
 
 

UNIVERSITY OF NAPOLI FEDERICO II 

Dipartimento di Biologia e Patologia Cellulare e 

Molecolare “L. Califano” 

 

Doctorate School in Molecular Medicine 

 

Doctorate Program in 

Genetics and Molecular Medicine 

Coordinator: Prof. Lucio Nitsch 

Tutor: Prof. Francesco Salvatore 

Co-tutor: Prof.ssa Giulia Frisso 

XXIII Cycle 

 

 

Molecular Basis of Cardiac Arrhythmias: 

 Genetics of Natural Variants and 

Electrophysiological Investigation  

of Mutant Proteins 

 

Dott. Nicola Detta 
 

 

 

Napoli 2010



 
 

UNIVERSITY OF NAPOLI FEDERICO II 

 

Doctorate School in Molecular Medicine 

 

Doctorate Program in 

Genetics and Molecular Medicine 

XXIII Cycle 

 

Thesis carried out at 

 

CEINGE-Biotecnologie Avanzate 

and 

Dipartimento di Biochimica e Biotecnologie Mediche  
 

 

Molecular Basis of Cardiac Arrhythmias: 

Genetics of Natural Variants and 

Electrophysiological Investigation  

of Mutant Proteins 
 

 

 

  
 

Napoli 2010 



 
 

 
 
 

 

 

 

 

 

 

 

To my parents  

who supported my scientific inquiry 
 

 

 

 

 

 



1 
 

 
 
 
 
 
 
 
 
 

Molecular Basis of Cardiac Arrhythmias: 

Genetics of Natural Variants and 

Electrophysiological Investigation 

 of Mutant Proteins 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2 
 

TABLE OF CONTENTS 
 
ABSTRACT              Page        4 
 
CHAPTER 1 – BACKGROUND               5 
1.1   Inherited arrhythmogenic disorders             5 
1.2    Cardiac electrophysiology                5 
1.3 Long QT syndrome               10 
1.4 Brugada syndrome              13 
1.5 Protein related to long QT syndrome and Brugada Syndrome        15 

1.5.1   Cardiac sodium channel            15 
1.5.2   Potassium channels             17 

1.5.2.1 HERG:  rapid rectifier delayed potassium channel           18 
1.5.2.2 KCNQ1: slow rectifier delayed potassium channel           19 
1.5.3 Beta subunit of potassium channels: MiRP and MinK          21  
 

CHAPTER 2 – TECHNICAL BACKGROUND           22 
2.1 Why the patch clamp?             22 
2.1.1 Basic information                          22  
2.1.2 The patch clamp technique             23 
2.1.3 Whole-cell patch clamp             25 
2.1.4 Fabrication of patch pipettes             27 
2.1.5 Patch clamp protocols              27 

 
CHAPTER 3 - AIM OF THE STUDY            29 
 
CHAPTER 4 - MATERIALS AND METHODS            30 
4.1 Patients and control population            30 
4.2 Genomic DNA extraction and PCR                                                                                30                    30 
4.3 Mutation screening: dHPLC and DNA sequencing                34 
4.4 RNA extraction               34 
4.5 Reverse transcriptase-PCR              34 
4.6 Minigene: construction and expression           36 
4.7 Site-directed mutagenesis             37 
4.8 Cell cultures and heterologous expression                 39 
4.9 Immunofluorescence                   39 
4.10 Electrophysiology                  40 
4.11 Data analysis                 41 
 
CHAPTER 5 – RESULTS               42 
5.1 Genetic analysis                 42 
5.2 Splicing analysis in one patient carrying the mutation SCN5A c.G3964T       45 
5.3 Immunofluorescence studies             46 
5.4 Functional characterization of mutant channels           48 

5.4.1 Biophysical properties of mutant hH1-N1472del          48 



 

3 
 

5.4.2 Electrophysiological analysis of digenic heterozygosity in KCNQ1                       
and KCNH2 genes             53 

5.4.2.1 Biophysical properties of mutant HERG-p.C108Y         53 
5.4.2.2 Biophysical properties of mutant KCNQ1-p.R583H        56 

 
CHAPTER 6 - DISCUSSION              60 
6.1 Gain-of-function of mutant hH1-p.ΔN1472              60 
6.2 Digenic heterozygosity in KCNH2 and KCNQ1 genes          61 
 
ABBREVIATIONS              63 
 
ACKNOWLEDGEMENTS                            66
        
REFERENCES                67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

4 
 

ABSTRACT 

 

Channelopathies are diseases caused by deranged functioning of ion 

channel subunits or the proteins that regulate them. Long QT and Brugada 

syndrome are included in this group. In particular, long QT syndrome (LQTS) 

is a familial autosomal dominant disease characterized by prolongation of the 

QT interval on the surface ECG, syncope, torsade de pointes and sudden 

cardiac death in young patients. Each type of heritable LQTS (LQTS 1-12) is 

linked to mutations in a specific gene. Mutations occur more frequently in the 

cardiac ion channel coding genes (SCN5A, KCNH2,KCNQ1) and ancillary β-

subunits (KCNE1 and KCNE2). Differently, BrS is an inherited cardiac disease 

characterized by ST segment elevation in the right precordial leads (V1 to V3), 

susceptibility to ventricular tachyarrhythmia and sudden cardiac death, 

typically during rest or sleep. BrS is inherited as an autosomal dominant trait 

and its prevalence in Caucasians is 5/1000. The disorder is linked to mutations 

in the SCN5A gene. Our project was designed to functionally characterize the 

novel mutations found in genes related to LQTS and BrS to better understand 

the pathogenesis of pathological phenotypes . 

To this aim, we firs amplified by PCR all coding exons, 5‘ and 3‘ UTR of the 

SCN5A, KCNQ1, KCNH2, KCNE1 and KCNE2 genes and analyzed them by 

dHPLC and automatic sequencing. The mutants were generated by 

QuickChange site-directed mutagenesis. Mutants were transiently transfected 

in mammalian cells for in vitro analysis.  

We characterized the LQT3 associated p.ΔN1472 mutation that we found in 

SCN5A gene.  The electrophysiological studies demonstrated that the hH1 

mutation had a shift in the voltage-dependence of inactivation, a positive shift 

in the voltage dependence of activation and a slower recovery from 

inactivation compared to WT channel. Moreover, the persistent current levels 

were much higher in SCN5A-p.ΔN1472 than in the WT channel. 

We also studied mutations KCNH2-p.C108Y and KCNQ1-p.R583H. 

Interestingly, only subjects carrying both mutations manifested severe LQTS. 

The biophysical studies showed that in the homozygous condition, KCNH2-

p.C108Y, led to a non-functional KCNH2 channel, whereas, in the 

heterozygous condition, mutant KCNH2 had a significantly reduced current 

density and a negative shift in the voltage dependence of activation compared 

to the WT. Furthermore, mutant KCNQ1-p.R583H had a significantly reduced 

tail current density compared to the WT channel, but no significant changes in 

activating current density and in voltage-dependence of activation. In 

conclusion, we demonstrate that the SCN5A-p.ΔN1472 and KCNH2-p.C108Y 

mutants exhibit characteristic biophysical properties causing LQTS; whereas 

KCNQ1-p.R583H, in combination with KCNE1-WT, does not exhibit striking 

biophysical defects, but in combination with mutant KCNH2 it results in a 

more severe phenotype. Our results allow to better understand the pathogenesis 

of LQTS phenotype and to increase the knowledge of ion channel behavior in 

the pathological conditions. 

http://en.wikipedia.org/wiki/Ion_channel
http://en.wikipedia.org/wiki/Ion_channel
http://en.wikipedia.org/wiki/Proteins
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Chapter 1  

 

BACKGROUND 

 

 

1.1 Inherited Arrhythmogenic Disorders 

 

The term ―inherited arrhythmogenic disorders‖ identifies a group of genetically 

determined diseases characterized by the presence of a vulnerable substrate that 

may lead to the onset of malignant ventricular tachyarrhythmia and sudden 

death in a structurally normal heart [Priori et al. 2003]. The arrhythmogenic 

disorders are the major cause of mortality and morbidity in developed nations. 

Inherited cardiac arrhythmias generally result from abnormalities in four 

classes of proteins [Antzelevitch 2003]: 

1. Ion channel protein abnormalities, which cause arrhythmias due to a defect 

in transport of ions, like sodium and potassium across the cell membrane; 

2. Abnormalities in cell-to-cell junctional proteins causing arrhythmogenic 

right ventricular cardiomyopathy/dysplasia (ARVC/D); (the complete list of 

abbreviations is on pages 63-65); 

3. Contractile sarcomere protein abnormalities causing hypertrophic 

cardiomyopathy (HCM); 

4. Cytoskeletal proteins abnormalities triggering Familial Dilated 

Cardiomyopathy (FDCM) [Vohra 2007].  

Most, but not all of these disorders are caused by mutations in genes encoding 

cardiac ion channel proteins [Wolf and Berul 2008].  

In recent years, the discovery of pathogenic mutations in inherited arrhythmia 

syndromes has provided novel insights for the understanding and treatment of 

diseases predisposing to sudden cardiac death (SCD). Among family members 

carrying an identical mutation in a single gene, remarkable phenotypic 

variability and expressivity may be observed, suggesting both environmental 

and genetic modifiers [Priori 2004, Brink et al. 2005]. 

 

1.2 Cardiac Electrophysiology 

 

In order to ensure appropriate coupling between cardiac excitation and the 

subsequent contraction of the myocardium, initiation and propagation of the 

electrical stimulation have to be accurately timed and have to follow a specific 

pathway. The normal cardiac electrical activity starts by the spontaneous 

excitation of ―pacemaker‖ cells in the sinoatrial node (SAN) in the right 
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atrium. By traveling through intercellular gap junctions, the excitation wave 

depolarizes adjacent atrial myocytes, ultimately resulting in excitation of the 

atria. Next, the excitation wave propagates via the atrioventricular node (AVN) 

and the Purkinje fibers to the ventricles, where ventricular myocytes are 

depolarized, resulting in excitation of the ventricles. On the surface 

electrocardiogram, atrial and ventricular excitation are represented by the P 

wave and the QRS complex (fig. 1 A and B), respectively, depolarization of 

each atrial or ventricular myocyte is represented by the initial action potential 

upstroke, where the negative resting membrane potential (approximately -

85mV) depolarizes to positive voltages. Afterwards, restitution of the resting 

membrane potential results in atrial and ventricular repolarization [Amin et al. 

2010].  

The normal electrophysiologic behavior of the heart is determined by ordered 

propagation of excitatory stimuli resulting in rapid depolarization and slow 

repolarization, generating action potentials in individual myocytes [Roden et 

al. 2002]. These action potentials initiate and coordinate contraction, making 

possible the function of the heart as a pump [Fozzard and Haber 1991]. The 

cardiac action potential consists in 5 phases (fig. 1 C): 

 Phase 0 is the phase of rapid depolarization. The membrane potential 

shifts into positive voltage range. This phase is central to rapid propagation of 

the cardiac impulse. This phase is initiated by the rapid opening (activation) 

of voltage-gated sodium channels. 

 Phase 1 is a phase of rapid repolarization. This phase sets the potential 

for the next phase of the action potential. Phase 1 of the cardiac action 

potential occurs immediately after the peak of depolarization and is 

recognized as a partial repolarization of the membrane. This small 

repolarizing effect is due to the closure (inactivation) of cardiac sodium 

channels, and activation of transient outward potassium current (Ikto). 

 Phase 2, a plateau phase, is the longest phase. The relative long duration 

of this phase is unique to ventricular and Purkinje fiber myocytes. The 

plateau is generated primarily by slowly decreasing inward calcium currents 

through L-type calcium channels and gradually increasing out- ward current 

through several types of potassium channels. The total amount of current 

during the plateau phase of the cardiac action potential is small. As a 

consequence, relatively small changes in ion current during this phase can 

have a major impact on action potential duration. At this point in the cardiac 

cycle the ECG has returned to baseline 

 Phase 3 is the phase of rapid repolarization that restores the membrane 

potential to its resting value. This effect is mediated by outward potassium 

currents. There are two main repolarizing potassium currents, IKr and IKs that 

sum to terminate the plateau phase and initiate final repolarization. IKr and IKs 

are the rapidly and slowly activating delayed rectifier potassium current 

respectively. The repolarization phase correlates with T-wave on surface 

ECG. 
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 Phase 4, or the resting potential, is the final phase of action potential and 

is stable at ≈-90 mV in normal working myocardial cells. This phase 

represents ventricular relaxation or diastole and is indicated on the ECG as a 

return to baseline [Keating and Sanguinetti 2001]. 

The membrane potential at the onset of phase 4 is more depolarized (-50 to 

 -65 mV), undergoes slow diastolic depolarization, and gradually merges into 

phase 0 [Grant 2009]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Cardiac electrical activities. A, Schematic representation of the electrical 

conduction system correlated with electrocardiogram (ECG). B, Relationship between 

ECG and action potential (AP) of myocytes from different cardiac regions. C, 

Schematic representation of cardiac action potential phases. 

 (APD = action potential duration). 
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Action potential configuration and durations vary in specific regions (e.g., 

atrium versus ventricle) as well as in specific areas within those regions. 

Epicardial cells in the ventricle demonstrate a prominent phase 1 notch, which 

is much less prominent in the endocardium [Antzelevitch 2000]. Purkinje and 

midmyocardial cells display a phase 1 notch and action potentials that are 

much longer than those in epicardium. Such physiologic heterogeneities likely 

reflect variations in expression or function of the repertoire of ion channels and 

other proteins that constitute cardiac ion currents [Roden et al. 2002]. 

Therefore, defects in ion channel currents can distort the action potential 

creating the substrate for the development of cardiac arrhythmias. 

The cardiac ion channels are proteins and glycoproteins forming 

transmembrane pores that permit the flow of ions along the electrochemical 

gradient that exists across the plasma membrane [Antzelevitch 2003]. These 

proteins generally consist in a primary pore forming α-subunit and an 

accessory β-subunit.  

The cardiac ion channels have two fundamental properties: 

1. Ion permeation, and 

2. Gating [Langer 1997]. 

1. Ion permeation describes the movement through the open channel; in 

particular, the selective permeability of ion channels to specific ions is a basis 

of classification of ion channels (e.g. Na
+
, K

+
 channels). Ion channels do not 

function as simple fluid-filled pores, but provide multiple binding sites for ions 

as they traverse the membrane. Ions become dehydrated as they cross the 

membrane, as ion-binding site interaction is favored over ion–water 

interaction. 

The equivalent circuit model of an ion channel is that of a resistor. Simple 

resistors have a linear relationship between ΔV and current I that is  

I=ΔV/R=ΔVg (Ohm‘s Law); where I is the current magnitude, ΔV is the 

electrochemical potential, R is the electrical resistance, and g is the 

conductance that measures how easily electricity flows along a certain path 

through an electrical element. Actually, most ion channels have a nonlinear 

current-voltage relationship, indeed, for the same absolute value of ΔV, the 

magnitude of the current depends on the direction of ion movement into or out 

of the cells. 

