
 1 

UNIVERSITY OF NAPLES FEDERICO II 
Department of Biology and Cellular and Molecular Pathology 

“L. Califano” 
 

 
Doctorate School in Molecular Medicine 

 
Doctorate Program in 

Genetics and Molecular Medicine 
Coordinator: Prof. Lucio Nitsch 

XXIII Cycle 
 

 
“DYNAMICS AND EPIGENETIC CONTROL OF PcG 

PROTEINS DURING SKELETAL MUSCLE CELL 
DIFFERENTIATION” 

 
 

 
PREZIOSO CAROLINA 

 
Tutor: Dr. Valerio Orlando 

 
 
 

 
 
 

Naples 2010 



 2 

 
 
 
 
 

La scienza puo’ essere  
solo cio’ che e’, 

non cio’ che potrebbe essere. 
Albert Einstein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Carolina Prezioso 
cprezioso@dti.telethon.it 
 
Tutor: Dr. Valerio Orlando, PhD 

vorlando@dti.telethon.it 
 

Dulbecco Telethon Institute 
Epigenetics and Genome Reprogramming Lab 
IRCCS Fondazione Santa Lucia 
Rome, Italy 
 
Institute of Genetics and Biophysics “A. Buzzati-Traverso”, 
Naples, Italy 



 3 

TABLE OF CONTENTS 
 
 
ABSTRACT………………………………………………………..5 
 
1. INTRODUCTION…………………………………..…………6 
 
1.1 Epigenomes and Control of Cell Identity……………………………………6 
1.2 Polycomb Group Proteins as Epigenetic Regulators.............................................8 

1.2.1 The Gene Networks Controlled by PcG Proteins………………...13 
1.2.2 Recruitment of PcG Proteins to their Targets.....................................14 
1.2.3 PcG and Mechanisms of Transcriptional Repression……………..17 

1.3 The Language of Histone Crosstalk………………………………………...20 
1.3.1 H3 Phosphorylation: Dual Role in Mitosis and Interphase................24 
1.3.2 A role for H3 Phospho-Switch in Chromatin Regulation..................28 

1.4 The Genetic Networks Regulating Muscle Differentiation.................................30 
1.4.1 The Epigenetic Networks Regulating Muscle Differentiation…......32 

 
2. AIMS OF THE STUDY………………………………………36 
 
3. MATERIALS AND METHODS………………………….....37 
 
4. RESULTS AND DISCUSSION………………………….…..44 
 
4.1 Two PRC2 complexes, PRC2-EZH2 and PRC2-EZH1, are present during 

myogenic differentiation and are differentially associated with muscle gene 
regulatory regions………………………………………………………..44 

 
SECTION A 

 
4.2-A PRC2 components are differentially involved in the myogenic 

differentiation…………………………………………………………..49 
4.3-A PRC2-EZH1 complex is required for skeletal muscle differentiation…….54 
4.4-A Myogenin activation, via recruitment of MyoD and RNA Pol II, requires 

PRC2-EZH1…………………………………………………….……..56 
 
SECTION B 
 
4.2-B MSK1 kinase activity is required for skeletal muscle differentiation……....59 
4.3-B Inhibition of MSK1 kinase prevents down-regulation of PRC2 components 

during muscle differentiation………………………………...…………..62 
4.4-B MSK1 regulates PRC2-EZH2 chromatin association during muscle 

differentiation…………………………………………………..………..64 



 4 

4.5-B MSK1 controls an H3K27me3/Ser28ph switch and PRC2-EZH2 binding 
to muscle specific gene promoters………………………………….……66 

4.6-B Binding of EZH2, EED and SUZ12 but not EZH1 to the H3K27me3 
mark is impaired by phosphorylation of H3Ser28………………………..70 

 
5. CONCLUSIONS……………………………………….……..73 
 
6. ACKNOWLEDGEMENTS……………………………...…..74 
 
7. REFERENCES……………………………………………….75 
 
 
 
 
 
LIST OF PUBLICATIONS 
 
1) “Differential Regulation of PRC2-EZH2 and PRC2-EZH1 by  
MSK1/H3Ser28ph controls skeletal muscle cell differentiation” 
 
Submitted to Developmental Cell 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

ABSTRACTABSTRACT   
 
   During skeletal muscle differentiation, signal dependent switches in cell 
differentiation programs require global rearrangements in repression and 
activation of lineage specific genes, hence the importance of unravelling 
epigenetic mechanisms that control these dynamics and their integration with 
signaling pathways. Polycomb Group (PcG) proteins are transcriptional 
repressors that modify chromatin through epigenetic modifications that prevent 
changes in cell identity by maintaining transcription patterns, throughout 
development and in adulthood. PcG proteins form two major multiprotein 
complexes, Polycomb repressive complex 1 and 2 (PRC1 and PRC2, respectively), 
the latter containing the catalytic subunit, EZH2 that modifies histone H3 by tri-
methylation of lysine 27 (H3K27me3). While EZH2 promotes transcriptional 
repression of muscle specific genes, transcriptional activation that accompanies 
skeletal muscle differentiation is characterized by loss of EZH2 and recruitment 
of transcriptional activators, such as MyoD and SRF, at muscle regulatory regions 
(Caretti et al. 2004). Although much is known about the processes regulated by 
PcG proteins, little is known about signaling dependent pathway mechanisms that 
regulate PcG dynamics onto the chromatin. We used C2C12 mouse cell line as a 
skeletal muscle differentiation model to gain insight into the role of different 
PRC2 components during this process and into the the signaling pathways that 
regulates PRC2 dynamics at muscle target loci. We report that two different PRC2 
complexes are present during skeletal muscle differentiation: PRC2-EZH2, that is 
predominant in proliferating myoblasts and PRC2-EZH1 that is specific for post-
mitotic myotubes. We show that these two complexes are differentially involved 
in the regulation of skeletal muscle differentiation. We demonstrate that the 
opposite dynamics of PRC2-EZH2 and PRC2-EZH1 at muscle regulatory regions 
is differentially regulated at the chromatin level by MAPK- (MSK1) dependent 
phospho/methyl switch mechanism involving phosphorylation of the lysine 28 of 
the histone H3 (H3Ser28ph), enabling to counteract the function of the PRC2 
complex docking site H3K27me3. We report that, while MSK1/H3Ser28ph is 
crucial for the displacement of the PRC2-EZH2 from muscle regulatory regions, 
allowing gene activation and muscle differentiation, this pathway does not 
influence PRC2-EZH1 binding to chromatin, anticipating a novel PcG function 
in post-mitotic cells. Taken together, our results suggest that the phosphorylation 
of H3Ser28 by MSK1 plays a key role in epigenetic gene regulation and this 
modification is necessary for skeletal muscle differentiation. 
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1.1.  ININ TRODUCTIONTRODUCTION 
 
1.11.1  Epigenomes and Control of Cell IdentityyEpigenomes and Control of Cell Identity 
 
   “The difference between genetics and epigenetics can probably be compared    
to the difference between writing and reading a book. Once a book is written, the 
text (the genes or DNA: stored information) will be the same in all the copies 
distributed to the interested audience. However, each individual reader of a given 
book may interpret the story slightly differently, with varying emotions and 
projections as they continue to unfold the chapters. In a very similar manner, 
epigenetics would allow different interpretations of a fixed template (the book or 
genetic code) and result in different read-outs, dependent upon the variable 
conditions under which this template is interrogated.” 
Thomas Jenuwein  
 
   Even before the identification of DNA as genetic material, Conrad Waddington 
coined the term “epigenetics” to define the phenotypic execution of developmental 
programs. Epigenetics broadly describes the additional information superimposed 
on the genome that contributes to the heritable establishment and maintenance of 
transcriptional states and cellular identity (Grimaud et al. 2006b). As such, a single 
genome may be modified to produce multiple epigenomes allowing for cellular 
diversity, a necessary criterion for the development of metazoans (Richards 2006). 
The “Epigenome” contributes to the quality, stability and heritability of cell-
specific transcription programs using different levels of control: DNA 
methylation, histone modifications, nucleosome mobility, domain organization, in 
trans interactions, nuclear organization that ensure the transmission of the 
epigenetic patterns from one cell to the daughter cells. During cell differentiation 
or metabolic switch, cells undergo profound changes in gene expression. These 
events are accompanied by complex modifications of chromosomal components 
and nuclear structures, including covalent modifications of DNA and chromatin 
up to topological reorganization of chromosomes and genes in the nucleus. To 
various extents, all these levels of organization contribute to the stability and 
heritability of transcription programmes and define what is meant as the epigenomic 
level of gene regulation (Lanzuolo and Orlando 2007). Epigenetic regulation 
consists of changes in chromatin structure mediated, primarily, by post-
translational modification of histone tails, substitution of histone variants into 
nucleosomes, and DNA methylation (Jenuwein and Allis 2001; Turner 2005). 
Except in mammalian spermatozoa, the basic unit of chromatin is generally a 
nucleosome, which is comprised of a histone octamer (a histone H3-H4 tetramer 
and two H2A-H2B dimers) around which DNA, 147 base pairs in length, is 
wrapped in 1.75 superhelical turns (Barrera and Ren 2006). Histone H1 is located 
at the outer surface of the nucleosome and stabilizes its interaction with DNA. A 
multitude of post-translational modifications of the histone occur, which 
individually and collectively alter chromatin character and function, influencing 
gene expression and most DNA-dependent processes (Lee et al. 2010). What 
makes chromatin so unique is the extraordinary combination of mechanisms that 
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manage the huge amount of information stored in the genome. This regulation 
requires a strict and complex control that involves many different actors-DNA, 
histones and other proteins, ncRNAs–and a complex choreography where spatial 
and temporal aspects are crucial. It’ s possible to discriminate between three 
hierarchically interconnected levels at which genome control takes place (van 
Driel et al. 2003). The first level of regulatory mechanism is found on the DNA 
molecule. Specific DNA sequences mediate the targeting of nuclear factors that 
regulate a multitude of processes in the genome. The regulatory elements found in 
the DNA nucleotide sequence cannot fully explain the different cellular identities 
in multicellular organism. Thus, this second regulatory level includes marks such 
as methylation of the DNA molecule, covalent post-translational modifications of 
the core histones, histone variants and other chromatin-associated proteins. 
Contrasting with DNA sequence level which, excluding mutation and 
recombination events, is stable throughout the life of the organism, the chromatin 
level may be regulated by enzymatic activities acting as a “switch” that can change 
its functional state (Jenuwein and Allis 2001). A third regulatory level that has 
been poorly studied, when compared to the other two, is the three-dimensional 
(3D) organization of chromatin in the nucleus. DNA molecules contained in the 
nucleus of, for example, human cells have a total length of 2 m if they are released 
from all other chromatin components. This has to be fitted into a nucleus of a 
diameter of ~ 10 µm.  To achieve this high degree of compaction, the DNA 
molecule is organized together with the histones and other chromatin 
components into higher order 3D structures. 3D nuclear architecture reflects 
basic nuclear functions, such as transcription and replication. Transcription 
incorporates any available biological system to achieve the regulated expression of 
the transcriptome. Understanding the epigenetic modifications is required for 
comprehension of how gene expression is achieved and regulated. Chromatin 
provides a platform that becomes decorated with epigenetic marks that regulate 
transient interactions with transcriptional factors; this provides a fine-tuning level 
of regulation integrating primary sequence information with spatial and temporal 
control (Fig.1). As the language is defined “ A systemic means of communicating 
ideas…using conventionalized signs…or marks having understood meanings”, 
the complexity of the relationship between epigenetic marks and the biological 
processes could be explained in the same way. As scientists, it falls to us to learn 
and understand this “language”, a task that we have only begun to undertake. 
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Fig.1: The two main components of epigenetic code. Epigenetic regulation 
consists of changes in chromatin structure mediated, primarily, by post-translational 
modification of histone tails, substitution of histone variants into nucleosomes, and 
DNA methylation. To various extent, all these levels of organization contribute to the 
stability and heritability of transcription programmes and define what is meant as the 
epigenomic level of gene regulation (www.epigenome-noe.net). 
 
 

 
1.2 Polycomb Group Proteins as Epigenetic Regulators1.2 Polycomb Group Proteins as Epigenetic Regulators
 
   Polycomb group genes exert essential memory function during all 
developmental processes. Together with a battery of components including 
sequence-specific DNA binding/accessory factors, signaling pathway 
intermediates, noncoding RNA, PcG proteins define cellular identity through 
tight regulation of specific expression patterns (Morey and Helin 2010). First 
characterized in Drosophila, PcGs were found to mediate silencing of the HOX 
subset of homeobox genes responsible for segment identity in metazoan (Lewis 
1978; Schwartz and Pirrotta 2007). This group of gene clusters is essential for 
proper development across species. In PcG-mutant flies or mammals, Hox genes 
are expressed outside their normal spatial territories along the head-to tail axis. 
This causes characteristic defects in body patterning, which are the hallmark 
phenotypes that define fly PcG proteins (Fig. 2) (Simon and Kingston 2009).  
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Fig.2: Polycomb proteins function as repressor of Hox genes. a) Hox gene 
expression in the Drosophila melanogaster embryo defines the positions of structures 
and appendages along the anterior-posterior axis of the adult body. b) PcG proteins 
mantein the correct spatial and temporal expression pattern of the Hox genes through 
transcriptional repression. Mutations in PcG genes therefore cause a de-repression of 
specific Hox members, which leads to homeotic transformation-transformations of one 
body segment into the identity of another. The term “Polycomb” was used to describe 
the first PcG mutations-extra sex combs (esc) and Polycomb (Pc)-because of additional 
sex combs on the second and third legs of male flies, a structure that is normally 
restricted to the first legs (Schwartz and Pirrotta 2007). 

 
 
 
In addition to homeotic genes, PcG proteins control a sizable fraction of the 
genome. In metazoan animals, many PcG-regulated genes encode transcription 
factors and modifiers important in the control of cell fate decisions (Bracken et al. 
2006). PcG proteins assemble as high molecular weight complexes. They were 
initially purified from Drosophila, but homologous complexes were later isolated in 
other organisms (Kohler and Villar 2008). Drosophila has four different PcG 
complexes - Polycomb repressive complex 1 (PRC1), Polycomb repressive 
complex 2 (PRC2), Pleiohomeotic repressive complex (PhoRC) and Polycomb 



 10 

Repressive Deubiquitinase Complex (PR-DUB) that work together (Fig. 3).  
PRC2 is thought to be involved in the initiation of gene silencing, whereas PRC1  
 
 

 
 
 

Fig.3: Diversity of PRC1 and PRC2 complexes formed by vertebrate PcG 
proteins. Subunits of the PRC1 (right panel) and PRC2 (left panel) complexes are 
indicated. The Drosophila homolog of each subunit is indicated in light blue. Multiple 
combinations of paralog subunits can generate a diversity of PRC1 and PRC2 
complexes, which likely have specific and shared functions. Some subunits seem to be 
present in substoichiometric amounts and interact with the PcG complexes in a cell-
context-dependent manner. The core and the substoichiometric subunits are 
identified. The contacts illustrated in the diagrams are not intended to represent the 
actual interactions. Involvement of EPC and ASXL subunits with PRC2 or PRC1 
complexes is still unclear and requires further investigations (Sauvageau and 
Sauvageau 2010). 
 

 
 
is implicated in the stable manteinance of gene repression (Lund and van 
Lohuizen 2004). PhoRC is required for the recruitment of both PRC2 and PRC1 
complexes (Savla et al. 2008). PR-DUB complex is able to deubiquinate H2A 
(Scheuermann et al. 2010; Schuettengruber and Cavalli 2010) and this activity is 
required for a correct gene silencing in vivo. The PRC1 biochemically purified 
from flies contains a core quartet of PcG proteins: Polycomb (Pc), a 
chromodomain protein that can bind to trimethylated lysine 27 of histone H3 
(H3K27me3); Posterior sex combs (PSC), a RING domain protein that, in a 
similar fashion to homologous proteins in mammals, probably enhances the 
catalytic activity of Ring; Ring, the catalytic subunit for histone H2A 
ubiquitination; Polyhomeotic (PH), a zinc finger protein as well as a lower 
amounts of Sex comb on midleg (SCM) (Franke et al. 1992; Rastelli et al. 1993; 
Shao et al. 1999; Francis et al. 2001). Many additional proteins were co-purified 
with these core components, including ZESTE, TBP (TATA-box binding 
protein)-associated factors TAFII250, TAFII110, TAFII85, TAFII62 and 
elements of other multiprotein complexes, such as MI2, SIN3A, SMRTER, 
indicating the possibility of a direct interaction between PcG complexes and 
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transcriptional machinery (Breiling et al. 2001; Francis et al. 2001; Saurin et al. 
2001). The mammalian PRC1 (2-5 MDa) complex has been isolated from HeLa 
cells using exogenously expressed tagged protein components and affinity 
purification. The core components are similar to those of D. melanogaster cPRC1 
complex, although no TAFs have been detected in association with it (Levine et 
al. 2002; Lavigne et al. 2004; Wang et al. 2004a). Mouse and humans genomes 
carry various copies of some of PcG homologues that presumably are part of 
different PRC1 complexes acting at different targets or in different tissues. The 
purified complexes include HPC1, 2 and 3, HPH1, 2 and 3 RING1A and 
RING1B, BMI1 and potentially its homologue MEL18. These are, 
correspondingly, homologous to the fly PC, PH, RING and PSC (Gunster et al. 
1997; Satijn et al. 1997; Bardos et al. 2000). Drosophila PRC2 is a 600 kDa 
complex composed of four core subunits: Enhancer of zeste [E(z)], a SET (Suvar 
3-9, Enhancer of zeste, Tritorax) domain protein with histone methyltransferase 
activity specific for the lysine 27 of the histone H3 (H3K27me); Suppressor of 
zeste [Su(z)12]; and two WD 40 domain proteins, Extra sex comb (Esc) and 
Nurf55 (Nucleosome remodelling factor 55) (Cao et al. 2002; Czermin et al. 2002; 
Kuzmichev et al. 2002; Muller et al. 2002). Each of these components is required 
for binding to and efficient methylation of nucleosomes by the complex  
(Schwartz and Pirrotta 2007). The core components of human PRC2 are EZH2, 
EED, SUZ12, and the histone binding protein RbAp46/48 (Cao et al. 2002; 
Czermin et al. 2002; Kuzmichev et al. 2002; Muller et al. 2002). EZH2 protein is 
the human homologue of the Drosophila Enhancer of zeste protein. It contains 
histone methyltransferase (HMT) that is responsible for di- and trimethylation of 
histone H3 on lysine 27 (H3K27me2 and H3K27me3) the repression-associated 
epigenetic modifications (Cao and Zhang 2004a; Schuettengruber et al. 2007). 
SUZ12 is required for the methyltransferase activity of EZH2, along with EED 
(Cao and Zhang 2004b; Montgomery et al. 2005). In mammals, PRC2, PRC3 and 
PRC4 complexes have been biochemically characterized, and they differ by the 
presence of different isoforms of EED (Embrionic Ectoderm Development), the 
homologue of the fly ESC (Kuzmichev et al. 2004; Kuzmichev et al. 2005). In the 
presence of histone H1, PRC2, but not PRC3, preferentially methylates H1K26, 
which has an aminoacid context similar to that of H3K27, although it is present in 
only one of mammalian H1 variants and absent in D. melanogaster H1. PRC4 
accumulates when EZH2 is overexpressed in cultered cells. It contains an EED 
isoform that is expressed only in undifferentiated ES cells, and SIRT1, a 
mammalian SIR2 homologue (Schwartz and Pirrotta 2007). Recently, a novel 
subunit of PRC2 called JARID2 was identified (Peng et al. 2009; Shen et al. 2009; 
Landeira et al. 2010; Li et al. 2010; Pasini et al. 2010). Interestingly JARID2 
contains a Jumonji C domain, but is devoid of detectable histone demethylase 
activity. Indeed, the role of JARID2 appears to be quite complex. It colocalizes 
with PRC2 and H3K27me3 on the chromatin and modulates the function of this 
PcG complex in embryonic stem cells (ESCs). Genome-wide ChIP-seq analyses 
of JARID2, EZH2, and SUZ12 binding reveal that JARID2 and PRC2 occupy the 
same genomic regions (Peng et al. 2009; Pasini et al. 2010). Jarid2 is required for 
efficient binding of PRC2, indicating that the interplay of PRC2 and JARID2 fine-
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tunes deposition of the H3K27me3 mark. However, evidence was reported for a 
different role of JARID2 in pluripotent ES cells in regulating RNA Polymerase II 
(RNA Pol II) recruitment at bivalent genes (Landeira et al. 2010). As described 
above, the PRC2 complex is responsible for setting the characteristic PcG 
chromatin mark, histone H3K27me3 that is recognized by PRC1 complex 
through the PC chromodomain. In Drosophila, loss of E(Z) or ESC/ESCL 
functions results in loss of monomethylation, dimethylation and trimethylation of 
H3K27, indicating that this is the only K27 methyltransferase activity. Diversely, 
in mammals, loss of EZH2 eliminates only dimethylation and trimethylation, 
impling that monomethylation of H3K27 is carried out by a different complex. 
The monomethylation complex may involve EZH1 instead of EZH2, though this 
has not been confirmed, and still requires EED since the loss of this component 
eliminates all three degrees of methylation (Montgomery et al. 2005). Mammals 
contain a second E(Z) homologue, called EZH1. Recently, it was demonstrated 
that the HMTase EZH1 could replace EZH2 in noncanonical PRC2 (PRC2-
EZH1). While PRC2-EZH2 catalyzes H3K27me2/me3 and its knockdown 
affects global H3K27me2/me3 levels, PRC2-EZH1 performs this function 
weakly (Margueron et al. 2008; Shen et al. 2008). In accordance, EZH1 
knockdown was ineffectual on global H3K27me2/me3 levels. Instead, PRC2-
EZH1 directly and robustly represses transcription from chromatinized templates 
and compact chromatin. EZH1 targets a subset of EZH2 genes, yet EZH1 is 
more abundant in non proliferative adult organs while EZH2 expression is tightly 
associated with proliferation, suggesting that the two PRC complexes may have 
different functions in dividing versus post-mitotic cells (Ezhkova et al. 2009). The 
three levels of methylation have different distributions in the Drosophila as in 
mammalian genomes. In both organisms, H3K27me2 is virtually ubiquitous in 
euchromatin, found in more than 50% of nucleosomes. Instead, K27me3 is 
essentially confined to a PcG target sites and represents only 5-10% of the total 
histone H3 (Ebert et al. 2004). In this respect, the common identification of the 
600 kDa PRC2 complex as the only one involved in the methylation is most 
probably incorrect. This relatively abundant complex carries out much more 
general function of dimethylating of H3K27. The function of K27 dimethylation 
is also unknown and it remains to be determined whether it is compatible with or 
permissive to transcriptional activity or whether it needs to be removed before 
gene activation (Schwartz and Pirrotta 2008). In contrast, H3K27 trimethylation is 
associated with stable binding of E(Z)-containing complexes to PcG target genes 
and with transcriptional repression. A possible structural difference in the form of 
the global PRC2 complex and the one associated with PcG repression may be the 
presence of the Polycomb-like protein (PCL in Drosophila, PHF in mammals). A 
larger (1 MDa) PRC2 complex containing PCL is found specifically at PcG target 
sites (Tie et al. 2003). Recent work suggests that in the absence of PCL function, 
H3K27 trimethylation but not dimethylation is specifically impaired (Sarma et al. 
2008). The other PcG complex PhoRC, recently discovered in flies (Klymenko et 
al. 2006) has only two components: the specific DNA binding protein 
Pleiohomeotic (Pho), and dSfmbt, a homolog of mouse SFMBT [Scm (Sex comb 
on midleg)-related gene containing four MBT (malignant brain tumor) domains]. 
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Drosophila dSfmbt is essential for Hox gene silencing and binds specifically to 
monomethylated and dimethylated H3K9 and H4K20 (Klymenko et al. 2006). 
Whether a similar complex is present in mammals is not known. In addition, 
however, other less central components may vary from one target site to another. 
Thus, different target genes, different tissues, or different developmental stages 
may involve PcG complexes with slightly different functionalities or sensitivity to 
external signaling. 
 
 
 
1.2.1 The Gene Networks Controlled by PcG Proteins1.2.1 The Gene Networks Controlled by PcG Proteins 
 
   Early studies in Drosophila revelead that aside Hox genes, the PC protein binds 
to multiple sites in the genome (Paro 1990; Franke et al. 1992). Recently, the gene 
networks controlled by PcG memory system have been identified. By taking a 
bioinformatic approach, Ringrose and coworkers predicted 167 PcG target 
sequences in the fly genome, some of which they confirmed experimentally. 
Among the targets they predict are mostly developmentally regulated genes and 
cell cycle regulators (Ringrose et al. 2003). At the same time Bracken and 
coworkers undertook a genome-wide mapping of PcG target genes in human 
embryonic fibroblasts, using a similar approach (Fig. 4) (Boyer et al. 2006; 
Bracken et al. 2006). Several targets of PRC1 and PRC2 proteins were found that 
were predicted for their Drosophila orthologs by Ringrose et al., as the HOX genes 
and orthologs of the segmentation genes. In addition, more than 1000 targets 
were identified, among these genes important for various differentiation 
processes, in particular neuronal differentiation, sex differentiation, bone 
differentiation, epidermal cell differentiation, hematopoiesis and muscle 
development (Bracken et al. 2006). Basically in parallel, PRC1 and PRC2 targets 
were mapped by ChiP on chip in murine and human embryonic stem cells, 
revealing the presence of PcG in these cells at many genes important for 
development, morphogenesis, organogenesis, neurogenesis, cell-cell signaling and 
transcriptional regulation. The vast majority of PcG binding sites in vertebrates 
are close to promoters (> 90% are whitin 1 kb of the transcription start site), 
whereas in flies only 30% of PcG binding sites are whitin 2 kb of a promoter, and 
many are several tens of kb away (Negre et al. 2006). The studies in mammals 
document two distinct classes of binding: ~70% of targets have a sharp peak of 
binding near the promoter. The remainder, which include the Hox and several 
other transcription factor foci, blanket the transcription unit (Bracken et al. 2006). 
Althought these studies still need to be extended to more tissues and 
developmental stages, the overall picture is that, in any given cell type, most 
alternative genetic programmes are shut down by PcG mechanisms, except for 
the subset that is required in that cell type. 
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Fig.4: PRC1 and PRC2 colocalize at genes encoding developmental 
regulators. Genomic sites occupied by PcG proteins were identified as peaks 
of ChIP-enriched DNA using a validated algorithm. This analysis revealed 
that PRC1 and PRC2 components occupied an overlapping set of target 
genes and identified with high confidence 512 genes bound by all four PcG 
proteins in ES cells. Venn diagram showing the overlap among genes bound 
by PcG proteins within 1 kb of a transcription start site. Numbers in 
parentheses represent the total number of genes bound by the respective PcG 
protein (Boyer et al. 2006). 

