative total fell within -12% and 

+9% of the gross total in the majority of the samples, sometimes deviating by 26-55% and in 

SS sample by 361% (Fig. 4.2a). 

For Zn the deviation between the cumulative and gross total amounts was larger than Pb. The 

Zn cumulative total fell within -35% and +21% of the gross total in the majority of the 

samples, deviating up to 578% in the others (Fig. 4.2b). 

Samples inhomogeneity and differences in analytical methodologies can be taken into account 

to explain the deviations which were found. Soil samples contaminated by mining/industrial 

activities are known to be characterised by metal contaminants not uniformly distributed in all 



 

soil volume, but strongly associated with specific soil solid phases (Davidson et al., 1998; 

1999). Thus inhomogeneity can produce large deviations in the measured total values. 

Moreover, in this study total analysis was a single determination carried out by XRF, while 

chemical fractionation and therefore cumulative total determination was performed by acid 

digestion followed by ICP-MS. Finally, total and sequential extraction analyses are performed 

on different aliquots of the same sample, which are therefore not identical in chemical 

composition. In the majority of the studied soils and mine wastes, Pb was mostly concentrated 

in the HOAc-extractable and reducible fractions, although it was also present in other 

fractions (Table 4.3a). In the highly contaminated materials (tailings: ZT, MT, AT; soil: MP3; 

mine waste: MC1) from 53 to 82% of total Pb was associated with the HOAc-extractable 

fraction. In the case of ZP1, MP1 and MP2 soils, the reducible followed by the HOAc-

extractable fraction contained most of the Pb (from 58 to 70%). In SS soil, the greatest 

percentage of Pb (66%) was present in the reducible fraction. In MP1 soil, the residual 

fraction (36%) also contained a significant portion of total Pb. The contribution of the labile 

fraction to total Pb was relatively low in all studied materials (from 0.00% in ZP1, MP1 and 

SS to 6.4% in ZT). Nevertheless, in some cases the concentration of the labile (soluble and 

exchangeable) forms are not negligible (ZT: 230 mg kg-1; MP3 72-92 cm: 173 mg kg-1; MC1: 

218 mg kg-1). Like Pb, most of the Zn in the studied soils and mine wastes was present in the 

HOAc-extractable (1-81%) and reducible (5-81%) fractions. The HOAc-extractable fraction 

tends to prevail in the most contaminated materials, which in the case of Zn are all from the 

Mibladen area. In the case of MP1 soil, containing the lowest total content of  Zn (42 mg kg-

1), the greatest percentage of Zn (64%) was present in the residual fraction. In the less 

contaminated SS and ZP1, the reducible was the most important fraction (respectively, 51% 

and 81%), followed in SS by the organic one (40%). Only in MP2, the most Zn contaminated 

soil, the concentration of the labile forms of Zn were considerably high (489 mg kg-1). 

The sequential extraction used in this study is useful to indirectly assess the potential mobility 

and bioavailability of metal contaminants in soils and mine wastes. Assuming that 

bioavailability is related to increasing extractants strength and decreasing phases solubility, 

then metal bioavailability decreases in the order: labile > HOAc-extractable > reducible > 

oxudizable > residual fraction. Based on the results, the amount of Pb and Zn present in the 

residual fraction was low in all studied materials, with the exception of SS soil. On the 

contrary, a large percentage of the total Pb and Zn was in the no residual fractions, mainly 

associated with carbonate and Fe-Mn reducible oxides, with low contributions by organic and 

exchangeable forms. 



 

Table 4.3a. Content (mg kg-1) of lead in the sequentially extracted fractions and cumulative totals 
in the selected studied soil and mine waste samples 

Sample code 
Depth 
(cm) 

Labile 
pool 

HOAc-
extractable 

Reducible Oxidizable Residual 
Cumulative 

total 

Mine Z (Zeïda)               
ZP1 0-6 0 28 128 77 37 270 
ZT 0-20 230 2149 1110 20 85 3594 
Mine M (Mibladen)           
MP1 0-15 0 16 22 2 21 61 
MP2 0-23 68 3936 5558 1743 2324 13629 
MP3 0-35 52 5826 1185 452 669 8184 
 35-45 44 11740 1300 1025 155 14264 
 72-92 173 13503 1721 1521 287 17205 
MT 0-20 61 8240 1007 808 329 10445 
MC1 0-20 218 2618 715 506 71 4128 
SS 0-10 0 2 172 49 39 262 
Mine A (Aouli)         
AT 0-20 11 1772 1228 178 161 3350 

