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Introduction

The concept of quasiconformal mapping can be considered not only as a tech-

nical tool in complex analysis but actually as an independent topic with appli-

cations in various mathematical contexts. Let Ω be a domain in Rn; recall that

f : Ω → Rn is aK–quasiconformal mapping for someK ≥ 1 if f ∈ W 1,n
loc (Ω,Rn)

and

|Df(x)|n ≤ KJf (x) a.e. x ∈ Ω.

In two dimensions, quasiconformal mappings have a natural connection with

partial differential equations in divergence form. This fact has been evident

for at least 70 years, beginning with M.A. Lavrentiev [48], C.B. Morrey [63],

R. Caccioppoli [13], B. Bojarski [9] and Serrin [76] among many others.

The present thesis brings together several different topics related to quasi-

conformal mappings and elliptic PDE’s. It is organized as follows.

In Chapter 1 we review some of the standard facts in the theory of planar

quasiconformal mappings and second order elliptic partial differential equa-

tions of the type

(1) divA(x)∇u = 0.

Here A = A(x) is symmetric matrix which belongs to L∞(Ω,R2×2) which

satisfies detA(x) = 1 a.e. in Ω and

|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ R2,

for someK ≥ 1. The connection between the class of quasiconformal mappings

and the elliptic equations in divergence form is established by means of the

Laplace–Beltrami operator of f , namely

Lfu = div (Af (x)∇u) ,
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where Af is the inverse of the distortion tensor Gf of f defined as

Gf (x) =
tDf(x)Df(x)

Jf (x)
.

Conversely, every solution of (1) is the composition of some harmonic function

and a K–quasiconformal mapping.

Chapter 2 is devoted to the Hölder regularity estimates for the solutions

to linear elliptic equations in divergence form. Let Ω be a bounded domain of

R2 and let A be a positive definite matrix-valued function, with coefficient in

L∞(Ω) and satisfying, for some 0 < λ ≤ Λ

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for a.e. x ∈ Ω, ∀ξ ∈ R2.

In their seminal article [69], Piccinini–Spagnolo proved that the best Hölder

exponent for weak solutions to the elliptic equation (1) is given by

α =
1√
L
,

where L = Λ/λ denotes the ellipticity constant of A. Furthermore, they showed

that if A takes the isotropic form A(x) = a(x)I for some real measurable

function a satisfying 1 ≤ a(x) ≤ L the best Hölder exponent improves and

takes the value

α = arctan
1√
L
.

A key ingredient used in the proof of the second result of Piccinini and Spagnolo

is the knowledge of the explicit value of the best constant C in the inequality

of Wirtinger type

(2)

∫ 2π

0

a(t)u(t)2dt ≤ C

∫ 2π

0

a(t)u′(t)2dt,

where u ∈ W 1,2
loc (R) is 2π–periodic and satisfies∫ 2π

0

a(t)u(t)dt = 0,

and the weight function a ∈ L∞(R) is 2π–periodic and satisfies 1 ≤ a(t) ≤ L,

for some L ≥ 1. In this direction, our main results are given by Theorem 2.18

and Theorem 2.19. Our aim is to give an extension of inequality (2) to the

vectorial case. More precisely, our result is concerned with the inequality∫ T

0

a(t)|u(t)|pdt ≤ C

∫ T

0

a(t)|u′(t)|pdt,
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for any exponent p > 1. Here u : [0, T ] → RN is a function in W 1,p
0 ([0, T ],RN)

(N ≥ 1) and the weight function a satisfies the bounds 1 ≤ a(t) ≤ L. We

provide the best constant C in the inequality, as well as all extremals. More

precisely, we prove that the best constant is achieved if and only if the weight

function a is a particular piecewise constant function ã; moreover, by a delicate

gluing (see Lemma 2.22) we construct the extremals ũ in terms of generalized

trigonometric function (defined in Section 2.2). It is worth to point out that

our result may be also seen as a generalization of inequalities involving vector

valued functions considered in [53] and [54] because of the presence of a weight

function a in the inequality. For related results see also [16, 18, 23]. We con-

clude the chapter with the construction of a solution of a degenerate nonlinear

equation. Some of these results can be found in [27].

In Chapter 3 we are concerned with G-convergence and the theory of ho-

mogenization for linear operators in divergence form. Our main results are

Theorem 3.5 and Theorem 3.6. We assume that Aε is a sequence of matrices

(not necessary symmetric) satisfying the conditions

〈A(x)ξ, ξ〉 ≥ α|ξ|2 a.e. x ∈ Ω ∀ξ ∈ R2,

〈A−1(x)ζ, ζ〉 ≥ β−1|ζ|2 a.e. x ∈ Ω ∀ζ ∈ R2,

and such that

detAε → c0 a.e.,

for some bounded measurable function c0. We prove that if Aε is assumed to

H–converge to some A0 then necessarily

detA0 = c0.

In order to state our results precisely, we review some fundamental proper-

ties of G–convergence as considered by De Giorgi and Spagnolo in [22] and

[79]. We also define H–convergence as a generalization of G–convergence to

non–symmetric matrices as considered by Murat–Tartar [66]. We note that

Theorem 3.5 may be seen as an extension of the classical result in the theory

of bidimensional homogenization which states that the class of matrices with

unit determinant is closed with respect to the H–convergence. Theorem 3.5

and Theorem 3.6 can be found in [26].
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In Chapter 4 we consider some problems related to the variational formu-

lation of equation (1). We provide examples of functionals which are weakly

lower semicontinuous on W 1,p
0 (Ω) for every p > 2 but not weakly lower semi-

continuous on W 1,2
0 (Ω), see Theorem 4.2, Theorem 4.3 and Theorem 4.4.

Our functionals are constructed by a careful use of the sharp Hardy–Sobolev

inequalities, as obtained by [6, 11, 40]. The results of this chapter can be found

in [28].

In Chapter 5 we analyze some properties of the Orlicz space EXP of ex-

ponentially integrable functions. Such a space play a key role in the study

of the continuity properties of mappings of finite distortion (see for instance

[4, 19, 45]). We introduce the notion of composition operator Tg : u 7−→ u ◦ g,
induced by a homeomorphism g ∈ Hom(Ω,Ω′) between domains Ω,Ω′ of Rn.

The main result of the chapter is given by Theorem 5.6. We prove that a

principal K–quasiconformal mapping f : R2 → R2, which is conformal out-

side the unit disk and which maps the unit disc D onto itself preserves the

space EXP(D) of exponentially integrable functions over D, in the sense that

u ∈ EXP(D) if and only if u ◦ f−1 ∈ EXP(D). We prove that

1

1 +K logK
‖u‖EXP(D) ≤

∥∥u ◦ f−1
∥∥

EXP(D)
≤ (1 +K logK) ‖u‖EXP(D) ,

for every u ∈ EXP (D).

Our results are in the direction of the one of Reimann [71] which proves

that Tf−1 is a bounded linear operator which maps BMO (Ω) into BMO (Ω′).

The starting point of our study will be Lemma 5.5 where we will establish that

u ∈ EXP (G) if and only if u ◦ f−1 ∈ EXP (f(G)). Moreover, in Theorem 5.7

we will also prove that if f : D → D is a K–quasiconformal mapping then

distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
≤ KdistEXP(G) (u, L∞(G)) ,

and
1

K
distEXP(G) (u, L∞(G)) ≤ distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
,

for every open subset G of D and for every u ∈ EXP (G), with G′ = f(G). We

recall that distEXP(G) (u, L∞(G)) denotes the distance from L∞ with respect to

the Luxemburg norm (see Section 5.1). Theorem 5.6 and Theorem 5.7 can be

found in [29].
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Chapter 1

Quasiconformality, PDE’s and

related results

In this chapter we introduce the basic properties and definitions in the theory of

quasiconformal mappings. Furthermore, we focus our attention on the second

order elliptic linear equation

divA(x)∇u = 0,

where A = A(x) is a symmetric matrix satisfying detA(x) = 1 a.e. and the

ellipticity condition

|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ Rn,

for some constant K ≥ 1.

In dimension n = 2, such a class of equations naturally arises in connection

with quasiconformal mappings.

1.1 Basic properties and definitions

Let f : Ω → Ω′ be a homeomorphism from the domain Ω ⊂ Rn onto the domain

Ω′ ⊂ Rn. If f belongs toW 1,1
loc (Ω,Ω′) we denote byDf(x) the differential matrix

of f at the point x ∈ Ω and by Jf (x) the jacobian determinant of f

Jf (x) = detDf(x).
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The norm of Df(x) is defined as follows

|Df(x)| = sup
ξ∈Rn, |ξ|=1

|Df(x)ξ|.

Our starting point is the following definition.

Definition 1.1. Let Ω and Ω′ be domains of Rn. A homeomorphism f : Ω →
Ω′ is a K-quasiconformal mapping for a constant K ≥ 1 if

f ∈ W 1,n
loc (Ω,Ω′) ,

and

|Df(x)|n ≤ KJf (x) a.e. x ∈ Ω.

From now on, we deal with the case of dimension n = 2. We review some of

the standard facts on quasiconformal mappings in the plane by means of the

following proposition.

Proposition 1.1. Let Ω,Ω′,Ω′′ be domains of R2. Let f : Ω → Ω′ be a K–

quasiconformal mapping and let g : Ω′ → Ω′′ be a K ′–quasiconformal mapping.

(i) The composition g ◦ f is KK ′–quasiconformal. For a.e. x ∈ Ω it results

that

D(g ◦ f)(x) = Dg(f(x))Df(x), Jg◦f (x) = Jg(f(x))Jf (x).

(ii) The inverse f−1 is K–quasiconformal.

(iii) For every measurable set E of Ω

|E| = 0 if and only if |f(E)| = 0.

(iv) Jf (x) > 0 for a.e. x ∈ Ω.

(v) If w ∈ L1(Ω′) then (w ◦ f) Jf ∈ L1(Ω) and∫
Ω

w(f(z))Jf (z)dz =

∫
Ω′
w(y)dy.

We also recall that every quasiconformal mapping is differentiable a.e., as

a consequence of the following result due to Gehring–Letho [34].

Theorem 1.2. Let f : Ω ⊂ R2 → R2 be a continuous open mapping. Then f

is differentiable a.e. in the classical sense in Ω if and only if f has finite first

partial derivatives a.e.
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1.2 Beltrami equation and the existence of prin-

cipal quasiconformal mappings

We denote by C the complex plane. For later use let us identify a point

x = (x1, x2) ∈ R2 with a point z ∈ C through the relation z = x1 + ix2.

Therefore, a mapping f = (u, v) : Ω → R2 defined in a domain Ω ⊂ R2 is

regarded as the function f = u+ iv.

Let us introduce the Cauchy–Riemann operators

fz =
1

2
(fx1 − ifx2) , fz̄ =

1

2
(fx1 + ifx2) .

Next classical result relates quasiconformal mappings in the plane to the solu-

tion of a partial differential in the complex plane.

Theorem 1.3. Let f : Ω → Ω′ be a homeomorphism of the domain Ω ⊂ C

onto the domain Ω′ ⊂ C and let f ∈ W 1,2
loc (Ω,Ω′). Then f is K-quasiconformal

for some K ≥ 1 if and only if for a.e. z ∈ Ω it results that

(1.1) fz̄ = µ(z)fz,

for some function µ ∈ L∞(Ω) such that

‖µ‖∞ = k =
K − 1

K + 1
< 1.

The differential equation (1.1) is called Beltrami equation, while the coefficient

µ in (1.1) is called complex dilatation of f , often denoted by µf .

We want to point out that if K = 1 or equivalently µf ≡ 0, the Beltrami

equation reduces to

fz̄ = 0

which represent the Cauchy–Riemann sistem. Therefore, the class of 1–quasi-

conformal mappings coincedes with the one of conformal mappings. Hence, f

is conformal if it is injective and holomorphic.

It should be mentioned that the result of the existence and uniqueness for

the solution of (1.1) goes under the name of Riemann mapping Theorem and

can be found for instance in [5, 49, 75]. We recall here the case of compactly

supported dilatation, for instance we consider the case

(1.2) |µ(z)| ≤ kχD(z)
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where χD(·) denotes the characteristic function of the unit disk D and 0 ≤ k <

1.

Theorem 1.4. Let µ be a measurable function satisfying (1.2) for some 0 ≤
k < 1. There exists a unique solution f ∈ W 1,2

loc (C,C) of the Beltrami equation

(1.1) satisfying the normalization

(1.3) f(z) = z +O
(

1

z

)
if |z| ≥ 1.

Any homeomorphism which is a solution of the Beltrami equation with

complex dilatation µ satisfying (1.2) for some 0 ≤ k < 1 and satisfying the

normalization (1.3) is called principal quasiconformal mapping.

1.3 Linear and quasilinear elliptic equations in

divergence form

Let Ω be a bounded open subset of R2. For every constant K ≥ 1 we consider

the class M(K,Ω) of measurable matrix field A : Ω → R2×2 such that A =

A(x) ∈ L∞ (Ω,R2×2), A is symmetric and satisfies the condition

(1.4)
|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ R2.

If (1.4) holds, we say that the matrix A satisfies a uniform ellipticity condition.

We also remark that the bounds in (1.4) are equivalent to the following single

inequality

|ξ|2 + |A(x)ξ|2 ≤
(
K +

1

K

)
〈A(x)ξ, ξ〉 a.e. x ∈ Ω, ∀ξ ∈ R2.

Let us denote by aij, i, j = 1, . . . , n, the entries of A, we consider the second

order elliptic differential operator

L = div (A(x)∇) =
n∑

i,j=1

Di (aij(x)Dj) ,

for each A ∈M(K,Ω). The divergence operator is understood in the sense of

distribution, according with the following definition.
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Definition 1.2. Let Ω be a bounded open subset of R2 and let A ∈M(K,Ω).

We say that a function u ∈ W 1,2
loc (Ω) is a weak solution of the equation

(1.5) divA(x)∇u = 0,

if ∫
Ω

〈A(x)∇u(x),∇ϕ(x)〉 dx = 0 ∀ϕ ∈ C∞
0 (Ω).

We will give here a brief review of the classical results for the equation (1.5).

A general reference here will be [35]. First, we discuss the local regularity for

the weak solution. To this aim, we recall that a function u : Ω → R is locally

Hölder continuous with exponent 0 < α ≤ 1 if, for every compact subset

E ⊂⊂ Ω there holds

sup
x,y∈E, x6=y

|u(x)− u(y)|
|x− y|α

<∞.

It is well known that every weak solution u ∈ W 1,2
loc (Ω) of the equation

(1.5) is locally Hölder continuous in Ω, as stated by the following result (see

e.g. [21], [64] and [67]).

Theorem 1.5. Let Ω be an open subset of Rn. Let A ∈ M(K,Ω) and let

u ∈ W 1,2
loc (Ω) is a weak solution of the equation (1.5). Then for every compact

set E ⊂⊂ Ω there exist C > 0 and 0 < α ≤ 1 depending only on K and

dist (E, ∂Ω) such that

|u(x)− u(y)| ≤ C|x− y|α
(∫

Ω

|u|2dx
) 1

2

a.e. x, y ∈ E.

Next result shows that every weak solution of (1.5) belongs to W 1,p
loc (Ω) for

some p = p(n,K) > 2.

Theorem 1.6. Let u be a weak solution of (1.5) and let R > 0 such that

B2R(x0) ⊂ Ω. Then, there exists p > 2 depending only on n and K such that(
−
∫

BR(x0)

|∇u(x)|p dx
) 1

p

≤ C

(
−
∫

B2R(x0)

|∇u(x)|2 dx
) 1

2

.

The classical Harnack’s principle, which holds for positive harmonic function,

also holds for the case of equation (1.5), as proved by Moser in [65].
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Theorem 1.7. Let u be a positive weak solution of (1.5).Then, for every

compact set E ⊂⊂ Ω the inequality

max
E

u ≤ Cmin
E
u,

holds for some constant C > 1 depending only on E and Ω.

The maximum principle holds, in the sense of the following result.

Theorem 1.8. Let u be a weak solution of (1.5) in Ω which is continuous in

a neighborhood of ∂Ω. Then,

sup
Ω
u ≤ sup

∂Ω
u.

We recall that some of the results above for the equation (1.5) can be proved

without assuming that A is a symmetric matrix, as observed by Morrey in [63].

A generalization of (1.5) is the quasilinear equation

(1.6) divA(x,∇u) = 0,

called Leray–Lions equation. Here and in what follows A : Ω × R2 → R2×2 is

a function such that such that

(1.7) A(·, ξ) is a measurable function for every ξ ∈ R2,

and

(1.8) A(x, ·) is a continuous function for a.e. x ∈ Ω.

