
Università degli Studi di Napoli
“Federico II”

Dipartimento di Scienze Fisiche

Doctorate School in Fundamental and Applied Physics

XXIII cycle

Anno Accademico 2009/2010

Ph.D. Thesis

Statistical Mechanics of
Genome Regulation: the case

of X Chromosome Inactivation

Relatore:

Prof. Mario Nicodemi

Candidato:

Antonio Scialdone

mailto:mario.nicodemi@na.infn.it
mailto:antoscial@gmail.com


A Sandro

“La speranza è una trappola, è una brutta parola, non si deve usare, è una

trappola inventata dai padroni che ti dicono state zitti, state boni, pregate,

ché avrete la vostra ricompensa nell’aldilà, andate a casa, abbiate speranza.

Mai avere speranza, la speranza è una trappola, è una cosa infame!”

Mario Monicelli
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Introduction

Female mammal cells have two copies of X chromosome, one inherited from

the father, one from the mother. Yet, to avoid a lethal overproduction of X

linked products, only one X chromosome must be active. For this reason, in

all female mammal cells, one of the two X chromosomes is inactivated whereas

the other remains active; and the choice of the inactive X is completely ran-

dom. The cellular process leading to this result is called X Chromosome

Inactivation (XCI). It is still unknown how the cell can carry out and control

such a chromosome-wide stochastic regulatory mechanism, that entails a se-

ries of complex events, including the spatial regulation of X chromosomes,

and the “counting&choice”, which makes the cell “count” the number of X’s

and randomly “choose” the X to inactivate. The interest of such issues goes

well beyond XCI, since it is only the best studied case of random monoallelic

expressed genes. This is a class including about 10% of our genes, where

out of two alleles one is randomly selected and inactivated, with important

and poorly understood examples, ranging from our immune system to the

olfactory apparatus. For this reason, XCI has recently attracted substantial

interests in the scientific community, with a number of publications in top

science journals.

The aim of my PhD research project was to discover the mechanisms behind

XCI, by means of theoretical models from Statistical Mechanics based on

experimental data. The first part of the project was focused on the mecha-

nisms underlying the X chromosome spatial organization during XCI process.

For instance, at the beginning of XCI, X chromosomes have been shown to
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recognize each other among tens of different chromosomes, and to get colo-

calized. The molecular bases of this event are currently unknown. In chapter

2 we propose a DNA “passive shuttling” mechanism which can explain this

phenomenon. It works by means of random contacts between a DNA locus

and its target (another DNA locus or a nuclear structure) which can be made

stable by diffusing molecular mediators able to bridge them. Such a mecha-

nism is reliable and leads to a thermodynamically stable colocalization only

if the concentration/affinity of the molecules overcome precise thresholds,

otherwise the DNA and its target independently diffuse.

In the second part we have investigated the “counting&choice” mechanism

(chapter 3): how is the cell able to realize that two X’s are present? how

does the random, mutually exclusive choice of the inactive X occur? On

the basis of very recent experiments, we postulated the action of two types

of molecules which interact with precise DNA sequences and have a mutual

affinity. Specific thresholds exist for the molecule mutual affinity and con-

centration above which the molecules self-assemble into two clusters, one per

type, each bound to a different X. So, the symmetry between the X’s is bro-

ken: one is marked for the inactivation, the other to stay active. This model

can well reproduce also the complex 3D spatial architecture of the two X’s,

which was experimentally analyzed very recently [85].

For the first time, quantitative models were proposed able to describe in a

unified framework the early stages of XCI and to reproduce the experimental

scenario so far emerged (chapter 4). All the mechanisms we propose can

be reliably controlled by the cell by tuning some parameters (such as the

amount of specific types of molecules, or their DNA binding affinity) which

are known to underlie the basic genome regulatory strategies.

By means of analytic/computational techniques we investigate in depth these

models and pointed out a large set of very interesting and non-trivial pre-

dictions (for instance, the non-linear effect of DNA deletions in X chromo-

some pairing, the key role of specific DNA regions for “counting&choice”,

the pairing configuration of X chromosomes in multiploid cells, etc.). All
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these predictions could be useful to design new targeted experiments, which

may help clarifying the still mysterious aspects of XCI. Important experi-

mental confirmations of the models have already been found: e.g., possible

candidates for the envisaged molecular binders have been recently discovered

[12, 24, 25, 92] and the existence of clusters of molecular binding sites in

specific DNA regions was confirmed [25, 24].

The models use very basic, minimal molecular ingredients, without the need

for specifying the details of the intervening biochemical interactions, as they

are rooted in general thermodynamic mechanisms. Thus, it is suggested that

these models may describe general regulatory mechanisms the cell can use

to manage the genome functioning, and that their validity can go beyond

XCI to be applied to other cellular processes that involve similar phenomena

(e.g., random monoallelic expression, meiotic chromosome pairing, etc.).

A close interplay between theory and experiments, was guaranteed in our

project by the collaboration with the experimental group of Prof. J.T. Lee

from Harvard Medical School, USA.

This thesis reports on the results we have achieved during this research

project and is based on the following papers:

• A. Scialdone and M. Nicodemi, Plos Computational Biology 4:e1000244

(2008)

• A. Scialdone and M. Nicodemi, Journal of Biomed. and Biotech. 2009:516723

(2009)

• A. Scialdone and M. Nicodemi, Advances in Complex Systems 13:367

(2010)

• A. Scialdone and M. Nicodemi, Development 137:3877 (2010)

• A. Scialdone and M. Nicodemi, EuroPhysics Letters 92:20002 (2010)

• V. Bianco, A. Scialdone and M. Nicodemi, in preparation (2010)

• A. Scialdone, I. Cataudella, A. Prisco and M. Nicodemi, in preparation

(2010)



Chapter 1

The X-Chromosome

Inactivation

In this first chapter, we will briefly discuss the biology of X Chromosome

Inactivation (XCI), by reporting on the recent discoveries on the molecular

bases of it.

1.1 Counting&Choosing the X’s

The sex of most mammals is decided by a single couple of chromosomes, the

X and Y. Males are characterized by the presence of a X and a Y chromo-

some, while females have two X’s. The variation in the number of X chromo-

somes poses a problem: if X-linked genes were expressed equally well in each

sex, females would have twice as much of each product as males. Though,

this situation would be lethal for female cells, which, thus, have evolved

dosage compensation mechanisms to equalize the dosage of X-chromosome

gene products to that of males.

Female mammals achieve dosage compensation by blocking the transcription

of one of their two X chromosomes, by a process known as X Chromosome

Inactivation (XCI). In fact, during the very early stage of development of a

female embryo, when it consists of a few thousand cells, one of the two X

1
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chromosomes in each cell becomes highly condensed. The condensed X chro-

mosome can be easily seen under the light microscope in interphase cells:

it was originally called a “Barr body”. This very dense structure hinders

the transcription of the X chromosome, which, thus, will be silenced. The

result is that females will have one active X chromosome, which is the same

situation found in males.

In all mammals, except for marsupials [2], the X to inactivate is randomly

chosen among the maternally inherited one (Xm) or the paternally inherited

one (Xp). Once either Xm or Xp has been inactivated, it remains silent

throughout all subsequent cell divisions of that cell and its progeny, indicat-

ing that the inactive state is faithfully maintained through many cycles of

DNA replication and mitosis 1. Because X-Inactivation is random and takes

place after several thousand cells have already formed in the embryo, every

female is a mosaic of groups of cells, in which either Xm or Xp is silenced.

Since these groups of sister cells tend to remain close together during the later

stages of development, they are distributed in small clusters in the adult or-

ganism. For instance, this is evident in the red and black “tortoise-shell” coat

coloration of some female cats (fig. 1.1). In these cats, one X chromosome

carries a gene that produces red hair color, and the other X chromosome car-

ries an allele of the same gene that results in black hair color. The random

X-inactivation produces patches of cells of two distinctive colors. In contrast

to the females, male cats of this genetic stock are either solid red or solid

black, depending on which allele of the hair color gene they have on their

only X chromosome.

Summarizing, XCI is a process whereby the cell “counts” the X chromo-

some it has. And, whenever it realizes that two X’s are present, it is able to

“choose” just one of them, in a random way, and to inactivate it.

What are the physical mechanisms underlying these amazing abilities of the

cell? This open issue, will be one of the key question we will try to answer

1Cellular division leading to the formation of two daughter cells from one mother cell.

The mother as well as the daughter cells have the same amount of DNA.
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Figure 1.1: Red and black “tortoise-shell” coat coloration of some female

cats is an effect of X Chromosome Inactivation.

in the following chapters.

In recent years XCI attracted lots of interests in the scientific community,

both because it involves regulatory mechanisms which intervene in many

other cellular processes (see below), and because of its clinical importance,

as misfunctions in it can result in serious diseases [1].

1.2 A few Molecular Biology details

Let us give some more details on the DNA sequences and on the molecules

which are known to be involved in XCI.

XCI is initiated and spreads from a single site in the middle of X chromo-

some, the so called X Inactivation Center (Xic) (fig. 1.2). In particular,

this region contains the gene Xist, which codes for a RNA molecule funda-

mental for XCI. The Xist RNA is not translated into a protein and remains

in the nucleus, where it eventually coats the entire inactive X chromosome.

In fact, the transcription status of Xist gene, is strictly correlated with the

active/silenced status of the X chromosome carrying it: before the inactiva-

tion process starts, the Xist ’s on both genes are in a “poised” state, and are

characterized by a low transcription level; yet, as soon as XCI is triggered,
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Figure 1.2: Map of X Inactivation Center. The regions involved in X chro-

mosome pairing, say Tsix/Xite genes and Xpr, are highlighted. In the en-

largement of the Tsix/Xite region the discovered binding sites for Ctcf, Oct4,

Yy1 and Sox2 proteins are marked. Ctcf and Oct4 have been proved to be

necessary for the pairing of Tsix/Xite regions.

while Xist from the active X is completely silenced, Xist from the inactive

X becomes highly transcribed.

Xic also includes some other genes (e.g., Tsix. Xite, etc., see fig. 1.2) whose

role in XCI is not totally clear [4, 67]. We will talk about some of them later

on.

Clusters of binding sites for several regulatory molecules are also found within

Xic, and they have a primary role in XCI. For instance, Ctcf and Oct4 pro-

teins bind several DNA sites nearby the Tsix and Xite genes (see fig. 1.2),

and many experiments show that their presence is necessary for a proper XCI

to occur [12, 92, 24].

XCI consists of several stages, during which the X chromosomes, and, in

particular their Xic’s regions, are involved in a complex series of regulatory

mechanisms. In the next section we will focus on one of these, occurring at

the early stages of XCI: the “pairing” of the two Xic’s.



1.3 X chromosomes pair off 5

1.3 X chromosomes pair off

A crucial initial step that occurs during XCI is the physical colocalization of

the two X chromosomes [93, 5, 3] (see fig. 1.3): during the early days of cell

differentiation, at the very beginning of XCI, the X chromosomes recognize

each other and pair, among tens of other different chromosomes. In particu-

lar, their Xic regions are in close contact. This pairing event is a preliminary

step for XCI and is strictly needed for it; in fact, disruptions of pairing induce

XCI failure and cell death [93, 5, 3, 24].

Experiments have pointed out two major regions of colocalization within

the Xic: a sequence between Tsix and Xite genes close to Xist [93, 5] (see

fig. 1.2); and a segment located several hundred of kilobases upstream, named

Xpr [3] (see fig. 1.2), whose colocalization is independent from Tsix/Xite and

occurs at an earlier stage. While the specific role of these regions is still un-

der investigation, several details of Tsix/Xite have been elucidated.

Its colocalization requires some few kilobase long DNA subfragments and

two known Zinc-finger proteins2, Ctcf and Oct4, having several DNA bind-

ing domains which can bind those subfragments at multiple and clustered

sites [93, 92, 24] (see fig. 1.2). Interestingly, removal of these binding sites

as well as knock-down of these two proteins, severely affect pairing, showing

that the binding of these proteins is strictly needed [93, 92, 24].

Moreover, it has been discovered that the inhibition of transcription of Tsix

and Xite disrupts the formation of X-X couples. On these experimental

bases, it has been proposed that the X chromosome interaction is mediated

by a transiently stable “RNA-protein bridge” at these specific Xic sites [92].

Importantly, the insertion on a different chromosome of the mentioned Tsix/Xite

and Xpr segments of Xic induces the pairing of X with that chromosome

[93, 3, 92]. A still unexplained result is that deletion/insertions, including

pairing regions, affect the strength of pairing according to their length, i.e.,

2 Zinc-Finger proteins are a class of proteins which can recognize and bind to specific

DNA sequences thanks to a particular structure (the “Zinc-Finger”) including one or more

zinc atoms.
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Figure 1.3: Images of real cell nuclei (in blue) at different stages of X Chro-

mosome Inactivation (XCI). The two spots (circled in red) are Tsix/Xite

regions from the two X chromosomes. As soon as XCI starts, Tsix/Xite loci

get paired (central panel), while after XCI has occurred, they break up (right

panel). In particular, at the end of XCI, the designated active X is located

near the nuclear membrane (red arrow in right panel, see section 1.5). Images

adapted from [93].

longer deletions exhibit weaker pairing [93]. Consistently, longer insertions of

Xic pairing segments on an autosome (non sex chromosome) produce stronger

X-autosome pairing; and, in females, X-autosome interaction competes with

X-X pairing [93].

As deletions of those DNA regions and mutations of Ctcf/Oct4 disrupt colo-

calization, these elements are thought to be necessary components of the

“pairing machinery”. Yet, are these ingredients sufficient? Which are the

mechanical bases and the physical requirements producing X chromosome

recognition and colocalization? Xic pairing must occur in a precise time

window: how can a cell orchestrate the timing of this process? And how is

X chromosome pairing related to the “counting&choice” of X chromosomes?

All these crucial questions are still unanswered.
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1.4 XCI triggering and Xic 3D spatial con-

figuration

As we have seen, female cell is somehow able to “count” the X chromosomes

and to “choose” randomly the one to inactivate. A number of experiments

have been carried out to clarify which are the “controlling factors” for “count-

ing&choice” process, that eventually results in the upregulation of Xist gene

on the future inactive X and marks the initiation of XCI process.

These experiments assessed the effects on “counting&choice” of heterozygous

as well as homozygous 3 deletions/insertions of DNA sequence within the Xic

(see fig.1.4). In particular, we summarize here the results of four deletions,

namely ∆65kb [15],Tsix∆CpG [47], Xite∆L [65] and ∆Jpx [84], whose loca-

tion and length is illustrated in fig. 1.4.

The ∆65kb deletion removes 65 kilobases of DNA in the Xic region relevant

to the chromosome activation [15]. ∆65kb causes nonrandom inactivation of

the deleted X in heterozygous XX cells [15], and determines the inactivation

of the unique X chromosome in male XY cells [58]: so, interestingly, the X

chromosome bearing the deletion is not active, not even in male cells.

The outcomes in male cells is, however, drastically different in the case of

shorter deletions. Importantly, shorter deletions nested into the ∆65kb have

been described that cause X inactivation in male cells. The ∆AS deletion

[86] is accompanied by a minimal, but detectable, level of ectopic X inacti-

vation. A 1.2 kb deletion called ∆34 [86], spanning an array of binding sites

for Ctcf protein also implicated in the X random choice (see also [25, 16]),

causes XCI to initiate in a significant proportion of male cells [86]. Finally,

the ∆AV deletion [86], determines ectopic X inactivation in male cells with

high efficiency.

