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Introduction

1.1 Insect Pests Control

Insects represent the most abundant group of organisms on earth, comprising

about 800,000 described species. A small number of these species cause devastating

crop losses or transmit disease to crops, animals and humans. So the insect pests

continue to pose a major threat to agriculture.

Of more than 2000 serious insect pest species, 90% remain for which effective

natural enemies have not been found. Pest control is at least as old as agricultural

production, as there has always been a need to keep crops free from pests. In order to

maximize food production, it is advantageous to protect crops from competing species

of plants, as well as from carnivores competing with humans. Pest control interventions

today are increasingly being implemented within the concept of Integrated Pest

Management, known as “IPM”. IPM relies on a combination of practices to reduce

damage by insects and related pests. As usually practiced, IPM can also include

judicious use of chemical pesticides applied only after scouting reveals pests at

economically damaging threshold levels. It also includes evaluation of the temporal

distribution of the pest to determine the periods when the pest is most susceptible to

preventive, rather than remedial interventions. For now, the Sterile Insect Technique

(SIT) is the new strategy which improves specificity in the insect pest control and

reduces any detrimental effects on the environment.

1.2 Fruit Flies

Fruit flies (Insecta; Neoptera; Diptera; Brachycera; Muscomorpha; Tephritidae)

are the most agriculturally important family of flies. About 70 species of fruit flies are

considered important agricultural pests, and many others are minor or potential pests

(White and Elson-Harris, 1992). These pest species cause heavy losses annually because
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of the phytophagous behaviour of their larvae, whereas other species are beneficial

biological control agents of weeds. Fruits are the most important crops attacked,

including citrus, mango, apples, and many others. Actually the fly's life cycle damages

the crop. The female fly lays hundreds of eggs inside the fruit that is still healthy. Within

few days, they hatch into hungry larvae, that gobble the pulp and destroy the crop. The

larvae feed for 1-2 weeks in fruit and develop into pupae after larvae exit the fruit to

pupate in the soil.

After 1-2 weeks the transformation from larva to adult is complete. Around 2

weeks later, adult flies emerge to mate and resume the cycle. Economic effects of pest

species include not only direct loss by the larval activity and fruit damage, but also the

cost of constructing and maintaining fruit treatment such as low oxygen and anoxia

treatment to eradicate infestations in the fruit; and the loss in terms of exportations. In

fact, to prevent the spread of the fruit fly species, in many countries that are free of that

pest, the import of most commercial fruit from affected countries is severely restricted

by quarantine laws.

In fact, among these pest species of fruit flies, the Tephritidae family is the

dipteran group including most of the agricultural pest species, to which belong the

genera Ceratitis, Bactrocera, Rhagoletis and Anastrepha. Ceratitis species are mostly

restricted to Africa, except for the Mediterranean fruit fly (Ceratitis capitata), also

known as Medfly, which has spread to many tropical and subtropical parts of the world.

Ceratitis capitata is the most notorious pest species in the genus, and it is one of the

most polyphagous and widespread species of Tephritidae. The genus Bactrocera, about

40 species, is local to Africa, the Mediterranean region, Australia, and the Pacific. One

of theses species, the oriental fruit fly, Bactrocera dorsalis (Hendel), is a very

destructive pest of fruit in asiatic and other areas where it occurs. Rhagoletis includes 17

species of which were listed as pests. The most serious are the apple maggot (R.

pomonella), the European and eastern cherry fruit flies (R. cerasi and cingulata), the

blueberry maggot (R. mendax), the walnut husk fly (R. completa), R. striatella, a pest of

husk tomato, and R. tomatis, a pest of tomato (White & Elson-Harris, 1992).
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1.3 Sterile Insect Technique

In recent years, molecular mechanisms regulating sex determination  of species

such as Ceratitis capitata, have received special attention due their potential use in SIT

(Sterile Insect Technique) programs for the control and eradication of insect pests

(Robinson et al., 1999; Saccone et al., 2002). SIT involves mass production of the target

pest, sterilization by irradiation and sustained release over entire regions of large

numbers of sterilized insects, which reduce the native population through infertile

matings. Ideally, sterile insects competitively mate with the target population, and the

subsequent reduction in the number of feral population is proportional to the number of

sterile insects released.

The idea that populations of economically important insect species might be

controlled, managed or eradicated through genetic manipulation was conceived by an

American entomologist Dr. Edward F. Knipling in the late 1930s. A similar concept was

published independently by the Soviet geneticist Serebrovsky (1940). The best example

of a success of SIT is the New World screwworm (Cochliomyia hominivorax), which

over the last fifty years has been eradicated from the U.S., Mexico and recently also

from all of the central America and most of Panama (Wyss, 2000). The screwworm prey

on warm-blooded animals, including humans, but especially cattle herds. In the 1950s,

it was projected at about 200 million dollar annual losses to meat and dairy supplies in

America , because the larvae of screwworm could attack open wound and eat into

animal flesh, the flies could kill the cattle within 10 days of infection. Knipling and his

colleague Bushland tried to find a best and the most efficient way to eliminate the entire

screwworm population. Bushland researched chemical treatment of screwworm-infested

wound in cattle, Knipling developed the theory of autocidal control-breaking the life

cycle of the pest itself. In 1954, the technique was first successfully used in the field to

control the screwworm fly in Curacao (Netherlands Antilles). Since then, SIT was used

to control and eradication of others pest species in many countries, for example, it has

been used against the Mediterranean fruit fly in Mexico and California, melon fly

(Bactrocera cucurbitae), tsetse fly (Glossina species), and so many other insect of

different genera. SIT was advanced and promoted by the International Atomic Energy
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Agency (IAEA) and the Food and Agricultural Organization of the United Nations

(FAO).

SIT is the first method involving insect genetics for population control, and it is

amongst the ecofriendly pest control methods. Unlike some other biologically-based

methods, it is species specific and does not release exotic agents into new environment

neither introduce new genetic variability into existing populations as the release

organisms are sterile (Hendrichs, 2002). In SIT program, the item 'sexually sterile ' dose

not indicate that the individuals do not produce any gametes but refers to the

transmission of dominant lethal mutations, caused by X or gamma rays treatmens at

pupal stage, that kill their progeny. It increases in effectiveness with decreasing density

of the target pest ( i.e. is inversely density-dependent ), making it more useful in

biosecurity applications in the early or final stages of eradication (Wimmer, 2005).

The application of SIT against medfly focused initially on the concept of

eradication, following the successful example of the screwworm. In 1977, the first large

SIT program against medfly was initiated in Southern Mexico, with the construction of

a 500 million sterile fly mass rearing facility in Tapachula. The aim of the so called

Moscamed program was to prevent the spread of medfly, which had become established

in Central America, into Mexico and the U.S.A.

A potential problem with SIT is that it relies on the release of large numbers of

sterile insects, but in some cases the adult females may themselves be unwanted or even

hazardous. Mass rearing facilities initially produce equal numbers of two sexes, but

generally try to separate and discard females before release. Possible reasons for such

separation are to avoid assortative mating; to avoid any increase in the size of feral

population during a genetic control procedure; to eliminate females which cause

damage by the ovipositor to the fruitcrops or which may be disease vectors, as in the

case of mosquitoes (Barlett and Staten, 1996). For this reason if the females can be

removed from the production and release procedures then considerable economic

advantages would accrue (Robinson, 1983). A variety of classical genetic approaches

have been used to try to achieve this with several genetic sexing strains being developed

and used in operational SIT programs (Bailey et al., 1980; Robinson et al., 1999). Such
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methods are known as Genetic Sexing Mechanism (GSMs) or Genetic Sexing Strains

(GSSs). All the genetic sexing strains used in operational programs involved the use of a

chromosomal translocation to link the wild type allele of selectable/visible mutation to

the male determining Y chromosome. In these systems, females are homozygous for the

selectable mutation and males heterozygous. Current medfly genetic sexing strains

(GSSs) contain two components: the Y-autosome translocation and the temperature

sensitive lethal mutation (tsl, Franz et al., 1994). The tsl is used to eliminate the females

by raising the temperature during egg incubation. The tsl mutation was recovered in a

white pupae (wp, Rossler and Rosenthal, 1990) strain; both mutations are closely linked

on the right arm of chromosome 5. A corresponding autosomal segment bearing wild

type wp and tsl alleles (wp+ and tsl+) has been translocated on to the Y chromosome,

conferring both brown colour to pupae and heat shock resistance to XY. Hence XX

embryos are killed after a thermal shock to a 34°C temperature during late

embryogenesis, 24-48 hours after eggs ovoposition. On the contrary because of the

presence of wp+ pupae marker and of the tsl+ allele, males survive emerging from

brown pupae. This sexing system is made possible by the close linkage of these two

markers. However recombination does occur between wp+ and tsl+ resulting in a

breakdown of the sexing procedure (Robinson A.S., 2002). Even in C. capitata the

recombination in males is essentially absent, this is not the case when genetic sexing

strains are reared in very large number (Robinson et al., 1999). Transgenesis can offer

novel solutions to develop potentially more stable transgenic sexing strains (TSS). Sex

separation methods based on female-specific expression of a conditional dominant

lethal gene or the phenotypic transformation of females into males seem to be promising

alternatives to the classical GSSs (Saccone et al.,2002; Horn and Wimmer, 2003).