 
 
 
1.2.2 Recruitment of PcG Proteins to their Targets1.2.2 Recruitment of PcG Proteins to their Targets 
 
   A recurring question in the study of PcG mechanisms is how the complexes are 
recruited to their target genes. In Drosophila, specific PcG-dependent regulatory 
elements called Polycomb Response Elements (PREs) were identified (Chan et al. 
1994). PREs are specialized epigenetic DNA modules that control the epigenetic 
state of homeotic genes as well as other developmentally regulated genes. Alike 
enhancers, they influence promoter activity and can act at a distance. The length 
of Drosophila PREs ranges from several hundred base pairs to some kilobases, 
although an ectopic “minimal” core PRE of a few hundred base pairs is sufficient 
to recapitulate temporal and spatial regulation of homeotic gene promoters 
(Breiling et al. 2007). PREs include many conserved short motifs, several of which 
are recognized by known DNA-binding proteins. So, the recruitment of PcG 
complexes to PREs is though to be mediated by DNA-binding proteins that 
directly interact with or facilitate the binding of PcG proteins. PHO has been 
shown to play such role (Mohd-Sarip et al. 2006) but it may not be true at all 
PREs. Other Drosophila DNA-binding proteins such as Zeste, GAGA factor 
(GAF), Pipsqueak, DSP-1, have been proposed to act as recruiters but, while 
these proteins often bind at or near known or presumptive PREs and PcG 
binding regions, the number and the distribution of their binding sites is quite 
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variable and none of them so far can be shown to be present at all PcG sites 
(Schwartz and Pirrotta 2008). Since no definitive signature of a PRE has been 
identified, the most likely scenario is that PcG proteins can be recruited in 
different ways by different proteins. A key aspect of PRE function is its ability to 
control promoters at a distance via chromatin structure and interference with 
RNA Polymerase II (Orlando 2003; Levine et al. 2004). PREs were shown to 
build up multiloop higher-order structures and that this topological organization 
is important for epigenetic inheritance (Fig. 5) (Lanzuolo et al. 2007). Similar 
results were reported also in mammalian cells (Tiwari et al. 2008). Notably, these 
long-distance effects seem to occur both in cis and in trans (Cleard et al. 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: PREs are thought to mediate the transcriptional memory function by 
building up higher-order structures in the nucleus. The  Bithorax Complex 
(BX-C) adopts different spatial conformations relative to its transcriptional state. In 
the repressive state, the BX-C locus adopts a condensed structure in which all the 
PcG bound elements are interacting together. In this conformation, all PREs 
(orange in the figure), promoters (light blue) and 3’ end of the genes (green) 
organize the BX-C in topologically discrete domains. In cells with a constitutively 
active AbdB gene, the PRE-promoter interaction, observed in the context of 
repression, is lost, whereas the other epigenetic elements that are still silenced retain 
their clusterd conformation (Lanzuolo et al. 2007). 
 
 
 

Importantly, PcGs appear to be involved in other aspects of nuclear organization 
including insulator function (Gerasimova and Corces 1998) and pairing 
(Bantignies et al. 2003; Dejardin and Cavalli 2005). In mammals it remains unclear 
to what extent the DNA sequence plays a role in PcG targeting. Search of 
mammalian PREs is difficult and has only led to isolated successes (Sing et al. 
2009; Woo et al. 2010). One impediment has been that PRC1 and PRC2 tend to 
broadly distributed across many kilobases of mammalian developmental genes 
(Ku et al. 2008) and nearly co-extensive with the domain of H3K27 trimethylation 
(Fig. 6). Novel insights can be gained by computational studies aimed at detection 
of discriminative DNA sequence features. Previous studies have identified a 
number of transcriptional factor (TF) motifs that are associated with PcG targets  
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Fig.6: Different patterns of PRC2 and H3K27me3 localization in different 
organisms. In Drosophila, PRC2 is localized to defined PREs that are depleted of 
nucleosomes, whereas PRC2-dependent H3K27me3 (red lollipops) spreads over extended 
domains. Similarly, at the Arabidopsis PHE1 locus, the FIS PRC2-like complex binds close 
to the transcriptional start site, with H3K27me3 extending towards the 3′ end of the gene, 
but not into intergenic regions. By contrast, PRC2 complexes as well as H3K27me3 span 
extended domains into intergenic regions in mammals. Similarly, co-localization of the 
Arabidopsis EMF2 PRC2-like complex with H3K27me3 has been observed in the 
promoter and coding regions of the both AG and STM, but it does not spread into 
intergenic regions. Red lollipops, H3K27me3; grey circles, nucleosomes; blue rectangles, 
transcribed genic regions (Kohler and Villar 2008). 

 
 
 
(Ku et al. 2008). As in Drosophila, a specific DNA binding component, the PHO 
homolog YY1 (Thomas and Seto 1999), is often associated with PcG complexes 
and it is reasonable to expect that multiple DNA-binding proteins are likely to act 
as recruiters and that the set of recruiters may vary in detail from one target gene 
to another. Furthermore, more general DNA sequence features have only been 
found to be associated with PcG targets, including high CpG density (Bernstein et 
al. 2006; Tanay et al. 2007), high sequence conservation score (Tanay et al. 2007), 
depletion of DNA transposons (Bernstein et al. 2006) and periodic patterns of 
dinucleotide frequencies (Yuan 2009). The completion of mammalian 
transcriptome allowed the identification of whole ncRNA output (Carninci et al. 
2005). Specific classes of long ncRNA have been shown to play a major role in 
transcriptional regulation being part of major transcription complexes (Mercer et 
al. 2009). More recently, it has been recognized that PcG can physically interact 
with non-coding RNA (Fig. 7) (Khalil et al. 2009), providing another mechanism 
for sequence specific targeting. Because many issues remain unsettled about PREs 
and recruiters, more work is needed to define the rules for PcG targeting in 
mammalian cells. These rules seem likely to vary among different cell types and 
context (Rinn et al. 2007; Khalil et al. 2009; Simon and Kingston 2009; Gupta et 
al. 2010; Tian et al. 2010). This may include the potentially large complexity of 
ncRNA interacting with PcG complexes. 
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Fig.7: Possible mechanisms for PRC2 recruitment to chromatin. PRC2 is recruited to 
chromatin by different mechanisms involving transcription factors and ncRNAs. a) Cell-
type specific transcription factors (TFs) and or gene-specific TFs (e.g. JARID2) associate 
with and recruit PRC2 to chromatin, peraphs through a PRE. The mammalian proteins 
that bridge the association between PRC2-PRE have not been identified. Arrows flanking 
the PRE indicate that PREs are longer than a nucleosome space. b) i) Trans-ncRNA binds 
and recruits PRC2 to chromatin. ii) PRC2 is recruited by a cis-ncRNA expressed upstream 
or downstream of the PRC2-target gene (Morey and Helin 2010). 
 

 
 

1.2.3 PcG and Mechanisms of Transcriptional Repressionn1.2.3 PcG and Mechanisms of Transcriptional Repression 
 
   PcG proteins were thought to maintain gene silencing by locking inactive genes 
in heterochromatin-like environment that excludes transcriptional activators and 
that is incompatible with RNA synthesis. In this way, silent chromatin would 
irreversibly program differentiated cells to not leave their fate. Recent and less 
recent discoveries, however, depict a more dynamic situation in which PcG-
mediated silencing is the result of an equilibrium between opposing 
transcriptional forces, which coexist and include activators and repressors, that 
maintain not only terminally determined states but also competence for switching 
(Orlando 2003). It is now clear that H3K27 methylation has a crucial role in the 
stable binding of PcG complexes. The discovery of the specific binding of 
chromodomains to methylated histones immediately indicated that methylation 
might recruit the chromodomain-containing complexes. The idea is that, if PRE-
binding proteins can recruit the PRC2 complex, the ensuing methylation would 
then recruit the PRC1 complex. Wang et al. (Wang et al. 2004b) presented 
evidence suggesting this order of events. Binding of the PRC2 initiation complex 
to the Polycomb group target genes induces Ezh2-mediated methylation of 
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histone proteins, primarily at lysine 27 of histone H3 (H3K27). PRC1 is able to 
recognize the trimethylated H3K27 (H3K27me3) mark through the 
chromodomain of Polycomb (PC). This interaction might bring neighbouring 
nucleosomes into the proximity of the PRC2 complex to facilitate widespread 
methylation over extended chromosomal regions (Schwartz et al. 2006). In 
addition, PRC1 possesses ubiquitin E3 ligase activity that targets lysine 119 of the 
histone H2A (H2AK119) and this modification is associated with gene repression 
(Fig. 8) (Wang et al. 2004a; Cao et al. 2005).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.8: Epigenetic gene silencing by Polycomb protein complexes. Binding of 
the PRC2 initiation complex to the PcG target genes induces EZH2-mediated 
methylation of histone proteins, primarily H3K27. PRC1 is able to recognize 
H3K27me3 mark through the chromodomain of PC. This interaction might bring 
neighbouring nucleosomes into the proximity of the PRC2 complex to facilitate 
widespread methylation over extended chromosomal regions. Although the precise 
mechanisms for PRC-mediated stable gene silencing are still poorly understood, 
they are proposed to involve direct inhibition of the transcriptional machinery, 
PRC1-mediated ubiquitylation (Ub) of H2AK119, chromatin compaction and 
recruitment of DNA methyltransferase (DNMTs) to target gene loci by PRC2. Pol 
II, RNA Polymerase II (Sparmann and van Lohuizen 2006). 

 
 
 
Furthermore, in vitro studies have demonstrated that PRC2 also exhibits 
methyltransferase activity towards lysine 26 of the linker histone H1 (H1K26) 
(Kuzmichev et al. 2004). Methylated H1K26 can tether heterochromatin binding 
protein 1 (HP1) to chromatin and could thereby influence higher order structure. 
In agreement with TrxG complexes that are involved in the formation of an 
“open” chromatin structure that is more accessible to the transcription machinery, 
it was suggested that PcG complexes may promote the formation of highly 
packed, transcriptionally repressed chromatin fiber. This view was supported by 
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the finding that histone deacetylases (HDACs) copurify with PcG proteins. 
Deacetylation of lysines in the N-terminal tails of histone H3 and H4 is an 
important mark of repressed chromatin and counteracts chromatin destabilization 
by histone acetyltransferases (HATs) activities (Jenuwein and Allis 2001). EED 
and EZH2 coimmunoprecipitate with HDAC1 and HDAC2 proteins from 
human cell line extracts (van der Vlag and Otte 1999). The same kind of 
interaction was described in D. melanogaster, where HDAC RPD3 is found 
together with PRC2 proteins (Tie et al. 2003). However, doubts concerning the 
idea that PcG repression creates compacted, inaccessible chromatin region were 
shed when Schlossherr and colleagues found that PcG repressed regions are as 
accessible for restriction nucleases as active regions (Schlossherr et al. 1994). More 
recently, general transcription factors (GTFs) and RNA Polymerase II have been 
mapped to PcG-repressed promoters, suggesting that PcG repression does not 
render the target regions inaccessible for the transcriptional machinery, but rather 
inhibits activated transcription or elongation (Breiling et al. 2001; Dellino et al. 
2004). Nevertheless PcG-repressed regions seem to have a different structure, 
preventing active transcription events. In some way, PcG proteins change the 
state of the chromatin in their target region, although it does not become 
inaccesible. In vitro, PRC1 can bind and compact nucleosomal arrays, making them 
refractory to SWI/SNF-class ATP dependent chromatin remodelers (Francis et al. 
2004; King et al. 2005). Thus, chromatin compaction could be an attractive 
mechanism for gene silencing, but where does it take place? 
Drosophila PREs, bound by PRC1 and other PcG protein complexes, are 
nucleosome depleted region (Mohd-Sarip et al. 2006; Papp and Muller 2006), 
showing high histone replacement, suggesting a continuous disruption of 
nucleosomes at these sites (Mito et al. 2007). There is therefore little evidence that 
PRC1 would compact nucleosomes at PREs. It seems more plausible that PRE-
tethered PRC1 performs this activity in the flanking chromatin to generate a less 
accessible chromatin structure, for example, at the promoter or in the coding 
region of target genes (Muller and Verrijzer 2009). However, any such models will 
have to accommodate the fact that, in Drosophila, PcG proteins have a residence 
time on chromosomes of only a few minutes (Ficz et al. 2005). Consistent with 
these observations, the antagonism between SWI/SNF recruitment and PcG 
repressor proteins seems to be dynamic rather than static (Kia et al. 2008). The 
results discussed above and other recent studies further corroborated the view 
that, although K27 methylation is important for the stable binding of PC, it is not 
sufficient. ChIP experiments detect PcG proteins of both PRC1 and PRC2 
complexes, peaking sharply at known or presumptive PREs in D. melanogaster 
(Schwartz and Pirrotta 2007). By contrast, the distribution of trimethylated 
H3K27 at a silenced gene extends over the entire transcription unit and the 
upstream regulatory region, frequently involved many tens of kilobases (Kahn et 
al. 2006; Papp and Muller 2006). In similar experiments in mouse or human cells, 
PRC1, PRC2 proteins and H3K27 methylation have also been found together at 
target genes, but in most cases the proteins bind over broader regions than in D. 
melanogaster and their distributions are often co-extensive with the methylation 
domain (Fig. 6) (Boyer et al. 2006). If PcG proteins do not compact chromatin 
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and prevent access of the transcriptional machinery to the silenced genes, how do 
they silence? Experiments with reporter constructs indicate that the effects are 
likely to involve the higher order structures. The current evidence, much of which 
is derived from D. melanogaster, indicates that the PcG complex at the PRE must 
contact the promoter complexes to interfere with transcription initiation and 
perhaps other aspects of transcription. Histone methylation might stabilize the 
PRE complexes, but might also provide a means for the long-distance interaction 
between PRE and promoter. Indeed, PcG proteins can mediate specific silencing 
of genes that are away from PREs in the genome. This phenomena is called 
“long-range” gene silencing, and these regulating sequences are located many 
kilobases away from the star site (Fig. 5) (Mateos-Langerak and Cavalli 2008). 
Recent studies show a connection between the RNA interference (RNAi) pathway 
and long-distance PcG-mediated silencing (Grimaud et al. 2006a). The RNAi 
machinery does not affect recruitment of PcG proteins but rather the 
maintenance of long-distance contacts between PREs. A large pecentage of PRC2 
target genes contain CpG-islands; therefore they might undergo DNA 
methylation as a mean to ensure a stable repressive state (Morey and Helin 2010). 
Some reports indicate that EZH2 directly interacts with DNA-methyltransferases 
(DNMTs) and that EZH2 is necessary for maintenance of DNA methylation for 
at least some promoters (Fig. 8) (Vire et al. 2006; Schlesinger et al. 2007). These 
results suggest a biochemical and functional link between these two repressive 
events. However, some genome-wide studies failed to show a significant overlap 
between DNA methylation and PRC2 binding (Fouse et al. 2008). Therefore, 
additional studies are needed to understand why some PRC2 target genes are 
selectively DNA-methylated. A flurry of papers in recent years reported the 
identification of long-awaited H3K27 demethylases: enzymes capable of 
specifically removing methyl groups from histone H3 trimethylated and 
dimethylated at lysine 27 (Agger et al. 2007; De Santa et al. 2007). These results 
show that even the histone modification associated with PcG silencing, long 
thought to be a relatively stable mark, may turnover rapidly under certain 
conditions. Together these results indicate that PcG complex binding is a dynamic 
process, sensitive to the antagonistic action of trxG complexes as well as to 
positive or negative input from other transcription factors. It is likely therefore 
that in each particular case, the functional state of the PcG target will be 
determined by the equilibrium between all these activities. 
 
 
 
1.3 The Language of Histone Crosstalk1.3 The Language of Histone Crosstalk 
 
   Inside an eukaryotic cell nucleus, chromatin is far more than a static carrier of 
the genetic information encoded in DNA, as it actively mediates dynamic changes 
in gene function and expression (Felsenfeld and Groudine 2003). The chromatin 
polymer integrates a variety of endogenous signals and functions as a biological 
relay station and signalling platform (Cheung et al. 2000). Emerging evidence 
suggests that covalent post-translational modifications of histones play key roles 
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in the controlling the capacity of the genome to store, release and inherit 
biological information (Fischle et al. 2003). Histone proteins, assembled with 
DNA to form nucleosomes, are the basic building block of chromatin. Not 
surprisingly, the four core histone molecules, H2A, H2B, H3 and H4, are among 
the most evolutionarily conserved proteins known (van Holde 1988; Luger et al. 
1997) (Fig. 9). Structurally, histones consist of a highly compact globular core of 
alpha-helixs arranged in helix-turn-helix motifs that promote oligomerisation. 
 
 

 
 
Fig. 9: Histone proteins assembled with DNA to form the 
nucleosomes. DNA wrapped around histone octamers to form 
nucleosomes (http://sciblogs.co.nz/code-for-life/2010/08/24/). 
 
 
 

In contrast, the amino-terminal regions of histones are unstructured (Reid et al. 
2009). These amino-terminal tails of histones are effectively a collection of linear 
peptide motifs that are subject to multiple post-translational modifications, 
including methylation of lysines (mono-, di- or tri-), methylation of arginines 
(mono-, symmetric or asymmetric di-methylation), acetylation of lysine, 
phosphorylation of serine and threonine residues (Turner 2005; Wang et al. 2007) 
ubiquitination (Schuettengruber and Cavalli 2010), sumoylation, deimination and 
proline isomerization (Fig. 10). How do these N-terminal tails participate in the 
modulation of chromatin architecture? One possible way is that they constitute 
targets for ATP-dependent chromatin remodelling factors, such as SWI/SNF and 
NURF (Cheung et al. 2000), that act to alter the position and/or the stability of 
nucleosomes. Another way is that diverse array of post-translational modifications 
on the N-terminal tails may modulate the contacts between histones and DNA. 
Because these modifications are reversible, they can act as chromatin-based 
“on/off” switches that regulate a multitude of DNA-related processes (Tab. 1). 
Moreover, since the histone tail domains are highly accessible to the nuclear 
environment, they constitute attractive targets for signaling-activated enzymes, 
and may function as important link between signal transduction and gene 
expression (Cheung et al. 2000). A well-characterized post-translational 
modification regulating chromatin structure is the acetylation of histone H3 N-
terminal tails, which is thought to facilitate transcriptional activation either by 
charge neutralization of the tails-interaction with DNA or by forming a binding 
site for bromodomain-containing transcription factors, some of which can 
remodel nucleosomes (Lee et al. 2010). 
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Fig 10: Covalent marks on chromatin. Chromatin consists of repeated units 
of 146bp of DNA wrapped 1,7 times around an octamer composed of two 
copies each of the four core histones. H2a, H2b, H3 and H4. Chromatin 
provides a structural platform that is subjected to extensive post-translational 
modifications. These include methylation, acetylation, phosphorylation and 
ubiquitination of specific histone residues, methylation of CpG dinucleotides, 
exange of histone (a); changes in the position of the nucleosome mediated by 
ATP-dependent remodelling complexes (b), induction of double-stranded DNA 
breaks by Topoisimerase II (c) and the generation of single-stranded DNA 
breaks by topoisomerase I (d) (Reid et al. 2009). 

 
 
 
 
 
 
 
 
 

 
 

 
 

Tab.1: Overview of different classes of modification identified on histones. The 
functions that have been associated with each modification are shown. Some of 
these modifications are discussed in detail in the text (Kouzarides 2007). 

 
 
 
Fuelled, in part, by discovery of enzymes responsible for bringing about the 
steady-state balance of this modification-histone acetyltransferases (HATs) and 
histone deacetyl-ase (HDACs)-compelling evidence has recently been provided 
that acetylation of specific lysine residues in the amino termini of the core 
histones plays a fundamental role in transcriptional regulation (Kornberg and 



 23 

Lorch 1999). In H3 from most species, the main acetylation sites including lysine 
9, 14, 18 and 23 (Thorne et al. 1990), and selected lysines become acetylated on 
H4 histone, during specific cellular processes (Grunstein 1997). Thus, in general, 
lysine acetylation is related to chromatin accessibility and transcription. 
Conversely, lysine methylation may have different impact on transcription, 
depending on the aminoacid position and degree of methylation. Three 
methylation sites on histones are implicated in activation of transcription: H3K4, 
H3K36 and H3K79. Two of these, H3K4me and H3K36me, have been 
implicated in transcriptional elongation. Other three lysine methylation sites are 
connected to transcriptional repression: H3K9, H3K27 and H4K20. Methylation 
at H3K9 is implicated in the gene silencing as well as forming silent 
heterochromatin. Repression involves the recruitment of methylating enzymes 
and the chromo-protein HP1 (Heterochromatin Protein 1) to the promoter of 
repressed genes (Kouzarides 2007). Intrestingly, the dogma that H3K9 methylation 
and HP1 recruitment are always repressive has recently been challanged by the 
finding that H3K9me3 and the isoform gamma of HP1 are enriched in the coding 
region of active genes (Vakoc et al. 2005). As described above, H3K27 
methylation has been implicating in the silencing of HOX gene expression, in the 
silencing of the inactive X chromosome and during genomic imprinting. This tri-
methyl H3 mark is recognized by PRC1 that in turn ubiquitinates histone H2A at 
K119 (Schuettengruber and Cavalli 2010). Very little is known regarding the 
repression function of H4K20 methylation. It has a role in the formation of 
heterochromatin and has a role in DNA repair (Kouzarides 2007). 
Phosphorylation appears to be a key regulatory modification linked to chromatin 
biology. The role of this modification will deeply discuss in the next paragraph. 
With the possibility of multiple histone modifications present at same time on the 
N-terminal histone tails, what kinds of interplay between them can occur? Could 
these modifications functionally regulate each other or could they be used in 
combination to affect the function of nucleosomes and chromatin? The 
identification of a multitude of histone modifications-some correlated with 
activation, some with repression- led to proposal that the modifications 
constitude a code (Strahl and Allis 2000) that could be recognized by transcription 
factors to determine the transcriptional state of a gene. However, additional 
research has since added layers of complexity, revealing a nuanced and intriguing 
language, not only a strict code, as the basis for transcriptional regulation through 
the chromatin signaling pathway (Fig 11) (Lee et al 2010). The abundance of 
modifications on the histone tail makes “crosstalk” between modifications very 
likely. Mechanistically such communications between modifications may occur at 
several different levels. Firstly, many different type of modification can occur on 
lysine residues. This undoubtedly results in some forms of antagonism since 
distinct types of modyfications on lysine are mutually exclusive. Secondly, the 
binding of a protein could be disrupted by an adjacent modification. An elegant 
way to circumvent H3K27me3-repressive marks is to mask them from their 
readers rather then erase them. This can be achieved by a signaling-induced 
phosphorylation of nearby residues for example (Gehani et al. 2010; Sawarkar and 
Paro 2010). Thirdly, the catalytic activity of an enzyme could be compromised by 
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modification of its substrate recognizion site. Fourthly, an enzyme could 
recognize its substrate more effectively in the context of a second modification 
(Kouzarides 2007). Thus, the study of regulation of gene expression has grown 
from identifying transcription factors to include a wide variety of other binding 
events associated with the modifications of histones that package the DNA.  

 
   

 
 
 

Fig.11: Examples of histone crosstalk. A) The first characterized example of 
histone crosstalk is the stimulation of acetyltransferase activity of GCN5 toward the 
histone H3 tail by prior phosphorylation (P) of serine 10. Acetylation, Ac. B) 
Crosstalk among histone modifications can span more than one histone. 
Monoubiquitination of histone H2B on lysine 120 of the C-terminal helix can lead 
to the trimethylation of lysine 4 in the histone 3 tail (H3K4) by SET1/COMPASS. 
However, H3K4 methylation by COMPASS and COMPASS-like complexes can be 
blocked if the nearby arginine of H3 is already methylated (Lee et al. 2010). 

 
 
 
1.3.1 H3 Phosphorylation: Dual Role in Mitosis and Interphase1.3.1 H3 Phosphorylation: Dual Role in Mitosis and Interphase
 
   Phosphorylation of histone H3 was observed more than 30 years ago 
(Shoemaker and Chalkley 1978) and today there are several fairly well 
characterized and conserved phospho-H3 residues: Thr3, Ser10, Thr11 and Ser28. 
All of these phospho-H3 marks are present during mitosis, suggesting a possible 
role in chromatin condensation. Furthermore, phospho-H3 Ser10, Thr11 and 
Ser28 are known to be involved in transcriptional activation of specific genes. 
Therefore, histone H3 phosphorylation is associated with two opposed chromatin 
states: the highly condensed mitotic chromosomes and the more accessible 
chromatin structure observed at active genes during interphase (Fig. 12) (Prigent 
and Dimitrov 2003). This apparent paradox implies that the effect of H3 
phosphorylation on chromatin structure might be context dependent and 
influenced by other histone PTMs. However, the precise role of H3 
phosphorylation in epigenetic inheritance is unknown. During mitosis, histone H3 
is phosphorylated at Ser10 in all eukariotes, but since this observation the 
function of this post-translational modification has continually been debated. In 
mammalian cells, phosphorylation of H3 at Ser10 is first evident in 
pericentromeric heterochromatin in late G2-interphase cells. Subsequently, the 
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H3-Ser10 phosphorylation spreads along the chromosomes and is completed at 
prophase and it is still evident at metaphase plate (Hendzel et al. 1997). On the 
other hand, dephosphorylation of H3 Ser 10 begins in late anaphase and is 
completed in early telophase before detectable post-mitotic decondensation of 
chromosomes (Hendzel et al. 1997). Observed later and less studied than Ser10 
phosphorylation, phosphorylation of Ser 28 in the tail of H3 has kinetics very 
similar to those of Ser10. Both serines lie in the same consensus sequence -
ARKS- and both phosphorylations occur early in mitosis when chromosomes 
begin to condense (Prigent and Dimitrov 2003). Aurora B, the major mitotic 
Ser10 kinase in vivo, was thus a good candidate for the mitotic Ser 28 kinase 
(Sugiyama et al. 2002). Furthermore, like Ser10 phosphorylation, Ser 28 is 
sensitive to treatment with PP1 (Goto et al. 2002), the phosphatase that 
counteracts Aurora B.  
 

 
 
 

Fig.12: Duality of histone H3 phosphorylation in interphase and metaphase 
cells. (Left) Schematic representation of the sequential H3 phosphorylation and 
acetylation events seen upon mitogen (EGF) stimulation. Activation of MAP kinase 
or p38 pathways results in the activation of mitogenic H3 kinases (Rsk-2 or Msk1) 
and leads to rapid and transient phosphorylation (red P) of H3 at serine 10. This H3 
phosphorylation is coupled to acetylation of nearby residues (green Ac’s, acetylation 
of Lys9 and Lys14 are highlighted, but additional sites may also be involved). 
Together, these events can facilitate transcription of the immediate-early genes. The 
blue protrusions represent the N-terminal tails of the core histones. (Right) 
Schematic drawing of a mitotic chromosome with representative nucleosomes from 
the chromosome-arm region. During mitosis, not yet well-defined cell cycle signals 
activate mitotic H3 kinase which in turn phosphorylate the N-terminal tails of H3 
(red P’s on extended blue tails) at Ser10. Ser28 is also phosphorylated during mitosis. 
These phosphorylation events likely contribute to the chromosome condensation 
process (Cheung et al. 2000). 
 