The analysis of two smaller nonoverlapping deletions within the above men-

tioned ∆65kb sequence, namely, the Tsix∆CpG deletion and the Xite∆L,

3 Heterozygous deletions involve only one of two homologous chromosomes (the X

chromosomes in the present case), homozygous deletions both of them.
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added further information. While in heterozygous XX cells the Tsix∆CpG

deletion causes nonrandom inactivation of the deleted X, in male XY cells

the Tsix∆CpG deleted X remains active [47]. Analogous results are obtained

with the Xite∆L deletion [65]. It is very interesting the outcome of the ho-

mozygous Tsix∆CpG female XX cells, as it results in the so-called “Chaotic

Counting”: the choice of the inactive X is still random [44], but in a fraction

of cells both X chromosomes are inactivated [45].

DNA insertions in autosomes (non-sex chromosomes) including multiple copies

of parts of these regions have been also analyzed. Intriguingly, in a fraction

of cases, they cause the inactivation of the only X in male cells [32, 48].

Also the phenotype corresponding to the heterozygous deletion ∆Jpx is dras-

tically different in males and females: it has no effect in the first case, whereas

it is lethal in the second (at least in ∼ 85% of cases), since it blocks the inacti-

vation. The few cells which do survive the mutation, show a slight preference

for the inactivation of the Wild Type X [84].

Jpx, like Tsix and Xite, is a non-coding gene: it is transcribed into a RNA

molecule and remains inside the nucleus. Large, non-coding RNA molecules

are thought to have an important role in the inactivation process [84]. In-

deed, biologists discovered that the concentration of Jpx transcripts is a key

factor: a reduction of the Jpx transcripts, without deleting the gene itself, re-

capitulates the effect of the ∆Jpx deletion. Conversely, the provision of Jpx

transcripts in a cell carrying a heterozyogus ∆Jpx deletion, rescues lethality.

Interestingly, the damages of ∆Jpx are also cancelled by a truncation of Tsix

gene on the X bearing the ∆Jpx deletion [84].

All these results taken together, indicate that Xite and Tsix act as negative

regulator of Xist, so they tend to block the inactivation of the X chromo-

some; vice versa, Jpx promotes the upregulation of Xist gene, and so induces

the inactivation of the X.

Biologists have also investigated, with a sophisticated experimental tech-
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Xist

Tsix Xite Tsx Chic1Jpx

5kb

Figure 1.4: Map of some DNA deletions involving segments of the X Inacti-

vation Center. See section 1.4 for a discussion on the damages they cause to

X Chromosome Inactivation.

nique called “Chromosome Conformation Capture” (3C)4 [22], the 3D spa-

tial arrangement of the Xic’s during the XCI process [85]. They pointed out

that the spatial architecture of Xic regions dynamically changes during the

different stages of XCI, and is strictly correlated with the status of Xist gene.

In particular, they were able to draw the map of genetic contacts between

five specific loci within Xic: the promoters5 of four genes, Tsix, Xite, Jpx,

Xist and a locus close to the end of Xist gene which has been called “buffer”

region (see fig. 1.5).

During the pre-XCI stage, DNA conformation is identical on the two X’s:

Tsix and Xite are in close proximity, folded onto the “buffer” region (see

Fig. 1.5), thought to form a configuration which induces Tsix transcription

and, thus, Xist downregulation; Xist too is folded onto the “buffer” and in

contact with Jpx, and is thus supposed to be “poised” for activation. At the

onset of XCI, on the future active X, the Jpx-Xist-buffer structure opens

while Xite remains in contact with Tsix, enabling its expression and Xist

further downregulation (see fig. 1.5). Later on, after the Inactivation pro-

cess has finished, also the Tsix-Xite-buffer structure is released and the Xic

4This technique allows to measure the relative probability that two DNA loci are close

together.
5Region of a gene from which the transcription starts.
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shows a fully opened configuration [85]. On the other X, instead, the Tsix-

Xite interactions is lost as soon as XCI starts whereas Xist and Jpx remain

in contact, resulting in Xist full activation [85]. The molecular factors re-

sponsible for cis-interactions across the locus are still not clearly identified,

possible candidates including RNAs [46] and proteins, such as Ctcf [69, 25],

which has arrays of binding sites along the locus.

The formation of higher order DNA structures is already known to have a

fundamental impact on genome regulation (see section 2.2) [19, 21, 27, 39,

53, 54, 56, 83], though, how these structures are formed and controlled by

the cell is still under debate [19, 18, 21, 54, 53]. In this case, it is particularly

intriguing the fact that two different 3D configurations are built around the

two initially identical Xic regions. And this happens completely at random.

We will delve more into this topic in Chapter 3.

1.5 “Shuttling” of X chromosomes

We have seen earlier that the X’s pair off at the beginning of XCI. Thereafter,

when “Counting&Choice” has occurred, and the inactive X chromosome has

been designated, the X’s couple breaks up and the two X’s reach two different

nuclear targets according to their active/inactive state. Indeed, the active

X chromosome is located nearby the nuclear membrane (see fig. 1.3, right

panel), while the inactive X is found attached to the nucleolus6 [94].

The attachment of the inactive X to the nucleolus is thought to be necessary

for the maintenance of its silenced status [94]. Interestingly, Xist gene dele-

tion on the inactive X, not only leads to a partial re-activation of the X, but

also to the loss of the nucleolar targeting. Moreover, insertion on autosomes

of DNA sequences including Xist induces autosome-nucleolus attachment,

suggesting that such DNA sequences are necessary and sufficient for nucleo-

6Nuclear structure made of proteins and nucleic acids where the ribosomal RNA

(rRNA) is transcribed and assembled. rRNA is the RNA component of the ribosomes, the

machinery which builds up the proteins in the cell.
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Jpx

Xist

Buffer

Tsix

Xite

PRE XCI XCI Initiation

Low Transcription
        of Xist High Transcription 

         of Xist Xist OFF

Inactive X Active X

Figure 1.5: Schematic representation of the 3D configurations of DNA at

X Inactivation Center (Xic) during XCI. Before XCI starts, both the Xic’s

show the same architecture, with Tsix, Xite, Xist and Jpx genes attached

to a region called “buffer” (coloured in blue). At XCI initiation, the active

and inactive X’s have different couples of genes attached to the “buffer”.
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lar targeting [94].

These experimental data raise the questions on how the two X are “shut-

tled” to different, precise nuclear targets after XCI, and what is the exact

role played by the DNA sequences which are shown to be responsible for the

inactive X-nucleolus attachment.

1.6 X Chromosome Inactivation in multiploid

cells

So far, we discussed about the XCI in diploid cells7 having two X chromo-

somes, where in almost 100% of cases only one of the two X’s is inactivated.

Recently, XCI has been also studied in multiploid cells having more than

two X’s, in particular in XXXX and XXXY cells [57], where the probability

distribution P of the number of inactive X’s was measured at different times

after the initiation of cell differentiation8. In fig. 1.6, P in the XXXX and

XXXY cells at day 10 of differentiation is illustrated: the large majority of

cells are found with 2 inactive X’s in XXXX case and with 1 in XXXY. Yet,

in XXXX a significant number of cells is also found with a different number

of inactive X (e.g., ∼ 15% of cells inactivate only one X).

Which kind of physical process can give rise to these probability distributions

for the number of inactive X? Some recent works try to provide an answer

to this question [72, 9, 57, 82]. We will discuss in more details this issue in

Chapter 4.

7A diploid cell contains two copies for each chromosomes. Nearly all mammals are

diploid organisms, i.e., their cells (except the sexual cells) are diploid. Cells with multiple

sets of chromosomes beyond the basic set are called multiploid cells.
8XCI is thought to begin about two days after cells start differentiating in the embryo

[93].



1.6 X Chromosome Inactivation in multiploid cells 13

A

0

20

40

60

80

100

0 1 2 3

P

#Xi

XXXY cells at day 10
of differentiation

B

0

20

40

60

80

100

0 1 2 3 4

P

#Xi

XXXX cells at day 10
of differentiation

Figure 1.6: The probability distributions P of the number of inactive X

in XXXX cells (panel A) and in XXXY cells (panel B), at day 10 of

differentiation.



Chapter 2

“Passive Shuttling” of DNA

loci

This second chapter will be devoted to the realization and the analysis of

a Statistical Mechanics model for the interaction and the colocalization of

a DNA locus and a target. Such a model will be proposed to explain the

physical bases of the X chromosome pairing and “shuttling” that occur at X

Chromosome Inactivation [73, 75, 76, 74, 9].

2.1 Introduction

Starting from the available experimental data about the X chromosome pair-

ing (see section 1.3), and X chromosome “shuttling” (see section 1.5) we

introduce a Statistical Mechanics model where Brownian binding molecules

mediate the interactions between a DNA locus and a target, either another

DNA locus (like in the X pairing) or a nuclear structure (like in the inac-

tive X-nucleolus binding or the active X-nuclear membrane binding). In that

context, we show that binding molecules can induce stable colocalization of

DNA and its target via a “switch-like process”, regulated by a phase transi-

tion: if the concentration/affinity of binding molecules is above a threshold

value, DNA locus is reliably “shuttled” to target, despite the diffusive nature

14
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of its motion.

Our picture can explain, thus, how well described cell strategies of upreg-

ulation of DNA binding proteins or chromatin chemical modifications can

produce efficient and sharply regulated genomic architectural changes. And

the scenario we depict has a close analogy with the known problem of poly-

mer adsorption at a surface (see, e.g., [17, 20, 35, 78] and references therein).

As this “shuttling process” relies on Brownian motion of DNA locus and

its target, it can be seen as a form of “passive shuttling”. Its robust ther-

modynamic roots suggest a general validity which goes well beyond the X

Chromosome Inactivation (XCI).

By a mean-field theoretical approach, we describe the theoretical bases of the

mechanism. Thereafter, by Monte Carlo computer simulations, we are able

to quantitatively characterize the “passive shuttling” and to make predictions

about the effects of possible experiments, such as DNA deletions.

2.2 DNA spatial architecture and genome reg-

ulation

The X chromosome pairing as well as the X “shuttling” occurring at the end

of XCI (see respectively sections 1.3 and 1.5), are a prominent example of

the interplay between the spatial regulation of the genome and its function-

ing, whose importance has been proved in a plenty of cellular processes in

eukaryotic organisms1 [19, 21, 27, 39, 53, 54, 83]. Indeed, many experiments

have confirmed that DNA loci, for a correct activity, must occupy specific,

but dynamically changing, positions with respect to other DNA sequences or

nuclear elements. The most diverse examples of interactions exist, but the

mechanisms whereby distant loci recognize each other and come together in

complex space-time patterns are still largely unknown, as in the X shuttling

1An eukaryote is an organism whose cells are endowed with complex structures in-

cluded in a nucleus which is enclosed in a membrane. E.g., all the animals and plants are

eukaryotes.
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case. Examples are found of loci that undergo directed motion via active,

e.g., actin/myosin2 dependent, processes [13, 26, 21, 39, 37, 80, 50]. How-

ever, most examples of DNA “cross-talks” appear to be independent of active

motors. So, passive diffusion has been proposed as a major, energetically in-

expensive, mechanisms [54, 19, 21]: Brownian mobility induces stochastic

collisions of loci which in turn establish functional associations, e.g., via

bridging molecules. Such a scenario, though, rises fundamental questions

[18, 53, 64]: how are these random encounters coordinated in space and

time? Are they likely? And reliable for functional purposes? How are they

regulated?

Complex regulatory inter-chromosomal contacts occur, for instance, in

the β-globin, TH2, Hox clusters [66, 42]. Many other cases are known. The

loop architecture of the Major Histocompatibility Complex class I (MHC-I)

locus on human chromosome 6 [38] is mediated, for instance, by a set of

specific molecules. Here chromatin loops are organized by SATB1 and PML

proteins, and PML associated nuclear bodies, which tether clustered DNA

binding sites to the nuclear matrix3. Number and position of these anchoring

regions depend on the relative abundance of SATB1 and PML protein [38]:

for example, while Jurkat T cells show 5 chromatin loops within such a

region, CHO cells, having a lower expression of SATB1, have 6 loops which

also differ in positions [38, 28]. However, if SATB1 concentration in CHO

cells is matched with that of Jurkat T, a new loop organization miming that

of Jurkat T cells is found [38].

Looping of specific remote loci is, for example, fundamental for the regu-

lation of Kit gene in erythropoiesis (the production of red blood cells) [34].

In immature erythroid cells, where Kit is active, a distal 5′ enhancer is shut-

tled to the Kit gene promoter and bound by GATA-2 proteins. Upon cell

maturation, Kit is repressed and the above conformation changed: GATA-2

2Actin and myosin proteins work together to generate a molecular motor which acts,

e.g., in cell division and in the movements of some organelles in the cytoplasm.
3Network of fibres around which chromosomes and other nuclear components are orga-

nized. Its composition and structure are still debated [2]
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is displaced, while GATA-1 proteins and cofactors bring a downstream re-

gion to the promoter [34]. In this case, the relative expression level of GATA

proteins acts on the chromatin conformation and controls the switch of Kit

[34]. The list of DNA regions associated to other DNA sequences and nuclear

elements is very long. Examples are the lamina-associated domains (LADs)

in the human genome [31], i.e., a set of more than 1300 regions (with sizes

in the 0.1 ÷ 10Mb range) found to be in close interaction with the nuclear

lamina4 (NL) and characterized by features such as a preferential occurrence

of Oct-1 protein binding sites and Ctcf binding boundary elements. The re-

ported localization of Oct-1 at the NL [33] hints to a mechanism responsible

for LAD-NL binding [31]. Interestingly, clusters of binding sites are typically

involved in most of the above examples[19, 53, 27, 56, 64].

It is interesting to note that all these examples, together with X pair-

ing and X “shuttling” phenomena at XCI, share similar molecular features

[19, 53, 27, 56, 64], like the need for some molecules binding to specific DNA

sequences. Yet, the following questions concerning the underlying organi-

zational principles of such complex systems remain open: how Brownian

random processes can be finely regulated? How such a variety of molecular

elements are orchestrated? How do they recognize each other in a distance

and are brought in apposition?

2.3 The Model

In order to try to answer these questions, we investigate a schematic physics

model of the molecular elements involved in these “shuttling events”. In par-

ticular, we study two schematic models representing the situation where a

DNA locus is shuttled to another DNA sequence or towards a nuclear target

(e.g., nucleolus, nuclear membrane, matrix).

4Network of filaments which forms a thin sheetlike meshwork just beneath the inner

nuclear membrane [2]. It provides mechanical support and regulates important cellular

events such as DNA replication and cell division.
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The DNA sequence is represented, via a standard polymer physics model,

as a floating random walk polymer of n beads [23]. The polymer interacts

with a concentration, c, of Brownian molecular factors (MFs) and can be

bound at a number, n0, of clustered binding sites (BSs) with chemical affin-

ity E (fig. 2.1 panel A). For definiteness, here we refer to the well studied

Tsix/Xite locus of X colocalization and choose number and chemical affinity

of binding sites accordingly (see below). In real examples, the number and

location of binding sites depend on the specific locus considered. However,

as known in polymer physics, our thermodynamic picture is robust to pa-

rameter changes (see [23] and below).

In our model, the “nuclear target” is schematically described as an impen-

etrable surface having a linearly arranged set of binding sites for the DNA

binding molecules (see fig,2.1 panel B). For sake of illustration, we assume

that their number is also n0 and their affinity E.

