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INTRODUCTION 

 

 

 

Poroelasticity is a continuum theory for the analysis of porous media consisting of an 

elastic matrix containing interconnected fluid-saturated pores. The presence of a freely 

moving fluid in a porous medium influences its mechanical properties. In physical terms, 

the theory postulates that when a porous material is subjected to stress, the resulting matrix 

deformation leads to volumetric changes in the pores. Since the pores are fluid-filled, the 

presence of the fluid not only acts as a stiffener of the material, but also results in the flow 

of the pore fluid (diffusion) between regions of higher and lower pore pressure. If the fluid 

is viscous the behavior of the material system becomes time dependent. Two mechanisms 

play a crucial role in the interaction between the fluid and the solid matrix: (i) an increase 

of pore pressure induces a dilation of the solid matrix and (ii) a compression of the solid 

matrix causes a rice of the pore pressure, if the fluid cannot escape the pore network. These 

coupled mechanisms confer an apparent time-dependent character to the mechanical 

properties of a porous medium. Moreover, if the excess pore pressure caused by the 

compression of the solid matrix can dissipate through diffusive fluid mass transport, then 

the solid matrix experiences further deformation.  

The poroelasticity theory was born in geomechanics applications to describe soils 

behavior. In 1923, Therzaghi proposed a model of one dimensional consolidation to 

analyze the influence of pore fluid on soil deformation, but the first author who introduced 

a complete theory of linear poroelasticity was Biot in his papers (in 1935 and 1941), 

dealing with soil consolidation (quasi-static) and wave propagation (dynamic) problems in 

geomechanics. Moreover, Biot noted also the complete mathematical analogy between 

poroelastic and thermoelastic problems. Poroelasticity has been widely used also to model 

biological tissues, such as bone, cartilage, arterial walls, brain and osteons, because almost 

all tissues have an interstitial fluid in their pores. The interstitial fluid plays the role of 

actor in many crucial functions, like the transport of nutrients from the vasculature to the 

cells in the tissue or of waste products for removal. In some tissues, the pore fluid pressure 

creates a turgor that stiffens a soft tissue structure, and in other tissues it is part of the 

intercellular communication system. In tissues, deformation of the porous medium has a 

significant effect on the movement of pore fluid, although fluid pressure and fluid 
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movement generally have only a small effect on deformation of the porous medium. Cowin 

(Cowin, 1999) described fluid flow in bone tissue employing the poroelasticity theory. 

Bone, in fact, behaves like certain porous rocks. Bone deformation causes the interstitial 

fluid flow, a key element for bone adaptation and survival. Also cartilage can be modeled 

employing the poroelasticity theory. One of the most important functions of the fluid in 

articular cartilage is to lubricate joints and, thus, protect them from wearing. The 

mechanism of the fluid flow in bone and cartilage is so 'designed' to protect the biological 

structure from damage resulting from dynamic loading. Basser (Basser, 1992) described, 

instead, brain tissue employing the poroelasticity theory. Also, this theory results a 

fundamental tool in the analysis of fluid and macromolecular transport in solid tumors 

(Netti et al., 1995). Poroelasticity theory has been recently employed to describe 

remodeling processes and interstitial fluid transport in osteons (Yoon and Cowin, 2008, 

Rémond et al. 2008). Many analytical and numerical approaches have been proposed in 

order to solve poroelastic problems describing the behavior of biological tissues. The main 

difficulty associated to numerical strategies concerns the solution of the coupled 

poroelastic equations for determining the solid response in terms of deformation and 

filtration. The proposal of this work is to find a strategy to numerically solve poroelastic 

problems employing the Finite Element Method (FEM). In particular, the strategy 

presented is based on the well known similarity between thermoelasticity and 

poroelasticity theories. This analogy allows to solve transient poroelastic problems as 

corresponding thermoelastic ones, interpreting the temperature as a pressure and thermal 

gradients as velocities. With this aim, the relationship between thermoelasticity and 

poroelasticity is formulated in terms of dimensionless parameters to ensure numerical 

stability, because the elasticity moduli, filtration coefficients and porosity have essentially 

different orders of magnitude. Thus, the dimensionless equations obtained are implemented 

in numerical FEM-based computations. Such transferring to equivalent thermoelastic 

problems enables to apply the FEM package ANSYS
®
 11, which provides opportunities to 

solve coupled thermoelastic problems in transient non linear settings. The PhD dissertation 

is organized into seven sections. In Chapter I, the basic equations of the classical 

poroelasticity theory, first developed by Biot, are preliminarily presented. This theory has 

been, then, extended to take into account also isotropic models with anisotropic 

permeability and/or non linear elasticity, as illustrated in Chapter II. Chapter III, instead, is 

an overview on the mixture theory, another important instrument to describe the behavior 

of porous media. To this purpose, the basic differences between the two theories are 
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illustrated. In Chapter IV, the poroelastic - thermoelastic duality theory is fully developed 

by recollecting and summarizing a number of approaches. As highlighted before, this 

chapter represents the fulcrum of this thesis, because by exploiting the similarities between 

thermoelasticity and poroelasticity theories, many otherwise insurmountable poroelastic 

problems can be completely approached by standard FE protocols. Chapter V is an 

overview on the Finite Element Method (FEM) and on the above mentioned code 

ANSYS
®

. Chapter VI describes two example applications, solved with the software 

ANSYS
®

 11. The first one is concerning a very important problem of drug delivery in solid 

tumors. The second example is, instead, related to the investigation of the role played by 

trigonal-like microstructure in osteons in bone adaptive, growth and remodeling processes. 

Finally, Chapter VII illustrates the conclusions and the future perspectives.    
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CHAPTER I 

POROELASTICITY THEORY 

 

 

1.1 Introduction 

Poroelasticity theory allows the study of the behavior of fluid-saturated elastic porous 

media. A porous material is a solid containing an interconnected network of pores (voids) 

filled with a fluid (liquid or gas). The solid matrix and the pore fluid are supposed to be 

continuous, forming two interpenetrating continua (e.g., a sponge). The Biot formulation of 

the constitutive equations for a fluid-filled porous material started with the introduction of 

two new variables: the pore pressure, p, representing another stress component, and the 

variation in fluid content, δ , which is a strain component. δ  represents the volume of 

fluid added or removed from a control volume and, so, the increment in fluid content is, 

essentially, the ―fluid strain‖. Poroelasticity theory is based on two fundamental 

hypothesis. First of all, there is a linear relationship between the stress,  , pσ , and the 

strain,  ,δε , and the deformation process is supposed irreversible, that is to say that no 

energy is dissipated during a closed loading cycle. The linear constitutive equations can, 

thus, be obtained by extending the classical elasticity theory, taking into account the new 

introduced variables. Moreover, poroelasticity theory includes also the Terzaghi‘s 

Principle of Effective Stress, i.e. the total stress in a given point is the sum of the solid 

stress and the contribute of the pore pressure.   

 

 

1.2 Constitutive Equations and Material Constants 

There are several ways to formulate the constitutive equations of poroelasticity, based on 

the possibility to select different sets of independent variables. The constitutive equation 

stress-strain for a linear anisotropic poroelastic continuum is  

 

 : p σ ε α  (1.1) 

where σ  and ε  are the second order stress and strain tensor, respectively,   is the fourth 

rank tensor of the elastic constants, describing the constitutive properties of the solid 

matrix, α  is the Biot- Willis coefficient, defined in the following and p is the pore pressure. 
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Without considering the pore pressure, equation (1.1) degenerates in the classical elastic 

relationship. The coefficient α  can be different in the three spatial directions. In the 

hypothesis of isotropy, αα I .  

The strain-stress equation is, instead, 

 

  : p ε S σ α  (1.2) 

where S  is the fourth rank tensor of the compliance constants. Considering the pore 

pressure as the coupling term, for an isotropic medium, equation (1.1) simplifies in  

 

 2 solid solidμ λ e αp  σ ε I I  (1.3) 

where solidμ  and solidλ  are the Lame‘s constants of the solid matrix, I is the identity tensor 

and e is the trace of the strain tensor. It has to be noticed that the term αpσ I  plays the 

role of an effective stress. The coefficient α  is often interpreted as an effective stress 

coefficient. The strain-stress equation is, instead 

 

 
 1 2

2
1 1

solid

α σσ
μ tr p

σ σ


  

 
ε σ σI I  (1.4) 

where σ  is the Poisson‘s coefficient of the solid matrix. If, instead, the variation in fluid 

content, δ , is used as coupling parameter, the constitutive equations become 

 

 2
3 1

u
solid

u

σB
μ δ tr

σ

 
   

 
ε I σ σI  (1.5) 

 
2

2
1 2

solid u
solid

u

μ σ
μ e αMδ

σ
  


σ ε I I  (1.6) 

The term 2
3

solid

B
μ δ

 
 

 
ε I  represents the effective strain, B is the Skempton’s coefficient, 

defined in the following and uσ is the undrained Poisson‘s coefficient.  

The introduction of the pore pressure / variation in fluid content into the constitutive 

equation needs the use on another equation to solve the problem. The continuity equation 
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will be used to this purpose. The response of the pore fluid can be modeled through two 

different equations.  

For an isotropic medium,  

 

 
 1 2 3

2
1

solid

α σ
μ δ tr p

σ B

  
  

  
σ  (1.7) 

or  

  uK B
p δ αe

α
   (1.8) 

The coefficient α  is the Biot–Willis coefficient, defined as  

 

 
p const

δ K
α

e H


 


 (1.9) 

It represents the ratio of fluid added to the change in bulk volume (e is the dilatation, 

associated to the volumetric change in the solid matrix). Furthermore, K is the drained bulk 

modulus, 
2

3
solid solidλ μ

 
 

 
, and 1/H is the poroelastic expansion coefficient, which 

measures the change in the variation of fluid content respect to a change in the average 

applied stress at constant pore pressure.  

A key feature of the response of fluid-infiltrated porous material is the difference between 

undrained and drained cases, representing limiting behaviors of the material. The 

undrained case refers to the condition where the fluid is trapped in the porous solid and, 

thus, 0δ  . The drained case, instead, is characterized by a zero pore pressure, 0p  .  

B is, instead, the Skempton’s coefficient, given by 

 

 
δ const T const

p e R
B

σ δ H 

 
    

 
 (1.10) 

Skempton‘s coefficient measures how load is distributed between the solid and the fluid 

and its value is a number between zero and one. It tends to one for completely saturated 

materials (i.e., load is shared by pores filled completely with fluid) while it tends to zero 

for void space pores (e.g., highly compressible gases), as the solid framework must support 
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all the load. Furthermore, 1/R is the unconstrained specific storage coefficient. It tends to 

zero for an incompressible fluid, because a large increase in fluid pressure will cause an 

insignificant increase in fluid volume. R and H characterize the coupling between the solid 

and fluid stress and strain. Finally, Ku is the undrained bulk modulus, defined as  

 

 
1

u

δ const

σ K
K

ε αB


 
 

 (1.11) 

and it varies in  ,K  . The bulk moduli have their familiar interpretation of the change in 

volume under hydrostatic pressure. The last parameter to be defined is the constrained 

specific storage coefficient, ES , 

 

 
1

E

ue const

δ α
S

p M K B



  


 (1.12) 

and it represents the ratio of the variation in fluid content respect to a change in pore 

pressure under different conditions. M is the Biot modulus.  

In the undrained condition, the volumetric strain, e, is directly proportional to pressure, 

 

 
u

p
e

K B
   (1.13) 

In the drained condition, 0p  , equation (1.7) becomes 

 δ αe  (1.14) 

Equation (1.14) underlines that the coefficient α  represents the ratio of the fluid gained (or 

lost) in a material element to the volume change of that element, when the pore pressure 

returns to its initial state. Moreover, α  cannot exceed the unity because the volume of fluid 

gained (or lost) by an element cannot overgrow the total volume change of that element. α  

varies in  0,1 . The undrained and drained conditions represent also the instantaneous and 

the long term behavior of a poroelastic medium, subjected to a suddenly applied loading. 

For example, if a step loading is applied to a poroelastic medium, the pore fluid does not 

have the possibility to flow between neighboring material elements, hence 0  . After a 

long time, instead, the pore pressure will equilibrate with the pore pressure imposed at the 
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boundary. If this pore pressure is zero, the long-term response of the material will be 

characterized by the disappearance of the pore pressure everywhere, i.e. 0p  . Undrained 

response denotes, thus, conditions where the characteristic time scale of the loading is too 

short to allow fluid movement to take place between material elements by diffusive mass 

transport, while drained response characterizes conditions where the pore pressure has 

returned to its original value. 

 

 

1.3 Darcy’s Law 

Darcy‘s law is a constitutive equation describing the flow of fluid through a porous 

medium. It was empirically deduced by Darcy in the latter part of the 19th century during 

his experiments on the flow of water through sand, but it can be also derived from Navier-

Stokes equations by dropping the inertial terms. It has been shown that, though having 

limitations, Darcy‘s law is valid for Newtonian liquids at low velocities and, thus, Darcy‘s 

law has often been employed in the study of the flow of biological fluids through tissues. 

According to Darcy‘s law, the fluid flux is directly proportional to the permeability of the 

material through which the fluid is flowing and the pressure gradient driving the flow, 

while it is inversely proportional to the fluid viscosity. Mathematically, 

 

  
1

fluid P

fluid

p ρ
μ

   q Κ g  (1.15) 

where fluidμ  is the fluid viscosity, ρ  is the fluid density, g  is the gravity acceleration and 

the minus sign ensures that fluid flows from high to low pressure. The tensor PΚ  is the 

anisotropic permeability tensor, because the permeability of the solid through which the 

fluid is flowing is not necessarily the same in all directions. In the hypothesis of isotropy 

respect to the permeability, P κΚ I , where κ  is a constant. The permeability has 

dimension of length squared and it is related to the pore geometry. It depends strongly on 

the porosity, defined as  
fluid

tot

V

V
. The permeability is generally linked to the porosity 

through a power law, strictly depending on pore geometry. Finally, the fluid velocity 

within the pores is related to the flux by the porosity.  
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The fluid velocity is 

 

 
fluid




q
v  (1.16) 

The flux is divided by porosity to take into account that only a fraction of the total volume 

is available for flow.  

Assuming that the material properties have been measured, the unknowns of a poroelastic 

problem result 11: six stress components, three displacement components (yielding six 

strains), one pore pressure, and one increment of fluid content. Hence, 11 equations need to 

solve the problem: seven constitutive equations (six stress and one increment of fluid 

content), three force equilibrium equations (one for each direction), and one fluid 

continuity equation. 

The momentum equation is  

 

   σ b  (1.17) 

where b
 
are the body forces in the three directions. The continuity equation for the fluid 

phase is 

 

  ,fluid

δ
Q x t

t


  


q  (1.18) 

where  ,Q x t represents a source term.  

Substituting Darcy‘s law  and equation (1.8) in equation (1.18) and neglecting inertial 

effects and the source term, yields to  

 

 
1

fluid

e p κ
α p

t M t μ

 
   

 
 (1.19) 

Equation (1.19) is an heat equation in p.  

Thus, the system passes through a sequence of equilibrium states; however, this path is 

irreversible due to frictional drag loss as the fluid flows past the solid matrix. As will be 

shown below, using a displacement–pressure formulation results in a system of four 
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coupled equations (by substituting the strain–displacement, Darcy‘s law, and the 

constitutive relationships into the conservation equations) with the unknowns being three 

displacements and one pore pressure. Coupling of the equations comes from the pressure 

(p) term in the equations of force equilibrium and from the volumetric strain (e) in the fluid 

flow equation. 

 

 

1.4 Limiting cases 

If the solid matrix is incompressible, then 1α  . For an infinite incompressible fluid, 

instead, 1B   and uK   . Combining these two assumptions, 
1

0
M

  and δ e . In this 

case, then, the volumetric change of the solid matrix is equal to the volume of the fluid 

exchanged. Under these assumptions, equation (1.19) becomes  

 

 
fluid

e κ
p

t μ


 


 (1.20) 

Equation (1.20) is the statement that the time rate of change of the dilatation is equal to the 

time rate of change of the increment of fluid content. If both the solid and fluid are 

incompressible, any movement of an incompressible fluid into a space must 

correspondingly increase the volume (i.e., dilatation) of that space. It is important to 

recognize that the assumption of incompressible solid and fluid components does not mean 

that loading will not cause deformation of the tissue. Indeed, compressive loading leads to 

relative motion between the solid and fluid, whereby the pore size changes as fluid is 

effluxed from the material due to pressure gradients. Concomitantly, the solid network 

experiences a collapse in size as it comes to occupy the space previously occupied by the 

fluid.  
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1.5 Terzaghi’s one dimensional consolidation 

The classical one dimensional consolidation problem of Terzaghi (Terzaghi, 1943) is 

analyzed employing the poroelasticity theory. A soil layer of thickness L, resting on a rigid 

impermeable base is subjected to a constant load, applied through a permeable platen on 

the free surface. 3x  indicates the direction of nonzero strain and, so, 11 22 0ε ε   and 

33ε ε . Equation (1.3), thus, becomes 

 

  33 2solid solidσ λ μ ε αp    (1.21) 

Equation (1.19) can be written as  

 

 
2

2
3

1 p p ε
k α

M t tx

  
  

 
 (1.22) 

where 
fluid

κ
k

μ
  and e ε . The term 

ε

t




 can be evaluated from equation (1.21) 

 

 
   

331

2 2solid solid solid solid

σε α p

t λ μ t λ μ t

 
 

    
 (1.23) 

Replacing equation (1.23) in equation (1.22), the following relationship is obtained 

 

 
   

2 2
33

2
3

1

2 2solid solid solid solid

σp p α α p
k

M t λ μ t λ μ tx

  
   

    
 (1.24) 

Neglecting the body forces, the momentum balance equation reduces to 

 

 33

3

0
σ

x





 (1.25) 
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33σ , thus, does not depend on 3x  and, so, the partial derivative with respect to time can be 

replaced with the total time derivative. Equation (1.24) is rewritten as   

 

 
2

33
1 22

3

dσp p
C C

t dtx

 
  

 
 (1.26) 

where the material coefficients have been collected in 1C  and 2C .  

If a step load is applied to the loading platen, i.e. at 0t    33

F
σ H t

A
  , for all times 

greater than 330 , 0
dσ

t
dt

  .  

Equation (1.26), then, becomes   

 

 
2

1 2
3

p p
C

t x

 


 
 (1.27) 

The initial condition is  

 

  3 0,0p x p   (1.28) 

 

and the boundary conditions are 

 

 

 

 
3

0, 0

, 0

p t

p
L t

x








 (1.29) 

The first boundary condition reflects that the platen is porous, while the second one is 

associated to the infinite permeability of the base.  
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The solution of equation (1.27), subjected to the conditions (1.28) and (1.29) is 

 

  
2 1

23
3 0

1

1
, 2 sin

n

C
λ t

L
n

n n

x
p x t p λ e

λ L

 



 
  

 
  (1.30) 

where 
 2 1

2
n

n π
λ


 . To evaluate the displacement field, equations (1.25) and (1.21) are 

combined to obtain  

 

  
2

3

2
33

2solid solid

u p
λ μ α

xx

 
 


 (1.31) 

The displacement field is, thus, obtained replacing the time derivative of equation (1.30) in 

equation (1.31)  

 

      
2 1

23
3 3 0 2

1

1
, 2 cos

2

n

C
λ t

L
n

nsolid solid n

xα
u x t p λ e f t g t

λ μ Lλ

 



   
      

   
  (1.32) 

To complete the solution, two boundary conditions are necessary. The first condition is 

 3 , 0u L t  , which implies that    g t f t L  . The second condition outcrops from the 

stress condition and the equation (1.21): 

 

        3
33

3

0, 2 0, 0,solid solid

uF
σ t λ μ t αp t

A x


   


 (1.33) 

and, so, 

 

  
 

3

3

0,
2solid solid

u F
t

x A λ μ

 


 
 (1.34) 
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This condition determines that  
 2solid solid

F
f t

A λ μ





 and, thus, equation (1.32) can be 

rewritten as  

 

 

 
 

 

2 1
2

3 3 3

3
0 2

1

,
2

1
2 cos

2

n

solid solid

C
λ t

L
n

nsolid solid n

F
u x t L x

A λ μ

xα
p λ e

λ μ Lλ

 



  


   
    

   


 (1.35) 

In the incompressibility hypothesis for both fluid and solid, 1α  , 
1

0
M

  and 

 1 2solid solidC k λ μ  . Moreover, the initial stress is transferred immediately through the 

pore fluid and, as a consequence, 0

F
p

A
 . Under these conditions, the consolidation 

problem is equivalent to the confined compression of a biphasic material, as highlighted in 

the following.   
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CHAPTER II 

BIOT’S MODEL EXTENSIONS: STEADY-STATE CASES 

 

 

2.1 Anisotropic Poroelastic Theory 

2.1.1 Introduction 

The poroelasticity theory of Biot, first presented in his paper of 1941 for an isotropic 

porous medium, has been extended to consider also the anisotropy of both the solid matrix 

and the permeability. Cowin (Cowin, 2007), thus, developed a poroelastic theory extending 

Biot‘s statements, combining and modifying the theories for the elastic solids, the viscous 

fluids and for the fluid flow through porous media. In the following presentation, a slightly 

unconventional tensor-matrix notation is employed to represent second and fourth rank 

tensors in 3D as vector and second rank tensors, respectively, in 6D (denoted with the 

symbol ˆ ). There are three sets of elastic constants employed in this poroelastic theory, the 

drained Sd , the undrained, Su , and those of the matrix material, Sm . The RVE associated 

with the determination of the first two sets of elastic constants is a bigger one, containing 

the pores, while for the evaluation of the elastic constants for the matrix material, a smaller 

RVE is employed, containing no pores. The elastic compliance matrices for these materials 

have a similar representation: 

 

 














11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

x x x x x x

x x x x x x

x x x x x x

x

x x x x x x

x x x x x x

x x x x x x

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 
 
 
 
 
 
 
 
 

S  (2.1) 
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Seven scalar stress variables and seven scalar strain variables are involved in 

poroelasticity. The seven scalar stress variables are the six components of the stress tensor 

σ̂  and the pore pressure p. The seven scalar strain variables are the six components of the 

strain ε̂  and the variation in (dimensionless) fluid content  . These variables can be 

considered as conjugate pairs of stress measure ( σ̂ , p) and strain measures ( ε̂ , ), 

appearing in the following form for the work done on the poroelastic medium, 

:dW d pd σ ε  . The poroelastic theory considered here is fully saturated, which means 

that the volume fraction of fluid is equal to the porosity of the solid matrix.  