 

 

 

 
Table 4.3b. Content (mg kg-1) of zinc in the sequentially extracted fractions and cumulative totals 
in the selected studied soil and mine waste samples 

Sample code 
Depth 
(cm) 

Labile 
pool 

HOAc-
extractable 

Reducible Oxidizable Residual 
Cumulative 

total 

Mine Z (Zeïda)               
ZP1 0-6 1 3 243 53 0 300 
ZT 0-20 3 94 327 20 39 483 
Mine M (Mibladen)           
MP1 0-15 0 4 11 0 27 42 
MP2 0-23 489 44477 80972 48474 14932 189344 
MP3 0-35 63 1152 518 520 223 2476 
 35-45 4 673 69 145 88 979 
 72-92 3 409 56 88 0 556 
MT 0-20 30 310 90 70 52 552 
MC1 0-20 34 1772 108 264 0 2178 
SS 0-10 0 2 120 93 18 233 
Mine A (Aouli)         
AT 0-20 3 157 126 31 58 375 

 
 

 

 

 

 

 

 



 

 
 
 
Table 4.4a. Oxides content of selected samples by XRF analysis 

Depth SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO K2O Na2O P2O5 Sample 
code (cm) wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % 

Zeïda            
ZP1 0-6 48.9 0.6 9.2 4.6 0.9 3.3 16.3 3.1 0.2 0.14 

 6-36 47.4 0.61 8.8 4.8 0.6 3.6 18.3 3.1 0.2 0.13 
 36-52 45.8 0.65 10.1 5.0 0.5 4.2 17.9 3.4 0.2 0.1 

ZT 0-20 72.8 0.15 10.1 0.7 0.0 0.6 1.9 5.9 0.8 0.04 
Mibladen            

MP1 0-15 46.2 0.4 5.2 2.4 0.1 5.9 20.3 1.6 0.1 0.12 
 15-45 49.3 0.5 7.0 3.0 0.1 6.1 17.1 2.0 0.1 0.13 
 45-75 54.0 0.44 6.7 2.8 0.1 6.5 14.6 1.9 0.1 0.12 

MP2 0-23 14.5 0.22 3.6 4.3 0.1 6.1 21.7 0.6 4.0 0.08 
 23-50 19.2 0.3 4.7 4.1 0.2 11.0 23.0 0.8 2.6 0.08 
 50-90 42.3 0.79 13.5 5.8 0.1 6.5 18.8 2.4 0.2 0.08 

MP3 0-35 24.6 0.29 3.6 2.0 0.2 12.4 21.6 0.8 0.2 0.05 
 35-45 21.5 0.36 5.2 2.4 0.3 13.6 22.5 0.8 0.2 0.04 
 45-72 11.1 0.24 2.3 1.4 0.3 15.0 26.1 0.3 0.2 0.03 
 72-92 35.0 0.55 9.4 3.5 0.3 11.7 19.4 1.6 0.3 0.06 
 92-150 18.8 0.29 3.0 1.7 0.2 14.8 26.0 0.5 0.3 0.04 

MT 0-20 16.4 0.25 3.0 1.5 0.2 14.3 23.1 0.6 0.2 0.03 
MC1 0-20 22.3 0.36 5.1 2.4 0.4 17.0 28.4 0.9 0.1 0.04 
SS 0-10 39.8 2.06 11.6 9.1 0.3 3.0 19.6 5.4 0.7 0.54 

Aouli            
AT 0-20 30.8 0.49 6.1 3.2 0.2 8.4 22.8 1.6 0.4 0.07 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table 4.4b. PTMs total content of selected samples by XRF analysis 

Depth Pb Zn Ni V Cr As Cu Ba Co Rb Sr Y Zr Nb U S Cl Sample 
code (cm) mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 mg kg-1 % % 

Zeïda                   
ZP1 0-6 174 124 690 101 276 34 44 1816 26 108 279 24 318 12 4 0.08 0.01 

 6-36 168 125 771 82 392 33 44 1165 18 125 432 24 277 12 4 0.07 0.13 

 36-52 156 102 592 89 272 28 52 1081 19 166 585 30 252 13 7 0.05 0.01 

ZT 0-20 3484 664 2539 48 559 101 56 27532 1 229 1242 23 92 7 8 0.70 0.00 

Mibladen                   
MP1 0-15 62 51 976 35 362 7 10 1461 10 35 279 15 212 8 2 1.34 0.02 