We use a simple lattice version of the random walk polymer model. This

is well established in polymer physics and has the advantage to be simple

enough to permit comparatively faster simulations with respect to off-lattice

models. In this way we can add further degrees of freedom in our system,

which represent the binding molecules, without making computation unfea-

sible. In fact, molecules are dealt with as a Statistical Mechanics “lattice

gas” interacting with the polymer chain [81]. We consider a lattice of linear

size Lx = 2L, Ly = L and Lz = L (in units of d0, the characteristic size

of a bead on the polymer, see below), with periodic boundary conditions to

reduce boundary effects [10]. For sake of simplicity, the DNA sequence is

treated as a directed polymer [23], i.e., its tips are bound to move on the

top and bottom surfaces of the system volume (see Fig. 2.1). It consists

of n = L beads which randomly move under a “non-breaking” constraint:

two proximal beads can seat only in next or nearest next neighboring lat-

tice sites. A bond between a MF and a BS can be formed when they are

on next neighboring sites; MFs can have multiple bonds (such as, e.g., Ctcf

proteins). The use of directed polymers to represent DNA segments allows
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faster simulations without affecting the general properties of the colocaliza-

tion mechanism we describe, because it is produced by a general free energy

minimization mechanism, which does not depend on such details (see below;

in case of a non-directed polymer model, DNA would bind its target as well,

but without a perfect alignment as in our case [64]). A strategy to attain a

straight alignment anyway would be to consider a gradient of BSs along the

polymer/target.

We explore these models by a Statistical Mechanics mean-field treatment

and by Monte Carlo (MC) computer simulations. We try to use the available

biological data to set the range of model parameters. Our models include

only minimal ingredients and are very schematic, but they permit to derive

a precise, quantitative picture of “passive shuttling”. On the other hand,

our scenario relies on a robust thermodynamic mechanism and its general

aspects are, thus, not affected by the simplicity of the models.

DNA binding sites number and chemical affinity - Details on bind-

ing energies and DNA locations of binding sites are known in some examples

(see [51, 59, 29, 43, 6, 52] and Ref.s therein), but in most cases only qualita-

tive information is currently available.

For instance, “in vitro” measures exist [71, 70] of dissociation constants of

Ctcf proteins from DNA binding sites which give binding energies around E ∼
20kT , k being the Boltzmann constant and T the room temperature (see, e.g.,

[95] on how to derive the binding energy from the dissociation constant). The

precise value of “in vivo” binding energies depends on the specific DNA site

considered and can be very hard to record, yet these ”in vitro” measurements

provide the typical energy range. It is experimentally well documented that

DNA binding proteins, as those mentioned in the section 2.1, have a number

of target loci with chemical affinities in the weak biochemical energy range,

E ∼ 0÷20kT [51, 59, 29, 43, 6, 52]. This is the energy scale we consider here.

Here, the BS number n0 on the DNA as well as on its target is chosen to be

n0 = 24 (i.e., of the order of magnitude of the known case of Ctcf sites in the

Tsix/Xite region on the X chromosome [25]), but it is varied to describe the
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effects of BSs deletions.

Molecule concentration - The order of magnitude of the concentration

of molecular factors, c, can be roughly estimated and compared to the con-

centrations of proteins in real nuclei. In our model the number of molecules

per unit volume is c/d3
0, where d0 is the linear lattice spacing constant, which

implies that the molar concentration is ρ = c/(d3
0NA) (NA is the Avogadro

number). Under the assumption that a polymer bead represents a DNA

segment of ∼ 20bp (i.e., of the order of magnitude of a Ctcf binding site in

Tsix/Xite region [92, 25]), we obtain the order of magnitude of the polymer

bead size d0 ∼ 10nm. By using such a value of d0, typical concentrations of

regulatory proteins such as ρ ∼ 10−3 ÷ 10−1µmole/litre (i.e., ∼ 103 ÷ 105

molecules per nucleus) would correspond to volume concentrations in our

model c ∼ 10−4 ÷ 10−2%. Such an estimate is quite rough, but may guide

the connection of our study to real biological situations.

Monte Carlo simulations - In our Monte Carlo (MC), we run up to

109 MC steps per simulation and our averages are over up to 1024 runs. In

each MC step, the algorithm tries to move, on average, all the particles of

the system (molecules and polymer beads, in random order), according to a

transition probability proportional to e−∆H/kT [10], where ∆H is the energy

barrier of the move (T is the temperature and k the Boltzmann constant).

So, the binding/dissociation rate is given by the Arrhenius factor r0e
−∆H/kT ,

where r0 is the bare reaction rate. The MC time unit (i.e., a single lattice

sweep) corresponds thus to a time τ0 = r−1
0 (see [10]). In turn, τ0 is related

to the polymer diffusion constant D and to the lattice spacing constant d0:

D =
(
〈∆s2〉 d2

0

4τ0

)
, where 〈∆s2〉 is the mean square displacement (expressed

in units of d0) of the polymer center of mass per unit MC time . While

we measure 〈∆s2〉, the value of d0 can be estimated to be of the order of

magnitude of a typical protein binding site, say ∼ 10nm (see above). And

we impose that the diffusion coefficient D of a free polymer (i.e., with E = 0)

in our lattice is of the order of the measured diffusion constant of human

DNA loci (D = 1µm2/h [14]). As a result, a MC lattice sweep is found to
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correspond to τ0 ∼ 30µs (falling well within the range of known biological

kinetic constants [88]).

The above Monte Carlo moves produce an “artificial” dynamics and in

general serious caution must be taken to interpret it as the real kinetics.

However, in the current prevailing interpretation [10], in a system dominated

by Brownian motions, a Monte Carlo Metropolis dynamics is supposed to

describe well the general long time evolution of the system. Under that um-

brella, we assume here that Monte Carlo could provide some insight in the

system kinetics.

We consider a lattice with L = 32, i.e., with dimensions Lx = 2L = 64

and Ly = Lz = L = 32 in units of d0. DNA segments have n = 32

beads. We also performed simulations with different values of L and n (up

to L = 128 and n = 128) and we checked that our general results remain es-

sentially unchanged. The conceptual support for using comparatively small

Self-Avoiding Walk (SAW) polymer chain sizes to extrapolate the behavior

of longer chains is grounded in Statistical Mechanics and rely on the system

scaling properties (see [10]). For instance, the transition energy E∗ has a

comparatively simple behavior with n [64] and rapidly converges at large n

to a finite value comparable to E∗(n = 32). Those remarks support the idea

that our results are not an artifact of the specific length of the polymer.

2.4 Mean-Field Theory

To describe the concept behind passive shuttling and colocalization, we briefly

discuss the Statistical Mechanics of the system at the level of a mean-field,

coarse grained, approximation [81]. We refer to the polymer adsorption lit-

erature for more advanced theoretical approaches (see, e.g., [17, 35, 20, 78]

and ref.s therein). For sake of definiteness, we consider the case with two

DNA polymers (such as in the case of X Chromosome Pairing). We parti-

tion the nucleus in two halves, and name x the probability to find polymer

1 in the “right half” and y the probability to find polymer 2 in the “left-
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BA

Figure 2.1: Schematic representation of the lattice models we use in Monte

Carlo simulations. Panel A Two DNA segments are modelled as a couple

of random walk polymers, endowed with a number of binding sites (green

beads) for diffusing molecules (yellow beads). Panel B In order to study

the DNA “shuttling” to a nuclear target, one copy of the polymer is replaced

by a fixed, impenetrable surface (colored in blue) having the same number

of binding sites (green beads).

half” (see fig. 2.2). In a Ginzburg-Landau approach [41, 81] the system Free

Energy density can be written as a function of x and y, F ' F (x, y) =

H(x, y)− TS(x, y) (T is the temperature and, below, k the Boltzmann con-

stant). The interaction energy density, H, can be expanded in powers of x

and y to consider the first non trivial terms:

H = −Eb [x(1− y) + y(1− x)] (2.1)

The above quadratic form arises since a molecular bridge between the poly-

mers can be formed only if they are in the same part of the nucleus. Eb is

the average binding energy density.

In turn, the entropy, S(x, y), in such a mean-field approach can be approx-

imated as the sum of the entropies of the two non-interacting polymers,

S(x, y) = S(x) + S(y), where S(x) has the standard expression [81]:

S(x) = −k [x ln(x) + (1− x) ln(1− x)] (2.2)
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Left Half Right Half

Chromosome 1

Chromosome 2

     System 
Configuration Probability

xy

(1-x)(1-y)

Probability

x(1-y)

(1-x)y

     System 
Configuration

Figure 2.2: A coarse-grained version of the system is analysed via a mean-

field theoretical approach. The nucleus is divided into two halves: x is the

probability to find the chromosome 1 (green circle) in the left half, y the

probability to find chromosome 2 (purple circle) in the right half. The system

configurations with the relative probabilities are shown.

Thus the free energy density is:

F (x, y) = −Eb [x+ y − 2xy]+kT [x lnx+ (1− x) ln(1− x) + y ln y + (1− y) ln(1− y)]

(2.3)

Note some symmetries of the function F :

1. F (x, y) = F (y, x), namely, nothing changes if chromosome 1 and 2 are

exchanged;

2. F (x, y) = F (1−x, 1−y), i.e., the system is symmetric under “left-right”

inversion.

In the thermodynamic limit, the equilibrium states of the system correspond

to the minima of F . To find them, let’s calculate first the stationary points

of F : 
∂F
∂x

= −Eb(1− 2y) + kT ln
[

x
(1−x)

]
= 0

∂F
∂y

= −Eb(1− 2x) + kT ln
[

y
(1−y)

]
= 0

(2.4)
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If we obtain y from the first equation, the second equation gives:

x =
1

2
− kT

2Eb
ln

[
1− (kT/Eb) ln

(
x

1−x

)
1 + (kT/Eb) ln

(
x

1−x

)] (2.5)

The graphical study of the equation (2.5) will give us the solutions of the

system (2.4). The plots in fig. 2.3 show that for low values of Eb (for instance,

Eb = 1.5kT , panel A), only the symmetric solution, (x = 1/2, y = 1/2), ex-

ists. Yet, as Eb is increased (Eb = 2.5kT , panel B), two other solutions

appear, x∗1 ≡ x∗ < 1/2 and x∗2 = 1 − x∗ > 1/2 (note that x∗2 = 1 − x∗1, for

the symmetry number 2, see above). While x∗ can be evaluated numerically,

we can easily calculate the corresponding values of y by using the symme-

try 1 of F (see above), and yield the solutions (x, y) of the system (2.4):

{(x∗, 1− x∗), (1− x∗, x∗)}.
What do these solutions physically mean? This can be easily understood by

introducing the excess colocalization probability of the two polymers:

P (x, y) = x(1− y) + y(1− x)− [xy + (1− x)(1− y)] (2.6)

namely, the probability to have the two polymers in the same half of the

system, x(1 − y) + y(1 − x), minus the probability to have them in two

different halves, xy + (1 − x)(1 − y) (see fig. 2.2). It can be verified that

P (1/2, 1/2) = 0, and so that the symmetric solution, as it was easy to guess,

corresponds to the case where it is equally likely to have the polymers in

the same half or in opposite halves. On the contrary, with the other two

solutions, P (x∗, 1 − x∗) = P (1 − x∗, x∗) > 0, indicating that the polymers

tend to stay in the same half.

As it is seen from the plots in fig. 2.3, the minimum value of Eb at which the

other two solutions appear can be calculated by imposing that the derivative

of the right-hand side of equation (2.5), at the point x = 1/2, is smaller than

1:
d

dx

{
1

2
− kT

2Eb
ln

[
1− (kT/Eb) ln

(
x

1−x

)
1 + (kT/Eb) ln

(
x

1−x

)]}
x=1/2

< 1 (2.7)
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Figure 2.3: The equation (2.5) is solved graphically. The solutions are repre-

sented by the intersections of the curves f(x) (blue curve) and g(x) (orange

curve), that are respectively the left and the right side of the equation. For

Eb = 1.5kT (left plot), one solution is found at x = 1/2, whereas, when

Eb = 2.5kT (right plot), other two solutions appear (red arrows).
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By solving this equation, it is obtained that the solutions x∗1, x
∗
2 6= 1/2

are found as soon as:

Eb > E∗b = 2kT (2.8)

It can be verified that the solution x = 1/2 corresponds to a minimum of

the free energy density F if Eb < 2kT ; conversely, if Eb is larger that 2kT ,

x = 1/2 turns into a saddle point, whereas x∗1, x
∗
2 are two minima.

Thus, at the thermodynamic equilibrium, if Eb < E∗b = 2kT , P = 0 and

polymers are independently located in the nucleus; above Eb, P > 0 and

they are more likely to be found together in the same area (see fig. 2.4 panel

A). Indeed, at E∗b , a second order phase transition occurs with a consequent

spontaneous symmetry breaking [81], and the excess colocalization probabil-

ity P , is the order parameter of the system.

The critical energy value, E∗b , corresponds to the point where the entropy

loss owing to colocalization is compensated by the consequent energy gain.

By expanding the equilibrium value of P near the critical point Eb, it is

yielded:

P (Eb) ∼ (Eb − E∗b ) (2.9)

and so a critical exponent equal to 1 is found.

So far, we carried out our analysis in terms of Eb, the average binding energy

density. Let’s now go back to the system parameters we introduced in the

previous section, i.e., the concentration of molecules c, their DNA affinity,

E, and the number of binding sites, n0. For low values of c and E, we

can approximate Eb as the product of the density of available binding sites

bound by a molecule, cn0, multiplied by the total chemical affinity of a bridge,

2E: Eb(c, E, n0) ∝ 2Ecn0. Under this approximation, we can provide the

following expression for the transition surface (see fig. 2.4 panel B):

cn0E/kT = 1 (2.10)

The advantage of the above mean-field description is to illustrate the basic

ideas of the scenario we propose. However, it is very schematic and in the

following sections we discuss a detailed Monte Carlo simulation of the model.
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Figure 2.4: These figures illustrate the mean-field theory description of DNA-

target colocalization. Panel A The polymer excess colocalization probabil-

ity, P , is plotted as a function of the average binding energy density Eb (The

Inset shows the probability x, to find polymer 1 in the right half of the

nucleus, see also fig. 2.2). The plots show how at Eb/kT = 2 a transition

occurs between a phase where polymers are independently located in space

(P = 0%, x = 50%) and a phase where they colocalize (P > 0%, x 6= 50%).

In panel B the transition surface cn0Eb/kT = 1 is depicted in the space of

molecule concentration, c, binding energy, E, and number of binding sites

n0.
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2.5 Monte Carlo simulations

2.5.1 Chromosome Pairing

Let’s consider first the case where we have a couple of polymers in the lattice,

representing, e.g., the two Xic segments in a female mammal cells (see fig. 2.1

panel A).

2.5.1.1 System Thermodynamics

Since the diffusing molecules can bind both the polymers, they can induce

an effective attraction force between them via the formation of molecular

bridges. Though, the system reacts to a change in one of these parame-

ters only if a threshold value in the Molecular Factor (MF) concentration c

and their polymer affinity E is crossed: below this threshold, polymers are

independent, above they colocalize, as a result of a thermodynamic phase

transition [73, 61, 60].

We illustrate such an effect by considering the mean square distance d2 be-

tween the binding sites (BSs) of the polymer sequences at the equilibrium:

d2 =
1

n0

n0∑
z=1

〈r2(z)〉
r2
rand

(2.11)

where r2(z) is the square distance between two BSs at height z, averaged

over all the n0 BSs and over different Monte Carlo (MC) simulations (indi-

cated by 〈...〉). We use as a normalization constant the mean square distance

between two randomly diffusing polymers, r2
rand.

We also measure the fraction of colocalized polymers p, namely, the fraction

of polymer couples whose equilibrium mean distance is less than 10% of the

linear size of the including volume, L.