 
At interphase, in contrast to mitosis, the phosphorylation of histone H3 does not 
affect whole genome but only a subset of genes. Inducible phosphorylation of H3 
at Ser10 and Ser28, and the time course of H3 phosphorylation closely followes 
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the transient expression of activated immediate-early genes, suggesting that this 
histone modification is linked to transcriptional activation. The best characterized 
link between signal transduction and histone modification was observed in 
mammalian cells upon exposure to mitogen or stress. By treating mouse 
fibroblasts with various growth factors or protein synthesis inhibitors, Mahadevan 
and colleagues found that H3 is rapidly and transiently phosphorylated, an effect 
subsequently termed “nucleosomal response” (Mahadevan et al. 1991). Further 
studies of this nucleosomal response showed that the RAS-mitogen-activated 
protein kinase (MAPK) signal transduction pathway can induce H3 
phosphorylation (Davie et al. 2010). Growth factors (EGF) and phorbol esters 
(TPA) activate the RAS-MAPK pathway (RAS-RAF-MEK-ERK), while stressors 
such as UV irradiation stimulate the p38 MAPK pathway. Mitogen- and stress-
activated protein kinases (MSK) 1 and MSK2 are activated by RAS-MAPK-
ERK1/2 and p38 stress kinase pathways (Fig. 13) (Soloaga et al. 2003). The 
activity of MSK1 and 2 is regulated by multiple phosphorylation sites (McCoy et 
al. 2005). Using mouse knockout, MSK1 and MSK2 were shown to be required 
for the phosphorylation of CREB (cAMP-response-element-binding protein) and 
ATF1 (activating transcription factor 1) transcription factors (Arthur and Cohen 
2000; Wiggin 2002) and the chromatin proteins histone H3 and HMG-14 (high 
mobility group protein 14) (Thomson et al. 1999), in response to mitogens and 
stress. By phosphorylation of H3Ser10 and H3Ser28, MSKs regulates the full 
induction of several immediate early genes, including c-fos, junB, mkp-1 (MAPK 
phosphatase-1) and nurr1 in response to various stimuli (Arthur et al. 2004), 
suggesting a direct link between phosphorylation and gene activation. The impact 
of H3 kinase activity and subsequent H3 Ser10 phosphorylation on gene 
expression could be explained by recruitment of factors necessary for 
transcription. MSK1 was shown to modulate phosphorylation of H3 at Ser10 as 
well as recruitment of transcription factors, chromatin-remodeling enzymes and 
RNA polymerase II to target genes (Vicent et al. 2006a). Inducible 
phosphorylation of H3 at Ser28 on the nucleosomes of specific genes with regard 
to transcriptional activation has not been as well studied as H3 Ser10 
phosphorylation. Recently, in G0 phase cells like chicken eritrocytes, the ChIP 
assay provided direct evidence for H3 Ser28 phosphorylation at the promoter 
regions of transcriptionally active genes. This H3 phosphorylation event may act 
as an active mark of gene activation characterized by labile nucleosome structure 
(Sun et al. 2007). Furthermore, in RAS-transformed mouse fibroblasts, TPA-
induced phosphorylation of H3 Ser10 and Ser28 colocalized with transcriptionally 
active RNA polymerase II isoform (Dunn et al. 2009). In the same cells, it was 
shown that TPA-induced H3 Ser28 phosphorylation was present at the immediate 
early c-jun promoter, providing further evidence that this H3 modification is 
associated with transcriptional gene activation (Dunn et al. 2009). Another 
possible role of phospho-H3 Ser10 and Ser28 in transcriptional activation could 
involve the 14-3-3 family of proteins, recently proposed as chromatin binding 
proteins. In mammalian cells, certain 14-3-3 isoforms have been characterized as 
phospho-H3 Ser10 or Ser28 binding proteins (Macdonald et al. 2005). The 
binding affinity for phospho-H3 Ser10 was more stable if the Lys14 residue was  
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Fig.13: The nucleosomal response downstream from p38 and ERK1/2 MAPK 
pathways. Activated MSK1/2 phosphorylates HMGN1, which dissociates from 
nucleosomes and histone H3 on serine 10 or serine 28. Following H3 phosphorylation, 
chromatin remodelers (SWI/SNF) and KATs (p300) are recruited to the promoter and 
remodel chromatin in preparation for transcription. Both KATs and HDACs are present at 
the promoter, resulting in dynamic protein acetylation (Davie et al. 2010).  

 
 
 
acetylated (Walter et al. 2008). Furthermore, a specif class of signaling-associated 
factors called “14-3-3 gamma proteins” are recruited to promoters of c-jun and c-
fos along with ph-Ser10-acetyl-K14-H3 (Macdonald et al. 2005). These 
observations indicate that 14-3-3 proteins recognize phospho-acetyl H3 
modifications and in turn they may mediate transcriptional activation of genes. 
However, the precise mechanism is unknown. It may be possible that 14-3-3 
proteins are recruited within a multiprotein complex to genomic region where 14-
3-3 could stabilize the complex at the nucleosomal level by directly binding the 
pre-existing H3 modifications. In addition, binding of 14-3-3 proteins to 
phospho-acetylated histone H3 tail could recruit other histone modifying and (or) 
chromatin-remodeling activities to aid in the initiation of gene activation (Perez-
Cadahia et al. 2009). Strikingly, high resolution fluorescence microscopy analyses 
revealed that the majority of H3Ser10ph foci do not coincide with H3Ser28ph 
foci, indicating that Ser10ph and Ser28ph do not coexist in the same histone tail 
or even adjacent nucleosomes (Dunn and Davie 2005). H3 tails with Ser28ph 
have higher steady state levels of acetylation than that of H3 tails with Ser10ph 
(Dunn and Davie 2005). Thus, these two phosphorylation events at Ser10 and 
Ser28 are indipendent and act separately to promote gene expression. The 
mechanism by which MSKs phosphorylate H3 at either Ser10 or Ser28 is not 
known. This differential localization of H3 phosphorylation may be mediated by 
other proteins already bound on the nucleosomes, such as HMGN1 (Lim et al. 
2004). Also, recruitment of the kinase by a specific protein or multiprotein 
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complex might dictate which of the two serine residues will be phosphorylated on 
H3 tail, which most likely contains preexisting modifications, such as acetylation 
and (or) methylation (Perez-Cadahia et al. 2009).  
 
 
 
1.3.21.3.2 A role for H3 PhosphoA role for H3 Phospho--Switch in Chromatin RegulationSwitch in Chromatin Regulation  
 
What functional roles could these phospho-marks be involved in at these 
promoters? Experimental data suggest that phospho-H3 Ser10 and Ser28 might 
have a role as a part of the binary switch process, as has been proposed during 
mitosis (Fischle et al. 2005). Differential readout of distinct combinations of 
marks could, for example, be achieved by “local switching” mechanism such as 
the “methyl/phospho” switch. Phosphorylation of a site adjacent to (or nearby) a 
methyl mark that engages an effector module could lead to consecutive loss of 
binding to that factor. Whereas the binding of certain modules (e.g. 
bromodomains and chromodomains) to histone marks is well documented, little 
is known about the release of such factor, especially from sites of modification 
that are presumed to be more stable (e.g. lysine methylation). It has been shown 
that in response to cellular stimulation, the recruitment of MSK1 and the levels of 
H3Ser10ph and H3K14ac increased at a transcriptionally active gene promoter 
(Vicent et al. 2006b). Interestingly, this increase was paralleled by a reduction in 
HP1 gamma binding at the promoter, without changes in the levels of H3K9me3. 
Together, these series of events might suggest that the establishment of phospho-
H3 Ser10 could influence gene induction by ejecting HP1 gamma and previously 
placed repressive complexes at gene promoter (Fig. 14) (Vicent et al. 2006b). 
Other methyl-mark specific modules have been identified whose binding might be 
sensitive to neighbouring phospho-marks. The best studied methyl marks in H3 
tail (Lys4, Lys9 and Lys27), for example, are all adjacent to novel (Thr3) or 
previously described (Ser10 and Ser28) phospho-acceptors (Fischle et al. 2003). 
Recent report showed that H3Ser28ph affects PRC2 binding to H3K27me3 
chromatin template (Gehani et al. 2010). This H3K27me3Ser28 phospho switch is 
functional in response to stress and mitogenic signaling and retinoic acid (RA)-
induced neuronal differentiation (Gehani et al. 2010). These data suggest that 
PcG-repressed genes are dynamically regulated and that MSK recruitment and 
H3K27me3Ser28 phosphorylation are very important in this respect. Similarly, 
phosphorylation of histone H1 on Serine 27 (H1Ser27ph) was found to prevent 
binding of HP1 to the adjacent methylated Lysine 26 (H1K26me) (Daujat et al. 
2005), an additional target of the PRC2 complex (Kuzmichev et al. 2004). 
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Fig.14: Models for the role of histone H3 phosphorylation in transcriptional 
regulation during interphase. A) The double H3K9me3/H3Ser10ph modification 
may generate a novel binding platform for a protein(s) involved in facultative 
heterochromatin organization and gene silencing. B) Phosphorylation of H3Ser10 and 
acetylation of H3K14 may trigger the displacement of repressive HP1, without removal 
of H3K9me3, the binding of 14-3-3 proteins and promoter activation. HAT, histone 
acetyltransferase; HDAC, histone deacetylase. C) Phosphorylation of H3T11 may 
enhance demethylation of H3K9 and histone H3 acetylation, resulting in chromatin 
changes conducive to transcriptional activation. HATs, histone acetyltransferases 
(Cerutti and Casas-Mollano 2009). 

 
 
 
When considering all four core-histones, the number and placement of putative 
binary switches, inside and outside of histone tails, is provocative. Lys79 of H3, 
for example, represents the first known methylation site in the histone fold 
regions (Lachner et al. 2003). It also lies adjacent to a potential phosphorylation 
site, Thr80, and recent genetic screens have implied Lys79Thr80 in a genomic 
“silencing cluster” (Park et al. 2002; Thompson et al. 2003). A similar region is 
found in H4, H4Lys79/Thr80, suggesting that “methyl/phospho switches” might
regulate the critical interface between H3 and H4. The idea that a 
“methyl/phospho switch” may operate on a critical interface of the H3:H4 dimer 
is attractive given the importance of this boundary for nucleosome structure and 
gene regulation (Park et al. 2002). The exercise of identifying all LysSer/Thr or 
Ser/ThrLys pairs in all major core histones reveals other surprises. All potential 
switches are located either in the exposed histone tails, at the edges of helical 
stretches, or in the connecting loops of the histone fold domains. These sites 
could therefore all be accessible to post-translational modification and function as 
potential switches (Fischle et al. 2003). Thus, mapping histone modification 
patterns may help to unravel specific gene networks being dependent on specific 
signalling pathways regulating gene expression. 
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1.4 The Genetic Networks Regulating Mu1.4 The Genetic Networks Regulating Mu scle Differentiationnscle Differentiation 
 
   Skeletal muscle formation in vertebrates constitutes an excellent system to study 
the signals and the molecular mechanism that govern cellular differentiation. 
Myogenesis is a multistep process, which begins with the commitment of multi-
potent mesodermal precursor cells (MPCs) to the muscle fate. These committed 
cells, the myoblasts, then differentiate and fuse into multi-nucleated myotubes. 
The final step of muscle differentiation is the maturation of differentiated 
myotubes into myofibers (Yahi et al. 2006). The specification, proliferation and 
terminal differentiation of skeletal muscle cells is controlled by the combinatorial 
activities of several transcription factors. The interactions of these transcription 
factors with enzymes that modify the structure of the nucleosomes enable 
temporally regulated formation and recruitment of specific protein complexes at 
the chromatin of discrete muscle gene loci. Classically, Pax3/7 transcription 
factors are considered the major regulators of muscle specification and tissue 
formation during development, playing a similar role during adult muscle 
regeneration (Fig.  15).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15: A schematic representation of the sequential stages that underlie skeletal 
myogenesis. Determination of the myogenic lineage is conferred by the expression of 
the early myogenic bHLH proteins, MyoD and Myf5, likely due to DNA de-methylation 
at their regulatory regions. These muscle regulatory factors (MRFs) initiate myogenesis by 
activating transcription of the muscle genes at previously silent loci, via the combined 
histone acetylation and demethylation of particular lysines, and the local chromatin 
remodelling. These events are promoted by the recruitment of chromatin-modyfing 
enzymatic complexes by sequence-specific myogenic activators (e.g. myogenic bHLH and 
MEF2 proteins) (Palacios and Puri 2006). 
 
 

 
Pax3 gene acts upstream of the myogenic programme and is necessary for MyoD 
activation in the absence of Myf5 (see below) (Tajbakhsh et al. 1997; Kassar-
Duchossoy et al. 2004). Most of the function of Pax3 can be replaced by its 
paralogue Pax-7 (Relaix et al. 2004). Many other regulatory factors involved in 
these steps are identified, including the early marker Msx1, that can inhibit the 
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myogenesis (Lee et al. 2004), the Six family transcription factors (Spitz et al. 
1998), the homeobox Lbx1 (Brohmann et al. 2000) and the proto-oncogene c-met, 
all regulating the migration of the MP cells from the lateral dermomyotome. 
During migration, the MPCs express all these specification factors, but do not yet 
express the determination factors, such as MyoD and Myf5. Interestingly, after 
birth, myogenic progenitors adopt a satellite position outside the myofiber (under 
the basal lamina), entering a quiescente state (Buckingham 2006). Upon 
environmental activating signals derived from injury or stress, satellite cells 
undergo apical-basal asymmetric cell divisions to both maintain their population 
through self-renewal and to give rise to committed myogenic cells; the latter cells, 
the myoblasts, proliferate, migrate, differentiate and fuse into new fibers 
(Buckingham 2006; Kuang et al. 2008), thereby sustaining post-natal muscle repair 
and growth. Muscle differentiation is controlled also by a family of muscle specific 
basic helix-loop-helix (bHLH) transcription factors called Muscle Regulatory 
Factors (MRFs) that cooperate with members of the MEF2 family of proteins 
(MEF2A-C) in the activation of muscle genes from previously silent loci (Fig. 15) 
(Molkentin et al. 1995; Puri and Sartorelli 2000). The myogenic bHLH family 
comprises MyoD, Myf5, myogenin (MyoG) and MRF4. Targeted gene disruption 
of any of these four bHLH family members in mice has shown that they play 
central roles in myogenesis (Yun and Wold 1996). Progenitor cells remain multi-
potent in the absence of these factors, they do not locate correctly to sites of 
myogenesis and adopt other cell fates (Tajbakhsh et al. 1996). Moreover, in the 
absence of MyoD and Myf5, myogenin and MRF4 are not observed (Rudnicki et 
al. 1993; Kablar et al. 2003). On the contrary, it has been shown that mice lacking 
myogenin or MRF4 still develop skeletal muscle, although double knockout mice 
totally lack skeletal muscle fibers and myoblasts (Rudnicki et al. 1993; Kablar et al. 
2003). MyoD is the pivotal player in myogenic differention. MyoD positively 
auto-regulates its own expression, and activates the “early” transcription factor 
myogenin. Myogenin is expressed in non- proliferating myoblasts as they enter the 
differentiation pathway. Myogenin controls later steps of muscle cell 
differentiation and triggers differentiation with activation of muscle specific genes, 
such as muscle creatine kinase (mCK) and myosin heavy chain (MHC). MyoD and 
Myf5 are expressed in undifferentiated myoblasts yet, in this cellular context, they 
do not activate transcription. Once cellular cues are interpreted by the 
undifferentiated myoblasts as pro-differentiation signals, MyoD and Myf5 become 
transcriptionally competent and activate the skeletal myogenic program. It appears 
that multiple and distinct mechanisms ensure that transcription is not prematurely 
activated in undifferentiated muscle cells (Sartorelli and Caretti 2005). The 
presence of bHLH proteins MyoD and/or Myf5 in the nucleus of myoblasts 
poses a fundamental question: how do MyoD and Myf5 confer and maintain the 
myogenic identity to proliferating muscle precursors, without activating the 
differentiation program? Each of the MRF members has been shown to 
heterodimerise in vitro and in vivo with quasi-ubiquitous E proteins that are the 
alternatively spliced products of the E2A gene: E12 and E47 (Murre et al. 1989; 
Chakraborty et al. 1991). Basically, dimers formed from bHLH proteins differ in 
their abilities to bind to DNA. For example, MyoD-E47 heterodimers forms 
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efficiently and bind strongly to DNA, whereas MyoD homodimers only poorly 
bind DNA. A simplistic, former model of inactivation of myogenic bHLH 
proteins in myoblasts relies on serum-induced expression of the anti-myogenic Id 
proteins, which sequestrate the heterodimeric partners of MyoD, E12 and E47 
(Lassar et al. 1991). This model assumes that in myoblasts MyoD is unable to bind 
its DNA recognition sequences-the E box sites- on the regulatory regions of 
muscle genes. However, early studies could not address two critical issues relative 
to DNA binding activity of MyoD in myoblasts: whether MyoD-MyoD 
homodimers can transiently recruited to the DNA during myoblasts proliferation, 
and whether this transient interaction is restricted to the promoter/enhancer 
elements of muscle-specific loci, or might extend to other genes. Chromatin 
immunoprecipitation (ChIP) coupled with mouse promoter DNA microarray 
hybridization (ChIP-chip) has enabled the identification of approximately 200 
genes bound by MyoD and/or myogenin and MEF2 (Blais et al. 2005; Cao et al. 
2006). Of its approximately 100 target genes, MyoD is bound to half in 
undifferentiated myoblasts and the other half in differentiated myotubes. Several 
targets bound by MyoD were activated neither in myoblasts neither in myotubes. 
Others were activated only in either myoblasts or myotubes. This profiling of 
global MyoD-binding sites by ChIP-chip technology has been confirmed by 
recent studies, using ChIP-seq approach (Cao et al. 2010). The prior ChIP-chip 
studies only surveyed the promoter regions of the annotated genes, whereas the 
ChIP-seq technology allowed us to survey the entire genome, showing that the ∼ 
24% of the MyoD peaks are located in the promoter-proximal regions. This may 
be significant because a recent work has shown that the chromatin state at 
promoters is largely shared by different tissues, whereas tissue-specific gene 
expression is highly correlated with the chromatin state of the enhancers located 
outside of the promoter region (Heintzman et al. 2009). The major finding of this 
study was the genome-wide MyoD binding associated with histone acetylation in 
both myoblasts and myotubes (Cao et al. 2010). Dynamic changes in nuclear 
organization are necessary for genes to be repositioned during differentiation (Hu 
et al. 2008; Schoenfelder et al. 2010), and progenitor cell commitment requires  a 
transition between two different ordered nuclear states (Rajapakse et al. 2009). 
Although speculative, the genome-wide binding of MyoD and associated histone 
acetylation may initiate new patterns of gene looping and chromosome 
architecture necessary for the transition between nuclear states (Cao et al. 2010). 
 
 
 
1.4.1 The Epigenetic Networks Regulating Muscle1.4.1 The Epigenetic Networks Regulating Muscle 
DifferentiationnDifferentiation 
 
   Muscle cell differentiation provided a highly informative system to study the 
interaction between signalling pathways, transcription factors and chromatin 
regulation. In proliferating myoblasts, the ability of the MRFs to activate the 
differentiation is countered by their association at muscle regulatory regions with 
histone deacetylases (HDACs) and co-repressor complexes, including YY1 and 
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PcG proteins, which preclude premature muscle-gene expression by promoting 
histone modifications (Lu et al. 2000a; Lu et al. 2000b; Puri et al. 2001; Zhang et 
al. 2002; Caretti et al. 2004). MyoD and MEF2 interact with HDACs, resulting in 
inhibition of myogenesis (McKinsey et al. 2001). The completion of the human 
genome project has revealed at least 17 HDACs, which fall into three classes: I, II 
and III. MyoD associates with the class I HDAC, HDACI, which repress the 
transcriptional activity of this bHLH transcription factor. HDACI represses 
MyoD-dependent transcription in part by deacetylating this transcription factor 
(Mal et al. 2001). In contrast, MEF2 does not interact with HDACI, but it is 
directly coupled to class II HDACs (HDAC-4, -5, -7 and -9) (McKinsey et al. 
2002). Class I and II HDACs are expressed in undifferentiated myoblasts, 
providing a potential explanation for the inability of MyoD and MEF2 to activate 
certain genes in these cells. As described below, muscle cells possess signaling 
mechanisms that function to inactivate HDACs associated with MyoD and 
MEF2, thereby freeing the transcription factors to interact with HATs and 
stimulate genes that promote myogenesis. The silent information regulator 2, Sir2, 
belongs to the HDAC III family of enzymes. Its activity is stimulated by the 
cofactor nicotinamide adenine dinucleotide (NAD+) and repressed by 
nicotinamide (NAM) (Bitterman et al. 2002). In cell extracts derived from 
undifferentited myoblasts, Sir2 is found in a protein complex containing the 
acetyltransferase pCAF (p300/CBP-associated factor) and MyoD. The ability of 
Sir2 to deacetylate H3K9 and H3K14 correlates with repression of muscle gene 
expression and cell differentiation (Fulco et al. 2003). A key inhibitory complex 
found at muscle regulatory regions contains the PcG group protein EZH2 that 
promotes transcriptional repression. Overexpression of EZH2 in either 
estabilished or primary skeletal muscle cells contrasts muscle gene expression and 
cell differentiation, a phenomenon that is dependent on the HKMT activity of 
EZH2 (Caretti et al. 2004). A protein complex comprising the transcription 
regulator YY1, EZH2 and HDACI can be detected on the chromatin of selected 
muscle gene regulatory regions when their correspondent genes are inactive and 
lysine 27 of histone H3 is hypermethylated. Transcriptional activation that 
accompanies skeletal muscle differentiation is characterized by loss of YY1, 
EZH2 and HDACI, and the recruitment of the transcriptional activators MyoD 
and SRF (Serum Response Factor) (Fig. 16). Chromatin engagement of EZH2 
relies on YY1, because reducing the levels of YY1 by RNA interference results in 
a lack of EZH2 recruitment. Intriguingly, PRC4 contains both EZH2 and SIRT1 
(Kuzmichev et al. 2005), and Sir2 is required for PcG-mediated silencing 
(Furuyama et al. 2004). These observations suggest the possibility that SIRT1 
might be recruited on the chromatin by both MyoD-dependent (mediated by 
MyoD-pCAF-SIRT1 complex) and MyoD-independent (YY1-EZH2-SIRT1) 
pathways, and that Sir2 and EZH2 might cooperate in repressing muscle gene 
expression. The Ezh2 complex might not regulate expression of every muscle-
specific gene. By ChIP analysis, Caretti et al. (2004) showed that EZH2 is 
associated with the regulatory regions of MHCIIb and mCK derived from 
undifferentiated myoblasts but cannot be detected on the chromatin of 
differentiated myotubes. 
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Fig.16: Two-step activation model of muscle gene expression. Regulatory regions 
of certain muscle-specific genes are occupied by a protein complex containing the 
DNA-binding protein YY1, the methyltransferase Ezh2, and the deacetylase HDAC1. 
Deacetylation of lysine residues by HDAC1 and di-/trimethylation of H3K27 by Ezh2 
actively prevent transcription (repressed state). At the onset of transcriptional 
activation, YY1 is displaced from the chromatin—with consequent loss of Ezh2 and 
HDAC1—and replaced by SRF. H3K27 becomes hypomethylated, and loading of the 
MyoD family of transcription factors allows engagement of histone acetyltransferases 
(HATs) and permits initiation of transcription (activated state) (Caretti et al. 2004). 

 
 
 
Recently, it was shown that also myogenin promoter is controlled by EZH2 in 
undifferentiated myoblasts (Juan et al. 2009). However, the role of all other PcG 
components and in particular PRC2 remains to be elucidated. It is interesting to 
note that in myoblasts lysine 9 methylation and class II HDACs were detected on 
myogenin promoter (Zhang et al. 2002), but not on mCK and MHCIIb 
promoter/enhancer sequences (Caretti et al. 2004). MyoD-dependent activation 
requires the SWI/SNF ATP-dependent chromatin remodeling complex through 
an interaction that can be regulated by the p38 MAPK pathway (de la Serna et al. 
2001; Simone et al. 2004). At myogenic loci, the p38 kinase phosphorylates the 
SWI/SNF subunit BAF60 (Simone et al. 2004). Moreover, the forced activation 
of the p38 pathway promotes SWI/SNF recruitment, facilitates MyoD and MEF2 
binding, leads to the recruitment of RNA polymerase II and anticipates 
expression of late muscle markers at early stages of differentiation (Penn et al. 
2004). Inhibition of SWI/SNF activity, as well as inhibition of HAT activity, 
prevents the ability of MyoD to initiate transcription and chromatin remodeling at 
specific loci (de la Serna et al. 2001; Polesskaya et al. 2001). Indipendent studies 
have unambiguously demonstrated that p38 MAPK signaling pathway is a crucial 
regulator of skeletal muscle differentiation. Treatment with the p38 alpha and beta 
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inhibitor SB203580 prevented the fusion of myoblasts into myotubes, as well as 
the induction of muscle-specific genes (Cuenda and Cohen 1999; Li et al. 2000). 
Thus, understanding the regulation of myogenesis and, in particular, how muscle 
stem cells change their behavior during this process represents a major aim in the 
skeletal muscle research area. Epigenetic studies that define the role of chromatin 
remodeling and modifying complexes in specifying developmental or 
differentiation programs, and in regulating the capacity of adult muscle to 
undergo efficient regeneration, will be of great interest. Recent studies performed 
in mouse models of muscular dystrophy have reported on the therapeutic 
potential of pharmacological interventions that target events downstream to 
genetic defect responsible for the disease. Deacetylase inhibitor treatment 
conferred on dystrophic muscle resistance to contraction-coupled degeneration 
and alleviated both morphological and functional consequences of the primary 
genetic defect (Minetti et al. 2006). These results provide a rationale for using 
deacetylase inhibitors in the pharmacological therapy of muscle dystrophies. With 
so many unresolved issues, the coming years of epigenetic research in myogenesis 
promise to be exciting.  
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2.2.  AIM OF THE STUDYY AIM OF THE STUDY 
 

   It has been reported that EZH2 expression is developmentally regulated during 
myogenesis and its down-regulation coincides with activation of muscle gene 
expression and differentiation of myoblasts into myotubes (Caretti et al. 2004). 
However, the role of the other PRC2 core components in skeletal muscle 
differentiation has not been investigated. Since in mammals two E(z)-related 
genes have been isolated, EZH1 and EZH2 (Laible et al. 1997) and the existence 
of two partially redundant PRC2 complexes (PRC2-EZH2 and PRC2-EZH1) has 
previously been reported (Margueron et al. 2008; Shen et al. 2008; Ezhkova et al. 
2009), we set out to analyze the role of these two complexes in controlling muscle 
gene program activation. The second step of our work was to identify the 
signaling pathway regulating PRC2 dynamics onto chromatin during the transition 
from myoblasts to myotubes. MSK1 and MSK2 are serine/threonine kinases 
known to phosphorylate histone H3 at serine 10 and serine 28 residues (Soloaga 
et al. 2003) that act downstream of p38 and ERK pathways (Deak et al. 1998). In 
particular, putative lysine “switch” sites followed by phospho-acceptors (-ARKS-), 
such as Lys9/Ser10 and Lys27/Ser28 in histone H3 were predicted to regulate the 
activity of silencing complexes (Fischle et al. 2003). Indeed, methylated lysines are 
bound by repressive proteins, which can be displaced by phosphorylation of the 
adjacent serine residues. In particular, phosphorylation of histone H3 at Ser10 was 
shown to inhibit methylation of the adjacent Lys9 by SUV39H1 (Rea et al. 2000) 
and subsequently to reduce HP1 binding to H3K9me3 (Fischle et al. 2003; Fischle 
et al. 2005). Since MSK1 is known to phosphorylate H3Ser28 in vitro and this 
histone mark is associated with gene activation (Dyson et al. 2005; Kim et al. 
2008), we hypothesized that MSK1-mediated H3Ser28ph could regulate PRC2 
chromatin dissociation at muscle specific genes, allowing gene activation and 
muscle differentiation. 
 