 15-45 60 64 962 47 353 7 12 911 10 46 279 18 245 10 3 0.98 0.02 

 45-75 41 56 992 38 359 6 10 655 7 45 226 17 221 8 2 0.74 0.02 

MP2 0-23 12673 64291 1200 113 190 717 1200 5773 10 32 286 7 80 4 1 0.15 0.03 

 23-50 11193 48728 630 153 169 540 818 21274 15 37 743 9 89 5 2 0.46 0.04 

 50-90 355 2443 126 140 157 19 24 1910 2 72 217 19 171 12 3 0.07 0.02 

MP3 0-35 6476 3796 637 421 254 213 379 134561 11 33 3461 8 41 3 2 2.84 0.03 

 35-45 13037 287 223 424 155 405 139 138005 14 40 3490 7 48 4 2 2.69 0.03 

 45-72 3127 281 204 527 141 122 102 192008 12 13 4457 2 17 3 0 3.83 0.02 

 72-92 17253 167 278 257 175 457 134 53619 11 72 1523 13 111 8 3 1.21 0.04 

 92-150 5659 148 426 368 196 184 86 127231 10 20 2979 7 79 5 1 2.69 0.05 

MT 0-20 6230 1224 248 495 148 217 135 178875 15 27 4580 4 23 3 0 3.62 0.02 

MC 0-20 7652 559 173 208 126 215 88 54762 15 37 1374 10 80 5 1 1.22 0.01 

SS 0-10 57 193 607 485 457 20 35 2747 29 109 1194 38 523 153 7 0.08 0.01 

Aouli                   
AT 0-20 2593 539 678 233 272 84 70 71220 11 51 2012 12 143 10 3 1.72 0.01 

 
 

 

 

 



 

 
 

 
Figure 4.1. Percentage contribution of lead (a) and zinc (b) in the sequentially 
extracted fractions. 
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Figure 4.2. Relation between the gross total obtained by a single determination and the 
cumulative total as extracted by the sequential extraction scheme for Pb (a) and Zn (b). 
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4.3.2 Mineralogical analysis 

The quantitative mineralogical analysis data reported in this Chapter refer only to results 

obtained by the fullpattern fitting method as they are more accurate in calculating the content 

of clay minerals in agreement with the qualitative analysis undertaken on the < 2 µm size 

fractions. 

The main mineralogical phases detected in all samples from the High Moulouya mining 

district consisted of the carbonates, dolomite and calcite, along with quartz; the samples from 

the processing area of Mibladen were also rich in barite (Fig. 4.3). 

In total, 27 crystalline mineral phases were positively identified in samples from the three 

mining sites investigated. Mineralogical group and name for these phases were: carbonates, 

calcite, cerussite, dolomite, hydrozincite, smithsonite; oxides, goethite [FeO(OH)], hematite 

[Fe2O3], magnetite [Fe3O4], quartz; sulphates, anglesite, barite, gypsum [Ca(SO4)2H2O]; 

sulphides, galena, sphalerite; fluorides, fluorite; K-feldspars, microcline [KAlSi3O8], 

orthoclase [KAlSi3O8], sanidine [(K,Na)(Si,Al)4O8]; plagioclases, albite [NaAlSi3O8], 

labradorite [(Ca,Na)(Si,Al)4O8]; pyroxene, augite [(Ca,Mg,Fe2+,Fe3+,Ti,Al)2(Si,Al)2O6]; 

silicates, hemimorphite, willemite; clay minerals, chlorite [(Fe,Mg,Al)6(Si,Al4)O10(OH)8], 

illite [(K,H 3O)(Al,Mg,Fe)2(Si,Al)4O10(OH)2(H2O)], kaolinite [Al2Si2O5(OH)4], 

montmorillonite [(Na,Ca)0,3(Al,Mg)2Si4O10(OH)2·n(H2O)]. 

The soil profile from the Zeïda exploitation site (ZP1) was especially rich in calcite (average: 

24%), quartz (38%) and clay minerals (23%). In the tailings ZT, the content of quartz was still 

very high (50%), but carbonates and clay minerals were almost absent and replaced by K-

feldspars (30%). 