In presence of a given concentration, c, of MFs, having an affinity E for the

polymers, a bridge between the two polymers could be formed by chance

when a MF binds both simultaneously. As a single bridging event is statisti-

cally unlikely and short lived, the degree of pairing between the polymers is
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expected to be stronger the higher c and E. However, a threshold behaviour

exists. This is shown in fig. 2.5, where the equilibrium values of d2 and p

are plotted as function of E (here we fixed c = 0.2% and n0 = 24): while for

E < E∗ = 1.75kT the random values of d2 and p were measured (d2 = 100%,

p = 0), practically irrespective of E, as soon as E ≥ E∗, d2 suddenly falls

down to 0%, and, correspondingly, p increases to 100%. In the crossover re-

gion around E∗ (defined by the criterion p(E∗ = 50%) ), intermediate vales

for p and d2 are found, since polymer couples are continuously formed and

disrupted.

We found that a Fermi function well fits the simulations data for d2(E) and

p(E) (continuous grey lines in fig. 2.5):

d2(E) =
1

1 + e(
E−E∗

∆E )
, p(E) =

1

1 + e−(E−E∗
∆E )

(2.12)

with ∆E = 0.03kT representing the width of the crossover region, where d2

and p are between 0 and 1.

As we explain at the beginning of this section, in the thermodynamic limit

(i.e., with an infinitely large system), E∗ would mark the transition point

between two phases (a “Brownian Phase” below it, a “Colocalization Phase”

above), and ∆E → 0. As expected [81], a power-law well reproduces the two

order parameters around the transition point E∗ (green and red dashed lines

in fig. 2.5): d2(E) ∼ −Eα, p(E) ∼ Eα with α = 0.43

The same non-linear behaviour of p and d2 is found as function of the concen-

tration c at a fixed value of the energy (see insets in fig. 2.5, here E = 1.2kT ).

So, the route to colocalization could be taken either by increasing E (e.g.,

with modifications of the DNA binding regions or of mediating molecular

complexes) or by increasing c (with an increased production of MFs). This

is summarized in the system phase diagram illustrated in fig. 2.6, showing

the equilibrium pairing state of the polymers in the concentration-energy

plane (c, E), along with the transition line between the two phases (yellow

line in fig. 2.6). The existence of a threshold line, c(E), has its roots in a

thermodynamic phase transition occurring in the system, where the energy
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Figure 2.5: DNA loci colocalize as a result of a thermodynamic phase transi-

tion. We show this through the plots of the normalized mean square distance

(d2, panel A), and of the fraction of paired DNA loci (p, panel B) at equi-

librium, as functions of E, the interaction energy between the molecular

factors (MFs) and the DNA binding sites (BSs). We took a MF concentra-

tion c = 0.2% and a DNA BS number n0 = 24. As E increases, d2 and p,

from values typical of Brownian diffusion (d2 ∼ 100% and p ∼ 0%, orange

horizontal lines), rapidly saturate to values which indicate DNA loci full colo-

calization (d2 ∼ 0%, p ∼ 100%, blue horizontal lines), after a threshold value

E∗/kT = 1.75 (defined by the criterion p(E∗) = 50%). Superimposed fits

for both d2(E) and p(E) are Fermi functions (grey lines, see eq.s (2.12) ).

Around the transition point E∗ (blue arrow), a power-law fits well (green and

ref dashed lines). d2 and p show the very same behaviour as function of the

molecular factor concentration c (see insets; here E = 1.2kT and n0 = 24).
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gain resulting from pairing compensates the corresponding entropy loss, as

we point out in the mean-field theory (section 2.4). The transition line c(E)

at small E is well fitted by an inverse power-law :

c ∼ (E − Emin)−ν (2.13)

where the exponent is ν ∼ 4 and Emin ∼ 0.7kT is a minimal threshold

energy below which no pairing transition is possible. At higher values of E

an exponential fit works as well.

This phase diagram gives precise constraints to the admissible values of c

and E to attain colocalization. On the other hand, colocalization is found in

a broad range of biologically relevant values for c and E (see section above

page 19). This confirms that the present colocalization mechanism is robust

and does not depend on the biochemical details of the system.

2.5.1.2 Dynamics of pairing

The mechanism of “passive shuttling” we are describing leads to stable bind-

ing between the two polymers, but it must be also fast enough to serve

functional purposes. We investigate its dynamics as produced by MC sim-

ulations, a very schematic description, yet considered to well describe the

general long time evolution of a system dominated by Brownian processes

(see above page 20 and [10]).

We measured the time behaviour of the mean square distance d2(t) (see

eq.(2.11)), which is plotted in fig. 2.7 (upper panels) for two values of E,

one in the “Pairing Phase”, the other in the “Brownian Phase” (see previ-

ous section). At t = 0, the MFs were randomly placed within the lattice

sites, while the polymers were in their straight vertical configuration, at a

distance L one from each other (so, the starting value of the distance is

d2(t = 0) = L2/r2
rand ∼ 2.5). As expected from the results of the previous

sections, the increase of E determines very different equilibrium states for

the system: while at lower energy, d2 saturates at the value expected from

a couple of independent random walk polymers (d2 ∼ 100%, see upper left
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Figure 2.6: The diagram shows the thermodynamic equilibrium state of the

system in the (E, c) plane, for a range of typical biochemical binding ener-

gies, E, and molecular concentrations, c. Circles mark the transition points

from the Brownian phase, where chromosomes diffuse independently, to the

Pairing phase, where chromosomes are juxtaposed (the superimposed fit is

a power law). Two typical equilibrium configurations of the system in the

Brownian and in the Pairing phase, generated by Monte Carlo computer

simulations, are shown.
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panel, red vertical dashed line), when E = 2.2kT , d2 eventually goes down

to ∼ 0 (upper right panel, red vertical dashed line), thus revealing that the

effective attraction is now high enough to make DNA loci pair off.

d2(t) shows an initial linear behaviour, determined by the random diffusion

of the polymers when they are far from each other, and a final exponential

saturation to a plateau which is dependent, as we saw, on the values of E

and c. A good fit function, which includes both the above mentioned time

regimes, is the following (gray lines in fig. 2.7 upper panels):

d2(t) = d2(∞) +

[
d2(0)− d2(∞) +

at

1 + bt

]
e−

t
τ (2.14)

where d2(∞) is the final equilibrium value, while a, b and τ are fit parameters

which depend on E and c.

To get more insight into the dynamics of this pairing mechanism and into

the key role of the molecular factors, we monitored the time behaviour of

the average fraction F of the MFs attached to a single DNA locus. The

role of MFs as mediators of the DNA loci interaction clearly emerges in the

middle panels in fig. 2.7, where the plot of F (t), for the same values of the

parameters used above is shown.

For both the energies E, F (t) starts from the same value, due to the initial

random distribution of the MFs in the lattice sites (compare right and left

middle panels). When E = 1.4kT , F (t) simply saturates in a time scale

which is about 4 orders of magnitude smaller than that of d2(t) (green ver-

tical dashed line in left panels); indeed, MFs have a size much smaller than

polymers, so their dynamics is much faster. The molecules remain bound

to a single DNA locus, without forming any “bridge” at all times (left lower

panel). If the energy is increased to E = 2.2kT , and the DNA loci pair off (d2

saturates at ∼ 0), a more interesting time evolution is found. In fact, now,

two time regimes in F (t) are easily distinguished: during the first ∼ 0.5min,

F (t) has a behaviour similar to that in the previous case, except for the higher

plateau due to the higher MF-BS affinity (green vertical dashed line in right

panels). This first time regime corresponds to the initial MF binding to the
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DNA loci which, still out of the action range of the MF-induced effective

potential, independently diffuse. Yet, just when d2 begins to exponentially

fall down to ∼ 0, F (t) rises to a second plateau (red vertical dashed line): as

soon as DNA loci, during their random diffusion, get closer, some MFs start

to stably bind both of them, and, as a result, F (t) increases. This is evi-

denced in the lower right panel of fig. 2.7, showing that quite all the bound

MFs actually form “bridges” between the DNA loci after ∼ 1min. These

MFs “bridges” keep together the two DNA loci, so that pairing is finally

produced. The F (t) analysis, while allows an immmediate distinction be-

tween two dynamical regimes, makes the MF mediating role evident: we saw

that colocalization takes place as a result of MF bridges realization, which,

however, occurs at thermodynamic equilibrium only for certain values of the

parameters.

The parameter τ in the fit of d2 (see eq. (2.14)) represents the charac-

teristic time needed to reach the equilibrium distance and pairing (in the

“Pairing Phase”). We studied it as function of E and c (fig. 2.8). Interest-

ingly, an increasing behaviour is found both for τ(E) (fig. 2.8 main panel)

and τ(c) (inset in fig. 2.8), with a “jump” at the transition (see fig. 2.8 blue

arrows).

For fitting (grey and red dashed lines in fig. 2.8) we used power-law functions,

as this is the expected behaviour for the relaxation time near a transition

point, in the thermodynamic limit [81]. However, in our finite-sized case, we

found that exponential functions can fit the data as well.

The rationale for such an increasing behaviour of τ is that when DNA seg-

ments are bound by MFs their effective diffusion constant is proportionally

reduced (see also below) and so, while they will be eventually colocalized, the

time to reach equilibrium is longer the higher the concentration and the DNA

affinity of MFs. This could result in constraints on the biologically admissible

values of E and c since, even if a stable DNA pairing is eventually achieved,

the whole process could take too long if (c, E) are too high. It is also interest-

ing to note how, while only reasonable guess values are used for the system
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parameters (i.e., molecular concentration/affinity, number of binding sites,

kinetic rate constants, etc., see page 19), the values of τ predicted by Monte

Carlo simulations in the “Pairing Phase” are of the order of magnitude of

the characteristic time scales of cellular processes (∼ 10÷ 102min see [88]).

As we already stressed, the dynamics of colocalization is interesting in

itself and still experimentally largely unexplored. For this reason, we went

further by measuring the mean square displacement from the initial position,

〈∆s2〉, of the polymer center of mass as function of time. In fact, this is a

main quantity describing the kinetics, as the dynamics of polymers is diffusive

in nature.

〈∆s2〉(t) of the centers of mass of the DNA segments is plotted for two values

of the energy E (one in the “Brownian Phase”, one in the “Pairing Phase”,

see above) in fig. 2.9, panel A. Note that the linear behavior of 〈∆s2〉(t),
typical in diffusive regimes, is observed at short as well as at long times

(grey dashed lines), for both the values of the energy. To characterize these

diffusive regimes, we measured the short and long time diffusion constants

D = 〈∆s2〉(t)
4t

(named respectively D0 and D∞) for the two values of energies.

At low energy (e.g., E/kT = 1.4), when the colocalization machinery is off,

Brownian motion has approximately the same diffusion constant at short and

long times. At higher energy (e.g., E/kT = 1.9) two distinct diffusive regimes

are found: an initial one when the two polymers diffuse independently, and

a longer time slower diffusion when they move bound to each other. Such a

behavior is captured by a plot of the short and long times diffusion constants,

D0 and D∞, as function of E (see fig. 2.9 panel A inset). As seen before,

D0(E) decreases with E and D∞(E) follows it. The transition point, E∗, is

marked by a drastic reduction of D∞(E), while no major changes are found

in the behavior of D0(E). Above E∗, D∞(E) is non-zero since the two paired

DNA segments continue to diffuse, although with a diffusion constant which

is some orders of magnitude smaller than in the free case (see fig. 2.9 panel

B). Such a large reduction is due to the much larger mass of the diffusing

object in the “paired” state, which is formed by the couple of polymers and
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by a number of attached molecules.

Note that in our model we consider only short segments of DNA. For that

reason, a comparatively strong effect of (c, E) on D is found. In real systems,

the situation is more complicated, also because chromatin5 kinetics can be

affected by other phenomena (such as chromatin entanglement, crowding,

etc.) we do not consider at the level of our schematic description here.

Nevertheless, a dependence of the diffusion constant on (c, E) should be

observed locally, at the scale of the pairing sequences.

5Chromatin is the combination of DNA and proteins that makes up chromosomes.
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Figure 2.7: The normalized mean square distance d2 (upper panels), the

average fraction F of molecular factors (MFs) bound to a single DNA locus

(middle panels), and the percentage of molecular factors bound to both

DNA loci (“molecular bridges”, lower panels), are plotted as function of

time t, for the system in the “Brownian Phase” (E = 1.4kT, c = 0.2%, n0 =

24; left panels) and in the “Pairing Phase” (E = 2.2kT, c = 0.2%, n0 = 24;

right panels). The vertical dashed lines indicate the two time scales which

characterize the system dynamics: one is the time needed to the MFs to

equilibrate with the DNA loci far from each other (green line); the second

one (right line) corresponds to the equilibration of d2. Note that, if the

system is in the “Pairing Phase” (right panel), d2 saturates at ∼ 0%, and

correspondingly F rises to a second plateau as some MFs form “bridges”

between the DNA loci (lower right panel).
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Figure 2.8: The average time scale, τ , to attain the equilibrium distance is

plotted as function of DNA-molecule affinity E (main panel, c = 0.2%, n0 =

24) and of molecule concentration c (inset, E = 1.2kT, n0 = 24). τ(E)

turned out to be an increasing function of E as well as of c, as stronger

and more abundant molecule-DNA bonds make the DNA loci diffusion more

difficult (see also fig. 2.9). A “jump” is observed at the transition point (blue

arrows). The superimposed fits are power-law functions.
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Figure 2.9: Panel A The mean square displacement of the center of mass

of one of the DNA segments, 〈∆s2〉(t), is plotted as a function of time t. At

small binding energies (squares), 〈∆s2〉(t) has a linear diffusive behavior at

all times as no colocalization occurs. At higher energies (circles) two different

diffusive regimes are found at short and long time scales, before and after

colocalization. Inset The diffusion constants at short and long time scales

(D0 and D∞) as function of E, normalized by D0(E = 0). Panel B 2D

projections of the system trajectory from a Monte Carlo simulation, showing

the initial Brownian diffusion of two separated DNA loci (t = 0.5min) and

their colocalization (t = 5min and t = 50min).



2.5 Monte Carlo simulations 40

2.5.1.3 Effects of DNA deletions

We also investigated the effects on pairing of heterozygous deletions (see foot-

note on page 7), an issue of practical relevance to experiments. Indeed, we

analyzed the system response to a variation in the number of binding sites

(BSs) n0 on one of the two polymers. In particular, we consider the case where

a fraction ∆n/n0 of the original number of BSs is removed from one polymer

(for the same MF concentration, c = 5%, and affinity E = 1.2kT ). While a

reduction of the pairing fraction, p, is expected in presence of a deletion, we

find that the equilibrium value of p has a non-linear behavior in ∆n/n0. In

fact, it is a sigmoid with a threshold at ∆n∗ ∼ 50%n0 (see Fig. 2.10 panel

A): short deletions (say, removing a fraction of BSs ∆n/n0 ≥ 30%) do not

result in a relevant reduction of p, while pairing is completely lost as soon

as ∆n/n0 gets larger than about 70%. The sigmoid behavior stems from the

non trivial thermodynamic origin of the MF-mediated effective attraction

between polymers.

While these results rationalize the observed length dependent effects of Tsix/Xite

deletions (see section 1.3 on page 5 and [93]), the predicted behavior of p(∆n)

could be experimentally tested.

A Fermi fit function, as that used before (see eq. (2.12) and fig. 2.5) also

works here for p(∆n):

p(∆n) =
1

1 + e(
∆n−∆n∗

∆(∆n) )
(2.15)

with ∆n∗ ∼ 50%n0 and ∆(∆n) ∼ 8%n0.