 

 

2.1.2 The stress-strain- pore pressure constitutive relation 

The basic hypothesis of the poroelasticity theory is that the average strain ε̂  in the RVE of 

the saturated porous medium is related both to the average stress σ̂  in the RVE and to the 

fluid pressure p in the fluid-filled pores. For this reason, the stress-strain-pore pressure 

constitutive relation is expressed as follows:  

 

 
  ˆ ˆd d p   ε S σ S A  (2.2) 

while the stress-pore pressure-strain relation is:  

 

  ˆ ˆdp  σ A C ε  (2.3) 

where d
S represents the drained anisotropic compliance elastic constants of the saturated 

porous medium and 
d
C  is its reciprocal, the drained anisotropic elasticity tensor. The 6D 

vector (3D symmetric second rank tensor A ) Â  is the Biot effective stress coefficient 

vector (6D) or tensor (3D). The porous elastic material is viewed as a composite of an 

elastic solid and a pore fluid.  
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The Biot effective stress coefficient vector Â  depends on the difference between effective 

drained elastic constants d
S and the solid matrix material elastic compliance tensor m

S , as 

illustrated in the following relationship: 

 

    ˆ( )d m   A 1 C S U  (2.4) 

where U  =  1,1,1,0,0,0
T

 is the six dimensional vector representation of the three 

dimensional unit tensor. The vector U  is distinct from the unit tensor in six dimensions, 

denoted by 1̂ . The components of Â  depend on both the matrix and drained elastic 

constants. Moreover, if the symmetry of m
S  is less than transversely isotropic and/or its 

axis of symmetry is not coincident with the transversely isotropic axis of symmetry of 
d
C , 

then the 6D vector 
ˆ ˆ ˆd m C S U  has, in general, six non zero components and the solution of 

the problems is quite complicated. If, instead, both 
d
C  and 

m
S   are transversely isotropic 

respect to a common axis, then  

 

 1, 1, 3,
ˆ [ 0,0,0]TA A AA  (2.5) 

where 

        
1 11 2 11 12 13 13 13 331 ( )( ) (2 )d d m m m d m mA C C S S S C S S        

       
3 13 11 12 13 33 13 331 2 ( ) (2 )d m m m d m mA C S S S C S S       

If  
d
C  and 

m
S   are isotropic, it follows that  

 

 ˆ ˆ    where   [1 ( / )]d mK K   A U  (2.6) 

where   is the isotropic effective stress coefficient. The hypothesis that 
m
S  is isotropic 

does not mean that the real matrix material is actually isotropic, but rather that there is only 

a little error in assuming its isotropy because, while the symmetry of the drained elastic 
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constants, d
C  is strictly associated to the arrangement of pores, the symmetry of the 

material surrounding the pores, 
m
S , has only a minor effect. The name of the Biot 

effective stress coefficient vector Â  springs out from its involvement in the definition of 

the effective stress eff
σ , 

 

 
  eff p σ σ A  (2.7) 

This definition of the effective stress reduces the stress–strain–pressure relation (2.2) to the 

same form as Hooke‘s law, thus 

 

  d eff ε S σ  (2.8) 

The effectiveness of the representation (2.8) is associated to the possibility to consider the 

fluid-saturated porous material as an ordinary elastic material subjected to the ‗‗effective 

stress‘‘ eff
σ rather than to the (ordinary) stress σ .  

Matrix elastic compliance tensor m
S  may be determined using a micromechanical 

analysis, starting from the knowledge of the drained elastic compliance tensor 
d
S . For 

example, in the case of a porous medium, characterized by an isotropic matrix material and 

dilute and spherical shaped pores, the drained elastic material is isotropic and the bulk and 

shear moduli,  dK  e dG ,  are linked to the matrix bulk and shear moduli, mK e mG , and 

Poisson‘s ratio mv  by: 

 

 
15(1 )

     1
7 5

1
4

3

m d m
d m

m m m

m m

K G v
K K

K G v

K G

 
   






 (2.9) 

where   is the porosity associated with the spherical pores.  
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Once the porosity   and the drained constants dK  and dG  are known, equations (2.9) can 

be used to evaluate the matrix bulk and shear moduli, mK  and mG , recalling that for an 

isotropic material, Poisson‘s ratio mv  is related to mK  and  mG  by: 

 

 
(3 2 )

(6 2 )

m m
m

m m

K G
v

K G





 (2.10) 

The Biot effective stress coefficient vector needs some considerations about its derivation, 

based on the relationship subsisting between the response of the fluid-saturated porous 

material and that of the drained material by considering the loading  

 

t = σ n  on oO     and         p t n  on 
pO  

where oO  and 
pO  represent the outer boundary of the porous medium and the pore 

boundary, respectively. This loading condition is, then, divided in the superposition of two 

separate loadings:  

 

                   p t n  on oO   and  p t n  on 
pO                                     (loading a) 

and 

 

p  t σ n n  on oO   and  0t  on 
pO                                      (loading  b) 

Loading a determines uniform hydrostatic pressure p in the matrix material and, thus, an 

uniform strain, in the hypothesis of homogeneous porous material. The strain in the porous 

material and that in the matrix material are, then, the same because uniform straining of the 

matrix material are associated to the same straining of the pore space.  

 



Chapter II – Biot’s model extensions: Steady-State Cases 

 

17 

 

For this reason, resulting strain a
ε  in the homogeneous matrix material is, then, uniform 

and it is expressed as  

 

 
  a mp  ε S U  (2.11) 

where the tensor equation p σ 1  in 3D is rearranged in 6D as  p σ U . For the loading 

condition (b), instead, the pore pressure is zero, and, so, the exterior surface loading 

 0  on p O  t σ n n can be considered as being applied to the drained elastic material. In 

this condition, resulting strain bε  has the form 

 

 
   ( )b d p  ε S σ U  (2.12) 

The total strain, due to the loading a plus b, results, thus, 

 

 
      ( )a b d d mp      ε ε ε S σ S S U  (2.13) 

or, rearranging the terms, it follows that  

 

 
   ( )d d m p    ε S σ 1 C S U   (2.14) 

From the comparison of equations (2.14) and (2.2), the definition of the Biot effective 

stress coefficient vector, given by (2.4), outcrops.  

 

 

2.1.3 The fluid content-stress-pore pressure constitutive relation 

The fluid content–stress–pore pressure constitutive relation involves all the basic field 

variables for poroelasticity, the total stress σ̂ , the pore pressure p, the strain in the solid 
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matrix ε̂ , and the variation in (dimensionless) fluid content  . The variation in fluid 

content   is defined as the variation of the fluid volume per unit volume of the porous 

material due to diffusive fluid mass transport and, so, it is the difference between the strain 

of the pore space and the strain of the fluid volume in the pore space. The variation in fluid 

content,  , is linearly related to both stress, σ̂ , and pore pressure, p:  

 

   1 1 1 1
ˆ     where    )d d d

eff eff d m f m

Reff Reff Reff

C p C
K K K K

         A S σ  (2.15) 

or related, using the relationship (2.3), to both strain ε̂  and pressure p by : 

 

    ˆ     where    d d

effp C        A ε A S A  (2.16) 

The super and subscripted 
'K s  appearing in the previous equations are the different bulk 

moduli. To define the other bulk moduli of equation (2.15), it has to be noticed that, in the 

hypothesis of isotropy, 

 

    3(1 2 1

E K

 
   U S U  (2.17) 

Moreover, the Reuss effective bulk modulus is the lower bound of the effective bulk 

modulus for an anisotropic material, while the Voigt effective bulk modulus is the upper 

bound, i. e.     

 

        1 1

Re e e( ) ( ) / 9ff ff V ffU S U K K K U S U          
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In the hypothesis of isotropy, the two bounds coincide with the isotropic bulk modulus, K,  

and, thus,  

 

  
  1

11 1 1 1 1 ( ) 3(1 2 1
( )

9Reff R eff Veff V

U S U
U S U

K K K K K E K


    

           

where E  is the Young‘s modulus and   is the Poisson‘s ratio and the subscript eff 

disappears because, in this case, the bulk moduli are the actual ones. In the poroelasticity 

theory,    U S U  is defined as the inverse of the effective bulk modulus when the material 

is not isotropic. Thus, for orthotropic drained and matrix elastic compliance tensor, d
S and 

m
S , respectively, it is possible to introduce the following definitions, employed in (2.15),   

 

    23 31 12

1 2 3 2 3 1

2 2 21 1 1 1
d d d

D

d d d d d d d

effK E E E E E E

  
        U S U  (2.18) 

    23 31 12

1 2 3 2 3 1

2 2 21 1 1 1
m m m

m

m m m m m m m

effK E E E E E E

  
        U S U  (2.19) 

These equations allow to rewrite  , (2.16), as function of the effective bulk moduli. From 

equation (2.4), (2.17) and (2.18),   

 

        1 1d m d m

d m

Reff ReffK K
        A S U S C S U  (2.20) 

Substituting this result into (2.16) and employing (2.15) to remove 
d

effC , it follows that: 

 

     1 1
) m d m

f m

ReffK K
        U S C S U  (2.21) 
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2.1.4 Darcy’s Law 

The other constitutive relation of poroelasticity is Darcy‘s law, relating the fluid mass flow 

rate, 
f v , to the gradient ( p ) of the pore pressure p 

 

 ( ) ( , ), ( ) ( )T

f p p t p p    v H x H H  (2.22) 

The tensor H does not depend on the pore pressure and it may be represented by  

0f P
H






Κ

 

where PΚ  is the intrinsic Darcy‘s law permeability tensor, 
0f  is a reference 

value of the fluid density and   is the fluid viscosity. The intrinsic anisotropic 

permeability tensor PΚ  has units of length squared and it depends exclusively on the 

porous structure and not on the fluid in the pores; thus Darcy‘s law takes the form 

 

  0( / ) ( / ) ( , ),
T

f f P P Pp t      q v Κ x Κ Κ  (2.23) 

It has been shown that the symmetry in PΚ  holds for material symmetries greater than 

monoclinic and the volume flux q has the same dimension of a velocity because it 

represents the volume flow rate per unit area. In the case of isotropic permeability, Darcy‘s 

Law is written in the form 

 

 
0( / ) ( , )f f k p t    q v x  (2.24) 

where 
κ

k
μ

  is the hydraulic conductivity and κ  indicates the constant value of 

permeability in the hypothesis of isotropy. 

 

 

2.1.5 The matrix material and pore fluid incompressibility constraints for 

poroelasticity 

In the poroelasticity theory, the incompressibility constituent specific constraints concern 

both the matrix material or the pore fluid. These two incompressibility constraints require 
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that both materials experience no volume change at any stress level. These constraints 

introduce an indeterminate pressure in both the fluid and in the matrix material, that must 

be equal at any location in both materials from the requirement of local force equilibrium. 

The two assumptions are, thus, compatible. The incompressibility constraint for the fluid 

implies that the reciprocal of the bulk modulus of the fluid tend to zero as the instantaneous 

density tends to the initial density, 

 

 
0

1
lim 0
f f

fK 
  (2.25) 

or that the fluid density 
f  is constant; thus, 

f  and its initial value 
0f  are equal. Under 

these assumptions, Darcy‘s law (2.23) becomes 

 

  (1/ ) ( , ),
T

P P Pp x t     q v Κ Κ Κ  (2.26) 

The incompressibility constraint for the matrix material requires, instead, that the 

dilatational strain  

 

        m m m m m m m

kktr        U ε ε ε U S σ σ S U  (2.27) 

vanishes for all possible stress states 
m
σ ; thus 

 

      m m m0 0      U ε U S S U  (2.28) 

The components of the vector    m m  U S S U are given by 

 

  m

m m m m m m

1 2 3 4 5 6

1 1 1 1 1 1 1
[ , , , , , ]

3 K K K K K K
 U S  (2.29) 

where:  

 

 
1 2 3

1
   with (m m m

m
S S S

K
  



      (2.30) 
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in the more general case of no (triclinic) symmetry, while in the cases of orthotropic, 

transversely isotropic and isotropic symmetries, respectively  

 

 

 

 

 

m m
m 13

m m m m m

1 2 3 1 1

m m m m

21 23 13 32

m m m m

2 2 3 3

m
m 31

m m m m m

1 2 3 3 3

m m m m

12 13 21 23

m m m m

1 2 1 2

m

11 1 1 1 1
U S [ , , ,0,0,0],

3 K K K 3K E

1 11 1
,

3K E 3K E

1 21 1 1 1 1
U S [ , , ,0,0,0],

3 K K K 3K E

1 v 1 v1 1
,

3K 3K E E

1
U S [1,1,1,0,0,0],

3

 
  

   
 

 
  

   
  

 
m

m m

1 1 2

3K E

 


 (2.31) 

The incompressibility condition    m mU S S U 0    , as shown in (2.29), implies that mS  

may be singular, i.e. mdet S 0 .  

From (2.28) and (2.31), the incompressibility condition    m mU S S U 0     is expressed in 

terms of Poisson‘s ratios for the orthotropic, transversely isotropic and isotropic 

symmetries by 

 

 

m m m m m m
m m m1 1 1 1 2 2
12 3 23m m m m m m

2 3 3 2 3 1

m m
m m m m1 1
12 13 31m m

3 3

E E E E E E1 1 1
(1 ), (1 ), (1 )

2 E E 2 E E 2 E E

E E 1 1
1 , ,   and  

2E 2E 2 2

           

        

 (2.32) 

The two incompressibility constraints influence all the constitutive equations except the 

Darcy‘s law, which is unchanged because, in both the analyzed cases, it is based on the 

assumption that the movement of the boundaries of the pores is a negligible higher order 

term. For this reason, the law has the same form in the compressible and incompressible 

cases as for a rigid porous material.  
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The stress-strain-pore pressure relation for the incompressible case becomes 

 

 
 dˆ ˆ( p)  ε S σ U  (2.33) 

for  m 0 U S  since the Biot effective stress coefficient tensor Â , under these conditions, 

becomes 

 

  A U  (2.34) 

The definition of the effective stress eff
σ changes in 

 

 
 eff ˆ( p) σ σ U  (2.35) 

Since the reciprocal of Re

m

ffK  and fK are zero in the incompressible case, the fluid content–

stress–pore pressure relation becomes 

 

      d d d

effd d

Reff Reff

p 1
   where   C

K K
        U S σ U S U  (2.36) 

while the fluid content-strain-pore pressure constitutive relation assumes the form 

 

  ˆ   and   0    U ε  (2.37) 

Also equation (2.19) is modified in the case of incompressibility 

 

   T m

m

Reff

1
0

K
   U S U  (2.38) 

for  m 0 U S .  

 

 

 



Chapter II – Biot’s model extensions: Steady-State Cases 

 

24 

 

The pore pressure evaluated from equation (2.16) is given by 

 

 1
ˆp [ )]   


Α ε  (2.39) 

For incompressibility 

 

  ˆ0   and   [ ( )] 0   Α ε  (2.40) 

and, thus, the pressure p given by the equation (2.39) results indeterminate as the porous 

medium constituents become incompressible. To apply equation (2.35), is, then, necessary 

to introduce a Lagrange multiplier. Moreover, there are two very different meanings 

associated with the symbol for pore pressure p. In the compressible case, p is a 

thermodynamic variable, evaluated through an equation of state, containing the 

temperature and the specific volume of the fluid as independent variables. In the 

incompressible case, instead,  p is a Lagrange multiplier whose value is determined 

through the boundary conditions and it is, thus, independent of the temperature and the 

specific volume of the fluid. 

 

 

2.1.6 The undrained elastic coefficients 

In the undrained case, no fluid movement in the poroelastic medium is possible and, thus, 

the variation in fluid content,  , is zero. In this case, equation (2.15) may be solved for p 

and, so, the pore pressure is related to the solid stress σ̂  by 
 ˆp   B σ , where 

 

      d d m

d d

eff eff

1 1
( )

C C
    B S A S S U  (2.41) 

B̂ is the Skempton compliance difference tensor. In the incompressible case, employing the 

equations (2.41), (2.36) and (2.28), the Skempton compliance difference tensor becomes 

 

   d d

ReffK B S U  (2.42) 
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Using equation (2.18), it follows that 

 

     d d

ReffK    U B U S U 1  (2.43) 

In the isotropic compressible case, the Skempton compliance difference tensor results 

 

 

        
1 2 3 4 5 6

S S
   or   B B B ,B B B 0

3 3
      B U  (2.44) 

where S  is the Skempton parameter: 

 
d d

S
C K


  (2.45) 

Also in this case, the bulk moduli are the actual ones. Moreover, as ˆ ˆp  B σ , in the 

hypothesis of isotropic and compressible medium, ˆ ˆ ˆ
3 3

S S
p tr   U σ σ . If, instead, 

f mK K , then d

d

α
C

K
  and 1S   for both the compressible and incompressible cases. 

In the isotropic incompressible case,  1S   and, so, 
1 1ˆ ˆ ˆ
3 3

p tr   U σ σ , 
1d

d
K

C
  and 

ˆ ˆA U . In the hypothesis of compressibility, the undrained elastic coefficients u
S are 

linked to the drained elastic constants 
d
S and the tensor Α by 

 

          u d d d d d

d

eff

1
( )

C
        S S S A B S S A S A  (2.46) 

In the incompressible case, instead, the undrained elastic coefficients 
u
S are related to the 

drained elastic constants 
d
S by 

 

 
     u d d d d

ReffK ( )    S S U S S U  (2.47) 

as a consequence of equation (2.45) with the application of (2.36) and (2.37).  
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When equation (2.47) is dotted with U  and the (2.37) employed again, the undrained 

elastic coefficients are also incompressible in the case of assumed incompressibility of the 

matrix material and the fluid,  

 

             u d d d d d d

ReffK ( ) 0            U S U S U S U S U U S S U  (2.48) 

In the isotropic compressible case, equation (2.45) reduces to formulas for the undrained 

bulk modulus uK  (
   1( )  U S U

u T uK ) and the undrained Poisson‘s ratio uv  in terms of 

fK , fv , dK , mK and  . Thus 

 

 

d d
f 2 d d

m m
u d u

f d d
d

m m m

K K
K (1 ) 3 S(1 2 )(1 )

K KK K    and    
K K K

(1 3 S(1 2 )(1 )
K K K

     

   

      

 (2.49) 

In the isotropic incompressible case, the relationships (2.49) reduce to 
1

0
uK

 and 
1

2
uv , 

consistent with the general result for incompressibility for the undrained constant set. As a 

consequence, 3 .uE G  

 

 

2.1.7 Expression of mass and momentum conservation 

The conservation of mass is expressed, in general, by the continuity equation, 

 

 ( ) 0
t





 


v  (2.50) 

The form of the mass conservation equation (2.50) is modified by first replacing   by 

f  and, then, dividing the equation by 
0f ; thus 

 

 
0 0

1 1
( ) 0

f

f

f ft




 


  


v  (2.51) 
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Replacing equation (2.23) in equation (2.51) and setting  
0

1 


 

f

ft t




, the equation of 

continuity becomes 

 

 0
t


 


q  (2.52) 

In the case of incompressibility, 
0f f  and equation (2.51) can be rewritten as  

 

 ( ) 0
t





 


v  (2.53) 

The stress equations of motion in 3D, 

 

 
..

,    T   u σ b σ σ  (2.54) 

are written in the conventional notation because they have no simple representation in the 

6D vector notation; 
..

u  represents the accelerations and b the body forces. 

 

 

2.1.8 The basic equations of poroelasticity 

Resuming what just said before, the poroelasticity theory presented here is described by a 

system of 18 equations in eighteen scalar unknowns. The 18 scalar unknowns are the six 

components of the stress tensor σ , the fluid pressure p, the fluid density 
f , the variation 

in fluid content  , the six components of the strain tensor ε  and the three components of 

the displacement vector u. The 18 scalar equations of the theory of poroelastic solids are 

the six equations of the strain–stress–pressure relation, (2.2), the six strain displacement 

relations, 2 (( ) )T  ε u u , the three equations of motion, (2.54), the one fluid 

content–stress–pressure relation (or the one fluid content–strain–pressure relation), (2.15), 

the mass conservation equation, (2.52), and a relation between the fluid pressure and the 
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density ( )p p  , not specified here. The parameters of a poroelasticity problem are the 

Biot effective stress coefficients A , the drained effective elastic constants of porous matrix 

material S , 
d

effC , the fluid viscosity  , the intrinsic permeability tensor PΚ , and the body 

force d, which are all assumed to be known. If the displacement vector u is the 

independent variable, no further equations are necessary. If, instead, the displacement 

vector is a dependent variable, use of the compatibility equations is necessary to ensure 

that the displacements are consistent. There are many methods to solve poroelastic 

problems for compressible media. The choice of the solution method is strictly associated 

to the known information and the fields that are to be calculated. One possible approach 

consists in solving for the variation in fluid content   if the stress or the strain field is 

known or may be calculated without reference to the variation in fluid content  . To 

obtain the diffusion equation for the variation in fluid content, the Darcy‘s law, (2.23), is 

first substituted into the expression (2.52) for the conservation of mass and, subsequently, 

the pore pressure is eliminated using equation (2.39), thus 

 

     
P P

1 1
ˆ [ ]

t


      

  
Κ O Κ O A ε  (2.55) 

Equation (2.55) shows that the time rate of change of the fluid content   is due either to 

fluid flux or to volume changes caused by the strain field. It is possible to rewrite the right 

hand side of equation (2.55) in terms of stress, obtaining  

 

      d

P Pd d

eff eff

1 1
ˆ [ ]

t C C


       

  
Κ O Κ O A S σ  (2.56) 

Also the diffusion equations for the pressure field are employed in the solution of 

poroelastic problems. The first diffusion equation for the pore pressure field is obtained 

starting from the substitution of the Darcy‘s law, (2.23), into the expression (2.52) for the 

conservation of mass and, subsequently, eliminating the variation in fluid content   using 

the equation (2.15), thus 

 

    ˆ1 1
P

p
p

t t

 
    

   

ε
Κ O A  (2.57) 



Chapter II – Biot’s model extensions: Steady-State Cases 

 

29 

 

The alternative form for the diffusion equation for the pore pressure field is obtained 

rewriting the right hand side of equation (2.57) in terms of stress, thus 

 

      ˆ1 1
( ( ) )m d

Pd d

eff eff

p
p

t C C t

 
      

  

σ
Κ O U S S  (2.58) 

For an orthotropic material, equation (2.58) assumes the form: 

 

3

2 2 2

31 2312 12 11
11 22 332 2 2

1 2 3 1 1 3 1 1 3

32 23 31 23 31 3312 12 22

2 1 2 2 1 2 3 2 3 3 2 3

1 1 1 1
{( )

1 1 1 1
( ) ( )

d md m
P P P

eff d d d m m m

dd m d m md m

d d d m m m d d d m m m

p p p p
C K K K

t x x x E E E E E E t

E E E E E E t E E E E E E

   

 

       


   
          

    


           

 
}

t

 (2.59) 

The boundary conditions on the pore pressure field usually employed in the solution of this 

differential equation are:  

(i) the specification of the external pore pressure p at the boundary (a lower 

pressure permits flow across the boundary),  

(ii) the specification of the pressure gradient p  at the boundary (a zero pressure 

gradient permits no flow across the boundary),  

(iii) the specification of some linear combination of (i) and (ii). 

 

 

2.1.9 The basic equation of incompressible poroelasticity  

The compressible poroelasticity as a system of 18 equations in 18 scalar unknowns 

presented in the previous section may be specialized to the case of incompressibility, 

obtaining a system of seventeen equations in seventeen scalar unknowns because the fluid 

density is a constant, 0f f  , and no more an unknown of the problem and, so, the 

equation relating the fluid pressure to the fluid density ( )p p   is not considered. The 

other seventeen equations in seventeen scalar unknowns are determined employing the 

relationships previously introduced in the hypothesis of incompressibility.  
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Under these conditions, diffusion equation (2.58) becomes  

 

     ˆ
( )

d

Reff d d

Reff

Kp
p K

t t

 
     

  

σ
K O U S  (2.60) 

For an orthotropic material, equation (2.60) reduces to: 

 

 

3

2 2 2

3112
11 22 332 2 2

Re 1 2 3 1 1 3 1

23 32 2312 11 12 12 22

1 3 2 1 2 2 1 2

31 23 31

3 2 3 3 2 3

1 1 1 1 1
{(

1 1
) ( )

1 1
( )

dd
P P P

d d d d m

ff

m d mm d m

m m d d d m m m

d d m m

d d d m m m

p p p p
K K K

K t x x x E E E E

E E t E E E E E E t

E E E E E E



 

      

   


   
        

   

 
        

 


      33 }

t





(2.61) 

The boundary conditions on the pore pressure field are the same considered for the 

compressible case. It is important to note that only the algebraic coefficients of the 

different terms are changed by the transition to incompressible components; the order and 

type of derivatives occurring in the differential equations are unchanged.  