For every Ω bounded open subset of R2 and for every constant K ≥ 1 we

consider the class N (K,Ω) of functions A : Ω × R2 → R2×2 satisfying (1.7),

(1.8) and the condition

|ξ|2 + |A(x, ξ)|2 ≤
(
K +

1

K

)
〈A(x, ξ), ξ〉 a.e. x ∈ Ω, ∀ξ ∈ R2.

To each A ∈ N (K,Ω) we associate the nonlinear equation

divA(x,∇u) = 0,

called Leray–Lions equation. One should immediately check that the Leray–

Lions equation (1.6) reduces to the linear equation (1.5) if

A(x, ξ) = A(x)ξ,

for some A ∈M(K,Ω). Equations (1.5) and (1.6) are strongly related by the

following result, which can be found in [78].
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Theorem 1.9. Let Ω be a bounded open set in R2, A = A(x, ξ) ∈ N (K,Ω)

and u ∈ W 1,2
loc (Ω) be a weak solution of the quasilinear equation (1.6). Then

there exists a unique symmetric matrix A ∈ M(K,Ω), with detA(x) = 1 a.

e. in Ω such that

div(A(x)∇u) = 0.

Therefore, every equation of the type (1.6) reduces in a certain sense to

a linear equation with the same ellipticity bounds as the original one. We

indicate that A depends on A and u, by writing A = A[A, u]. Finally, we

remark that in the linear case A(x, ξ) = A(x)ξ with A ∈ M(K,Ω), the new

matrix A is different from A, unless detA(x) = 1 a.e. in Ω.

1.4 The connection between PDE’s and qua-

siconformal mappings in the plane

In the case of dimension n = 2 there is a precise interplay between the theory

of quasiconformal mappings and the elliptic PDE’s of the type (1.5) . Indeed,

for f ∈ W 1,1
loc (Ω,Ω′) we define a matrix field Gf : Ω → R2×2 given by

Gf (x) =


tDf(x)Df(x)

Jf (x)
if Jf (x) > 0,

I otherwise,

here tDf(z) denotes the transpose of the differential matrix of f and I denotes

the identity matrix. The matrix field Gf is called distortion tensor of f . It is

easy to check that Gf is a symmetric matrix with

detGf (x) = 1 for a.e. x ∈ R2.

Moreover, if we assume that f is a K–quasiconformal mapping, then the dis-

tortion inequality for f is equivalent to the condition

|ξ|2

K
≤ 〈Gf (x)ξ, ξ〉 ≤ K|ξ|2 for a.e. x ∈ R2 ∀ξ ∈ R2.

Let Af be the inverse matrix of the Gf , namely Af = G−1
f . Clearly Af is a

symmetric matrix field which satisfies

detAf (x) = 1 for a.e. x ∈ Ω,
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while the distortion inequality for f easily give us

|ξ|2

K
≤ 〈Af (x)ξ, ξ〉 ≤ K|ξ|2 for a.e. x ∈ Ω, ∀ξ ∈ R2.

Let us define the Laplace-Beltrami operator as

(1.9) Lf = div (Af (x)∇) .

The following fundamental result holds.

Theorem 1.10. Let Ω,Ω′ be open subsets of R2 and let f = (u, v) : Ω → Ω′

be a K–quasiconformal mapping. Then, the components u and v of f are weak

solution of the equations

Lfu = 0 and Lfv = 0,

where Lf is the Laplace–Beltrami operator defined in (1.9).

On the other hand, elliptic equations generate quasiconformal mappings,

in the sense of the following result.

Theorem 1.11. Let Ω be a bounded open subset of R2. For each non-constant

solution u ∈ W 1,2
loc (Ω) of the elliptic equation

div (A(x)∇u) = 0,

where tA = A also satisfies the uniform elliptic bound

|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2 for a.e. x ∈ Ω, ∀ξ ∈ R2,

for some K ≥ 1, there exists a K-quasiconformal mapping g : Ω → D, where

D denotes the unit disc of R2, and a real valued harmonic function h : D → R

such that

u = h ◦ g in Ω.

1.5 Area distortion estimates

The aim of this section is to provide the exact degree of integrability for the

differential of a planar quasiconformal mapping. More precisely, what we want

18



to point out is that if f : Ω → Ω′ is a K–quasiconformal mapping defined in a

domain Ω of R2 then |Df | ∈W 1,p
loc (Ω) for an exponent p = p(K) strictly larger

than 2 and depending only on K.

This result is a direct consequence of the area distortion estimate, estab-

lished by Astala [2].

Theorem 1.12 ([2]). Let f be a K–quasiconformal mapping which maps the

unit disk D onto itself and such that f(0) = 0. Then

|f(E)| ≤M |E|
1
K ,

for some constant M = M(K) depending only on K.

We give here version of Theorem 1.12 given by Erëmenko and Hamilton

[25], where the optimal value of the constant M(K) is computed.

Theorem 1.13 ([25]). Let f : R2 → R2 be a K–quasiconformal principal

mapping which is conformal outside the unit disk D.

(i) If f is conformal outside a measurable set E ⊂ D, then

|f(E)| ≤ K|E|.

(ii) If f is conformal in a measurable set E ⊂ D, then

|f(E)| ≤ π1− 1
K |E|

1
K .

(iii) For every measurable set E ⊂ D

|f(E)| ≤ Kπ1− 1
K |E|

1
K .

As mentioned before, Theorem 1.12 has the following fundamental conse-

quence.

Corollary 1.14. If f is a K–quasiconformal mapping defined in a planar

domain Ω then

f ∈ W 1,p
loc (Ω,R2) if p <

2K

K − 1
,

and the exponent p(K) = 2K/(K − 1) is the best possible one, in the sense

that for each K > 1 there are K–quasiconformal mappings f such that f 6∈
W

1, 2K
K−1

loc (Ω,R2).
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For the last statement of Corollary 1.14 it is sufficient to consider the K–

quasiconformal mapping

f(x) =
x

|x|1− 1
K

∀x ∈ R2.

Observe that the result above implies that

(1.10) Jf ∈ Lp
loc(Ω) if p <

K

K − 1
,

if f is a K–quasiconformal mapping defined in a planar domain Ω.

1.6 A generalization of quasiconformality: map-

pings of finite distortion

We recall that quasiconformal homeomorphism are a special kind of mapping

on finite distortion.

Definition 1.3. A mapping f ∈ W 1,1
loc (Ω,R2) is said to have finite distortion

if Jf ∈ L1
loc(Ω) and if there exists a measurable function K : Ω → [1,∞] such

that

(1.11) |Df(x)|2 ≤ K(x)Jf (x) a.e. x ∈ Ω.

In the case of a homeomorphism the assumption on local integrability of

the Jacobian determinant is redundant.

The existence of a measurable function K : Ω → [1,∞] finite a.e. satisfying

(1.11) holds allow us to say define the function

(1.12) Kf (x) =


|Df(x)|2

Jf (x)
if Jf (x) > 0,

1 otherwise.

In other words, Kf is the smallest function greater or equal to 1 for which

(1.11) holds.

We remark that a K–quasiconformal mapping f is a finite distortion home-

omorphism with Kf ≤ K a.e. in Ω.

Moreover, in [42] is proved that, in the planar case, there is the equiva-

lence between the class of the bi–Sobolev homeomorphism and the class of

homeomorphism with finite distortion.
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Definition 1.4. A homeomorphism f : Ω
onto−→ Ω′ is called bi–Sobolev mapping

if both f ∈ W 1,p
loc (Ω,Ω′) and its inverse f−1 ∈ W 1,p

loc (Ω′,Ω), for some 1 ≤ p ≤ ∞.

The case of a matrix which satisfies a bound of the type

|ξ|2

K(x)
≤ 〈A(x)ξ, ξ〉 ≤ K(x)|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ R2,

for some measurable function K : Ω → [1,∞], naturally arises in connection

with the mapping of finite distortion.

Theorem 1.15. Let Ω,Ω′ be open subsets of R2. Then, to each bi–Sobolev

mapping f : Ω → Ω′, f = (u, v), there corresponds a measurable function

Af = Af (x) valued in symmetric matrices with

detAf (x) = 1 for a.e. x ∈ Ω,

such that

|ξ|2

Kf (x)
≤ 〈Af (x)ξ, ξ〉 ≤ Kf (x)|ξ|2 for a.e. x ∈ Ω, ∀ξ ∈ R2,

where Kf denotes the distortion function of f defined in (1.12). The compo-

nents u and v of f are very weak solution of an elliptic equation of the type

(1.5), i.e.

(1.13) div (A(x)∇u) = 0 and div (A(x)∇v) = 0,

with finite energy, i.e.∫
Ω

〈A(x)∇u,∇u〉 dx <∞ and

∫
Ω

〈A(x)∇v,∇v〉 dx <∞.

Dealing with the last statement, we recall that u and v are very weak

solutions of the equations (1.13) if u and v belongs W 1,1
loc (Ω) and satisfies (1.13)

in the sense of the distributions.
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Chapter 2

Sharp Hölder estimates

This chapter is concerned with the Hölder regularity results for weak solutions

to the elliptic equation in divergence form

divA(x)∇u = 0,

where A = (aij), i, j = 1, 2 is a 2 × 2 symmetric, positive definite matrix

satisfying the uniform elliptic bound λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ R2,

for a.e. x ∈ Ω where Ω ⊂ R2 is a bounded domain and for some 0 < λ ≤ Λ.

2.1 Explicit values of the best Hölder expo-

nent

Let Ω be a bounded open subset of R2 and let u ∈ W 1,2
loc (Ω) be a weak solution

of the equation in divergence form

(2.1) divA(x)∇u = 0,

where A = A(x) ∈ L∞ (Ω; R2×2) is a symmetric matrix, i.e.

(2.2) tA = A,

satisfying the uniform elliptic bound

(2.3) λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 a.e. x ∈ Ω ∀ξ ∈ R2,

for some constants λ and Λ such that 0 < λ ≤ Λ. In this context we say that

the quantity

L =
Λ

λ
,
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is the ellipticity coefficient of the matrix A.

We have already observed in Chapter 1 that every weak solution u ∈
W 1,2

loc (Ω) of the equation (2.1) is locally Hölder continuous in Ω. In [69] Pic-

cinini and Spagnolo computed the best Hölder exponent for weak solutions to

the elliptic equation (2.1). Their result states as follow.

Theorem 2.1. Let Ω be an open subset of R2. Assume that A = A(x) ∈
L∞ (Ω; R2×2) is a matrix satisfying (2.2) and (2.3) and that u ∈ W 1,2

loc (Ω) is a

weak solution of the equation (2.1). Then u is locally Hölder continuous with

exponent α given by

α =
1√
L
,

where L = Λ/λ.

The fact that α = 1/
√
L is the best possible Hölder exponent is proved by

means of the following example (see Meyers [58]).

Example 2.1. Let L ≥ 1 and let us define a matrix A = A(x) whose entries

aij are defined by

a11 =
(
Lx2

1 + x2
2

)
|x|−2,

a12 = (L− 1)x1x2|x|−2 = a21,

a22 =
(
x2

1 + Lx2
2

)
|x|−2.

The ellipticity coefficient of A is L. Let

u(x) =
x1

|x|1−
1√
L

.

Then u is a Hölder continuous function of exponent is α = 1/
√
L and is a

solution of (2.1) with this choice of A above. It should be observed that the

equation is given in polar coordinates by

L
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ

2∂2u

∂θ2
= 0,

and that the solution u may be rewritten as

u(ρ, θ) = ρ1/
√

L cos θ.
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When in (2.3) one has

Λ = K, λ =
1

K
,

for some K ≥ 1 then the ellipticity coefficient L = K2 and therefore the best

Hölder exponent is given by

α =
1

K
.

This is in agreement with the following result concerning with quasiconformal

mappings, see [1, 60].

Theorem 2.2. Every K–quasiconformal mapping f : Ω → Ω′, where Ω and

Ω′ are planar domains, is locally Holder continuous with exponent α = 1/K.

The K–quasiconformal mapping f : D → D defined as

f(z) =
z

|z|1− 1
K

,

shows that the exponent is the best possible one.

A key ingredient for the proof of Theorem 2.1 is the sharp Wirtinger in-

equality.

Lemma 2.3. Let w be a function in W 1,2
loc (R) periodic of period 2π such that∫ 2π

0

w(t)dt = 0,

Then the following inequality holds

(2.4)

∫ 2π

0

|w(t)|2dt ≤
∫ 2π

0

|w′(t)|2dt.

A second result proved by Piccinini and Spagnolo in [69] states that the

best Hölder exponent for weak solutions to the elliptic equation (2.1) improves

for isotropic matrices.

We recall that a matrix A is said to be isotropic if A is of the type

(2.5) A(x) = a(x)I,

where I is the identity matrix and a : Ω → R is a measurable function such

that

(2.6) λ ≤ a(x) ≤ Λ for a.e. x ∈ Ω,

for some constants λ and Λ such that 0 < λ ≤ Λ.
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Theorem 2.4. Let Ω be an open subset of R2. Assume that a : Ω → R is a

measurable function satisfying (2.6) and that u ∈ W 1,2
loc (Ω) is a weak solution

of the equation (2.1) where A takes the form (2.5). Then u is locally Hölder

continuous with exponent α given by

α = arctan
1√
L
,

where L = Λ/λ.

A key ingredient for the proof of Theorem 2.4 is the following sharp weighted

Wirtinger inequality.

Lemma 2.5. Let a be a real measurable function periodic of period 2π such

that 1 ≤ a(t) ≤ L. Let w be a function in W 1,2
loc (R) periodic of period 2π such

that ∫ 2π

0

a(t)w(t)dt = 0,

Then the following inequality holds

(2.7)

∫ 2π

0

a(t)|w(t)|2dt ≤
(

4

π
arctan

1√
L

)−2 ∫ 2π

0

a(t)|w′(t)|2dt.

Inequality (2.7) reduces to an equality if and only if a(t) = ã(t + Φ), w(t) =

Cw̃(t+ δ), where C and δ are real constants and ã and w̃ are defined by

(2.8) ã(t) =


1 for 0 ≤ t < π

2
, π ≤ t ≤ 3

2
π,

L for π
2
≤ t < π, 3

2
π ≤ t < 2π.

(2.9) w̃(t) =



sin
[√

λ
(
t− π

4

)]
for 0 ≤ t ≤ π

2
,

1√
L

cos
[√

λ
(
t− 3

4
π
)]

for π
2
≤ t ≤ π,

− sin
[√

λ
(
t− 5

4
π
)]

for π ≤ t ≤ 3
2
π,

− 1√
L

cos
[√

λ
(
t− 7

4
π
)]

for 3
2
π ≤ t ≤ 2π,

where λ =
(

4
π

arctan 1√
L

)2

.

The fact that α = arctan
(
1/
√
L
)

is the best possible exponent in the

isotropic case is proved by means of the following example.
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Example 2.2. Let us define a matrix A(x) = ã(θ)I where θ = θ(x) =

arctan x2

x1
and ã is defined in (2.8). The corresponding differential equation

is given by

(2.10) div (ã(θ)I∇u) = 0.

The ellipticity coefficient of A is equal to L and the function

u(x) = |x|
4
π

arctan 1√
L w̃(θ),

with w̃ defined in (2.9) satisfies (2.10) and is Hölder continuous with exponent

α = 4
π

arctan 1√
L
.

If we additionally assume that the matrix A has unit determinant, namely

(2.11) detA(x) = 1 a.e. x ∈ Ω,

the following estimate holds, see [72] (and [74, 73] for related results).

Theorem 2.6. Let A = (aij) satisfy (2.2), (2.3) and (2.11) and let u ∈
W 1,2

loc (Ω) be a weak solution of (2.1). Then u is locally Hölder continuous in Ω

with α given by

α = 2π

(
sup
x0∈Ω

ess sup
0<r<dist(x0,∂Ω)

∫
|ξ|=1

〈A(x0 + rξ)ξ, ξ〉dσ(ξ)

)−1

.

Corollary 2.7. Let A = (aij) satisfy (2.2), (2.3) and (2.11) and let u ∈
W 1,2

loc (Ω) be a weak solution of (2.1). Then the least upper bound for the ad-

missible values of the Hölder exponent of u is given by

ᾱ = 2π

(
sup
x0∈Ω

inf
0<r0<dist(x0,∂Ω)

ess sup
0<r<r0

∫
|ξ|=1

〈A(x0 + rξ)ξ, ξ〉dσ(ξ)

)−1

.

Theorem 2.6 is sharp in the sense of the following example.