The threshold value, ∆n∗, is a decreasing function of E and c. This is

summarized in the phase diagram of fig. 2.10 panel B, showing the effects on

pairing of the three parameters (c, E, n0): below the transition surface, the

Brownian phase is found, above it polymers are colocalized.

Interestingly, the time to approach the equilibrium state, τ , is larger

the smaller the deletion, as shown in the inset of Fig. 2.10 panel A. Such

a seemingly counterintuitive result stems from the fact that the smaller the

BSs number, the smaller is the number of MFs attached to chromosomes and,
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thus, larger their effective diffusion constant (see paragraph on page 31). The

behavior of τ as function of ∆n results in a non-trivial prediction: the removal

of a fraction of BSs within a chromosome should speed pairing with respect to

the Wild Type case (i.e., without any DNA deletion), although, the overall

fraction of paired chromosomes would be reduced. As seen in fig. 2.8, an

analogous phenomenon would be observed by decreasing the concentration

of MFs and/or their DNA affinity.

2.5.1.4 Xic pairing in multiploid cells

XCI in cells with more than two X’s is an important, current field of experi-

mental investigations by biologists. Recent papers (see, e.g., [57]) point out,

e.g., a non trivial probability distribution P of the number of inactive X in

XXXX cells and XXXY cells (see page 12 and fig. 1.6), conversely to what

happens in diploid XX cells, where 100% of cells have 1 inactive X. Whether

or not the Xic pairing plays a major role in the shape of P is still obscure,

as there are no available data about Xic’s pairing in multiploid cells.

By use of our model, we can make prediction about Xic pairing even in

multiploid cells. To this aim, we considered the lattice we used before (see

section on page 17) with three and four identical DNA polymers, and we

sought for the thermodynamic equilibrium states of the system.

We investigated two scenarios, by making different assumptions on the DNA-

molecule interaction. In a first scenario, a DNA bead can bind a single

molecule at a time. Fig. 2.11 panel A shows the probability at equilibrium of

each possible configuration in a system with 4X, as function of the binding

energy E at a fixed value of the concentration c. Two regimes are found:

at low energies, no paired polymers are found, but for high values of E the

configuration with two independent polymer couples is the most likely to

occur. These two regimes, which in the thermodynamic limit correspond to

different phases, are separated by a narrow region where, on average, only a

single though unstable polymer couple is formed in most of cases.

This result is also illustrated in fig. 2.11 panel B, where the phase diagram in



2.5 Monte Carlo simulations 42

0

20

40

60

80

100

p
[%
]

20 60 100
n / n0[%]

0.001

0.003

0.01

0.03

[h
]

20 60 100

n / n0[%]

A B

Figure 2.10: Panel A The figure shows the pairing probability, p, in het-

erozygous deletions, as a function of the fraction ∆n/n0 of binding sites

removed. In the “Wild Type” case (∆n/n0 = 0) the system is chosen to be

in the “Pairing Phase” (here c = 5%, E = 1.2kT ) and the equilibrium value

of the fraction of paired chromosomes is p = 100%. The pairing fraction, p,

has a non linear behavior as function of ∆n, with a crossover region around

∆n∗ = 50%n0. Short deletions, say, deletions with ∆n . 30%, have tiny

effects on the pairing fraction, while deletions with ∆n & 70% erase pairing.

Inset The average time, τ , to approach the equilibrium state is plotted as

function of ∆n/n0. When the deletion gets larger, τ is shorter, since less

MFs are bound to the polymers which, in turn, have an higher effective dif-

fusion constant. Panel B The colocalization state of a model system with

two DNA segments is summarized by this phase diagram in the (c, E, n0)

space, showing the regions where pairing and Brownian, independent diffu-

sion occur. The yellow circles mark the transition points derived from Monte

Carlo simulations and the transition surface is obtained by a power law fit:

c (E− Ẽ)γ (n0− ñ0)δ = const., with γ = 4, Ẽ = 0.8kT , δ = 1.1 and ñ0 = 3.5.

(c, E) plane is sketched. It emphasizes how the phase transition is found in

a wide range of molecule concentration and binding affinity. The red circles

mark the measured transition points (defined as the inflection points of the

blue and yellow curves in fig. 2.11 panel A, i.e., those corresponding to the
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probability to have no paired polymers and two independent polymer cou-

ples), and the grey area represents the crossover region, which gets narrower

as the thermodynamic limit is approached.

A similar picture is found in the system with 3 polymers: also in this case,

the equilibrium state of the system drastically changes at certain values of

the concentration/affinity of the molecules, switching between a configura-

tion with uncoupled, independent polymer segments and a regime where all

the three polymers are paired (see fig. 2.11 panel C and 2.11 panel D). An

intermediate region exists with a single, unstable polymer couple (fig. 2.11

panel C purple circles and fig. 2.11 panel D grey region).

We explored a second scenario where a DNA bead is allowed to form

multiple bonds with the molecules (like in the case we studied in the pre-

vious sections, for “diploid” systems)6. While the same results are found

in the system with 3 polymers (with a slight decrease in the threshold val-

ues of (c, E) needed for colocalization), an important modification of the

“Colocalized State” in the 4 polymer system is observed: the phase with two

stable and independent polymer couples is replaced by a phase with all the

4 polymers paired together (data not shown).

2.5.2 “Shuttling” to a nuclear target

The same physical mechanism which can produce the pairing of DNA se-

quences, can as well “shuttle” a DNA sequence to a nuclear target, like the

nucleolus, the nuclear membrane (as in the case of X chromosomes at the

end of XCI), etc.

To show this, we consider the variant of the model including one polymer

and an impenetrable surface modelling the DNA target (see above page 17

and fig. 2.1 panel B).

6In the “diploid” case these two scenarios on the molecule-DNA interaction produce

the same results. Indeed, if we imposed that, at the most, only one molecule can be

bound to a DNA “bead”, the only effect which would be noticed is an increased value of

the thresholds in (c, E, n0) needed for colocalization
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Figure 2.11: Panel A and B Pairing in a system with 4 polymers (such as

the case of the 4 Xic segments in XXXX cells). In panel A the probability

of each possible configuration of the polymers is plotted as function of the

molecular affinity E at a fixed molecular concentration (here c = 0.5%). At

low energies no pairing is observed, with almost all the polymers unpaired.

Conversely, at higher energies two independent polymer couples are formed

in most of cases (yellow diamonds). These two regimes (respectively the

“unpaired” and the “paired” regimes) are separated by a crossover region

(peak of purple circles) where a single unstable couple of polymers is found

with ∼ 50% of probability. Panel B shows the phase diagram in the (c, E)

plane. The red circles mark the transition points, the dashed yellow line

are power-law fits. The grey area represents the crossover region with just

one unstable couple formed. Panel C and D refer to a system with 3

polymers. In panel C the probability of the different pairing configurations at

equilibrium is plotted as function of E (with c =0.5%). Two thermodynamic

phases can be seen: no X couples at low E, while all the 3 X are paired

above a threshold (after a narrow crossover region). The phase diagram

in (c, E) plane is illustrated in panel D, showing the values of (c, E) (blue

circles) at which the phase transition occurs (the crossover region is in grey).

Superimposed fits (yellow dashed lines) are power-laws.
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2.5.2.1 Thermodynamics of the system

The fig. 2.12 panel A shows a scenario which is analogous to that found

for DNA pairing, with the only difference that now the target is a fixed

nuclear structure. Thus, the normalized mean squared distance between

the DNA and the target at equilibrium (defined in eq. (2.11)), switches

from 100% to 0% with a strongly non linear behaviour as function of the

DNA-molecule affinity E (fig. 2.12 panel A, main panel), as a result of the

thermodynamic phase transition. As before, the DNA is “shuttled” toward

the target only if the binding affinity E, the molecular concentration c and

the binding sites number on the DNA, n0, are above precise thresholds, as

the 3D phase diagram in the inset of fig. 2.12 panel A illustrates.

2.5.2.2 Role of non-specific binding sites

It is interesting to try to describe the effects on the “shuttling” mechanism

of the presence of a number of unspecific binding sites on DNA/target. We

discuss it in this section, in the context of DNA “shuttling” to a nuclear

target, but the very same conclusions can be achieved in the case of DNA

pairing.

The problem of how sequence-specific proteins can find their DNA tar-

get sites on very large eukaryotic genomes is ancient (see, e.g., [49, 87, 7]).

It has been proposed that the presence of non-specific binding sites (i.e.,

binding sites having lower affinities) allows a mixture of one-dimensional dif-

fusion of bridging molecules along the DNA and three-dimensional diffusion

in the surrounding medium, which could result in a more efficient search

of the DNA target sites than a purely one- or three-dimensional diffusion

[8, 90, 89, 29, 79]. On the other hand, binding of molecules to these sites is

expected to impair “shuttling” by the reduction of the effective concentration

of diffusing molecular mediators.

We tested the effect of the presence of non-specific sites in our schematic
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Figure 2.12: Panel A The equilibrium normalized square distance d2 be-

tween the DNA polymer and its nuclear target is shown as a function of

E/kT , the binding molecule affinity. At small E, d2 has a value correspond-

ing to random diffusion (d2 = 100%); above a threshold E ∼ E∗ = 2.1kT

(blue vertical arrow) a phase transition occurs and d2 collapses to zero (blue

horizontal line) signalling that DNA and target are colocalized. Molecule

chemical affinity acts as a switch. Here c = 0.2% and n0 = 24. Inset The

very same results are obtained by changing the molecule concentration c and

the binding sites number n0, as this 3D phase diagram in (c, E, n0) space

shows. The yellow circles mark the transition points between the two phases,

the transition surface (grey) is a power-law fit: c (E−Ẽ)α (n0−ñ0)β = const.,

with α = 4.5, β = 1.2, Ẽ = kT , ñ0 = 8. Panel B The system phase diagram

shows the regions in the (c, E) plane where DNA attachment to target and

Brownian diffusion occur (here n0 = 24), in the presence (green circles) or

absence (orange squares) of non-specific binding sites with a low affinity for

molecular binders (ENS = 1.5kT ).
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model: along with the clusters of “specific sites” previously included on the

polymer and on its target, we inserted up to 4 · 104 “non-specific” (i.e.,

low affinity) binding sites distributed on the target surface and within the

polymer itself. We performed Monte Carlo simulations to find out the equi-

librium status of the system as function of the molecular concentration c and

the specific binding energy E, with a fixed affinity for non-specific sites equal

to ENS = 1.5kT .

Fig. 2.12 panel B shows the changes in the phase diagram with respect

to the case ENS = 0. Orange squares and green circles mark the transition

points between the “Brownian” and the “Colocalization” phase respectively

for ENS = 0 (the case we dealt with previously) and ENS = 1.5kT . The

plot reveals that the presence of non-specific binding sites moves upward the

transition line. This is due to a reduction of the effective concentration of

molecules available to the specific sites, that are responsible for recognition

and attachment to the target. Such effect can be indeed important and affects

the location of the transition line even for comparatively small affinities (e.g.,

ENS = 1.5kT , see Fig. 2.12 panel B). Yet, the overall “shuttling” mechanisms

we discussed before is shown to be well robust.

2.5.2.3 Dynamics of “shuttling”

Fig. 2.13 shows the dynamics of d2(t) for two values of the interaction energy

E (here c = 0.2% and n0 = 24). When the binding energy E is small enough,

say E = 1.6kT , the long time value of d2(t) is equal to 100%, as expected

for a randomly diffusing polymer (fig. 2.13, red triangles). A drastic change

in behavior is observed, however, when the energy is raised to E = 2.5kT

(see Fig. 2.13, green diamonds): now the long time plateau of d2 collapses to

zero, signalling that a full colocalization has occurred. An effective attraction

force is generated and the polymer spontaneously finds and stably binds its

target (fig. 2.13 upper panels), as a result of the thermodynamic mechanism

described above.

As in the case of DNA sequence pairing (see page 31), the dynamics is char-
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acterized at small times by a Brownian diffusion regime where d2(t) is linear

in t (see inset fig. 2.13) and the polymer randomly explores the space around.

During that time, it enters in contact with its target. Afterwards, an expo-

nential decay of d2(t) is observed to the equilibrium value and, for E large

enough the interaction is stabilized.

Also in this case, we measured the mean square displacement of the poly-

mer center of mass from the initial position, 〈∆s2〉(t), for the same two values

of the interaction energy, E, considered above. For E/kT = 1.6 (i.e., when no

stable colocalization is observed), 〈∆s2〉(t) has the typical Brownian linear

behavior with t, at short as well as at long times (see fig. 2.14, red trian-

gles): overall, the polymer motion is unaffected by the presence of binding

molecules and nuclear scaffold. For E/kT = 2.5, instead, Brownian diffu-

sion is only found at short t, while the polymer is searching for its target;

at longer times, 〈∆s2〉(t) reaches a constant plateau which signals that the

polymer becomes firmly bound to the BSs of the nuclear target and cannot

diffuse any more (see fig. 2.14, green diamonds).

The inset in fig. 2.14 shows both the short and long time diffusion con-

stants D0 and D∞ as function of the energy E. As expected, the long time

diffusion constant, D∞(E), has a different behavior, with respect to the case

of DNA pairing (see fig. 2.9): when E is small, D∞(E) is very close to D0(E),

showing that the polymer motion is diffusive at all times. However, above

a transition point, Etr ' 2.1kT , D∞(E) collapses to zero as a result of the

attachment of the DNA segment to the fixed scaffold which stops further

diffusion (see fig. 2.14 inset and upper panels in fig. 2.13).
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Figure 2.13: The normalized mean square distance, d2, between the DNA

and the nuclear target binding sites (BSs) is plotted as a function of time, t,

for two values of their binding molecule chemical affinity, E (here c = 0.2%

and n0 = 24). Data from Monte Carlo (MC) simulations. For E = 1.6kT

(squares), d2 approaches the average distance found for a polymer randomly

located in space (i.e., 100% in our normalization). For E = 2.5kT (circles),

d2 has a different behavior, as it collapses to zero, showing that shuttling

to target has occurred. d2(t) has two time regimes: a linear behavior at

small t (see inset) due to the initial Brownian diffusion (“target searching”

regime) and a long time exponential approach to the equilibrium value (“tar-

get recognition” regime). The latter corresponds to colocalization only if E

is above a threshold (see fig. 2.12). The upper panels show system con-

figurations from MC simulations at three time periods for E = 2.5kT , and

provide a pictorial representation of our model: the DNA locus is modelled as

a self-avoiding walk (SAW) polymer made by “beads” which have an affinity

equal to 0 or to E (red beads and green beads respectively) for Brownianly

diffusing molecules (yellow beads). A cluster of binding sites is also present

on the nuclear target (blue surface).
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Figure 2.14: Main panel The mean square displacement, 〈∆s2〉, of the

center of mass of the DNA polymer is plotted as function of time for two

values of E. For E/kT = 1.6 (squares) 〈∆s2〉 is linear in t at all times,

signalling a purely Brownian motion: a linear fit at short and long times

(green lines) returns approximately the same diffusion constant (D0 and D∞,

see Inset). For E/kT = 2.5 (circles), when colocalization occurs, after an

initial Brownian regime (grey linear fit), around t = 2h, 〈∆s2〉(t) reaches a

plateau, showing that a stable contact with target is established and diffusion

interrupted. Inset The short and long time diffusion constants, D0 and D∞,

are shown as a function of E (normalized by D0(E = 0)). D∞ is very close

to D0 only for E < E∗ = 2.1kT (blue arrow), else it goes to zero indicating

that long time diffusion is halted.
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2.6 Conclusions

In the cell nucleus, in a striking example of self-organization, the architecture

of a vast number of DNA and nuclear loci is orchestrated to form complex

and functional patterns involving regulatory contacts. In most cases active

processes are not required for colocalization [54, 19, 21] and questions arise

on how DNA sequences recognize their targets (other DNA sequences or nu-

clear structures) and establish their relative positioning, and how the cell

can control these processes. The pairing of X chromosomes at the onset of

XCI as well as the “shuttling” of X’s at the end of XCI process (see previous

chapter), are some prominent examples of these phenomena.