 

 

2.1.10 Compressible and incompressible constituents in anisotropic        

poroelasticity: The problem of unconfined compression of a disk 

Cowin and Mehrabadi (Cowin and Mehrabadi, 2007) employed the equations of 

anisotropic poroelasticity to found the solution for the problem of unconfined compression 

of a disk to illustrate the effects of compressibility vs. incompressibility and transverse 

isotropy vs. isotropy. In the unconfined compression test, a thin cylinder is compressed 

between two parallel rigid and impermeable smooth plates. The specimen is assumed to 

have no frictional contact with the end plates so that it is free to expand radially; thus, there 

are no end effects. The fluid can pass freely across the lateral boundaries (the curved 

surfaces of the thin cylinder) while the passage is not permitted across the boundaries 

forming the flat end plates of the thin cylinder for the presence of two parallel rigid and 

impermeable smooth plates that are squeezing the thin cylinder. Both creep and stress-

relaxation tests can be performed. This test is very useful to analyze biomechanics of 
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cartilaginous tissues, as illustrated in the papers of Cohen et al. (Cohen et al., 1998), who 

found the solution for the unconfined compression test of a thin cylinder of an 

incompressible material, in the hypothesis of transversely isotropic incompressible 

material. Cowin and Mehrabadi (Cowin and Mehrabadi, 2007) determined the solution for 

the transversely isotropic compressible material, also specializing it to these earlier 

solutions. The results presented may be used to model also other biological tissues such as 

osteons. 

To solve the problem, cylindrical coordinates are employed and the displacement field 

components, the pressure and the variation in fluid content are assumed to have the 

following functional dependencies: 

 

        , , , , , ,  r zu u r t u z t p p r t r t       (2.62) 

ε̂  can be expressed in terms of  ,u r t  and  ε t : 

 

  ˆ , , ,0,0,0

T
u u

t
r r


 

   
ε  (2.63) 

Since the shear strains are zero, also the shear stresses are zero; thus, the vector 

representing stress is: 

 

  ˆ , , ,0,0,0
T

rr zz  σ  (2.64) 

In this problem, 
dC and 

mS  are supposed to be transversely isotropic respect to a common 

axis and, so, 

 

 

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


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0 0 0
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d d d
rr r rz

d d d
r rr rz

d d d
rz rz zzd

d

d

d

C C C

C C C

C C C

C

C

C





 
 
 
 
 
 
 
 
 
 
 
 

C  (2.65) 
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where 

 

 

   

 

31 132 2 12
1 1 1 3 3

1 1 1 1 1

31 231 13
1 12 31 13 2 3

112

1 1
,  ,  ,  

1 21
1 2 , ,                 

1

d d d
d d d dd d d d d
rr r rz zz

dd d
d d d

d

C E C E C E E C E
  

 
  



  
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    

 
       



 (2.66) 

The compliance tensor for the material matrix is: 
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 (2.67) 

with 
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 (2.68) 
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In this case, because both 
dC and 

mS  are transversely isotropic with respect to a common 

axis, the Biot effective stress coefficient vector is given by the equation (2.5),  

 

 ˆ ˆ ˆ ˆ, , ,0,0,0
T

r r zA A A 
 

A  (2.69) 

where 
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 (2.70) 
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Employing the stress-pore pressure-strain constitutive equation, the components of the 

stress vector are: 
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 (2.71) 
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The only equation of equilibrium that is not satisfied automatically is 

 

 0rrrr

r r

  
 


 (2.72) 

Substitution of the non-zero stress components (2.71) into the equilibrium equation (2.72) 

and, subsequently, integrating with respect to r , the following expression is obtained 
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ru p r t f t
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 
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 
 (2.73) 

where  f t is an arbitrary function of time obtained in the integration with respect to r. 

The expression (2.73) is employed to evaluate two expressions for the quantity  A ε , 

depending on the variation in fluid content ζ and on pressure p: 
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It has to be noticed that the quantity J is equal in both compressible and incompressible 

cases. In the case of transverse isotropy, 
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 (2.75) 

A diffusive differential equation for the pore pressure is obtained by substituting the first 

equation (2.74) into the equation (2.57) 
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and a diffusive differential equation for the variation in fluid content is determined 

substituting the second equation (2.74) into the equation (2.55) 
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where 

 


 

d

rrrrK C
c

J
  (2.78) 

A comparison of equations (2.76) and (2.77) highlights that both the pore pressure and the 

variation in fluid content satisfy the same differential equation, but the differential equation 

for pressure has an inhomogeneous part and, so, it is more convenient to solve the 

differential equation for the variation in fluid content, to find, then, the pore pressure, by 

equating the two expressions (2.74) for  A ε . For this purpose, an equation that can be 

solved for the pressure  ,p r t
 
in terms of the variation in fluid content  ,δ r t  and the 

strain applied to the plates  ε t
 
is necessary, 
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The differential equation (2.73) for the displacement field  ,u r t can be rearranged in 

terms of the variation in fluid content  ,δ r t
 
and the strain applied to the plates  ε t

 
by 

substituting for the pressure  ,p r t
 
from (2.79)  into (2.73), 
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To solve the differential equation (2.77), it is necessary first to express it in terms of 

dimensionless arguments by introducing a dimensionless time τ and a dimensionless radius 

λ, thus 
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Equation (2.77), thus, becomes 
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and it is solved employing the Laplace transform. In the following, the Laplace transform 

of a function is indicated by a tilde (~) over the function and the independent variable will 

shift from t to s. The Laplace transform of (2.77) becomes a Bessel differential equation in 

the variation in fluid content  ,δ λ s , 
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The solution to (2.83) is given by Detournay and Cheng (Detournay and Cheng, 1993) and 

can be written as 

 

       0, s Jg s I s    (2.84) 

where 0I  is a modified Bessel function of the first kind,  g s  is an arbitrary function of 

the transformed variable to be determined, and the coefficient J, defined by (2.74), is 

introduced for convenience. The solution of (2.83) also contains a term proportional to a 

modified Bessel function of the second kind.  However, the function has a singularity as λ 

tends to 0 and, so, the requirement for a finite solution at 0λ   justifies to impose the 

arbitrary function of the transformed variable associated with the second kind of Bessel 

function equal to zero. To eliminate the function  f τ
 
or, actually, its Laplace transform 

  f s , the boundary condition on the pore pressure at 1λ   is used. Employing the solution 

(2.84), the Laplace transform of (2.79) yields the following formula for the Laplace 

transform of the pressure   ,p s : 
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The function   f s
 
is evaluated imposing that the pore fluid pressure is zero at the curved 

lateral surface 1λ  , thus 
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Substituting (2.86) into (2.85), the Laplace transform of the pressure   ,p r s is obtained as 
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Substituting the solution (2.84) for the Laplace transform of the variation in fluid content 

 ,δ λ s into the Laplace transform of the differential equation (2.80) for the displacement 

  ,u r s and employing (2.86), it follows that 
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Integration of this differential equation yields 
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where the function  ,h λ s , 
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has been introduced. This function monotonically decreases from a value of 
1

2
 at 0s  to a 

value of 0 as s tends to infinity. The function  g s is evaluated by calculating the stress rrT

on the curved lateral boundary at 1λ   and imposing that it is equal to zero. The formula 
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(2.89) for   ,u s  is, thus, substituted in the Laplace transform of the first expression in 

(2.71) for the radial stress rrσ ; the function  g s is found to be given by 
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where B, C, and D are given by 
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Replacing the expression (2.91) in the equation (2.84), the Laplace transform of the 

variation in fluid content  ,δ λ s may be written as 
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and the Laplace transform of the radial displacement becomes 
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Substituting (2.91)

 

into (2.87), it is possible to express  ,p λ s as 
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To evaluate the total force

 

 P t

 

applied to the circular flat plate, the first step consists in 

the combination of the equation (2.73) with the last of (2.71) to obtain a representation for 

the stress component zzσ  in terms of only  ,p r t and  ε t , thus 
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The total force

 

 P t applied to the circular flat plate is then expressed as 
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Substituting the expression

 

(2.95)

 

for   ,p s and the expression (2.86) for  f s
 
into the 

Laplace transform of (2.97), 
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with some rearrangement of terms, the following relationship is obtained 
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where M and N are defined by the relations  
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The result (2.99) can be used both to evaluate the total load  P t generated on a specimen 

by an arbitrary strain history  ε t  or to determine  ε t  if the total load  P t

 

is prescribed.

 
The displacement field and the pore pressure field may be evaluated for an imposed load 

history by solving the equation for   s and, then, substituting the result into the equations 

for the displacement field and the pore pressure field. In that way, the solution for the 

linear poroelastic, transversely isotropic, unconfined-compression, creep and stress–

relaxation analysis is completed. Before inverting these expressions, it is necessary to 

observe some mathematical properties of the Laplace transform solution equations for 

        , ,  ,  and u s p s P s  , recalling the initial and final value theorems. For these 

theorems,  
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These conditions are satisfied by the solutions for displacement field, pressure field and the 

total force. The problem considered concerns the application of a step loading 

   0t H t  , whose Laplace transform is    0s
s


  . Applying the initial and final value 

theorems, the following relationships are obtained, 

 

  


 01,0  

2

d

z rr

r

b B
u A C

CA

  
    

 
 (2.101) 

and 
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Equation (2.102) shows that the displacement at the outer boundary of the disk is initially 

larger than the final displacement,    1,0 1,u u  , because there is no fluid flow initially 

and, thus, the disk behaves like an incompressible object, whose elasticity is determined by 

the undrained elastic constants. Due to the compressive loading, in the axial direction there 

is a volume reduction of the disk which may be balanced by an equal volume expansion in 

the radial direction. As time increases, the fluid flows from the disk across the lateral 
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boundaries. The displacement of the outer boundary of the disk, thus, diminishes to an 

equilibrium value, determined by the drained elastic constants. The inverse Laplace 

transforms of the solution equations is obtained employing standard methods. These 

solutions are all of the fractional form    /p s q s , the inverse of which is 
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where  p s and  q s are analytic at ns   and n  are simple poles of /p q . In stress 

relaxation, the axial compressive strain history is given by    0t H t  , where  H t is 

the Heaviside step function and     0s
s


  .  The resulting dimensional load history  P t

 

may, then, be evaluated using the method proposed by Cohen et al. (Cohen et al., 1998) for 

the transversely isotropic incompressible case.  

For a compressible material, subjected to a step loading, the application of this method will 

yield, 
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where 
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In equation (2.103), n  are the roots of the characteristic equation    1 0 0
C

J x xJ x
D

  , 

where  0J x
 
and  1J x  are Bessel functions. If the constituents are incompressible, the 

expressions (2.105) reduce to 

 

 
' ' '
1 1 2 2 3 3, ,          (2.106) 

Substituting (2.106) into (2.103) and (2.104), it then follows from (2.103) that for the 

incompressible case 
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The expression (2.107) for  P t

 

is identical to Eq. (15) of Cohen et al. (Cohen et al., 

1998). Cohen et al. (Cohen et al., 1998) also obtained an analytical solution for the 

experimentally significant case of a ramp loading for the transversely isotropic 

incompressible material. The ramp loading is characterized by a constant strain rate 0  and 

a period of duration t0 during which the applied strain is rising linearly from a value of 0 to 

0 0t  . After time 0t , the value of  ε t  is constant at 0 0t  . In terms of the Heaviside step 

function  H t , 
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For the specified ramp loading, the solution for  P t is given by 
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Using (2.106), it is easy to show that the expressions (2.109) for  P t reduce to the 

corresponding equations of Cohen et al. (Cohen et al., 1998) for the incompressible case. 

The compressible case results represent a good model for bone tissue experiments, while 

the incompressible ones are ideal for cartilaginous tissue experiments. 

 

 

 

2.2 Isotropic poroelastic models with non linear permeability and 

elasticity 

Experimental studies on biological structures highlight that hard and soft tissues are porous 

media exhibiting very different behaviors, above all for the levels of strains experienced. 

Hard tissues are usually characterized by small strains levels, while soft tissues can be 

subjected to large strains. Poroelasticity theory has been, thus, extended to take into 

account non linear effects associated to the permeability as well as to the elastic behavior. 

An example is furnished by hydrated soft tissues for which the permeability is strain 

dependent. To model this aspect, several forms of empirical equations for deformation-

dependent permeability have been proposed to analyze the fluid flow within a tissue under 

mechanical loading. This effect plays an important role in both the mechanics of tissues 

and the associated fluid transport. For  articular cartilage and intervertebral disc, Holmes 

and Mow (Holmes and Mow, 1990) proposed the following relationship between the 

permeability K
P
 and the stretch ratio, λ  
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 (2.110) 

ensuring that the permeability decreases with compression. In the equation (2.110), 0K  is 

the zero strain permeability, m and ς  are non dimensional parameters relating PK  to λ  

and   is the porosity. The subscript 0 indicates zero strain values. The relationship 

between the porosity and the stretch ratio is given by 01
1


 





. The monoaxial stretch 

λ  is evaluated as the ratio between the compressed sample height and the original one. As 
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1  , small deformations will occur and, so,   0PK K   and 
0  . The relationship 

(2.110) can also be used to model solute transport in agarose gels (Urciuolo et al. 2008).  

Lai and Mow (Lai and Mow, 1980) proposed, instead, an easier form of this relationship 

 

    0 exp 1PK λ K m λ     (2.111) 

Also in this case, as 1  , small deformation will occur. Riches et al. (Riches et al. 

2002), found rather a link between the permeability and the porosity, expressed by the 

equation 

 

 
0

0

n

PK K




 
  

 
 (2.112) 

where n is a non dimensional material parameter. When 0  , 0k k . Moreover, Argoubi 

et al. (Argoubi et al., 1996) determined a connection between the tissue permeability and 

both the porosity and the stretch ratio 

 

  
2

0

0

exp 1PK K m





 
     

 
 (2.113) 

It has to be noticed that equations (2.111) and (2.113) are estimated in the hypothesis of 

small deformations. In finite deformation, instead, large strains can significantly alter the 

tissue porosity. Consequently, the solid and fluid fractions and the permeability are related 

to the tissue dilatation. Heneghan et al. (Heneghan et al. 2008) compared the different 

approaches to determine the more appropriate model to describe the compressive behavior 

and the convective transport of nutrients within the intervertebral disc, as shown in Figure 

2.1. The plot is referred to the parameter values proposed by the authors.  
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Figure 2.1 

Plot of k against  comparing the four permeability equations proposed (Heneghan et al. 2008) 

 

They concluded that the intervertebral disc behavior, characterized by a decreasing 

permeability with compression, is best described by the model proposed by Holmes and 

Mow (Holmes and Mow, 1990), (2.110), based on finite deformation, as shown in equation 

(2.114)  

 

    
1.13

15 20.2
1.59 10 exp 0.02 1 / 2

0.8
K


            

 (2.114) 

Besides, non linear effects are associated also to the elastic behavior of soft tissues. In most 

studies of the compressive properties of articular cartilage, only infinitesimal strain 

theories have been used to analyze experimental data. However, physiologic joint loads 

and stresses are usually quite high and, so, cartilage could easily be subject to finite 

deformation under many physiological situations. Various forms of the finite deformation 

biphasic theory have been developed to describe cartilaginous tissues (Holmes and Mow, 

1990). These theories, have various strain-energy and strain-dependent permeability 

functions, and are mathematically valid under various material assumptions. Ateshian et al. 

(Ateshian et al. 1997) demonstrated that the finite deformation biphasic theory developed 

by Holmes and Mow (Holmes and Mow, 1990) can describe both the kinetic and 

equilibrium compressive behaviors of cartilage under high strain fields. In the finite 

deformation theory proposed by Holmes and Mow (Holmes and Mow, 1990), the solid 
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matrix is supposed to by isotropic. According to the biphasic theory, previously exposed, 

the stresses in the solid and fluid phases are 

 

 

f f

s s m

υ p

υ p

 

  

σ I

σ I σ
 (2.115) 

and the principal components of the stress tensor of the solid matrix, m
σ , are related to the 

principal components of stretch, 1λ , 2λ  and 3λ  by the following constitutive relations 

 

 2 2
0 2

1 1 3 1
Φ

2 1 1

m i
i A j k

j k i

λ σ σ
σ H λ λ

λ λ σ σ λ

  
         

 (2.116) 

where i,  j and k permutate over 1, 2 and 3 and Φ is given by 

 

      1 2 3

1 3
Φ exp 3 3 ln

1 1

σ σ
β J J J

σ σ

   
         

 (2.117) 

0AH  is the aggregate modulus, σ  is a non dimensional coefficient, which reduces to the 

solid phase Poisson's ratio under infinitesimal strains; the compressive-stiffening 

coefficient β  is a non-dimensional constant which measures the sensitivity of 
m

σ  to large 

strains (Holmes and Mow, 1990). The quantities 1J , 2J  and 3J  are the invariants of the 

left Cauchy-Green strain tensor CGB  of the solid phase. Along principal directions of 

stretch, the components of CGB  are all zero except for the three diagonal entries 
2
1λ , 

2
2λ  

and 
2
3λ . In these directions, the invariants 1  CGJ trB ,  

2 2
2

1

2
  
 CG CGJ tr trB B and 

3 det CGJ B  can be easily determined.  
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In this theory, the solid and fluid fractions and the permeability are related to the tissue 

dilatation by the following relationships: 
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 (2.118) 

0
sυ  and 0K  are, respectively, the solid content and the permeability of the tissue in the 

absence of strain, and m is the non-dimensional permeability coefficient weighting the 

exponential functional dependence on strain. Thus, the material behavior of an isotropic 

hyperelastic biphasic tissue is completely determined by the five material coefficients 

0 ,AH  β , σ , 0K  and m. The finite deformation theory proposed by Holmes and Mow 

(Holmes and Mow, 1990) has been used to model also the behavior of the human anulus 

fibrosus in confined compression (Iatridis et al. 1998). A biphasic hyperelastic element 

model has been proposed for the description of the mechanical behavior of brain tissue 

(Garcia and Smith, 2008). The model takes into account finite deformations through an 

Ogden-type hyperelastic compressible function and an hydraulic conductivity dependent 

on deformation. The solid phase is represented by an hyperelastic isotropic energy function 

W as 

 

     
'

2

0 0
1

2 3 ln 1
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ii
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ααi

r iζ
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μ μ
W λ λ a J J
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       (2.119) 

where rλ  and ζλ  are, respectively, the radial and circumferential stretch ratios, iμ , ia  and 

'μ  are material parameters and J0 is the determinant of the deformation gradient tensor.  
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The material parameters can be arranged to obtain the Young‘s modulus E and the 

Poisson‘s coefficient, σ , at zero strain as follows  
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 (2.120) 

The incompressible form of this energy function allows reproducing the non linear 

behavior of brain tissue under finite deformations. Moreover, the permeability is modeled 

as a function of the tissue dilatation,  

 

  0 expPK K me  (2.121) 

where the volume dilatation e is expressed as 2 3r ζe λ λ   .    
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CHAPTER III 

UNIFIED MIXTURE THEORY 

 

 

3.1 Mixture Theory 

3.1.1 Introduction 

Poroelasticity theory and mixture theory are both employed to describe the behavior of 

porous media. As highlighted before, porous media can be characterized by compressible 

or incompressible constituents, with significant differences in the interaction between the 

interstitial fluid and the solid matrix. As Leonardo da Vinci noted in his Codex Leicester, 

the porous medium behavior of hard tissues is similar to the behavior of saturated porous 

rocks, such as marble and granite, while the porous medium behavior of soft tissues is 

similar to the behavior of saturated porous soils. In both cases, saturated porous media are 

considered, but their behavior is significantly different. Hard tissues and, so, saturated 

porous rocks, are characterized, in fact, by three peculiar features: 

- They do not exhibit swelling 

- Only a fraction of the hydrostatic pressure is transferred to the pore fluid 

- The strain levels are, usually, small 

On the contrary, the peculiar features of soft tissues and, thus, saturated porous soils, are 

- They exhibit swelling 

- The strains can be large 

- The bulk stiffness of the matrix material is about the same as the bulk stiffness of 

water and, then, almost all the hydrostatic stress in the solid matrix is transferred to 

the pore fluid (for these materials, in fact, the Skempton coefficient approaches 1) 

The response to volumetric deformation of the fluid and the solid matrix in soft tissues is 

much stiffer than the deviatoric response; as a consequence, the fluid and the solid matrix 

are considered incompressible. Soft tissues result, thus, hard respect to the hydrostatic 

deformations and soft respect to shear or deviatoric deformations. The hypothesis of 
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incompressibility is, thus, valuable for soft tissues, but not for hard ones. Soft tissues are 

modeled employing the mixture theory, a more general approach respect to Biot‘s 

poroelasticity theory because it furnishes the possibility to follow the behavior of many 

components of the porous medium. Poroelasticity theory and mixture theory, thus, can be 

both employed to model the behavior of porous media but they differ for the averaging 

technique applied (Cowin, 2001). Poroelasticity theory originates in the solid mechanics 

tradition and the effective material properties are evaluated from a representative volume 

element (RVE). Biot first introduced the effective medium approach, defining a small 

cubic element of soil, with sides parallel to the coordinate axes, large enough respect to the 

pore sizes, to be considered homogeneous and, in the same time, small enough compared 

to the scale of the macroscopic phenomena of interest, to be considered as infinitesimal in 

the mathematical treatment. Mixture theory, instead, is based on diffusion models. This 

theory originates in the fluid mechanics and thermodynamics tradition and it describes a 

material as a continuum mixture of n phases, such that each spatial point in the mixture is 

occupied simultaneously by all the phases. Each phase has a density, a displacement field, 

a body force density, a partial stress, a partial internal energy density, a partial heat flux 

and a partial heat supply density and, thus, continuity, momentum, and energy equations 

can be derived for each constituent. Employing an Eulerian approach, the flux of the 

various species toward and away from a fixed spatial point is analyzed. Truesdell 

introduced three basic principles for the theory of mixtures as follows:  

1) every property of the mean motion of the mixture is a mathematical consequence of the 

properties of the motion of the constituents,  

2) the balance laws for the mixture as a whole have the same form as the equations for a 

single phase mixture,  

3) Considering n phases, if the volume fraction of one of them is equal to zero, then the 

equations should reduce to those for a material composed of n –1 phases.  

The mixture theory results advantageous when different fluid species are considered, in 

relative motion. As underlined before, the key difference between the effective medium 

approach and the mixture approach to poroelastic models is the averaging process 

employed. The effective parameter approach illustrated in Figure 3.1a is a schematic 

version of the averaging technique described by Biot, who first introduced the concept of a 

small but finite volume of the porous medium to develop the constitutive equations for the 

fluid-infiltrated solid, valid in a point in the continuum. This approach enables to better 

understand the effective solid mechanical parameters like effective solid moduli than the 
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mixture theory approach. The averaging process for the mixture approach is illustrated, 

instead, in Figure 3.1b, where the vectors represent the velocities of various species 

passing through the fixed spatial point. It has to be noticed that, for mixture theory, the 

averaging is density-weighted on the basis of the density of each species in the mixture, 

instead of being averaged over a finite volume of the porous solid as in the effective 

medium approach. Moreover, different authors emphasize the possibility to recover the 

Biot constitutive equations from the mixture theory approach.  

 

Figure 3.1 

(a) The effective medium approach, (b) The mixture approach 

 

 

The mixture theory proposed in the following (Cowin, 2007) is based on the assumptions 

that the constituents are incompressible, immiscible, non reacting and all at the same 

temperature, ζ . The approach proposed by Cowin to deal about the mixture theory results 

very interesting because it allows to derive the poroelasticity theory from mixture theory.  

