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Introduction
 

A key question in  developmental biology is how cells perceive and respond properly to 

their enviroment. Cells must not only sense and distinguish between stimuli, but also 

transduce the signal accurately, to activate the appropiate responses. Signal transduction 

is the process by which extracellular signals are detected and converted into 

intracellular signals, which, in turn, generate specific cellular responses. Signal 

transduction systems are typically arranged as networks of sequential protein kinases. In 

such signalling cascades, MAP kinases (mitogen-activated protein kinases) carry out a 

crucial role.  

MAP kinases are a super-family of serine-threonine protein kinases expressed in 

all eukaryotic cells. The basic assembly of MAP kinase pathways is a three-component 

module conserved from yeast to humans. This module includes three kinases that 

estabilish a sequential activation pathway comprising a MAP kinase kinase kinase 

(MKKK), a MAP kinase kinase (MKK), and MAP kinase (MK) (Widman et al., 1999) 

(Fig.1).  

 

Receptor tyrosine kinases. 

The MAP kinase transduction system is particularly important in growth factors 

signalling. Growth factors control cell growth, proliferation, differentiation, survival 

and migration by activating receptor tyrosine kinase (RTK) family members (Blume-

Jensen and Hunter, 2001). Signalling by RTKs requires ligand-induced receptor 

oligomerization, but evidences indicate that RTKs oligomerization per se is not always 

sufficient for kinase activation. There seems to be an additional requirement for ligand-

induced conformational switches, ensuring that the catalytic domains are juxtaposed in 

a proper configuration to enable phosphorylation (Schlessinger, 2000; Jiang and Hunter, 

1999). Anyway, upon ligand binding, cytoplasmic tyrosine residues of RTKs becomes 

autophosphorylated and thus provide docking sites for a variety of phosphotyrosine-

binding proteins. The specific recruitment of these proteins, which harbour various, 

catalytic and scaffolding domains, determines the signalling output (Blume-Jensen and 

Hunter, 2001).  
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Many RTKs, among which epidermial growth factor (EGFR) (Liebman, 2001), 

platelet-derived growth factor (PDGF) (Satoh et al., 1993; Nanberg and Westmark, 

1993) and RET (Chiariello e al., 1998) stimulate, through the small GTP-binding Ras, 

different MAP kinase pathways.  

 

 

 

MAP Kinases. 

Pathways involving MAP kinases are activated in response to an extraordinary 

diverse array of stimuli. These stimuli vary from growth factors and cytokines to 

irradiation, osmolarity, and shear stress of fluid flowing over a cell. These stimuli 

induce a specific dual phosphorylation on a conserved motif, Thr-Xaa-Tyr, present in 

all MAP kinases (Fig.1). The best characterized substrates for MAP kinases are 

transcription factors. However, MAP kinases have the ability to phosphorylate many 

other proteins including other kinases, phospholipases, and cytoskeleton-associated 

proteins. 

In mammals, there are many MAP kinases with different biological functions, 

grouped  in distinctly regulated groups, of which the best known are ERK1/2 

(extracellular signal related kinase, ERK), JNKs (jun amino terminal kinase, JNK) and 

p38, which are involved in many cellular events such as proliferation, differentiation, 

apoptosis and stress (Chang and Karin, 2001) (Fig.2). All MAP kinases recognize 

similiar phosphoacceptor sites composed of serine or threonine followed by a proline, 

and the amino acids that surround these sites further increase the specifity of 

recognition by the catalitic pocket of the enzyme. Full specificity is ensured through the 

interaction mediated by another site on the kinase that recognizes a distinct site on the 

substrate (docking site). Moerover, spatial localization of signalling molecules further 

auguments specificity in signal transduction (Roux and Bleins, 2004). Finally, cross-

talk by scaffolding proteins regulate MAP kinase signaling beyond simple tethering 

(Chang and Karin, 2001; Qi and Elion, 2005). 

 

 

ERK 1/2. 

The MAP kinases can be activated by a wide variety of different stimuli, but in 

general, ERK1 and ERK2 are preferentially activated in response to growth factors and 
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phorbol esters. The mammalian ERK1/2 module, also known as the classical mitogen 

kinase cascade, consists of the MAPKKKs A-Raf, B-Raf, and Raf-1, the MAPKKs 

MEK1 and MEK2, and the MAPKs ERK1 and ERK2. ERK1 and ERK2 have 83% 

amino acid identity and are expressed to various extents in all tissues (Chen et al., 

2001). Tipically, cell surface receptors such as tyrosine kinases (RTK) and G protein-

coupled receptors transmit activating signals to the Raf/MEK/ERK cascade through 

different isoforms of the small GTP-binding protein Ras. Activated Raf binds to and 

phosphorylates the dual specificity kinases MEK1 and MEK2, which in turn 

phosphorylate ERK1 and ERK2 within a conserved Thr-Glu-Tyr (TEY) motif in their 

activation loop. (Hallberg et al., 1994). ERK1/2 are distribuited throughout quiescent 

cells, but upon stimulation, a significant population of ERK1/2 accumulates in the 

nucleus (Chen et al., 1992). While the mechanisms involved in nuclear accumulation of 

ERK1/2 remain elusive, nuclear retention, dimerization, phosphorylation, and release 

from cytoplasmic anchors have been shown  to play a role (Pouyssegur et al., 2002). 

Activated ERK1 and ERK2 phosphorylate numerous substrates in all cellular 

compartments including various membrane proteins, such as the tyrosine kinase Syk, 

nuclear substrates, such as MEF2, c-Fos, c-Myc and STAT3, and cytoskeletal proteins, 

such as paxillin (Chen et al., 2001). ERK1/2 signaling has been implicated as a key 

regulator of cell growth and differentiation, as a consequence of their effects on cellular 

proliferation, inhibitors of the ERK pathway are entering clinical trials as potential 

anticancer agents (Kohno and Pouyssegur, 2003). Only the knockout of ERK1 has been 

described. Erk1
-/- 

mice are viable and appear normal and with a modest defect in T-cell 

devolopment. It is likely that most ERK1 functions are equally served by ERK2 (Pages 

et al., 1999). A similar but more marked defect is present in transgenic mice expressing 

a dominant-negative MAPK kinase MEK1 in thymocytes. Indeed Mek1
-/-

 mice die in 

utero, exhibiting defective placental vascularization (Giroux et al., 1999). 

 

JNKs 

The Jun kinases (JNK) were originally identified by their ability to 

phosphorylate c-Jun in response to UV-irradiation (Hibi et al., 1993). Three loci Jnk 

heve been identified. The respective proteins JNK1, JNK2 and JNK3, exist in 10 

different spliced forms and are ubiquitously expressed, although JNK3 is present 

primarily in the brain. The JNKs are strongly activated in response to cytokines, UV 

irradiation, growth factor deprivation, DNA-damaging agents and, to a lesser extent, 
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some G protein-coupled receptors, serum, and growth factors (Kyriakis and Avruch, 

2001). 

Like ERK1/2, JNK activation requires dual phosphorylation on tyrosine and 

threonine residues within a conserved Thr-Pro-Tyr (TPY) motif. The MAPK kinases 

that catalyze this reaction are known as MEK4 and MEK7, and are themselves 

phosphorylated and activated by several MAPKK kinases, including MEKK1-4, MLK2 

and MLK3 (Kyriakis and Avruch, 2001). 

As for ERKs, JNKs may relocalize from the cytoplasm to the nucleus following 

stimulation (Mizukami et al., 1997). A well-known substrate for JNKs is the 

transcription factor c-Jun. Phosphorylationof c-Jun on Ser63 and Ser73 by JNK leads to 

increased c-Jun-dependent transcription (Weston and Davis, 2002). Several other 

transcription factors have been shown to be phosphorylated by the JNKs, such as ATF2 

ans STAT3 (Kyriakis and Avruch, 2001). 

All three Jnk loci have been knocked out. None of the mutations results in 

lethality or obvoius defects. However, Jnk1
-/-

 Jnk2
-/-  

double mutants die at mid-

gestation (E11), exhibiting defective neural-tube closure (Sabapathy et al., 1999). Thus, 

JNK functions needed for development and viability are not isoform specific. 

Unespectedly, deletion of the MAPKK kinase MKK4 results in a more severe 

phenotype than the combined loss of JNK1/2: mid-gestetional lethality caused by 

abnormal liver development (Ganiatsas et al., 1998). The same phenotype is caused by 

complete loss of c-Jun (Su et al., 1994). 