2. Gating is the mechanism of opening and closing of ion channels. Ion 

channels are sub-classified by their mechanism of gating: voltage-dependent, 

ligand-dependent and mechano-sensitive gating.   

Voltage-dependent gating is the commonest mechanism of gating observed in 

ion channels. Voltage-gated ion channels change their conductance in response 

to variations in membrane potential; a majority of ion channels opens in 

response to membrane depolarization.  

Ligand-dependent gating is the second major gating mechanism of cardiac 

ion channels. These channels open or close depending on binding of ligands to 

the channel. The mechano-sensitive (or stretch-activated) channels can 

http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Electrical_element
http://en.wikipedia.org/wiki/Ligand_(biochemistry)
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trasduce a physical input, such as stretch, into an electric signal through a 

change in channel conductance [Grant 2009].  

A channel may have three several different states (corresponding to 

different conformations of the protein): 

- Close state, during rest potential; 

- Open state, triggered by membrane depolarization; and  

- Inactivated state. 

Inactivation is a non-conducting state of channels during depolarization. Two 

major types of inactivation are described: N-type inactivation (known as ―ball 

and chain) that is dependent on intracellular N-terminal inactivation gate that 

obstruct the inner pore, and C-type inactivation involving a rearrangement of 

residues in or near the pore; apparently this type of inactivation closes a gate at 

the ―extracellular‖ end of the pore (fig. 2). Thus, despite its name, C-type 

inactivation is not especially dependent on the C-terminus of the channel. The 

N-type inactivation is responsible of fast inactivation, whereas C-type is linked 

to slow inactivation [Roden et al. 2002; Hille 2001]. The inactivation is the 

basis for refractoriness in cardiac muscle and is fundamental for the prevention 

of premature re-excitation. To regain the ability to open, the channel must 

undergo a recovery process at hyperpolarized potentials [Roden et al. 2002].  

 

 

 

 
 

Figure 2: Transition state of voltage-gated ion channel reflecting changes in the 

conformation of the channel protein complex. 

 

http://en.wikipedia.org/wiki/Protein_structure
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At cellular level, the formation of the heartbeat, as well as cardiac force 

development, are both directly regulated by the cardiac action potential, which 

depends on the coordinated actions of a large number of distinct sarcolemmal 

ion channels [Antzelevitch 2000]. The generation of action potential is the 

result of the selective permeability of the ion channels distributed on the cell 

membrane. During the action potential, the permeability of ion channels 

changes and each ion moves passively down its electro-chemical gradient 

(ΔV=[Vm-Vion], where ΔV is the electrochemical potential, Vm is the 

membrane potential and Vion is the reversal potential of a specific ion) to 

change the membrane potential of the cell. The membrane potential is 

established by an unequal distribution of electrically charged ions across the 

sarcolemmal and the presence of conducting ion channels on the cell 

membrane [Amin et al. 2010; 1Grant 2009]. Alterations in the function of ion 

channels, either a gain or loss in function, due to genetic mutation can result in 

cardiac arrhythmia. For example, a gain in function of the sodium channel due 

to mutation in sodium channel gene causes Long QT syndrome type 3 whereas 

a decrease in function in the same channel can cause Brugada syndrome 

[Vohra 2007]. 

 

1.3 Long QT Syndrome 

 

Long QT syndrome (LQTS) is a cardiac channelopathy characterized by 

prolonged QT intervals on the surface electrocardiogram (ECG) (fig. 3), 

syncope and sudden cardiac death due to ventricular tachyarrhythmias, in 

particular torsade de pointes [Amin et al. 2009, Schwartz et al. 2001]. The 

disorder occurs in structurally normal heart and usually manifests in children 

and teen-agers. This genetic channelopathy has variable penetrance. The 

estimated overt prevalence of this disorder is in the range of about 1:5000 

subjects. Prolonged QT intervals reflect action potential duration in ventricular 

myocytes, and correspond with delayed ventricular repolarization [Amin et al. 

2009]. Cardiac events are often precipitated by physical or emotional stress 

even if in a smaller subset of individuals cardiac events occur at rest. For this 

reason, antiadrenergic intervention with beta-blockers is the cornerstone of 

therapy in the LQTS [Goldenberg et al. 2008]. The pathological QTc values for 

men and women must be more that 440 and 460 milliseconds, respectively 

[Schwartz et al. 1993 ]. Heritable LQTS is classified into 12 different types and 

each type is linked to mutations in a gene encoding a protein that is directly 

(ion channel) or indirectly (β-subunit or regulatory protein) involved in 

repolarization [Morita et al. 2008].  

The syndrome is transmitted most often in families as an autosomal dominant 

trait (Romano-Ward syndrome) and less commonly as an autosomal recessive 

disease combined with congenital sensorineural deafness (Jervell and Lange-

Nielsen syndrome) [George 2005].  
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Figure 3: Illustration of action potential (AP) and Electrocardiogram (ECG) from 

normal subject and patient affected by Long QT Syndrome (LQTS). In LQTS, 

abnormalities in currents during the plateau phase of the AP (decreased 

repolarizing or increased depolarizing currents) lead to prolongation of the 

ventricular AP and hence the QT interval, as well as increasing the tendency for 

early after-depolarizations (dotted line), which markedly increases the risk of 

arrhythmias. 

 

 

Presently, mutations in 13 genes involved in the correct execution of the 

cardiac action potential have been associated with LQTS. The functional effect 

of the mutation on the protein determines the type of the channellopathy 

[Hedley et al. 2009]. 

LQT-1 is the most prevalent genetic form of LQTS accounting for 

approximately 50% of genotyped patients. This type of syndrome is linked to 

KCNQ1 gene that encodes the α-subunit of the potassium channel conducting 

the IKs current, the slow component of the delayed rectifier current (IK) the 

major repolarising current during phase 3 of the cardiac action potential. 

LQT-2 is the second most common variant of LQTS accounting for 35%-

40% of mutations. LQT2 is associated with mutation in KCNH2 gene that 

encodes α-subunit of the potassium channel conducting the IKr current the rapid 

component of the cardiac delayed rectifier [http://www.fsm.it/cardmoc/]. 

LQT-3 is linked to mutations in SCN5A gene, encoding cardiac sodium 

channel, and covers approximately 13% of all genotyped individuals with 

LQTS [Kies et al. 2004, Wang et al. 1996]. Most of these mutations are 

missense mutations, and are found to cause sodium channel gain-of- function, 

by disrupting fast inactivation and thereby causing an abnormal sustained (or 

persistent) non-inactivating sodium current [Priori et al. 2003]. Arrhythmic 

http://www.fsm.it/cardmoc/
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events in LQT-3 usually occur at rest or during sleep when the heart rate is 

slow [Amin et al 2009]. 

LQT-4 is characterized by different phenotype: most of the affected 

individuals, besides QT interval prolongation, also present severe sinus 

bradycardia, paroxysmal atrial fibrillation (detected in >50% of the patients) 

and polyphasic T waves. LQT-4 is related with ANK2 gene that encodes 

Ankyrin B. This protein regulates the proper intracellular localization of 

plasmalemmal ion channels (calcium channel, sodium channel, 

sodium/calcium exchanger), sarcoplasmic reticulum channels (ryanodine 

receptor, inositol triphosphate receptor), and other adhesion molecules 

[http://www.fsm.it/cardmoc/, Bennett et al. 1995].  

LQT-5 is associated with mutation in KCNE1 gene. The product of  gene 

(minK) is  the β-subunits of the potassium channel complex that produces the 

repolarizing IKs current in cardiac myocytes.  Mutations in KCNE1 gene cause 

Jervell and Lange-Nielsen syndrome previously described [Mohler et al. 2003]. 

LQT-6 is linked to mutation in KCNE2 gene that encodes the β-subunits of 

the potassium channel complex that produces the rapid repolarizing IKr current 

in cardiac myocytes [Schulze-Bahr et al. 1997]. 

LQT-7 is associated to Andersen‘s syndrome (AS) that is a rare  skeletal 

muscle disorder characterized by periodic paralysis, cardiac arrhythmias, and 

dysmorphic features. The candidate gene responsible of AS is KCNJ2 which 

encodes the inward rectifier potassium channel IK1[Plaster et al. 2001, Tristani-

Firouzi et al. 2002, Canùn et al. 1999]. 

LQT-8, known as Timothy Syndrome (TS), is a rare variant of LQTS 

characterized by marked QT interval prolongation and cutaneus syndactyly at 

both hands and feet. Severe prognosis has been observed in all cases described 

so far. All affected individuals show severe prolongation of the QT interval on 

electrocardiogram, syndactyly, and abnormal teeth and were bald at birth. The 

Arrhythmias were the most serious aspect of TS [George 2005]. The syndrome 

is caused by mutations in the Cav1.2 cardiac L-type calcium channel gene, 

CACNA1C [Splawski et al. 2005].  

LQT-9 is linked to CAV3 gene which encodes Caveolin 3, the major 

scaffolding protein present in caveolae in heart. Mutations in CAV3 gene cause 

increasing in late sodium current (gain-of-function effect) [Vatta et al. 2006]. 

Caveolae are 50- to 100-nm omega-shaped microdomains of the plasmalemma, 

particularly abundant in cells of the cardiovascular system, including 

endothelial cells, smooth muscle cells, macrophages, cardiomyocytes, and 

fibroblasts. Caveolae are involved in vesicular trafficking and serve as a 

platform to organize and regulate a variety of signal transduction pathways 

[Westermann et al. 2005]. 

LQT-10 is caused by mutations in SCN4B encoding the sodium channel  β-

subunit Navβ4. The mutation leads to a positive shift in inactivation of the 

sodium current, thus increasing sodium current [George 2009]. 

http://www.fsm.it/cardmoc/
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Recently, LQT-11 and LQT-12 were discovered; these two syndromes are 

caused by mutation in AKAP9 gene and SNTA1 gene respectively 

[http://www.ncbi.nlm.nih.gov/ ; MIM #192500]. 

 

1.4  Brugada Syndrome 

 

The Brugada Syndrome (BrS) is a hereditary primary electrical disease, which 

is associated with right ventricular conduction abnormalities and coved-type 

ST elevation in the right precordial leads. Clinically, the syndrome is 

characterized by syncope and premature sudden death due to ventricular 

fibrillation [Wilde et al. 2002]. Arrhythmias in Brugada syndrome (and, thus, 

the symptoms) typically appear during predominant vagal activity, such as rest, 

or even during sleep [Miyazaki et al. 1996]. The syndrome is typically 

transmitted via an autosomal dominant inheritance pattern with incomplete 

penetrance. The prevalence of the pathology has been estimated at 5/1000 in 

Caucasians, although this figure possibly may be biased by the fact that it is 

currently not known whether a Brugada-like electrocardiogram always 

indicates the presence of the disease or it may be a non-specific finding in 

some cases. Therefore, the proposed figure may overestimate of the actual 

cases of BrS among the general population. [Hermida et al. 2000]. Patients 

usually present symptoms, especially SCD, during their fourth decade, 

although no conclusive explanation for this has been offered to date. 

Approximately 23% of the patients with SCD had already undergone syncope 

[Benito et al. 2008; Piori et al. 2002]. The disease is much more common in 

men than in women probably due to gender differences in the expression of the 

Ito and ICa, two currents involved in the phase 1 and 2 of cardiac action 

potential [Antzelevitch et al. 2003; Di Diego et al. 2002]. Great geographical 

variability has been reported, such that the syndrome seems to be much more 

frequent in Asia than in Western Europe or North America [Miyasaka et al. 

2001; Wilde et al. 2002].  

Three different ECG patterns related to Brugada syndrome were described: a) 

type I, characterized by a coved-type ST-segment elevation ≥2 mm in more 

than one right precordial lead (V1-V3), followed by negative T waves; b) type 

II, characterized by ST-segment elevation ≥2 mm in right precordial leads 

followed by positive or biphasic T waves, resulting in a saddle- back 

configuration; and c) type III, defined as any of the 2 previous types if ST-

segment elevation is ≤1 mm (fig. 4). Although the 3 patterns can be observed 

in Brugada syndrome, and even in the same patient at different times, type I is 

the only one that is considered diagnostic of the disease. Thus, all patients who 

present a type I ECG pattern, even when isolated, should be considered at risk 

[Antzelevitch et al. 2005]. 

  

 

http://www.ncbi.nlm.nih.gov/
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Figure 4: Electrocardiographic patterns (ECG) that can be found in the patients with 

Brugada syndrome. 

 

 

 

This pathology is included among the so-called channelopathies, diseases 

produced by alterations in the transmembrane ion channels that participate in 

cell action potential, and which lead to an increased susceptibility to 

arrhythmias [Benito et al. 2009].  The first mutations associated with Brugada 

syndrome were found in 1998 in the SCN5A gene that encodes for the cardiac 

sodium channel. To date, more than 100 different mutations leading to Brugada 

syndrome have been described in the same gene but only 18% to 30% of the 

patients with Brugada phenotype show mutations in this gene, suggesting that 

the disease is genetically heterogeneous [Matsuo et al. 2003]. According to this 

hypothesis, 4 new genes associated with Brugada syndrome have been 

identified: GPD1-L (glycerol-3- phosphate dehydrogenase 1-like), CACNA1c 

and CACNB2b (encoding the calcium channel) and, quite recently, KCNE3 

(encoding  β-subunit responsible for the transient outward potassium currents 

Ito) [London et al. 2007, Antzelevitch et al. 2007, Delpón et al. 2008]. 

Mutations in SCN5A gene, the alteration more frequent in Brugada syndrome, 

cause a decrease in INa, leading to an imbalance between the positive inward 

and outward currents at the end of phase 1 of the cell action potential [Vatta et 

al. 2002]. Similar situations occur when there is a decrease of the inward L-

type calcium current (ICa) (produced by mutations in CACNA1c or CACNB2b)  

or an increase of the outward potassium currents (Ito) (produced by the 

mutation recently described in KCNE3) [Antzelevitch et al. 2007, Delpón et al. 

2008]. Whichever the mechanism, the imbalance between the inward and 

outward currents leads to the development of a characteristic notch and the loss 

of the action potential dome mediated by an increase (relative or absolute) of 
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the outward Ito currents. Thus, since the density of Ito is greater in epicardium 

than in endocardium, this event occurs heterogeneously on the ventricular wall 

and leads to a transmural voltage gradient, which produces the characteristic 

ST-segment elevation in the ECG [Yan and Antzelevitch 1999]. The ion 

current imbalance at the end of phase 1 of the action potential also explains the 

susceptibility to develop ventricular arrhythmias in Brugada syndrome, which 

would arise via a phase 2 reentry mechanism [Benito et al. 2009].  

 

1.5 Proteins Related to Long QT syndrome and Brugada Syndrome 

 

1.5.1 Cardiac Sodium Channel 

 

The cardiac sodium channel is a member of the voltage-dependent family of 

Na channels. These channels consist of heteromeric assemblies of an             α-

subunit, the pore-forming component, the function of which is modulated by 

association with one or two ancillary β-subunits. 

