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Abstract 
When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, we have the 
maximum of efficiency, i.e. we obtain the maximum available work. Similarly the reversible heat pumps transfer entropy 
from a cold heat source to a hotter one with the minimum expense of energy. On the contrary if we are faced with non 
reversible devices there is some Lost Work for heat engines, and some Extra Work for heat pumps. These quantities are 
both related to the Entropy production. The Lost Work, i.e. IrrevRevLost WWW ��  , is also called ‘degraded energy’ or 

‘Energy unavailable to do work’. The Extra Work, i.e. RevExtra WWW Irrev ��  , is the excess of work performed on the 

system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the 
irreversible process). In this paper, which follows two previous ones on the Lost Work [Phil. Mag. 87, 569 (2007), Phil. 
Mag. 88 4177-4187 (2008)] both quantities are analyzed in deep and are evaluated for a process with complexity, i.e. the 
stepwise Circular Cycle which is similar to the stepwise Carnot cycle [Physica A314, 331 (2002)]. The stepwise Circular 
Cycle is a cycle performed by means of N small weights dw which are first added and then removed from the piston of 
the vessel containing the gas or viceversa. The work performed by the gas can be found as increase of the potential 
energy of the dw’s. We identify each single dw and thus evaluate its rising i.e. its increase in potential energy. In such a 
way we find how the energy output of the cycle is distributed among the dw’s. The size of the dw’s affects the Entropy 
production and therefore the Lost and Extra work. The rising distribution depends on the removing process we choose. 
 
 
1 - Introduction 
 
As pointed out in a previous paper [1], entropy production and its relation to the available energy are 
fascinating subjects which in last years have attracted many physics researches [5-11]. It is well 
known [1-10] that for some elementary irreversible process, like the irreversible isothermal 
expansion of a gas in contact with a heat source at temperature T , the work done by the gas 

outIrrev WW �  is related to the reversible isothermal work RevW  (i.e. the work performed by the gas in 

the corresponding reversible process) by the relation 

USTWW ��� Revout                                                                   (1) 

where US�  is the total entropy change of the universe (system + environment). The degraded energy 

UST�  is usually called ‘the Lost work’ LostW  

outRevLost WWW ��                                                                   (2) 

 
The latter can be interpreted as the missing work: i.e. the additional work that could have been done 
in the related reversible process (here the reversible isothermal expansion); it is also called ‘energy 
unavailable to do work’. 
On another hand in the irreversible isothermal compression UST� is called ExtraW  i.e. the excess of 

work performed on the system in the irreversible process with respect to the reversible one. 

RevinExtra WWW ��                                                                   (3) 

where now inIrrev WW � . Due to the energy balance, the same relation holds for the amounts of heat 

given to the source T , i.e. we have 

USTQQ ��� Revout                                                                  (4) 
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Therefore UST�  is also called the ‘Excess of heat’ ( ExtraQ ), i.e. the additional heat that has been 

given to the source [8,9]. 
The total variation of Entropy, US� , is usually called ‘Entropy production’; we shall call the latter 

U� . The second Law claims that 0�U� and the entropy is an extensive quantity which in the 

transfers between systems can only increase or stay unchanged. 
 
 
2.1 - Entropy production and Lost Work and Extra Work in isothermal irreversible processes. 
 
Let us first consider the isothermal irreversible expansion (A→B) of an ideal gas in contact with a 
heat source at temperature T  where VVV AB ���  and PPP AB ���  with 0��P , 0��V . In such 

a simple process some heat 1 � � VPPVPWQ AB ������� outin  goes from the heat source T  to the 

ideal gas. There is an increase of entropy of the ideal gas, 
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therefore the entropy production is 

0inRev �����
T

Q

T

Q
SUU�                                                                (5) 