 

 

p38s. 

p38 is the archetypal member of the third MAP kinase-related pathway in 

mammalian cells (Han et al., 1994). The p38 module consists of several MAPKK 

kinases, including MEK kinases 1 to 4 (MEKK1-4), MLK2 and MLK3, ASK1 and Cot,  

the MAPK kinases MEK3 and MEK6 (MEKK3 and MEKK6), and the four known p38 

isoforms, α, β, γ and δ (Kyriakis et al., 2001). In mammalian cells, the p38 isoforms are 

strongly activated by environmental stresses (oxidative stresses, UV irradiation, 

hypoxia, ischemia) and inflammatory cytokines  (interleukin-1, IL-1, tumor necrosis 

factor alpha, TNF-α) but not appreciably by mitogenic stimuli. Most stimuli that 

activate p38 also activate JNKs, but only p38 is inhibited by the anti-inflammatory drug 
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SB203580, which has been extremely useful in delineating the function of p38  (Lee et 

al., 1994; Chen et al., 2001). 

Activation of the p38 isoforms results from MEK3/6 catalyzed phosphorylation 

of a conserved Thr-Gly-Tyr (TGY) motif in their activation loop (Enslen et al., 2000).  

p38 was shown to be present in both the nucleus and cytoplasm of quiescent cells. Some 

evidences suggests that, following activation, p38 translocates from the cytoplasm to 

the nucleus (Raingeaud et al., 1995), but other data indicate that activated p38 is also 

present in the cytoplasm of stimulated cells (Ben-Levy et al., 1998).   

A large body of evidence indicates that p38 activity is critical for normal 

immune and inflammatory responses (Ono and Han, 2000), p38 is indeed activated in 

macrophages, neutrophilis, and T cells by numerous extracellular mediators of 

inflammation, including chemoattractans, cytokines, chemokines, and bacterial 

lipolysaccharide (Ono and Han, 2000). p38 partecipates in macrophage and neutrophil 

functional responses, including respiratoty burst activity, chemotaxis, granular 

exocicytosis, adherence, and apoptosis, and also mediates T-cell differentiation and 

apoptosis by regulating gamma-interferon production (Ono and Han, 2000). Moreover, 

using SB203580 and constitutively active forms of p38 and MEK3/6, it has been shown 

that p38 regulates the expression of many cytokines, transcription factors, and cell 

surface receptors (Ono and Han, 2000). While the exact mechanisms involved in p38 

immune functions are starting to emerge, activated p38 has been shown to 

phosphorylate several cellular targets, including cytosolic phospholipase A2, the 

microtubule-associated protein Tau, and the transcription factors ATF-1 and –2, 

MEF2A, NF-κB, Ets-1,  Elk-1 and p53 (Ono and Han, 2000). 

The only p38 isozyme whose in vivo function has been examined genetically is 

p38α. Inactivation of p38α results in embryonic lethality (Tamura et al., 2000). It is no 

clear whether the lack of compensation by other isoforms is indicative of distinct 

biochemical functions or a marked difference in expression patterns . 

 

Big “atypical” MAP kinases. 

The recently identified ERK5, ERK7 and ERK8 are significantly larger than the 

originally identified ERK1 and ERK2 due to an extended C-terminal domain. ERK5, 

also known as big mitogen-activated kinase 1 (BMK1) (Lee et al., 1995), is a 110 kDa 

protein, while ERK7 is 61 kDa protein and ERK8 is 60 kDa protein. All these MAP 
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kinases are activated by dual phosphorylation on Thr-Xaa-Tyr motif. Recent 

information indicates that the C-terminal regions of ERK5 and ERK7 have important 

regulatory functions. The C-terminal region of ERK5 appears to regulate negatively its 

kinase activity (Zhou et al., 1995) and contains a putative bipartite nuclear translocation 

signal for ERK5 that functions in vivo following activation (Yan et al., 2001). The C-

terminal region of ERK5 also contains a myocyte enancher-binding factor 2-interacting 

region and a potent transcriptional activation domain (Kasler et al., 2000). Disruption of 

the gene encoding ERK5 led to angiogenic defects and embryonic lethality in mice 

(Yan et al., 2003) 

ERK7 is activated by autophosphorylation, which is regulated through its  C-

terminal domain (Abe et al., 2001). Moreover,  the C-terminal region is required for the 

ability of ERK7 to localize to the nucleus and inhibit growth (Abe et al., 1999).  

ERK8 is the last identified member of the MAP kinase family (Abe et al., 2002). 

ERK8 represents the human orthologue of the rat ERK7 and is present in brain, kidney 

and lung. The overall amino acid identity of the human ERK8 and rat ERK7 sequences 

is 69%. Comparison of the kinase domains reveals a sequence identity of about 82%, 

whereas the amino acid sequence identity of the C-terminal regions is only 53% (Abe et 

al., 2002). By contrast, sequence identity between other ERK orthologues is 

significantly higher.  

The possible physiological roles of ERK8 remain the less studied. The failure of 

ERK8 to phosphorylate many of tested substrates, c-jun, c-myc, histone H1, Ets-1, Elk-

1 and paxillin has not elucitated its function. Its activation following stimulation by c-

Src or cell exposure to serum hints at a function in response to mitogenic factors (Abe et 

al., 2002). Obviously, many possibilities remain to be explored when describing the 

function of ERK8. 

The objective of the present work is to determine the relevant MAP kinase 

family members involved in the signals from tyrosine kinase receptors to the nucleus. In 

particular, we examined the role of  JNK  in c-myc expression induced by PDGF and 

the activation c-Abl mediates RET/PTC3-dependent of the novel ERK8 MAP kinase. 
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Materials and Methods 

  

Expression vectors. 

         pcDNAIII/GS-Myc-V5 was purchased from Invitrogen. Expression vectors for 

Rac12V and the corresponding effector domain mutants Rac12V/33N, Rac12V/37L, 

Rac12V/40H were kindly provided by C.J. Der (Westwick et al., 1997). The bacterial 

expression vector pGEX 4T3 GST-ATF2, and expression vectors for MEKK1 and 

MLK3 were described previously (Chiariello et al., 2000; Teramoto et al., 1996). 

PCDNAIII-Sis was generated by cloning the sis (PDGF BB) oncogene in the EcoRI and 

NotI restriction sites. The pmycAP1 luc reporter vector was obtained by cloning two 

mouse AP-1 elements in the pGL3 reporter vector (Promega). PCR amplifications of 

the c-Fos and c-Jun cDNAs were cloned in the pCEFL AU5 and pCEFL AU1 

expression vectors, respectively. The JunDBD-SID expression vector was prepared 

cloning in pCEFL HA the DNA binding domain of c-Jun and the Sin3-binding domain 

of Mad. The Gal4-driven luciferase reporter plasmid pGal4 Luc was constructed by 

inserting six copies of a Gal4 responsive element and a TATA oligonucleotide to 

replace the simian virus 40 minimal promoter in the pGL3 vector (Promega). The Gal4-

VP16 expression vector was prepared cloning the transactivation domain of the VP16 

transcription factor in frame with the DNA-binding domain of Gal4, into the pCDNA 

III vector.  

The expression vectors pCEFLP-SrcYF (constitutively active) and pCEFLP-

SrcYF KM (dominant negative) were obtained by sub-cloning the corresponding cDNA 

obtained from pSM-SrcYF and pSM-SrcYF KM, kindly provided by H. Varmus 

(Chiariello et al., 2001). The HA-tagged form of Erk8 was generated by cloning the 

corresponding cDNA, kindly provided by M. Abe (Abe et al., 2002), in the pCEFL-HA 

vector. The expression vector for the dominant negative Erk8 KR molecule was also 

provided by M. Abe (Abe et al., 2002). To generate the pCEFL-HA-Erk8� expression 

vector, we amplified by PCR the corresponding cDNA using an “expressed sequence 

tag” (est) obtained from ResGen (Clone ID 5742965). This sequence data has been 

submitted to the GenBank database under accession number AY994058. The pCDNA3-

Ptc3 expression plasmid has been previously described (Melillo et al., 2001). The 

Ptc3
Y981

, Ptc3
Y1015

, Ptc3
Y1062

, Ptc3 Kin
dead

 and Ptc3
V804

 expression plasmid were 

generated by the QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene), using 



 

 
10 

 

 

pCDNA3-PTC3 as a template. Expression vectors for c-Abl and its oncogenic form, 

Bcr/Abl p210 (Bcr/Abl), have been previously described (Lobo et al., 2005; Sanchez-

Prieto et al., 2002). The dominant negative c-Abl (Abl-KD) expression vector was 

obtained by mutating a critical lysine in the kinase domain of c-Abl, contained in the 

pCEFL-AU5 vector. The c-myc and c-jun promoter reporter plasmids, pMyc-Luc and 

pJun-Luc, respectively, and the pCDNAIII-�-galactosidase (�-gal) expression vector 

have been previously described (Chiariello et al., 2000; Chiariello et al., 2001). 