The human cardiac sodium channel α-subunit (Nav 1.5) is a heavily 

glycosylated protein of 220 kDa consisting of 2016 amino acid residues [Tan 

2006]. The protein is encoded by SCN5A gene that is located on chromosome 

3p21 and consists in 28 exons [George et al. 1995]. The cardiac sodium 

channel generates the depolarizing current initiating the cardiac action potential 

and is crucial for the conduction of the cardiac impulse [Gallens et al. 1992]. 

This protein displays a modular architecture that consists of four internally 

homologous domains (DI-DIV) and each domain consists of six 

transmembrane α-helical segments (S1–S6), connected to each other by 

alternating extracellular and cytoplasmic loops (fig. 5A). The interdomain 

linkers and the N- and C- terminal ends of the channel protein are all located 

citoplasmatically [Balser 2001]. The four domains of the channel fold around a 

central ion-conducting pore, which is lined by the S5–S6 linker (referred to as 

the P-segment or P-loop) from each domain (fig. 5B). This loop, which 

exhibits a high degree of conservation among the various organ-specific 

isoforms across species, determines selectivity and conductance properties of 

the channel [Yellen et al. 1991]. In particular, the P-loops of domains III and 

IV play an important role in sodium selectivity. A lysine residue in the P-loop 

of DIII (K1418 in SCN5A), is critical for discrimination for sodium over 

calcium [Pérez-García et al. 1997]. The fourth transmembrane segment (S4), 

stereotypically studded with positively charged residues, functions as a voltage 

sensor and moves in response to depolarization, somehow opening the channel 

[Stühmer et al. 1989].  

 

 



 
 
 
Chapter 1    Background 

16 
 

 
 

Figure 5: Voltage-gated cardiac sodium channel. A) Schematic bi-dimensional 

representation of cardiac sodium channel α-subunit and accessory β-subunit. 

B) Tridimensional representation of the four domains of cardiac sodium 

channel α-subunit folding around an ion-conducting pore and β-subunit.  

 

 

 

 

The cardiac sodium channel differs from the neuronal and skeletal muscle 

isoforms in its sensitivity to block by tetrodotoxin (TTX). Whereas brain and 

skeletal muscle isoforms are blocked at nanomolar concentrations of TTX, the 

heart isoform is blocked at micromolar concentrations. Residues in the P-loop 

of DI are responsible for this isoform-specific difference in toxin binding 

[Satin et al. 1992]. 

Inactivation is characterized by at least two distinguishable kinetic 

components, an initial rapid component with a fast recovery time constant (fast 

inactivation) and a slower component with a slower recovery time constant 
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(slow inactivation). Fast inactivation is mediated, at least in part, by the DIII–

DIV cytoplasmic linker [Stühmer et al. 1989]. This linker can be visualized as 

a hinged lid, which docks against receptor sites surrounding the inner vestibule 

of the pore, thereby occluding the pore. A critical component of DIII–DIV 

required for fast inactivation has been localized to the highly conserved 

hydrophobic triad IFM (residues 1485–1487 in the cardiac isoform). These 

residues are thought to interact with a receptor site that becomes available in 

the activated sodium channel [West et al. 1992]. The S4-S5 linkers in domains 

III and IV and residues on the cytoplasmic end of S6 of DIV could form part of 

this receptor site [Bennett et al. 1995; McPhee et al 1995]. Structural 

determinants of slow inactivation are less known but are most probably 

localized within P-loops [Balser et al. 1996]. Recent studies also suggest a role 

of COOH terminus in channel inactivation in brain and cardiac isoform 

[Cormier et al. 2002]. Recovery from the inactivated state occurs during 

repolarisation of the membrane during diastole. 

In cardiac cells, Nav1.5 associates with partner proteins, which may be 

anchoring/adaptor proteins, enzymes which interact with and modify the 

channel, and proteins modulating the biophysical properties of Nav1.5 upon 

binding. Nav1.5 also interacts with auxiliary β-subunits (∼30–35 kDa, β1to β4- 

subunits) consisting of a small C-terminal cytoplasmic domain, a single 

transmembrane segment, and a large glycosylated N-terminal extracellular 

domain [Abriel & Kass 2005, Meadows & Isom 2005]. 

Sodium channels transit among various conformational states in the process 

of voltage-dependent gating. Depolarization from the resting membrane 

potential triggers activation (opening) of the Na channels. If the depolarization 

is maintained, the channels enter a non-conducting inactivated state. 

Subsequent to repolarization, the channels return to a closed state capable of 

being activated once again. It is becoming increasingly clear that these 

processes are the results of complex allosteric interactions among many 

structural domains of the channel [Meadows & Isom 2005]. 

 

1.5.2 Potassium Channels 

  

Voltage-gated K
+
 channels are membrane-spanning proteins that regulate 

potassium ion movement across the cell membrane. They are important in 

maintaining electrical activity in most excitable cells because they control 

cellular resting potential and action potential duration. Potassium channels are 

highly regulated and are the basis for the change in action potential 

configuration in response to variation in heart rate. Because of the uniquely 

slow voltage–time course of the cardiac action potential plateau, there is 

particular physiological relevance of K
+
 activation kinetics, channels with slow 

or ‗‗delayed‘‘ and these channels have been referred to as ‗‗delayed‘‘ rectifier 

channels [Bezzina et al. 2001; Noble and Tsien 1969]. Two components of 

potassium-selective activated during prolonged depolarization in the plateau 

voltage range. The delayed rectifier potassium current is a voltage- and time-
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dependent K
+
 current with two components that can be separated on the basis 

of activation kinetics and pharmacology: a rapidly activating current called IKr 

and a slowly activating component called IKs. The delayed K
+
, IK, current were 

generated by HERG l (IKr) and KvLQT1 (IKs) channels [Sanguinetti and 

Jurkiewicz 1990]. 

 

1.5.2.1 HERG: Rapid Rectifier Delayed Potassium Channel 

 

The rapid delayed rectifier K
+
 current, IKr, plays an important role in normal 

repolarization of cardiac action potential. The IKr is conducted through 

channels complex formed by tetrameric assembly of human ether-a-go-go- 

related gene, HERG and one ancillary β-subunit [Morais Cabral et al. 1998]. In 

humans, HERG protein is encoded by KCNH2 gene, which is located on 

chromosome 7q35-36, and the coding region comprises 16 exons spanning 

approximately 34 kb of genomic sequence. The full-length HERG1 subunit 

(hERG1a) is composed of 1159 amino acids with a molecular mass of 127 kDa 

[Dennis et al. 2007]. The gene encodes the α-subunit of the rapid delayed 

rectifier current IKr in the heart. The HERG channel has the same body plan as 

that of other voltage-gated ion channels. HERG subunit has six transmembrane 

α-helices, with the fourth one (S4) carrying seven positive charges distributed 

at every third or fourth position and a reentrant ―pore-loop‖ between the fifth 

and sixth transmembrane helices (fig. 6) [Doyle et al. 1998]. 

 

 

 
 

Figure 6: Schematic representation of rapid delayed rectifier potassium channel 

HERG.  
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HERG1a has a long N-terminus (376 amino acids)  and residues from 1 to 

135 comprise the so-called ―eag domain‖ that is protein-protein interaction 

structure called a Per–Arnt–Sim (PAS) domain [Sanguinetti et al. 1995]. The 

function of the PAS domain in hERG1a is uncertain; however, LQTS-

associated mutations in this region disrupt channel trafficking and accelerate 

the rate of deactivation, perhaps by disrupting its interaction with the S4–S5 

linker of the channel [Chen et al. 1999; Wang and Trudeau 1998]. The PAS 

domain can be phosphorylated and needs to be properly folded for normal 

trafficking of the channel complex from the endoplasmic reticulum to the 

Golgi and cell surface [Cayabyab and Schlichter 2002; Paulussen et al. 2002]. 

An alternatively spliced variant of hERG1 (hERG1b) was isolated from mouse 

and human heart and is composed of 819 amino acids with a predicted 

molecular mass of 94 kDa [Lees-Miller et al. 1997; Jones et al. 2004]. The N-

terminus of hERG1b is only 36 amino acids and lacks the PAS domain but has 

an ―RXR‖ ER retention signal sequence that prevents its trafficking to the 

surface membrane unless coassembled with hERG1a subunits [Phartiyal et al. 

2008]. Both HERG1a and HERG1b show a long C-terminus that contains a 

cyclic nucleotide binding domain (CNBD). HERG1 proteins can coassemble 

with ancillary β-subunits called MiRP1 (encoded by KCNE2 gene) [Abbott et 

al. 1999]. A reduction of IKr caused by LQTS-associated mutations in KCNH2 

can induce ventricular arrhythmia and cause sudden cardiac death [Schwartz 

and Bauer 2004]. 

 

1.5.2.2 KCNQ1: Slow Rectifier Delayed Potassium Channel 

 

In cardiac myocytes, the KCNQ1 subunit assembles with the KCNE1 β-

subunit (minK) and forms a channel complex constituting a very slowly 

activating voltage-gated current, closely resembling the cardiac delayed 

rectifier current IKs which is partly responsible for terminating the cardiac 

action potential [Abbott et al. 1999]. KCNQ1 potassium channels are expressed 

in several tissues throughout the body and regulate key physiological functions. 

The two most important roles of KCNQ1 channels are 1) repolarization of the 

cardiac tissue following an action potential and 2) water and salt transport in 

epithelial tissues [Barhanin et al. 1996].  

KCNQ1 gene is located on chromosome 11p15.5 and consists in 15 exons 

[Neyroud et al. 1999]. The gene is expressed in many different tissues, mainly 

heart, pancreas, kidney and intestine [Yang et al. 2002]. The primary translated 

protein (isoform 1) consists of 676 residues and has six transmembrane 

domains, a pore loop with a typical potassium-channel pore-signature sequence 

(GYGD), and intracellular NH2 and COOH terminals, covering 122 and 322 

residues, respectively. The S4 segment contains numerous positively charged 

amino acids and plays a role as a voltage sensor for voltage dependent 

activation kinetics (fig. 7) [Lee et al. 1997]. Six different splice variants 

(isoforms 0–5) of human KCNQ1 have been reported. Isoform 1, described 

above, and isoform 2, encoding translational start in the middle of membrane 
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segment 1, are, when detected at the mRNA level, the two major splice variants 

found in the heart. When expressed in a heterologous context, the isoform 2 

protein functions as a dominant negative isoform [Wang et al. 1996]. KCNQ1 

is a typical K
+
 channel alpha-subunit of that consists of six transmembrane 

domains and a pore-forming region, and belongs to the rapidly expanding 

family of KCNQ-channels whose members are widely expressed in epithelial 

and excitable cells [Takumi et al. 1988]. KCNQ1 gene product is very 

important also for the normal function of the inner ear as exemplified by 

Jervell and Lange-Nielsen syndrome that is associated to recessive loss-of-

function mutation found in this gene causing deafness with severe QT 

prolongation [Jervell and Lange-Nielsen 1957]. 

IKs current is mediated by β-adrenergic receptor activation, leading to an 

increased level of cAMP and thereby PKA stimulation, which interacts with 

the IKs complex through an A-kinase anchoring protein (AKAP) (fig. 7) [Potet 

et al. 2001].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Slow rectifier delayed potassium channel. A) Schematic bi-dimensional 

representation of KCNQ1 (α-subunit), with interacting domain, and MinK1 (β-

subunit). B) Representation of tetrameric complex of α-subunits with ancillary β-

subunits. 
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PKA and protein phosphatase 1 interact with KCNQ1 through the AKAP 

called yotiao, which binds to the COOH-terminal tail of KCNQ1 via a leucine 

zipper. Upon PKA activation, residue S27 in the NH2 terminal of KCNQ1 is 

phosphorylated. However, yotiao seems not only to be important for mediating 

the phosphorylation of S27, but it is also necessary to transform the 

phosphorylated KCNQ1 subunit into a channel with altered activity. The 

cAMP-mediated regulation of KCNQ1 channels in mammalian expression 

systems is dependent on coexpression of KCNE1 [Kurokawa et al. 2004]. 

Phosphaditylinositol-4,5-biphosphate (PIP2) is another key intracellular 

regulator of the KCNQ1/KCNE1 channel activity. PIP2 affects the IKs channel 

by stabilizing the open state [Park et al. 2005]. 

The voltage-gated KCNQ1 channel is progressively opened by increasing 

membrane depolarizations. The channel gives rise to slowly activating and 

deactivating potassium currents [Franqueza et al. 1999]. Upon longer 

depolarizing steps a fraction of the KCNQ1 channels inactivate [Push 1998]. 

 

1.5.3  MirP and MinK  

 

MiRP1 (MinK-related peptide 1) is a small integral membrane subunit that 

forms stable assemblies with HERG channel.  The protein is encoded by 

KCNE2 gene and consists in 123 residues, with two N-linked glycosilation 

sites a single transmembrane segment, and consensus sequences for two 

proteins kinase C–mediated phosphorylation sites (fig. 8). MiRP1 regulates 

HERG in vitro, accelerating its deactivation 2–3 fold and reducing unitary 

conductance 40%. Missense mutations in the gene for MiRP1 are associated 

with inherited and acquired arrhythmia and changes in channel function 

[Abbott et al. 1999]. 

 

 

 

 

 

 

The MinK protein (KCNE1 gene) named also as IsK consists of 126–130 

amino acids with a single transmembrane segment (fig. 8). The N-terminal is 

N- glycosylated and located on the extracellular side of the membrane. Subunit 

MinK cannot form a pore alone, it only modifies the kinetic properties of the 

KvLQT1 subunit, when its transmembrane domain interacts with the pore-

forming segment of KvLQT1 [Honoré et al. 1991]. 

 

 

 

 
Figure 8: Schematic representation of the ancillary β-subunit MirP1 and MinK. 
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TECHNICAL BACKGROUND 

 

 

 

 

2.1 Why the Patch Clamp? 

 

2.1.1 Basic Information 

 

Electrical excitation of the heart is accomplished by the generation and 

propagation of cellular action potentials, which is a change in voltage over 

time. The action potential results from the flow of ionic currents across cell 

membranes [Kornreich 2007]. In addition to containing many conducting 

channels, the lipid bilayer of cellular membrane separates internal and external 

conducting solutions by an extremely thin insulating layer. Thus, the 

membrane, considered as a narrow gap between two conductors, forms a 

significant electrical capacitor [Hille 2001]. The cell membrane is so thin that 

charges are attracted to one another across the membrane, with negative 

charges accumulating near the interior surface of the membrane and positive 

charges near the exterior surface [Kornreich 2007]. The measure of how much 

charge needs to be transferred from one conductor to another to set up a 

potential difference between them is defined as capacitance (C), measured in 

farads (F) [Hille 2001]. The alignment of charge along the membrane is 

sufficiently uniform that the capacitative charge is a reliable index of 

membrane area and, therefore, of cell size [Kornreich 2007].   

Ion channels on the cellular membrane play a key role in initiated and 

propagating the action potential. The most powerful techniques available for 

studying functional aspects of voltage-gated ion channels is the voltage clamp. 

