Xenobiotics in the environment: abiotic transformations and toxicity

Candidato
Dott. Maria Rubino

Tutore
Prof. Maria Rosaria Iesce

Relatore
Dott. Alessandro Pezzella

Tutore
Prof. Lucio Previtera

Coordinatore: Prof. Rosa Lanzetta
Index

1. Introduction

2. Pesticides
 - Fungicide carboxin
 - Carbamates: benfuracarb, carbosulfan and carbofuran

3. Drugs
 - Steroidal anti-inflammatory drugs: prednisolone and dexamethasone
 - Non-steroidal antinflammatory drug: naproxen sodium salt
 - Diuretic: furosemide
 - Diuretic: hydrochlorothiazide
 - Fibrates: bezafibrate, gemfibrozil, fenofibrate
 - Proton Pump Inhibitors: lansoprazole and omeprazole

4. Summary

5. Experimental Section

6. General Procedure Toxicity Tests

7. Bibliography
1. Introduction

During recent years intensive agricultural methods and the large scale development of the agrochemical industry has dramatically increased the variety and levels of the agrochemicals in continental and marine natural waters. The use of pesticides is an integral part of world food production as illustrated by the fact that more than 2.5 million tons of these anthropogenic chemicals were applied to soil and foliage in 1996 (Brown L.R. et al., 1996). When applied to a particular location, pesticides can enter ground and surface water in solution, in emulsion, or bound to soil colloids and may impair water for its designated uses. Recent findings cite the presence of these compounds in drinking water (Koplin D.W. et al., 1996). Some types of pesticides are resistant to degradation and may persist and accumulate in aquatic ecosystems modifying their equilibrium by eliminating or reducing populations of organisms, including endangered species. In addition, they can destroy the food source of higher organisms, or reduce the amount of vegetation available for habitat and stabilization of soft sediments. A major source of contamination from pesticide use is a result of their normal application to the soil. Pollution of surface waters also depends on the quantity and nature of pesticides which can be used under different chemical formulations, and on the peculiarities of soils which may be easily permeable and near to the water systems. Other sources of pesticide contamination are atmospheric deposition, spray drift during the application process, misuse, and discharges that may be associated with pesticide storage, handling, and waste disposal. Pesticides in drinking water and food (Cabras and Angioni, 2000) may have adverse effects for human health: carcinogenesis (Blair A. et al., 1985), neurotoxicity (Tanner and Laangston et al., 1990), effects on cell development (Gray L.E. et al., 1994) are the possible chronic effects deriving from these compounds. The scientific community has shown great concern about these risks, which is supported by results from major monitoring studies performed over 20 years ago (Hörmann W.D. et al., 1979), and confirmed by more recent investigations (Anon, 2000a; Anon, 2000b). With increasing global demand for vegetables, the situation does not look likely to improve. In fact, the current
situation might worsen with the appearance of new substances. In the European Union, the quality of water for human consumption is controlled by many regulations which establish the maximum admissible values of toxic pesticides and their degradation products at very low concentrations: a maximum permissible concentration for a particular pesticide and/or its derivative is 0.01 ppb and 0.5 ppb for the total load of all plaguicides (Prammer B., 1998; World Health Organization, 1993). Environmental concentrations of pesticides and their known metabolites are fixed in the maximum contaminant level parameter (CML) in USA, and in parameter of maximum allowable concentration (MAC) in Canada. The critical nature of this environmental problem has prompted the development of faster and more accurate methods for characterisation and quantization of the pesticides dispersed in the environment. These methods have generally been very successful, but until now, no completely efficient methods have been developed for remediation of contaminated waters (Bryant E.A. et al., 1992). Moreover, pesticides are only one component of a group of chemicals which are continually introduced in the environment: among these, pharmaceuticals must also be considered. Studies undertaken in USA, Europe and Canada have detected a wide range of drugs in groundwater, surface water and even drinking water systems (Zuccato E. et al., 2000; Jones O.A.H. et al., 2002). Levels of pharmaceuticals amount to thousands of tons per year which are similar to the amount of fertilizers and other chemicals used in agriculture (OECD 2001). After administration of drugs, only a limited quantity is assimilated and metabolized by the organisms, the remaining part is excreted and ultimately ends up in waste treatment plants. Most treatment plants are unable to remove drugs so they pass either into surface waters or groundwater. Runoff from farm animal operations contributes a significant amount to drugs into the environment, as do hospital discharges and the aquaculture industry. The widespread occurrence of pharmaceuticals in the aquatic environment explains the detection of their presence in drinking waters (Heberer T. et al., 1996; Ternes T.A., 2001). Figure 1 shows possible sources and pathways for the occurrence of pharmaceutically active products in the environment.
The major issues associated with the origins and presence of these chemicals in surface, subsurface, and drinking waters have been featured in a number of reviews, books, and proceedings, among which some recent examples are Daughton (2001), Daughton and Jones-Lepp (2001), Daughton and Ternes (1999), Heberer (2002), Kümmerer (2001). Even if at low concentrations, pharmaceuticals cannot be considered harmless for living species in the environment and their toxicity should be examined (Colburn and Clement, 1992). In fact, it is worth noting that antibacterial drugs used in stock-breeding, have antialgal effects (Henschel K.P. et al., 1997) and previously, diazepam has been shown to have adverse effects on the diatoms *Hantzschia amphioxys* and *Surirella robusta* (Spurck and Pickett-Heaps, 1994). Thus, the aquatic environment receives composite loads of contaminants including pesticides, pharmaceuticals, veterinary and human antibiotics, industrial compounds, hormones and sterols, in increasing amounts. A chemical-analytical approach to monitoring pollutants is not exhaustive, but it is necessary to know their toxicological effects by using target
aquatic organisms in order to obtain an overall measure of the environmental contamination risk.

Most toxicity assays are presented in the literature as acute toxicity tests. However, it is also necessary to perform chronic tests on target aquatic organisms to better identify whether these compounds have sublethal effects at concentrations which usually range from ng/l to µg/l. It is likely that these low concentrations do not represent an acute risk, but there are no significant data about their chronic toxicity, the active/passive assimilation of xenobiotics by the organisms, or their accumulation in the tissues and diffusion through the food chain.

From 1998 the US Department of Health and Human Services has required all Federal agencies to assess the environmental impact of approving drugs when the expected concentration at the point of entry into the aquatic environment (EIC) is 1 µg/l or greater (US 1998). A note for the guidance of the European Agency for the evaluation of medicinal products EMEA (2003) states that an application for the marketing authorization for a medicinal product for human use must be accompanied by an environmental risk assessment when the predicted environmental concentration (PEC) is above 0.01 µg/l.

Little is known about the fate of pharmaceuticals and pesticides in the environment and limited researches have until now been conducted on their transformation products from both analytical and toxicological points of view. The disappearance of xenobiotic residues at a given location does not mean the end of the environmental problem, because they can be translocated, bioconcentrated or converted into more dangerous chemicals.

Given the potential human and wildlife health risks associated with toxic chemicals, it is important to have considerable information on their persistence in surface waters and/or in the soil by considering their reaction mechanisms under typical environmental conditions.

In fact, xenobiotics can be subjected to biotic (biotransformation by aquatic organisms such as algae, bacteria) and abiotic (hydrolysis, oxidation, photodegradation) processes in the environment giving derivatives that can be more persistent and more toxic than the parent compounds.
In this regard, the EMEA (European Agency for the evaluation of medicinal products) excludes an environmental risk assessment of metabolites formed at levels below 10%, while for transformation products exceed 10% (major metabolites) the risk assessment is performed using the defined PEC (predicted environmental concentration) and PNEC (predicted no-effect concentration) values. The opinion of the European Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE, 2001) differs from that of EMEA as CSTEE considers inappropriate to define major metabolites by their percentages. They should be those which may produce significant adverse effect on environmental species. In fact, a study on the toxicity of prednisolone, dexamethasone and their photochemical derivatives on aquatic organisms (DellaGreca et al., 2004) has evidenced that a photoderivative (5% yield) had a chronic toxicity one hundred times higher than prednisolone on C. dubia.

