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1. Introduction 

 

During recent years intensive agricultural methods and the large scale 

development of the agrochemical industry has drammatically increased the variety 

and levels of the agrochemicals in continental and marine natural waters.  

The use of pesticides is an integral part of world food production as illustrated by 

the fact that more than 2.5 million tons of these antropogenic chemicals were 

applied to soil and foliage in 1996 (Brown L.R. et al., 1996). When applied to a 

particular location, pesticides can enter ground and surface water in solution, in 

emulsion, or bound to soil colloids and may impair water for its designated uses. 

Recent findings cite the presence of these compounds in drinking water (Koplin 

D.W. et al., 1996). Some types of pesticides are resistant to degradation and may 

persist and accumulate in aquatic ecosystems modifying their equilibrium by 

eliminating or reducing populations of organisms, including endangered species. 

In addition, they can destroy the food source of higher organisms, or reduce the 

amount of vegetation available for habitat and stabilization of soft sediments. A 

major source of contamination from pesticide use is a result of their normal 

application to the soil. Pollution of surface waters also depends on the quantity 

and nature of pesticides which can be used under different chemical formulations, 

and on the peculiarities of soils which may be easily permeable and near to the 

water systems. Other sources of pesticide contamination are atmospheric 

deposition, spray drift during the application process, misuse, and discharges that 

may be associated with pesticide storage, handling, and waste disposal.  

Pesticides in drinking water and food (Cabras and Angioni, 2000) may have 

adverse effects for human health: carcinogenesis (Blair A. et al., 1985), 

neurotoxicity (Tanner and Laangston et al., 1990), effects on cell development 

(Gray L.E. et al., 1994) are the possible chronic effects deriving from these 

compounds. The scientific community has shown great concern about these risks, 

which is supported by results from major monitoring studies performed over 20 

years ago (Hörmann W.D. et al., 1979), and confirmed by more recent 

investigations (Anon, 2000a; Anon, 2000b). With increasing global demand for 

vegetables, the situation does not look likely to improve. In fact, the current 
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situation might worsen with the appearance of new substances. In the European 

Union, the quality of water for human consumption is controlled by many 

regulations which establish the maximum admissible values of toxic pesticides 

and their degradation products at very low concentrations: a maximum 

permissible concentration for a particular pesticide and/or its derivative is 0.01 

ppb and 0.5 ppb for the total load of all plaguicides (Prammer B., 1998; World 

Health Organization, 1993).Environmental concentrations of pesticides and their 

known metabolites are fixed in the maximum contaminant level parameter (CML) 

in USA, and in parameter of maximum allowable concentration (MAC) in 

Canada.The critical nature of this environmental problem has prompted the 

development of faster and more accurate methods for characterisation and 

quantization of the pesticides dispersed in the environment. These methods have 

generally been very successful, but until now, no completely efficient methods 

have been developed for remediation of contaminated waters (Bryant E.A. et al, 

1992). Moreover, pesticides are only one component of a group of chemicals 

which are continually introduced in the environment: among these, 

pharmaceuticals must also be considered. Studies undertaken in USA, Europe and 

Canada have detected a wide range of drugs in groundwater, surface water and 

even drinking water systems (Zuccato E. et al., 2000; Jones O.A.H. et al., 2002). 

Levels of pharmaceuticals amount to thousands of tons per year which are similar 

to the amount of fertilizers and other chemicals used in agriculture (OECD 2001). 

After administration of drugs, only a limited quantity is assimilated and 

metabolized by the organisms, the remaining part is excreted and ultimately ends 

up in waste treatment plants. Most treatment plants are unable to remove drugs so 

they pass either into surface waters or groundwater. Runoff from farm animal 

operations contributes a significant amount to drugs into the environment, as do 

hospital discharges and the aquaculture industry. The widespread occurrence of 

pharmaceuticals in the aquatic environment explains the detection of their 

presence in drinking waters (Heberer T. et al., 1996; Ternes T.A., 2001).  Figure 1 

shows possible sources and pathways for the occurrence of pharmaceutically 

active products in the environment. 
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Figure 1. Possible sources and pathways for the occurrence of pharmaceutical residues 
in the aquatic environment. 
 

The major issues associated with the origins and presence of these chemicals in 

surface, subsurface, and drinking waters have been featured in a number of 

reviews, books, and proceedings, among which some recent examples are 

Daughton (2001), Daughton and Jones-Lepp (2001), Daughton and Ternes (1999), 

Heberer (2002), Kümmerer (2001). Even if at low concentrations, 

pharmaceuticals cannot be considered harmless for living species in the 

environment and their toxicity should be examined (Colburn and Clement, 1992). 

In fact, it is worth noting that antibacterial drugs used in stock-breeding, have 

antialgal effects (Henschel K.P. et al., 1997) and previously, diazepam has been 

shown to have adverse effects on the diatoms Hantzschia amphioxys and Surirella 

robusta (Spurck and Pickett-Heaps,1994). Thus, the aquatic environment receives 

composite loads of contaminants including pesticides, pharmaceuticals, veterinary 

and human antibiotics, industrial compounds, hormones and sterols, in increasing 

amounts. A chemical-analytical approach to monitoring pollutants is not 

exhaustive, but it is necessary to know their toxicological effects by using target 
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aquatic organisms in order to obtain an overall measure of the environmental 

contamination risk.  

Most toxicity assays are presented in the literature as acute toxicity tests. 

However, it is also necessary to perform chronic tests on target aquatic organisms 

to better identify whether these compounds have sublethal effects at 

concentrations which usually range from ng/l to µg/l. It is likely that these low 

concentrations do not represent an acute risk, but there are no significant data 

about their chronic toxicity, the active/ passive assimilation of xenobiotics by the 

organisms, or their accumulation in the tissues and diffusion through the food 

chain.  

From 1998 the US Department of Health and Human Services has required all 

Federal agencies to assess the environmental impact of approving drugs when the 

expected concentration at the point of entry into the aquatic environment (EIC) is 

1 µg/l or greater (US 1998). A note for the guidance of the European Agency for 

the evaluation of medicinal products EMEA (2003) states that an application for 

the marketing authorization for a medicinal product for human use must be 

accompanied by an environmental risk assessment when the predicted 

environmental concentration (PEC) is above 0.01 µg/l.    

Little is known about the fate of pharmaceuticals and pesticides in the 

environment and limited researches have until now been conducted on their 

transformation products from both analytical and toxicological points of view. 

The disappearance of xenobiotic residues at a given location does not mean the 

end of the environmental problem, because they can be translocated, 

bioconcentrated or converted into more dangerous chemicals. 

Given the potential human and wildlife health risks associated with toxic 

chemicals, it is important to have considerable information on their persistence in 

surface waters and/or in the soil by considering their reaction mechanisms under 

typical environmental conditions.  

In fact, xenobiotics can be subjected to biotic (biotransformation by aquatic 

organisms such as algae, bacteria) and abiotic (hydrolysis, oxidation, 

photodegradation) processes in the environment giving derivatives that can be 

more persistent and more toxic than the parent compounds.  
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In this regard, the EMEA (European Agency for the evaluation of medicinal 

products) excludes an environmental risk assessment of metabolites formed at 

levels below 10%, while for transformation products exceed 10% (major 

metabolites) the risk assessment is performed using the defined PEC (predicted 

environmental concentration) and PNEC (predicted no-effect concentration) 

values. The opinion of the European Scientific Committee on Toxicity, 

Ecotoxicity and the Environment (CSTEE, 2001) differs from that of EMEA as 

CSTEE considers inappropriate to define major metabolites by their percentages. 

They should be those which may produce significant adverse effect on 

environmental species. In fact, a study on the toxicity of prednisolone, 

dexamethasone and their photochemical derivatives on aquatic organisms 

(DellaGreca et al., 2004) has evidenced that a photoderivative (5% yield) had a 

chronic toxicity one hundred times higher than prednisolone on C. dubia.   

Levels of the pesticide malathion in water as low as 5 parts per million were 

shown to cause heart defects in certain types of fish, resulting in circulatory 

defects (Solomon and Weis, 1979). In addition, the metabolic breakdown products 

of parathion and malathion, paraoxon and malaoxon respectively, have been 

shown to decrease cell numbers, DNA synthesis and protein synthesis in cell 

cultures of chick pectoral muscle (Wilson and Stinnett, 1969). Thus, metabolites 

may be more detrimental than the parent compounds. 

Many metabolites are included in the monitoring system of groundwater and 

surface water. For example, in Dutch underground waters analytical investigations 

are extended, in addition to the pesticide aldicarb widely used for treatment of 

soybeans and potatoes, also to its metabolites: aldicarb sulfoxide and aldicarb 

sulfone. (Bottoni P., 1994). The USEPA (US Environmental Protection Agency), 

in the context of the National Pesticide Survey, performed between 1985 and 

1990, listed pesticides and their respective derivatives with high contaminant 

potential, which must be searched in underground waters (Table 1). (Funari E. et 

al., 2001) 
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Table 1. Pesticides and their respective degradation products (USEPA) detected in the 

US underground water systems (National Pesticide Survey). Compounds with high 

contaminant potential are reported in bold  

 
 

 

It is obvious, in the light of these data, how the risk associated with the presence 

of both parent compounds and degradation products into the aquatic environment 

has become an important issue in environmental chemistry. 

With regard to abiotic degradation, various researches (Zafiriou and True, 1979; 

Zepp et al., 1985; Scully and Hoigné, 1987) have revealed that in natural aquatic 

Acifluorfen 3,5-dichlorobenzoic acid paraoxon methyl 
Alachlor 1,2-dicloropropane Metolachlor 
Aldicarb 1,3-dichloropropene  cis Metribuzin 

Aldicarb sulfone 1,3-dicloropropene trans Metribuzin DA 
aldicarb sulfoxide Dichlorprop metribuzin DADK 
Baygon (propoxur) Dichlorvos Metribuzin DK 

Bentazone Dinoseb MGK 264 
Bromacil Diphenamid Molinate 
Carbaryl Disulfoton Napropamide 

Carbofuran disulfoton sulfone Neburon 
3-OH-carbofuran Disulfoton sulfoxide 4-nitrophenol 
phenol carbofuran  Diuron Norflurazon 

Phenol-3-keto carbofuran Endosulfan I Pentachlorophenol 
Carboxin Endosulfan II Permethrine cis 

Chlorothalonil Endosulfan sulphate Permethrine trans 
Chlorpropham Heptachlor Picloram 

Cyanazine heptachlor epoxide  Prometryn 
Cycloate EPTC Pronamide 

2,4-D hexachlorobenzene Pronamide metabolite 
2,4-DB hexachlorocychlohesane Propachlor 

Dalapon Etoprop Propanil 
DCPA Ethylen bromide Propham 

DCPA acid metabolites Fenamiphos Simazine 
4,4-DDT Fenamiphos sulfone 2,4,5-T 

4,4-DDD Fenamiphos sulfoxide 2,4,5-TP 
4,4-DDE Fenamirol Terbufos 
Diazinon Linuron Terbutryn 
Dicamba Methiocarb Triadimefon 

5-OH-dicamba Methomyl Trifluralin 
3,5-dichlorobenzoic acid Metoxychlor Vernolate 
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environments abiotic transformations such as hydrolysis, and direct or indirect 

photodegrative processes can occur. Photochemical reactions are most important 

in the conversion and degradation of pollutants in aquatic systems (Mansour M., 

1993a; Mansour M. et al., 1993b; Durand G. et al., 1990), while in the soil they 

are significant only at surface level (Scheunert I. et al., 1993).    

The phototransformation of a pollutant in surface water may result from light 

absorption by the pollutant itself (direct photolysis) or may be photoinduced by 

the dissolved natural organic matter or nitrate ions present in the water, as these 

chromophores are known to photoproduce reactive species (indirect photolysis). 

Several studies have been reported in the literature (Vialaton D. et al., 1998; 

Welker and Steinberg, 2000; Krieger M.S. et al., 2000) showing the relative 

importance of the dependence of the two pathways on the pollutant structure. As 

sunlight penetrates down into freshwater and marine waters, the great bulk of the 

radiation is absorbed by natural dissolved or particulate substances. A number of 

recent investigations has shown that the influence of natural sustances on 

photoreactions in freshwater and seawater is not limited to light attenuation (Zepp 

R.G. et al., 1981a; Zepp R.G. et al., 1981b; Wolff C.J.M. et al., 1981). Sunlight-

induced reactions involving free radicals may be initiated through photolysis of 

natural inorganic constituents such as nitrite (Zafiriou O.C., 1983) and hydrogen 

peroxide (Zika and Cooper, 1983; Draper and Crosby, 1983). Moreover, a 

significant portion of the solar radiation absorbed by freshwater humic substance 

results in formation of electronically excited molecules that are capable of 

participating in a variety of reactions with aquatic pollutants (Zepp R.G. et al., 

1981a; Zepp R.G. et al., 1981b). These photosensitized reactions can greatly 

accelerate the light-induced transformation of trace chemicals in natural waters, in 

some cases resulting in the rapid photoreaction of compounds that are stable to 

sunlight in distilled water (Joussot-Dubien and Kadiri, 1970; Zepp R.G. et al., 

1981a; Zepp R.G. et al., 1981b). Humic substances are aromatic structures (Figure 

2) arising from the degradation processes of the lignins.  
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Figure 2 

 

They may sensitize oxygen and other photoreactions of organic chemicals 

involving electronic energy transfer (Zepp R.G. et al., 1981a ). There is a dearth 

of information on factors that influence the rates of these processes in aquatic 

environments. Humic acids are able to absorb organic matter through different 

mechanisms such as ion exchange, hydrogen bond, Van der Waals strength, 

modifing solubility, biodegradability, photoreactivity and, hence, the persistence 

of pollutants in the environment.  

The nitrate in aquatic environment has long been known to be involved as an 

electron acceptor in the biological oxidation of organic sustrates (Hutchinson 

G.E., 1975). Recent evidence indicates that nitrate ions also promote the 

photochemical oxidation of trace organic compounds in water (Zepp R. G. et al., 

1987). The irradiation of nitrate in its long-wavelength absorption band 

(maximum 302 nm) results in two primary photochemical processes (Scheme 1): 

 
 

 

 

 

 

 

 

Scheme 1 
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O
.-
 is rapidly protonated to its conjugate acid, the hydroxyl radical (eq 3), a potent 

oxidant that reacts much more rapidly with most organic chemicals than does 

atomic oxygen O (3P) (Huie and Herron, 1975). The major fate of the atomic 

oxygen produced in reaction 1 is likely to be a reaction with oxygen molecular to 

form ozone. The ozone is rapidly consumed by reaction with NO2
-
 (Hoigné J. et 

al., 1985), or by decomposition to OH
.
 (Hoigné and Bader, 1976; Staehelin and 

Hoigné, 1985). 

 

The aims of this thesis have been to study the photolitic and hydrolitic processes 

of certain xenobiotics and evaluate their toxicity as well as that of their 

degradation products, since as above reported, toxicological study is meaningful 

only if it includes both parent compounds and their derivatives.  

Investigation has been devoted on some pesticides, in particular on carboxin and 

carbammates, and on different groups of pharmaceuticals, among these, steroidal 

anti-inflammatory drugs (prednisolone and dexamethasone) and non-steroidal 

antinflammatory drugs (naproxen sodium salt), diuretics (furosemide and 

hydrochlorothiazide), fibrate drugs (bezafibrate, fenofibrate and gemfibrozil), and 

proton pump inhibitors (lansoprazole and omeprazole). These chemicals have 

been selected on the basis of their sale and/or their presence into the aquatic 

environment. 

Their abiotic degradation has been studied as close to natural conditions as 

possible. They have been dissolved (for analytical purposes) or dispersed (for 

preparative purposes) in aqueous media, using distilled water, distilled water with 

added nitrates or humic acids, in sewage treatment plant water, and irradiated by a 

solar simulator or with solar light. In certain cases, photolysis and hydrolysis have 

also been examined at the different pHs that are possible in polluted aquatic 

environments. Degradation products have been isolated by chromatographic 

techniques (silica gel chomatography, TLC, HPLC) and characterized by 

spectrometric means (one and two dimensional NMR, IR, EI-MS, UV).  

The potential environmental impact of the selected xenobiotics and their 

derivatives has been evaluated, in collaboration with the "Seconda Università 
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degli Studi di Napoli", by performing acute and chronic toxicity tests on different 

organisms of the aquatic chain. For the acute toxicity, the bacterium Vibrio 

fisheri, the rotifer Brachionus calyciflorus, the anostracan crustacean 

Thamnocephalus platyurus and the cladoceran crustaceans Daphnia magna and 

Ceriodaphnia dubia have been used. The chronic toxicity has been evaluated on 

producers such as algae (Selenastrum capricornutum), and primary consumers 

(Brachionus calyciflorus, Ceriodaphnia dubia). Acute and chronic toxicity data 

are generally expressed as median effective concentrations (LC50 and EC50 in 

mg/l). 
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O S

Me CONHPh

Carboxin (1)

2. Pesticides 

 

2.1.1 Fungicide: Carboxin  

 

Carboxin (1) belongs to the class of carboxanilide fungicides used in agriculture 

for the seed treatment of wheat, barley, flax and cotton prior to planting (von 

Schmeling and Kulka, 1966) against diseases caused by Basidiomycetes (Snel M. 

et al., 1970). In fact, the mycelium of these microrganisms penetrates deeply into 

the seed and thus cannot be controlled by superficial protectans.  

 

 

 

 

 

 

 

Carboxin reacts with receptors of mytocondrial membrane of fungi which are 

unable to oxidise succinate and the metabolism of the pesticide affords 

hydroxylation products which have been identified in both plants and animals. 

Since it is useful as a seed treatment for food crops, a clear understanding of its 

fate in the crops was necessary.  

Degradation studies in soil (Balasubramanya and Patil, 1980) or in various plant 

species and animals (Chin W. T. et al., 1970) have shown that carboxin degrades 

and its main metabolite is the sulfoxide that has a non-fungitoxic activity. 

Recently studies described the photochemical behaviour of the pesticide when 

irradiated with UV light (filter Pyrex) in organic solvent (Iesce M.R. et al., 2002a) 

or in the presence of humic substances and soil (Hustert K. et al., 1999) and with 

halogen lamp in the presence of sensitizers (Iesce and Cermola, 2002b). These 

irradiation conditions determine the photooxidative alteration of carboxin and 

give a variety of photoproducts deriving from the addition of singlet oxygen to the 

double bond or to sulfur. Sensitizers generally have an acceleration effect on the 

photolysis of carboxin and this effect was observed experimentally also by 
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exposing the pesticide to sunlight. These preliminary studies can be used as a 

starting point to investigate photolytic fate of this pesticide in the environment. 

 

2.1.2 Results and Discussion 

 

Photolysis of carboxin (1) 

A dispersion of carboxin in pure water (20 mg/ 500 ml) was exposed to natural 

sunlight, under aerobic conditions. After 4 days, the dispersion was extracted with 

ethyl acetate and the organic and aqueous extracts were analyzed by 1H NMR. 

The organic extract was chromatographed by HPLC giving unreacted carboxin 

(50%) and five compounds (complessively 20%) which were identified as 

sulfoxide 2, ketoamide 3, acetate 4, disulfide 5, quinolinone 6 (Figure 3) by 

spectroscopic means (1H NMR, 13C NMR, MS, IR) and/or by comparison of 

spectroscopic data with those previously reported (Hustert K. et al., 1999; Hahn 

H.G. et al., 1995; Corbeil M.A. et al., 1973).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 
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A similar procedure was carried out by sunlight exposing aqueous suspensions of 

carboxin at pH 2, pH 14, in the presence of humic acid (10 ppm) or in the 

presence of nitrate salts (5 ppm). The conversion percentage and the composition 

of each mixture were evaluated by 1H NMR spectrum and HPLC of the organic 

extract and are reported in Table 2. In acidic conditions ester 8 and enol 9 were 

also identified. Under all the conditions used, evaporation of the aqueous layer 

furnished a compound which was spectroscopically identified as oxanilinic acid 7 

 

 
 
Table 2. Product distribution by sunlight irradiation of carboxin in water after 4 days. 
 

Product distributionb (%) Reaction 
conditiona 1 2 3 4 5 6 8 9 

pH 7 55 23 5 14 1 2 - - 
pH 10 76 20 3 - - 1 - - 
pH 2 47 38 7 2 <1 - 5 2 

Humic acidc 63 24 3 10 <1 <1 <1 - 
KNO3

d 27 45 5 18 5 <1 <1 - 
 

a Suspension of carboxin (20 mg) in 300 ml of water after saturating with oxygen. b The 
percentages have been deduced by 1H NMR of the mixture extracted with ethyl acetate. c 10 ppm . 
d 5 ppm.  
 

 

As shown in Table 2, carboxin is readily photodecomposed by natural sunlight 

giving mainly sulfoxide 2 and acetate 4. Ketoamide 3 is also found while disulfide 

5, quinolinone 6 and ester 8 are obtained in very small amounts. Environmental 

effects such as pH variation or the presence of humate appear to have little 

influence on photodegradation rate, while a significant increase is observed in the 

presence of the nitrate, as expected on the basis of its inducing photo-oxidation 

ability (Zepp R.G. et al., 1987).  

Carboxin was recovered unalterated when the above experiments were performed 

keeping its dispersions in the dark for four days. 

Sulfoxide 2 was identified according to the molecular peak at m/z 251 in the EI-

MS spectrum and to the pattern of signals in the 2.90 and 3.10 ppm range of the 

protons of the CH2SO group correlated to the carbon at δ 43.5 in the HMQC 

experiment.  IR spectrum showed strong bands at 1039 and 1079 cm-1 due to the 

stretching absorptions belonging to the S=O group.  
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Compound 3 in the EI-MS spectrum had its molecular ion peak at m/z 251, and 

strong peaks at m/z 103, due to the fragment [M-COCONHC6H6]
+, and at m/z 148, 

due to the [COCONHC6H6]
+ fragment. The multiplet at δ 2.95-3.15 of the CH2S 

group in the 1H NMR, the C-2 quaternary carbon at δ 92.1 in the 13C NMR 

spectrum, the absence of the IR bands typical of the S=O bond in the range 1030-

1100 cm-1 were in agreement with the proposed structure of compound 3. 

In the EI-MS spectrum of compound 4 peaks were present at m/z 87 and 43, 

belonging to fragments [M-SH]+ and  [M-OCH2CH2SH]+ respectively.  

Compound 5 was identified by comparison of spectral data with those of an 

authentic compound prepared by exposing aqueous solution of 1,2-

mercaptoethanol 10 to sunlight (Scheme 2). 

 

 

 

 

 

 

 

Scheme 2 

 

 

Quinolinone 6 presented a molecular peak at m/z 235 in the EI-MS spectrum. It is 

a photoisomerization product of carboxin as confirmed by control experiments. In 

fact, it was synthetized in 20% yields by irradiating carboxin solutions in CH3CN 

under argon atmosphere with high pressure UV lamp (Scheme 3).  

 

 

 

 

 

 

 

 

Scheme 3 
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In our irradiation conditions, quinolinone 6 was evidenced only in traces. In the 

EI-MS spectrum, along with the ion molecular peak at m/z 235 at low intensity, 

other peaks were present suggesting a sequence –SCH2CH2OH. These data were 

also confirmed by the presence, in the 1H NMR spectrum, of two triplets at δ 3.04 

and 3.70, reciprocally coupled in the H-H COSY experiment, and correlated to the 

signals at δ 38.8 and 60.2 in the HMQC experiment.  Sequence t-d-t-d between δ 

7.25 and 7.80 (with couplings of 7.5 Hz) in the 1H NMR spectrum and four 

methine aromatic carbons between δ 116.0 and 132.0 in the DEPT experiment 

were consistent with a 1,2 disubstituted aromatic ring. In the HMBC experiment, 

the methyl singlet at δ 2.90 gave heterocorrelations with the C-3 olefinic 

quaternary carbon and the C-10 quaternary carbon. Methyl gave NOE contact 

with the doublet at δ 7.78 in a NOESY experiment in accordance with its position 

on the C-4 carbon. 

The structure of oxanilic acid 7 was proved by the 1H NMR spectrum which 

showed only aromatic protons, and by mass spectrum which revealed peaks at m/z 

168 and 148 due to the molecular ion peak and to the fragment [M-OH]+ 

respectively. 

Compound 8 showed the molecular ion peak at m/z 267 in the EI-MS. Its 1H NMR 

spectrum showed a methyl singlet and two multiplet signals integrated for two 

protons in the aliphatic region and five protons in the aromatic region, while the 
13C NMR experiment revealed two carbons at δ 28.0 and 61.8 corresponding to 

CH2S and CH2O groups respectively, and three carbonyl carbons at δ 155.8 

(CON), 170.6 (CO2) and 191.6 (COS).               

Compound 9 had molecular peak at m/z 253 in the MS spectrum and its enolic 

structure was identified by the presence in the 1H NMR spectrum of the singlet at 

15.5 ppm.  

The formation of all the products can be explained, on the basis of photo-

oxidative transformations, as the main light-induced pathways. According to 

previous reports (Iesce M.R. et al., 2002a), excited states of the pesticide, formed 

directly by the absorption of the solar radiation [carboxin exhibits an absorption 

band with a maximum at 292 nm (log ε 3.2)], can react with ground state which 
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adds to sulfur or to the double bond leading to sulfoxide 2 or to the radicals 11 or 

12 (Scheme 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. Mechanism of the photodegradation of carboxin 

 

 

The radicals 11 or 12 afford ester 8 via the unstable dioxetane 13 while 

intermolecular reactions should be involved in the formation of  ketoamide 3 via 

the intermediate 14. As proved by control experiments, hydrolysis of ester 8 leads 

to acetate 4 and acid 7. Further decomposition of compound 4 gives disulfide 5. 

Quinolinone 6 is a photoisomerization product, in fact it is formed also in the 

absence of oxygen (Iesce M.R. et al., 2002a). Enol 9 is formed by both acid and 

light-induced addition of H2O to carboxin. Indeed, this compound is not found 

under neutral and basic conditions and carboxin was quantitatively recovered 

under acid conditions in the dark after 4 days.  
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In order to obtain informations about photooxygenation mechanisms of carboxin, 

irradiation experiments were performed in water in presence of KO2, which 

releases superoxide anion, since photooxidation processes might involve electron 

transfer mechanisms including the formation of the superoxide anion (Coyle, J.D., 

1986), or in presence of D-Mannitol, an OH radical scavenger, to verify the 

involvement of radical reactions, or in presence of DABCO, a singlet oxygen 

quencher, to verify its role in the photooxidation mechanism.  