The principle of the method is to isolate a patch of membrane electrically from 

the external solution and to record current flowing into the patch. Changes in 

voltage, produced by this technique, induce channels to interconvert between 

different states, and these transitions are monitored as changes in membrane 

current. The voltage clamp can be used to activate different populations of 

channels selectively. In this way, a specific channel targeted by biological or 

pharmacological manipulations can often be identified and studied in detail 

[Crawley 1997]. 

Biological electrical activity results from the separation and movement of 

charged particles, typically cations such as Na
+
, K

+
 and Ca

2+
. Charge is usually 

separated by a lipid membrane and the movement of charge across the 
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membrane requires: a driving force and a path for current flow. The movement 

of charge is defined as current (I), measured in Amperes (A), whereas the 

driving force, measured as the work needed to move charge from one point to 

another, is termed voltage (V), measured in Volts (V). The path for current 

flow most often is an ion channel and the ease with which charge moves 

through the channel is resistance (R), measured in Ohms (Ω). The relationship 

between V, I and R is defined by Ohm‘s Law: I=V/R; where it is apparent that 

the larger the voltage, the larger the current and similarly, the smaller the 

resistance, the larger the current. If the voltage across a membrane is held 

constant, increasing, or reduction, in current will be directly associated with 

changes in resistance. This relationship provides the basis for the voltage clamp 

technique, where the voltage is held at a constant value and current is measured 

at that voltage. In an actual voltage clamp experiment, the resistance in the 

voltage clamp circuit is not determined solely by ion channel resistance. 

Rather, the total membrane resistance also must be considered [Kornreich 

2007]. The measure of the ease with which current flows through an ion 

channel often is represented by the reciprocal of resistance, or conductance 

(G), measured in Siemens (S). This parameter is a basic biophysical property of 

an ion channel, given that in most cases the opening of an ion channel is an 

‗‗all or none‘‘ phenomenon. Using Ohm‘s Law, conductance of an ion channel 

can be described as: G=I/V [Hille 2001].  

 

2.1.2 The Patch Clamp Technique 

  

The patch clamp technique is an ideal methodology for investigating the 

molecular mechanisms of cardiac electrical activity under both physiologic and 

pathologic conditions. In fact, the patch clamp recordings have the ability to 

monitor electrical activity at the level of the individual ion channel in the 

context of cellular membrane. Studies of the electrical properties of biological 

membranes can be subdivided roughly into extracellular recording and 

intracellular recording techniques. Intracellular recordings measure the 

difference in voltage or current across a cell membrane, whereas extracellular 

recordings measure differences in these parameters within the extracellular 

space. Intracellular recording of transmembrane current during a holding 

transmembrane voltage at a value is referred to as voltage clamp, whereas the 

measurement of tranmembrane voltage while holding transmembrane current at 

a determined value is termed current clamp. Several configurations of the 

voltage clamp technique have been developed (fig. 9). These configurations 

vary with respect to membrane integrity, membrane orientation, and continuity 

between the intracellular space and intrapipette solutions [Kornreich 2007].  

One of the features that makes the patch clamp that so powerful is that it can 

be used in different configurations, which enables the experimenter to study 

ion channels at different levels and manipulate easily the fluid on the 

extracellular or intracellular side of membrane during recordings [Molleman 

2002]. Depending upon which configuration is used, the electrical activity of 
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either single ion is used, the electrical activity of either single ion channels 

(single channel), the ensemble activity of a large number of channels within a 

small patch of membrane (giant patch), or the activity of all channels within a 

cell (whole cell, perforated patch, sharp electrode) may be measured. 

The majority of these techniques involve the initial formation of a high 

resistance gigaseal between the tip of the recording pipette and the cell 

membrane. This high resistance seal, discussed previously, prevents the 

passage of ions between the pipette and the membrane [Kornreich 2007]. 

 

 
 

Figure 9: Representation of various configurations of the patch clamp technique and 

description of how to obtain them. 
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2.1.3 Whole Cell Patch Clamp Configuration  

  

The whole-cell voltage clamp was an offshoot of the patch-clamp technique, 

which originally was designed for measuring current through single channels. 

In the early uses of the patch clamp, the voltage across a small patch of 

membrane on the surface of a cell was clamped by a glass micropipette (named 

also pipette or electrode) with a tip of ∼1 µm in diameter; hence the term patch 

electrode [Heinemann 1995]. Subsequently, it was found that the patch of 

membrane under the electrode tip could be removed, and once this happened 

the electrode attained direct electrical contact with the cell interior. As a result, 

the voltage across the entire cell membrane was clamped instead of the voltage 

across the tiny patch, so this technique was named as whole-cell patch clamp 

[Crawley 1997].  

The whole cell patch configuration is obtained by applying negative pressure 

or a short duration, high voltage pulse to the recording pipette after attaining 

the cell attached configuration. This manipulation breaks the patch of 

membrane inside the tip of the electrode, thereby making the intracellular space 

contiguous with the internal pipette solution. In electronic terms, this implies 

that patch resistance (Rpatch) becomes very low and, such as, is usually renamed 

access resitance (Ra). The membrane potential is disrupted as the integrity of 

the plasma membrane is lost and the pipette has direct contact with the 

cytoplasm [Molleman 2002]. Figure 10 shows the equivalent electric circuit of 

whole-cell patch clamp configuration. 

 Following, dialysis of the internal pipette solution into the cell occur; the 

composition of the intracellular space and the internal pipette solution equalize. 

A single electrode (pipette) allows both to control voltage and measure current.  

Thus, the whole cell configuration allows the study of the ensemble response 

of all ion channels within a cell‘s membrane. An additional benefit of whole 

cell recordings is that compounds can be diffused into the intracellular space 

and their effects on ion channel function quantified. However, one potential 

pitfall of the whole cell configuration is that components of the intracellular 

milieu can diffuse out of the cell into the patch pipette, in some cases with 

significant effects on ion channel function [Kornreich 2007].  
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Figure 10: Equivalent electric circuit for the whole-cell patch clamp configuration. 

The dotted line represents the cell membrane. Rm= membrane resistance, Cm= 

membrane capacitance, Ra= access resistance, Rpip= pipette resistance, Cpip=pipette 

capacitance, Rleak= leakage resistance. 

 

 

 

The principle of the method is to isolate a patch of membrane electrically 

from the external solution and to record current flowing into the patch. This is 

achieved by pressing a fire-polished glass pipette, which has been filled with a 

suitable electrolyte solution, against the surface of a cell and applying light 

suction [Crawley 1997]. A key characteristic of an electrode is its resistance 

when filled with the patch-electrode filling solution. The resistance provides a 

useful indicator of the electrode tip size [Sakmann 1995]. 

The technique depends on the ability to form a tight seal between the 

electrode tip and the plasma membrane of a cell targeted for study [Crawley 

1997].  

Providing both glass pipette and cell membrane are clean, a seal whose 

electrical resistance is more than 1 GΩ is formed, known as ―gigaseal‖. The 

higher the seal resistance, the more complete is the electrical isolation of the 

membrane patch and high seal resistance reduces the current noise of the 

recording, permitting good time resolution of single channel currents. The 

achievement of gigaseals, however, radically improved the quality of recording 

and made it possible to study channels of lower unitary conductance [Sakmann 

1995]. 

The conditions that appear to be required for the formation of a gigaseal are 

the following: 
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- First, the surface membrane of the cell used must be clean and free of 

extracellular matrix and connective tissue. Cells in tissue culture are often 

preferred; adult cells generally must be cleaned enzymatically or mechanically. 

- Secondly, solutions should be free of dust and of macromolecules such 

as the components of serum in tissue culture media. Solutions are filtered using 

0.2 µm filters. Cell cultures are washed several times to remove serum. 

- Thirdly, the pipette tip should be clean, often by fire-polishing. 

- Fourthly, during the period just prior to seal formation, a small positive 

pressure is applied to the pipette to generate an outflow of solution from the 

pipette tip and so keep it free of debris [Ogden & Stanfield 1994]. 

 

2.1.4 Fabrication of Patch Pipettes  

 

Two important technical concerns associated with the formation of a gigaseal 

are cleanliness of the system and the composition and geometry of the patch 

pipette. In order to eliminate particulates and other impurities that may 

interfere with seal formation, all solutions are filtered (usually through a 0.22 

micron filter) prior to their use in experiments. In addition, pipettes are pulled 

from borosilicate glass capillary tubes as close to the time of their use as 

possible and are kept in a sealed chamber to prevent airborne particulates from 

contaminating their tips. Borosilicate glass is used in this application because 

of its relatively low electrical noise (which is a function of its dielectric 

constant), low softening temperature (which promotes ease and success of 

pipette pulling), and the ease with which it forms high resistance seals with cell 

membranes. It is important to lower the pipette into the bath solution as rapidly 

as possible and to apply positive pressure to the internal pipette solution to 

avoid contamination of the tip of the pipette with impurities that may be 

floating on the surface of the bath [Kornreich 2007]. 

 

2.1.5 Patch Clamp Protocols 

 

Typically, it is most useful to record one particular type of ionic current at a 

time. Two general strategies can be used to isolate the current of interest: 

- First:  all currents other than the current of interest are blocked using 

specific ion channel blockers, elimination of the ion that carries a particular 

current (e.g., removal of sodium ions to block sodium current) or the delivery 

of voltage clamp protocols that either fail to activate or inactivate the unwanted 

current(s). 

- Secondly, measurements are initially made of the total cellular current, 

after which the cell is exposed to a drug that selectively blocks only the current 

of interest. The current records obtained before and after exposure to the 

blocker are subtracted from one another, yielding a ‗‗subtraction current‘‘ that 

should be a faithful replicate of the current of interest.  

The activity of specific ion channels may be studied individually or they may 

be studied as part of an ensemble response in a whole cell configuration. 
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Isolation of a specific voltage gated ion channel‘s activity may be achieved by 

using rationally designed voltage clamp protocols (fig. 11), ion channel 

blockers, by expressing desired channel proteins in a system lacking other ion 

channels, or by a combination of these methods. Studying an isolated ion 

channel‘s activity can provide important information regarding voltage 

sensitivity of activation, inactivation, and recovery from inactivation, as well as 

the effects of drugs on channel function [Kornreich 2007].  

 

 

 
Figure 11: Voltage clamp protocol used to activate the cardiac sodium 

channel. Fifteen depolarizing steps from -80 mV to +60 mV in 10-mV 

increments from holding potential -120 mV were applied in this protocol.  
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Chapter 3 

 

AIM OF THE STUDY  

 

 

The aim of the study was the determination of genotype-phenotype correlation 

in Southern Italy patients affected by long-QT syndrome or Brugada syndrome. 

Our goal was to determine the molecular basis of cardiac arrhythmias 

including long-QT syndrome and Brugada syndrome. We proposed to elucidate 

the biophysical properties of cardiac ion channels mutations to well understand 

the pathogenesis of these syndromes. To functional characterize the cardiac ion 

channel mutants we carried out electrophysiological studies to identify 

biophysical defects that can be the trigger for the long QT or Brugada 

syndrome phenotype.  

In order to reach our goal we firstly used dHPLC and automatic sequencing 

to perform the molecular analysis in SCN5A, KCNH2, KCNQ1, KCNE1 and 

KCNE2 genes. Afterward, we functional characterized the novel mutation by 

patch clamp technique in whole-cell configuration.  

This work was performed at Department of Biochemistry and Medical 

Biotechnologies (DBBM) and CEINGE-Advanced Biotechnology. 

Furthermore, the electrophysiological experiments were carried out at the 

Vanderbilt University (Nashville, TN, USA), Medical Center at the 

Department of Medicine and Pharmacology, Division of Molecular Genetics in 

the laboratory of Prof. Alfred L. George.  
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Chapter 4 

 

MATERIALS AND METHODS 

 

 

4.1 Patients and Control Population 

 

Forty-nine unrelated patients showing LQTS phenotype and fifty-four showing 

BrS phenotype were enrolled in genetic study. The genetic analysis was also 

carried out on the patients‘ relatives. All affected subjects came from Southern 

Italy. Informed consent to perform genetic analysis was obtained from each 

patients according to the procedure established by Italian law and by ethics 

committees of the participating institutions.  

The control population consisted of 200 anonymous, healthy Caucasian 

individuals, whose DNA samples were donated by the Biological Sample and 

Cell Bank of CEINGE (CEINGE s.c.ar.l.–Biotecnologie Avanzate, Naples, 

Italy). 

The molecular analysis was performed in 4 steps: 

1- DNA extraction; 

2- Amplification of 85 amplicons of SCN5A, KCNH2, KCNQ1, KCNE1 and 

KCNE2 genes by PCR; 

3- Analysis of PCR products by dHPLC 

4- Automatic sequencing of exons showing abnormal elution profile (different 

elution profile from WT). 
 
4.2 Genomic DNA Extraction and PCR 

 

Genomic DNA of each subject was extracted from 5 mL of peripheral whole 

blood using Nucleon BACC2 Kit (Amersham Biosciences, UK). All coding 

exons (included splice site regions), 5‘ UTR and 3‘ UTR of SCN5A, KCNH2, 

KCNQ1, KCNE1 and KCNE2 genes were amplified by polymerase chain 

reaction (PCR). All primers used in PCR procedure were designed by Primer 3 

program (http://frodo.wi.mit.edu/primer3/). Amplification conditions were 

listed in tables 1, 2, 3 and 4. 

 

 

 

 

 

 

 

http://frodo.wi.mit.edu/primer3/
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Table 1: PCR and dHPLC conditions of SCN5A exons.  

The table shows the number of exons, primers sequences, annealing temperature (Ta), 

product size (bp) and dHPLC temperature (dHPLC T). 

The bold sequences represent primer that anneal with coding sequence; TD= 

Touchdown PCR; *= exons analyzed only by automatic sequencing. 

