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Abstract. VST–Tube is a new software package designed to process optical astronomical
images. It is an automated pipeline to go from the raw exposures to fully calibrated co-added
images, and to extract catalogs with aperture and PSF photometry. A set of tools allow the
data administration and the quality check of the intermediate and final products. VST-Tube
comes with a Graphical User Interface to facilitate the interaction between data and user.
We outline here the VST–Tube architecture and show some applications enlightening some
of the characteristics of the pipeline.
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1. Introduction

Several pipelines have been developed in the
last years to process astronomical images.
Most of them are tailored to specific instru-
ments; others are more flexible and can be
applied to a variety of instruments. A non–
exhaustive list includes the SDSS pipeline
(Lupton, Gunn, Ivezić & Knapp 2001), CASU
(Irwin 2004), Astrowise (Valentijn 2006),
EIS (Hook, Arnouts, Benoist & da Costa,
2001), TERAPIX (Bertin 2002), Theli
(Schmithuesen, Thomas, Trachternach, Bomans, & Schirmer
2007), MegaPipe (Gwyn 2009), NEWFIRM
(Swaters, Valdes & Dickinson 2009),
QUEST (Andrews 2008), Pan-STARRS
(Magnier et al. 2005), SUBARU (Ogasawara
2003), MACHO (Axelrod 1998).

Send offprint requests to: A. Grado

Here we present a new software pack-
age called VST–Tube, developed to process
raw astronomical images (typically in the
optical bands) and to make them suitable
for scientific exploitation. It has been con-
ceived (but is not restricted) to process mo-
saicised images such as those that will be
produced by OmegaCam, the imaging cam-
era of the VLT Survey Telescope (VST)
(Capaccioli, Mancini & Sedmak 2005). The
VST–Tube pipeline allows automatic process-
ing (from the raw frames to a stacked image,
astrometrically and photometrically calibrated)
of a set of exposures distributed in one or more
observing nights, limiting the user intervention
to the pipeline configuration and to the data
preparation stages. A series of LOG files keep
track of the various input parameters and of the
configuration, so to allow reproducible results.

http://arxiv.org/abs/1102.1588v2
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VST–Tube can run on a normal laptop as
well as in a distributed processing environ-
ment such as a Beowulf cluster (more effec-
tive for mosaicised exposures). It comes with
a graphical user interface (VST-GUI) to sim-
plify the usage and the access to intermediate
and final results, and to all the quality con-
trol checks done during the processing, offer-
ing an intuitive approach through the menu bar
at the window top. Some additional tools are
already available to analyze the raw data and
the pipeline results. In order to make the ap-
proach even simpler, a series of balloons and
messages pops appear at pointing the mouse on
almost the totality of the widget windows.

In this paper we describe the software ar-
chitecture and show three examples of success-
fully processed images which enlighten the
characteristics of VST-Tube.

2. VST–Tube pipeline: general
description

VST–Tube has been designed to process ho-
mogenous sets of astronomical exposures, that
is sets of images taken with the same instru-
ment and instrumental setup, but under differ-
ent night sky conditions. The input data are
the science and calibration exposures acquired
with a single or a multi-chip optical camera,
the instrument and the pipeline configuration
files, and a certain number of options to be
chosen at the beginning in order to define the
processing strategy. The output are co-added
images where the instrumental effects have
been removed. The latter include overscan and
bias correction, flat-field correction, CCDs mo-
saic gain harmonization, fringing pattern re-
moval (where applicable), illumination correc-
tion, relative and absolute astrometric and pho-
tometric calibrations. Weight and flag maps,
including cosmic ray traces, are also produced.
Eventually, a catalog of sources with aperture
and PSF photometry can be automatically ex-
tracted.

The VST–Tube pipeline is configured
through a Graphical User Interface (GUI).
Written in PYTHON, it uses C libraries for
Fits files manipulation and external packages
for calibration and quality assessment. Just the

GUI and the pipeline Python codes, exclud-
ing external packages and libraries, consist of
about 60,000 lines of code.

VST–Tube has been conceived as a general
purpose pipeline,i.e. applicable to various tele-
scopes and to rather different science cases. In
fact, the characteristics of VST–Tube are not
only speed and reliability but also versatility
in either treating different problems or in eas-
ily integrating user provided special subrou-
tines. It has been designed to satisfy the gen-
eral requirements of producing catalogs of as-
tronomical sources with point–source broad–
band photometry with an absolute precision of
∼ 3% and a relative precision of∼ 1% for
repeated observations. The absolute astromet-
ric accuracy is limited by that of the refer-
ence catalog (typically∼ 0.3 arcsec), while the
relative accuracy for repeated observations is
∼ 0.03 arcsec. It must be clear that the level
of accuracy in the final calibration depends on
the characteristics of the science and calibra-
tion files.

The following is a short account of how
VST–Tube works. Details on the structure and
on the recipes will be reported in forthcoming
papers.

2.1. VST–Tube in action

VST–Tube pipeline allows the user to cre-
ate his own reduction strategy. Combining a
number of parameters and reduction settings,
the pipeline can be configured to meet the
user needs and scopes. In a typical session,
the human intervention, all made through the
GUI, consists in loading the instrument and
the pipeline configuration files, selecting all the
images of a given target that we want to reduce
(in a given filter but not necessarily in just one
observing night), choosing the method to pro-
duce the master calibration files (there are sev-
eral options depending on the set of available
data), selecting the kind of output we want to
obtain (for example, the creation of a single fi-
nal mosaic or of a mosaic for each exposure),
and then switching on the reduction.

The data input of the pipeline, properly pre-
pared (see later), are indicated as the Object.
The name Object is both used to designate the
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target and the tree directories created in the
preparation phase, logging and archiving the
intermediate and final products of the reduc-
tion process.