Since inRev QQ �  we find in the ideal gas an amount of entropy greater than that taken from the heat 

source T . If, for example, AVV 3��  we have RRRU 636.0
4

3
4ln ���� . On the other hand for the 

isothermal irreversible compression of the ideal gas (B→A) some heat outQ  goes from the gas to the 

source at temperature T . We have a decrease of the gas entropy 
T

Q

T

Q
S

B

A

RevRev
gas ���� �

�
 and an 

increase of the source entropy, �
�
�

�
�
�

T

Qout , where � � VPVVPWQ AABA ����� inout . Therefore the 

entropy production in the compression is 

0Revout �����
T

Q

T

Q
SUU�        (since Revout QQ � ),                                         (6) 

which, for AVV 3��  gives RRR
V

V
R

T

VP

A
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U 614.14ln31ln �����
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��
�

� �
��

�
�� . 

Observe that in the compression the entropy production is much bigger than in the expansion; here 
we will show how this is related to the wasting of energy. In order to find how the previous entropy 
productions affects the dissipation of energy, we have to remark that the irreversibility of a generic 
process (A→B) is due, in general, to internal and external irreversibility, therefore, as shown in 
[1,2,5] the related entropy production U�  can be expressed as a sum of two terms: the internal 

entropy production, 0int ��  and the external entropy production, 0ext ��  i.e. 

extint ��� ��U                                                                            (7)    

                                                
1 The quantities inQ , outQ , RevQ  are positive. 
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This result is not trivial since sysS��int� ; there are in fact many processes for which 0sys ��S  and 

0int �� . The system entropy production int�  is defined [1,2,5] by the relation 

intoutinsys ����� SSS                                                                    (8) 

where inS  and outS  are respectively the quantity of entropy which respectively comes into and comes 

out of the system in the irreversible process; ���
B

A sysT

Q
S Rev

sys

�
 is the entropy variation of the system 

from A to B and does not depend on the particular process. Similarly the external Entropy 
production, ext�  is given by the relation 

ext
ext
out

ext
inext ����� SSS                                                                    (9) 

or by relation (7). It is easy to verify that for both previous irreversible isothermal processes 0ext ��  

and therefore that for both the expansion and the compression U�� �int . In the Appendix we give 

the relations for the Lost Work and Extra Work for isothermal processes with internal and external 
irreversibility ( 0ext �� ). From relations (A4) and (A6) it follows that the Lost Work for an 

isothermal expansion at temperature 0TT �  and without external irreversibility ( 0ext �� ) is 

int0outRevLost �TWWW ���                                                                  (10) 

and that the Extra Work for an isothermal compression at BTT �  (with 0ext �� ) is 

intRevinExtra �BTWWW ���                                                                  (11) 

Therefore we understand that in the irreversible compression much more energy is wasted than in 
the irreversible expansion. 
 
 
2.2 - Entropy production, Lost Work and Extra Work in isobaric irreversible processes 
 
Let us consider the irreversible isobaric expansion at pressure AP  (heating) of one mole of 

monatomic ideal gas from the state A to the state B for which, for example, AB TT 2� . The ideal gas, 

initially at temperature AT , is brought in thermal contact with the source AB TT 2� , then an 

irreversible isobaric expansion at pressure extPPP BA ��  takes place and the ideal gas reaches the 

final state B. Let AV be the initial volume and BV  the final volume. In the expansion the gas has 

performed the work (= )outE  

)()(outirrev ABABA TTRVVPWW �����                                               (12) 

Figure 1 - … 

AP

BT

BA
ext PPP ��
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and has extracted from the source BT  the heat (= inE ) )(irrev ABp TTCQ �� . From the energy balance 

we understand that there has been an increase of internal energy 
)(outin ABVAB TTCEEU �����  

where PC  and VC  are the molar specific heats respectively at constant pressure and at constant 

volume. For this process 

BA

B
PU T

Q

T

T
CSS irrevext

sys ln �������                                               (13) 

As in the previous case we want to find int�  and ext� , i.e. the Entropy production due to the internal 

irreversibility and the Entropy production due to the external irreversibility. The path we follow is to 
analyse the related externally reversible process (Eso-reversible process); for this we evaluate the 
Entropy production, which is therefore due only to the internal irreversibility. This will be int� . 