Levels of the pesticide malathion in water as low as 5 parts per million were shown to cause heart defects in certain types of fish, resulting in circulatory defects (Solomon and Weis, 1979). In addition, the metabolic breakdown products of parathion and malathion, paraoxon and malaoxon respectively, have been shown to decrease cell numbers, DNA synthesis and protein synthesis in cell cultures of chick pectoral muscle (Wilson and Stinnett, 1969). Thus, metabolites may be more detrimental than the parent compounds. Many metabolites are included in the monitoring system of groundwater and surface water. For example, in Dutch underground waters analytical investigations are extended, in addition to the pesticide aldicarb widely used for treatment of soybeans and potatoes, also to its metabolites: aldicarb sulfoxide and aldicarb sulfone. (Bottoni P., 1994). The USEPA (US Environmental Protection Agency), in the context of the National Pesticide Survey, performed between 1985 and 1990, listed pesticides and their respective derivatives with high contaminant potential, which must be searched in underground waters (Table 1). (Funari E. et al., 2001)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
<th>Pesticide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acifluorfen</td>
<td>3,5-dichlorobenzoic acid</td>
<td>paraoxon methyl</td>
</tr>
<tr>
<td>Alachlor</td>
<td>1,2-dichloropropane</td>
<td>Metolachlor</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>1,3-dichloropropene cis</td>
<td>Metribuzin</td>
</tr>
<tr>
<td>Aldicarb sulfone</td>
<td>1,3-dichloropropene trans</td>
<td>Metribuzin DA</td>
</tr>
<tr>
<td>aldicarb sulfoxide</td>
<td>Dichlorprop</td>
<td>metribuzin DADK</td>
</tr>
<tr>
<td>Baygon (propoxur)</td>
<td>Dichlorvos</td>
<td>Metribuzin DK</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Dinoseb</td>
<td>MGK 264</td>
</tr>
<tr>
<td>Bromacil</td>
<td>Diphenamid</td>
<td>Molinate</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Disulfoton</td>
<td>Napropamide</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>disulfoton sulfone</td>
<td>Neburon</td>
</tr>
<tr>
<td>3-OH-carbofuran</td>
<td>Disulfoton sulfone</td>
<td>4-nitrophenol</td>
</tr>
<tr>
<td>phenol carbofuran</td>
<td>Diuron</td>
<td>Norflurazon</td>
</tr>
<tr>
<td>Phenol-3-keto carbofuran</td>
<td>Endosulfan I</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>Carboxin</td>
<td>Endosulfan II</td>
<td>Permethrine cis</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Endosulfan sulphate</td>
<td>Permethrine trans</td>
</tr>
<tr>
<td>Chlorpropham</td>
<td>Heptachlor</td>
<td>Pictoram</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>heptachlor epoxide</td>
<td>Prometryn</td>
</tr>
<tr>
<td>Cycloate</td>
<td>EPTC</td>
<td>Pronamid</td>
</tr>
<tr>
<td>2,4-D</td>
<td>hexachlorobenzene</td>
<td>Pronamide metabolite</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>hexachlorocyclohexesane</td>
<td>Propanil</td>
</tr>
<tr>
<td>Dalapon</td>
<td>Etoprop</td>
<td>Propham</td>
</tr>
<tr>
<td>DCPA</td>
<td>Ethylen bromide</td>
<td>Simazine</td>
</tr>
<tr>
<td>DCPA acid metabolites</td>
<td>Fenamiphos</td>
<td>2,4,5-T</td>
</tr>
<tr>
<td>4,4-DDT</td>
<td>Fenamiphos sulfone</td>
<td>2,4,5-TP</td>
</tr>
<tr>
<td>4,4-DDD</td>
<td>Fenamiphos sulfone</td>
<td>Terbufos</td>
</tr>
<tr>
<td>4,4-DDE</td>
<td>Fenamirol</td>
<td>Terbutryn</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Linuron</td>
<td>Triadimefon</td>
</tr>
<tr>
<td>Dicamba</td>
<td>Methiocarb</td>
<td>Trifluralin</td>
</tr>
<tr>
<td>5-OH-dicamba</td>
<td>Methomyl</td>
<td>Vernolate</td>
</tr>
<tr>
<td>3,5-dichlorobenzoic acid</td>
<td>Metoxychlor</td>
<td></td>
</tr>
</tbody>
</table>

It is obvious, in the light of these data, how the risk associated with the presence of both parent compounds and degradation products into the aquatic environment has become an important issue in environmental chemistry. With regard to abiotic degradation, various researches (Zafiriou and True, 1979; Zepp et al., 1985; Scully and Hoigné, 1987) have revealed that in natural aquatic
environments abiotic transformations such as hydrolysis, and direct or indirect photodegradative processes can occur. Photochemical reactions are most important in the conversion and degradation of pollutants in aquatic systems (Mansour M., 1993a; Mansour M. et al., 1993b; Durand G. et al., 1990), while in the soil they are significant only at surface level (Scheunert I. et al., 1993).

The phototransformation of a pollutant in surface water may result from light absorption by the pollutant itself (direct photolysis) or may be photoinduced by the dissolved natural organic matter or nitrate ions present in the water, as these chromophores are known to photoproduce reactive species (indirect photolysis). Several studies have been reported in the literature (Vialaton D. et al., 1998; Welker and Steinberg, 2000; Krieger M.S. et al., 2000) showing the relative importance of the dependence of the two pathways on the pollutant structure. As sunlight penetrates down into freshwater and marine waters, the great bulk of the radiation is absorbed by natural dissolved or particulate substances. A number of recent investigations has shown that the influence of natural sustances on photoreactions in freshwater and seawater is not limited to light attenuation (Zepp R.G. et al., 1981a; Zepp R.G. et al., 1981b; Wolff C.J.M. et al., 1981). Sunlight-induced reactions involving free radicals may be initiated through photolysis of natural inorganic constituents such as nitrite (Zafiriou O.C., 1983) and hydrogen peroxide (Zika and Cooper, 1983; Draper and Crosby, 1983). Moreover, a significant portion of the solar radiation absorbed by freshwater humic substance results in formation of electronically excited molecules that are capable of participating in a variety of reactions with aquatic pollutants (Zepp R.G. et al., 1981a; Zepp R.G. et al., 1981b). These photosensitized reactions can greatly accelerate the light-induced transformation of trace chemicals in natural waters, in some cases resulting in the rapid photoreaction of compounds that are stable to sunlight in distilled water (Joussot-Dubien and Kadiri, 1970; Zepp R.G. et al., 1981a; Zepp R.G. et al., 1981b). Humic substances are aromatic structures (Figure 2) arising from the degradation processes of the lignins.
They may sensitize oxygen and other photoreactions of organic chemicals involving electronic energy transfer (Zepp R.G. et al., 1981a). There is a dearth of information on factors that influence the rates of these processes in aquatic environments. Humic acids are able to absorb organic matter through different mechanisms such as ion exchange, hydrogen bond, Van der Waals strength, modifying solubility, biodegradability, photoreactivity and, hence, the persistence of pollutants in the environment.

The nitrate in aquatic environment has long been known to be involved as an electron acceptor in the biological oxidation of organic substrates (Hutchinson G.E., 1975). Recent evidence indicates that nitrate ions also promote the photochemical oxidation of trace organic compounds in water (Zepp R. G. et al., 1987). The irradiation of nitrate in its long-wavelength absorption band (maximum 302 nm) results in two primary photochemical processes (Scheme 1):

\[
\text{NO}_3^- \xrightarrow{h\nu} \text{NO}_3^- \xrightarrow{\text{hv}} \text{NO}_2^- + \text{O}^{(3\text{P})} \quad (1)
\]

followed by

\[
\text{O}^- + \text{H}_2\text{O} \rightarrow \text{OH}^* + \text{OH}^- \quad (3)
\]
O$^{-}$ is rapidly protonated to its conjugate acid, the hydroxyl radical (eq 3), a potent oxidant that reacts much more rapidly with most organic chemicals than does atomic oxygen O (^3P) (Huie and Herron, 1975). The major fate of the atomic oxygen produced in reaction 1 is likely to be a reaction with oxygen molecular to form ozone. The ozone is rapidly consumed by reaction with NO$_2^-$ (Hoigné J. et al., 1985), or by decomposition to OH$^-$ (Hoigné and Bader, 1976; Staehelin and Hoigné, 1985).

The aims of this thesis have been to study the photolitic and hydrolytic processes of certain xenobiotics and evaluate their toxicity as well as that of their degradation products, since as above reported, toxicological study is meaningful only if it includes both parent compounds and their derivatives. Investigation has been devoted on some pesticides, in particular on carboxin and carbammates, and on different groups of pharmaceuticals, among these, steroidal anti-inflammatory drugs (prednisolone and dexamethasone) and non-steroidal anti-inflammatory drugs (naproxen sodium salt), diuretics (furosemide and hydrochlorothiazide), fibrate drugs (bezafibrate, fenofibrate and gemfibrozil), and proton pump inhibitors (lansoprazole and omeprazole). These chemicals have been selected on the basis of their sale and/or their presence into the aquatic environment.

Their abiotic degradation has been studied as close to natural conditions as possible. They have been dissolved (for analytical purposes) or dispersed (for preparative purposes) in aqueous media, using distilled water, distilled water with added nitrates or humic acids, in sewage treatment plant water, and irradiated by a solar simulator or with solar light. In certain cases, photolysis and hydrolysis have also been examined at the different pHs that are possible in polluted aquatic environments. Degradation products have been isolated by chromatographic techniques (silica gel chromatography, TLC, HPLC) and characterized by spectrometric means (one and two dimensional NMR, IR, EI-MS, UV).

The potential environmental impact of the selected xenobiotics and their derivatives has been evaluated, in collaboration with the “Seconda Università
degli Studi di Napoli”, by performing acute and chronic toxicity tests on different organisms of the aquatic chain. For the acute toxicity, the bacterium *Vibrio fisheri*, the rotifer *Brachionus calyciflorus*, the anostracan crustacean *Thamnocephalus platyurus* and the cladoceran crustaceans *Daphnia magna* and *Ceriodaphnia dubia* have been used. The chronic toxicity has been evaluated on producers such as algae (*Selenastrum capricornutum*), and primary consumers (*Brachionus calyciflorus*, *Ceriodaphnia dubia*). Acute and chronic toxicity data are generally expressed as median effective concentrations (LC50 and EC50 in mg/l).
2. Pesticides

2.1.1 Fungicide: Carboxin

Carboxin (1) belongs to the class of carboxanilide fungicides used in agriculture for the seed treatment of wheat, barley, flax and cotton prior to planting (von Schmeling and Kulka, 1966) against diseases caused by Basidiomycetes (Snel M. et al., 1970). In fact, the mycelium of these microorganisms penetrates deeply into the seed and thus cannot be controlled by superficial protectans.