Let us assume that the images we want to
process come from a mosaicised instrument. In
the zero–th step the data, in Multi-Extention
Fits (MEF) format, are prepared to be pro-
cessed. A Fits header analyzer, according to
the instrument configuration parameters, cata-
logues the files and puts them in lists that iden-
tify the type of image. For each night and fil-
ter, the raw data will be classified in Bias, Flat,
Dome, Dark, Standard, Science. A directory
tree structure is created which contains the im-
ages, already transformed in Single-Extention-
Fits (SEF), and all the intermediate and fi-
nal pipeline products. A series of quality con-
trol checks are carried out on the images in
order to reject those which do not satisfy a
priori requirements. At this stage malformed
Fits header keywords, where applicable, are
fixed, and the World Coordinate System key-
word values corrected in case of an inaccu-
rate telescope pointing model. Quite often it
happens that a header keyword, even for the
same instrument, keeps changing during the in-
strument life. It is possible to define aliases in
the instrument configuration file for some of
the main keywords in order to identify univo-
cally that keyword. Other simple checks, such
as exposure time and median pixel value level,
are checked against the allowed range defined
in the instrument configuration file. After this
preparatory phase the images can be processed.
All of the pipeline products belonging to one
run are identified through a RUN-ID, which
is the time when the processing started. This
string is added to the names of all the pipeline
products to easily identify them even without
the help of the GUI.

While drawing the main characteristics of
our pipeline, we decided to use public domain
software whenever possible. We also adopted
SVN (see http://subversion.apache.org/) as a
source code manager. The software is devel-
oped for the UNIX environment. Another early
decision was to have a pipeline working with-
out a database (DB). The input data, and inter-
mediate and final products, are distributed in

an intuitive directory tree, so that, even without
the pipeline GUI, it is easy to mine the filesys-
tem for some particular result.

The present tree structure was reached af-
ter a long improving process. We decided to
avoid the DBs to make our pipeline as simple
as possible (also from an administrative point
of view) and flexible enough to allow software
modifications and changes of the data process-
ing model while remaining consistent with the
previous SW versions.

3. Science verification

VST–Tube was developed as multi-instrument
pipeline and tested on a wide range of science
cases. In this Section we present some exam-
ples, either published or still in preparation,
pointing out the peculiarities of each case and
the quality of the final results.

3.1. CFHT12K F14 field

We used VST–Tube to reduce a very difficult
set of early 4deg2 CFHT12k images (VVDS-
14h field (Garilli 2008), (McCracken et al.
2003)): very sparse (distributed over 51
nights), with few calibration data, with two
CCDs (no. 0,6) of the mosaic which had to
be excluded (the pipeline was modified to han-
dle mosaics with unequal number of CCDs),
with small offsets in the dithering for both the
science images and the calibration data (mak-
ing it difficult to remove objects), with al-
most no overlap in neighboring pointings, very
strong patterns in the raw images, many non–
photometric nights, and many corrupted head-
ers or incomplete information.

In spite of the difficulties, the images where
successfully processed and calibrated, and the
results published (Lamareille et al. 2009). To
verify the photometric accuracy, we made a
comparison with SDSS observations of the
same field. Figure 1 shows the magnitude
residuals against SSDS’s as function of Right
Ascension and Declination. The standard devi-
ation is better than 0.05 mag in the R band.
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Fig. 1. VST–Tube photometry of CFHT12k
F14 field in R filter against SDSS’s as a func-
tion of RA and Dec. Residual differences are
better than 5%.

3.2. WFI@2.2m NGC3115

A very tight test on the accuracy of the in-
strumental signature removal is through the
brightness surface profiles of nearby galaxies.
A good example is that of the galaxy NGC
3115 since, with a standard isophotal major
diameter of 8.63’, it cover most of the field
of view of the wide field imager WFI@2.2m.
WFI archive data in BVR bands of NGC3115
were retrieved and processed with VST–Tube.
A critical aspect was the harmonization of the
gain correction among the CCDs of the WFI
mosaic. The difficulties arise from the lack of
suitable data to produce a superflat (in order
to better flatten the instrumental background)
and from the size of the galaxy, which cov-
ers most of the field of view. In order to test
the quality of the VST–Tube results, the sur-
face brightness profiles along the main axis
of the galaxy were extracted and compared
with a very accurate and deep photometric
study by Capaccioli (Capaccioli, Held & Nieto
1987), where wide–field photographic plates
and CCD data for more than 35000 sec-
onds of observations were used. The figure
2 (Capaccioli, Grado & Limatola 2010) shows
the comparison of the light profiles along
the minor axis measured on a mosaic pro-
duced with VST–Tube (solid line) (total expo-
sure time 4200 seconds) and literature profile
(Capaccioli, Held & Nieto 1987). The profiles

Fig. 2. Surface brightness profile comparison
of NGC3115. The solid line is the profile mea-
sured on WFI@2.2m data in B Johnson band
(4200 seconds total exposure time). The dotted
profile comes from Capaccioli et al. (see text)

agreed within .1 magnitude down to a surface
brightness of 27.5mag arcsec−2.

3.3. WFI@2.2m NGC6723

The last example is the processing of a
crowded stellar field: the globular cluster (GC)
NGC6723 (Ripepi et al. in preparation). WFI
BVI images with 120 phase points in each band
were processed and the catalogs automatically
extracted with PSF photometry. The final mo-
saics, one for each exposure, were registered
also in pixels in order to have catalogs with
sources in the same physical position and make
easier the subsequent analysis with Stetson’s
tools (Stetson 1987). Figure 3 shows, as an ex-
ample, two RRLyrae light curves found in the
cluster. The rms of the residuals with respect to
truncated Fourier series fits is better than 1%.
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