 

3.1.2 Kinematics of mixtures 

In the mixture theory, each place x  is supposed to be occupied by several different 

particles, one for each constituent, 
 

,  1,2,.....,
α

a NX  of the mixture.  
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It is possible a material description of motion, including all the constituents 

 

 
    

   ,   for all 0
α α

a
τ t O x X X   (3.1) 

where    0
a

O  indicates the configuration at 0t  . The expression material description is 

used because the material particles 
 α

X
 
are the independent variables. Once the motion is 

known, all the kinematics variables can be determined, such as velocities, accelerations, 

displacements, strains, etc. 

The inverse of motion is 
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   
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a
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
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The deformation gradient for the ath constituent is defined as         

 

         
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a
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F X X  (3.3) 

where the symbol 
 a

  indicates the gradient with respect to the material coordinate 

system, x . The inverse of the deformation gradient, from equation (3.3) is given by 
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11

,   for all 0

T
aa

a
τ t O

  
   
 
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where the symbol   indicates the gradient with respect to the spatial coordinate system.  
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The determinant of the tensor of the deformation gradient for the ath constituent, is the 

Jacobian of the transformation from x to X and, thus,  

 

  
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with the constraints 
 

0
a

 J , ensuring that finite continuum volumes always remain 

finite. The velocity  a
v  and the acceleration 

   α a
D

Dt

v
 of a particle of the ath constituents 

are defined as       

 

 

 
 

    

 

 
    

 

 

2

2

 

,

,

a

a

a a
aa

a

fixed

a a
aa

fixed

τ tD

Dt t

τ tD

Dt t


 








X

X

Xx
v

Xv

 (3.6) 

In the equations (3.6), 
 a

X  represents the velocity or the acceleration of particle 
 a

X  that 

is being determined and, so, it is kept constant. The spatial description of motion of particle 

 a
X  (the material description is represented, instead by the equation (3.1)) can be obtained 

by replacing equation (3.2) in the equation (3.6) for the velocity, thus 
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x

v v x  (3.7) 

The derivative 
 α

D

Dt
 is the material time derivative of the ath constituent, i.e. the time 

derivative evaluated by following the material particle 
 a

X  and, thus, it is the time 

derivative determined keeping constant 
 a

X .  
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If  Γ , tx
 
is an arbitrary function, the material time derivative of the ath constituent is 
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This derivative can be written as  
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The tensor of velocity gradients for the ath constituent is determined evaluating the spatial 

gradient of the velocity field for the ath constituent 
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The tensor of velocity gradients has also another representation 
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In the mixture theory, two different densities are defined. The bulk or apparent density 

represents the mass of the ath constituent per unit volume of the mixture, 

 

      
1

, ,
N

a

a

ρ t ρ t


 x x  (3.12) 

The true density, instead, 
 a

Tρ  represents the mass of the ath constituent per unit volume of 

the ath constituent.  
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The volume fraction of the ath constituent is the volume of the ath constituent per unit 

volume of mixture, 

 

    
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The volume fractions are subjected to the constraint 
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If the ath constituent is incompressible, its volumetric fraction results constant. The 

mixture is incompressible when all its constituents are incompressible.  

 

 

3.1.3 The conservation laws for mixture 

The classical balance laws are written for each component of the mixture. The mass 

conservation law, thus, becomes 
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This equation, summed over all constituents, gives the continuum statement of the mass 

conservation equation 
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if definitions (3.12) for the density of the continuum mixture and mean mixture velocity v  

 

    

1

1 N
a a

a

ρ
ρ 

 v v  (3.17) 

are employed. It is interesting to note that in equation (3.17), the mean velocity is not 

evaluated as the sum of the velocities of all components but, rather, employing an 

homogenization approach. Each velocity, in fact, is weighted through the density of the ath 

component considered.  

The conservation of momentum is written as  
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where 
 a
σ  is the partial stress, 

 a
b  the action at a distance force density and 

 a
p


 the 

momentum supply, representing the transfer of momentum from the other constituents to 

constituent a. The term 
 a

p


 does not have a directly associated term in the momentum 

balance equation written for only one constituent, i.e.  ρ ρ u σ b  , where u is the 

displacement field. The conservation of energy equation for the mixture becomes 
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where 
  a
ε  is the partial internal energy density, 

 a

hq  is the partial heat flux vector, 
 a

r  is 

the heat supply density, 
 a
ε


 is the energy supply and       1

2

T
a a a 
  

 
D L L  is the rate 

of deformation tensor for the ath constituent. The term 
 a
ε


 does not have a directly 

associated term in the energy conservation equation written for only one constituent, i.e.  

:    hρε ρrT D q , and it represents the transfer of energy from the other constituents 

to constituent a. The summation of equations (3.15), (3.18) and (3.19) over all constituents 

produce again the single continuum form of these equations. Moreover, a relationship 
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between the time derivative of the selected component and the sum of the density-weighted 

time derivatives has been developed, to better interpret the results obtained in the sum 

operation, such as in the right side of equation (3.19): 
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The formula relating the sum of the density-weighted, constituent-specific time derivatives 

to the time derivative following the selected component is written as   
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where 
 a
υ  is the diffusion velocity relative to the selected component: 
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 υ v v  (3.22) 

In equation (3.22), the choice to introduce the diffusion velocity 
 a
υ , defined as the 

difference between the velocity of the ath component and the velocity of a selected 

component, is not casual. If the solid matrix of a porous material is considered as the 

selected component, in fact, the diffusion velocity, 
 a
υ , becomes the driving force of fluid 

flow in Darcy‘s law.     

From equations (3.22), (3.17) and (3.12), the following equation is evaluated 
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because, for the equation (3.22), 
 s
υ  is zero.  
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Replacing equation (3.23) into equation (3.21), the following relationship is obtained  

 

 
 

 

 
        

1 1

aa sN N s
a b b b b

b
a b

D ω D ω
ρ ρ ω ρ ω ρ

Dt Dt



 

       
     υ υ   (3.24) 

When 
 s

v v , equation (3.23) reduces to 

 

 
 

 
      

1 1

aaN N
a a a a

a a

D ω Dω
ρ ρ ω ρ

Dt Dt 

   
   υ  (3.25) 

while when 
 a

ω  does not depend on index a 

 

 
 

 
  

1

aa sN
a s

a

D ω D ω Dω
ρ ρ ρ ω ρ

Dt Dt Dt

     v v   (3.26) 

Employing equation (3.24), it is possible to write the following expression for the velocity 

 a
v , neglecting the terms of order of diffusion velocity 

 b
υ  squared 

 

 
 

           

1

ss
a sa sN

a s s

a

DD D
ρ ρ ρ ρ

Dt Dt Dt


     
  


v vv v

v v v  (3.27) 

Moreover, it has to be noticed that, from (3.23), the term 
  s

v v is equal to 

 

 
   

1

1 N s
b b

b

ρ
ρ





 υ  (3.28) 
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When the velocity of a component is equal to the mean velocity of the mixture, 
 s

v v , 

then 

 

 
 

 

1

aaN
a

a

D D
ρ ρ

Dt Dt


v v

 (3.29) 

With equations (3.24) and (3.27), the summation of the balance equations of the mixture 

can be evaluated to compare them to the single continuum balance equations.  

Summation of the component specific form of conservation of linear momentum, (3.18), 

employing equation (3.27), yields an equation similar to the continuum one 

 

 

 
         

    

ss

s s s

s s

D
ρ ρ

Dt Dt

ρ ρ

 
     

      
  

v vv
v v v v

v v v σ b



 

 (3.30) 

or, if 
 s

v v , 

 

 
D

ρ ρ
Dt

 
v

σ b  (3.31) 

If 
 s

v v , or 
 s

v v , the total stress σ  is defined, neglecting the terms of order of 

diffusion velocity 
 b
υ  squared, as 

 

 
 

1

N
a

a

 σ σ  (3.32) 
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while the sum of the action at a distance forces is 

 

     
1

1 N
a a

a

ρ
ρ 

 b b  (3.33) 

The constituent momentum supply 
 a

p


 is subjected to the following constraint 

 

 
 

1

0
N

a

a

 p


 (3.34) 

The summation of balance of energy equation for each constituent, (3.19), employing the 

relationship (3.21) with 
 a

ω replaced with 
 a
ε , is 

 

 
                

1

:
s N

a a a a a a a a

h
a

D ε
ρ ρr ε ρ

Dt 

     
  σ D v p q υ


 

  (3.35) 

where the specific internal energy density, 

ε , and the heat supply density, r, are defined as 

 

 
       

1 1

1 1
 ,  

N N
a a a a

a a

ε ρ ε r ρ r
ρ ρ 

  
 

 (3.36) 

and the energy supply, 
 a
ε


, is subjected to the following constraint 

 

 
          

1

0
N

a a a a a

a

ε ε ρ


    
  v p υ

 
  (3.37) 
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3.2 Biphasic Theory 

3.2.1 Introduction 

Biphasic theory is a simplification of mixture theory, characterized by the presence of only 

two phases, the solid and the fluid. The solid can shrink only by expelling the fluid into its 

surroundings, or swell only by attracting the fluid from its surroundings. In the biphasic 

theory, conservation and balance equations are written separately for the two phases and, 

then, combined to describe the whole mixture, introducing a new term which takes into 

account the interaction, or exchange of mass or momentum, between the particular 

constituent and all other mixture constituents. The biphasic theory is a very important 

instrument to describe soft, hydrated biological tissues, such as articular cartilage, 

fibrocartilages (the meniscus, temporomandibular joint disc and intervertebral disc), and 

even cells. In the biphasic theory, the material is modeled as a porous solid, indicated with 

the apex s, saturated with a fluid, denoted by f. The material behavior is described by a set 

of coupled equations: balance equations and constitutive equations. Biphasic theory needs, 

first of all, some definitions. If an infinitesimal volume dV is considered, constituted by a 

fluid volume 
fdV with mass 

fdm and a solid volume 
sdV  with mass 

sdm , two densities 

can be defined. The true density of each component is 

 

      
f s

f s
T Tf s

dm dm
ρ ρ

dV dV
   (3.38) 

while the apparent density is defined as  

 

      
f s

f sdm dm
ρ ρ

dV dV
   (3.39) 

Employing the equations (3.38) and (3.39), the volumetric fractions are introduced 

 

       
f f s s

f s

f s
T T

dV ρ dV ρ
υ υ

dV dVρ ρ
     (3.40) 

fυ  is also indicated as the porosity of the material.  
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The following constraint subsists for the volumetric fractions 

 

 1f sυ υ   (3.41) 

 

3.2.2 Balance equations 

The balance equations, as highlighted before, are written separately for the solid and fluid 

phases. In general, the continuity equation, neglecting generation terms, for the fluid is 

 

   0
f

f f Dρ
ρ

Dt
  v  (3.42) 

while, for the solid phase 

 

   0
s

s s Dρ
ρ

Dt
  v  (3.43) 

If the fluid and solid phases are both intrinsically incompressible, the true densities result 

constant and, so, by replacing equation (3.40) in the equations (3.42) and (3.43), the 

continuity equations become 

 

 

 

 

0

0

f
f f

s
s s

υ
υ

t

υ
υ

t


 




 



v

v





 (3.44) 

The continuity equation for the whole biphasic system is obtained summing the continuity 

equations for the two phases, (3.44), and remembering that 1f sυ υ  :  

 

   0f f s sυ υ  v v  (3.45) 
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Analogously, the momentum equations for the fluid and solid phases are 

 

 
 

 

f f f f f f

s s s s s s

ρ ρ

ρ ρ

   

   

σ b m u

σ b m u




 (3.46) 

where f
σ and s

σ  are the stress tensor for the fluid and the solid, respectively, 
f

b  and s
b

are the sum of the external body forces for the two phases, f
m and s

m describe the 

internal body forces reflecting the interactions between the fluid and the solid and 
f

u and 

s
u  are accelerations. Summing the equations (3.46), the following relationship is obtained 

 

        f s f f s s f s f f s sρ ρ ρ ρ       σ σ b b m m u u   (3.47) 

Employing Truesdell‘s second principle, the following relations subsists 

 

 
   

 

f f s s f s

f f s s

ρ ρ ρ

ρ ρ ρ

   

 

b b b m m

u u u  
 (3.48) 

Equations (3.48) underline that the total body force acting on the biphasic system is the 

weighted sum of the external forces acting on each phase plus the contribution of the 

interaction terms. Moreover, also the overall acceleration is the weighted sum of the 

acceleration of the two phases. In the hypothesis of quasi-static equilibrium, for the 

biphasic system, the following constraint subsists 

 

 0f s m m  (3.49) 
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Neglecting external body forces and employing the equation (3.49), equations (3.46) 

become    

 

 
0

0

f f

s s

  

  

σ m

σ m




 (3.50) 

Equations (3.50) assume different forms according to the constitutive equations chosen to 

model the fluid and the solid phase and the kind of interaction between them. For 

biological soft tissues, Mow et al. (Mow et al., 1980) considered as interaction force a 

viscous drag force directly proportional to the relative velocity between the two phases. In 

these hypotheses f
m and  s

m become  

 

 
 

 

f s f

s f f s

ε

ε

 

   

m v v

m m v v
 (3.51) 

where ε  is the coefficient of diffusive resistance 4/Ns m 
 

 and it is related to the 

permeability by the following relationship 

 

 
 

2

,    

f

fluid

υ κ
ε k

k μ
   (3.52) 

Replacing equations (3.51) in the equations (3.50), the momentum equations become 

 

 
 

 

0

0

f s f

s f s

ε

ε

   

   

σ v v

σ v v




 (3.53) 
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3.2.3 Constitutive equations 

The constitutive equations obviously change according to the different kinds of material 

which constitute the biphasic system. If the fluid is inviscid and the solid matrix is 

supposed to be isotropic, then the constitutive equations for the two phases are 

 

 
2

f f

s s
solid solid

υ p

υ p λ e μ

 

   

σ I

σ I I ε
 (3.54) 

where p is the hydrostatic pressure, e is the trace of the strain tensor and solidλ  and solidμ  

are the Lame‘s constant of the solid matrix. 

Replacing equations (3.54) in the equations (3.53), the equations of motion for the biphasic 

system is obtained, in the hypothesis of inviscid fluid and isotropic solid matrix 

 

 
   

   

0

2 0

f s f

s f s
solid solid

υ p ε

υ p λ e μ ε

   

       

v v

ε v v
 (3.55) 

 

 

3.2.4 Confined Compression 

Confined compression is an idealized deformation configuration in which a tissue 

specimen is placed into a chamber that confines the specimen at the bottom and on the 

sides. A porous platen, which allows fluid to exit through the specimen‘s surface, is used to 

compress the sample. The purpose of this section is to illustrate the solution of the 

differential equation which governs the cartilage behavior under a confined compression 

test (Soltz and Athesian, 1998). The confined compression chamber is schematized in 

Figure 3.2. 
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Figure 3.2 

(a) Schematic of confined compression chamber with microchip transducer shown bonded to the 

chamber.  

(b) Cross-section of chamber, indicating the direction of the z-coordinate axis. The articular surface of 

the cartilage specimen faces the pressure port. 

 

 

 

The displacement at the top surface is ramped at the rate 0V  until the time 0t

(corresponding to the attainment of an engineering strain of 10% ) and then held constant. 

If z is the direction of loading, the displacement of the solid matrix depends, exclusively, 

on z and t. Under these conditions,  

 

 
 

0

,

x y

z z

u u

u u z t

 


 (3.56) 

and, so, the strain tensor becomes 

 

 

0 0 0

0 0 0

0 0 zu

z

 
 
 

  
 
 

 

ε  (3.57) 
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The governing equation for confined compression, derived from the general equations of 

the linear biphasic theory for isotropic homogeneous materials, is (Mow et al., 1980) 

 

 
2

2

1z z

a

u u

H k tz

 



 (3.58) 

where  2a solid solidH λ μ   is the aggregate modulus [Pa] and k is the hydraulic 

conductivity. The initial condition is 

 

  ,0 0zu z   (3.59) 

The boundary condition at the bottom, impermeable surface is 

 

  0, 0zu t   (3.60) 

while, for the stress relaxation, the boundary condition at the top surface is 

 

   0 0

0 0 0

,   0
,

,   
z

V t t t
u h t

V t t t
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 (3.61) 

The solution, obtained using standard methods for partial differential equations, is 
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(3.62)   
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CHAPTER IV 

POROELASTICITY – THERMOELASTICITY DUALITY 

(PTD) 

 

 

4.1 Introduction 

The equations of poroelasticity and thermoelasticity are very similar to one another 

(Zimmerman, 2000) and this correspondence could be a powerful tool to solve poroelastic 

problems. The basilar concept of the coupling between poroelasticity and thermoelasticity 

is that the temperature and the pore pressure play similar roles. In both theories, in fact, the 

basic constitutive equations relating the stresses and strains are the same of those of 

standard elasticity, in which some multiple of the pore pressure (or temperature) is 

subtracted from the normal stresses. Moreover, considering the typical values of these 

multiple coefficients arising in most rock mechanics applications, both theories are at least 

partially coupled, that is to say that variations in the pore pressure (or temperature) will 

appreciably influence the stresses and strains. The pore pressure and temperature are 

described through diffusion equations, which contain a source-sink type term depending on 

the time derivative of the bulk strain or mean normal stress. The analogy between the two 

theories, then, arises from the identical formal structure of the equations governing the two 

problems, which allows to find a direct relationship between each parameter appearing in 

the two theories. The strength of the coupling between the mechanical variables, stress and 

strain, and the pore pressure (or temperature), can be estimated in terms of dimensionless 

coupling parameters, as shown in the following. However, an analysis of the typical values 

for these coupling coefficients shows that the poroelastic coupling effect is usually strong 

(for a liquid-saturated rock), while the thermoelastic coupling effect is usually negligible. 

This result means that the temperature distribution is not affected by the stresses and 

strains, whereas this is not usually the case for the pore pressure equation. Finally, 

Zimmerman (Zimmerman, 2000) emphasized also the existence of other types of 

thermoelastic couplings, such as the dependence of the constitutive coefficients from 

stress. The permeability of many fractured rocks, for example, is highly stress-dependent 
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and so, the permeability will be influenced by stress, causing an alteration of the flow field, 

and, thereby, changes in the pore pressure distribution. Moreover, Zimmerman 

(Zimmerman, 2000) underlined also the importance of modeling non-isothermal 

poroelasticity, characterized by the influence of temperature on stresses, through the 

following mechanism. An increase in temperature may lead to a large increase in fluid 

pressure (because this particular coupling is typically large in liquids), which, in turn, will 

determine mechanical stresses and strains. In this situation, indeed, there will be a coupling 

between the temperature and the stress and strain fields. Within the framework of the 

analogy between poroelasticity and thermoelasticity, a possible strategy to implement a 

poroelastic problem with a FE code, thus, consists in exploiting this analogy. Since the 

equations describing the two problems are identical in formal structure, they can be 

rewritten to draw a direct relationship between each parameter appearing in the two 

theories. 

 

 

4.2 Coupled non - linear poroelastic problem 

The fundamental equations for a poroelastic problem P can be summarized as follows  

 

 

 

 

1

1
1

2 0

P :  :

P :  : 0f

ρ p ρ

M p ρ p




  

    
  

u ε I f

I Iε g K

 

 
 (4.1) 

The field variables involved are the displacement,
 

 , tu u x , the bulk strain, 

sym ε u , and the pore fluid pressure,  ,p p t x . In the first equation (4.1), 

 1s f        is the density,   is the stiffness forth-order tensor, I  is the second 

order unit tensor (The Biot tensor is I for saturated porous media) and f  is the mass force 

vector. In the second equation, instead, the term :I Iε  can be expressed as :e u   and 

 
1

0fρ p


g K  is the filtration velocity vector (Darcy quasi-static approximation law). 

This vector depends on the second rank tensor of the filtration coefficients K , which is 

linked, in turn, to the second rank permeability tensor, PK , the initial fluid density, 0fρ , 
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the gravitation acceleration, g , and the fluid viscosity, μ , as shown in the following 

equation: 

 

 
0P fρ

μ


K g
K  (4.2) 

The coefficient M is expressed as 1 1 1

fM N K     , where 1N   is the reverse Biot‘s 

modulus, fK is the fluid tangent bulk modulus and   is the porosity. The change in 

porosity is directly related to the change in pression by the following relationship: 

 

    1

0 0: N p p     I ε  (4.3) 

The equations (4.1) are determined starting from the Constitutive Equations: 

 

 
 1

:

:      

p

N p 

 
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σ ε I

I ε I b


 (4.4) 

and the Darcy‘s Law (quasi-static filtration) 

 

 P
f p

μ
 

K
v  (4.5) 

where 
fv , the difference between the fluid velocity and the solid matrix one, is 

responsible of the coupling. 

The first equation (4.1) is obtained from the equilibrium equation  

 

 ρ ρ u σ f  (4.6) 
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while the second one from the continuity equation 

 

   0
f

f f
t

 



 


v  (4.7) 

 

 

4.3 Coupled non - linear thermoelastic  problem 

The fundamental equations for a thermoelastic problem T can be summarized as follows 

  

 
 

 

1

2 0

:  :

:  : ε T

T ρ ζ ρ

T T ρc ζ ζ W

  

   

u ε β f

β ε K

 


 (4.8) 

The field variables involved are the displacement,
 

 , tu u x , the bulk strain, 

sym ε u , and the temperature,  ,ζ ζ t x . In the first equation (4.8), ρ  is the 

density,   is the forth order stiffness tensor, :β α  is the second order ―thermal 

stresses‖ tensor, α  is the second order tensor of thermal expansion and f  is the mass force 

vector. In the second equation, instead, 0T  is the reference temperature  0 1T K from 

which ζ  is measured and εc  is the specific heat under constant strain and it can be 

expressed as  

 

 0 :ε σ

T
c c

ρ
  α β  (4.9) 

where σc is the heat capacity at constant pressure. 

T ζK  represents the heat flow vector and TK  is the second rank tensor of thermal 

conductivity coefficients. Finally, W is the heat source intensity.   
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The equations (4.8) are determined starting from the Constitutive Equations: 

 

 

0

:

: ε

ζ

ρc
ζ

T

 

 

T ε β

S β ε



 (4.10) 

The first equation (4.8) is obtained from the equilibrium equation  

 

 ρ ρ u σ f  (4.11) 

while the second one from the heat flow equation 

 

 
0 entT S W  h  (4.12) 

where Sent is the entropy density and h  is the heat flow vector, expressed as  

 T ζ  h K  (4.13) 

h is responsible of the coupling. 

The heat flow equation represents the energy balance from the second thermodinamical 

principle.  

 

 

4.4 Coupling between poroelasticity and thermoelasticity 

As shown in Table 4.1, the fundamental equations for coupled non linear poroelasticity and 

thermoelasticity are formally very similar.  
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P T 

 :ρ p ρ  u ε I f    :ρ ζ ρ  u ε β f   

 
1

1

0: 0fM p ρ p


     
  

I ε g K    0 : 0ε TT ρc ζ ζ   β ε K  

Table 4.1 

Fundamental equations for coupled non linear poroelasticity and thermoelasticity 

 

The objective of this work is to solve poroelastic problems performing thermal analysis. 

For that purpose, it is necessary to find the connection between the parameters of both 

theories. The conversion factors introduced to write a poroelastic problem as a thermal one 

are: 

 

 0

0

;

;

;ε

P T

p ζ

T
c

ρM

T

μ









I β

K K

 (4.14) 

Nevertheless, the parameters of the two theories involved in the duality relationships (4.14) 

have very different order of magnitude, which could cause some problems during the 

solution of the numerical simulations. For these reasons, the following step consists in the 

introduction of dimensionless parameters in the fundamental equations written before. 