Example 2.3. Hereafter if x = (x1, x2) ∈ R2 the notation x ⊗ x stands for

the matrix

x⊗ x =

 x2
1 x1x2

x1x2 x2
2

 .

Let Ω = D be the unit disc in R2, let θ(x) = arctan x2

x1
and let

(2.12) A(x) =
1

k(θ)
I +

(
k(θ)− 1

k(θ)

)
x⊗ x

|x|2
,
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where k = k(θ) : R → R+ is a 2π-periodic function bounded from above and

away from zero. Then detA(x) = 1. By suitable choice of k we may obtain

ᾱ = 2π

(∫ 2π

0

k

)−1

.

On the other hand the function u ∈ W 1,2(D) defined by

u(x) = |x|ᾱ cos

(
ᾱ

∫ θ(x)

0

k

)
,

satisfies the equation with A given by (2.12). Clearly its Hölder exponent is

exactly ᾱ.

A key ingredient in the proof of Theorem 2.6 is the following sharp weighted

Wirtinger inequality.

Theorem 2.8. Let a be a real measurable function periodic of period 2π

bounded from above and away from zero. Let w be a function in W 1,2
loc (R)

periodic of period 2π such that∫ 2π

0

a(t)w(t)dt = 0.

Then the following inequality holds

(2.13)

∫ 2π

0

a(t)|w(t)|2dt ≤
(

1

2π

∫ 2π

0

a

)2 ∫ 2π

0

1

a(t)
|w′(t)|2dt.

Inequality (2.13) is attained if and only if w is of the form

w(θ) = C cos

(
2π∫ 2π

0
a

∫ θ

0

a+ δ

)
,

for some C ∈ R \ {0} and δ ∈ R.

2.2 Wirtinger–Poincaré type inequalities

Motivated by the regularity results considered in Section 2.1 and also by various

problems in analysis and geometry, several extensions and variations of (2.4)

of the type (∫ T

0

|u|q
)1/q

≤ C

(∫ T

0

|u′|p
)1/p

,
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have been obtained. Here and in what follows N ≥ 1, T > 0, p, q > 1 and

the function u : [0, T ] → RN is subjected to various boundary conditions or

integral constrains.

For later use, we briefly define the generalized trigonometric functions and

outline their main properties (for details see e.g. [43, 50, 51, 53]).

Let p, q > 1. The function arcsinpq : [0, 1] → R is defined by

arcsinpq(σ) =

∫ σ

0

ds

(1− sp)1/q∗
.

Let us define
πpq

2
= arcsinpq(1) =

1

p
B

(
1

p
,
1

q

)
.

where B(·, ·) denotes the Beta function defined by

B(h, k) =

∫ 1

0

th−1(1− t)k−1dt = B(k, h),

for every h, k > 0. The function arcsinpq : [0, 1] → [0, πpq

2
] is strictly increasing

and its inverse function is denoted by sinpq. The function sinpq is extended as

an odd function to the interval [−πpq, πpq] by setting sinpq(t) = sinpq(πpq − t)

in [πpq/2, πpq], sinpq(t) = − sinpq(−t) in [−πpq, 0], and to the whole real axis

as a 2πpq−periodic function. The function w(t) = sinqp∗(πqp∗t) is the unique

solution of the initial value problem

(2.14)

 (φp (w′))′ + q
p∗
φq (w) = 0,

w(0) = 0, w′(0) = 1.

Here and in what follows we define the function φp : R → R by

(2.15) φp(s) =

 |s|p−2s if s ∈ R \ {0},
0 if s = 0.

The existence and uniqueness of the solution of a general kind of initial value

problem of the type (2.14) is established for instance in [23, 43].

Lemma 2.9. Let a, b, t0 ∈ R, λ > 0 and p, q > 1. Then the problem (φp(w
′))′ + λφq(w) = 0,

w(t0) = a, w′(t0) = b.

has a unique solution defined in R. Moreover, every solution of (2.14) satisfies

|w′(t)|p

p
+ λ

|w(t)|q

q∗
=
|b|p

p
+ λ

|a|q

q∗
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In what follows we shorten our notation by defining

p∗ =
p

p− 1
,

sinp(t) = sinpp∗(t)

and

πp = πpp∗ .

We define the function cosp is defined by

(2.16) cosp(t) = φp(sin
′
p(t)).

It is 2πp-periodic and satisfies:

cosp(−t) = cosp(t),

cosp(πp − t) = − cosp(t),

cosp(πp + t) = − cosp(t).

The following identity holds, which generalizes the fundamental identity for

trigonometric functions:

(2.17) | cosp(t)|p
∗
+ | sinp(t)|p ≡ 1.

For later purposes, we also note the following identity:

(2.18) cosp

(πp

2
− t
)

= sinp∗

(
p

p∗
t

)
.

The derivative of cosp satisfies

(2.19) cos′p(t) = − p

p∗
φp(sinp(t)).

On the other hand, from (2.16) we have:

(2.20) sin′p(t) = φp∗(cosp(t)).

Finally, we define tanp as follows:

tanp(t) =
sinp(t)

φp∗(cosp(t))
.
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The function tanp is πp-periodic, with singularities at the zeros of cosp. The

inverse of tanp restricted to the interval [−πp/2, πp/2], denoted by arctanp, is

given by

arctanp(σ) =

∫ σ

0

dy

1 + |y|p
,

for every σ ∈ R. It results that

(2.21) lim
σ→+∞

arctanp(σ) =
πp

2
.

The next lemma generalizes to the case p 6= 2 a well known identity.

Lemma 2.10. For every p > 1 and for every σ > 0 the following identity

holds

(2.22) arctanp(σ
−p∗/p) +

p∗

p
arctanp∗(σ) =

πp

2
.

Proof. In view of (2.21) we have

πp

2
=

∫ +∞

0

dy

1 + yp
= arctanp(σ

−p∗/p) +

∫ +∞

σ−p∗/p

dy

1 + yp
.

Performing the change of variables y = z−p∗/p we obtain∫ +∞

σ−p∗/p

dy

1 + yp
=
p∗

p

∫ σ

0

dz

1 + zp∗
.

Hence, the asserted identity follows.

The space of functions which satisfy the periodic boundary condition will

be denoted by W 1,p
per([0, T ],RN), namely

(2.23) W 1,p
per([0, T ],RN) =

{
u ∈ W 1,p([0, T ],RN) : u(0) = u(T )

}
,

where N ≥ 1, T > 0, p > 1. In what follows W 1,p
per(0, T ) stands for the space

defined in (2.23) when N = 1.

A general result which holds in the case N = 1 is the following (see [16]

and [18]).

Theorem 2.11. Consider the minimization problem

(2.24)

λ#(p, q, r) = inf


(∫ T

0
|u′|p

)1/p

(∫ T

0
|u|q
)1/q

: u ∈ W 1,p
per(0, T ) \ {0},

∫ T

0

|u|r−2u = 0

 ,
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where p > 1, q ≥ r − 1 ≥ 1. Then

λ#(p, q, r) = λ#(p, q, q) if q ≤ rp+ r − 1,

λ#(p, q, r) < λ#(p, q, q) if q > (2r − 1)p.

Furthermore

(2.25) λ#(p, q, q) =
4

T
1

p∗+ 1
q

(
1

p∗

) 1
q
(

1

q

) 1
p∗
(

1

p∗ + q

) 1
p
− 1

q

B

(
1

p∗
,
1

q

)
.

The above formula is also valid when q = r > 1, q = 1 (p > 1 and r = 2) and

p = ∞ (q ≥ r − 1 ≥ 1).

Observe that the constant (2.25) in may be also written in the following

way

λ#(p, q) ≡ λ#(p, q, q) = 2

(
1

p∗

)1/q

q1/p

(
1

p∗ + q

) 1
p
− 1

q πqp∗

T
1

p∗+ 1
q

.

Therefore, in the homogeneous case p = q

λ#(p) ≡ λ#(p, p, p) = 2 (p− 1)1/p πp

T
.

When r = q the result above also can be found in [23] where extremals are

characterized.

Theorem 2.12. The extremals for problem (2.24) are the functions

u(t) = C sinqp∗

(
2πqp∗

T
t+ δ

)
,

for some C ∈ R \ {0} and for some δ ∈ R.

In [53, 54] the vectorial case of (2.24) is treated when p = q = r. Namely,

the following problem is considered

µ#(p,N) = inf

{∫ T

0
|u′|p∫ T

0
|u|p

: u ∈ W 1,p
per([0, T ],RN) \ {0},

∫ T

0

|u|p−2u = 0

}
,

Here and in what follows let ψp : RN → RN be the continuous function defined

by

ψp(x) =

 |x|p−2x if x ∈ RN \ {0},
0 if x = 0.

Observe that φp in (2.15) is the function ψp when N = 1. As for the scalar

case, the following result existence and uniqueness result can be proved (see

[53]).
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Lemma 2.13. Let ξ, η ∈ RN , t0 ∈ R, λ > 0 and p > 1. Then the problem (ψp(u
′))′ + λψp(u) = 0,

u(t0) = ξ, u′(t0) = η.

has a unique solution defined in R.

Theorem 2.14. For each p > 1, N ≥ 1 and u ∈ W 1,p
per

(
[0, T ],RN

)
such that∫ T

0

|u|p−2u = 0,

one has

µ#(p,N)

∫ T

0

|u|p ≤
∫ T

0

|u′|p.

Moreover, if λ#,1(p,N) is the smallest possible eigenvalue of the nonlinear

eigenvalue problem (ψp(u
′))′ + λψp(u) = 0,

u(0) = u(T ),
∫ T

0
|u|r−2u = 0,

.

with λ > 0, then µ#(p,N) satisfies the identity

λ#,1(p,N) = µ#

(
p

min {p− 1, 1}
, N

)min{p−1,1}

.

We remark here that λ#,1(p,N) is computed explicitly in [54] in the special

case N = 1 and satisfies the identity

λ
1
p

#,1(p, 1) = 2 (p− 1)1/p πp

T
.

The space of functions which satisfy the Dirichlet boundary condition will be

denoted by W 1,p
0 ([0, T ],RN), namely

(2.26) W 1,p
0 ([0, T ],RN) =

{
u ∈ W 1,p([0, T ],RN) : u(0) = 0 and u(T ) = 0

}
,

where N ≥ 1, T > 0, p > 1. In what follows W 1,p
0 (0, T ) stands for the space

defined in (2.26) above when N = 1.

First, we concern with the minimization problem

λ0(p, q) = inf


(∫ T

0
|u′|p

)1/p

(∫ T

0
|u|q
)1/q

: u ∈ W 1,p
0 (0, T ) \ {0}

 ,

where p, q > 1.
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Theorem 2.15. For each p, q > 1, and u ∈ W 1,p
0

(
[0, T ],RN

)
one has

(2.27) λ0(p, q)

(∫ T

0

|u|q
)1/q

≤
(∫ T

0

|u′|p
)1/p

,

where

λ0(p, q) =

(
1

p∗

)1/q

q1/p

(
1

p∗ + q

) 1
p
− 1

q πqp∗

T
1

p∗+ 1
q

,

The inequality (2.27) holds with equal sign if and only if

u(t) = C sinqp∗

( πqp∗

T
t
)
,

for some C ∈ R \ {0}.

It should be mentioned that, in [53, 54] the vectorial case of (2.27) is treated

when p = q. Namely, the following problem is considered

µ#(p,N) = inf

{∫ T

0
|u′|p∫ T

0
|u|p

: u ∈ W 1,p
0 ([0, T ],RN) \ {0}

}
,

Theorem 2.16. For each p > 1, N ≥ 1 and u ∈ W 1,p
0

(
[0, T ],RN

)
one has

(2.28)
(p− 1)

1
pπp

T

(∫ T

0

|u|p
)1/p

≤
(∫ T

0

|u′|p
)1/p

.

The inequality (2.28) holds with equal sign if and only if

u(t) = sinp

(πp

T
t
)
d,

for some d ∈ RN \ {0}.

We consider now the case of weighted inequalities and we are interested in

a generalization of the inequalities (2.13) and (2.7) (for references see [38, 73,

72, 37, 36].)

Theorem 2.17. Let a ∈ L1(0, T ), a ≥ 0. Let w be a function in W 1,2
loc (R)

periodic of period T such that∫ T

0

a(t)|w(t)|q−2w(t)dt = 0

For every p, q > 1 the following inequality holds

(2.29)(∫ T

0

a(t)|w(t)|qdt
) 1

q

≤ C(p, q)

(
1

T

∫ T

0

a

) 1
p∗+ 1

q
(∫ T

0

1

a(t)
|w′(t)|pdt

) 1
p

.
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where

C(p, q) =

[
2

(
1

p∗

) 1
q
(

1

q

) 1
p∗
(

2

p∗ + q

) 1
p
− 1

q

B

(
1

p∗
,
1

q

)]−1

.

Inequality (2.29) is attained if and only if w is of the form

w(t) = C sinqp∗

(
2πqp∗∫ T

0
a(θ)dθ

∫ t

0

a(θ)dθ + δ

)
,

for some C ∈ R 6= {0} and δ ∈ R.

It should be observd that the previous result is a generalization of Theorem

2.8 to general powers of |u| under the more natural assumption a ∈ L1.

The result that we want to prove is concerned with the following weighted

vector inequality of Poincaré type

(2.30)

∫ T

0

a|u|p ≤ C

∫ T

0

a|u′|p,

where u belongs to the space W 1,p
0 ([0, T ],RN). The function a ∈ L∞(0, T )

satisfies 1 ≤ a ≤ L for some L ≥ 1. Our aim is to estimate the best constant

C in (2.30). Let

A = {a ∈ L∞(0, T ) : inf a = 1 and sup a = L},

and let

(2.31)
1

Cp(a)
= inf

{∫ T

0
a(t)|u′|p∫ T

0
a(t)|u|p

: u ∈ W 1,p
0 ([0, T ],RN) \ {0}

}
,

for every given function a ∈ A. By standard arguments it follows that the

infimum in (2.31) is achieved for some u ∈ W 1,p
0 ([0, T ],RN) \ {0}. We prove

that if
1

Cp

= inf
a∈A

1

Cp(a)
,

then the infimum is achieved for a unique piecewise constant function ã ∈ A.

It is convenient to define:

(2.32) β(L) =

[
Lp∗/p(L− 1)

Lp∗/p − 1

]1/p∗

.

With this notation, we have:

35



Theorem 2.18. Let N ≥ 1, p > 1 and T > 0. Let a : [0, T ] → R be a

measurable function such that 1 ≤ a(t) ≤ L. Then, the following inequality

holds:

(2.33)

∫ T

0

a(t)|u(t)|pdt ≤ Cp

∫ T

0

a(t)|u′(t)|pdt

for every u ∈ W 1,p
0 ([0, T ],RN), where

Cp =

(
T

2

)p
(p/p∗)p/p∗[

πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]p .
We note that in view of identity (2.22) we may write:

πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

=
p

p∗
arctanp

[
L−p∗/p2

(
Lp∗/p − 1

L− 1

)1/p
]

+ arctanp∗

[
L−1/p∗

(
L− 1

Lp∗/p − 1

)1/p∗
]
.

Therefore, in the special case p = 2 and T = π, the best constant Cp takes the

value

C2 =
( π

4 arctanL−1/2

)2

,

in agreement with Piccinini and Spagnolo’s result [69].

Our next result shows that Theorem 2.18 is sharp, and characterizes all

extremals.

Theorem 2.19. Inequality (2.33) reduces to an equality if and only if a = ã,

where ã is defined by

ã(t) =


1 for 0 ≤ t < τ̃ , T − τ̃ ≤ t ≤ T,

L for τ̃ ≤ t < T − τ̃ ,

with

(2.34) τ̃ =
T

2

(
1−

arctanp∗
β(L)

L
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

)
,

and u = ũ = w̃d for some d ∈ RN , where w̃ is the scalar function defined by

(2.35)

w̃(t) =



(
λ̃p∗

p

)−1/p

sinp

[(
λ̃p∗

p

)1/p

t

]
for 0 ≤ t ≤ τ̃ ,(

λ̃p∗

p

)−1/p

L−1/p cosp∗

[(
p
p∗

)1/p∗

λ̃1/p
(
t− T

2

)]
for τ̃ ≤ t ≤ T − τ̃ ,(

λ̃p∗

p

)−1/p

sinp

[(
λ̃p∗

p

)1/p

(T − t)

]
for T − τ̃ ≤ t ≤ T .
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with

λ̃ = C−1
p =

(
2

T

)p(
p∗

p

)p/p∗ [
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]p

.