 

Exons Forward primer (5’→ 3’) Reverse Primer (5’→ 3’) PCR Ta (°C) Product 
Size   (bp) 

dHPLC T  
(°C) 

1 gggtcagtgtgggagtgtg ctcggggaggaaagttgg 59 456 68, 69 

2 gtccctgggcatagaatcag gtaggcagggctggaggt 59 398 61, 63 

3 tcctcctcctcccacctc taggaccagcagggaatcag 59 356 60, 61 

4 ggagaccctgtttattgtctgg ggcatggaatggaaaggaa 59 271 61, 62 

5 ccacgtaaggaacctggaga agggaggaagccagaaagag 59 308 60, 62 

6 tggtgtgttgtcattgtctcg gagccctgggaaaggtattc 59 264 58, 59 

7 ccaccccagctcaactca gctggtctcacaaagtcttcc 59 398 61, 62 

8 aggggcagagaagaaggaag tggggtcagggcataaatag 59 278 60, 61 

9 actgagctgtggggcataaa tgtgtagcctggaccctga 59 312 62, 63 

10 gaacccctggcacaactaga agtcaggtgagggcttagagg 59 337 61, 62 

11 gaggctgcacaaagtctcaa cagacccaccctggaaaag 59 275 60, 61 

12A gctgggagcacatgaagag accccattgcagtccaca 59 339 61, 62 

12B gcagatgatgaaaacagcaca atttttggacttggcactgg 59 337 63, 64 

13 ccagtgtcccatcaagacct tcaggctgggataaagatgag 59 346 63, 64 

14 tcagtcaacagaatcaaactaactca aggatgcccatttgagagc 59 370 61, 63 

15 ctgccacagcaagagtcaag gggatgaccaagtgatgacc 58 345 61, 63 

16A gctttcaggcaggagctaga agatgatgaggaaggcatga 59 331 61, 62 

16B* cgtgttcatctttgctgtgg gggtgggtagctgggtagat 59 298 - 

17A ccccatcatagaactgggact tgctcgccttcctcaaac 59 386 61, 62 

17B attgccaccccctactcc gccttctacccctacccact TD 65-58 349 61, 63 

18 catgggcagggtctgaaa ggctcccaacagcaaatg 59 350 62, 63 

19 tgctactcagcccacactca ggtcacagaggaatggagga 59 321 62, 63 

20 tagatgtgggcattcacagg ccccagtttctgacctgactt TD 65-58 313 62, 63 

21 gtggaatcggcagtggtc gcaatgggtttctccttcct TD 65-58 274 62, 63 

22 accgtcttagtgggaccaga cataggacatcagaagcacagg TD 65-58 314 61, 62 

23 ggtcttgaaaagggcatgtg aacagccattgggaggaag 59 391 60, 61 

24 gcttctggcttcatctgtcc gcagacactgattccctggt 59 229 58, 59 

25 tagacagccctctgcctctg aggtgagatgggacctgga TD 65-58 326 58, 61 

26 atcctggcatcctcatcaag ctgggctgaaagactgtgaa 59 311 60, 61 

27 tgagaggcagcaacaggcatt ctggctggggagggcttct TD 65-58 390 59, 60 

   28A atgctggctggaagacagag ggcgaaggtctggaagttg 59 339 60, 61 

28B tctactccatctttggcatgg ggccacgctgaagttctc 59 326 60, 61 

28C tctccttcctcatcgtggtc atcttcagggcgtccatct 59 346 60, 61 

28D cattctctttgccttcaccaa caaggggtcgggagaagt 59 326 61, 62 

28E aagaggatgcccctgagc caggctggtttgtgactga 59 325 62, 63 

 28F* ccaggacacactgaaaagca gaaagcccattcacaacatataca 59 302 - 

28G* ggctctggaaagcaacttca gtgtgtgtgcttgtgtgagtg 59 340 - 

28H ccacttgacctgagatgctg gaggggaagaaaaggcaac 59 326 60, 63 

28I ggcttccagaggagagtgg aggagctggagaccacacag 59 340 60, 63 

28L gcctgaagagaggaaactgg gccttttcacaagacctatgg 59 321 62, 63 

28M atggcacccacacagagg gcactgccacaaatgtcc 59 365 58, 59 

28N gctggctgctcctaacctac aaccgcattcctgcctgt 59 339 59, 60 

28O agaggtatgtgcccctcct agcacaaggacagagcctaga 59 406 59, 60 
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Table 2: PCR and dHPLC conditions of KCNH2 exons.  

Exons Forward primer (5’→ 3’) Reverse primer (5’→ 3’) PCR TAn 
(°C) 

Product 
Size   (bp) 

dHPLC T    
(°C) 

  1* ggccacccgaagcctagtgc Attgactcgcacttgccgac TD 65-58 266 - 

  2* tgtgagtggagaatgtggggaag Tcttgaccccgcccctggtc TD 65-58 361 - 

3 tgcccactgagtgggtgc Tgaccttggacagctcacag 64 288 61, 62 

4:01 acgaccacgtgcctctcctctc Gggacccaccagcgcacgccg 64 267 67, 68 

  4.2* ccctggacgaagtgacagccatgg Ggctggggcggaacgggtcc TD 65-58 319 - 

5 ggcctgaccacgctgcctct Ccctctccaagctcctccaa TD 70-60 293 62, 63 

1B  ggtgcaggtgaggcagtgg Cggccccagaaagaagaggaa TD 70-60 232 64, 65 

6 gtcccatggcctgcctcacc ctacaccacctgcctccttgctgac 64 533 62, 63 

7 tgccccatcaacggaatgtgc Gcccgcccctgggcacactca 64 449 61, 62 

8 ctgacctggtgcggggcctg Cccagcctgccacccact 64 327 64, 65 

9 ccaagggagggtgtgctgag Ggcatttccagtccagtgc 64 331 64, 65 

9 USO agcactgcaaacccttccgag Tagtgaaaccaaatgccgagc TD 70-60 598 62,5, 63,5 

10 ccccggggctgagctccctgtc Tccagctcagggcagccaa 64 257 62, 63 

  11* agagcactgaaagggccctga Ggtctgaggcctgggtaaagca TD 65-58 239 - 

  12* tcccctctctgaggcccattc Ggggtagacgcaccaccgct TD 65-58 370 - 

 13* ctgacccagctctgctctctg Caccaggacctggaccagact TD 65-58 273 - 

14 atcccggtggaggctgtca Gaacaagcgggccacggtac 64 287 62, 63 

15 tgcccatgctctgtgtgtattg Acgtgtccacactgggcag 64 199 60, 62 

The table shows the number of exons, primers sequences, annealing temperature (Ta), 

product size (bp) and dHPLC temperature (dHPLC T). TD= Touchdown PCR;                

*= exons analyzed only by automatic sequencing. 
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Table 3: PCR and dHPLC conditions of KCNQ1 exons.  

Exons Forward primer (5’→ 
3’) 

Reverse primer (5’→ 3’) PCR Ta 
(°C) 

Product 
Size   (bp) 

dHPLC T 
(°C) 

1A tcgccttcgctgcagctc tcccccacaccagctctcag TD 70-60 510 65, 66 
1B cccctgctctcacccacaa tctacccgccacccataact TD 70-60 209 62, 63 
1 ctacctgggggcggggctga gtgtgggcaaggggctggga TD 65-55 310 63, 64 
2 aggcatcaccatccgcagca tgctcctgtgctgggtcctg TD 70-60 435 62, 63 
3 cccttccccagacgagagca ctccacccatcccagcacat TD 70-60 330 63, 64 
4 aggggcaggggcagggacac cggggcctcagcgcatctca TD 70-60 300 64, 65 
5 tcgctgggactcgctgcctt tgtcctgcccactcctcagcct TD 70-60 291 63, 64 
6 gggtttgggttaggcagttgg agccaccccaggaccccag TD 70-60 247 63, 64 
7 tggcctgtgtggacggga cagtgaccaaaatgacagtga TD 70-60 179 62, 63 
8 gggaacagggagggggagct ggcctccccacctgctagca TD 70-60 266 60, 62 
9 ctgggctcggggcggctg ctctgtctgttcatacctcgtt TD 70-60 367 57, 60 

10 ctggcaggttgggtgggagg aggcagacggcaagtggtgg TD 70-60 310 61, 62 
11 caggggcagtgaggggatga gtggcttgggggcggagg TD 70-60 270 62, 63 
12 cactgcctgcactttgagcc gtgaggagaagggggtggtt TD 70-60 304 63, 64 
13 ccgggcacgtcaagctgtct tcatgtcatgcactttggagg TD 70-60 264 62, 63 
14 cccccagccctaccaccc gcaggagcttcacgttcaca TD 70-60 248 61, 62 

15A ttcccaccactgactctct actcttggcctcccctct TD 65-55 328 59, 62 
15B gggatggggctggggga ctgtgctacttcctggccat TD 70-60 338 63, 64 
15C tcactggcatggtggttggg ggggaaatggtgagactgtc TD 70-60 359 62, 64 
15D aggagactgtggagactg tgtatgcgatgtaatgccc TD 70-60 326 62, 63 
15E ggggttccttctgggcatta cttcgatggcatcttgcagc TD 70-60 311 55, 56 

The table shows the number of exons, primers sequences, annealing temperature (Ta), 

product size (bp) and dHPLC temperature (dHPLC T). 

TD= Touchdown PCR. 

 
 
 
Table 4: PCR conditions of KCNE1 and KCNE2 exons.  

KCNE1 exons Forward primer (5’→ 3’) Reverse primer (5’→ 3’) PCR Ta (°C) Product 
size (bp) 

3.1 ctgcagcagtggaaccttaatg gttcgagtgctccagcttcttg 58 253 

3.2 gggcatcatgctgagctacat tttagccagtggtggggttca 58 233 

3.3 gttcagcagggtggcaacat gccagatggttttcaacgaca 58 281 

          

KCNE2 exons Forward primer (5’→ 3’) Reverse primer (5’→ 3’) PCR Ta (°C) Product 
size (bp) 

     
 

1 gcatctccctcccaccttta ttagcttggtgcctttctcc 51 495 

The table shows the number of exons, primers sequences, annealing temperature (Ta) 

and product size (bp). All the amplicons were analyzed by automatic sequencing. 
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4.3 Mutation Screening: dHPLC and Sequencing Analysis 

  

PCR products were analyzed by dHPLC to search for mutation and/or 

polymorphism in SCN5A, KCNH2 and KCNQ1 genes. The conditions of 

dHPLC analysis are listed in table 1, 2 and 3. Samples evaluated by dHPLC 

that showed abnormal elution profile were analyzed using automatic 

sequencing (ABI-PRISM 3730 DNA Sequencer, Applied Biosystem) at 

CEINGE facility. The KCNE1 and KCNE2 genes were analyzed only by 

automatic sequencing. 

 
4.4 RNA Extraction  

 

Total RNA was extracted both from whole peripheral blood and eukaryotic 

transfected cells using TriPure Isolation Reagent (Roche Diagnostic, 

Indianapolis, IN). Five volumes of 0.2% NaCl were added to whole blood to 

obtain blood cells lysis. Sample was centrifugated at 1300 rpm for 10 minutes 

at 4°C. This step was repeated 2 times. Afterward, 1 ml of TriPure Isolation 

Reagent were added to the pellet. Cells were then lysed  by repetitive pipetting 

or homogenization. Chloroform (200 µl) was added and the homogenates 

sample was centrifugated  at 13000 rpm for 5 min at 4°C to separate the 

solution in 3 phases. The upper colorless phase was saved and isopropanol 

(500 µl) was added to precipitate RNA. Sample was centrifugated at 1200 rpm 

for 10 min at 4°C. One milliliter of 75% Ethanol was used to wash the pellet 

and sample was centrifugated again. Supernatant was discarded and pellet was 

air-dried and then was resuspended in RNase-free water.  

For adherent cells, 1 ml of TriPure was added directly to the cell culture dish 

and cells were scraped from the wall of dish. Cell lysate was saved and 

syringed. Afterward, the lysate was treated with chloroform. Next steps are the 

same of the RNA extraction from whole blood. 

 

4.5 Reverse Transcriptase PCR 

 

RNA extracted from blood or transfected cells was used to obtain cDNA by 

Reverse Transcriptase PCR (RT-PCR). 

The reaction was performed using SuperScript VILO cDNA synthesis kit 

(Invitrogen, Carlsbad, CA ). The following reagents were used in 20 µl 

reaction volume adding: 4 µl of 5X VILO Reaction Mix (containing random 

primer, MgCl2 and dNTP), 2 µl of 10X SuperScript Enzyme Mix, 2 µg of RNA 

and water.  

The reaction was incubated at: 

- 25°C for 10 minutes; 

- 42°C for 60 minutes; 

- 85°C for 5 minutes. 

To check the success of cDNA synthesis, porphobilinogen gene, as control, 

was amplified by PCR.   
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The cDNA regions of hH1 spanning from exons 21-25 and exons 22-24 were 

amplified by PCR using Expand Taq High Fidelity PCR System (Roche 

Diagnostic, Indianapolis, IN). The primers used for PCR are listed in table 5 

and PCR conditions are shown in table 6. 

 

 
Table 5: Primers used to perform PCR of hH1 cDNA regions.  

hH1 cDNA Region Forward primer (5'-3') Reverse primer (5'-3') 

   Exon 22-24  GTCACGATTTGAGGGCATG AATGTCCATCCAGCCTTTAA 

   Exon 21-25  TTCTGCTTGAGTATGCCGACA GTATTCCCACTGAGGCTGCT 

      

 

 

 
Table 6: Cycling parameters applied to perform Expand Taq High Fidelity PCR.  

hH1 cDNA REGION  SEGMENT CYCLES TEMPERATURE TIME 

          

Exon 21-25 1 1 94°C 5 min 

  2 10 94°C 30 sec 

      56°C 30 sec 

      72°C 45 sec 

  3 25 94°C 30 sec 

      55°C 30 sec 

      72°C 45 sec 

  4 1 72°C 7 min 

          

Exon 22-24 1 1 94°C 5 min 

  2 10 94°C 15 sec 

      58°C 30 sec 

      72°C 45 sec 

  3 25 94°C 15 sec 

      57°C 30 sec 

      72°C 
45 sec (+5 sec each 

cycle) 

  4 1 72°C 7 min 
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4.6 Minigene: Construction and Expression 

 

The genomic region of SCN5A spanning from exon 21 to exon 24 (minigene) 

was amplified by Expand Long Template PCR System (Roche Diagnostic, 

Indianapolis, IN). The following primers were used: forward primer: 

accatggccttcgaggacatctacct and reverse primer: aatgtccatccagccttta. The PCR 

conditions are showed in table 7.  

The Kozak consensus sequence with an ATG initiation codon (accatgg) for 

proper initiation of translation was inserted in the forward primer. The reverse 

primer was designed in such a way to be in frame with the vector to permit the 

transcription of V5 epitope and polyhistidine tag. The PCR product was cloned 

in pcDNA3.1/V5-His/TOPO TA vector (Invitrogen, Carlsbad, CA) (fig. 12): 

the following reagents were used in 20 µl reaction volume: 2 µl of fresh PCR 

product, 1 µl of Salt solution (1.2 M NaCl; 0.06 M MgCl2), 1 µl of vector. The 

reaction was incubated at room temperature for 5 minutes. The final construct 

were transformed in One Shot TOP10 chemically competent cells (Invitrogen, 

Carlsbad, CA) according to manufacturer‘s instructions. The final construct 

was sequenced to verify the proper insertion of the fragment into the vector. 

Afterward, 1 µg of plasmid was transfected in HEK 293 cells using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The mRNA was extracted 

from cells, as described previously, 48 hours after transfection. 

 

  

 
Table 7: Expand Long Template PCR conditions used to amplify the spanning region 

from exon 21 to exon 24 of SCN5A gene. 

SEGMENT CYCLES TEMPERATURE TIME 

1 1 94°C 5 min 

2 10 94°C 30 sec 

    59°C 1 min 

    68°C 8 min 

3 25 94°C 30 sec 

    57°C 1 min 

    68°C 8 min (+20 sec each cycle) 

4 1 68°C 10 min 

 

 

 

 

 

 

 

 

 

http://products.invitrogen.com/ivgn/product/C404010?ICID=search-product
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Figure 12: Schematic representation of SCN5A minigene (on the top) and vector. The 

red arrow shows the position of mutation; the black arrow shows the position where 

the minigene was inserted. 