 

Reagents. 

Human recombinant PDGF-BB (Intergen, NY) was used at a final concentration 

of 12.5 ng ml
-1

.
 
The selective JNK inhibitor SP600125 (Biomol, PA) was added to the 

cells 30 min before stimulation, at the indicated concentrations. The PP1 inhibitor was 

purchased from Biomol. All other chemicals were purchased from Sigma. 

 

Cell culture and transfections. 

293T cells and thyroid ARO cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 2mM L-

glutamine, and 100U/ml penicillin-streptomycin (Invitrogen). NIH3T3 fibroblasts were 

maintained in DMEM supplemented with 10% calf bovine serum (Bio Whittaker), 

2mM L-glutamine, and 100U/ml penicillin-streptomycin (Invitrogen). 293T and 

NIH3T3 cells were transfected by the LipofectAMINE reagent (Invitrogen), while ARO 

cells were transfected by the Lipofectamine 2000 reagent (Invitrogen), respectively, in 

accordance with the manufacturer’s instructions. For transfections, 200 ng of HA-Erk8 

and HA-Erk8δ and 100 ng of SrcYF, Abl Act.,  Bcr/Abl and of the different Ptc3 

expression vectors were used, unless otherwise indicated. 

 

Antibodies. 

As primary antibodies rabbit polyclonal antibodies against JNK1 (C-17), Rac1 

(C-14), c-Jun (H-79), JunD (329), JunB (N-17), ATF2 (C-19) (Santa Cruz); Phospho c-

Jun (Ser63) and Phospho c-Jun (Ser73) (Cell Signaling Technology); Erk2 (C-14) and 

c-Src (N-16) (Santa Cruz), phospho-MAPK (p42/p44) (Cell Signaling), RET and 

phospho-RET (phospho-Tyr905) (Carlomagno et al., 2004); mouse monoclonal 

antibodies against AU5, EGFP and haemagglutinin (HA) epitopes (HA.11; Berkley 
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Antibody Company, CA); JNK1 (PharMingen); c-Abl (BD Pharmingen) and to 

phospho-tyrosine, PY (Santa Cruz and Upstate Biotechnology).  

EMSA, western blots, immunoprecipitations and ChIP analysis were performed 

using rabbit polyclonal antibodies against JNK1 (C-17), Rac1 (C-14), c-Jun (H-79), 

JunD (329), JunB (N-17), ATF2 (C-19) (Santa Cruz); Phospho c-Jun (Ser63) and 

Phospho c-Jun (Ser73) (Cell Signaling Technology); mouse monoclonal antibodies 

against haemagglutinin (HA) epitope (HA.11; Berkley Antibody Company, CA); JNK1 

(PharMingen). 

 

Western blot analysis. 

Lysates of total cellular proteins or immunoprecipitates were analyzed by 

protein immunoblotting after SDS-PAGE with specific rabbit antisera or mouse 

monoclonal antibodies. Immunocomplexes were visualized by enhanced 

chemiluminescence detection (ECL or ECL Plus, Amersham-Pharmacia) with the use 

of goat antiserum to rabbit or mouse immunoglobulin G, coupled to horseradish 

peroxidase (Amersham-Pharmacia). 

          

 

Reporter gene assays. 

For each well, cells were transfected by the “LipofectAMINE Reagent” with 

different expression plasmids, together with 50 ng of the indicated reporter plasmid and 

10 ng of pRL-null (a plasmid expressing the enzyme Renilla luciferase from Renilla 

reniformis) as an internal control. In all cases, the total amount of plasmid DNA was 

adjusted with empty vector.  

NIH 3T3 cells were transfected with different expression plasmids together with 

100 ng of the pMyc Luc reporter plasmid. ARO cells were transfected with different 

expression plasmids together with 20 ng of the pJLuc reporter plasmid. After 24 h 

incubation in serum-free media, the cells were lysed using reporter lysis buffer 

(Promega). Luciferase activity present in cellular lysates was assayed using D-luciferin 

and ATP as substrates, and light emission was quantitated using the 20
n
/20

n
 

luminometer as specified by the manufacturer (Turner BioSystems). 

 

 

Northern blot analysis. 
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After 24-hrs starvation, NIH 3T3 cells were washed with cold PBS and total 

RNA was extracted by homogenization with Trizol (Invitrogen), in accordance with 

manufacture’s specifications. Total RNA (10 µg) was fractionated in 2% formaldehyde-

agarose gels, transferred to Hybond-XL nylon membranes (Amersham-Pharmacia 

Biotech) and hybridized with 
32

P-labelled DNA probes prepared with the Prime-a-Gene 

Labelling System (Promega). As a probe, we used a 450-bp PstI DNA fragment from 

the human c-myc gene (pcDNAIII/GS-Myc-V5). The RNA membranes were pre-

hybridized for more than 2 hrs in hybridization solution (ExpressHyb; Clontech) at 

70
o
C. The 

32
P-labeled probe was added to the blots and hybridized for another 16 hrs at 

60
o
C. The blots were washed twice for 30 min each in 2X SSC-0.1% SDS at room 

temperature and then washed twice for 30 min each in 0.2X SSC-0.1% SDS at 60
o
C. 

Accuracy of RNA loading and transfer was confirmed by fluorescence under ultraviolet 

light after staining with ethidium bromide. 

 

Electrophoretic mobility shift assays (EMSA).  

Nuclear extracts were obtained from NIH 3T3 cells plated in 10-cm plates and 

grown to 70% confluency, starved overnight and then stimulated with PDGF, when 

needed. Cells were washed in cold PBS and lysed in 400 µl of buffer A (10 mM HEPES 

pH=7.9; 10 mM KCl; 0.1 mM EDTA; 0.1 mM EGTA; 1 mM DTT; 0.5 mM PMSF). 

After 15 min on ice, 25 µl of 10% NP-40 was added and vigorously vortexed for 10 sec. 

Homogenates were centrifuged for 30 sec. Nuclear pellets were resuspended in 50 µl of 

ice-cold hypotonic buffer C (20 mM HEPES pH=7.9, 0.42 M NaCl, 1 mM EDTA, 1 

mM EGTA, 1 mM DTT, 1 mM PMSF) and rocked at 4
o
C for 15 min. Homogenates 

were centrifugated for 5 min and the supernatants (nuclear extracts) aliquoted and 

stored at –70
o
C. After determining protein concentrations using Bio-Rad protein assay 

(Bio-Rad Laboratories), 2 µg of proteins were incubated at room temperature with 1 µg 

of poly-[dI-dC] and 0.1 µg of salmon sperm DNA in 20 µl binding buffer (12 mM 

HEPES pH=7.8, 60 mM KCl, 2 mM MgCl2, 0.12 mM EDTA, 0.3 mM DTT, 0.3 mM 

PMSF, 12% glycerol) for 15 min. Complementary synthetic oligonucleotides containing 

the AP-1 responsive element plus adjacent sequences from the mouse c-myc promoter 

(AP1F, 5’-ATACCTGTGACTCATTCATTT-3’ and AP1R, 5’-

AAATGAATGAGTCACAGGTAT-3’) were obtained from MWG Biotech and labeled 

with γ32
P-ATP using T4 polynucleotide kinase (Invitrogen). Labeled oligos were 
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purified using G25 columns (Amersham Pharmacia Biotech) and used as probes 

(20,000 cpm/reaction) added to the reactions for additional 15 min. Complexes were 

analyzed on non-denaturing (4.5%) polyacrylamide gels in TGE buffer (40 mM Tris, 

270 mM Glycine, 2 mM EDTA=pH 8.0), run at 13V/cm at 4
o
C. For super-shift assays, 

1 µg of the indicated antisera were added to the binding reaction. 

 

Chromatin Immunoprecipitation (ChIP). 

ChIP assays were performed using the Chromatin Immunoprecipitation Assay 

Kit (Upstate Biotechnology, NY), in accordance with the manufacturer’s instructions. 