We consider the nonlinear eigenvalue problem:

(2.36)

 (a(t)ψp(u
′))′ + λa(t)ψp(u) = 0,

u(0) = 0, u(T ) = 0

corresponding to the Euler-Lagrange equation for (2.31). Our aim is to show

that if a is smooth, then solutions to (2.36) are necessarily one-dimensional.

We shall need the following uniqueness result, see [32].

Proposition 2.20. Suppose that β ∈ L1
loc(R) with β > 0 a.e. Then, for any

ξ, η ∈ RN and s0 ∈ R, the problem

(2.37)

 (ψp(v
′))′ + β(s)ψp(v) = 0,

v(s0) = ξ, v′(s0) = η

has a unique C1 solution globally defined on R.

The existence of a local solution is a direct application of Schauder’s fixed

point theorem. The main idea to prove the uniqueness is to write the equation

in (2.37) in the equivalent form

v′(s) = ψp∗

[
ψp(η)−

∫ s

s0

β(θ)ψp(v(θ))dθ

]
.

Then, a careful use of the properties of β allows to overcome the possible lack

of Lipschitz continuity of the function ψp.

Proposition 2.21. Let a : [0, T ] → R be a smooth function such that 1 ≤
a(t) ≤ L for any t ∈ [0, T ]. If u ∈ W 1,p

0 ([0, T ],RN) is a weak solution of the

vector eigenvalue problem

(2.38) (a(t)ψp(u
′))′ + λa(t)ψp(u) = 0,

then u ∈ C1 and it follows that

(2.39) u(t) = w(t)d,

where d = u′(0) and w is a solution of the scalar eigenvalue problem

(2.40)

 (a(t)φp(w
′))′ + λa(t)φp(w) = 0,

w(0) = 0, w(T ) = 0

satisfying w′(0) = 1.
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Proof. We first prove that if u is a solution of (2.38) then u ∈ C1. By continuity

of a, ψp, u and using equation (2.38), we have that (a(t)ψp(u
′))′ is continuous.

Therefore, h(t) = a(t)ψp(u
′) belongs to C1([0, T ],RN) and ψp(u

′) = a(t)−1h(t)

is continuous. Now the claim follows by continuity of ψp∗ = ψ−1
p .

By a change of variables, we first reduce the equation in (2.38) to an equation

of the form (2.37). Let us first consider the function G : [0, T ] → [0, T ] defined

by

G(t) =
T∫ T

0
a−

1
p−1

∫ t

0

a−
1

p−1 .

Since 1 ≤ a(t) ≤ L the function G is well defined. It is easily seen that G is a

nondecreasing differentiable function whose derivative is given by

G′(t) =
T∫ T

0
a−

1
p−1

a(t)−
1

p−1 .

Now, suppose that u is a solution of (2.38) with u(0) = 0 and u′(0) = d; we

claim that the function v : [0, T ] → RN defined by

v(s) = u(G−1(s)),

is a C1 solution of the initial value problem

(2.41)


(ψp(v

′))′ + µα(s)ψp(v) = 0,

v(0) = 0, v′(0) = γa(0)
1

p−1d,

where

(2.42) α(s) = a(G−1(s))p∗ , µ = γpλ γ =
1

T

∫ T

0

a−
1

p−1 .

Indeed, it results that u(t) = v(G(t)) and consequently the derivative of u is

given by

(2.43)
du

dt
(t) = γ−1a(t)−

1
p−1

dv

ds
(G(t)).

From (2.43) it follows that

d

dt

[
a(t)ψp(u

′(t))

]
= γ−pa(t)−

1
p−1

[
d

ds
ψp(v

′(s))

]
s=G(t)

,
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and therefore we obtain

d

dt

[
a(t)ψp(u

′(t))

]
+ λa(t)ψp(u(t)) =

= γ−pa(t)−
1

p−1

[
d

ds
ψp(v

′(s)) + µα(s)ψp(v(s))

]
s=G(t)

,

with α, γ and µ given by (2.42). On the other hand, the function s ∈ [0, T ] 7→
γa(0)

1
p−1 g(s)d ∈ RN , where g is the unique solution of the scalar initial value

problem (see again Proposition 2.20 for N = 1) (φp(g
′))′ + µα(s)φp(g) = 0,

g(0) = 0, g′(0) = 1,

is a solution of the problem (2.41). Therefore, v(s) = γa(0)
1

p−1 g(s)d. Conse-

quently, the vector initial value problem (a(t)ψp(u
′))′ + λa(t)ψp(u) = 0,

u(0) = 0, u′(0) = d.

has a unique C1 solution given by u(t) = v(G(t)) = w(t)d where w(t) =

γa(0)
1

p−1 g(G(t)). Moreover, w is the unique C1 solution of the scalar initial

value problem  (a(t)φp(w
′))′ + λa(t)φp(w) = 0,

w(0) = 0, w′(0) = 1.

Since u in (2.39) also satisfies u(T ) = 0 it must be that w(T ) = 0; thus w

is a solution to the scalar eigenvalue problem (2.40) and this completes the

proof.

Remark 2.1. Proposition 2.21 shows that the problems (2.38) and (2.40) share

the same eigenvalues; moreover, it is possible to prove that they form a sequence

λn = λn(a) such that 0 < λ1(a) < λ2(a) < · · · < λn(a) < · · · . Indeed, we recall

that (see Section 3 in [32] when N ≥ 1 and Section 2 in [84] when N = 1) for

any α ∈ L1(0, T ) with α > 0 a.e. and for any µ > 0, a problem of the type

(2.44)

 (ψp(v
′))′ + µα(s)ψp(v) = 0,

v(0) = 0, v(T ) = 0,

has a strictly monotone sequence of eigenvalues. On the other hand, the proof

of Proposition 2.21 implies that λ is an eigenvalue of (2.38) if and only if

39



µ = γpλ is an eigenvalue of (2.44) with α and γ as in (2.42). This proves the

asserted property.

Let us turn to the proofs of Theorem 2.18 and Theorem 2.19.

Proof of Theorem 2.18. By a standard approximation argument it is sufficient

to prove Theorem 2.18 in the special case where a ∈ A is a smooth function.

It is well known that C−1
p (a) = λ1(a), hence the following estimate holds∫ T

0

a(t)|u(t)|pdt ≤ 1

λ1(a)

∫ T

0

a(t)|u′(t)|pdt,

for every u. Therefore, in order to prove (2.33) it is sufficient to show that, if

λ 6= 0 and u 6≡ 0 satisfy (2.38), then necessarily

λ ≥
(

2

T

)p(
p∗

p

)p/p∗ [
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]p

.

In view of Proposition 2.21 there exists a vector d ∈ RN such that u(t) = w(t)d

where w is a solution of the scalar problem (2.40). Now we apply the arguments

of Piccinini and Spagnolo [69], as extended in [36], to problem (2.40). By

standard properties of eigenfunctions any solution w of (2.40) in [0, T ] has at

least two zeros, and between any pair of zeros of w there is exactly one zero of

its derivative w′. Let t0 and t2 be two consecutive zeros of w and let t1 be a

zero of w′ in such a way that t0 < t1 < t2. Without loss of generality we may

suppose that w(t1) > 0. It is obvious that

(2.45) t2 − t0 ≤ T.

We define, for t0 < t ≤ t1, the function

f(t) =
a(t)φp(w

′(t))

φp(w(t))
.

In view of (2.40) it results that f satisfies the following first order differential

equation

f ′(t) = −λa(t)− p

p∗
|f(t)|p∗

a(t)p∗/p
.

We remark that f is strictly decreasing, since f ′(t) < 0. Furthermore limt→t+0
f(t) =

+∞, f(t1) = 0. Hence, there is exactly one point, say τ , in the interval (t0, t1)
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such that f(τ)=(λp∗/p)1/p∗β(L), where β(L) is defined in (2.32). Now we

prove that the following inequalities hold:

(2.46)


−λa(t)− p

p∗
|f |p∗

ap∗/p ≥ −λ− p
p∗
|f |p∗ for t0 < t ≤ τ

−λa(t)− p
p∗

|f |p∗

ap∗/p ≥ −λL− p
p∗

|f |p∗

Lp∗/p for τ ≤ t ≤ t1.

Indeed, it is readily checked that the first inequality in (2.46) is equivalent to

f(t)p∗ ≥ λp∗

p
βp∗(a(t)) for t0 < t ≤ τ

where the function β is defined in (2.32). Since f is decreasing and β is

increasing in (1, L), for t ≤ τ we obtain

f(t)p∗ ≥ f(τ)p∗ =
λp∗

p
βp∗(L) ≥ λp∗

p
βp∗(a(t)).

Hence, the first inequality in (2.46) is established. On the other hand, the

second inequality in (2.46) is equivalent to

f(t)p∗ ≤ λp∗

p
Lp∗/pγ(a(t)) for τ ≤ t ≤ t1

where γ is the function defined for 1 ≤ a ≤ L by

γ(a) =
ap∗/p(L− a)

Lp∗/p − ap∗/p
.

Since f is decreasing and γ is increasing, we have for t ≥ τ :

f(t)p∗ ≤ f(τ)p∗ =
λp∗

p
βp∗(L) =

λp∗

p
Lp∗/pγ(1) ≤ λp∗

p
Lp∗/pγ(a(t)).

Hence, the second inequality in (2.46) is also established.

Now, we prove that the Cauchy problem

(2.47)



f ′0(t) =


−λ− p

p∗
|f0|p

∗
for t0 < t ≤ τ

−λL− p
p∗

|f0|p
∗

Lp∗/p for τ ≤ t < t1

f0(τ) = (λp∗/p)1/p∗β(L)
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has a unique solution. Indeed, note that f0 is strictly decreasing. Denoting by

g0 its inverse, it results that

(2.48)

g′0(s) =


−
(
λL+ p

p∗
L−p∗/psp∗

)−1

for f0(t1) < s ≤ f0(τ)

−
(
λ+ p

p∗
sp∗
)−1

for f0(τ) ≤ s < f0(t0)

g0(f0(τ)) = τ.

Hence, there exists a unique solution for (2.48). It follows that uniqueness

holds for (2.47) and that f0 is given by:

(2.49) f0(t) =



(λp∗

p
)1/p∗ tanp∗

[
λ1/p

(
p
p∗

)1/p∗

(τ − t) + arctanp∗ β(L)

]
for t0 < t ≤ τ

L(λp∗

p
)1/p∗ tanp∗

[
λ1/p

(
p
p∗

)1/p∗

(τ − t) + arctanp∗
β(L)

L

]
for τ ≤ t ≤ t1.

In particular, we obtain

(2.50)


f0(t) ≥ f(t) for t ≤ τ

f0(t) ≤ f(t) for t ≥ τ.

Since

lim
t→

πp∗
2

tanp∗(t) = +∞

we have that

f0(t) → +∞ as t→ τ − 1

λ1/p
(

p
p∗

)1/p∗

(πp∗

2
− arctanp∗ β(L)

)

and vanishes for t = τ + 1

λ1/p( p
p∗ )

1/p∗ arctanp∗
β(L)

L
. It follows:

t1 − t0 ≥
1

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]
.

In a similar way we can prove that

t2 − t1 ≥
1

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]
;
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hence by the relations above we derive

t2 − t0 ≥
2

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]
.

So recalling (2.45), we can state

T ≥ 2

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]
,

that is

(2.51) λ ≥

 2

T
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]
p

.

The proof of Theorem 2.18 is complete.

In order to characterize the extremals as in Theorem 2.19 we shall need

the following.

Lemma 2.22. Let u ∈ W 1,p
0 ([0, T ],RN) be a weak solution of the equation

(2.52) (ã(t)ψp(u
′))′ + λ̃ã(t)ψp(u) = 0.

with λ̃ and ã as in Theorem 2.19. Let

lim
t→τ̃−

u′(t) = u′(τ̃−), lim
t→τ̃+

u′(t) = u′(τ̃+).

Then

(2.53) u′(τ̃−) = Lp∗−1u′(τ̃+).

Proof. Since ã(t) ≡ 1 in [0, τ̃ ] and ã(t) ≡ L in [τ̃ , T/2], from (2.52) we conclude

that the restrictions of u respectively to the intervals [0, τ̃ ] and [τ̃ , T/2] are

both C1 functions. Now, we prove that u′(τ̃+) is completely determined by

u′(τ̃−). Since u is a weak solution of (2.52) we have, for any function ϕ ∈
W 1,p([0, T/2],RN)

(2.54) −
∫ T/2

0

ã(t)〈ψp(u
′);ϕ′〉 = λ̃

∫ T/2

0

ã(t)〈ψp(u);ϕ〉,
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Let 1 ≤ j ≤ N and ε > 0. In (2.54) we first choose vector valued piecewise

linear test function ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕN(t)) defined by

ϕk(t) = 0 if k 6= j, ϕj(t) =


0 if 0 ≤ t ≤ τ̃ − ε,

1
ε
(t− τ̃ + ε) if τ̃ − ε ≤ t ≤ τ̃ ,

1, if τ̃ ≤ t ≤ T/2.

The derivative of ϕj is given by

ϕ′j(t) =

 1
ε
, if τ̃ − ε ≤ t ≤ τ̃ ,

0, if 0 ≤ t ≤ τ̃ − ε, τ̃ ≤ t ≤ T/2.

Let us set for every 1 ≤ j ≤ N

ψp,j(x) =

 |x|p−2xj if x ∈ RN \ {0},
0 if x = 0.

Hence,

(2.55)

∫ T/2

0

ã(t)〈ψp(u
′);ϕ′〉 =

1

ε

∫ τ̃

τ̃−ε

ψp,j(u
′),

and in a similar way

(2.56)

∫ T/2

0

ã(t)〈ψp(u);ϕ〉 =
1

ε

∫ τ̃

τ̃−ε

(t− τ̃ + ε)ψp,j(u),+L

∫ T/2

τ̃

ψp,j(u).

By substituting (2.55) and (2.56) in (2.54) and letting ε→ 0+ we obtain

(2.57) −|u′(τ̃−)|p−2u′j(τ̃
−) = λ̃L

∫ T/2

τ̃

ψp,j(u), dt,

A second choice of ϕ, namely

ϕk(t) = 0 if k 6= j, ϕj(t) =


0 if 0 ≤ t ≤ τ̃ ,

1
ε
(t− τ̃) if τ̃ ≤ t ≤ τ̃ + ε,

1, if τ̃ + ε ≤ t ≤ T/2

and an argument similar to the one that yields (2.57) leads to

(2.58) −|u′(τ̃+)|p−2u′j(τ̃
+) = λ̃

∫ T/2

τ̃

ψp,j(u), dt.

Thus, from (2.57) and (2.58) we have, for every 1 ≤ j ≤ N

−L|u′(τ̃+)|p−2u′j(τ̃
+) = −|u′(τ̃−)|p−2u′j(τ̃

−),

and therefore

Lψp(u
′(τ̃+)) = ψp(u

′(τ̃−)).

From the above and from the fact that ψ−1
p = ψp∗ we obtain (2.53).
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Proof of Theorem 2.19. The inequalities (2.45), (2.46), (2.50), (2.51) in the

proof of Theorem 2.18 hold strictly unless t0 = 0, t2 = T , f(t) = f0(t) and

a(t) = ã(t). In this case the function f0 satisfies

(2.59) lim
t→0+

f0(t) = +∞.

Since tanp∗(θ) → +∞ as θ → (πp∗/2)−, in view of (2.49) there is a unique

value of τ , denoted by τ̃ , such that (2.59) holds. Thus τ̃ satisfies

(2.60)

(
p

p∗

)1/p∗

λ̃1/pτ̃ + arctanp∗ β(L) =
πp∗

2
,

and this yields (2.34). By requiring that f0(t1) = 0 we obtain

(2.61)

(
p

p∗

)1/p∗

λ̃1/p(τ̃ − t1) + arctanp∗
β(L)

L
= 0,

and this implies t1 = T/2. It remains to prove that all extremals of inequal-

ity (2.33) with a = ã are of the form u = ũ = w̃ d, where w̃ is defined by

(2.35). Hence, we seek all non-trivial solutions of the equation

(2.62) (ã(t)ψp(u
′))′ + λ̃ã(t)ψp(u) = 0,

such that u(0) = 0 and u(T ) = 0. Since ã(t) ≡ 1 in [0, τ̃ ], in view of Propo-

sition 2.20 (see also Lemma 3.1 in [54]) we have that, for any given d ∈ RN ,

there exists a unique solution ũ defined in the interval [0, τ̃ ] of equation (2.62)

satisfying the initial conditions

u(0) = 0, u′(0) = d.

Recalling the definition of sinp, we may write ũ in the form

ũ(t) =

(
λ̃p∗

p

)−1/p

sinp

( λ̃p∗
p

)1/p

t

 d ∀t ∈ [0, τ̃ ].