Reaction mixtures were examined by 1H NMR after exposure to sunlight for four 

days. No appreciable changes were observed when carboxin was irradited in the 

presence of KO2 or D-Mannitol, while the most relevant results were obtained in 

presence of DABCO which remarkably slowed pesticide degradation. Thus, it is 

likely that exicited molecules of carboxin generate singlet oxygen which is able to 

add to double bond (Scheme 5) or to oxidize sulfur atom of carboxin (Scheme 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 5. Photooxigenation mechanisms of carboxin 
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On the other hand, oxygenated species might oxidize the sulfur atom giving 

sulfoxide 2 via S-hydroperoxy radical or reactive cation (Bonesi S.M. et al., 1998) 

(Scheme 6). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6. Sulfur oxidation 

 

 

 

Toxicity studies 

 

Under all the conditions used, sulfoxide 2 is the main photoproduct (20-30%) and 

it also results highly photostable. Therefore we examined its toxicity on aquatic 

organisms  

 
 
 
Table 3. Toxicity tests of carboxin and its sulfoxide 2 towards aquatic organisms 
  

 

a 95% confidence limits in brackets. b NE = no effect at 

 

 

   L(E)C50 in mg/l for acute 

toxity tests 

L(E)C50 in mg/l for chronic  

toxity tests 

Compound 
B. 

calyciflorus T. platyurus D.magna C.dubia P. 
subcapitata 

carboxin 1 
 

5.0 
(2.60-7.32) 

 
61.00 

(55.25-67.35) 

 
22.59 

(19.09-26.80) 

 
0.64 

(0.52-0.73) 

 
2.41 

(2.09-2.77) 
      
 

sulfoxide 2 
 

4.10 
(2.72-6.19) 

 

56.57 
(40.94-78.17) NEb (80 ppm) 0.66 

(0.31-0.79) NEb (30 ppm) 

1*    +     O2

H2O

a

1      +     O2

SO O
OH

1   +    1O2

Me CONHPh

1 2 SO

Me CONHPh

O

H2O
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(or S+ for b and c)
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Acute toxicity data, expressed as median effective concentrations (LC50 and 

EC50) of carboxin and its sulfoxide are reported in Table 3.  

The photoproduct was found to be as toxic as the parent compound for two 

organisms tested, B. calyciflorus and T. platyurus, while no effect was found for 

D. magna.  

Chronic tests showed higher toxicity than acute tests (Table 3). From these data it 

was possible to note that carboxin was bioactive at low concentrations mainly for 

the primary consumer C. dubia (0.64 mg/l) while it was one order of magnitude 

less inhibent towards algae (2.41 mg/l). No toxic potential for sulfoxide 2 was 

evidenced for algae at the maximum concentrations of 30 mg/l tested, while it 

showed a similar activity to that of carboxin towards the crustacean. No 

phototransformation of carboxin and sulfoxide was found at the end of the 

experiments with algae, after three days of test solution exposure at 10,000 lux.  

 

2.1.3 Conclusion 

 

Carboxin is photodegraded by exposure to sunlight in water and, as found in 

organic solvents, is particularly sensitive to photo-oxidation conditions. Eight 

photoproducts have been isolated and characterized, confirming previously 

reported results (Hustert K. et al., 1999) and their formations have been 

rationalized. The main product, which results also the most photostable and the 

least hydrolizable, is sulfoxide 2.  It should be noted that carboxin is eventually 

oxidized to sulfoxide 2 in soil, or in various plant species and animals, too 

(Balasubramanya and Patil, 1980; Chin W.T. et al., 1970). The metabolite has a 

non-fungitoxic activity and, as results from our investigation, exhibits similar or 

even lower acute toxicity towards aquatic organisms.  
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2.2.1 Carbamic insecticides: benfuracarb, carbosulfan and carbofuran  

 

Objective in this study was to determine the main products of hydrolytic and 

photolytic cleavage of three carbamic insecticides: benfuracarb (15), carbosulfan 

(16) and carbofuran (17). 

N-Methylcarbamate (NMC) insecticides are widely used for crop protection. The 

reason is that they proved to have a high insect toxicity but a generally low 

toxicity toward warm-blooded species. In addition, carbamates are much less 

persistent than organochlorine pesticides and produce fewer toxic degradation 

products (Bogialli S. et al., 2004). Nevertheless, because carbamates are inhibitors 

of acetylcholinesterase, they are considered toxic for the environment and for 

human beings. In particular, carbofuran (17) is known to exhibit extreme 

mammalian toxicity (Fahmy M.A. et al., 1970); thus, it has been classified as 

highly hazardous. This has compelled the introduction of EU regulations stating 

that the most toxic carbamates must not be present in fruits and vegetables at 

levels higher than 50 ng/g.  

The intensive use of carbofuran could increase the possibility of environmental 

exposure to this pesticide and the potential major route of exposure to carbofuran 

is drinking water (Johnson and Lavy, 1995).  
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Degradation has been observed for carbosulfan (16) in different buffer solutions 

(water/methanol ca 3:2 v/v) (Umetsu N. et al., 1980) as well as for benfuracarb 

(15) by photolysis in methanol (Dureja P. et al., 1990). Much more attention has 

been addressed to carbofuran which has proven scarcely sensitive to both 

hydrolysis and photolysis (Burrows H.D. et al., 2002). In particular, 

photodecomposition via C-O heterolysis of the carbamate group followed by ring 

opening has been observed in water using 254 nm UV light and leads to a 

substituted cathecol moiety with a tert-butyl alcohol substituent and its 

corresponding dehydration product (Bachman and Patterson, 1999). Moreover, 

several photoproducts, mainly deriving from oxidation, methylation, chlorination 

and rearrangement, have been detected by irradiation in variuos solvents under 

sunlight (Battacharya A. et al., 1994; Raha and Das, 1990).  

In this study the behaviour of the three pesticides has been examined in MilliQ 

water solutions/dispersions using Pyrex tubes in the dark and under sunlight 

irradiation. All the three pesticides exhibit absorption spectra in the same region 

(λmax 277-283 nm) with a tail extending to 350 nm. The effect of pH, humic acid 

and nitrate is also investigated. 

 

2.2.2 Results and Discussion 

 

Transformations of pesticides in water and/or sunlight 

Benfuracarb (15) (205 mg/l) and carbosulfan (16) (190 mg/l) were dispersed in 

MilliQ water and exposed to sunlight, under aerobic conditions. Each experiment 

was performed in duplicate, with one set of dark controls. After 6 days, each 
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reaction mixture was evaporated in vacuum and the residues were analysed by 1H-

NMR and by HPLC. Control experiments showed that diluted solutions (4 ppm) 

of two pesticides afforded similar results. 

Benfuracarb was unstable in water, decomposing to carbofuran (17) both in the 

dark and irradiating conditions (Table 4).  

 
 
 
Table 4: Hydrolysis /photolysis of benfuracarb (15) and carbosulfan (16) in different 
conditions 

 
aDispersion of the pesticide in MilliQ water (205 mg/l for 15; 190 mg/l for 16); r.t.; Pyrex tube. 
bDeduced by 1H NMR and HPLC.  c10 mg/l.  d5 mg/l. 

 

 

Under sunlight a small amount of phenol derivative 18 was found. It was 

identified by comparison of 1H and 13C-NMR data with those of an authentic 

sample obtained by treating carbofuran with methanolic KOH. 

The pesticide was not sensitive to small pH variations or to the presence of nitrate 

or humic acid which give the same products in comparable amounts. Carbosulfan 

resulted more stable under all conditions examined except in the presence of 

humic acid, which led to carbofuran and/or phenol (about 40% degradation) either 

in the dark or in sunlight (Table 4).  

These results showed that the cleavage of the weak S-N bond was the main 

process observed in the dark (Scheme 7). The finding of only carbofuran 

illustrates the greater lability of the carbamate nitrogen sulfur bond compared with 

the amino nitrogen-sulfur bond, which is in accordance with previous data 

reported in the literature (Umetsu N. et al., 1980). Under sunlight, the 

Conditiona Starting pesticide (%)b 
Dark/Sunlight 

Degradation products (%)b 
Dark/Sunlight 

 benfuracarb (15) carbofuran  (17) Phenol (18) 
H2O 79/57 14/21 1/10 

pH 5.1 63/55 26/31 -/2 
pH 9.0 85/74 6/13 1/6 
KNO3

c 81/70 13/18 -/3 
Humic acid d 80/82 11/18 -/2 

 carbosulfan (16)   
H2O 93/87 4/5 -/3 

pH 5.1 87/82 7/7 -/3 
pH 9.0 85/80 11/6 -/4 
KNO3

 c 91/83 5/6 -/8 
Humic acid d 58/55 27/26 2/7 
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photocleavage of light-sensitive (Cameron and Frechet, 1990) carbamate bond 

also occurs, even to a small extent, leading to phenol derivative 18. As reported 

for photolysis of carbamates in water (Givens R.S. et al., 2004; Su and Zabik, 

1972) the process should occur with the initial homolytic cleavage of the phenoxy 

bond to afford the fragments which liberate phenol derivative 18, CO2 and 

nitrogen-containing fragments (Scheme 7).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 7. Proposed degradation pathway of carbamic pesticides in water 

 

 

Experiments using the same concentrations of pesticides were carried out at pH 

5.0 and 9.0, in the presence of KNO3 or with humic acid. After 6 days, each 

reaction mixture was evaporated in vacuum and analyzed by 1H-NMR and HPLC.  

Both hydrolysis and photochemical processes do not appear to be affected by pH 

variations or by the presence of additives as humic acid or KNO3. Only at pH 9 

was a slight enhancement of phenol derivative 18 formation observed. The 

enhanced degradation of carbosulfan in the presence of humic acid might not be 

due to acidic or sensitizing effects but rather to adsorbtion phenomena which 

might make the pesticide more susceptible to hydrolysis. The role of suspended 

sediment or soil on the persistence of pesticides has been observed and appeared 

not to be strictly related to the chemical structure (Sharom M.S. et al., 1980).       
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Carbofuran in MilliQ water was treated according to the standard procedure. The 

presence of only carbamic function made carbofuran more persistent and no 

appreciable degradation was observed after six days in the dark. Within the same 

time the degradation rate was barely enhanced by irradiation (Mansour M. et al., 

1997; Campbell S. et al., 2004) and led to only about 7% phenol derivative 

production. 

Effects of pH, humic acid and KNO3 were evaluated by kinetics on dilute 

solutions in the dark and by UV irradiation and clearly evidenced the enhanced 

degradation induced by light (Table 5). The photolysis with this lamp is faster 

than that under sunlight, due to the higher UV lamp intensities compared to the 

natural light. The results at pH 9 are significant, in fact the basic medium, alone or 

with light, contributes to promoting the C-O bond cleavage. Experiments 

performed by flushing the solution with N2 showed that phototrasformation of 

carbofuran to phenol does not require aerobic conditions (data not shown). 

                        
 
Table 5: Kinetics of carbofuran (17) 
 

 
aSolution of the pesticide (4 mg/l) in milliQ water; r.t.; Pyrex tube.  b500W high-pressure mercury 
lamp (Pyrex filter). c5 mg/l. d10 mg/l. 
 

 

 

 

 

 

 

 

 

 

 UVb Dark 
Condition a K (h-1) t1/2 (h) K (h-1) t1/2 (h) 

pH 5.0 1.9 x 10-3 365 1.0 x 10-4 6931 
pH 7.1 1.4  x 10-3 495 9.0 x 10-5 7701 
pH 9.0 0.67 1.0 0.21 3.0 

milliQ water 1.0  x 10-3 693 1.0 x 10-4 6931 
humic acidc 8.0  x 10-4 866 9.0 x 10-5 7701 

nitrated 8.0  x 10-4 866 9.5 x 10-5 7296 
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Toxicity studies 

Acute and chronic toxicity tests were performed on pesticides 15, 16 and 17 and 

on their main degradation product, phenol derivative 18. The otained data are 

reported in Tables 6 and 7, respectively.  

 
Table 6. Acute toxicity tests L(E)C50 (in mg/l) with 95% confidence range 
 

Compound B.  calyciflorus T.  platyurus Daphnia magna 
    

15 48% mortality at 200 mg/l 3.66 (2.27 - 5.29) 0.13 (0.11 - 0.15) 
    

16 95.7 (85.5 - 103.4) 8.93 (6.02 – 13.26) 0.004 (0.003 - 0.006) 
    

17 14.1 (13.3 - 14.9) 2.32 (1.53 - 3.51) 0.01 (0.01 - 0.02) 
    

18 55.2 (41.6 - 73.2) 111 (102 - 122) 18.8 (10.4 – 38.0) 

 

 

Table 7: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range 
 

Compound C. dubia P. subcapitata 
   

15 1.0 x 10-6 14.1 (10.4 – 26.0) 
   

16 8.2 x 10-8 (5.4 x10-8 – 1.8 x 10-7) 4.6 (3.4 - 6.2) 
   

17 1.8 x 10-8 (1.2 x10-8 - 2.6 x 10-8) 2.6 (2.2 - 3.2) 
   

18 4.7 x 10-5 (3.5 x10-5 - 7.0 x 10-5) 11.4 (10.9 – 18.7) 
 

 

For all the compounds acute effects were found for concentrations ranging from 

2.32 mg/l (carbofuran versus T. platyurus) to 48% mortality at 200 mg/l 

(benfuracarb versus B. calyciflorus) suggesting the limited acute ecotoxicity of 

these compounds. As an exception, D. magna was found to be more sensitive, 

particularly to parent molecules. Chronic results demonstrated that all the tested 

pesticides had a strong toxic potential for the crustacean C. dubia with EC50 

values at least two orders of magnitude below the acute toxic level and five orders 

below the chronic level for the algae. Among the three investigated pesticides, 

carbosulfan and carbofuran were the most active and phenol derivative 18 was 

generally less toxic than the parent compounds.  

By comparing data, it was found that the various species utilized were not of the 

same order of sensitivity, suggesting that the investigated pesticides and the 

phenolic product 18 showed a different toxic impact on non-target organisms. 
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2.2.3 Conclusion 

 

Benfuracarb and carbosulfan, under natural conditions, decay to carbofuran and/or 

phenol derivative 18, while carbofuran gives phenol derivative 18. The S-N bond 

breakage occurs easily under all the conditions tested while carbamic bond 

cleavage is favoured by light and basic media. Accordingly, phenol is formed with 

difficulty by carbofuran and becomes appreciable at pH 9 and/or by irradiation. 

The high persistence of carbofuran accounts for the fact that many papers that 

have reported the detection of this pesticide in water, fruit and vegetables 

(Bogialli S. et al., 2004). Toxicological studies, reported in Tables 6-7, highlight 

the environmental risk of carbofuran that was found to be the most toxic towards 

all the exposed organisms. 

The different results observed in our reaction conditions, compared with those 

reported in previous works, are probably due to the the absence of organic 

solvents, even in a small amounts, which might favour association processes, 

(Umetsu N. et al., 1980; Dureja P. et al., 1990; Battacharya A. et al., 1994) or the 

use of more diluted solutions (Raha and Das, 1990) or the use of natural sunlight 

(Bachman and Patterson J. et al., 1999).   

It is interesting to note that phenol derivative 18 has also been found as an 

enzymatic degradation product from soil microorganisms (Chaudhry and Ali, 

1988). This finding may assume importance especially for chronic exposure of 

aquatic organisms to carbamic pesticides because of their effective concentrations, 

found to be active for C. dubia.  
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3. Drugs 

 

3.1.1 Steroidal anti-inflammatory drugs: prednisolone and dexamethasone  

 

The aim of this study was to asses the behaviour of prednisolone (19) and 

dexamethasone (20) under sunlight irradiation and evaluates their toxicity. 

The wide range of pharmacological properties puts corticosteroids among the 

most widely used drugs in the world. Prednisolone (19) and dexamethasone (20) 

are used for their potent anti-inflammatory effects and the former is a metabolite 

of prednisone (21) in man (Maayan R. et al., 1988). Furthermore, both drugs are 

reported to be sensitive to light (Takacs M. et al., 1991). 

 

 

 

 

 

 

 

 

Preliminary studies on photochemical behaviour of corticosteroids were 

performed by Williams (1979) who focused attention on prednisone acetate. It 

was sensitive to light in pure solvents such as methanol or dioxane producing 

several products by ultraviolet radiations. 

A recent study on prednisone (21), a corticosteroid, (DellaGreca et al., 2003) has 

shown that this drug undergoes transformation by sunlight giving seven 

photoproducts. 
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3.1.2 Results and discussion 

 

Phototransformations of prednisolone (19)   

Irradiation of an aqueous suspension of prednisolone (19) by a solar simulator for 

4 h gave a complex mixture, which was resolved into its components by several 

chromatographies. 

Along with unreacted prednisolone, the photoproducts 22 – 28, identified by their 

spectroscopic features, were isolated. 

The first compound was identified as the 5α-hydroxyderivative 22, by comparison 

of its spectral data with those of the analogous photoproduct of prednisone 

(DellaGreca et al., 2003). According to the structure, the MS showed a molecular 

peak at m/z 378 for the molecular formula C21H30O6. Furthermore in the HMBC 

experiment the H-1 proton was correlated to the C-3, C-5 and C-10 carbons and 

the H-19 protons gave heterocorrelations with the C-5 and C-10 carbons.  

 

 

 

 

 

 

 

 

 

 

 

Structure 23 was attributed to the second photoproduct. It had molecular formula 

C21H28O5 according to the molecular peak at m/z 360 in its MS spectrum. The 1H 

and 13C NMR resonances were assigned by combination of COSY, TOCSY, 

DEPT, HMQC and HMBC experiments. The HMBC spectrum showed the 

correlations of the C-10 olefinic carbon with the H-2, H-4, H-6, H-7 and H-19 

protons, as well as that of the C-3 carbonyl carbon with H-4 protons and that of 

the C-5 carbon with the H-4, H-6, H-7, H-9 and H-19 protons. The correlation in a 
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TOCSY experiment between the H-4 and H-11 protons supported the presence of 

an ethereal bridge between the C-4 and C-11 carbons. The stereostructure of 23 

derived from a ROESY experiment. The correlations with the H-18 methyl and 

the H-21 methylene protons allowed the assignment of the β-orientation to the H-

12 proton at δ 2.20 and, consequently, the α-one to the H-12 proton at δ 2.53. 

These NOE’s pointed out a chair conformation of the C ring and the small 

couplings of the H-11 proton with the H-12 protons agreed with its α equatorial 

orientation. The correlation of the H-4 proton with the H-11 revealed its α-

orientation and, consequently the β-one of the ethereal bridge. Finally the α axial 

orientation of H-19 methyl was supported by the nOe interaction of its protons 

with the H-4α proton. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third compound was identified as 24. It had the molecular formula C21H30O6 

according to the molecular peak at m/z 360 in the EIMS spectrum. The 1H-NMR 

spectrum showed the H-4 olefinic proton at δ 5.90, and the H-19 and H-20 

methyls. The 13C-NMR spectrum identified the C-3 and C-5 carbonyl carbons, the 

C-4 and C-5 olefinic carbons. These data, compared with those of the 

corresponding photoderivative of prednisone, justified the structural assignment.  
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As already verified on prednisone (DellaGreca et al., 2003) light also caused the 

degradation of the side chain at C-17. In fact the fourth photoproduct was 

identified as 11β-hydroxy-androsta-1,4-diene-3,17-dione (25) by comparison with 

an authentic sample obtained by MnO2 oxidation of prednisolone.  

 

 

 

 

 

 

 

 

 

 

 

 

Structures 26 – 28 were attributed to the remaining compounds owing to the 

strong analogies of their physical features with those of 22 – 24 and by 

comparison of their spectral data with those of authentic compounds obtained 

from irradiation of compound 25 in same conditions of prednisolone. 
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Phototransformation of dexamethasone (20) 

The photochemical behaviuor of dexamethasone (20) only partly matched that of 

prednisone and prednisolone (19). In fact, the irradiation with the solar simulator 

for 8 h of its aqueous suspension converted dexamethasone (20) only in 15% 

amount and photoderivatives 29 and 30 were isolated, without trace of the 

products obtained by degradation of the side chain at C-17. The data of 

compounds 29 and 30 compared with those of 23 and 24, respectively, justified 

the structure assignments. 
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The formation of 5α-hydroxyderivative 22 may be easily justified by a 

photoinduced hydration reaction on the less hindered α-face of the ∆4 double 

bond (Scheme 8). The formation of prednisolone photoderivatives 23 and 24 finds 

its explanation in the generally accepted mechanism for photoisomerization of 

cross-conjugated steroidal dienones (Williams J.R. et al., 1979). The light induced 

formation of cyclopropyl derivative 31, protonation and subsequent attack of H2O 

on the α-face generates 24. 

Isomerization of 31 into lumiprednisolone 32 followed by the attack of the 

hydroxyl group at C-11 on the C-4 position affords the ether 23. The 

phototransformation of 19 into 25 by side chain degradation, and the same steps 

reported in Scheme 8 for prednisolone, justify the formation of 26 – 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Scheme 8. Mechanism of phototransformation of prednisolone 19 
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Toxicity studies 
 

Acute toxicity data are reported in Table 8 for prednisolone and its photoproducts, 

and in Table 9 for dexamethasone and the respective derivatives. Despite of the 

high concentrations tested, prednisolone 19 did not demonstrate a measurable 

value of LC50/EC50 except for rotifers. All the other compounds showed values 

by the orders of units or dozens of mg/l except compound 27 which is slightly 

more toxic for the all organisms tested.  

Dexamethasone 20 and its derivatives 20 and 30 demonstrated similar activity as 

prednisolone photoproducts but also for these compounds the concentrations 

ranged from 10.88 to 60.11 mg/l. These orders of concentration should not present 

a problem because drug quantities found in the surface waters are usually below 

parts per billion (Aherne and Briggs, 1989; Raloff J., 1998; Ternes and Wilken, 

1999). 

 
Table 8. Acute median effective concentrations concentrations in mg/l (95% confidence 
limits in brackets) of prednisolone and its phototrasformation products. 

 
 aNE= no effect at  bMortal= mortality at   

 
 
 
Table 9. Acute median effective concentrations in mg/l (95% confidence limits in 
brackets) of dexamethasone and its phototrasformation products 
 

Compound D. magna T. platyurus B. calyciflorus 
    

20 48.30 (39.91-58.45) 60.11 (44.21-81.73) 48.22 41.37-56.20) 
    

29 10.88 (7.28-16.26) 20.9 16.49-26.50) 13.20 11.43-15.23) 
    

30 17.82 (13.84-22.94) 30.52 25.54-46.66) 44.66 38.91-51.25) 

Compound D. magna T. platyurus B. calyciflorus 
    

19 NEa 85 23% mortalb 140 22.29 (20.82-24.56) 
    

22 5.09 (3.98-6.54) 26.53 (18.44-38.13) 15.39 (12.58-18.84) 
    

23 3.80 (2.70-5.33) 22.92 (17.16-30.61) 24.54 (20.82-28.92) 
    

24 17.88 (14.06-22.74) 40.77 (25.18-66.01) 35.46 (30.46-41.29) 
    

25 9.05 (7.20-11.37) 10.79 (8.52-13.67) 9.19 (5.52-15.23) 
    

26 5.74 (4.81-6.85) 10.57 (8.21-13.59) 10.36(7.47-14.37) 
    

27 1.79 (1.38-2.32) 0.71 (0.5-1.0) 1.43(1.14-1.81) 
    

         28 11.89 (9.78-14.46) 10.0 (7.58-13.18) 9.96 (8.46-11.74) 
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The long-term effects are shown in Tables 10 and 11. The detected drugs 

demonstrated a different toxic potential depending on the organism tested. 

Daphnies were found to be significantly more sensitive than algae. This result was 

particularly evident for the parental drugs where a median effective concentration 

of 0.23 mg/l was found for prednisolone on C. dubia against no effect at 160 mg/l 

for P. subcapitata.  

Also dexamethasone, while it inhibited C. dubia 50% population growth at 0.05 

mg/l, showed no effect on the algal growth at 100 mg/l. In this study algae 

showed median effective concentrations of the same order of magnitude as LC50 

and EC50 found for acute toxicity tests. Compound 27 evidenced acute values for 

the all biota tested less than the chronic ones found for the algae. Both the 

photoderivatives of prednisolone and dexamethasone showed effects on C. dubia 

that lead to long term action, except compound 26 that was one hundred and ten 

times more active than prednisolone and compounds 27 and 28 respectively. 

Other significant differences were not expressed. These chronic data differ from 

those of prednisone and its photoderivatives (DellaGreca et al., 2003) where no 

toxicity was found at concentrations harmful for the aquatic environment. 

 

 

 
 
 
Table 10. Chronic median effective concentrations in mg/l (95% confidence limits in   
brackets) of prednisolone and its phototrasformation products. 
 

 

  aNE= no effect at 

Compound C. dubia P. subcapitata 
   

19 0.23 (0.16-0.28) NEa 160 
   

22 0.22 (0.16-0.30) 27.46 (25.07-30.07) 
   

23 0.12 (0.07-0.19) 30.42 (28.10-32.94) 
   

24 0.22 (0.14-0.35) 24.65 (21.32-28.50) 
   

25 0.51 (0.31-1.16) 14.14 (8.68-23.03) 
   

26 0.007 (0.00026-0.026) 19.84 (17.98-21.88) 
   

27 0.04 (0.018-0.06) 23.78 (11.75-48.13) 
   

             28 0.025 (0.014-0.038) 25.62 (20.32-28.90) 
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Table 11. Chronic median effective concentrations in mg/l (95% confidence limits in   
brackets) of dexamethasone and its phototrasformation products. 

 

aNE= no effect at 

 

 

3.1.3 Conclusion 

 

Prednisolone and dexamethasone are transformed by sunlight giving seven and 

two photoproducts, respectively.  

Chronic exposure to this class of pharmaceuticals causes inhibition of growth 

population on the freshwater crustacean C. dubia while the alga P. subcapitata 

seems to be less affected by the presence of these products. The low values of 

acute toxicity found for B. calyciflorus, D. magna and T. platyurus do not 

determine an acute environmental risk. Photoderivatives showed higher toxicity 

than parental compounds but the order of magnitude of effective concentrations 

was lower than the drug quantities generally found in surface waters. 

 

 

 

 

 

 

 

 

 

 

 

Compound C. dubia P. subcapitata 
   

20 0.05 (0.042-0.076) NEa 100 
   

29 0.13 (0.11-0.15) 12.15 (8.96-16.49) 
   

30 0.06 (0.04-0.08) 40.75 (36.35-45.69) 
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3.2.1 Non-steroidal antinflammatory drug: naproxen sodium salt  

 

Naproxen toghether with benoxaprofen, carprofen, ketoprofen, tiaprofenic acid 

and suprofen, is a 2-arylpropionic acid derivative (Figure 4), and belongs to 

nonsteroidal anti-inflammatory agents. Their photophysical and photochemical 

properties were reviewed in vivo experimental studies (Ophaswongse and 

Maibach, 1993) in order to understand their photobiological properties and to 

explain (or, in the case of new drugs, to predict) the appearance of 

photosensitizing side effects.  

