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Introduction

The concept of quasiconformal mapping can be considered not only as a tech-
nical tool in complex analysis but actually as an independent topic with appli-
cations in various mathematical contexts. Let {2 be a domain in R"; recall that
f:Q — R"is a K—quasiconformal mapping for some K > 1if f € VVI})C"(Q, R™)

and

|IDf(z)|" < KJ¢(x) a.e. T €

In two dimensions, quasiconformal mappings have a natural connection with
partial differential equations in divergence form. This fact has been evident
for at least 70 years, beginning with M.A. Lavrentiev [48], C.B. Morrey [63],
R. Caccioppoli [13], B. Bojarski [9] and Serrin [76] among many others.

The present thesis brings together several different topics related to quasi-
conformal mappings and elliptic PDE’s. It is organized as follows.

In Chapter 1 we review some of the standard facts in the theory of planar
quasiconformal mappings and second order elliptic partial differential equa-

tions of the type
(1) divA(z)Vu = 0.

Here A = A(zx) is symmetric matrix which belongs to L>(€,R?**?) which
satisfies det A(x) = 1 a.e. in Q and

i

7o S (A(2)€,€) < K|¢)? ae. r€Q, VEeR?

for some K > 1. The connection between the class of quasiconformal mappings
and the elliptic equations in divergence form is established by means of the

Laplace—Beltrami operator of f, namely
Lru = div (Af(z)Vu),
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where Ay is the inverse of the distortion tensor Gy of f defined as

_'Df(z)Df(x)
Ji(w)

Conversely, every solution of (1) is the composition of some harmonic function

Gy(x)

and a K—quasiconformal mapping.

Chapter 2 is devoted to the Holder regularity estimates for the solutions
to linear elliptic equations in divergence form. Let €2 be a bounded domain of
R? and let A be a positive definite matrix-valued function, with coefficient in

L>(Q) and satisfying, for some 0 < A < A
MNEP < (A(x)€,€) < A€ for a.e. z € Q, V&€ R

In their seminal article [69], Piccinini-Spagnolo proved that the best Holder

exponent for weak solutions to the elliptic equation (1) is given by

o= —=

7L
where L = A/ denotes the ellipticity constant of A. Furthermore, they showed
that if A takes the isotropic form A(x) = a(z)l for some real measurable
function a satisfying 1 < a(x) < L the best Holder exponent improves and
takes the value

o = arctan —.

VL

A key ingredient used in the proof of the second result of Piccinini and Spagnolo
is the knowledge of the explicit value of the best constant C' in the inequality
of Wirtinger type

@) /O " a(t)u(t)dt < © /0 "ot (1),

where u € W,'?(R) is 27periodic and satisfies

loc

and the weight function a € L>®(R) is 2m—periodic and satisfies 1 < a(t) < L,
for some L > 1. In this direction, our main results are given by Theorem 2.18
and Theorem 2.19. Our aim is to give an extension of inequality (2) to the

vectorial case. More precisely, our result is concerned with the inequality

/0 a()|u(t)Pdt < C /0 o) ()P,
8



for any exponent p > 1. Here u : [0,T] — RY is a function in Wy ([0, T],RY)
(N > 1) and the weight function a satisfies the bounds 1 < a(t) < L. We
provide the best constant C' in the inequality, as well as all extremals. More
precisely, we prove that the best constant is achieved if and only if the weight
function a is a particular piecewise constant function a; moreover, by a delicate
gluing (see Lemma 2.22) we construct the extremals @ in terms of generalized
trigonometric function (defined in Section 2.2). It is worth to point out that
our result may be also seen as a generalization of inequalities involving vector
valued functions considered in [53] and [54] because of the presence of a weight
function a in the inequality. For related results see also [16, 18, 23]. We con-
clude the chapter with the construction of a solution of a degenerate nonlinear

equation. Some of these results can be found in [27].

In Chapter 3 we are concerned with G-convergence and the theory of ho-
mogenization for linear operators in divergence form. Our main results are
Theorem 3.5 and Theorem 3.6. We assume that A° is a sequence of matrices

(not necessary symmetric) satisfying the conditions

(A(2)€,€) > al¢)? ae.r €N  VEER?
AN Q) 2 B aeze  WCER?,

and such that

det A° — L ae.,

for some bounded measurable function . We prove that if A% is assumed to

H-converge to some A° then necessarily
det AY = °.

In order to state our results precisely, we review some fundamental proper-
ties of G—convergence as considered by De Giorgi and Spagnolo in [22] and
[79]. We also define H—convergence as a generalization of G—convergence to
non-symmetric matrices as considered by Murat-Tartar [66]. We note that
Theorem 3.5 may be seen as an extension of the classical result in the theory
of bidimensional homogenization which states that the class of matrices with
unit determinant is closed with respect to the H-convergence. Theorem 3.5

and Theorem 3.6 can be found in [26].



In Chapter 4 we consider some problems related to the variational formu-
lation of equation (1). We provide examples of functionals which are weakly
lower semicontinuous on W, ?(Q) for every p > 2 but not weakly lower semi-
continuous on VVO1 2(Q2), see Theorem 4.2, Theorem 4.3 and Theorem 4.4.

Our functionals are constructed by a careful use of the sharp Hardy—Sobolev
inequalities, as obtained by [6, 11, 40]. The results of this chapter can be found
in [28].

In Chapter 5 we analyze some properties of the Orlicz space EXP of ex-
ponentially integrable functions. Such a space play a key role in the study
of the continuity properties of mappings of finite distortion (see for instance
[4, 19, 45]). We introduce the notion of composition operator T, : u +—— uog,
induced by a homeomorphism g € Hom(2,)') between domains 2, Q)" of R".
The main result of the chapter is given by Theorem 5.6. We prove that a
principal K—quasiconformal mapping f : R? — R?, which is conformal out-
side the unit disk and which maps the unit disc D onto itself preserves the
space EXP(D) of exponentially integrable functions over I, in the sense that
u € EXP(D) if and only if uo f~! € EXP(D). We prove that

1
m ||U||Exp(m>

for every u € EXP (D).

< luo £ oo < (1 + K log ) [ullpxpp)

Our results are in the direction of the one of Reimann [71] which proves
that Ty-1 is a bounded linear operator which maps BMO (€) into BMO ().
The starting point of our study will be Lemma 5.5 where we will establish that
u € EXP (G) if and only if wo f~! € EXP (f(G)). Moreover, in Theorem 5.7

we will also prove that if f: 1D — D is a K—quasiconformal mapping then
diStEXp(G/) (u e} fﬁl, LOO(GI)) S KdiStEXP(G) (U, LOO(G)) y

and

1 - . 1 e
?dlStEXP(G) (U, L (G)) S dlStEXP(G’) (u o} f 1, L (G/)> s

for every open subset G of D and for every u € EXP (G), with G' = f(G). We
recall that distpxp(a) (u, L>(G)) denotes the distance from L with respect to

the Luxemburg norm (see Section 5.1). Theorem 5.6 and Theorem 5.7 can be

found in [29].
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Chapter 1

Quasiconformality, PDE’s and

related results

In this chapter we introduce the basic properties and definitions in the theory of
quasiconformal mappings. Furthermore, we focus our attention on the second

order elliptic linear equation
divA(z)Vu = 0,

where A = A(x) is a symmetric matrix satisfying det A(z) = 1 a.e. and the

ellipticity condition

% < (A@@)6,€) S KIgP ae zeQ, VEER",

for some constant K > 1.

In dimension n = 2, such a class of equations naturally arises in connection

with quasiconformal mappings.

1.1 Basic properties and definitions

Let f : Q — Q' be a homeomorphism from the domain €2 C R” onto the domain

Q' C R™. If f belongs to W, (Q, ') we denote by D f(z) the differential matriz

loc

of f at the point x € 2 and by J¢(z) the jacobian determinant of f

Je(x) = det Df(z).

11



The norm of D f(z) is defined as follows

[Df(z)] = sup [Df(x)¢].

EER, |¢]=1

Our starting point is the following definition.

Definition 1.1. Let Q and €' be domains of R”. A homeomorphism f : ) —

2 is a K-quasiconformal mapping for a constant K > 1 if

fewlm(Q,q),

loc

and

|IDf(x)|" < KJ¢(z) a.e. x € (.

From now on, we deal with the case of dimension n = 2. We review some of
the standard facts on quasiconformal mappings in the plane by means of the

following proposition.

Proposition 1.1. Let Q,Q,Q" be domains of R%. Let f : Q — Q' be a K-

quasiconformal mapping and let g : Q' — Q" be a K'—quasiconformal mapping.

(i) The composition go f is K K'—quasiconformal. For a.e. x € Q) it results
that

Digo 1)) = Dy(F@)DI@),  Jypsle) = T F () s(a).
(ii) The inverse f~1 is K —quasiconformal.
(ii) For every measurable set E of Q
E|=0  ifandonlyif  |f(E)|=0.
(iv) J;(z) > 0 for a.e. x € Q.
(v) If we L) then (wo f)J; € LY(Q) and
| ot = [ wiay

We also recall that every quasiconformal mapping is differentiable a.e., as

a consequence of the following result due to Gehring-Letho [34].

Theorem 1.2. Let f: Q C R? — R? be a continuous open mapping. Then f
is differentiable a.e. in the classical sense in Q) if and only if f has finite first

partial derivatives a.e.

12



1.2 Beltrami equation and the existence of prin-

cipal quasiconformal mappings

We denote by C the complex plane. For later use let us identify a point
r = (z1,79) € R? with a point z € C through the relation 2 = x; + izs.
Therefore, a mapping f = (u,v) :  — R? defined in a domain  C R? is
regarded as the function f = u + iv.

Let us introduce the Cauchy—Riemann operators

1 , 1 :
fz:§(fa:1_2fx2>a fizé(fa:l +Zf:r2>-

Next classical result relates quasiconformal mappings in the plane to the solu-

tion of a partial differential in the complex plane.

Theorem 1.3. Let f : Q — Q' be a homeomorphism of the domain Q@ C C
onto the domain ' C C and let f € WE*(Q,Q). Then f is K -quasiconformal
for some K > 1 if and only if for a.e. z € Q it results that

(1.1) fe=w(2) [,
for some function u € L>*(Q) such that
K -1
w=k= <1
Il ol

The differential equation (1.1) is called Beltrami equation, while the coefficient
pin (1.1) is called complex dilatation of f, often denoted by fiy.

We want to point out that if K = 1 or equivalently iy = 0, the Beltrami
equation reduces to

f z = 0

which represent the Cauchy—Riemann sistem. Therefore, the class of 1-quasi-
conformal mappings coincedes with the one of conformal mappings. Hence, f
is conformal if it is injective and holomorphic.

It should be mentioned that the result of the existence and uniqueness for
the solution of (1.1) goes under the name of Riemann mapping Theorem and
can be found for instance in [5, 49, 75]. We recall here the case of compactly

supported dilatation, for instance we consider the case

(1.2) [1(2)] < kxp(z)

13



where xp(-) denotes the characteristic function of the unit disk D and 0 < k <
L.

Theorem 1.4. Let 1 be a measurable function satisfying (1.2) for some 0 <
k < 1. There exists a unique solution f € W1’2((C, C) of the Beltrami equation

loc

(1.1) satisfying the normalization

(1.3) fz) =240 G) if 2] > 1.

Any homeomorphism which is a solution of the Beltrami equation with
complex dilatation p satisfying (1.2) for some 0 < k < 1 and satisfying the

normalization (1.3) is called principal quasiconformal mapping.

1.3 Linear and quasilinear elliptic equations in

divergence form

Let © be a bounded open subset of R2. For every constant K > 1 we consider
the class M(K, Q) of measurable matrix field A : Q — R?*? such that A =
A(z) € L™ (Q,R?**?), A is symmetric and satisfies the condition

(1.4) % < {A(2)€,€) < K[E]P  ae €9, VEeRE

If (1.4) holds, we say that the matrix A satisfies a uniform ellipticity condition.
We also remark that the bounds in (1.4) are equivalent to the following single

inequality

1€ + |A(2)€]? < (K—i— %) (A(x)E, &) ae. €, VEeR:

Let us denote by a;;, ¢, 7 = 1,...,n, the entries of A, we consider the second

order elliptic differential operator
L =div(A(x)V) = > Di(ay(x)D;),
ij=1

for each A € M(K, Q). The divergence operator is understood in the sense of

distribution, according with the following definition.

14



Definition 1.2. Let Q be a bounded open subset of R? and let A € M(K, Q).

We say that a function u € WL2(Q) is a weak solution of the equation

(1.5) divA(z)Vu = 0,

if
/Q (A(x)Vu(z),Ve(x))ydr =0 Vo € C5°(92).

We will give here a brief review of the classical results for the equation (1.5).
A general reference here will be [35]. First, we discuss the local regularity for
the weak solution. To this aim, we recall that a function u : 2 — R is locally

Holder continuous with exponent 0 < o < 1 if, for every compact subset

E cc Q there holds

qp @) )l

zyel, zy |z — y|*

It is well known that every weak solution u € W,*(€Q) of the equation
(1.5) is locally Holder continuous in €2, as stated by the following result (see

e.g. [21], [64] and [67]).

Theorem 1.5. Let Q0 be an open subset of R™. Let A € M(K,Q) and let
ue Wh(Q) is a weak solution of the equation (1.5). Then for every compact

loc

set E CC Q there exist C' > 0 and 0 < a < 1 depending only on K and
dist (E, 0Q) such that

lu(z) —u(y)| < Clz —y|* (/ ]u|2dx> a.e. v,y € E.
Q

Next result shows that every weak solution of (1.5) belongs to W,2P(Q) for
some p = p(n, K) > 2.