Table 4.2 shows the fundamental equations for coupled non linear poroelasticity and 

thermoelasticity rewritten in terms of the dimensionless parameters. The symbol ~ in the 

equations indicates the dimensionless parameters. 
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p
T ρc p

t t

 
      

ε
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     
 

 
0 : 0ε T

ζ
T ρc ζ

t t

 
      

ε
β K

     
 

 

Table 4.2 

Fundamental equations for coupled non linear poroelasticity and thermoelasticity rewritten in terms of the 

dimensionless parameters 

 

These equation are written employing the following positions: 

 

 

1 1 1 1

1 1 2 2 1

2 1 1 1 2 1

0 0

1 1

0 0

 ;     ;    ;    ;    ;

 ;    ;    ;    ;

;    ;    ;p P

P
T f f

L L L t T t P

P ζ ζ p pP ρ L T P ρ

T L c T PM ρ T PTL μ

ζ p pT TL T TL
μ

   

   

    

 

      

   

  

          

x x u u

σ σ

f f K K

K
h K v K v

    

  

  

    

 (4.15) 

The dimensionless conversion factors are: 

 

 

1

2 2

2

;    : : ;

;    p ε ε T T

p ζ P

T
c c c T L

L P





   

   

I β α α

K K K

    

  
 (4.16) 

where 
1 2σ

α
E


 , L is an enveloping parameter, that is to say the characteristic length of 

the domain and  

 

 
 

 

,
: max ;

: max ;

MAX
x t

MAX

P p p

T t t


 

 


 (4.17) 
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The dimensionless conversion factors are evaluated referring to the maximum values of 

length, pressure and time to ensure reasonable values of the parameters involved in the 

numerical simulations. Employing the coupling theory presented before, it is possible to 

solve a transient non linear poroelastic problem as a corresponding thermoelastic problem, 

interpreting the temperature as a pressure and the temperature gradient as a velocity.    

 

 

4.5 On the influence of coupling terms in poroelasticity and 

thermoelasticity 

The pore pressure always has an appreciable influence on the deformation field and, so, the 

equations of linear poroelasticity are always partially coupled (Zimmerman, 2000). The 

solution of a coupled poroelastic or thermoelastic problem is of considerable mathematical 

difficulty, as it combines the theories of elasticity and of heat conduction or fluid flow 

under transient conditions. Fortunately, in most of the usual engineering applications it is 

possible to introduce certain simplifying assumptions without error. The principal such 

simplifications are the omission of the mechanical coupling term in the energy equation 

(uncoupled theory) and of the inertia terms in the equations of motion (uncoupled quasi- 

static theory). To this purpose, Boley and Weiner (Boley and Weiner, 1997) investigated 

the conditions ensuring that a linear thermoelastic problem can be considered uncoupled or 

uncoupled quasi-static. In the following, this reasoning is presented and, then, it will be 

extended to the poroelasticity theory, employing the PTD theory presented before. In the 

thermoelastic problem, if an external mechanical agency produces variations of strain 

within a body, the heat conduction equation shows that these variations of strain are, in 

general, accompanied by variations in temperature and consequently by a heat flow; the 

whole process, thus, gives rise to an increase of entropy and, therefore, to an increase in the 

energy stored in a mechanically irrecoverable manner. This phenomenon, known as 

thermoelastic dissipation, requires for its analysis the use of the coupled heat equation. The 

mechanical term in the heat equation clearly plays a crucial role in the description of this 

dissipative process, and its omission would here be meaningless. However, the 

deformations due to the external loads are accompanied only by small changes in 

temperature, and it would, therefore, appear reasonable to calculate these deformation 
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without taking account of the thermal expansion. Similarly, if strain are produced in a body 

by a non-uniform temperature distribution, it would seem intuitively clear that the 

influence of these strains on the temperature itself should not be too large. One may 

therefore anticipate the conclusion that the coupling term appearing in the heat equation 

can be disregarded for all problem except those in which the thermoelastic dissipation is of 

primary interest. This matter may be made plausible by the following reasoning. The 

coupled heat equation may be rewritten as 

 

 
2

1
3 2

T v

e
K T c T

T

 
 

  

    
     

    


  (4.18) 

where vc , the specific heat at constant volume, and c , the specific heat at constant 

deformation, may be employed interchangeably in the linear theory. The non-dimensional 

parameter   is defined by 

 

 
 

2 2

0

2 2

3 2

v e

T

c v

  





  (4.19) 

ev  is the velocity of propagation of dilatational waves in an elastic medium, defined as  

 

  2ev      (4.20) 

The term proportional to   is the coupling term , and it is negligible compared to unity if  

 

 
2 3 1

3 2

e

T

 

   

 
 

 


  (4.21) 

Equation (4.21) furnishes a comparison between an external factor, 
3




e

T
, directly linked 

to the thermal-mechanical input, and the intrinsic thermo-mechanical properties of the 
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material, 
2 3 1

2

 

  

 
 

 
. To estimate a priori if the problem is uncoupled, both terms of 

equation (4.21) need to be evaluated. As already said, the term 
2 3 1

2

 

  

 
 

 
 depends on 

thermal, physical and mechanical parameters and, so, it can be determined a priori for the 

analyzed problem. For what concerns, instead, the other term, 
3




e

T
, even if it is associated 

to the thermo-mechanical output, it can be estimated from the thermal-mechanical input. 

This term, in fact, represents the ratio between two deformation rates. In the hypothesis of 

linear thermoelastic theory, e  can be decomposed in the sum of two contributions, i.e., 

el te e e    , where ele  is the elastic deformation rate, depending on the constitutive 

behavior of the material, and te  is, instead, the thermal deformation rate, expressed as 

3 T  . Equation (4.21) can be, thus, rewritten as 

 

 
2 3 1

2

el t

t

e e

e

 

  

  
 

 

 



 (4.22) 

The order of magnitude of the elastic deformation rate, ele , can be estimated starting from 

the loading conditions, while, for the thermal deformation rate, te , an estimate can be 

made considering the boundary conditions on temperature or on its flux. For temperature 

distributions with no sharp variation or discontinuities in their time histories, it is 

intuitively expected that the time rate of change of the dilatation is of the same order of 

magnitude as that of the temperature; thus, the disregarded of coupling as described 

previously appears to be reasonable. The preceding discussion makes it clear that the 

possibility of omitting the coupling terms depends not only on the fact that the inequality 

1   must hold (as it does for most metals), but also on the fact that strain rates must be 

of the same order of magnitude as the temperature rate. The latter condition implies that 

the time history of the displacement closely follows that of the temperature; in other words, 

no pronounced lag or vibrations in the motion of the body must arise. It is, therefore, to be 

expected that the magnitude of inertia effects will also enter this question, so that a close 

relationship can be anticipated to exist between the two previously mentioned 

simplifications of the general theory. Starting from equation (4.21), it is possible to extend 
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the same considerations to the poroelasticity theory. The second equation (4.1) can be 

written as  

 

 
1

0PK
p p e

μ M
      (4.23) 

and, then, rearranged in the following form: 

 

 
1

1 0PK e
p p M

μ M p

 
    

 





 (4.24) 

Following the approach proposed by Boley and Weiner (Boley and Weiner, 1997), a 

poroelastic problem results, thus, uncoupled if the following inequality holds 

 

 
1e

p M




 (4.25) 

However, the simple form of equation (4.25) hides some interesting aspects. To ensure that 

a poroelastic problem is uncoupled, it is not sufficient that 
1

M  
is very small, but, 

paradoxically, it should also happen that 
1





e

p M
. Also in this case, an evaluation a priori 

of the two terms appearing in the equation (4.25) is necessary. The term 
1

M
 is strictly 

connected to the physical poroelastic properties of the material and, thus, it can be easily 

evaluated a priori. Iterating the previous reasoning for the linear thermoelastic problem, the 

term associated to the poroelastic-mechanical output, 
e

p




, can be estimated starting from 

the order of magnitude of the loading and boundary conditions. Nevertheless, even if 

1



e

M
p

, the problem could result uncoupled. The term 1
 
 

 




e

M
p

 becomes, in fact, equal 

to 2; if 
1 PK

p p
M μ

  , the poroelastic problem becomes not only uncoupled but also 

steady-state. 
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Moreover, Boley and Weiner (Boley and Weiner, 1997) extended their reasoning 

considering also the conditions under which a thermoelastic problem can be considered 

uncoupled and quasi static. They demonstrated, in fact, that when inertial effects are small, 

also the coupling effects are negligible. The condition on the inertial effects rises from a 

comparison between the thermal input characteristic time (TICT), 
0

Tt , and the mechanical 

(MCT), Mt , and thermal characteristic times (TCT), Tt , defined as 

 

 
2

;M T

e P

L cL
t t

v K


   (4.26) 

where L is the characteristic length of the problem and the term TK

c
is the thermal 

diffusivity and it has dimensions 
2m

s

 
 
 

. The TICT can be evaluated starting from the 

boundary condition on temperature. If a temperature profile is assigned in a prescribed 

point of the boundary, 0xx , then, the TICT, 
0

Tt , can be determined as 
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 (4.27) 

These three times arise in all coupled problems, although their mode of definition is 

different; their relative orders of magnitude are dictated by physical consideration. Boley 

and Weiner (Boley and Weiner, 1997) reported that if the following inequalities subsist 

 

 0,    T

T M Mt t t t   (4.28) 

both coupling effects and inertial effects are small.  

 

 



Chapter IV –Poroelasticity-Thermoelasticity Duality 

 

80 

 

To this purpose, in thermoelasticity theory, the following parameter is introduced  

 

 
0

T M M

T

T

t t
h

t t
  (4.29) 

and, then, the thermoelastic problem results uncoupled and quasi static if  

 

 1Th   (4.30) 

Replacing the relationships (4.26) in the equations (4.29), the condition (4.30) becomes: 
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 (4.31) 

Employing the coupling between poroelasticity and thermoelasticity, the poroelastic input 

characteristic time (PICT) can be determined starting from the definition of the thermal 

one, (4.27), as 

 

 

 
1

0

0

,

P

MAX

p x t

tt
P



 
 

  
 
 
 

 (4.32) 

Moreover, starting from the definition of the TCT, equation (4.26), and employing the 

relationships 
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the characteristic time of a poroelastic problem (PCT), Pt , can be, thus, written as  

 

 
2

P

P

L
t

K M


  (4.34) 

and, from equation (4.29), a poroelastic problem results, indeed, uncoupled and quasi static 

if  
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   (4.35) 

Replacing the relationships (4.26) and (4.34) in the equations (4.35), the uncoupled quasi-

static condition becomes: 

 

 
  0

1
2

P

P

K M

t



  
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
 (4.36) 

Table 4.3 is a résumé of the conditions presented in this paragraph. It represents, thus, a 

very important instrument because it allows to estimate a priori if the examined problem is 

coupled, uncoupled or quasi-static, avoiding, indeed, excessive computational costs in the 

analyses performed. The first step of this analysis consists, thus, in the evaluation of the 

input time, 
0

Tt  or 
0

Pt , starting from the boundary conditions. Then, the parameters Th , for 

the thermoelastic problem, and Ph , for the poroelastic one, are evaluated to determine if 

the problem is uncoupled quasi static. If the conditions (4.31) or (4.36) do not hold, the 

conditions (4.21) and (4.25) are investigated, to verify if the problem is uncoupled. Finally, 

if also these two last conditions do not subsist, the problem results coupled. 
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 Table 4.3 

Résumé of the uncoupled  / quasi static conditions for thermoelastic and poroelastic problems 
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CHAPTER V 

REMARKS ON THE FINITE ELEMENT METHOD 

 

 

 

5.1 The Finite Element Method (FEM) 

The finite element method (FEM) is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. Although originally 

developed to study stresses in complex airframe structures, it has since been extended and 

applied to the broad field of continuum mechanics. Because of its diversity and flexibility 

as an analysis tool, it is receiving much attention in engineering schools and in industry. In 

more and more engineering situations today, it is necessary to obtain approximate 

numerical solutions to problems rather than exact closed-form solutions. Without too much 

effort, the governing equations and boundary conditions for these problems can be written, 

but no simple analytical solution can be found.  

The FEM envisions the solution region as built up of many small, interconnected 

subregions or elements. A finite element model of a problem gives a piecewise 

approximation to the governing equations. The basic premise of the FEM is that a solution 

region can be analytically modeled or approximated by replacing it with an assemblage of 

discrete elements. Since these elements can be put together in a variety of ways, they can 

be used to represent exceedingly complex shapes. In a continuum problem of any 

dimension, the field variable (whether it is pressure, temperature, displacement, stress, or 

some other quantity) possesses infinitely many values because it is a function of each 

generic point in the body or solution region. Consequently, the problem is one with an 

infinite number of unknowns. The finite element discretization procedures reduce the 

problem to one of a finite number of unknowns by dividing the solution region into 

elements and by expressing the unknown field variable in terms of assumed approximating 

functions within each element. The approximating functions (sometimes called 

interpolation functions) are defined in terms of the values of the field variables at specified 

points called nodes or nodal points. Nodes usually lie on the element boundaries where 

adjacent elements are connected. In addition to boundary nodes, an element may also have 
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a few interior nodes. The nodal values of the field variable and the interpolation functions 

for the elements completely define the behavior of the field variable within the elements. 

For the finite element representation of a problem, the nodal values of the field variable 

become the unknowns. Once these unknowns are found, the interpolation functions define 

the field variable throughout the assemblage of elements. 

Clearly, the nature of the solution and the degree of approximation depend not only on the 

size and number of the elements used but also on the interpolation functions selected. As 

one would expect, these functions cannot be chosen arbitrarily, because certain 

compatibility conditions should be satisfied. The interpolation functions are often chosen 

so that the field variable or its derivatives are continuous across adjoining element 

boundaries. This feature is the ability to formulate solutions for individual elements before 

putting them together to represent the entire problem. This means, for example, that in the 

case of a problem in stress analysis, the force–displacement or stiffness characteristics of 

each individual element are first determined and, then, the elements are assembled to find 

the stiffness of the whole structure. In essence, a complex problem reduces to considering a 

series of greatly simplified problems. Another advantage of the finite element method is 

the variety of ways in which one can formulate the properties of individual elements. There 

are basically three different approaches. The first approach to obtain element properties is 

called the direct approach because its origin is traceable to the direct stiffness method of 

structural analysis. Element properties obtained by the direct approach can also be 

determined by the variational approach. The variational approach relies on the calculus of 

variations and involves the extremization of a functional. For problems in solid mechanics, 

the functional turns out to be the potential energy, the complementary energy, or some 

variant of them. A third and even more versatile approach for deriving element properties 

has its basis in mathematics and is known as the weighted residuals approach. The 

weighted residuals approach begins with the governing equations of the problem and 

proceeds without relying on a variational statement. This approach is advantageous 

because it thereby becomes possible to extend the finite element method to problems 

where no functional is available. The method of weighted residuals is widely used to 

derive element properties for nonstructural applications such as heat transfer and fluid 

mechanics.  
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Regardless of the approach used to find the element properties, the solution of a continuum 

problem by the finite element method always follows an orderly step-by-step process: 

 

1) Discretize the Continuum  

The first step consists in the division of the continuum or solution region into 

elements. A variety of element shapes may be used and different element shapes 

may be employed in the same solution region. Indeed, when analyzing an elastic 

structure that has different types of components such as plates and beams, it is not 

only desirable but also necessary to use different elements in the same solution.  

 

2) Select Interpolation Functions  

The second step, instead, consists in the assignation of nodes to each element and, 

then, in the choice of the interpolation function to represent the variation of the 

field variable over the element. The field variable may be a scalar, a vector, or a 

higher-order tensor. Polynomials are often selected as interpolation functions for 

the field variable because they are easy to integrate and differentiate. The degree of 

the polynomial chosen depends on the number of nodes assigned to the element, the 

nature and number of unknowns at each node and certain continuity requirements 

imposed at the nodes and along the element boundaries. The magnitude of the field 

variable as well as the magnitude of its derivatives may be the unknowns at the 

nodes. 

 

3) Find the Element Properties 

 Once the finite element model has been established (that is, once the elements and 

their interpolation functions have been selected), the matrix equations expressing 

the properties of the individual elements can be evaluated. For this task, one of the 

three approaches just mentioned can be used: the direct approach, the variational 

approach or the weighted residuals approach. 

 

4) Assemble the Element Properties to Obtain the System Equations 

 To find the properties of the overall system modeled by the network of elements 

all the element properties must be ―assembled‖. In other words, the matrix 

equations expressing the behavior of the elements are combined to form the matrix 

equations expressing the behavior of the entire system. The matrix equations for the 
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system have the same form as the equations for an individual element except that 

they contain many more terms because they include all nodes. The basis for the 

assembly procedure stems from the fact that at a node, where elements are 

interconnected, the value of the field variable is the same for each element sharing 

that node. A unique feature of the finite element method is that the system 

equations are generated by the assembly of the individual element equations. In 

contrast, in the finite difference method the system equations are generated by 

writing nodal equations.  

 

5) Impose the Boundary Conditions 

 Before the system equations are ready for solution they must be modified to 

account for the boundary conditions of the problem. At this stage, nodal values of 

the dependent variables or nodal loads are imposed.  

 

6) Solve the System Equations 

 The assembly process gives a set of simultaneous equations to be solved to obtain 

the unknown nodal values of the problem. If the problem describes steady or 

equilibrium behavior, a set of linear or nonlinear algebraic equations is solved. On 

the contrary, if the problem is unsteady, the nodal unknowns are time depending 

and, so, a set of linear or nonlinear ordinary differential equations must be solved.  

 

7) Make Additional Computations If Desired 

 Many times the solution of the system equations are employed to calculate other 

important parameters. For example, in a structural problem the nodal unknowns are 

displacement components. From these displacements, element strains and stresses 

can be evaluated. Similarly, in a heat-conduction problem the nodal unknowns are 

temperatures, and from these element heat fluxes are calculated. 

 

 

5.2 The Finite Element Modeling Package ANSYS®  

To solve the differential coupled poroelastic equations with the FEM, the software 

ANSYS
®

 11 has been employed. ANSYS
® 

is a general purpose finite element modeling 

package for the numerically solving of a wide variety of problems. The choice of this 
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software has been dictated first of all by the possibility to use a batch approach, creating 

custom-made macros for the specific problem to solve. This approach, in fact, allows to 

write in a text file a sequence of command lines. This strategy results very advantageous 

for complex problems because it gives the possibility to easily modify the command lines 

but, above all, to realize parametric models. Moreover, another important aspect is the 

possibility to perform multiphysics simulations. In an expanding range of applications, 

engineers and designers must be able to accurately predict how complex products will 

behave in real-world environments where multiple types of coupled physics interact. 

Multiphysics simulation software from ANSYS allows to create virtual prototypes of 

specific designs operating under real-world multiphysics conditions. This industry leading 

software enables to simulate the interaction between structural mechanics, heat transfer, 

fluid flow and electromagnetics all within a single, unified engineering simulation 

environment. By incorporating multiphysics simulation into the design process, engineers 

reduce error margins, increase product reliability, and ultimately create more innovative 

product designs. Multiphysics simulation from ANSYS provides a portfolio of high-

fidelity engineering analysis tools that enable engineers to accurately predict real-world 

behavior. ANSYS multiphysics solutions combine the most comprehensive set of solver 

technology for all physics disciplines — structural mechanics, heat transfer, fluid flow and 

electromagnetics — with an open and adaptive ANSYS
®

 Workbench™ environment, 

flexible simulation methods, and parallel scalability. Together these cutting edge 

technologies form the foundation for comprehensive multiphysics simulation capable of 

solving the most complex engineering challenges. 

The ANSYS Workbench platform is a powerful multi-domain simulation environment that 

harnesses the core physics from ANSYS, enables their interoperability, and provides 

common tools for interfacing with CAD, repairing geometry, creating meshes and post-

processing results. An innovative project schematic ties together the entire simulation 

process, guiding the user through complex multiphysics analyses with drag-and drop 

simplicity.  

Moreover, ANSYS multiphysics solutions deliver proven methods to solve multiphysics 

problems, including solutions for both direct and sequentially coupled problems. Direct 

coupled-field elements allow users to solve multiphysics problems by employing a single 

finite element model with the appropriate coupled-physics options set within the element 

itself. A direct coupled field solution simplifies the modeling of multiphysics problems by 

allowing the engineer to create, solve and post-process a single analysis model for a wide 
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variety of multiphysics applications. Sequential coupling, instead, allows engineers to 

solve multiphysics problems with the automated multiphysics coupling available in 

ANSYS Workbench, which couples multiple single-physics models into one unified 

simulation. The platform supports both one-way and two-way sequential solutions for 

multiphysics problems such as thermal-stress analysis, microwave heating and fluid 

structure interaction. 

The software ANSYS
®
 is organized into three modules.  

 

1) Preprocessing module 

This module allows to characterize the specific problem to solve in terms of 

geometry, element type, definition of the material properties of the element and 

mesh. 

 

2) Solution processor module 

In this module, instead, load and constraint conditions are assigned and the specific 

kind of solution is conveniently selected.   

 

3) Post processing module 

The last module furnishes the results of the problem in three different form of 

visualization: in terms of numerical data lists, with vectorial graphics or through 

chromatic bands.   

 

 

5.3 Element SOLID70 

As underlined in Chapter IV, the PTD theory allows to solve transient poroelastic problems 

as corresponding thermoelastic ones, interpreting the temperature as a pressure and thermal 

gradients as velocities. To perform coupled thermoelastic analyses, the element SOLID70 

is employed. SOLID70 has a three-dimensional thermal conduction capability. The 

element has eight nodes with a single degree of freedom, temperature, at each node. The 

element is applicable to a three dimensional, steady-state or transient thermal analysis. 
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 It has to be noticed that the characteristic transient time is evaluated coherently with the 

element size, as  

 
2

4
trans

T

t
K

c





  (5.1) 

where, as underlined in the previous chapter, the term TK

c
is the thermal conductivity and 

it has dimensions 
2m

s

 
 
 

. 

 The element also can compensate for mass transport heat flow from a constant velocity 

field. If the model containing the conducting solid element is also to be analyzed 

structurally, the element should be replaced by an equivalent structural element (such as 

SOLID45). An option exists that allows the element to model nonlinear steady-state fluid 

flow through a porous medium. With this option, the thermal parameters are interpreted as 

analogous fluid flow parameters. For example, the temperature degree of freedom becomes 

equivalent to a pressure degree of freedom.  

 

 

Figure 5.1 

Solid70 Geometry 

 

 

5.3.1 Input Data 

The element is defined by eight nodes and the orthotropic material properties. Orthotropic 

material directions correspond to the element coordinate directions. Convections or heat 
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fluxes (but not both) may be input as surface loads at the element faces as shown by the 

circled numbers on SOLID70. Heat generation rates may be input as element body loads at 

the nodes. If the node I heat generation rate HG(I) is input, and all others are unspecified, 

they default to HG(I). The nonlinear porous flow option is selected with KEYOPT(7) = 1. 

For this option, temperature is interpreted as pressure and the absolute permeabilities of the 

medium are input as material properties KXX, KYY, and KZZ. Properties DENS and 

VISC are used for the mass density and viscosity of the fluid. Properties C and MU are 

used in calculating the coefficients of permeability. Temperature boundary conditions 

input with the D command are interpreted as pressure boundary conditions, and heat flow 

boundary conditions input with the F command are interpreted as mass flow rate 

(mass/time). A mass transport option is available with KEYOPT(8). With this option the 

velocities VX, VY, and VZ must be input as real constants (in the element coordinate 

system). Also, temperatures should be specified along the entire inlet boundary to assure a 

stable solution. With mass transport, you should use specific heat (C) and density (DENS) 

material properties instead of enthalpy (ENTH). The following list is a summary of the 

SOLID70 possible input. 