1.4 Ceratitis capitata as pest

Ceratitis capitata, the Mediterranean fruit fly, or medfly, has capable of causing

extensive damage to a wide range of fruit. Now the Medfly is seem to be the one of the

world's most destructive fruit pests because of its global distribution, its wide range of

hosts, its rapid dispersion through human transport, and its tolerance of colder climates
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than most species of tropical fruit flies (Figure 1.1).

The Mediterranean fruit fly is native to tropical west Africa, but has spread to

other parts of the world including America, Southern Europe, Australia, and the New

World tropics. It has been recorded infesting over 300 cultivated and wild fruits. The

host list includes apple, apricot, avocado, bell pepper, carambola, coffee, dates, fig,

grape, grapefruit, guava, lemon, lime, loquat, lychee, mango, nectarine, orange, papaya,

peach, pear, persimmon, plum, pomegranate, pummelo, quince, sapote, tangerine,

tomato, and walnut.

The medfly adults can be easily recognized, wild type females has long pigmented

bristles on the femur pointing towards the coxa of the foreleg and the ovipositor , wild

type male exhibits two spatulated bristles on the head, a row of non-pigmented bristles

on the ventral part of the femur towards the coxa of the foreleg, short pigmented bristled

grouped on the dorsal part of the femur close to the coxa of the foreleg and male

genitalia (Figure 1.2). The damage to crops caused by Mediterranean fruit flies result

from 1) female lay the eggs inside the fruit and soft tissues of vegetative parts of certain

plants, 2) the larvae feed in fruit , and 3) decomposition of plant tissue by invading

secondary microorganisms (Figure 1.3).

The most damaging of crops is the larval feeding in fruit. The healthy young fruits

become twisted and usually drop. Mature fruits that attacked by larvae may develop a

water soaked appearance. The bacteria and fungi can enter the fruit by the larval

tunnels, then cause the fruit to rot. These larva also invade young seedlings, succulent

tap roots, and stems and buds of host plants (Figure 1.4).

1.5 Sex Determination in Drosophila melanogaster

The great genetic knowledge gained in the model system Drosophila

melanogaster on the genetic control of sex determination offered the opportunity to start

two decades ago in Ceratitis an evolutionary study (for a recent review see Saccone et

al., 2010). The tephritid flies are quite different to the Drosophila group. The

Drosophila flies are not agricultural pests and are mostly only a nuisance where fruit

and vegetables are stored.
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Figure 1.1 - World-wide distribution map of Ceratitis capitata Pest.
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Figure 1.2 - Sexual dimorphism in C.capitata is manifested in morphological differences between the

sexes.wild type females has long pigmented bristles on the femur pointing towards the coxa of the foreleg

and the ovipositor , wild type male exhibits two spatulated bristles on the head, a row of non-pigmented

bristles on the ventral part of the femur towards the coxa of the foreleg, short pigmented bristled grouped

on the dorsal part of the femur close to the coxa of the foreleg and male genitalia.
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Figure 1.3 - Damages to crops by Ceratitis capitata.

Figure 1.4 - Life cycle of medfly.
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Drosophila sex determination provides the best-understood example of a

regulatory pathway based on a cascade of alternative splicing events controlling and

controlled by key regulatory genes: Sex-lethal (Sxl), transformer (tra), transformer -2

(tra-2), doublesex (dsx) and fruitless (fru). Sxl, tra, tra-2, dsx and fru that interact

according to a hierarchical organization (Sxl>tra+tra-2>dsx/fru) (Cline1988; Burtis and

Baker, 1989; Inoue et al., 1990). The recent identification and evidence in Drosophila

point to the number of X chromosomes rather than the X:A ratio as the primary signal

(Erickson and Quintero, 2007). According to this point, the male or female dose of X

chromosomes is defined by the number of X-linked signaling elements (XSE) in the

zygote (1X or 2X), which function when in double dose in XX early embryos to

transcriptionally activate the Sex-lethal gene (Sxl) (Figure 1.5).

The Sxl gene is the switch gene in response to the transient primary  single (XSE)

that can determine the choice between the male and female development in Drosophila.

The Sxl gene starts to be active very early (2 hours from oviposition) only in XX

embryonic cells and it produces female-specific transcripts coding for a Sxl RNA

binding protein essential to maintain the female-specific splicing mode of Sxl pre-

mRNA itself. Indeed in its own transcript, Sxl protein represses inclusion of default

male-specific stop containing exon that aborts translation, thus initiating the positive

feedback loop that maintains functional Sxl expression in females. After few hours (at 4

hours from oviposition) the gene starts to be transcribed constitutively using a different

promoter. However only in XX embryos Sxl continues to be active, because the early

SXL protein started the positive feedback loop and continues to promote male exon

skipping; in XY embryos Sxl produces longer male-specific transcripts because of the

absence of early SXL protein.

Sxl protein also regulates the choice between two alternative 3'splice sites in the

transformer (tra) pre-mRNA , by binding specifically to a short cis regulatory element

nearby to the non-sex-specific site, and preventing its use (Sosnowski et al., 1989). This

cis element is also present nearby the Sxl male-specific exon and its used for the

positive autoregulation.. In female SXL promotes also the female specific-splicing of its

downstream target, the pre-mRNA of transformer (tra), so that the full-length TRA

10



Figure 1.5 - Sex determination cascade in Drosophila melanogaster.
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protein is produced only in females (Sosnowski et al., 1989; Inoue et al., 1990;

Valcarcel et al., 1993). In males, the Sxl gene is "off", therefore tra male-specific

splicing is governed by a default mechanism resulting in mRNA encoding for small

non-functional TRA peptides (Butler et al., 1986; Boggs et al., 1987). The doublesex

(dsx) and fruitless (fru), downstream regulatory components of the cascade, are

controlled by TRA in the females and by default splicing in males. The protein isoforms

produced by dsx and fru are responsible for the development of sex-specific somatic

traits and behavioral traits. TRA is able to direct the female-specific splicing of dsx and

fru pre-mRNAs (Baker and Ridge, 1980; McKeown et al., 1988; Hoshijima et al., 1991;

Heinrichs et al., 1998). Tra can associate with Tra-2, via its arginine-serine (RS)

domains, forming part of protein complex that binds to target dsx and fru pre-mRNA

repeat elements (Inoue et al., 1992). The dsx and fru splicing regulation require not only

the product of non-sex-specific tra-2 gene but also other general splicing factors (

Amrein et al., 1988; Burtis and Baker, 1989; Inoue et al., 1992). The sex-specific dsx

transcripts code for two Dsx isoforms acting as transcriptional regulators of terminal

genes responsible for the sexual dimorphism. DSXM represses expression of female-

specific genes and activates expression of male-specific genes, leading to male

differentiation. DSXF has the opposite effect, leading to female differentiation (Jursnich

and Burtis, 1993). The fru gene encodes only in males for male-specific FRU isoforms

which are required for the development of male courtship behaviour (Salvemini et al.,

2010).

1.6 Sex Determination in Ceratitis capitata

The isolation of Sxl, tra and dsx homologous genes in the distantly related

dipteran species such as Ceratitis capitata led to discovery of the partial conservation of

the Drosophila regulatory tra>dsx module despite 120 Myr of phylogenetic distance

between the two species (Saccone et al., 1998; Pane et al., 2002; Saccone et al., 2010).

In particular, the Ceratitis capitata homolog of Sxl is not a "switch" gene as in

Drosophila, it is expressed in both XX and XY embryos, irrespective of whether the
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male-determining Y, which bears the M factor, is present or absent, and this observation

is inconsistent with a main CcSxl sex-determining function (Saccone et al.,1998;

Saccone et al., 2002). However, Dmtra is a subordinate target of Sex-lethal (Sxl) in

Drosophila, but Cctra plays an essential role in sex determination of Ceratitis capitata

by initiating an autoregulatory mechanism in XX embryos which provides continuos tra

female-specific function and acts as cellular memory maintaining the female pathway

(Figure 1.6).

The tra gene (Cctra) of C. capitata, as in Drosophila, is a key intermediate

regulatory gene for femaleness through its regulation of the dsx and fru genes and has a

novel additional master function begin able to positive autoregulate and maintain female

sex determined state during all fly life (Pane et al., 2002; Salvemini et al., 2009). Cctra

is apparently dispensable for maleness in Ceratitis capitata. In contrast in Drosophila,

the presence of the Y chromosome is necessary for male fertility, but not for male

development (Hardy et al., 1981). But, RNAi-treated female XX embryos of Ceratitis

capitata can develop into fertile males, which indicate that transient repression of Cctra

by RNAi is sufficient to implement fully normal male development. The cases of

complete sexual transformation of genetic Ceratitis capitata females (XX) into fertile

males by RNAi prove that the Y chromosome, except for the dominant male determiner

M, does not supply apparently any other contribution to both somatic and germline male

development, as suggested by previous Y-chromosome deletion analysis (Willhoeft and

Franz, 1996). Cctra-2 is also conserved in medfly and exerts a novel key function on

Cctra autoregulation. Cctra-2, as in Drosophila, is necessary for promoting Ccdsx and

Ccfru pre-mRNAs female-specific splicing and that unlike in Drosophila, Cctra-2, as

Cctra too, appears to be necessary for establishing female sex determination in early

XX embryos and possibly for maintaining the positive feedback regulation of Cctra

during development (Salvemini et al., 2009). In XX embryos, maternal Cctra and

Cctra-2 mRNAs provide full-length CcTRA and CcTRA-2 proteins that initiate a

positive feedback regulation. These proteins promote a female-specific splicing of the

zygotically transcribed Cctra pre-mRNA so that new full-length CcTRA protein can be

produced. The newly synthesized protein controls the maitenance of Cctra
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Figure 1.6 - Sex determination cascade of Ceratitis capitata.
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autoregulation and the female-specific splicing of Ccdsx pre-mRNA. The CcDSXF

protein is produced promoting, most probably as in Drosophila, female development

and repressing male development. In XY embryos, the M factor which presents on the Y

chromosome would prevent the autoregulation of Cctra. So the non functional TRA

protein is produced, embryos develop into males.