The soil from Mibladen exploitation site (MP1) was characterized by a high content of quartz 

(average: 56%), dolomite (16%) and calcite (11%). Different was the proportion of the main 

mineralogical groups in the soil samples from the Mibladen processing area (MP2 and MP3), 

where the main mineral phases consisted of dolomite (average: 39%), quartz (16%) and barite 

(15%); also the Mibladen mine wastes (MC and MT) were prevalently made of dolomite 

(44%) and barite (22%). The composite surface soil sample taken outside the Mibladen area 

consisted mainly of K-feldspars (24%), calcite (24%) and diverse clay minerals (17%). 

The main mineralogical phases in the tailings of Aouli were quartz (24%), dolomite (24%), 

clay minerals (15%) and calcite (15%). 

Based on the detailed characterisation of the phases present in the samples, eight of all 

detected minerals have been shown to contain Pb and Zn in their structures: cerussite, 

anglesite, galena, hydrozincite, smithsonite, sphalerite, willemite and hemimorphite. 



 

Cerussite has been found in the waste materials of all mines (ZT: 0.6%, MC: 0.4%, MT: 

1.2%, AT: 0.3%) as well as in the soil profiles from the Mibladen processing area (average 

MP2: 0.9% and MP3: 1.0%); in this area little amounts of anglesite (MP2 50-90cm: 0.4%) 

and galena (MP3 35-45 cm: 0.4%; MP3 72-92 cm: 0.3%; MT: 0.1%) were also found. 

Zinc minerals were detected only in soil and waste samples from the Mibladen processing 

area; in particular, in the first two horizons of MP2 soil (MP2 0-23 cm: willemite 8.2%, 

smithsonite 8.9%, hemimorphite 17.2%, hydrozincite 5.9%; MP2 23-50 cm: willemite 5.0%, 

smithsonite 9.1%, hemimorphite 9.3%, hydrozincite 5.4%) and in the tailings (MT: sphalerite 

0.4%). The presence of willemite is rather peculiar, because this mineral is either derived 

from high temperature ore deposits (certainly not those of the High Moulouya district), or it is 

one of the products of Zn-ore smelting. 

Concerning the vertical distribution of the mineral phases containing Pb and Zn, their content 

was found only in the soils from the processing area of Mibladen (MP2 and MP3). 

Along the soil profile MP2 (Fig. 4.5), the percentage of mineral phases containing Pb and Zn 

showed a decreasing trend with depth as well as the content of Pb and Zn (see Fig. 2.9). 

Also along the soil profile MP3 (Fig. 4.6), where Zn-rich minerals were not found, the content 

of Pb and the amount of Pb minerals showed the same behaviour with high and low values 

alternating down along the profile. 

 

4.3.3 Comparison between chemical and mineralogical data 

Using typical compositions for Pb and Zn in the mineral phases and the concentrations of 

each phase in the investigated samples, based on the fullpattern fitting XRPD analysis, it is a 

simple matter to calculate the concentrations of Pb and Zn present in the most contaminated 

samples for comparison with directly determined geochemical data as a validation of the 

quantitative mineralogical analysis. In figure 4.7, the results of these calculations are shown; 

clearly, the total concentrations obtained from the mineralogical analysis are comparable to 

those obtained by XRF. As an additional control to achieve better evaluation of chemical and 

mineralogical data, calculations were performed also for barium, an element that was also 

highly concentrated in the studied samples, especially in those from Mibladen processing 

area. However, Ba (in form of barite-BaSO4) is considered almost immobile in the local 

weathering conditions, not causing any additional pollution. 

The results obtained for Pb and Ba is encouraging since they give some confidence that the 

fullpattern fitting XRPD analysis has provided accurate quantitative mineralogical results. 



 

Indeed, the total contents of Pb and Ba calculated through mineralogical data were very 

similar to those measured by XRF (for Pb, r = 0.9458; slope value = 0.911; y-intercept = 930 

mg kg-1; for Ba, r = 0.9773; slope value = 0.9488; y-intercept = 2204 mg kg-1). For Zn, whose 

mineral occurrence was restricted to the Mibladen processing area, there was a consistent 

difference between the content calculated by the mineralogical identification and that 

measured by XRF. Mineralogical computation appears to overestimate Zn total content or 

XRF has underestimated it. This incongruence could also be explained taking into account the 

inhomogeneity of the samples which in the case of Zn is likely more pronounced than for Pb. 