Briefly, chromatin from NIH 3T3 cells has been fixed by directly adding formaldehyde 

(1% final) to the cell culture media. Nuclear extracts have been isolated from the cells 

and then sonicated to obtain mechanical sharing of the fixed chromatin. Transcription 

factors-bound chromatin has been immunoprecipitated with specific antibodies, cross-

linking has been reversed and the isolated genomic DNA has been amplified by PCR, 

using specific primers encompassing the murine c-myc promoter: forward AP66 (5’-

ATACCTGTGACTATTCATTT-3’); reverse AP67 (5’-

GATGCTTCCTTGCCTAAGAC-3’). The PCR products were separated on a 2% 

agarose gel. Primers used as a control for the ChIP analysis amplify an unrelated DNA 

sequence located on murine chromosome 5. 

 

In vitro kinase assay. 

Confluent plates of transfected NIH3T3 were kept  two hours (JNK assay) or 

overnight (MAPK assay) in serum-free medium. Cells were then washed with cold 

phosphate-buffered saline, and lysed at 4° C in a buffer containg 20 mM Hepes, pH 7.5, 

10 mM EGTA, 40 mM β-glycerophosphate, 1% IGEPAL, 2.5 mM MgCl2 , 1mM 

dithiothreitol, 2 mM sodium vanadate, 1mM phenylmathylsulfonyl fluoride, 20 µg/ml 

aprotinin, and 20 µg/ml leupeptin. Lysates were clarified by centrifugation at 12,000 x g 

for 20 min at 4° C, and supernatants were incubated with 1 µg monoclonal antibody  

against JNK (PharMingen) or with 1 µg polyclonal antibody against Erk2 (C-14) (Santa 

Cruz), for 1 h at 4° C. Immunocomplexes were recovered with the aid of  protein A/G 

PLUS-Agarose (Santa Cruz Biotechnology). Pecipitates were washed three times with 

phosphate-buffered saline which contained 1% IGEPAL and 1mM vanadate, once with 

100 mM Tris pH 7.5, 0.5 M LiCl, and once in kinase reaction buffer (12.5 mM MOPS, 
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pH 7.5, 12.5 mM β-glycerophosphate, 7.5 mM MgCl2, 0.5mM EGTA, 0.5 mM sodium 

fluoride, 0.5 mM vanadate).Assays were performed in a reaction buffer containing 1 

µCi of [γ-
32

P]ATP, 20 µM ATP, 3mM dithiothreitol and 1 µg GST-ATF2 and myelin 

basic protein  (MBP, Sigma). After 30 min at 30°C, reactions were terminated by 

addition of  5X Laemli buffer. Samplers were heated at 95°C for 5 min and analyzed by 

SDS-gel electrophoresis on 12% acrylamide gels. Autoradiography was performed with 

the aid of an intensifying screen. 
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Study  I 
 

The PDGF controls c-myc expression through a JNK- and AP-1-dependent signaling 

pathway. 

 

A wide range of growth factors, cytokines and mitogens is able to induce the 

expression of the c-myc proto-oncogene (Kelly et al., 1983; Roussel et al., 1991). In 

turn, c-myc is necessary for cellular proliferation induced by different oncogenic 

tyrosine kinases (Barone and Courtneidge, 1995) . In normal cells as well as in tumors, 

the ability of c-myc to control cellular proliferation has been mostly correlated to 

changes in its mRNA levels, through transcriptional and post-transcriptional 

mechanisms. In fact, most of the oncogenic alterations that target c-myc result in the 

increase of its messenger RNA and, in turn, of its protein (Grandori et al., 2000). 

Indeed, overexpression or gene amplification and translocations of c-myc are frequent 

causes of numerous solid and blood human tumors (Dang et al., 1999). In line with its 

ability to promote cell cycle progression, in quiescent fibroblasts c-myc expression is 

virtually undetectable. However, upon stimulation with growth factors such as the 

platelet-derived growth factor (PDGF), its mRNA and then protein levels are rapidly 

induced until cells progress through the G1/S boundary of the cell cycle (Chiariello et 

al., 2000; Chiariello et al., 2001). Still, the mechanism by which growth factors promote 

the expression of c-myc is poorly understood. In this regard, we have recently described 

a Rac-dependent signaling pathway initiated by PDGF, controlling the expression of the 

c-myc proto-oncogene (Chiariello et al., 2001). 

 

Rac effector domain mutants differentially impair endogenus c-myc  expression. 

To investigate the signaling pathways activated by Rac, impinging on the 

regulation of c-myc expression, we used specific constitutively active Rac effector 

domain mutants that are differentially impaired in their downstream signaling activities 

(Westwick et al., 1997; Joyce et al., 1999). We therefore compared the ability to 

stimulate c-myc expression of a constitutively active Rac12V mutant with that of Rac 

alleles harboring additional mutations in their effector domain (Rac12V/33N, 

Rac12V/37L and Rac12V/40H). We first explored, by northern blot analysis, the ability 

of Rac12V to induce c-myc expression, using PDGF as a positive control. As expected, 

the activated Rac12V mutant significantly induced c-myc expression, as evidenced by 
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an increase in the level of c-myc mRNA (Fig. 3A). Next, we investigated the effect of 

the double mutants. As shown in fig. 3B, both the Rac12V/37L and Rac12V/40H 

mutated proteins were ineffective in stimulating the expression of c-myc, while the 

Rac12V/33N protein was fully competent to induce the transcription of the c-myc proto-

oncogene.  

Recent work has established an impairment of JNK activation as a 

consequence of the transfection of the Rac12V/37L and Rac12V/40H effector domain 

mutants (Westwick et al., 1997). In line with these studies, data in fig. 3C show that 

both Rac12V/37L and Rac12V/40H not only were unable to stimulate c-myc 

expression, but they were also incapable to stimulate the activity of JNK, therefore 

suggesting the involvement of this kinase in Rac-induced c-myc expression. Conversely, 

the Rac12V/33N mutated protein activated JNK at a level similar to the positive control, 

Rac12V (Fig. 3C). All the Rac mutants were expressed at comparable levels (Fig. 3D). 

Together, these results strongly suggest that the JNK pathway is involved in the 

regulation of c-myc expression. 

 

JNK activity is necessary for PDGF induction of c-myc expression. 

The possibility that JNK participates in the regulation of c-myc expression 

prompted us to test whether the constitutive activation of this signal transduction 

pathway could stimulate the expression of the endogenous c-myc proto-oncogene. We 

therefore transfected NIH 3T3 cells with vectors expressing two upstream activators of 

the JNK cascade, the MEKK1 and MLK3 MAP kinase kinase kinases (MAPKKKs) 

(Teramoto et al., 1996; Joyce et al., 1999). As shown in fig. 4A, both proteins induced 

the transcription of the endogenous c-myc gene, at levels comparable to the positive 

control, Rac12V, indicating that JNK activation is sufficient to trigger the expression of 

c-myc.  

Although JNKs have been isolated and characterized as stress-activated 

kinases, on the basis of their strong response to environmental stresses and 

inflammation stimuli, different growth factors are also able to stimulate their activity 

(Davis, 2000). Moreover, they have recently been involved in mediating the 

proliferative effects of some oncogenes, including the product of the bcr-abl oncogene 

(Hess et al., 2002). Based on our data, we next explored the participation of JNK in the 

regulation of c-myc expression induced by PDGF. We began exploring the ability of 

this mitogen to activate JNK. As shown in fig. 4B, exposure of NIH 3T3 fibroblasts to 
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PDGF induced activation of JNK, which peaked 30 minutes after stimulation. As an 

approach to examine the involvement of JNK in PDGF-induced c-myc expression, we 

took advantage of the availability of a synthetic compound, SP600125, a reversible 

ATP-competitive inhibitor that blocks JNK without significantly affecting other related 

kinases (Bennet et al., 2002). We first confirmed the ability of the drug to inhibit JNK-

dependent pathways, in our experimental model. Indeed, SP600125 abolished PDGF-

induced phosphorylation of the endogenous c-Jun protein in a dose dependent manner, 

as scored by western blot analysis using a mix of anti-phospho-Ser63 and -Ser73 c-Jun 

antibodies (Fig. 4C). Conversely, identical concentrations of the drug had no effect on 

PDGF-induced Erk1/2 activation and on Erk-dependent c-Fos phosphorylation (data not 

shown), indicating the specificity of the SP600125 for the JNK pathway, as compared 

to other highly related MAP kinase-signaling pathways. To test the involvement of JNK 

in PDGF-induced c-myc expression, we performed northern blot analysis on NIH 3T3 

cells pretreated with increasing concentrations of the JNK inhibitor and then stimulated 

with PDGF for 1 hour. As a result, the drug strongly inhibited PDGF-induced c-myc 

expression, even at the lowest concentration of the drug (Fig. 4D). Remarkably, the 

kinetic of inhibition of c-myc expression was coincident with the results obtained for the 

inhibition of PDGF-induced JNK activation by SP600125 (Fig. 4C). Thus, the emerging 

picture from these data is that activation of the JNK pathway may regulate c-myc 

expression and, in turn, PDGF exploits JNK as a key molecule to promote c-myc 

expression, possibly through phosphorylation and activation of nuclear transcription 

factors. 