On the basis of these observations, the work will be divided in two sections. In 
the first section, Section A, we’ll analyze the role of the PRC2 components during 
skeletal muscle differentiation. In the second section, Section B, we’ll investigate 
the signaling mechanisms that regulate the PRC2 chromatin association during the 
switch from myoblasts to myotubes. 
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3. MATERIALS AND METHODS3. MATERIALS AND METHODS 
 
Cell Culture and ReagentsCell Culture and Reagents 
 
   C2C12 mouse myoblasts cells (ATCC) were cultured in Dulbecco Modified 
Eagel’s Medium (DMEM) supplemented with penicillin/streptomycin and 10% 
fetal bovine serum (Euroclone). Differentiation was induced when cells reached 
about ~80% confluency using DMEM containing ITS media supplement (Sigma). 
LY294002 was obtained from Sigma while H89 was from Alexis Corporation. 
The inhibitors were replaced freshly every 24h. 
 
 
RNA Isolation and Quantitative RealRNA Isolation and Quantitative Real -- Time PCRTime PCR 
 
   RNA was extracted from cells using TriReagent (Sigma) according to 
manufacturer’s insctructions. cDNA synthesis was performed using the 
QuantiTec reverse transcription kit (Qiagen). Quantitative real-time PCR 
reactions were performed in triplicate using QuantiTect SYBR Green master mix 
(Qiagen) on a DNA Engine Opticon 2 machine (MJ Research) controlled by 
Opticon Monitor 2 software. C(T) values were calculating by Opticon Monitor 2 
software, relative C(T) values were normalized to the housekeeping gene 
GAPDH. Fold enrichment refers to the enrichment relative to myoblasts values. 
GAPDH and mCK primers were already described (Caretti et al. 2004). Remaining 
primer sequences are the following: 
 
 
MyoG-for: 5′-GCAGCGCCATCCAGTTTG-3′ 
MyoG-rev: 5′-GCAACAGACATATCACCG-3′  
SUZ12-for: 5′-GTGCCTTTGAATCCTCTC-3′ 
SUZ12-rev: 5′-CTTCGCGATTTCGTTTTTC-3′ 
EZH1-for: 5′-AGACTCAGTGCAATACCAAGCA-3′ 
EZH1-rev: 5′-AGTTTCACCACCTT-3′ 
EZH2-for: 5′-TGATAAAGAAACTTGCCCACCT-3′ 
EZH2-rev: 5′-CTTTGCTCCCTCTGAACATT-3′ 
EED-for: 5′-ATAACCAGCCATTGTTTGGAGT-3′ 
EED-rev: 5′-TGTTGCTATCATAGGTCCATGC-3′ 
MSK1-for: 5′-GCCGATGAAACTGAAAGAGC-3′ 
MSK1-rev: 5′-TGCTCATTTCCTGGGGATAC-3′ 
MSK2-for: 5′-TCACACTGCACTACGCCTTC-3′                                                
MSK2-rev: 5′-GATACCCAGCTTGTGCAGGT-3′ 
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RNA InterferenceRNA Interference 
 
   siRNA EZH1#1 (SI00997766), siRNA EZH1#2 (SI00997773), siRNA 
SUZ12#1 (SI01438416), siRNA SUZ12#2 (SI01438402), siRNA MSK1 #1 
(SI01407483), siRNA MSK1 #2 (SI01407504) as well as negative control siRNA 
(scrambled sequence not targeting mouse genome, 1027313) were purchased from 
Qiagen and used at the final concentration of 20 nM. Remaining siRNA 
sequences are the following: 
 
siRNA Ezh2 #1: AAGGAAAGAACTGAAACTTA 
siRNA Ezh2 #2: AAGCTGAAGCCTCCATGTTTA  
 
Cells were transfected with HiPerfect (Qiagen) following the manufacturer’s 
instructions. 48h after transfection the cells were induced to differentiate and 
collected at the indicated time-points. 
 
 
Cell Lysis and ImmunoblotCell Lysis and Immunoblot  
 
   Cells were harvested and washed twice with PBS. Cell lysis of total cell extracts 
was performed on ice in 50 mM Tris–HCl pH 8, 125 mM NaCl, 1% NP-40, 2 
mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF) and protease inhibitory 
cocktail (Roche) for 25 min. Insoluble material was pelleted by centrifugation at 
16000 g for 3 min at 4°C. Histone extracts were prepared following Abcam 
protocol (www.abcam.com). Protein concentration was determined using the 
Bradford assay (Bio-Rad). The proteins were denatured, reduced, separated by 
SDS–PAGE and transferred to nitrocellulose transfer membrane (PROTRAN-
Whatman, Schleicher & Schuell). The membranes were blocked with 5% non-fat 
dry milk in TBST for 60 min, incubated with primary antibodies overnight at 4°C, 
washed three times with TBST for 10 min, incubated with the peroxidase-
conjugated secondary antibody in TBST with 2.5% non-fat dry milk for 60 min 
and washed three times with TBST for 10 min. Immunoreactive proteins were 
detected using Supersignal West Dura HRP Detection Kit (Pierce).  
For cytoplasmatic and nuclear extracts preparation the cells were resuspended 
first in Buffer A (10 mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA and 0.1 mM 
EGTA) supplemented with protease inhibitory cocktail (Roche), 1 mM 
dithiothreitol (DTT) and 1mM PMSF. After incubation on ice for 10 min, NP-40 
was added to a final concentration of 0.5% and the samples were vortexed for 5 s. 
Nuclei were pelleted at 13200 rpm for 10 s and the cytoplasmatic proteins were 
collected. The pellet was then washed five times with Buffer A and resuspended 
in Buffer C (20 mM Hepes pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 
mM DTT, protease inhibitory cocktail (Roche) and 1 mM PMSF). After 10 min 
on ice, the samples were sonicated, centrifuged at 13200 rpm for 10 min and the 
nuclear proteins were transferred to a fresh vial. For immunoprecipitation studies, 
nuclear extracts were first precleared using protein A/G beads (Santa Cruz) for 30 
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min at 4°C and then immunoprecipiated with EZH2 or SUZ12 antibody for 2h at 
4°C. Normal rabbit IgGs (SantaCruz) were used as a negative control.  
 
 
Chromatin Binding AssayyChromatin Binding Assay  
 
   The method of Llano et al. (Llano et al. 2006) was used. At the indicated times, 
cells were divided equally in 2 tubes that were lysed for 15 min on ice in cold CSK 
I buffer (10 mM Pipes pH 6.8, 100 mM NaCl, 1 mM EDTA, 300 mM sucrose, 1 
mM MgCl2, 1 mM DTT) supplemented with 0.5% (v/v) Triton X-100, protease 
inhibitory cocktail (Roche) and 1 mM PMSF. After centrifugation at 500g at 4°C 
for 3 min, the first tube was divided in two fractions: the supernatant that 
contains Triton-soluble proteins and the pellet (Triton insoluble fraction) that 
contains chromatin-bound, nuclear matrix-bound and insoluble proteins. Triton 
insoluble fraction was resuspended in RIPA buffer (150 mM Tris–HCl pH 8.0, 
150 mM NaCl, 0.5% DOC, 0.1% (w/v) SDS, 1% (v/v) NP-40). The second tube 
was resuspended in CSK II buffer (10 mM Pipes pH 6.8, 50 mM NaCl, 300 mM 
sucrose, 6 mM MgCl2, 1 mM DTT), treated with DNase (Promega) for 30 min 
followed by extraction with 250 mM (NH4)2SO4 for 10 min at 25 °C. The sample 
treated with DNase and salt was centrifuged at 1200g for 6 min at 4°C and the 
supernatant represents the DNase-released chromatin-associated proteins. All 
fractions were analyzed by immunoblotting where equal amount of proteins were 
loaded (15µg). 
 
 
AntibodiesAntibodies   
 
   Histone H3 (1791), H3K4me3 (8580), RNA Pol II (4H8) and SUZ12 (12073) 
were from Abcam while EZH2 (3147), p38 (9228), phospho-p38Thr180/Tyr182 (9211), 
phosho-Ser376 MSK1 (9591) were from Cell Signaling, H3K27me3 (07-449), 
H3S28ph (07-145), H3S10ph (05-817) and Acetyl H3 (06-599) were purchased 
from Upstate. MSK1 (9392, 25417), MyoG (12732), p21 (6346), MHCIIB (2064) 
and SUZ12 (46264) were from Santa Cruz. β–tubulin (T0198) was from Sigma. 
mCK antibody was kindly provided by Hidenori Ito. EZH1 antibody was kindly 
provided by R. Margueron.  
 
 
Immunoflflf uorescence AssayyImmunofluorescence Assay 
 
   Cells were grown on coverslips, washed in PBS, fixed in 3.7% 
formaldehyde/PBS (15 min, 4°C) and permeabilizaed in 0.2% Triton X-100/PBS 
(5 min, 4°C). The coverslips were then washed in PBS, and blocked with 3% low-
fat milk/PBS for 1h at room temperature. Following overnight incubation with 
primary antibodies at 4°C, the coverslips were washed and incubated with 
secondary antibodies (Molecular Probes) for 60 minutes at 37°C, washed again 
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and counterstained with DAPI (1 g/l in Vectashield, Vector). Pictures were 
captured using epifluorescence microscope (Leica DM6000B) using Leica 
Application Suite software. 
 
 
Chromatin Immunoprecipitation (ChIP)Chromatin Immunoprecipitation (ChIP) 
 
   ChIP was performed as previously described (Breiling and Orlando 
doi:10.1101/pdb.prot4560, with adaptations) using a a crosslinking time of 10 
min. Antibodies were incubated using Dynal magnetic beads overnight at 4°C. 
The day after, chromatin was added to Ab-beads complexes and incubated 
overnight at 4°C. The complexes were washed twice in Low Salt Solution, twice in 
High Salt Solution, once in LiCl, and once in TE buffer. DNA was extracted from 
beads by standard phenol/chloroform extraction, precipitated, and resuspended 
in 30 µl TE. To quantify the results, qPCR reactions were performed in triplicate 
(precipitated DNA samples as well as serially diluted input DNA) using 
QuantiTect SYBR Green master mix (Qiagen) on DNA Engine Opticon 2 
machine (MJ Research) controlled by Opticon Monitor 2 software. C(T) values 
were calculating  by Opticon Monitor 2 sotware. We calculated relative 
enrichment: the signal from the control immunoprecipiation experiment (Mock) 
was subtracted from that observed with the antibody of interest. Myoblasts values 
(GM) were set as 1 and values from differentiated cells in DM with or without 
inhibitor displays relative enrichment or reduction to those observed in GM. In 
case of ChIP with antibodies recognizing histone modifications, % of input was 
calculated first, and then a ratio of H3modified/H3total was calculated and set to 
1 to myoblasts in GM. Values from DM show relative enrichment/reduction to 
those observed in GM. For CMA316 ChIP, data were presented as % of input.
Primers for ChIP Real Time-PCR: 
 
 
MyoG promoter-for: 5′-CCGTCCGTCCAAGACAACCC-3′ 
MyoG promoter-rev: 5′-CCCCCCTCTAAGCTGTTGC-3′ 
MyoG A-for: 5′-CTGTCCACCTTCAGGGCTTC-3′ 
MyoG A-rev: 5′-CCTCGAAGGCCTCATTCACT-3′ 
MyoG B-for: 5′-GTGGCCTTCTGGGCTCATAC-3′ 
MyoG B-rev: 5′-TTTGTTACGGTGGCTCCTGA-3′ 
MyoG C-for: 5′-AAGTGGGGCTGTCCTGATGT-3′ 
MyoG C-rev: 5′-TAACAAGGGGGCTCTCTGGA -3′ 
mCK promoter-for: 5′-CGCCAGCTAGACTCAGCACT-3′ 
mCK promoter-rev: 5′-CCCTGCGAGCAGATGAGCTT-3′ 
mCK enhancer-for: 5′-GACACCCGAGATGCCTGGTT-3′    
mCK enhancer-rev: 5′-GATCCACCAGGGACAGGGTT-3′ 
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Size Exclusion ChromatographyySize Exclusion Chromatography 
  
   Size exclusion chromatography was performed using C2C12 cell nuclear 
extracts on a Superose 6 PC 3.2/30 gel filtration column (GE Healthcare) on an 
AKTA purifier system (GE Healthcare) in IP (300) buffer (50 mM Tris-HCl at 
pH 7.5, 300 mM NaCl, 5% glycerol, 0.2% Igepal [Sigma], Aprotein, Leupeptin, 
100 mM PMSF, 1 mM DTT). Immuno-depletion was performed as described 
(Villa et al. 2007). Briefly, protein extracts were subjected to five serial depletions 
within 24h at 4°C using the AC22 EZH2 monoclonal antibody (Bracken et al. 
2003) pre-coupled to Protein-A beads. 
 
 
Histone Tail PeptidesHistone Tail Peptides
 
   Histone H3 peptides were synthesized in unmodified and modified form using 
Fmoc (N-(9-fluorenyl)methoxycarbonyl)-based solid-phase synthesis. Peptides 
used for kinase assays corresponded to amino acids 21-33 of H3 containing an 
artificial Y at the C-terminus: 
  
H3 unmodified: ATKAARKSAPATGY 
H3K27me3: ATKAARK(me3)SAPATGY 
H3S28ph: ATKAARKS(ph)APATGY 
 
Peptides used for pulldown experiments corresponded to amino acids 1-40 of H3 
and contained a C-terminal non-native YCK sequence with the lysine biotinylated 
at the ε-amino group:  
 
H3unmodified: 
ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHR-      
YCK(biotin)  
 
H3K27me3S28ph: 
ARTKQTARKSTGGKAPRKQLATKAARK(me3)S(ph)APATGGVKKPHR-
YCK (biotin) 
 
H3K27me3: 
ARTKQTARKSTGGKAPRKQLATKAARK(me3)SAPATGGVKKPHR-
YCK (biotin) 
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I n V i t r oI n  V i t r o Peptide Kinase Assayy Peptide Kinase Assay 
 
  Recombinant MSK1 (Millipore) was used to phosphorylate H3 histone tail 
peptides (21-33). Kinase assays were performed according to the manufacture’s 
protocol incubating 10 ng MSK1 with 1 µg peptide for 30 min at 30 ˚C. The 
reaction was stopped by adding 0.5 % phosphoric acid, spotted on P81 paper, 
washed three times with 0.5 % phosphoric acid and once with acetone. Filter 
circles were air-dried and counted in a scintillation counter. 
 
 
Peptide PulldownPeptide Pulldown 
 
   For preparation of nuclear extracts, cells were lysed in buffer A (10 mM Hepes-
KOH pH 7.8, 60 mM KCl, 1 mM EDTA, 1 mM DTT, protease inhibitor cocktail 
(Roche), 0.075 % NP-40). After incubation on ice for 15 min nuclei were pelleted 
and washed once with buffer A without NP-40. The nuclear pellet was suspended 
in buffer B (20 mM Tris pH 8.0, 300 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 
25 % glycerol, 1 mM DTT, protease inhibitor cocktail, PhosSTOP (Roche)) and 
sonicated on ice in a Branson Sonifier (duty cycle 20 %, output 7.5). Extract was 
left on ice for 30 min before centrifugation for 15 min at 16,000 g. The 
supernatant was supplemented with 0.1% Triton X-100 and used for pulldown 
experiments. 
For H3 peptide pulldown experiments, 10 µg of biotinylated histone peptides (1-
40) were coupled to 50 µl streptavidin-coated paramagnetic beads in PBS/BSA (1 
mg/ml) for 4 h at 4 ˚C. Beads were washed three times with PD150 (10 mM Tris 
pH 7.5, 150 mM NaCl, 0.1 % Triton X-100, 20 % glycerol, 1 mM DTT, protease 
inhibitor cocktail, PhosSTOP) to remove unbound peptides. Peptide-bound 
beads were incubated with nuclear extract for 2 h and washed four times with 
PD300. Bound proteins were eluted with SDS sample buffer, separated by SDS-
PAGE and analyzed by immunoblotting. 
 
 
Generation of H3S28phGeneration of H3S28ph -- Specific AntibodySpecific Antibody 
 
   Mice were immunized with synthetic peptides KQLATKAARK(phospho-
S)APATGGVKC and KQLATKAAR(me3-K)(phospho-S)APATGGVKC for 
CMA316 antibody and hybridomas were screened by ELISA using peptides listed 
in Kimura et al. (Kimura et al. 2008). For ELISA, microtiter plates were coated 
with the individual peptides conjugated with bovine serum albumin and incubated 
with 3-fold dilutions of each antibody. After washing with PBS, plates were 
incubated with peroxidase-conjugated anti-mouse IgG and washed with PBS. The 
colorimetric signal of tetramethylbenzidine was detected by measuring the 
absorbance at 405 nm using a plate reader. CMA316 was isotyped as IgG2a-k 
using a kit (Serotec; MMT-1). IgG was purified using a Protein A column (GE 
Healthcare). For immunoblotting, HeLa cells were transfected with H3-GFP 
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(Kimura and Cook 2001) and the amino acid substituted mutants using 
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction. 
After 2 days, 100ng/ml nocodazole was added and further incubated for 6 hr. 
After washing three times with PBS, cells were lysed using 2x SDS-gel loading 
buffer, and total protein was separated on 13% SDS-polyacryamide gels, 
transferred on to PVDF membranes, and blotted with CMA316 (1:10 dilution of 
hybridomas culture supernatant), as previously described (Kimura et al. 2008). 
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4.4. RESULTS AND DISCUSSION RESULTS AND DISCUSSION 
 
4.1 Two PRC2 complexes, PRC24.1 Two PRC2 complexes, PRC2 --EZH2 and PRC2EZH2 and PRC2 -- EZH1, areEZH1, are 
prpresent during myogenic differentiation and are differentiallyesent during myogenic differentiation and are differentially 
associated with muscle gene regulatory regionsassociated with muscle gene regulatory regions  
 
   PcG proteins are transcriptional repressor that modify chromatin through 
epigenetic modifications that prevents changes in cell identity by maintaining 
transcription patterns, throughout development and in adulthood 
(Schuettengruber and Cavalli 2009; Simon and Kingston 2009). Skeletal muscle 
formation in vertebrates constitutes an excellent system to study the signals and 
the molecular mechanism that govern muscle differentiation. Since PcG proteins 
play a key role during muscle specific gene regulation (Caretti et al. 2004; Juan et 
al. 2009; Seenundun et al. 2010), we set out to investigate the dynamics of the 
PRC2 core components (SUZ12, EZH2, EED) and EZH1 during the transition 
from proliferative myoblasts to differentiated myotubes. C2C12 cells were used as 
in vitro model of skeletal muscle differentiation. In this cellular system exchange of 
growth medium (GM) with differentiation medium (DM) induces myoblasts to 
exit the cell cycle, to express muscle-specific genes and subsequently to fuse into 
multi-nucleated myotubes (Fig. 17 A) (Buckingham 1996).  
 

 
 

 
Fig.17: PRC2 switches composition at muscle regulatory regions during 
differentiation. A) Graphical representation of dynamics of C2C12 muscle cell 
line differentiation. Proliferative myoblasts at 80% confluency were induced to 
differentiate for 24-72h by replacing the growth (GM) with differentiation 
medium (DM). 

 
 
 
Ezh2 protein levels are known to decline during skeletal muscle differentiation 
(Fig. 17 B) (Caretti et al. 2004). While EZH2, SUZ12 and EED protein levels 
declined during this process, EZH1 protein levels stayed steady throughout 
different phases of differentiation (Fig. 17 B). The same trend was observed 
analyzing PRC2 mRNA levels (Fig 17 C). Interestingly, also global levels of 
H3K27me3 followed EZH2, SUZ12 and EED dynamics (Fig. 17 B).  
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Fig.17: B) Immunoblot of EZH2, EZH1, SUZ12, EED, H3K27me3 and MHCIIb 
from whole cell extracts of C2C12 cells cultured as myoblasts in GM or as 
myotubes in DM. β-tubulin was used as a loading control. Asterisk indicates EZH1 
unspecific band. Numbers represent EED isoforms. MHCIIb was used as a skeletal 
muscle differentiation control. C) Expression levels of EZH2, EZH1, SUZ12, 
EED and MHCIIb was measured by Real Time PCR in C2C12 myoblasts grown in 
GM or DM 24h, 48h and 72h after induction of differentiation. The transcription 
levels were normalized to GAPDH expression and represent the mean of three 
independent experiments +/- standard deviation (SD). Prol., proliferative myoblasts 
in growth medium (GM); conf., confluent myoblasts (80%) in growth medium 
(GM); DM, differentiation medium. 
 
 
 

To investigate whether EZH1 can exist in a complex with other PRC2 
components in our cellular system, we carried out size exclusion chromatography 
analyses from nuclear extract of undifferentiated and differentiated C2C12 cells, 
followed by immunoblot with EZH2, SUZ12, EED and EZH1 antibodies of the 
eluted fractions (Fig. 17 D). In myoblasts the majority of all four proteins were 
present in a 700 kDa complex that corresponds to the molecular weight of the 
PRC2 complex (Pasini et al. 2004). When myoblasts were induced to differentiate, 
EZH2 levels declined but SUZ12, EED and EZH1, still co-eluted in the same 
fractions (Fig. 17 D, middle panel). To exclude the possibility that the formation 
of an alternative complex between SUZ12, EED and EZH1 in differentiated 
myotubes is EZH2-dependent, we depleted EZH2 from C2C12 cultured in 
differentiation conditions, and re-analyzed the SUZ12, EED and EZH1 elution 
profile. As shown in Fig. 17 D (right panel), SUZ12, EED and EZH1 co-
fractionated at the same 700 kDa molecular weight, suggesting that these proteins 
form a complex in myotubes also in the absence of EZH2. We refer to this 
complex as PRC2-EZH1. In support, co-immunoprecipitation experiments 
showed increased association of SUZ12 with EZH1 after C2C12 differentiation 
concomitant with decreased interaction of EZH2 (Fig. 17 E). 
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Fig.17: D) Size exclusion chromatography of nuclear extracts prepared from C2C12 
myoblasts cultered in GM (left panel) or DM, 72h after induction of differentiation (middle 
panel) showing co-elution of EZH2, SUZ12, EED and EZH1 in high molecular weight 
fractions. The indicated fractions were analyzed by immunoblot. Right panel: EZH2 was 
depleted from C2C12 cells cultured in DM, 72h after induction of differentiation and 
nuclear extracts were analyzed as described previously. E) Immunoprecipitation (IP) of 
EZH2 and SUZ12 was performed from nuclear extracts (NE) of C2C12 myoblasts 
cultured in GM or DM (48h after differentiation induction). Co-IP of EZH2 with EED 
could not be properly assessed due to unspecific binding of IgG to EED antibody. Normal 
rabbit IgG antibody was used as a negative control.  

 
 
To verify the presence of these two different PRC2 complexes in living cells 
during skeletal muscle differentiation, we performed Chromatin 
Immunoprecipitation (ChIP) experiments analyzing the dynamics of PRC2 
components (SUZ12, EZH2, EZH1) and H3K27me3 repressive mark at 
regulatory regions of mCK and MyoG, previously reported to be PRC2 targets in 
myoblasts (Caretti et al. 2004; Juan et al. 2009; Seenundun et al. 2010). Two 
different mCK regulatory regions were analyzed corresponding to the promoter, 
located immediately upstream of the transcription start site (TSS) and to the 
enhancer, located -1,2 kb from the TSS (Nguyen et al. 2003). High ChIP levels of 
EZH2 and SUZ12 proteins were present on the mCK enhancer and promoter in 
undifferentiated myoblasts but they declined in differentiated myotubes (Fig. 17 F 
i) and ii). Interestingly and in agreement with previous reports, low ChIP levels of 
PRC2 components in myotubes was not followed by significant loss of 
H3K27me3 at the mCK promoter and only the mCK enhancer showed some 
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extent of H3K27me3 decrease (Fig. 17 F i) and ii) (Caretti et al. 2004; Juan et al. 
2009). EZH1 protein was not detected on the mCK promoter or enhancer 
regions, neither in myoblasts nor in myotubes (ChIP-seq analysis, data not 
shown). PRC2 binding at MyoG promoter showed different dynamics. While 
EZH2 levels declined in the transition from myoblasts to myotubes, ChIP levels 
of SUZ12 and EZH1 as well as H3K27me3 increased (Fig. 17 F, iii). These data 
are in agreement with the previous observation that global levels of EZH1 were 
not downregulated during C2C12 differentiation (Fig. 17 B). We propose that, 
while EZH2 binding declines, a putative PRC2-EZH1 complex engages the MyoG 
promoter upon differentiation. Existence of two partially PRC2 complexes 
(PRC2-EZH2 and PRC2-EZH1) was previously reported (Margueron et al. 2008; 
Shen et al. 2008; Ezhkova et al. 2009). While EZH2 is mostly expressed in 
proliferative tissues and during embryogenesis, EZH1 appears to substitute for 
EZH2 in post-mitotic cells and in adult tissues (Ezhkova et al. 2009; Ho and 
Crabtree 2008). In our system, although PRC2-EZH2 and H3K27me3 are lost 
from the mCK enhancer, during differentiation we detected constant levels of 
H3K27me3 on both MyoG and mCK promoters (Fig. 17 F). Interstingly, we found 
that enrichment of PRC2-EZH1 (Fig. 17 F) was associated with MyoG expression 
in myotubes. This finding is not unprecedented, as presence of PcG has already 
been correlated with transcriptional activity (Ringrose et al. 2004; Papp and Muller 
2006). Notably, recent studies show that 10-20% of PcG target genes in 
embryonic stem (ES) cells are transcriptionally active (Boyer et al. 2006; Lee et al. 
2006). The presence of PRC2 components on active promoters that we proposed, 
may provide competence for subsequent re-silencing of genes whose expression 
needs to be only transiently activated. In keeping with this hypothesis, a recent 
reports showed that Myog is subsequently repressed after initial stage of 
differentiation (Berghella et al. 2008; Moresi et al. 2010).  
Taken together, these results indicate that while mCK behaves as a classical PRC2 
target where gene expression is associated with displacement of canonical PRC2-
EZH2 complex, MyoG retains SUZ12 in complex with EZH1 following its 
activation during muscle differentiation. This shows that myotubes possess a 
PRC2-EZH1 complex that appears to replace PRC2-EZH2 in terminal 
differentiation.  
 