The medfly dsx gene, Ccdsx, produced sex-specific transcripts by alternative

splicing as in Drosophila, suggesting its functional conservation as a sexual

differentiation regulator (Saccone et al., 1996; Saccone et al., 2008). The pre-mRNA of

Ccdsx is also alternatively spliced giving rise to sex-specific products that show a

remarkable structural conservation when compared with the corresponding male and

female products in Drosophila (Saccone et al., 2008). The putative TRA/TRA-2-

binding sites are found by sequence analysis of Ccdsx, close to the regulate splice site

and within the untranslated female-specific exon, as in Drosophila. The splicing of

Ccdsx is hence apparently conserved and under the control of TRA and TRA-2 (Saccone

et al., 2002).

1.7 Sex Determination homologous genes in other species

The molecular comparative study between Drosophila and Ceratitis is very useful

not only to understand evolution of sex determining genes and pathways but also to

develop a sexing strategy to improve the S.I.T., and also to obtain novel information on

the basic molecular genetics in this insect pest. The presence of putative TRA-TRA2

binding sites in M. domestica, A. gambie and A. aegypti dsx genes suggests that a tra

and tra-2 homologues are likely to exist in all these species. Autoregulating versions of

the Ceratitis transformer gene, have been isolated later on also in other dipteran species.

Homologues of tra and tra-2 have been reported not only in Drosophila species (O'Neil

and Belot, 1992) and Ceratitis capitata (Pane et al., 2002; Salvemini et al., 2009), but

also in Musca domestica (Burghardt et al., 2009) and Lucilia cuprina (Concha and

Scott, 2009). Niu and his colleagues (2005) have identified Bombyx mori tra-2 gene

(Bmtra2) cDNA by blasting the EST database of B. mori. Six types of Bmtra-2 cDNA

clones were identified; all isoforms of Bm TRA-2 protein showed striking structural

15



similarity to Drosophila TRA-2 proteins.

The Australian sheep blowfly Lucila cuprina, is an economically important pest

insect belonging to the Caliptratae subsection of dipterans and thus closely related to the

housefly M. dometica (Beck et al., 1985; Heath and Bishop, 2006). Homologues of Sxl

gene have been isolated from species in which the male sex is determined by a

dominant male determiner, such as C. capitata (Saccone et al., 1998), Megaselia

scalaris (Sievert et al., 2000), Musca domestica (Meise et al., 1998), Chrysomya

rufifacies (Muller-Holtkamp, 1995), B. tryoni and Lucila cuprina. The Sxl gene has

been also characterized in the lepidopteran Bombyx mori (Niimi et al., 2006). In all

these species the Sxl homologues, although they encode highly conserved protein,

display a splice pattern identical in females and males and do not appear control sex

determination. Interestingly, in both M. scalaris male and female, sxl appears to be

expressed only in the germline and not in the soma (Siecert, Kuhn and Traut, 1997;

Sievert et al., 2000).

Homologues of dsx gene have been isolated from C. capitata (Saccone et al.,

2002), A. obliqua (Ruiz et al., 2005), B. tryoni (Shearman and Frommer, 1998), M.

scalaris (Kuhn et al., 2000), Anopheles gambie (Scali et al., 2005), Aedes aegypti

(Mauro et al., 2005), Bombyx mori (Ohbayashi et al., 2001), Apis mellifera (Cho et al.,

2007) and very recently in haplo-diploid wasp Nasonia vitripennis (Oliveira et al.,

2009). In all these species male- and female-specific mRNAs are produced by the dsx

homologues. They encode for male-specific DsxM and female-specific DsxF proteins,

which are highly conserved. These homologues show a similar gene structure and, with

the exception of Bombyx mori, putative dsxRE in the 3' untranslated region of the

female-specific exons which suggest that the same sex-specific control of dsx

expression occurs in these species as in D. melanogaster.

Dsx gene of Nasonia vitripennis has been identified by Oliveira and his colleagues

(2009), but they did not known which gene regulate alternative splicing of dsx in

Nasonia. And recently Verhulst and his colleagues have identified the Nasonia

vitripennis transformer (Nvtra) regulates the female-specific splicing in the sex

determination. The maternal input of Nvtra messenger RNA, in combination with
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specific zygotic Nvtra transcription, in which Nvtra autoregulates female-specific

splicing, is essential for female.

Sex determination in the honeybee Apis mellifera is controlled by the

complementary sex determination (csd) locus; Beye and colleagues reported the cloning

of csd locus of Apis mellifera (Beye et al., 2003), it codes for an SR protein, and

different alleles have very different aminoacidic sequences. Injection of csd-dsRNA into

developing eggs caused genetic females to develop as male larvae and, interestingly,

common region of different alleles shows similarity (29%) with Cc TRA N terminal

region.

    The housefly (Musca domestica) is another excellent model system to study sex

determination in dipteran species. In the sex determination of housefly, the M factor

which is located on the Y chromosome is the dominant male-determining factor

(Hiroyoshi, 1964); the female determiner F plays as the master switch in the housefly

pathway, like Sex-lethal (Sxl) in Drosophila. The transformer of Musca (Mdtra)

expresses functional products only in female by alternative processing which

corresponds to female determiner F. The homolog of doublesex of Musca, Mddsx, acts

as a important effector in the pathway downstream of F (Hediger et al., 2004). It can

produce a set of sex-specific protein isoforms that functionally correspond to the dsx

variants in Drosophila. Similarly to the model proposed by Pane et al., (2002), in Musca

XX embryos, Mdtra is activated by maternal Mdtramat and Mdtra2mat products; then

Mdtra maintains its productive as (ON) mode of expression throughout development by

a positive feedback loop (Hediger et al., 2010). Mdtra, together with Mdtra2, sets its

direct downstream target Mddsx into the female mode of expression, which leads to

overt female differentiation. In a standard M-containing zygote, the activation of Mdtra

is prevented by the paternally transmitted M. Then Mdtra is "OFF" and Mddsx is set by

default into the male mode of expression and male development ensues.

Gabrieli et al., (2010) recently used a PCR-based sexing method for Ceratitis,

which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly

Y chromosome and analysed the transcriptomes of individual early male and female

embryos by RT-PCR. They found that the heterogeneity of the Cctra mRNA population
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during the “splicing-resetting” phase (5-8 h after oviposition) is indicative of a threshold

dependent activity of the CcTRA protein. So the maternally inherited Cctra transcripts

in the female embryos are insufficient to produce enough active protein to promote

Cctra female-specific splicing. The slow rate of development and the inefficiency of the

splicing mechanism in the pre-cellular blastoderm facilitates the male-determining

factor (M) activity, which probably acts by inhibiting CcTRA protein activity.

1.8 Suppression Subtractive Hybridization (SSH)

Suppression subtractive hybridization (SHH) is a well established molecular

subtraction method (Lukyanov et al., 1994; Diachenko et al., 1996). SSH is a powerful

technique for studying the biological processes and allowing comparison of two mRNA

populations and isolation of fraction enriched in differentially distributed molecules.

This method is used to identify genes with differential expression pattern in different

samples (tissues, sexes, etc.), in particular genes involved in the regulation of basic

biological processes and compare the genes that either are over-expressed or exclusively

expressed in one population compared with another. The SSH technique has many

potential applications in molecular genetics and positional cloning studies, including the

identification of disease-related, developmental, tissue-specific, and other differentially

expressed genes.

    SSH is a method that requires only one round of subtractive hybridization , it

eliminates any intermediate steps for physical separation of single-stranded (ss) and

double-stranded (ds) cDNAs and can obtain greater than a 1000-fold enrichment for

differentially expressed cDNAs (Figure 1.7). It based on the suppression PCR by

inverted terminal repeats (ITR). The long inverted terminal repeats when attached to

DNA fragments can selectively suppress amplification of undesirable sequences in PCR

procedures.

    Two types of tissues or cell populations being compared of cDNA are needed to

synthesized that is the first step to prepare for the SSH. The cDNA population in which

specific transcripts are to be found is called tester cDNA, and the reference cDNA
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Figure 1.7 - Schematic representation of the SSH method.