Starting from the experimental data, via a schematic Statistical Mechanics

model, here we tried to address these questions and to propose a first quan-

titative scenario of a colocalization mechanism based on weak, biochemically

unstable interactions between specific DNA sequences and their molecular

binders. The mere production of molecules which bind both DNA and tar-

get is not sufficient to produce reliable and stable contacts. We showed

they are activated only above a phase transition point, i.e., for concentra-

tion/affinity of the molecular mediators above precise threshold values (e.g.,

molecule concentrations around ρ ∼ 10−3 ÷ 10−1µmol/litre correspond to

transition energies in the range E ∼ 3 ÷ 7kT ). Once these conditions are

met, DNA loci find their relative positions as stable thermodynamic states at

no energetic costs, as the resources required are provided by the surrounding

thermal bath.

The switch-like nature of the mechanism of target recognition and colo-

calization we discussed could be exploited in the cell to reliably induce loci

colocalization. In fact, well known cell strategies of modification of chromatin

structure (i.e., change E or n0) or upregulation of binding proteins (i.e.,

change c) can produce precise, switch-like, architectural rearrangements.

Deep similarities are found across a variety of experimental data like

those discussed in the section 2.2, including specific aspects such as the ef-

fects of protein concentration changes on DNA looping (see, e.g., [34, 38]).
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The robust thermodynamic essence of the process we discuss could support

the idea that “passive shuttling” phenomena can be traced back to simple

universal mechanisms (see, e.g., [81, 17, 35, 20, 78]), in a sense independent

on the biochemical details found in specific cases. On the other hand, many

complexities can arise in real cell nuclei where a variety of other specific

mechanisms are likely to intervene.

For sake of definiteness, we referred to DNA, but similar thermodynamic

mechanisms could work for other biological polymers, such as RNA, etc.

Non-specific molecular factors and unspecific DNA binding can further help

the search kinetics [8, 90, 89], while other processes can intervene, e.g., to

stabilize binding and to adjust DNA/target alignment if necessary. We also

showed that non specific DNA/target binding sites can have an important

effect on colocalization, yet the general scenario depicted above is unchanged.

Testable predictions about the outcomes of, e.g., genetic/chemical manipu-

lations (such as DNA deletions) can be made, which can be tested against

experimental data.

We tried to set the system parameters (e.g., the molecule concentration,

the dynamics time scale) in a regime relevant to the real biological cases (see

section 2.3). Nevertheless, our model is very schematic and we included only

the minimal molecular ingredients (say, molecular binders and specific DNA

sites) which emerge from the experiments. Yet, a simple model could better

serve the purpose to illustrate the core ingredients necessary to DNA-target

recognition (which can be traced back to polymer adsorption) and to depict

a schematic but quantitative scenario.



Chapter 3

X random choice via a

Symmetry Breaking mechanism

We present here a possible mechanism, based on a thermodynamic phase

transition, which the cell could exploit to randomly choose the inactive X

and which also accounts for the changes in the DNA architecture and the X

chromosome pairing observed experimentally (see section 1.4) [77, 72].

3.1 Introduction

We described in a previous section (1.4), the recent experimental insights into

the complex and dynamic regulation of the XCI key control region called “X

Inactivation Center” (Xic), and, in particular, its different spatial organi-

zation on the two X chromosomes. We discuss here a model to explain,

on quantitative grounds, how the Xic locus is orchestrated through such a

complex pattern of conformational changes; how its elements recognize each

other and colocalize; and how the random, yet mutually exclusive choice of

fate is later determined, i.e., how the intrinsic symmetry of the X’s is spon-

taneously broken.

Starting from the above experimental information, our model (see Fig.3.1)

predicts the existence of two molecular regulators, say, type-A and B molecules.

53
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It poses that along the DNA locus there are two regions (type-a regions), in

the area around Jpx and Xist, having an array of binding sites for type-A

molecules, which can bridge them to another key control region (type-c re-

gion) expected to be located in the area of the “buffer”. Analogously, there

are two type-b regions, around Tsix and Xite, where type-B molecules can

bind and form a bridge with the same type-c region above.

We show on physical grounds that the above minimal elements are suffi-

cient to orchestrate conformational changes and symmetry breaking as seen

at XCI, and we explain how they spontaneously induce the complex reg-

ulation of the locus. In particular, we show (see Fig.3.1) that if molecule

concentration/DNA-binding energy rises above threshold, the distinct molec-

ular factors produce long distance interaction (recognition) and stable colo-

calization of their corresponding DNA binding sites, thus forming a type-a

and a type-b “hub”. This is symmetrically achieved on each of the X chro-

mosomes (see fig. 3.1 panel B). The symmetry is spontaneously broken when

a mutual interaction is turned on between molecules of the same kind. We

show that molecule cooperativity produces the self-assembling of a single

major aggregate for each class which binds randomly, yet in a mutually ex-

clusive way, only one X. This, in turn, leads to two different architectures

on the X’s, as the X bound to type-A molecular aggregate will show only a

type-a hub, whereas a type-b hub will be found on the other X bound by the

type-B aggregate (see fig. 3.1 panel C).

The colocalization and symmetry breaking mechanisms derive from two

distinct thermodynamic phase transitions [11]. Their switch-like nature can

explain how a sharp regulation of nuclear architecture and stochastic choice

of fate can be obtained by simple strategies, such as protein upregulation or

chromatin modification. Importantly, the model predicts energy/concentration

thresholds which are in the expected biological range (weak biochemical ener-

gies, fractions of micro-mole/litre concentrations). It may help understand-

ing the deep connection between architectural changes and regulation of XCI,

providing a unified description of such a complex process.
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Figure 3.1: A pictorial description of our model. A) Two polymers are

considered, each having two type-a (red), two type-b (green) and a type-c

(blue) regions. Type-a and type-c can be bridged by type-A molecules (red

circles) with an affinity EX ; type-b and type-c by type-B molecules (green

circles). Each molecular species has a concentration c. Type-A molecules

have also mutual interactions of affinity E0, and similarly type-B ones. The

presumptive mapping areas on the Xic are also illustrated (in the upper

right panel). There are threshold values for c and E0 (for a given EX), ctr

and Etr, where the system collective behaviour spontaneously changes. For

c < ctr and E0 < Etr, the polymers are statistically found in an open and

randomly folded state (as in panel A). B) For c > ctr, type-a and type-b

regions colocalize with type-c and a two hub conformation is established. C)

If also E0 > Etr, a symmetry breaking occurs as the type-a hub persists

on one, randomly selected, polymer (where type-b hub is released), whereas

the other polymer takes the opposite conformation. This results from the

self-assembling (for E0 > Etr) of a single major cluster of type-A and type-B

molecules which compete for the binding sites of type-c region.
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3.2 Model parameters and Monte Carlo com-

puter simulations

We represent the relevant region on each X chromosome (see Fig. 3.1) by a

standard model of polymer physics, a self-avoiding bead chain [23]. As men-

tioned above, we assume that along each polymer there are two type-a, two

type-b and one type-c region. Each polymer bead in these regions can bind

up to four molecules of the same type: beads in type-a (respectively type-

b) regions can bind only to type-A (respectively type-B) molecules, whereas

beads in type-c regions can bind either to type-A or type-B molecules. More-

over, type-A molecules (respectively type-B) can bind, at most, to one type-a

(respectively type-b) and one type-c binding site at a time. For simplicity,

with no loss of generality of our results, we consider the symmetric case where

both the types of molecules have a concentration c and their affinity to DNA

is equal to EX for all the types of loci they can bind to. Similarly, if n0 is

the number of type-c binding sites on one chromosome, we assume that each

of the type-a and type-b regions contain the same number of binding sites

equal to n0/4. The value of n0 is chosen to be of the order of the binding

sites number found experimentally in the locus for Ctcf protein (see section

1.4; here n0 = 20).

Type-A (resp. type-B) molecules can bind, with multiple valency, each

other with an affinity EAA (resp. EBB). For simplicity, we set EAA =

EBB ≡ E0 and, considering the number of binding domains available on

a Ctcf molecule, the valency of four.

Summarizing, we consider a physical model which includes two identical

self-avoiding polymers with two kind of binding sites, for molecules A and

B. The polymers have a key control region (type-c) where either A or B can

bind. Each kind of molecule has a concentration c and an affinity, EX , for

its corresponding binding sites on the polymer. Molecules of type A can also

bind each other, with E0, and similarly the B molecules.

The system is investigated by Metropolis Monte Carlo (MC) simulations
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[10]. For computational purposes, the system lives on a cubic lattice with

lattice spacing, d0. The value of d0 corresponds to the typical size of a

DNA binding site and can be roughly estimated to be about three orders

of magnitude smaller than the nucleus diameter, say, d0 ∼ 10nm (i.e., a

DNA sequence of about ∼ 30bp). To reduce computation time, we do not

simulate the whole nuclear space, but only consider a cubic lattice region

with periodic boundary conditions, around each polymer of linear size L (in

units of d0); yet, type-A and B molecules are allowed to diffuse from one to

the other region. Below, we use lattices with L = 32 and periodic boundary

conditions. Polymer chains have n = 96 beads, but we explored the range

L, n = 32÷ 128 to check the robustness of our results. Averages run over up

to 103 simulations from different initial configurations.

As we explained in the previous chapter (see section 2.3), the fraction, c, of

molecules per lattice site is related to the molar concentration, ρ ∼ c/d3
0NA,

where NA is the Avogadro number. A typical nuclear protein concentration

ρ ∼ 1µmole/litre would correspond to c ∼ 0.1%: below we consider the range

c ∼ 10−3 ÷ 100 %.

Diffusing particles (molecules and polymer beads) randomly move from

one to a nearest neighbor vertex on the lattice, where no more than one parti-

cle can be present at a given time (single occupancy). Chemical interactions

are only permitted between nearest neighbour particles.

In our Monte Carlo simulations, the probability of a particle to move to a

neighbouring empty site is proportional to the Arrhenius factor r0 exp(−∆E/kT ),

where ∆E is the energy change in the move, k the Boltzmann constant and T

the temperature. The prefactor r0 is the bare kinetic rate and gives the scale

to convert Monte Carlo to real time: the Monte Carlo time unit, τ0 = r−1
0 ,

is the time to try to update once, on average, all the particles of the system

[10].

We set r0 here by imposing that the polymer diffusion coefficient, D,

has the same order of magnitude than real mammalian DNA loci (as we

did above, section 2.3). We exploit the defining relation: in three-dimension
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D = 〈∆s2〉 (d2
0/6τ0), where 〈∆s2〉 is the mean square displacement (expressed

in units of d0) of the polymer center-of-mass per unit MC time. In our

system we find values around 〈∆s2〉 = 1.5 · 10−3 d2
0. The order of magnitude

of measured diffusion constants of, e.g., human DNA loci is D ∼ 1µm2/hour

[14], thus we obtain τ0 ∼ 90µs, a value falling within the range of known

biochemical kinetic constants [88].

To monitor the spatial configuration of the polymers, we measured several

quantities, such as the distance between the type-a and type-c regions defined

as:

d =
1

n0/4

n0/4∑
i=1

min
{
dai,cj

}n0

j=1
(3.1)

where dai,cj is the distance between the i-th bead of the type-a region and

the j-th bead of type-c region. For each type-a bead, the minimum of these

distances is calculated, and then averaged over all the n0/4 beads of the

type-a region. Of course, the same definition is used for the distance between

type-b and type-c regions. A type-a (resp. type-b) region is defined to be

“colocalized” with the type-c region if d < 2d0.

3.3 Pre-XCI X conformation

We first show that Brownian diffusing molecules can produce a symmetric

polymer conformation where two “hubs” are formed by the colocalization of

type-a and of type-b with type-c region. The mechanism acting here is the

DNA “passive-shuttling” which we described in details in the chapter 2: it is

based on a thermodynamic process (a phase transition) which acts switch-like

when concentration/affinity of binding molecules rise above a threshold.

For sake of simplicity, we consider first the case where molecule mutual

interaction is turned off, E0 = 0, and assume that initially the two polymers

have a randomly open conformation, as found in nuclei before XCI [85].

A type-A molecule (red circles in Fig. 3.1) can form a bridge between type-

a and type-c regions, an event resulting from the stochastic double encounter
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of the molecule with its targets. If molecule concentration, c (or EX , see

below), is small the half-life of such a bridge is short and the regions on

average float away from each other: their contact is totally unstable. At

higher c (or EX), however, a positive feedback mechanism occurs: the higher

the number of bound molecules to type-a and type-c regions, the larger the

number of bridges which reinforce each other and stabilize the conformation,

as multiple bonds should be simultaneously broken to release the contact.

The argument predicts, thus, a threshold concentration where such a positive

feedback mechanism becomes winning and a stable contact is established

between type-a and type-c regions.

This pictorial scenario is confirmed by Monte Carlo simulations. We

measured the colocalization order parameter, π = (pA + pB)/2, where pA

(respectively pB) is the probability of colocalization of type-a regions (re-

spectively type-b). More precisely, pA/B is the fraction of cases where the

region mean distance, at equilibrium, is less than 2d0. The order parameter,

π = π(c, EX , E0) is close to zero, π ' 0, if neither type-a nor type-b regions

are in contact; in case only one pair is stably colocalized then π ' 0.5; finally,

π ' 1 if both hubs are formed.

Figure 3.2 panel A shows the time evolution of π(t) in two cases (from

an open initial configuration, here EX = 3kT ): if c is small, π remains

indefinitely close to zero, π ∼ 0, as no stable contact is statistically possible;

instead, if c is high enough, π grows to a value close to one, π ' 1, showing

that both type-a and type-b hubs are formed.

In the space of the control parameters, (c, EX), a sharp line separates

the two regimes, as shown in Fig. 3.2 panel B: when c or EX are small,

contacts cannot be stable; conversely, above the transition line the two hubs

conformation is reliably established on each polymer. Such a line marks the

boundary between two thermodynamic phases [11]: it corresponds to the

point where the entropy loss due to hub formation is compensated by the

energy gain obtained from the establishment of the corresponding bridges.

For its thermodynamics nature the process is strongly robust (see also chapter
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2).

The discovery of such a switch-like behaviour can also explain how hub

formation can be sharply and reliably regulated in the cell by increasing the

concentration of specific molecular mediators or the affinity to their DNA

target sites, e.g., by chromatin or molecule modifications.

The position of the transition line is also dependent on the number of

available binding sites, n0, since, schematically, the overall binding energy

scale is n0EX . We predict, thus, the presence of non-linear threshold effects

in genetic deletion/insertions of the locus (see section 2.5.1.3).

From Monte Carlo results we can predict concentration (or energy) thresh-

olds in real nuclei. Consider the case where EX is of the order of a typical

Transcription Factor binding energy, i.e., a few units in kBT [88]. In that

case our Monte Carlo predicts thresholds around c ∼ 0.1%, i.e., molar thresh-

olds around ρ ∼ 1µmole/litre, a value in the range of typical nuclear protein

concentrations. Higher EX would correspond to lower ρ (see Fig. 3.2 panel

B). For instance, “in vitro” measures of Ctcf DNA binding energies give

EX ∼ 20kT (see, e.g., [70, 71]), predicting molar concentration thresholds in

the sub-fraction of µmole/litre.