 

Element Name 

SOLID70 

Nodes 

I, J, K, L, M, N, O, P 

Degrees of Freedom 

TEMP 

Real Constants 

VX, VY, VZ IF KEYOPT (8) > 0 

Material Properties 

KXX, KYY, KZZ, DENS, C, ENTH, 

VISC, MU (VISC and MU used only if KEYOPT(7) = 1. 

Do not use ENTH with KEYOPT(8) = 1). 

Surface loads 

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), 

face 4 (K -L-P-O), face 5 (L -I-M-P), face 6 (M-N-O-P) 

Heat Fluxes 

face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N), 
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face 4 (K -L-P-O), face 5 (L -I-M-P), face 6 (M-N-O-P) 

Body Loads 

Heat Generations 

HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P) 

Special Features 

Birth and death. 

KEYOPT(2) 

0 → Evaluate film coefficient (if any) at average film temperature, (TS + TB)/2 

1→ Evaluate at element surface temperature, TS 

2→ Evaluate at fluid bulk temperature, TB 

3→ Evaluate at differential temperature |TS-TB| 

KEYOPT(4) 

0→ Element coordinate system is parallel to the global coordinate system 

1→ Element coordinate system is based on the element I-J side 

KEYOPT(7) 

0→ Standard heat transfer element 

1→ Nonlinear steady-state fluid flow analogy element 

Note 

Temperature degree of freedom interpreted as pressure. 

KEYOPT(8) 

0→ No mass transport effects 

1→ Mass transport with VX, VY, VZ 

 

5.3.2 Output Data 

The solution output associated with the element is in two forms: 

 nodal temperatures included in the overall nodal solution 

 additional element output as shown in Element Output Definitions 

Convection heat flux is positive out of the element; applied heat flux is positive into the 

element. If KEYOPT(7) = 1, the standard thermal output should be interpreted as the 

analogous fluid flow output. The element output directions are parallel to the element 

coordinate system.  
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CHAPTER VI 

FEM APPLICATIONS 

 

 

 

6.1 Introduction 

Many analytical and numerical approaches have been proposed in order to solve 

poroelastic problems describing the behavior of biological tissues. The main difficulty 

associated to numerical strategies concerns the solution of the coupled poroelastic 

equations for determining the solid response in terms of deformation and filtration. The 

proposal of this work is to find a strategy to numerically solve poroelastic problems 

employing the Finite Element Method (FEM). In particular, the strategy presented is based 

on the well known similarity between thermoelasticity and poroelasticity theories. This 

analogy allows to solve transient poroelastic problems as corresponding thermoelastic 

ones, interpreting the temperature as a pressure and thermal gradients as velocities. With 

this aim, the relationship between thermoelasticity and poroelasticity is formulated in terms 

of dimensionless parameters to ensure numerical stability, because the elasticity moduli, 

filtration coefficients and porosity have essentially different orders of magnitude. Thus, the 

dimensionless equations obtained are implemented in numerical FEM-based computations. 

Such transferring to equivalent thermoelastic problems enables to apply the FEM package 

ANSYS
®

 11, which provides opportunities to solve coupled thermoelastic problems in 

transient non linear settings. Two numerical examples are presented. The first one is 

concerning a very important problem of drug delivery in solid tumors. The second example 

is, instead, related to the investigation of the role played by trigonal-like microstructure in 

osteons in bone adaptive, growth and remodeling processes. 

 

 

6.2 Drug delivery to solid tumors 

6.2.1 Introduction 

The first FEM application proposed concerns the analysis of the Convection-Enhanced 

Delivery (CED) technique for the delivery of drugs to brain tissue. Primary central nervous 

system tumors are the second cause of cancer death in younger population (Allard et al, 
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2009). The difficulties in cancer treatment are associated to its characteristic features, such 

as the uncontrolled cell growth, not regulated by external signals, and the capacity to 

invade tissues, metastasize and colonize at distant sites. There are several modes of therapy 

for brain tumors. The first treatment is, usually, the tumor resection, associated to 

radiotherapy and chemotherapy. The major difficulties in the treatment of brain tumors is 

the effectiveness of the delivery of therapeutic agents. Drug delivery in vivo results 

difficult because of the presence of physiological barriers, drug resistance of tumor cells, 

tissue tolerance and so on (Yuan, 1998). In brain, the two major obstacles for drug delivery 

are represented by the blood-brain barrier (BBB), almost impermeable to drugs (Baxter 

and Jain, 1989), and the interstitial fluid pressure (IFP), which is elevated in the solid 

tumor and decreases abruptly in the tumor periphery (Jain and Baxter, 1988), caused by the 

disorganized vascular network and the absence of functional lymphatics. Many efforts 

have been made to model the phenomena involved in the delivery of drugs to solid tumors 

and to understand how to ride out physiological obstacles. Walker et al. (Walker et al., 

1996), for example, proposed an analytical model to investigate the effect of the protocols 

to overcome the blood brain barrier on the different drug transport processes, focusing on 

the role of convection and the influence of the changing parameters. Netti et al. (Netti et 

al., 1995) proposed a poroelastic model of a solid tumor to investigate the mechanisms 

which regulate the interstitial fluid pressure, looking for a possible strategy to overcome 

this physiological barrier. Supporting the analytical approach with experimental data, they 

found that the periodic administration of vasoactive agents improve the effectiveness of the 

macromolecular delivery. Moreover, also tumor blood flow plays a crucial role in tumor 

therapy and it is characterized by temporal and spatial heterogeneities (Netti et al., 1996), 

probably due to the coupling between interstitial fluid pressure and tumor microvascular 

pressure (Mollica et al., 2003). Infusion-based techniques seem to be promising approaches 

for the delivery of therapeutic agents to brain tissue because convection enhances drug 

transport, ensuring the drug release in larger regions respect to pure diffusion. Based on 

these considerations, the Convection-Enhanced Delivery (CED) technique has been 

recently proposed. It is defined as the continuous delivery of a therapeutic fluid agent 

simply guided by pressure gradients (Allard et al., 2009).  
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Figure 6.1 

Schematic representation of CED mechanism (Allard et al., 2009). 

A: identification of the target site with correct placement of the catheter according to specific coordinates.  

B: Diffusion occurs all the time but is rigorously dependent of the infusate nature.  

C: Convection (or bulk flow) is strictly dependent on the pressure gradient and occurs during all the 

establishment of the pressure gradient. 

 

 

CED enables the drugs  to cross the BBB and supplements diffusion in the delivery of 

large drugs over required distances, determining greater in situ drug concentrations and 

reducing systemic toxicity. A wide range of substances can be locally delivered with this 

technique, such as monoclonal antibodies, conventional chemotherapeutic agents, proteins, 

nanocarriers, targeted toxins and viruses. The effectiveness of CED is strictly connected to 

the different parameters proper of this technique. For this reason, CED protocols need to 

take into account the infusate concentration, the volume of the infusate, the infusion rate 

and site, the backflow mechanism. To improve CED protocols and to predict drug 

distribution profiles, analytical and numerical models have been developed. To this 

purpose, the poroelasticity theory is a very useful instrument to describe soft tissue 

mechanics (Biot, 1955) and it can also be used to model the coupling between fluid flow 

and solid deformation in tumors. Basser (Basser, 1992) presented an analytical model of 

infusion-induced swelling in brain, treating white and gray matter as linear poroelastic 

isotropic media. He found an analytical steady-state solution to estimate interstitial fluid 

pressure and fluid velocity profiles during infusion into brain. Smith and Humphrey (Smith 

and Humphrey, 2007) proposed a model for the CED in brain tissue, deriving the 

interstitial fluid pressure and fluid velocity induced by infusion into brain tissue and in a 

tissue-isolated tumor. They determined steady-state and transient solutions for the 

proposed model. Also Netti et al. (Netti et al., 1997) employed the poroelasticity theory to 
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describe fluid movement in soft tissues at macroscopic and microscopic scales, 

specializing the model to a local analysis of blood flow around a single blood vessel. 

Moreover, they applied the model to determine an analytical solution for a spherical solid 

tumor, obtaining the interstitial fluid pressure and fluid velocity profiles. Roose et al. 

(Roose et al., 2003), instead, employing a poroelastic model, investigated solid stress 

associated to a spheroid tumor growth in order to better understand the effects of the 

growth on the surrounding environment. The model, validated by experimental results, 

suggests that the range of stresses created by tumor growth are considerable and could 

collapse blood and lymphatics vessels, contributing to the lack of vessels in the middle of 

the tumor. Moreover, to take into account transient evolution of the phenomena associated 

to the drug delivery to solid tumors, Netti et al. (Netti et al., 2003) proposed a 

poroviscoelastic model for a spherical geometry to analyze how mechanical stresses and 

deformations influence macromolecular distribution in a gel, in order to simulate an 

intratumoral infusion. Also biphasic theory have been used to develop an analytical model 

to describe drug delivery to solid tumors. Garcia and Smith (Garcia and Smith, 2008), in 

fact, employed a biphasic hyperelastic model to describe infusion into brain, attributing the 

differences between linear solution and nonlinear analyses to geometric nonlinearities. 

However, the interest of the scientific community is increasingly addressed to numerical 

approaches. FE models, in fact, allow to describe more realistic infusion protocols and 

geometries and to perform parametric analysis. Linninger et al. (Linninger et al., 2008) 

proposed a computational technique to rigorously predict the distribution of drugs in brain 

tissue, based on the three-dimensional reconstruction from patient-specific images. This 

approach allows to take into account brain heterogeneity and anisotropy. Chen and 

Sarntinoranont (Chen and Sarntinoranont, 2007) employed the software package ADINA 

to study the effects of pressure-induced swelling on the macromolecular transport, 

modeling brain tissue as a biphasic isotropic medium. They validated their results 

comparing them to the analytical solution of Basser (Basser, 1992) and developed a 

sensitivity analysis to quantify the effect of the changes in the material parameters on the 

pressure-controlled infusion. As highlighted in this introduction, the CED technique has 

been investigated by many authors because it represents a challenging approach to 

overcome the physiological barriers in brain tumors treatment. In this chapter, a FE 

computational model of CED protocols, based on the PTD theory, is presented. However, 

this approach presents some limits. The model employed, in fact, is linear and isotropic, for 

both the constitutive behavior and the permeability. These assumptions are the same used 
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by Basser (Basser, 1992). The other limit is that the therapeutic fluid agent is simply 

guided by pressure gradients, modeled employing the Darcy‘s law, and not by a diffusion 

process, described by Fick‘s law. On the contrary, an advantage of the approach proposed 

is the possibility to perform FEM analyses, by starting from mechanical, geometrical and 

infusion data reported in the scientific literature. Following this way, a parametrical 

custom-made ANSYS
®
 environment macro is used to perform steady state and transient 

poroelastic analyses employing the PTD theory. Another important advantage of this 

model consists in the possibility of simulating in silico sensitivity analyses to determine the 

effects of different parameters on the effectiveness of the infusion protocols. 

 

 

6.2.2 FE model of drug delivery to solid tumors 

The first FEM analysis has been performed to compare the analytical steady state solution 

presented by Basser (Basser, 1992) for a step brain infusion from a pressure source into a 

spherical cavity of radius a, with the solutions obtained with the software ANSYS
® 

. As 

just said before, brain tissue is modeled as an isotropic poroelastic medium. Starting from 

Biot‘s poroelasticity theory, the solution is found imposing that the pressure in the cavity 

suddenly jumps from zero to 0P , i.e.    0,P a t P H t , as illustrated in Figure 6.2. 

 

 

Figure 6.2 

Input Pressure in the cavity 
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The resulting pressure distribution for r a  is 

 

   0, 1
2

a r a
P r t P erf

r ct

  
   

  
 (6.1) 

where  2P
solid

K
c  


   is the consolidation coefficient.  Figure 6.3 shows the spherical 

pore of radius a within an infinite poroelastic tissue sample.  

 

   

 

Figure 6.3  

The spherical pore of radius a within an infinite poroelastic tissue sample (Basser, 1992) 

 

 

Moreover, because the solution found by Basser (Basser, 1992) refers to an infinite 

medium, the numerical solution is evaluated imposing on the external surface the pressure 

profile obtained from equation (6.1) when 5r a , as shown in Figure 6.4. 

 

 

 

Figure 6.4 

Input Pressure on the external surface 
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The infusion parameters employed by Basser (Basser, 1992) are reported in Table 6.1. 

 
INFUSION 

PARAMETERS 

 

Infusion pressure 
0 6664P   2/dynes cm  

Infusion flow rate 5

0 10Q   3 /cm s  

Radius of spherical cavity 0.03a   cm 

Radius of tissue sample 
0 2R   cm 

Solute diffusivity 710D   2 /cm s  

 Gray Matter  

Shear modulus 42 10G    2/dynes cm  

Lamé constant 59 10λ    2/dynes cm  

Permeability 95 10κ    4 /  cm dynes s  

Pore fraction 0.2f   dimensionless 

 White Matter  

Shear modulus 39 10G    2/dynes cm  

Lamé constant 54 10λ    2/dynes cm  

Permeability 97.5 10κ    4 /  cm dynes s  

Pore fraction 0.2f   dimensionless 

 

Table 6.1 

Infusion parameters employed by Basser (Basser, 1992) 

 

To compare analytical and numerical results, brain tissue is modeled as a sphere with an 

infusion cavity of radius a. Referring to the step-by-step procedure illustrated in Chapter 

V, after the definition of the problem geometry, the following passage concerns the domain 

discretization. The Finite Elements Method based model is constructed by means of 

hexahedral 8 nodes elements with linear shape functions generating a 16875 elements and 

18746 nodes mesh. The element chosen for the mesh, i.e. SOLID70, requires that opposites 
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sides of the discretized domain have the same number of divisions. Moreover, to optimize 

the mesh, the element size increases with the sphere radius. Figure 6.5 illustrates the 

number of divisions along the radius, m, and along the circular arches, n. 

 

 

 

Figure 6.5 

Division numbers along the radius, m, and along the circular arches, n 

 

 

To this purpose, if 
a

R
  , the number of divisions m along the radius is evaluated as the 

geometrical average, i.e.,   

 

 
2 1n

m


 


  (6.2)  

The relationship (6.2) allows to determine, starting from n, the number of divisions m, as 

function of the ratio between the cavity radius and the sphere one. The Finite Element 

Mesh of the model proposed is shown in Figure 6.6. Because the problem is axial-

symmetrical, only 
1

4
of the whole geometry is represented. 
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Figure 6.6 

Finite Element Mesh of the model proposed 

 

 

The steady state solutions for the analytical and numerical analyses overlap, as shown in 

Figure 6.7. 

 

Figure 6.7 

Steady state solution for the problem of consolidation in an infinite, isotropic medium 

 

 

Moreover, adopting the same geometry and mesh as well as the same input conditions, a 

transient analysis has also been performed, making reference to the parameters reported in 

Table 6.2. The transient analysis has been conducted in 40 substeps, each lasting 2 s.  
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 INPUT PARAMETER Value Reference 

Tissue sample radius  R [m] 22 10  (Basser, 1992) 

Hydraulic conductivity, 




[

2m

Pa s
] 

125 10  (Basser, 1992) 

Elastic shear modulus G[Pa] 32 10  (Basser, 1992) 

Lamé constant  [Pa] 49 10  (Basser, 1992) 

Storage Modulus 
1

M
 [Pa] 

81.8356 10  (Li et al., 2009) 

Density  [
3

Kg

m
] 

1000  

Reference Temperature  

0T [K] 

1  

 

Table 6.2 

Parameter values used in the model 

 

 

Figure 6.8 illustrates pressure variations with the radius for different time substeps.  

 

 

 

Figure 6.8 

Pressure variations with the radius for different time substeps 
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It has to be noticed that these profiles show an oscillatory effect, as illustrated in Figure 

6.9, because pressure values increase or decrease in an alternative way, passing from a 

time value to the following one. 

 

                 

Figure 6.9 

Pump-like effect of pressure profiles  

 

 

Besides, it is very interesting to investigate also pressure variation with time for different 

radius values. The graphics in Figure 6.10 illustrates, in fact, the decreasing weight of the 

transitory waves when the radius increases. Pressure profiles, in fact, are more affected by 

the oscillatory behavior induced by the transitory presence for radius values next to the 

infusion cavity then for radius values far from it. 

 

      

     

Figure 6.10 

Decreasing weight of the transitory waves when the radius increases 
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The following figure, instead, concerns the pressure map for a selected time substep. 

Extending the analysis to the whole temporal range, also in this case the oscillatory 

behavior outcrops. Moreover, it has to be noticed that Figure 6.11 – 6.14 are associated to 

the output of the thermo-mechanical analysis and, so, all the values need to be multiplied 

for the appropriate coefficients to transform them into poroelastic output. 

 

 

 

Figure 6.11 

Pressure Map 

 

 

Figures 6.12a-b are, instead, the deformation maps in the spherical coordinates.  

 

                    

 Figure 6.12a Figure 6.12b 

Deformation Maps 

 

 

 



Chapter VI –FEM Applications 

 

104 

 

Figure 6.13 reports the radial displacement map.  

 

 

Figure 6.13 

Radial Displacement Map 

 

 

Finally, Figure 6.14 reports the Von Mises stress map. Von Mises stresses are very 

important parameters in order to ensure that the infusion input applied to brain do not 

cause the tissue failure. These stresses could, in fact, be used to introduce a stretch ratio, 

defined as the ratio between the stresses experienced by the tissue and the brain yield 

stress, referring, for example, to the work of Velardi et al. (Velardi et al., 2006). Values of 

the stretch ratio less than one ensure that the infusion procedure adopted preserves tissue 

integrity.    

 

 

Figure 6.14 

Von Mises stress Map 
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It is worth to note that replacing the values reported in Table 6.2 in the expression (4.36) 

and considering 
0

Pt  as 80 s, the inequality 1Ph   subsists and, thus, the problem results 

uncoupled and quasi static.     

As highlighted before, the purpose of these analyses concerns the improvement of CED 

protocols. The back-flow mechanism occurring in CED will be objet of further 

investigations. By CED, in fact, the drug delivery is driven by the pressure gradient, due to 

the difference between the skull pressure and the infusion one and, so, the injection flow is 

a crucial parameter for the effectiveness of the infusion. Moreover, the infusion rate is 

limited by the back-flow mechanism. Back-flow can cause the release of the drug in not 

targeted brain regions and it can also induce a drug lack where necessary. Back-flow 

depends, above all, on three parameters: the catheter placement, the injection rate and the 

catheter diameter. Moreover, for the constancy of the fluid discharge, the injection rate and 

the catheter diameter are strictly connected and, thus, only the diameter can be considered 

as a crucial parameter in the induction of the back-flow. Two different kinds of backflow 

can be envisaged. First of all, backflow can occur because the catheter placement can cause 

the mechanical disruption of the tissue and the formation of voids, determining the reflux 

of the therapeutic infused agent through that gap. However, backflow can be also intrinsic, 

associated to the tissue separation from the catheter induced by the pressure guiding the 

infusion process. This phenomenon stops only when this pressure is balanced by the shear 

forces in the tissue (Raghavan et al., 2006). The FE software ANSYS could be employed 

to investigate the transient profiles of pressure and velocity and the influence of different 

parameters on the back-flow mechanism occurring in CED. This aspect is very important 

because, even if CED technique ensures larger volumes of drug distribution, its clinical 

application is not widespread for some obstacles, such as backflow itself, responsible of 

the uncontrolled drug release (Ivanchenko et al., 2010).  

 

 

6.3 The role of osteon micro-structure in bone growth and remodeling 

6.3.1 Introduction 

The second FEM application concerns, instead, the analysis of the role of bone 

microstructure in bone mechanotrasduction process. Bone is a living tissue, hierarchically 

organized, constituted by liquid and solid components, strictly interacting to optimize the 
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structure for its functions (Knothe Tate, 2003). Bone cells actively recognize and respond 

to mechanical and chemical stimuli in the process known as mechano-chemical 

transduction. Human bone is continuously renewed by basic multicellular units (BMUs), 

working in a coordinate fashion to reabsorb old bone and, then, filling the gap with new 

bone tissue organized in osteons in cortical bone. The mechanical properties of these 

secondary osteons are crucial for the stability of the entire bone. The cells involved in the 

remodeling process are the osteoblasts, actively engaged in the production of extracellular 

matrix (Cowin et al., 1991) and the osteoclasts, bone reabsorbing cells, coordinated by the 

osteocytes, considered the underestimated conductors of bone orchestra (Bonucci, 2009). 

Osteocytes are thought to be the mechanosensory cells in bone because they detect 

physical stresses, translating them into autocrine and paracrine signals. Mechanical stimuli 

can be transmitted through the solid matrix of the tissue or indirectly via fluid pressure and 

shear stresses caused by fluid moving through the lacunocanalicular system due to load-

induced fluid flow. Moreover, also chemical signals, associated to diffusive, convective 

and active transport mechanisms, arrive intracellularly or through the extracellular fluid in 

which the cells live. A central role in the mechanotrasduction process is carried out by the 

lacunocanalicular system, which serves as fluid reservoir and, thus, is determinant for the 

signals transmission. Pericellular fluid in this network is the coupling medium for the 

translation of mechanical forces into biochemical, mechanochemical, mechanobiological 

and electromechanical effects in cells, the ―machine tools‖ for bone remodeling. Different 

biophysical and electrochemical mechanisms can cause bone fluid motion. Apart from 

endogenous mechanisms, such as active transport in osteocytes, pressure gradients 

associated to osmotic or pulsatile pressures and exogenous mechanisms induced by 

mechanical loading can determine fluid motion. Bone tissue behaves like a hierarchically 

organized stiff, dense, fluid-filled sponge and, as a consequence, Biot‘s theory of 

poroelasticity enables to describe the interactions between the solid matrix and the fluid 

phase (Cowin et al., 2009). Mechanical loading in bone is associated to a tissue stress state 

comprising cyclic dilatational and deviatoric components. The dilatational component 

kindles the fluid pressure, inducing the fluid flow through deformation of the fluid-filled 

lacunocanalicular and intermatrix porosities within bone tissue. According to Biot‘s theory, 

compression deforms the solid matrix of a porous material, raising instantaneously a 

pressure increase in the fluid within the pores. The differences in pressure between the 

interior and exterior of a porous solid cause a net flow of fluid. Removal of load results, 

instead, in a pressure gradient which guides the fluid inward, until it reduces to zero. Bone 
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formation induced by mechanical loading is site-specific and, so, it depends on the stimuli 

perceived by the skeleton. Different possible remodeling stimuli have been considered, 

such as strain magnitude, strain rate, strain frequency and the strain tensor. Recently, Gross 

et al. (Gross et al., 1997) indicated that peak magnitude strain gradients, deducible from 

bone load environment and geometry, are strictly correlated with the sites of bone 

formation. Moreover, strain gradients are associated to fluid flow in the canalicular 

network. Ruimerman et al. (Ruimerman et al., 2005) considered both the effects of the 

volumetric strain, representing the actual load on the osteocytes, and of its gradient, related 

to the mechanical effects on fluid flow. As illustrated, osteon microstructure plays a 

fundamental role in guiding fluid flow and is optimized for the functions it has to fulfill. 