19



population is called driver cDNA. Then the tester and driver cDNAs are digested with a

four-base-cutting restriction enzyme and the tester cDNA is divided into two portions,

and each is ligated to a different ds adaptor (adaptor 1 and 2R). Adaptor 1 and 2R do not

contain a phosphate group of their ends and attach to the 5' ends of the cDNAs. The

adaptor 1 and 2R have two parts (Figure 1.7): the outer part is represented by a solid

box (for example:it is a T7 promoter) and the inner parts are represented by a clear box

of adaptor 1 and the shade box of adaptor 2R (for example: inner part may has the sites

of Not I ,Sma I, Xma I,Eag I or Rsa I). After two round of hybridization, the first PCR

use the primer 1 which is correspond to the outer part of the Adaptor 1 and 2R; the

second PCR amplification use the Nested PCR primer 1 that is correspond to the inner

part of adaptor 1 and the Nested PCR primer 2R which is correspond to the inner part of

adaptor 2R.

    In the first hybridization, an excess of driver cDNA is added to each sample of tester

cDNA. After annealing, four types of molecules generated in each sample are

amplificated (Figure 1.7). Type a molecules are single-stranded (ss) tester molecules

with adaptor, include equal concentrations of high- and low-abundance sequences

because reannealing is faster for more abundant molecules due to the second-order

kinetics of hybridization. Type b molecules are double-stranded (ds) tester molecules

with inverted repeats. Type c molecules are double-stranded (ds) tester-driver molecules

with only one type of adaptor. Type d molecules are ss- or ds-driver molecules without

adaptor.

During the second hybridization, the two primary hybridization samples are mixed

together in the presence fresh denatured driver.  Type a cDNAs from each tester sample

are now able to associate and form a new type e hybrids. The novel type e hybrids are

amplificated that are double-stranded tester molecules with different ss ends that

correspond to Adaptor1 and Adaptor2R. Freshly denatured driver cDNA is added to

enrich fraction e further for differentially expressed sequences. The entire population of

molecules is then subjected to two rounds of PCR to amplify selectively the

differentially expressed sequences.

 Prior to the first cycle of primary PCR, the adaptor ends are filled in, creating the
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complementary primer binding sites needed for amplification. Type a and d molecules

lack primer annealing sites and cannot be amplified. Type b molecules form a

panhandle-like structure that suppresses amplification. Type c molecules have only one

primer annealing site and can only be amplified linearly. Only type e molecules, which

have two different primer annealing sites, can be amplified exponentially. These

differentially expressed sequences are greatly enriched in the final subtracted cDNA

pool. Then a secondary PCR is performed using nested primers to reduce any

background PCR products and enrich for differentially expressed sequences. The

secondary PCR product is ready for the further analysis, including cloning, screening,

etc.
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Results and Discussion

Summary of the research project

The Y chromosome of Drosophila has several unusual features that together have

made the molecular identification of its genes difficult. In addition to ribosomal DNA

and a few other multiple copy genes, it is known to contain six single-copy genes

essential for male fertility (kl-1, kl-2, kl-3, kl-5, ks-1, and ks-2) (Carvalho et al., 2000).

In Drosophila X0 males are completely normal (except for the sterility), so the Y

chromosome seems to have an unusual functional specialization, apparently containing

only genes directly involved with male fertility. In contrast with the usual eukaryotic

chromosomes, the Drosophila Y contains a coherent set of genes, being an assemblage

of male-related genes collected during evolution from the whole genome. The molecular

identification of the Y-linked genes is revealing the underlying logic of the process of

gene recruitment (Clark et al., 2001).

My Ph.D. experimental work was focused on the search and genetic study of Y-

linked putative genes of Ceratitis capitata. In particular, I have identified a Y-linked

gene, yt1, which is actively transcribed from very early developmental stages of XY

individuals. Then I attempted to identify and subsequently clone by suppressive

subtractive hybridization technique novel Y-derived early transcripts and putative early

male-specific genes, in the aim of cloning also the Male determining factor of Ceratitis

capitata.

Expression analysis of Y-linked early transcripts

Genomic DNA fragments that are derived from the Y chromosome of Ceratitis

capitata, have been previously isolated using a differential hybridization approach

(Anleitner and Haymer, 1992). In the GenBank database, these authors published DNA

sequences of 4 genomic partially overlapping clones (named 5Kb, pM21, pM11 and

pY114), all containing a repetitive element which seems to be Y-specific. We have used

the longest of these sequences (5kb; Accession Number: AF115330.1 - 5,642 bp long) to
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search by Blast algorithm for homologous hits in NCBI databases. Interestingly, when

using BlastX on Drosophila genome database, we have found that a Ceratitis DNA

sequence is related to a gene (CG13340) located on the Drosophila chromosome 2R,

which encodes a leucyl aminopeptidase (Lap) (Figure 2.1). This Drosophila gene lacks

of genetic mutations but it is known to be expressed in adult testis, suggesting a putative

role in the control of Drosophila male fertility. Furthermore Dmlap has three paralogs in

Drosophila genome encoding proteins of aminopeptidase family. The C. capitata lap

(Cclap) ORF is interrupted in its genomic sequence by multiple stop codons, suggesting

that corresponds to a pseudogene but on the other side it could be possible that this

genomic region corresponds to an intron (Figure 2.2). Furthermore considering that

Cclap is strictly linked to a repetitive Y-specific sequence, it is thinkable that other Y-

linked Cclap copies are present in other regions. However, we decided to investigate if

this Y-linked gene or pseudogene is transcribed. We designed two specific primers on

the most conserved regions of the BlastX alignment with Drosophila genome (named

Y2+ and Y2-) to amplify the Y-linked gene/pseudogene in RT-PCR experiments on total

RNA extracted adult male and female flies, as well as, from early embryonic samples

and various developmental stages (Figure 2.2). In figure 2.3A is shown the PCR

amplification with Y2+/Y2- primer pair on cDNA of Ceratitis adult males and females.

We got only in males a prominent band of expected size (0.3 kb) and two low

abundance bands of 0.6 kb and 0.8 kb, probably due to aspecific primer annealing. The

cloning and the sequencing of the 0.3 kb amplification product confirm us that it is the

expected 5 kb derived product. We next performed similar analysis on different

developmental stages from unfertilized eggs (X0) to pupae. Embryonic RNAs, at 30

min, 3 and 24 hours, were purified from mixed XY/XX embryos and from XX only

embryos, produced as described in next paragraph. Results are shown in Figure 2.3B.

No amplification signals were detected in unfertilized X0 eggs, in XX larvae or XX

pupal stages. At embryonic stages the 0.3 kb expected band was detected in XY/XX

embryonal samples from 30 min to 24h where a strong amplification was observed,

probably corresponding to a very high expression level. This signal is absent in XX-

only embryos, indicating that is its male-specific and Y-linked nature.
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Figure 2.2 - A BlastX alignment of Ceratitis capitata 5kb element with the Drosophila genome database.

The red arrows represent the positions of specific primers (Y2+/Y2-) designed and used in the RT-PCR

experiments. Asterisks indicate stop codon position.
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Figure 2.3 – Analysis of the transcriptional activity of the Y-linked Cclap. (A) RT-PCR with on RNAs

from males (Lane 1), females (Lane 2) and  without template (Lane 3) as negative control.(B) RT-PCR on

RNA from unfertilized eggs (Lane 1), from mixed XX/XY individuals (Lane 2-4 and 8-9) and from XX-

only individuals (5-7) of different developmental stages. Embryos 30 h from OP (OviPosition)(Lanes 2

and 5), 3h from OP (Lanes 3 and 6), 24 h from OP (Lanes 4 and 7). The expected 0.3 kb cDNA product is

present in XX/XY individuals and absent in unfertilized eggs and in XX-only embryos. The unexpected

0.8kb cDNA product is only present in 30 min and 3h from OP XX embryos, but also weakly visible in

XX/XY embryos (Lanes 2-4). Positive control with rpP1 gene primers are not shown.

26



In XX-only embryos a strong 0.8 kb band was amplified at 30 min and 3 h stages.

The cloning and the sequencing of this cDNA product revealed that it is not derived

from Cclap and hence has originated by an aspecific primers annealing event.

These data suggested that a very early Cclap male-specific transcriptional activity

is detectable in Ceratitis capitata embryos and hence we decided to perform a

bioinformatical analysis of the entire 5Kb sequence to identify putative promoter(s) of

the Cclap gene/pseudogene. We used three different prediction software available at:

http://www.fruitfly.org/seq_tools/promoter.html

http://www-bimas.cit.nih.gov/molbio/proscan/

http://www.cbs.dtu.dk/services/Promoter/

The analyses revealed the presence of three putative promoters at region +1000, +1400

and +2700 of the 5 Kb sequence (Figure 2.4), compatible with the position of the Cclap

encoding sequence. The further molecular characterization and in vivo validation of

these putative promoters could be very useful for developing sensitive transgenic

marker systems and/or conditional sex-specific expression systems useful for generating

transgenic sexing strains that could increase the performance of the Sterile Insect

Technique.

SSH cDNA library construction

In previous studies we have established a putative window of action for the Male

Determining Factor (MDF) of Ceratitis capitata at 8-10h from egg laying (Pane and

collegues, 2004). At this stage, XY embryos and XX embryos display indeed a

differential splicing pattern of Cctransformer gene (Cctra) which is a target of MDF.

These data were recently confirmed by independent experiments of another group

(Gabrieli et al., 2010). At this early stage we can imagine that also the CcLap transcripts

are actively transcribed, seeing its active expression at both 30 min and 24h from

oviposition.