From this we can have ext�  (the Entropy production due to the external irreversibility) by subtracting 

int�  from U� , i.e. 

intext ��� �� U                                                                 (14) 

To perform the Eso-reversible process we need a sequence of heat sources ranging from AT  to BT , 
from which the gas takes, at each infinitesimal step, the heat Q�  to perform the irreversible isobaric 

expansion, and an auxiliary reversible heat engine which takes the heat Q
T

T
Q B �� �Eso  from the 

source at temperature BT  and gives the heat dTCQ P��  to the source at temperature T  of the 

sequence. Such an engine performs the work ��
�

�
��
�

�
��

BT

T
QW 1Eso

Rev ��  at each step. Obviously 
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B

A T

T
CT

T

dT
TCQQ lnEsoEso ��� ��� . 

In this Externally reversible process (Eso-reversible) the Entropy production due to the Internal 
irreversibility int��  at each step is due to the infinitesimal variation of Entropy of the gas (i.e. 

T

dT
CdS P�Eso

syst ) and to the infinitesimal variation of Entropy of the heat source of the sequence 

which is active in the step ( i.e. 
T

dT
CdS P��Eso

ext ), hence 

0Eso
ext

Eso
systint �����

T

dT
C

T

dT
CdSdS PP��  

We find therefore that 0int �� , which means that there is no internal Entropy production in this Eso-

reversible process; therefore 

BA

B
PU T

Q

T

T
C irrev

ext ln ��� ��                                                     (15) 

Remark that the global Entropy change is related the local Entropy productions by means of the 
following relation 

extint
ext

sys ��� �������� SSSUU  

For the irreversible isobaric expansion at pressure AP  (heating) of one mole of monatomic ideal gas 

from the state A to the state B for which, for example, AB TT 2�  and RCP 2

5�  the irreversible work 

done by the gas and the heat taken from the source BT  are AABABA RTTTRVVPW ����� )()(irrev  

and APABP TCTTCQ ��� )(irrev ; therefore 
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�

�
�
� ����� �� .                          (16) 

To find the Lost Work we need the available total Reversible Work. The total Reversible work is the 
reversible work made by the gas (which is identical to the irreversible work) and the work made by 
the auxiliary reversible engine working between BT and the variable temperature T of the sequence 
of sources which we use to perform the reversible isobaric expansion. 
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������ �
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Rev
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Rev
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where 

dTC
T

T
Q P

B�Eso�  

Therefore 

)(lnirrev
Total

RevLost ABP
A

B
BP TTC

T

T
TCWWW �����  

On the other hand by relation (A4) 

)(lnextLost ABP
A

B
BPBUB TTC

T

T
TCTTW ����� ��                                      (17) 

i.e. APAUB TCTTW 386.02 extLost ��� �� . 

For the irreversible isobaric compression at pressure AP  (cooling) of one mole of monatomic ideal 

gas from the state B to the state A for which as before, AB TT 2� , the irreversible work is 

)()(irrev ABABA TTRVVPW ������ . 

Following the same steps as for the expansion we find 

AA

B
PU T

Q

T

T
C irrev

ext ln ���� ��  

and 

a

B
APuA T

T
TCQTW lnirrevExtra ��� �                                                (18) 

 
i.e. for AB TT 2�  

PP CC 307.0)2ln1(ext ����      and     APuA TCTW 307.0Extra �� �  

Observe that here, as opposed to the previous isothermal process, we have 

ExtraLost WW �  

In the next section by means of relations (10,11) and (17,18) we study the Lost Work and the Extra 
Work for the Stepwise Circular Cycle. 
 