 

 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 4. Nonsteroidal anti-inflammatory drugs (NSAID) with photosensitizing side effects 

 

Naproxen and its water-soluble sodium salt (33) are used for oral administration 

as tablets or suspensions.  
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According to IMS Health Canada Ltd (2002), Canadian physicians wrote almost 

2.5 million naproxen prescriptions in 2001 corresponding to more than 26 tons of 

the drug. Pharmacokinetic studies on naproxen have shown that approximately 

95% of the dose is excreted in the urine (Boost G., 1975), so that naproxen may 

be considered a major organic pollutant. As a result, studies run in Germany, 

Italy, and other countries have reported the presence of the drug in rivers at 

median concentrations higher than 2.5 mg/l (Ternes T.A., 1998). Further, Boscá et 

al. (1990) have studied the photodegradation of the drug under different 

conditions, on the basis of previous investigations showing that naproxen and 

other non-steroidal anti-inflammatory drugs are phototoxic in vivo (Diffey B.L. et 

al., 1983; Ljunggren and Ludberg, 1985). The authors (Boscá F. et al., 1990) 

reported data on irradiation of naproxen as either free acid or carboxylate ion (33) 

in aqueous oxygenated solutions affording the ethyl derivative 34, the carbinol 35, 

the ketone 38, and the olefin 39 (Figure 5). 

 

 

 

 

 

 

 

Figure 5. Photoproducts of naproxen Na in distilled water 

 

 

3.2.2 Results and discussion 

 

Phototransformation of naproxen Na (33) 

Irradiation of naproxen sodium salt was conducted in distilled water, and then in 

drinking water by a solar simulator. Water was evaporated in vacuum and 

residues purified on preparative TLC.  

First, in distilled water, irradiation of a solution of naproxen sodium salt (33) with 

a solar simulator for 72 h quantitatively transformed the drug into photoproducts 

H3CO

R

H3CO

R

R'

34  R = H          35  R = OH
36 R = OOH     37 R = OC2H5

38  R = O          R' = CH3
39  R = CH2     R' = H
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34, 35, 38, and 39 (Figure 5). As reported in the literature (Boscá F. et al., 1990), 

the formation of 35 and 38 was explained as the result of the oxygen trapping by a 

benzyl radical intermediate and subsequent breaking down of the unstable 

hydroperoxide 36. 

The products, isolated by chromatographic methods, were identified on the basis 

of their spectroscopic data (Boscá F. et al., 1990). To isolate hydroperoxide 36, 

the reaction was stopped after 4 h and only ketone 38 (4%) and the hydroperoxide 

36 (6%) were isolated. The latter compound, positive to KI and identified on the 

basis of its spectral data, was quantitatively transformed into alcohol 35 and 

ketone 38 by its irradiation under the previously described reaction conditions.  

Second, in drinking water, naproxen sodium  salt (33) was transformed, after 72 h 

in 84% amount, into photoproducts 35 (15 %), 37 (5 %), 38 (17 %), 39 (4 %), 40 

(9 %), 41 (2 x 9%).  

Compound 37 showed the molecular ion at m/z 230 in the electronic impact mass 

spectrum and fifteen carbon signals in the 13C NMR spectrum according to the 

molecular formula C15H18O2. The presence of the ethoxyl group at C-11 was 

justified by the presence of the methylene quartet at δ 3.39, coupled with the 

methyl triplet at δ 1.20 in the 1H NMR spectrum and by the presence of the 

methylene carbon at δ 63.9 and the methyl carbon at δ 15.4 in the 13C NMR 

spectrum.  

The MALDI-TOF mass spectrum of compound 40 showed the molecular peak at 

m/z 358 in agreement with the molecular formula C24H22O3. In the 1H NMR 

spectrum eleven aromatic protons were present which, on the basis of their 

multiplicities and a COSY experiment, were attributed to three ABX and one AB 

system (Table 12). Besides, two methoxy methyl groups, a methyl doublet and a 

methine quartet were also present in the spectrum.  
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Table 12. NMR data of compound 40 

 

a1H chemical shift values (δ ppm from SiMe4) followed by multiplicity and the coupling constants (J 
in Hz) 

 

The 13C NMR spectrum showed only twenty-one carbon signals, being the signals 

at δ 128.1, 124.1 and 55.5 integrated for two carbons in an inverse-gated 

experiment. On the basis of an HMQC experiment the protons were correlated to 

the corresponding carbons. According to the structure, in the HMBC spectrum, 

the H-11’ proton was correlated to both aromatic moieties (C-1’, C-2’, and C-1, 

C-2). 

 

 

 

 

 

 

 

 

C DEPT δC δH HMBC 
1 C 123.9   
2 C 150.3   
3 CH 120.0 6.98 d (9.0) C-1 C-10 
4 CH 127.9 7.59 d (9.0) C-2 C-5 C-9 
5 CH 107.2 7.16 d (2.5) C-4 C-6 
6 C 155.6   
7 CH 119.1 7.16 dd (2.5, 9.0) C-6 C-9 
8 CH 124.1 8.12 d (9.0) C-1 C-6 C-10 
9 C 129.0   
10 C 128.1   

OCH3 CH3 55.5 3.91 s  
1' CH 124.1 7.88 d (2.0)  
2' C 138.9   
3' CH 127.1 7.28 dd (2.0, 9.0) C-1' C-10' C-11' 
4' CH 127.4 7.64 d (9.0) C-2' C-5' C-9' 
5' CH 105.8 7.10 d (2.5) C-4' C-6' C-9' 
6' C 157.8   
7' CH 118.9 7.16 dd (2.5, 9.0) C-6' C-9' 
8' CH 129.3 7.74 d (9.0) C-1' C-6' C-10' 
9' C 128.1   
10' C 133.4   
11' CH 35.3 5.22 q (7.0) C-1 C-1' C-2 C-2' C-12' 
12' CH3 17.3 1.87 d (7.0) C-1 C-2' C-11' 

OCH3 CH3 55.5 3.92 s  
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Two compounds with different Rfs (petroleum ether/ acetone 9:1) were isolated 

from irradiation mixture. Spectral data of these compounds are reported in Table 

13.  

In the MALDI-TOF spectrum both of them showed the molecular peak at m/z 386 

and also in the EI-MS the peak at m/z 185, due to the cleavage of the C–O bond. 

The compounds exhibited in the 1H NMR spectra (Table 13) six aromatic protons 

for two ABX systems, a methine proton as a quartet, three methyl protons as 

doublet and the methoxyl methyl.  

 

 

Table 13. Nuclear magnetic resonance data of compounds 41 

 

a Letters p, s, t and q, in parentheses indicate, respectively, the primary, secondary, tertiary and 
Quaternary carbons, assigned by DEPT. b1H chemical shift values (δ ppm from SiMe4) followed by 
multiplicity and the coupling constants (J in Hz) 
 

 

The 13C NMR spectra showed 13 carbon signals defined in a DEPT as seven 

methines, two methyls and two quaternary carbons. HMQC and HMBC 

experiments defined the structures. Spectral data of two compounds fit structure 

41 exactly and, in particular due to the small differences in the 1H and 13C 

chemical shifts, with the two diastereomeric forms (d,l and meso forms) as 

expected, owing to the presence of the two stereogenic centers (Figure 6).  

 

C δC (Rf = 0,77) δH  (Rf = 0,77) δC (Rf = 0,69) δH (Rf = 0,69) HMBC 

1 124.8 (t)a 7.65 d (2.0) 124.9 (t)a 7.58 d (2.0) C-8 C-10 C-
11 

2 139.4 (q)  139.2 (q)   

3 125.2 (t) 7.38 dd (2.0 
9.0) 125.1 (t) 7.46 dd (2.0 

9.0) C-1 C-10 

4 128.7 (t) 7.66 d (9.0) 127.2 (t) 7.77 d (9.0) C-2 C-5 C-9 
5 105.7 (t) 7.10 d (2.5) 105.8 (t) 7.17 d (2.5) C-4 C-6 C-7 
6 157.5 (q)  157.6 (q)   

7 118.6 (t) 7.14 dd (2.5, 
9.0) 118.8 (t) 7.17 dd (2.5, 

9.0) C-5 C-9 

8 129.3 (t) 7.66 d (9.0) 129.3 (t) 7.72  d (9.0) C-1 C-6 C-10 
9 128.7 (q)  128.7 (q)   
10 133.9 (q)  134.1(q)   
11 74.5 (t) 4.69 q (7.0) 74.6 (t) 4.41 q (7.0) C-1 C-2 C-13 
13 22.8 (p) 1.56 d (7.0) 24.6 (p) 1.46 d (7.0) C-2 C-11 

OCH3 55.3 (p) 3.91 s 55.3 (p) 3.95 s  



 

42 

H3CO

1

O

OCH3
3

11

13

41

* *

 

 

 

 

 

 

Figure 6 

 

 

The main difference between irradiation in drinking and distilled water was the 

formation of 40, and dimers 41. In the light of the above data, it should be 

deduced that the formation of these compounds is due to the action of inorganic 

salts present in the drinking water. Dimer 40 could be formed from 36 through a 

photochemical process, resembling the formation of phenol from cumene 

hydroperoxide (Osamu F., et al., 2001). This step, which introduces the hydroxyl 

function on the naphtalene ring, could be followed by a second step consisting of 

the reaction of the above intermediate with the benzyl radical. The same 36 could 

be taken into account in the formation of naphtene [1,1’-oxydiethylidene]bis 41. 

The cleavage of the O-O bond of the hydroperoxide (Alcantara R. et al., 2000) 

followed by the coupling with the benzyl radical produces the dimers. 
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Toxicity studies 

 

The photoproducts obtained in more than 5% yield have been investigated for 

their potential environmental risk. Acute toxicity data of naproxen sodium salt and 

their photoderivatives to the different aquatic organisms are reported in Table 14. 

LC50 and EC50 values for all compounds ranged between two orders of 

magnitudes (1–100 mg/l) for all species tested. Photoproducts were significantly 

more toxic than the parent compound. The highest activity was registered for 

compound 40 towards rotifers (4.51 mg/l). Dimers 41, tested on the crustacean D. 

magna, showed different toxicity, thus evidencing the role of stereostructure-

activity relationship. 

 
 
Table 14: Acute toxicity tests L(E)C50 (in mg/l) with 95% confidence range 
 

 
NE= no effect at;  ND = not determined 
 
 

As expected, chronic tests showed higher toxicity than acute tests. From the 

chronic data, reported in Table 15, it was possible to note that the class of 

compounds tested was bioactive at low concentrations mainly for the primary 

consumers B. calyciflorus and C. dubia. Algae showed toxicity values two orders 

of magnitude lower than rotifers and crustaceans. Even if the alga P. subcapitata 

Compound V. fischeri B.calyciflorus T. platyurus C. dubia D. magna 
      

33 42.95 
(38.01-53.11) 

54.64 
(35.9-83.1) 

43.54 
(35.35-53.62)

43.64 
(34.64-54.96) 

59.44 
(44.14-80.04) 

      
35 20.61 

(19.49-21.81) 
14.46 

(11.5-18.19) 
14.01 

(11.7-16.77) 
16.49 

(10.20-26.44) 
12.61 

(6.87-23.15) 
      

37 NE 50 11.37 
(9.43-13.71) 

5.30 
(4.60-6.12) 

10.09 
(8.63-11.81) 

10.51 
(8.21-13.45) 

      
38 16.17 

(14.68-17.82) 
9.45 

(8.06-11.07) 
8.23 

(7.21-9.39) 
16.70 

(13.55-20.58) 
13.65 

(10.08-18.63) 
      

40 
 

30.41 
(21.08-35.45) 

4.51 
(3.78-5.39) 

11.63 
(10.02-13.51) 

6.30 
(1.55-25.59) 

6.43 
(4.00-10.33) 

      
41 (Rf=0,77) ND ND ND ND NE 60 

      
41 (Rf=0,69) ND ND ND ND 50.00 

(44.60-57.80) 
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appeared not to be very sensitive to naproxen sodium salt, photoderivatives 

showed a significant difference in toxic activity in comparison with parent 

compound. The photoderivatives revealed the greatest effects on C. dubia with 

compounds 37 and 40 showing the lowest EC50s, respectively 0.026 mg/l and 

0.062 mg/l. 

 

Table 15: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range 

 
ND = not determined 
 

 
3.2.3 Conclusion 
 

Naproxen sodium salt was found to be light sensitive in biomimetic conditions 

affording several photoproducts. Toxicity data indicate that exposure of aquatic 

organisms to the parental drug and its photoderivatives caused effects at mg/l 

concentrations. These concentrations do not represent the amounts expected in 

aquatic environment, but they might be found in sewage treatment plants where 

the daily load of naproxen is in the order of grams (Ternes T.A., 1998).  

 

 

 

 

 

 

 

 

 

Compound  P. subcapitata B. calyciflorus C. dubia 
    

33 39.31 (33.16-46.61) 0.79 (0.64-0.89) 0.68 (0.39-1.32) 
    

35 6.86 (5.05-9.31) 0.25 (0.14-0.35) 1.06 (0.46-2.65) 
    

37 1.9 (1.14-3.16) 0.45 (0.10-0.86) 0.026 (0.015-0.064) 
    

38 3.86 (2.93-5.08) 0.46 (0.10-0.95) 0.10 (0.07-0.16) 
    

40 ND 0.67 (0.55-0.87) 0.062 (0.01-0.09) 
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3.3 Diuretics: furosemide and hydrochlorothiazide   

 

3.3.1.1 Furosemide (42) 

 

Furosemide is a potent diuretic used to treat high blood pressure and some 

pathologis including heart or liver diseases. 

 

 

 

 

 

 

 

 

 

 

Furosemide is a white to off-white odourless crystalline powder slightly soluble in 

water. It is among the most worldwide prescribed pharmaceuticals. About 90% of 

the intake drug is excreted as parent compound and its presence in the Northern 

Italy rivers Po and Lambro has been recently reported (Calamari D. et al., 2003). 

In this work a mass balance was made in both rivers to compare predicted 

environmental concentration (PEC) and measured environmental concentration 

(MEC) of several pharmaceuticals. The predicted concentrations were obtained by 

dividing the theoretical loads (annual sales loads corrected for the metabolic rates) 

by the average flow rate of the rivers at each sampling site. The MEC/PEC ratio 

for furosemide was about 0.3 in both rivers. As stated in the article when the 

MEC/PEC ratio is in the range 0.01-0.3, the ratio is possibly affected by the 

behaviour of the drug and the extent of its degradation in the environment. 

Photochemical studies on the drug, which exhibits absorption spectrum in the 

sunlight region above 280 nm (λmax 330 nm), have been performed under a variety 

of irradiation conditions and have evidenced its high photodegradability. 

Reduction, dechlorination, hydrolysis, decarboxylation, oxygenation (Moore and 
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Sithipikas, 1983; Bundgaard H. et al., 1988; Zanocco A. et al., 1998) have been 

found to occur, depending on the reaction conditions and, in many cases, the 

related photoproducts have been isolated and characterized. 

 

3.3.1.2 Results and Discussion 

 

Phototransformations of furosemide (42)  

A solution of furosemide (42) (24 µM) in distilled water was irradiated for 36 hr 

by a solar simulator.  

Reverse phase C-18 HPLC analysis of the reaction mixture after 36 hr showed the 

presence of a transformation product (Figure 7) which, by repeating the reaction 

starting from a 0.6 mM solution, was isolated by silica gel flash column 

chromatography, purified by HPLC and identified as dimer 43 on the basis of its 

spectroscopic data.  

 

 

          
 

Figure 7 

 

The 1H NMR spectrum showed the H-2 benzene singlet proton at δ 8.01 besides 

the H-7 methylene singlet at δ 4.24 and the H-9, H-10 and H-11 protons at δ 6.30, 

6.24 and 7.35 of the furyl moiety.   

mAu 

min 

43 

42 
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The 13C NMR spectrum revealed the presence of a carbonyl carbon at δ 173.2, a 

methylene carbon at δ 37.3 and ten aromatic carbons, only four protonated. On the 

basis of HMQC and HMBC experiments, the protonated carbons at δ 108.3, 104.8 

and 140.2 were attributed to the furane C-9, C-10 and C-11 respectively. The 

carbon at δ130.7 was assigned to the C-2 according to the long range correlations 

of the H-2 proton with the carboxyl carbon and the C-4 and C-6 carbons at 

δ 164.3 and 152.6 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The substituted aromatic carbon at δ150.2 was assigned to the furane C-8 owing 

to its correlation with the H-7, H-9, H-10 and H-11 protons, while the carbons at 

δ 104.4, 113.4, 164.3 and 152.6 were assigned to the benzene C-1, C-3, C-4 and 

C-6, respectively. The chemical shift values of C-6 as well as of C-1, C-3 and C-5 

were consistent with the presence of a hydroxyl group at C-4.  

The MALDI MS spectrum showed peaks at m/z 560 due to the fragment  [M-

CO2- H2O]+, at 543 corresponding to the loss of  fragment SO2NH [M- SO2NH]+ 

and at 526 due to fragment [543 – OH]+.  All these data were in agreement with 

the molecular formula C24H22N4O12S2. 
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The photochemical behaviour of furosemide has been widely explored, but the 

formation of dimer 43 has never been described. To investigate its formation the 

reaction was run in the dark and in the light under argon atmosphere. In the first 

case, no trace of the dimer was detected, while under argon compound 43 was still 

obtained in 45 % amount. Thus, the formation of 43 cannot be ascribed to the 

attack of 3O2 on the excited state of 42, but to a photoinduced nucleophilic 

substitution.  

 On the basis of these data and those previously reported (Moore and Sithipikas, 

1983; Bundgaard H. et al., 1988), formation of 43 can be easily rationalized by 

assuming photoionization as the primary photochemical process leading to cation 

radical 44 (Scheme 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 9 
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The presence of a positive charge on 44 makes this intermediate more susceptible 

to nucleophilic attack by the solvent (water). The loss of HCl leads to cation 

radical 45 (pathway A) and expulsion of the proton affords radical 46.  

Dimerization of 46 should be the final event leading to 43. It cannot be excluded 

that, after the substitution process of the chlorine by the hydroxyl group in 44, a 

back electron-transfer could lead to compound 47 (pathway B), which affords 

radical 46 by O-H homolytic cleavage. However compound 47 was not evidenced 

in our experimental conditions. 

Photochemical aromatic substitution (SRN1Ar*) is a well known process (Karapire 

and Icli, 2004), and, in particular, photohydrolysis of halobenzenes (Stegeman 

M.H. et al., 1993) as well as the dimerization of phenol derivatives  (Horspool 

W.M., 2003) under radical conditions are reported.     

The dehalogenation of furosemide has been previously observed by irradiating in 

acid methanol or acid aqueous methanol and leads to a mixture of substitution and 

reduction products (Moore and Sithipikas, 1983). It is likely that neutral aqueous 

medium favours the substitution rather than reduction and the OH function is 

determinant for the dimerization. 

The phototransformation of furosemide was also investigated under different 

conditions. The experiments were run in distilled water with nitrate added (5 

mg/l), in distilled water in the presence of humic acids (10 mg/l), in drinking 

water and in STP water. In all cases the only photoproduct was dimer 43 and the 

yields of photoproduct after 36 hr, calculated by HPLC, were comparable. 

The drug dissolved in water at the same concentration was also exposed in open 

tube to the direct solar light and, after 3 days, the only identified product was still 

dimer 43, formed at about 46 % yield. 
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Toxicity studies 

 

Acute and chronic toxicity tests are reported in Tables 16 and 17. 

Acute results showed that furosemide was more bioactive than compound 43 on 

D.magna and T. platyurus, while the rotifers B. calyciflorus and the bacteria V. 

fischeri did not undergo any effects up to 200 mg/l of tested compound. 

 
 
Table 16: Acute toxicity tests EC50 (in mg/l) with 95% confidence range 
 

 

NE= no effect at 

 

 

Chronic values were one hundred times lower than the acute ones. In fact the 

bioactive concentrations ranged from 0.50 to 2.50 mg/l and compound 43 was 

more toxic than the parent compound for all tested organisms.  

 
 
Table 17: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range 

  

NE= no effect at 

 

 

3.3.1.3 Conclusion 

 

Furosemide is not stable in the aquatic environment and undergoes photolysis 

under solar irradiation conditions. The drug is largely transformed in dimer 43 

under aerobic or anaerobic conditions. Such behaviour could justify the low 

Compound V. fischeri B.calyciflorus T. platyurus C. dubia D. magna 
      

42 NE (200 ppm) NE (101ppm) 70.57 84.09 
(70.11-91.01) 

60.62 
(30.86-119.08) 

      
43 NE (120 ppm) NE (120 ppm) 81.02 

(75.98-86.40) 
75.79 

(64.31-79.12) 
NE (100 ppm) 

Compound C. dubia P. subcapitata D. magna 
    

42 2.35 (1.38-6.49) NE 70 ppm 2.49 (2.0-3.10) 
    

43 0.56 (0.27-3.01) 
 

ND 1.03 (0.76-1.38) 
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MEC/PEC ratio found by Calamari et al. (2003) in the rivers Po and Lambro and 

should be considered in the analytical measurement on the presence of the drug in 

surface waters. The possible presence of the transformation product in surface 

waters should be taken into account also when eco-toxicological evaluations are 

made since, in chronic results, it was more toxic than the parent compound. 
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3.3.2.1 Hydrochlorothiazide (48) 

 

6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7 sulfonamide 1,1-dioxide, 

hydrochlorothiazide (48), as furosemide, is a sulfonamide diuretic and 

antihypertensive and is supplied as tablets for oral use.  

 

 

 

 

 

 

 

 

 

It is a white, or practically white, crystalline powder, which is slightly soluble in 

water. It is well-known that hydrochlorothiazide is not metabolized and at least 61 

percent of the oral dose is eliminated by the kidney unchanged within 24 hours 

(O’Grady P. et al., 1999). In a recent study a survey was made in the Po and 

Lambro rivers in Italy to check presence of therapeutic drugs in the aquatic 

environment and HCTZ was detected in concentrations ranging from 10 to 250 

ng/L  (Calamari P. et al., 2003).  

Previous studies on the photostability of hydrochlorothiazide are present in 

literature. Tamat and Moore (1983) studied its photocatalytic decomposition. In 

their work the drug is reported to decompose upon irradiation with near UV-light 

(λ > 310 nm) in methanol and aqueous solutions.                                             

In the aqueous (5% methanol) solution, the primary photoprocesses were 

photodehalogenation and photohydrolysis obtaining only small amounts of 52 and 

the hydrolyzed and dechlorinated 53 (Figure 8). Revelle L.K. et al. (1997) re-

investigated the photolytic decomposition in methanol by UV-A fluorescent lamp 

with wavelengths ranging from 300 to 400 nm. Photodehalogenation was reported 

to be the primary degradation process in which the chlorine of HCTZ is replaced 

by hydrogen (49) or by a methoxyl group (50) from the methanol solvent (Figure 
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8). They also observed the formation of 54 and a HCTZ photodehydrogenation 

process that led to derivatives 52, 56 and chlorothiazide (55) (Figure 8). 49 and 52 

were the main products obtained by Ulvi and Tammilehto (1989) when HCTZ 

was irradiated in ethanolic solution with a high-pressure mercury lamp. 

 
 

 

 

 

 

 

 

 

 

 

Figure 8 

 

 

3.3.2.2 Results and Discussion 

 

Phototransformations of hydrochlorothiazide (48)  

In order to understand the fate of hydrochlorothiazide when exposed to sunlight in 

surface and sewage treatment plant waters, the photochemical behaviour of 

hydrochlorothiazide (48) was investigated in water. It was suspended in pure 

water (100 µM) and irradiated at different times with a solar simulator. 

Transformation of HTCZ was followed by injecting an aliquot of the water 

sample withdrawn at various times in a HPLC–UV system. After 5 h, a new peak 

was observed in the HPLC chromatogram (Figure 9), this peak grew with the 

irradiation time and became constant after 30 h of irradiation. Only after 30 h was 

the appearance of two other peaks observed in minor amounts and after 200 h it 

was evident that three main photoproducts (51, 52, 55) were present. To isolate 

and characterise the three photoproducts obtained, irradiation of HTCZ was 

performed in a preparative scale.  
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Figure 9.  HPLC chromatograms at different times of irradiation 

 

 

A dispersion of hydrochlorothiazide (0.7 mM) in distilled water was irradiated for 

200 h by a solar simulator. After evaporation of the water, the mixture was 

submitted to flash chromathography yielding three compounds along with 

hydrochlorothiazide. 

The three photoproducts were further purified by TLC and HPLC.  

Compound 51, formed in 15% after 200 h irradiation, was identified as 6-

hydroxy-3,4-dihydro-2H-1,2,4-benzothiadazine-7-sulfonamido-1,1-dioxide. This 

compound was suggested as intermediate in the mechanism of photodegradation 

by Tamat and Moore (1983), but it had never isolated and described before now.  
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In the ESI-MS spectrum the molecular peak at 278 was present in agreement with 

the molecular formula C7H9N3O5S2. The 1H NMR spectrum showed two aromatic 

protons, as singlets at δ 6.24 and 7.92, and two protons of a methylene as a singlet 

at δ 4.70. In the 13C NMR spectrum seven carbon signals were identified. Three 

protonated carbons at δ 127.0, 101.9 and 56.0 and four aromatic quaternary 

carbons at δ 160.0, 150.0, 120.2, and 114.6 were detectable. All these data were 

consistent with the structure proposed. This compound was formed by 

photosubstitution from hydrochlorothiazide in a process where the chlorine is 

replaced by OH from the solvent. To verify that oxygen was not involved in this 

process, a hydrochlorothiazide suspension was irradiated under argon atmosphere. 

The most abundant compound was determined to be 4-amino-6-chloro-1,3-

benzenedisulfonamide (52).  

 

 

 

 

 

 

 

 

 

 

Two singlet aromatic protons at δ 8.34 and 6.97 were present in the 1H NMR 

spectrum, and six aromatic carbon signals were identified in the 13C NMR 

spectrum. These NMR data were consistent with literatura data (Revelle L.K. et 

al., 1997). Further structural information was obtained by ESI-MS analysis which 

showed the peak at m/z 278 corresponding to the molecular formula 

[C6H8O4N3ClS2 – 1]+. Thus, the photolysis of hydrochlorothiazide in pure water 

leads to fragmentation of the thiadazine ring as dominant product. After 200 h, the 

formation of compound 51 was observed in 50% yield.  