Theorem 1.6. Let u be a weak solution of (1.5) and let R > 0 such that
Bor(xg) C Q. Then, there exists p > 2 depending only on n and K such that

<][ Vu(z)P dx) "< <][ |Vu(x)|2d:v)2
BR(wo) BQR("EO)

The classical Harnack’s principle, which holds for positive harmonic function,

also holds for the case of equation (1.5), as proved by Moser in [65].

15



Theorem 1.7. Let u be a positive weak solution of (1.5).Then, for every

compact set E CC § the inequality
max u < C'minu,
E E
holds for some constant C' > 1 depending only on E and ().
The maximum principle holds, in the sense of the following result.

Theorem 1.8. Let u be a weak solution of (1.5) in Q0 which is continuous in

a neighborhood of ). Then,

supu < sup u.
Q o0

We recall that some of the results above for the equation (1.5) can be proved
without assuming that A is a symmetric matrix, as observed by Morrey in [63].

A generalization of (1.5) is the quasilinear equation
(1.6) divA(z, Vu) =0,

called Leray-Lions equation. Here and in what follows A : Q x R? — R?*? is

a function such that such that

(1.7) A(-,€) is a measurable function for every ¢ € R?,
and
(1.8) A(z,-) is a continuous function for a.e. x € Q.

For every  bounded open subset of R? and for every constant K > 1 we
consider the class N(K, Q) of functions A : Q x R? — R?**? satisfying (1.7),
(1.8) and the condition

1€ + |A(z, 6))? < (K + %) (A, €),€) ae. €, VE&eR

To each A € N(K,Q) we associate the nonlinear equation

divA(z, Vu) =0,

called Leray-Lions equation. One should immediately check that the Leray—

Lions equation (1.6) reduces to the linear equation (1.5) if

Az, §) = Ax)¢,

for some A € M(K, Q). Equations (1.5) and (1.6) are strongly related by the

following result, which can be found in [78].

16



Theorem 1.9. Let Q2 be a bounded open set in R*, A = A(z,&) € N(K,Q)
and u € WE2(Q) be a weak solution of the quasilinear equation (1.6). Then
there exists a unique symmetric matriv A € M(K,Q), with det A(z) = 1 a.
e. in ) such that

div(A(z)Vu) = 0.

Therefore, every equation of the type (1.6) reduces in a certain sense to
a linear equation with the same ellipticity bounds as the original one. We
indicate that A depends on A and w, by writing A = A[A,u]. Finally, we
remark that in the linear case A(z,§) = A(x)§ with A € M(K,Q), the new

matrix A is different from A, unless det A(z) =1 a.e. in Q.

1.4 The connection between PDE’s and qua-

siconformal mappings in the plane

In the case of dimension n = 2 there is a precise interplay between the theory
of quasiconformal mappings and the elliptic PDE’s of the type (1.5) . Indeed,
for f € WhH(Q, Q') we define a matrix field G : Q — R?>*? given by

loc

tDf(x)Df(x .
% if Jy(z) >0,

Gy(x) = _
1 otherwise,

here *D f(z) denotes the transpose of the differential matrix of f and I denotes
the identity matrix. The matrix field Gy is called distortion tensor of f. It is

easy to check that G is a symmetric matrix with
detGy(z) =1 for a.e. x € R%

Moreover, if we assume that f is a K—quasiconformal mapping, then the dis-

tortion inequality for f is equivalent to the condition
2
% <(Gy(2)€,€) < K[¢)? for a.e. z € R? VE € R2

Let Ay be the inverse matrix of the Gy, namely A; = G;l. Clearly Ay is a

symmetric matrix field which satisfies

det As(z) =1 for a.e. x € Q,

17



while the distortion inequality for f easily give us
% < (Ap(2)€,€) < K|¢)? for a.e. z € Q, V€ € R%
Let us define the Laplace-Beltrami operator as
(1.9) Lr=div(As(z)V).
The following fundamental result holds.

Theorem 1.10. Let Q,§Y be open subsets of R* and let f = (u,v) : Q —
be a K —quasiconformal mapping. Then, the components u and v of f are weak

solution of the equations
Liu=0 and  Ljv =0,
where Ly is the Laplace-Beltrami operator defined in (1.9).

On the other hand, elliptic equations generate quasiconformal mappings,

in the sense of the following result.

Theorem 1.11. Let Q be a bounded open subset of R?. For each non-constant

solution u € W."2(Q) of the elliptic equation

loc
div (A(z)Vu) = 0,
where 'A = A also satisfies the uniform elliptic bound
B < Aoy < Kl forae. w0, vee B2

for some K > 1, there exists a K-quasiconformal mapping g : @ — D, where
D denotes the unit disc of R?, and a real valued harmonic function h : D — R

such that
u="hog in Q.

1.5 Area distortion estimates

The aim of this section is to provide the exact degree of integrability for the

differential of a planar quasiconformal mapping. More precisely, what we want

18



to point out is that if f : Q — Q' is a K—quasiconformal mapping defined in a

domain Q of R? then |Df| € W,"(Q) for an exponent p = p(K) strictly larger

loc

than 2 and depending only on K.

This result is a direct consequence of the area distortion estimate, estab-

lished by Astala [2].

Theorem 1.12 ([2]). Let f be a K—quasiconformal mapping which maps the
unit disk D onto itself and such that f(0) =0. Then

1
f(E)| < M|E|%,
for some constant M = M(K) depending only on K.

We give here version of Theorem 1.12 given by Erémenko and Hamilton

[25], where the optimal value of the constant M (K) is computed.

Theorem 1.13 ([25]). Let f : R? — R? be a K —quasiconformal principal

mapping which is conformal outside the unit disk D.

(1) If f is conformal outside a measurable set E C D, then

[F(E)| < K|E].

(11) If f is conformal in a measurable set £ C D, then

(i1i) For every measurable set E C D

f(E)| < Kr'"%|E|*.

As mentioned before, Theorem 1.12 has the following fundamental conse-

quence.

Corollary 1.14. If f is a K—quasiconformal mapping defined in a planar

domain ) then

2K
K—-1
and the exponent p(K) = 2K /(K — 1) is the best possible one, in the sense

fEWEQRY i p<

loc

that for each K > 1 there are K—quasiconformal mappings [ such that f &

12K

Wi X1 (L R).

loc

19



For the last statement of Corollary 1.14 it is sufficient to consider the K-

quasiconformal mapping

flz) = ° : Vr € R2
o]k
Observe that the result above implies that
(1.10) Jye LV () if p< K
: f loc D K—1 )

if f is a K—quasiconformal mapping defined in a planar domain (2.

1.6 A generalization of quasiconformality: map-

pings of finite distortion

We recall that quasiconformal homeomorphism are a special kind of mapping

on finite distortion.

Definition 1.3. A mapping [ € V[/li’cl(Q,]RQ) is said to have finite distortion

if J; € LL.(Q) and if there exists a measurable function K : Q — [1, 0o] such
that

(1.11) IDf(2)]* < K(x)Js(x) a.e. x € (.

In the case of a homeomorphism the assumption on local integrability of
the Jacobian determinant is redundant.
The existence of a measurable function K : € — [1, 00| finite a.e. satisfying

(1.11) holds allow us to say define the function

|IDf(@)* -
(1.12) Kijz)={ Y@ if Jp(w) >0,
. f )
1 otherwise.

In other words, K is the smallest function greater or equal to 1 for which
(1.11) holds.

We remark that a K—quasiconformal mapping f is a finite distortion home-
omorphism with Ky < K a.e. in (2.

Moreover, in [42] is proved that, in the planar case, there is the equiva-
lence between the class of the bi-Sobolev homeomorphism and the class of

homeomorphism with finite distortion.

20



onto

Definition 1.4. A homeomorphism f : Q@ — €)' is called bi-Sobolev mapping
if both f € W.'P(Q, ) and its inverse f~! € WLP(€Y,Q), for some 1 < p < .

loc loc

The case of a matrix which satisfies a bound of the type

€2
K(z)

<(A@)E &) < K(@)Eff  ae z€Q, VEER?

for some measurable function K :  — [1, 00|, naturally arises in connection

with the mapping of finite distortion.

Theorem 1.15. Let O, be open subsets of R%. Then, to each bi-Sobolev
mapping f : Q — ', f = (u,v), there corresponds a measurable function

A = A¢(x) valued in symmetric matrices with
det Ap(z) =1 for a.e. x €,

such that

< (Af(x)€,€) < Kf(:v)|§|2 for a.e. x € Q, V& € R?,

where Ky denotes the distortion function of f defined in (1.12). The compo-
nents u and v of f are very weak solution of an elliptic equation of the type

(1.5), i.c.
(1.13) div (A(z)Vu) =0 and div (A(z)Vv) =0,
with finite energy, i.e.
/Q (A(x)Vu, Vu) de < oo and /Q<A(x)Vv, V) dx < oo.

Dealing with the last statement, we recall that « and v are wvery weak
solutions of the equations (1.13) if u and v belongs W,>(Q) and satisfies (1.13)

in the sense of the distributions.

21



22



Chapter 2
Sharp Holder estimates

This chapter is concerned with the Holder regularity results for weak solutions

to the elliptic equation in divergence form
divA(z)Vu =0,

where A = (a;5), i,j = 1,2 is a 2 x 2 symmetric, positive definite matrix
satisfying the uniform elliptic bound A\|¢|* < (A(x)E, &) < AJ¢J* for all € € R?,
for a.e. & € Q where Q) C R? is a bounded domain and for some 0 < \ < A.

2.1 Explicit values of the best Holder expo-
nent

Let © be a bounded open subset of R? and let v € W,'?(Q) be a weak solution

loc

of the equation in divergence form

(2.1) divA(z)Vu = 0,

where A = A(z) € L™ (Q; R?*?) is a symmetric matrix, i.e.

(2.2) A=A,

satisfying the uniform elliptic bound

(2.3) NP < (A@)E,€) S Al ac.zeQ VEER,

for some constants A\ and A such that 0 < A < A. In this context we say that
the quantity
I —

Y

A
A
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is the ellipticity coefficient of the matrix A.
We have already observed in Chapter 1 that every weak solution u €
WL2(Q) of the equation (2.1) is locally Holder continuous in Q. In [69] Pic-

cinini and Spagnolo computed the best Holder exponent for weak solutions to

the elliptic equation (2.1). Their result states as follow.

Theorem 2.1. Let Q be an open subset of R?. Assume that A = A(x) €
L® (Q;R**?) is a matriz satisfying (2.2) and (2.3) and that u € W,22(Q) is a
weak solution of the equation (2.1). Then u is locally Hélder continuous with

exponent o given by

9-

where L = A/

The fact that o = 1/ V'L is the best possible Holder exponent is proved by

means of the following example (see Meyers [58]).

Example 2.1. Let L > 1 and let us define a matrix A = A(x) whose entries
a;j are defined by

a;n = (LZL’% + l’g) |ZL’|_2,
12 = (L — 1)I1£C2|$’72 = a91,
azs = (x]+ La3) |z|>

The ellipticity coefficient of A is L. Let

ulw) = —.
o]~

Then u is a Hélder continuous function of exponent is & = 1/v/L and is a

solution of (2.1) with this choice of A above. It should be observed that the

equation is given in polar coordinates by

LD (o) 1
pop \"op) "o 02 T

and that the solution v may be rewritten as

u(p,0) = pl/ﬁ cosf.
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When in (2.3) one has

A=K A= —
) K’

for some K > 1 then the ellipticity coefficient L = K? and therefore the best
Holder exponent is given by
1

O = —.

K

This is in agreement with the following result concerning with quasiconformal

mappings, see [1, 60].

Theorem 2.2. Every K-—quasiconformal mapping f : Q — ', where Q and
Y are planar domains, is locally Holder continuous with exponent « = 1/K.
The K—quasiconformal mapping f : 1D — D defined as

z

f(Z): —1>

shows that the exponent is the best possible one.

A key ingredient for the proof of Theorem 2.1 is the sharp Wirtinger in-
equality.

Lemma 2.3. Let w be a function in VV&?(R) periodic of period 2w such that

Then the following inequality holds

(2.4) /0ﬂ\w(t)|2dt§/0ﬂ|w’(t)\2dt.

A second result proved by Piccinini and Spagnolo in [69] states that the
best Holder exponent for weak solutions to the elliptic equation (2.1) improves
for isotropic matrices.

We recall that a matrix A is said to be isotropic if A is of the type
(2.5) A(z) = a(z)1,

where [ is the identity matrix and a : 2 — R is a measurable function such

that
(2.6) A<a(r) <A for a.e. z € Q,
for some constants A and A such that 0 < A\ < A.
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Theorem 2.4. Let Q) be an open subset of R?. Assume that a: ) — R is a
measurable function satisfying (2.6) and that u € W,2*(Q) is a weak solution

of the equation (2.1) where A takes the form (2.5). Then u is locally Hélder

continuous with exponent o given by

o = arctan —

VI
where L = A/,

A key ingredient for the proof of Theorem 2.4 is the following sharp weighted
Wirtinger inequality.

Lemma 2.5. Let a be a real measurable function periodic of period 2w such
that 1 < a(t) < L. Let w be a function in W52 (R) periodic of period 21 such
that

/27r a(t)w(t)dt =0,

Then the following inequality holds

(2.7) /0 T aOlw(®) Pt < (% arctan %) - /0 a0l ()t

Inequality (2.7) reduces to an equality if and only if a(t) = a(t + @), w(t) =
Cw(t+ 6), where C' and 6 are real constants and a and W are defined by

1 for 0<t<Z, w<t<im,
(2.8) a(t) =
L for 5 <t<m, %W§t<27{‘.
sin [\/X(t—g)} for 0<t< 3,
L cos [\/_ ] for I<t<m,
(2.9) wt) =4 V* (t=37) ’
—sin [\/_ (t - —W)] for T<t< %7?,
|- [ —Ir ] for  2r<t<o2m,

2
where A = ( arctan \}) .