Carboxin reacts with receptors of mitochondrial membrane of fungi which are unable to oxidise succinate and the metabolism of the pesticide affords hydroxylation products which have been identified in both plants and animals. Since it is useful as a seed treatment for food crops, a clear understanding of its fate in the crops was necessary.

Degradation studies in soil (Balasubramanya and Patil, 1980) or in various plant species and animals (Chin W. T. et al., 1970) have shown that carboxin degrades and its main metabolite is the sulfoxide that has a non-fungitoxic activity. Recently studies described the photochemical behaviour of the pesticide when irradiated with UV light (filter Pyrex) in organic solvent (Iesce M.R. et al., 2002a) or in the presence of humic substances and soil (Hustert K. et al., 1999) and with halogen lamp in the presence of sensitizers (Iesce and Cermola, 2002b). These irradiation conditions determine the photooxidative alteration of carboxin and give a variety of photoproducts deriving from the addition of singlet oxygen to the double bond or to sulfur. Sensitizers generally have an acceleration effect on the photolysis of carboxin and this effect was observed experimentally also by
exposing the pesticide to sunlight. These preliminary studies can be used as a starting point to investigate photolytic fate of this pesticide in the environment.

2.1.2 Results and Discussion

Photolysis of carboxin (1)

A dispersion of carboxin in pure water (20 mg/500 ml) was exposed to natural sunlight, under aerobic conditions. After 4 days, the dispersion was extracted with ethyl acetate and the organic and aqueous extracts were analyzed by 1H NMR. The organic extract was chromatographed by HPLC giving unreacted carboxin (50%) and five compounds (complessively 20%) which were identified as sulfoxide 2, ketoamide 3, acetate 4, disulfide 5, quinolinone 6 (Figure 3) by spectroscopic means (1H NMR, 13C NMR, MS, IR) and/or by comparison of spectroscopic data with those previously reported (Hustert K. et al., 1999; Hahn H.G. et al., 1995; Corbeil M.A. et al., 1973).

Figure 3
A similar procedure was carried out by sunlight exposing aqueous suspensions of carboxin at pH 2, pH 14, in the presence of humic acid (10 ppm) or in the presence of nitrate salts (5 ppm). The conversion percentage and the composition of each mixture were evaluated by 1H NMR spectrum and HPLC of the organic extract and are reported in Table 2. In acidic conditions ester 8 and enol 9 were also identified. Under all the conditions used, evaporation of the aqueous layer furnished a compound which was spectroscopically identified as oxanilinic acid 7.

As shown in Table 2, carboxin is readily photodecomposed by natural sunlight giving mainly sulfoxide 2 and acetate 4. Ketoamide 3 is also found while disulfide 5, quinolinone 6 and ester 8 are obtained in very small amounts. Environmental effects such as pH variation or the presence of humate appear to have little influence on photodegradation rate, while a significant increase is observed in the presence of the nitrate, as expected on the basis of its inducing photo-oxidation ability (Zepp R.G. et al., 1987).

Carboxin was recovered unaltered when the above experiments were performed keeping its dispersions in the dark for four days.

Sulfoxide 2 was identified according to the molecular peak at m/z 251 in the EI-MS spectrum and to the pattern of signals in the 2.90 and 3.10 ppm range of the protons of the CH$_2$SO group correlated to the carbon at δ 43.5 in the HMQC experiment. IR spectrum showed strong bands at 1039 and 1079 cm$^{-1}$ due to the stretching absorptions belonging to the S=O group.

Table 2. Product distribution by sunlight irradiation of carboxin in water after 4 days.

<table>
<thead>
<tr>
<th>Reaction conditiona</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 7</td>
<td>55</td>
<td>23</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH 10</td>
<td>76</td>
<td>20</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH 2</td>
<td>47</td>
<td>38</td>
<td>7</td>
<td>2</td>
<td><1</td>
<td>-</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Humic acidc</td>
<td>63</td>
<td>24</td>
<td>3</td>
<td>10</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>KNO$_3$d</td>
<td>27</td>
<td>45</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td><1</td>
<td><1</td>
<td>-</td>
</tr>
</tbody>
</table>

a Suspension of carboxin (20 mg) in 300 ml of water after saturating with oxygen. b The percentages have been deduced by 1H NMR of the mixture extracted with ethyl acetate. c 10 ppm. d 5 ppm.
Compound 3 in the EI-MS spectrum had its molecular ion peak at \(m/z \) 251, and strong peaks at \(m/z \) 103, due to the fragment [M-COCONHC\(_6\)H\(_6\)]\(^+\), and at \(m/z \) 148, due to the [COCONHC\(_6\)H\(_6\)]\(^+\) fragment. The multiplet at \(\delta \) 2.95-3.15 of the CH\(_2\)S group in the \(^1\)H NMR, the C-2 quaternary carbon at \(\delta \) 92.1 in the \(^{13}\)C NMR spectrum, the absence of the IR bands typical of the S=O bond in the range 1030-1100 cm\(^{-1}\) were in agreement with the proposed structure of compound 3.

In the EI-MS spectrum of compound 4 peaks were present at \(m/z \) 87 and 43, belonging to fragments [M-SH]\(^+\) and [M-OCH\(_2\)CH\(_2\)SH]\(^+\) respectively. Compound 5 was identified by comparison of spectral data with those of an authentic compound prepared by exposing aqueous solution of 1,2-mercaptoethanol 10 to sunlight (Scheme 2).

Quinolinone 6 presented a molecular peak at \(m/z \) 235 in the EI-MS spectrum. It is a photoisomerization product of carboxin as confirmed by control experiments. In fact, it was synthetized in 20% yields by irradiating carboxin solutions in CH\(_3\)CN under argon atmosphere with high pressure UV lamp (Scheme 3).
In our irradiation conditions, quinolinone 6 was evidenced only in traces. In the EI-MS spectrum, along with the ion molecular peak at \(m/z \) 235 at low intensity, other peaks were present suggesting a sequence –SCH$_2$CH$_2$OH. These data were also confirmed by the presence, in the 1H NMR spectrum, of two triplets at δ 3.04 and 3.70, reciprocally coupled in the H-H COSY experiment, and correlated to the signals at δ 38.8 and 60.2 in the HMQC experiment. Sequence t-d-t-d between δ 7.25 and 7.80 (with couplings of 7.5 Hz) in the 1H NMR spectrum and four methine aromatic carbons between δ 116.0 and 132.0 in the DEPT experiment were consistent with a 1,2 disubstituted aromatic ring. In the HMBC experiment, the methyl singlet at δ 2.90 gave heterocorrelations with the C-3 olefinic quaternary carbon and the C-10 quaternary carbon. Methyl gave NOE contact with the doublet at δ 7.78 in a NOESY experiment in accordance with its position on the C-4 carbon.

The structure of oxanilic acid 7 was proved by the 1H NMR spectrum which showed only aromatic protons, and by mass spectrum which revealed peaks at \(m/z \) 168 and 148 due to the molecular ion peak and to the fragment [M-OH]$^+$ respectively.

Compound 8 showed the molecular ion peak at \(m/z \) 267 in the EI-MS. Its 1H NMR spectrum showed a methyl singlet and two multiplet signals integrated for two protons in the aliphatic region and five protons in the aromatic region, while the 13C NMR experiment revealed two carbons at δ 28.0 and 61.8 corresponding to CH$_2$S and CH$_2$O groups respectively, and three carbonyl carbons at δ 155.8 (CON), 170.6 (CO$_2$) and 191.6 (COS).

Compound 9 had molecular peak at \(m/z \) 253 in the MS spectrum and its enolic structure was identified by the presence in the 1H NMR spectrum of the singlet at 15.5 ppm.

The formation of all the products can be explained, on the basis of photo-oxidative transformations, as the main light-induced pathways. According to previous reports (Iesce M.R. et al., 2002a), excited states of the pesticide, formed directly by the absorption of the solar radiation [carboxin exhibits an absorption band with a maximum at 292 nm (log ε 3.2)], can react with ground state which
adds to sulfur or to the double bond leading to sulfoxide 2 or to the radicals 11 or 12 (Scheme 4).

Scheme 4. Mechanism of the photodegradation of carboxin

The radicals 11 or 12 afford ester 8 via the unstable dioxetane 13 while intermolecular reactions should be involved in the formation of ketoamide 3 via the intermediate 14. As proved by control experiments, hydrolysis of ester 8 leads to acetate 4 and acid 7. Further decomposition of compound 4 gives disulfide 5. Quinolinone 6 is a photoisomerization product, in fact it is formed also in the absence of oxygen (Iesce M.R. et al., 2002a). Enol 9 is formed by both acid and light-induced addition of H₂O to carboxin. Indeed, this compound is not found under neutral and basic conditions and carboxin was quantitatively recovered under acid conditions in the dark after 4 days.
In order to obtain informations about photooxygenation mechanisms of carboxin, irradiation experiments were performed in water in presence of KO$_2$, which releases superoxide anion, since photooxidation processes might involve electron transfer mechanisms including the formation of the superoxide anion (Coyle, J.D., 1986), or in presence of D-Mannitol, an OH radical scavenger, to verify the involvement of radical reactions, or in presence of DABCO, a singlet oxygen quencher, to verify its role in the photooxidation mechanism.