 

 

 

4.7 Site-directed Mutagenesis 

 

The mutants, corresponding to unknown mutation found by genetic analysis, 

were generated to perform the in vitro expression studies. 

The human cardiac sodium channels cDNA (hH1) was cloned in pRcCMV 

(Invitrogen, Carlsbad, CA ) whereas human cardiac potassium channel cDNAs 

(KCNQ1 and HERG) were cloned in pIRES2EGFP (Clontech, Mountain 

View, CA ). All plasmids were kindly provided by Dr. Alfred L. George. The 

mutants, corresponding to unknown mutations, were generated by 

QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The 

primers were designed according to manufacturer‘s instruction (tab. 8). The 

mutagenesis reaction was performed in 50 mL final volume containing 1X 

reaction buffer (10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-HCl pH 8.8, 2 

mM MgSO4, 0.1% Triton X100, 0.1 µg/µl BSA), 0.3 mM dNTP, 125 ng of 

each primer, 2.5 U Pfu Turbo DNA polymerase and 50 µg of WT plasmid. The 

cycling parameters were listed in table 9. The mutagenesis products were 

treated with DpnI enzyme that is specific for methylated and hemimethylated 

DNA and is used to digest the parental DNA template and to select for 

mutation-containing synthesized DNA. Afterwards, all constructs were 

transformed in JM109 competent cells (Stratagene, La Jolla, CA) and purified 

using PureLink HiPure plasmid maxiprep kit (Invitrogen, Carlsbad, CA) 
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according with instructions. Final constructs were sequenced to verify creation 

of mutation and exclusion of polymerase errors. 

 

 
Table 8: List of primer used to generate mutants by site-direct mutagenesis. 

GENE PRIMER SEQUENCE (5‘- 3‘) 

SCN5A T1808C Fw gcaatggggtggtctcatCactgggggcaggcgaccc 

  T1808C Rev gggtcgcctgcccccagtGatgagaccaccccattgc 

  G2284A Fw cttcacagggattttcacaAcagagatgaccttcaagatcattgc 

  G2284A Rev gcaatgatcttgaaggtcatctctgtTgtgaaaatccctgtgaag 

  G3964T Fw gatttgagggcatgaggTtggtggtgaatgccctggtgggcgc 

  G3964T Rev gcgcccaccagggcattcaccaccaAcctcatgccctcaaatc 

  C3989A Fw caatgccctggtgggcgAcatcccgtccatcatgaac 

  C3989A Rev gttcatgatggacgggatgTcgcccaccagggcattg 

  4416-4418 AACdel Fw tggtgtcatcattgac-ttcaaccaacagaag 

  4416-4418 AACdel  Rev cttctgttggttgaa-gtcaatgatgacacca 

      

KCNH2 G323A Fw gagctgcttcctatAtctggtggatgtggtacccgtgaagaacg 

  G323A Rv cgttcttcacgggtaccacatccaccagaTataggaagcagctc 

  1450_1467agccaccccggccgcatc del Fw ccaacgaggaggtggtc-gccgtccactacttcaagg 

  1450_1467agccaccccggccgcatc del Rv ccttgaagtagtggacggc-gaccacctcctcgttgg 

      

KCNQ1 824_826TCTdel Fw gtacatcggcttcctaggcctcatct-cctcgtactttgtgta 

  824_826TCTdel Rev tacacaaagtacgagg-agatgaggcctaggaagccgatgtac 

  G1748A Fw 

ccctcactgttcatctcggtctcagaaaagagcaaggatcAcggcagc

aacacgatc 

  G1748A Rev 

gatcgtgttgctgccgTgatccttgctcttttctgagaccgagatgaaca

gtgaggg 

The uppercase and underlined base represents the nucleotide substitution, the bold 

dash shows the position of deletion. 

 

 

 
Table 9: Cycling parameters applied for the mutagenesis reaction. 

SEGMENT CYCLES TEMPERATURE TIME  

1 1 95°C 5 min 

2 18-22 95°C 30 sec 

    55 °C 30 sec 

    68°C 2 min/Kb of plasmid length 

3 1 68°C 10 min 
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4.8 Cell Cultures and Heterologous Expression 

 

Cell tsA201 (or HEK293), for SCN5A experiments, were grown in Dulbecco‘s 

modified eagle medium supplemented with 10% Fetal Bovine Serum (FBS), 2 

mM L-glutamine and 1% penicillin/streptomycin in a humidified, 5% CO2 

atmosphere at 37°C. Cells were transiently transfected with pRC-CMV-hH1 

WT or hH1-mutants using FuGENE6 (Roche Diagnostic, Indianapolis, IN) or 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). In combination with hH1-WT 

or mutants was transfected a biscistronic plasmid (pGFP-IRES-hβ1), kindly 

provided my Dr. Alfred L. George, encoding enhanced green fluorescent 

protein and the human β1 subunit (hβ1) under the control of the 

cytomegalovirus immediate early promoter. Transfection was performed with 1 

µg of sodium channel α subunit-encoding plasmid (pRC-CMV-hH1) and 0,6 

µg of β1 subunit-encoding plasmid (pGFP-IRES-hβ1). 

On the other hand, CHO-K1 cells were used for KCNH2 and KCNQ1 

experiments. Cells were grown in F-12 nutrient mixture medium supplemented 

with 10% FBS, 2 mM L-glutamine, 1% Penicillin/Streptomycin and in a 

humidified, 5% CO2 atmosphere at 37°C. For KCNH2 experiments, cells were 

transiently transfected using FuGene 6 with 1,5 µg of KCNH2-WT or KCNH2 

mutants, whereas, for co-expression experiments, cells were transfeted with 1,5 

µg of both KCNH2-WT and mutant or KCNH2-WT and pDsRed empty vector.  

For KCNQ1 experiments, CHO cells were transiently transfected with 1 µg 

of KCNQ1-WT or KCNQ1-mutants. Also, KCNQ1-WT and mutants were 

expressed in presence of 1 µg of KCNE1 (assembled in pIRES-DsRed vector) 

to study IKs channel complex. 

 

4.9 Immunofluorescence 

  

Cells were seeded onto glass coversilps 24 hours before transfection. Forty-

eight hours after transfection cells were fixed with 4% paraformaldehyde and 

permeabilized in 0.2% TRITON X-100 (Roche, Diagnostic, Indianapolis, IN). 

Afterward, cells were incubated in blocking buffer (10% FBS and 2% Bovine 

Serum Albumine). 

After blocking, cells were incubated with rabbit anti-SCN5A IgG (Chemicon, 

Catecula, CA) and then with rhodamine-conjugated goat anti-rabbit secondary 

antibody (Chemicon, Catecula, CA). Images were taken at 40X magnification 

on an LSM microscope (Carl Zeiss MicroImaging, Thornwood, NY). 
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4.10 Electrophysiology  

 

Sodium and potassium currents were recorded at room temperature using 

patch-clamp technique in whole-cell configuration. Transfected cells were 

plated on glass coverslips approximately 2-3 hours before recording. Patch 

pipettes were pulled from borosilicate thin-wall glass (Warner Instrument, 

Hamden, CT) with a multistage P-97 Flaming-Brown micropipette puller 

(Sutter Instrument, San Rafael, CA) and fire-polished with a Micro Forge MF-

830 (Narashige, Japan). Electrodes resistance ranged from 1.2 to 1.7 MΩ for 

sodium channel studies and from 2,5 to 4 M for KCNH2 and KCNQ1 

experiments. 

For SCN5A experiments, the bath solution contained 140 mM NaCl, 10 mM 

HEPES, 4 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 10 mM glucose, pH 7.35 

(adjusted with NaOH). The pipette solution (intracellular solution) contained 

10 mM NaF, 110 mM CsF, 20 mM CsCl, 2 mM EGTA, 10 mM HEPES, pH 

7.35 (adjusted with CsOH). The bath and pipette solutions osmolarity was 

adjusted with sucrose to 310 and 300 milliosmoles respectively. Junction 

potential and pipette capacitance were corrected, and series resistance was 90% 

compensated to minimize voltage errors. Sodium currents were filtered at 5 

KHz and leak current was subtracted using a P/4 protocol. Whole cell 

capacitance was determined by integrating the capacitive transient elicited by a 

10 mV voltage step from -120 (holding potential) to -130 mV with 5 KHz 

filtering.  

For KCNH2, the bath solution consisted of 145 mM NaCl, 4 mM KCl, 1 mM 

MgCl2, 1,8 mM CaCl2, 10 mM HEPES and 10 mM glucose, pH 7,35. The 

osmolarity was adjusted to 275 milliosmoles. The pipette solution contained 

110 mM KCl, 2 mM MgCl2, 10 mM EDTA, 10 mM HEPES and 5 mM K2-

ATP, pH 7,2. The osmolarity was adjusted to 255 milliosmoles.  

For KCNQ1 and IKs experiments, the bath solution contained 132 mM NaCl, 

4,8 mM KCl, 1,2 mM MgCl2, 2 mM CaCl2, 10 mM  HEPES, 5 mM glucose, 

pH 7,4. The pipette solution contained 110 mM K-aspartate, 1 mM CaCl2, 1 

mM MgCl2, 11 mM EGTA, 10 mM HEPES, 5 mM K2-ATP, pH 7,3. The bath 

and pipette solutions osmolarity was adjusted to 280 and 260 missiosmoles 

respectively. Whole-cell currents were filtered at 5 KHz and leak current was 

not subtracted. Whole cell capacitance was determined by integrating the 

capacitive transient elicited by a 5 mV voltage step from -80 (holding 

potential) to -75 mV with 5 KHz filtering. 

Before the experiments, the pipette solutions were diluted 7% (for KCNQ1) 

or 10% (for KCNH2) with sterile water to avoid activation of swelling-

activated currents. Junction potential was corrected and series resistance was 

90% compensated to minimize voltage errors. As reference electrode, a 2% 

agar bridge with composition similar to bath solution was used. 

Only cells expressing fluorescence were selected for patch clamp recording. 

Cells showing very large or very slow whole-cell currents were not selected for 

data analysis (both sodium and potassium). Data acquisition was carried out 
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with Axopatch 200 amplifier and pClamp 10.0 software (Axon Instruments, 

Sunnyvale, CA). 

 

4.11 Data Analysis 

 

All data were analyzed using Clampfit 10 (Axon Instruments, Sunnyvale, CA) 

and SigmaPlot 11 (SPSS Science, Chicago, IL).  

Sodium channels activation curve was fit with Boltzmann equation I=(V-Vrev) 

x Gmax x (1+e[V-V1/2]/k)
-1 

 to determine the membrane potential at half-maximal 

activation (V1/2) and slope factor (k). To determine the sodium channel 

inactivation parameters (V1/2 and k) the current–voltage relationship was fit 

with Boltzmann equation I/Imax=1/(1+e[V-V1/2]/k).  

Recovery from inactivation of sodium channel was evaluated by fitting data 

both with double-exponential equation I/Imax=Afast(1-e[-t/fast])+Aslow(1-e[-

t/slow]) and single-exponential equation I/Imax=Afast(1-e[-t/fast]), where A and  

are amplitudes and time constants respectively.   

The level of tetrodotoxin (TTX) sensitive persistent sodium current was 

analyzed with a 200-ms depolarization protocol to -30 mV. The presence of 

inward persistent sodium current was determined as the average current 

recorded between 195 and 200 ms and expressed as percentage of peak current 

after digital subtraction of currents recorded in absence and in presence of 30 

µM TTX.  

The voltage dependence of activation in KCNH2-WT+KCNH2 C108Y and 

KCNH2-WT + empty vector was fit with Boltzmann equation I= (V-Vrev) x 

Gmax x (1+e[V-V1/2]/k)-1 . 

In KCNQ1 experiments the voltage-dependence of activation was obtained 

by fitting data with the Boltzmann function: I/Imax=1/(1+e[V-V1/2]/k). The time 

course of deactivation, was calculated by fitting tail currents with a single 

exponential function I = A x exp(−t/τ) + I0. 

All data (SCN5A, KCNH2 and KCNQ1) were presented as mean±SEM and 

statistical comparisons were estimated with Student‘s t test. Statistical 

significance was assumed for P<0.05.  
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Chapter 5 

 

RESULTS 

 

 

5.1 Genetic Analysis 

 

We carried out the genetic analysis in 49 patients affected by LQTS and 54 

patients showing BrS phenotype. In the first step, the dHPLC analysis of 

SCN5A, KCNH2, KCNQ1, KCNE1, KCNE2 genes revealed several divergent 

elution profiles. Afterward, the automatic sequencing confirmed the presence 

of sequence variation (mutation or polymorphism) in PCR fragments showing 

abnormal chromatographic profile.  

We identified 6 novel mutations in SCN5A gene:  c.T1808C (p.L603S), 

c.G3964T (p.V1322L), c.C3989A (p.A1330D) and c.4416-4418 AAC del 

(p.ΔN1472) related to LQTS; c.G839A (p.C280T) c.G2284A (p.A762T) linked 

to BrS. 

The location of mutation is showed in figure 13. 

We also found: 

- 3 novel mutations in KCNH2 gene: c. G323A (p.C108Y), c.1450-1467del 

(p.S484-I489del) and c.T245C (p.I83T);  

- 1 novel mutation in KCNQ1 gene: c.824-826TCTdel (p.F275del) and  

- 2 novel mutations in KCNE1 gene: c.C29T (p.T10M), c.G238A (p.V80I). 

These mutations were linked to LQTS.  

The location of mutations was showed in figure 14, 15 and 16. All the 

mutations found in our laboratory were listed in table 9 and 10. 

 

 
Figure 13: Location of novel mutations found in cardiac sodium channel α-subunit 

(hH1).  
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Figure 14: Location of novel mutations found in rapid rectifier potassium channel α-

subunit (HERG).  

 

 

 

 
 

Figure 15: Location of novel mutations found in slow rectifier potassium channel α-

subunit (KCNQ1).  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Location of novel mutations found in Mink1 β-subunit.  
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Table 9: Complete list of mutations (unknown and already described) found in 

SCN5A, KCNH2, KCNQ1, KCNE1 and KCNE2 genes in patients affected by long QT 

syndrome. 

GENE MUTATION REFERENCE 

      

SCN5A c. T1808C (p.L603S) UNKNOWN 

 
c.G3578A (p.R1193Q) DESCRIBED 

 
c.G3964T (p.V1322L) UNKNOWN 

 
c. C3989A (p.A1330D) UNKNOWN 

 
c.4416-4418 AAC del (p.ΔN1472 ) UNKNOWN 

 
c.G5350A (p.E1784K) DESCRIBED 

   KCNH2 c.T245C (p.I82T) UNKNOWN 

 
c. G323A (p.C108Y) UNKNOWN 

 
c.1450-1467del (p. ΔS484-I489) UNKNOWN 

 
c.C1682T(p.A561V) DESCRIBED 

 
c.C1841T (p.A614V) DESCRIBED 

 
c.C2230T (p.R744X) DESCRIBED 

 
c.T2414C (p.F805S) DESCRIBED 

   KCNQ1 c.524_534delTCTGGTCCGCC (p.R174fs105X) DESCRIBED 

 
c.C691T (R231C) DESCRIBED 

 
c.824-826TCTdel (p. ΔF275) UNKNOWN 

 
c.A842G (p. Y281C) DESCRIBED 

 
c.T910C (p.W304R) DESCRIBED 

 
c.G1032A (p.A344A) DESCRIBED 

 
c.G1573A (A525T) DESCRIBED 

 
c. G1748A (p.R583H) DESCRIBED 

   KCNE1 c.C29T (p.T10M) UNKNOWN 

  c.G238A (p.V80I) UNKNOWN 

 
c.G253A (p.D85N) DESCRIBED 
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Table 10: Complete list of mutations (unknown and already described) found in 

SCN5A gene in patients affected by Brugada syndrome. 