The fact that a = arctan (1 / \/Z) is the best possible exponent in the

isotropic case is proved by means of the following example.
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Example 2.2. Let us define a matrix A(zx) = a(f) where § = 0(z) =
arctan 72 and a is defined in (2.8). The corresponding differential equation

is given by
(2.10) div (a(6)IVu) = 0.
The ellipticity coefficient of A is equal to L and the function
4 arctan = ~
u(x) = [~ VEw(0),

with @ defined in (2.9) satisfies (2.10) and is Holder continuous with exponent

4 1
o= - arctan NI

If we additionally assume that the matrix A has unit determinant, namely
(2.11) det A(z) =1 a.e. x € (),

the following estimate holds, see [72] (and [74, 73] for related results).

Theorem 2.6. Let A = (a;;) satisfy (2.2), (2.3) and (2.11) and let u €
WE2(Q) be a weak solution of (2.1). Then u is locally Hélder continuous in Q2

loc

with « given by

a=2m | sup  esssup / (A(xg +r&)E E)do(€) :
l€1=1

o€ 0<r<dist(zg,08)

Corollary 2.7. Let A = (a;;) satisfy (2.2), (2.3) and (2.11) and let u €
W.h2(Q) be a weak solution of (2.1). Then the least upper bound for the ad-

loc

mussible values of the Hélder exponent of u is given by
~1
a=2r (sup inf ess sup/ (A(xo + Tf)é,{)da(ﬁ)) :
20EQ 0<ro<dist(x0,00) 0<r<rg l€|=1

Theorem 2.6 is sharp in the sense of the following example.

Example 2.3. Hereafter if # = (z1,75) € R? the notation # ® z stands for

the matrix
l’% 1T
TRr =
T1Ty T3

Let Q = I be the unit disc in R?, let () = arctan > and let

1 1 TR
2.12 Alx) = —1 k(#) — — )| —=
242 =yt + (0~ i) T

27



where k = k() : R — R* is a 2r-periodic function bounded from above and

away from zero. Then det A(z) = 1. By suitable choice of k£ we may obtain

([

On the other hand the function u € W'?(D) defined by

_ 0(x)
u(z) = |z|* cos d/ k],
0

satisfies the equation with A given by (2.12). Clearly its Holder exponent is

-1

exactly a.

A key ingredient in the proof of Theorem 2.6 is the following sharp weighted
Wirtinger inequality.

Theorem 2.8. Let a be a real measurable function periodic of period 27
bounded from above and away from zero. Let w be a function in VVéf(R)

periodic of period 21w such that

/27r a(t)w(t)dt = 0.

Then the following inequality holds
’ o 1 / 2
—|w'(t)|*dt.
0

2w [awores (5 [Ta) [T

Inequality (2.13) is attained if and only if w is of the form

w(f) = C cos (%/OeajLé),

0

for some C € R\ {0} and § € R.

2.2 Wirtinger—Poincaré type inequalities

Motivated by the regularity results considered in Section 2.1 and also by various

problems in analysis and geometry, several extensions and variations of (2.4)

T 1/q T 1/p
([ o) <o ([wr)
0 0
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have been obtained. Here and in what follows N > 1, T > 0, p,q > 1 and
the function u : [0,7] — RY is subjected to various boundary conditions or
integral constrains.

For later use, we briefly define the generalized trigonometric functions and
outline their main properties (for details see e.g. [43, 50, 51, 53]).

Let p, ¢ > 1. The function arcsin,, : [0, 1] — R is defined by

in,. (o) /” ds
arcsing,, (o) = —_
e o (1—sp)l/e

1 11
Tra _ arcsing (1) =-B | -, - ).
2 p \pq

where B(-,-) denotes the Beta function defined by

Let us define

B(h,k) = /1 th=1(1 — ) dt = B(k, h),

for every h,k > 0. The function arcsin,, : [0, 1] — [0, Z22] is strictly increasing
and its inverse function is denoted by sin,,. The function sin,, is extended as
an odd function to the interval [—m,,, my,| by setting sin,,(t) = sin,,(m,, — )
in [7p,/2, Ty, sing,(t) = —siny,(—t) in [—m,,, 0], and to the whole real axis
as a 2my,—periodic function. The function w(t) = singy«(my-t) is the unique

solution of the initial value problem

(2.14) (& (W) + g (w) = 0,

Here and in what follows we define the function ¢, : R — R by

(2.15) dp(s) = o %f # SRALOh
0 if s =0.

The existence and uniqueness of the solution of a general kind of initial value

problem of the type (2.14) is established for instance in [23, 43].

Lemma 2.9. Let a,b,to € R, A >0 and p,q > 1. Then the problem
(dp(w"))" + Adg(w) = 0,
w(ty) = a, w'(ty) = b.

has a unique solution defined in R. Moreover, every solution of (2.14) satisfies

()P q p q
LN O L N
p q p q-
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In what follows we shorten our notation by defining

and

Tp = Tpp*.

We define the function cos, is defined by

(2.16) cosy(t) = @p(sin,,(t)).
It is 2m,-periodic and satisfies:

cos,(—t) = cos,(t),
cos,(m, —t) = — cos,(1),

cos,(mp + 1) = — cosp(t).

The following identity holds, which generalizes the fundamental identity for

trigonometric functions:
(2.17) | cos,(t)|P" + | sin, (t)|P = 1.
For later purposes, we also note the following identity:
(2.18) cos, (% 1) = siny (]%t) .
The derivative of cos, satisfies
(2.19) cos, () = —Z%%(sinp(t)).
On the other hand, from (2.16) we have:
(2.20) sing () = ¢pe (cosp(t)).
Finally, we define tan, as follows:

tan,(t) = siny (1)

B Gp(cosy(t))
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The function tan, is m,-periodic, with singularities at the zeros of cos,. The

inverse of tan, restricted to the interval [—m,/2,m,/2], denoted by arctan,, is

7 d
arctan, (o) :/ . i =)
o 141yl

given by

for every o € R. It results that

(2.21) 01_15{100 arctan,(o) = %.

The next lemma generalizes to the case p # 2 a well known identity.

Lemma 2.10. For every p > 1 and for every o > 0 the following identity
holds

(2.22) arctan, (o P /P) + L arctan,- (o) = 5
p

Proof. In view of (2.21) we have

T (g . 00 d
Ty :/ Y arctan, (o ” /p) +/ 4 )
0 1+ yp o—P*/p 1 -+ yp

Performing the change of variables y = 277"/ we obtain

—+00
/gp*/p1+yp:_/ 1+Zp

Hence, the asserted identity follows. O]

The space of functions which satisfy the periodic boundary condition will

be denoted by WLP([0,T],RY), namely

per

(2.23) Wor([0,T],RY) = {u e WHP([0, T],R"Y) : u(0) = u(T)},

per

where N > 1, T > 0, p > 1. In what follows W)2(0,T) stands for the space
defined in (2.23) when N = 1.

A general result which holds in the case N = 1 is the following (see [16]
and [18]).

Theorem 2.11. Consider the minimization problem

(2.24)

)\#<p7Q7T> = inf —1/(] RS W];}eg 0 T {O} / |u‘7' 2 )
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where p>1,q>r—12>1. Then

Ae(poq,m) = Ag(poq,q) if g<rp+r—1,
Ae(pyq,m) < Ag(poq,q) if > (2r —1)p.

Furthermore

() Gwa) o)

The above formula is also valid when ¢ =r >1,¢q=1 (p>1 andr =2) and
p=oo (gq=>r—1>1).

Q=
3 =
Q=

(225)  Ap(pr09) = —— (i)

1 1
Trte \P*

Observe that the constant (2.25) in may be also written in the following

Aia(p,q) = Au(p,q,q) =2 (i)l/q P ( 1 >

P p*taq
Therefore, in the homogeneous case p = ¢

way

1 1-
Tvta

T
\e(p) = Mg (p.pp) =2(p — )7 L.

When r = ¢ the result above also can be found in [23] where extremals are

characterized.

Theorem 2.12. The extremals for problem (2.24) are the functions

2T g
u(t):C’sinqp*( qu' t+5),

for some C € R\ {0} and for some § € R.

In [53, 54] the vectorial case of (2.24) is treated when p = ¢ = r. Namely,

the following problem is considered

Y " N L2
el ) = inf e € W0, TR N [P0
0

Here and in what follows let ¢, : RY — R be the continuous function defined
by
|z[P~2z if x € RV \ {0},
Yp(z) = .
0 if x =0.
Observe that ¢, in (2.15) is the function ), when N = 1. As for the scalar

case, the following result existence and uniqueness result can be proved (see

[53])-
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Lemma 2.13. Let £,n € RN, to € R, A > 0 and p > 1. Then the problem

(Up(u)" + Ap(u) = 0,
u(ty) =&, u'(ty) =n.

has a unique solution defined in R.

Theorem 2.14. For eachp > 1, N > 1 and u € W2 ([0,T],RY) such that

per
T

/ P2 = 0,
0

T T
11(p, N) / uf? < / .
0 0

Moreover, if Ag1(p, N) is the smallest possible eigenvalue of the nonlinear

one has

eigenvalue problem

(thp (W) + My (u) = 0,
w(0) =u(T), [ [ul""2u=0,

with A > 0, then py(p, N) satisfies the identity
» min{p—1,1}
Apa(p, N) = py (W’N) -
We remark here that Ay ;(p, N) is computed explicitly in [54] in the special
case N = 1 and satisfies the identity

1

= T
Mpa(p 1) =2(p— 1) 2L

The space of functions which satisfy the Dirichlet boundary condition will be

denoted by Wy*([0,T],RY), namely
(2.26) WyP([0,T),RY) = {u e W([0,T],R") : u(0) = 0 and u(T) = 0},

where N > 1, T > 0, p > 1. In what follows W, (0, T) stands for the space
defined in (2.26) above when N = 1.

First, we concern with the minimization problem
1/p
<f0T ’ul|p)
1/q
T
(1)

Ao(p, q) = inf su e WyP(0,T)\ {0} ¢,

where p,q > 1.
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Theorem 2.15. For each p,q > 1, and u € Wy ([0, T],RY) one has

(2.27) NP, q) </OT yu\q) " (/OT |u'|p) "

where

1 la 1 Ty
A 7 . 1/p < ) qp ’
(P, 9) (p*) 1 p*+q Tt

The inequality (2.27) holds with equal sign if and only if

Q=
Q|

u(t) = C sing,- (%t) ,
for some C € R\ {0}.

It should be mentioned that, in [53, 54] the vectorial case of (2.27) is treated

when p = ¢. Namely, the following problem is considered

T
. [P
py(p, N) = inf {fOT—

0

u € WyP([0, T],RY) \ {0}} )

juf?

Theorem 2.16. For eachp > 1, N > 1 and u € W,* ([0, T],RN) one has

— 1) T 1/p T 1/p
(2.28) (p—1)rm, (/ ’u|p> < (/ \u’]”) '
T 0 0
The inequality (2.28) holds with equal sign if and only if
u(t) = sin, (%t) d,
for some d € RN \ {0}.

We consider now the case of weighted inequalities and we are interested in
a generalization of the inequalities (2.13) and (2.7) (for references see [38, 73,

72, 37, 36].)

Theorem 2.17. Let a € L'(0,T), a > 0. Let w be a function in W52 (R)
periodic of period T such that

/0 o) [w(®)| 2w (t)dt = 0

For every p,q > 1 the following inequality holds
(2.29)

( / Ta(t)\w(t)!th>; < C(p,q) (% / ! ) ( /fﬁw’ (t)‘pdty
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where

- [ Q) () o]

Inequality (2.29) is attained if and only if w is of the form

27 g ¢
w(t) = C'sing #/aﬁdG—i—é :
(t) ap <f0Ta(0)d0 i (6) )
for some C € R # {0} and § € R.

It should be observd that the previous result is a generalization of Theorem
2.8 to general powers of |u| under the more natural assumption a € L.
The result that we want to prove is concerned with the following weighted

vector inequality of Poincaré type

T T
(2.30) / alul? < C'/ alu'l?,
0 0

where u belongs to the space W, ”([0,T],RY). The function a € L*®(0,T)
satisfies 1 < a < L for some L > 1. Our aim is to estimate the best constant

C in (2.30). Let
A={a€ L>*(0,T):infa=1and supa = L},
and let

(2.31)

St . N }
=inf ¢ =————:u € Wy (|0,T],R 0} »,
{foTa<t>|urp SRR

for every given function a € A. By standard arguments it follows that the
infimum in (2.31) is achieved for some u € W, ?([0,T],RN) \ {0}. We prove
that if

Cp(a)

1 1
= inf ——

Hp acA C'p(a) ’
then the infimum is achieved for a unique piecewise constant function a € A.
It is convenient to define:

LP/P(L —1) }1/19*

(282 8 =

With this notation, we have:
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Theorem 2.18. Let N > 1, p > 1 and T > 0. Let a : [0,7] — R be a
measurable function such that 1 < a(t) < L. Then, the following inequality
holds:

(2.33) [:cwﬂhdﬂﬁdtg(zté o) ()|t

for every u € Wy P([0, T],RN), where
T\? *\p/p*
C, - (_) [ (p/p")

2 T — arctan, 3(L) + arctan,,

ﬁ(L)]p'
L

We note that in view of identity (2.22) we may write:

B(L)
L
L—1 \""
it 2 2
+ arctan,,- [L (LP* o 1) ] .

