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Abstract
When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, we have the
maximum of efficiency, i.e. we obtain the maximum available work. Similarly the reversible heat pumps transfer entropy
from a cold heat source to a hotter one with the minimum expense of energy. On the contrary if we are faced with non
reversible devices there is some Lost Work for heat engines, and some Extra Work for heat pumps. These quantities are
both related to the Entropy production. The Lost Work, i.e. W =W, —-W is also called ‘degraded energy’ or

Lost Rev Irrev

=W

Irrev

‘Energy unavailable to do work’. The Extra Work, i.e. W

foxtra —W,., , is the excess of work performed on the

system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the
irreversible process). In this paper, which follows two previous ones on the Lost Work [Phil. Mag. 87, 569 (2007), Phil.
Mag. 88 4177-4187 (2008)] both quantities are analyzed in deep and are evaluated for a process with complexity, i.e. the
stepwise Circular Cycle which is similar to the stepwise Carnot cycle [Physica A314, 331 (2002)]. The stepwise Circular
Cycle is a cycle performed by means of N small weights dw which are first added and then removed from the piston of
the vessel containing the gas or viceversa. The work performed by the gas can be found as increase of the potential
energy of the dw’s. We identify each single dw and thus evaluate its rising i.e. its increase in potential energy. In such a
way we find how the energy output of the cycle is distributed among the dw’s. The size of the dw’s affects the Entropy
production and therefore the Lost and Extra work. The rising distribution depends on the removing process we choose.

1 - Introduction

As pointed out in a previous paper [1], entropy production and its relation to the available energy are
fascinating subjects which in last years have attracted many physics researches [5-11]. It is well
known [1-10] that for some elementary irreversible process, like the irreversible isothermal
expansion of a gas in contact with a heat source at temperature T, the work done by the gas

W_ =W

Irrev out

is related to the reversible isothermal work W,

(i.e. the work performed by the gas in
the corresponding reversible process) by the relation

W,y =Wee, —TAS, (1)
where AS, is the total entropy change of the universe (system + environment). The degraded energy

TAS, is usually called ‘the Lost work” W,

Lost

WLost :WRev _Vvout (2)

The latter can be interpreted as the missing work: i.e. the additional work that could have been done
in the related reversible process (here the reversible isothermal expansion); it is also called ‘energy
unavailable to do work’.

On another hand in the irreversible isothermal compression TAS; is called W,

i.e. the excess of
work performed on the system in the irreversible process with respect to the reversible one.
W :Vvin _WReV (3)

Extra
where now W, =W, . Due to the energy balance, the same relation holds for the amounts of heat

Irrev

given to the source T, i.e. we have

Qout = QReV + TASJ (4)
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Therefore TAS, is also called the ‘Excess of heat’ (Q,,, ), 1.e. the additional heat that has been

given to the source [8,9].
The total variation of Entropy, AS,, is usually called ‘Entropy production’; we shall call the latter

7, . The second Law claims that 7, >20and the entropy is an extensive quantity which in the
transfers between systems can only increase or stay unchanged.

2.1 - Entropy production and Lost Work and Extra Work in isothermal irreversible processes.

Let us first consider the isothermal irreversible expansion (A—B) of an ideal gas in contact with a
heat source at temperature T where V; =V, +AV and B, =P, —AP with AP >0, AV > 0. In such

a simple process some heat ' Q, =W, = P,AV = (P, —AP)AV goes from the heat source T to the
= T% = %
T T

ideal gas. There is an increase of entropy of the ideal gas, AS, and a decrease of

the entropy of the heat source [ j where
B
-]

2
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therefore the entropy production is

7, =AS, = e —%>0 5)
Since Qg,, > Q, we find in the ideal gas an amount of entropy greater than that taken from the heat

source T . If, for example, AV =3V, we have 7, = Rln4 —% R=0.636R. On the other hand for the

isothermal irreversible compression of the ideal gas (B—A) some heat Q_, goes from the gas to the

_ ¢ 6QRev QReV
[

source at temperature T. We have a decrease of the gas entropy AS, == and an

increase of the source entropy, [%j, where Q , =W, = P,(V, -V,)=PAV. Therefore the

entropy production in the compression is

7Z.U _ASJ — Qout _QReV >0

T (since Q> Qgey); (6)

which, for AV =3V, gives z, = PA_?V - Rln(l @Vj 3R-RIn4=1.614R.