The structure 4-amino-6-hydroxy-1,3-benzenedisulfonamide was attributed to 

compound 55 (5%).  
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The molecular peak at 266, along with the elemental analysis defined the 

molecular formula C6H9N3O5S2. The 1H NMR spectrum exhibited two aromatic 

protons, as singlets at δ 6.18 and 8.07. In the 13C NMR spectrum six carbon 

signals were present: two protonated carbons at δ 131.9, 116.5 and four aromatic 

quaternary carbons at δ 152.6, 145.6, 119.5 and 116.2. 

All compounds were used as standards to evaluate the phototransformation yields 

by HPLC analysis. The yields were also confirmed by 1H NMR integration 

analysis of the mixture after irradiation. The yields of photoproduct 51, 52 and 55 

after 200 h were 15%, 35% and 5%, respectively.  

To verify the phototransformation in a simulated aquatic environment an 

irradiation experiment was also performed suspending hydrochlorothiazide in 

sewage treatment plant (STP) water. The photoproducts 51, 52 and 55 were 

obtained after 200 h. The only difference observed in this case was the slight yield 

of compound 55 (1%).  

Finally, an experiment irradiating the hydrochlorothiazide suspension was 

performed in pure water under sunlight for 5 days in January. HPLC and NMR 

analysis of the irradation mixture showed that hydrochlorothiazide was almost 

completely transformed and the main product was compound 51 (75% yield). 

The occurrence of the same three photoproducts in all irradiation conditions tested 

suggests a unique photolysis pathway for hydrochlorothiazide in water, where the 

main processes are photoinduced fragmentation of the thiadazine ring and the 

photosubstitution of the chlorine with the hydroxyl group.  
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3.3.2.3 Conclusion 

 

Hydrochlorothiazide was irradiated under biomimetic conditions for 200 hours 

leading to three photoproducts that were isolated and characterized. Two of them 

were isolated in percentages significantly higher than 10 %.  

We are currently investigating on eco-toxicity of hydrochlorothiazide and its 

phototransformation products, to assess the environmental risk. 
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3.4.1 Fibrates: bezafibrate, gemfibrozil, fenofibrate 

 

During the past 20 years, fibric acid derivatives (ethyl-2-[4-chlorophenoxy]-2-

methyl propionate) have been the major drugs used in the treatment of 

hyperlipidaemia (Baker R. et al., 1982; Harvengt C. et al., 1982) when raised 

cholesterol levels are associated with raised levels of triglycerides. Clofibrate and 

gemfibrozil were widely prescribed in the United States (The Helsinki Heart 

Study, 1996). After about 10 years, a new generation of fibric acid derivatives was 

developed in Europe and the prescription of such agents as bezafibrate (59), is 

common (Drouin  P. et al., 1980; Michell  H. et al., 1979), due to their greater 

potency and more satisfactory reduction at low density lipoprotein-cholesterol 

levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bezafibrate (59), gemfibrozil (60) and fenofibrate (61) have been selected for our 

study because they are the most prescribed fibrate and they are included in the 

2002 list of the most used drugs in the world. As fenofibrate is rapidly 
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fenofibric acid (62)
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metabolized to fenofibric acid (62) after administration, this metabolite has also 

been investigated.  

 

 

 

 

 

 

 

 

 

Bezafibrate has been frequently identified in the environment (Andreozzi R. et al., 

2003). In his investigations on effluents of German sewage treatment plants (STP) 

Ternes T.A. (1998) reported concentrations up to 4.6 µg/l of this drug. Calamari 

D. et al. (2003) in a recent investigation on Naples STP water have found 

concentrations of 116 ng/l.  

The second fibrate under investigation is gemfibrozil. The drug has been found in 

surface waters (Ternes T.A., 1998) and in STP effluents in Canada (Metcalfe C. et 

al., 2000). Andreozzi R. et al. (2003) have found 4.76 µg/l concentrations in 

Naples STP effluent.  

No trace of fenofibrate has been found in the aquatic environment. These data 

agree with the almost quantitative conversion of fenofibrate to its metabolite 

fenofibric acid (62) after its administration (Elsom L.F. et al., 1976). 

Concentrations up to 1.2 µg/l of this metabolite have been found in German STP 

effluents and rivers (Ternes T.A., 1998).  

In recent years, light-mediated cutaneous reactions, such as pruritus, dry skin, 

maculopapular rashes (Blane G.F., 1987), erythema multiforme (Arif and 

Vahrman, 1975) and photosensitivity following the taking of these 

pharmaceuticals have been described. In connection with these facts, studies on 

photodegradation (by UV-B 290-329 nm) and phototoxicity in vitro 

(photohemolysis) of bezafibrate, gemfibrozil and fenofibrate were performed 

(Vargas F. et al., 1993). Their photoxicity can be explained by the involvement of 
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free radicals, singlet oxygen and stable photoproducts (Miranda M.A. et al., 

1994a). 

 

3.4.2 Results and Discussion 

 

Phototransformations of bezafibrate (59) 

2-[4-2-[4-chlorobenzamido]ethylphenoxy]-2-methylpropanoic acid, bezafibrate 

(59) was irradiated in distilled water and its transformation monitored by thin 

layer chromatography at 50, 100 and 200 hr. Appreciable amounts of 

transformation products were obtained only after 200 hr. After removal of the 

water in vacuo, the residue was chromatographed on silica gel to give, along with 

unreacted bezafibrate (88 %), phenol 63 (2%) and ether 64 (3 %). 

 

 

 

 

 

 

 

 

 

 

 

Compound 63 was identified by comparing its spectral data with those reported in 

literature. In fact, it was isolated in a previous study (Canudas N. et al., 1996) on 

phototoxicity of bezafibrate (59) which was irradiated with a 125 W medium 

pressure Mercury lamp in biological conditions. Structure 64 was attributed on the 

basis of spectroscopic data. The 1H NMR spectrum, in addition to four aromatic 

doublets, showed the signals of the geminal methyls as a doublet at δ 1.32 and the 

methine proton as a quartet at δ 4.53 according to the presence of an isopropyloxy 

group. The corresponding carbons in the 13C NMR spectrum were at δ 22.0 and 

69.9, respectively.   

Cl
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The same photoproducts 63 and 64 were also obtained when bezafibrate was 

irradiated for 200 hr in pure water in the presence of nitrates or humic acids. The 

yields were comparable, so that the presence of environmental photosensitizers 

seems not to influence the phototransformation of bezafibrate. Instead, when 

using STP water after 200 hr irradiation no significant photodegradation was 

observed. Irradiation of bezafibrate in distilled water saturated with argon gave 

only compound 64 (2 mg).  

The experiments were also performed by sunlight irradiation, and after 200 hr 

similar results were obtained.  

 

Phototransformations of gemfibrozil (60) 

5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid, gemfibrozil (60), dispersed 

in distilled water, was irradiated by the solar simulator. After 200 hr, water was 

evaporated in vacuo and the reaction mixture was purified by silica gel flash 

chromatography and preparative thin layer chromatography giving gemfibrozil 

and a crude photoproduct in about 9% yield. The compound isolated was 

identified as aldehyde 65. The EI-MS spectrum showed a M+ at m/z 264 with a 

base peak at m/z 136. 1H-NMR spectrum showed that aromatic protons were 

shifted at δ values higher than the ones of gemfibrozil, in agreement with the 

oxidation of a methyl group.  In fact, a singlet at δ 10.38 in the 1H-NMR spectrum 

and a carbonyl carbon at δ 189.7 in the 13C NMR spectrum attested to the 

presence of the formyl group. The ortho position of the formyl group was 

established on the basis of a NOESY spectrum where the methyl gave NOE with 

the doublet at δ 6.82 and with the singlet at δ 6.73. 
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Irradiations in distilled water in the presence of nitrates or humic acids as well as 

in STP water, or in distilled water in argon atmosphere left gemfibrozil unaltered 

even after 300 hr. The same results were obtained by sunlight irradiation. 

 

Phototransformations of fenofibrate (61) 

2-[4-(4Chlorobenzoyl phenoxy)]-2-methyl propionic acid-isopropyl ester, 

fenofibrate (61) was dispersed in distilled water and was irradiated for 200 hr by 

the solar simulator. Water was evaporated and the residue was chromatographed 

to give unreacted fenofibrate (88%), compound 62 and compound 66 with an 

overall yield of about 8%. These compounds were identified by comparison with 

authentic samples (from Aldrich).  

 

 

 

 

 

 

Its irradiation in distilled water in the presence of nitrate ions, humic acids or in 

STP water gave products 62 and 66 in similar yields to those in pure distilled 

water. Fenofibrate (61) by irradiation in argon gave only fenofibric acid 62 in 

traces. 

 

Phototransformations of fenofibric acid (62) 

Irradiation of a distilled water solution of fenofibric acid (62), performed as for 

the other fibrate, gave phenol 66 (13%), ether 67 (70%) and alcohol 68 (18%). 
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Fenofibric acid (62) was the most photolabile among tested drugs and after 60 hr 

it was quantitatively converted. Similar behaviour was observed in STP water as 

well as by changing the lamplight with the direct sunlight. Instead, irradiation in 

argon gave only compounds 67 (70%) and 68 (15%). These latter were previously 

isolated by Miranda et al. in a study on photosensitization by fenofibrate 62 

(1994a). 

On the basis of the experimental and literature data, mechanistic pathways may be 

drawn for the formation of the photoproducts. All involve the aryloxy moiety as 

the key reactive site and well-stabilized radicals (or radical ions) as intermediates. 

Formation of phenols 63 and 66 occurs by a homolytic cleavage of the aryloxy 

bond followed by hydrogen abstraction from the solvent (Scheme 10), as already 

proposed by Canudas N. et al. (1996) for bezafibrate, and requires aerobic 

conditions, as confirmed by the control experiment performed in the absence of 

oxygen. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Scheme 10 

 

 

Formation of ethers 64 and 67 can be explained by an ionic photodecarboxylation 

process of the dissociated acids to aryloxy-substituted carbanions which are 

protonated by water (Scheme 11). Photodecarboxylation is also the first event 
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followed by a [1,2]-Wittig rearrangement in the formation of 68 from 62 (Scheme 

11) and has been already justified by Miranda M.A. et al. (1994b). These 

phototransformations do not require aerobic conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 11 

 

 

The high photodegradation of 62 may be justified by the presence of the easily 

photoexciting benzophenone group. It is to be noted that in a previous work by 

Canudas N . et al. (1996) only dimer 69 together with phenol 63 was found.  

 

 

 

 

 

 

-CO2

Ar C
O

O C Ar C
O

O
C
O

C O

H2O

Ar C
O

C OH

Ar

68

Wittig 1,2

Ar = Cl

O C C
O

O

-CO2
O C H2O O CH

64 or 67



 

65 

This different result may be due to different irradiation conditions (UV lamp vs 

solar lamp) and also to the more diluted sample (10-3 M vs 10-4 M). Indeed, as 

reported by Monti S. et al. (1997), a pathway for decarboxylation may occur 

which is scarcely efficient especially at low light levels. This pathway would 

involve a radical species formed via a photoionization process upon electron 

release followed by loss of CO2, and dimer 69 would form from a radical-radical 

recombination. 

Formation of aldehyde 65 may be rationalized by a photooxidation promoted by 

the ortho aryloxy function (Scheme 12), in agreement with the easy oxidation of 

alkyl-substituted phenols (Horspool W.M., 2003). We are currenly investigating 

the detailed mechanism. 

 

 

 

 

 

 

 

Scheme 12 

 

 

 

 

Toxicity studies 

 

Results of acute toxicity for fibrates and their photoproducts are reported in Table 

18. Data showed that the drugs had a limited acute toxicity on the tested 

organisms. Parental compounds showed no effects or low acute effects towards all 

the organisms ranging from 39.69 mg/l (bezafibrate vs T. platyurus) to 161.05 

(gemfibrozil vs T. platyurus). Concentrations found to exercise a toxic potential 

were far from environmental concentrations. No effect of environmental concern 

was found for photoderivatives of bezafibrate and gemfibrozil, while the 

fenofibrate derivative showed the highest acute effects for all the organisms and 

O
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resulted the most active among all tested compounds. Preliminary acute tests 

performed on T. platyurus and B. calyciflorus for fenofibric acid and its 

derivatives showed compounds 67 and 68 were more toxic than the parent 

compound. 

 

 

Table 18. Acute toxicity tests with confidence limits (95% probability) 

 
NE = no effects at 
ND = not determined 
 

 

Chronic data on the inibition of reproduction for B. calyciflorus and C. dubia are 

reported in Table 19. Results confirmed the trend of acute data for bezafibrate and 

its derivatives even if the bioactive concentrations ranged from 0.13 to 7.36 mg/l 

while no significant difference was found between fenofibrate, gemfibrozil and 

their respective derivatives that, however, showed EC50 values less than 1 mg/l. 

Chronic data also demonstrated that bezafibrate is the most toxic. 

Compound V.fischeri C.dubia T.platyurus B.calyciflorus D.magna 
      

59 NE (110 ppm) 75.70 39.69 60.91 100.08 
  (60.13-81.01) (24.93-63.17) (54.03-68.66) (80.02-120.54) 
      

63 NE (130 ppm) 77.11 NE (70 ppm) NE (70 ppm) NE (120 ppm) 
  (65.41-84.09)    
      

64 37.24 90.57 45.96 109.32 NE (80 ppm) 
 (29.74-46.61) (81.31-99.65) (44.41-47.57) (85.91-139.10)  
      

60 85.74 NE (200 ppm) 161.05 77.30 74.30 
 (77.22-91.74)  (136.98-189.34) (59.12-101.08) (66.15-88.45) 
      

65 NE (100 ppm) NE (100 ppm) NE (190 ppm) 64.97 50.12 
    (57.12-72.36) (44.78-58.55) 
      

61 NE (100 ppm) NE (100 ppm) NE (190 ppm) 64.97 50.12 
    (57.12-72.36) (44.78-58.55) 
      

66 22.16 42.24 27.16 0.35 17.68 
 (17.15-25.62) (35.47-49.66) (23.35-34.40) (0.27-0.41) (10.32-22.15) 
      

62 ND ND 82.03 74.30 ND 
   (74.40-91.23) (60.95-82.11)  
      

67 ND ND 28.06 30.06 ND 
   (21.07-37.37) (23.31-40.38)  
      

68 ND ND 31.27 
(24.64-39.70) 

55.49 
(40.49-76.06) 

ND 
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Table 19. Chronic toxicity tests with confidence limits (95% probability) 

 

ND = not determined 
 

 

 

 

3.4.3 Conclusion 

 

From an environmental point of view it is noteworthy that bezafibrate and 

gemfibrozil are stable in STP effluent, probably due to the filter action of this 

medium which has a large absorption band at λmax 214 nm with a code up to 300 

nm. Consequently, only fenofibrate 61 and its mainly biological metabolite 

fenofibric acid 62 call for deeper attention. Their transformations in STP water 

allow us to expect similar behaviours in surface waters; furthermore 62 undergoes 

fast and complete degradation by sunlight. According to U.S. and Europe 

Scientific Committees, analytical and ecotoxicological investigations should also 

be addressed toward their environmental metabolites 67 and 68 to assess the 

environmental risk. 

However, preliminary acute and chronic data, here reported, indicate that high, 

environmentally uunrealistic concentrations of fibrates and their photoproducts 

are needed to cause toxicity. 

Compound C.dubia B.calyciflorus 
   

59 
 

0.133 
(0.038 - 0.260) 

0.44 
(0.25 – 0.51) 

   
63 

 
1.49 

(0.74-2.65) 
1.44 

(1.08 -1.91) 
   

64 
 
 

60 

7.35 
(5.30 - 9.62) 

 
ND 

7.36 
(5.52-9.78) 

 
0.44 

(0.17 – 0.69) 
 

65 
 

0.43 
(0,35-0,51) 

 
0.36 

(0,15 – 0,54) 
   

61 0.76 
(0.66 - 0.88) 

ND 

   
66 

 
   0.92 

    (0.80 - 0.98) 
  ND 
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3.5.1 Proton Pump Inhibitors: lansoprazole and omeprazole 

 

Lansoprazole (70a) and omeprazole (70b), two substituted pyridylmethylsulfinyl 

benzimidazole derivatives, are proton pump inhibitors.  

 

 

 

 

 

 

 

 

 

Proton pump inhibitors (PPIs) are widely used for the treatment of acid-related 

disorders including gastroesophageal reflux disease and for peptic-ulcer disease 

caused by stress, nonsteroidal antiinflammatory drugs, and Helicobacter pylori 

infection (Langtry and Wilde, 1998; Zimmermann and Katona, 1997). These 

compounds inhibit acid secretion by irreversibly interacting with H+ -K+-ATPase, 

the terminal proton pump of the parietal cell (Sachs G., 1997). In the acid space of 

the secreting parietal cell or in the vicinity of the enzyme, these drugs are 

converted to thiophilic sulfenamide or sulfenic acid, which reacts with Cys-813 

residue in the catalytic subunit of the H+ -K+ -ATPase, which is critical for 

enzyme inactivation (Wolfe and Sachs, 2000). 

Omeprazole has been extensively used to control these disorders (Langtry and 

Wilde, 1998), lansoprazole, with benzimidazole containing a trifluoroethoxy 

group, has also been used more recently (Zimmermann and Katona, 1997).  

Omeprazole has been found in surface waters of Lambro river (Calamari D. et al., 

2003). Stability studies especially on omeprazole have revealed their poor 

stability in acid medium or to light and heat (Wallmark B. et al., 1987), and this 

has been particularly noticed in the settlement of methods for their determination 

(Karljikovic-Rajic K. et al., 2003; El-Kousy and Bebawy, 1999; Castro D. et al., 

1999).  
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The objective of this study was to determine the main products of hydrolytic and 

photolytic cleavage of lansoprazole (70a) and omeprazole (70b) under 

environmental conditions, in particular, in water, in water with added of humic 

acid or nitrates, and at different pHs.  

   

3.5.2 Results and discussion 

 

Transformations of lansoprazole (70a) 

Dispersions of lansoprazole 70a in pure water were irradiated by the solar 

simulator. After 72 hr, water was evaporated and irradiation mixture was purified 

on preparative TLC. Unreacted lansoprazole, compounds 71a-75a and an 

intractable red material were obtained (Table 20).   

Compound 71a was identified as dianiline by comparison of its spectral data with 

those of the commercially available compound.  

 

 

 

 

 

 

 

 

The 1H NMR spectra of compound 72a showed two doublets at δ 8.33 and 7.06 of 

the pyridine moiety; in the aliphatic region, in addition to the methylene quartet of 

the CH2CF3 group and the methyl singlet at δ 2.13, a singlet at δ 4.62, integrated 

for two protons.   

The 13C NMR resonances were assigned on the basis of HMQC and HMBC 

experiments. This latter showed the correlations of the signal at δ 4.62 with the C-

2' and C-3' carbons. In the EI-MS spectra the molecular peak at m/z 221, the 

peaks at 206 and 190 due to the fragments [M-CH3]
+ and [M-CH2OH]+, 

respectively, were present. All these data were in agreement with the structure of 

compound 72a. 
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The third compound isolated from the irradiation mixture was identified as sulfide 

73a according to 1H NMR showing seven patterns of signals with almost identical 

chemical shifts in comparison with those of the lansoprazole, except the exchange 

of chemical shifts of two methylene groups. The 13C NMR signals were assigned 

by combination of the HMQC and HMBC experiments. The HMBC spectrum 

showed the correlations of the CH2CF3 methylene protons with the CF3 and C-4' 

carbons, as well as that of the CH2S methylene protons with the C-2', C-3' and C-

6' carbons, and that of the H-6' proton with the C-4', C-2' and C-5' carbons. The 

shielded methylene carbon at δ 36.1 attached to the pyridine 2-position. The 

absence of IR band at 1050 cm-1 typical of the streching of SO group and the 

molecular peak at m/z 353 in the EI-MS spectra were in agreement with sulfur 

compound 73a.  

Structure 73a was confirmed chemically. Indeed, an experiment was performed 

by adding m-chloroperbenzoic acid (0.8 mM) to a solution of 73a in anhydrous 

dichloromethane (1 mM). After two hours, TLC showed the presence of a 

compound which was identified as lansoprazole by comparison of its Rf value and 

spectral data with those of the corresponding standard.    
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Benzimidazole 74a and benzimidazolone 75a were identified by comparing of 

their spectral data with those of commercially available compounds. 1H NMR of 

benzimidazole 74a showed three signals: a singlet proton at δ 8.16, and two 

multiplet protons at δ 7.61 and 7.28 of the benzimidazole moiety.  

The signal at δ 6.85 was present in the 1H NMR spectrum of compound 75a. The 

HMBC experiment showed the correlations of this signal with the aromatic 

carbons at δ 120.2 and 109.9. 

 

 

 

 

 

 

 

 

Attempts to characterize the red material failed due to its complexity and 

changeable nature.  

The dispersion of lansoprazole in water milliQ, kept in the dark for 72 h gave, 

after evaporation of the water, the red-coloured residue which was 

cromathographed on preparative TLC affording sulfide 73a, lansoprazole, the 

intractable red fraction  and benzimidazolone 75a at decreasing Rfs (Table 20). 

 

 

Transformations of omeprazole (70b) 

Irradiation for 42 hours of omeprazole 70b in milliQ water by the solar simulator 

gave, after evaporation of water and purification of the reaction mixture on 

preparative TLC, five photoproducts and an intractable red fraction (Table 20). 

The first isolated photoproduct was compound 71b. The 1H NMR spectrum 

showed in the aromatic region a doublet integrated for one proton and a multiplet 

integrated for two protons, while in the aliphatic region the methoxyl singlet at 

δ 3.79 was present. In the 13C NMR spectra there were seven signals, four 

protonated carbons and three quaternary carbons. All the resonances were 
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73b

assigned on the basis of the HMQC and HMBC experiments. The EI-MS spectra 

showed the molecular peaks at m/z 138 in agreement with the structure of the 

dianiline 71b.     

 

 

 

 

 

 

 

 

Compounds 72b and 74b were identified by 1H NMR and LC-MS due to their low 

amounts. 1H NMR of compound 72b revealed the presence of the only pyridine 

proton at δ 8.14 while LC-MS showed the molecular peak at m/z 167.  

 

 

 

 

 

 

 

 

 

All the considerations concerning spectral data and control experiments we 

reported for compound 73a were found also for compound 73b. 
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The singlet at δ 8.04 of the H-1 proton together with the signals typical of the 

benzimidazole moiety and the molecular peak at m/z 148 in the LC-MS confirmed 

the structure of compound 74b.   

 

 

 

 

 

 

 

Compound 75b was identified as benzimidazolone by the presence of the signals 

at δ 6.92, 6.66 and 6.63 in the 1H NMR spectrum and by the presence of the C-2 

carbonyl carbon at δ 158.4 in the 13C NMR spectrum. IR spectrum showed the 

band at 1720 cm-1 due to the carbonyl group. Definitively, the EI-MS spectra 

revealed the presence of the molecular peak at m/z 164.  

 

 

 

 

 

 

 

As for lansoprazole, the red material was intractable by chromatographic means 

and all attempts to characterize it failed.  

When the omeprazole was dispersed in milliQ water and kept at dark for 43 h, 

after water evaporation, it led to an intense red-coloured residue which was 

separated on preparative TLC giving 71b, omeprazole, the intractable red residue 

and 75b at decreasing Rfs. 

Photochemistry and hydrolysis of two drugs were also investigated at pHs 4.0 or 

9.0 and after neutralization of the dispersions and evaporation of water, the 

mixtures were analyzed by 1H NMR and purified on preparative TLC showing 

that both lansoprazole and omeprazole degradation was accelerated in acid 
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conditions, also in accordance with previous results reported by Lagerström and 

Persson (1984).  

The same products in the same yields were obtained when the drugs were 

irradiated in milliQ water in the presence of humic acids (5 ppm) or KNO3 (10 

ppm).  

 

As shown in Table 20, degradation is accelerated by light (70a and 70b exhibit 

absorption bands at λmax 292 and 300 nm, respectively). After 72 h in milliQ 

water, lansoprazole was present only for 24% while after 43 h omeprazole was 

completely degraded. The effect of light on the degradation is particularly 

evidenced by comparing the results at buffered pH 7.0 with those at the same 

conditions in the dark where the drugs are instead stable.   

 

 

Table 20 

 

aReaction time 72 h. bReaction time  43 h. c40 mg in 500 mL of milliQ water. dBy TLC. eBy a solar 
simulator. 
 

 

Control experiments showed that product distribution both by hydrolysis and 

irradiation were not to be affected under argon-saturated conditions. Moreover, it 

was verified that sulfides 73 were stable to hydrolysis at the dark while by 

Drugc 
 

Condition 
 

70a  71a 72a  red material  73a 74° 75a  

70° lighte 24 19 5 15 10 5 5 
70° dark 57 - - 17 10 - 3 
70° pH 7.0/lighte 22 19 3 8 5 5 8 
70° pH 7.0/dark 100 - - - - - - 
70° pH 4.0/dark 50 - - 15 20 - 5 
70° pH 9.0/dark 100 - - - - - - 

 
 
 
 

 70b 71b  72b  red material 73b 74b 75b  

70b lighte - 10 <1 20 16 <1 20 
70b dark 20 - - 15 25 - 10 
70b pH 7.0/lighte 5 16 <1 15 12 <1 20 
70b pH 7.0/dark 100 - - - - - - 
70b pH 4.0/dark - - - 14 50 - 28 
70b pH 9.0/dark 100 - -  - - - 
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a;   R1, R2  = H;   R3 =CH2CF3

b;   R1 = OCH3;  R2, R3 = CH3

irradiation they led to dianilines 71 and to benzimidazoles 74. These conversions 

were almost quantitative, because of the absorption bands at λmax 292 and 300 nm 

which are similar to those of the respective parent compounds. In contrast, 

benzimidazoles 74 and benzimidazolones 75 resulted stable both to hydrolysis and 

photolysis.  

As shown in Table 20, the dark degradation of two drugs was significant leading, 

among the others, to sulfides 73. 

An interpretation is reported in Scheme 13 and is based on literature data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 13. Isolated degradation products from drugs 70 in aqueous sispension 
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Sulfides 73 have been evidenced mainly under physiological pH in the presence 

of thiols, in a model, for studying the mechanism of (H+- K+)-ATPase inhibition 

by the sulfoxides (Im W.B., et al. 1985; Sturm E. et al., 1987; Brandstrom A. et 

al., 1989). Their formation was explained by assuming that the sulfoxides 

rearrange in acidic media to a spirointermediate as 76 which, through subsequent 

steps, one involving reaction with thiols, leads to the sulfides, which contain the 

original molecular backbone (Lindberg P. et al., 1986). In our case the formation 

of sulfides cannot be easily justified in this way.  