Observe that

(2.63) ũ(τ̃−) =

(
λ̃p∗

p

)−1/p

sinp

( λ̃p∗
p

)1/p

τ̃

 d.
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In order to simplify the above expression for ũ(τ̃−) we note that, using iden-

tity (2.18), we may write

sinp

( λ̃p∗
p

)1/p

τ̃

 = sinp

[
p∗

p

(
p

p∗

)1/p∗

λ̃1/pτ̃

]

= cosp∗

(
πp∗

2
−
(
p

p∗

)1/p∗

λ̃1/pτ̃

)
= cosp∗(arctanp∗ β(L))

where we used (2.60) in order to derive the last equality. In turn, from iden-

tity (2.17) we derive

| cosp∗(t)|p =
1

1 + | tanp∗(t)|p∗

and therefore we may write

cosp∗(arctanp∗ β(L)) =

(
1

1 + βp∗(L)

)1/p

=

[
Lp∗/p − 1

Lp∗ − 1

]1/p

.

We conclude from (2.63) and the arguments above that

ũ(τ̃−) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1

Lp∗ − 1

]1/p

d.

We still denote by ũ the restriction of the solution of equation (2.62) to the

interval [τ̃ , T − τ̃ ]. By continuity of ũ,

(2.64) ũ(τ̃+) = ũ(τ̃−) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1

Lp∗ − 1

]1/p

d.

Now we compute derivatives. Using (2.20), we have

(2.65) ũ′(τ̃−) = φp∗

cosp

( λ̃p∗
p

)1/p

τ̃

 .

On the other hand, similarly as before, using (2.18) and (2.60) we compute:

cosp

( λ̃p∗
p

)1/p

τ̃

 = cosp

[
p∗

p

(
p

p∗

)1/p∗

λ̃1/pτ̃

]

= sinp∗

(
πp∗

2
−
(
p

p∗

)1/p∗

λ̃1/pτ̃

)
= sinp∗(arctanp∗ β(L)).
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From the basic identity (2.17) we derive

| sinp(t)|p =
| tanp(t)|p

1 + | tanp(t)|p

and consequently

sinp∗(arctanp∗ β(L)) =

[
Lp∗ − Lp∗/p

Lp∗−1

]1/p∗

.

We conclude from (2.65) and the arguments above that

ũ′(τ̃−) =

[
Lp∗ − Lp∗/p

Lp∗ − 1

]1/p

d.

Now, in view of Lemma 2.22 we have

(2.66) ũ′(τ̃+) = L−p∗/p

[
Lp∗ − Lp∗/p

Lp∗ − 1

]1/p

d =

[
L− 1

L(Lp∗ − 1)

]1/p

d.

Since ã(t) ≡ L in [τ̃ , T − τ̃ ], again by Proposition 2.20, ũ coincides in [τ̃ , T − τ̃ ]
with the unique solution of (2.62) satisfying the initial conditions

u(τ̃) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1

Lp∗ − 1

]1/p

d,(2.67)

u′(τ̃) =

[
L− 1

L(Lp∗ − 1)

]1/p

d.(2.68)

according to (2.64) and (2.66). We claim that

ũ(t) =

(
λ̃p∗

p

)−1/p
1

L1/p
cosp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]
d ∀t ∈ [τ̃ , T − τ̃ ].

Indeed, using (2.61) it follows that ũ satisfies (2.67). Moreover, recalling that

(see (2.19)) p cos′p∗(t) = −p∗φp∗(sinp∗(t)) we have

(2.69) ũ′(t) = − 1

L1/p
φp∗

{
sinp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]}
d.

By similar arguments as above, we compute

sinp∗(arctanp∗
β(L)

L
) =

(
L− 1

Lp∗ − 1

)1/p∗

.

Hence, ũ satisfies (2.68). From (2.69) we have

(2.70) φp (ũ′(t)) = − 1

L1/p∗
sinp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]
d.
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Differentiating (2.70) we obtain

(φp (ũ′(t)))
′
= −λ̃φp (ũ(t)) ,

and thus we check that ũ solves (2.62) in [τ̃ , T − τ̃ ]. By similar arguments we

evaluate ũ in the interval [T − τ̃ , T ]. The proof is complete.

2.3 A concrete example

The goal of this section is to give an example of explicit non-trivial degenerate

elliptic equation of its own interest. In view of this example we cannot expect

to extend the Piccinini and Spagnolo argument to the case of the a p–laplacian

type equation. Namely, let (ρ, θ) be the usual polar coordinates

ρ =
√
x2

1 + x2
2, θ = arctan

x2

x1

.

Consider the following partial differential equation

(2.71)
1

r

∂

∂θ

(
a(θ)

∣∣∣∣1r ∂u∂θ
∣∣∣∣p−2

1

r

∂u

∂θ

)
+

1

r

∂

∂r

(
ra(θ)

∣∣∣∣∂u∂r
∣∣∣∣p−2

∂u

∂r

)
= 0,

where p ≥ 2. Our aim is to provide a solution of (2.71) of the form

(2.72) u (r, θ) = rαw(θ).

We may refer to a function of the type (2.72) as an angular stretching or a

quasi radial function.

We also recall, from the result of [37], that if λ > 0 is a eigenvalue of the

nonlinear problem

(2.73)

 (a(θ)|w′|p−2w′)
′
+ λa(θ)|w|p−2w = 0

w(0) = w(2π)

then necessarily

(2.74) λ ≥ λp(L) ≡

{
2

π

(
p∗

p

) 1
p∗
[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)

L

]}p

.

Before we give the main result of this section, we need to prove the following

lemma.
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Lemma 2.23. Let p ≥ 2. The function F : [0,∞) → R defined by

F (α) = αp−1 [(α− 1)(p− 1) + 1] ,

is continuous and increasing for every α ≥ p−2
p−1

. Moreover

F

(
p− 2

p− 1

)
= 0.

Proof. We compute the derivative of F , which is given by

F ′(α) = (p− 1)αp−2(pα− p+ 2)

We deduce that F ′(α) ≥ 0 if α ≥ (p − 2)/p. The result follows from the fact

that (p− 2)/p < (p− 2)/(p− 1).

Proposition 2.24. Let p ≥ 2 and let a = a(t) be a 2π–periodic measurable

function such that 1 ≤ a(t) ≤ L. For every λ satisfying (2.74) there exists a

unique α ≥ p−2
p−1

such that the function u (r, θ) = rαw(θ) is a solution of (2.71),

where w is a solution to the problem (2.73). Moreover, λ and α are related by

the following condition

(2.75) λ = αp−1 [(α− 1)(p− 1) + 1] .

Proof. The existence of a solution w to the problem (2.73) is a direct conse-

quence of the estimate (2.74). Let u (r, θ) = rαw(θ) be a solution of (2.71).

Then, substituting the function u in (2.71) and recalling that

∂u

∂r
= αrα−1w(θ)

and
1

r

∂u

∂θ
= rα−1w′(θ)

then necessarily (2.75) holds.
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Chapter 3

Convergences for sequences of

elliptic operators

In this Chapter we will discuss the G-convergence and H-convergence (in the

general case of matrices not necessarily symmetric) of the operators in diver-

gence form.

3.1 Introduction and definitions

Let Ω be a bounded open subset of Rn. We consider the class M(K,Ω) for

each constant K ≥ 1 of measurable matrix field A : Ω → Rn×n such that

A = A(x) ∈ L∞ (Ω,Rn×n), A is symmetric and satisfies the condition

(3.1)
|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ R2

Let Aε be a sequence of matrices of M(K,Ω), namely Aε satisfies (3.1)

uniformly in ε. Assume that uε is the unique solution of the Dirichlet boundary

problem −divAε∇uε = f in D′(Ω),

uε ∈ W 1,2
0 (Ω),

with right hand side f ∈ H−1(Ω). Here and in what follows we denote by

H−1(Ω) the dual space of W 1,2
0 (Ω). It is not difficult to see that

1

K
‖uε‖W 1,2

0 (Ω) ≤ ‖f‖H−1(Ω),
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hence, up to a subsequence, we may assume that

uε ⇀ u0 in W 1,2
0 (Ω) weakly,

for some u0 ∈ W 1,2
0 (Ω). One may ask if u0 satisfies an equation of the same

type of uε. In order to answer this question, the notion of G-convergence was

introduced by De Giorgi and Spagnolo (see for [22] and [79]).

Definition 3.1. A sequence of matrices Aε of M(K,Ω) is said to G-converge

to a matrix A0 of M(K,Ω) if, for every f ∈ H−1(Ω), the solution uε of the

problem −divAε∇uε = f in D′(Ω),

uε ∈ W 1,2
0 (Ω),

satisfies

uε ⇀ u0 in W 1,2
0 (Ω) weakly,

where u0 is the solution of the problem−divA0∇u0 = f in D′(Ω),

u0 ∈ W 1,2
0 (Ω).

In this case one writes

Aε G−→ A0.

One of the properties of the G–convergence, which explains the interest

of Definition 3.1, is following fundamental compactness result, which can be

found in [79].

Theorem 3.1. Any sequence of matrices Aε of M(K,Ω) admits a subsequence

which G-converges to a matrix A0 of M(K,Ω).

We recall here some well known facts for the G-convergence.

Lemma 3.2. Let Ω be a bounded open subset of Rn, let Aε = (aε
ij) and A0 =

(a0
ij) be matrices in M(K,Ω).

(i) If for every i, j = 1, . . . , n

aε
ij → a0

ij in L1
loc(Ω) strongly,

then Aε G−→ A0.

52



(ii) Let n = 1 and let Ω be an open interval of R. Then

Aε G−→ A0 if and only if
1

Aε
⇀

1

A0
in L∞(Ω) weakly ∗.

(iii) Let Aε G−→ A0 and f ε → f in H−1(Ω) strongly. If uε and u0 satisfy−divAε∇uε = f ε in D′(Ω),

uε ∈ W 1,2
0 (Ω),

and −divA0∇u0 = f in D′(Ω),

u0 ∈ W 1,2
0 (Ω).

then

uε ⇀ u0 in W 1,2
0 (Ω) weakly.

The notion of G-convergence has been extended to the non–symmetric

case by Murat and Tartar under the name of H-convergence (see [66]). Before

we give the definition, we introduce the class of matrices M(α, β,Ω), where

0 < α ≤ β < +∞ of 2× 2 matrices A which belongs to A ∈ (L∞(Ω))n×n and

satisfies

〈A(x)ξ, ξ〉 ≥ α|ξ|2 a.e. x ∈ Ω ∀ξ ∈ Rn,(3.2)

〈A−1(x)ζ, ζ〉 ≥ β−1|ζ|2 a.e. x ∈ Ω ∀ζ ∈ Rn.(3.3)

Observe that, in view of (3.2), the matrix A(x) is invertible a.e. so that

A−1(x) exists and is measurable. Observe also that taking ζ = A(x)ξ in (3.3)

one has

(3.4) |A(x)ξ| ≤ β|ξ| a.e. x ∈ Ω ∀ξ ∈ Rn.

Moreover, we are making no symmetric assumption on the elements ofM(α, β,Ω).

Definition 3.2. Let α and β be real numbers such that 0 < α ≤ β < +∞ and

let Ω be a bounded open subset of R2. A sequence of matrices Aε of M(α, β,Ω)

is said to H-converge to a matrix A of M(α, β,Ω) if, for every f ∈ H−1(Ω),

the solution uε of the problem−divAε∇uε = f in D′(Ω),

uε ∈ W 1,2
0 (Ω),
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satisfies u
ε ⇀ u0 in W 1,2

0 (Ω) weakly,

Aε∇uε ⇀ A0∇u0 in (L2(Ω))n weakly,

where u0 is the solution of the problem−divA0∇u0 = f in D′(Ω),

u0 ∈ W 1,2
0 (Ω).

In this case one writes

Aε H−→ A0.

The classM(α, β,Ω) is sequentially compact with respect to theH–convergence.

Theorem 3.3. Let α and β be real numbers such that 0 < α ≤ β < +∞ and

let Ω be a bounded open subset of Rn, with n ≥ 1. Any sequence of matrices

Aε of M(α, β,Ω) admits a subsequence which H-converges to a matrix A0 of

M(α, β,Ω).

3.2 The class of matrices with unit determi-

nant

We denote by M1(α, β,Ω) whose elements are the matrices A ∈ M(α, β,Ω)

which satisfies the condition

detA(x) = 1 a.e. x ∈ Ω

This class is stable underH-convergence. This is a consequence of the following

result, whose proof can be found in [24, 47, 30, 57, 59, 81].

Theorem 3.4. Let Ω be a bounded open subset of R2and let Aε be a sequence

of matrices of M(α, β,Ω) which H-converges to a matrix A0. Then

Aε

detAε

H−→ A

detA
.

It should be mentioned that the previous result is true only in dimension

n = 2.

We would like to prove here a result strictly related to Theorem 3.4, which

can be found in [26].

54



Theorem 3.5. Let Ω be a bounded open subset of R2 and let Aε be a sequence

of matrices of M(α, β,Ω) which H-converges to a matrix A0. Assume that

(3.5) detAε → c0 a.e. in Ω,

where c0 is a function in L∞(Ω). Then

(3.6) detA0 = c0.

One of the key ingredients of the proof of Theorem 3.5 is following result.

Theorem 3.6. Let Ω be a bounded open subset of RN with N ≥ 1 and let Aε

be a sequence of matrices of M(α, β,Ω) which H-converges to a matrix A0.

Assume that bε is a sequence of measurable functions such that

(3.7) m ≤ bε(x) ≤M a.e. x ∈ Ω,

where 0 < m ≤M < +∞ and

(3.8) bε → b0 a.e. in Ω.

Then

(3.9) bεAε H−→ b0A0.

Proof. We divide the proof in two steps.

Step 1. Assume first that, further to (3.7) and (3.8), one has

(3.10) bε ∈ C1(Ω), b0 ∈ C1(Ω), bε → b0 in C1(Ω) strongly.

We claim that in this case the sequence bεAε H-converges to b0A0, i.e. that

for every f ∈ H−1(Ω), the solution uε of the problem

(3.11)

−div(bεAε∇uε) = f in D′(Ω),

uε ∈ W 1,2
0 (Ω),

satisfies

(3.12)

u
ε ⇀ u0 in W 1,2

0 (Ω) ,

bεAε∇uε ⇀ b0A0∇u0 in (L2(Ω))N ,

55



where u0 is the solution of the problem

(3.13)

−div(b0A0∇u0) = f in D′(Ω),

u0 ∈ W 1,2
0 (Ω).

Actually it is sufficient to prove this result for f ∈ L2(Ω).

To this end, we observe that

(3.14) −div(bεAε∇uε) = −bεdiv(Aε∇uε)− 〈Aε∇uε,∇bε〉,

where bεdiv(Aε∇uε) ∈ H−1(Ω) is defined by

〈bεdiv(Aε∇uε), v〉 = 〈div(Aε∇uε), bεv〉 ∀v ∈ W 1,2
0 (Ω).

(Note that bεv ∈ W 1,2
0 (Ω) for every v ∈ H1

0 (Ω) when bε ∈ C1(Ω); this proves

that the distribution bεdiv(AεDuε) is well-defined as an element of H−1(Ω).)

Set

gε =
f + 〈Aε∇uε,∇bε〉

bε
.

Since uε is the solution of the problem (3.11), the sequence uε is bounded in

W 1,2
0 (Ω). We can assume that (up to a subsequence)

uε ⇀ u in W 1,2
0 (Ω) weakly,

for some u ∈ W 1,2
0 (Ω). Since Aε ∈M(α, β,Ω), from (3.4) it follows that Aε∇uε

is bounded in L2(Ω). This proves that gε is bounded in L2(Ω) and that (up to

a subsequence)

gε ⇀ g in L2(Ω),

for some g ∈ L2(Ω). We now observe that uε is the solution of the problem−div(Aε∇uε) = gε in D′(Ω),

uε ∈ W 1,2
0 (Ω).

Since Aε is assumed to H-converges to A0 and since gε converges to g in

L2(Ω) weakly (and therefore in H−1(Ω) strongly), we deduce that (up to a

subsequence)

(3.15) Aε∇uε ⇀ A0∇u in (L2(Ω))N weakly,
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where u is the solution of the problem

(3.16)

−div(A0∇u) = g in D′(Ω),

u ∈ W 1,2
0 (Ω).

In view of (3.15) and of the strong convergence (3.10), we have

(3.17) g =
f + 〈A0∇u,∇b0〉

b0
.