Therefore, in the special case p = 2 and 17" = 7, the best constant C,, takes the

TCo*
%— arctan,- 5(L) + arctan,-

_r arctan,, [L_p /p* (—)
p* L—1

value
Cy=(— T Y
2 (4 arctan L*1/2> ’
in agreement with Piccinini and Spagnolo’s result [69].

Our next result shows that Theorem 2.18 is sharp, and characterizes all

extremals.

Theorem 2.19. Inequality (2.33) reduces to an equality if and only if a = a,
where a s defined by

with

B(L)
(2.34) S ety 7
2 " arctan, 3(L) + arctan,. 22

and v = % = wd for some d € RY, where w is the scalar function defined by

(2.35)

( N ok 71/p /< * 1/p
(Ag ) sin, <%> / for 0 <t <7,
N,k _1/p ) 1/p* ~
a(t) =4 ()7L cos, {(pﬂ) AP (t — g)} for 7 <t<T—7%
S W\ ~L/p [ /< \1/p
(’\p > sin, (’\L> (T — t)] forT—7<t<T.
L p | p
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~ - 2\" [ p* (2 3(L) p
A=C1= (f) (E) {% — arctan,- 5(L) + arctan, 7 .

We consider the nonlinear eigenvalue problem:

a(t)y,(u)) + Aa(t),(u) = 0,

256 (@l (u!)) + Aa(t)y(w)
u(0) =0, w(T) =0

corresponding to the Euler-Lagrange equation for (2.31). Our aim is to show

that if a is smooth, then solutions to (2.36) are necessarily one-dimensional.

We shall need the following uniqueness result, see [32].

Proposition 2.20. Suppose that § € L (R) with 8 > 0 a.e. Then, for any
&,mneRY and sy € R, the problem

(¥p (")) + B(s)¢p(v) = 0,
v(s0) =&, v'(s0) =1
has a unique C solution globally defined on R.

(2.37)

The existence of a local solution is a direct application of Schauder’s fixed
point theorem. The main idea to prove the uniqueness is to write the equation

in (2.37) in the equivalent form

18) =ty [yln) = [ 50)0, 0008
50
Then, a careful use of the properties of 3 allows to overcome the possible lack

of Lipschitz continuity of the function 1,.

Proposition 2.21. Let a : [0,7] — R be a smooth function such that 1 <
a(t) < L for any t € [0,T). If u € Wy ([0, T],RY) is a weak solution of the

vector eigenvalue problem

(2.38) (alt)iy ()’ + Aa(t)iy () = 0O,

then u € C and it follows that

(2.39) u(t) = w(t)d,

where d = u/'(0) and w is a solution of the scalar eigenvalue problem

(2.40) (a(t)gp(w)) + Aa(t)gp(w) = 0,

satisfying w'(0) = 1.
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Proof. We first prove that if u is a solution of (2.38) then v € C*. By continuity
of a,1,,u and using equation (2.38), we have that (a(t)y,(u'))" is continuous.
Therefore, h(t) = a(t)y,(u’) belongs to C* ([0, T],RY) and ,(u') = a(t) " h(t)
is continuous. Now the claim follows by continuity of ¢« = ¢, L

By a change of variables, we first reduce the equation in (2.38) to an equation

of the form (2.37). Let us first consider the function G : [0, 7] — [0, 7] defined

by
T b
G(t) = —F— / a 1.
o s
Since 1 < a(t) < L the function G is well defined. It is easily seen that G is a

nondecreasing differentiable function whose derivative is given by

/ T -
G (t) = ﬁd(l&) p—1,
fo a r-t

Now, suppose that u is a solution of (2.38) with «(0) = 0 and «/(0) = d; we
claim that the function v : [0,7] — R defined by

is a C' solution of the initial value problem

(¥p(v")) + pa(s)p(v) = 0,

(2.41)
0(0) =0,  v'(0) =~a(0)71d,
where
(2.42) als) = a(G ), p=+PA  y= %/O o

Indeed, it results that u(t) = v(G(t)) and consequently the derivative of u is

given by
(2.43) L) =7 alt) 7 G0,
From (2.43) it follows that
i) = e |



and therefore we obtain

& lav )] + dat ) -

_ _a|d
=Pl 7T L) + el o9)]
§ s=G(t)
with a, v and p given by (2.42). On the other hand, the function s € [0, 7] —
va(O)ﬁ g(s)d € RN where g is the unique solution of the scalar initial value

problem (see again Proposition 2.20 for N = 1)

(0p(g") + pa(s)pp(g) =0,
g(0)=0,  ¢'(0)=1,

is a solution of the problem (2.41). Therefore, v(s) = fya(O)Tilg(s)d. Conse-

quently, the vector initial value problem

(a(t)ihp(u')) + Aa(t)ihp(u) = 0,
u(0) =0, ' (0) = d.

has a unique C' solution given by u(t) = v(G(t)) = w(t)d where w(t) =
’ya(O)P%l g(G(t)). Moreover, w is the unique C' solution of the scalar initial
value problem

(a(t)pp(w')) + Aa(t)pp(w) = 0,

w(0) =0, w'(0) = 1.
Since w in (2.39) also satisfies u(7") = 0 it must be that w(7T) = 0; thus w
is a solution to the scalar eigenvalue problem (2.40) and this completes the

proof. O

Remark 2.1. Proposition 2.21 shows that the problems (2.38) and (2.40) share
the same eigenvalues; moreover, it is possible to prove that they form a sequence
An = Ap(a) such that 0 < A(a) < Aa(a) < --- < Ay(a) < ---. Indeed, we recall
that (see Section 3 in [32] when N > 1 and Section 2 in [84] when N = 1) for
any o € LY(0,T) with o > 0 a.e. and for any u > 0, a problem of the type

(¥p(v"))" + pa(s)iPp(v) = 0,

(244) v(0)=0, o(T)=0,

has a strictly monotone sequence of eigenvalues. On the other hand, the proof

of Proposition 2.21 implies that X\ is an eigenvalue of (2.38) if and only if
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=P\ is an eigenvalue of (2.44) with o and v as in (2.42). This proves the

asserted property.
Let us turn to the proofs of Theorem 2.18 and Theorem 2.19.

Proof of Theorem 2.18. By a standard approximation argument it is sufficient
to prove Theorem 2.18 in the special case where a € A is a smooth function.

It is well known that C;*(a) = A1(a), hence the following estimate holds

Lé at)[u(t) Pt < ll at) | ()Pt

1
Ai(a)
for every u. Therefore, in order to prove (2.33) it is sufficient to show that, if
A # 0 and u # 0 satisfy (2.38), then necessarily

2\? (p\"" [7,e BL)1"
A> (?) (E) {% — arctan,- §(L) + arctan, - |

In view of Proposition 2.21 there exists a vector d € RY such that u(t) = w(t)d
where w is a solution of the scalar problem (2.40). Now we apply the arguments
of Piccinini and Spagnolo [69], as extended in [36], to problem (2.40). By
standard properties of eigenfunctions any solution w of (2.40) in [0, 7] has at
least two zeros, and between any pair of zeros of w there is exactly one zero of
its derivative w’. Let tg and ¢y be two consecutive zeros of w and let ¢; be a
zero of w’ in such a way that tg < t; < to. Without loss of generality we may

suppose that w(t;) > 0. It is obvious that
(2.45) ty—to < T.

We define, for tg < t < ty, the function

a6, /(1)
10 = =5 )

In view of (2.40) it results that f satisfies the following first order differential

equation
p*

) = =da(0) - 2O

We remark that f is strictly decreasing, since f'(t) < 0. Furthermore hmtﬂta' f(t) =

+00, f(t1) = 0. Hence, there is exactly one point, say 7, in the interval (g, ;)
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such that f(7)=(\p*/p)"/?"B(L), where B(L) is defined in (2.32). Now we
prove that the following inequalities hold:

“da(t) - UL >\ -2

p =

flP" for to<t<r

(2.46)

“da(t) - 2L > AL - 20 for r<t <t

aP*/p p
Indeed, it is readily checked that the first inequality in (2.46) is equivalent to

P > %ﬁp*(a(t)) for to<t<r

where the function [ is defined in (2.32). Since f is decreasing and [ is

increasing in (1, L), for t < 7 we obtain

AP e .
) 37 (a(t)).

FO > S = %W(L) >

Hence, the first inequality in (2.46) is established. On the other hand, the

second inequality in (2.46) is equivalent to

FY < )\in*/pv(a(t)) for T<t<t
p

where ~ is the function defined for 1 < a < L by

a?’ /P(L — a)
v(a) = Lp*/p — gp*/p’

Since f is decreasing and 7 is increasing, we have for ¢t > 7:

FO7 < frp = A;’* 7 (L) = %Lﬁ*wm < X 1 s a(e)).

p

Hence, the second inequality in (2.46) is also established.
Now, we prove that the Cauchy problem

(

—A—]%fop* for to<t<rt
o(t) =
(2.47) —AL - 2L for T <t<ty

| fo(m) = (w*/p)V7" B(L)
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has a unique solution. Indeed, note that f; is strictly decreasing. Denoting by

go its inverse, it results that

(2.48)

; -1

_ (/\L + 2L g ) for  fo(t1) < s < fo(7)

90(s) =
-1

_ ()\ + I%y*) for  fo(r) <'s < fol(to)

| 9o(fo(T) = T

Hence, there exists a unique solution for (2.48). It follows that uniqueness

holds for (2.47) and that fy is given by:

1/p
Ap* *
(227" tan,, {)\1/1’ (pﬂ)

/ *

(T —t) + arctan,- ﬂ(L)}

for to<t<rt

(2.49)  fo(t) =

*

N1 /o 1/p
L(%)l/p tan,,- [Al/p (}%) (r — t) + arctan,,- 2&

for 7<t<¢.

\

In particular, we obtain

fo(t) > f(t) for t<7
(2.50)

fot) < f(t) for t>r.
Since

lim tan,-(t) = +o0
t— 727*

we have that

1 .
fo(t) = o0 ast — 7 — — T <% — arctan,- ﬁ(L))
P

and vanishes for t = 7 + 7= arctan,,- @ It follows:
)\1

1
P

)
Ty ﬂ(ﬂ |

/p(

]

ty —to > —— — arctan,- §(L) + arctan,

1 [
\Up (£>1/P* 2
p*

In a similar way we can prove that

2~ _ arctan,- 3(L) + arctan,.

1 [ﬂ
\Up (ﬁ)l/l)* 2
p*

to —t1 >

5(LL)} ;
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hence by the relations above we derive

2 * L
ty —to 2 ———7- {7@, — arctan,- 5(L) + arctan, M} :
\Up ( > ) 2 L
p
So recalling (2.45), we can state
T > — {% — arctan,s 5(L) + arctan,: T] ,
v (e)
P
that is
P
2 Tp* B(L)
(2.51) A > W [7 — arctan,s f(L) + arctan,, T
(%)
The proof of Theorem 2.18 is complete. O

In order to characterize the extremals as in Theorem 2.19 we shall need

the following.

Lemma 2.22. Let u € Wy ([0,T],RY) be a weak solution of the equation

(2.52) (@(0), ()’ + Na(t)e (1) = 0.

with X\ and @ as in Theorem 2.19. Let

lim «'(t) = «/(77), liH}r u'(t) = (7).
t—T— t—7

Then

(2.53) u'(77) = LP 1 (7).

Proof. Since a(t) = 11in [0,7] and a(t) = L in [7,T/2], from (2.52) we conclude
that the restrictions of u respectively to the intervals [0,7] and [7,7/2] are
both C! functions. Now, we prove that u/(7) is completely determined by
w (7). Since u is a weak solution of (2.52) we have, for any function ¢ €
whr([0,T/2],RY)

T/2 T/2
(2.54) - / G(8) (i () ) = A / () (1 (12); ),
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Let 1 <57 < N and € > 0. In (2.54) we first choose vector valued piecewise
linear test function ¢(t) = (¢1(t), g2(t), ..., pn(t)) defined by

0 foO<t<7—e,
ee(t) =0  ifk#£j, @i(t)=Q Lt—F+e) ifF—e<t<T,
1, if 7 <t<T)/2.

The derivative of ¢; is given by

pi(t) =

Let us set for every 1 < j < N

|z|P~2z; if x € RV \ {0},

Upi(x) =
" 0 if 2= 0.