Bone is an intelligent material and its architecture is a consequence of the loads acting on 

it. The cylindrical osteons design can be seen as the response to the load history. Their 

distribution in compact bone, in fact, corresponds to the distribution of principal stresses 

acting on bone. Osteons structure ensures maximum load-bearing capacity and resistance 

to weakness induced by fatigue and microdamage (Weiner et al., 1999). Bàca et al. (Bàca 

et al., 2007) analyzed the course of osteons of the human proximal femur, underlying that 

osteons are present above all in the regions subjected to high stress and absent in all 

regions where loading of the bone is not significant. Osteons enable bone to respond 

optimally to the stress applied thanks to their peculiar mechanical properties, determined 

by the specific pattern of collagen fibers. Tests of macroscopic samples have demonstrated 

that collagen fibers orientation is correlated to the mechanical properties of long bones, 

independently of the type of species. Ramasamy et al. (Ramasamy et al., 2006) argued that 

collagen fibers orientation is a potential result of a microarchitectural adaptation process to 

the load environment and that the specific orientation is determined by the mineralization 

that freezes the collagen fibers in the directions dictated by physiological strains. Collagen 

fibers orientation is considered an important predictor of the tensile strength of cortical 

bone and a measure of toughness. Skedros et al. (Skedros et al., 2009) noted that 

longitudinal oriented collagen fibers determine greater strength in tension and also a grater 

elastic modulus, while transverse collagen fibers are optimized for compressive stresses. 

Fibers orientation obviously changes within the bone segments. Beraudi et al. (Beraudi et 

al., 2009) analyzed the collagen orientation in human femur, tibia and fibula shaft by 

circularly polarized light. They found, indeed, that transverse fibers become predominant 

moving versus epiphyses where the compressive physiological forces are more aligned 

with the shaft cross section, confirming that the collagen pattern is strictly dependent on 
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the loads to bear. Besides, collagen orientation is a fundamental factor also in fracture 

initiation and arrest (Weiner et al., 1999). Microdamage in bone occurs in the form of 

microcracks as a result of everyday cyclical loading activities (Mohsin et al., 2006) and it 

represents a stimulus for remodeling. Porosity, mineralization, collagen fibers orientation 

are all factors which promote cracks initiation, but hinder their growth. Gupta et al. (Gupta 

et al., 2006) considered osteons as mechanically modulated laminates of mineralized 

collagen fibril layers, characterized by the alternance of a wide band of stiffer mineralized 

matrix with thin bands of softer material. This mechanical modulation provides an example 

of a natural crack stopping mechanism. Moreover, also the stiffness variation of single 

lamellae may serve as a crack trapping mechanism inside osteons, preventing cracks 

running in the interstitial bone from propagating toward the inner Haversian canal. 

However, lamellar interface in bone is weak and, so, it is the principal site of shear damage 

formation, but it is also highly effective in keeping cracks isolated from each others. Some 

authors also proposed that the cement lines, surrounding osteons, can be seen as barriers to 

crack growth (O‘Brien et al., 2007), because they can reduce the shear strength of osteonal 

bone. O‘Brien et al. explained the osteons crack-stopping mechanism comparing them to 

composite materials. Also osteons, in fact, provide numerous sites for crack initiation, but 

the fibers act as barriers and prevent further growth. Another important aspect of osteons 

microstructure needs to be considered. Wagermaier et al. (Wagermaier et al., 2006) 

hypothesized a three-dimensional spiraling of collagen fibrils in osteonal bone. They 

argued that the helicoidal structure provides more resistance to mechanical loads and 

enables a higher extensibility in tension and compression. They proposed that one of the 

advantages of such a helicoidal plywood structure could be the protection of the blood 

vessels against failure of the surrounding matrix. Nevertheless, at the best author 

knowledge, no works have been presented in literature where the helical microstructure of 

lamellae in osteons has been interpreted as a significant factor for driving nutrients. 

 

 

6.3.2 FE simulation of a typical osteon unit 

A poroelastic steady-state analysis has been conducted on a FEM model of osteons to 

demonstrate that osteons microstructure itself is a key element to understand bone 

adaptive, growth and remodeling processes, employing the PTD theory. Numerical 

simulations have been carried out considering that the osteon length and its internal radius 
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are respectively 300 μm and 30 μm. In this model, the osteon is constituted by 10 lamellae  

with a thickness of about 5 μm. For the wrapping angle, nine different values are 

considered to simulate T-type osteons ( 0)ζ  , L-type osteons ( )
2

π
ζ   and oblique-type 

osteons  ,   1,2,3,4,5
12

π
ζ i i
 

   
 

. A parametrical custom-made ANSYS
®
 environment 

macro was developed to assign different anisotropic properties to the lamellae. The FEM 

based model was constructed by means of hexahedral 8 nodes elements with linear shape 

functions generating a 364.800 elements and 380.182 nodes mesh with 4 elements in each 

lamella thickness as shown in Figure 6.15. 

 

 

Figure 6.15  

Finite Element Mesh of the osteons model proposed 

 

The boundary conditions and the constraints imposed in the model reflect osteons 

physiological conditions. The osteon is constrained on the basis, simulating bone typical  

―packaging‖ at the microstructural level. A pressure is applied on the internal surface, 

simulating the interstitial pressure in the Haversian channel, while the pressure on the 

external surface is zero. Due to the trigonal microstructure, the applied pressure may 

induce the osteon rotation, but the presence of other osteons in the environment thwarts the 

osteon to move. This aspect is simulated by imposing zero tractions on the internal surface 

and a prescribed traction acting on the external one as boundary conditions.  
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The elastic constants of the osteon are evaluated employing the approach proposed in the 

Appendix. Table 6.3 reports the estimated bone matrix elastic constants of a single lamella 

for type L osteon (Yoon and Cowin  2008), used as starting point to evaluate the lamellar 

elastic constants for osteons with different values of the wrapping fibers angle. 

 

1

mE  16.4 GPa  12

m  0.334  

2

mE  18.7 GPa  13

m  0.237  

3

mE  22.8 GPa  21

m  0.381  

12

mG  7.2 GPa  23

m  0.247  

13

mG  7.1 GPa  31

m  0.330  

23

mG  8.4 GPa  32

m  0.301  

 

Table 6.3 

Estimated bone matrix elastic constants of a single lamella for type L osteon (Yoon and Cowin  2008) 

 

The material parameters employed in the analysis are reported in Table 6.4 (Rémond et al., 

2008). 

 

2 [ ]PK m   [ ]Pas   [ ]M GPa   

1810
 

310
 40   

 

Table 6.4 

Material parameters employed in the FEM osteon analysis (Rémond et al., 2008) 

 



Chapter VI –FEM Applications 

 

111 

 

Nature always optimizes structures to the specific functions to fulfill. The helicoidal 

pattern of the collagen fibers results, thus, a key element for understanding osteonal 

behavior. It will be shown that, together with the qualitative results, the apparently 

negligible difference in trigonal elastic constants with respect to the orthotropic ones 

produces significant differences in terms of poroelastic behavior and, then, in terms of 

biomechanical consequences. The resulting trigonal microstructure, in fact, is crucial for 

many aspect associated to osteons functions, such as fluid velocity magnitude. Figure 6.16 

shows the different velocity profiles for the trigonal (blue line) and orthotropic model (red 

line). 

 

 

Figure 6.16 

Comparison between velocity profiles for the trigonal (blue line) and the orthotropic model (red line) 

 

The analyses of the velocity profiles reveals that the trigonal model appears to generate 

significant increases of velocity and, then, fluid shear stresses can be envisaged to activate 

mechanosensory in osteocytes and BMU activities as a cell response. Fluid shear stresses, 

in fact, play a crucial role in bone remodeling process. Fluid flow induces shear stress on 

cell membranes, a well-known stimulus for bone remodeling (Smit et al., 2002). Bone cells 

are particularly sensitive to fluid shear stress, which cause the release of different kinds of 

substances, ensuring the transmission of biochemical signals. Strain induced fluid flow 

results, thus, a powerful regulator of cells behavior and, so, a determinant factor in bone 

mechanotrasduction. The bone mechanosensor cells, i.e. the osteocytes, are, in fact, 

actively stimulated by fluid shear stresses. Moreover, according to Darcy‘s Law, velocity 

is directly linked to pressure gradients. As a consequence, trigonal microstructure 
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determines also a significant increase in pressure gradients, responsible of fluid motion. 

However, trigonal model appears to generate also significant increases in volumetric strain 

gradients respect to the values obtained employing an orthotropic osteon model. This result 

has very important implications because strain gradients have been proposed as a possible 

remodeling stimulus (Gross et al. 1997).    

Moreover, also volumetric strain is influenced by trigonal microstructure, as shown in 

Figure 6.17.  

 

 

Figure 6.17 

Comparison between volumetric strain profiles for the trigonal (blue line) and the orthotropic model (red 

line). Green line represents the percentage difference between the two models 

 

 

In the volumetric strain profiles, in fact, a 20% increase can be highlighted by taking into 

account trigonal symmetry of the osteon. This can be a factor that participates to the well-

known mechanism of strain amplification, here induced by the helicoidal arrangement of 

lamellae. In bone physiology, in fact, an important paradox exists, associated to the strain 

levels perceived in bone at the cellular level. Strains applied to the macroscopic bone are, 

in fact, smaller then the strains necessary to activate mechanotrasduction processes and, 

thus, an amplification phenomenon should exist to ensure sufficient magnitude stimuli to 

bone cells (Cowin, 2002). An answer to this interesting paradox has not been found yet, 

even if different possible models have been proposed. Han et al. (Han et al., 2004) 

suggested, for example, a possible strain amplification mechanism associated to the fluid 

flow through the pericellular matrix at the lacunar-canalicular porosity level. However, our 
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results envisage that trigonal microstructure aids the strain amplification phenomenon, 

ensuring the strain levels needed to activate signaling in bone.  

 

Figure 6.18 

Variation of the volumetric strain in frontal and transverse osteon sections at one half  

of the overall length for 
4

π
ζ 

 

 

 

Figure 6.18 is, instead, a sketch of the variation of the volumetric strain in a frontal section, 

highliting what happens in the longitudinal direction, and in a transverse section, 

emphasizing the behavior in the radial direction. These sections are obtained at one half of 

the overall osteon length for 
4

π
ζ  . 

Another important consequence of trigonal microstructure is associated to the change in 

sign and jumping at the interface of the in-plane shears, reported in Figure 6.19. 
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Figure 6.19 

In plane-shears for the trigonal model 

 

 

This phenomenon has important effects for what concerns osteocytes stimulation. 

Osteocytes are placed within niches of calcified matrix, the osteocyte lacunae, at the 

lamellae interfaces. As well known, different stimuli induce different pathways of 

biological signals. Moreover, mechanical loading induce also a rapid osteocytes production 

of nitric oxide and prostaglandin. It has been demonstrated that these substances are 

released as a consequence of the wall shear stresses (Bonucci, 2009). Finally, trigonal 

microstructure could also explain how osteons can act as microcracks barriers. 

Microdamage in bone occurs in the form of microcracks as a result of everyday cyclical 

loading activities (Mohsin et al. 2006) and it represents a stimulus for remodeling and 

repair. However, bone microstructure is also optimized to prevent microcracks 

propagation, slowing or altering their propagation direction and velocity. Microcracks, in 

fact, usually initiate in interstitial bone and stop when encountering cement lines, acting as 

weak interfaces, or somewhere within the osteon (Huang et al., 2006). Some authors 

proposed that the cement lines, surrounding osteons, can be seen as barriers to crack 

growth (O‘Brien et al. 2007), because they can reduce the shear strength of osteonal bone. 

Moreover, also osteons themselves act as microcracks barriers. To this purpose, O‘Brien et 

al. explained the osteons crack-stopping mechanism comparing them to composite 

materials. Also osteons, in fact, provide numerous sites for crack initiation, but the fibers 

act as barriers and prevent further growth. Osteons crack stoppers function can be material 

induced, i.e. associated to their intrinsic material properties, or stress induced, i.e. 

associated to the stress levels experienced. For what concerns the material properties, 

Gupta et al. (Gupta et al. 2006) considered osteons as mechanically modulated laminates of 
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mineralized collagen fibril layers, characterized by the alternance of a wide band of stiffer 

mineralized matrix with thin bands of softer material. This mechanical modulation 

provides an example of a natural crack stopping mechanism. Moreover, also the stiffness 

variation of single lamellae may serve as a crack trapping mechanism inside osteons, 

preventing cracks running in the interstitial bone from propagating toward the inner 

Haversian canal. Obviously, this kind of behavior is highlighted also when an orthotropic 

osteon model is employed. However, as just said before, the crack stopping behavior do 

not depend exclusively on the material properties, but also on stress intensity. Stresses 

profiles for trigonal and orthotropic osteons models have been investigated, with the 

purpose to show the consequences of the different trends on the crack stopping mechanism. 

For a mode I crack, propagating in the radial direction, the comparison between the hoop 

stresses profiles for the two models emphasizes that trigonal microstructure ensures a crack 

stopping behavior .  

 

 

Figure 6.20 

Comparison between the hoop stresses profiles for the trigonal (blue line) and  

the orthotropic model (red line) 

 

As shown in Figure 6.20, the hoop stress gradients, in fact, decrease respect to the 

orthotropic case and, so, also the crack propagation velocity decreases. For a mode III 

crack, instead, referring to Figure 6.19, the analysis of shear stresses shows that an in-plane 

torque-induced shear stress kindles within the lamellar structure of trigonal osteons only, 

as a consequence of the kinematical constraint on the twisting angle, while this stress is 

zero for an orthotropic model. Moreover, in-plane shears change sign and jump passing 

from a lamella to the following one, revealing a stress induced crack stopping mechanism.  
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All these considerations support the idea that osteons trigonal microstructure is 

fundamental for bone adaptive and survival functions. Moreover, the trigonal 

microstructure ensures also the signaling far away the site of emission, creating a pathway 

for the fluid which can flow interlamellar and also in the osteon network. Figure 6.21 

represents the organization of osteons in a cross section of a human femur. The different 

kinds of osteons showed in this image suggest that they are not only the bone answer to 

mechanical stimuli but also a system to optimize fluid flow and, thus, signaling in bone.  

 

           

Figure 6.21 

Osteons pattern in a human femur cross section. The inner region is reported on the left, while the outer one 

on the right. Dark osteons are indicated with A, Bright osteons with B, Alternating ones with C and hooped 

osteons, containing a thick portion of the peripheral boundary with a bright appearance under polarized light, 

with D 
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APPENDIX  

 

 

 

A.1 Geometry and morphological features of osteons 

Osteon is the chief structural unit of compact (cortical) bone, consisting of concentric bone 

layers called lamellae, which surround a long hollow passageway, the Haversian canal 

(Figure A.1a). Each lamella is constituted of arrays of collagen fibrils, more or less parallel 

to each other, embedded with mineral crystals (Figure A.1b).  

 

                   

Figure A.1 

a)  Osteons (Haversian System) in compact bone, 

b) Collagen fibers orientation in osteons (Figure from David Moyer) 

 

 

The osteon looks like a cylinder with a diameter of about 200-250 μm, which runs roughly 

parallel to the long bone axis (Rho et al. 1998). The Haversian canal contains a nerve and 

small blood vessels responsible for the blood supply to osteocytes (individual bone cells). 

Osteoblasts form the lamellae sequentially, from the most external inward toward the 

Haversian canal. Some of the osteoblasts develop into osteocytes, each living within its 

own small space, or lacuna. Canaliculi are small tunnels connecting different lacunae 

which provide a pathway through which osteocytes can communicate information about 

http://www.britannica.com/EBchecked/topic/72869/bone
http://www.britannica.com/EBchecked/topic/69887/blood-vessel
http://www.britannica.com/EBchecked/topic/434280/osteocyte
http://en.wikipedia.org/wiki/Osteoblasts
http://en.wikipedia.org/wiki/Osteocyte
http://en.wikipedia.org/wiki/Lacuna_%28histology%29
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deformation states and, thus, coordinate bone adaptation. The composite structure of 

osteonal lamellae has interested researchers for the last 300 years and different theories 

have been proposed to discriminate them. One of the earliest theory arises from the work 

of Ascenzi and Bonucci (Ascenzi and Bonucci 1968) and it is based on the hypothesis that 

the collagen fibers in each lamella are almost parallel to each other and characterized by a 

preferential orientation within the lamella, which can change up to 
2

π
 in the adjacent one. 

This theory has inspired the osteons classification proposed by Martin et al. (Martin et al. 

1993). Type T osteons present a marked transversal spiral course of fiber bundles in 

successive lamellae, type L osteons have, instead, a marked longitudinal spiral course of 

fiber bundles while type A osteons are characterized by fibers directions alternating by an 

angle of nearly 
2

π
 between successive layers. Moreover, alternate osteons (osteons A) are 

further divided in osteons characterized by the alternance of longitudinal lamellae with 

lamellae in which the fibers have a circular (or transverse with respect to the osteon axis) 

or an elliptical (or oblique with respect to the osteon axis) courses. Another osteons 

classification is linked to the different kind of images obtained with polarized light. Bright 

osteons are those in which the fibers are predominantly transversely or circumferentially 

oriented (osteons T), dark osteons are characterized by fibers oriented mostly 

longitudinally (osteons L). The third category is one in which the fiber orientation changes 

from lamella to lamella, producing a pattern of alternating light and dark layers within the 

osteon (osteons A) (Martin et al. 1996). Giraud-Guille (Giraud-Guille 1988) introduced the 

twisted plywood model, characterized by collagen fibrils running parallel to each other in a 

lamella, rotating continuously by a constant angle from plane to plane in an helicoidal 

structure, and the orthogonal plywood model, consisting, instead, of parallel collagen 

fibrils in a given plane, which can assume only one of the two directions out of phase of 
2

π
 

with each other. Giraud-Guille also underlined that the orthogonal plywood model closely 

remembers the type L and type T osteons from Ascenzi's model while the twisted plywood 

model can explain the type A osteons. Whereas both Ascenzi et al. and Giraud-Guille 

proposed models of collagen orientation assuming parallel fibers, Marotti and Muglia 

(Marotti and Muglia 1988) hypothesized that the structural differences in osteons are not 

associated to the collagen fibers orientation, but rather to different packing densities of 

collagen fibrils. They defined dense and loose packed lamella and so the light bands in 
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polarized light microscopy are associated to the loosely packed lamellae while the dark 

bands could be attributed to the densely packed lamellae. Recently, Ascenzi et al. (Ascenzi 

et al. 2006) have emphasized a dominant oblique orientation of the collagen fibers in 

osteonal lamellae respect to the osteonal axis by confocal microscopy. All these findings 

underline that osteonal microstructure complexity is due to the manifold and crucial 

functions it has to perform for bone survival and adaptation. 

 

 

A.2 Derivation of the overall mechanical behavior of osteons from their 

microstructure 

A.2.1 Local material properties at the lamella level 

Osteonal lamellae are hierarchical composites of collagen fibers and mineral crystals, 3-7 

µm thick (Rho et al. 1998). As already said, the lamellae can differ for the orientation of 

the collagen fibers and they represent the crucial determinant of the mechanical properties 

of the osteons. For this reason, many efforts have been made to determine experimentally 

and analytically the lamellae elastic constants. The osteonal lamellar structure seems to be 

the effect of the dynamic processes characterizing osteons formation, culminating with the 

collagen denseness increase from the cement line inward (Ardizzoni 2001). The 

nanoindentation method is very useful to study bone mechanical properties at 

macrostructural and microstructural level. Rho et al. (Rho et al. 1999) used this technique 

to examine variations in the lamellar properties as function of the distance  from the centre 

of the osteon. They found that the elastic modulus and the hardness of the individual 

examined lamella decrease as function of the increasing distance from the centre of the 

osteon, confirming that the mechanical strength of osteonal lamellae increases from the 

cement line to the Haversian canal, as a consequence of their structure. Jasiuk and Ostoja-

Starzewski (Jasiuk and Ostoja-Starzewski 2004) used a finite element model to compute 

anisotropic effective stiffness tensors and deformations of a single lamella as a function of 

the fibril volume fractions (or porosities), prescribed microgeometries, and fibril geometric 

and elastic properties. Yoon and Cowin (Yoon and Cowin  2008) estimated rather the 

elastic constants at a single lamella level, employing a micromechanical analytical 

approach. They determined the effective elastic constants for a single bone lamella, 
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assimilating it to a laminate, organized in three different hierarchical levels. They 

evaluated first the elastic constants for a mineralized collagen fibril, then for a collagen 

fiber and, finally, for a single lamella L, assuming an orthotropic behavior.  

 

 

A.2.2 Overall material properties at the osteonal level 

Osteons arouse the interest of the scientific community because they seem to be the key 

elements to understand bone mechanical, adaptive and fractures properties. As highlighted 

before, osteons play these crucial roles thanks to their intrinsic mechanical properties, 

built, above all, into the lamellar structure (Weiner et al. 1999). The nanoindentation 

method has been widely used to estimate also the osteons mechanical properties. (Gupta et 

al. 2006) combined the scanning nanoindentation and the scanning quantitative 

backscattered electron imaging to analyze the mechanical and chemical variations in 

osteons, finding a periodical variation of the indentation modulus within a single lamella, 

positively correlated to a lamellar modulation of the local mineral content. Hoc et al. (Hoc 

et al.  2006) noted the heterogeneity in the local bone elastic behavior employing 

nanoindentation tests. However, the identification of the anisotropic elastic constants of 

osteons based on nanoindentation is still an unresolved problem. Franzoso and Zysset 

(Franzoso and Zysset  2009) used a fabric-based approach to interpret the experimental 

data and to identify the elastic constants of the osteons, supposed orthotropic. The overall 

mechanical properties of osteons have been estimated also employing analytical and 

numerical models. From a mechanical point of view, cortical bone tissue can be seen as a 

multiscale deformable porous material, and an osteon as its basic structural unit (Cowin 

and Doty 2007). Poroelasticity theory, first developed by Biot, enables to analyze fluid–

solid interaction and to model macroscopic averaged fluid flow through bone matrix and, 

so, it represents an important instrument in osteons modeling (Biot 1955). Many efforts 

were made to characterize osteons in terms of elasticity properties. Lenz et al. (Lenz et al. 

2004) analyzed the mechanical behavior of a single osteon through a detailed finite 

element model, assuming an orthotropic behavior for the lamellae. Yoon and Cowin (Yoon 

and Cowin  2008) determined the anisotropic poroelastic constants of an osteon by 

micromechanical analysis. The drained and undrained elastic constants at the lacunar and 

canalicular porosity tissue levels have been estimated by using an effective moduli model 



Appendix 

 

121 

 

consisting of the periodic distribution of ellipsoidal cavities. A major conclusion of this 

study is that the estimated undrained and drained elastic constants exhibit only a slight 

difference and so the interstitial fluid presence can be neglected in the evaluation of the 

material properties. Moreover, elastic constants are mainly determined by the orientation 

of the collagen fibers in the lamellae. Motivated by this conclusions, the aim of this work is 

a mechanical characterization of osteons behavior, based on an homogenization technique. 

FGMs theory is applied to determine the lamellae elastic constants. The osteon is 

represented by a hollow cylinder, composed by concentric lamellae, positioned in an 

alternating way. In the previous works, an orthotropic symmetry is considered for the 

elasticity tensor. In this study, instead, the trigonal osteon behavior is highlighted to show 

the important biomechanical role played by off-diagonal elasticity tensor components, 

especially in governing the driving of interlamellar fluid flows and in regulating 

remodeling processes. 