Hence we approached the problem of identifying early male-specific expressed
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transcripts of Ceratitis capitata, including hopefully transcripts corresponding to the

Male Determining Factor, by applying a suppressive subtractive hybridization (SSH)

technique (Diatchenko et al., 1996; Gurskaya et al., 1996) on two different RNA

samples extracted respectively from mixed XY/XX and XX-only embryos populations.

This technique has been used with success to isolate differentially expressed genes for

example in different social insect castes (Donnell and Strand, 2006), in specific insect

tissues (Wolfner et al., 1997), as well as, in other eukaryotic systems (Beilinson et al.,

2005; Bree et al., 2005). The advantage of this method is that it allows also the isolation

of ESTs expressed a very low levels in a specific tissue.

The first step of the experimental procedure was to obtain two different

populations of embryos of Ceratitis capitata to be used in subtraction experiments: the

first one, composed of XY and XX embryos, and hence containing also Y-chromosome

derived transcripts, and the second one, made of XX embryos, without them.

In our laboratory a transgenic strain of Ceratitis capitata was developed to

produce XX only progeny (Saccone et al., 2007). In this strain the action of a transgene

(inserted by a PiggyBac vector, Pane et al., unpub. res.), able to produce dsRNA

molecule of Cctra gene during ovogenesis, prevents the early production of maternal

and zygotic CcTRA protein in female XX embryos (Saccone et al., 2007). The transient

lack of this early protein cause the lack of the establishment of the Cctra autoregulatory

positive loop in XX embryos and the development of XX pseudomales. The transgenic

individuals are identified through the presence of a fluorescent marker, the dsRed. The

progeny of a cross between a transgenic female (bearing one copy of the transgene) and

a non transgenic male is then composed of XY normal males (50% transgenic, 50 non

transgenic) and XX pseudomales (also 50% transgenic, 50 non transgenic), which are

all fertile. Hence by crossing individually these males (either transgenic or not; the

transgene acts through the mother, not the father) with non transgenic females, it is

possible to identify those cages having an XX male, being the progeny composed then

of all XX females. With this peculiar method we crossed non-transgenic XX pseudo-

males with XX non transgenic females and we obtained  only XX embryos that

developed as female only progeny.
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For the subtraction procedure are required RNA polyA+ amount of at least 2 g

for each of the two samples. To obtain this quantity of  RNA polyA+ we have set up two

crosses for medium scale production of Ceratitis embryos with XX only karyotype

(from which to extract the XX-only RNA, named driver RNA) and embryos with mixed

karyotypes XY/XX (from which to extract the mixed XY/XX RNA, named tester

RNA). The two crosses were set up in cages of size 60x60x70 cm to contain about 2400

flies each: 800 XX pseudo-male and 1600 XX wild-type females with in the “driver”

cage and 800 XY wild- type males and 1600 XX wild-type females with in the “tester”

cage. We collected about 1 ml of embryos from each cross. Embryos collection was

carried out through two hours long intervals and the collected embryos were left to

develop until they reach the stage of 8-10 hours after ovideposition. Then we extracted

total RNA with cesium chloride density gradient protocol and we purified by affinity

chromatography molecules of RNA polyA+. Figure 2.5 shows an electrophoresis of

total RNA samples extracted by ultracentrifugation and respective RNA polyA+

obtained after chromatography.

Utilizing the PCR-Select Subtractive Hybridization Kit (Clontech, Palo Alto, CA)

we produced two subtracted libraries. The first one, named forward subtracted

library, is constituted of XY-XX 8-10h old Ceratitis capitata embryos cDNAs

population subtracted with XX-only 8-10h old Ceratitis capitata embryos cDNAs

population. This SSH library should contain early male-specific expressed transcripts

and hopefully MDG transcripts. The second library, named reverse subtracted library

and required as a control for the successive differential screening procedure, was

produced by subtracting the XX-only 8-10 old Ceratitis capitata embryos cDNAs

population with the XY-XX 8-10h old Ceratitis capitata embryos cDNAs population.

The validity of a SSH library can be confirmed by providing that subtraction had

indeed taken place. We evaluated our forward subtracted library by comparing the

abundance of two housekeeping genes, rpP1 (Gagou et al., 1999) and rpS21 (Verras et

al., 2004) in the subtracted respect to non-subtracted cDNA by PCR amplifications.

rpP1 transcripts were detected in the non-subtracted cDNA after 18 cycles of

amplification and rpS21 transcripts were detected after 28 cycles (Fig. 2.6). In
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FigureFigureFigureFigure 2.52.52.52.5 – Gel electrophoresis of total RNA (Lanes 1 and 3) and poly (A+) RNA (Lanes 2 and 4), from
XX/XY (Lanes 1 and 2) and XX-only embryos (Lanes 3 and 4) 8-10h from OP .

1 2 3 4 M
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A

FigureFigureFigureFigure 2.62.62.62.6 – RT-PCR on two constitutively expressed genes to control the efficiency of the subtraction
procedure. (A) The primers rpP1+/rpP1- are used for RT-PCR on 8-10h from OP: Lanes1-4 subtracted
XX/XY embryos. Lane 5-6 are unsubtracted cDNA of 8-10H old XX/XY embryos.Lanes 1 and 5: 18
cycles; Lanes 2 and 6: 23 cycles; Lanes 3 and 7: 28 cycles; Lanes 4 and 8: 33 cycles.(B) PCR is
performed on the subtracted (Lanes 1-4) and unsubtracted (Lanes 5-8) cDNA of 8-10H old XX/XY
embryos with primers rpS21+/rpS21-. Lanes 3 and 7: 28 cycles; Lanes 4 and 8: 33cycles.

Cycle No. 18 23 28 33 18 23 28 33

rpP1rpP1rpP1rpP1

M 1 2 3 4 5 6 7 8 M
Subtracted Unsubtracted

Cycle No. 18 23 28 33 18 23 28 33

rpS21rpS21rpS21rpS21

M 1 2 3 4 5 6 7 8 M
Subtracted Unsubtracted

B
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subtracted cDNA rpP1 transcripts were detected after 23 cycles of amplification while

rpS21 transcripts were not detected at all. This marked reduction in the abundance of

both housekeeping genes in the SSH subtracted cDNA indicates that subtraction had

indeed correctly taken place.

Mirror Orientated Selection

One of the major drawbacks of subtraction methods is the isolation of false

positive clones. These background clones are generated from non-specific annealing of

PCR primers or non-ligated adaptors (type-I background) and from redundant cDNA

molecules that evade elimination by hybridization (type-II background). In order to

reduce the number of background clones we applied also Mirror Oriented Selection

(MOS) procedure (Rebrikov et al., 2000). MOS utilizes the principle that background

molecules have only one orientation of the present adaptor sequence, whereas truly

differentially expressed molecules have many progenitors with adaptor sequences

present in both orientations. The result is achieved by removal of one adaptor by

restriction digestion, heat denaturation and re-annealing of the resulting molecules. In

this case only hybrid molecules with the remaining adaptor at the opposite ends are

amplified. MOS procedure hence eliminates background molecules reducing the

complexity of the remaining cDNA mixture. We confirmed the validity of MOS

procedure using the male-specific CcLap transcript as positive control. As evidenced by

expression analysis at embryonic stages the CcLap 0.3 Kb amplification product is

amplifiable only in Y chromosome-containing samples, from early stage of

development (30 minutes). For this reason this transcript should be enriched during the

molecular subtraction procedure in the XY/XX minus XX sample. In SSH subtracted

cDNA this transcript is surprisingly not detectable at all by PCR amplification, most

probably due to the high complexity of the subtracted cDNA mixture due to abundant

background molecules. In addition SSH method has a better efficiency for genes

differentially expressed at low levels then for those having high expression such as

Cclap. After the MOS procedure instead CcLap trascripts are detected after 33 cycles of

amplification (Figure 2.7). These finding suggest us that MOS background reduction
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FigureFigureFigureFigure 2.72.72.72.7 –––– The male-specific Cclap mRNA is amplified following MOS procedure. RT-PCR is
performed on the SSH (Lanes 1-4) and SSH-MOS cDNA of 8-10h XX/XY embryos with Cclap-specific
Y2+/2- primers.

Cycle No. 18 23 28 33 18 23 28 33

Y2+/Y2-Y2+/Y2-Y2+/Y2-Y2+/Y2-

M 1 2 3 4 5 6 7 8
SSH SSH-MOS
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had indeed correctly taken place and that male-specific transcripts are present in the

subtracted library.

The forward subtracted SSH-MOS cDNAs were directly cloned into a T/A

cloning vector (pDrive Vector – Qiagen) and electroporated into ultra competent E. coli

cells, resulting in the forward subtracted library. With homolog procedure we

produced also the second library, named reverse subtracted library.

We estimated the forward subtracted library size by plating an aliquot of the

transformed cells on 10 LB-agarose plates. We get a medium colony number of 643 for

each plate and a relative library size of 2,5 x 104 clones.

Differential screening.