 

A typical AP-1 responsive element in the c-myc promoter. 

Two principal promoters, P1 and P2, drive the transcription of the human c-myc 

gene (Spencer and Groudine, 1991). Despite the extraordinary complexity in the 

regulation of c-myc expression, the rate of transcription from these two promoters is 

mainly governed by composite negative and positive regulatory elements comprised 

within a 2.3 kb domain located upstream of the promoters (Hay et al., 1987). Among 

these elements, E2F, Stat-3, NF-�B and TCF-4 binding sites have been identified 

(Kiuchi et al., 1999; He et al., 1998; Wong et al., 1995; Ji et al., 1994). In search for 

additional responsive elements that could mediate the JNK-dependent regulation of the 

c-myc gene, we performed computer-assisted analysis of its promoter region by the 

TRANSFAC database (Heinemeyer et al., 1998). Surprisingly, we could identify, 1.3 kb 



 

 
18 

 

 

upstream the human c-myc transcription start site, a TGAGTCA motif perfectly 

matching the canonical AP-1 responsive element (Shaulian and Karin, 2001) (Fig. 5A). 

Interestingly, a similar analysis found conserved responsive elements also in the 

promoters of murine and even drosophila c-myc genes (Fig. 5A). The sequences of the 

respective responsive elements were highly related to each other (Fig. 5A, boxed 

nucleotides) as opposed to their immediate flanking regions, suggesting that a strong 

selective pressure was exerted to maintain these sites intact during evolution. 

Several short sequences similar to known response elements are frequently 

found in promoter regions of a variety of genes. However, the arrangement of these 

sites in relation to neighboring sequences often determines the functionality of the 

predicted binding site. Thus, we first studied the ability of an oligonucleotide containing 

the murine c-myc AP-1 responsive element plus adjacent sequences, to form 

DNA/proteins complexes by means of electrophoretic mobility shift assays (EMSA). As 

shown in fig. 5B, left panel, proteins from NIH 3T3 nuclear extracts recognized and 

strongly bound the c-myc AP-1 responsive element, as evidenced by the presence of a 

shifted complex that was more prominent 4 hours after PDGF addition, as a 

consequence of the accumulation of AP-1 proteins in the stimulated NIH 3T3 cells 

(Lallemand et al., 1997). The binding was specific, as it was efficiently competed by 

adding an excess of unlabeled c-myc AP-1 oligonucleotide (Fig. 5B, right panel). To 

further investigate the nature of the transcription factors bound to the described c-myc 

AP-1 element, we next performed super-shift experiments by incubating the binding 

reactions in the presence of specific antibodies against Jun family members. These 

proteins have been in fact described as substrates of the JNK signaling pathway and 

they could therefore possibly mediate the effect of this kinase on the c-myc promoter. 

As shown in fig. 5C, both c-Jun and JunD antibodies strongly decreased the 

electrophoretic mobility of the complexes derived from NIH 3T3 cells stimulated 30 

minutes with PDGF, whereas the JunB antibody had a much lower effect. As an 

additional control, no ATF2 was detected in the complexes (Fig. 5C), in line with the 

fact that Jun:ATF2 heterodimers bind more efficiently atypical 8-bp, TGACGTCA sites 

(Van Dam et al., 1998). Conversely, among Fos proteins, only Fra2 was detected as part 

of the complexes (data not shown). On the basis of the binding observed in vitro, we 

next examined by Chromatin Immunoprecipitation (ChIP) analysis whether members of 

the Jun family could actually bind, in vivo, the endogenous c-myc promoter. In NIH 3T3 

cells, ChIP assays clearly demonstrated the binding of both c-Jun and JunD to the 
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endogenous c-myc promoter, 30 minutes after PDGF addition (Fig. 5D), coincidently 

with the time-point at which PDGF induces maximal JNK stimulation (see fig. 4B). 

Conversely, we did not observe any in vivo binding of JunB to the promoter (Fig. 5D). 

As expected (see above), we could not detect ATF2 bound to the c-myc promoter (Fig. 

5D), whereas it was able to bind the c-jun promoter, which harbors an atypical 8-bp, 

TGACATCA element (data not shown). The same analysis, performed on untreated, 

quiescent NIH 3T3 cells, gave similar results (data not shown), confirming that Jun 

family members are pre-bound to their responsive elements (Lallemand et al., 1997) and 

can be rapidly trans-activated by phosphorylation in response to external stimuli 

(Mechta-Grigoriou et al., 2001). As an additional control, no amplification was 

observed from the same immunoprecipitates when using primers recognizing DNA 

sequences unrelated to the c-myc promoter (Fig. 5D, lower panel). At this point it is 

important to notice that, while ChIP analysis was not able to detect binding of JunB to 

the c-myc promoter, EMSA experiments showed a small amount of this protein bound 

to the c-myc AP-1-containing EMSA probes. We have attributed this apparent 

difference to the in vitro nature of the EMSA and its limitations to precisely recapitulate 

the binding of the transcription factors at the level of the endogenous promoters. At the 

same time, this situation underscores the importance of the results from the ChIP assay, 

showing in vivo binding of c-Jun and JunD to the promoter. Altogether, these results 

indicate that proteins of the AP-1 family, specifically c-Jun and JunD, are able to 

recognize and bind, in vivo, the AP-1 element present in the c-myc promoter, therefore 

suggesting this element as a potential mediator of JNK-dependent regulation of c-myc 

expression induced by PDGF. 

 

The AP-1 element controls PDGF stimulation of c-myc expression. 

We next investigated whether the c-myc AP-1 element was able to mediate 

PDGF-induced stimulation of c-myc expression. The control of histone acetylation is a 

key step in the general regulation of cellular transcriptional events (Grunstein, 1997). In 

turn, a model has been recently proposed in which the trans-activation potential of c-Jun 

and, possibly, of its related proteins, is constitutively repressed by a histone 

deacetylases (HDACs)-containing complex, which physically interacts with c-Jun itself 

and can be released upon JNK-dependent phosphorylation of the protein (Weiss et al., 

2003). We therefore reasoned that an artificial molecule specifically targeting HDACs 

to AP-1 elements could recapitulate HDAC-dependent negative regulation of AP-1 
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containing promoters, but in a dominant repressive fashion (unable to be relieved by 

upstream stimuli). We therefore engineered a molecule in which the DNA Binding 

Domain (DBD) of c-Jun has been fused to the Sin3-binding domain of Mad (SID). The 

resulting protein (JunDBD-SID) is able to bind Sin3 and, through this, recruit HDACs 

(Ayer et al., 1996). We expect this repressor to be able to specifically inhibit 

transcription by targeting, through the c-Jun DBD, AP-1 elements that are present in the 

endogenous promoters. To control the specificity of the repressor, we first engineered a 

reporter plasmid carrying the luciferase gene expressed under the control of a tandemly 

repeated AP-1 element from the murine c-myc gene (pmycAP1 luc). Such construct 

behaves as a typical AP-1 reporter, its activity being readily induced by the c-Jun and c-

Fos members of the AP-1 family (Fig. 6A) and by upstream stimulators of the JNK 

pathway, MEKK1 and MLK3 (Teramoto et al., 1996; Minden et al., 1994) (Fig. 6B). 