A
Observe that in the compression the entropy production is much bigger than in the expansion; here
we will show how this is related to the wasting of energy. In order to find how the previous entropy
productions affects the dissipation of energy, we have to remark that the irreversibility of a generic
process (A—B) is due, in general, to internal and external irreversibility, therefore, as shown in
[1,2,5] the related entropy production 7, can be expressed as a sum of two terms: the internal

entropy production, 7,, >0 and the external entropy production, 7., >0 ie.
Ty = it + T ext (7)

' The quantities Q, , Q,,» Q.. are positive.
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This result is not trivial since 7, # AS,,; there are in fact many processes for which AS,( <0 and
. 1s defined [1,2,5] by the relation

ASs,ys = Sln - Sout + ”int (8)

where S and S, are respectively the quantity of entropy which respectively comes into and comes

@Rev
T

7. 2 0. The system entropy production =

mnt —

B
out of the system in the irreversible process; AS = '[ is the entropy variation of the system
A

from A to B and does not depend on the particular process. Similarly the external Entropy
production, z_, is given by the relation

AS — Slixt _ Sext + ﬁext (9)

ext out

or by relation (7). It is easy to verify that for both previous irreversible isothermal processes 7, =0

ext

and therefore that for both the expansion and the compression 7, = 7. In the Appendix we give

the relations for the Lost Work and Extra Work for isothermal processes with internal and external
irreversibility (7., #0). From relations (A4) and (A6) it follows that the Lost Work for an

ext

isothermal expansion at temperature T =T, and without external irreversibility (7, =0) is

WLost = WRev _Vvout = T07Z-int (10)
and that the Extra Work for an isothermal compressionat T =T, (with z_, =0) is

WExtra = Vvin _WReV = TBﬂ-int (1 l)

Therefore we understand that in the irreversible compression much more energy is wasted than in
the irreversible expansion.

2.2 - Entropy production, Lost Work and Extra Work in isobaric irreversible processes

Let us consider the irreversible isobaric expansion at pressure P, (heating) of one mole of
monatomic ideal gas from the state A to the state B for which, for example, T; = 2T, . The ideal gas,
initially at temperature T,, is brought in thermal contact with the source T, =2T,, then an

Figurel- ...

irreversible isobaric expansion at pressure P,= P, = P™ takes place and the ideal gas reaches the
final state B. Let V, be the initial volume and V; the final volume. In the expansion the gas has
performed the work (=E_,)

Wiy =W, = Pa(Vg —=Va) = R(Tg —Tp) (12)

irrev out
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and has extracted from the source T, the heat (=E, ) |Qi

we understand that there has been an increase of internal energy
AU, =E,-E,=C Tz -T,)
where C, and C, are the molar specific heats respectively at constant pressure and at constant

= C,(Tz —T,) . From the energy balance

1rev

volume. For this process

my = AS,, +AS™ =CP1nT—B—|Qﬂ (13)
TA TB

and 7

ext ?

As in the previous case we want to find 7,

mnt

i.e. the Entropy production due to the internal
irreversibility and the Entropy production due to the external irreversibility. The path we follow is to
analyse the related externally reversible process (Eso-reversible process); for this we evaluate the
Entropy production, which is therefore due only to the internal irreversibility. This will be =, .

From this we can have r_, (the Entropy production due to the external irreversibility) by subtracting

ext
r,, from 7, ie.

— (14)

ext

To perform the Eso-reversible process we need a sequence of heat sources ranging from T, to T;,
from which the gas takes, at each infinitesimal step, the heat JQ to perform the irreversible isobaric

expansion, and an auxiliary reversible heat engine which takes the heat JQ"° = TI_—BéQ from the

source at temperature T, and gives the heat &Q =C.dT to the source at temperature T of the

sequence. Such an engine performs the work oW, = JQ"™ (1 —le at each step. Obviously

B
B B

dT T,

Eso Eso B
= =C.Ty| =—=T CoIn—=.