From this moment on, the work will be divided in two sections. In the first 
section, the Section A, we’ll analyze the role of the PRC2 components during 
skeletal muscle differentiation. In the second section, the Section B, we’ll 
investigate the signaling mechanisms that regulate the PRC2 chromatin 
association during the transition from myoblasts to myotubes. 
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Fig.17: F) ChIP analysis of chromatin extracted from C2C12 cells cultured in GM 
or DM for 48h with SUZ12, EZH2, H3K27me3 and EZH1 antibodies. The 
precipitated DNA fragments were amplified using primers designed whitin mCK 
enhancer (i), mCK promoter (ii) and MyoG promoter (iii) as shown in the schematic 
representation in the top panel. ChIP enrichments are presented as relative 
enrichment to myoblasts. Data are shown as mean of three independent 
experiments +/- SD. 
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SECTION ASECTION A 
 
4.24.2 -- A PRC2 components are differentially involved in theA PRC2 components are differentially involved in the 
myogenic differentiationmyogenic differentiation 
 
   Since EZH1 was the unique PRC2 component that remained steady during 
differentiation (Fig. 17 B and C), we were interested in the possibility that EZH1 
could regulate myogenic differentiation. In loss of function experiments, C2C12 
myoblasts were transiently transfected with two different EZH1 siRNAs and 
induced to differentiate for 48h (Fig. 18 A). 
 

 

 
 
 

Fig.18: PRC2 components are differentially involved in the myogenic 
differentiation process. A) A scheme shows the design of siRNA knock down 
(k.d.) experiments used in this study. 
 

 
 
In comparison with control samples, EZH1 depleted cells showed a significant 
impairment of their differentiation ability as revealed by phase contrast 
microscopy (Fig. 18 B). Conversely, and in agreement with published data (Caretti 
et al. 2004; Juan et al. 2009), muscle differentiation was not impaired after EZH2 
depletion (Fig. 18 C). A delay in the activation of MyoG and mCK muscle markers 
was detected in EZH1 knock down cells, but not in EZH2 depleted cells. At this 
regards, lower protein levels of MyoG and mCK were found in EZH1 depleted 
cells (Fig. 18 D) together with only lower mRNA level of MyoG (Fig. 18 E, left 
panel). No decrease of mCK mRNA levels was detected after EZH1 knock down 
(Fig. 18 E, right panel), in keeping with our ChIP data (Fig. 17 F). The lower 
mCK protein levels in EZH1 depleted C2C12 coul be the consequence of the 
impairment of several connected pathways regulating muscle differentiation.  The 
protein and mRNA levels of MyoG and mCK remained high after depletion of 
EZH2 (Fig. 18 F and G).  
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Fig.18: B) C2C12 myoblasts in GM were transfected with non-targeting siRNA (Neg. 
Ctrl.) or two different siRNAs against EZH1. 48h post transfection cells were placed in 
DM for additional 48h. Muscle differentiation phenotype was checked by phase 
contrast microscopy. Expression levels of EZH1 after siRNA k.d. were analyzed by 
Real Time-PCR. Data represent the mean from three different experiments +/- SD. 
Fold enrichment is calculated in comparison to negative control siRNA in GM. C) The 
same experiment described in B) was performed to analyze the phenotype obtained 
after EZH2 siRNA k.d. 

 
 
 
 
 
 
 
 
 
 
 



 51 

 

 
 

Fig.18: D) Immunoblot of EZH1, mCK and MyoG was performed after k.d. of EZH1 
using the same siRNAs as in B). Nuclear (NE) and cytosolic (CE) cell extracts were used 
for analysis. β-tubulin was used as a control of cytosolic fractions. E) Expression levels 
of MyoG and mCK after siRNA EZH1 were analyzed using Real Time-PCR. Data 
represent the average from three independent experiments +/- SD. Fold enrichment is 
calculated in comparison to negative control siRNA in GM. F) Immunoblot of EZH2, 
mCK and MyoG was performed after k.d. of EZH2 using the same siRNAs as in C). 
Nuclear (NE) and cytosolic (CE) cell extracts were used for analysis. β-tubulin was used 
as a control of cytosolic fractions. G) Expression levels of MyoG and mCK after siRNA 
EZH2 were analyzed using Real Time-PCR. Data represent the average from three 
independent experiments +/- SD. Fold enrichment is calculated in comparison to 
negative control siRNA in GM. 
 
 

 
To verify that the delay of muscle differentiation in EZH1 depleted cells was not 
due to proliferation defect, we analyzed the proliferative capability of C2C12 cells 
after EZH1 knock down. As shown in Fig.19 A, EZH1 depleted myoblasts were 
able to correctly grow as the negative control. These data were confirmed by flow 
cytometry of cell cycle (Fig.19 B) and cell death analysis (Fig.19 C). At 24 and 48h 
after EZH1 depletion, the percentage of cells detected in G1/S phase (P1 
fraction), S phase (P4 fraction) and G2/M phase (P5) was comparable between 
negative control and EZH1 knock down cells. The increase in cell number, both 
in the negative control and in EZH1 depleted samples, in G1/S phase at 72 and 
96h cells is a physiological consequence of the growing cells that become 
confluent and start differentiating (Fig. 19 B). During the complete time course 
(from 24h to 96h), no significant cell death was detected both in negative control 
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and in EZH1 depleted cells (Fig. 19 C). Taken together, these data suggest that 
EZH1 is able to regulate muscle differentiation.  

 

  
 

Fig.19: EZH1 depleted C2C12 are able to correctly grow. A) Effect of EZH1 
siRNA on cell proliferation analyzing the growth capability of the Neg. Ctrl. and 
EZH1 depleted cells at 24h, 48h, 72h and 96h after transfection. Graph shows data 
from two independent experiments, error bars represent the standard deviation. B) 
Cell cycle analysis by FACS technique was performed after EZH1 siRNA analyzing 
the same time course of the growth curve as in A). C) Cell death analysis by FACS 
technique was performed after EZH1 siRNA analyzing the same time course of the 
growth curve as in A). 
 
 
 

Since EZH1 was found in a complex with SUZ12 and EED in myotubes (Fig. 17 
D), we performed the same knock down approach targeting SUZ12. As revealed 
by phase contrast microscopy (Fig. 20 A), a delay of muscle differentiation was 
detected after SUZ12 depletion, confirmed by lower protein and mRNA levels of 
Myog and mCK muscle markers (Fig. 20 B and C). In contrast to EZH1 knock 
down cells, the proliferation capability of SUZ12 depleted cells was also impaired 
(Fig. 20 D). Interestingly, flow cytometric analysis of the cell cycle of these cells 
revealed an accumulation in G1/S phase (P4) already at 48h after SUZ12 
transfection (Fig. 20 E), whereas cell death profile was comparable to a negative 
control (Fig. 20 F). These results are in agreement with previously reported 
studies suggesting that SUZ12 is required for G1/S transition (Aoto et al. 2008). 
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Our data may be explained by an autonomous cell cycle defect induced by the 
specific derepression of PRC2 target genes such as cytokines (Bracken et al. 2006; 
Lee et al. 2006). 

 

  

 
 
Fig.20: SUZ12 siRNA impairs proliferation and differentiation in C2C12 cell line. A) C2C12 
myoblasts in GM were transfected with non-targeting siRNA (Neg. Ctrl.) or two different siRNAs 
against SUZ12. 48h post transfection cells were placed in DM for additional 48h. Muscle 
differentiation phenotype was checked by phase contrast microscopy. Expression levels of SUZ12 
after siRNA k.d. were analyzed by Real Time-PCR. Data represent the mean from three different 
experiments +/- SD. Fold enrichment is calculated in comparison to negative control siRNA in 
GM. B) Immunoblot of SUZ12, mCK and MyoG was performed after k.d. of SUZ12 using the 
same siRNAs as in A). Nuclear (NE) and cytosolic (CE) cell extracts were used for analysis. β-
tubulin was used as a control of cytosolic fractions. C) Expression levels of MyoG and mCK after 
siRNA SUZ12 were analyzed using Real Time-PCR. Data represent the average from three 
independent experiments +/- SD. Fold enrichment is calculated in comparison to negative control 
siRNA in GM. D) Effect of SUZ12 siRNA on cell proliferation analyzing the growth capability of 
the Neg. Ctrl. and SUZ12 depleted cells at 24h, 48h, 72h and 96h after transfection. Graph shows 
data from two independent experiments, error bars represent the standard deviation.  
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Fig.20: E) Cell cycle analysis by FACS technique was performed after SUZ12 siRNA 
analyzing the same time course of the growth curve as in D). F) Cell death analysis by 
FACS technique was performed after SUZ12 siRNA analyzing the same time course of 
the growth curve as in D). 

 
 
 
4.34.3 -- A PRC2A PRC2 -- EZH1 complex is required for skeletal muscleEZH1 complex is required for skeletal muscle 
differentiationdifferentiation 
 
   In order to analyze if there would be a common element in the different 
phenotypes after PRC2 component depletion to explain the delay of muscle 
differentiation, we examined the reciprocal protein levels of EZH1, SUZ12 and 
EZH2 in each silencing experiments. In SUZ12 depleted C2C12 cells (Fig. 20 A, 
B and C), a strong decrease of EZH1 protein levels was observed both in 
myoblasts and in myotubes (Fig. 21 A i). An opposite results was obtained after 
EZH2 silencing, in which the cells fused normally in myotubes (Fig. 18 C, F and 
G). Notably, in this case EZH1 protein levels increased both in proliferative and 
in differentiated cells (Fig. 21 A ii). Indeed, it was already reported that the
depletion of SUZ12 induces the proteosomal degradation of other PRC2 
components (Pasini et al. 2007; Tan et al. 2007; Pasini et al. 2010). On the basis of 
these results, we conclude that C2C12 differentiation occurred only in the 
presence of EZH1 protein.  
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Fig.21: EZH1 is essential for skeletal muscle differentiation. A) Immunoblot 
analysis of EZH1 was performed in C2C12 myoblasts cultured in GM and DM, 48h 
after differentiation induction in SUZ12 (i), EZH1 and EZH2 (ii) depleted cells. 
Whole cell extracts were used in i) and nuclear (NE) and cytosolic (CE) cell extracts 
were used in ii). β-tubulin was used as a loading control in i) and as a control of 
cytosolic fractions in ii). 
 

 
 
Moreover, we didn’t detect any difference in SUZ12 protein levels in EZH1 
depleted cells (Fig. 21 B i), whereas lower levels of SUZ12 protein were detected 
after EZH2 knock down (Fig. 21 B ii). The protein levels of EZH2 did not 
change neither in EZH1 nor in SUZ12 depleted cells (Fig. 21 B i) and ii), 
respectively). Thus, SUZ12 and EZH2 per se were not required for muscle 
differentiation program. The obtained data are summarized in Fig. 21 C. Taken 
together, these data suggest that EZH1 protein, that is part of a specific PRC2 
complex, is required for skeletal muscle differentiation. 
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Fig.21: B) Immunoblot analysis of SUZ12 and EZH2 was performed in C2C12 
myoblasts cultured in GM and DM, 48h after differentiation induction in EZH1 (i), 
SUZ12 and EZH2 (ii) depleted cells. β-tubulin was used as a loading control. Whole cell 
extracts were used for this analysis. C) Schematic representation of the different muscle 
differentiation phenotypes obtained after siRNAs of each PRC2 components (SUZ12, 
EZH1 and EZH2) in comparison with PRC2 reciprocal protein levels previously 
analyzed. PRC2 reciprocal levels: - indicates that the protein declines; -- indicates that the 
protein strongly declines; + indicates that the protein increases; ++ indicates that the 
protein strongly increases. Myogenic differentiation: - indicates a delay of muscle 
differentiation; ++ indicates an acceleration of muscle differentiation. In grey, siRNA 
phenotypes showing a delay of muscle differentiation; in black, those showing an 
accelaration. 
 
 

 

4 .44.4 -- A Myogenin activation, via recruitment of MyoD and RNAA Myogenin activation, via recruitment of MyoD and RNA 
Pol II, requires PRC2Pol II, requires PRC2 ---EZH1EZH1 
 
   Differentiating C2C12 cells depleted of EZH1 showed strong defects in the 
correct timing of transcriptional activation of Myog (Fig. 18 E). Since MyoD 
transcription factor is considered one of the key elements involved in MyoG 
activation (Weintraub et al. 1989; Tapscott 2005) we asked if this muscle 
differentiation delay could be a consequence of the impairment of MyoD binding 
at MyoG promoter. To test this hypothesis, we performed ChIP experiments 
analyzing MyoD binding at MyoG promoter and mCK enhancer after EZH1 and 
EZH2 depletion (Fig. 22 A). As expected upon differentiation induction, MyoD 
binding increased in control myotubes, whereas EZH1 depleted cells showed 
lower levels of MyoD at MyoG promoter. Conversely, normal MyoD levels were 
present at MyoG promoter in EZH2 depleted myotubes (Fig. 22 A, left panel). 
Interestingly, MyoD binding at mCK enhancer was not impaired after EZH1 and 
EZH2 depletion (Fig. 22 A, right panel), suggesting that the delay of myogenic 
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differentiation in EZH1 depleted C2C12 could be considered a direct 
consequence of a deficient MyoG activation. In keeping with these data, we 
already observed that MyoG gene was a target of EZH1, whereas mCK gene was 
not (Fig. 17 F). To confirm these results, we analyzed the recruitment of RNA 
Polymerase II (RNA Pol II) and the active chromatin mark H3K4me3 (tri-
methylation of lysine 4 of H3 histone) at the MyoG promoter and three different 
regions along the coding sequence of this gene (Reg. A, Reg. B and Reg. C) (Fig. 
22 B) in EZH1 and EZH2 depleted cells. As shown in Fig. 22 B, the recruitment 
of RNA Pol II at the coding region of MyoG gene (Reg. A) was impaired in 
myotubes after EZH1 and not EZH2 knock down, further supporting the role of 
EZH1 in regulating transcriptional activation of MyoG gene. As expected, in 
EZH1 and not in EZH2 depleted C2C12, a strong reduction of H3K4me3 active 
mark was detected in myotubes along the promoter and the three coding regions 
of MyoG, in agreement with loss of transcriptional activation of this gene (Fig. 18 
E). We can conclude that efficient recruitment of MyoD and RNA Pol II at MyoG 
gene requires EZH1 and these events are crucial for MyoG activation and for a 
correct timing of muscle differentiation. 
The results described here show that PcG proteins shift the control of 
developmental regulatory genes from myogenic committed cells to terminal 
differentiated not proliferative cells, revealing a dual role for these proteins in 
developmental control. Thus, the epigenetic function of PcG proteins is 
apparently propagated in post-mitotic myotubes, with continued PcG (EZH1, 
SUZ12) occupancy. These results suggest a model in which myogenic signals 
induce a switch in the PcG distribution and function from multipotent myoblasts 
to differentiated myotubes, where they contribute to cell cycle exit and 
specification. Therefore, the PcG proteins play a dual role to facilitate the 
completion of myogenic differentiation, first acting in an epigenetic fashion to 
heritably silence developmental regulators and prevent premature differentiation 
in muscle precursors, then transitioning to act non-epigenetically to promote the 
completion of terminal differentiation in myotubes. 
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Fig.22: EZH1 depletion impairs MyoD and RNA Pol II recruitment at MyoG 
promoter. ChIP analysis was performed on chromatin extracted from C2C12 cultured in 
GM or DM 48h from the induction of differentiation, after EZH1 and EZH2 siRNA, 
using MyoD antibody at MyoG promoter and mCK enhancer in (A) and RNA Pol II and 
H3K4me3 antibodies at different regulatory regions of MyoG gene in (B). The 
precipitated DNA fragments were subjected to Real Time-PCR. Levels of H3K4me3 
were normalized to histone H3 density. The values represent the mean of three 
independent experiments. Error bars represent standard deviation. 
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SECTION BSECTION B 
 
4.24.2 -- B Msk1 kinase activity is required for muscleB Msk1 kinase activity is required for muscle 
differentiationdifferentiation 
 
   In the present section we set out to investigate the role of MSK1/H3Ser28ph 
pathway and PRC2 association in the context of skeletal muscle cell 
differentiation (Fig. 23 A). We first investigated whether activation of MSK1/2 
occurs during muscle differentiation. Since MSK2 RNA levels decreased in 
differentiated cells (Fig. 23 F, neg. ctr, right panel), we focused our attention on 
MSK1. MSK1 can autophosphorylate on Serine 376, a modification known as a 
hallmark of its active state (McCoy et al. 2005). When C2C12 myoblasts were 
induced to differentiate we detected increased level of phosphorylated MSK1 (Fig. 
23 B).  
 

 
 

 
Fig. 23: MSK1 activity is required for muscle differentiation. A) Graphical 
representation of dynamics of C2C12 muscle cell line differentiation. Proliferative 
myoblasts at 80% confluency were induced to differentiate for 24-72h by replacing the 
growth (GM) with differentiation medium (DM). B) Immunoblot of MSK1 and its active 
form (phospho-MSK1, P-MSK1) was performed on whole-cell C2C12 extracts using 
specific antibodies. C2C12 differentiation was confirmed using antibodies against muscle 
cell markers (MyoG and mCK) and p38 (total and phosphorylatyed form, P-p38). p21 was 
used as a marker of cell cycle arrest. β-tubulin was used as a loading control. Prol., 
proliferative myoblasts (GM); conf., confluent myoblasts (80%) (GM); 24h and 48h 
indicate the time after GM to DM switch. Double bands of MyoG and p38 in DM 
represent their phosphorylated forms. 
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To assess the role of MSK1 kinase during muscle differentiation, we used H89, a 
compound which is known to inhibit MSK1 activity (Thomson et al. 1999; Davies 
et al. 2000). Although H89 works at concentration as high as 20 µM (Thomson et 
al. 1999; Vicent et al. 2006a), lower doses (i.e. 5 µM and 10 µM) inhibit MSK1 
kinase more specifically (Brami-Cherrier et al. 2007). When C2C12 myoblasts 
were induced to differentiate in the presence of lower H89 concentration (5 µM 
and 10 µM) (Fig. 23 C), muscle differentiation was impaired as shown by phase 
contrast microscopy (Fig. 23 D) and immunofluorescence for the muscle specific 
differentiation marker mCK (Fig. 23 E).  
 

 

 

 
 
 

Fig. 23: C) and D) Proliferative myoblasts were induced to differentiate for 48h by 
replacing the GM with DM in the presence or not of MSK1 inhibitor (5µM and 10 µM 
H89). Effect of H89 treatment on muscle differentiation was evaluated by phase contrast 
microscopy. E) Expression of mCK was assayed by immunofluorescence in C2C12 cells 
cultured in GM and left to differentiate at 48h after the switch to DM with and without 
MSK1 inhibitor (5µM H89). DAPI staining visualizes nuclei. 
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Since H89 can also inhibit other signaling pathways such as PKA, p70S6K and 
RSK2 (Davies et al. 2000), we used siRNA knock down targeting MSK1 kinase to 
assess its specific involvement in muscle differentiation. Knock down of MSK1 
by two different siRNA oligos caused a delay in muscle differentiation, as known 
by reduction in MyoG and mCK at mRNA and protein levels (Fig. 23 F and G). 
As a control, to exclude side effects on other closely related MAPK (e.g. MSK2) 
we checked for MSK2 stability in MSK1 depleted cells. We found that siRNA for 
MSK1 showed no effects on MSK2 mRNA levels (Fig 23 F, right panel). These 
results indicate that MSK1 kinase is specifically required for correct timing of 
C2C12 skeletal muscle differentiation. 
 

 

 
 

Fig. 23: F) C2C12 myoblasts in GM were transfected with non-targeting siRNA (Neg. 
Ctrl.) or two different siRNAs against MSK1. 48h post transfection cells were placed in 
DM for additional 48h. Expression levels of MSK1, MSK2, MyoG and mCK were 
analyzed using Real Time-PCR. Data represent the average from three independent 
experiments +/- SD. Fold enrichment is calculated in comparison to negative control 
siRNA in GM. G) Immunoblot of MSK1, MyoG and mCK was performed after knock 
down of MSK1 using the same siRNAs as in F). β-tubulin was used as a loading control. 
Whole cell extracts were used for analysis. 
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4.34.3 -- B Inhibition of MSK1 kinase prevents downB Inhibition of MSK1 kinase prevents down -- regulation ofregulation of 
PRC2 components during muscle differentiationPRC2 components during muscle differentiation 
 
   We analyzed the effect of MSK1 inhibition on the stability of PRC2 
components, EZH2, EZH1, SUZ12 and EED by H89 treatment (Fig. 23 C). 
EZH2, SUZ12 and EED protein levels were significantly affected by MSK1 
inhibition, in that their differentiation-dependent down-regulation was not 
observed upon H89 drug treatment, as shown by immunoblot in Fig. 24 A. 
Consistently, H89 treatment did not impair EZH1 protein levels (Fig. 24 A). Of 
note, stabilization of EZH2, SUZ12 and EED occurred also at the mRNA level 
(Fig. 24 B). Delay of differentiation by H89 treatment was confirmed by a 
decrease in MyoG and mCK levels (Fig. 24 A and B). 

  

Fig.24: MSK1 inhibition by H89 affects PRC2 levels. A) Immunoblot of EZH2, 
EZH1, SUZ12, EED, MyoG and mCK from whole cell extracts of C2C12 myoblasts 
(GM) and myotubes (DM; 48h after differentiation induction) with and without MSK1 
inhibitor (5µM H89). β-tubulin was used as a loading control. B) Expression levels of 
EZH2, SUZ12, EED, MyoG and mCK were measured by Real Time-PCR in C2C12 
myoblasts cultured in GM and DM (48h after induction of differentiation) with or without 
MSK1 inhibitor (5µM H89). Transcription levels were normalized to GAPDH expression 
and represent the mean of three independent experiments +/- SD. Fold enrichment is 
calculated in comparison to myoblasts.  

 

The sustained PRC2-EZH2 levels could be due to general interference with 
myoblasts differentiation by H89 rather than a direct consequence of MSK1 
inhibition. To exclude this possibility C2C12 cells were treated with LY294002 
(LY), which inhibits the PI3K/AKT pathway and has been shown to regulate 
muscle differentiation (Fig. 24 C) (Serra et al. 2007). Indeed, inhibition of this 
pathway led to failure of differentiation similar to H89 treatment as shown by 
phase contract microscopy (Fig. 24 D) and reduced levels of muscle markers (Fig. 
24 E and F). However, LY treatment did not result in increased mRNA and 
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protein levels of core PRC2 components (Fig. 24 E and F). These results indicate 
that PRC2 stabilization upon H89 treatment is a specific effect of MSK1 
inhibition and not an indirect consequence of impaired muscle differentiation. 
Thus, MSK1 inhibition is causally involved in stabilization of PRC2 components. 