 
3 - The step-wise ideal gas Circular cycle and dissipated energy 
 
In order to perform an ideal gas stepwise cycle we need a lot of heat sources (N) and heat sinks (N), 
a vessel with a free piston and a large number (N) of small “driving weights” to increase or decrease 
slowly, step by step, the external pressure P. If the steps are infinitesimally small the cycle is 
“reversible”. In order to evaluate the work performed by the ideal gas during the cycle, the 
displacements of the small driving weights (dw) must be done carefully. We let them move on and 
off the piston only horizontally. To this end we assume that the handle of the piston is endowed with 
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so many shelves that we can move each dw horizontally (and without friction) from (or to) the 
corresponding fixed shelf which belongs to the dw’s Reservoir. (The dw’s Reservoir is a vertical 
sequence of horizontal shelves on which the dw’s are initially located). Such an ideal device is 
shown schematically in Figure 2. 

The Circular cycle can be performed through Z=2N steps. In each of the first N steps one dw is 
added on the piston (and removed from the Reservoir at its initial height h0 ); in each of the 
following N steps one dw is removed from the piston (and brought back to the Reservoir at its final 
height, say h,f). The k-th dw is the dw which has been added on the piston at the k-th step in the 
compression. When the dw is added on the piston of the vessel in thermal contact with the sink 

iT ,the gas performs an isothermal compression; when it is removed the process is the isothermal 
expansion. Each isothermal process is followed by an isobaric process: this is a compression 
(volume reduction) in the first N/2 steps and an expansion in the following N/2 steps. The reverse 
happens in the N removing steps. Therefore at the end of the cycle the overall raising, on the dw’s 
Reservoir, of the k-th dw from its initial height (hk0 ) to the final one )( kfh  is 

0 kkfk hhh ��                                                                         (16) 

Since a friction-less process is assumed, the vertical motion of the dw’s is only due to the gas and the 
total work (W) performed by the ideal gas can be found as increase of potential energy of the dw’s 
on the Reservoir, i.e. 

��
��

���
N

k

k

i

ii hmgVPW
1

  2N

1

                                                            (17) 

where Pi is the external pressure at step i (after the addition or removal of the i-th dw) 1���� iii VVV , 

is the volume variation from step (i–1) to step i, and mg is the weight of the generic dw. Relation 
(17) has been proved elsewhere [3]. In the next section the raisings of the single dw on the reservoir 
are evaluated. 
 
 
3.1 - The raisings of the dw’s for a step-wise Circular cycle  
 
The cycle we consider is reported in Figure 3. The chosen values of P and V are easily available in 
ordinary conditions. In the first N steps the dw’s are added on the piston to perform first the process 
(A→B). In the remaining N steps the dw’s are removed from the piston in order to return to the 
initial state (B→A). The working fluid is the ideal gas and we assume the free piston has no mass. 

 

Figure 2 
a) The adiabatic vessel with some dw’s on the piston. 
b) Cross section view of the vessel showing two supports for the dw’s (the dw’s Reservoir). 



 7 

The vertical vessel’s walls are heat insulating and the vessel’s diathermal floor is made adiabatic 
when needed. The chosen circular cycle is described in the PV plane by the relation 

 1
2

0

2

0 ���
�

�
��
�

� �
���

�

�
��
�

� �

VP r

VV

r

PP                                                           (18) 

where 0P  = 15×10–1 atm, 0V  = 17.4 l, Vr  = 5 l and Pr  = 5×10–1 atm. Since minT  is at � ��� 4/3min ��  

and MaxT  is at � ��� 4/7Max �� , it follows that the steps from 1 to N/4 are cooling steps. These are 

followed by N heating steps and � �N4/3 cooling steps. 

Let us call 1�AP  atm and 2�BP  atm, respectively, the values of the pressure at bottom and at the top 
of the cycle. We have considered here N = 1033 dw’s and therefore 2N = 2066 steps. The mass of 
each dw is m = 0.1 Kg. The surface of the piston is S = 100 cm2, so that at each step in the 
compression the pressure increase is 1033/APP �� , i.e. 