GENE MUTATION REFERENCE 

SCN5A c.393-5C>A DESCRIBED 

 
c.G481A (p.E161K) DESCRIBED 

 
c.C647T  (p.S216L) DESCRIBED 

 
c.C655A (p.R219S) UNKNOWN 

 
c.G839A (p.C280T)  UNKNOWN 

 
c.C1099T  (p.R367C)  DESCRIBED 

 
c.G2284A (p.A762T) UNKNOWN 

 
c.C3308CA  (p.S1103Y)  DESCRIBED 

 
c.C3946T (p.R1316X) DESCRIBED 

 
c.C4501G (p.L1501V) DESCRIBED 

 
c.C4867T (p.R1623X) DESCRIBED 

 
c.5420dupA (p.F1808VsfX3) DESCRIBED 

 
c.G5458A (p.A1820T) DESCRIBED 

  c.G5796C (p.A1932A)  UNKNOWN 

 

 

 

5.2 Splicing Analysis in One Patient Carrying the mutation SCN5A 

c.G3964T 

 

The genetic analysis revealed the presence of a novel mutation, c.G3964T, in 

SCN5A gene that was located on the first base of exon 23. Thus,  we studied 

the splicing mechanism in this patient.  

Firstly, we performed in silico analysis using NetGene2 

(http://www.cbs.dtu.dk/services/NetGene2/). This test showed that the 

confidence of acceptor splice site in SCN5A-c.G3964T is about 25% smaller 

compared to WT (WT: 0.95/1; c.G3964T: 0.74/1). Thus, we analyzed the 

mRNA (extracted from blood of patients carrying the mutation) amplifying the 

coding regions spanning from exon 21 to 25 and from exon 22 to 24. The PCR 

were than sequenced. This analysis showed that mutation c.G3964T induced 

alteration in splicing mechanism. The mRNA produced by the alternative 

splicing showed inclusion of 36 nucleotides between exon 22 and 23 (18 

http://www.cbs.dtu.dk/services/NetGene2/
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nucleotides from the beginning of exon 23 and 18 nucleotides from the end of 

exon 22) (fig. 17).  

In addition, we generated the minigene containing genomic region from exon 

21 to exon 24 of SCN5A gene. In this case, the mRNA produced from the 

minigene carrying c.G3964T mutation was similar to the WT. Supplementary 

experiments are underway. 

 

  

 

 

 
 

 

 
 

Figure 17: Analysis of mRNA in patient carrying SCN5A-c.G3964T mutations. (A) 

Electropherogram of cDNA region spanning from exon 22 to exon 24. The black 

arrow shows the mutation, the brace bracket shows alteration of sequence caused by 

insertion of 36 nucleotide. (B) Schematic representation of insertion between exon 22 

and exon 23. The red sequence is related to exon 22, the black sequence is related to 

exon 23.   

 

 

 

5.3 Immunofluorescence Studies 

 

We transfected HEK293 with cardiac sodium channel α-subunit (emitting red 

signal) and  human β1 subunit (expressing green fluorescence) to evaluate the 

behavior and the cellular location of mutant protein.  

Five unknown mutation found in SCN5A gene were analyzed by 

immunofluorescence technique: c.T1808C, c.G3964T, c.C3989A, 

c.4416_4418AACdel and c.G2284A. The latter is found in a patient affected by 

BrS whereas the first 4 mutations are related to LQTS patients. The 

immunofluorescence clearly shows that each mutant channel is located on the 

cell surface showing a correct cellular trafficking (figure 18). 

A 

B 



 
 
 
Chapter 5    Results 
 

47 
 

 

 

 

 
 
Figure 18: Immunoflourescent analysis of cardiac sodium channel mutant in HEK293 

cells. Immunoflourescence was used to determine the expression and location of WT 

and mutant protein. Lane 1 (hH1) shows rhodamine staining of cardiac sodium 

channel α-subunit; Lane 2 (hB1) shows FITC staining of ancillary β-subunit WT; 

Lane 3 (MERGE) shows merge of α and β subunit. The asterisk indicates the mutation 

associated to Brugada Syndrome, the remaining mutations are linked to long-QT 

syndrome. 
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5.4 Functional Characterization of Mutant Channels 

 

In order to analyze the genotype-phenotype association and to shed light on the 

pathogenetic defects responsible for the LQTS cases we studied the biophysical 

features of sodium and potassium channels using the patch-clamp technique in 

whole-cell configuration. 

 

5.4.1 Biophysical Properties of Mutant hH1-p.ΔN1472   

 

Genetic analysis revealed that one patient carried a novel mutation (c.4416-

4418delAAC) in cardiac sodium channel gene (SCN5A). We also analyzed and 

genotyped the family (fig. 19). The mutation caused the deletion of Asparagine 

1472 in the intracellular DIII-DIV linker loop. Asparagine 1472 is highly 

conserved among homologous sequences in several species and along 

evolutionary scale. Functional analysis was performed in tsA201 cells 

transfected with hH1 WT or mutant, in combination with β-subunit. 

The functional studies of p.ΔN1472  performed by whole-cell patch clamp 

revealed that  mutant has the peak current density approximately 50% smaller 

compared to hH1-WT channel (p.ΔN1472 : 156.6±21 pA/pF n=25; hH1-WT: 

328±56 pA/pF n=21; P<0.05) and, also, the peak current of N1472del was 

shifted to more positive potential (fig 20A).  

 

 

 

 
 

Figure 19: Pedigree of a family with LQTS3. All the patients carrying the mutation 

p.ΔN1472 show LQTS phenotype. The black, white and grey symbols represent 

affected patients, negative-phenotype and not analyzed subjects respectively. The 

arrow shows the proband. 
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First, we tested the voltage dependence of activation using a depolarizing 

protocol from -80 to +60 mV with 10 mV increments between each step. The 

mutant p.ΔN1472 showed depolarizing shift in voltage dependence of 

activation (V1/2: p.ΔN1472, -28.86±0.72 mV, n=23; hH1 WT, -44.41±1.12 mV, 

n=21; P<0.001) and increasing in slope factor (k: p.ΔN1472 , 9.15±0.17, n=23; 

hH1-WT, 7.14±0.29, n=21; P<0.001) (fig. 20B).  

Moreover, we analyzed the voltage dependence of inactivation using the 

protocol shown as inset in figure 18 C.  The mutant p.ΔN1472 exhibited a +12 

mV depolarizing shift in steady-state of inactivation compared with WT (V1/2: 

p.ΔN1472  -72.59±0.53, n=21; hH1-WT, -85.04±1.83, n=24; P<0.001); instead 

the slope factor was similar (k= -7.99±0.94 and -6.78±0.16 for WT and 

p.ΔN1472  respectively) (Fig. 20C). The shift in voltage dependence of 

activation and steady-state of inactivation implied that the window current, of 

p.ΔN1472 mutant was increased and shifted to more positive potential 

compared to hH1-WT (Fig. 20D). The window current is generated by overlap 

between activation and inactivation curve.  

We also analyzed the TTX-sensitive persistent sodium current using a 200-

ms depolarizing protocol at -30 mV from holding potential of -120 mV. The 

persistent current experiment revealed that p.ΔN1472 mutant had clearly 

increased levels of persistent sodium current compared to hH1-WT (p.ΔN1472: 

2.64±0.25 % n=5; hH1-WT: 0.08±0.02 % n=5; P<0.001) (fig. 21). Importantly, 

the increasing in persistent current is a typical feature of SCN5A mutations 

associated with LQTS type 3.  
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Figure 20: Biophysical properties of p.ΔN1472 and hH1-WT sodium channel. (A) 

Current-voltage relationship for hH1-WT (filled circles) and p.ΔN1472  (open 

circles). Currents were normalized from cell capacitance to give a measure of sodium 

current density. There were significant differences in current density between WT and 

mutant. (B) Voltage dependence of sodium channel activation. Currents were 

recorded using the pulse protocol shown as an inset. Current-voltage curve was fit 

with Boltzmann distribution. Potential at half-maximal activation (V1/2) and slope 

factor (k) are provided in Table x. (C) Voltage dependence of steady-state 

inactivation. Currents were normalized to the peak current amplitude. Parameters 

(V1/2 and k) are listed in table x. (D) Window currents: superimposition between 

voltage-dependence of activation and inactivation in hH1-WT (filled circle for 

activation and filled triangles for inactivation) and p.ΔN1472  (open circle for 

activation and open triangles for inactivation). 
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In addition, we analyzed the recovery from fast inactivation applying a 

double-pulse protocol showed as inset in figure 22.  

As result, the recovery from fast inactivation in the WT channel was 

characterized  by a single, fast time constant parameter ( fast) whereas the 

p.ΔN1472  mutant channel by a fast and a slow time constant parameters 

( slow,  fast). This effect causes a significantly delayed recovery from 

inactivation in the mutant channel. As shown in the figure 20 after 40 ms 

at the resting potential (-120 mV) the WT channel recovered  almost 

completely (96%); by contrast,  the current of the p.ΔN1472  mutant 

channel after 40 ms was about 70%, in fact the mutant needed almost 1000 

ms to almost fully recover. Moreover, the figure showed that the 

p.ΔN1472 mutant channels do not fully inactivate after 100 ms 

inactivating pulse (-10mV). In fact, after 1 ms at the resting potential the 

mutant channels still display 20% current, whereas the WT channels are 

almost fully inactivated (about 0% current).  

All biophysical parameters are listed in table 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21: Increased TTX-sensitive persistent sodium current for p.ΔN1472. Zero 

current level is indicated by a dotted line. The inset shows an expanded y axes scale to 

emphasize the relative proportion of hH1-WT and p.ΔN1472 currents. 
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Figure 22: Biophysical properties of p.ΔN1472 and hH1-WT sodium channel. 

Recovery from inactivation performed by double-pulse protocol shown in inset. 

Current-time curve was fit with double-exponential equation.   

 

 

 
Table 11: Biophysical parameters of hH1-WT and p.ΔN1472  mutant. 

Parameters hH1-WT N1472del  

 
Voltage dependence of activation 

V1/2 (mV) 
k  (mV) 
n  

 
-44,41±1,12 
7,14±0,29 
21 

 
-28,86±0,72* 
9,15±0,17* 
23 

Steady-state of fast inactivation 
V1/2 (mV) 
k  (mV) 
n 

 

 
-84,99±2,19 
-8,16±1,13 
21 

 
-72,59±0,53* 
-6,78±0,16 
21 

 
Persistent INa  (%) 

 
0,08±0,02 

 
2,64±0,25* 

n 5 5 

*P<0.001 (Comparison with hH1-WT using Student’s t-test). 
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5.4.2 Electrophysiological analysis of digenic heterozygosity in KCNQ1 

and KCNH2 genes 

  

The screening for LQTS-causing mutations revealed two mutations in two 

genes: c.G1748A (p.R583H) in KCNQ1 and c.G323A (p.C108Y) in KCNH2. 

The presence of both mutations was found in two subjects (II-2 and II-3 in 

figure 23). This condition is known as digenic heterozygosity. Interestingly, the 

two subjects  carrying both mutations showed severe long QT phenotype; in 

fact, the QT interval was more than 530 milliseconds. The HERG-p.C108Y 

mutation occurs in N-terminus of protein and modifies a highly conserved 

amino acid residue. The KCNQ1-p.R583H mutation is located in 

transmembrane segment S5; the specific amminoacid is highly conserved 

among homologous sequences in several species and along evolutionary scale.  

 

5.4.2.1 Biophysical Properties of the Mutant HERG-p.C108Y  

 

KCNH2-p.C108Y mutant channel was investigated by analyzing the ionic 

currents from CHO-K1 cells transfected with KCNH2-WT or KCNH2-

p.C108Y and from CHO-K1 cells co-transfected with KCNH2-WT and 

KCNH2-p.C108Y.  

Data were recorded at test potentials ranging from - 80 to + 70 mV stepped in 

10 mV increments from the holding potential of - 80 mV for 2000 ms, 

followed by repolarization to - 50 mV for 2000 ms.  

As results, the biophysical studies showed that cells expressing KCNH2-

p.C108Y in homozygous condition had no current. So, the p.C108Y mutant 

channel is a non-functional channel (fig. 24A). 

On the other hand, in order to evaluate if this mutant channel could exert a 

dominant negative effect in heterozygous condition, as observed in our patients 

(fig. 23), we recorded whole-cell we analyzed CHO-K1 cells co-expressing 

KCNH2-WT and KCNH2-p.C108Y. The mutant channel, in combination with 

KCNH2-WT, showed significantly reduced activating and tail currents 

densities (Fig. 24B, C). In particular, activating current density was reduced by 

~50% and tail current density by ~63%.  In addition, we analyzed the voltage 

dependence of activation in KCNH2 WT+KCNH2-p.C108Y, which was 

significantly shifted to more negative potentials (fig. 24D). (V1/2: KCNH2-WT 

+ empty vector, 12.9±2.4 mV, n=6; KCNH2-WT + KCNH2-p.C108Y,-7.0±3.1 

mV, n=9; p<0.05) but there were no differences in the slope factor (k: KCNH2-

WT + empty vector, 10.75±0.69 mV, n=6; KCNH2-WT + KCNH2-p.C108Y, 

12.92±0.85 mV, n=9; p>0.05) 
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Figure 23: Segregation of KCNQ1-p.R583H (in bold red) and KCNH2-p.C108Y (in 

bold black) variants in the LQTS pedigree. Subjects carrying both the mutations show 

severe long QT phenotype. The solid symbols represent the individuals clinically 

affected. The arrow shows the proband. 
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Figure 24: Functional characterization of KCNH2-p.C108Y variant. (A) 

representative traces illustrating K
+
 currents observed in CHO-K1 cells transiently 

transfected with KCNH2-WT or KCNH2-p.C108Y recorded with the protocol shown 

in inset (arrows indicate the time points at which currents were compared). (B) 

current-voltage relation for K
+
 current densities from CHO-K1 cells transiently 

transfected with KCNH2-WT + empty vector (solid circles) or KCNH2-p.C108Y + 

KCNH2-WT (open circles,). (C) current-voltage relation for amplitude of peak tail 

current densities after repolarization to - 50 mV for KCNH2-WT + empty vector (solid 

circles) and KCNH2-p.C108Y + KCNH2-WT (open circles). (D) normalized current-

voltage relation for peak tail current densities for KCNH2-WT + empty vector (solid 

circles) and KCNH2-p.C108Y + KCNH2-WT (open circles, n = 9). Asterisk indicates 

significant differences between KCNH2-WT + empty vector and KCNH2-p.C108Y + 

KCNH2-WT (p< 0.05). 
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5.4.2.2 Biophysical Properties of the Mutant KCNQ1-p.R583H  

 

In order to analyze KCNQ1 mutant properties, we transfected CHO-K1 cells 

with KCNQ1-p.R583H channels. The mutant channel showed no significant 

differences in activating and tail current values (fig. 25B, C). On the contrary, 

significant differences were observed in the activating processes and in tail 

current decays (Fig. 25A, 26). In particular, the KCNQ1-p.R583H mutant 

channels seem to undergo an inactivation process during the activation step 

which is not found in KCNQ1-WT channels. Furthermore, the time course of 

deactivation resulted to be altered in KCNQ1-p.R583H mutant channels 

compared to KCNQ1-WT channels (fig. 26). The fitting of tail currents by 

single exponential equation revealed that the time constants of deactivation are 

significantly faster in KCNQ1-p.R583H mutant channels (fig. 27). Moreover, 

we observed statistically significant positive shift in voltage dependence of 

activation (V1/2: KCNQ1-WT, -22.3±0.97 mV, n=18; KCNQ1-p.R583H, -

16.7±1.22 mV, n=12, p<0.05) without significant alteration in the slope factor 

(k: KCNQ1-WT, 2.96±0.59 mV, n=18; KCNQ1-p.R583H, 4.59±1.15 mV, 

n=12, p>0.05) (fig. 25D). 