Differential screening of the subtracted cDNA library was performed by cDNA dot

blots of PCR products obtained with NP2Rs primer amplification of 480 forward

subtracted randomly chosen clones (NP2Rs primer is utilized during the MOS

procedure and is present at both sides of all the subtracted clones). In figure 2.8A-B is

presented a graphical overview of the differential screening procedure. 480 forward

subtracted plated colonies were picked out and incubated in five Eppendorf 1.2 ml 96-

well plates containing LB medium and ampicillin (named Plate A to E). The bacterial

cultures were analyzed individually by PCR amplification of plasmid inserts that were

analysed on agarose gel and then blotted on nylon filter replicates (4 for each plate)

(Figures 2.9-2.11). The electrophoresis analysis revealed that 38 clones out of 480 were

empty cloning vector and 32 clones out of the remaining 442 clones contain two or

more cloned products, which were excluded from the analysis. This led to a total

number of 410 single cloned subtracted cDNA fragments. It’s important to analyze

further by differential hybridization only those clones having a single fragment derived

from a specific mRNA. Indeed the presence of two independent cDNA fragments,

derived from two different mRNAs in the same plasmid, will hide a possible differential

hybridization of one of them. Considering that 10-30% of the clones are expected to be

truly positives,  most probably only one of the two fragments would be differentially

expressed in vivo. The other cDNA fragment (false positive) would be expressed
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A

B

FigureFigureFigureFigure 2.82.82.82.8 –––– An overview of the differential screening procedure.(A) The PCR is performed with NP2Rs
primer on samples from bacteria cultures.(B) The cDNA PCR products are transferred on and crosslinked
to nylon filters.
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FigureFigureFigureFigure 2.92.92.92.9 – Gel electrophoresis of PCR products obtained with NP2Rs primers amplification of cDNA clones from bacterial sample of plates A and B. The positive amplifications
of cDNA products were blotted on filters for hybridization. The negative amplifications indicated in red and those having more than one fragment were excluded from further
analysis.

Plate A SSH-MOS XYXX-XX 8-10h Plate B SSH-MOS XYXX-XX 8-10h
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FigureFigureFigureFigure 2.102.102.102.10 – Gel electrophoresis of PCR products obtained with NP2Rs primers amplification of cDNA clones from bacterial sample of plates C and D. The positive amplifications
of cDNA products were blotted on filters for hybridization. The negative amplifications indicated in red and those having more than one fragment were excluded from further
analysis.

Plate C SSH-MOS XYXX-XX 8-10h Plate D SSH-MOS XYXX-XX 8-10h
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FigureFigureFigureFigure 2.112.112.112.11 – Gel electrophoresis of PCR products obtained with NP2Rs primers amplification of cDNA
clones from bacterial sample of plate E. The positive amplifications of cDNA products were blotted on
filters for hybridization. The negative amplifications indicated in red and those having more than one
fragment were excluded from further analysis.

Plate E SSH-MOS XYXX-XX 8-10h
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similarly in both tester and driver and hence would hybridize with both probes on dot

spotted filters, hiding the presence of a second positive cDNA fragment.

4 identical filters were produced for each 96-well plate by arraying 2l of each

PCR product on nylon filter. Each filter replicate was hybridized with one of the four

following probes: 1) forward-subtracted tester probe (XY/XX 8-10h cDNA minus XX

8-10h cDNA), which identifies differentially expressed clones plus false positives. 2)

reverse-subtracted tester probe (XX 8-10h cDNA minus XY/XX 8-10h cDNA, which

identifies only false positives which hybridize also with the first probe, 3) unsubtracted-

tester probe (XY/XX 8-10h cDNA) which identifies differentially expressed clones plus

false positives both highly expressed,  4) unsubtracted-driver probe (XX 8-10h cDNA),

which identifies only false positives highly expressed,

Hence the clones that hybridize only with the forward-subtracted tester probe

(XX/XY) can correspond to differentially expressed cDNA clones. The clones that

hybridize with the forward-subtracted (XX/XY) and unsubtracted tester probes

(XX/XY), but not with the reverse-subtracted (XX minus XX/XY) or unsubtracted

driver probes (XX), usually correspond to differentially expressed genes, namely real

positive clones. Those clones having no detectable hybridization signals with any probe

could represent differentially expressed transcripts or false positives having a very low

abundance. Finally, those hybridizing equally with both subtracted probes and

unsubtracted probes, were the most highly expressed clones, including either real

positive clones or false positive. The results of the differential screening are shown in

Figures. 2.12-2.14. In our experiment, from 410 clones, 25 of them were identified as

hybridizing with the forward-subtracted tester probe (XX/XY minus XX). A further

clone was identified as hybridizing also with unsubtracted tester probe (XX/XY). All 26

clones either failed to hybridize or weakly hybridized with the reverse-subtracted (XX

minus XX/XY) and driver  (XX) probes.

The 26 clones were sequenced with T7 and SP6 plasmid primers and aligned via

Macaw software. The sequence and length of AE5 and BE6 clones are respectively

identical to those of DB4 and BE8 clones. Hence we have isolated 24 different clones

and we analyzed them by computational analysis. A BLASTx analysis revealed that 18
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FigureFigureFigureFigure 2.122.122.122.12 – 4 blot replicates of Plate A and B in total 8 filters, individually hybridized with 4 different
probes (forward, reverse, unsubtracted tester and unsubtracted drive).

Plate A filter replicates are hybridized with four probes

Plate B filter replicates are hybridized with four probes
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FigureFigureFigureFigure 2.132.132.132.13 – 4 blot replicates of Plate C and D in total 8 filters, individually hybridized with 4 different
probes (forward, reverse, unsubtracted tester and unsubtracted drive).

Plate D filter replicates are hybridized with four probes

Plate C filter replicates are hybridized with four probes.
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FigureFigureFigureFigure 2.142.142.142.14 – 4 blot replicates of Plate E in total 4 filters, individually hybridized with 4 different probes
(forward, reverse, unsubtracted tester and unsubtracted drive).

Plate E filter replicates are hybridized with four probes
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transcripts encode for putative protein domains with significant homology with known

proteins of varying functions. The remaining 6 cDNA clones seem to encode either

unknown or low conserved proteins or to correspond to untranslated regions of the

transcripts. The results of these analyses are reported in Table 1.

Real Time PCR Validation

To validate the differential screening results and confirm the differential

expression of the 24 clones, we use quantitative real time PCR analysis. The Ambion

RetroScript Kit was used to prepare cDNA from the same XY/XX RNA polyA+ and

XX-only polyA+ samples used for the SSH-MOS procedure. cDNA were diluted 1:5

and 1 l was used in each reaction for Real-Time PCR using SYBR Green PCR

Mastermix (Applied Biosystem). rpP1 specific primers were used for normalization

step. As reported in figure 2.15, 11 out of 26 clones are male-biased, with expression

levels ranging from 1,47 to 11,58 fold (Tab. 2).

We performed on these 11 differentially expressed clones, a Blast2Go analysis

(Götz et al., 2008), which automatically finds similarity between sequences (either

nucleotidic or aminoacidic), extracts the Gene Ontology (GO) terms associated to each

of the obtained hits and returns an evaluated GO annotation on putative biological

function (F), molecular process (P) and cellular component (C) for the query

sequence(s). The results are reported in Tab. 3. We have also performed a Blastx

analysis in Flybase, a Drosophila genome database (data not shown). Unfortunately, the

clone BA11, showing the most –male biased expression (11 times more expressed in

males),  as also DE3 and EC4 clones have apparently no significant homology with

DNA or proteins. These 3 clones however could correspond to untranslated regions of

the corresponding transcripts.

EG2 clone encodes an aminoacidic sequence which has significant homology with

a blastoderm-specific protein of Drosophila, whose molecular function is unknown

(data not shown). Clone AE5 (2 times more expressed in males) and clone EA1 (4

times more expressed in males) encode aminoacidic sequences having possibly related

to functions such as spermatogenesis and in Drosophila are both related to Twin of m4
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TableTableTableTable 1111 - Similarity sequence analyses of 24 clones by BlastN and BlastX algorithms on NCBI diptera databases.
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FigureFigureFigureFigure 2.152.152.152.15 - Validation of the male biased expression of 11 cDNA clones by the Real Time PCR.
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TableTableTableTable 2222 – Relative quantization (RQ) in XY embryos versus XX embryos of the 24 SSH-MOS subtracted
clones. Clones shaded in light gray are more expressed in male embryos respect to female embryos.
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TableTableTableTable 3333 - Analysis of 11 differentially expressed clones by Blast2Go tool.
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and Ocho proteins, whose molecular functions are unknown but either for genetic

mutation or for similarity they are known to be involved in biological processes such as

sensory organ precursor cell fate determination, sensory organ development,

establishment of planar polarity, Notch signaling pathway and cell fate specification.

Clone BG10 encodes an aminoacidic sequence having similarity to transcription

factors such as the Drosophila DAN protein. The dan gene, distal antenna,  encodes a

protein which has a transcription factor activity and protein binding and seems to be

involved in the biological processes such as segment specification and compound eye

development.  EB2 encodes an aminoacidic sequence showing homology to Profilin, an

actin binding protein and in Drosophila to the Chickadee, a Profilin-related protein,

encoded by a gene showing various mutant alleles with mutant phenotypes interestingly

in the female and male germ lines and in the nervous system.
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Conclusions

We have identified and analysed the expression of the first Y-linked gene in

Ceratitis capitata, Cclap, which appears to be transcribed very early during

embryogenesis (starting from the very first stages). Putative promoters of Cclap have

been identified which will be investigated for their use as early drivers of transgene

expression during embryogenesis. Further functional RNAi analysis of Cclap will

clarify its possible function during very early embryogenesis.