Reaction mixtures were examined by 1H NMR after exposure to sunlight for four days. No appreciable changes were observed when carboxin was irradiated in the presence of KO$_2$ or D-Mannitol, while the most relevant results were obtained in presence of DABCO which remarkably slowed pesticide degradation. Thus, it is likely that excited molecules of carboxin generate singlet oxygen which is able to add to double bond (Scheme 5) or to oxidize sulfur atom of carboxin (Scheme 6).

Scheme 5. Photooxidation mechanisms of carboxin
On the other hand, oxygenated species might oxidize the sulfur atom giving sulfoxide 2 via S-hydroperoxy radical or reactive cation (Bonesi S.M. et al., 1998) (Scheme 6).

\[
1^+ + \text{O}_2 \xrightarrow{\text{H}_2\text{O}} 1^{+} \quad \text{or S}^+ \text{for b and c)}
\]

\[
\text{1} + ^{1}\text{O}_2
\]

Scheme 6. Sulfur oxidation

Toxicity studies

Under all the conditions used, sulfoxide 2 is the main photoproduct (20-30%) and it also results highly photostable. Therefore we examined its toxicity on aquatic organisms

Table 3. Toxicity tests of carboxin and its sulfoxide 2 towards aquatic organisms

<table>
<thead>
<tr>
<th>Compound</th>
<th>L(E)C50 in mg/l for acute toxicity tests</th>
<th>L(E)C50 in mg/l for chronic toxicity tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. calyciflorus</td>
<td>T. platyurus</td>
</tr>
<tr>
<td>carboxin 1</td>
<td>5.0 (2.60-7.32)</td>
<td>61.00 (55.25-67.35)</td>
</tr>
<tr>
<td>sulfoxide 2</td>
<td>4.10 (2.72-6.19)</td>
<td>56.57 (40.94-78.17)</td>
</tr>
</tbody>
</table>

a 95% confidence limits in brackets. b NE = no effect at
Acute toxicity data, expressed as median effective concentrations (LC50 and EC50) of carboxin and its sulfoxide are reported in Table 3. The photoproduct was found to be as toxic as the parent compound for two organisms tested, *B. calyciflorus* and *T. platyurus*, while no effect was found for *D. magna*.

Chronic tests showed higher toxicity than acute tests (Table 3). From these data it was possible to note that carboxin was bioactive at low concentrations mainly for the primary consumer *C. dubia* (0.64 mg/l) while it was one order of magnitude less inhibent towards algae (2.41 mg/l). No toxic potential for sulfoxide 2 was evidenced for algae at the maximum concentrations of 30 mg/l tested, while it showed a similar activity to that of carboxin towards the crustacean. No phototransformation of carboxin and sulfoxide was found at the end of the experiments with algae, after three days of test solution exposure at 10,000 lux.

2.1.3 Conclusion

Carboxin is photodegraded by exposure to sunlight in water and, as found in organic solvents, is particularly sensitive to photo-oxidation conditions. Eight photoproducts have been isolated and characterized, confirming previously reported results (Hustert K. *et al*., 1999) and their formations have been rationalized. The main product, which results also the most photostable and the least hydrolizable, is sulfoxide 2. It should be noted that carboxin is eventually oxidized to sulfoxide 2 in soil, or in various plant species and animals, too (Balasubramany and Patil, 1980; Chin W.T. *et al*., 1970). The metabolite has a non-fungitoxic activity and, as results from our investigation, exhibits similar or even lower acute toxicity towards aquatic organisms.
2.2.1 Carbamic insecticides: benfuracarb, carbosulfan and carbofuran

Objective in this study was to determine the main products of hydrolytic and photolytic cleavage of three carbamic insecticides: benfuracarb (15), carbosulfan (16) and carbofuran (17).

N-Methylcarbamate (NMC) insecticides are widely used for crop protection. The reason is that they proved to have a high insect toxicity but a generally low toxicity toward warm-blooded species. In addition, carbamates are much less persistent than organochlorine pesticides and produce fewer toxic degradation products (Bogialli S. et al., 2004). Nevertheless, because carbamates are inhibitors of acetylcholinesterase, they are considered toxic for the environment and for human beings. In particular, carbofuran (17) is known to exhibit extreme mammalian toxicity (Fahmy M.A. et al., 1970); thus, it has been classified as highly hazardous. This has compelled the introduction of EU regulations stating that the most toxic carbamates must not be present in fruits and vegetables at levels higher than 50 ng/g.

The intensive use of carbofuran could increase the possibility of environmental exposure to this pesticide and the potential major route of exposure to carbofuran is drinking water (Johnson and Lavy, 1995).
Degradation has been observed for carbosulfan (16) in different buffer solutions (water/methanol ca 3:2 v/v) (Umetsu N. et al., 1980) as well as for benfuracarb (15) by photolysis in methanol (Dureja P. et al., 1990). Much more attention has been addressed to carbofuran which has proven scarcely sensitive to both hydrolysis and photolysis (Burrows H.D. et al., 2002). In particular, photodecomposition via C-O heterolysis of the carbamate group followed by ring opening has been observed in water using 254 nm UV light and leads to a substituted cathecol moiety with a tert-butyl alcohol substituent and its corresponding dehydration product (Bachman and Patterson, 1999). Moreover, several photoproducts, mainly deriving from oxidation, methylation, chlorination and rearrangement, have been detected by irradiation in various solvents under sunlight (Battacharya A. et al., 1994; Raha and Das, 1990).

In this study the behaviour of the three pesticides has been examined in MilliQ water solutions/dispersions using Pyrex tubes in the dark and under sunlight irradiation. All the three pesticides exhibit absorption spectra in the same region (λ_{max} 277-283 nm) with a tail extending to 350 nm. The effect of pH, humic acid and nitrate is also investigated.

2.2.2 Results and Discussion

Transformations of pesticides in water and/or sunlight

Benfuracarb (15) (205 mg/l) and carbosulfan (16) (190 mg/l) were dispersed in MilliQ water and exposed to sunlight, under aerobic conditions. Each experiment was performed in duplicate, with one set of dark controls. After 6 days, each
reaction mixture was evaporated in vacuum and the residues were analysed by 1H-NMR and by HPLC. Control experiments showed that diluted solutions (4 ppm) of two pesticides afforded similar results. Benfuracarb was unstable in water, decomposing to carbofuran (17) both in the dark and irradiating conditions (Table 4).

Table 4: Hydrolysis /photolysis of benfuracarb (15) and carbosulfan (16) in different conditions

<table>
<thead>
<tr>
<th>Conditiona</th>
<th>Starting pesticide (%)b</th>
<th>Degradation products (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dark/Sunlight</td>
<td>Dark/Sunlight</td>
</tr>
<tr>
<td></td>
<td>benfuracarb (15)</td>
<td>carbofuran (17)</td>
</tr>
<tr>
<td>H_2O</td>
<td>79/57</td>
<td>14/21</td>
</tr>
<tr>
<td>pH 5.1</td>
<td>63/55</td>
<td>26/31</td>
</tr>
<tr>
<td>pH 9.0</td>
<td>85/74</td>
<td>6/13</td>
</tr>
<tr>
<td>KNO_3</td>
<td>81/70</td>
<td>13/18</td>
</tr>
<tr>
<td>Humic acidd</td>
<td>80/82</td>
<td>11/18</td>
</tr>
<tr>
<td>H_2O</td>
<td>93/87</td>
<td>4/5</td>
</tr>
<tr>
<td>pH 5.1</td>
<td>87/82</td>
<td>7/7</td>
</tr>
<tr>
<td>pH 9.0</td>
<td>85/80</td>
<td>11/6</td>
</tr>
<tr>
<td>KNO_3</td>
<td>91/83</td>
<td>5/6</td>
</tr>
<tr>
<td>Humic acidd</td>
<td>58/55</td>
<td>27/26</td>
</tr>
</tbody>
</table>

aDispersion of the pesticide in MilliQ water (205 mg/l for 15; 190 mg/l for 16); r.t.; Pyrex tube. bDeduced by 1H NMR and HPLC. c10 mg/l. d5 mg/l.

Under sunlight a small amount of phenol derivative 18 was found. It was identified by comparison of 1H and 13C-NMR data with those of an authentic sample obtained by treating carbofuran with methanolic KOH.

The pesticide was not sensitive to small pH variations or to the presence of nitrate or humic acid which give the same products in comparable amounts. Carbosulfan resulted more stable under all conditions examined except in the presence of humic acid, which led to carbofuran and/or phenol (about 40% degradation) either in the dark or in sunlight (Table 4).

These results showed that the cleavage of the weak S-N bond was the main process observed in the dark (Scheme 7). The finding of only carbofuran illustrates the greater lability of the carbamate nitrogen sulfur bond compared with the amino nitrogen-sulfur bond, which is in accordance with previous data reported in the literature (Umetsu N. et al., 1980). Under sunlight, the
photocleavage of light-sensitive (Cameron and Frechet, 1990) carbamate bond also occurs, even to a small extent, leading to phenol derivative 18. As reported for photolysis of carbamates in water (Givens R.S. et al., 2004; Su and Zabik, 1972) the process should occur with the initial homolytic cleavage of the phenoxy bond to afford the fragments which liberate phenol derivative 18, CO₂ and nitrogen-containing fragments (Scheme 7).