In addition, we characterized the functional defects carried by the KCNQ1-

p.R583H mutant channels recording whole-cell currents in CHO-K1 cells co-

expressing KCNQ1 and the accessory subunit KCNE1, to study the IKs 

complex.   

As results, the currents recorded in KCNQ1-p.R583H + KCNE1 transfected 

cells didn‘t show any significant difference in activating currents, tail currents 

and voltage dependence of activation compared to KCNQ1-WT + KCNE1 

transfected cells (V1/2: KCNQ1-WT+KCNE1, -31.8±6.0 mV, n=7; KCNQ1-

p.R583H+KCNE1, 35.5±5.9 mV, n=8, p>0.05; k: KCNQ1-WT+KCNE1, 

16.86±0.93 mV, n=7; KCNQ1-p.R583H+KCNE1, 15.38±1.15 mV, n=8, 

p>0.05).  
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Figure 25: Function l characterization of KCNQ1-p.R583H.  (A) representative traces 

illustrating potassium currents observed in CHO-K1 cells transiently transfected with 

KCNQ1-WT or KCNQ1-p.R583H recorded using protocol shown as inset (arrows 

indicate the time points at which currents were compared). (B) current-voltage 

relation for potassium current densities from CHO-K1 cells transiently transfected 

with KCNQ1-WT (solid circles) or KCNQ1-p.R583H (open circles). (C) current-

voltage relationship for amplitude of peak tail current densities after repolarization to 

-30 mV for KCNQ1-WT (solid circles) or KCNQ1-p.R583H (open circles). (D) 

normalized current-voltage relationship for peak tail current densities for KCNQ1-WT 

(solid circles) and KCNQ1-p.R583H (open circles). Data were recorded at test 

potentials ranging from -80 to +60 mV stepped in 10 mV increments from the holding 

potential of -80 mV for 2000 ms, followed by repolarization to -30 mV for 1000 ms. 

Data were fit with a Boltzmann distribution for KCNQ1-WT (solid line) or KCNQ1-

p.R583H (dashed line). 
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Figure 26: Functional characterization of KCNQ1-p.R583H mutant. Representative 

traces illustrating potassium currents observed in CHO-K1 cells transiently 

transfected with KCNQ1-WT (red trace) or KCNQ1-p.R583H (blue trace) recorded 

with the protocol showed as inset. 

 

 

 

 

 
 

Figure 27: Time constants of tail current decay for KCNQ1-WT (solid circles) and 

KCNQ1-p.R583H (open circles). Data were obtained by fitting the tail current (area 

delimited by red dotted lines shown in inset) with a single exponential equation. 
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Figure 28: Functional characterization of IKs complex.  (A) current-voltage relation 

for potassium current densities from CHO-K1 cells transiently transfected with 

KCNQ1-WT+KCNE1 WT (solid circles) or KCNQ1-p.R583H+KCNE1 WT (open 

circles). (C) current-voltage relationship for amplitude of peak tail current densities 

after repolarization to -30 mV for KCNQ1-WT+ KCNE1 WT (solid circles) or 

KCNQ1-p.R583H+KCNE1 WT (open circles). (D) normalized current-voltage 

relationship for peak tail current densities for KCNQ1-WT+ KCNE1 WT (solid 

circles) and KCNQ1-p.R583H+ KCNE1 WT (open circles). Data were recorded at 

test potentials ranging from -80 to +60 mV stepped in 10 mV increments from the 

holding potential of -80 mV for 2000 ms, followed by repolarization to -30 mV for 

1000 ms. No difference were detected in KCNQ1-p.R583H+KCNE1 WT compared to 

KCNQ1-WT+KCNE1 WT. 
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Chapter 6 

 

DISCUSSION 

 

 

Long QT syndrome is a cardiac channelopathy characterized by prolonged QT 

intervals on the surface electrocardiogram, syncope and sudden cardiac death 

due to ventricular tachyarrhythmias, in particular torsade de pointes [Amin et 

al. 2009, Schwartz et al. 2001]. The disorder occurs in young subjects, 

especially in children and teenagers. Prolonged QT intervals reflect action 

potential duration in ventricular myocytes, and correspond to delayed 

ventricular repolarization [Amin et al. 2009]. The pathology is generally linked 

to mutations in SCN5A, KCNH2, KCNQ1, KCNE1 and KCNE2. These genes 

encode cardiac ion channels (SCN5A, KCNH2, KCNQ1) and ancillary β-

subunits (KCNE1 and KCNE2).  

 

6.1 Gain-of-function of Mutant hH1-p.ΔN1472   

 

The voltage-gated cardiac sodium channel, SCN5A, conducts the inward 

sodium current (INa) that initiates the cardiac action potential. The SCN5A-

mediated late sodium current also influences repolarization and refractoriness. 

Several diseases associated with ventricular conduction abnormalities have 

been associated with mutations in SCN5A, including LQTS and BrS. We 

identified 4 novel mutations in SCN5A related to LQTS. In particular, we 

functional characterized the p.ΔN1472 mutation.  

First, we found that persistent sodium current is clearly higher in the mutant 

than hH1-WT. Importantly, the increasing in persistent current is a hallmark of 

SCN5A mutations associated with LQTS type 3. This biophysical defect may 

explain the onset of LQTS.  

In addition, mutant p.ΔN1472 shows a positive depolarizing shift in voltage-

dependence of activation and a +12 mV depolarizing shift in the voltage 

dependence of inactivation. The positive shift in the activation and inactivation 

indicates that mutant channel opens and closes at a more positive voltage value 

compared to the WT; this means that the mutant channel opens and closes later 

than the WT. Furthermore, the mutant shows a significantly delayed recovery 

from inactivation. This alteration is not a typical characteristic of the long QT 

phenotype but it should cause other alteration not clinically detected or masked 

by LQTS. However, these biophysical defects alter the normal behavior of 

sodium channel: our data suggest that the mutant channel opens and closes 

later than WT channels and persistent sodium current is maintained. The 

increase in intake of sodium current causes the prolongation of action potential 
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plateau phase reflecting in the prolongation of the action potential duration. 

This biophysical behavior of the mutant is clearly the trigger for LQTS 

phenotype. In addition, the mutant shows additional functional properties, 

namely delayed recovery from inactivation and shift in the activation, that are 

uncommon in the LQTS, but are probably linked to other heart conduction 

defects. 

 

6.2 Digenic Heterozygosity in KCNH2 and KCNQ1 Genes 

 

The screening for LQTS-causing mutations in a family from South Italy 

revealed two mutations in two genes: c.G1748A (p.R583H) in KCNQ1 and 

c.G323A (p.C108Y) in KCNH2. These genes encode potassium channel α-

subunits. Interestingly, subjects carrying both mutations showed a severe 

LQTS phenotype (QTc>530ms). This condition is known as digenic 

heterozygosity. We functionally characterized both mutations by whole-cell 

patch clamp. Interestingly, the KCNH2-p.C108Y mutant is a non-functional 

channel. Moreover, we analyzed the mutant in combination with WT 

(heterozygous condition). The results show that KCNH2-p.C108Y+KCNH2-

WT had 50% reduced currents (activation and tail currents) suggesting that the 

KCNH2 mutation exerts a dominant negative effect when it is expressed in a 

heterozygous condition.  

We also analyzed the functional properties of the KCNQ1-p.R583H mutant. 

This mutation has already been reported and associated to LQTS (Napolitano 

et al 2005). We found no significant differences in activating and tail current 

values between WT and mutant channels. On the contrary, we observed 

significant differences in the activating processes and in tail current decay, 

suggesting an inactivation process during the activation step. 

Furthermore, the time course of deactivation resulted to be altered in 

KCNQ1-p.R583H mutant channels compared to KCNQ1-WT channels. In 

addition, the fitting of tail currents by single exponential equation revealed that 

the time constants of deactivation are significantly faster in KCNQ1-p.R583H 

mutant channels. The abnormal activation and deactivation kinetics observed in 

this mutant channel suggest that the mutation could alter the normal 

repolarizing process during the heart action potential. In contrast, when we co-

expressed KCNQ1 (WT and mutant) with β-subunit (KCNE1) no differences 

were observed suggesting that LQTS phenotype cannot be led by this mutation.   
The segregation of the two mutations in the affected subjects and the 

electrophysiological results indicate that the mutation KCNH2-p.C108Y is the 

cause for LQTS phenotype, whereas the mutation KCNQ1-p.R583H, alone, do 

not cause severe biophysical alterations to trigger for long QT syndrome. In 

fact, the subjects carrying both mutations show a very long QT interval 

(QTc>530 ms) and, in this case, the clinical symptoms are not easily   

manageable by pharmacological therapy. Probably, the mutation KCNQ1-

p.R583H variant could be a modifier of the HERG mutation.  
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In fact, as described by Brunner et al (2008), we presume that the KCNH2 

and KCNQ1 mutants interact with the reciprocal WT α-subunits (KCNQ1-

p.R583H/KCNH2-WT and KCNH2-p.C108Y/KCNQ1-WT) thereby causing 

an alteration in the WT channel function. These defects, in combination, may 

explain the severe LQT phenotype. 

In conclusion, the proband‘s mother ( I-2 in figure 23) shows just the mutation 

KCNH2-p.C108Y but does not manifest any symptoms. We assume that a 

genetic protective factor, not yet known, is present in the proband‘s mother.
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ABBREVIATIONS 

 
A   Amperes 
Afast   Fast amplitude 
AKAP9   A-kinase anchoring protein 
ANK2   Ankyrin B 
AP   Action potential 
APD   Action potential duration 
ARVC/D   Arrhythmogenic right ventricular cardiomyopathy/dysplasia 
AS   Andersen’s syndrome 
Aslow   Slow amplitude 
AVN   atrioventricular node 
bp   Base pair 
BrS   Brugada syndrome 
C   Capacitance 
Ca2+   Calciom ion 
CACNA1C  Cav1.2 cardiac L-type calcium channel gene 
cAMP   Cyclic adenosine monophosphate 
CAV3   Caveolin 3 
CHO-K1   Chinese hamster ovary cells (K1clone) 
Cm   Membrane capacitance 
Cpip   Pipette capacitance 
dHPLC   Denaturing high performance liquid chromatography 
ECG   Electrocardiogram 
EDTA   Ethylene diamine tetra-acetic acid 
EGFP   Enhanced green fluorescent protein 
EGTA   Ethylene glycol tetraacetic acid 
Ex   Exon 
F   Farads 
FBS   Fetal bovine serum 
FDCM   Familial dilated cardiomyopathy  
G   Conductance 
GFP   Green fluorescent protein 
Gmax   Maximum conductance 
GPD1-L   Glycerol-3- phosphate dehydrogenase 1-like 
GΩ   Giga Ohms 
HCM   Hypertrophic cardiomyopathy 
HEK293   Human embryonic kidney cells 
HEPES   Hydroxyethyl-piperazineethanesulfonic acid 
HERG   Human ether-a-go-go- related gene 
hH1   Cardiac sodium channel α-subunit 
I   Current 
ICa   L-type calcium current 
IK   Delayed rectifier current 
IKr   Rapid delayed rectifier potassium current 
IKs   Slow delayed rectifier potassium current 
IKto    Transient outward potassium current 
Imax   Maximum current 
INa   Sodium current 
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IRES   Internal ribosome entry site 
k   Slope factor 
K+   Potassium Ion 
K2-ATP   Adenosine triphosphate dipotassium salt 
Kb   Kilobases 
KCNE1   Potassium voltage-gated channel, Isk-related family, member 1 
KCNE2   Potassium voltage-gated channel, Isk-related family, member 2 gene 
KCNE3 Potassium voltage-gated channel, Isk-related family, member 3 gene 
KCNH2   Rapid delayed potassium channel gene 
KCNJ2   Potassium inwardly-rectifying channel, subfamily J, member 2 gene 
KCNQ1   Slow delayed potassium channel gene 
kDa   Kilodalton 
KHz   Kilohertz 
KvLQT1   Potassium voltage-gated channel, KQT-like subfamily, member 1 
LQTS   Long QT syndrome 

M   Mega Ohms 
MinK   Potassium voltage-gated channel subfamily E member 
MiRP1   MinK-related peptide 1 
mV   Millvolts 
Na+   Sodium Ion 
Nav 1.5   Cardiac sodium channel α-subunit 
PAS   Per–Arnt–Sim domain 
PCR   Polymerase chain reaction 
PIP2   Phosphaditylinositol-4,5-biphosphate 
PKA   Protein Kinase A 
R   Resistance 
Ra   Access resistance 
Rleak   Leak resistance 
Rm   Membrane resistance 
Rpatch   Patch resistance 
Rpip   Pipette resistance 
S   Siemens 
SAN   Sinoatrial node 
SCD   Sudden cardiac death 
SCN4B   Sodium channel  β-subunit Navβ4 
SCN5A   Cardiac sodium channel α-subunit 
SNTA1   Syntrophin alpha 1 

T   Temperature 
Ta   Annealing temperature 
TD   Touch-down 
TS   Timothy syndrome 
tsA201    SV40 temperature-sensitive T antigen cells 
TTX   Tetrodotoxin 
UTR   Untranslated region 
V   Voltage 
V1/2   Membrane potential at half-maximal activation 
Vion   Reversal potential of ion 
Vm   Membrane potential 
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Vrev   Reversal potential 
WT   Wild-type 
ΔV   Electrochemica gradient 

   Time constant 
Ω   Ohms 
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