We used a Ceratitis transgenic line which can produce male only progeny by an in

vivo maternal RNAi  specific for the Cctra master gene to obtain XX non transgenic

males. These males have been crossed to non transgenic XX females to produce XX-

only embryos. These method to produce female only progeny was very useful to

approach the problem of identifying male-specific or male-biased genes in Ceratitis

capitata through a PCR-based molecular subtractive technique.

We have produced a subtracted cDNA library from XX/XY embryos of 8-10h

from oviposition, in which we have found by differential hybridization out of 410 dot

spotted cDNA clones, 26 putative differentially expressed cDNAs out of which 11

cDNAs were real positive clones, showing a male-biased expression confirmed by real

time PCR. The overall efficiency of our SSH-MOS in leading to isolate cDNA clones

having  putative differential expression is 6,3% (26/410), which is 1/3 of the one

obtained by Rebrikov et al., (2000). The observed efficiency of the MOS in reducing the

false positive with the respect of the real ones, is about 42% (11/26), a value which is

half of the one observed by Rebrikov. We observed indeed that 11 out of 26 clones

showed by real time PCR a significant differential expression, Considering the different

complexity and the different expected number of differentially expressed genes in the

Rebrikov and our studies, we think that the method worked very good in our case and

that interesting genes having differential expression in males have been identified.

We apparently failed to identify by the SSH strategy novel Y-linked genes,

considering that none of the clones showed an expression exclusively in the XX/XY

sample versus XX one, such as for example the Cclap gene.  If the Y-linked M factor
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corresponds to a non polyadenilated mRNA such as microRNAs, then a novel SSH

dedicated to this type of RNAs will be necessary to approach this new challenge.

However it still possible that one of the 11 isolated clones correspond to a Y-linked

gene, such as M, which however could have for example also a copy on an autosomal

localization. In this case mRNAs would be present in both sexes but biased in the male

one, because of the Y-linked extra copy, which could have evolved a male determining

or a male-specific function. These 11 Ceratitis capitata genes showing a male-biased

expression will be in future investigated also in their in vivo functions during

embryogenesis by applying transient RNAi on XX-only and on XX/XY mixed

embryos. Their functional study will contribute to a better understanding of the genetic

and molecular differences underlying the first stages of embryogenesis when male sex

determination takes place in Ceratitis capitata. This knowledge will be possibly useful

not only to understand evolution of sex determination in different dipteran species, but

also to develop novel strategies of biological control for this so relevant agricultural pest

insect.

51



Acknowledgment

I wish to sincerely thank all the people that have helped me during this three years of

Ph.D. experimental thesis.

I thank Prof. Catello Polito, Dr. Giuseppe Saccone and Dr. Marco Salvemini for their

high value scientific support, helpful discussions and for critically reading of the

manuscript.

I thank all my lab friends and colleagues Andreina Milano, Simona Capuozzo, Rocco

D’Amato, Domenica Ippolito.

52



Materials and Methods

Fly Strains

The medfly were reared in standard laboratory conditions at 25°C, 70% relative

humidity and 12:12 h light-dark regimen. 800 males mated 1600 females were

maintained in every sex cages (60cm×60cm×70cm).After 3-4 days, eggs were collected

in water dishes for 8-10H and 23-25H.

RNA isolation

The total RNA was extracted from embryos, using the standard guanidinium

isothiocyanate procedure (T. Maniatis, E. F. Fritsch and J. Sambrook, 1982). The 1ml

embryos are mixed with guanidinium isothiocyanate solution at the ratio of 1:7 (1 ml

embryos : 7 ml solution) and centrifuge at 10,000×g for 10 min at 4°C.The remove the

supernatant in a new tube with a sterile pipette. The supernatant fraction is highly

enriched for the denatured RNases and must be removed carefully to avoid bringing the

floating film into contact with the RNA pellet. The supernatant is mixed with 4 mL 5 M

CsCl and centrifuge at 31,000×g for 16 h at 18°C, then discard the supernatant fraction,

the RNA pellet is at the bottom of the tube. Dry the pellet at the room temperature and

dissolve the pellet in 500-1000 μl DEPC-treated 1 mM EDTA (pH 7.5) solution (5 to 50

μl is recommended). The concentration and purity of the RNA concentration were

determined spectrophotometrically by measuring the absorbance at 260 and 280 nm,

and the integrity of the RNA was assessed using denaturing agarose gel electrophoresis.

Reverse Transcription PCR

RT-PCR was performed using RNA from embryos with Advantage® RT-for-PCR Kit

(Clontech). 1 μl of RNA from each sample was treated with 1 μl of Dnase I (2 U/μl,
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Ambion) to remove contaminating DNA following the manufacturer's instruction, and

then reverse transcribed using 1 μl of oligo (dT), incubate the sample at 70°C for 2 min.

Then the sample is mixed with 5× reaction buffer, dNTP mix, RNase inhibitor, MMLV

reverse transcriptase in the total volume of 20 μl. The mixture was incubated in a

thermal cycle at 42°C for 1 h and 94°C for 5 min. The primer RpP1(ribosomal protein

P1) was used as the positive control (RpP1+:5'-TTGCGTTTACGTTGCTCTCG-

3';RpP1-:5'-AATCGAAGAGACCGAAACCC-3'). The following PCR cycles were

performed: 5 min at 94°C, 35 cycles with 1 min at 94°C, 1 min at 60°C, 1 min at 72°C,

10 min at 72°C. RT-PCR expression analysis was performed with the following primers:

Y2+(5'-AAGGACTTGTGATTGGATTG-3'), Y2-(5'-ATGCCGTCGTCCAACATC-3')

that located in Y chromosome of C. capitata. Cycling conditions were denaturation at

94°C for 5 min, followed by 35 cycles of 94°C for 1 min, annealing at 56°C for 1 min

and extension at 72°C for 1 min, with a final 10 min extension at 72°C.

Poly A+ RNA isolation

The poly A+ RNA was isolated using the Oligotex mRNA Mini Kit (QIAGEN). The

200 μg total RNA is diluted in 250 μl RNase-free water, 200 μl OBB (binding buffer)

and 15 μl Oligotex suspension, mix gently. Incubate the sample for 3 min at 70°C in a

water bath, then remove the sample and place it at 20 to 30°C for 10 min. Centrifuge the

sample at maximum speed for 2 min and carefully remove the supernatant by pipetting.

The mRNA pellet which is at the bottom of tube is diluted in 400 μl OW2 (wash buffer)

and remove the sample onto spin column. After centrifuge the sample at maximum

speed for 1 min, transfer the spin column to a new microcentrifuge tube, and add 400 μl

OW2, centrifuge at maximum speed for 1 min and discard the flow-through. Transfer

the spin column to a new microcentrifuge tube, add 100 μl hot (70°C) OEB (elution

buffer) and centrifuge for 1 min at maximum speed.
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Suppression subtractive hybridization, mirror orientation selection and differential

screening of subtracted library

2,2 μg of poly (A) RNA from each sample was used for reverse transcription to perform

the cDNA suppression subtractive hybridization using the Clontech PCR-select cDNA

Subtraction Kit according to the manufacturer's protocols. cDNA from the XX/XY

embryos was used as a tester, which the sample from the XX embryos was used as a

driver in forward subtraction (and the cDNA from XX embryos was used as a tester, the

sample from the XX/XY embryos was used as a driver in reverse subtraction). Mirror

orientation selection was implemented as described by Rebrikov (Rebrikov et.al., 2000)

with some modifications. For each direction, two tester populations were created

separately by ligating suppression adapters 1 and 2R to the blunt-ended RsaI-digested

cDNA synthesis products.

(Adaptor1:5'-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-

3')

(Adaptor2R:5'-TAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3')

The two tester populations were mixed with driver excess (driver cDNA had no

adaptors) in two separate tubes, denatured, and allowed to renature. After the

hybridization, the two samples were mixed and hybridized together. 1 μl cDNA was

taken for 24 μl first PCR with 1.0 μl primer 1(5'-CTAATACGACTCACTATAGGGC-3')

by the following temperature program: 2 min at 72°C for initial extension of 3'-ends,

followed by 27 cycles with 30 s at 94°C, 30 s at 66°C, and 1.5 min at 72°C. 3 μl of the

first PCR products was diluted in 27 μl sterile water and then 1 μl of diluted sample was

taken for the second PCR with 1.0 μl nested primer 1 (5'-

TCGAGCGGCCGCCCGGGCAGGT-3'; XmaI restriction site underlined) and 1.0μl

nested primer 2R (5'-AGCGTGGTCGCGGCCGAGGT-3') by the following 12 cycles

with 10 s at 94°C, 30 s at 68°C, and 1.5 min at 72°C. PCR products were extracted by

phenol/chloroform solution and ethanol precipitated. The pellet was dissolved in NTE
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buffer (10 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA). To remove nested primer 1

adaptors, 5 μl of the cDNA samples was mixed with 2 μl of 10× XmaI restriction buffer,

12 μl H2O and 1 μl XmaI (10U/μl). The reaction was incubated at 37°C for 1 h. The

enzyme was then inactivated by adding 2 μl of 200mM EDTA and incubated at 70°C for

10 min. One microliter of XmaI-digested cDNA was mixed with 1 μl of 4×

hybridization buffer (2 M NaCl, 200 mM HEPES pH 8.3, 0.8 mM EDTA) and 2 μl of

H2O and incubated in a thermal cycle at 98°C for 1.5 min and then at 68°C for 4 h. After

hybridization the sample was mixed with 200 μl of dilution buffer (50 mM NaCl, 20

mM HEPES pH 8.3, 0.2 mM EDTA) and heated at 70°C for 5 min. One microliter of

diluted cDNA was taken for subsequent PCR in a total volume of 20 μl. The PCR

mixture containted 50× Advantage cDNA Polymerase Mix (Clontech), 10× PCR

reaction buffer, 10 mM dNTPs and 0.6μM adapter-specific primer NP2Rs (5'-

GGTCGCGGCCGAGGT-3'). The primer NP2Rs is shorter than NP2R, was designed to

reduce the strong suppression PCR effect that occurs for short DNA fragments. The

PCR mixture was incubated in a thermal cycle at 72°C for 2 min and followed the 23

cycles with 7 s at 94°C, 20 s at 62°C and 2 min at 72°C. 1.5 μl of PCR products was

cloned into pGEM-T Easy Vector (Promega) and transformed in E.coli cells (Promega).