PiPP Ai ���    for   � �Ni ,1�    and   PNPP AB ���                                           (19) 

And for each step in the expansion the pressure decreases by �P i.e. 
PlPPlNPP BAlN �������� )(    for   � �Nl ,1�                                             (20) 

Notice moreover that AN VV  2 �  and BN VV  � , i.e. the volume at step 2N is the initial volume and the 

volume at step N is the volume at the top of the cycle. Of course for each � �NiPi ,1, � , by means of 

relation (18), there are exp)( iPV  and comp)( iPV  which are the volume at the pressure Pi taken 

respectively in the “expansion” (B→A) and in the “compression” (A→B), and also two temperatures 

exp)( iPT  and comp)( iPT . All that can also be written in the following way: for each � �NiPi 2,1, �  there 

is a volume )( ii PVV �  and a heat (source or sink) at temperature )( ii PTT � . Keeping in mind how 

we perform the Circular cycle, let us take a closer look at the last dw: when this small weight leaves 
the Reservoir and is added on the piston, it (together with the piston and the previous dw’s) moves 
downward, performing the isothermal compression step ( *

111  ��� � NNNN VPVP ) at temperature 1�NT ; 

then the gas is heated by the heat source NT  at pressure BN PP �  performing the expansion 

( BN VV  *
1 �� ); afterwards, at step N+1, the small weight is removed and goes to rest on the fixed shelf 

of the Reservoir in front of it. It will stay on the piston for one step only! i.e. 
 )( 1 SVVh NNN ��� . 

For this last step let us call 1���� NNN TTT , 1
*

1
*

1 ��� ��� NNN VVV , *
1���� NN

p
N VVV ; from which 

we have *
11 �� ������� N

p
NNNN VVVVV . In this last step the sink at temperature 1�NT  takes the 

entropy 
1

out
1

�

�

N

N

T

Q
, and the source at temperature NT  gives the entropy 

N

N

T

Q in

 to the system, where 

*
1

out
1 �� �� NNN VPQ  and p

NNN PQ ��in . 

Figure 3 - The step-wise Circular cycle with very small steps and T(θ) the temperature along the clock-wise cycle. 
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Since 1
*

111  ���� �� NNNNN RTVPVP , it follows that 
11

1

1

out
1

��

�

�

� �
�

�
�
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N

N

N

P

PR

T
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T

Q
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N

N
P

N

N

T

T
C

T

Q �
�
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Similarly for the last but one dw: 

� � � �1)1()1(2211  
11

������� ���� NNNNNN VV
S

VV
S

h                                       (21) 

 
Therefore for the k-th dw 

� �12 
1

�� �� kkNk VV
S

h , 

and 

� �0121  
1

VV
S

h N �� � . 

For a very large number N we can write 

� �compexp )()(
1

)( PVPV
S

Ph ��  

Were exp)(PV  and comp)(PV  are the volume at the pressure P in the “expansion” and in the 

“compression”, and )(Ph is the raising of the dw which, added on the piston, gives rise to the 
pressure P. From this: 

� � 222
0

2
0exp /)( PVV rrPPrVPV ����      and     � � 222

0
2

0comp /)( PVV rrPPrVPV ����  

For PV rr �  one has elliptic cycles. 

For a reversible Circular Cycle that starts from 0V  =17.4 l and AP  = 10×10−1 = 1 atm, the raisings 

h(P) are easily obtained from relations (18) and (21): 

� � 222
0

2 /
2

)( PVV rrPPr
S

Ph ��� ,                                                (22) 

whose values are shown in Figure 4. 

 
 
 
3.2 - Lost work and extra work step by step and the total dissipated energy 
 
One may observe that in the cycle there has been an Entropy production: in fact when the last dw is 
added on the piston (the N-th step) we had an isothermal compression at temperature 1�NT  and an 

Figure 4 - Overall raising on the reservoir of each dw. 
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isobaric expansion from 1�NT  to NT . By means of relation (6) and (19), for the isothermal 

compression ( 0*
1 �� �NV , 

1
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 For the expansion and isobaric heating we have 
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Observe that the same result holds for isobaric cooling. Therefore in the N-th step we have 

int1extra ��� � NNN TW �  and ExtLost �� � NNN TW � . Finally we can conclude that the Dissipated energy i.e. 