We hypothesized that the expression of luciferase from this construct should be strongly 

inhibited by the JunDBD-SID repressor, through specific targeting to the c-myc AP-1 

and recruitment of HDACs. As expected, very low amounts of the JunDBD-SID 

repressor were sufficient to completely abolish the activity of the pmycAP1 Luc 

reporter induced by sis, the oncogenic form of the PDGF oncogene (Fig. 6C), while not 

affecting the luciferase activity induced by a Gal4-VP16 (Fig. 5D) or a p53 molecule 

(data not shown), on their respective reporter vectors. These data therefore confirmed 

the effectiveness and specificity of the engineered protein and the dependency of its 

activity upon the presence of functional AP-1 elements. It is also important to notice 

that such experiments not only control the specificity of our approach, but also 

contribute to establish that the c-myc AP-1 is a fully functional element that can be 

stimulated by PDGF and the JNK pathway. This further supports the hypothesis that 

JNK plays a key role in the regulation of c-myc expression, possibly induced by PDGF 

activation of its cognate receptors. 

Finally, to prove the ability of the AP-1 element to regulate the transcription of 

the c-myc promoter, we analyzed by northern blot the RNAs produced by PDGF-treated 

cells expressing the JunDBD-SID protein. Strikingly, the AP-1 repressor clearly 

inhibited PDGF-induced accumulation of c-myc mRNA (Fig. 6E). Altogether, these 

findings strongly support the idea that the AP-1 sequence identified in the c-myc 

promoter is functional, being able to control the c-myc expression induced by PDGF, 

through the recruitment of members of the AP-1 family of transcription factors. In all, 

these findings also contribute to understand some of the molecular mechanisms by 
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which c-Jun acts as a positive regulator of the cell cycle (Shaulian and Karin, 2001; 

Mechta-Grigoriou et al., 2001) as only very few c-Jun targets involved in the control of 

the cell cycle, have been yet identified. This study, in fact, add c-myc to the short list of 

prototypes genes, such as cyclin D1 and p53 (Albanese et al., 1995; Schreiber et al., 

1999), that are regulated by c-Jun and involved in cellular proliferation. Our finding 

also show that JunD is bound to the c-myc promoter and can regulates c-myc 

expression, which may help to explain the role of this protein as mediator of cellular 

survival (Weitzman et al., 2000; Lamb et al., 2003). Interestingly, although several 

studies have described a pro-apoptotic effect for JNK (Davis, 2000), more recent 

evidences show that downstream of this kinase, JunD acts as a sensor that transmit 

survival or apoptotic signals depending on the state of others transcription factors 

(Lamb et al., 2003). As c-myc itself has been involved in both pro- and anti-apoptotic 

responses, the mechanism by which regulation of c-myc expression by JNK-c-Jun/JunD 

relates to these two opposite responses will warrant further investigation.  
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Study II 
 

Activation of the ERK8 MAP kinase by RET/PTC3, a constitutively active form of the 

RET proto-oncogene. 

 

  RET is a typical trans-membrane receptor tyrosine-kinase (RTK), essential for 

the development of the sympathetic, parasympathetic and enteric nervous system and of 

the kidney (Schuchardt et al., 1994). In complex with four glycosylphosphatidylinositol 

(GPI)-anchored coreceptors, GFR-� 1–4, the RET protein binds growth factors of the 

glial-derived neurotrophic factor (GDNF) family, mediating their intracellular signaling 

(Airaksinen & Saarma, 2002). As for other RTKs, ligand interaction triggers 

autophosphorylation of different RET intracellular tyrosine residues that work as docking 

sites for several adaptor and effector signaling molecules (Santoro et al., 2004). Among 

such tyrosines, while Tyr
981

 is a binding site for c-Src, Tyr
1062

 has been shown to mediate 

the interactions with most of RET effectors and to be responsible for activation of the 

Ras/Erk, PI3K/Akt, Jnk, p38 and Erk5 signaling pathways (Kurokawa et al., 2003). 

Finally, Tyr
1015

 is a recognized docking site for PLCγ (Borrello et al., 1996). 

Gain-of-function mutations of RET have been repeatedly described in several 

human tumors (Pasini et al., 1996). RET germline point mutations are in fact responsible 

for the three clinical subtypes of the Multiple Endocrine Neoplasias type 2 (MEN2) 

syndrome, MEN2A, MEN2B and Familial Medullary Thyroid Carcinoma (FMTC) 

(Santoro et al., 2004). In addition, fusion of the intracellular kinase domain of RET with 

heterologous genes, caused by chromosomal inversions or translocations, generates the 

RET/PTC oncogenes, which represent the genetic hallmark of papillary thyroid 

carcinomas (PTC), accounting for more than 80-90% of all thyroid carcinomas (Sherman, 

2003). Among the at least ten different RET/PTC rearrangements, RET/PTC1 and 

RET/PTC3, generated by the fusion with the H4 and RFG genes, respectively, are the 

most common types, accounting for more than 90% of all rearrangements (Nikiforov, 

2002). 

 

Erk8 is activated by RET-dependent signaling pathway. 

We performed an in silico analysis of Erk8 gene expression in mouse tissues, 

through the public Mouse Gene Prediction Database resource 

(http://mgpd.med.utoronto.ca/) (Zhang et al., 2004). Among other tissues, Erk8 was 
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expressed at very high levels in the thyroid, therefore suggesting a role for this kinase in 

signaling pathways involved in the homeostasis and/or pathology of this organ. As the 

RET/PTC oncogenes are frequently involved in human papillary thyroid carcinomas 

(Santoro et al., 2004), we decided to investigate their ability to modulate Erk8 activation. 

In particular, we investigated the role of RET/PTC3, a chimeric oncogene generated by 

the fusion of RET with the RFG gene (Fig. 7A) (Santoro et al., 1994).  

As an approach to score Erk8 activation, we used an anti-phospho-MAPK 

(Erk2) antibody that recognizes phosphorylation in the conserved MAP kinase TEY 

motif. We performed western blot analysis of 293T cells transfected with an HA epitope-

tagged form of the Erk8 kinase, as previously described (Abe et al., 2002), and then 

distinguished the transfected HA-Erk8 and the endogenous Erk2 by their different 

molecular weights, ~60 kDa and ~45 kDa, respectively. As shown in figure 8B, 

RET/PTC3 overexpression readily induced Erk8 activation, at a level comparable to an 

activated form of c-Src (Src YF), used as a positive control (Abe et al., 2002). Of note, no 

signal in the ~60 kDa range was detected in the absence of HA-Erk8 transfection (Fig. 

7B), indicating that the anti-phospho-MAPK antisera specifically recognized the Erk8 

protein. As an additional control for the activity of RET/PTC3 and Src YF, both proteins 

activated the Erk2 MAP kinase (Fig. 7B), also scored by anti-phospho-MAPK western 

blot. Altogether, these results indicate that RET/PTC3 stimulates Erk8 activity. 

 

The Erk8 carboxy-terminal modulates activation of the MAP kinsase by RET/PTC3. 

While classical MAP kinases such as Erks, Jnks and p38s are only slightly larger 

than their minimum Ser/Thr kinase core, the atypical Erk5, Erk7 and Erk8 MAP kinases 

all contain long C-terminal domains whose functions are largely unknown. Yet, recent 

experiments performed on Erk5 (Buschbeck & Ullrich, 2005) and Erk7 (Abe et al., 2001) 

have demonstrated a role for their C-terminal tail in the regulation of kinase intracellular 

localization and activity. Thus, we set up to investigate a role for the Erk8 C-terminal 

domain in RET/PTC3-dependent activation of the kinase.  

The genomic organization of the Erk8 gene has been previously described (Abe 

et al., 2002). By in silico analysis of available “expressed sequence tags” (est) clones we 

identified an Erk8 cDNA whose corresponding protein, when expressed, presented a 

molecular weight shorter (~35 kDa) than the described Erk8 protein (~60 kDa) (Fig. 8A). 

We named this protein Erk8� (accession # AY994058). Comparative analysis of the 

sequences for Erk8, Erk8δ and the Erk8 gene 
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(http://www.ncbi.nlm.nih.gov/genome/guide/human/) revealed that Erk8δ corresponded 

to an alternatively spliced form of Erk8 in which an alternative exon 8 (exon 8a) 

contained a “stop” codon (Fig. 8B), therefore determining a 254-aminoacid long protein, 

lacking the Erk8 C-terminal domain (Fig. 8C). Thus, we took advantage of the 

availability of this naturally occurring C-terminally truncated protein, to evaluate the role 

of this domain in RET/PTC3-dependent Erk8 activation. As shown in figure 8D, 

RET/PTC3 was not able to induce Erk8δ activation while, as a control, it strongly 

activated Erk8. In the same experimental condition, Src YF, a described activator of Erk8 

(Abe et al., 2002), also failed to stimulate Erk8δ activation (Fig. 8D), therefore 

establishing a key role for the C-terminal domain of Erk8 in the activation of this MAP 

kinase by various upstream stimuli. 