After blue/white selection on LB Ampicillin/IPTG/X-Gal plates, 480 white colonies

were picked and arrayed in 100μl of LB-Ampicillin medium in a standard 96-well

plates overnight at 37°C. 2 μl of each bacterial culture were mixed with Master Mix

(10× PCR reacion buffer, primer NP2Rs, dNTP mix, 50× PCR enzyme mix, H2O) in the

total volume of 20 μl. The PCR mixture was incubated in a thermal cycle at 94°C for 30

s and followed the 23 cycles with 10 s at 95°C and 3 min at 68°C. After PCR,

electrophorese 5 μl from each reaction on agarose gel to observe how much PCR

products were corresponded to the cDNA insert. Then 5 μl of PCR product is combined

with 5 μl of 0.6 N NaOH in 96-well plats (NaOH would denature the DNA for

hybridization) and transfer 1 μl of each mixture to a nylon membrane, neutralize the

blots for 2-4 min in 0.5 M Tris-HCl (pH 7.5) and wash in H2O, cross-link the DNA to

the membrane using a UV linking device. Forward and reverse subtracted hybridization

probes were prepared from SSH-MOS secondary PCR products digested with XmaI to
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remove and degrade adaptors. 3 μl (20-100 ng) of each probe was labeled with [α-

32P]dATP. Colony lifts were prehybridized with hybridization solution (50 μl of 20×

SSC and 50 μl of blocking solution ) for 1 h at 72°C, and then hybridized overnight at

72°C with labeled probes. Membranes were then washed four times with low-stringency

solution (2 × SSC,0.5 % SDS), twice with high-stringency solution (0.2 × SSC, 0.5 %

SDS), each for 20 min at 68°C, and then exposed to BioMax MR film (Kodak)

overnight. Clones representing mRNAs that are truly differentially expressed hybridize

only with the forward-subtracted probe. Plasmid DNA from positive clones was isolated

using the Wizard® Plus SV Minipreps DNA Purification System (Promega). The DNA

of each sample is sequenced with the Big Dye® Terminator v1.1 sequencing Kit

(Applied Biosystem) using the primer T7 and SP6 (0.8pmol/μl) and then analyzed by

BLAST.

Real Time PCR

The Ambion RetroScript Kit was used to prepare cDNA from 0,5 g of the same

XY/XX RNA polyA+ and XX-only polyA+ samples used for the SSH-MOS procedure.

cDNA were diluted 1:5 and 1 l was used in each reaction for Real-Time PCR using

SYBR Green PCR Mastermix (Applied Biosystem) and Applied 7500 Real-Time PCR

System. Ceratitis capitata rpP1 gene was was selected as endogenous control (Acc.

Numb.: Y11907.1). Primers of 24 target genes and rpP1 gene were designed by using

Primer Express 3.0 Software (Applied Byosistem) and are reported here:

AE5+: 5'-GCGAGCGTTTTCTGCAACA-3'

AE5-: 5'-GCCTTTCCTAACACGCGAATA-3'

AG5+: 5'-TTGCGCGCTCAGATGGTATA-3'

AG5-: 5'-TTCTAGTCGACGCGCTTCTTC-3'

AH4+: 5'-AACGACGAAACGCAGTTGATT-3'

AH4-: 5'-AGGAAATGGTTCGCGAAATTT-3'

BA11+: 5'-TCGTATGCACTTACGATCTTC-3'
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BA11-: 5'-AAACAGCTCAGAACTCTTGAC-3'

BE6+: 5'-GGCACTTCATCGAGACTCTTCA-3'

BE6-: 5'-AAGCAGTGCAGCGCCTAAAG-3'

BG10+: 5'-ATCAGCTACGCAAGCGACAA-3'

BG10-: 5'-CGAGGATTGCTACATTTTTCTAACC-3'

CB11+: 5'-CGTTACCACCGGCAATACG-3'

CB11-: 5'-TCTTTTCCGGCGACTGGAT-3'

CD3+: 5'-TGTGTGTGACCGTAGCGCATA-3'

CD3-: 5'-ACATTGCGCCCAAATTTCTT-3'

CF2+: 5'-ATGAGGCTGATCGTATGTTGGAT-3'

CF2-: 5'-TGTAATTGCCGAGAAAATCTTCTG-3'

DE3+: 5'-AAGACGGTTTTCTCGCTTGCT-3'

DE3-: 5'-GCTCATCATCAGTCTCCTCTGTTC-3'

DF2+: 5'-TGCTGCAGCGTCGTTTCTT-3'

DF2-: 5'-TAATATTGTTGATACACATGCGTGAAG-3'

EA1+: 5'-GCGCCCAACGATCCATAAAG-3'

EA1-: 5'-ACGCATCGTCTGCAAACGA-3'

EA6+: 5'-GGCCAAATCCCGATATCACTT-3'

EA6-: 5'-TTCATTGGTTTATCGTATGGCTGTT-3'

EA7+: 5'-GGCAGACCATCAGCAATGC-3'

EA7-: 5'-TTCGATGCACACGATTTCATC-3'

EA10+: 5'-TACTTCATTCTTCCTCATCATC-3'

EA10-: 5'-TTTTCGGCTGCTACACCAAC-3'

EB2+: 5'-CTGCTATTAACTTCGCCAACTCTTC-3'

EB2-: 5'-CGAAAATGAGCTGGCAAGATT-3'

EB4+: 5'-AGCAACCAAATAAAGAAGCATCCA-3'

EB4-: 5'-TTCGCTCGTAAAATCGGAATG-3'

EC3+: 5'-GACTTTAGGGCGGCATGTGA-3'

EC3-: 5'-TAGTGCCGAGGAACTGAAGGA-3'

EC4+: 5'-AGGTGGTTGTTGCAACTGTTTCT-3'
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EC4-: 5'-GCGTCTTCAAGCCATCATCA-3'

ED11+: 5'-TCGCTCTAAGTGGACGGGATA-3'

ED11-: 5'-GTGTCGGTGCCAAAATCAGA-3'

EF9+: 5'-AGCGCCCTCATACCTGACAT-3'

EF9-: 5'-AGATCTGCAGGCGCTGTTTC-3'

EG2+: 5'-CGTCCCCCGACTACTAATGG-3'

EG2-: 5'-TGCTTGTTTTTGTTGAAGCTTATCC-3'

EH5+: 5'-TGCTATACACAAAGCGAGAGCAA-3'

EH5-: 5'-AACACTGTTCCATTTTGTCTCTTATATC-3'

RPP1 qPCR+: 5'-GGCTTTGGAAGGTATCAACGTT-3'

RPP1 qPCR-: 5'-TCTGGTTCTTCCTCCTTCTTCTTCT-3'

All the real-time PCR reactions were performed in triplicates on 1:5, 1:25, 1:125, 1:625

and 1:3125 dilution of starting 1:5 diluted cDNAs. Nontemplate control (NTC)

reactions were performed in triplicates for each pair of primers, and two biological

repeats were performed. Real-time PCR were carried out  in a final volume of 50 μl,

including 100 nM of each primer, and 1 μl of a cDNA dilution. PCR reactions were

performed in 96-well optical reaction plates (Applied Biosystem). The reactions were

 heated for 10 min to 95°C followed by 50 cycles of denaturation for 30 sec at 95°C and

annealing-extension for 45 sec at 60°C. For each pair of primers, the PCR efficiency

was calculated using different template dilutions and the equation (1+e) = 10(-1/slope).

Only primer pairs with an efficiency between 0.85 and 1.15 were considered valuable.

At the end of the amplification experiment, a melting curve was realized between 55°C

to 95°C by steps of 0.5°C, to ensure that the signal corresponded to a single PCR

product.

The relative gene expression levels of XY embryos versus XX embryos were

represented by relative quantification (RQ) values, which were calculated with the Ct

method. RQ values of XY-only embryos were calculated as follow: XY RQ = XY/XX

RQ -[(XX RQ)/2].
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