The occurrence of Zn bearing mineral phases in the studied materials is limited to soils and 

wastes taken in the Mibladen processing area and is referable to the irregular discharge in this 

area of Zn-rich extraction residues. The irregular distribution of these Zn-rich materials in 

soils and waste dumps may have produced sample inhomogeneity. Moreover XRF and XRPD 

analyses were carried out on different aliquots of samples, which are not necessarily similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 4.3. Mineralogical composition of studied soil and mine waste samples. 
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Figure 4.5. The vertical distribution of Pb and Zn mineral phases in the soil 

sample MP2. 
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Figure 4.6. The vertical distribution of Pb mineral phases in the soil sample MP3. 
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Figure 4.7. Comparison XRF-fullpattern: Ba, Pb and Zn concentrations in most contaminated 
samples. 



 

4.4 Conclusions 

 

The complexity of metal contaminated sites has and continues to be simplified to a measure 

of the total metal content. While total metal content is a critical measure in assessing risk of a 

contaminated site, total metal content alone does not provide predictive insights on the 

bioavailability and fate of the metal contaminants (D’Amore et al., 2005). Their mobility and 

the corresponding toxicity in the soil depends on their chemical concentration in the soil 

solution, the nature of their association with other soluble ionic species (chemical speciation), 

the soil’s ability to release the elements from the solid phase (chemical speciation of soil 

solids) and the identification of crystalline forms present in the soil (mineralogical speciation) 

(Krishnamurti and Naidu, 2003). 

Selected wastes and soils from the Upper Moulouya mining district were analyzed by 

sequential chemical extractions and XRPD fullpattern fitting method in order to assess the 

chemical and mineralogical forms of the main metal contaminants. 

Based on the chemical speciation results, in the majority of the studied soils and mine wastes, 

Pb and Zn were mostly concentrated in the HOAc-extractable and reducible fractions. 

In particular, the major association of Pb and Zn with the HOAc-extractable fraction in the 

highly contaminated soils and wastes is in agreement with the occurrence in these materials of 

Pb and Zn carbonates (see mineralogical results); when the content of these mineral phases 

drops down in the less or not contaminated soils and wastes, Pb and Zn become prevalently 

bound to Fe and Mn reducible oxides. 

Mineralogical quantitative analysis of the investigated samples from the High Moulouya 

valley indicated that cerussite was the most important Pb-host in all mining and processing 

sites. The main Zn sources found only in Mibladen processing site were hemimorphite and 

smithsonite. 

In relation to the minerals solubility, the mobility of Pb and Zn within the studied 

environment is limited: most likely the metals are displaced through physical transport of fine 

particles. 

The low amount of heavy metals occurring in soluble forms in the soils inside and outside the 

mining areas as well as in the river water and sediments points to a negligible transfer of 

contaminants to the nearby environment. The low solubility of heavy metal main mineral 

phases and the presence of a high proportion of carbonates largely affect the transfer of the 

metals reducing their mobility from mine waste by dissolution; in the whole area the transfer 

can possibly occur only by wind and water erosion of the finest fractions. 



 

CHAPTER 5 

 

OVERALL CONCLUSIONS 

 

Soil has long been regarded as a repository for society’s wastes. Gradually mobilized by 

biogeochemical processes, soil contaminants can pollute water supplies and impact food 

chains. Heavy metals such as Cd, Cu, Pb and Zn are all potential soil pollutants. Their 

distribution among specific forms varies widely based on the metals chemical properties, on 

the forms in which metal reaches the soil and on soil characteristics. 

It is therefore necessary to have guidelines for PTMs in soils which consider not only their 

total contents but also mobility, availability and toxicity of contaminants, in order to predict 

adverse effects and define appropriate strategies of remediation. 

The Moulouya River is the largest river in Morocco; it rises in the Atlas Mountains and flows 

into the Mediterranean Sea. The upper zone of its basin is also known as the Upper Moulouya 

lead mining district because of the occurrence of three mining areas (Zeïda, Mibladen and 

Aouli) where mainly galena and less frequently barite and cerussite have been mined. 