DW  is 

� �
2

2

1

2

1

2

1
1

2

1
Extint1 22

1
�
�
�

�
�
�
�

� �
��

�
�

�
�
�
�

� �
��� ���

���
�

�
���

i

i
N

i

P

i

N

i
i

N

i
iiiiD

T

TC

P

P
VTTW ��  

Now we give some upper bound to )(NWD . Let 

2/1 Nn �  be the first N/2 adding steps for which APP � , 0VV � , minTT �  

2/2 Nn �  be the second N/2 adding steps for which 0PP � , 0VV � , CTT �  

2/3 Nn �  be the third N/2 removing steps for which 0PP � , DVV � , 0TT �  

2/4 Nn �  be the fourth N/2 removing steps for which APP � , DVV � , minTT �  
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N
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From this upper bound we see that, for ��N , 0)( �NWD . 
 
 
4 - Summary 
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In this paper we have introduced the Extra Work which, together with the Lost Work, gives the 
Dissipated energy in the irreversible processes. The analysis is very accurate for irreversible 
isothermal process and for isobaric processes. The new and previous results are used to evaluate the 
Dissipated energy for a stepwise ideal gas Circular Cycle, a system with complexity. 
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Appendix - Lost Work and Extra Work for isothermal processes with external irreversibility 
 
Here we evaluate the Lost Work for the expansion and the Extra work for the compression when 
there is external irreversibility. In Sec. 2.2 and in Sec. 3 of paper [1] we have shown that, if the 
irreversible isothermal expansion is performed by means of a (shorter) contact with a heat source at 

TT �ext , we have 0ext �� , i.e. 

ext

inin
ext T

Q

T

Q
���                                                                      (A1) 

and for the Endo–reversible process, i.e. the process in which the gas performs the reversible 
isothermal expansion A B� , 

ext

RevRevEndo
ext T

Q

T

Q
���                                                                  (A2) 

Similarly, if the irreversible isothermal compression is performed by means of a (shorter) contact 
with an heat source at TT �ext , we have 0ext �� , i.e. 

T

Q

T

Q out

ext

out
ext ���      and     

T

Q

T

Q Rev

ext

RevEndo
ext ��� .                                       (A3) 

To evaluate the Lost Work for the expansion with TT �ext  we calculate the work available in the 

related Reversible process and subtract from it outW , the effective work done in the irreversible 

process. This difference gives the Lost Work. 
The Reversible Work is the Reversible work of the gas plus the work of an auxiliary reversible 
engine working between extT  and T . For the gas Rev

gas
Rev QW � . The auxiliary reversible engine, which 

brings the heat RevQ  to the system (the ideal gas at temperature T ) and takes from the heat source 

at temperature extT  the heat 
T

T
Q ext

Rev , performs the work ��
�

�
��
�

�
��

ext

ext
Rev

engine
Rev 1

T

T

T

T
QW . Therefore the 

total reversible work is 

��
�

�
��
�

�
�����

ext

ext
RevRev

engine
Rev

gas
Rev

Total
Rev 1

T

T

T

T
QQWWW  

The Work performed by the gas in the irreversible expansion is inout QW � , therefore 

Endo
extextinRev

ext
RevinRevout

Total
RevLost �� TTQ

T

T
QQQWWW ��������                       (A4) 

On the other hand for the compression with a heat source at TT �ext  

intRevoutRevinExtra �TQQWWW �����                                                (A5) 

but if one uses a heat source at TT �ext , we have to subtract the work of the reversible engine from 

the Reversible work necessary to perform the isothermal compression at temperature T , which 
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subtracts outQ  from the heat source at temperature T  (the gas) and gives the heat out
extMin Q
T

T
Q �  to 

the source at temperature extT , i.e. 

extext
out

ext

out
ext

min
out

ext
Rev �T

T

Q

T

Q
TQQW ���

�

�
��
�

�
���� ; 

therefore the Extra work is 

� � extextint
out

extoutRevout
ext

RevRevinExtra �� TT
T

Q
TQQQWWWW ��������� .                  (A6) 
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