Hence,

T/2 7
(2.59 | a0 = [,

and in a similar way
T/2

T/2 7
@s6) [ anwie =2 [ =L [ v,

7

By substituting (2.55) and (2.56) in (2.54) and letting ¢ — 0% we obtain

T2
(2.57) —|u (F7) PP (7) = AL Up,i(u), dt,
A second choice of ¢, namely

0 if0<t<7,

pet)=0 ik #G i) = J(t-7) fF<t<F+e,

1, if 7 4+e<t<T/2
and an argument similar to the one that yields (2.57) leads to

T2
(2.58) —[u/ (FF) PP (7) = A Uy, (u), dt.
Thus, from (2.57) and (2.58) we have, for every 1 < j < N

— LI (FO)P 2 (7) = =/ (F7) P (70),
and therefore
Lapy(u' (7)) = 4 (u/(77)).-

From the above and from the fact that ¢, ' = 1~ we obtain (2.53). O
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Proof of Theorem 2.19. The inequalities (2.45), (2.46), (2.50), (2.51) in the
proof of Theorem 2.18 hold strictly unless to = 0, to = T, f(t) = fo(t) and
a(t) = a(t). In this case the function fy satisfies

(2.59) lim fo(t) = +o0.

t—0t
Since tan,«(#) — 400 as § — (m,+/2)7, in view of (2.49) there is a unique

value of 7, denoted by 7, such that (2.59) holds. Thus 7 satisfies

D 1/p* _
(2.60) (—*) AVPF 4+ arctan,. B(L) = %,
p

and this yields (2.34). By requiring that fy(t1) = 0 we obtain

1/p* ~ L
(2.61) (%) AVP(F — 1)) + arctan,. 5(1/ ) =0,
p

and this implies t; = T//2. It remains to prove that all extremals of inequal-

ity (2.33) with a = a are of the form u = @ = @wd, where @ is defined by

(2.35). Hence, we seck all non-trivial solutions of the equation

(2.62) (@(t)ep () + Aa(t)e,(u) = 0,

such that u(0) = 0 and u(7T") = 0. Since a(t) = 1 in [0, 7], in view of Propo-
sition 2.20 (see also Lemma 3.1 in [54]) we have that, for any given d € R",
there exists a unique solution @ defined in the interval [0, 7] of equation (2.62)

satisfying the initial conditions

Recalling the definition of sin,, we may write @ in the form

x* —-1/p 5\* 1/p

- p . 4 ~
u(t) = sin t| d vt € |0, 7.
(t) (p) p (p) [0, 7]

Observe that

- -1/p ~ 1/p
e Ap* . Ap* .
2.63 w(77) = sin —_ 7| d.
(2.63) (77) ( p ) p < p >




In order to simplify the above expression for %(7~) we note that, using iden-

tity (2.18), we may write

~ " l/p % 1/p*
. Ap e (p> 2 o
sin, T| =sin, |— | = NPT
p b \Pp

T % p 1/p* ~
= COSp» % — (—) A/P7 ) = cos, (arctan,. B(L))

p*

where we used (2.60) in order to derive the last equality. In turn, from iden-

tity (2.17) we derive

1

*tp:
o5 1 = T e O

and therefore we may write

{Lp*/p — 1] 1/p

1/p
cos,+ (arctan,« (L)) = (;(LQ =\ —-1

1+ v

We conclude from (2.63) and the arguments above that

~ —1
w(7") = ) Lrir—1 l/pd
P L —1 '

We still denote by @ the restriction of the solution of equation (2.62) to the

interval [7,T — 7]. By continuity of 4,

S\ VP 41/
(2.64) a<%+>=a<%>=(Ap) {%} d

p

Now we compute derivatives. Using (2.20), we have

- 1/p
(2.65) @) = oy | cos, (Ap ) 7

p

On the other hand, similarly as before, using (2.18) and (2.60) we compute:

< 1/p *

Ap* ~ p* (p>1/p Y1/p~
CcOs, T| =cosy | — | = NPT

p b \Pp

T D 1/p*
= sin, ; - (—) A/P7 | = sin,. (arctan,. 3(L)).

p*
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From the basic identity (2.17) we derive

. tan,(t)|P
|Slnp(t)|p — A
1+ | tan,(t)|?

and consequently

I _ e

sin, (arctan,- 5(L)) = [

We conclude from (2.65) and the arguments above that

- _ /P
- [

Lr —1

Now, in view of Lemma 2.22 we have

A 5 i I —1 1/p
2.66 THGan T e A P B DU P B R
(266  @(F) [ e ] [L(Lp* ! 1)]

Since a(t) = L in [7,T — 7], again by Proposition 2.20, @ coincides in [7,T — 7]

with the unique solution of (2.62) satisfying the initial conditions

(2.67) wF) = (;p*>1/p {&]lmd’

D Lrr—1
_ 1/p

according to (2.64) and (2.66). We claim that

o )\p* 1 p "‘1/p T ~ ~
(t)— (7) mCOSp* [(E) A t—E d vtE[’T,T—T].

Indeed, using (2.61) it follows that @ satisfies (2.67). Moreover, recalling that
(see (2.19)) pcos,.(t) = —p* ¢, (sin,-(t)) we have
} :

1/p*
(2.69) w'(t) = —ﬁqsp* {smp* [(pﬁ) ALP (t — g)

By similar arguments as above, we compute

L L—1\""
sin,- (arctan,s 5(11 )) = (LP* 1) :

I~g1

Hence, @ satisfies (2.68). From (2.69) we have

270) o, (i@(1) = —ﬁ sin, - [(}%)W S/ (t - g)] d



Differentiating (2.70) we obtain

(¢ (@(1))) = =Xy (alt)).

and thus we check that @ solves (2.62) in [7,T — 7]. By similar arguments we

evaluate @ in the interval [T — 7, T|. The proof is complete. ]

2.3 A concrete example

The goal of this section is to give an example of explicit non-trivial degenerate
elliptic equation of its own interest. In view of this example we cannot expect
to extend the Piccinini and Spagnolo argument to the case of the a p—laplacian

type equation. Namely, let (p, @) be the usual polar coordinates

T2
p =]z + 23 = arctan —.
T

Consider the following partial differential equation

p—2 p—2
10u 10 ou
Fae) T ror <m(9) ar> =0

where p > 2. Our aim is to provide a solution of (2.71) of the form

ou

1o ou
or

(2.71) %% <a(e) =

(2.72) u(r, ) = r*w(0).

We may refer to a function of the type (2.72) as an angular stretching or a
quasi radial function.
We also recall, from the result of [37], that if A > 0 is a eigenvalue of the

nonlinear problem

(a(®) [0 2urY + Aa(8)|w]P2w = 0

(2.73)
w(0) = w(2m)
then necessarily
(2.74) A= M(L) = {% (%) : {% — arctan,- B(L) + arctan, @} } :

Before we give the main result of this section, we need to prove the following

lemma.
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Lemma 2.23. Let p > 2. The function F : [0,00) — R defined by
F(a)=a" (a=1)(p—1) + 1],

. . . . —9
is continuous and increasing for every o > ng. Moreover

-2
F(p—>:O.
p—1

Proof. We compute the derivative of F', which is given by
F(a) = (p— 1)a" 2(pa — p + 2)

We deduce that F'(a)) > 0 if @ > (p — 2)/p. The result follows from the fact
that (p —2)/p < (p—2)/(p - 1). O

Proposition 2.24. Let p > 2 and let a = a(t) be a 2m—periodic measurable
function such that 1 < a(t) < L. For every X\ satisfying (2.74) there exists a
unique o > g%f such that the function u (r,0) = r*w(0) is a solution of (2.71),
where w is a solution to the problem (2.73). Moreover, A and « are related by

the following condition
(2.75) A=ao"a—1)(p—1)+1].

Proof. The existence of a solution w to the problem (2.73) is a direct conse-
quence of the estimate (2.74). Let u (r,0) = r*“w(#) be a solution of (2.71).
Then, substituting the function  in (2.71) and recalling that

ou

5 = ar® w()
and
10u a1l 4
then necessarily (2.75) holds. O
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Chapter 3

Convergences for sequences of

elliptic operators

In this Chapter we will discuss the G-convergence and H-convergence (in the
general case of matrices not necessarily symmetric) of the operators in diver-

gence form.

3.1 Introduction and definitions

Let €2 be a bounded open subset of R". We consider the class M (K, ) for
each constant K > 1 of measurable matrix field A : Q@ — R™*" such that
A= A(z) € L™ (Q,R""), A is symmetric and satisfies the condition

(3.1) ED cAme.o) < kigP aeaen, weRr?

Let A® be a sequence of matrices of M (K, €2), namely A® satisfies (3.1)
uniformly in . Assume that v is the unique solution of the Dirichlet boundary
problem

—divA*Vus = f  in D'(Q),

u € Wo™(Q),
with right hand side f € H'(Q). Here and in what follows we denote by
H'(Q) the dual space of Wy?(Q). It is not difficult to see that

1 g
?HU HW&’Q(Q) < -2,
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hence, up to a subsequence, we may assume that
u — u’ in W,2(Q) weakly,

for some u® € Wy?(Q). One may ask if u° satisfies an equation of the same
type of u®. In order to answer this question, the notion of G-convergence was

introduced by De Giorgi and Spagnolo (see for [22] and [79]).

Definition 3.1. A sequence of matrices A° of M (K, Q) is said to G-converge
to a matrix AY of M(K,Q) if, for every f € H~'(Q), the solution u® of the
problem

—divA*Vus = [ in D'(Q),

ut € Wy (),
satisfies

uf — u in W, *(Q) weakly,

where u° is the solution of the problem
—divA’Vu? = f in D'(Q),

u® € W,2(Q).

In this case one writes

G

As = A°,

One of the properties of the G—convergence, which explains the interest
of Definition 3.1, is following fundamental compactness result, which can be

found in [79].

Theorem 3.1. Any sequence of matrices A of M (K, Q) admits a subsequence

which G-converges to a matriz A° of M(K,Q).
We recall here some well known facts for the G-convergence.

Lemma 3.2. Let Q be a bounded open subset of R™, let A° = (a5;) and A® =
(ag;) be matrices in M(K, Q).

(i) If for everyi,j=1,...,n
as, — a; in Ly (Q) strongly,
then A= - AO.
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(1) Let n =1 and let Q2 be an open interval of R. Then

G

1 1
AT =5 A° if and only if — = — in L>(Q) weakly *.

As A0
(iii) Let A® G A and £5 = fin H=Y(Q) strongly. If u® and u°® satisfy

—divA*Vu® = ¢ in D'(Q),
ut € Wy (€2),

and
—divA'Vu® = f in D'(Q),
u’ € W,2(Q).

then

ut — u’ in Wy () weakly.

The notion of G-convergence has been extended to the non—symmetric
case by Murat and Tartar under the name of H-convergence (see [66]). Before
we give the definition, we introduce the class of matrices M(«, 3,), where

0 <a< <400 of 2 x 2 matrices A which belongs to A € (L*>(Q2))™*" and

satisfies
(3.2) (A(2)€,€) > al¢]? ae.r€Q  VEER
(3.3) (AN D), ) > B¢ aexeQ  VCER™

Observe that, in view of (3.2), the matrix A(z) is invertible a.e. so that
A~1(x) exists and is measurable. Observe also that taking ¢ = A(x)¢ in (3.3)

one has
(3.4) |A(z)€] < B¢ ae. e VEeR™
Moreover, we are making no symmetric assumption on the elements of M («, (3, Q).

Definition 3.2. Let a and 3 be real numbers such that 0 < a < [ < +00 and
let Q be a bounded open subset of R?. A sequence of matrices A of M(«, 3, )
is said to H-converge to a matrix A of M(«,3,Q) if, for every f € H1(Q),
the solution u* of the problem

—divA*Vus = f in D'(9),

ut € Wy (),

23



satisfies
u — u° in W,7*(Q) weakly,

AsVus — AV in (L*(Q))" weakly,
where 1 is the solution of the problem
—divA’Vu? = f in D'(Q),
u® € Wyt (Q).
In this case one writes
A p0,
The class M(a, 3, ) is sequentially compact with respect to the H—convergence.

Theorem 3.3. Let a and (3 be real numbers such that 0 < a < f < 400 and
let Q be a bounded open subset of R™, with n > 1. Any sequence of matrices

A® of M(a, 3,) admits a subsequence which H-converges to a matriz A° of

M(a, 3,9).

3.2 The class of matrices with unit determi-

nant

We denote by M;(a, 3,2) whose elements are the matrices A € M(«, 3,)

which satisfies the condition
det A(z) =1 a.e. x € ()

This class is stable under H-convergence. This is a consequence of the following

result, whose proof can be found in [24, 47, 30, 57, 59, 81].

Theorem 3.4. Let Q) be a bounded open subset of R%and let A® be a sequence
of matrices of M(c, 3,€) which H-converges to a matriz A°. Then
A g A
% .
det A® det A

It should be mentioned that the previous result is true only in dimension
n=2.
We would like to prove here a result strictly related to Theorem 3.4, which

can be found in [26].
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Theorem 3.5. Let 2 be a bounded open subset of R? and let A® be a sequence

of matrices of M(a, 3,9) which H-converges to a matriz A°. Assume that
(3.5) det A° — & a.e. inQ,
where ¢ is a function in L>(S)). Then
(3.6) det AY = °.
One of the key ingredients of the proof of Theorem 3.5 is following result.

Theorem 3.6. Let Q be a bounded open subset of RN with N > 1 and let A®
be a sequence of matrices of M(a, 3,K) which H-converges to a matriz A°.

Assume that b° is a sequence of measurable functions such that
(3.7) m < b(x) <M a.e. x €€,

where 0 <m < M < 4+00 and

(3.8) b*— b ae in Q.
Then
(3.9) be A L 040,

Proof. We divide the proof in two steps.
Step 1. Assume first that, further to (3.7) and (3.8), one has

(3.10) b¥eCt(Q), e C(Q), v —1° in C'(Q) strongly.

We claim that in this case the sequence b°A° H-converges to b°A°, i.e. that

for every f € H~(Q), the solution u° of the problem

—div(b*A*Vu®) = f in D'(Q),

(3.11)
uf € Wy (9),
satisfies
ut — in Wy2(Q) |
(3.12) 0" (%)

b*AVus — YAVl in (L2(Q))V,
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where u° is the solution of the problem

—div(°A°Vul) = f in D'(Q),
(3.13) ( ) ()
u® € Wy (Q).
Actually it is sufficient to prove this result for f € L*(Q).