Finally, the mechanism leading to stable hub formation has to be fast

enough to serve functional purposes. Real dynamics is only very schemati-

cally captured by Monte Carlo Metropolis simulations, which are considered

though to well describe the general long time evolution of a system domi-

nated by Brownian processes. In our model we find colocalization times of

the order of minutes as shown in Fig. 3.2 panel A, a scale consistent with

biological expectations.

3.4 Stochastic choice of fate

The hub formation mechanism illustrated above is fully “symmetric” on the

two X polymers. Now we show that turning on molecule reciprocal interac-

tion, E0, is enough to trigger a different thermodynamic mechanism which
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Figure 3.2: Panel A The colocalization order parameter, π = (pA+pB)/2, is

the average probability of type-a and type-b regions to colocalize with type-c

region. Its time evolution, from an initial open polymer conformation, is

shown for two values of concentration, c (here EX = 3kT and E0 = 0). For

c = 0.2% < ctr, π is zero at all times: neither type-a nor type-b regions

succeed in forming stable contacts with type-c. For c = 2% > ctr, after a

transient of the orders of minutes, π approaches one: full colocalization is

established. Panel B The colocalization phase diagram in the (EX , c) plane

(for E0 = 0): in the region below the sharp transition line, ctr(EX) (gray

dashed line), the polymers are found in an open state; above ctr(EX), they

exhibit the colocalization of type-a and type-b with type-c region. The grey

dashed line is a power-law fit: c = (EX − ẼX)−α with ẼX = 1.7kT and

α = 2.6.
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Figure 3.3: A schematic representation of the symmetry breaking mech-

anism is illustrated. We started from symmetric, “folded” configurations,

in which type-a (resp. type-b) regions are colocalized with type-c with

a probability pA (resp. pB) equal to 1. So, the pairing order parameter

π = (pA + pB)/2 = 1. When an above threshold interaction energy between

the two types of molecules is turned on, two clusters are assembled around

the two chromosomes and the symmetry is broken (π = 1/2).
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produces the breaking of the X symmetry: a single major type A molecule

aggregate is formed which randomly binds one X (where the B linked hub

will thus open); analogously, a major type B molecule aggregate binds only

the other X (where the type-a hub will open). This results from molecule

binding cooperativity: if E0 (and c, see below) is above a critical threshold,

the energy gain in forming a single major cluster of molecules of the same

kind (that maximizes the number of chemical bonds between molecules) com-

pensates the corresponding entropy reduction. The single aggregate will be

randomly bound around just one X, leaving the other X “naked” of that kind

of molecule.

Type-A and B major clusters bind opposite X polymers because A and

B molecules compete for the binding sites in the type-c region. Hence, if on

one X a fluctuation increases the presence of, say, A molecules, cooperativity

tends to favour their assembling at that site and B molecules are expelled

(a state with an equal number of A and B would be unstable); in turn, the

depletion of A around the other X favours the assembling of B molecules

on it. On the X where the A-cluster binds the key regulator type-c region,

the B-related loci can no longer be stably linked, and their hub opens; the

opposite situation happens on the other X (see fig. 3.3).

The above scenario is illustrated by Monte Carlo simulations where the

symmetry breaking order parameter, mA = |ρ(1)
A − ρ

(2)
A |/(ρ

(1)
A + ρ

(2)
A ), is mea-

sured (here ρ
(i)
A is the average local concentration of A molecules around

type-c region of polymer i = 1, 2): mA is close to zero if an equal amount of

A molecules is present around the two X polymers, whereas it approaches one

if the symmetry is spontaneously broken (mB behaves analogously). Figure

3.4 shows the time evolution of mA(t) from an initial configuration corre-

sponding to the symmetric state where each X polymer has two hubs. It

reports two cases: if E0 is small, mA remains close to zero at all times;

conversely, if E0 is high enough, mA approaches one because A molecules

reside mostly around just one, randomly chosen polymer and the symmetry

is broken.
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To illustrate further the process, figure 3.5 panel A shows the correspond-

ing dynamics of ρ
(1)
A and ρ

(2)
A : in the example pictured, ρ

(1)
A strongly increases,

whereas ρ
(2)
A plunges approximately to zero. There is an initial transient

when ρ
(1)
A and ρ

(2)
A behave similarly, yet ρ

(1)
A prevails as soon as a fluctuation

favouring the A’s around the chromosome 1 becomes spontaneously ampli-

fied. Thus, type-c region on polymer 2 is depleted of A molecules and the

hub they hold is released, i.e., the type-A regions contact opens as also illus-

trated in fig. 3.5 panel B, where pA on chromosome 1 and 2 are reported. Of

course, the same quantities plotted for type-B molecules and type-b regions,

would show exactly the opposite situation, with the type-b hub released on

chromosome 1.

The Symmetry Breaking mechanism is also switch-like, as the phase dia-

gram of figure 3.6 proves: in the (c, E0) space, as soon as a narrow transition

line is crossed the system switches from an X symmetric to a broken X sym-

metry state. As far as XCI is concerned, the predicted single B molecule

aggregate is interpreted as a Xist repressing factor (a Blocking Factor, BF)

and designates the future active X. The A aggregate marks the X where Xist

is enhanced by Jpx and is interpreted as an activating factor. Importantly,

the thresholds predicted by our theory for the symmetry breaking mecha-

nisms also fall is the correct biochemical range (see above and Fig. 3.6).

The time scale required to break the symmetry in a real nucleus can

depend on a number of details, such as its specific spatial arrangement or

the nature of the chemical reactions involved. Our Monte Carlo can, thus,

provide only a very rough order of magnitude estimate. As shown in Fig. 3.5,

such a time scale is predicted to be around 10 hours, a value not too far from

the biological time scale required for XCI initiation [93].

3.5 Pairing and Random Choice

We saw in the previous chapters that the two X chromosomes have been

shown to pair off during the XCI process.
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Figure 3.4: The symmetry breaking order parameter, mA = |ρ(1)
A −

ρ
(2)
A |/(ρ

(1)
A +ρ

(2)
A ), is the average difference of type-A molecule density around

type-c region of polymers 1 and 2, divided by their sum. Its dynamics,

from a “colocalized state”, is shown for two values of E0 (here c = 2%

and EX = 3kT ). If E0 = 0 < Etr (purple circles), mA is close to zero,

i.e., ρ
(1)
A ' ρ

(2)
A : molecules are equally distributed around polymers. If

E0 = 2kT > Etr (orange diamonds), after a transient of about ten hours, mA

rises close to one, i.e., either ρ
(1)
A → 0 or ρ

(2)
A → 0: molecules have aggregated

around only one of the polymers whose binding symmetry is broken.
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Figure 3.5: An example of the dynamics of ρ
(1)
A (t) and ρ

(2)
A (t), i.e., the type-

A molecule density around type-c region of polymers 1 and 2 (panel A),

and of the colocalization probabilities p
(1)
A (t) and p

(2)
A (t) (panel B) of type-a

regions on polymer 1 and 2. In this example, with E0 = 2kT (here c = 0.2%

and EX = 3kT ), ρ
(1)
A (t) grows to one while ρ

(2)
A (t) plunges to zero, and at the

same time p
(1)
A (t) → 1 whereas p

(2)
A (t) → 0. The dashed blue lines indicate

the values of ρ
(1)
A = ρ

(2)
A and p

(1)
A = p

(2)
A when E0 = 0
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Figure 3.6: The system phase diagram in the (E0, c) plane (for EX = 3kT )

has three phases. If E0 is below the transition line, Etr(c), the system is

in one of its symmetric phases: the “open state” phase (at low c) or the

“colocalization phase” (at high c). If E0 > Etr(c), the polymers conformation

symmetry is broken: the type-a hub persists only on one, randomly chosen

polymer, whereas the type-b hub persists on the other.
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Our Symmetry Breaking model also predicts that the X chromosomes colo-

calize (precisely at the Xic region) on a longer time scale, as found in recent

experiments [5, 93]. When the “symmetry breaking” molecular aggregates

have bound their target, the homologous regions on the opposite X (which

is “open”) can eventually diffuse (with the rest of its X) to be bound itself;

that process occurs on a much longer time scale because it involves diffusion

of whole DNA regions rather than molecules. Yet, symmetry breaking would

be followed by a form of X colocalization unless other phenomena intervene.

We tested such a scenario with the focus on just one of the DNA regions

(say, only type-a), to speed-up simulations. And, in that context, we also

explored the possibility that many a molecular factor is involved in the sym-

metry breaking process.

So far, to illustrate the key concepts of colocalization (see chapter 2) and

symmetry breaking, we employed a realization of the model which includes

very minimal ingredients. In fact, a number of variants can be considered to

account for the variety of complications likely to occur in real nuclei. First

of all, the number of molecular factors involved in the process can be much

larger than just two (e.g., the molecule mutual interaction could be turned

on by other factors). Specific factors, e.g., non coding local transcripts [46],

and unspecific chromatin proteins, such as Ctcf (or Yy1 and Oct4 [25, 24]),

are likely to cooperate in the timeline of such a complex process.

We considered two directed self-avoiding bead chain polymers which can

bind a concentration of diffusing molecules (type-1), with energy EX . These

molecules can form a bridge between the beads of the different polymers

and also bind (energy E12), at most, two molecules of a different species

(type-2), which, in turn, have multiple valency mutual interactions (energy

E22). We used a lattice with periodic boundary conditions having dimensions

Lx = 2L, Ly = L and Lz = L in units of d0, the lattice space constant. In the

simulations here discussed L = 16, but we checked the results with L in the

range 16÷64. The polymers have n = L beads, which act as binding sites for

type-1 molecules (see fig. 3.7). We run Monte Carlo computer simulations of
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this system, by using the Metropolis algorithm (see section 3.2 for details).

We take into account the faster dynamics of the molecules with respect to

the DNA loci by fixing a molecule diffusion constant 5 ·103 times larger than

that of the DNA loci, as experiments suggest (see [68] for typical diffusion

constants of nuclear proteins and [14] for DNA loci). We measure the average

distance between the polymers defined as:

d =
1

n

n∑
i=1

〈r(zi)〉 (3.2)

〈r(zi)〉 being the distance between the polymer bead at height zi, averaged

over different simulations and over all the n polymer beads. The polymers

are considered to be “colocalized” if their distance is less than 3d0.

In such a system, we found that, if the concentrations/binding energies of the

molecules are high enough, type-1/type-2 molecular complexes form a unique

cluster around one of the two polymers, so breaking the binding symmetry

of the polymers. Then, the couple of polymers eventually colocalize at two

orders of magnitude longer time scales.

We show this in fig. 3.8: panel A illustrates the pairing probability p of the

polymer’s couple (blue circles) and the order parameter m2 (orange squares)

defined as
(
|ρ(1)

2 − ρ(2)
2 |
)
/
(
ρ

(1)
2 + ρ

(2)
2

)
, where ρ

(i)
2 , i = {1, 2}, is the density

of type-2 molecules around the i−th polymer (m1 has the same behaviour).

In panel B a 2D projection of the lattice is shown at three time frames: the

green spots are the polymers centre-of-mass, whereas the density of type-2

molecules is represented in colour scale (blue areas correspond to low densi-

ties, red to high densities). In this simplified version of the model, we fixed

the time scale by imposing that the time required to break the symmetry is

the same we found in the previous model (see section 3.4).

Initially the polymers are placed at the maximum possible distance and the

molecules are randomly distributed in the lattice (upper panel B). It is seen

that m(t) ∼ 80% at t ∼ 0.1÷ 1h, indicating that type-2 molecules have clus-

terized around one polymer (middle panel B). Yet, with a slower dynamics,

polymers continue to diffuse, and eventually colocalize at t & 10h: this is
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signalled by the raise of p to ∼ 100%, and the corresponding falling of m to

∼ 0, as the molecular cluster now includes both the polymers (lower panel

B).

In the symmetry breaking model we illustrate in the previous section,

X colocalization can be, of course, prevented by other intervening nuclear

events, or more trivially by the specific chemical details of the system. Sup-

pose, for instance, that type-A and B molecules have a structure whereby

DNA can be bound only if they are not previously bound to other type-A

and B molecules: in this case, after the A and B aggregate has bound its

target, the eventually approaching homologous region of the other X cannot

be bound, and stable colocalization of the X would not occur.

Most of these details are still mysterious and our analysis could help individ-

uating candidate elements and designing targeted experiments.

Figure 3.7: Pictorial representation of the model system we used to inves-

tigate the relationships between the symmetry breaking mechanism and the

pairing. In a lattice with periodic boundary conditions, two directed poly-

mers are included having binding sites (green beads) for a set of diffusing

molecules (type-1 molecules, yellow spheres). These molecules can form

bonds with another type of molecules (type-2, blue spheres), which, in turn

have a reciprocal interaction energy.
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Figure 3.8: Panel A The pairing probability p of the two polymers (blue

circles) and the order parameter m2 =
(
|ρ(1)

2 − ρ(2)
2 |
)
/
(
ρ

(1)
2 + ρ

(2)
2

)
(orange

squares; ρ
(i)
2 is the density of type-2 molecules around the i-th chromosome)

are plotted as function of time. It is shown that the molecules break the

binding symmetry between the polymers (m ∼ 80% at t ∼ 0.1 ÷ 1h); then,

in a time scale which is two order of magnitudes larger, the polymers do

colocalize (p ∼ 100% at t & 10h) and the molecular cluster includes both of

them. Panel B These 2D projections of the system show the configurations

at three different times, with the polymer center-of-mass marked by green

circles and a colour map representing the density of type-2 molecules (red

colour indicates high density regions, blue low density). At t = 0 (upper

panel), the polymers are far apart and the molecules are quite uniformly dis-

tributed in the lattice; at t = 0.1h, the polymers are still far from each other,

but a unique molecular cluster is formed around one of the two polymers;

finally, at t = 10h, the polymers are paired and the molecular cluster includes

both of them.



Chapter 4

A possible scenario for X

Inactivation in real cells

In this final chapter, we will use the results of chapter 2 and 3 to try to

depict a comprehensive scenario for X Chromosome Inactivation, which in-

cludes the current experimental observations in Wild Type cells (i.e., normal

cells, without any mutations) as well as in mutants (say, cells with DNA

deletions/insertions and cells with multiple copies of X chromosomes; see

chapter 1 for details on the mutations) [72, 9] .

4.1 “Wild Type” female and male cells

Summarizing, in the previous chapter, we considered a model system where

two kinds of molecular factors interact with a couple of identical polymers and

naturally establish an architecture where two hubs (composed of type-a and

type-b regions in contact with type-c region) are spontaneously formed. Such

a spatial conformation is produced by a switch-like thermodynamic mecha-

nisms (a colocalization transition) as soon as molecule concentration/DNA-

binding energy rises above a threshold value. Upon activation of mutual

interactions of the molecules within each class, the architecture of the two

polymers is spontaneously driven into opposite directions (“Symmetry Break-

72
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ing”): the type-a hub persists on one, randomly selected, polymer where the

type-b hub is open, whereas the opposite conformations occurs on the other

polymer. The mutual interactions between A (and B) molecules could be

induced, e.g., by chemical modifications or by additional factors which facil-

itate their association.

The symmetry breaking mechanism exploits the elements involved earlier

in the formation of type-a and type-b hubs, but it originates from a different

thermodynamic phase transition: the mutual interactions between molecules

induce the self-assembling of a single supermolecular aggregate for each class

which randomly, yet in a mutually exclusive way (for the competition for

the type-c region), binds to one of its equivalent polymer targets. This pro-

cess is also switch-like and results in a new sharp, yet stochastic, regulatory

mechanism.