Another pathway is possible for formation of sulfides 73. It is reported that 

aromatic sulfoxides are fragmented and/or reduced via cations or radical cations 

as 77 and OH radical in acid solution, and the convertion, which may be slow if 

the acid is weak, occurs more easily with heterocyclic compounds (Shine H.J., 

1967). So, the alteration of drugs 70 even in MilliQ water might be due to the 

mild acid medium (initially measured ca. pH 5.0) as expected on the basis of the 

pKa at 3.83 for 70a and 4.06 for 70b (Shin J.M. et al., 2004). Therefore it is likely 

that protonation involves cation (Im W.B. et al. 1985) or radical cation and/or OH 

radical formation which might trigger diverse oxidation reactions, presumably on 

the aromatic groups of the drugs, leading to the sulfides 73 and the red material. 

This hypothesis agrees with recent studies which have evidenced the antioxidant 

role of lansoprazole and omeprazole as OH-radical scavengers during ulceration 

in addition to acting as proton pump inhibitors (Biswas K. et al., 2003). The 

authors identified only sulfones among four oxidation products formed by 

incubation of the drug with Cu2+-ascorbate system. In our case sulfone was not 

formed. In fact control experiments showed that the sulfone 78 (spectral data are 

reported in appendix) purposely prepared and treated as the parent 70a was found 

to be stable under dark conditions.  
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Benzimidazolones 75 could be formed by oxidation at benzimidazole group or, 

better, via the pathway suggested above, by hydrolysis of the spirointermediate 76 

and the easy N-S bond breakage (Umetsu  N. et al., 1987).  

The faster degradation of omeprazole might be due to the presence of activating 

groups such as 5-OMe or Me on the pyridinium moiety which should favour 

oxidation. 

When irradiated, the degradation of both drugs is accelerated. The only identified 

products are dianilines 71, pyridines 72, benzimidazoles 74 in addition to sulfides 

73, benzimidazolones 75 and the red material. By irradiation the excited drug 

undergoes a series of fragmentations which are difficult to rationalize due to the 

low concentrations of other unidentified products and low mass balance. It has 

been ascertained that photodegradation does not involve oxygen. So, compounds 

72 might form via decomposition of a photoisomerization product as an unstable 

sulfenate intermediate (Still I.W.J., 1988; Hogg D.R., 1990) while compounds 71 

and 74, which are also found by irradiation of sulfides 73, might form via simple 

homolytic benzimidazole-sulfoxide and/or -sulfide bond cleavage (Still I.W.J, 

1988) or photoinduced water addition to the benzimidazole moiety. 

 

3.5.3 Conclusion 

 

Lanzoprazole and omeprazole result stable enough at pH 7.0 or higher, while mild 

acid medium or solar light induce significant degradation, so justifying the 

difficulty of their determination (Karljikovic-Rajic K. et al., 2003). Redox 

reactions and fragmentations are mainly involved and do not require oxygen. This 

aspect is of particular interest and fits in with recent observations that these drugs 

act as both proton pump inhibitors (Horn J., 2000) and antioxidant and 

antiapoptotic agents (Biswas K. et al., 2003).  
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4. Summary 

 

This PhD thesis has examined abiotic transformations of chemicals selected on 

the basis of their sale and/or their presence into the aquatic environment.  In 

particular, reaction conditions as close as possible to natural ones in the aquatic 

systems have been used (aqueous solutions, sunlight irradiation, aerobic 

conditions). The effects of pH or of natural photosensitizers such as humic acids 

or nitrates have also been considered. The degradation products have been 

isolated and fully characterised; in many cases their mechanicistic pathways have 

been discussed. 

In particular it has been observed that: 

- Carboxin pesticide is easily photodegradated leading to eight products. Among 

them sulfoxide is the most photostable and least hydrolyzable. The toxicity tests 

have revealed that this metabolite exhibits similar or even lower activity than the 

parent compound.  

- Benfuracarb and carbosulfan hydrolyze selectively to carbofuran and, under 

irradiation, to a phenol derivative, too. Degradation of carbofuran leads 

exclusively to the phenol derivative and occurs slowly even under sunlight 

irradiation. These results are in contrast with literature data which report many 

photoproducts likely due to the different reaction conditions used. Toxicity tests 

have revealed that carbosulfan and carbofuran are the most active and the phenol 

derivative is generally less toxic than the parent compounds. 

- Irradiation of corticosteroids, prednisolone and dexamethasone, leads to seven 

products, among which four compounds are unprecedented and derive from 

cleavage, type Norrish I, of the side chain at C-17. 

- Naproxen sodium salt is light-sensitive under biomimetic conditions and leads to 

nine products.  It is to be noted that dimeric forms, previously unreported, have 

been isolated by irradiation in drinking water, probably due to the action of 

dissolved inorganic salts. 

- For the first time a dimeric compound has been isolated from furosemide under 

sunlight irradiation. The formation of dimer has been rationalized by the 

formation of a radical cation intermediate. Dehalogenation-hydroxylation 
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(SRN1Ar*) followed by deprotonation and dimerization are the events leading to 

the dimer. The degradation rate of the drug is fast and could justify the low 

MEC/PEC ratio found. 

- Irradiation of hydrochlorothiazide in water affords three photoproducts. Among 

these, the dehalogenation-hydroxylation product has been suggested as 

intermediate in the photodegradation by UV-light of the parent compound but, 

until this study, it had not been isolated and described.  

- Degradation of fibrates under environmental conditions is very slow and lead to 

photoproducts previously isolated from irradiation of these drugs in organic 

solvents. As regards gemfibrozil, the first investigation on its photochemical 

behaviour has been performed which has evidenced the formation of "peculiar" 

oxidation product.   

- Photochemical and hydrolytic behaviour of lansoprazole and omeprazole has 

been investigated for the first time. It has been found that both drugs degrade in 

water leading to sulfides, benzimidazolones and a red complex material. 

Benzimidazoles, dianilines and pyridines have also been identified. Degradation is 

accelerated in acid medium or by light. Redox reactions and fragmentations are 

mainly involved and do not require oxygen. This study is of particular interest 

because it agrees with the recent observations that these drugs act as both proton 

pump inhibitors and antioxidant and antiapoptotic agents and with the difficulty of 

their determination (pKas of lansoprazole and omeprazole 3.83 and 4.06, 

respectively). 

All the examined drugs and respective derivatives have been found to be bioactive 

towards aquatic organisms only at concentrations of mg/l orders, more high than 

the environmental ones. However, even if they are usually detected into aquatic 

environment at very low concentrations (ng/l, µg/l), drugs have structural 

properties to be bioaccumulated in tissues of aquatic organisms bringing on  long-

term effects, which must be considered.  

Special remarks can be drawn by this PhD thesis and are listed as follows: 

1. Attention has been focused on the isolation and spectral characterization 

of metabolites. Their nature is very important, in fact, also in agreement 

with toxicity data obtained in this thesis, many derivatives are more 
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persistent and exhibit toxicity higher than the parent compounds, in 

particular in chronic results. Thus, the possible presence of transformation 

products in surface waters should be taken into account by including 

metabolites in monitoring systems of groundwater and surface waters. 

These analytical investigations are still limited because of the dearth of 

data on the environmental fate of xenobiotics and the lack of standard 

metabolites.  

2. According to the preceding remark, a study on eco-toxicity not only of the 

parent compounds but also of their metabolites has been performed and 

evaluated towards aquatic organisms. This combination of studies is not 

frequent in the literature but during recent years has increasingly become 

of interest to the environmental chemistry community. Indeed, the validity 

of toxicological studies is meaningful only if they include both the parent 

compounds and their derivatives. 

3. Finally, besides confirming known photochemical processes, this study 

has evidenced new photoinduced routes which can represent the starting 

point for further studies in the field of photochemical reactions (e.g., the 

photoisomerization of carboxin 1 to quinolinone 6 or the photooxidation 

of gemfibrozil 60 to aldehyde 65).    
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5. Experimental Section 

 

Equipment and methods.  

Nuclear magnetic resonance (NMR) spectra were recorded at 500 MHz for [1H] 

and 125 MHz for [13C] on a Fourier Transform NMR Varian 500 Unity Inova 

spectrometer. Carbon multiplicity was evidenced by DEPT experiments. The 

proton couplings were evidenced by 1H-1H COSY experiments. The heteronuclear 

chemical shift correlations were determined by HMQC and HMBC pulse 

sequences. 

Electronic impact mass spectra (EIMS) were obtained with a HP 6890 

spectrometer equipped with a MS 5973N detector (SIS Instruments). Matrix 

assisted laser desorption ionization (MALDI) mass spectra were recorded using a 

Voyager-DE MALDI-TOF spectrometer. Electrospray ionization (ESI) spectra 

were recorded using a Finnigan LCQ operating in negative ion mode. The scan 

range was 80-2000 m/z. 

Infrared spectra (IR) were determined on a Fourier Transform Infrared Perkin-

Elmer 1740 spectrometer in CHCl3 solutions. Ultraviolet spectra (UV) were 

recorded on a Perkin-Elmer LAMBDA 7 spectrophotometer.  

Irradiation experiments were performed with a 150-W solar simulator equipped 

with a Xenon lamp. The lamp had a spectral output 200 to 2.400 nm and an 

irradiance at 0.5 m higher than 10 mW m-2 nm-1; a filter was used to simulate 

irradiation at the earth surface (Oriel Instruments) or by 500 W high-pressure 

mercury lamp (Helios Italquartz).   

The HPLC apparatus consisted of an Agilent 1100 HPLC system equipped with 

UV or refractive index detector or on a Varian Vista 5500 apparatus equipped 

with a refractometric detector 

Analytical TLC was made on Kieselgel 60 F254 or RP-18 F254 plates with 0.2 mm 

layer thickness (Merck). Preparative TLC was performed on Kieselgel 60 F254 

plates with 0.5 or 1 mm film thickness (Merck). Flash column chromatography 

(FCC) was conducted on Kieselgel 60, 230-400 mesh (Merck), at medium 

pressure.  
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Sewage treatment plant (STP) water was obtained from Mercato S. Severino 

treatment plant (Salerno, Italy). KNO3 and humic acids were obtained from 

Aldrich. 

 

5.1 Fungicides: carboxin (1) 

Chemicals Carboxin, analytical standard grade (99%), was supplied by Labservice 

Analytika S.r.l.  

Photolysis of carboxin by natural solar light  

Suspension of carboxin (20 mg) in 300 mL of deionized water was exposed to 

natural sunlight in Pyrex flask, under aerobic conditions, at Naples in October 

2003. Similar experiments were carried out adjusting pH of suspension at 2 by 

HCl 1 mM and at 10 by KOH 0.1 mM, in the presence of KNO3 (10 mg/l), with 

humic acid (5 mg/l). Each experiment was performed in duplicate, with one set of 

dark controls. After 4 days sunlight exposure, each reaction mixture was extracted 

with ethyl acetate. The organic layer and the aqueous extract were analyzed by 
1H-NMR. The organic extract was chromatographed by reverse phase C-18 HPLC 

[Agilent 1100 HPLC system equipped with refractive index detector. The column 

was a Phenomenex HYDRO RP-18, 4 µm, 250 x 4.5 mm, eluent H2O-CH3OH-

CH3CN (5:3:2)] to give unreacted carboxin (30-55%) and the photoproducts 

(complessively 20-35%). The aqueous extract was acidified with HCl 2M and 

extracted with ethyl acetate. The organic layer gave pure oxanilic acid 7. All the 

products were fully characterized by spectral means.  

Spectral data 

Compound 2: IR (CHCl3) ν 1721, 1673, 1079  cm-1, 1039; 1H NMR (CDCl3) δ 

2.38 (s,3H, Me), 2.90 e 3.10 (2m, 2H, CH2S), 4.40-4.70 (m, 2H, CH2O), 7.10-7.60 

(m, 5H, ArH), 8.35 (brs, 1H, NH); 13C NMR (CDCl3) δ 20.7 (Me), 43.5 (CH2S), 

56.9 (CH2O), 110.7 (C-3), 120.5 (C-2'), 124.6 (C-4'), 129.2 (C-3'), 137.8 (C-1'), 

163.6 (CON), 166.6 (C-2); EIMS: m/z 251 [M] +, 234, 159, 131. 

Compoud 3: IR (CHCl3) ν 3377, 1718, 1694 cm-1; 1H NMR (CDCl3) δ 2.11 (s, 

3H, Me), 2.90 - 3.26 (m, 2H, CH2S), 4.01 e 4.42 (2m, 2H, CH2O), 7.10-7.60 (m, 

5H, ArH), 8.83 (brs, 1H, NH); 13C NMR (CDCl3)  δ 25.3 (Me), 33.8 (CH2S), 71.8 
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(CH2O), 92.1 (C-2), 119.8 (C-2'), 125.5 (C-4'), 129.2 (C-3'), 136.1 (C-1'), 156.2 

(CON), 189.7 (CO). EIMS: m/z 251 [M]+, 148, 103.  

Compound 4: IR (CHCl3) ν 2852, 1717 cm-1; 1H NMR (CDCl3) δ 2.08 (s, 3 H, 

Me), 2.93 (t, J = 6.3 Hz, 2H, CH2S), 4.33 (t, J = 6.3 Hz, 2H, CH2O). 13C NMR 

(CDCl3)  δ 23.7 (Me), 38.7 (CH2S), 68.1 (CH2O), 172.6 (CO2).  EIMS: m/z  87 [M 

-SH]+, 60, 43. 

Compound 5: 1H NMR (CDCl3) δ 2.88 (t, J = 6.3 Hz, 4H, 2CH2S), 2.98 (brs, 2H, 

2OH), 3.89 (t, J = 6.3 Hz, 4H, 2CH2O); 13C NMR (CDCl3) δ 41.2 (CH2S), 60.3 

(CH2O); EIMS m/z 154 [M]+, 92, 79, 64, 45.  

Compound 6: IR (CHCl3) ν 3389, 1641 cm-1; 1H NMR (CDCl3) δ 2.92 (s, 3H, 

Me), 3.04 (t, J = 5.2 Hz, 2H, CH2S), 3.70 (t, J = 5.2 Hz, 2H, CH2O), 4.35 (brs, 

1H, OH), 7.30 (t, J = 7.5 Hz, 1H, H-6), 7.45 (d, J = 7.5 Hz, 1H, H-8), 7.58 (t, J = 

7.5 Hz, 1H, H-7), 7.78 (d, J = 7.5 Hz, 1H, H-5), 11.75 (brs, 1H, NH). 13C NMR 

(CDCl3) δ 18.2 (Me), 38.8 (CH2S), 60.2 (CH2O), 116.7 (C-8), 120.6 (C-10), 123.2 

(C-6), 124.4 (C-3), 125.5 (C-5), 131.5 (C-7), 137.2 (C-9), 155.7 (C-4), 161.1 (C-

2). EIMS: m/z 235 [M]+, 204, 143, 77, 43.   

Compound 7: IR (KBr, wafer) ν 3473, 1697 cm-1; 1H NMR (DMSO) δ  7.03 (t, J 

= 7.3 Hz, 1H, H-4'), 7.27 (t, J = 7.3 Hz, 2H, H-3') and 7.75 (d, J = 7.3 Hz, 2H, H-

2'), 10.18 (brs, 1H, NH). 13C NMR (DMSO) δ 119.8 (C-2'), 125.5 (C-4'), 129.2 

(C-3'), 136.1 (C-1'), 163.3 (CON), 165.5 (COOH); EIMS: m/z 167 [M]+, 148 [M-

OH]+.  

Compound 8:  IR (CDCl3) ν  3377, 1741, 1703, 1677 cm-1; 1H NMR 

(CDCl3) δ 2.07 (3H, s, Me), 3.26 (m,  J = 6.3, 2H, CH2S), 4.27 (m,  J  

= 6.3, 2H, CH2O), 7.10-7.70 (m, 5H, ArH), 8.49 (brs, 1H, NH); 1 3C 

NMR (CDCl3) δ 20.1 (Me), 28.0 (CH2S), 61.8 (CH2O), 119.9 (C-2'),  

125.6 (C-4'), 129.2 (C-3'), 135.7 (C-1'), 155.8 (CON), 170.6 (CO2),  

191.6 (COS); EIMS m/z   267 [M]+, 224, 92. 

Compound 9: IR (CDCl3) ν  3680, 3620, 1674 cm-1;  1H NMR (CDCl3) δ 

2.33 (s, 3H, Me), 2.71 (t ,  J = 6.3, 2H, CH2S), 3.76 (t,  J = 6.3, 2H,  

CH2O), 7.02-7.70 (m, 5H, ArH), 9.35 (brs, 1H, NH), 15.42 (s, 1H, 

OH);  13C NMR (CDCl3) δ 21.3 (Me), 39.1 (CH2S), 59.7 (CH2O), 93.1 (C-3), 
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120.3 (C-2’), 124.5 (C-4’), 129.0 (C-3’), 137.3 (C-1’), 171.1 (C-2), 183.1 (C-7); 

EIMS: m/z 253 [M]+, 193, 135.   

 

5.2 Carbamic insecticides: benfuracarb (15), carbosulfan (16) and 

carbofuran (17) 

Chemicals  

Benfuracarb, carbosulfan  and carbofuran  were commercially available by 

Aldrich-Fluka and used without further purification.  

Transformations of pesticides 

Irradiations were performed by exposure of the compounds to sunlight or to UV 

lamp.  In a standard procedure suspensions of benfuracarb (205 ppm) and 

carbosulfan (190 ppm) in MilliQ water were exposed to sunlight in Pyrex flasks, 

under aerobic conditions. Each experiment was performed in duplicate, with one 

set of dark controls. After 6 days, each reaction mixture was evaporated in 

vacuum and residues were analysed by 1H-NMR and by HPLC [Agilent 1100 

system equipped with UV detector. The column was a Spherex 10µm OH 

(DIOL), eluent hexane-ethyl acetate (4:1), λ = 280 nm]. Control experiments 

showed that diluted solutions (4 ppm) of benfuracarb and carbosulfan afforded 

similar results. 

Experiments using the same concentrations of pesticides were carried out at pH 

5.0 and 9.0 using NaH2PO4/Na2HPO4 adjusting the pH by HCl 0.2 M and KOH 

0.2 M. After 6 days, each reaction mixture was neutralized and analyzed by 1H-

NMR and HPLC. Experiments in presence of KNO3 (10 mg/l) and of humic acid 

(5 mg/l) were also performed. After 6 days, each reaction mixture was evaporated 

in vacuum and analyzed by 1H-NMR and HPLC.  

Carbofuran (110 ppm) in MilliQ water was treated according to the standard 

procedure. After six days it was recovered unchanged at the dark while by 

irradiation it decomposed for about 7 % leading only to phenol derivative 18 (1H 

NMR and HPLC).   

Kinetic experiments of carbofuran (4 ppm) in MilliQ water were performed in 

Pyrex tubes and this compound was irradiated with UV lamp. At selected time 

intervals, samples were collected and analyzed directly using HPLC [Agilent 
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1100 system equipped with UV detector. The column was a Synergy 4 µm MAX-

RP80A, eluent water-methanol-acetonitrile (21:14:15), λ = 254 nm].  

Carbofuran-phenol (18) was isolated from irradiation experiments by repeated 

TLC [hexane-ethyl acetate (7:3)], and identified by comparison of 1H and 13C-

NMR data with those of an authentic sample which was obtained by treating 

carbofuran (0.09 M) with methanolic KOH (5%): IR (CHCl3) ν  3568 cm-1;  

1H-NMR (CDCl3) δ 6.72 (m, 3H), 3.04 (s, 2H), 1.50 (s, 6H). 13C-NMR (CDCl3): δ 

145.8 (C-2), 140.3 (C-1), 127.8 (C-3), 120.7 (C-4, C-5), 117.0 (C-6), 88.0 (C-7), 

43.5 (C-8), 28.2 (C-9, C-10). 

 

5.3 Steroidal anti-inflammatory drugs: prednisolone (19) and dexamethasone 

(20) 

Chemicals  

Prednisolone and dexamethasone were purchased from Sigma–Aldrich and used 

without further purification. 

Irradiation of prednisolone (19) 

A suspension of prednisolone (100 mg) in water (500 ml) was irradiated by the 

solar simulator for 4 hr under slow magnetic stirring. The reaction mixture was 

extracted with ethyl acetate and the residue was subjected to silica gel flash 

chromatography. Elution with CHCl3-acetone (19:1) gave a mixture of products 

25 - 28 (5 mg), while elution with CHCl3-CH3OH (19:1) gave unreacted 

prednisolone (19) (55 %), pure 22 (13%) and crude 23 and 24. TLC 

chromatography on silica gel (CHCl3-CH3OH 19:1) gave pure 23 (10%). Reverse-

phase C-18 HPLC [Varian Vista 5500 HPLC system equipped with a 

refractometric detector and Lichrosorb RP-8 columns, eluent H2O-CH3OH-

CH3CN (6: 2: 2)] gave pure 24 (11%). 

 Synthesis of 1,4-androstadien-11β-olo-3,17-dione (25) 

To a solution of prednisolone (19) (200 mg) in ethyl acetate (10 ml) MnO2 (4 g) 

was added. After 1 hr at room temperature the reaction mixture was filtered on 

celite eluting with ethyl acetate and methanol. Chromatography on silica gel 

(CHCl3-acetone 19:1) of the filtrate gave 1,4-androstadien-11β-olo-3,17-dione 

(5d) (95%).  
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Irradiation of 1,4-androstadien-11β-olo-3,17-dione (25) 

A suspension of 1,4-androstadien-11β-olo-3,17-dione (25) (180 mg) in water (1 l) 

was irradiated by the solar simulator for 4 hr under magnetic stirring.  The 

reaction mixture was separated by silica gel flash chromatography (CHCl3-

acetone 19:1) into its components 25 (78%), 26 (8%), 27 (4%) and 28 (11%). 

Irration of dexamethasone (20)  

Dexamethasone (20) (100 mg) suspended in water (500 ml) was irradiated by the 

solar simulator for 8 hr.  The organic material was extracted with ethyl acetate 

(2×150 ml) and chromatographed by flash chromatography on silica gel. Elution 

with CHCl3-acetone (7:3) gave three fractions A-C. Fraction A (84%) consisted of 

unreacted 20. TLC chromatography on silica gel of fraction B [CHCl3-CH3OH 

(93:7)] gave 30 (4%) while TLC chromatography [organic phase of the mixture 

hexane-CH2Cl2-CH3OH-H2O (10:40:17:8)] of fraction C gave 29 (1%). 

Specral data 

Infrared spectra (IR) were determined in CHCl3 solutions (0.025 M), while 

ultraviolet spectra (UV) were recorded in ethanol (10–4 M). 

Compound 22: [α]D +18.0° (c 0,5); IR (CHCl3): νmax 3677, 3409, 1710 cm-1; UV 

λmax 231 nm;   1H-NMR (C5D5N) δ 7.78 (d, J = 5,6 Hz, 1H, H-1), 6.69 (d, J = 5,6 

Hz, 1H, H-2), 5.26 (d, J = 19.2 Hz, 1H, H-21), 4.82 (d, J = 19.2 Hz, 1H, H-21), 

4.72 (brs, 1H, H-11), 3.20 (d, J = 19.2 Hz, 1H, H-4), 3.12 (m, 1H, H-16), 2.05 (d, 

J = 19.2 Hz, 1H, H-4), 1.25 (s, 3H, H-18), 1.20 (s, 3H, H-19); 13C-NMR (C5D5N) 

δ 168.2 (C-1), 134.2 (C-2), 209.1 (C-3), 46.4 (C-4), 74.7 (C-5), 34.3 (C-6), 28.2 

(C-7), 31.8 (C-8), 50.8 (C-9), 54.5 (C-10), 69.2 (C-11), 39.5 (C-12), 47.7 (C-13), 

51.7 (C-14), 24.0 (C-15), 34.6 (C-16), 89.6 (C-17), 17.9 (C-18), 23.4 (C-19), 

213.4 (C-20), 67.6 (C-21); EIMS m/z 378 [M]+, 360 [M-H2O]+, 319 [M-C2H3O2]
+.   

Compound 23: [α]D -159,0° (c 0,7); IR (CHCl3): νmax 3685, 3505, 1727, 1710 cm-

1; UV λmax 256 nm;   1H-NMR (C5D5N) δ 5.34 (dt, J = 2.1 and 7.2 Hz, 1H, H-1), 

5.27 (d, J = 19.2 Hz, 1H, H-21), 4.82 (d, J = 19.2 Hz, 1H, H-21), 3.11 (ddd, J = 

2.1, 4.1 and 15.2 Hz, 1H, H-2α), 3.02 (ddd, J = 3.1, 11.6 and 14.7 Hz, 1H, H-

16β), 2.62 (dd, J = 7.2 and 15.2 Hz, 1H, H-2β), 2.53 (dd, J = 4.5 and 14.5 Hz, 1H, 

H-12α), 2.20 (dd, J = 1.7 and 14.5 Hz, 1H, H-12β); 13C-NMR (C5D5N) δ 116.6 

(C-1), 38.4 (C-2), 204.3 (C-3), 86.6 (C-4), 54.0 (C-5), 26.2 (C-6), 26.9 (C-7), 31.2 
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(C-8), 54.3 (C-9), 145.6 (C-10), 77.9 (C-11), 32.8 (C-12), 48.2 (C-13), 49.1 (C-

14), 22.9 (C-15), 34.2 (C-16), 89.3 (C-17), 17.5 (C-18), 25.0 (C-19), 213.0 (C-

20), 67.5 (C-21); EIMS m/z 360 [M]+, 342 [M-H2O]+, 301 [M-C2H3O2]
+. 

Compound 24: 1H-NMR (CDCl3) δ 5.90 (d, J = 1.3 Hz, 1H, H-4), 4.69 (brs, 1H, 

H-11), 4.64 (d, J 19.2 Hz, 1H, H-21), 4.27 (d, J = 19.2 Hz, 1H, H-21), 0.90 (s, 3H, 

H-19), 1.15 (s, 3H, H-18); 13C-NMR (CD3OD) δ 58.3 (C-1), 37.3 (C-2), 212.8 (C-

3), 131.5 (C-4), 188.3 (C-5), 32.1 (C-6), 30.9 (C-7), 40.4 (C-8), 62.7 (C-9), 76.8 

(C-10), 70.3 (C-11), 40.3 (C-12), 40.3 (C-13), 53.7 (C-14), 26.0 (C-15), 34.7 (C-

16), 90.8 (C-17), 18.7 (C-18), 20.4 (C-19), 213.8 (C-20), 68.1 (C-21); EIMS m/z 

360 [M]+. 

Compound 25: 1H-NMR (CD3OD) δ 7.45 (d, J = 5.9 Hz, 1H, H-1), 6.24 (d, J = 

5.9 Hz, 1H, H-2), 6.01 (brs, 1H, H-4), 4.39 (brs, 1H, H-11), 1.18 (s, 3H, H-18), 

1.52 (s, 3H, H-19); 13C-NMR (CD3OD) δ 161.0 (C-1), 128.0 (C-2), 189.5 (C-3), 

123.0 (C-4), 174.9 (C-5), 35.0 (C-6), 33.1 (C-7), 32.5 (C-8), 57.5 (C-9), 46.8 (C-

10), 71.1 (C-11), 42.0 (C-12), 46.8 (C-13), 53.2 (C-14), 23.7 (C-15), 37.0 (C-16), 

214.4 (C-17), 17.5 (C-18), 22.5 (C-19).   