To this end, we observe that
(3.14) CAv(BEATVE) = —BEdiv(ATVE) — (AT, VIF),
where b*div(A*Vu®) € H1() is defined by
(b°div(A*Vu®),v) = (div(A°Vu®), bv) Yo € W, (9).

(Note that bv € Wy2(Q) for every v € H}(Q) when b € C'(Q); this proves
that the distribution b°div(A°Du®) is well-defined as an element of H~1(2).)
Set
. [+ (AVuE, V)
g = bg °

Since u* is the solution of the problem (3.11), the sequence u® is bounded in

Wy ?(Q). We can assume that (up to a subsequence)
u® — u in Wy (Q) weakly,

for some u € Wy*(Q). Since A° € M(a, 3,), from (3.4) it follows that AVu
is bounded in L?(Q). This proves that ¢° is bounded in L*(Q2) and that (up to
a subsequence)

g° — g in L*(),
for some g € L*(2). We now observe that u° is the solution of the problem
—div(A*Vu) = ¢¢  in D'(Q),
ut € Wy ().

Since A¢ is assumed to H-converges to A° and since ¢° converges to ¢ in
L?(Q) weakly (and therefore in H~() strongly), we deduce that (up to a

subsequence)
(3.15) A*VuE — A'Vu in (L)Y weakly,
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where u is the solution of the problem

—div(A°Vu) = g in D'(Q),
516) (A'Vu) =g in D'(Q)
u € W,?(Q).

In view of (3.15) and of the strong convergence (3.10), we have

[+ (A°Vu, Vi)

(3.17)
Similarly to (3.14) we have, since v° € C1(Q),

—div(b’A°Vu) = —b°div(A°Vu) — (A°Vu, VbY),
so that (3.16) and (3.17) imply that u is the solution of the problem

—div(’A°Vu) = f  in D'(Q),
u e Wy (Q).

This implies that u coincides with u° defined by (3.13) and that the conver-
gences (3.12) hold for the whole sequence ¢; indeed, we do not have to extract
any subsequence since the limits u, A°Du and ¢ are uniquely defined.

We have proved the result of Theorem 3.6 when hypothesis (3.10) holds
true.
Step 2. We now prove the assertion in the general case, i.e. when only
(3.7) and (3.8) hold true. In view of Theorem 3.3 we assume that (up to a

subsequence) the sequence of matrices b°A® of M (am, BM,)) satisfies

(3.18) b A° L Bo

Y

for some B° of M (am, 8M, ).
Extend b° and #° to the whole of RY by

V¥(z)=0(z)=m VzecRV\Q.

Let os be a mollifier and let b° x o5 be the convolution of b° and ps. Since for

6 > 0 fixed we have

b % 05 — 0" x o5 in C'(Q) strongly,
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the result of the first step proves that for every o > 0 fixed
(3.19) (b° * 05) A <5 (1 * 05) A°.

On the other hand, since the sequence A® is equi-bounded in L>(£2) (see
(3.4)) we have

(3.20) |6°A° — (b° * 05) A%| < 75,
where 75 is the function defined by

Vs = B[07 = (b7 x 0s)]
for every § > 0 fixed. Hypothesis (3.8) implies that
(3.21) 75 — 95 ae. in Q,

where 79 is the function defined by

(3.22) s = BI6° — (8" % 05)],

for every § > 0 fixed. Then (3.18), (3.19), (3.20), (3.21) and Theorem 3.1 in
[8] imply for every ¢ > 0 fixed

(3.23) |BY — (b 05) A°] < 5.

The fact that b° * g5 tends to 0° a.e. as d tends to zero, (3.22) and (3.23) imply
then that B = b0A°.
This concludes the proof of Theorem 3.6. O

Proof of Theorem 3.5. Define

1

— )
det Ac

In view of hypothesis (3.5) we have

1
¥ — 0 = - ae in 2.
c

Applying the result of Theorem 3.6, the sequence b°A° H-converges to b’ A° =

‘2—5. Since here the dimension is N = 2, Theorem 3.4 implies that

A gAY
Ho 2
det A€ det A
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Since the H-limit is unique, it results that

AV AP
‘@ det AV’
and therefore
® = det A,
This proves Theorem 3.5. O]

3.3 Quasiconformal mappings and approxima-

tion of the inverse matrix

Let us suppose that A° is a sequence in M (K, R?) and that det A° = 1 a.e. in

Q). Up to a subsequence, we may assume that both

A5 4

and

(A < B

G-converges to some A and B in M(K,R?). In general, B is different from A.

However, the following result can be obtained, performing a suitable change

of variables (see [61]).
Theorem 3.7. Let A° be a sequence of matrices in M(K,R?) such that
det A® = 1.

Assume that A° -5 A for some A € M(K,R?). Let B be any open ball in R?
and let A° and A be the matrices defined as

I otherwise. I otherwise.

where I denotes the identity matrix. Then, there exists a sequence of K-
quasiconformal mappings f€ : R? — R2 which converges locally uniformly to a

K —quasiconformal mapping f : R?> — R? such that
(Ao ()T () o f
We want to point out here that the result in specific of dimension n = 2.
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3.4 Beltrami operators

For any fixed K > 1, let F(K) of the class of operators of the type

g2 _,0 0
“oz Mo Vo
where p and v are function in L*°(C) such that
K—-1

@)+ ()l < b= 77—

We say that an element of F(K) is a Beltrami operators. We follow [5] and

give the notion of G—convergence for the Beltrami operators.

Definition 3.3. The sequence of differential operator B¢ in F(K) is said to
G-converge to a operator B in F(K) if for any sequence f¢ € L?(C) which con-
verges strongly to f € L?(C) and such that B¢ f¢ converges strongly L?(Q, R?)
one has

(B5)'fe =~ B'f  weakly in L*(C).
The following compactness result is proved in [44].

Theorem 3.8. For every 1 < K < 3 the class F(K) is G—compact, in the
sense that any sequence of operators B° in F(K) has a subsequence which

G —converges to some B in F(K).

3.5 Examples of G—dense classes

We dedicate this section to fundamental examples of classes that are compact
or dense with respect to the G-convergence.

Now, we mention the result of Marino and Spagnolo [56] which is true in
every dimension n. They prove that every elliptic matrix A € M(K, Q) is the

G-limit of a sequence of isotropic matrices of the type
f(x) 0
0 ()
Theorem 3.9. Let Q be a bounded open subset of R" and K > 1. If A =

A (z) =

A(z) € M(K,Q) then there exists a constant ¢ depending only on n and a
sequence of coefficients = (°(x) satisfying
1

a S ﬂ5<l’> S CK7
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such that
FI1 -5 A,

where I is the n X n identity matrix.

Every 2 x 2 matrix A which satisifies the additional assumption det A(z) =
1 can be approximated in the sense of the G—convergence by a sequence of

anisotropic matrices

g Y@ 0

provided some elliptic bound is satisfied.

Theorem 3.10 ([62]). Let Q be a bounded open subset of R™ and K > 1.
assume that A = A(z) € M(K,Q) and

det A(z) =1 a.e. in

There exists a sequence ¥° satisfying

1
=S V(z) <K
such that
@) 0 ) ¢ A
0 1
¢ (z)

if and only if A satisfies

€ 1 LY oo
m < (A()E,6) < 2 (K+ ?) 3

61



62



Chapter 4

Variational integrals

4.1 Classical semicontinuity result

Let 2 be a bounded open subset of R™. In this section we consider functionals

J of the integral form

(4.1) J(v) = /QF(a:,v,Vv)da: Vv e WHP(Q),
where F': 0 x R x R" — R is a Carathéodory function satisfying
(4.2) ao(x) + col¢[” < F(x,5,8) < ai(x) + bifs]” + efE]”,

with p > 1, ¢g > 0 and ag,a; € L'(Q).
Observe that, for p = 2, an example of a functional which satisfies condition

(4.2) is the A-harmonic energy
(4.3) Ealu) = /(A(x)Vu, Vu)dx
Q

where A = A(z) € L*(Q,R™") is a symmetric matrix satisfying, for some

K > 1, the usual bounds

4.4 lEF A < K|¢|?

(4.4) S- < (A)€,€) < K]

Such an example is relevant in connection with the Dirichlet problem

—div(AVu) =0 in D'(Q),
(4.5)
u e Wy (Q),
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because any minimizer u € W,?(Q) of (4.3) is the unique solution of (4.5)
Since condition (4.4) is fulfilled, the energy (4.3) is equivalent to the quan-
tity
i) = [ 1Va)

in the sense of the following estimates

(4.6) %/Q|Vu(a:)|2 < Ealu) < K/Q|Vu(x)|2.

The functional £4 has indeed quadratic growth with respect to [|[Vulls =
IVull(p2(q)2- For general functionals of the type (4.1), the following classi-

cal result in the Calculus of Variations holds (see for instance [17],[55]).

Theorem 4.1. The functional J in (4.1) where F : Q x Rx RY — R is a
Carathéodory function satisfying (4.2) is sequentially weakly lower semicontin-
uous on WHP(Q) if and only if F(x,s,-) is a convex function for a.e. x € €

and for every s € R.

We recall that a functional J defined in W?(2) is said to be weakly lower
semicontinuous on Wh?(Q) if

J(v) < liminf J(vy) if v, — v in weakly in WP(Q).

k—o0

4.2 Some examples

Let 2 be a bounded open subset of RY, with 0 € Qif N > 2, and Q = (0, Ry) if
N = 1. In this section, we give an example of functional which is defined and
coercive on W,(€2), which has quadratic growth with respect to ||Vv||, =
Vo[ (£2()), which is sequentially weakly lower semicontinuous on Wy (Q)
for every p > 2, but which is not sequentially weakly lower semicontinuous on
Wy (Q).

More precisely, when n > 3, we recall the Hardy-Sobolev inequality (see

e.g. Theorems 21.7 and 21.8 in [68], Lemma 17.1 in [81] )

2

(4.7) m? / ‘“—d;cg \Vol’dz Vv e Wy (RY),
R R™

* Jrn 2]
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where m? denotes the best possible constant in the inequality, i.e.

) /R |Vv|*dx
4.8 m., = inf —F——o—.
( ) UGWOLZ(R”) / ‘UPd
Tpdr
Rn |2

It is well known that m? is given by (see the references above)

m2 — (”_2)2'

" 4
We consider a function ¢ which is defined and continuous on [0, co], which

is non negative and decreasing and which satisfies

2
(4.9) ©(0) > m? and ¢(c0) < %
Finally we define the functional J by
(4.10) /|Vv|2dx— e(Vv[[3) ||“|2 Yo € Wy (Q).

Our result is the following

Theorem 4.2. Let n > 3 and let Q be a bounded open subset of R™, with
0 € Q. Assume that ¢ is a continuous, non negative and decreasing function

on [0, 00] satisfying (4.9), where m2 is given by (4.8). Then the functional J
defined by (4.10) satisfies

(i) there exists a constant C' > 0 such that

(4.11) —-C+ = / |Volrde < J(v / Vo’ dz Yo € Wy2(Q);

(i) the functional J is sequentially weakly lower semicontinuous on Wy ()

for every p > 2, i.e.

(4.12) J(v) < lilgn inf J(vg) if v — v in Wy P(Q) weakly;

(iii) the functional J is not sequentially weakly lower semicontinuous on WS’Q(Q);
more precisely, there exists a sequence of functions wy € Wol’Q(Q) such

that wy — 0 in W,(Q) weakly and

(4.13) lilgn inf J(wy) < J(0).
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Proof. We start by proving (i). By the definition of J(v) we have
0 < [ VoPds,
Q

It remains to prove the first inequality of (4.11). Since ¢ is continuous and
satisfies (4.9), there exists ¢ty > 0 such that p(ty) = m? /2.
If ||Vv||2 > to then o(||Vv||3) < m2/2. Therefore

2
m?2 v
0z [1voas= 2 [ e
2/|Vv| dx——/|Vv| dx
0 2 Ja
> 1/ [Vo|*dz,
2 Jo

and the first inequality of (4.11) holds.
On the other hand, if || Dv||3 < to, then

since ¢ is non negative.

v) > /Q |Vo|*dx — ¢(0) ﬁdw

>
2
2( > / |Vv|*dx
0
2( L 90(2) > fo.
mTL
in view of (4.9). If we choose a constant C' such that

©(0)

<C,

J(v) > 2/|Vv|2d:p—0
Q

and the first inequality of (4.11) is again proved. This proves (i).

we have

Now we prove (ii). Let p > 2. Assume that v, — v in Wy”(Q) weakly.
Since (2 is bounded, vy — v in VVO1 2(Q) weakly and there exists o > 0 such
that

(4.14) lilgnianVkag = || Vv|l5 + a.

66



Since ¢ is continuous and decreasing, there exists some $ > 0 such that

(4.15) lim inf —o([| Ve [3) = — (I VoI + 6

for p > 2 we get

2 2
(4.16) TN L

k=oo Jo |z? o |zf?

—=dx.

Combining (4.14), (4.15) and (4.16), we obtain
2
hmme(vk)>J +a+ﬁ/udx>¢]
b |2
which proves (ii).
Finally we prove (iii). Let A be such that m? < A < (0) (such a X exists

in view of (4.9)). Recalling the definition (4.8) of m?2, there exists a function

Y € Cg°(R™) such that

2
)\/ i —=dr > |Vep|2da.
R R"

w2l
Since ¢ is continuous and satisfies (4.9), there exists t; > 0 such that ¢(t;) = A.

Take s such that 0 < s%||V||3 < ¢;. The function w = s¢ belongs to C§°(R™)

and satisfies

(4.17) p([Vwll3) > X
as well as
|w 2 2
(4.18) )\/ —ydr > |Vw|*dx.
R || R

Define the sequence wy by

2

wg(z) = k%w(kx);

then
Vuwg(z) = k2 Vw(kz).