 

Tyrosine 981 of RET/PTC3 is necessary for Erk8 activation. 

Tyrosine phosphorylated residues in the kinase domain of RET, as well as of its 

derivate oncogenes, usually represent docking sites for adaptor proteins and enzymes that 

are able to propagate the signal to the intracellular environment (Santoro et al., 2004). We 

therefore used RET/PTC3 molecules in which different tyrosine phosphorylation sites 

have been inactivated by mutating them to phenylalanines, to ascertain the dependency of 

RET/PTC3-induced Erk8 activation on the presence of these specific residues. Also, as 

these tyrosines have already been linked to the activation of different specific signaling 

pathways (Santoro et al., 2004), this approach could grant us the possibility to suggest the 

participation of some of these effectors in the modulation of Erk8 activity. In particular, 

tyrosine
981

 binds c-Src (Encinas et al., 2004), tyrosine
1015

 is a docking site for PLCγ 

(Borrello et al., 1996) and tyrosine
1062

 is a multiple docking site that mediates most of 

RET signaling pathways (Kurokawa et al., 2003), including Erk2 activation (Chiariello et 

al., 1998). 293T cells were transiently transfected with the HA-Erk8 molecule, together 

with RET/PTC3, RET/PTC3
Y981

, RET/PTC3
Y1015

 or RET/PTC3
Y1062

, respectively 

(numbers indicating RET/PTC3 tyrosine residues correspond to their position in the wild-

type RET receptor). Surprisingly, based on the observation that tyrosine
1062

 mediates most 

of RET signaling pathways (Kurokawa et al., 2003), the RET/PTC3
Y1062

 mutant activated 

Erk8 at an extent comparable to the RET/PTC3 molecule while, as expected (Chiariello et 

al., 1998), this mutation strongly affected Erk2 activation (Fig. 9). The tyrosine
1015

 

mutation, involving a known binding site for PLCγ (Borrello et al., 1996), also did not 
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affect Erk8 activation by RET/PTC3 (Fig. 9). Conversely, tyrosine
981

 mutation 

determined a dramatic reduction in RET/PTC3-dependent Erk8 activation, although 

resulting irrelevant to Erk2 activation (Fig. 10). As a control, RET/PTC3 Kin
dead

, a 

kinase-inactive form of RET/PTC3 containing a mutation in the ATP-binding catalytic 

lysine (Lys
758

), was unable to activate both Erk8 and Erk2 (Fig. 9). These results therefore 

imply tyrosine
981

 of RET/PTC3 as a major site recognized by signaling molecules 

mediating RET/PTC3-dependent Erk8 activation. In addition, as tyrosine
981

 has been 

previously recognized as a key residue for the binding of c-Src to RET (Encinas et al., 

2004), they also suggest a role for c-Src in mediating RET/PTC3-initiated signals 

impinging on Erk8 activation. 

 

Src activity is dispensable for RET/PTC3-dependent Erk8 activation 

Based on the above information and on the observation that c-Src activates Erk8 

(Abe et al., 2002), we next sought to investigate if c-Src was able to mediate RET/PTC3-

dependent Erk8 activation. A classical approach to establish a role for Src kinases in 

cellular processes takes advantage of a pyrazolo-pyrimidine compound, PP1, which binds 

the ATP-binding pocket of these kinases therefore blocking their enzymatic activity 

(Hanke et al., 1996) and biological functions (Chiariello et al., 2001). Although PP1 has 

been described to affect RET kinase activity (in vitro IC50=100 nM) (Carlomagno et al., 

2002), a specific mutation in valine
804

 in the RET kinase domain confers resistance (>50-

fold increase of the IC50) to the compound (Carlomagno et al., 2004). We, therefore, 

introduced such mutation in the RET/PTC3 kinase domain (RET/PTC3
V804

) rendering its 

activity significantly resistant to PP1, as scored by RET/PTC3
V804

 auto-phosphorylation 

and activation of Erk2 (Fig. 10A). As expected, kinase activity of the parental RET/PTC3 

molecule was completely abolished at comparable concentrations (compare the 5-10 µM 

PP1 lanes) as evidenced by both RET/PTC3 auto-phosphorylation and activation of Erk2 

(Fig. 10B). Surprisingly, while strongly inhibiting Src (data not shown), PP1 treatment of 

RET/PTC3
V804

-transfected cells only slightly affected Erk8 activity even at the highest 

doses tested (10 µM) (Fig. 10C) and after extensive times of treatment (up to 10 hrs 

treatment, at 5 µM concentration) (Fig. 4D), thus excluding a role for c-Src and its related 

kinases (Hanke et al., 1996) in the control of RET/PTC3-induced Erk8 activation. As a 

complementary approach to ascertain the role of Src kinases in RET/PTC3 activation of 

Erk8, we also used a dominant negative form of c-Src, Src YF KM (Chiariello et al., 
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2001). As shown in figure 10E, overexpression of the dominant negative molecule did not 

affect Erk8 activation while it effectively inhibited PDGF-induced activation of the c-myc 

promoter (Fig. 10F) (Chiariello et al., 2001). Altogether, these data clearly indicate that 

RET/PTC3 can use a Src-independent pathway to activate the Erk8 MAP kinase. 

 

c-Abl mediates RET/PTC3-dependent Erk8 activation. 

c-Abl, the cellular homologue of the Abelson murine leukemia virus, has been 

implicated in different cellular processes ranging from cell growth to survival, cellular 

stress, DNA-damage response and cell migration (Hantschel & Superti-Furga, 2004). 

From the structural point of view, c-Abl contains SH3, SH2 and tyrosine kinase domains 

whose arrangement and sequence very much resemble that of c-Src (Hantschel & Superti-

Furga, 2004). These observations prompted us to investigate whether, similarly to Src, an 

activated form of c-Abl could induce Erk8 activation and, in turn, whether c-Abl could 

mediate RET/PTC3 activation of Erk8. As shown in figure 11A, an oncogenic, activated 

form of c-Abl, the Bcr/Abl fusion protein, readily induced Erk8 activation, at a level 

comparable to an activated form of c-Src (Src YF), used as a positive control (Abe et al., 

2002). Thus, we decided to investigate whether c-Abl is able to act as a link between 

RET/PTC3 and the stimulation of Erk8. As an approach, we used a kinase-defective, 

dominant negative form of c-Abl, Abl-KD. This dominant negative molecule strongly 

inhibited the RET/PTC3-dependent activation of Erk8 (Fig. 11B), thus suggesting that c-

Abl is a likely mediator in the pathway connecting RET/PTC3 to the activation of the 

Erk8 MAP kinase. 

To control a vast range of cellular processes, c-Abl interacts with a large variety 

of cellular proteins, including phosphatases, kinases, signaling adaptors, transcription 

factors, cytoskeletal proteins and cell cycle regulators (Hantschel & Superti-Furga, 2004). 

To determine whether c-Abl can interact with Erk8 in vivo, 293T cells were transfected 

with HA-Erk8 and either wild-type c-Abl or the control vector, immunoprecipitated with 

an anti-HA antibody and then analized by western blot with an anti-abl antisera. As 

shown in figure 11C, c-Abl clearly co-immunoprecipitated with Erk8, therefore 

suggesting a role for physical interaction in the control of Erk8 activation by c-Abl.  

We have previously shown that tyrosine
981

 in RET/PTC3 mediates RET/PTC3-

dependent Erk8 activation (Fig. 9), representing a major site recognized by signaling 

molecules intervening in such process. We therefore investigated whether the tyrosine
981

 

residue was also able to mediate RET/PTC3 activation of c-Abl. Taking advantage of the 
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observation that tyrosine phosphorylation of c-Abl correlates with its activation (Plattner 

et al., 1999), we cotransfected an autophosphorylation-impaired, AU5-tagged, c-Abl 

molecule, together with RET/PTC3, RET/PTC3
Y981

, RET/PTC3
Y1015

 or RET/PTC3
Y1062

, 

respectively, immunoprecipitated these samples by anti-AU5 antibodies and analyzed 

them by anti-phospho-tyrosine western blot. As show in figure 11D, RET/PTC3 clearly 

induced Abl phosphorylation. Importantly, RET/PTC3
Y981

 was strongly impaired in its 

ability to induce phosphorylation of the c-Abl protein, as compared to RET/PTC3 (Fig. 