Compound 26: 1H-NMR (CDCl3) δ 7.70 (d, J = 5.9 Hz, 1H, H-1), 6.18 (d, J = 5.9 

Hz, 1H, H-2), 4.46 (brs, 1H, H-11), 2.84 (d, J = 19.5 Hz, 1H, H-4), 1.92 (d, J = 

19.5 Hz, 1H, H-4), 1.15 (s, 3H, H-19), 1.09 (s, 3H, H-18); 13C-NMR (CDCl3) δ 

167.1 (C-1), 134.8 (C-2), 209.9 (C-3), 45.9 (C-4), 74.8 (C-5), 33.9 (C-6), 26.8 (C-

7), 31.0 (C-8), 51.8 (C-9), 54.3 (C-10), 69.6 (C-11), 40.2 (C-12), 47.0 (C-13), 

51.5 (C-14), 23.2 (C-15), 35.5 (C-16), 219.3 (C-17), 16.1 (C-18), 21.7 (C-19).   

Compound 27: 1H-NMR (CDCl3) δ 5.44 (dt, J = 2.1 and 7.2 Hz, 1H, H-1), 4.45 

(brs, 1H, H-11), 4.18 (s, 1H, H-4), 1.08 (s, 3H, H-18), 1.40 (s, 3H, H-19); 13C-

NMR (CDCl3) δ 116.4 (C-1), 37.9 (C-2), 204.1 (C-3), 86.4 (C-4), 53.9 (C-5), 25.7 

(C-6), 25.2 (C-7), 30.5 (C-8), 54.7 (C-9), 144.8 (C-10), 76.7 (C-11), 33.0 (C-12), 

47.4 (C-13), 48.9 (C-14), 25.2 (C-15), 35.3 (C-16), 219.7 (C-17), 15.6 (C-18), 

21.0 (C-19).   

Compound 28: 1H-NMR (CD3OD) δ 5.94 (s, 1H, H-4), 4.68 (m, 1H, H-11), 1.17 

(s, 6H, H-18, H-19); 13C-NMR (CD3OD) δ 58.2 (C-1), 36.7 (C-2), 212.6 (C-3), 

131.7 (C-4), 187.9 (C-5), 32.0 (C-6), 29.4 (C-7), 40.4 (C-8), 63.4 (C-9), 76.8 (C-
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10), 69.7 (C-11), 41.1 (C-12), 41.1 (C-13), 53.9 (C-14), 23.9 (C-15), 36.7 (C-16), 

215.0 (C-17), 17.1 (C-18), 20.5 (C-19).   

Compound 29: 1H-NMR (CD3OD) δ 5.45 (dt, J = 2.0 and 7.0 Hz, 1H, H-1), 4.63 

(d, J = 19,5 Hz, 1H, H-21), 4.27 (d, J = 19.5 Hz, 1H, H-21), 4.21 (s, 1H, H-4), 

4.19 (m, 1H, H-11), 3.18 (m, 1H, H-6), 3.02 (m, 1H, H-16β), 3.00 (m, 1H, H-2), 

2.75 (dd, J = 7.0 and 15.6 Hz, 1H, H-2), 2.38 (brs, 1H, H-6), 2.25 (m, 3H, H-7, H-

12 and H-14), 1.80 (m, 1H, H-12), 1.65 (m, 1H, H-15), 1.53 (m, 1H, H-7), 1.37 (s, 

3H, H-19), 1.17 (m, 1H, H-15), 0.92 (4H; m, 1H, H-8; d, J = 5.6 Hz, 3H, H-22), 

0.90 (s, 3H, H-18); 13C-NMR (CD3OD) δ 116.8 (C-1), 38.0 (C-2), 203.5 (C-3), 

85.7 (C-4), 53.0 (C-5), 25.1 (C-6), 30.0 (C-7), 36.2 (C-8), 99.7 (C-9), 143.8 (C-

10), 98.1 (C-11), 31.2 (C-12), 49.6 (C-13), 42.5 (C-14), 21.2 (C-15), 34.3 (C-16), 

90.1 (C-17), 17.0 (C-18), 20.5 (C-19), 212.1 (C-20), 67.8 (C-21), 14.9 (C-22). 

Compound 30: 1H-NMR (CD3OD) δ 5.98 (s, 1H, H-4), 4.62 (d, J = 19.1 Hz, 1H, 

H-21), 4.52 (m, 1H, H-11), 4.29 (d, J = 19.1 Hz, 1H, H-21), 3.09 (m, 1H, H-16β), 

3.01 (m, 1H, H-2), 2.65 (m, 1H, H-2), 2.51 (m, 2H, H-6 e H-6’), 2.51 (m, 1H, H-

7), 2.38 (m, 1H, H-12), 2.21 (m, 1H, H-14), 1.77 (m, 2H, H-1, H-7), 1.68 (m, 1H, 

H-15), 1.,46 (m, 1H, H-12), 1.3 (m, 1H, H-15), 1.25 (m, 1H, H-8), 1.22 (s, 3H, H-

19), 1.00 (s, 3H, H-18), 0.89 (d, J = 17.2 Hz, 3H, H-22); 13C-NMR (CD3OD) δ 

50.3 (C-1), 37.2 (C-2), 212.5 (C-3), 131.8 (C-4), 187.9 (C-5), 32.7 (C-6), 35.2 (C-

7), 41.6 (C-8), 103.8 (C-9), 79.1 (C-10), 72.4 (C-11), 40.4 (C-12), 49.9 (C-13), 

45.8 (C-14), 25.3 (C-15), 37.2 (C-16), 92.6 (C-17), 18.3 (C-18), 20.6 (C-19), 

213.2 (C-20), 68.5 (C-21), 15.9 (C-22).  

 

5.4 Non-steroidal antinflammatory drug: naproxen sodium salt (33) 

Chemicals 

Naproxen Na was purchased from Sigma–Aldrich and used without further 

purification. 

Irradiation of naproxen Na in distilled water 

A 7.8 x 10-4 M solution of naproxen sodium salt (33) in distilled water was 

irradiated at 20°C for 72 h by the solar simulator. The water was evaporated in 

vacuo and the residue, dissolved in acetone, was filtered on HV13 Millex filter, 

Millipore Co. The residue was filtered on Sep-Pak C-18 cartridges, Water Co, to 
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give fractions A–C. Fraction A eluting 20 ml H2O-CH3CN 7:3 contained  alcohol 

35 (21%). Fraction B eluting 20 m H2O-CH3CN 1:1 contained ketone 38 (48%) 

and olefin 39 (9%). Fraction C, eluting 20 ml H2O-CH3CN 3:7, contained 34 (8%) 

and olefin 39 (11%). Each compound was purified by reverse phase C-18 HPLC 

[Agilent 1100 system equipped with a ultraviolet detector and a Synergy Hydro 

column, eluent H2O-CH3CN (3:7), λ = 254 nm]. 

Irradiation of naproxen sodium salt in drinking water 

A 7.8 x 10-4 M solution of naproxen sodium salt (33) in drinking water was 

irradiated at 20°C for 72 h by the solar simulator. The water was evaporated in 

vacuo and the residue, dissolved in acetone, was filtered on HV13 Millex filter. 

The residue has been filtered on Sep-Pak C-18 to give fractions A–B. Fraction A 

eluting 20 ml H2O-CH3CN (7:3) contained naproxen Na (16%), alcohol 35 (16%) 

and dimers 41 (2 x 5%). Fraction B eluting 20 ml H2O-CH3CN (1:1) contained 

ketone 38 (15%), ether 37 (4%), olefin 39 (3%) and dimer 40 (6%). Each 

compound has been purified by reverse phase C-18 HPLC. 

Spectral data   

Compound 34 was identified by comparison of spectral data with those previously 

reported by Boscá F. et al. (1990). 

Compound 35:  1H-NMR (CDCl3) δ 7.77 (m, 3H, H-1, H-4 e H-8), 7.52 (dd, J = 

1.8 and 8.7 Hz, 1H, H-3), 7.20 (dd, J = 2.0 and 9.0 Hz, 1H, H-7), 7.18 (s, 1H, H-

5), 5,04 (q, J = 7.0 Hz, 1H, H-11), 3.97 (s, 3H, OCH3), 1,62 (d, J = 7.0 Hz, 3H, H-

13); 13C-NMR (CDCl3) δ 157.6 (C-6), 140.9 (C-2), 134.0 (C-10), 129.4 (C-1), 

128.7 (C-9), 127.1 (C-8), 124.4 (C-3), 123.7 (C-4), 118.9 (C-7), 105.7 (C-5), 70.5 

(C-11), 55.3 (OCH3), 25.0 (C-13).  

Compound 36: 1H NMR (CDCl3) δ 7.75 (3H, H-1, H-4 and H-8), 7.47 (dd, J = 1.8 

and 8.7 Hz, 1H, H-3), 7.16 (dd, J = 2.5 and 9.0 Hz, 1H, , H-7), 7.14 (d, J = 2.5 Hz, 

1H, H-5), 5.12 (q, J = 7.0 Hz, 1H, H-11), 3.93 (3H, s, OCH3), 1.55 (d, J = 7.0 Hz, 

3H, H-13). 

Compound 37:  1H-NMR (CDCl3) δ 7.74 (d, J = 8,0 Hz, 1H, H-4), 7.72 (d, J = 8.5 

Hz, 1H, H-8), 7.66 (d, J = 1.3 Hz, 1H, H-1), 7.45 (dd, J = 1.3 and 8.0 Hz, 1H, H-

3), 7.15 (dd, J = 2.0 and 8.5 Hz, 1H, H-7), 7.14 (d, J = 2.0 Hz, 1H, H-5), 4.55 (q, J 

= 7.1 Hz, 1H, H-11), 3.92 (s, 3H, OCH3), 3.39 (q, J = 7.0 Hz, 2H, OCH2), 1.52 (d, 
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J = 7.1 Hz, 3H, H-13), 1.20 (t, J = 7.0 Hz, 3H, CH3); 
13C-NMR (CDCl3) δ 157.6 

(C-6), 139.3 (C-2), 134.1 (C-10), 129.3 (C-8), 128.7 (C-9), 127.1 (C-4), 124.8 (C-

1), 124.7 (C-3), 118.7 (C-7), 105.7 (C-5), 77.8 (C-11), 63.9 (OCH2), 55,3 (OCH3), 

24,1 (C-13), 15,4 (CH3). 

Compound 38:  1H-NMR (CDCl3) δ 8.40 (d, J = 1.5 Hz, 1H, H-1), 8.01 (dd, J = 

1.5 and 8.5 Hz, 1H, H-3), 7.86 (d, J = 9.0 Hz, 1H, H-8), 7.77 (d, J = 8.5 Hz, 1H, 

H-4), 7.21 (dd, J = 2.5 and 9.0 Hz, 1H, H-7), 7.16 (d, J = 2.5 Hz, 1H, H-5), 3.96 

(s, 3H, OCH3), 2.70 (s, 3H, H-13); 13C-NMR (CDCl3) δ 197.8 (CO), 159.7 (C-6), 

137.2 (C-2), 132.5 (C-10), 131.1 (C-1), 131.1 (C-8), 130.0 (C-9), 127.0 (C-4), 

124.6 (C-3), 119.6 (C-7), 105.7 (C-5), 55.4 (OCH3), 26.5 (C-13).    

Compound 39: 1H-NMR (CDCl3) δ 7.70 (3H; d, J = 8.0 Hz, 1H, H-4; d, J = 8 Hz, 

1H, H-8; s, 1H, H-1), 7.61 (dd, J = 2.0 and 8.7 Hz, 1H, H-3), 7.13 (2H; 1H, dd, H-

7; 1H, s, H-5), 6.82 (dd, J = 10.5 and 16.5 Hz, 1H, H-11), 5.82 (dd, J = 1.0 and 

16.5 Hz, 1H, H-13), 5.28 (dd, J = 1.0 and 10.5 Hz, 1H, H-12), 3.93 (s, 3H, 

OCH3); EIMS: m/z 184 [M]+, 152 [M-OCH3]
+. 

Compound 40: 1H-NMR (CDCl3) δ 8.12 (d, J = 9.0 Hz, 1H, H-8), 7.88 (d, J = 2.0 

Hz; 1H, H-1'), 7.74 (d, J = 9.0 Hz, 1H, H-8'), 7.64 (d, J = 9.0 Hz, 1H, H-4'), 7.59 

(d, J = 9.0 Hz, 1H, H-4), 7.28 (dd, J = 2.0 and 9.0 Hz, 1H, H-3'), 7,16 (3H; d, J = 

2.5, 1H, H-5; dd, J = 2.5 and 9.0 Hz, 1H, H-7; dd, J = 2.5 and 9.0 Hz, 1H, H-7'), 

7,10 (d, J = 2.5 Hz, 1H, H-5'), 6.98 (d, J = 9.0 Hz, 1H, H-3), 5.22 (q, J = 7.0 Hz, 

1H, H-11'), 3.92 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 1.87 (d, J = 7.0 Hz, 3H, H-

13'); 13C-NMR (CDCl3) δ 157.8 (C-6'), 155.6 (C-6), 150.3 (C-2), 138.9 (C-2'), 

133.4 (C-10'), 129.3 (C-8'), 129.0 (C-9), 128.1 (C-9'), 128.1 (C-10), 127.9 (C-4), 

127.4 (C-4'), 127.1 (C-3'), 124.1 (C-1'), 124.1 (C-8), 123.9 (C-1), 120.0 (C-3),  

119.1 (C-7), 118.9 (C-7'), 107.2 (C-5), 105.8 (C-5'), 55.5 (2 x OMe), 35.1 (C-11'), 

17.3 (C-13'); MALDI-TOF m/z 358 [M]+, EIMS m/z 185 [M-C11H9O2]
+, 156 

[C11H9O2 –OH]+.   

Compound 41 (Rf = 0,77): 1H-NMR (CDCl3) δ 7.66 (2H; d, J = 9.0 Hz, 1H, H-4; 

d, J = 9.0 Hz, 1H, H-8), 7.65 (d, J = 2.0 Hz, 1H, H-1), 7.38 (dd, J = 2.0 and 9.0 

Hz, 1H, H-3), 7.14 (dd, J = 2.5 and 9.0, 1H, H-7), 7.10 (d, J = 2.5 Hz, 1H, H-5), 

4.69 (q, J = 7.0, 1H; H-11), 3.91 (s, 3H, OCH3), 1.56 (d, J = 7.0, 1H; 3H, H-13); 
13C-NMR (CDCl3) δ 124.8 (C-1), 157.5 (C-6), 139,4 (C-2), 133.9 (C-10), 129.3 
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(C-8), 128.7 (C-9), 128.7 (C-4), 125,2 (C-3), 118.6 (C-7), 105.7 (C-5), 74.5 (C-

11), 55.3 (OCH3), 22.8 (C-13); MALDI-TOF m/z 386 [M]+, EIMS m/z 185 [M-

C13H9O2]
+.   

Compound 41 (Rf = 0,69): 1H-NMR (CDCl3) δ 7.77 (d, J = 9.0 Hz, 1H, H-4), 7.72 

(d, J = 9.0 Hz, 1H, H-8), 7.58 (d. J = 2.0, 1H, H-1), 7.46 (dd, J = 2.0 and 7.0 Hz, 

1H, H-3), 7.17 (2H; d, J = 2.5 Hz, 1H, H-5; dd, J = 2.5 e 9.0 Hz, 1H, H-7), 4.41 

(q, J = 7.0 Hz, 1H; H-11), 3.95 (s, 3H, OCH3), 1.46 (d, J = 7.0 Hz, 3H, H-13); 

13C-NMR (CDCl3) δ 157.6 (C-6), 139.2 (C-2), 134.1 (C-10), 129.3 (C-8), 128.7 

(C-9), 127.2 (C-4), 125.1 (C-3), 124.9 (C-1),  118.8 (C-7), 105.8 (C-5), 74.6 (C-

11), 55.3 (OCH3), 24.6 (C-13); MALDI-TOF m/z 386 [M]+, EIMS m/z 185 [M-

C13H9O2]
+.   

 

5.5 Diuretics: furosemide (42) and hydrochlorothiazide (48)   

Chemicals  

Furosemide and hydrochlorothiazide were purchased from Sigma–Aldrich and 

used without further purification. 

Irradiation of furosemide (42) in water (24µM) 

A solution of furosemide (24 µM) in distilled water was irradiated at room 

temperature for 36 hr by the solar simulator. The water was concentrated and the 

residue was filtered on HV13 Millex filter (Millipore Co) and injected in a HPLC 

equipped with a ultraviolet detector. Experiments under the same irradiation 

conditions were also run in distilled water under argon atmosphere, in distilled 

water added of nitrate ions (5 mg/l), in distilled water in the presence of humic 

acids (10 mg/l), in drinking water and in effluent of a sewage treatment plant 

(STP). In all cases the only photoproduct was dimer 8a and the yields of the 

photoproduct after 36 h, calculated by HPLC, were 45, 46, 47, and 45% 

respectively.  

Phototrasformation of furosemide (42) in distilled water (preparative scale) 

A solution of furosemide (0.6 mM) in distilled water was irradiated at room 

temperature for 36 hr by the solar simulator. The water was concentrated and the 

residue was filtered on HV13 Millex filter (Millipore Co). The mixture (100 mg) 

separated by silica gel flash column chromatography eluting with CHCl3-acetone-
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CH3OH  (3:1:1), yielded two fractions: A (56 mg) and B (38 mg). Fraction A 

contained mainly furosemide. Fraction B was further purified by reverse phase C-

18 HPLC performed on an Agilent 1100 apparatus equipped with a UV-detector 

and a Synergy Hydro column which was equilibrated with a mixture of A (H2O 

containing 1% acetic acid) - B (MeOH containing 1% acetic acid) 10:0 and the 

run was with the following program: an increase of B up to 5% in 5 min and then 

an increase of B up to 100% in 10 min, finally isocratic run for 5 min. The 

detector was set at 325 nm. From HPLC compound 8a (40%) was obtained. 

Spectral data   

Compound 43: 1H NMR (D2O) δ 8.01 (s, 1H, H-2), 7.35 (d, J = 3.5 Hz, 1H, H-

11), 6.30 (m, 1H, H-10), 6.24 (d, J = 5.5 Hz, 1H, H-9), 4.24 (s, 2H, H-7). 

 13C NMR (D2O) δ 173.2 (C-12), 164.3 (C-4), 152.6 (C-6), 150.2 (C-8), 140.2 (C-

11), 130.7 (C-2), 113.4 (C-3), 108.3 (C-9), 108.3 (C-5), 104.8 (C-10), 104.4 (C-

1), 37.3 (C-7); MALDI-TOF m/z 560 [M – CO2 – H2O]+, 543 [M – SO2NH]+ and 

526 [543 – OH]+. 

 

Irradiation of HCTZ (48) in water (100 µΜ) 

In a typical procedure a sospension of HCTZ (100 µM) in distilled water was 

irradiated at room temperature for 200 hr by the solar simulator. To follow the 

irradiation experiment, an aliquot was withdrawn at various times, concentrated 

and the residue dissolved in methanol, and injected in a HPLC-UV system 

(Agilent 1100 system). The column used was a RP-18 column (Phenomenex 

HYDRO RP-18, 4 µm, 250 x 4.5 mm) and eluted with a mixture of A (H2O 

containing 1% acetic acid) - B (MeOH containing 1% acetic acid) 90:10, 

detection was at 260 nm and the flow rate was 0.7 ml/min. Experiments in the 

same irradiation conditions were run also in distilled water under argon 

atmosphere, and in water of a sewage treatment plant (STP).  

Irradiation of HCTZ (48) in distilled water (preparative scale) 

A solution of HCTZ (0.7 mM) in distilled water was irradiated at room 

temperature for 200 hr by the solar simulator. The water was evaporated to 

dryness. The mixture (100 mg) separated by silica gel flash column 

chromatography eluting with hexane-ethylic ether-acetone (3:3:4), yielded two 
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fractions: A (70 mg) and B (26 mg). Fraction A contained HCTZ and compound 

52. Compound 52 (30%) was separated from HCTZ on a preparative TLC (0,5 

mm) eluting with hexane-ethylic ether-acetone (3:3:4). Fraction B was purified 

from reverse phase-HPLC (for experimental conditions see above) and 

compounds 51 (21%) and 55 (2%) were obtained. 

Spectral data 

Compound 51: 1H NMR (CD3OD) δ 7.92 (s, 1H, H-8), 6.24 (s, 1H, H-5), 4.70 (s, 

2H, H-3); 13C NMR (CD3OD) δ 160.0 (C-6), 150.0 (C-4'), 127.0 (C-8), 120.2 (C-

7), 114.6 (C-8'), 101.9 (C-5), 56.0 (C-3); ESI-MS: m/z 278 [M–1]+. 

Compound 52: 1H NMR (CD3OD) δ 8.34 (s,1H, H-2), 6.97 (s, 1H, H-5); 13C 

NMR (CD3OD) δ 150.5 (C-4), 137.0 (C-1), 132.1 (C-2), 128.2 (C-6), 123.0 (C-3), 

119.2 (C-5); ESI-MS: m/z 278 [M–1]+. 

Compound 55: 1H NMR (CD3OD) δ 8.07 (1H, s, H-2), 6.18 (1H, s, H-5); 13C 

NMR (CD3OD) δ 152.6 (C-6), 145.6 (C-4), 131.9 (C-2), 119.5 (C-1), 116.5 (C-5), 

116.2 (C-3); ESI-MS: m/z 266 [M–1]+. 

 

5.5 Fibrates: bezafibrate (59), gemfibrozil (60), fenofibrate (61) 

Chemicals 

Compounds 59 - 61 were purchased from Aldrich. Fenofibric acid (62) was 

obtained by dissolving fenofibrate (61) (1g) in 5 % methanolic KOH (40 ml)  and 

keeping  the reaction mixture at 25 °C for 24 hours. After neutralization of the 

solution by Amberlite IR-120, methanol was evaporated in vacuum and 62 was 

obtained quantitatively.     

General procedure 

A distilled water suspension (solution) of the selected drug (24 µM) in a beaker, 

equipped with a jacket thermostated at 25° C, was irradiated from the top by the 

solar simulator. The transformation course was monitored by thin layer 

chromatography after 50, 100 and/or 200 hr. For preparative purposes, 0.5-0.6 

mM concentrations were used. Further experiments were run in distilled water 

added of nitrate ions (5 mg/l), in distilled water in the presence of humic acids (10 

mg/l), in an effluent of the sewage treatment plant (STP), in distilled water after 

saturating with argon for 30 min. 
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Irradiation of bezafibrate (59)  

Bezafibrate (108 mg) in distilled water (500 ml) was irradiated for 200 hr by the 

solar simulator. Water was evaporated in vacuo, the residue was chromatographed 

by silica gel flash cromathography [CHCl3-acetone-CH3OH (7:2:1)] to give 

unreacted bezafibrate (73%) and a fraction A (20 mg). Fraction A was subject to 

preparative TLC [hexane-acetone (7:3)] to give bezafibrate (11%), pure products 

63 (2%) and 64 (3%). 

From the irradiation of bezafibrate in distilled water  (108 mg/ 500 ml) in the 

presence of humic acid or KNO3 and in the irradiation with STP water, products 

63 (2%) and 64 (2%) were isolated. Irradiation of bezafibrate in distilled water 

saturated with argon gave only compound 64 (2%). 

Compound 63: 1H NMR (CDCl3) δ 7.74 (d, J = 9.0 Hz, 2H, H-2 and H-6), 7.45 

(d, J = 9.0 Hz, 2H, H-3 and H-5), 7.06 (d, J = 8.5 Hz, 2H, H-2' and H-6'), 6.71 (d, 

J = 8.5 Hz, 2H, H-3' and H-5'), 3.58 (m, J = 5.5 Hz, 2H, H-8'), 2.80 (t,  J = 6.9 Hz, 

2 H, H-7'); 13C NMR (CDCl3) δ 169.4 (C-7), 157.4 (C-4'), 139.0 (C-1), 134.9 (C-

1'), 131.7 (C-4), 131.2 (C-2' and C-6'), 130.3 (C-3 and C-5), 130.1 (C-2 and C-6), 

116.7 (C-3' and C-5'), 43.4 (C-8'), 36.1 (C-7'). 

Compound 64: 1H NMR (CDCl3) δ 7.62 (d, J = 8.5 Hz, 2H, H-2 and H-6), 7.38 

(d, J = 8.5 Hz, 2H, H-3 and H-5), 7.12 (d, J = 8.9 Hz, 2H, H-2' and H-6'), 6.85 (d, 

J = 8.9 Hz, 2H, H-3' and H-5'), 6.02 (brs, 1H, NH), 4.53 (q, J = 6.1 Hz, 1H, H-9'), 

3.68 (m, J = 5.5 Hz, 2H, H-8'), 2.86 (t,  J = 6.9 Hz, 2H, H-7'), 1.32 (d, J = 6.1 Hz, 

6H, H-10' and H-11'); 13C NMR (CDCl3) δ 164.6 (C-7), 156.9 (C-4'), 137.8 (C-1), 

133.0 (C-1'), 130.5 (C-4), 129.7 (C-2' and C-6'), 128.8 (C-3 and C-5), 128.2 (C-2 

and C-6), 116.2 (C-3' and C-5'), 69.9 (C-9'), 41.3 (C-8'), 34.7 (C-7'), 22.0 (C-10' 

and C-11'). 

Irradiation of gemfibrozil (60) 

Gemfibrozil (100 mg) was dispersed in distilled water (700 ml) and irradiated by 

the solar simulator. After 200 hr, water was evaporated in vacuo and the reaction 

mixture was chromatographed by silica gel flash cromatography [hexane-ethyl 

acetate (4:1)] giving gemfibrozil (85%) and crude photoproduct 65 (9%) that was 

purified by preparative TLC eluting with hexane-ethyl acetate (7:3). 
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Irradiating in distilled water in the presence of nitrate ions or humic acids, in STP 

water or in distilled water in Argon atmosphere no trasformation products were 

obtained, even after 300 hr. 