 

 

  

 

Fig.24: C) and D) Proliferative myoblasts were induced to differentiate for 48h by replacing 
the GM with DM in the presence or not of PI3K/AKT inhibitor (10µM of LY294002). 
Effect of LY treatment on muscle differentiation was evaluated by contrast microscopy. E) 
Expression levels of EZH2, SUZ12, EED and muscle markers (MyoG and mCK) cultured 
in GM or DM in the presence or not of PI3K/AKT inhibitor (10µM of LY294002) were 
measured by Real Time-PCR in the same conditions as described in C). F) Immunoblot of 
EZH2, EED and MyoG from whole cell extracts of C2C12 myoblasts cultured in GM or 
DM for 48h with and without PI3K/AKT inhibitor (10µM of LY294002). β-tubulin was 
used as a loading control.  
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4.44.4 -- B MSK1 regulates PRC2B MSK1 regulates PRC2 -- EZH2 chromatin associationEZH2 chromatin association 
during muscle differentiationnduring muscle differentiation 
 
   We then asked if the MSK1-dependent regulation of PRC2-EZH2 protein 
levels could reflect a modulation of their binding on chromatin during skeletal 
muscle differentiation. Therefore, we performed subcellular fractionation 
experiments (Fig. 25 A) in normal and MSK1 depleted C2C12 cells. This analysis 
permits to separate different subcellular protein fractions, using distinct lysis and 
extraction conditions. Cytoplasmic proteins were extracted in the form of a 
Triton-soluble fraction as shown by the presence of β-tubulin (Fig. 25 B, lanes 1, 
4, 7 and 10), whereas chromatin bound proteins were isolated from the nuclear 
Triton-insoluble fraction (Fig. 25 B, lanes 2, 5, 8 and 11) after DNase and 
ammonium sulfate ((NH4)2SO4) extraction (Fig. 25 B, lanes 3, 6, 9 and 12) (Llano 
et al. 2006). In myoblasts, MSK1 was present mainly in the soluble fraction (Fig. 
25 B, lane 1) and was almost undetectable in insoluble (Fig. 25 B, lane 2) and 
chromatin bound (Fig. 25 B, lane 3) fractions. Consistently, we detected reduced 
levels of nuclear MyoG only in MSK1-depleted samples (Fig. 25 B, compare lane 
8 with 11). Interestingly, when cells were induced to differentiate, MSK1 levels 
markedly increased with a significant fraction found in the cell nucleus and 
associated to chromatin (Fig. 25 B, lanes 8 and 9). As expected EZH2 and SUZ12 
were present exclusively in the two nuclear fractions, with decreasing levels as 
cells differentiate (Fig. 25 B, lanes 2, 3, 8 and 9). Notably, depletion of MSK1 
brought about a specific enrichment of EZH2 and SUZ12 in the chromatin-
bound fraction, both in undifferentiated and differentiated cells, indicating a 
retention of these two components on chromatin (Fig. 25 B, compare lane 3 with 
lane 6 and lane 9 with lane 12). Taken together these data show that during 
muscle differentiation MSK1 acts in the nucleus modulating the interaction of 
PRC2-EZH2 components with chromatin.  
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Fig. 25: Depletion of MSK1 leads to PRC2 chromatin retention. A) Schematic 
representation of different phases of the chromatin-binding assay. Three main fractions 
were recovered, Triton-soluble proteins (cytoplasmatic), Triton-insoluble proteins 
(nuclear and not chromatin bound) and chromatin bound. B) C2C12 myoblasts were 
transfected in GM with non-targeting siRNA (Neg. Ctrl.) or siRNA against MSK1. 48h 
after transfection, cells were cultured in DM for additional 48h. Enrichment of MSK1, 
EZH2 and SUZ12 in the different fractions was tested by immunoblot. Histone H3 was 
used as a control for chromatin bound proteins, β-tubulin as a marker for triton-soluble 
proteins and MyoG for triton-soluble fraction and differentiation induction. 
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4.54.5 -- B MSK1 controls an H3K27me3/Ser28ph switch and PRC2B MSK1 controls an H3K27me3/Ser28ph switch and PRC2--
EZH2 binding to muscle specific gene promotersEZH2 binding to muscle specific gene promoters 
 
   Putative lysine switch sites followed by phospho-acceptors (-ARKS-consensus 
sequence) such as Lys9/Ser10 and Lys27/Ser28 in histone H3 were predicted to 
regulate the activity of silencing complexes (Fischle et al. 2003). Indeed, 
methylated lysines are bound by repressive proteins, which can be then displaced 
by phosphorylation of the adjacent serine residues. In particular, phosphorylation 
of histone H3 at Ser10 was shown to inhibit methylation of the adjacent Lys9 by 
SUV39H1 (Rea et al. 2000) and subsequently to reduce HP1 binding to 
H3K9me3 (Fischle et al. 2003; Fischle et al. 2005). Since MSK1 is known to 
phosphorylate H3Ser28 in vitro and this histone mark is associated with gene 
activation (Dyson et al. 2005; Kim et al. 2008), we hypothesized that MSK1-
mediated H3Ser28ph could regulate PRC2-EZH2 chromatin dissociation at 
muscle specific genes, neutralizing the PRC2 docking site H3K27me3. To test this 
hypothesis, we performed ChIP experiments analyzing MSK1, EZH2, SUZ12 and 
associated histone marks (H3Ser28ph and H3K27me3, respectively) at mCK and 
MyoG regulatory regions (Fig. 26 A). As shown in Fig. 26 B (left panels), 
simultaneously with activation of these muscle genes, H3Ser28ph and the other 
active mark acetylated histone H3 (AcH3) peaked at the mCK promoter, at the 
mCK enhancer and at the MyoG promoter in differentiated cells. Enrichment of 
H3Ser28ph at these three regions was associated with recruitment of MSK1 
kinase (Fig. 26 B, left panels). Interestingly, in myotubes, the H3Ser28ph histone 
mark correlated with retention of H3K27me3 and displacement of the PRC2-
EZH2 complex at the mCK and MyoG promoter regions (Fig. 26 B, right panels). 
At the mCK enhancer, instead, loss of PRC2-EZH2 occurred in parallel to 
H3Ser28ph enrichment and loss of H3K27me3 during muscle differentiation (Fig 
26 B). Conversely to wild type conditions, treatment with H89 impaired the 
recruitment of MSK1 kinase at the mCK promoter, mCK enhancer and MyoG 
promoter, in association with loss of H3Ser28ph (Fig. 26 B, left panels) and 
failure of activation of these genes (Fig 24 A and B). These events were 
accompanied by retention of PRC2-EZH2 components at the mCK and MyoG 
promoter regions (Fig. 26 B, right panel). The differences in SUZ12 and EZH2 
binding at two mCK regulatory regions and MyoG promoter could be explained by 
directly proportional modifications in H3K27me3, in that this repressive mark 
increased upon H89 treatment at mCK and MyoG promoters but not at mCK 
enhancer (Fig. 26 B, right panel).  
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Fig. 26: MSK1-dependent H3Ser28 phosphorylation affects PRC2 dynamics at muscle 
regulatory regions. ChIP analysis was performed on chromatin extracted from C2C12 
cultured in GM or DM 48h from the induction of differentiation with and without MSK1 
inhibitor (5µM H89) using EZH2, SUZ12, H3K27me3, H3Ser28ph, MSK1 and acetyl-H3 
(AcH3) antibodies (B). The precipitated DNA fragments were subjected to Real Time-PCR 
analysis with primers amplifying mCK promoter, mCK enhancer and MyoG promoter (A). 
Levels of H3K27me3, H3Ser28ph and AcH3 were normalized to histone H3 density. The 
values represent the mean of three independent experiments. Error bars represent standard 
deviations. 
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To validate the existence of the double mark H3K27me3/Ser28ph at the mCK 
and MyoG regulatory regions, ChIP experiments were performed using an 
antibody (CMA316) capable of recognizing H3Ser28ph regardless of the 
methylation status of H3K27 (Fig. 27 A). Specificity of this antibody was shown 
by immunoblot analysis of histone prepared from nocodazole treated cells (Fig. 
27 B). Interestingly, we detected an increase of this double mark antibody from 
myoblasts to myotubes, both at Myog promoter and mCK enhancer (Fig. 27 C), 
suggesting that H3Ser28ph can occur even in the presence of H3K27me3. All 
together these data suggest that the displacememt of PRC2-EZH2 complex from 
the mCK and MyoG promoter, a functional event for muscle differentiation, is 
regulated by an H3K27me3/Ser28ph switch mechanism, via MSK1 recruitment 
to chromatin. 
Previous work estabilished that the same muscle genes require p38 signal-
dependent chromatin remodeling for their activation (Simone et al. 2004). Indeed 
MSK1 was shown to interact with BRG1 ATPase, a subunit of chromatin 
remodeling SWI/SNF complex involved in p38-dependent muscle gene activation 
(Simone et al. 2004; Drobic et al. 2010). Besides displacing repressive Polycomb 
proteins, how does H3Ser28ph regulate transcription? One possibility is that 
phospho-mark on histone H3 may favor the recruitment of SWI/SNF via 14-3-3 
family proteins, that have high affinity for H3Ser10ph and are required for 
transcriptional activation (Winter et al. 2008; Niessen et al. 2009; Drobic et al. 
2010). The conclusion of this work add a vast body of evidences in support of the 
importance of adjacent histone residues as potential targets for co-evolved 
epigenetic regulatory mechanism (Winter and Fischle 2010). Phosphorylation of 
Ser28 was shown to inhibit methylation at Lys27 (Manzur et al. 2003) and in 
Tetrahymena mutation of H3Ser28 (H3Ser28E) disrupted the proper methylation of 
both H3K9 and H3K27 during macronuclear development (Liu et al. 2007). 
Similarly, phosphorylation of histone H1 on Ser27 (H1Ser27ph) was found to 
prevent binding of HP1 and PRC2 to the adjacent methylated Lys26 (H1K26me3) 
(Kuzmichev et al. 2004; Daujat et al. 2005). Notably, PRC1/chromatin 
dissociation was correlated with H3Ser28ph further suggesting analogy with 
H3Ser10ph and HP1 displacement (Voncken et al. 2005). Recent report shows 
that phosphorylation of Ser28 inhibits tri-methylation at Lys27, leading to 
displacement of PcG proteins from target gene promoters, in response to stress 
and mitogenic signaling and retinoic acid (RA)-induced neuronal differentiation 
(Gehani et al., 2010). In conclusion, our data provide evidence that the 
MSK1/H3Ser28ph pathway is essential for skeletal muscle cell differentiation 
determining PRC2-EZH2 displacement from chromatin. 
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Fig. 27: Characterization of CMA316 mouse monoclonal antibody directed against 
phosphorylated histone H3 at Serine 28. A) Specificity of mAb was evaluated by ELISA. 
Microtiter plates were coated with the indicated peptides and incubated with 3-fold dilutions 
of each mAb (starting from 1:300 dilution of a hybridoma culture supernatant). B) HeLa 
cells were left untransfected (lanes 1, 2) or transfected with H3-GFP (lane3) and its 
phosphorylation-site mutants (lanes 4-7) and treated with nocodazole to enrich for mitotic 
cells (lanes 2-7). Whole cell proteins were separated on 13% SDS-polyacrylamide gels, 
transferred on to PVD membranes and blotted with CMA316 antibody that detects single 
bands at the size of histone H3 (lane1). Signal intensity is increased in nocodazole-treated, 
M-phase enriched, cell population (lane3). A mutant H3-GFP, which harbors Ser28A 
substitution, was not detected by these antibodies (lane7). C) ChIP analysis was performed 
on chromatin extracted from C2C12 cultured in GM or DM, 24h after induction of 
differentiation, using CMA316 antibody. The precipitated DNA fragments were subjected to 
Real Time-PCR analysis with primers amplifying mCK enhancer and MyoG promoter. The 
values represent the mean +/- SD of two indipendent experiments. 
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4.64.6 -- B Binding of EZH2, EED and SUZ12 but not EZH1 to theB Binding of EZH2, EED and SUZ12 but not EZH1 to the 
H3K27me3 mark is impaired by phosphorylation of H3Ser28H3K27me3 mark is impaired by phosphorylation of H3Ser28 
 
   In order to provide direct mechanistic evidence for the involvement of 
H3Ser28ph in PRC2 displacement we first analyzed global levels of this mark in 
C2C12 myoblasts cultured in GM and DM with or without H89. As shown in Fig. 
28 A, the levels of H3Ser28ph and H3Ser10ph declined in differentiated cells, 
which is in general agreement with their suggested roles as mitotic markers of 
proliferation (Goto et al. 1999; Prigent and Dimitrov 2003). Treatment of cells 
with the MSK1 inhibitor H89 caused a further decreased in global levels of 
H3Ser28ph and H3Ser10ph, whereas H3K27me3 and H3K4me3 remained 
unchanged. In light of the known role of MSK1 in H3Ser10 phosphorylation and 
H89 effects on global levels of H3Ser10ph (Fig. 28 A) (Thomson et al. 1999) we 
asked whether H3Ser10ph was also involved in muscle gene activation. Indeed, 
we did not observe any increase of this modification at mCK and MyoG regulatory 
regions during muscle differentiation, excluding a role for H3Ser10ph in muscle 
gene activation (Fig. 28 B). This observation is in agreement with earlier findings 
indicating that in vivo the two marks occur indipendently from each other and act 
separately to induce gene expression (Dunn and Davie 2005; Dyson et al. 2005). 
Also, H3Ser28ph has been associated with transcriptionally active promoter 
regions and with transcriptionally active chromatin, whereas H3Ser10ph did not 
differ between active and repressed chromatin regions (Sun et al. 2007).  
 
 

 
 
 

Fig.28: Binding of EZH2, SUZ12, and EED but not EZH1 is specifically affected by 
MSK1-mediated H3Ser28ph. A) Immunoblot of different histone H3 modifications in 
C2C12 cultured in GM or DM, 48h from induction of differentiation, with or without H89 
(5µM). H3 was used as a loading control. B) ChIP analysis of mCK enhancer (i), mCK 
promoter (ii) and MyoG promoter (iii) was performed on chromatin extracted from C2C12 
cultured in GM or DM for 48h after induction of differentiation, using H3Ser10ph antibody. 
Levels of H3Ser10ph were normalized to histone H3 density. The precipitated DNA 
fragments were subjected to Real Time-PCR analysis. The values represent the mean +/- SD 
of three independent experiments. 
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Our results shown until now indicate that MSK1 is required for the dissociation 
of the PRC2-EZH2 complex from the chromatin of muscle gene regulatory 
regions. To address whether MSK1 mediates this function by phosphorylating 
H3Ser28, we first analyzed if MSK1 can phosphorylate this site in the context of 
pre-existing H3K27me3. Recombinant MSK1 kinase was incubated with a histone 
H3 (21-33 residues) peptide either unmodified or carrying the K27me3 or 
Ser28ph modifications. As shown in Fig. 28 C, the H3K27me3 substrate was 
phosphorylated with similar kinetics as the unmodified peptide. Importantly, no 
phosphorylation of the H3Ser28 substrate was observed indicating that this is the 
only residue phosphorylated by MSK1 in this peptide. To investigate whether 
H3Ser28ph impairs binding of PRC2-EZH2 components to H3K27me3 docking 
site we performed affinity-purification experiments using long (1-40 residues) 
histone H3 tail peptides from nuclear extracts prepared from myoblasts and 
myotubes cells. In agreement with early findings (Hansen et al. 2008; Margueron 
et al. 2009) EZH2, SUZ12 and EED were found to be recruited to the 
H3K27me3 peptide but showed significantly lower binding to the unmodified 
control (Fig. 28 D). Interestingly, interaction of all PRC2 core components with 
H3K27me3 was significantly weakened in presence of neighboring H3Ser28ph. 
Similar observations were made for extracts prepared from undifferentiated 
myoblasts as well as from differentiated myotubes (Fig. 28 D). We therefore infer 
that the PRC2-EZH2 containing complex to bind H3K27me3 and to show 
sensitivity to H3Ser28ph is inherent to the complex and not depend on 
differentiation. Since we observed EZH1 binding (Fig. 17 F) and H3Ser28ph 
enrichment (Fig. 26 B) at MyoG gene regulatory regions upon differentiation, we 
next asked whether EZH1 is retained on H3K27me3 even in the presence of the 
adjacent phosphorylation. As Fig. 28 E shows, comparable amounts of EZH1 
were recruited to H3K27me3 and H3K27me3Ser28ph peptides from extract of 
differentiated myotubes. Thus, MSK1 mediated phosphorylation of H3Ser28ph 
appears to impair PRC2-EZH2 binding onto H3K27m3 chromatin, but not 
PRC2-EZH1.  
However, we cannot exclude that, besides H3Ser28ph, MSK1 (and/or MSK2) 
may target also PRC2 components, perhaps adding another layer of complexity in 
PcG regulation. PcG proteins are indeed broadly regulated by post-translational 
modifications (Niessen et al. 2009). For example, p38 kinase has been shown to 
phosphorylate the PRC1 component RING1B (Rao et al. 2009) and the PRC2 
components EZH2 (Palacios et al. 2010) and AKT-dependent phosphorylation 
impairs EZH2 histone methyltransferase activity (Cha et al. 2005). In addition, the 
PRC1 component BMI1 is phosphorylated by MAPKAP kinase 3pK resulting in 
dissociation from chromatin (Voncken et al. 2005). More work will be needed to 
elucidate whether the MSK1/2 pathway directly regulates PRC2 activity. 
 
In conclusion, our data provide strong evidence that MSK1/H3Ser28ph signaling 
pathway plays a key role in epigenetic gene regulation and it is essential for skeletal 
muscle differentiation. 
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Fig.28: C) Recombinant MSK1 was incubated with unmodified histone H3, H3K27me3 and 
H3Ser28ph peptides and kinase assay was performed. D) Nuclear extracts from C2C12 
cultured in GM or in DM, 48h after induction of differentiation, were incubated with 
peptides representing either unmodified H3 or H3 trimethylated at Lysine 27 (H3K27me3) 
or peptide that is both trimethylated at Lysine 27 and phosphorylated at Serine 28 
(H3K27me3Ser28ph). Binding of EZH2, SUZ12 and EED was tested by immunoblot. E) 
The same experiment described in D) was performed in order to compare the binding of 
EZH2 and EZH1. 
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5. CONCLUSIONS5. CONCLUSIONS 
 
   Our work addresses the dynamics of PRC2 complexes and the role of signaling 
pathways operating during skeletal muscle cell differentiation that by changing 
epigenomic codes control derepression of developmentally regulated genes, to 
allow their transcriptional switch. We show that two different PRC2 complexes 
are present during skeletal muscle differentiation, PRC2-EZH2, that is 
predominant in myoblasts and PRC2-EZH1 that is specific of post-mitotic 
myotubes. Since EZH1 is the unique PRC2 component that stays steady 
throughout different phases of differentiation, we hypothesize that EZH1 could 
regulate myogenic differentiation. Indeed, we show that depletion of EZH1 
specifically impaires muscle differentiation due to the lack of transcriptional 
activation of the early muscle marker, MyoG. Surprisingly we find that EZH1 is 
required for the recruitment of the transcription factor, MyoD and RNA Pol II at 
MyoG promoter and these events are crucial to allow gene activation and muscle 
differentiation. Thus, more than one PRC2 entities has to be regulated to 
accomplish skeletal muscle cell differentiation. At this regard, we demonstrate that 
the opposite dynamics of PRC2-EZH2 and PRC2-EZH1 at muscle regulatory 
regions are differentially regulated at the chromatin level by signal-dependent 
phospho/methyl switch mechanism. Removal of Polycomb repressive complexes 
bound to their histone docking site H3K27me3 is a prerequisite to allow 
activation of muscle specific genes. In this work we explore the potential role of 
signal-dependent histone H3 phosphorylation as potential regulator of skeletal 
muscle differentiation. Because of its adjacent position to PcG H3K27me3 
docking site, we hypothesize that H3S28ph could be a negative regulator of PcG 
silencing function necessary for regulating PRC2 binding to chromatin. Indeed, 
we show that depletion of MSK1 specifically stabilizes PRC2 complex on 
chromatin, hence inhibiting epigenome switch. By extensive ChIP experiments we 
show that upon differentiation MSK1 is directly recruited at Myog and mCK 
regulatory regions, H3Ser28 is phosphorylated and that these events perfectly 
follow loss of PRC2-EZH2 binding from the same regions and activation of 
muscle specific genes. Interestingly, in contrast to PRC2-EZH2, we find that 
during differentiation, PRC2-EZH1 is recruited to chromatin but this complex is 
insensitive to H3S28ph, indicating that MSK1/H3Ser28ph might be necessary but 
not sufficient to remove all PRC2 complexes from chromatin. Finally, by using an 
in vitro pull-down assay we provide mechanistic evidence in that H3Ser28ph 
modification neutralizes H3K27m3 mark as it greatly reduces binding of PRC2-
EZH2 complex onto its docking site. Notably, we show that the same phospho-
methyl switch does not influence EZH1 binding suggesting that 
MSK1/H3Ser28ph pathway is specifically required for de-repressing PRC2-EZH2 
controlled genes at the time of differentiation. Our data provides strong evidence 
that MSK1/H3Ser28ph signalling pathway plays a key role in epigenetic gene 
regulation and it is essential for skeletal muscle differentiation. These findings may 
add important information to explore novel pharmacological strategies towards 
selective manipulation of gene expression via epigenome regulation to promote 
somatic cell reprogramming and tissue regeneration. 
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SUMMARY  

In differentiating cells epigenetic gene regulation allows the cell to respond dynamically to 

developmental cues. In particular, the Polycomb complex PRC2 has emerged as a key regulator of 

cell fate and differentiation. In this work we investigate how signalling pathways change PRC2 

dependent epigenetic code of developmentally regulated genes during skeletal muscle cell 

differentiation. We show that MSK1 pathway is essential for muscle differentiation and regulates 

PRC2-EZH2 binding to muscle specific genes through phosphorylation of histone H3 at Ser 28 

(H3S28ph). Furthermore, we report the existence of two PRC2 complexes, PRC2-EZH2 and PRC2-

EZH1, the latter being the prominent PRC2 complex in myotubes.  We show that while H3S28ph 

dependent displacement of PRC2-EZH2 is necessary for muscle gene derepression, H3S28ph does 

not influence EZH1 binding to chromatin. These results indicate that the epigenetic switch 

controlled by MSK1/H3S28ph pathway plays a key role in skeletal muscle cell differentiation in 

that it is specifically required to remove EZH2 from skeletal muscle gene regulatory regions. 

 

 

Keywords: Epigenetics, MSK1 signaling, Polycomb, chromatin, muscle differentiation 



   Stojic et al. 

 3 

INTRODUCTION 

 

Polycomb group (PcG) proteins are transcriptional repressors that modify chromatin through 

epigenetic modifications that prevent changes in cell identity by maintaining transcription patterns, 

throughout development and in adulthood (Schuettengruber and Cavalli, 2009; Simon and 

Kingston, 2009). PcG proteins form two major multiprotein complexes, Polycomb repressive 

complex-1 and -2 (PRC1 and PRC2). PRC1 is the larger sized complex that contains several 

polypeptides whose functions, though not fully understood, include ubiquitination of histone H2A 

at Lysine 119 (H2AK119), chromatin compaction and regulation of the basal transcription 

machinery (Levine et al., 2004; Wang et al., 2004). The core of PRC2 is made up of three proteins, 

SUZ12, EED and EZH2, the latter being the catalytic subunit that modifies histone H3 by 

trimethylation of Lysine 27 (H3K27me3). Once H3K27me3 has been established, PRC2 is able to 

bind to this mark via the EED subunit, which in turn activates the histone methyltransferase activity 

(HMT) of the complex. This process allows maintenance of the repressive mark and its 

transmission to daughter cells (Hansen et al., 2008; Margueron et al., 2009). Recently, EZH1, which 

has a high degree of similarity to EZH2 but a weaker HMT activity, was found to interact with 

PRC2 to form a distinct complex (PRC2-EZH1; Margueron et al., 2008; Shen et al., 2008). A key 

aspect of PcG biological function is its signal dependent dynamics allowing developmental 

switches and possibly reprogramming (Maurange et al., 2006; Pereira et al., 2010). To date, little is 

known about how signaling pathways regulate PcG composition at target genes during cell 

differentiation. 

During development, signal dependent switches in cell differentiation programs require 

global rearrangements in repression and activation of lineage specific genes.  Hence it is important 

to unravel epigenetic mechanisms that control these dynamics and their integration with signaling 

pathways. In skeletal muscle cells, transcription factor driven processes cause proliferating 



   Stojic et al. 

 4 

myoblasts to fuse into multinucleated myotubes. These require signal dependent activity of 

chromatin remodeling complexes (e.g. SWI/SNF) as well as removal of epigenetic repressors like 

PcG proteins and associated histone marks from specific regulatory regions (Caretti et al., 2004; 

Guasconi and Puri, 2009; Simone et al., 2004). The extracellular signals that regulate myogenic 

differentiation are transduced into the nucleus by mitogen-activated protein kinases (MAPKs), p38 

and extracellular signal-regulated kinase (ERK; Simone et al., 2004; Wu et al., 2000). The two 

mitogen- and stress-activated protein kinases (MSK) -1 and -2 are known as downstream targets of 

the p38 or ERK pathways (Deak et al., 1998), however it is not known whether MSK1/2 have a role 

in muscle differentiation.  

MSK1/2 function has been linked to histone H3 phosphorylation at Serine 28 (H3S28ph) or 

Serine10 (H3S10ph) (Thomson et al., 1999; Soloaga et al., 2003). Phosphorylation of histone H3 

has different biological functions. It has been shown to occur either at gene regulatory regions 

where it activates transcription in response to cytokines and mitotic stimuli, or more globally at the 

level of histone H3, where it has been suggested to mediate chromosome condensation during 

mitosis (Cheung et al., 2000; Strahl and Allis, 2000). While mitotic phosphorylation by Aurora 

kinase is a long lasting event, which occurs on the majority of histone H3, interphase 

phosphorylation by MSK1/2 kinases is a transient phenomenon that affects only a small fraction of 

histone H3 at active gene sites (Clayton and Mahadevan, 2003). According to the histone code 

theory (Jenuwein and Allis, 2001; Strahl and Allis, 2000; Turner, 2002) and the binary switch 

model (Fischle et al., 2003) phosphorylation of residues next to methylated lysines can revert their 

repressive function and allow transcriptional activation. In fact, it has been shown that during 

mitosis H3S10ph can hamper the interaction between heterochromatin protein (HP1) and tri-

methylated Lysine 9 of histone H3 (H3K9me3) and control heterochromatin formation (Chen et al., 

2008; Fischle et al., 2005; Kloc et al., 2008). Displacement of HP1 from H3K9me3 by H3S10ph is 

not restricted to mitosis but can occur also during transcriptional activation of specific target genes 
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(Vicent et al., 2006; Winter et al., 2008).  Since the characteristic Polycomb associated histone 

mark H3K27me3 is embedded in a sequence similar to Lysine 9 (-ARKS-), we were intrigued by 

the possibility that a signaling pathway controlling H3S28ph could regulate skeletal muscle 

differentiation via modulation of PRC2 chromatin binding at target genes. This has been very 

recently shown to occur during neuronal differentiation, stress response and mitogenic signaling 

(Gehani et al., 2010).  

In the present work we show that MSK1 function is essential for skeletal muscle cell differentiation 

and that H3S28ph controls PRC2 dynamics on Myogenin (MyoG) and muscle Creatine Kinase 

(mCK). Transcriptional activation of MyoG and mCK in differentiated cells is associated with 

recruitment of MSK1 and increased levels of H3S28ph at their regulatory regions, while inhibition 

of MSK1 kinase correlates with loss of H3S28ph, retention of EZH2, SUZ12 and H3K27me3 and 

failure of MyoG and mCK activation. Further, we show that H3S28ph impairs PRC2-EZH2 binding 

to its H3K27me3 docking site. A novel PRC2-EZH1 complex appears to substitute for PRC2-EZH2 

in myotubes. Interestingly, chromatin binding of EZH1, characteristic of non-proliferating cells, is 

not affected by MSK1/H3S28ph. Taken together, our studies provide the first evidence that a 

MSK1/H3S28ph signaling pathway controls skeletal muscle cell differentiation and allows a PRC2-

EZH2 to PRC2-EZH1 switch at muscle specific genes. 
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RESULTS 

 

MSK1 kinase activity is required for muscle differentiation  

C2C12 cells were used as an in vitro model of skeletal muscle differentiation. In this cellular 

system exchange of growth medium (GM) to differentiation medium (DM) induces myoblasts to 

exit the cell cycle, to express muscle-specific genes and subsequently to fuse into multi-nucleated 

myotubes (Figure 1A) (Buckingham, 1996).  We first investigated whether activation of MSK1/2 

occurs during muscle differentiation. Since MSK2 RNA levels decreased in differentiated cells 

(Figure 1D, negative control, right panel) we focused our attention on MSK1.  MSK1 can 

autophosphorylate on Serine376, a modification known as a hallmark of its active state (McCoy et 

al., 2005). When C2C12 myoblasts were induced to differentiate we detected increased level of 

phosphorylated MSK1 (Figure 1B). This post-translational modification occurred together with p38 

phosphorylation and induction of muscle markers (MyoG and mCK) as well as the cell cycle 

inhibitor p21 (Figure 1B). 