Since 1985 all three mines were closed: the abandoned mining and metallurgic equipment left 

on the surface together with all the accompanying waste materials, including tailings, have 

seriously modified the natural landscape of the High Moulouya valley and created an 

important source of contamination. The studied area is characterized by severe erosion 

problems caused by wind and water runoff in which soil and mine spoil texture, landscape 

topography and regional and microclimate play an important role: PTMs contained in the 

residues from mining operations can be dispersed by wind and/or water after their disposal. 

On the basis of this investigation, the main contaminants of wastes, soils, sediments and 

waters collected in the High Moulouya valley are Pb and Zn often associated with V, Co, Cu, 

Cd, Sn, As and Sb. Zinc was not extracted in the studied area so the high levels of this 

element indicate that Zn-containing ores from other Moroccan mines were accumulated and 

processed in the High Moulouya district plants. 

The risk associated to metal contamination is appreciable from the standpoint of potential 

mobility and bioavailability of Zn and Pb found in very high values in all wastes and in the 

materials sampled in the processing areas. In studied soils and wastes, availability of metal 

contaminants to plants and microbiota is affected by both alkaline pH and carbonate. The 

latter can be considered as source and sink of the metals, according with the presence of 

metal-bearing crystalline carbonate phases (cerussite, hydrozincite, smithsonite) in the 



 

processed ores as well as with the well known high absorption capacity or even precipitation 

of metals by carbonates in calcareous soils. 

The low mobility and bioavailability of Zn and Pb elements in the soils inside and outside the 

mining areas as well as in the river sediments is in agreement with the low content of both 

metal contaminants observed in surface water and groundwater samples. Contamination is 

restricted to the mining sites (tailings > coarse waste rocks > soils), while the samples 

collected outside do not show any evidence of contamination. 

In the studied soils and wastes from the Upper Moulouya mining district, the low solubility of 

Zn and Pb mineral phases (anglesite, cerussite, galena; hemimorphite, hydrozincite, 

smithsonite, sphalerite, willemite) and the presence of a high proportion of carbonates (due to 

the limestone environment) largely affect the transfer of the metals, reducing their mobility by 

dissolution. The transfer might occur only by wind and water erosion of fine particles. 

Zn and Pb are mostly found in the fine earth fraction which is more contaminated than the 

skeleton. In the majority of the samples, especially in the tailings, the clay fraction is enriched 

in metal contaminants, but its contribution to the total concentrations of metal contaminants in 

the fine earth is often negligible. 

Only a multidisciplinary investigation in which methods provide complementary and 

converging data can lead to a comprehensive understanding of the history of industrial soil 

contaminations and to the identification of the forms and mobilities of metallic contaminants. 

The need to reclaim abandoned mines to a high standard, particularly to meet pollution 

problems, is therefore even more critical now than in the past. 

A range of reclamation techniques is available for metalliferous substrates but only through 

the use of vegetation to stabilize mine wastes can complete long-term rehabilitation be 

achieved. Successful revegetation can be a permanent and visually attractive solution and, at 

the same time, be relatively inexpensive. A vegetation cover can be effective in providing the 

necessary surface stability to prevent wind-blow of contaminated particulates, and in reducing 

water pollution by interception of a substantial proportion of incident precipitation. 

Although revegetation is desirable, metalliferous wastes are very unfavorable environments 

for plants because the presence of many growth-limiting factors – particularly residual high 

levels of heavy metals, macronutrient deficiencies and poor substrate structure. Such features 

result in most metal wastes being largely devoid of any natural vegetation, even many years 

after abandonment. Consequently, experimentation has been undertaken at mine sites to 

attempt to elucidate and overcome limitations to vegetation establishment, allowing large-

scale revegetation schemes to be formulated. Although such schemes have often been 



 

successful at specific sites, their widespread application is limited owing to the great variation 

in physical, chemical and biological factors which exist between mine wastes (Tordoff, 2000). 

An alternative method for a restoration of abandoned mining sites is to consider them as 

historic heritage and, in this way, to protect them with different legal dispositions. Mining 

activities can be considered a special type of industrial site in that they encompass not only 

architectural but also landscape elements related to geology or topography. Nevertheless, 

these new economic potentials must be compatible with the obligation to maintain a low 

environmental risk in sites where the heavy metal concentrations are very high. A critical 

study based on cultural and environmental risks and economic values is needed in order to 

obtain a compromise between heritage conservation and the creation of new economic 

sources, without forgetting the role of the historic heritage in mining towns in keeping the 

local idiosyncrasy. 
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