Compound 65: IR (CHCl3) ν 3300-2500, 2952, 2867, 1670, 1604 cm-1; 1H NMR 

(CDCl3) δ 10.38 (s, 1H, H-14), 7.71 (d, J = 7.8 Hz, 1 H, H-3), 6.81 (d, J = 7.5 Hz, 

1H, H-4), 6.70 (brs, 1H, H-6), 4.03 (t, J = 6.1 Hz, 2H, H-7), 2.38 (s, 3H, H-15), 

1.80 (m, 2H, H-8), 1.78 (m, 2H, H-9), 1.26 (s, 6H, H-12 and H-13); 13C NMR 

(CDCl3) δ 189.5 (C-14), 182.1 (C-11), 161.4 (C-1), 147.4 (C-5), 128.3 (C-3), 

122.6 (C-2), 121.6 (C-4), 112.9 (C-6), 68.4 (C-7), 41.8 (C-8), 36.7 (C-9), 25.0 (C-

12 and C-13), 24.8 (C-10), 22.3 (C-15)]; EIMS: m/z 264 [C15H20O4]
+, 136 

[C8H8O2]
+. 

Irradiation of fenofibrate (61)   

The suspension of fenofibrate (108 mg) in distilled water (500 ml) was irradiated 

for 200 hr by the solar simulator. Water was evaporated and the residue was 

chromatographed by silica gel flash cromathography [hexane-ethyl acetate (9:1)] 

to give unreacted fenofibrate (88%) and a fraction A that was cromatographed by 

preparative TLC [hexane-ethyl acetate (4:1)] to give fenofibric acid (62) (4%) and 

compound 66 (4%).  

Irradiation in distilled water in the presence of nitrate ions, humic acids, or in STP 

water gave products 62 and 66 in similar yields as in pure distilled water. 

Fenofibrate (61) by irradiation in argon gave only fenofibric acid 13 in traces 

Compound 66: 1H NMR (CDCl3) δ 7.76 (d, J = 8.5 Hz, 2H, H-2 and H-6), 7.71 

(d, J = 9.0 Hz, 2H, H-2' and H-6'), 7.46 (d, J = 8.5 Hz, 2H, H-3 and H-5), 6.91 (d, 

J = 8.5 Hz, 2H, H-3' and H-5'); 13C NMR (CDCl3) δ 196.3 (C-7), 165.3 (C-4'), 

139.1 (C-1), 138.3 (C-1'), 134.0 (C-2 and C-6), 132.2 (C-3 and C-5), 129.5 (C-2' 

and C-6'), 128.8 (C-4), 116.7 (C-3' and C-5'). 

Irradiation of fenofibric acid (62)   

Fenofibric acid (100 mg) was dispersed in distilled water (500 mL) and irradiated 

by the solar simulator. After 100 hr TLC showed the disappearance of 62. Water 

was evaporated under vacuum and the residue was chromatographed on silica gel 

eluting with hexane-acetone (4:1) to give compound 66 (3%), compound 67 

(70%), compound 68 (14%).  
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Very similar results were obtained by irradiations in the presence of nitrate ions 

and of humic acids or from the experiment in STP water. Differently, irradiation 

in argon gave only compounds 67 (82%) and 68 (16%).  

Compound 67: 1H NMR (CDCl3) δ 7.77 (d, J = 8.9 Hz, 2H, H-2 and H-6), 7.70 

(d, J = 8.7 Hz, 2H, H-2' and H-6'), 7.44 (d, J = 8.7 Hz, 2H, H-3 and H-5), 6.92 (d, 

J = 8.7 Hz, 2H, H-3' and H-5'), 4.59 (m, J = 6.1 Hz, 1H, H-7'), 1.30 (d, J = 6.1 Hz, 

6H, H-8' and H-9'); 13C NMR (CDCl3) δ 194.0 (C-7), 161.6 (C-4'), 137.9 (C-1), 

136.3 (C-4), 132.2 (C-2 and C-6), 130.8 (C-3 and C-5), 129.0 (C-1'), 128.2 (C-2' 

and C-6'), 114.7 (C-3' and C-5'), 69.8 (C-7'), 21.6 (C-8' and C-9').  

Compound 68: 1H NMR (CDCl3) δ 7.76 (d, J = 8.2 Hz, 4H, H-2 and H-6; H-2' 

and H-6'), 7.61 (d, J = 8.2 Hz, 2H, H-3 and H-5), 7.46 (d, J = 8.7 Hz, 2H, H-3' and 

H-5'), 1.98 (brs, 1H, OH); 13C NMR (CDCl3) δ 195.2 (C-7), 154.0 (C-4'), 138.8 

(C-1), 136.0 (C-4), 135.6 (C-1'), 131.4 (C-2 and C-6), 130.1 (C-3 and C-5), 128.6 

(C-2' and C-6'), 124.5 (C-3' and C-5'), 72.6 (C-7'), 31.7 (C-8' and C-9'); EIMS: 

m/z  274 [M]+, 259 [M-CH3]
 +.  

 

5.6 Proton Pump Inhibitors: lansoprazole (70a) and omeprazole (70b) 

Chemicals  

Lanzoprazole and omeprazole were obtained from Sigma and used as received. 

All the other chemicals have been purchased from Aldrich. 

General procedure 

Dispersions were prepared by suspending the drug (40 mg) in milliQ water (500 

ml). Experiments at pH 7.1 were carried out using the same concentration in pure 

water, buffered with NaH2PO4/Na2HPO4, and at pH 4.0 or 9.0 by adjusting the pH 

values using HCl 2M or KOH 2M, respectively. In a typical procedure each 

dispersion of the drug was kept in the dark or irradiated at room temperature (in 

the latter case the sample was irradiated from the top and maintained in a 

thermostated pyrex beaker). The water was then evaporated, and the residue was 

first analyzed by 1H NMR and then chromatographed by TLC. The dispersions 

investigated at pH 4.0 or 9.0 were neutralized before water evaporation. 

Experiments in the presence of humic acid (5 ppm) and KNO3 (10 ppm) were 
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carried out using the same concentration of the drug and then analyzing the 

mixture in the dark or by irradiation as above. 

Experiments were carried out using the same concentration of the drug in closed 

pyrex tube after saturating with oxygen or argon and then analyzing the mixture in 

the dark or by irradiation, as above. 

Hydrolysis of lansoprazole (70a) 

The dispersion of lansoprazole (40 mg) in water milliQ (500 ml), kept in the dark 

for 72 h, led, after evaporation of water, to a red-coloured residue (30 mg). The 

latter was chromatographed on preparative TLC [CH2Cl2-(CH3)2CO (9:1)] 

affording sulfide 73a (10%), lansoprazole (70a) (57%), a red fraction (17%) and 

benzimidazolone 75a (3%) at decreasing Rfs.  

Photolysis of lansoprazole (70a) 

The dispersion of lansoprazole (40 mg) in milliQ water (500 ml), irradiated by 

solar simulator for 72 h, after water evaporation, gave a residue (38 mg) which 

was purified on  preparative TLC [CHCl3/CH3OH (95:5)] giving sulfide 73a 

(10%), dianiline 71a (8%), fraction A (16 mg), a red fraction (15%), 

benzimidazole 74a (5%) and benzimidazolone 75a (5%) at decreasing Rfs. 

Fraction A (16 mg) was purified on preparative TLC [CH2Cl2/CH3OH (97:3)] 

giving dianiline 71a (11%), pyridine 72a (5%), lansoprazole (24%) at decreasing 

Rfs.  

Hydrolysis of omeprazole (70b) 

The dispersion of omeprazole (70b), kept in the dark for 43 h, led, after water 

evaporation, to an intense red-coloured residue which was separated on 

preparative TLC [CH2Cl2-CH3OH (95:5)], giving compound 73b (25%), 

omeprazole (20%), an intractable red fraction (15%) and compound 75b (10%), at 

decreasing Rfs. The red fractions deriving from both drugs consisted of diverse 

products (TLC and 1H NMR, data not shown). Attempts to separate and/or 

characterize the red materials failed due to their alteration over time or during 

chromatographic processes.  

Photolysis of omeprazole (70b) 

A suspension of omeprazole (80 ppm) in water milliQ was exposed to the solar 

simulator for 43 h. After evaporation of water, the residue (25 mg) was 
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chromatographed on TLC [CH2Cl2-CH3OH (95:5)] leading, at decreasing Rfs, to 

dianiline 71b (10%), sulfide 73b (16%), benzimidazolone 75b (20%), pyridine 

72b (traces, <1%) benzimidazole 74b (traces, <1%) and a red fraction (20%).  

Photostability of derivatives sulfides (73), benzimidazoles (75), benzimidazolones 

(75).  

Suspensions of benzimidazoles 74a, 75a, derivatives of lansoprazole, and 74b, 

75b derivatives of omeprazole, (10 ppm) in MilliQ water were exposed to the 

solar simulator for 72 or 43 h, respectively. Each experiment was performed in 

duplicate, with one set of dark controls. Each reaction mixture was evaporated in 

vacuum and each residue was analysed by 1H-NMR and TLC showing only the 

starting material.  

When sulfides 73a and 73b were treated in the same conditions, analysis of dark 

samples showed only starting materials, while by irradiation they led to a mixture 

of products. The mixture from 73a (8 mg) was subjected to preparative TLC 

[CH2Cl2-CH3OH (93:7)] affording dianiline 71a (30%) and benzimidazole 74a 

(38%). The mixture (7mg) deriving from irradiation of 73b was subjected to 

preparative TLC [CH2Cl2/CH3OH (93:7)] giving dianiline 71b (43%) and  

benzimidazole 74b (28%). 

Synthesis of 2-((4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-yl)methylsulfonyl)-1H 

benzo[d]imidazole (78)  

To a solution of compound 70a (18 mg) in anhydrous dichloromethane (0.02 M), 

m-chloroperbenzoic acid (1 equiv.) was added and the resulting mixture kept at 

room temperature under magnetic stirring. After two hours, TLC showed that 

compound 70a disappeared. Then, the mixture was washed with water and 

anhydrified with Na2SO4. After filtration and evaporation of dichloromethane, the 

sulfone 78 (64%) was purified by TLC [eluent CH2Cl2-methanol (96:4)]. When 

the sulfone was dispersed in milliQ water and kept in the dark, analysis by TLC 

and 1H NMR after 72 h showed the sulfone unchanged.   

Spectral data 

Infrared spectra (IR) were determined in CHCl3 solutions (0,025 M), while 

ultraviolet spectra (UV) were recorded in ethanol (10–4 M). Compounds 72b and 

74b were identified by 1H NMR and LC-MS due to their low amounts.  
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Compound 71a: IR (CHCl3) νmax 3448, 2929 cm-1; 1H-NMR (CD3OD) δ 7.20 (m, 

4H, Ar-H); 13C-NMR (CD3OD) δ 133.8 (C-1 and C-6), 124.0 (C-3 and C-4), 

110.9 (C-2 and C-5).  

Compound 72a: IR (CHCl3) νmax 3357, 1592, 1170 cm-1;  1H-NMR (CD3OD) δ 

8.33 (d, J = 5.5 Hz, 1H, H-6'), 7.06 (d, J = 5.5 Hz, 1H, H-5'), 4.82 (q, J = 8.4 Hz, 

2H, CH2CF3), 4.62 (s, 2H, CH2OH), 2.13 (s, 3H, CH3); 
13C-NMR (CD3OD) δ 

164.2 (C-4'), 160.3 (C-2'), 148.7 (C-6'), 122.6 (C-3'), 120.0 (CF3), 108.3 (C-5'), 

67.2 (OCH2), 64.5 (CH2OH), 10.3 (CH3); EIMS m/z 221 [M]+. 

Compound 73a:  IR (CHCl3) νmax 3100, 1581, 1168 cm-1;  UV λmax 208, 292 nm;   

1H-NMR (CD3OD) δ 8.27 (d, J = 5.6 Hz,1H, H-6'), 7.50 (brs, 2H, H-4, H-7), 7.22 

(m, 2H, H-5, H-6), 7.02 (d, J = 5.6 Hz, 1H, H-5'), 4.70 (q, J = 8.4 Hz, 2H, 

CH2CF3), 4.59 (s, 2H, CH2S), 2.29 (s, 3H, CH3); 
13C-NMR (CD3OD) δ 163.0 (C-

4'), 155.5 (C-2'), 149.4 (C-6'), 147.5 (C-2), 139.8 (C-8, C-9), 122.1 (C-5, C-6), 

123.0 (C-3'), 122.0 (CF3), 113.0 (C-4, C-7), 106.4 (C-5'), 64.8 (CH2CF3), 36.1 

(CH2S), 9.3 (CH3); EIMS m/z 353 [M]+. 

Compound 74a: 1H-NMR (CD3OD) δ 8.15 (s, 1H, H-2), 7.60 (m, 2H, H-4 and H-

7), 7.26 (m, 2H, H-5 and H-6); 13C-NMR (CD3OD) δ 142.5 (C-2), 123.8 (C-5 and 

C-6), 122.2 (C-8 and C-9), 110.2 (C-4 and C-7); EIMS m/z 118 [M]+. 

Compound 75a: 1H-NMR (DMSO) δ 7.01 (m, 4H, ArH); 13C-NMR (CD3OD) δ 

156.1 (CO), 128.0 (C-8 and C-9), 120.9 (C-5 and C-6), 109.5 (C-4 and C-7). 

Compound 71b: IR (CHCl3) νmax 3290, 3195, 1626 cm-1; 1H-NMR (CD3OD) δ 

7.08 (d, J = 9.4, 1H, H-6), 6.78 (m, 2H, H-2, H-5), 3.79 (s, 3H, OCH3). 
13C-NMR 

(CD3OD) δ 157.1 (C-1), 133.4 (C-3), 126.7 (C-4), 110.5 (C-6), 110.2 (C-5), 94.7 

(C-2), 55.1 (OCH3); EIMS m/z 138 [M]+. 

Compound 72b: 1H-NMR (CD3OD) δ 8.14 (s, 1H, H-6), 4.66 (s, 2H, CH2O), 3.80 

(s, 3H, OCH3), 2.29 (s, 3H, CH3), 2.26 (s, 3H, CH3); LC-MS m/z 167 [M]+. 

Compound 73b:  IR (CHCl3) νmax 3100, 1591 cm-1;  UV λmax 214, 300 nm;   1H-

NMR (CD3OD) δ 8.13 (s, 1H, H-6'), 7.38 (d, J = 8.8 Hz, 1H, H-7), 7.00 (d, J = 2.4 

Hz, 1H, H-4), 6.81 (dd, J = 8.8 and 2.4 Hz, 1H, H-6), 4.54 (s, 2H, CH2S), 3.79 (s, 

3H, OCH3), 3.74 (s, 3H, OCH3), 2.24 (s, 3H, CH3), 2.22 (s, 3H, CH3); 
13C-NMR 

(CD3OD) δ 166.4 (C-4'), 158.1 (C-5), 155.6 (C-2'), 149.8 (C-6'), 150.3 (C-2), 

140.8 (C-9), 135.0 (C-8), 127.7 (C-3'), 127.3 (C-5'), 116.1 (C-4), 113.1 (C-6), 
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97.8 (C-7), 60.6 (OCH3), 56.2 (OCH3), 37.8 (CH2S), 13.4 (CH3), 11.3 (CH3); 

EIMS m/z 329 [M]+. 

Compound 74b: 1H-NMR (CD3OD) δ 8.04 (s, 1H, H-2), 7.47 (d, J = 9.0 Hz, 1H, 

H-7), 7.09 (brs, 1H, H-4), 6.90 (dd, J = 9.0 and 2.5 Hz, 1H, H-6), 3.83 (s, 3H, 

OCH3); LC-MS m/z 148 [M]+. 

Compound 75b: IR (CHCl3) νmax 3140, 1720 cm-1; 1H-NMR (CD3OD) δ 6.92 (d, 

J = 8.0 Hz, 1H, H-7), 6.66 (d, J = 2.5 Hz, 1H, H-4), 6.63 (dd, J = 8.5 and 2.5 

Hz,1H, H-6), 3.77 (s, 3H, OCH3). 
13C-NMR (CD3OD) δ 158.4 (C-2), 157.0 (C-5), 

131.6 (C-9), 124.7 (C-8), 110.7 (C-7), 108.6 (C-6), 96.9 (C-4), 56.2 (OCH3); 

EIMS m/z 164 [M]+. 

Compound 78: IR (CHCl3): νmax 3198, 1581, 1341, 1172, 1144 cm-1; 1H-NMR 

(CDCl3) δ 8.27 (d, J = 5.3 Hz, 1H, H-6'), 7.65 (brs, 2H, H-4, H-7), 7.37 (m, 2H, 

H-5, H-6), 6.68 (d, J = 5.3 Hz, 1H, H-5'), 5.10 (s, 2H, SO2CH2), 4.37 (q, J = 8.4, 

2H, CH2CF3), 2.35 (s, 3H, CH3). 
13C-NMR (CDCl3) δ 164.0 (C-4'), 162.5 (C-2'), 

148.1 (C-6'), 147.5 (C-2), 147.3 (C-8, C-9), 128.1 (C-5, C-6), 125.4 (C-3'), 125.3 

(CF3), 115.0 (C-4, C-7), 106.5 (C-5'), 65.3 (CH2CF3), 60.2 (CH2SO2), 11.4 (CH3); 

EIMS m/z 385 [M]+.   

  

 

 

 

6. General Procedure Toxicity Tests 

Acute toxicity testing 

Acute toxicity was determined on primary consumers typical of the aquatic chain: 

the rotifer B. Calyciflorus and the crustaceans D. magna and T. platyurus. All the 

organisms were provided in cryptobioticstages by MicroBioTests Inc., Nazareth, 

Belgium. The test on D. magna was performed according to the ISO (International 

Organization for Standardization) 6341, the test on B. calyciflorus following the 

ASTM (American Society for Testing and Materials, 1991) E1440-91, while the 

test on T. platyurus following the manufacturer procedure. 

Parental compounds and their photoderivatives were dissolved in 

dimethylsulphoxide (DMSO) and further diluted in double-deionized water to 
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make the final stock solutions. The DMSO concentration in the exposure 

solutions, including controls, was 0.01% (v/v) that is a non-effect dose as 

estimated in preliminary tests. All bioassays were conducted under static 

conditions, with no renewal of the test solution, measuring dissolved oxygen and 

pH in each sample both at the start and at the end of testing. At the same time as 

toxicity testing, reference tests were performed with potassium dichromate 

(Aldrich) for all the organisms. Juveniles (age, 0–2 h) of the rotifer B. 

Calyciflorus were hatched from cysts after 16–18 h of incubation under a light 

source of 3000–4000 lux at 25 °C in synthetic reconstituted medium (moderately 

hard medium EPA-600/4-85-013) and then exposed to the test sample. 

Hardness was 80–100 mg/l CaCO3 and the dissolved oxygen content was at least 

90% saturation at the beginning of the test. Tests were run in 36-well plates, five 

rotifers per well (0.3 ml of test solution, slightly different from the ASTM 

procedure), six replicates for each of the five concentrations. Test duration was 24 

h, temperature 25°C, in the dark. The test parameter considered was mortality and 

the concentration found to kill 50% rotifers in 24 h was indicated as LC50. 

The bioassay on the anostracan crustacean T. platyurus was conducted using 

second- and third-instar fairy shrimp larvae hatched from cysts after 20–22 h of 

incubation at 25°C in synthetic reconstituted freshwater (the same moderately 

hard EPA medium as rotifers) under continuous illumination (light source 3000–

4000 lux). Tests were performed in 24-well plates, ten crustaceans per well (1.0 

ml of test solution), three replicates for each of the .ve concentrations. Test 

duration was 24 h, temperature 25°C, in the dark. The test parameter considered 

was mortality and the concentration found to kill 50% crustaceans in 24 h was 

indicated as LC50. 

The test on D. magna Straus was performed using juveniles (age< 24 h), hatched 

from ephippia after 3–4 days of incubation at 20°C under continuous illumination 

(light source 10 000 lux). The synthetic reconstituted freshwater, aerated before 

use, was the ISO hard medium (hardness 250 mg/l expressed as CaCO3). Tests 

were performed with neonates< 24 h, five daphnids per vessel (10 ml of test 

solution), four replicates for each of the five concentrations. Daphnies were 

exposed to the samples at temperature of 20°C in the dark. After 24 h the number 
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of immobile daphnies was recorded to determine the sample concentration able to 

achieve 50% immobilization and it was indicated as EC50. D. magna was 

considered to be immobilized if it was not able to swim after gentle agitation of 

the liquid in 15 s of observation even if it can still move its antennae (ISO, 1996). 

 

Chronic toxicity testing 

The effects of the investigated drugs and their derivatives on the population 

growth inhibition were assessed using standard methods for chronic toxicity tests 

on the alga P. subcapitata (already known as Selenastrum capricornutum) and the 

crustacean C. dubia. The algal growth inhibition test was run in 72 h according to 

the ISO procedure 8692 (ISO, 1987). The P. subcapitata inoculum (1 · 104 

cells/ml) was taken from an exponentially growing pre-culture (strain CCAP 

278/4) and poured in 25 ml of test solution in five concentrations and three 

replicates. Flasks were placed in a growth chamber at 25°C under continuous 

illumination (8000 lux). The cell density was measured at 0 time and every 24 h 

for 3 days by an electronic particle dual threshold counter (Coulter Counter Z2, 

100 lm capillary, Instrumentation Laboratory, Miami, FL, USA). 

The test on C. dubia was run in 7 days and performed on young daphnids (<24 h 

old at the start of the exposure), obtained by acyclical parthenogenesis of 

individual adult females for at least three generations. The first females were born 

from the hatching of ephippia provided by MicroBioTests. Organisms were 

exposed individually to seven concentrations in beakers with 20 ml of synthetic 

reconstituted aerated hard ISO medium (total hardness 250 mg/l as CaCO3) and 

the desired concentration of single compounds. Each treatment consisted of ten 

replicates per concentration incubated at 25°C with a 16:8-h light: dark cycle (500 

lux). Daphnies were fed daily with 100 ll of a suspension of the alga P. 

subcapitata (4 · 108 cells/ml), food fish (5 g/l) and yeast (5 g/l). Also test 

solutions were renewed daily as well as survival and offspring production 

assessed. From comparison between the number of o.spring born from live or 

dead mothers at the end of the test in the sample batch and the control it was 

possible to calculate the concentration which gave rise to 50% population growth 

inhibition (ISO, 2001). 
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Data analysis 

Raw data for all bioassays, except algal test, were analyzed using the ToxcalcTM 

(1996). For acute toxicity tests, the LC50s and EC50s were calculated by 

concentration/response regression using probit or trimmed Spearman–Karber 

method, as appropriate (Peltier and Weber, 1985). For the test with C. dubia, the 

value of the concentration that gave 50% population growth inhibition was 

calculated using Maximum Likelihood-Logit method. Raw test data from algae 

were analyzed by a Microsoft Excel 5.0 program (Phoenix, AZ, USA) tailored for 

this test. Algal growth inhibition (%) was calculated by integrating the mean 

values of cell density from t0 to t72 h. Inhibition (%) values were tabulated against 

log-transformed data of concentrations to evaluate the test concentration 

corresponding to 50% algal growth inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 

7. Bibliography 

 

o Aherne G.W., Briggs R.; The relevance of the presence of certain synthetic 

steroids in the    aquatic environment; J. Pharm. Pharmacol. 41, 735–736, 1989 

 

o Alcantara R., Canoira L., Joao P., Rodriguez J.G., Vazquez I.; Photooxidation 

of ethylbenzene with air catalyzed by a polymer supported Rose Bengal 

photosensitizer; J. Photochem. Photobiol. A Chem. 133, 2–32, 2000 

 

o Andreozzi R., Marotta R., Paxeus N.; Pharmaceuticals in STP effluents and 

their solar photodegradation in aquatic environment; Chemosphere 50, 1319-

1330, 2003 

 

o American Society for Testing and Materials, 1991. Standard guide for acute 

toxicity with the rotifer Brachionus. E 1440–91 (reapproved 1998); Philadelphia, 

PA, USA 

 

o Anon; NRC urges pesticide alternatives; Environ. Sci. Technol. 34, 373A, 

2000a 

 

o Anon; Very little know about pesticide usage in schools; Environ. Sci. 

Technol. 34, 169A, 2000b 

 

o Arif M.A., Vahrman J.; Skin eruption due to clofibrate; Lancet 2, 1202, 1975 

 

o Bachman J., Patterson H.H.; Photodecomposition of the carbamate pesticide 

carbofuran: kinetics and the influence of dissolved organic matter. Environ. Sci. 

Technol. 33, 874-881, 1999 

 

o Baker R., Chanu B., Goy-Loeper J.; Evalutation a long terme de l'activite 

hypolipidemiante et de la tolerance du fenofibrate; Prog. Med. 110, 18-24, 1982 

 



 

105 

o Balasubramanya R.H., Patil R.B.; Degradation of carboxin and oxycarboxin in 

different   soils; Plant Soil 57, 195-201, 1980 

 

o Battacharya A., Raha P., Das A.K., Adityachaudhury N.; Studies on the 

photodegradation of carbofuran; Chemosphere  29, 155-162, 1994 

 

o Biswas K., Bandoyopadhyay U., Chattopadhyay I., Varadaraj A., Ali E., 

Banerjee R. K.; A novel antioxidant and antiapoptic role of omeprazole to block 

gastric ulcer through scavenging of hydroxyl radical. J. Biol. Chem. 278, 10993-

11001, 2003 

 

o Blair A., Malker H., Cantor K., Burmeister L., Wiklund K.; Cancer among 

farmers: A review; Scand. J. Work Environ. Health 11, 397, 1985 

 

o Blane G.F.; Comparative toxicity and safety profile of fenofibrate and other 

fibric acid derivatives; Am. J. Med. 83, 26-36, 1987 

 

o Bogialli S., Curini R., Di Corcia A., Nazzari M., Tamburro D.; A simple and 

rapid assay for analyzing residues of carbamate insecticides in vegetables and 

fruits: hot water extraction followed by liquid chromatography-mass 

spectrometry; J. Agric. Food Chem. 52, 665-671,  2004 

 

o Bonesi S.M., Mella M., d'Alessandro N., Aloisi G.G., Vanossi M., Albini A.; 

Photosensitized oxygenation of benzyl ethyl sulphide; J. Org. Chem. 63, 9946-

9955, 1998 

 

o Boost G.; Clinical-pharmacological and pharmacokinetic studies with 

naproxen; Arzneimittelforschung 25, 281–287, 1975 

 

o Boscá F., Miranda M.A., Vaňó L., Vargas F. New photodegradation pathways 

for naproxen, a phototoxic non-steroidal anti-inflammatory drug. J. Photochem. 