For k sufficiently large, the function wy, belongs to Wy*(€2) and

2 2
Vwy|*de = Vw|*dz and [0 dox = M T
| ;
Q R” Q e | 7]

67



Therefore, for k sufficiently large, the sequence wy, is bounded in VVO1 2(Q) with
wy — 0 in Wy*(Q) weakly, and
2 2 |wl?
Hu) = [ [Fulds = o(vul) [ o
Rn R |Z]
Therefore J(wg) < 0 in view of (4.17) and (4.18). This proves (iii). O

On the other hand, when n = 2 we consider a bounded open subset €2 of
R?, with 0 €  and some R, for which Q C B Rro- We recall the Hardy-Sobolev
inequality (see e.g. Theorems 4.2 and 5.4 in [6] and Lemma 17.4 in [81])

2
(4.19) m3 S < [ |Volldz Vv e W),
a |z|2log? % Q

where m2 denotes the best possible constant in the inequality, i.e.

/]Vv[zdx
4.20 ms = inf X
(4.20) 2 Lewdi(q) v]?
102 107
o|z[*log” &

It is well known that m3 is given by (see the references above)

1

2 — —
my = 7
We consider a function ¢ which is defined and continuous on [0, o], which

is non negative and decreasing and which satisfies
m2
(4.21) ©(0) > m3 and p(o0) < 72,

and we define the functional J by

|U’2 1,2
dz Yo e Wy ().

Q |a:|210g2 lzl

@m)ﬂw=ANWM—wWﬂ®
Ro

In this case, we prove the following

Theorem 4.3. Let n = 2 and let  be a bounded open subset of R?, with
0 € Qand Q C Bg,. Assume that ¢ is a continuous, non negative and
decreasing function on [0,00] satisfying (4.21), where m3 is given by (4.20).
Then the functional J defined by (4.22) satisfies the conditions (i), (ii) and

(iii) of Theorem 4.2.
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Proof. Condition (4.11) is proved exactly as in the proof of Theorem 4.2.
Now we prove (ii). Let p > 2. Assume that v, — v in W, *(€) weakly. Then,

as in the proof of Theorem 4.2 , we have, for some a > 0 and § > 0,
(4.23) lim inf Volla = | Vo2 + a,
(4.24) hmmf{ e(IVuel3)} = —o(|[Vull3) +

Moreover, since p > n = 2, we have that vy — v uniformly in €2, and, since

1

LY,
|x|210g2 |m| )
we have
2 2
T Ny
k—oo Jo |x]? log il  |z|?log” ¢ 'x|

Combining (4.23), (4.24) and (4.25), we obtain

k—o0

2
liminf J(v,) = J(v) + o + 8 / — Tz > J(v),
[[2log® -

which proves (ii).

Now we prove (iii). Let A be such that m? < A, where m? is the best constant
(defined by (4.29)) in the one-dimensional Hardy-Sobolev inequality (see (4.28)
below). Then there exists ¢ € C§°(0, 00) such that

)\/0 W’i s dt>/ooo|¢/(t)|2dt.

Since ¢ is continuous and satisfies (4.21), and since the best constant m3

(defined by (4.20)) in the two-dimensional Hardy-Sobolev inequality (4.19)

coincides with m?, we can choose A such that m3 = m? < XA < (0) (if we
do not want to use the property m3 = m?, it would be sufficient to assume in
(4.21) that ©(0) > m? in place of ¢(0) > m2). Then, there exists ¢; > 0 such
that ¢(t;) = A. Take s such that 0 < 27s?||¢/||2 < ¢;. The function w = st
belongs to C§°(0, 00) and satisfies

(4.26) g0<27r /0 h |w’(t)|2dt> >

as well as
(4.27) A/ 'wi ) dt>/ ! (£)2dt.
0 0
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Define the sequence wy by
Lw( klo lx‘) if |z] < Ry,
wy(r) = vE ° o=t

then
—\/Ew’< klog \w|> nE if o] < Ro,

0 if ‘LU| > Ro.

Duwy(x) =

For k sufficiently large, the function w; belongs to W,*(€) and

Ry r Qk o
[ 1vuntar=on [7 |t (<wtog )| Ear =2 [T o
Q 0 Ry r 0

w (—k:log RL>

2 Ro 00 2
—’wk’ dr = 27r/ 5 L dr = 27?/ [w(®) ——dt.
‘x|2 ]0g2 |J»’\ 0 krlog RLO 0 12
Therefore, for k sufficiently large, the sequence wy, is bounded in VVO1 2(Q) with
wy, — 0 in W, () weakly, and

J(wy) :27r/ooo\w’(t)|2dt—27rgp<27r/ooo |w’(t)\2dt> /OOO |wi )

Therefore J(wy) < 0 in view of (4.26) and (4.27). This proves (iii). O

while
2

Finally, in the one-dimensional case, let 2 be the interval Q = (0, Ry). We
recall the Hardy-Sobolev inequality (see e.g. Theorem 327 in [40] and Lemma
1.3 in [68])

o0 2 o0
(4.28) m? / [l 4 < / W2de Yo € WE(0,00),
0 0

|z[?
where m? denotes the best possible constant in the inequality, i.e.

' 2 dx
(4.29) mj = inf —fo ||U||
i) [ e
It is well known that m? is given by (see the references above)

1
2 _
ml—_

1
We consider a function ¢ which is defined and continuous on [0, co], which

is non negative, decreasing and which satisfies
m2
(4.30) ©(0) > m? and p(o0) < 71,
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and we define the functional J by

Ro Ro ‘UF
(4.31) J(v) = / [V |2dx — cp(||v'||§)/ ——dr Vv € Hj(0,Ry).
0 0

|z[*

In this case we prove the following

Theorem 4.4. Let n =1 and let Q2 be the interval Q = (0, Ry). Assume that
@ is a continuous, non negative and decreasing function on [0, 00| satisfying
(4.30), where m? is given by (4.29). Then the functional J defined by (4.31)
satisfies the conditions (i), (ii) and (iii) of Theorem 4.2.

The proof of Theorem 4.4 follows along the lines of Theorem 4.2 and will
not be given here. Observe that, in contrast with the case n > 2, the functions
v € H}(0, Rp) vanish in 0 in the one-dimensional case.

We want to point out that, when 0 € €, the embedding
H}(Q) — L? (Q; #dm) is not compact.

Example 4.1. Consider the functions

1
(4.32) u(z) = ﬁTk (Gro(2)),

where G'g, : R” — R is the function defined by

1

(4.33) Gpo(x) =4 leI"? Ry~

if |.CE’ < RQ,

with Ry > 0 such that the ball Bg, C 2, and where 7}, : R — R is the

truncation at height k£, i.e.
t if [t| <k,

ki >k
|t]

— 228, , [fo 1
/ | Duy,|*dx :/ | Duy|*dx = (n—2) 1/ —dr,
Q Bg, k Tk r

where S,,_; is the area of the unit sphere of R™ and where 7, is defined by

Then

1 1

n—2 n—2
Tk Ry

= k.
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Therefore

/ | Duy|*dz = (n — 2)S,_1,
Q

and u;, — 0 in W, *(Q) weakly. On the other hand, one has

2 2 Tk S
s dr > [ dr = S,,_1k 3 dp = 20 kr”_2,
B |$|2 0 g

Q |$|2 n—2

Tk

and then

2 S.
lim [ dr > n-l
k—oo Jo |x|? n—2

This proves that the embedding VVO1 2(Q) — L2 (Q; #dm) is not compact.
In dimension n = 2, this counterexample continues to hold if one replaces

the function Gg, defined in (4.33) by the function Gg,(x) = — log % if |z] <

Ry. In dimension n = 1, one uses the continuous piecewise affine functions wuy

such that u,(0) = 0, ux(Ro/k) = 1/vk and ug(Ry) = 0.
Moreover, it should be observed that, when
(4.34) u, — u in Wy () weakly with | Duy| equi-integrable in L*(Q),

then u, — wu in L2 (Q; #dm) Note that every sequence satisfying u, — u
in W, ?(Q) weakly, with p > 2, satisfies (4.34) since © is bounded; therefore
this claim implies that the embedding Wy (Q) — L2 (Q; #dw) is compact
for p > 2.
Let 0 > 0 be small. We write
(4.35) de:/ Mdm%—/ Mdm,
Q\Bs Bs |z|?

o |z |z]

where Bj is the ball of radius 6. Since # € L™ (Q\ Bs) and since the embed-
ding

Wy?(Q) — L?(Q) is compact for Q bounded, the first term of (4.35) tends to
zero when k — oo.

Let 15 be the radial function defined by

1 if |z| <4,
Us(w) =9 2Bl if § <[] <20,
0 if |z] > 2.
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For ¢ sufficiently small, )5 has compact support in §2, and using Hardy-Sobolev
inequality (4.7) we have
_ _ a2
m> [ da: <m / de

[

< [ 1V (st~ w) P
0
< 2/ Vs |2 —u|2dx+2/ IV (ug — u) [*aps|*d
Q Q
< 2/ (Vabs | u —u\Qd:U—i-Q/ IV (up, — u) |*da.
Q Bas

For ¢ fixed, the first term tends to zero when k — oo (still because the embed-
ding W, () < L? () is compact), while the second term is small uniformly
in n when § is small in view of the equi-integrability assumption (4.34). This

proves the claim. This proves the following assertion: if n > 3 then

J(v) < liminfJ(vy) if vp — v in Wy*(Q) weakly with |Duvy| equi-integrable in L?(Q).

k—oo
The same result continues to hold for n = 1 and n = 2. Assertion (ii) of

Theorems 4.2, 4.3 and 4.4 is a special case of this assertion since 2 is assumed

to be bounded.

Remark 4.1. Actually in dimension n > 3, Theorem 4.2 continues to hold
(with the same proof) if the Hardy-Sobolev inequality (4.7) is replaced by the

Sobolev inequality
2

2
(4.36) m? < lv|* da ) < Vo’ dz Yo € W2 (R™),
R" Rr

where 2* is the Sobolev’s exponent defined by 2* = 2n/(n — 2) and where m?

is the best possible constant in (4.36), and if in the definition (4.10) of the
2
[0

functional J the integral e |2d1: 15 replaced by < / lv|* d:z:) . More than

that, Theorem 4.2, Theorem 4.8 and Theorem 4.4 still continue to hold (with
the same proof) if the inequalities (4.7), (4.19), (4.28) and (4.36) are replaced
by an inequality of the type

mx @ l|vlx@ < [[Vollz,

where X () is a Banach space such that the embedding Wy () — X(Q) is
not compact while the embedding Wy (Q) — X (Q) is compact for any p > 2.
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The non compactness of the embedding W,2(Q) — L*(Q:w(z)dz) and the
compactness of the embedding W, P(Q) — L*(Q;w(x)dz) for p > 2, where

# ifn=1o0rn>3,

w(z) =
— L ifn=2,

[ log? 5

are indeed at the root of the proofs of (iii) and (ii). This explains why Theorem
4.2 continues to hold by replacing the Hardy-Sobolev inequality by the Sobolev
imequality.

In contrast, if the embedding W&’Z(Q) — X (Q) is compact (e.g. in the case
X(Q) = L3(Q2) for Q bounded), it is straightforward to prove that the functional

J(v) =/QIWIQdI—90(||WH§)HUH§(<Q) Yo € Wy ()

is sequentially weakly lower semicontinuous on W, () whenever o is decreas-
ing: just take a sequence vy such that vy, — v in WOI’Q(Q) weakly, and observe

that in this framework

/|Vv|2d$§liminf/|an|2dx,
Q k=00 Jo
(V) < limint — (Vo)

Jim el o) = Ivllx @)-
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Chapter 5

Function spaces related to

quasiconformal mappings

The space of functions of bounded mean oscillation, introduced by John and
Nirenberg in [46] naturally arises in connection with function theory and
PDE’s. Similarly, the space of exponentially integrable functions plays a key
role in the study of continuity for mappings of finite distortion. The aim of
this chapter is to report several results in connection with such a functional
spaces. Moreover, we will prove, in dimension n = 2, that the composition

operator Ty-1 : u — wo f~! maps EXP(G) into EXP(f(G)).

5.1 Functions of bounded mean oscillation: log-
arithm of the jacobian and composition re-

sults

Before we describe the results of this section, we recall the definition of function

of bounded mean oscillation.

Definition 5.1. Let ) be a domain of R”. A locally integrable function
u: Q — R has bounded mean oscillation, u € BMO (G), if

(5.1) |lullBmo(q) = sgp][ lu(z) — ug| dr < .
Q

The supremum in (5.1) is taken over all open cubes @ of Q with sides parallel
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to the axes and ug denotes the mean value of u over the cube ), namely

g :]éu(:x) do = ﬁ/@u@)dm

We recall that the space BMO was originally introduced in [46] by John
and Nirenberg; their fundamental result states that the distribution function
which corresponds to a function of bounded mean oscillation, is exponentially
decreasing. More precisely, if v € BMO (§2) then for every cube Q C © and

for every o > 0 it results that
__ Be
Hr e Q: |u(x) —ug| > o} < A|Qle ulismo@) |

for some constants A, B depending only on n.

We want to point out that the concept of bounded mean oscillation is
extremely significative in connection with quasiconformal mappings. More
precisely, the first result that we mention is the one of Reimann [71], which
proves that the logarithm of the jacobian of a quasiconformal mapping is a

function of bounded mean oscillation.