Q j R =CT, j T =T Coing?
In this Externally reversible process (Eso-reversible) the Entropy production due to the Internal
irreversibility oz, at each step is due to the infinitesimal variation of Entropy of the gas (i.e.

dT

ds;y = CP?) and to the infinitesimal variation of Entropy of the heat source of the sequence

which is active in the step (i.e. dS2° =-C, O_'r—T), hence

ext

sz, =ds™ +ds =, 9 ¢, 9T _
T T

Syst ext

We find therefore that 7, =0, which means that there is no internal Entropy production in this Eso-
reversible process; therefore

Tlext =Ty = CPIHI_B _|Q'|i'ﬂ (15)
A B

Remark that the global Entropy change is related the local Entropy productions by means of the
following relation

7w, =A], =AS, +AS™ =7,

Sys nt

+ ﬂ’-ext

For the irreversible isobaric expansion at pressure P, (heating) of one mole of monatomic ideal gas
from the state A to the state B for which, for example, T,=2T, and C, = % R the irreversible work
done by the gas and the heat taken from the source T; are W =P, (V;-V,)=R([;-T,)=RT,
and Q ., =C,(T, —T,) =C.T, ; therefore

1UTeV
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Texy = Ty :CPIHI_B —|Q_;_ﬂ=cp[ln2—%j=0.l93cp. (16)
A B

To find the Lost Work we need the available total Reversible Work. The total Reversible work is the
reversible work made by the gas (which is identical to the irreversible work) and the work made by

the auxiliary reversible engine working between T, and the variable temperature T of the sequence
of sources which we use to perform the reversible isobaric expansion.

B
W =W AN = RV —V)+ 5@'*{1 —l]
A TB
where

Q™ = Tr—BCPdT

Therefore

T
=CpTg lnT_B_ Co(Tg—Ty)

A

W — WTotal _W

Lost Rev irrev

On the other hand by relation (A4)
W

Lost

T
=CF,TBln_I_—B -C.(Ty-T,) (17)

A

=Tz, =Tgm

ext

re. W, =T, =2T,7x

o = 0.386C,T,.
For the irreversible isobaric compression at pressure P, (cooling) of one mole of monatomic ideal

gas from the state B to the state A for which as before, Ty = 2T, , the irreversible work is

Wiy =—PaVg =V =-R(T; - Ty).
Following the same steps as for the expansion we find

”ext :”U :_CPlnT_B +|Qiﬂ
A TA
and
T

WExtra = TA 7T u = |Qirrev

—CPTAlnT—B (18)

a

ie. for T;=2T,
7= Cp(1-In2)=0307C, and W,

eia = 1o 77, = 0.307C,T,
Observe that here, as opposed to the previous isothermal process, we have

W =W,

Lost — Extra

In the next section by means of relations (10,11) and (17,18) we study the Lost Work and the Extra
Work for the Stepwise Circular Cycle.

3 - The step-wise ideal gas Circular cycle and dissipated energy

In order to perform an ideal gas stepwise cycle we need a lot of heat sources (N) and heat sinks (N),
a vessel with a free piston and a large number (N) of small “driving weights” to increase or decrease
slowly, step by step, the external pressure P. If the steps are infinitesimally small the cycle is
“reversible”. In order to evaluate the work performed by the ideal gas during the cycle, the
displacements of the small driving weights (dw) must be done carefully. We let them move on and
off the piston only horizontally. To this end we assume that the handle of the piston is endowed with
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so many shelves that we can move each dw horizontally (and without friction) from (or to) the
corresponding fixed shelf which belongs to the dw’s Reservoir. (The dw’s Reservoir is a vertical
sequence of horizontal shelves on which the dw’s are initially located). Such an ideal device is
shown schematically in Figure 2.