Photobiol. A Chem. 54, 131–134, 1990 



 

106 

o Bottoni P.; Workshop: Problematiche riguardanti prodotti fitosanitari e loro 

metaboliti nelle acque; Roma Boca Raton, 163, 1994 

 

o Brandstrom A., Lindberg P., Bergman N.-K., Alminger T., Ankner K., 

Junggren U., Lamm B., Nordberg P., Erickson M., Grundevik I., Hagin I., 

Hoffmann K.-J., Johansson S., Larsson S.,  Lofberg I., Ohlson K., Persson B., 

Skanberg I., Tekenbergs-Hjelte L.; Chemical reactions of omeprazole and 

omeprazole analogues. I. A survey of the chemical transformations of omeprazole 

and its analogues; Acta Chem. Scand. 43, 536-548, 1989 

 

o Brown L.R., Flavin C., Kane H.; Vital signs-The trends that are shaping our 

future; W.W. Norton, New York 1996 

 

o Bryant E.A., Fulton G.P., Budd G.C.; Disinfection alternatives for safe 

drinking water; Van Nostrand Reinhold, New York 1992 

 

o Bundgaard H., Nørgaard T., Nielsen N.M.; Photodegradation and hydrolysis 

of furosemide and furosemide esters in aqueous solutions; Int. J. Pharmac. 42, 

217-224, 1988 

 

o Burrows H.D., Canle L.M., Santaballa J.A., Steenken S.; Reaction pathways 

and mechanisms of photodegradation of pesticides; J. Photochem. Photobiol B: 

Biology 67, 71-108, and references therein, 2002 

 

o Cabras P., Angioni, A. Pesticide residues in grapes, wine, and their processing 

products; J. Agric. Food Chem.  48, 967-973, 2000 

 

o Calamari D., Zuccato E., Castiglioni S., Bagnati R., Fanelli R.; Strategic 

survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy; 

Environ. Sci. Technol. 37, 1241-1248, 2003 

 



 

107 

o Cameron J.F., Frechet J.M.J.; Base catalysis in Imaging Materials. 1. Design 

and synthesis of novel light-sensitive urethanes as photoprecursors of amines; J. 

Org. Chem. 55, 5919-5922, 1990 

 

o Campbell S., David M.D., Woodward L.A., Li Q.X.; Persistence of carbofuran 

in marine sand and water; Chemosphere 54, 1155-1161, 2004 

 

o Canudas N., Vargas F., Miranda M.; Photodegradation of bezafibrate in 

aqueous media. Studies of its in vitro phototoxicity; Arzneim.-Forsch./Drug Res. 

46 (II) 7, 694-69, 1996 

 

o Castro D., Moreno M.A., Torrado S., Lastres J.L.; Comparison of derivative 

spectrophotometric and liquid chromatographic methods for the determination of 

omeprazole in aqueous solutions during stability studies; J. Pharm. Biomed. Anal. 

21, 291-298, 1999 

 

o Chaudhry G.R., Ali A.N.; Bacterial metabolism of carbofuran; Appl. Environ. 

Microbiol. 54, 1414-1419, 1988 

 

o Chin W.T., Stone G.M., Smith A.E.; Metabolism of carboxin (Vitavax) by 

barley and wheat plants; J. Agr. Food Chem. 18, 709-712, 1970 

 

o Colburn T., Clement C.; Chemically induced alterations in sexual and 

functional development: the wildlife/human connection Advances in modern 

environmental toxicology; Advanced in Modern Environmental Toxicology 21, 

129-145, 1992 

 

o Coyle J.D.; Photochemistry in Organic Synthesis; RSC, 1986 

 

o CSTEE, Environmental Risk Assessment of Medicinal Products for Human 

Use; Brussels   2001 



 

108 

o Daughton, C.G.; Pharmaceuticals and Personal Care Products in the 

Environment: Scientific and Regulatory Issues, Symposium Series 791; Jones-

Lepp, T. (eds.); American Chemical Society: Washington, D.C., 416, 2001 

 

o Daughton, C.G.; Ternes, T.A.; Special report: pharmaceuticals and personal 

care products in the environment: agent of subtle change? Environ. Health 

Perspect 107, 907-938, 1999 

 

o Daughton C. G.; Emerging pollutants, and communicating the science of 

environmental chemistry and mass spectrometry: pharmaceuticals in the 

environment; J. Am. Soc. Mass Spectrometry 12, 1067-1076, 2001 

 

o DellaGreca M., Fiorentino A., Iesce M.R., Isidori M., Nardelli A., Previtera 

L., Temussi F.; Identification of phototransformation products of prednisone by 

sunlight. Toxicity of the drug and its derivatives on aquatic organisms; Environ. 

Toxicol. Chem. 22, 534–539, 2003. 

 

o DellaGreca M., Fiorentino A., Isidori M., Lavorgna A., Previtera L., Rubino 

A., Temussi F.; Toxicity of prednisolone, dexamethasone and their photochemical 

derivatives on aquatic organisms; Chemosphere 54, 629-637, 2004 

 

o Diffey B.L., Daymond T.J., Fairgreaves H.; Phototoxic reactions to piroxicam, 

naproxen and tiaprofenic acid; Br. J. Reumatol. 22, 239–242, 1983 

 

o Draper W., Crosby D.G.; The photochemical generation of hydrogen peroxide 

in natural waters; Archives of Environmental Contamination and Toxicology 12, 

121, 1983 

 

o Drouin P., L. Mejean D., Lambert J.P., Suavanet, Derby G.; The effect of 

fenofibrate (procetofen) on the lipoprotein profile in patients affected by primary 

type II Hyperlipoproteinemia. Effect on lipoprotein lipids and biochemical 

tolerance; Curr. Ther. Res. 28, 728-733, 1980 



 

109 

o Durand G., Barcelo D., Albaiges J. and Mansour M.; Utilization of liquid 

chromatography in aquatic photodegradation studies of pesticides: a comparison 

between distilled water and seawater; Chromatographia 29, 120-124, 1990 

 

o Dureja P., Walia S., Prasad D.; Photolysis of benfuracarb; Toxicol Environ. 

Chem. 28, 239-244, 1990 

 

o El-Kousy, M. N., Bebawy, L. L.; Stability-indicating for determining 

omeprazole and octylonium bromide in the presence of their degradation 

products; J. AOAC Int. 82, 599-606, 1999 

 

 

o Elsom L.F., Hawkins D.R., Chasseaud L.F.; Identification of a major 

metabolite of the new hypolipidaemic agent, isoproyl 2-[4’(p-

chorobenzoyl)phenoxy]-2-methylpropionate (procetofene) in humans by gas 

chromatography-mass spectrometry; Journal of Chromatography 123, 463-467, 

1976 

 

o EMEA, Committee for proprietary medicinal products; Note for guidance on 

environmental risk assessment of medicinal for human use; London 2003 

 

 

o Fahmy M.A., Fukuto T.R., Myers R.O., March R.B.; the selective toxicity of 

N-phosphorothioylcarbamate esters; J. Agric. Food Chem. 18, 793-796, 1970 

 

o Funari E., Ade P., Bottoni P., Ferrara F., Orru M.A.; Selezione delle sostanze 

prioritarie per i corpi idrici e definizione degli obiettivi di qualita'; ANPA, RTI 

CTN_AIM 1, Allegato 6, 35, 2001 

 

o Givens R.S., Conrad I.I.P.G., Lee J.I.; Photoremovable Protecting Groups; In: 

Horspool W., Lenci F. (eds); Organic Photochemistry and Photobiology; CRC 

PRESS, Boca Raton (Fl), USA,  69-33, 2004 



 

110 

o Gray L.E., Ostby J.S., Kelcee W.R.; Developmental effects of an 

environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of 

the male rat; Toxicol. Appl. Pharmacol. 129, 46, 1994 

 

o Harvengt C., Heller F., Desagfer J.P.; Hypolipidemic and hypouricemic action 

of fenofibrate in various types of hyperlipoproteinemias; Artery 7, 73-82, 1982 

 

o Heberer T., Stan H.J.; Occurrence of polar organic contaminants in Berlin 

drinking water; Vom Wass  86, 19-31, 1996 

 

o Heberer T.; Occurrence, fate, and removal of pharmaceuticals residues in the 

aquatic environment: a review of recent research data; Toxicology Letters 131, 5-

17, 2002 

 

o Helfferrich Eds; NATO Asi Series G32, Springer Verlag, Berlin-Heidelberg, 

pages 111-139, 1993b 

 

 

o Henschel K.P., Wenzel A., Diedrich M., Fliedner A.; Environmental hazard 

assessment of pharmaceuticals; Regul. Toxicol. Pharmacol. 25, 220-225, 1997 

 

o Hogg D.R.; Chemistry of sulphenic acids and esters in Patai, S. (Ed.), The 

chemistry of sulphenic acids and their derivatives, Wiley, New York, 362-402, 

1990 

 

o Hoigné J., Bader H., Haag W., Staehelin J.; Rate constants of reactions of 

ozone with organic and inorganic compounds in water - III.  Inorganic compounds 

and radicals Water Res 19, 993-1004, 1985 

 

o Hoigné J., Bader H.; The role of hydroxyl radical reactions in ozonation 

processes in aqueous solutions; Water Res. 10, 377-386, 1976 

 



 

111 

o Hörmann W.D., Tournayre J.C., Egli H.; Triazine herbicide residues in central 

European streams; Pestic. Monit. J. 13, 128, 1979 

 

o Horn J.; The proton-pump inhibitors: similarities and differences; Clin. Ther. 

22, 266-280,  2000 

 

o Horspool W.M.; Photochemistry of phenols In The chemistry of phenols, 

Rappoport Z. Ed., Wiley: New York, pp 1015-1092, 2003 

 

o Horspool W.M.; Photochemistry of phenols In The chemistry of phenols, 

Rappoport Z. Ed., Wiley: New York, part 2 

 

o Huie R.E., Herron J.T.; Reaction of atomic oxygen (O 3P) with organic 

compounds; Progress in Reaction Kinetics 8, 1, 1975 

 

o Hustert K., Moza P.N., Kettrup A.; Photochemical degradation of carboxin 

and oxycarboxin in the presence of humic substances and soil; Chemosphere, 

3423-3429, 1999 

 

o Hutchinson G.E.; A Treatise on Limnology; Wiley: New York, 1957; Vol. I, 

pages 865-876 

 

o Iesce M.R., Cermola F., De Lorenzo F., Graziano M.L., Caliendo B.; 

Photochemical behaviour of the sistemic fungicide carboxin; Environ. Sci. & 

Pollut. Res. 9, 107-109, 2002a 

 

o Iesce M.R., Cermola F.; Substituent and solvent effects on the photosensitized 

oxygenation of 5,6-dihydro-1,4-oxathiins. Intramolecular oxygen transfer vs 

normal cleavage of the dioxetane intermediates; J. Org. Chem.  67, 4937-4944, 

2002b. 



 

112 

o IMS Health Canada Ltd; Compendium of pharmaceuticals and specialties, The 

Canadian drug reference for health professionals; 2002 

 

o Im W.B., Sih, J.C., Blakeman D.P., McGranth J.P.; Omeprazole, a specific 

inhibitor of gastric proton-potassium ATPase, is a proton-activated oxidizing 

agent of sulfhydryl groups; Journal of Biological Chemistry 260, 4591-4597,1985 

 

o International Organization for Standardization, 1987. Water quality––algal 

growth inhibition test. ISO/DIS 8692. Geneva, Switzerland 

 

o International Organization for Standardization, 1996. Water quality––

determination of the inhibition of the mobility of Daphnia magna Straus 

(Cladocera, Crustacea) Acute toxicity test. ISO/6341. Geneva, Switzerland 

 

o International Organization for Standardization, 2001. Water quality––

determination of chronic toxicity to Ceriodaphnia dubia in 7 days-Population 

growth inhibition test. ISO/CD 20665. Geneva, Switzerland 

 

o Johnson W.G., Lavy T.L.; Persistence of carbofuran and molinate in flooded 

rice culture; J. Environ. Qual. 24, 487-493, 1995 

 

o Jones O.A.H., Voulvoulis N., Lester J.N.; Aquatic environmental assessment 

of the top 25 English prescription pharmaceuticals; Water Res. 36, 5013–5022, 

2002 

 

o Joussot-Dubien J., Kadiri A.; Photosensitized oxidation of ammonia by singlet 

oxygen in aqueous solution and in seawater; Nature (London) 227, 700-701, 1970 

 

o Karapire C., Icli S.; Photochemical aromatic substitution In CRC Handbook of 

Organic Photochemistry and Photobiology (2nd Edition) Horspool W.M., Lenci 

F. Eds, CRC Press,  Boca Raton, Fla, pp 1-14, 2004 

 



 

113 

o Karljikovic-Rajic K., Novovic D., Marinkovic V., Agbaba D.; First-order UV-

derivative spectrophotometry in the analysis of omeprazole and pantoprazole 

sodium salt and corresponding impurities; J. Pharm. Biomed. Anal. 32, 1019-

1027, 2003 

 

 

o Koplin D.W., Thurman E.M., Goolsby D.A.; Occurrence of selected 

pesticides and their metabolites in near-surface aquifers of the midwestern united 

states; Environ Sci Technol, 30, 335-340; 1996 

 

o Krieger M.S., Yoder R.N., Gibson R.; Photolytic degradation of florasulam on 

soil and water; J. Agric. Food Chem. 48, 3710-3717, 2000 

 

 

o Kümmerer K.; Pharmaceuticals in the environment, 1str edn. Springer, 

Berlin Heidelberg New York 2001 

 

o Lagerström, P.-O., Persson, B.-A.; Determination of omeprazole and 

metabolites in plasma and urine by liquid chromatography. J. Chromatogr.: 

Biomed. Appl. 309, 347-356, 1984. 

 

o Langtry H.D., Wilde M.I.; Omeprazole: a review of its use in helicobacter 

pylori infection, gastro-oesophageal reflux disease and peptic ulcers induced by 

nonsteroidal anti-inflammatory drugs; Drugs 56, 447-486, 1998 

 

o Lindberg P., Nordberg P., Alminger T., Brandstrom A., Wallmark B.; The 

mechanism of action of the gastric acid secretion inhibitor omeprazole; J. Med. 

Chem. 29, 1327-1329, 1986 

 

o Ljunggren B., Lundberg K.; In vivo phototoxicity of nonsteroidal anti-

inflammatory drugs evaluated by the mouse-tail technique; Photodermatol . 2, 

377–382, 1985 



 

114 

o Maayan R., Segal R., Feuerman E.J., Sandbank M., Kaufman H.; Simple 

methods for estimation of prednisone intake and metabolism; Biomed. 

Pharmacother. 42, 409–414, 1988 

 

o Mansour M. (ed.); Fate and prediction of environmental chemicals in soils, 

plants, and aquatic systems; Lewis Publishers, Boca Raton, Ann Arbor (USA), 

London, Tokyo, 1993a 

 

o Mansour M., Scheunert I. and Korte F.; Fate of persistent organic compounds 

in soil and water. In: Migration and fate of pollutants in soils and subsoils; D. 

Petruzzelli and F.G., 1993b 

 

o Mansour M., Feicht E.A., Behechti A., Scheunert I.; Experimental approaches 

to studying the photostability of selected pesticides in water and soil; 

Chemosphere 35, 39-50, 1997 

 

o Metcalfe C., Koenig B., Ternes T., Hirsch R.; Drugs in sewage treatment plant 

effluents in Canada; Prepr. Ext. Abstr. ACS Natl. Meet., Am. Chem. Soc., Div. 

Environ. Chem., 40, 100-102, 2000 

 

o Michell H., Pometta D., Gustafson A.; Treatment of  Hyperlipoproteinemia 

(HLP) type II a with a new phenoxyisobutyric acid derivative, procetofen; Int. J. 

Clin. Pharmacol. Biopharm. 17, 503-506, 1979 

 

o Miranda M.A., Bosca F., Vargas F., Canudas N.; Photosensitization by 

fenofibrate. II. In vitro phototoxicity of the major metabolites. Photochemistry 

and Photobiology 59, 171-174, 1994a 

 

o Miranda M.A., Bosca F., Vargas F., Canudas N.; Unusual (1,2) Wittig 

rearrangement of a carbanion generated in neutral aqueous medium by 

photodecarboxylation of a phenoxyacetic acid analogue; J. Photochem. Photobiol. 

A: Chem 78, 149-151, 1994b 



 

115 

o Monti S., Sortino S., De Guidi G., Marconi G.; Photochemistry of 2-(3-

benzoylphenyl) propionic acid (Ketoprofen) Part 1 A picosecond and nanosecond 

time resolved study in aqueous solution; J. Chem. Soc., Faraday Trans. 93, 2269-

2275, 1997 

 

o Moore D.E.,  Sithipikas V.; Photolytic degradation of frusemide; J. Pharm. 

Pharmacol. 35 489-493, 1983 

 

o OECD, Environment Directorate. The 2000 OECD List of High Production 

Volume Chemicals, Paris 2001 

 

o O’Grady P., Yee K.F., Lins R., Mangold B.; Fosinopril/hydrochlorothiazide: 

single dose and steady-state pharmacokinetics and pharmacodynamics; Br. J. 

Clin. Pharmacol. 48, 375-381, 1999 

 

 

o Ophaswongse S., Maibach H.; Topical nonsteroidal anti-inflammatory drugs: 

allergic and photoallergic contact dermatitis and phototoxicity; Contact 

Dermatitis 29, 57–64, 1993 

 

o Osamu F., Satoshi S., Yasutaka I.; Preparation of hydroperoxides by N-

hydroxyphtalimide-catalyzed aerobic oxidation of alkylbenzenes and 

hydroaromatic compounds and its application; Adv. Synth. Catal. 343, 809–813, 

2001 

 

o Peltier W.H., Weber C.I.; 1985 (Eds.); Methods for measuring the acute 

toxicity of e.uents to freshwater and marine organisms. EPA-600/4-85-013. US 

Environmental Protection Agency, Washington, DC, USA 

 

o Prammer B.; Directive 98/83/CE relative to the quality of waters for human 

use; Official Bullettin of the EC, European Union, Brussels; 32-54, 1998 

 



 

116 

o Raha P., Das A.K.; Photodegradation of carbofuran; Chemosphere 21, 99-106, 

1990 

 

o Raloff J.; Drugged waters. Sci. News 153, 187–189, 1998 

 

o Revelle L.K., Musser S.M., Rowe B.J., Feldman I.C.; Identification of 

chlorothiazide and hydrochlorothiazide UV-A photolytic decomposition products; 

J. Pharm. Sci. 5, 631-634, 1997 

 

o Sachs J.; Proton pump inhibitors and acid-related diseases; Pharmacotherapy 

17, 22-37, 1997 

 

o Scheunert I., Mansour M., Dörfler U. and Schroll R.; Fate of pendimethalin, 

carbofuran and diazinon under abiotic and biotic conditions; Sci. Total Environ. 

132, 361-369, 1993 

 

o Scully F. E., Hoigné J.; Rate constants for reactions of singlet oxygen with 

phenols and other compounds in water; Chemosphere 16, 681- 694, 1987 

 

o Sharom M.S., Miles J.R.W., Harris C.R., McEwen F.L.; Persistence of 12 

insecticides in water, Water Res. 14, 1089-1093, 1980 

 

o Shin J.M., Cho Y.M., Sachs G.; Chemistry of covalent inhibition of gastric 

(H+, K+)-ATPase by proton pump inhibitors; J. Am. Chem. Soc., 126, 7800-7811, 

2004. 

 

o Shine H. J.; The formation of cations and Cation Radicals from Aromatic 

Sulfides and Sulfoxides. In Janssen, M. J. (Ed.), Organosulfur Chemistry, 

Interscience Publishers, New York, 93-117, 1967 

 



 

117 

o Snel M., von Schmeling B., Edgington L.V.; Fungitoxicity and structure-

activity relationship of some oxathiin and thiazole derivatives; Phytopathology  

60, 1164-1168, 1970 

 

o Solomon H.M., Weis J.S.; Abnormal circulatory development in medaka 

caused by the insecticides carbaryl, malathion and parathion; Teratology 19, 51-

62, 1979 

 

o Spurck T.P., Pickett-Heaps T.J.; Effects of diazepam on mitosis and the 

microtubule cytoskeleton; J. Cell. Sci. 107, 2643, 1994 

 

o Staehelin J., Hoigné J.; Decomposition of ozone in water in the presence of 

organic solutes acting as promoters and inhibitors of radical chain reactions; 

Environ. Sci. Technol. 19, 1206-1213, 1985 

 

o Stegeman M.H., Peijnenburg W.J.G.M., Verboom H.; A quantitative 

structure-activity relationship for the direct photohydrolysis of meta-substituted 

halobenzene derivatives in water; Chemosphere 26, 837-849, 1993 

 

o Still, I. W. J.; Photochemistry of sulfoxides and sulfones in Patai, S., 

Rappoport, Z., Stirling, C. J. M. (Eds.), The chemistry of sulphones and 

sulfoxides, Wiley, New York, 873-888, 1988 

 

o Sturm E., Kruger U., Senn-Bilfinger J., Figala V., Klemm K., Kohl B., Rainer 

G., Schaefer H.; (H+- K+)-ATPase inhibiting 2-[(2 

pyridylmethyl)sulfinyl]benzimidazoles. 1. Their reaction with thiols under acidic 

conditions. Disulfide containing 2-pyridiniobenzimidazolides as mimics for 

inhibited enzyme. J. Org. Chem. 52, 4573-4581, 1987 

 

o Su G.C.C., Zabik M.J.; Photochemistry of bioactive compounds. Photolysis of 

m-(N,N-dimethylformamidine)phenyl N-methylcarbamate hydrochloride in 

water; J. Agric. Food Chem. 20, 642-644, 1972 



 

118 

o Takacs M., Ekiz-Gucer N., Reisch J., Gergeli-Zobin A.; The light sensitivity 

of corticosteroids in crystalline form. Photochemical studies; Pharm. Acta. Helv. 

66, 137–140, 1991 

 

o Tamat S.R., Moore D.E.; Photolytic decomposition of hydrochlorothiazide; J. 

Pharm. Sci. 2, 180-183, 1983 

 

o Tanner R.W., Laangston J.W.; Do environmental toxins cause parkinson's 

disease? A critical review; Neurology 40, 17, 1990 

 

o Ternes T.A.; Occurrence of drugs in German sewage treatment plants and 

rivers; Water. Resour. 32, 3245-3260, 1998 

 

o Ternes T.A. In Pharmaceuticals and personal care products in the 

environment: Scientific and Regulatory Issue, Daughton C.G. and Jones-Lepp 

T.L. Eds; ACS Symposium series 791, American Chemical Society, Washington, 

D.C. 2001 

 

o Ternes T.A., Wilken R.D.; Drugs and hormones as pollutants of the aquatic 

environment: determination and ecotoxicological impacts. Sci. Total Environ. 225 

(1–2), 1–176, 1999 

 

o The Helsinki Heart Study Interim Report, in: Royal Society Medical Services 

International Congress and Symposium Series, C. Wood ed., p.87, 1996 

 

o Ulvi V., Tammilehto S.; Photodecomposition studies on chlorothiazide and 

hydrochlorothiazide; Acta Pharm. Nord. 1, 195-200, 1989 

 

o Umetsu N., Kuwano E., Fukuto T.R.; Nature of N-S bond cleavage of 2,3-

dihydro-2,2 dimethyl-7-benzofuranil (di-n-

butylaminosulphenyl)(methyl)carbamate; J. Environ. Sci. Health B15, 1, 1-23, 

1980 



 

119 

o US, Department of Health and Human Services. Guidance for Industry– 

Environmental  Assessment of Human Drug and Biologcs Applications, 1998 

 

o Vialaton D., Richard C., Baglio D., Paya-Perez A.B.; Phototransformation of 

4-chloro-2-methylphenol in water: influence of humic substances on the reaction; 

J. Photochem. Photobiol. A, 119, 39-45, 1998 

 

o Von Schmeling B., Kulka M.; Systemic fungicidal activity of 1,4-oxathiin 

derivatives;   Science 152, 659-660, 1966 

 

o Welker M., Steinberg C.; Rates of humic substances photosensitized 

degradation of microcystin-LR in natural waters; Environ. Sci. Technol 34, 3415-

3419, 2000 

 

o Williams J.R., Moore R.H., Li R., Blount J.F.; Structure and photochemistry 

of lumiprednisone acetate; J. Am. Chem. Soc. 101, 5019–5025, 1979 

 

o Wilson B.W., Stinnett H.O.; Growth and respiration of monolayer cell 

cultures of chick embryo heart and skeletal muscle: action of malathion and 

malaoxon; Proc. Soc. Exp. Biol. Med. 130, 30-34, 1969 

 

o Wolfe M.M., Sachs G.; Acid suppression: optimizing therapy for 

gastroduodenal ulcer healing, gastroesophageal reflux disease, and stress-related 

erosive syndrome; Gastroenterology 118 (2 Suppl 1), S9-31, 2000 

 

o Wolff C.J.M., Halmans M.T.H., van der Heijde H.B.; The formation of singlet 

oxygen in surface waters; Chemosphere 10, 59-62, 1981 

 

o World Health Organization, Guidelines for Drinking Water Quality; WHO, 

Genéve 1993 



 

120 

o Zafiriou O.C.; Chemical Oceanography; Riley J.P. Ed.; Academic Press: 

London, Vol. 8, Charpter 48, 1983 

 

o Zafiriou O. C., True M. B.; Nitrite photolysis in seawater by sunlight; Mar. 

Chem. 8, 9–32, 1979 

 

o Zanocco A., Gunther G., Lemp M.E., de la Fuente J.R., Pizarro N.U.; Kinetics 

and mechanism of the photosensitized oxidation of furosemide; Photochem. 

Photobiol. 68, 487-493, 1998 

 

o Zepp R.G., Baughman G.L., Schlotzhauer P.F.; Comparison of photochemical 

behaviour of various humic substances in water: I. Sunlight induced reactions of 

aquatic pollutants photosensitized by humic substances; Chemosphere 10, 109-

117, 1981a 

 

o Zepp R.G., Baughman G.L., Schlotzhauer P.F.; Comparison of photochemical 

behaviour of various humic substances in water: II. Photosensitized oxygenations; 

Chemosphere 10, 119-126, 1981b 

 

o Zepp R.G., Holgné J., Bader H.; Nitrate-induced photooxidation of trace 

organic chemicals in water; Environ. Sci. Technol. 21, 443-450, 1987 

 

o Zepp R.G., Scholtzhauer P. and Sink R.; Photosensitized transformations 

involving electronic energy transfer in natural waters: role of humic substances; 

Environ. Sci. Technol. 19, 74-81, 1985 

 

o Zika R.G., Cooper W.J.; Photochemical formation of hydrogen peroxide in 

surface and ground waters exposed to sunlight; Science 220, 711, 1983 



 

121 

o Zimmermann A.E., Katona B.G., Lansoprazole: a comprehensive review; 

Pharmacotherapy 17, 308-326, 1997 

 

o Zuccato E., Calamari D., Natangelo M., Fanelli R.; Presence of therapeutic 

drugs in the environment; Lancet 355, 1720–1789, 2000 

 

 

 