To assess the role of MSK1 kinase during muscle differentiation, we used H89, a compound which 

is known to inhibit MSK1 kinase activity (Davies et al., 2000; Thomson et al., 1999). Although 

H89 has been used at concentration as high as 20µM (Thomson et al., 1999; Vicent et al., 2006), 

lower doses (i.e. 5µM and 10µM) were shown to inhibit MSK1 kinase more specifically (Brami-

Cherrier et al., 2007). When C2C12 myoblasts were induced to differentiate in the presence of low 

doses of H89 (5µM), muscle differentiation was impaired as shown by phase contrast microscopy 

(Figure S1) and immunofluorescence for the muscle specific differentiation marker mCK (Figure 

1C). Since H89 has been shown to inhibit other signaling pathways such as PKA, p70S6K and 

RSK2 (Davies et al., 2000), we used siRNA knock down targeting MSK1 kinase to assess its 

specific involvement in muscle cell differentiation. Knock down of MSK1 by two different siRNA 

oligos caused a delay in muscle differentiation as shown by reduction in MyoG and mCK at mRNA 
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and protein levels (Figure 1D and 1E). Since MSK1 and MSK2 have a high degree of similarity and 

are functionally redundant (Deak et al., 1998), we confirmed that these siRNAs specifically 

depleted MSK1, but not MSK2 (Figure 1D). These results indicate that MSK1 kinase is necessary 

for correct timing of C2C12 skeletal muscle cell differentiation. 

 

Two PRC2 complexes, PRC2-EZH2 and PRC2-EZH1, are differentially associated with 

muscle gene regulatory regions during myogenic differentiation 

EZH2 protein levels are known to decline during skeletal muscle differentiation (Caretti et 

al., 2004). Thus, we set out to investigate PRC2 dynamics in this cellular system. In particular, we 

analyzed PRC2 core components (EZH2, SUZ12, EED) and EZH1 in the transition from myoblasts 

to myotubes. EZH2 was almost undetectable in differentiated cells, whereas SUZ12 and EED 

protein levels despite downregulation were still detectable in myotubes. Notably, EZH1 levels 

remained constant throughout different phases of differentiation (Figure 2A). A similar trend was 

observed analyzing PRC2 mRNA levels (Figure S2). Global levels of H3K27me3 followed EZH2, 

SUZ12 and EED dynamics (Figure 2A).  

Next, we analyzed PRC2 components (SUZ12, EZH2, EZH1) and H3K27me3 dynamics by 

chromatin immunoprecipitation (ChIP) at the regulatory regions of mCK and MyoG, previously 

reported to be PRC2 targets in myoblasts (Caretti et al., 2004; Juan et al., 2009; Seenundun et al., 

2010). Two different mCK regulatory regions were analyzed corresponding to the promoter located 

immediately upstream of the transcription start site (TSS) and to the enhancer located -1.2 kb from 

the TSS (Nguyen et al., 2003). EZH2 and SUZ12 were present on the mCK enhancer and promoter 

in undifferentiated myoblasts but could not be detected at these sites in differentiated myotubes 

(Figure 2B). In agreement with previous reports, displacement of PRC2 components was not 

followed by significant loss of H3K27me3 at the promoter and only the mCK enhancer showed 

some extent of H3K27me3 decrease (Caretti et al., 2004; Juan et al., 2009). EZH1 was not detected 
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on the mCK promoter or enhancer regions, neither in myoblasts nor in myotubes (including ChIP-

seq analysis; data not shown). Interestingly, PRC2 binding at MyoG promoter showed different 

dynamics. While EZH2 was displaced, ChIP levels of SUZ12 and EZH1 as well as H3K27me3 

increased (Figure 2B). These findings are in agreement with the fact that global levels of EZH1 

were not downregulated during C2C12 differentiation (Figure 2A). We concluded that while EZH2 

is lost, EZH1 and SUZ12 bound the MyoG promoter upon differentiation. 

To investigate whether EZH1 can exist in complex with other PRC2 components in our cellular 

system, we carried out size exclusion chromatography analyses from nuclear extracts of 

undifferentiated and differentiated C2C12 cells followed by immunoblot with EZH2, EZH1, SUZ12 

and EED antibodies of the eluted fractions (Figure 2C). In myoblasts the majority of all four 

proteins were present in a 700kDa complex that corresponds to the molecular weight of the PRC2 

complex (Pasini et al., 2004). When myoblasts were induced to differentiate, EZH2 levels declined 

but EZH1, SUZ12 and EED still co-eluted in the same fractions. To exclude the possibility that the 

formation of an alternative complex between EZH1, SUZ12 and EED in differentiated myotubes is 

EZH2-dependent, we depleted EZH2 from C2C12 cells cultured in DM, and reanalyzed the SUZ12, 

EZH1 and EED elution profiles. As shown in Figure 2C (right panel) EZH1, SUZ12 and EED co-

fractionated at the same 700kDa molecular weight, suggesting that these proteins form a complex in 

myotubes also in the absence of EZH2. We referred to this complex as to PRC2-EZH1. To support 

this conclusion, co-immunoprecipitation experiments were performed and showed increased 

association of SUZ12 with EZH1 after C2C12 differentiation, concomitantly with decreased 

binding to EZH2 (Figure 2D). Taken together, these results indicate that while mCK behaves as a 

classical PRC2 target where gene expression is associated with displacement of EZH2 and SUZ12, 

MyoG retains SUZ12 in complex with EZH1 following its activation during muscle differentiation. 

This shows that myotubes possess a PRC2-EZH1 complex that appears to replace PRC2-EZH2 in 

terminally differentiated cells. 
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Inhibition of MSK1 kinase prevents downregulation of PRC2 components during muscle 

differentiation 

In order to analyze the effect of MSK1 on the PRC2 complexes, EZH2, EZH1, SUZ12 and 

EED levels were analyzed after pharmacological inhibition of this kinase by H89. EZH2, SUZ12 

and EED protein levels were significantly affected by MSK1 inhibition as, their differentiation-

dependent downregulation was not observed upon H89 drug treatment, as shown by immunoblot in 

Figure 3A and by immunofluorescence for nuclear EZH2 in Figure 3B. In contrast, H89 treatment 

did not impair protein levels of EZH1 (Figure 3A). Of note, stabilization of EZH2, SUZ12 and EED 

occurred at the mRNA level (Figure 3C) as well as at the protein level. The delay of differentiation 

by H89 treatment was confirmed by lower mRNA and protein levels of mCK and MyoG (Figure 

3A and 3C). A possibility existed that the sustained PRC2-EZH2 levels could be due to general 

interference with myoblasts differentiation by H89 rather than be a direct consequence of MSK1 

inhibition. To exclude this possibility C2C12 cells were treated with LY294002 (LY), which 

inhibits the PI3K/AKT, a pathway shown to regulate muscle differentiation (Serra et al., 2007). 

Indeed, inhibition of this pathway led to failure of differentiation similar to H89 treatment as shown 

by phase contrast microscopy (Figure S3) and resulted in reduced levels of muscle markers (Figure 

3D and 3E). However, LY treatment did not result in increased mRNA and protein levels of core 

PRC2 components (Figure 3D and 3E). These results indicate that PRC2 stabilization by H89 

treatment is a specific effect of MSK1 inhibition and not an indirect consequence of impaired 

muscle differentiation. All together, these experiments suggest that MSK1 inhibition is causally 

involved in stabilization of PRC2 components. 
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MSK1 regulates PRC2-EZH2 chromatin association during muscle differentiation 

We then asked whether MSK1-dependent regulation of PRC2-EZH2 during skeletal muscle 

differentiation could reflect a modulation of its binding to chromatin. Therefore, we performed 

subcellular fractionation experiments (Figure 4A) in MSK1 depleted C2C12 cells. Cytoplasmic 

proteins were extracted in the form of a Triton-soluble fraction as shown by the presence of β-

tubulin (Figure 4B, lanes 1, 4, 7, 10), whereas chromatin bound proteins were isolated from the 

nuclear Triton-insoluble fraction (Figure 4B, lanes 2, 5, 8, 11) after DNase treatment and 

ammonium sulfate ((NH4)2SO4) extraction (Figure 4B, lanes 3, 6, 9, 12) (Llano et al., 2006). In 

myoblasts, MSK1 was present mainly in the soluble fraction (Figure 4B, lane 1) and was almost 

undetectable in insoluble (Figure 4B; lane 2) and chromatin bound fractions (Figure 4B, lane 3). As 

expected, muscle differentiation was impaired after MSK1 depletion as shown by reduced levels of 

nuclear MyoG (Figure 4B, compare lane 8 with 11). Interestingly, when cells were induced to 

differentiate, MSK1 levels markedly increased with a significant fraction found in the cell nucleus 

and associated to chromatin (Figure 4B, lanes 8 and 9). Fractionation experiments were also used to 

follow the subcellular distribution of PRC2-EZH2 components during muscle differentiation in 

MSK1 depleted cells.  As expected EZH2 and SUZ12 were present exclusively in the two nuclear 

fractions, with decreasing levels as cells differentiate (Figure 4B, lanes 2, 3, 8, 9). Interestingly, 

depletion of MSK1 brought about an enrichment of EZH2 and SUZ12 specifically in the chromatin-

bound fraction, both in undifferentiated and differentiated cells (Figure 4B, compare lane 3 with 

lane 6 and lane 9 with lane 12). Taken together these data show that during muscle differentiation 

MSK1 acts in the nucleus modulating the interaction of PRC2-EZH2 with chromatin.  
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MSK1 controls a H3K27me3/S28ph switch and PRC2-EZH2 binding to muscle specific gene 

promoters 

Since MSK1 is known to phosphorylate H3S28 in vitro and this histone mark is associated 

with gene activation (Dyson et al., 2005, Kim et al., 2008), we hypothesized that MSK1-mediated 

H3S28ph could regulate PRC2-EZH2 chromatin dissociation at muscle specific genes. To test this 

hypothesis, we performed ChIP experiments analyzing MSK1, EZH2, SUZ12 and associated 

histone marks (H3S28ph, H3K27me3, respectively) at mCK and MyoG regulatory regions As 

shown in Figure 5A-C, activation of these muscle genes was accompanied by an increase at their 

regulatory regions of H3S28ph and the other active mark, acetylated histone H3 (AcH3). 

Enrichment of H3S28ph at these regions was associated with recruitment of MSK1 kinase (Figure 

5A-C). Interestingly, in myotubes, the H3S28ph histone mark correlated with displacement of the 

PRC2-EZH2 complex but retention of H3K27me3 at the mCK and MyoG promoter regions (Figure 

5A and 5C). However, at the mCK enhancer, loss of PRC2-EZH2 occurred in parallel with 

H3S28ph enrichment and a decrease of H3K27me3 during muscle differentiation (Figure 5B). To 

validate the existence of the double mark H3K27me3/S28ph at mCK and MyoG regulatory regions, 

ChIP experiments were performed using an antibody (CMA316) capable of recognizing H3S28ph 

regardless of the methylation status of H3K27 (Figure S4A). Specificity of this antibody was shown 

by immunoblot analysis of histones prepared from nocodazole treated cells (Figure S4B). As 

expected, an increase of this double mark was observed at the mCK enhancer and MyoG promoter 

during muscle differentiation (Figure S4C). As opposed to the wild type conditions, treatment with 

H89 impaired the recruitment of MSK1 kinase and the establishment of the H3S28ph mark at the 

mCK promoter, mCK enhancer and MyoG promoter (Figure 5A-C), causing failure of activation of 

these genes (Figure 3A and 3C). These events were accompanied by retention of PRC2-EZH2 at the 

mCK and MyoG promoter regions (Figure 5A and 5C). The differences in SUZ12 and EZH2 
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binding between mCK enhancer and the two other promoters are in keeping with the levels of 

H3K27me3, in that this repressive mark increased upon H89 treatment at the mCK and MyoG 

promoters (Figure 5A and 5C) but not at the mCK enhancer (Figure 5B). All together these data 

suggest that the displacement of PRC2-EZH2 complex from the mCK and MyoG promoter, a 

functional event for muscle differentiation, is regulated by a H3K27me3/S28ph switch mechanism, 

via MSK1 recruitment to chromatin. 

 

Binding of EZH2, EED and SUZ12 but not EZH1 to the H3K27me3 mark is impaired by 

phosphorylation of H3S28  

Our data so far strongly suggest that MSK1 is necessary for muscle differentiation where it 

regulates dissociation of PRC2-EZH2 components from chromatin possibly through H3S28ph. To 

confirm that this is due to H3S28ph we first analyzed global levels of this mark in C2C12 

myoblasts cultured in GM and DM with or without H89. As shown in Figure 6A the levels of 

H3S10ph and H3S28ph declined in differentiated cells, which is in general agreement with their 

suggested roles as mitotic markers of proliferation (Goto et al., 1999; Prigent et al., 2003). 

Treatment of cells with the MSK1 inhibitor H89 caused a further decrease in global levels of 

H3S28ph and H3S10ph, whereas H3K27me3 and H3K4me3 levels remained unchanged. In light of 

the known role of MSK1 in phosphorylation of H3S10 and of the assays showing that H89 affects 

global levels of H3S10ph (Figure 6A) (Thomson et al., 1999), we asked whether H3S10ph was also 

involved in muscle gene activation. However, we did not observe any increase of this modification 

at the mCK and MyoG regulatory regions during muscle differentiation, excluding a role for 

H3S10ph in muscle gene activation (Figure S5).  

Our results indicated that MSK1 kinase is required for the dissociation of the PRC2-EZH2 complex 

from the chromatin of muscle gene regulatory regions. To address whether MSK1 mediates this 

function by phosphorylating H3S28, we first analyzed if MSK1 can phosphorylate this site in the 
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context of preexisting H3K27me3. Recombinant MSK1 kinase was incubated with a histone H3 

(residues 21-33) peptide either unmodified or carrying the K27me3 or S28ph modifications. As 

shown in Figure 6B, the H3K27me3 substrate was phosphorylated with similar kinetics as the 

unmodified peptide. Importantly, no phosphorylation of the H3S28ph substrate was observed 

indicating that this is the only residue phosphorylated by MSK1 in this peptide. To investigate 

whether H3S28ph impairs binding of PRC2-EZH2 complex to H3K27me3 we performed affinity-

purification experiments using long (residues 1-40) histone H3 tail peptides incubated with nuclear 

extracts prepared from myoblasts and myotubes. In agreement with earlier findings (Hansen et al., 

2008; Margueron et al., 2009), EZH2, SUZ12 and EED were found to be recruited to the 

H3K27me3 peptide but showed significantly lower binding to the unmodified control (Figure 6C). 

Interestingly, interaction of all three PRC2 core components with H3K27me3 was significantly 

weakened in the presence of neighboring H3S28ph. Similar observations were made for extracts 

prepared from undifferentiated myoblasts as well as from differentiated myotubes. We therefore 

infer that the ability of the PRC2-EZH2 containing complex to bind H3K27me3 and to show 

sensitivity to H3S28ph is inherent to the complex, and does not depend on differentiation. 

 Since we observed enrichment of EZH1 on MyoG regulatory regions upon differentiation occurring 

together with H3S28ph, we next asked whether EZH1 is retained on H3K27me3 even in the 

presence of the adjacent phosphorylation. As Figure 6D shows, comparable amounts of EZH1 were 

bound to H3K27me3 and H3K27me3S28ph peptides from extracts of differentiated myotubes. 

Overall, these results are in agreement with MSK1 mediated phosphorylation of H3S28 impairing 

binding of EZH2, but not EZH1 containing, PRC2 complexes to H3K27me3. 
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DISCUSSION 

 

A signal dependent H3K27/S28 methyl-phospho switch controls skeletal muscle gene 

activation by displacing PRC2-EZH2 from chromatin target sites 

During cell differentiation, the coordination of different signal-dependent pathways has to 

account for derepression and concomitant activation of lineage specific genes. In this view, the 

cross-talk between extracellular signaling and chromatin remodeling factors on gene promoters 

becomes essential for executing regulated developmental programs.  

Skeletal muscle differentiation provides an excellent cellular system to study the interface between 

these signals and chromatin. Indeed, it is already established that removal of Polycomb repressive 

complex and concomitant recruitment of SWI/SNF chromatin remodeling complex controls muscle 

gene expression (Caretti et al., 2004; Guasconi and Puri, 2009; Simone et al., 2004). To accomplish 

these regulatory processes pro-differentiation signals have to be transduced into the nucleus. p38 

MAPK, ERK and AKT signaling pathways have been showed to transmit cues that regulate 

myogenic differentiation (Serra et al., 2007; Simone et al., 2004; Wu et al., 2000). MSK1 and 

MSK2 are serine/threonine kinases known to phosphorylate histone H3 at Ser10 and Ser28 residues 

(Soloaga et al., 2003) and are known to act downstream of p38 and ERK (Deak et al., 1998). In the 

present work we set out to investigate the role of MSK1/H3S28ph pathway and PRC2 association to 

chromatin in the context of skeletal muscle cell differentiation.  

Our data show that MSK1 is recruited to muscle gene regulatory regions to phosphorylate 

H3S28 in differentiating muscle cells. This event is concomitant with displacement of PRC2-EZH2 

and activation of MyoG and mCK. Previous work established that the same genes require p38 

signal-dependent chromatin remodeling for their activation (Simone et al., 2004). Thus, our data 

help understand another important layer of epigenome regulation, the control of the developmental 

switching of skeletal muscle genes. Our findings add to the vast body of evidence in support of the 
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importance of adjacent histone residues as potential targets for co-evolved epigenetic regulatory 

mechanisms (Winter and Fischle, 2010). In particular, putative lysine “switch” sites followed by 

phospho-acceptors (-KS/T- consensus sequence) such as Lys9/Ser10 and Lys27/Ser28 in histone 

H3 were predicted to regulate the activity of silencing complexes (Fischle et al., 2003). Methylated 

lysines are bound by repressive proteins, which can be then displaced by phosphorylation of the 

adjacent serine residues. Phosphorylation of histone H3 at Ser10 was shown to inhibit methylation 

of the adjacent Lys9 by SUV39H1 (Rea et al., 2000) and subsequently to reduce HP1 binding to 

H3K9me3 (Fischle et al., 2005). Phosphorylation of Ser28 was shown to inhibit methylation at 

Lys27 (Manzur et al., 2003) and in Tetrahymena mutation of H3S28 (H3S28E) disrupted the proper 

methylation of both H3K9 and H3K27 during macronuclear development (Liu et al., 2007). 

Similarly, phosphorylation of histone H1 on Ser27 was found to prevent binding of HP1 to the 

adjacent methylated Lys26, which is an additional product of PRC2 methyl-transferase activity 

(Daujat et al., 2005; Kuzmichev et al., 2004). Notably, PRC1/chromatin dissociation was correlated 

with H3S28ph further suggesting an analogy with H3S10ph and HP1 displacement (Voncken et al., 

2005). Very recently MSK1/2 signaling has been linked to displacement of PRC2 from target genes 

via H3S28ph during neuronal differentiation and in response to stress and mitogenic signaling 

(Gehani et al., 2010). 

Our data support a role for MSK1/H3S28ph pathway in counteracting Polycomb docking to 

H3K27me3 and therefore displacing PRC2-EZH2 from chromatin. Although MSK1 has been 

shown to phosphorylate both H3S28 and H3S10 in vitro, we show that MSK1 recruitment to 

muscle gene regulatory regions associate with an increase in H3S28ph but not H3S10ph. This 

observation is in agreement with earlier findings indicating that in vivo the two marks occur 

independently from each other and act separately to induce gene expression (Dunn et al., 2005; 

Dyson et al., 2005). In keeping with our data, H3S28ph has been associated with promoter regions 
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of transcriptionally active chromatin, whereas H3S10ph did not differ between active and repressed 

chromatin regions (Sun et al., 2007).  

An interesting question concerns additional mechanism of transcriptional regulation by 

MSK1/H3S28ph pathway besides the displacement of repressive Polycomb proteins. One 

possibility is the recruitment of 14-3-3 proteins that have high affinity for this phospho mark on 

histone H3 (Macdonald et al., 2005; Winter et al., 2008). Indeed MSK1 was shown to interact with 

BRG1 ATPase, a subunit of chromatin remodeling SWI/SNF complex involved in p38-dependent 

muscle gene activation (Drobic et al., 2010; Simone et al., 2004). An additional layer of regulation 

could involve direct phosphorylation of PRC2 components by MSK1/2 kinases. PcG proteins are 

indeed broadly regulated by post-translational modifications (Niessen et al., 2010). For example, 

EZH2 has been shown to be phosphorylated by both p38 and AKT kinase, leading to enhancement 

of its repressive function and impairment of its HMT activity, respectively (Cha et al., 2005; 

Palacios et al., 2010). In addition, the PRC1 component BMI1 is phosphorylated by MAPKAP 

kinase 3pK resulting in dissociation from chromatin (Voncken et al., 2000). More work will be 

needed to elucidate whether the MSK1/2 pathway directly regulates PRC2 activity. 

 

PRC2-EZH2 and PRC2-EZH1 complexes are differentially regulated by MSK1/H3S28ph 

signaling pathway 

Unlike EZH2, EZH1 levels remain constant during C2C12 differentiation and it can be 

found in a PRC2 complex devoid of EZH2. This suggests that a specific PRC2-EZH1 complex may 

be required in non-cycling, differentiated muscle cells. Moreover, the MSK1/H3S28ph pathway 

specifically negatively regulates PRC2-EZH2 while chromatin binding of PRC2-EZH1 complex 

appears to be unaffected. Existence of two partially redundant PRC2 complexes (PRC2-EZH2 and 

PRC2-EZH1) was previously reported (Ezhkova et al., 2009; Margueron et al., 2008; Shen et al., 

2008).  While EZH2 is mostly expressed in proliferative tissues and during embryogenesis, EZH1 
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appears to substitute for EZH2 in post-mitotic cells and in adult tissues (Ezhkova et al., 2009; Ho 

and Crabtree, 2008). Although EZH1 has been reported to have weak HMT activity on H3K9 and 

H3K27 residues (Margueron et al., 2008; Shen et al., 2008), our data do not seem to favor the 

conclusion that its function relates to the maintenance of H3K27me3 on gene regulatory regions. In 

our system, although mCK enhancer behaved as a classical PRC2 target that loses PRC2-EZH2 and 

H3K27me3 upon activation, we detected constant levels of H3K27me3 during differentiation on 

both MyoG and mCK promoters. However, only MyoG promoter was targeted by PRC2-EZH1. 

This is the first evidence of EZH1 being recruited on active genes, even though a correlation 

between PcG binding to gene regulatory regions and transcriptional activity has already been 

described (Papp and Müller, 2006; Ringrose et al., 2004). Notably, recent studies have showed that 

10-20% of PcG target genes in embryonic stem (ES) cells are transcriptionally active (Boyer et al., 

2006; Lee et al., 2006).  

Co-existence of active (AcH3 and H3S28ph) and repressive mark (H3K27me3) at MyoG and mCK 

promoters is reminiscent of bivalent domains that were shown not to be restricted exclusively to ES 

cells (Mohn et al., 2008). Although our study does not fully address the role of EZH1 on transcribed 

genes in post-mitotic differentiated cells, we hypothesize that presence of PRC2 components on 

active promoters may provide the possibility off subsequent re-silencing of genes whose expression 

needs only to be transiently activated. In keeping with this hypothesis, a recent report showed the 

MyoG up-regulation during initial stages of skeletal muscle differentiation is followed by 

subsequent repression (Berghella et al., 2008). Similarly MyoG was shown to be activated in the 

early stages of neurogenic muscle atrophy and downregulated at a later phase (Moresi et al., 2010). 

The differential dynamics of EZH2 and SUZ12 at the two muscle genes are also in keeping with the 

formation of an alternative PRC2 complex which is insensitive to negative regulation by 

MSK1/H3S28ph signaling.  In fact, we show that upon differentiation, while EZH2 is lost from 

both MyoG and mCK regulatory regions, SUZ12 is retained at the MyoG promoter in combination 
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with EZH1. Of note, both genes showed enrichment of MSK1 and H3S28ph. These results are in 

agreement with our in vitro data showing that H3S28ph does not affect EZH1 binding to a 

H3K27me3 peptide, whereas EZH2 binding is clearly reduced. This supports a scenario whereby 

the MSK1/H3S28ph signaling promotes displacement of PRC2-EZH2, but allows a switch with 

PRC2-EZH1 to differentially mark genes that, although synchronously activated at early stages of 

differentiation, may receive subsequently different types of regulation. 

 In conclusion, the present works identifies novel signal-dependent, chromatin-mediated 

mechanisms of regulation of skeletal muscle cell differentiation promoting removal of PRC2-EZH2 

complex from target genes but allowing a switch with PRC2-EZH1. The present discovery of a role 

of MSK1/H3S28ph signaling in epigenetic regulation of skeletal muscle differentiation may be an 

important add to a field where novel targets are needed to increase the pool of molecular therapeutic 

targets to be used to treat muscular diseases. 
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EXPERIMENTAL PROCEDURES 

 

Cell Culture and Reagents 

C2C12 mouse myoblasts cells (ATCC) were cultured in Dulbecco Modified Eagel’s Medium 

(DMEM) supplemented with penicillin/streptomycin and 10% fetal bovine serum (Euroclone). 

Differentiation was induced when cells reached about ~80% confluency using DMEM containing 

ITS media supplement (Sigma). LY294002 was obtained from Sigma while H89 was from Alexis 

Corporation. The inhibitors were replaced freshly every 24h. 

 

RNA Isolation and Quantitative Real-Time PCR 

RNA was extracted from cells using TriReagent (Sigma) according to the manufacturer’s 

insctructions. cDNA synthesis was performed using the QuantiTect reverse transcription kit 

(Qiagen). Quantitative real-time PCR reactions were performed in triplicate using QuantiTect 

SYBR Green master mix (Qiagen) on a DNA Engine Opticon 2 machine (MJ Research) controlled 

by Opticon Monitor 2 software. C(T) values were calculating by Opticon Monitor 2 software, 

relative C(T) values were normalized to the housekeeping gene GAPDH. Fold enrichment refers to 

the enrichment relative to myoblasts values. GAPDH, MHCIIB and mCK primers were already 

described (Caretti et al., 2004). Remaining primer sequences are the following: 

MyoG-for GCAGCGCCATCCAGTACATTG 

MyoG-rev    GCAACAGACATATCCTCCACCG 

SUZ12-for GTGCCTTTGAATCCTGACCTC 

SUZ12-rev      CTTCGCGATTTCGTTTTCTTC 

EZH1-for         AGACTCAGTGCAATACCAAGCA 
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EZH1-rev AGTTTTTGCAAGACACCACCTT 

EZH2-for TGATAAAGAAACTTGCCCACCT 

EZH2-rev      CTTTGCTCCCTCTGAACAGATT 

EED-for      ATAACCAGCCATTGTTTGGAGT 

EED-rev     TGTTGCTATCATAGGTCCATGC 

MSK1-for   GCCGATGAAACTGAAAGAGC 

MSK1-rev   TGCTCATTTCCTGGGGATAC 

MSK2-for   TCACACTGCACTACGCCTTC 

MSK2-rev   GATACCCAGCTTGTGCAGGT 

 

RNA Interference 

siRNA MSK1 #1 (SI01407483), siRNA MSK1 #2 (SI01407504) as well as negative control siRNA 

(scrambled sequence not targeting mouse genome, 1027313) were purchased from Qiagen and used 

at the final concentration of 20 nM. Cells were transfected with HiPerfect (Qiagen) following the 

manufacturer’s instructions. 48h after transfection the cells were induced to differentiate and 

collected at the indicated time-points.  