Experiments using the same concentrations of pesticides were carried out at pH 5.0 and 9.0, in the presence of KNO₃ or with humic acid. After 6 days, each reaction mixture was evaporated in vacuum and analyzed by ¹H-NMR and HPLC. Both hydrolysis and photochemical processes do not appear to be affected by pH variations or by the presence of additives as humic acid or KNO₃. Only at pH 9 was a slight enhancement of phenol derivative 18 formation observed. The enhanced degradation of carbosulfan in the presence of humic acid might not be due to acidic or sensitizing effects but rather to adsorption phenomena which might make the pesticide more susceptible to hydrolysis. The role of suspended sediment or soil on the persistence of pesticides has been observed and appeared not to be strictly related to the chemical structure (Sharom M.S. et al., 1980).

Scheme 7. Proposed degradation pathway of carbamic pesticides in water
Carbofuran in MilliQ water was treated according to the standard procedure. The presence of only carbamic function made carbofuran more persistent and no appreciable degradation was observed after six days in the dark. Within the same time the degradation rate was barely enhanced by irradiation (Mansour M. *et al*., 1997; Campbell S. *et al*., 2004) and led to only about 7% phenol derivative production.

Effects of pH, humic acid and KNO₃ were evaluated by kinetics on dilute solutions in the dark and by UV irradiation and clearly evidenced the enhanced degradation induced by light (Table 5). The photolysis with this lamp is faster than that under sunlight, due to the higher UV lamp intensities compared to the natural light. The results at pH 9 are significant, in fact the basic medium, alone or with light, contributes to promoting the C-O bond cleavage. Experiments performed by flushing the solution with N₂ showed that phototrasformation of carbofuran to phenol does not require aerobic conditions (data not shown).

Table 5: Kinetics of carbofuran (17)

<table>
<thead>
<tr>
<th>Condition</th>
<th>UV</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K(h⁻¹)</td>
<td>t₁/₂(h)</td>
</tr>
<tr>
<td>pH 5.0</td>
<td>1.9 x 10⁻³</td>
<td>365</td>
</tr>
<tr>
<td>pH 7.1</td>
<td>1.4 x 10⁻³</td>
<td>495</td>
</tr>
<tr>
<td>pH 9.0</td>
<td>0.67</td>
<td>1.0</td>
</tr>
<tr>
<td>MilliQ water</td>
<td>1.0 x 10⁻³</td>
<td>693</td>
</tr>
<tr>
<td>Humic acid</td>
<td>8.0 x 10⁻⁴</td>
<td>866</td>
</tr>
<tr>
<td>Nitrate</td>
<td>8.0 x 10⁻⁴</td>
<td>866</td>
</tr>
</tbody>
</table>

*Solution of the pesticide (4 mg/l) in milliQ water; r.t.; Pyrex tube. ²500W high-pressure mercury lamp (Pyrex filter). ³5 mg/l. ⁴10 mg/l.
Toxicity studies

Acute and chronic toxicity tests were performed on pesticides 15, 16 and 17 and on their main degradation product, phenol derivative 18. The obtained data are reported in Tables 6 and 7, respectively.

Table 6. Acute toxicity tests L(E)C50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>B. calyciflorus</th>
<th>T. platyurus</th>
<th>Daphnia magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>48% mortality at 200 mg/l</td>
<td>3.66 (2.27 - 5.29)</td>
<td>0.13 (0.11 - 0.15)</td>
</tr>
<tr>
<td>16</td>
<td>95.7 (85.5 - 103.4)</td>
<td>8.93 (6.02 – 13.26)</td>
<td>0.004 (0.003 - 0.006)</td>
</tr>
<tr>
<td>17</td>
<td>14.1 (13.3 - 14.9)</td>
<td>2.32 (1.53 - 3.51)</td>
<td>0.01 (0.01 - 0.02)</td>
</tr>
<tr>
<td>18</td>
<td>55.2 (41.6 - 73.2)</td>
<td>111 (102 - 122)</td>
<td>18.8 (10.4 – 38.0)</td>
</tr>
</tbody>
</table>

Table 7: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. dubia</th>
<th>P. subcapitata</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0×10^{-6}</td>
<td>14.1 (10.4 – 26.0)</td>
</tr>
<tr>
<td>16</td>
<td>8.2×10^{-8} (5.4 \times 10^{-8} – 1.8 \times 10^{-7})</td>
<td>4.6 (3.4 - 6.2)</td>
</tr>
<tr>
<td>17</td>
<td>1.8×10^{-8} (1.2 \times 10^{-8} - 2.6 \times 10^{-8})</td>
<td>2.6 (2.2 - 3.2)</td>
</tr>
<tr>
<td>18</td>
<td>4.7×10^{-5} (3.5 \times 10^{-5} - 7.0 \times 10^{-5})</td>
<td>11.4 (10.9 – 18.7)</td>
</tr>
</tbody>
</table>

For all the compounds acute effects were found for concentrations ranging from 2.32 mg/l (carbofuran versus T. platyurus) to 48% mortality at 200 mg/l (benfuracarb versus B. calyciflorus) suggesting the limited acute ecotoxicity of these compounds. As an exception, D. magna was found to be more sensitive, particularly to parent molecules. Chronic results demonstrated that all the tested pesticides had a strong toxic potential for the crustacean C. dubia with EC50 values at least two orders of magnitude below the acute toxic level and five orders below the chronic level for the algae. Among the three investigated pesticides, carbosulfan and carbofuran were the most active and phenol derivative 18 was generally less toxic than the parent compounds.

By comparing data, it was found that the various species utilized were not of the same order of sensitivity, suggesting that the investigated pesticides and the phenolic product 18 showed a different toxic impact on non-target organisms.
2.2.3 Conclusion

Benfuracarb and carbosulfan, under natural conditions, decay to carbofuran and/or phenol derivative 18, while carbofuran gives phenol derivative 18. The S-N bond breakage occurs easily under all the conditions tested while carbamic bond cleavage is favoured by light and basic media. Accordingly, phenol is formed with difficulty by carbofuran and becomes appreciable at pH 9 and/or by irradiation. The high persistence of carbofuran accounts for the fact that many papers that have reported the detection of this pesticide in water, fruit and vegetables (Bogialli S. et al., 2004). Toxicological studies, reported in Tables 6-7, highlight the environmental risk of carbofuran that was found to be the most toxic towards all the exposed organisms.

The different results observed in our reaction conditions, compared with those reported in previous works, are probably due to the absence of organic solvents, even in a small amounts, which might favour association processes, (Umetsu N. et al., 1980; Dureja P. et al., 1990; Battacharya A. et al., 1994) or the use of more diluted solutions (Raha and Das, 1990) or the use of natural sunlight (Bachman and Patterson J. et al., 1999).

It is interesting to note that phenol derivative 18 has also been found as an enzymatic degradation product from soil microorganisms (Chaudhry and Ali, 1988). This finding may assume importance especially for chronic exposure of aquatic organisms to carbamic pesticides because of their effective concentrations, found to be active for C. dubia.
3. Drugs

3.1.1 Steroidal anti-inflammatory drugs: prednisolone and dexamethasone

The aim of this study was to assess the behaviour of prednisolone (19) and dexamethasone (20) under sunlight irradiation and evaluates their toxicity. The wide range of pharmacological properties puts corticosteroids among the most widely used drugs in the world. Prednisolone (19) and dexamethasone (20) are used for their potent anti-inflammatory effects and the former is a metabolite of prednisone (21) in man (Maayan R. et al., 1988). Furthermore, both drugs are reported to be sensitive to light (Takacs M. et al., 1991).

![Prednisolone (19)](image1)

![Dexamethasone (20)](image2)

Preliminary studies on photochemical behaviour of corticosteroids were performed by Williams (1979) who focused attention on prednisone acetate. It was sensitive to light in pure solvents such as methanol or dioxane producing several products by ultraviolet radiations. A recent study on prednisone (21), a corticosteroid, (DellaGreca et al., 2003) has shown that this drug undergoes transformation by sunlight giving seven photoproducts.

![Prednisone (21)](image3)
3.1.2 Results and discussion

Phototransformations of prednisolone (19)
Irradiation of an aqueous suspension of prednisolone (19) by a solar simulator for 4 h gave a complex mixture, which was resolved into its components by several chromatographies.
Along with unreacted prednisolone, the photoproducts 22 – 28, identified by their spectroscopic features, were isolated.
The first compound was identified as the 5α-hydroxyderivative 22, by comparison of its spectral data with those of the analogous photoproduct of prednisone (DellaGreca et al., 2003). According to the structure, the MS showed a molecular peak at m/z 378 for the molecular formula C_{21}H_{30}O_{6}. Furthermore in the HMBC experiment the H-1 proton was correlated to the C-3, C-5 and C-10 carbons and the H-19 protons gave heterocorrelations with the C-5 and C-10 carbons.