T ee ¢ P
' yy Yyl

Figure2
a) The adiabatic vessd with some dw’s on the piston.
b) Cross section view of the vessdl showing two supportsfor the dw’s (the dw's Reservair).

The Circular cycle can be performed through Z=2N steps. In each of the first N steps one dw is
added on the piston (and removed from the Reservoir at its initial height hy ); in each of the
following N steps one dw is removed from the piston (and brought back to the Reservoir at its final
height, say hy). The k-th dw is the dw which has been added on the piston at the k-th step in the
compression. When the dw is added on the piston of the vessel in thermal contact with the sink
Ti the gas performs an isothermal compression; when it is removed the process is the isothermal
expansion. Each isothermal process is followed by an isobaric process: this is a compression
(volume reduction) in the first N/2 steps and an expansion in the following N/2 steps. The reverse
happens in the N removing steps. Therefore at the end of the cycle the overall raising, on the dw’s
Reservoir, of the k-th dw from its initial height (hyo) to the final one (hy) is

h =h, -h, (16)
Since a friction-less process is assumed, the vertical motion of the dw’s is only due to the gas and the
total work (W) performed by the ideal gas can be found as increase of potential energy of the dw’s
on the Reservorir, i.e.

W:%Pim/i:mngN;hk (17)

i=1
where P; is the external pressure at step i (after the addition or removal of the i-th dw) AV, =V, -V,_,,
is the volume variation from step (i—1) to step i, and mg is the weight of the generic dw. Relation
(17) has been proved elsewhere [3]. In the next section the raisings of the single dw on the reservoir
are evaluated.

3.1- Theraisings of thedw’sfor a step-wise Circular cycle

The cycle we consider is reported in Figure 3. The chosen values of P and V are easily available in
ordinary conditions. In the first N steps the dw’s are added on the piston to perform first the process
(A—B). In the remaining N steps the dw’s are removed from the piston in order to return to the
initial state (B—A). The working fluid is the ideal gas and we assume the free piston has no mass.
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The vertical vessel’s walls are heat insulating and the vessel’s diathermal floor is made adiabatic
when needed. The chosen circular cycle is described in the PV plane by the relation

2]
Mo I,

where P, =15x10" atm, V, =17.4 1, r, =5l and r, = 5x10"" atm. Since T isat 6 =—(3/4)r

min min

and T, is at 6, =—(7/4)z , it follows that the steps from 1 to N/4 are cooling steps. These are
followed by N heating steps and (3 / 4)N cooling steps.

°K
/,/’1 - \\ /~\
sl // /\ . / \ 800
/ \
A e \ 700
-0 '/ \\ B \ )
6 )| \
1.4 / 6@0
\ 500
) \\ e omex . emn
1.2 \\1.4 1.6 ///1.3 PR 6 5 4 \:\1‘ 2// 1 [¢]
670

Figure 3 - The step-wise Circular cycle with very small stepsand 7(0) the temper ature along the clock-wise cycle.

Let us call P,=1 atm and B,=2 atm, respectively, the values of the pressure at bottom and at the top
of the cycle. We have considered here N = 1033 dw’s and therefore 2N = 2066 steps. The mass of
each dw is m=0.1 Kg. The surface of the piston is S=100 cm’, so that at each step in the
compression the pressure increase is AP = P,/1033, i.e.

P=P,+iAP for ie[,N] and P,=P,+NAP (19)
And for each step in the expansion the pressure decreases by AP i.e.
Pii =Pa+(N=DAP=P—IAP for |e[l,N] (20)

Notice moreover that V,, =V, and V, =V,, 1.e. the volume at step 2N is the initial volume and the
volume at step N is the volume at the top of the cycle. Of course for each P, i<[l,N], by means of
relation (18), there are V(P)__ and V(P)

respectively in the “expansion” (B—A) and in the “compression” (A—B), and also two temperatures
T(R)., and T(R) All that can also be written in the following way: for each P, i e [1,2N] there

is a volume V, =V(P) and a heat (source or sink) at temperature T. = T(P). Keeping in mind how

which are the volume at the pressure P; taken

exp comp

exp comp *

we perform the Circular cycle, let us take a closer look at the last dw: when this small weight leaves
the Reservoir and is added on the piston, it (together with the piston and the previous dw’s) moves

downward, performing the isothermal compression step (P, V,_, — P, V4. ) at temperature Ty ,;

then the gas is heated by the heat source T, at pressure P = P, performing the expansion