Similarly to (3.14) we have, since b0 ∈ C1(Ω),

−div(b0A0∇u) = −b0div(A0∇u)− 〈A0∇u,∇b0〉,

so that (3.16) and (3.17) imply that u is the solution of the problem−div(b0A0∇u) = f in D′(Ω),

u ∈ W 1,2
0 (Ω).

This implies that u coincides with u0 defined by (3.13) and that the conver-

gences (3.12) hold for the whole sequence ε; indeed, we do not have to extract

any subsequence since the limits u,A0Du and g are uniquely defined.

We have proved the result of Theorem 3.6 when hypothesis (3.10) holds

true.

Step 2. We now prove the assertion in the general case, i.e. when only

(3.7) and (3.8) hold true. In view of Theorem 3.3 we assume that (up to a

subsequence) the sequence of matrices bεAε of M (αm, βM,Ω) satisfies

(3.18) bεAε H−→ B0,

for some B0 of M (αm, βM,Ω).

Extend bε and b0 to the whole of RN by

bε(x) = b0(x) = m ∀x ∈ RN \ Ω.

Let %δ be a mollifier and let bε ∗ %δ be the convolution of bε and %δ. Since for

δ > 0 fixed we have

bε ∗ %δ → b0 ∗ %δ in C1(Ω) strongly,
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the result of the first step proves that for every δ > 0 fixed

(3.19) (bε ∗ %δ)A
ε H−→ (b0 ∗ %δ)A

0.

On the other hand, since the sequence Aε is equi-bounded in L∞(Ω) (see

(3.4)) we have

(3.20) |bεAε − (bε ∗ %δ)A
ε| ≤ γε

δ ,

where γε
δ is the function defined by

γε
δ = β |bε − (bε ∗ %δ)| ,

for every δ > 0 fixed. Hypothesis (3.8) implies that

(3.21) γε
δ → γ0

δ a.e. in Ω,

where γ0
δ is the function defined by

(3.22) γ0
δ = β|b0 − (b0 ∗ %δ)|,

for every δ > 0 fixed. Then (3.18), (3.19), (3.20), (3.21) and Theorem 3.1 in

[8] imply for every δ > 0 fixed

(3.23) |B0 − (b0 ∗ %δ)A
0| ≤ γ0

δ .

The fact that b0 ∗%δ tends to b0 a.e. as δ tends to zero, (3.22) and (3.23) imply

then that B0 = b0A0.

This concludes the proof of Theorem 3.6.

Proof of Theorem 3.5. Define

bε =
1

detAε
.

In view of hypothesis (3.5) we have

bε → b0 =
1

c0
a.e. in Ω.

Applying the result of Theorem 3.6, the sequence bεAε H-converges to b0A0 =

A0

c0
. Since here the dimension is N = 2, Theorem 3.4 implies that

Aε

detAε

H−→ A0

detA0
.
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Since the H-limit is unique, it results that

A0

c0
=

A0

detA0
,

and therefore

c0 = detA0.

This proves Theorem 3.5.

3.3 Quasiconformal mappings and approxima-

tion of the inverse matrix

Let us suppose that Aε is a sequence in M(K,R2) and that detAε = 1 a.e. in

Ω. Up to a subsequence, we may assume that both

Aε G−→ A

and

(Aε)−1 G−→ B

G–converges to some A and B in M(K,R2). In general, B is different from A.

However, the following result can be obtained, performing a suitable change

of variables (see [61]).

Theorem 3.7. Let Aε be a sequence of matrices in M(K,R2) such that

detAε = 1.

Assume that Aε G−→ A for some A ∈M(K,R2). Let B be any open ball in R2

and let Âε and Â be the matrices defined as

Âε(x) =

 Aε(x) if x ∈ B
I otherwise.

Â(x) =

 A(x) if x ∈ B
I otherwise.

where I denotes the identity matrix. Then, there exists a sequence of K–

quasiconformal mappings f ε : R2 → R2 which converges locally uniformly to a

K–quasiconformal mapping f : R2 → R2 such that

(Âε)−1 ◦ (f ε)−1 G−→ (A)−1 ◦ f−1.

We want to point out here that the result in specific of dimension n = 2.
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3.4 Beltrami operators

For any fixed K ≥ 1, let F(K) of the class of operators of the type

B =
∂

∂z̄
− µ

∂

∂z
− ν

∂

∂z
,

where µ and ν are function in L∞(C) such that

|µ(z)|+ |ν(z)| ≤ k =
K − 1

K + 1
.

We say that an element of F(K) is a Beltrami operators. We follow [5] and

give the notion of G–convergence for the Beltrami operators.

Definition 3.3. The sequence of differential operator Bε in F(K) is said to

G-converge to a operator B in F(K) if for any sequence f ε ∈ L2(C) which con-

verges strongly to f ∈ L2(C) and such that Bεf ε converges strongly L2(Ω,R2)

one has

(Bε)−1f ε ⇀ B−1f weakly in L2(C).

The following compactness result is proved in [44].

Theorem 3.8. For every 1 ≤ K < 3 the class F(K) is G–compact, in the

sense that any sequence of operators Bε in F(K) has a subsequence which

G–converges to some B in F(K).

3.5 Examples of G–dense classes

We dedicate this section to fundamental examples of classes that are compact

or dense with respect to the G-convergence.

Now, we mention the result of Marino and Spagnolo [56] which is true in

every dimension n. They prove that every elliptic matrix A ∈M(K,Ω) is the

G-limit of a sequence of isotropic matrices of the type

Aε(x) =

βε(x) 0

0 βε(x)


Theorem 3.9. Let Ω be a bounded open subset of Rn and K ≥ 1. If A =

A(x) ∈ M(K,Ω) then there exists a constant c depending only on n and a

sequence of coefficients βε = βε(x) satisfying

1

cK
≤ βε(x) ≤ cK,
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such that

βεI
G−→ A,

where I is the n× n identity matrix.

Every 2×2 matrix A which satisifies the additional assumption detA(x) =

1 can be approximated in the sense of the G–convergence by a sequence of

anisotropic matrices

Aε =

γε(x) 0

0 1
γε(x)


provided some elliptic bound is satisfied.

Theorem 3.10 ([62]). Let Ω be a bounded open subset of Rn and K ≥ 1.

assume that A = A(x) ∈M(K,Ω) and

detA(x) = 1 a.e. in Ω

There exists a sequence γε satisfying

1

K
≤ γε(x) ≤ K

such that γε(x) 0

0 1
γε(x)

 G−→ A

if and only if A satisfies

|ξ|2
1
2

(
K + 1

K

) ≤ 〈A(x)ξ, ξ〉 ≤ 1

2

(
K +

1

K

)
|ξ|2.
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Chapter 4

Variational integrals

4.1 Classical semicontinuity result

Let Ω be a bounded open subset of Rn. In this section we consider functionals

J of the integral form

(4.1) J(v) =

∫
Ω

F (x, v,∇v)dx ∀v ∈ W 1,p(Ω),

where F : Ω× R× Rn → R is a Carathéodory function satisfying

(4.2) a0(x) + c0|ξ|p ≤ F (x, s, ξ) ≤ a1(x) + b1|s|p + c1|ξ|p,

with p > 1, c0 > 0 and a0, a1 ∈ L1(Ω).

Observe that, for p = 2, an example of a functional which satisfies condition

(4.2) is the A–harmonic energy

(4.3) EA(u) =

∫
Ω

〈A(x)∇u,∇u〉dx

where A = A(x) ∈ L∞(Ω,Rn×n) is a symmetric matrix satisfying, for some

K ≥ 1, the usual bounds

(4.4)
|ξ|2

K
≤ 〈A(x)ξ, ξ〉 ≤ K|ξ|2

Such an example is relevant in connection with the Dirichlet problem

(4.5)

−div(A∇u) = 0 in D′(Ω),

u ∈ W 1,2
0 (Ω),
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because any minimizer u ∈ W 1,2
0 (Ω) of (4.3) is the unique solution of (4.5)

Since condition (4.4) is fulfilled, the energy (4.3) is equivalent to the quan-

tity

‖u‖2
W 1,2

0 (Ω)
=

∫
Ω

|∇u(x)|2dx

in the sense of the following estimates

(4.6)
1

K

∫
Ω

|∇u(x)|2 ≤ EA(u) ≤ K

∫
Ω

|∇u(x)|2.

The functional EA has indeed quadratic growth with respect to ‖∇u‖2 =

‖∇u‖(L2(Ω))2 . For general functionals of the type (4.1), the following classi-

cal result in the Calculus of Variations holds (see for instance [17],[55]).

Theorem 4.1. The functional J in (4.1) where F : Ω × R × RN → R is a

Carathéodory function satisfying (4.2) is sequentially weakly lower semicontin-

uous on W 1,p(Ω) if and only if F (x, s, ·) is a convex function for a.e. x ∈ Ω

and for every s ∈ R.

We recall that a functional J defined in W 1,p(Ω) is said to be weakly lower

semicontinuous on W 1,p(Ω) if

J(v) ≤ lim inf
k→∞

J(vk) if vk ⇀ v in weakly in W 1,p(Ω).

4.2 Some examples

Let Ω be a bounded open subset of RN , with 0 ∈ Ω if N ≥ 2, and Ω = (0, R0) if

N = 1. In this section, we give an example of functional which is defined and

coercive on W 1,2
0 (Ω), which has quadratic growth with respect to ‖∇v‖2 =

‖∇v‖(L2(Ω))n , which is sequentially weakly lower semicontinuous on W 1,p
0 (Ω)

for every p > 2, but which is not sequentially weakly lower semicontinuous on

W 1,2
0 (Ω).

More precisely, when n ≥ 3, we recall the Hardy-Sobolev inequality (see

e.g. Theorems 21.7 and 21.8 in [68], Lemma 17.1 in [81] )

(4.7) m2
n

∫
Rn

|v|2

|x|2
dx ≤

∫
Rn

|∇v|2dx ∀v ∈ W 1,2
0 (Rn),
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where m2
n denotes the best possible constant in the inequality, i.e.

(4.8) m2
n = inf

v∈W 1,2
0 (Rn)

∫
Rn

|∇v|2dx∫
Rn

|v|2

|x|2
dx

.

It is well known that m2
n is given by (see the references above)

m2
n =

(n− 2)2

4
.

We consider a function ϕ which is defined and continuous on [0,∞], which

is non negative and decreasing and which satisfies

(4.9) ϕ(0) > m2
n and ϕ(∞) <

m2
n

2
.

Finally we define the functional J by

(4.10) J(v) =

∫
Ω

|∇v|2dx− ϕ(‖∇v‖2
2)

∫
Ω

|v|2

|x|2
dx ∀v ∈ W 1,2

0 (Ω).

Our result is the following

Theorem 4.2. Let n ≥ 3 and let Ω be a bounded open subset of Rn, with

0 ∈ Ω. Assume that ϕ is a continuous, non negative and decreasing function

on [0,∞] satisfying (4.9), where m2
n is given by (4.8). Then the functional J

defined by (4.10) satisfies

(i) there exists a constant C > 0 such that

(4.11) −C +
1

2

∫
Ω

|∇v|2dx ≤ J(v) ≤
∫

Ω

|∇v|2dx ∀v ∈ W 1,2
0 (Ω);

(ii) the functional J is sequentially weakly lower semicontinuous on W 1,p
0 (Ω)

for every p > 2, i.e.

(4.12) J(v) ≤ lim inf
k→∞

J(vk) if vk ⇀ v in W 1,p
0 (Ω) weakly;

(iii) the functional J is not sequentially weakly lower semicontinuous on W 1,2
0 (Ω);

more precisely, there exists a sequence of functions wk ∈ W 1,2
0 (Ω) such

that wk ⇀ 0 in W 1,2
0 (Ω) weakly and

(4.13) lim inf
k→∞

J(wk) < J(0).
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Proof. We start by proving (i). By the definition of J(v) we have

J(v) ≤
∫

Ω

|∇v|2dx,

since ϕ is non negative.

It remains to prove the first inequality of (4.11). Since ϕ is continuous and

satisfies (4.9), there exists t0 > 0 such that ϕ(t0) = m2
n/2.

If ‖∇v‖2
2 ≥ t0 then ϕ(‖∇v‖2

2) ≤ m2
n/2. Therefore

J(v) ≥
∫

Ω

|∇v|2dx− m2
n

2

∫
Ω

|v|2

|x|2
dx

≥
∫

Ω

|∇v|2dx− 1

2

∫
Ω

|∇v|2dx

≥ 1

2

∫
Ω

|∇v|2dx,

and the first inequality of (4.11) holds.

On the other hand, if ‖Dv‖2
2 ≤ t0, then

J(v) ≥
∫

Ω

|∇v|2dx− ϕ(0)

∫
Ω

|v|2

|x|2
dx

≥
∫

Ω

|∇v|2dx− ϕ(0)

m2
n

∫
Ω

|∇v|2dx

≥
(

1− ϕ(0)

m2
n

) ∫
Ω

|∇v|2dx

≥
(

1− ϕ(0)

m2
n

)
t0,

in view of (4.9). If we choose a constant C such that

ϕ(0)

m2
N

t0 ≤ C,

we have

J(v) ≥ t0 −
ϕ(0)

m2
n

t0 ≥
∫

Ω

|∇v|2dx− C,

and the first inequality of (4.11) is again proved. This proves (i).

Now we prove (ii). Let p > 2. Assume that vk ⇀ v in W 1,p
0 (Ω) weakly.

Since Ω is bounded, vk ⇀ v in W 1,2
0 (Ω) weakly and there exists α ≥ 0 such

that

(4.14) lim inf
k→∞

‖∇vk‖2
2 = ‖∇v‖2

2 + α.
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Since ϕ is continuous and decreasing, there exists some β ≥ 0 such that

(4.15) lim inf
k→∞

−ϕ(‖∇vk‖2
2) = −ϕ(‖∇v‖2

2) + β.

Moreover, by the compactness of the embedding W 1,p
0 (Ω) ↪→ L2

(
Ω;

1

|x|2
dx

)
for p > 2 we get

(4.16) lim
k→∞

∫
Ω

|vk|2

|x|2
dx =

∫
Ω

|v|2

|x|2
dx.

Combining (4.14), (4.15) and (4.16), we obtain

lim inf
k→∞

J(vk) ≥ J(v) + α+ β

∫
Ω

|v|2

|x|2
dx ≥ J(v),

which proves (ii).

Finally we prove (iii). Let λ be such that m2
n < λ < ϕ(0) (such a λ exists

in view of (4.9)). Recalling the definition (4.8) of m2
n, there exists a function

ψ ∈ C∞
0 (Rn) such that

λ

∫
Rn

|ψ|2

|x|2
dx >

∫
Rn

|∇ψ|2dx.

Since ϕ is continuous and satisfies (4.9), there exists t1 > 0 such that ϕ(t1) = λ.

Take s such that 0 < s2‖∇ψ‖2
2 ≤ t1. The function w = sψ belongs to C∞

0 (Rn)

and satisfies

(4.17) ϕ(‖∇w‖2
2) ≥ λ,

as well as

(4.18) λ

∫
Rn

|w|2

|x|2
dx >

∫
Rn

|∇w|2dx.

Define the sequence wk by

wk(x) = k
n−2

2 w(kx);

then

∇wk(x) = k
n
2∇w(kx).

For k sufficiently large, the function wk belongs to W 1,2
0 (Ω) and∫

Ω

|∇wk|2dx =

∫
Rn

|∇w|2dx and

∫
Ω

|wk|2

|x|2
dx =

∫
Rn

|w|2

|x|2
dx.
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Therefore, for k sufficiently large, the sequence wk is bounded in W 1,2
0 (Ω) with

wk ⇀ 0 in W 1,2
0 (Ω) weakly, and

J(wk) =

∫
Rn

|∇w|2dx− ϕ(‖∇w‖2
2)

∫
Rn

|w|2

|x|2
dx.

Therefore J(wk) < 0 in view of (4.17) and (4.18). This proves (iii).

On the other hand, when n = 2 we consider a bounded open subset Ω of

R2, with 0 ∈ Ω and some R0 for which Ω ⊂ BR0 . We recall the Hardy-Sobolev

inequality (see e.g. Theorems 4.2 and 5.4 in [6] and Lemma 17.4 in [81])

(4.19) m2
2

∫
Ω

|v|2

|x|2 log2 |x|
R0

dx ≤
∫

Ω

|∇v|2dx ∀v ∈ W 1,2
0 (Ω),

where m2
2 denotes the best possible constant in the inequality, i.e.

(4.20) m2
2 = inf

v∈W 1,2
0 (Ω)

∫
Ω

|∇v|2dx∫
Ω

|v|2

|x|2 log2 |x|
R0

dx

.