We propose that the early stages of XCI could be governed by physical

mechanisms of “colocalization” and “symmetry breaking” like those illus-

trated in the previous chapters: the connection between architectural changes

and choice of fate would be naturally rationalized; and their on-off character

would explain how “counting&choice” are reliably regulated.

Upon initiation of XCI, the Jpx and Xist genes colocalize with the

“buffer” region in the so-called ACH1 hub, while Tsix, Xite and the “buffer”

form the ACH2 hub (see section 1.4 and [85]). Our model can explain, on

simple physical grounds, how those elements can be sharply and simply reg-

ulated to recognize each other and colocalize. Later in XCI the opposite fate

of X chromosomes is established at random. And we showed how the same

physical elements involved in the hub formation process can spontaneously

break the X symmetry: the molecular aggregate bound, in our model, to

the Tsix-Xite locus (type-b loci) is interpreted as a factor related to Xist

silencing (i.e., to its Blocking Factor [4, 91, 46]) and designates the future

active X; the different aggregate bound to the Jpx-Xist locus (type-a loci) of

the other X, is linked to an Xist activating factor [82, 36, 84]. The observed

pairing of Tsix/Xite region can also follow from this mechanism (see section
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3.5).

The two types of molecular aggregates we envisage in our model, are likely

to be made up of both specific factors, such as non-coding RNA (like Tsix,

Xite, Jpx, etc.; see [46] and next section), and unspecific factors, i.e., pro-

teins (e.g., Ctcf [12, 92], or other putative factors such as Y y1 [25], Oct4

[24], etc.).

The time required to break the symmetry and so to assemble the “acti-

vating” and the “blocking” factor, can be proved to be a power-law function

of the chromosome distance [63]. Thus, it may be necessary for the XCI to

occur in a proper time, that the Xic regions where the two factors bind, are

brought close one to each other, though not in physical contact. This can be

achieved thanks to the pairing of another locus, close to the regions where

the hubs are: one possible candidate is the Xpr locus, which pair off before

XCI starts (even before the Tsix/Xite pairing; see [3] and section 1.3). The

pairing of these loci can be the way the X’s “sense” one each other and the

symmetry breaking mechanism is triggered.

Interestingly, the model can explain, for the first time in a unified frame-

work, all current major experimental observations on XCI, and, in particular,

the effects of deletions in the area (see below and [91, 46, 63, 62, 73, 82]).

A two factors regulated XCI in male cells is naturally framed in the same

context too. Indeed, in males, whose single X chromosome must remain ac-

tive, other processes could intervene, yet it is easy to see how the same two

factors mechanism can work, i.e., why the only X is usually bound by the B

aggregate (and not by A) to repress Xist. In fact, the affinities of A and B

molecules for the key type-c region are expected, in general, to be different:

EA 6= EB. Hence, if EB is larger than EA, it is thermodynamically conve-

nient that B molecules bind the X, a difference of a few units in kT being

sufficient to skew of orders of magnitudes the binding probability of A and

B.

The type-c region in our model emerges as a key control cis-regulator

which orchestrates productive contacts by binding one or the other hub. Its
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key role in XCI could be tested by experiments targeted at the “buffer” area.

Our model also predicts non-linear threshold effects in, e.g., genetic dele-

tions along the regulatory regions which, according to our scenario, master

architectural conformations changes and choice of fate. Finally, two main

molecular elements are envisaged to control the process and result in the

assembling of an activating and a blocking factor for Xist.

We considered here a version of the model including just minimal ingre-

dients, as it can better serve the purpose to illustrate the key mechanisms

of regulation. Yet, the model can accommodate further elements and more

precise molecular details. More generally, the simplicity and robustness of

thermodynamic switches like those described here could make them relevant

to other nuclear processes, e.g., chromatin architectural organization (see also

chapter 2 and [40, 55, 27]) and random monoallelic expression (see below and

[30]).

In fact, XCI is only one of the best studied examples of an entire class of cellu-

lar processes which involve stochastic regulatory mechanisms. Such processes

are known as “Random Monoallelic Expression”. In diploid organisms (see

note on page 12) it is generally assumed that the paternally and paternally

derived copies of each gene (called “alleles”) are simultaneously expressed at

comparable levels. However there are important exceptions where only one

of the two alleles is expressed, and in several cases the choice of the allele

to express is made at random by the cell. The number of genes in humans

which undergo such “random monoallelic expression”, according to recent

estimations, is about the 10% of all human genes [30], and include classes of

genes which are fundamental, e.g., for the olfactory and the immune system.

And in all these cases the underlying physical mechanisms remain unknown.

XCI is a somewhat peculiar example in the fact that it entails the silencing

of an entire chromosome. Yet, the model that we described, as it is very

general and uses a few basic molecular ingredients, can be as well relevant to

explain these other examples of cellular “random choices”.
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4.2 Deletion and insertion experiments

As we anticipated, with the model we propose, it is also possible to ratio-

nalize the effects on XCI of the deletion/insertion experiments reported in

literature. In our perspective, a deletion in a DNA segment, including bind-

ing sites for the molecular components of the “Blocking Factor” (BF) or the

“Activating Factor” (AF; see previous section), results in the reduction of

the chemical affinity of such a sequence for the BF or the AF; analogously,

the insertion of a similar segment into an autosome results in the possibility

of the autosome to bind the BF or the AF. So, with reference to the data

reported in the previous chapter, we can interpret, on a quantitative ground,

deletion and insertion experiments.

For instance, let us consider the deletions illustrated in the section 1.4,

whose outcomes we summarize here. The heterozygous deletion ∆65kb [15]

turns out to be lethal in males, as it leads to the inactivation of the only X,

while in females it always determines the inactivation of the deleted X. The

smaller deletions (∆AS, ∆AJ , ∆AV , ∆34 [86], Tsix∆CpG [47] and Xite∆L

[65]), nested in the ∆65kb deletion, may cause the X inactivation in male

cells only in a certain fraction of cases. The deletions Tsix∆CpG and Xite∆L

result in the inactivation of the deleted X in heterozygous females. A random

choice but a “chaotic” counting is found in homozygous deletions in females,

with a number of cells showing two active X chromosomes instead of one.

The insertions of this regions in non-sex chromosome of male cells cause the

inactivation of the only X.

All these results can be explained by our model, since the deleted areas in-

volve the DNA sites where the binding sites for the “Blocking Factor” (which

prevents the inactivation of the X it binds to) are mapped (see previous sec-

tion). The longer deletion ∆65kb removes a very large portion of the binding

sites, resulting in a very low or a zero affinity for the BF, so it leads to

the inactivation of the X that bears the deletion. Yet, the smaller nested

deletions are expected to remove a minor fraction of the BF binding sites;

so, a “skewed” inactivation is observed in heterozygous deletions, as the BF
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will preferentially bind to the Wild Type X, protecting it from inactivation.

In homozygous deletions the choice is still random because the BF has the

same (lower) affinity for the two X’s, but it fails to bind in a fraction of cases,

determining the “chaotic” counting. The same holds in males: the only X

has no competitors for the BF binding, but there is a probability that BF

misses its target and that the only X is inactivated. Such a probability will

be higher the more the BF binding sites that are removed, so it is expected

to increase with the length of the deletion (as it is experimentally observed).

The autosomal insertions of these regions in males allow the BF to bind to

the autosome, which competes with the X for it, and may leave the real X

chromosome prone to inactivation.

We reported in the section 1.4 the results of some experiments about ma-

nipulations of the Jpx gene and RNA molecule [84]. Biologists tested the

effect of the decrease of Jpx RNA molecule concentration and observed that

this blocks the XCI in female cells, while it has no effect in males. This

can be justified within the symmetry breaking model, by assuming that Jpx

RNA enters in the formation of the envisaged AF: in this case, the elimina-

tion of this molecule may prevent the AF assembling, and consequently, the

inactivation of one X.

The heterozygous deletion of Jpx gene, ∆Jpx, has no effect in males, whereas

it is found to be lethal for female cells at least in 85% of cases, as the inacti-

vation gets blocked. And, the few female cells which survive this mutation,

are shown to preferentially inactivate the Wild Type X chromosome (section

1.4 and [84]).

In the previous section, we saw that at least some of the binding sites for

the AF are mappable around the Jpx gene. Thus, an heterozygous deletion

of Jpx in a female cell could determine an inability of the AF to bind to

the mutated X chromosome and to trigger the inactivation of it. For this

reason, a failure of the X inactivation in about the ∼ 50% of cases, when

the BF binds to the Wild Type X and the mutated X is designated to get

inactivated, is expected. The percentage of failed XCI can be even larger if
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it is considered that the Jpx RNA molecule enters in the formation of the

AF, as the above discussed experiment suggests. Summarizing, the ∆Jpx

deletion, has a double effect that tends to block the inactivation of the X: it

hinders the AF assembling because it decreases the concentration of one of its

component, and makes the AF binding to the mutated X more difficult (and

this explains why the survived cells inactivate more often the Wild Type X).

The absence of major effects of the same deletion in male cells is easily ra-

tionalized: as in males the BF is the only molecular complex which binds to

the only X (see previous section), a mutation like ∆Jpx which affects the

formation/binding of the AF is going to be harmless.

Another very interesting experimental result was obtained by a double

heterozygous mutations in females: if the lethal ∆Jpx mutation is accompa-

nied by a truncation of Tsix gene on the same X, the cells are able to carry

out the X inactivation and survive [84].

In the view of our model, Tsix hosts some binding sites for the BF and

is a possible component of the BF itself as a RNA molecule (see previous

section). Thus, the truncation of Tsix gene is expected to affect the BF

assembling/binding approximately as the Jpx deletion does with the AF.

Yet, since according to our symmetry breaking model, the AF or the BF

assembling on a X chromosome results from the competition between the

respective molecular components on their binding sites, the effect of the dou-

ble mutation may be different from the mere “sum” of the single mutations

effects. In fact, let’s consider, for instance the AF: while the ∆Jpx reduces

the affinity of the AF for the deleted X, the Tsix truncation tends to favour

its binding since it reduces the competition due to the BF binding. So, one

effect can counterbalance the other and rescue the lethal phenotype of the

∆Jpx single mutation.
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4.3 Multiploid cells

So far, in our models, we aim at describing X inactivation in female cells,

i.e., cells with one couple of X chromosomes. However, on the bases of our

results, we can speculate on what happens in cells with multiple copies of X.

In the scenario we depicted for the X inactivation, the symmetry breaking

mechanism and so the “counting&choice” of the X chromosomes is triggered

whenever the Xic regions are brought in apposition, for instance, by the pair-

ing of Xpr locus (see above section 4.1). One speculation is that the outcome

of the XCI in multiploid cells is linked to the pairing configuration of the X

chromosomes, as only paired groups of X’s are able to “sense” each other and

to interact via the symmetry breaking mechanism. So, a paired couple of X’s

would result in the inactivation of just one X, like in normal female cells.

Conversely, if an unpaired X is present in the system, this remains active,

such as in male cells. In a group of more than two X’s, what is expected to

happen at equilibrium, is that the AF and the BF assemble around two X’s

leaving all the other X’s “naked” in the open configuration (see fig. 4.1). As

this open configuration has been found to correspond to active X chromo-

somes [85], in a group of, say, n paired chromosomes, we expect to have only

one X inactivated. Figures 4.1 and 4.2 summarize these predictions respec-

tively in cells with 4 and 3 X’s, by illustrating for each pairing configuration,

the predicted spatial architecture at Xic and the number of inactive X’s.

We showed in the second chapter that the pairing of distant DNA loci

can be produced by a “passive shuttling” mechanism. Under the assumption

that the pairing of X chromosomes is produced by such a mechanism, we

can use the analyses we carried out in the section 2.5.1.4 to predict the

probability to find each possible pairing configuration in cells with 3 and 4

copies of X chromosomes. Then, the previous discussion can be used to map

the probability distribution of pairing into, e.g., the probability distribution

of the number of inactive X to check our predictions against the experimental

data coming from XXXX and XXXY cells (see section 1.6). Some precautions

must be taken in doing such a comparison: while our data are referred to an



4.3 Multiploid cells 80

ideal population of cells which are perfectly syncronized, the experimental

samples do contain cells at different stages of differentiation and of XCI

process. The probability distribution measured in real cells is also affected

by the death of cells with a wrong number of inactive X and by cell divisions,

occurring at a rate which depends on the number of inactive X [57]. However,

at least a qualitative check against the experiments can be made, by looking

at the shapes of the distribution.

Let us start with cells having four X chromosomes. We found different

scenarios depending on the details of the interaction between the molecu-

lar mediators and the DNA loci (see 2.5.1.4). In a first model, where the

same DNA sequence can form multiple bonds with the molecular media-

tors, two thermodynamics phases are observed, with the four DNA segments

which either diffuse independently at equilibrium or, above thresholds in the

molecule concentration/affinity, are all paired together. According to the

previous discussion (see fig. 4.1), these two pairing configurations correspond

to a situation where all the 4 X are active (if the X are all uncoupled) or only

one is inactive (when all the 4 X are coupled together). Both the predictions

do not agree with the experimental results about X inactivation in XXXX

cells (fig. 4.3 green bars in the upper panels).

In a second scenario, where each DNA sequence can bind only to a sin-

gle molecule at a time, a more complex situation is found: by changing

the molecule concentration/affinity three different regimes corresponding to

three different probability distribution of the pairing configurations are possi-

ble (see fig. 2.11 panel A and B). In the upper panels of fig. 4.1, the predicted

distribution P of the number of inactive X in each of the three regimes are

plotted (blue bars) together with the experimental results in XXXX cells

(green bars). An excellent agreement is found in the phase where most of

the cells present two independent couples of paired X (upper right panel).

It is possible to repeat the same analysis for cells with 3X. In this case, we

saw that the pairing configurations do not depend on the details of the DNA-

molecule interaction and three possible pairing distributions are found (see
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section 2.5.1.4 and fig. 2.11 panel C and D). The low panels in fig. 4.3 illus-

trate with blu bars the predicted P and with purple bars the experimental

results from XXXY cells. The predictions are shown to reproduce very well

the experimental data both in the configurations where only a couple of X is

formed (middle low panel) or when all the 3 X are paired (right low panel).

Summarizing, by making some assumptions about the counting&choice

step of XCI in the multiploid cells (namely, that X chromosome pairing is a

required step for counting&choice and that in a group of paired X’s only one

is designated to remain active, according to the symmetry breaking model),

we obtained from our distributions of paired X, the probability distributions

of the number of inactive X’s.

By comparing our “in silico” data with the experimental data from XXXX

and XXXY cells, we predicted that in XXXX cells two independent X couples

are built, while in XXXY cells at least one couple of X must pair off.

These considerations provide, under a number of simplifying hypotheses,

quantitative scenarios on how the proposed symmetry breaking model for

the “counting&choice” work in multiploid cells. They may also help to find

out the relation between Xic pairing and “counting&choice”, one of the key

issues in X Inactivation.
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Figure 4.1: By making some assumptions (see text), we estimated the number

of active and inactive X’s in XXXX cells as function of the pairing configu-

ration of the X chromosomes.
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Figure 4.2: Number of active and inactive X’s in cells with 3 X chromosomes

as function of the pairing configuration.
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Figure 4.3: In section 2.5.1.4 we predicted the distribution probabilities of the

pairing configurations of 3 and 4 DNA loci as produced by the “passive shut-

tling”. We pointed out that different distribution probabilities were found,

each characterized by a most likely pairing configuration, that correspond to

different thermodynamic phases in the system. We mapped these probability

distributions into a probability distribution of the number of inactive X, P ,

(see text and fig.s 4.1, 4.2) and compare the predictions (blue bars) with the

experimental data from XXXX and XXXY cells (green and purple bars)
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