N
(Vy_, — Vs); afterwards, at step N+1, the small weight is removed and goes to rest on the fixed shelf
of the Reservoir in front of it. It will stay on the piston for one step only! i.e.

hy =MV —V)/S
For this last step let us call AT, =T, —Ty_,, AV, =V, —Vyi» AVY =V, -V, _; from which
we have AV, =V, -V, , =AV + AV, ,. In this last step the sink at temperature T _, takes the

out in
entropy —=-, and the source at temperature T, gives the entropy T_N to the system, where

N -1 N

o= PyAV,_, and Q. = P A",.
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Since P,_V,,=P,V,,=RT,,, it follows that NoL = and
T N -1 TN -1 I:)N -1
ll\ll1 — C o ATN .
TN TN
Similarly for the last but one dw:
1 1

hN—l = g(VNJrl _VN—Z ) = g (VZN—(N—I) _V(N—l)—l) (21)

Therefore for the k-th dw
1
hk = g (VZN—k _Vk—l)’

and

h :lS(VZNl _Vo)'

For a very large number N we can write

mm=é&m>

comp ]

~V(P)

exp

Were V(P),, and V(P)
“compression”, and h(P)is the raising of the dw which, added on the piston, gives rise to the
pressure P. From this:

V(P)exp :VO + \/rV2 _(P_ R))z rVz/rF’2 and V(P)comp :VO _\/rV2 _(P_ PO )2 rV2 /rP2

For £, #r, one has elliptic cycles.

are the volume at the pressure P in the “expansion” and in the

exp comp

For a reversible Circular Cycle that starts from V, =17.4 1and P, = 10x10"' = I atm, the raisings
h(P) are easily obtained from relations (18) and (21):

2
mm=§Jm“@—%VV/ﬁ, (22)

whose values are shown in Figure 4.

0.5 —

0.4 e N o

//
wl \
0.2 /
0.1 \
P

12 1.4 1.6 1.8 2

Figure4 - Overall raising on thereservoir of each dw.

3.2 - Lost work and extra work step by step and thetotal dissipated energy

One may observe that in the cycle there has been an Entropy production: in fact when the last dw is
added on the piston (the N-th step) we had an isothermal compression at temperature T , and an
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isobaric expansion from T, , to T,. By means of relation (6) and (19), for the isothermal

*

. : AV
compression (AV, , <0, AP = — N-L) we have
I:)N -1 V N -1
out * 2
Ty = DL Rln(l +—AVNIJ = 5( AP j _
TNfl N-1 2 I:)Nfl

For the expansion and isobaric heating we have

2
szExt_QN +C,In 1+AT CF’ ATy :
Ty T, 2\ Ty

N-1

Observe that the same result holds for isobaric cooling. Therefore in the N-th step we have
W i = T @nd Wy [ = Ty gy - Finally we can conclude that the Dissipated energy i.e.

W, is

III

2

S Sy AP NC,[ AT,

W. = +T P i
D ;( | —int 7Z-| Ext e [ Plj +;—2 [—,__I_I j

Now we give some upper bound to W, (N). Let
n, = N/2 be the first N/2 adding steps for which P> P,, V<V, T =T _

n, = N/2 be the second N/2 adding steps for which P> P,V <V, T >T_
n, = N/2 be the third N/2 removing steps for which P> B,V <V, , T >T,

n, = N/2 be the fourth N/2 removing steps for which P>P,, V<V, , T>T

min

2 2 2 2
2N
WD | 17Z'| —int +-I_i7z-ifExt)£ﬂ Vol[ APJ + CP [ A-I—I j +V01[A_P +& i J
1