Structure 23 was attributed to the second photoproduct. It had molecular formula C_{21}H_{28}O_{5} according to the molecular peak at m/z 360 in its MS spectrum. The 1H and 13C NMR resonances were assigned by combination of COSY, TOCSY, DEPT, HMQC and HMBC experiments. The HMBC spectrum showed the correlations of the C-10 olefinic carbon with the H-2, H-4, H-6, H-7 and H-19 protons, as well as that of the C-3 carbonyl carbon with H-4 protons and that of the C-5 carbon with the H-4, H-6, H-7, H-9 and H-19 protons. The correlation in a
TOCSY experiment between the H-4 and H-11 protons supported the presence of an ethereal bridge between the C-4 and C-11 carbons. The stereostructure of 23 derived from a ROESY experiment. The correlations with the H-18 methyl and the H-21 methylene protons allowed the assignment of the β-orientation to the H-12 proton at δ 2.20 and, consequently, the α-one to the H-12 proton at δ 2.53. These NOE’s pointed out a chair conformation of the C ring and the small couplings of the H-11 proton with the H-12 protons agreed with its α equatorial orientation. The correlation of the H-4 proton with the H-11 revealed its α-orientation and, consequently the β-one of the ethereal bridge. Finally the α axial orientation of H-19 methyl was supported by the nOe interaction of its protons with the H-4α proton.

The third compound was identified as 24. It had the molecular formula C_{21}H_{30}O_{6} according to the molecular peak at m/z 360 in the EIMS spectrum. The 1H-NMR spectrum showed the H-4 olefinic proton at δ 5.90, and the H-19 and H-20 methyls. The 13C-NMR spectrum identified the C-3 and C-5 carbonyl carbons, the C-4 and C-5 olefinic carbons. These data, compared with those of the corresponding photoderivative of prednisone, justified the structural assignment.
As already verified on prednisone (DellaGreca et al., 2003) light also caused the degradation of the side chain at C-17. In fact the fourth photoproduct was identified as 11β-hydroxy-androsta-1,4-diene-3,17-dione (25) by comparison with an authentic sample obtained by MnO₂ oxidation of prednisolone.

Structures 26 – 28 were attributed to the remaining compounds owing to the strong analogies of their physical features with those of 22 – 24 and by comparison of their spectral data with those of authentic compounds obtained from irradiation of compound 25 in same conditions of prednisolone.
Phototransformation of dexamethasone (20)
The photochemical behavior of dexamethasone (20) only partly matched that of prednisone and prednisolone (19). In fact, the irradiation with the solar simulator for 8 h of its aqueous suspension converted dexamethasone (20) only in 15% amount and photoderivatives 29 and 30 were isolated, without trace of the products obtained by degradation of the side chain at C-17. The data of compounds 29 and 30 compared with those of 23 and 24, respectively, justified the structure assignments.
The formation of 5α-hydroxyderivative 22 may be easily justified by a photoinduced hydration reaction on the less hindered α-face of the Δ4 double bond (Scheme 8). The formation of prednisolone photoderivatives 23 and 24 finds its explanation in the generally accepted mechanism for photoisomerization of cross-conjugated steroidal dienones (Williams J.R. et al., 1979). The light induced formation of cyclopropyl derivative 31, protonation and subsequent attack of H₂O on the α-face generates 24.

Isomerization of 31 into lumiprednisolone 32 followed by the attack of the hydroxyl group at C-11 on the C-4 position affords the ether 23. The phototransformation of 19 into 25 by side chain degradation, and the same steps reported in Scheme 8 for prednisolone, justify the formation of 26 – 28.

Scheme 8. Mechanism of phototransformation of prednisolone 19
Toxicity studies

Acute toxicity data are reported in Table 8 for prednisolone and its photoproducts, and in Table 9 for dexamethasone and the respective derivatives. Despite of the high concentrations tested, prednisolone 19 did not demonstrate a measurable value of LC50/EC50 except for rotifers. All the other compounds showed values by the orders of units or dozens of mg/l except compound 27 which is slightly more toxic for the all organisms tested.

Dexamethasone 20 and its derivatives 20 and 30 demonstrated similar activity as prednisolone photoproducts but also for these compounds the concentrations ranged from 10.88 to 60.11 mg/l. These orders of concentration should not present a problem because drug quantities found in the surface waters are usually below parts per billion (Aherne and Briggs, 1989; Raloff J., 1998; Ternes and Wilken, 1999).

Table 8. Acute median effective concentrations concentrations in mg/l (95% confidence limits in brackets) of prednisolone and its phototrasformation products.

<table>
<thead>
<tr>
<th>Compound</th>
<th>D. magna</th>
<th>T. platyurus</th>
<th>B. calyciflorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>NE a 85</td>
<td>23% mortal b 140</td>
<td>22.29 (20.82-24.56)</td>
</tr>
<tr>
<td>22</td>
<td>5.09 (3.98-6.54)</td>
<td>26.53 (18.44-38.13)</td>
<td>15.39 (12.58-18.84)</td>
</tr>
<tr>
<td>23</td>
<td>3.80 (2.70-5.33)</td>
<td>22.92 (17.16-30.61)</td>
<td>24.54 (20.82-28.92)</td>
</tr>
<tr>
<td>24</td>
<td>17.88 (14.06-22.74)</td>
<td>40.77 (25.18-66.01)</td>
<td>35.46 (30.46-41.29)</td>
</tr>
<tr>
<td>25</td>
<td>9.05 (7.20-11.37)</td>
<td>10.79 (8.52-13.67)</td>
<td>9.19 (5.52-15.23)</td>
</tr>
<tr>
<td>26</td>
<td>5.74 (4.81-6.85)</td>
<td>10.57 (8.21-13.59)</td>
<td>10.36 (7.47-14.37)</td>
</tr>
<tr>
<td>27</td>
<td>1.79 (1.38-2.32)</td>
<td>0.71 (0.5-1.0)</td>
<td>1.43 (1.14-1.81)</td>
</tr>
<tr>
<td>28</td>
<td>11.89 (9.78-14.46)</td>
<td>10.0 (7.58-13.18)</td>
<td>9.96 (8.46-11.74)</td>
</tr>
</tbody>
</table>

aNE= no effect bMortal= mortality at

Table 9. Acute median effective concentrations in mg/l (95% confidence limits in brackets) of dexamethasone and its phototrasformation products

<table>
<thead>
<tr>
<th>Compound</th>
<th>D. magna</th>
<th>T. platyurus</th>
<th>B. calyciflorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>48.30 (39.91-58.45)</td>
<td>60.11 (44.21-81.73)</td>
<td>48.22 (41.37-56.20)</td>
</tr>
<tr>
<td>30</td>
<td>17.82 (13.84-22.94)</td>
<td>30.52 (25.54-46.66)</td>
<td>44.66 (38.91-51.25)</td>
</tr>
</tbody>
</table>
The long-term effects are shown in Tables 10 and 11. The detected drugs demonstrated a different toxic potential depending on the organism tested. Daphnies were found to be significantly more sensitive than algae. This result was particularly evident for the parental drugs where a median effective concentration of 0.23 mg/l was found for prednisolone on *C. dubia* against no effect at 160 mg/l for *P. subcapitata*.

Also dexamethasone, while it inhibited *C. dubia* 50% population growth at 0.05 mg/l, showed no effect on the algal growth at 100 mg/l. In this study algae showed median effective concentrations of the same order of magnitude as LC50 and EC50 found for acute toxicity tests. Compound 27 evidenced acute values for the all biota tested less than the chronic ones found for the algae. Both the photoderivatives of prednisolone and dexamethasone showed effects on *C. dubia* that lead to long term action, except compound 26 that was one hundred and ten times more active than prednisolone and compounds 27 and 28 respectively. Other significant differences were not expressed. These chronic data differ from those of prednisone and its photoderivatives (DellaGreca *et al.*, 2003) where no toxicity was found at concentrations harmful for the aquatic environment.

Table 10. Chronic median effective concentrations in mg/l (95% confidence limits in brackets) of prednisolone and its phototrasformation products.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. dubia</th>
<th>P. subcapitata</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0.23 (0.16-0.28)</td>
<td>NE<sup>a</sup> 160</td>
</tr>
<tr>
<td>22</td>
<td>0.22 (0.16-0.30)</td>
<td>27.46 (25.07-30.07)</td>
</tr>
<tr>
<td>23</td>
<td>0.12 (0.07-0.19)</td>
<td>30.42 (28.10-32.94)</td>
</tr>
<tr>
<td>24</td>
<td>0.22 (0.14-0.35)</td>
<td>24.65 (21.32-28.50)</td>
</tr>
<tr>
<td>25</td>
<td>0.51 (0.31-1.16)</td>
<td>14.14 (8.68-23.03)</td>
</tr>
<tr>
<td>26</td>
<td>0.007 (0.00026-0.026)</td>
<td>19.84 (17.98-21.88)</td>
</tr>
<tr>
<td>27</td>
<td>0.04 (0.018-0.06)</td>
<td>23.78 (11.75-48.13)</td>
</tr>
<tr>
<td>28</td>
<td>0.025 (0.014-0.038)</td>
<td>25.62 (20.32-28.90)</td>
</tr>
</tbody>
</table>

^aNE= no effect at
Table 11. Chronic median effective concentrations in mg/l (95% confidence limits in brackets) of dexamethasone and its phototrasformation products.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. dubia</th>
<th>P. subcapitata</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.05 (0.042-0.076)</td>
<td>NE* 100</td>
</tr>
<tr>
<td>29</td>
<td>0.13 (0.11-0.15)</td>
<td>12.15 (8.96-16.49)</td>
</tr>
<tr>
<td>30</td>
<td>0.06 (0.04-0.08)</td>
<td>40.75 (36.35-45.69)</td>
</tr>
</tbody>
</table>

*NE= no effect at

3.1.3 Conclusion

Prednisolone and dexamethasone are transformed by sunlight giving seven and two photoproducts, respectively.