It is well known that m2
2 is given by (see the references above)

m2
2 =

1

4
.

We consider a function ϕ which is defined and continuous on [0,∞], which

is non negative and decreasing and which satisfies

(4.21) ϕ(0) > m2
2 and ϕ(∞) <

m2
2

2
,

and we define the functional J by

(4.22) J(v) =

∫
Ω

|∇v|2dx− ϕ(‖∇v‖2
2)

∫
Ω

|v|2

|x|2 log2 |x|
R0

dx ∀v ∈ W 1,2
0 (Ω).

In this case, we prove the following

Theorem 4.3. Let n = 2 and let Ω be a bounded open subset of R2, with

0 ∈ Ω and Ω ⊂ BR0. Assume that ϕ is a continuous, non negative and

decreasing function on [0,∞] satisfying (4.21), where m2
2 is given by (4.20).

Then the functional J defined by (4.22) satisfies the conditions (i), (ii) and

(iii) of Theorem 4.2.
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Proof. Condition (4.11) is proved exactly as in the proof of Theorem 4.2.

Now we prove (ii). Let p > 2. Assume that vk ⇀ v in W 1,p
0 (Ω) weakly. Then,

as in the proof of Theorem 4.2 , we have, for some α ≥ 0 and β ≥ 0,

lim inf
k→∞

‖∇vk‖2
2 = ‖∇v‖2

2 + α,(4.23)

lim inf
k→∞

{
− ϕ(‖∇vk‖2

2)
}

= −ϕ(‖∇v‖2
2) + β.(4.24)

Moreover, since p > n = 2, we have that vk → v uniformly in Ω, and, since

1

|x|2 log2 |x|
R0

∈ L1(Ω),

we have

(4.25) lim
k→∞

∫
Ω

|vk|2

|x|2 log2 |x|
R0

dx =

∫
Ω

|v|2

|x|2 log2 |x|
R0

dx.

Combining (4.23), (4.24) and (4.25), we obtain

lim inf
k→∞

J(vk) = J(v) + α+ β

∫
Ω

v2

|x|2 log2 |x|
R0

dx ≥ J(v),

which proves (ii).

Now we prove (iii). Let λ be such that m2
1 < λ, where m2

1 is the best constant

(defined by (4.29)) in the one-dimensional Hardy-Sobolev inequality (see (4.28)

below). Then there exists ψ ∈ C∞
0 (0,∞) such that

λ

∫ ∞

0

|ψ(t)|2

t2
dt >

∫ ∞

0

|ψ′(t)|2dt.

Since ϕ is continuous and satisfies (4.21), and since the best constant m2
2

(defined by (4.20)) in the two-dimensional Hardy-Sobolev inequality (4.19)

coincides with m2
1, we can choose λ such that m2

2 = m2
1 < λ < ϕ(0) (if we

do not want to use the property m2
2 = m2

1, it would be sufficient to assume in

(4.21) that ϕ(0) > m2
1 in place of ϕ(0) > m2

2). Then, there exists t1 > 0 such

that ϕ(t1) = λ. Take s such that 0 < 2πs2‖ψ′‖2
2 ≤ t1. The function w = sψ

belongs to C∞
0 (0,∞) and satisfies

(4.26) ϕ

(
2π

∫ ∞

0

|w′(t)|2dt
)
≥ λ,

as well as

(4.27) λ

∫ ∞

0

|w(t)|2

t2
dt >

∫ ∞

0

|w′(t)|2dt.
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Define the sequence wk by

wk(x) =


1√
k
w
(
−k log |x|

R0

)
if |x| ≤ R0,

0 if |x| ≥ R0,

then

Dwk(x) =

 −
√
kw′

(
−k log |x|

R0

)
x
|x|2 if |x| < R0,

0 if |x| > R0.

For k sufficiently large, the function wk belongs to W 1,2
0 (Ω) and∫

Ω

|∇wk|2dx = 2π

∫ R0

0

∣∣∣∣w′
(
−k log

r

R0

)∣∣∣∣2 kr dr = 2π

∫ ∞

0

|w′(t)|2dt,

while∫
Ω

|wk|2

|x|2 log2 |x|
R0

dx = 2π

∫ R0

0

∣∣∣w (−k log r
R0

)∣∣∣2
kr log2 r

R0

dr = 2π

∫ ∞

0

|w(t)|2

t2
dt.

Therefore, for k sufficiently large, the sequence wk is bounded in W 1,2
0 (Ω) with

wk ⇀ 0 in W 1,2
0 (Ω) weakly, and

J(wk) = 2π

∫ ∞

0

|w′(t)|2dt− 2πϕ

(
2π

∫ ∞

0

|w′(t)|2dt
)∫ ∞

0

|w(t)|2

t2
dt.

Therefore J(wk) < 0 in view of (4.26) and (4.27). This proves (iii).

Finally, in the one-dimensional case, let Ω be the interval Ω = (0, R0). We

recall the Hardy-Sobolev inequality (see e.g. Theorem 327 in [40] and Lemma

1.3 in [68])

(4.28) m2
1

∫ ∞

0

|v|2

|x|2
dx ≤

∫ ∞

0

|v′|2dx ∀v ∈ W 1,2
0 (0,∞),

where m2
1 denotes the best possible constant in the inequality, i.e.

(4.29) m2
1 = inf

v∈W 1,2
0 (0,∞)

∫∞
0
|v′|2dx∫∞

0
|v|2
|x|2dx

.

It is well known that m2
1 is given by (see the references above)

m2
1 =

1

4
.

We consider a function ϕ which is defined and continuous on [0,∞], which

is non negative, decreasing and which satisfies

(4.30) ϕ(0) > m2
1 and ϕ(∞) <

m2
1

2
,
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and we define the functional J by

(4.31) J(v) =

∫ R0

0

|v′|2dx− ϕ(‖v′‖2
2)

∫ R0

0

|v|2

|x|2
dx ∀v ∈ H1

0 (0, R0).

In this case we prove the following

Theorem 4.4. Let n = 1 and let Ω be the interval Ω = (0, R0). Assume that

ϕ is a continuous, non negative and decreasing function on [0,∞] satisfying

(4.30), where m2
1 is given by (4.29). Then the functional J defined by (4.31)

satisfies the conditions (i), (ii) and (iii) of Theorem 4.2.

The proof of Theorem 4.4 follows along the lines of Theorem 4.2 and will

not be given here. Observe that, in contrast with the case n ≥ 2, the functions

v ∈ H1
0 (0, R0) vanish in 0 in the one-dimensional case.

We want to point out that, when 0 ∈ Ω, the embedding

H1
0 (Ω) ↪→ L2

(
Ω; 1

|x|2dx
)

is not compact.

Example 4.1. Consider the functions

(4.32) uk(x) =
1√
k
Tk (GR0(x)) ,

where GR0 : Rn → R is the function defined by

(4.33) GR0(x) =


1

|x|n−2
− 1

Rn−2
0

if |x| ≤ R0,

0 if |x| ≥ R0,

with R0 > 0 such that the ball BR0 ⊂ Ω, and where Tk : R → R is the

truncation at height k, i.e.

Tk(t) =

 t if |t| ≤ k,

k
t

|t|
if |t| ≥ k.

Then ∫
Ω

|Duk|2dx =

∫
BR0

|Duk|2dx =
(n− 2)2Sn−1

k

∫ R0

rk

1

rn−1
dr,

where Sn−1 is the area of the unit sphere of Rn and where rk is defined by

1

rn−2
k

− 1

Rn−2
0

= k.
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Therefore ∫
Ω

|Duk|2dx = (n− 2)Sn−1,

and uk ⇀ 0 in W 1,2
0 (Ω) weakly. On the other hand, one has∫

Ω

|uk|2

|x|2
dx ≥

∫
Brk

|uk|2

|x|2
dx = Sn−1k

∫ rk

0

rn−3dr =
Sn−1

n− 2
krn−2

k ,

and then

lim
k→∞

∫
Ω

|uk|2

|x|2
dx ≥ Sn−1

n− 2
.

This proves that the embedding W 1,2
0 (Ω) ↪→ L2

(
Ω; 1

|x|2dx
)

is not compact.

In dimension n = 2, this counterexample continues to hold if one replaces

the function GR0 defined in (4.33) by the function GR0(x) = − log |x|
R0

if |x| ≤
R0. In dimension n = 1, one uses the continuous piecewise affine functions uk

such that uk(0) = 0, uk(R0/k) = 1/
√
k and uk(R0) = 0.

Moreover, it should be observed that, when

(4.34) uk ⇀ u in W 1,2
0 (Ω) weakly with |Duk| equi-integrable in L2(Ω),

then uk → u in L2
(
Ω; 1

|x|2dx
)
. Note that every sequence satisfying uk ⇀ u

in W 1,p
0 (Ω) weakly, with p > 2, satisfies (4.34) since Ω is bounded; therefore

this claim implies that the embedding W 1,p
0 (Ω) ↪→ L2

(
Ω; 1

|x|2dx
)

is compact

for p > 2.

Let δ > 0 be small. We write

(4.35)

∫
Ω

|uk − u|2

|x|2
dx =

∫
Ω\Bδ

|uk − u|2

|x|2
dx+

∫
Bδ

|uk − u|2

|x|2
dx,

where Bδ is the ball of radius δ. Since 1
|x|2 ∈ L

∞ (Ω \Bδ) and since the embed-

ding

W 1,2
0 (Ω) ↪→ L2 (Ω) is compact for Ω bounded, the first term of (4.35) tends to

zero when k →∞.

Let ψδ be the radial function defined by

ψδ(x) =


1 if |x| ≤ δ,

2− |x|
δ

if δ ≤ |x| ≤ 2δ,

0 if |x| ≥ 2δ.
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For δ sufficiently small, ψδ has compact support in Ω, and using Hardy-Sobolev

inequality (4.7) we have

m2
n

∫
Bδ

|uk − u|2

|x|2
dx ≤ m2

n

∫
Ω

|ψδ (uk − u) |2

|x|2
dx

≤
∫

Ω

|∇ (ψδ (uk − u)) |2dx

≤ 2

∫
Ω

|∇ψδ|2|uk − u|2dx+ 2

∫
Ω

|∇ (uk − u) |2|ψδ|2dx

≤ 2

∫
Ω

|∇ψδ|2|uk − u|2dx+ 2

∫
B2δ

|∇ (uk − u) |2dx.

For δ fixed, the first term tends to zero when k →∞ (still because the embed-

ding W 1,2
0 (Ω) ↪→ L2 (Ω) is compact), while the second term is small uniformly

in n when δ is small in view of the equi-integrability assumption (4.34). This

proves the claim. This proves the following assertion: if n ≥ 3 then

J(v) ≤ lim inf
k→∞

J(vk) if vk ⇀ v in W 1,2
0 (Ω) weakly with |Dvk| equi-integrable in L2(Ω).

The same result continues to hold for n = 1 and n = 2. Assertion (ii) of

Theorems 4.2, 4.3 and 4.4 is a special case of this assertion since Ω is assumed

to be bounded.

Remark 4.1. Actually in dimension n ≥ 3, Theorem 4.2 continues to hold

(with the same proof) if the Hardy-Sobolev inequality (4.7) is replaced by the

Sobolev inequality

(4.36) m2

( ∫
Rn

|v|2∗dx
) 2

2∗

≤
∫

Rn

|∇v|2dx ∀v ∈ W 1,2
0 (Rn),

where 2∗ is the Sobolev’s exponent defined by 2∗ = 2n/(n − 2) and where m2

is the best possible constant in (4.36), and if in the definition (4.10) of the

functional J the integral

∫
Ω

|v|2

|x|2
dx is replaced by

( ∫
Ω

|v|2∗dx
) 2

2∗

. More than

that, Theorem 4.2, Theorem 4.3 and Theorem 4.4 still continue to hold (with

the same proof) if the inequalities (4.7), (4.19), (4.28) and (4.36) are replaced

by an inequality of the type

mX(Ω)‖v‖X(Ω) ≤ ‖∇v‖2,

where X(Ω) is a Banach space such that the embedding W 1,2
0 (Ω) ↪→ X(Ω) is

not compact while the embedding W 1,p
0 (Ω) ↪→ X(Ω) is compact for any p > 2.
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The non compactness of the embedding W 1,2
0 (Ω) ↪→ L2(Ω;ω(x)dx) and the

compactness of the embedding W 1,p
0 (Ω) ↪→ L2(Ω;ω(x)dx) for p > 2, where

ω(x) =


1
|x|2 if n = 1 or n ≥ 3,

1

|x|2 log2 |x|
R0

if n = 2,

are indeed at the root of the proofs of (iii) and (ii). This explains why Theorem

4.2 continues to hold by replacing the Hardy-Sobolev inequality by the Sobolev

inequality.

In contrast, if the embedding W 1,2
0 (Ω) ↪→ X(Ω) is compact (e.g. in the case

X(Ω) = L2(Ω) for Ω bounded), it is straightforward to prove that the functional

J(v) =

∫
Ω

|∇v|2dx− ϕ(‖∇v‖2
2)‖v‖2

X(Ω) ∀v ∈ W 1,2
0 (Ω)

is sequentially weakly lower semicontinuous on W 1,2
0 (Ω) whenever ϕ is decreas-

ing: just take a sequence vk such that vk ⇀ v in W 1,2
0 (Ω) weakly, and observe

that in this framework∫
Ω

|∇v|2dx ≤ lim inf
k→∞

∫
Ω

|∇vn|2dx,

−ϕ(‖∇v‖2
2) ≤ lim inf

k→∞
−ϕ(‖∇vk‖2

2),

lim
k→∞

‖vk‖2
X(Ω) = ‖v‖2

X(Ω).

74



Chapter 5

Function spaces related to

quasiconformal mappings

The space of functions of bounded mean oscillation, introduced by John and

Nirenberg in [46] naturally arises in connection with function theory and

PDE’s. Similarly, the space of exponentially integrable functions plays a key

role in the study of continuity for mappings of finite distortion. The aim of

this chapter is to report several results in connection with such a functional

spaces. Moreover, we will prove, in dimension n = 2, that the composition

operator Tf−1 : u 7−→ u ◦ f−1 maps EXP(G) into EXP(f(G)).

5.1 Functions of bounded mean oscillation: log-

arithm of the jacobian and composition re-

sults

Before we describe the results of this section, we recall the definition of function

of bounded mean oscillation.

Definition 5.1. Let Ω be a domain of Rn. A locally integrable function

u : Ω → R has bounded mean oscillation, u ∈ BMO (G), if

(5.1) ‖u‖BMO(G) = sup
Q
−
∫

Q

|u(x)− uQ| dx <∞.

The supremum in (5.1) is taken over all open cubes Q of Ω with sides parallel
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to the axes and uQ denotes the mean value of u over the cube Q, namely

uQ = −
∫

Q

u(x) dx =
1

|Q|

∫
Q

u(x)dx.

We recall that the space BMO was originally introduced in [46] by John

and Nirenberg; their fundamental result states that the distribution function

which corresponds to a function of bounded mean oscillation, is exponentially

decreasing. More precisely, if u ∈ BMO (Ω) then for every cube Q ⊂ Ω and

for every σ > 0 it results that

|{x ∈ Q : |u(x)− uQ| > σ}| ≤ A|Q|e
− Bσ
‖u‖BMO(G) ,

for some constants A,B depending only on n.

We want to point out that the concept of bounded mean oscillation is

extremely significative in connection with quasiconformal mappings. More

precisely, the first result that we mention is the one of Reimann [71], which

proves that the logarithm of the jacobian of a quasiconformal mapping is a

function of bounded mean oscillation.

Theorem 5.1. Let f : Rn → Rn be a K quasiconformal mapping. Then

log Jf ∈ BMO (Rn).

The result that follows proves that the composition operator Tf−1 maps

BMO (Ω) into BMO (Ω′) provided f : Ω → Ω′ is a quasiconformal mapping.

Again, this result is due to Reimann [71].

Theorem 5.2. Let Ω and Ω′ be domains in Rn. If f : Ω → Ω′ be a K–

quasiconformal mapping. Then there exists a constant C which depends only

on n and K such that

(5.2)
1

C
‖u‖BMO(Ω) ≤

∥∥u ◦ f−1
∥∥

BMO(Ω′)
≤ C ‖u‖BMO(Ω) ,

for every u ∈ BMO (Ω), with Ω′ = f(Ω).

Conversely, let f : Ω → Ω′ be a orientation preserving homeomorphism

such that

(i) f ∈ ACL and differentiable a.e.,

(ii) there exists a constant C for which (5.2) holds for every u ∈ BMO (Ω).
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Then f is a K-quasiconformal mapping for some K ≥ 1 depending only on n

and C.