 

 

A.3 Sensitivity analysis of the out-of-diagonal block coefficients 

Osteon is a roughly cylindrical structure, composed by concentric layers of collagen fibers, 

running parallel to each other to form an helicoidal pattern. This cylindrical structure, 

characterized by a central core, surrounded by various concentric arranged lamellae, 

constituted of water, hydroxiapatite and collagen fibers, remembers the FGMs structure 

and, thus, in the following, this theory will be applied to osteons to obtain the effective 

material properties for the lamellae. In literature, Functionally Graded Materials (FGMs) 

are treated as non-homogeneous materials with elastic moduli that vary continuously or in 

a piece-wise continuous manner along one spatial direction. These materials are 

characterized by variations in composition and structure gradually over volume, resulting 

in corresponding changes in the properties of the material. FGMs can be designed for 

specific functions and applications, but they can also be used to describe the behavior of 

biological structures exhibiting hierarchical helicoidal microstructures, as muscles, arterial 

walls and bone osteonal units. In this work, an homogenization is carried out on a FGMCs 

(Cylindrical Functionally Graded Materials) structure to determine the relationships 

between the elastic constants in an helicoidal reference system and in a cylindrical one. By 
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homogenizing over a single hollow phase with embedded helicoidal fibres, one obtains a 

cylindrically monoclinic anisotropy with plane of symmetry 
3x  , where the modulus of 

the elastic coefficients in the cylindrical reference system 3{ , , }r x , 
cyl

ijc , explicitly 

depends upon the wrapping fibre angle  , while the sign of some elastic moduli, such as 

14 24 34 56, , ,cyl cyl cyl cylc c c c , depends on the sign of the wrapping fibre angle  . Let us consider an 

helicoidal coordinate system ( , , )r t c  characterized by the unit vectors ( , , )r t ce e e : the unit 

vector te  is tangent to the helix, the unit vector 
re  is perpendicular to te  and the unit 

vector ce  is perpendicular to the plane individuated by the axis r and t. Let us consider a 

new coordinate cylindrical system 3( , , )r x , whose unit vectors are denoted by  

3( , , ).r e e e  If the cylindrical system has the same origin of the helicoidal one, then, the unit 

vector re  is coincident for the two coordinate systems. The angle between the two unit 

vectors  te  and e   is identified  by   , equal to the angle between the two unit vectors  ce  

and 3.e  Employing Voigt notation, in the helicoidal coordinate system the elastic constant 

matrix is  

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

hel hel hel

hel hel hel

hel hel hel
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hel

hel

hel

c c c

c c c

c c c

c

c

c

 
 
 
 

  
 
 
 
  

c  (3) 

and, so, the material symmetry is, at most, orthotropic. With reference to (Mehrabadi et al. 

1995), the elastic constant matrix in the cylindrical coordinate system can be written as: 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

cyl cyl cyl cyl

cyl cyl cyl cyl

cyl cyl cyl cyl

cyl

cyl cyl cyl cyl

cyl cyl

cyl cyl

c c c c

c c c c

c c c c

c c c c

c c

c c

 
 
 
 

  
 
 
 
  

c  (4) 

and, so, the material symmetry is, at most, pseudo trigonal. By invoking the algebraic 

manipulation technique proposed in (Mehrabadi et al. 1995), the relationships between the 
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elastic constants in the cylindrical coordinate system, 
cyl

jkc  , and the elastic constants in the 

helicoidal coordinate system, 
hel

jkc  , are  

 

 

2 2 2 2

11 11 12 12 13 13 13 12
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4 4
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(5) 

Synoptic Table A.1 highlights the results for the remarkable cases, say 

0, ,
2

π
ζ ζ ζ ζ
 

   
 

.  

     
11

cylc  
12

cylc  
13

cylc  
22

cylc  
23

cylc  
33

cylc  
14

cylc  
24

cylc  
34

cylc  
44

cylc   
55

cylc
 56

cylc
 66

cylc
 

0ζ  
11

helc  
12

helc  
13

helc  
22

helc  
23

helc  
33

helc  0 0 0 
44

helc   
55

helc
 

0 
66

helc
 

2

π
ζ   11

helc  
13

helc  
12

helc  
33

helc  
23

helc  
22

helc  0
 

0
 

0
 

44

helc   
66

helc
 

0 
55

helc
 

ζ ζ  
11

cylc  
12

cylc  
13

cylc  
22

cylc  
23

cylc  
33

cylc  
14

cylc  
24

cylc  
34

cylc  
44

cylc   
55

cylc
 56

cylc
 66

cylc
 

Table A.1 

Remarkable cases for the values of the elastic constants 
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As highlighted in (Yoon and Cowin  2008), the elastic constants are mainly determined by 

the orientation of lamellae: the porosity does not significantly influence the elastic 

constants because the lacunar–canalicular porosity is only 5% of the total volume. The 

shape of lacunae may affect the elastic constants at the lacunar–canalicular porosity, but 

2.6% porosity in total volume does not significantly modify them. Moreover, also the 

distribution of lacunae is not a crucial factor because the orientation of lacunae in the dilute 

distribution assumption is almost coincident with those in the periodic one. The goal of this 

section is, for these reasons, the mechanical characterization of the lamellae which 

constitute the osteon. The total number of lamellae is indicated with 2n , while each 

lamella is indicated with m . The elastic constants tensor has the structure shown in (4), i.e. 

 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

cyl cyl cyl cyl

cyl cyl cyl cyl

cyl cyl cyl cyl

m cyl cyl cyl cyl

cyl cyl
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c c c c

c c c c

c c c c

c c c c

c c

c c

 
 
 
 

  
 
 
 
  

C  (6) 

 

The osteonal lamellae are wrapped around a central canal and sequential concentric 

lamellae have fiber orientations alternating with each other, spiraling around the central 

canal. The orientations envisaged in this kind of modeling are transverse (T-type osteon), 

longitudinal (L-type osteons) or oblique (Rho et al. 1998). Yoon and Cowin (Yoon and 

Cowin  2008) estimated the bone matrix elastic constants of a single lamella for L-type 

osteons, assuming an orthotropic osteons behavior. These values have been used as starting 

point to evaluate the lamellar elastic constants employing the relationships (5). To estimate 

the elastic constants in the cylindrical reference system, 
cyl

jkc , it is necessary to know, 

before, the elastic constants in the helicoidal one, 
hel

jkc . Collagen fibers in L-type osteons 

are parallel to the osteonal axes and, so, they are characterized by a right wrapping fibers 

angle.  
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First of all, the relationships between the elastic constants in the cylindrical and helicoidal 

reference systems are obtained by imposing 
2

π
ζ  in the (5): 

 

 
11 11 12 13 13 12 14 22 33 23 23

24 34 33 22 44 44 55 66 56 66 55

,  ,  ,  0,  ,  ,

0,  0,  ,  ,  ,  0,  

cyl hel cyl hel cyl hel cyl cyl hel cyl hel

cyl cyl cyl hel cyl hel cyl hel cyl cyl hel

c c c c c c c c c c c

c c c c c c c c c c c

     

      
 (7) 

 

To evaluate the elastic constants in the helicoidal reference system, 
hel

jkc , the values 

estimated in (Yoon and Cowin  2008) are replaced to the elastic constants in the cylindrical 

reference system, 
cyl

jkc , in equations (7). The compounded helicoidal elastic constants are, 

finally, introduced in the equations (5) to determine the lamellar elasticity tensor for 

different values of the wrapping fibers angle. With the exception of T and L-types osteons, 

osteonal lamellae exhibit a pseudo-trigonal mechanical behavior because the off-diagonal 

components of the elasticity tensor cannot be neglected. To support this result, the 

components of the compliance tensor are estimated from the equations (5) and the pseudo 

trigonal compliance moduli, i.e. 
14 24 34, ,cyl cyl cyls s s , are compared with the off-diagonal 

coefficients within diagonal block. The moduli are plotted as function of the wrapping 

fibers angle, ,
2 2

π π
ζ

 
  
 

, as shown in Figure A.2.  

 

 

Figure A.2  

Comparison between off-diagonal coefficients within diagonal block and pseudo-trigonal compliance moduli 
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All the values are expressed in 2/N μm   . Continuous lines refer to pseudo trigonal 

compliance moduli, while dashed lines are associated to the minimum off-diagonal 

coefficients within diagonal block on the same row. To estimate the weight of the pseudo 

trigonal compliance moduli, also the percentage of the pseudo trigonal compliance moduli 

respect to the off-diagonal coefficients within diagonal block on the same row, has been 

evaluated, revealing that this ratio is of about 35% where the moduli reach their maximum 

value. 
14

cyls is maximum for 
4

π
ζ  , while 

24

cyls  and 
34

cyls for about 
7

24

π
 and 

5

24

π
, respectively. 

 

 

A.4 The role in mechanoregulation of osteonal spiral twisting   

Once the elastic constants of the lamellae have been estimated, the overall mechanical 

properties of the osteons can be determined through an homogenization technique. The 

homogenized elasticity tensor can be evaluated as follows: 

 

 
2

( ) ( )

1

n
i i

i

γ


C C  (8) 

where ( )iγ  is the volumetric fraction of the i-th lamella , defined as: 

 

 
  

 

2 2

1( )

2 2

int

i ii
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R R
γ

R R







 (9) 

where outR  is the outer osteon radius, while intR  is the inner one (i.e. the radius of the 

Haversian canal).  

The volumetric fractions defined in the equations (9) are subjected to the constraint  

 

 
2

( )

1

1
n

i

i

γ


  (10) 
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where 2n is the total number of lamellae. Moreover, the peculiar feature of the FGM 

osteon model proposed is that two adjacent lamellae are characterized by the same 

wrapping fibers angle  , but opposite in sign. The FGM osteons model proposed shows 

that the collagen fibers organization, arranged in an alternative way, is the key element to 

carry on the mechanical functions at the osteons scale. According to (6), in fact, each 

lamella has a trigonal behavior and, so, also the off-diagonal components have to be 

considered. By invoking the equation (8) and (5), the overall elasticity tensor is evaluated 

as  

 

    
2

1

n
i cyl icyl

jk jk

i

c γ c


  (11) 

where 
cyl

jkc  are the homogenized elastic constants in the cylindrical coordinate system. As 

shown in Table A.1, two adjacent lamellae, characterized by alternative angle values, have 

the off-diagonal elastic constants all equal but opposite in sign. Their contribution in (8) 

will be, however, different because their weights, i.e. the volumetric fractions defined in 

(9), are different. As highlighted, in fact, by Gupta et al. (Gupta et al. 2006) , the lamellae 

thickness is almost the same for each lamella and, so, the volumetric fractions will be all 

different. The volumetric fractions of each lamella can be determined employing the 

relationship (9). If the lamella thickness is represented by t, and the difference 2 2

intoutR R
 
by 

A, then the volumetric fractions ( )iγ  can be expressed as  

 

 
      

22

intint int( )
2 2 11

{1,2,...., 2 }i
t R t iR i t R i t

γ i n
A A

             (12) 

where the volumetric fraction of the first inner lamella can be written as  (1)

int2
t

γ R t
A

  . 

The volumetric fraction of the lamellae (i+1)-th  is greater than that of the lamellae i-th.  

The difference between the volumetric fractions is given by: 

 

 ( 1) ( ) 2
0i i t

A
      (13) 
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The equation (11) can be rearranged as  

 

    ,cyl cyl hel

jk jk jk jkc f n c c ζ  (14) 

By applying the previous assumption, the following property for the elastic constant 

 ,cyl hel

jk jkc c ζ
 
of the lamellae is determined:  
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 (15) 

The function  jkf n  assume the follows form: 
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 (16) 

The sign of the functions    4 56,jf n f n depend on the fibres wrapping angle. In 

particular, if the first lamella is characterized by a wrapping fibres angle 0  ,  the sign of 

these functions is negative and viceversa. These function, thus, depend exclusively on the 

number of lamellae because, as already highlighted, the lamella thickness t and the radius 

intR  are equal for all the lamellae.  
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It is interesting to note that, if  the volumetric fractions are the same for all the lamellae, 

the following relationships subsist : 
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The homogenized overall elastic constants can be, therefore, written explicitly as function 

of the number of lamellae and of the elastic constants in the helicoidal reference system.  
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Table A.2 reports the estimated values of the compliance moduli for different types of 

osteons, expressed in 2/N μm   . The osteon is supposed to be constituted by two phases, 

 1  and  2 , characterized by the thickness t, while the inner radius, intR , is 2t. 
1l  and 

2l  

indicate the local values of the compliance moduli for the two phases, while h  refers to the 

homogenized estimate of the compliance moduli, evaluated employing the relationship (8). 

Different kinds of osteons have been examined and a new classification is introduced, 

based on the differences in the mechanical properties induced by the wrapping fibers angle. 

The first three types of osteons, i.e. L-type (L), T-type (T) and circular A-type osteons 

(AC), belong to the category of the ―orthotropic osteons‖ because the local and 

homogenized pseudo trigonal compliance moduli vanish and the mechanical behavior 

results, thus, orthotropic. Besides, there is not a clean separation between the three macro 

categories individuated. AC osteons are, in fact, a particular case of the category of the 

―orthogonal plywood osteons‖, characterized by a right angle between the directions of 

two adjacent lamellae. When the wrapping fibers angle is different from 0ζ   or  
2

π
ζ  , 

all the local and homogenized compliance moduli are different from zero and, so, the 

mechanical behavior turns out to be pseudo-trigonal. The last category includes the 

―osteons with alternate angles‖, that is to say that two adjacent lamellae are characterized 

by equal wrapping fibers angles, but opposite in sign. Also for this category there is an 

intersection with the previous one for 
4

π
ζ  . The pseudo trigonal behavior outcrops also 

for ―alternate angles osteons‖, underling that the overall orthotropic osteons behavior 

proposed by Franzoso and Zysset (Franzoso and Zysset  2009) and Yoon and Cowin (Yoon 

and Cowin  2008) can be used to justify exclusively the behavior of the first category of 

osteons. Moreover, the homogenization technique proposed in this paper furnishes an 

easier way to estimate the elastic constants.  
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Table A.2 

Estimated compliance moduli for different kinds of osteons 
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A.5 Analytical poroelastic solution for a solid FGMc composed by two 

phases under radial pressure 

An analytical poroelastic solution is determined for an osteon, represented with a solid 

FGMc, constituted by two hollow cylinder phases, (1) and (2). The two phases have the 

same thickness, t , the internal radius is denoted with intR  and the solid is loaded with a 

radial pressure on the external surface and with the pressure of the interstitial fluid on the 

internal surface. With reference to the cylindrical coordinate system 3{ , , }r x , the 

equilibrium equations in each phase, in the absence of body forces, are given by 
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 (19) 

The relationships between the strains 
ij  and the displacements iu  are 

 

 
 

 

1 1

, , , ,

1

33 3,3 3 3, ,3 3 3, ,3

, , ( )

, ,

rr r r r r r r

r r r

u r u u r u r u u

u u u r u r u

 



     

    

      

  

  

  
 (20) 

In a saturated porous medium the strain ε  is linearly related, not only to the stress σ  , but 

also to the fluid pressure p in the fluid-filled pores; thus, one can write the strain–stress-

pore pressure relation in a generic phase (i) as 

 

 ( ) ( ) ( ) ( ) ( )i i i i ip σ C :ε A  (21) 

where  the superscript ( )i  denotes the elastic modulus of the generic i-th phase of the 

FGMc;
 

( )i
C

 
is elastic constants matrix ; ( )ip  is the pore pressure and ( )i

A  is the  Biot 

effective stress coefficient tensor.  The equation (21) includes the effect of the pore 

pressure. If the pore pressure is zero, the equation (21) will coincide with the anisotropic 

Hooke‘s law. 
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Moreover, the pressure ( )ip  satisfies the diffusion equation for the pressure field in 

poroelastic problems. In the hypothesis of isotropy respect to the permeability, P κΚ I , 

where κ  is a constant. In the case of incompressible steady-state poroelastic problem, the 

diffusion equation becomes 

 

 
( ) 1 ( ) 2 ( ) ( )

, , , 33 0i i i i

rr rp r p r p p

       (22)   

In an elastic axial-symmetrical problem, the displacement solution and pore pressure for 

the two phases do not depend on the anomaly and, thus, the following expressions can be 

considered 

 

 

( ) ( ) ( ) ( )

3 3

( ) ( ) ( ) ( )

3 3 3 3

( , ), ( , ),

( , ) ( , ) {1,2}

i i i i

r r

i i i i

u u r x u u r x

u u r x p p r x i

  

   
 (23) 

It is possible to prove that the displacement field solution in this poroelastic steady-state 

problem is given by 

 

 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) 24
1 2 1 0 2( ) ( )

11 22

( ) ( ) ( ) ( ) ( )
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u r x u x p C C r

 



 

 


  

      
   


   

 (24) 

where ( ) ( ) ( ) ( )

1 2 3 4 0, , , , ,i i i iC C C C    are the integration constants and the coefficients 

( ) ( ) ( )

1 2, ,i i ih h   are given by 

 

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 23 13 11 22 2 24 14 11 22 22 11, 2 4 , ,i i i i i i i i i i i i ih c c c c h c c c c c c        

In particular, ( )i  and ( )

0

i  are the two coefficients representing the unit wrapping angle and 

axial strain, respectively.  
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The strain components are, then, evaluated by applying the relationships between the 

strains 
ij  and the displacements (20),  
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
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 (25) 

In the hypothesis of linear elastic behavior for the materials and of perfect contact at the 

cylindrical interfacial boundaries (no de-lamination or friction phenomena), the satisfaction 

of both the equilibrium and the compatibility equations at the boundary surfaces between 

two adjacent phases need to be imposed. The total unknown parameters to determine result 

ten and can be summarized as follows 

 

 (1) (1) (1) (1) (2) (2) (2) (2)

1 2 3 4 1 2 3 4 0, , , , , , , , ,C C C C C C C C    (26) 

Their number is equal to the number of the algebraic equations to solve. First of all, the 

two equilibrium and compatibility equations at the interfaces are written as 

 

 

(1) (2)

int int

(1) (2)

int int

( ) ( )

( ) ( )

rr rr

rr rr

u r R t u r R t

r R t r R t

     


     
 (27) 

The Cauchy equilibrium equations on the external cylindrical boundary surface are given 

by 

 

 
int int

int

(1)

(2)

( )

( 2 ) ext

rr

rr

R

R

r

r t









 

  

t

t
 (28) 

where intt  and extt are the radial load on internal and external lateral surface of the cylinder, 

respectively. Moreover, the displacement components along the 3x -direction and hope 
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direction on both basis are equal to zero. As a consequence, the integration constants 
0 ,   

are equal to zero. 

Finally, it remains to consider the equilibrium equations in 3x -direction and about 3x -

direction on one of the basis. Therefore, without loss of generality, for 3 0x   it can be 

written 

 

 

2 2 2
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33 3 33 3 3
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 


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
    


   

    M

 (29) 

where 3F and tM  
are the total axial force and the torque applied at 3 0x  , respectively. 

The pore pressure ( )ip  in both phases satisfies the following boundary conditions 
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 (30) 

where int , extp p  are the pore pressure on internal and external lateral surface of the cylinder, 

respectively. By solving the boundary conditions (30), the integration constants 

(1) (1) (2) (2)

3 4 3 4, , ,C C C C  result  
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 (31) 

Let us assume that the solid matrix of the porous material and the fluid are incompressible . 

Then, the Biot effective stress coefficient tensor ( )i
A is given by the identity matrix.  
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By applying the relationship (21) and the notation of  Voigt, the stress vector is obtained as 
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    (32) 

The parameters (1) (1) (2) (2)

1 2 1 2, , ,C C C C  are, instead, determined by solving the algebraic system 

constituted by the equations (27)-(28). For the sake of simplicity, the two hollow phases 

are supposed to be transversally isotropic in the helicoidal coordinate system with plane of 

isotropy r-c. Moreover, the following relationships between the elastic constants are 

considered 
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 (33) 

where E and σ  are the Young‘s modulus and the Poisson‘s coefficient in the plane of 

isotropy and   is a parameter weighting the transverse isotropy. Applying the relationship 

(33), the elastic constants in the helicoidal system become 
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 (34) 

where     2

1 1 1 2k          . The elastic constants in the cylindrical reference 

system are evaluated as functions of the elastic constants in the helicoidal one 
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where the matrix ( ) ( ) ( ) ( ) ( ), , , ,a b c d e
C C C C C  are constituted  by the following coefficients 
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    (36) 

The coefficients absent in the relationships (36) result zero. 

By applying the equations (24), it is possible to evaluate the divergence of the 

displacement field in the two phases as 
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CHAPTER VII 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

7.1 Conclusions 

Many analytical and numerical approaches have been proposed in order to solve 

poroelastic problems describing the behavior of biological tissues. The main difficulty 

associated to numerical strategies concerns the solution of the coupled poroelastic 

equations for determining the solid response in terms of deformation and filtration. The 

proposal of this work is to find a strategy to numerically solve poroelastic problems 

employing the Finite Element Method (FEM). In particular, the strategy presented is based 

on the well known similarity between thermoelasticity and poroelasticity theories. This 

analogy allows to solve transient poroelastic problems as corresponding thermoelastic 

ones, interpreting the temperature as a pressure and thermal gradients as velocities. With 

this aim, the relationship between thermoelasticity and poroelasticity is formulated in terms 

of dimensionless parameters to ensure numerical stability, because the elasticity moduli, 

filtration coefficients and porosity have essentially different orders of magnitude. Thus, the 

dimensionless equations obtained are implemented in numerical FEM-based computations. 

Such transferring to equivalent thermoelastic problems enables to apply the FEM package 

ANSYS
®

 11, which provides opportunities to solve coupled thermoelastic problems in 

transient non linear settings. 

 

7.2 Future Perspectives 

The poroelasticity – thermoelasticity duality theory represents a fundamental tool to solve 

numerical problems describing the behavior of biological tissues. As illustrated in Chapter 

VI, the problem of the drug delivery to solid tumors has been modeled in the isotropic 

linear hypothesis. A following step might consist, thus, in the introduction of nonlinearities 

for both the permeability and elasticity. Besides, the therapeutic fluid agent is simply 

guided by pressure gradients, as described by Darcy‘s law, and, thus, also a diffusion 

process, described by Fick‘s law needs to be investigated. However, because the CED 
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technique represents a challenging approach to overcome the physiological barriers in 

brain tumors treatment, other several analyses are necessary to investigate, for example, 

the influence of different infusion protocols on drug effectiveness and on brain tissue 

failure or back-flow effects.  

Moreover, with respect to the study presented in Chapter VI related to the influence of 

osteon trigonal microstructure on the mechanotrasduction phenomena in bone, further 

interesting aspects could be investigated. In particular, two problems may be stressed. The 

first one is concerning the transient response of the poroelastic osteon to different load 

conditions, with the aim of analyzing the effect of load frequency on the mechanical 

behavior of the bone basic unit. The second study could be instead aimed to understand the 

role of osteon trigonal poroelastic features on the crack-propagation and crack-stopping 

across lamellae.   

Poroelasticity theory can also be employed to model the mechanical arterial behavior. 

Despite recent advances on the anatomical description and measurements of the coronary 

tree and on the corresponding physiological, physical and numerical modeling aspects, the 

complete modeling of the arteries and veins is still out of reach. Therefore, in order to 

model blood perfusion in the cardiac tissue, the description should be limited to the 

detailed flows at a given space scale, simplifying the modeling of the smaller scale flows 

by aggregating these phenomena into macroscopic quantities, by some kind of 

―homogenization‖ procedure. To that purpose, the modeling of the fluid-solid coupling 

within the framework of porous media appears appropriate. Finite strain poroelastic models 

have already been proposed, albeit with ad hoc formulations for which compatibility with 

thermodynamics laws and incompressibility conditions is not established. Poroelastic 

models have also been considered in the framework of fluid structure interaction, e.g. to 

model blood vessel walls, with some extensions including drug transport. The FEM 

strategy proposed could be employed to perform parametrical analyses on arterial 

behavior. 
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Figure 7.1 

Diagrammatic scheme of the layered structure of the wall of elastic artery 

 

 

However, the PTD could pave the way for a number of interesting applications, like the 

characterization of the viscoelastic properties of polymeric gels, such as agarose, and many 

biomaterials.   
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