Chronic exposure to this class of pharmaceuticals causes inhibition of growth population on the freshwater crustacean *C. dubia* while the alga *P. subcapitata* seems to be less affected by the presence of these products. The low values of acute toxicity found for *B. calyciflorus, D. magna* and *T. platyurus* do not determine an acute environmental risk. Photoderivatives showed higher toxicity than parental compounds but the order of magnitude of effective concentrations was lower than the drug quantities generally found in surface waters.
3.2.1 Non-steroidal antinflammatory drug: naproxen sodium salt

Naproxen together with benoxaprofen, carprofen, ketoprofen, tiaprofenic acid and suprofen, is a 2-arylpropionic acid derivative (Figure 4), and belongs to nonsteroidal anti-inflammatory agents. Their photophysical and photochemical properties were reviewed in vivo experimental studies (Ophaswongse and Maibach, 1993) in order to understand their photobiological properties and to explain (or, in the case of new drugs, to predict) the appearance of photosensitizing side effects.

Figure 4. Nonsteroidal anti-inflammatory drugs (NSAID) with photosensitizing side effects

Naproxen and its water-soluble sodium salt (33) are used for oral administration as tablets or suspensions.
According to IMS Health Canada Ltd (2002), Canadian physicians wrote almost 2.5 million naproxen prescriptions in 2001 corresponding to more than 26 tons of the drug. Pharmacokinetic studies on naproxen have shown that approximately 95% of the dose is excreted in the urine (Boost G., 1975), so that naproxen may be considered a major organic pollutant. As a result, studies run in Germany, Italy, and other countries have reported the presence of the drug in rivers at median concentrations higher than 2.5 mg/l (Ternes T.A., 1998). Further, Boscá et al. (1990) have studied the photodegradation of the drug under different conditions, on the basis of previous investigations showing that naproxen and other non-steroidal anti-inflammatory drugs are phototoxic in vivo (Diffey B.L. et al., 1983; Ljunggren and Ludberg, 1985). The authors (Boscá F. et al., 1990) reported data on irradiation of naproxen as either free acid or carboxylate ion (33) in aqueous oxygenated solutions affording the ethyl derivative 34, the carbinol 35, the ketone 38, and the olefin 39 (Figure 5).

\[\text{Figure 5. Photoproducts of naproxen Na in distilled water} \]

3.2.2 Results and discussion

Phototransformation of naproxen Na (33)

Irradiation of naproxen sodium salt was conducted in distilled water, and then in drinking water by a solar simulator. Water was evaporated in vacuum and residues purified on preparative TLC.

First, in distilled water, irradiation of a solution of naproxen sodium salt (33) with a solar simulator for 72 h quantitatively transformed the drug into photoproducts.
34, 35, 38, and 39 (Figure 5). As reported in the literature (Boscá F. et al., 1990), the formation of 35 and 38 was explained as the result of the oxygen trapping by a benzyl radical intermediate and subsequent breaking down of the unstable hydroperoxide 36.

The products, isolated by chromatographic methods, were identified on the basis of their spectroscopic data (Boscá F. et al., 1990). To isolate hydroperoxide 36, the reaction was stopped after 4 h and only ketone 38 (4%) and the hydroperoxide 36 (6%) were isolated. The latter compound, positive to KI and identified on the basis of its spectral data, was quantitatively transformed into alcohol 35 and ketone 38 by its irradiation under the previously described reaction conditions.

Second, in drinking water, naproxen sodium salt (33) was transformed, after 72 h in 84% amount, into photoproducts 35 (15 %), 37 (5 %), 38 (17 %), 39 (4 %), 40 (9 %), 41 (2 x 9%).

Compound 37 showed the molecular ion at m/z 230 in the electronic impact mass spectrum and fifteen carbon signals in the 13C NMR spectrum according to the molecular formula C_{15}H_{18}O_{2}. The presence of the ethoxyl group at C-11 was justified by the presence of the methylene quartet at δ 3.39, coupled with the methyl triplet at δ 1.20 in the 1H NMR spectrum and by the presence of the methylene carbon at δ 63.9 and the methyl carbon at δ 15.4 in the 13C NMR spectrum.

The MALDI-TOF mass spectrum of compound 40 showed the molecular peak at m/z 358 in agreement with the molecular formula C_{24}H_{22}O_{3}. In the 1H NMR spectrum eleven aromatic protons were present which, on the basis of their multiplicities and a COSY experiment, were attributed to three ABX and one AB system (Table 12). Besides, two methoxy methyl groups, a methyl doublet and a methine quartet were also present in the spectrum.
Table 12. NMR data of compound 40

<table>
<thead>
<tr>
<th></th>
<th>DEPT</th>
<th>δ_C</th>
<th>δ_H</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>123.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>150.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH</td>
<td>120.0</td>
<td>6.98 (9.0)</td>
<td>C-1 C-10</td>
</tr>
<tr>
<td>4</td>
<td>CH</td>
<td>127.9</td>
<td>7.59 (9.0)</td>
<td>C-2 C-5 C-9</td>
</tr>
<tr>
<td>5</td>
<td>CH</td>
<td>107.2</td>
<td>7.16 (2.5)</td>
<td>C-4 C-6</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>155.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CH</td>
<td>119.1</td>
<td>7.16 (2.5, 9.0)</td>
<td>C-6 C-9</td>
</tr>
<tr>
<td>8</td>
<td>CH</td>
<td>124.1</td>
<td>8.12 (9.0)</td>
<td>C-1 C-6 C-10</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>129.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>128.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH$_3$</td>
<td>CH$_3$</td>
<td>55.5</td>
<td>3.91 s</td>
<td></td>
</tr>
</tbody>
</table>

1H chemical shift values (δ ppm from SiMe$_4$) followed by multiplicity and the coupling constants (J in Hz).

The 13C NMR spectrum showed only twenty-one carbon signals, being the signals at δ 128.1, 124.1 and 55.5 integrated for two carbons in an inverse-gated experiment. On the basis of an HMQC experiment the protons were correlated to the corresponding carbons. According to the structure, in the HMBC spectrum, the H-11’ proton was correlated to both aromatic moieties (C-1’, C-2’, and C-1, C-2).
Two compounds with different Rfs (petroleum ether/acetone 9:1) were isolated from irradiation mixture. Spectral data of these compounds are reported in Table 13.

In the MALDI-TOF spectrum both of them showed the molecular peak at m/z 386 and also in the EI-MS the peak at m/z 185, due to the cleavage of the C–O bond. The compounds exhibited in the 1H NMR spectra (Table 13) six aromatic protons for two ABX systems, a methine proton as a quartet, three methyl protons as doublet and the methoxyl methyl.

Table 13. Nuclear magnetic resonance data of compounds 41

<table>
<thead>
<tr>
<th></th>
<th>δ_C (Rf = 0.77)</th>
<th>δ_H (Rf = 0.77)</th>
<th>δ_C (Rf = 0.69)</th>
<th>δ_H (Rf = 0.69)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>124.8 (t)a</td>
<td>7.65 d (2.0)</td>
<td>124.9 (t)a</td>
<td>7.58 d (2.0)</td>
<td>C-8 C-10 C-11</td>
</tr>
<tr>
<td>2</td>
<td>139.4 (q)</td>
<td></td>
<td>139.2 (q)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>125.2 (t)</td>
<td>7.38 dd (2.0, 9.0)</td>
<td>125.1 (t)</td>
<td>7.46 dd (2.0, 9.0)</td>
<td>C-1 C-10</td>
</tr>
<tr>
<td>4</td>
<td>128.7 (t)</td>
<td>7.66 d (9.0)</td>
<td>127.2 (t)</td>
<td>7.77 d (9.0)</td>
<td>C-2 C-5 C-9</td>
</tr>
<tr>
<td>5</td>
<td>105.7 (t)</td>
<td>7.10 d (2.5)</td>
<td>105.8 (t)</td>
<td>7.17 d (2.5)</td>
<td>C-4 C-6 C-7</td>
</tr>
<tr>
<td>6</td>
<td>157.5 (q)</td>
<td>157.6 (q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>118.6 (t)</td>
<td>7.14 dd (2.5, 9.0)</td>
<td>118.8 (t)</td>
<td>7.17 dd (2.5, 9.0)</td>
<td>C-5 C-9</td>
</tr>
<tr>
<td>8</td>
<td>129.3 (t)</td>
<td>7.66 d (9.0)</td>
<td>129.3 (t)</td>
<td>7.72 d (9.0)</td>
<td>C-1 C-6 C-10</td>
</tr>
<tr>
<td>9</td>
<td>128.7 (q)</td>
<td>128.7 (q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>133.9 (q)</td>
<td>134.1 (q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>74.5 (t)</td>
<td>4.69 q (7.0)</td>
<td>74.6 (t)</td>
<td>4.41 q (7.0)</td>
<td>C-1 C-2 C-13</td>
</tr>
<tr>
<td>12</td>
<td>22.8 (p)</td>
<td>1.56 d (7.0)</td>
<td>24.6 (p)</td>
<td>1.46 d (7.0)</td>
<td>C-2 C-11</td>
</tr>
<tr>
<td>13</td>
<td>55.3 (p)</td>
<td>3.91 s</td>
<td>55.3 (p)</td>
<td>3.95 s</td>
<td></td>
</tr>
</tbody>
</table>

a Letters p, s, t and q, in parentheses indicate, respectively, the primary, secondary, tertiary and Quaternary carbons, assigned by DEPT. 1H chemical shift values (δ ppm from SiMe$_4$) followed by multiplicity and the coupling constants (J in Hz)