 

Cell Lysis and Immunoblot  

Cells were harvested and washed twice with PBS. Cell lysis of total cell extracts was performed on 

ice in 50 mM Tris–HCl pH 8, 125 mM NaCl, 1% NP-40, 2 mM EDTA, 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and protease inhibitory cocktail (Roche) for 25 min. 

Insoluble material was pelleted by centrifugation at 16000 g for 3 min at 4°C. Histone extracts were 

prepared following Abcam protocol (www.abcam.com). Protein concentration was determined 

using the Bradford assay (Bio-Rad). The proteins were denatured, reduced, separated by SDS–

PAGE and transferred to nitrocellulose transfer membrane (PROTRAN-Whatman, 
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Schleicher&Schuell). The membranes were blocked with 5% non-fat dry milk in TBST for 60 min, 

incubated with primary antibodies overnight at 4°C, washed three times with TBST for 10 min, 

incubated with the peroxidase-conjugated secondary antibody in TBST with 2.5% non-fat dry milk 

for 60 min and washed three times with TBST for 10 min. Immunoreactive proteins were detected 

using Supersignal West Dura HRP Detection Kit (Pierce).  

For cytoplasmic and nuclear extracts preparation the cells were resuspended first in Buffer A (10 

mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA and 0.1 mM EGTA) supplemented with protease 

inhibitory cocktail (Roche), 1 mM dithiothreitol (DTT) and 1mM PMSF. After incubation on ice 

for 10 min, NP-40 was added to a final concentration of 0.5% and the samples were vortexed for 5 

s. Nuclei were pelleted at 13200 rpm for 10 s and the cytoplasmic proteins were collected. The 

pellet was then washed five times with Buffer A and resuspended in buffer C (20 mM Hepes pH 

7.9, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, protease inhibitory cocktail (Roche) 

and 1 mM PMSF). After 10 min on ice, the samples were sonicated, centrifuged at 13200 rpm for 

10 min and the nuclear proteins were transferred to a fresh vial. For immunoprecipitation studies, 

nuclear extracts were first precleared using protein A/G beads (Santa Cruz) for 30 min at 4°C and 

then immunoprecipiated with EZH2 or SUZ12 antibody for 2h at 4°C. Normal rabbit IgGs (Santa 

Cruz) were used as a negative control.  

 

Chromatin Binding Assay 

The method of Llano et al. was used (Llano et al., 2006). At the indicated times, cells were divided 

equally in 2 tubes that were lysed for 15 min on ice in cold CSK I buffer (10 mM Pipes pH 6.8, 100 

mM NaCl, 1 mM EDTA, 300 mM sucrose, 1 mM MgCl2, 1 mM DTT) supplemented with 0.5% 

(v/v) Triton X-100, protease inhibitory cocktail (Roche) and 1 mM PMSF. After centrifugation at 

500g at 4°C for 3 min, the first tube was divided in two fractions: the supernatant that contains 

Triton-soluble proteins and the pellet (Triton insoluble fraction) that contains chromatin-bound, 
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nuclear matrix-bound and insoluble proteins. Triton insoluble fraction was resuspended in RIPA 

buffer (150 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.5% DOC, 0.1% (w/v) SDS, 1% (v/v) NP-40). 

The second tube was resuspended in CSK II buffer (10 mM Pipes pH 6.8, 50 mM NaCl, 300 mM 

sucrose, 6 mM MgCl2, 1 mM DTT), treated with DNase (Promega) for 30 min followed by 

extraction with 250 mM (NH4)2SO4 for 10 min at 25 °C. The sample treated with DNase and salt 

was centrifuged at 1200g for 6 min at 4°C and the supernatant represents the DNase-released 

chromatin-associated proteins. All fractions were analyzed by immunoblotting where equal amount 

of proteins were loaded (15µg). 

 

Antibodies  

Histone H3 (1791), H3K4me3 (8580) and SUZ12 (12073) were from Abcam while EZH2 (3147), 

p38 (9228), phospho-p38Thr180/Tyr182 (9211), phosho-Ser376 MSK1 (9591) were from Cell Signaling. 

H3K27me3 (07-449), H3S28ph (07-145), H3S10ph (05-817) and Acetyl H3 (06-599) were 

purchased from Upstate. MSK1 (9392, 25417), MyoG (12732), p21 (6346), MHCIIB (2064) and 

SUZ12 (46264) were from Santa Cruz. β–tubulin (T0198) was from Sigma. mCK antibody was 

kindly provided by Hidenori Ito. 

 

Immunofluorescence  

Cells were grown on coverslips, washed in PBS, fixed in 3.7% formaldehyde/PBS (15 min, 4°C) 

and permeabilizaed in 0.2% Triton X-100/PBS (5 min, 4°C). The coverslips were then washed in 

PBS, and blocked with 3% low-fat milk/PBS for 1h at room temperature. Following overnight 

incubation with primary antibodies at 4°C, the coverslips were washed and incubated with 

secondary antibodies (Molecular Probes) for 60 minutes at 37°C, washed again and counterstained 

with DAPI (1 µg/µl in Vectashield, Vector). Pictures were captured using epifluorescence 

microscope (Leica DM6000B) using Leica Application Suite software. 
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Chromatin Immunoprecipitation (ChIP) 

ChIP was performed as previously described (Breiling and Orlando, 2006; with adaptations) using a 

crosslinking time of 10 min. Antibodies were incubated using Dynal magnetic beads (Invitrogen) 

overnight at 4°C. The day after, chromatin was added to antibody-beads complexes and incubated 

overnight at 4°C. The complexes were washed twice in Low Salt Solution, twice in High Salt 

Solution, once in LiCl, and once in TE buffer. DNA was extracted from beads by standard 

phenol/chloroform extraction, precipitated, and resuspended in 30 µl TE. To quantify the results, 

qPCR reactions were performed in triplicate (precipitated DNA samples as well as serially diluted 

input DNA) using QuantiTect SYBR Green master mix (Qiagen) on DNA Engine Opticon 2 

machine (MJ Research) controlled by Opticon Monitor 2 software. C(T) values were calculating  by 

Opticon Monitor 2 software. To calculate relative enrichment the signal from the control 

immunoprecipiation experiment (Mock) was subtracted from that observed with the antibody of 

interest. Myoblasts values (GM) were set as 1 and values from differentiated cells in DM with or 

without inhibitor display relative enrichment or reduction to those observed in GM. In case of ChIP 

with antibodies recognizing histone modifications, % of input was calculated first, and then a ratio 

of H3modified/H3total was calculated and set to 1 to myoblasts in GM. Values from DM show 

relative enrichment/reduction to those observed in GM. For CMA316 ChIP, data were presented as 

% of input. 

Primers for ChIP Real Time-PCR: 

MyoG promoter-for  CCGTCCGTCCAAGACAACCC 

MyoG promoter-rev  CCCCCCTCTAAGCTGTTGC 

mCK promoter-for  CGCCAGCTAGACTCAGCACT 

mCK promoter-rev CCCTGCGAGCAGATGAGCTT 

mCK enhancer-for  GACACCCGAGATGCCTGGTT    
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mCK enhancer-rev   GATCCACCAGGGACAGGGTT    

 

Size Exclusion Chromatography  

Size exclusion chromatography was performed using C2C12 cell nuclear extracts on a Superose 6 

PC 3.2/30 gel filtration column (GE Healthcare) on an AEKTA purifier system (GE Healthcare) in 

IP (300) buffer (50 mM Tris-HCl at pH 7.5, 300 mM NaCl, 5% glycerol, 0.2% Igepal [Sigma], 

Aprotein, Leupeptin, 100 mM PMSF, 1 mM DTT). Immuno-depletion was performed as described 

(Villa et al., 2007). Briefly, protein extracts were subjected to five serial depletions within 24h at 

4°C using the AC22 EZH2 monoclonal antibody (Bracken et al., 2003) pre-coupled to Protein-A 

beads. 

 

Histone Tail Peptides 

Histone H3 peptides were synthesized in unmodified and modified form using Fmoc (N-(9-

fluorenyl)methoxycarbonyl)-based solid-phase synthesis. Peptides used for kinase assays 

corresponded to amino acids 21-33 of H3 containing an artificial Y at the C-terminus: H3 

unmodified, ATKAARKSAPATGY; H3K27me3, ATKAARK(me3)SAPATGY, H3S28ph, 

ATKAARKS(ph)APATGY. Peptides used for pulldown experiments corresponded to amino acids 

1-40 of H3 and contained a C-terminal non-native YCK sequence with the lysine biotinylated at the 

e-amino group: 

H3 unmodified, ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHR-YCK (biotin); 

H3K27me3, ARTKQTARKSTGGKAPRKQLATKAARK(me3)SAPATGGVKKPHR-YCK 

(biotin); 

H3K27me3S28ph, ARTKQTARKSTGGKAPRKQLATKAARK(me3)S(ph)APATGGVKKPHR-

YCK (biotin). 
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In vitro Peptide Kinase Assay 

Recombinant MSK1 (Millipore) was used to phosphorylate H3 histone tail peptides (21-33). Kinase 

assays were performed according to the manufacture’s protocol incubating 15 ng of MSK1 with 1 

µg of peptide for 30 min at 30˚C. The reaction was stopped by adding 0.5% phosphoric acid, 

spotted on P81 paper, washed three times with 0.5% phosphoric acid and once with acetone. Filter 

circles were air-dried and counted in a scintillation counter. 

 

Peptide Affinity Purification 

For preparation of nuclear extracts, cells were lysed in buffer A (10 mM Hepes-KOH pH 7.8, 60 

mM KCl, 1 mM EDTA, 1 mM DTT, protease inhibitor cocktail (Roche), 0.075 % NP-40). After 

incubation on ice for 15 min nuclei were pelleted and washed once with Buffer A without NP-40. 

The nuclear pellet was suspended in Buffer B (20 mM Tris pH 8.0, 300 mM NaCl, 1.5 mM MgCl2, 

0.2 mM EDTA, 25 % glycerol, 1 mM DTT, protease inhibitor cocktail, PhosSTOP (Roche)) and 

sonicated on ice in a Branson Sonifier (duty cycle 20 %, output 7.5). Extract was left on ice for 30 

min before centrifugation for 15 min at 16,000 g. The supernatant was supplemented with 0.1% 

Triton X-100 and used for pulldown experiments. 

For H3 peptide pulldown experiments, 10 µg of biotinylated histone peptides (1-40) were coupled 

to 50 µl streptavidin-coated paramagnetic beads in PBS/BSA (1 mg/ml) for 4 h at 4 ˚C. Beads were 

washed three times with PD150 (10 mM Tris pH 7.5, 150 mM NaCl, 0.1 % Triton X-100, 20 % 

glycerol, 1 mM DTT, protease inhibitor cocktail, PhosSTOP) to remove unbound peptides. Peptide-

bound beads were incubated with nuclear extract for 2 h and washed four times with PD300. Bound 

proteins were eluted with SDS sample buffer, separated by SDS-PAGE and analyzed by 

immunoblotting. 

 

Generation of H3S28ph specific antibody 
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Mice were immunized with synthetic peptide KQLATKAAR(me3-K)(phospho-

S)APATGGVKC for CMA316 antibody and hybridomas were screened by ELISA using peptides 

listed in Kimura et al., 2008. For ELISA, microtiter plates were coated with the individual peptides 

conjugated with bovine serum albumin and incubated with 3-fold dilutions of each antibody. After 

washing with PBS, plates were incubated with peroxidase-conjugated anti-mouse IgG and washed 

with PBS. The colorimetric signal of tetramethylbenzidine was detected by measuring the 

absorbance at 405 nm using a plate reader. CMA316 was isotyped as IgG2a-k using a kit (Serotec; 

MMT-1). IgG was purified using a Protein A column (GE Healthcare). For immunoblotting, HeLa 

cells were transfected with H3-GFP (Kimura and Cook, 2001) and the amino acid substituted 

mutants using Lipofectamine2000 (Invitrogen) according to the manufacturer’s instruction. After 2 

days, 100 ng/ml nocodazole was added and further incubated for 6 hr. After washing three times 

with PBS, cells were lysed using 2x SDS-gel loading buffer, and total protein was separated on 

13% SDS-polyacryamide gels, transferred on to PVDF membranes, and blotted with CMA316 

(1:10 dilution of hybridomas culture supernatant), as previously described (Kimura et al., 2008). 
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FIGURE LEGENDS 

 

Figure 1. MSK1 activity is required for muscle differentiation. 

A) Graphical representation of dynamics of C2C12 muscle cell line differentiation. Proliferative 

myoblasts at 80% confluency were induced to differentiate for 24-48h by replacing the growth 

(GM) with differentiation medium (DM).  

B) Immunoblot of MSK1 and its active form (phosphorylated at Serine 376, Phospho-MSK1) was 

performed on whole-cell C2C12 extracts using specific antibodies. C2C12 differentiation was 

confirmed using antibodies against muscle cell markers (MyoG and mCK) and p38 (total and 

phosphorylated and activated form). p21 was used as a marker of cell cycle arrest. β-tubulin was 

used as a loading control. prol, proliferative myoblasts; conf, confluent myoblasts (GM); 24h and 

48h indicate the time after GM to DM switch. Double bands of MyoG and p38 in differentiated 

cells represents their phoshorylated forms. 

C) Expression of mCK was assayed by immunofluorescence in C2C12 cells cultured in GM and left 

to differentiate at 48h after the switch to DM without and with MSK1 inhibitor (5µM H89). DAPI 

staining visualizes DNA. 

D) C2C12 myoblasts growing in GM were transfected with non-targeting siRNA (Neg ctrl) or two 

different siRNAs against MSK1. 48h post-transfection cells were placed in differentiation medium 

for additional 48h before analysis. Expression levels of MSK1, MSK2, MyoG and mCK were 

analyzed using Real Time-PCR. Data represent the average from three independent experiments 

and error bars represent standard deviation. Fold enrichment is calculated in comparison to negative 

control siRNA in GM. 
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E) Immunoblot of MSK1, MyoG and mCK was performed after knock down of MSK1 using the 

same siRNAs as in D. β-tubulin was used as loading control. Whole cell extracts were used for 

analysis.  

 

Figure 2.  PRC2 switches composition at muscle regulatory regions during differentiation. 

A) Immunoblot of EZH2, EZH1, SUZ12, EED, H3K27me3 and MHCIIB from whole cell extracts 

of C2C12 cells cultured as myoblasts in GM or as myotubes in DM. β-tubulin was used as a loading 

control. Asterisk indicates EZH1 unspecific band. Numbers represent EED isoforms. 

B) ChIP analysis of chromatin extracted from C2C12 cells cultured in GM or in DM for 48h with 

SUZ12, EZH2, H3K27me3 and EZH1 antibodies. The precipitated DNA fragments were amplified 

using primers designed within mCK promoter (i), mCK enhancer (ii) and MyoG promoter (iii) as 

shown in the schematic representation in the top panel. ChIP enrichments are presented as relative 

enrichment to myoblasts (GM). Levels of H3K27me3 are normalized to histone H3 density. Data 

are shown as mean of three independent experiments +/–SD (standard deviation). 

C) Size exclusion chromatography of nuclear extracts prepared from C2C12 myoblasts cultured in 

GM (left panel) or DM 72h after induction of differentiation (middle panel) showing co-elution of 

EZH2, SUZ12, EED and EZH1 in high molecular weight fractions. The indicated fractions were 

analyzed by immunoblot. Right panel: EZH2 was depleted from C2C12 cells cultured in DM (72h 

after induction of differentiation) and nuclear extracts were analyzed as described previously 

showing formation of SUZ12, EED and EZH1 complex in differentiated myotubes independently of 

EZH2. 

D) Immunoprecipitation (IP) of EZH2 and SUZ12 was performed from nuclear extracts (NE) of 

C2C12 myoblasts cultured in GM or DM (48h after differentiation induction). Immunoblot analysis 

showed co-immunoprecipitation of SUZ12 with all other PRC components in GM, while 

interaction with EZH2 in DM is lost. EZH2 bound efficiently only to SUZ12 in myoblast, and this 
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interaction was lost in DM. Co-immunoprecipitation of EZH2 with EED could not be properly 

assessed due to unspecific binding of IgG to EED antibody. Normal rabbit IgG antibody was used 

as a negative control. 

 

Figure 3. Inhibition of MSK1 by H89 affects PRC2 levels, which is not due to the block of 

muscle differentiation. 

A) Immunoblot of EZH2, EZH1, SUZ12, EED, MyoG and mCK from whole cell extracts of 

C2C12 myoblasts cultured in GM or DM (48h from induction of differentiation) without and with 

the MSK1 inhibitor (5 µM H89). β-tubulin was used as a loading control.  

B) Immunofluorescence for EZH2 was performed in C2C12 myoblasts cultured in GM or DM (48h 

from induction of differentiation) without and with the MSK1 inhibitor (5 µM H89). The inhibitor 

was replaced freshly every 24h. DAPI staining visualizes DNA. 

C) Expression levels of EZH2, SUZ12, EED, MyoG and mCK were measured by Real Time-PCR 

in C2C12 myoblasts cultured in GM or DM (48h from induction of differentiation) in the presence 

or in the absence of MSK1 inhibitor (5 µM H89). Transcription levels were normalized to GAPDH 

expression and represent the mean of three independent experiments, error bars represent standard 

deviation. Fold enrichment is calculated in comparison to myoblasts in GM. 

D) Expression level of EZH2, EED, SUZ12 and muscle marker genes (MyoG and mCK) cultured in 

GM or DM without and with the PI3K/AKT inhibitor (10µm LY294002) were measured by Real 

Time-PCR in the same conditions as described in C.  

E) Immunoblot of EZH2, EED and MyoG from whole cell extracts of C2C12 myoblasts cultured in 

GM or DM for 48h in the presence or in the absence of PI3K/AKT inhibitor (10µM LY294002). β-

tubulin was used as a loading control. 
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Figure 4. Depletion of MSK1 leads to PRC2 chromatin retention. 

A) Schematic representation of different phases of the chromatin-binding assay. Three main 

fractions were recovered, Triton-soluble proteins (cytoplasmic), Triton-insoluble proteins (nuclear 

not chromatin bound) and chromatin bound.  

B) C2C12 myoblasts were transfected in GM with non-targeting siRNA (Neg ctrl) or siRNA 

against MSK1. 48h post-transfection cells were cultured in GM (left panel) or DM (right panel) for 

additional 48h before harvesting. Enrichment of MSK1, EZH2 and SUZ12 in the different fractions 

was tested by immunoblot. Histone H3 served as control for chromatin bound proteins, β-tubulin 

served as marker for Triton-soluble proteins and MyoG for Triton-insoluble proteins and 

differentiation induction. 

 

Figure 5. MSK1-dependent H3S28 phosphorylation affects PRC2 dynamics at muscle 

regulatory regions. 

ChIP analysis was performed on chromatin extracted from C2C12 cultured in GM or DM 48h from 

the induction of differentiation without and with MSK1 inhibitor (5µM H89) using EZH2, SUZ12, 

H3K27me3, H3S28ph, MSK1 and acetyl H3 antibodies. The precipitated DNA fragments were 

subjected to Real Time-PCR analysis with the primers amplifying mCK promoter (A), mCK 

enhancer (B) and MyoG promoter (C). Levels of H3K27me3, H3S28ph and AcH3 are normalized 

to histone H3 density. The values represent the mean of three independent experiments. Error bars 

represent standard deviations. 

 

Figure 6. Binding of EZH2, SUZ12 and EED, but not EZH1 is affected by MSK1-mediated 

H3S28ph. 

A) Immunoblot of different histone H3 modifications in C2C12 cultured in GM or DM 48h from 

induction of differentiation without or with H89 (5µM).  
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B) Recombinant MSK1 was incubated with unmodified histone H3 peptide, H3K27me3 and 

H3S28ph and kinase assay was performed. 

C) Nuclear extracts from C2C12 cultured in GM or in DM 48h from induction of differentiation 

were incubated with peptides representing either unmodified H3, or H3 trimethylated at Lysine 27 

(H3K27me3) or peptide that is both trimethylated at Lysine 27 and phosphorylated at Serine 28 

(H3K27me3S28p). Binding of EZH2, SUZ12, EZH1 and EED was tested by immunoblot. 

D) Nuclear extracts from C2C12 cultured in DM 48h from the induction of differentiation were  

incubated with the same peptides as in C and the binding of EZH2 and EZH1 was tested by  

immunoblot. 
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Inventory of supplemental information     

 

Figure  S1.  This  figure  supports  the  evidence  that  MSK1  regulates  muscle  differentiation 

(figure 1) by showing phase contrast microscopy of cells with impaired  differentiation potential 

upon treatment with an MSK1 inhibitor (H89).    

  

Figure S2. This figure provides RNA levels of Polycomb proteins during muscle  differentiation in 

support of figure 2 where protein levels are shown.  

    

Figure S3. This figure supports figure 3 by showing the phase contrast microscopy of  cells treated 

with PI3K/AKT inhibitor (LY294002) whose Polycomb protein levels  are shown in figure 3. 

     

Figure S5. This figure provides evidence additional to figure 5 that H3S28ph coexists  with 

H3K27me3 on muscle specific genes with the use of an antibody (CMA316)  validated to bind the 

double mark.      

 

Figure S6.  This figures shows the levels on muscle genes upon H89 of H3S10ph  whose global 

levels during muscle differentiation are shown in figure 6.      

 

Experimental procedures   

Real time qPCR and ChIP primers sequences are detailed in this section.   We have been very 

detailed about experimental procedures in the main text. However  we can transfer detailed material 

and methods into supplemental information at a  further stage in order to shorten the main text. 
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Supplemental figure legends  

 

Figure S1. Inhibition of MSK1 kinase by H89 blocks muscle differentiation.   Proliferative 

myoblasts were induced to differentiate for 48h by replacing the GM with DM in the  presence or in 

the absence of MSK1 inhibitor (5 and 10µM H89). Effect of H89 treatment on  muscle 

differentiation was evaluated by phase contrast microscopy.     

 

Figure S2.  Differential expression of PcG proteins during muscle differentiation.  Expression 

levels of EZH2, SUZ12, EZH1, EED and MHCIIB was measured by Real Time PCR in  C2C12 

myoblasts grown in GM or DM 24h, 48h and 72hr after induction of differentiation. The  

transcription  levels  were  normalized  to  GAPDH  expression  and  represent  the  mean  of  three  

independent  experiments  +/-SD  (standard  deviation).  prol,  proliferative  myoblasts  in  growth  

medium (GM); conf, confluent myoblasts in growth medium (GM); DM, differentiation medium. 

  

Figure S3. Inhibition of PI3K/AKT pathway by LY blocks muscle differentiation.   

Proliferative myoblasts were induced to differentiate for 48h by replacing the GM with DM in the  

presence or in the absence of PI3K/AKT inhibitor (10µM LY294002). Effect of LY treatment on  

muscle differentiation was evaluated by phase contrast microscopy.     

 

Figure  S5.  Characterization  of  CMA316  mouse  monoclonal  antibody  directed  against  

phosphorylated histone H3 at Serine 28 (H3S28ph).  A) Specificity of mAb was evaluated by 

ELISA. Microtiter plates were coated with the indicatedpeptides  and  incubated  with  3-fold  

dilutions  of  each  mAb  (starting  from  1:300  dilution  of  a  hybridoma culture supernatant). 

CMA316 reacts with H3s28phh regardless of the modification  status of H3K27.  B) HeLa cells 

were left untransfected (lanes 1 and 2) or transfected with H3-GFP (lane 3) and its  
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phosphorylation-site mutants (lanes 4-7), and treated with nocodazole to enrich for mitotic 

cells(lanes 2-7). Whole cell proteins were separated on 13% SDS-polyacryamide gels, transferred 

on to  PVDF membranes and blotted with CMA316 antibody that detect single bands at the size of 

histone  H3 (lane 1). Signal intensity is increased in nocodazole-treated, M-phase-enriched, cell 

population  (lane 2). A mutant H3-GFP, which harbors S28A substitution, was not detected by these 

antibodies  (lane 7).  C) ChIP analysis was performed on chromatin extracted from C2C12 cultured 

in GM or DM for  24h after induction of differentiation using CMA316 antibody. The precipitated 

DNA fragments  were subjected to Real Time-PCR analysis with the primers amplifying mCK 

enhancer and MyoG  promoter. ChIP enrichment is normalized to histone H3 density. The values 

represent the mean +/SD (standard deviation) of two independent experiments.     

 

Figure  S6.  Levels  of  H3S10ph  are  not  enriched  on  mCK  and  MyoG  during  muscle  

differentiation.  ChIP analysis of mCK enhancer (i), mCK promoter (ii) and MyoG promoter (iii) 

was performed on  chromatin extracted from C2C12 myoblasts cultured in GM and DM for 48hr 

after induction of  differentiation using H3S10ph antibody. Levels of H3S10ph are normalized to 

histone H3 density.  The precipitated DNA fragments were subjected to Real Time-PCR analysis. 

The values represent  the mean +/-SD (standard deviation) of three independent experiments. 
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Experimental procedures     

 

Primers for Real Time-PCR:   

 

MyoG-for  GCAGCGCCATCCAGTACATTG   

MyoG-rev    GCAACAGACATATCCTCCACCG   

SUZ12-for  GTGCCTTTGAATCCTGACCTC   

SUZ12-revCTTCGCGATTTCGTTTTCTTC   

EZH1-for...AGACTCAGTGCAATACCAAGCA   

EZH1-rev  AGTTTTTGCAAGACACCACCTT   

EZH2-for  TGATAAAGAAACTTGCCCACCT   

EZH2-rev...CTTTGCTCCCTCTGAACAGATT   

EED-for      ATAACCAGCCATTGTTTGGAGT   

EED-rev     TGTTGCTATCATAGGTCCATGC   

MSK1-for   GCCGATGAAACTGAAAGAGC   

MSK1-rev   TGCTCATTTCCTGGGGATAC   

MSK2-for   TCACACTGCACTACGCCTTC   

MSK2-rev   GATACCCAGCTTGTGCAGGT     
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Primers for ChIP Real Time-PCR: 

 

MyoG promoter-for  CCGTCCGTCCAAGACAACCC   

MyoG promoter-rev  CCCCCCTCTAAGCTGTTGC   

mCK promoter-for  CGCCAGCTAGACTCAGCACT  ù 

mCK promoter-rev CCCTGCGAGCAGATGAGCTT   

mCK enhancer-for  GACACCCGAGATGCCTGGTT      

mCK enhancer-rev   GATCCACCAGGGACAGGGTT 
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SUPPLEMENTAL INFORMATION     

 

Figure S1 
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Figure S2 
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Figure S3 
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Figure S5 
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Figure S6 

 

 

 


	Prezioso XXIII Ciclo
	Stojic et al Manuscript 12.11 dev cell