2 2 \/FA 2 \/-I—min 2 \/EO 2

2 2 2 2
1{ AP C, | AT 1 AP C
Vo= — | +—=2 | = | +V, | — | +—2
Dz[\l%j 2 [VTOJ Dz[VPA 2 -I—minj

B>
—

Bl

s

And, since AT <%
2N
WD = (-I-I 17Z'| int —|—-I-i7z-i—Ext)£E(A|D)2 ﬁ—i—ﬁ—l_V_D—'_V_D +CPAT
= 4 P R R PR
Since V, = 4VD , B = 3 — Pa, choosing C_AT ~ORT_SPV , we have
5 2 2N 2N
2N 2
WD = (-I-I 17Z'| int +-I-i7z-i—Ext)£ﬂ ﬂ 3VD éﬂ’
o 4N P, 2 N
I:)AVD

2N
W, = Z(Ti—lﬂ-i—int +Ti7zi45xt)S 3

i=1
From this upper bound we see that, for N — oo, W, (N) — 0.

4 - Summary
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In this paper we have introduced the Extra Work which, together with the Lost Work, gives the
Dissipated energy in the irreversible processes. The analysis is very accurate for irreversible
isothermal process and for isobaric processes. The new and previous results are used to evaluate the
Dissipated energy for a stepwise ideal gas Circular Cycle, a system with complexity.
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Appendix - Lost Work and Extra Work for isothermal processes with external irreversibility

Here we evaluate the Lost Work for the expansion and the Extra work for the compression when
there is external irreversibility. In Sec. 2.2 and in Sec. 3 of paper [1] we have shown that, if the
irreversible isothermal expansion is performed by means of a (shorter) contact with a heat source at
T.>T,wehave 7, #0, ie.

ext

L (A1)
T T

ext

and for the Endo—reversible process, i.e. the process in which the gas performs the reversible
isothermal expansion A— B,

ﬂ_i{:do — QReV _ QReV (A2)
T T

ext
Similarly, if the irreversible isothermal compression is performed by means of a (shorter) contact
with an heat source at T_ <T , we have 7, #0, ie.

ext_-l-

ext

T and ﬂfirtldo = % _ Q_Fev ) (A3)

ext
To evaluate the Lost Work for the expansion with T, >T we calculate the work available in the

related Reversible process and subtract from it W, , the effective work done in the irreversible

out
process. This difference gives the Lost Work.
The Reversible Work is the Reversible work of the gas plus the work of an auxiliary reversible

engine working between T, and T . For the gas W, = Q... . The auxiliary reversible engine, which

brings the heat Q. to the system (the ideal gas at temperature T ) and takes from the heat source

at temperature T

ext

Rev

the heat Q ReVT_i_’“ , performs the work W™ = Q,., T_i_xt

(1 —lj . Therefore the

ext

total reversible work is

T

ext

WRTe(\)/tal = WRgeaf/ +WReen\%1 "= QReV + QReV T-i-x . (1 _lj
The Work performed by the gas in the irreversible expansion is W, = Q. , therefore

T
_ Total _ _ ext
WLost - WReV Vvout - QReV Qin + QRev

QRev = Tﬂ-in +T ”E“do (A4)

ext’ " ext

.
On the other hand for the compression with a heat sourceat T_, =T
WExtra :Vvin _WReV = Qout _QReV = Tﬂ-int (AS )

but if one uses a heat source at T_, < T, we have to subtract the work of the reversible engine from
the Reversible work necessary to perform the isothermal compression at temperature T, which



11

. n T
subtracts Q,,, from the heat source at temperature T (the gas) and gives the heat Q"" = _‘;_—’“ . tO
the source at temperature T_, i.e.

~ Qu Q
Wext :Q _ Qmm — T out out — T T ’
Rev out ext -I-eXt T ext’"ext
therefore the Extra work is
€XI Qou
WExtra :Vvin - Rev _WRe\t/) = Qout - QReV + Qout _Text T - = Tﬂ-int +Text7z-ext : (A6)
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