11D). In the same experiment, RET/PTC3
Y1062

 and RET/PTC3
Y1015

 exerted more limited 

or no effects, as compared to RET/PTC3 (Fig. 11D). Ultimately, the RET/PTC3 Kin
dead

 

was unable to induce c-Abl phosphorylation, establishing a requirement for RET/PTC3 

kinase activity in c-Abl activation (Fig. 11D). Together, these results clearly indicate that 

RET/PTC3, through its tyrosine
981

, can utilize an Abl-dependent pathway to stimulate 

Erk8 activation. 

 

A kinase-defective mutant for Erk8 interferes with RET/PTC3 signaling. 

The expression of the c-jun proto-oncogene is rapidly and transiently induced by 

different growth factors and cellular oncogenes (Marinissen et al., 1999). Among them, 

an oncogenic rearrangement of the RET proto-oncogene is able to strongly induce c-jun 

expression (Ishizaka et al., 1991), therefore establishing this gene as part of RET 

signaling pathway. To investigate whether the RET/PTC3 oncogene was able to stimulate 

the activity of the c-jun promoter, we took advantage of the availability of a reporter 

plasmid carrying the luciferase gene under the control of the murine c-jun promoter 

(Chiariello et al., 2000; Marinissen et al., 1999). Cotransfection of thyroid ARO cells with 

this reporter plasmid and increasing concentrations of the RET/PTC3 cDNA revealed that 

this oncogene could strongly induce the activity of the c-jun promoter (Fig. 12A). To 

evaluate whether Erk8 activation is involved in RET/PTC3 signaling to the c-jun 

promoter, we next used a dominant negative, kinase defective (data not shown) Erk8 

molecule. For these experiments, we therefore cotransfected RET/PTC3 with the c-jun 

reporter plasmid and increasing amounts of the Erk8 KR expression vector. As shown in 

figure 12B, the dominant negative Erk8 molecule caused a strong, although incomplete 

inhibition of RET/PTC3-dependent c-jun promoter stimulation, suggesting the existence 

of both Erk8-dependent and -independent pathways linking RET/PTC3 to the expression 

of the c-jun proto-oncogene.  
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Discussion 
 

PDGF induces c-myc expression through the Src-dependent activation of the 

Vav2 exchange factor, acting on the small GTPase Rac (Chiariello et al., 2001). By 

studying the downstream components of the Rac pathway, in the first study, we show that 

JNK and two AP-1 family members, c-Jun and JunD, are essential components of the 

signaling cascade that mediates PDGF stimulation of c-myc expression (Fig. 13), which, 

significantly, establishes a new functional connection between Jun proteins and the c-myc 

proto-oncogene. The proposed pathway also suggests a mechanism by which both JNK 

and Jun proteins might exert their proliferative or apoptotic potential, through the 

expression of the c-myc proto-oncogene. Further work will be required to establish the 

contribution of the “JNK-Jun pathway” to the biological responses of tyrosine kinase 

receptors such as the PDGF receptors as well as other membrane receptors that use the c-

Myc protein to signal cellular proliferation (Iavarone et al., 2003). 

The complexity of the mechanisms mediating intracellular signaling by RET and 

its activated forms, the RET/PTC and MEN2 oncogenes, has just begun to be appreciated. 

Indeed, the biological functions of these proteins result from the coordinated activity of 

multiple kinase cascades, whose integrated signals control renal development, 

histogenesis of the enteric nervous system and, possibly, tumor formation (Nikiforov, 

2002; Pasini et al., 1996; Santoro et al., 2004). In the second study, finding that 

RET/PTC3 activates Erk8 raises the possibility of a novel Erk8-dependent signaling 

pathway controlling RET biological functions. Interestingly, we have shown that Erk8 

activation depends on the integrity of tyrosine
981

, while tyrosine
1062

 mutation does not 

affect RET/PTC3-dependent activation of the kinase. This result clearly differentiates 

Erk8 from other MAP kinases already involved in RET signaling whose activation, on the 

contrary, strictly depends on RET tyrosine
1062

 (Hayashi et al., 2000).  

Although RET tyrosine
981

 has been previously recognized as a docking site for 

c-Src (Encinas et al., 2004) and this kinase modulates Erk8 activation (Abe et al., 2002), 

surprisingly, RET/PTC3 activation of Erk8 does not depend on c-Src. This result 

therefore suggests that additional molecules interact with tyrosine
981

 of RET/PTC3 and 

are responsible for the control of Erk8 activity. Indeed, in this report we present evidences 

that c-Abl controls RET/PTC3-dependent Erk8 activating phosphorylation (Fig. 14). As a 

corollary to this finding, for the first time we show that c-Abl is able to mediate RET-

dependent signaling pathways. Not only RET/PTC3 induces c-Abl phosphorylation but 
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such phenomenon also seems to be mediated by tyrosine
981

, in line with our observation 

that this tyrosine mediates Erk8 activation. These findings strongly support each other, 

especially considering that, up to now, the only known signaling molecule downstream of 

this tyrosine was c-Src, while most of the other RET effectors depended on the integrity 

of tyrosine
1062

.  

c-Abl as well as c-Src contain well characterized SH3 domains, with an high 

degree of conservation in terms of sequence identity and structure (Hantschel & Superti-

Furga, 2004). In c-Abl, this domain is important both for interaction with different 

proteins and for participation to an intramolecular regulatory mechanism (Wang, 2004). 

On the other hand, Erk8 contains two putative SH3-binding sites in its C-terminal tail 

(Abe et al., 2002). As the c-Src SH3 domain interacts in vitro with Erk8 (Abe et al., 2002) 

and we have demonstrated that c-Abl interacts in vivo with this MAP kinase, it is possible 

that this interaction is mediated by the c-Abl SH3 domain. This hypothesis is currently 

under investigation.  

The more recently identified Erk5, Erk7 and Erk8 molecules differentiate from 

classical MAP kinases (Erks, Jnks and p38s) in that they present long carboxy-terminal 

domains with no strong homology to other mammalian proteins. By using a naturally 

occurring Erk8 splice variant, Erk8δ, lacking the long carboxy-terminal domain, we show 

a key role for this domain in RET/PTC3-dependent activation. It is intriguing the 

possibility that distinct stimuli differently activate the Erk8 and Erk8δ proteins and, 

conversely, that Erk8δ may represent a modulator of Erk8 activation.  

Upon activation of different MAP kinases, a large number of transcription 

factors appears to control the expression of several growth promoting genes, such as c-jun 

and c-fos, and, through these, control a vast variety of cellular functions. Specifically, the 

c-jun promoter has already been show to represent a key site for the integration of signals 

coming from both cellular oncogenes (Chiariello et al., 2000) and extracellular ligands 

(Marinissen et al., 1999). It is therefore not surprising our observation that a dominant 

negative Erk8 molecule only partially inhibits the activation of the c-jun promoter. 

Indeed, we have previously demonstrated that signaling from RET impinges on the 

activation of at least another MAP kinase, Jnk (Chiariello et al., 1998), which is able to 

control the activity of the c-jun promoter (Marinissen et al., 1999). We can therefore 

expect Erk8 to be part of the complex network of kinases, whose activation ultimately 
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determines the specific biological response to the activation of RET and its related 

oncogenes in different cellular environments. 
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Conclusions 

 

In mammals, MAP kinases signaling cascades regulate important cellular 

processes including gene expression, cell proliferation, cell motility, cell survival and cell 

death. The continual characterization of MAP kinases signaling complexes and the 

identification of novel substrates should reveal overlapping and unique biological 

functions for the various MAP kinases (Roux and Bleins, 2004). Less than a decade ago 

the kinases constituting mammalian MAPK pathway were identified through intense 

efforts in attempt to understand the molecular events underlying cellular responses to 

extracellular signals. During this decade the kinases constituting MAPK pathways have 

come to be appreciated as key cellular signal transducers and thus attractive targets for 

drug development. Successful drug development has required the demonstration that a 

large gene family with highly conserved catalytic core could be targeted with specific and 

potent small-molecule inhibitors. These efforts are now beginning to be useful with 

initiation of clinical trials in multiple human diseases (English and Cobb, 2002). 

In conclusion, the data shown in this work illustrate the role of two relevant 

MAP kinase family members involved in the activation of nuclear signals primarly 

elicited by PDGF and Ret receptors: the former, JNK on transcriptional acivation of c-

myc; the latter, ERK8 on  the signaling c-Abl mediates RET/PTC3. Further work will be 

required to estabilish how these signals integrate and regulate the transcription of target 

genes. 
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