Theorem 5.1. Let f : R* — R" be a K quasiconformal mapping. Then
log J; € BMO (R").

The result that follows proves that the composition operator T;-1 maps

BMO (©2) into BMO () provided f : Q@ — Q' is a quasiconformal mapping.

Again, this result is due to Reimann [71].

Theorem 5.2. Let Q and Q' be domains in R™. If f : Q — Q' be a K-
quasiconformal mapping. Then there exists a constant C which depends only

onn and K such that

1 _
(52) 6 HUHBMO(Q) < HU © f 1HBMO(Q’) < C HuHBMO(Q) )

for every u € BMO (), with Q' = f(Q).
Conversely, let f : Q — Q' be a orientation preserving homeomorphism

such that
(i) f € ACL and differentiable a.e.,
(ii) there exists a constant C' for which (5.2) holds for every u € BMO ().
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Then f is a K-quasiconformal mapping for some K > 1 depending only on n

and C'.

In the result above f € ACL means that f is absolutely continuous on the
lines (see [85]), that is to say that f is continuous everywhere and absolutely
continuous on almost all line segments parallel to one of the axes which are
contained in the domain of f.

Actually, Theorem 5.2 provides a characterization of quasiconformality.
Furthermore, we report that [3] the second part of Theorem 5.2 is proved drop-
ping the regularity assumption (i) and assuming that the following inequality

holds
1 “1
C [ullzamoe) < H“ of HBMO(G’) < Cllullgmoe) »

for every subdomain G C  and for every u € BMO (G), with G’ = f(G).
It is worth noting that BMO can be considered as the appropriate substi-

tute of L> in many different cases. This seems to be the case of the mappings

of BMO-bounded distortion.

Definition 5.2. A mapping f € W."(Q,R") of finite distortion is said to

loc

have BMO-bounded distortion Ky = Ky(x) if there exists a function M €
BMO (R") such that

Ki(z) < M(xz) ae. x€f

Such a mappings were considered for instance in [45] and in [4]. Estimates

of moduli of continuity are obtained, we give here an example, see [19].

Theorem 5.3. Let f : R?> — R? be a mapping of BMO-bounded distortion
with f(0,0) =0, f(1,0) = (1,0). Then, there are positive constants A and b

such that the modulus of continuity estimate holds

f(x) — F(y)] < Allog & — y||”Pewo |
for z,y in the ball By(0).

A quasiconformal f is a homeomorphism of BMO-bounded distortion since
the distortion K is bounded and we may choose M to be a constant function

in the definition above. Moreover, mappings of BMO-bounded distortion are
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clearly invariant under quasiconformal change of variables. This is a conse-
quence of Theorem 5.2.
Moreover, functions which are bounded by a function in BMO can be char-

acterized by means of the following fundamental lemma.

Lemma 5.4 ([45]). Let G be an open subset of R™ and let u : G — R be a
measurable function. There exists a A > 0 such that

[u(@)|

e
(5.3) / T _dr < oo
Q

1+ |zt

if and only if there exists v € BMO (G) such that
lu(z)| < ov(zx) a.e. in G.

Moreover, there exists a constant C which depends only on n such that

HU”BMO(G) < CA

5.2 Exponentially integrable functions

If G is a bounded open subset of R" with measure |G| the space EXP (G) is

the set of measurable functions u : G — R such that there exists A > 0 for

which
][ exp M dr < 0.
a A

We recall (see e.g. [7]) that EXP (G) is a Banach space equipped with the

norm

G
(5.4) lullgxp@ = sup (1+log u*(t),

0<t<|G| t
where u* is the non—-increasing rearrangement of u
(5.5) u*(t) =sup {7 > 0: p,(7) >t} vt € (0,]G]),
and p,, is the distribution function of u
(1) = {z € G : |u(x)| > 7} V7 > 0.

Lemma 5.4 gives a precise characterization of the space of exponentially inte-

grable functions, proving that a function u belongs to EXP (G) if and only if
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there exists a v € BMO (G) such that |u| < v a.e. in G. Therefore, by means
of Theorem 5.2 we are able to prove the following result, which is the starting

point of our study.

Lemma 5.5. Let ) be an open subset of R™ and let f : Q@ — R™ be a
quasiconformal mapping. Let G be any bounded open subset of Q and let G' =
f(G). Then u € EXP (G) if and only if uo f~! € EXP (G').

Proof. Since both f and f~! are quasiconformal mappings it is sufficient to
prove that u o f~1 € EXP (@) if u € EXP (G). Since G is a bounded open
subset of R™, from Lemma 5.4 to the function u € EXP (G) there corre-
sponds a function v € BMO (G) such that |u(z)| < v(z) for a.e. z € G.
As a consequence of Theorem 5.2 v o f~! belongs to BMO (G’). Clearly
lu(f~Yy)) | < v(fHy)) for a.e. y € G'. The result immediately follows

from Lemma 5.4. O

Let us turn to the problem of composing functions in EXP(G) with quasi-
conformal mappings and we deal with the case of dimension n = 2.
We denote by D the unit disc D = {z € R? : || < 1} and we prove the following

result.

Theorem 5.6. Let f : R? — R? be a K-quasiconformal principal mapping

that is conformal outside 1D and maps D onto itself. Then

(5.6) o) < [wo fH [axpp) < (1 + Klog K) [[ullpxpp

1
m ||U||EXP(
for every u € EXP (D).

Recall that a quasiconformal mapping f : R? — R? is called principal if it is

conformal outside a compact set and the following normalization holds

f() -2l =0 (ﬁ) as |z] — oo

Observe that our result actually gives that if f is a conformal, then (5.6)

reduces to the equality

Hu © f_IHEXP(]D)) - ||u||EXP(D) ’
for every u € EXP (D).
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Proof of Theorem 5.6. The proof is based on Theorem 1.13. Let u € EXP (D).

First, we notice that for every 7 > 0

{yE]D): }u(f_l(y)ﬂ >7‘} =f{zeD:|u(x)>T1}).

We compare the distribution function of u and u o f~! by means of the area

distortion estimates in Theorem 1.13 and we obtain

pusg-1(T) = [{y €D+ [u (f ()] > 7}
=[f({zeD:fu(z)]>7})]
< Kﬂ'l_%ﬂu@-)

=]~

Since for every ¢ € (0, )

tK
{720 puop—1(7) >t} C {T >0 pr(T) > W}

it follows from the definition of non—-increasing rearrangement (5.5) that

(57) (o 1) (1) < (#Km) |

We deduce directly from the definition of the norm (5.4) that

t& T
" (—) < Nullpxos, [ 1+ 1og ——
KKWK_l KKtﬂ.K—l

™
= [[ull gy (1 + K log 67 )

=l (1+ Klog K + Klog 7).
Thus, from (5.7) we get
— * 7T
(UO f 1) (t) < HUHEXP(D) (1 + Klog K + K log ?) .

Our aim is to prove that there exists a constant ¢ = ¢(K) which depends on

K such that
(58) 1+KlogK + Klog% < o(K) (1 +log %) vt € (0, 7).

It will be sufficient to prove that the function

1+ Klog K + Klog &
(t) = =

vt € (0,).
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is bounded in the interval (0,7) by some constant which only depends on K.

To this aim, we observe that
1+ KlogK — K

!
' (t) vt € (0,).
t(1+1logT)”
We define
Y(K)=1+KlogK — K VK €[l,00).

Since

P(K)=logK >0 VK €][l,00),
we have

W) > 0(1) =0 VK € [1,5),
and therefore v is increasing in (0, 7). Then
v(@t) <y(r) =14+ KlogK  Vte (0,7),
and inequality (5.8) holds with
¢(K)=1+KlogK.
Therefore (5.7) gives
(o )" () < (14 Klog &) full gy (1 +108 7).
that is
(1+1087) T wo £ (1) < (14 K log K) [[ullpxp) -
Hence, the inequality
(5.9) o f 7 [axppy < (1 + Klog K) ullpxppy — Vu € EXP (D)

is proved when f is a K—quasiconformal mapping. Recalling that the inverse of
a K—quasiconformal mapping is also a K—quasiconformal mapping, it follows

that
(5.10) [vo fHEXP(]D)) < (1+ Klog K) ||U||EXP(1D>) Vv € EXP (D)
If we substitute v = wo f~! with « € EXP (D) into (5.10), we have

(5.11) [ullpxpmy < (1+ Klog K) [juo f~ Vu € EXP (D)

' ‘ ‘ EXP (D)

Inequalities (5.9) and (5.11) prove that (5.6) holds and this complete the proof.
[
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The Luxemburg norm of a function v € EXP (G) is defined as

(5.12) lullec :inf{A> 0 :]é Ju)] (""”‘” }

We recall that (see e.g. [7] and [70]) the Luxemburg norm is equivalent
to the norm defined in (5.4). We also remark that L*°(G) is not a dense
subspace of EXP (G) (see e.g. [70]) and that the distance to L>°(G) in EXP (G)

evaluated with respect to the Luxemburg norm (5.12) is defined as

(5.13) distexe(@) (w I*(G) = _int [l pllbxege

In [14] and [31] is proved that the distance (5.13) is given by
distgxp(q) (u, L*(G)) = inf {)\ >0 : ][Gexp W(_;’N dr < oo} :

Our next result compares the distances from L of u and wo f~!. We address

that the estimates that we prove are sharp (see Example 5.1 below).

Theorem 5.7. Let f : D — D be a K—quasiconformal mapping. Then

(514) diStEXP(G/) (u 9 f_l, LOO(G/)) S KdiStEXP(G) (U, LOO<G)) s

1 . 0o . — o0 !
(5.15) ngStEXP(G) (u, L®(G)) < distexpan (wo 71 L¥(G") ,
for every open subset G of D and for every u € EXP (G), with G' = f(G).

As for Theorem 5.6, the result above gives that if f is a conformal mapping

then (5.14) and (5.15) reduce to the equality
distpxper) (uo f71, L=(G)) = distexp(c) (v, L2(G)),
for every u € EXP (G).
Proof of Theorem 5.7. Let A be such that
(5.16) A > qdistexp(c) (u, L(G))

where

= — d l1<p< .
1=,-1 ™ P=K_1




Since
q
(o MY _ g 1)
from (5.16) it follows that

(5.17) exp % € L1(Q).

Recalling that J; € LP(G) (see (1.10)), we deduce from (5.17) that

exp %Jf € L'(G).

It follows directly from the change of variables formula that

-1
/ exp Mdy = / expMJf(x)dx < 00.
’ A a A
Therefore
(5.18) diStEXp(G/) (u o f_l, LOO(G/)) < qdiStEXp(G) (u, LOO(G)) .

Passing to the limit in (5.18) for p approaching to K/(K — 1) we finally prove
(5.14). Recalling that the inverse of a K—quasiconformal mapping is also a
K—quasiconformal mapping, it follows that
(5.19)

distgxp(e) (v o f, L* (G)) < Kdistgxp(er) (v, L™ (G")) Vv € EXP (G')

If we substitute v = uo f~1 with u € EXP (G’) into (5.19), we have
distexp(c) (u, L™ (G)) < Kdistpxp(ay (uo 1, L™ (G)) Vu € EXP(G)
and this proves (5.15). O

Now we prove, by means of an example, that inequality (5.14) can be

attained as an equality.

Example 5.1. Here and in what followslet 0 < R < 1 and Dy = {z € R? : |z| < R}.
For every K > 1 we show that there exist a K—quasiconformal mapping

f:D — D and a function u € EXP (Dg) such that

(520) diStExp(f(]DR)) (u ©) f717 Loo(f(]DR>)) = KdiStExp(DR) (u, LOO(]D)R)) .
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Let f: D — D be the K—quasiconformal mapping defined as

and let

Then u € EXP (Dg) and
diStEXP(DR) (U, LOO<]D>R>> =1.

This follows from the fact that if A > 1 then

][ eM dr = ;2 < 00
Dr (A—=1)RX
while '3 ¢ L'(Dg) for A < 1. We notice that the inverse of f is given by
) ="y
Therefore, the function v = uo f~! is given by
v(y) = —2K log|yl.
Then v € EXP (Dg) and arguing as for u one has
distexpmy) (v, L (Dg)) = K.

This proves (5.20).

. 1 .
5.3 Invariance of W, ' under quasiconformal

change of variables

In this section we concern with the composition operator between Sobolev

spaces. The first result which we recall is a classical one in the theory of

quasiconformal mappings. More precisely, the composition operator T} : u

wo g maps W™ () into WE™(Q) if g : Q — ' is a quasiconformal mapping.

loc loc

We refer to [10, 49, 75, 85] for a proof.
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Theorem 5.8. Let Q and Q' be bounded open subsets of R™ and let g : Q —
be a K—quasiconformal mapping. Then, there exists a constant C' depending

only on K and n such that
1
S Vulln@) < 1V (w0 9l < ClIVuln),
for every open subset G of Q and for every u € VV&)C”(Q’); with G' = g(G).

It is worthwhile noting that similar results can be obtained when g is a
homeomorphism of finite distortion and if we made some precise integrability

assumption on the distortion function of g. The following result holds.

Theorem 5.9. Let g : Q@ — ' be a homeomorphism of finite distortion K,
between the bounded domains © and € of R™ and let 1 < p < n. Suppose
that K, € La5(Q). Ifu e W™ (SY) then uwo g € W,oP(Q) and the following

estimate holds

IV(wo g)llere < I55ll 25 g I Vlln -

Theorem 5.9 was proved first in [82]; recently, Hencl and Koskela gives
in [41] a new proof of the result above. Furthermore, they prove that the
integrability condition K, € L7 () is optimal. For further reference sce

39, 82].
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