In the result above f ∈ ACL means that f is absolutely continuous on the

lines (see [85]), that is to say that f is continuous everywhere and absolutely

continuous on almost all line segments parallel to one of the axes which are

contained in the domain of f .

Actually, Theorem 5.2 provides a characterization of quasiconformality.

Furthermore, we report that [3] the second part of Theorem 5.2 is proved drop-

ping the regularity assumption (i) and assuming that the following inequality

holds
1

C
‖u‖BMO(G) ≤

∥∥u ◦ f−1
∥∥

BMO(G′)
≤ C ‖u‖BMO(G) ,

for every subdomain G ⊂ Ω and for every u ∈ BMO (G), with G′ = f(G).

It is worth noting that BMO can be considered as the appropriate substi-

tute of L∞ in many different cases. This seems to be the case of the mappings

of BMO–bounded distortion.

Definition 5.2. A mapping f ∈ W 1,n
loc (Ω,Rn) of finite distortion is said to

have BMO–bounded distortion Kf = Kf (x) if there exists a function M ∈
BMO (Rn) such that

Kf (x) ≤M(x) a.e. x ∈ Ω.

Such a mappings were considered for instance in [45] and in [4]. Estimates

of moduli of continuity are obtained, we give here an example, see [19].

Theorem 5.3. Let f : R2 → R2 be a mapping of BMO–bounded distortion

with f(0, 0) = 0, f(1, 0) = (1, 0). Then, there are positive constants A and b

such that the modulus of continuity estimate holds

|f(x)− f(y)| ≤ A |log |x− y||−
b

‖M‖BMO ,

for x, y in the ball B2(0).

A quasiconformal f is a homeomorphism of BMO-bounded distortion since

the distortion Kf is bounded and we may choose M to be a constant function

in the definition above. Moreover, mappings of BMO–bounded distortion are
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clearly invariant under quasiconformal change of variables. This is a conse-

quence of Theorem 5.2.

Moreover, functions which are bounded by a function in BMO can be char-

acterized by means of the following fundamental lemma.

Lemma 5.4 ([45]). Let G be an open subset of Rn and let u : G → R be a

measurable function. There exists a λ > 0 such that

(5.3)

∫
Ω

e
|u(x)|

λ

1 + |x|n+1
dx <∞

if and only if there exists v ∈ BMO (G) such that

|u(x)| ≤ v(x) a.e. in G.

Moreover, there exists a constant C which depends only on n such that

‖v‖BMO(G) ≤ Cλ.

5.2 Exponentially integrable functions

If G is a bounded open subset of Rn with measure |G| the space EXP (G) is

the set of measurable functions u : G → R such that there exists λ > 0 for

which

−
∫

G

exp
|u(x)|
λ

dx <∞.

We recall (see e.g. [7]) that EXP (G) is a Banach space equipped with the

norm

(5.4) ‖u‖EXP(G) = sup
0<t<|G|

(
1 + log

|G|
t

)−1

u∗(t),

where u∗ is the non–increasing rearrangement of u

(5.5) u∗(t) = sup {τ ≥ 0 : µu(τ) > t} ∀t ∈ (0, |G|) ,

and µu is the distribution function of u

µu(τ) = |{x ∈ G : |u(x)| > τ}| ∀τ ≥ 0.

Lemma 5.4 gives a precise characterization of the space of exponentially inte-

grable functions, proving that a function u belongs to EXP (G) if and only if
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there exists a v ∈ BMO (G) such that |u| ≤ v a.e. in G. Therefore, by means

of Theorem 5.2 we are able to prove the following result, which is the starting

point of our study.

Lemma 5.5. Let Ω be an open subset of Rn and let f : Ω → Rn be a

quasiconformal mapping. Let G be any bounded open subset of Ω and let G′ =

f(G). Then u ∈ EXP (G) if and only if u ◦ f−1 ∈ EXP (G′).

Proof. Since both f and f−1 are quasiconformal mappings it is sufficient to

prove that u ◦ f−1 ∈ EXP (G′) if u ∈ EXP (G). Since G is a bounded open

subset of Rn, from Lemma 5.4 to the function u ∈ EXP (G) there corre-

sponds a function v ∈ BMO (G) such that |u(x)| ≤ v(x) for a.e. x ∈ G.

As a consequence of Theorem 5.2 v ◦ f−1 belongs to BMO (G′). Clearly

|u (f−1(y)) | ≤ v (f−1(y)) for a.e. y ∈ G′. The result immediately follows

from Lemma 5.4.

Let us turn to the problem of composing functions in EXP(G) with quasi-

conformal mappings and we deal with the case of dimension n = 2.

We denote by D the unit disc D = {x ∈ R2 : |x| < 1} and we prove the following

result.

Theorem 5.6. Let f : R2 → R2 be a K–quasiconformal principal mapping

that is conformal outside D and maps D onto itself. Then

(5.6)
1

1 +K logK
‖u‖EXP(D) ≤

∥∥u ◦ f−1
∥∥

EXP(D)
≤ (1 +K logK) ‖u‖EXP(D) ,

for every u ∈ EXP (D).

Recall that a quasiconformal mapping f : R2 → R2 is called principal if it is

conformal outside a compact set and the following normalization holds

|f(x)− x| = O
(

1

|x|

)
as |x| → ∞.

Observe that our result actually gives that if f is a conformal, then (5.6)

reduces to the equality ∥∥u ◦ f−1
∥∥

EXP(D)
= ‖u‖EXP(D) ,

for every u ∈ EXP (D).
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Proof of Theorem 5.6. The proof is based on Theorem 1.13. Let u ∈ EXP (D).

First, we notice that for every τ > 0

{
y ∈ D :

∣∣u (f−1(y)
)∣∣ > τ

}
= f ({x ∈ D : |u (x)| > τ}) .

We compare the distribution function of u and u ◦ f−1 by means of the area

distortion estimates in Theorem 1.13 and we obtain

µu◦f−1(τ) =
∣∣{y ∈ D :

∣∣u (f−1(y)
)∣∣ > τ

}∣∣
= |f ({x ∈ D : |u (x)| > τ})|

≤ Kπ1− 1
Kµu(τ)

1
K .

Since for every t ∈ (0, π)

{τ ≥ 0 : µu◦f−1(τ) > t} ⊂
{
τ ≥ 0 : µu(τ) >

tK

KKπK−1

}
,

it follows from the definition of non–increasing rearrangement (5.5) that

(
u ◦ f−1

)∗
(t) ≤ u∗

(
tK

KKπK−1

)
.(5.7)

We deduce directly from the definition of the norm (5.4) that

u∗
(

tK

KKπK−1

)
≤ ‖u‖EXP(D)

(
1 + log

π
tK

KKπK−1

)
= ‖u‖EXP(D)

(
1 +K logK

π

t

)
= ‖u‖EXP(D)

(
1 +K logK +K log

π

t

)
.

Thus, from (5.7) we get

(
u ◦ f−1

)∗
(t) ≤ ‖u‖EXP(D)

(
1 +K logK +K log

π

t

)
.

Our aim is to prove that there exists a constant c = c(K) which depends on

K such that

(5.8) 1 +K logK +K log
π

t
≤ c(K)

(
1 + log

π

t

)
∀t ∈ (0, π).

It will be sufficient to prove that the function

γ(t) =
1 +K logK +K log π

t

1 + log π
t

∀t ∈ (0, π).
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is bounded in the interval (0, π) by some constant which only depends on K.

To this aim, we observe that

γ′(t) =
1 +K logK −K

t
(
1 + log π

t

)2 ∀t ∈ (0, π).

We define

ψ(K) = 1 +K logK −K ∀K ∈ [1,∞).

Since

ψ′(K) = logK ≥ 0 ∀K ∈ [1,∞),

we have

ψ(K) ≥ ψ(1) = 0 ∀K ∈ [1,∞),

and therefore γ is increasing in (0, π). Then

γ(t) ≤ γ(π) = 1 +K logK ∀t ∈ (0, π),

and inequality (5.8) holds with

c(K) = 1 +K logK.

Therefore (5.7) gives(
u ◦ f−1

)∗
(t) ≤ (1 +K logK) ‖u‖EXP(D)

(
1 + log

π

t

)
,

that is (
1 + log

π

t

)−1 (
u ◦ f−1

)∗
(t) ≤ (1 +K logK) ‖u‖EXP(D) .

Hence, the inequality

(5.9)
∥∥u ◦ f−1

∥∥
EXP(D)

≤ (1 +K logK) ‖u‖EXP(D) ∀u ∈ EXP (D)

is proved when f is a K–quasiconformal mapping. Recalling that the inverse of

a K–quasiconformal mapping is also a K–quasiconformal mapping, it follows

that

(5.10) ‖v ◦ f‖EXP(D) ≤ (1 +K logK) ‖v‖EXP(D) ∀v ∈ EXP (D)

If we substitute v = u ◦ f−1 with u ∈ EXP (D) into (5.10), we have

(5.11) ‖u‖EXP(D) ≤ (1 +K logK)
∥∥u ◦ f−1

∥∥
EXP(D)

∀u ∈ EXP (D)

Inequalities (5.9) and (5.11) prove that (5.6) holds and this complete the proof.

81



The Luxemburg norm of a function u ∈ EXP (G) is defined as

(5.12) ‖u‖′EXP(G) = inf

{
λ > 0 : −

∫
G

exp
|u(x)|
λ

dx ≤ 2

}
.

We recall that (see e.g. [7] and [70]) the Luxemburg norm is equivalent

to the norm defined in (5.4). We also remark that L∞(G) is not a dense

subspace of EXP (G) (see e.g. [70]) and that the distance to L∞(G) in EXP (G)

evaluated with respect to the Luxemburg norm (5.12) is defined as

(5.13) distEXP(G) (u, L∞(G)) = inf
ϕ∈L∞(G)

‖u− ϕ‖′EXP(G)

In [14] and [31] is proved that the distance (5.13) is given by

distEXP(G) (u, L∞(G)) = inf

{
λ > 0 : −

∫
G

exp
|u(x)|
λ

dx <∞
}
.

Our next result compares the distances from L∞ of u and u ◦ f−1. We address

that the estimates that we prove are sharp (see Example 5.1 below).

Theorem 5.7. Let f : D → D be a K–quasiconformal mapping. Then

(5.14) distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
≤ KdistEXP(G) (u, L∞(G)) ,

(5.15)
1

K
distEXP(G) (u, L∞(G)) ≤ distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
,

for every open subset G of D and for every u ∈ EXP (G), with G′ = f(G).

As for Theorem 5.6, the result above gives that if f is a conformal mapping

then (5.14) and (5.15) reduce to the equality

distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
= distEXP(G) (u, L∞(G)) ,

for every u ∈ EXP (G).

Proof of Theorem 5.7. Let λ be such that

(5.16) λ > qdistEXP(G) (u, L∞(G))

where

q =
p

p− 1
and 1 < p <

K

K − 1
.
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Since (
exp

|u(x)|
λ

)q

= exp
|u(x)|
λ/q

from (5.16) it follows that

(5.17) exp
|u|
λ
∈ Lq(G).

Recalling that Jf ∈ Lp(G) (see (1.10)), we deduce from (5.17) that

exp
|u|
λ
Jf ∈ L1(G).

It follows directly from the change of variables formula that∫
G′

exp
|u(f−1(y))|

λ
dy =

∫
G

exp
|u(x)|
λ

Jf (x)dx <∞.

Therefore

(5.18) distEXP(G′)

(
u ◦ f−1, L∞(G′)

)
≤ qdistEXP(G) (u, L∞(G)) .

Passing to the limit in (5.18) for p approaching to K/(K − 1) we finally prove

(5.14). Recalling that the inverse of a K–quasiconformal mapping is also a

K–quasiconformal mapping, it follows that

(5.19)

distEXP(G) (v ◦ f, L∞ (G)) ≤ KdistEXP(G′) (v, L∞ (G′)) ∀v ∈ EXP (G′)

If we substitute v = u ◦ f−1 with u ∈ EXP (G′) into (5.19), we have

distEXP(G) (u, L∞ (G)) ≤ KdistEXP(G′)

(
u ◦ f−1, L∞ (G′)

)
∀u ∈ EXP (G)

and this proves (5.15).

Now we prove, by means of an example, that inequality (5.14) can be

attained as an equality.

Example 5.1. Here and in what follows let 0 < R ≤ 1 and DR = {x ∈ R2 : |x| < R}.
For every K ≥ 1 we show that there exist a K–quasiconformal mapping

f : D → D and a function u ∈ EXP (DR) such that

(5.20) distEXP(f(DR))

(
u ◦ f−1, L∞(f(DR))

)
= KdistEXP(DR) (u, L∞(DR)) .
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Let f : D → D be the K–quasiconformal mapping defined as

f(z) =
z

|z|1− 1
K

and let

u(x) = −2 log |x|.

Then u ∈ EXP (DR) and

distEXP(DR) (u, L∞(DR)) = 1.

This follows from the fact that if λ > 1 then

−
∫

DR

e
|u(x)|

λ dx =
λ

(λ− 1)R
2
λ

<∞

while e
|u|
λ 6∈ L1(DR) for λ ≤ 1. We notice that the inverse of f is given by

f−1(y) = |y|K−1y.

Therefore, the function v = u ◦ f−1 is given by

v(y) = −2K log |y|.

Then v ∈ EXP (DR) and arguing as for u one has

distEXP(DR) (v, L∞(DR)) = K.

This proves (5.20).

5.3 Invariance of W 1,n
loc under quasiconformal

change of variables

In this section we concern with the composition operator between Sobolev

spaces. The first result which we recall is a classical one in the theory of

quasiconformal mappings. More precisely, the composition operator Tg : u 7→
u ◦ g maps W 1,n

loc (Ω′) into W 1,n
loc (Ω) if g : Ω → Ω′ is a quasiconformal mapping.

We refer to [10, 49, 75, 85] for a proof.
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Theorem 5.8. Let Ω and Ω′ be bounded open subsets of Rn and let g : Ω → Ω′

be a K–quasiconformal mapping. Then, there exists a constant C depending

only on K and n such that

1

C
‖∇u‖Ln(G′) ≤ ‖∇ (u ◦ g)‖Ln(G) ≤ C‖∇u‖Ln(G′),

for every open subset G of Ω and for every u ∈ W 1,n
loc (Ω′), with G′ = g(G).

It is worthwhile noting that similar results can be obtained when g is a

homeomorphism of finite distortion and if we made some precise integrability

assumption on the distortion function of g. The following result holds.

Theorem 5.9. Let g : Ω → Ω′ be a homeomorphism of finite distortion Kg

between the bounded domains Ω and Ω′ of Rn and let 1 ≤ p ≤ n. Suppose

that Kg ∈ L
p

n−p (Ω). If u ∈ W 1,n
loc (Ω′) then u ◦ g ∈ W 1,p

loc (Ω) and the following

estimate holds

‖∇(u ◦ g)‖Lp(G) ≤ ‖Kg‖
L

p
n−p (G)

‖∇u‖Ln(g(G)).

Theorem 5.9 was proved first in [82]; recently, Hencl and Koskela gives

in [41] a new proof of the result above. Furthermore, they prove that the

integrability condition Kg ∈ L
p

n−p (Ω) is optimal. For further reference see

[39, 82].
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tegrali multipli regolari, Ann. Sc. Norm. Sup. Pisa 17 (1963), 175–188.

[22] De Giorgi E., Spagnolo S., Sulla convergenza di integrali dell’energia per

operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4) 8 (1973),

391–411.
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vector Poincaré inequality with weights, Scientiae Mathematicae Japon-

icae 71 (2010), no. 2, 111–126.

[28] Farroni, F., Giova R., Murat, F., An example of functional which is

weakly lower semicontinuous on W 1,p
0 for every p > 2 but not on H1

0 , to

appear on Journal for Analysis and its Applications.

[29] Farroni, F., Giova R., Quasiconformal mappings and exponentially inte-

grable functions, Preprint 2010.

[30] Francfort, G.A., and Murat, F., Optimal bounds for conduction in two-

dimensional, two-phase, anisotropic media, in Nonclassical continuum

mechanics, (Durham, 1986), Knops, R.J., and Lacey, A.A., eds., London

Mathematical Society Lecture Notes Series 122, Cambridge University

Press, Cambridge, (1987) 197-212.

89



[31] Fusco, N., Lions, P. L. and Sbordone, C., Sobolev imbedding theorems

in borderline cases, Proc. Amer. Math. Soc. 124 (1996), no. 2, 561–565.
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