The 13C NMR spectra showed 13 carbon signals defined in a DEPT as seven methines, two methyls and two quaternary carbons. HMQC and HMBC experiments defined the structures. Spectral data of two compounds fit structure 41 exactly and, in particular due to the small differences in the 1H and 13C chemical shifts, with the two diastereomeric forms (d,l and meso forms) as expected, owing to the presence of the two stereogenic centers (Figure 6).
The main difference between irradiation in drinking and distilled water was the formation of 40, and dimers 41. In the light of the above data, it should be deduced that the formation of these compounds is due to the action of inorganic salts present in the drinking water. Dimer 40 could be formed from 36 through a photochemical process, resembling the formation of phenol from cumene hydroperoxide (Osamu F., et al., 2001). This step, which introduces the hydroxyl function on the naphtalene ring, could be followed by a second step consisting of the reaction of the above intermediate with the benzyl radical. The same 36 could be taken into account in the formation of naphtene [1,1’-oxydiethylidene]bis 41. The cleavage of the O-O bond of the hydroperoxide (Alcantara R. et al., 2000) followed by the coupling with the benzyl radical produces the dimers.
Toxicity studies

The photoproducts obtained in more than 5% yield have been investigated for their potential environmental risk. Acute toxicity data of naproxen sodium salt and their photoderivatives to the different aquatic organisms are reported in Table 14. LC50 and EC50 values for all compounds ranged between two orders of magnitudes (1–100 mg/l) for all species tested. Photoproducts were significantly more toxic than the parent compound. The highest activity was registered for compound 40 towards rotifers (4.51 mg/l). Dimers 41, tested on the crustacean D. magna, showed different toxicity, thus evidencing the role of stereostructure-activity relationship.

Table 14: Acute toxicity tests L(E)C50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>V. fischeri</th>
<th>B. calyciflorus</th>
<th>T. platyurus</th>
<th>C. dubia</th>
<th>D. magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>42.95</td>
<td>54.64</td>
<td>43.54</td>
<td>43.64</td>
<td>59.44</td>
</tr>
<tr>
<td></td>
<td>(38.01-53.11)</td>
<td>(35.9-83.1)</td>
<td>(35.35-53.62)</td>
<td>(34.64-54.96)</td>
<td>(44.14-80.04)</td>
</tr>
<tr>
<td>35</td>
<td>20.61</td>
<td>14.46</td>
<td>14.01</td>
<td>16.49</td>
<td>12.61</td>
</tr>
<tr>
<td>37</td>
<td>NE 50</td>
<td>11.37</td>
<td>5.30</td>
<td>10.09</td>
<td>10.51</td>
</tr>
<tr>
<td>38</td>
<td>16.17</td>
<td>9.45</td>
<td>8.23</td>
<td>16.70</td>
<td>13.65</td>
</tr>
<tr>
<td></td>
<td>(14.68-17.82)</td>
<td>(8.06-11.07)</td>
<td>(7.21-9.39)</td>
<td>(13.55-20.58)</td>
<td>(10.08-18.63)</td>
</tr>
<tr>
<td>40</td>
<td>30.41</td>
<td>4.51</td>
<td>11.63</td>
<td>6.30</td>
<td>6.43</td>
</tr>
<tr>
<td></td>
<td>(21.08-35.45)</td>
<td>(3.78-5.39)</td>
<td>(10.02-13.51)</td>
<td>(1.55-25.59)</td>
<td>(4.00-10.33)</td>
</tr>
<tr>
<td>41 (Rf=0.77)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NE 60</td>
</tr>
<tr>
<td>41 (Rf=0.69)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(44.60-57.80)</td>
</tr>
</tbody>
</table>

NE= no effect at; ND = not determined

As expected, chronic tests showed higher toxicity than acute tests. From the chronic data, reported in Table 15, it was possible to note that the class of compounds tested was bioactive at low concentrations mainly for the primary consumers B. calyciflorus and C. dubia. Algae showed toxicity values two orders of magnitude lower than rotifers and crustaceans. Even if the alga P. subcapitata
appeared not to be very sensitive to naproxen sodium salt, photoderivatives showed a significant difference in toxic activity in comparison with parent compound. The photoderivatives revealed the greatest effects on *C. dubia* with compounds 37 and 40 showing the lowest EC50s, respectively 0.026 mg/l and 0.062 mg/l.

Table 15: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>P. subcapitata</th>
<th>B. calyciflorus</th>
<th>C. dubia</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>39.31 (33.16-46.61)</td>
<td>0.79 (0.64-0.89)</td>
<td>0.68 (0.39-1.32)</td>
</tr>
<tr>
<td>35</td>
<td>6.86 (5.05-9.31)</td>
<td>0.25 (0.14-0.35)</td>
<td>1.06 (0.46-2.65)</td>
</tr>
<tr>
<td>37</td>
<td>1.9 (1.14-3.16)</td>
<td>0.45 (0.10-0.86)</td>
<td>0.026 (0.015-0.064)</td>
</tr>
<tr>
<td>38</td>
<td>3.86 (2.93-5.08)</td>
<td>0.46 (0.10-0.95)</td>
<td>0.10 (0.07-0.16)</td>
</tr>
<tr>
<td>40</td>
<td>ND</td>
<td>0.67 (0.55-0.87)</td>
<td>0.062 (0.01-0.09)</td>
</tr>
</tbody>
</table>

ND = not determined

3.2.3 Conclusion

Naproxen sodium salt was found to be light sensitive in biomimetic conditions affording several photoproducts. Toxicity data indicate that exposure of aquatic organisms to the parental drug and its photoderivatives caused effects at mg/l concentrations. These concentrations do not represent the amounts expected in aquatic environment, but they might be found in sewage treatment plants where the daily load of naproxen is in the order of grams (Ternes T.A., 1998).
3.3 Diuretics: furosemide and hydrochlorothiazide

3.3.1.1 Furosemide (42)

Furosemide is a potent diuretic used to treat high blood pressure and some pathologies including heart or liver diseases. Furosemide is a white to off-white odourless crystalline powder slightly soluble in water. It is among the most worldwide prescribed pharmaceuticals. About 90% of the intake drug is excreted as parent compound and its presence in the Northern Italy rivers Po and Lambro has been recently reported (Calamari D. et al., 2003). In this work a mass balance was made in both rivers to compare predicted environmental concentration (PEC) and measured environmental concentration (MEC) of several pharmaceuticals. The predicted concentrations were obtained by dividing the theoretical loads (annual sales loads corrected for the metabolic rates) by the average flow rate of the rivers at each sampling site. The MEC/PEC ratio for furosemide was about 0.3 in both rivers. As stated in the article when the MEC/PEC ratio is in the range 0.01-0.3, the ratio is possibly affected by the behaviour of the drug and the extent of its degradation in the environment.

Photochemical studies on the drug, which exhibits absorption spectrum in the sunlight region above 280 nm (λ_{max} 330 nm), have been performed under a variety of irradiation conditions and have evidenced its high photodegradability. Reduction, dechlorination, hydrolysis, decarboxylation, oxygenation (Moore and
Sithipikas, 1983; Bundgaard H. et al., 1988; Zanocco A. et al., 1998) have been found to occur, depending on the reaction conditions and, in many cases, the related photoproducts have been isolated and characterized.

3.3.1.2 Results and Discussion

Phototransformations of furosemide (42)

A solution of furosemide (42) (24 µM) in distilled water was irradiated for 36 hr by a solar simulator. Reverse phase C-18 HPLC analysis of the reaction mixture after 36 hr showed the presence of a transformation product (Figure 7) which, by repeating the reaction starting from a 0.6 mM solution, was isolated by silica gel flash column chromatography, purified by HPLC and identified as dimer 43 on the basis of its spectroscopic data.

![Figure 7](image)

The 1H NMR spectrum showed the H-2 benzene singlet proton at δ 8.01 besides the H-7 methylene singlet at δ 4.24 and the H-9, H-10 and H-11 protons at δ 6.30, 6.24 and 7.35 of the furyl moiety.
The 13C NMR spectrum revealed the presence of a carbonyl carbon at δ 173.2, a methylene carbon at δ 37.3 and ten aromatic carbons, only four protonated. On the basis of HMQC and HMBC experiments, the protonated carbons at δ 108.3, 104.8 and 140.2 were attributed to the furane C-9, C-10 and C-11 respectively. The carbon at δ130.7 was assigned to the C-2 according to the long range correlations of the H-2 proton with the carboxyl carbon and the C-4 and C-6 carbons at δ 164.3 and 152.6 respectively.

The substituted aromatic carbon at δ150.2 was assigned to the furane C-8 owing to its correlation with the H-7, H-9, H-10 and H-11 protons, while the carbons at δ 104.4, 113.4, 164.3 and 152.6 were assigned to the benzene C-1, C-3, C-4 and C-6, respectively. The chemical shift values of C-6 as well as of C-1, C-3 and C-5 were consistent with the presence of a hydroxyl group at C-4.

The MALDI MS spectrum showed peaks at m/z 560 due to the fragment $[\text{M-CO}_2\text{-H}_2\text{O}]^+$, at 543 corresponding to the loss of fragment SO_2NH $[\text{M-SO}_2\text{NH}]^+$ and at 526 due to fragment $[543 - \text{OH}]^+$. All these data were in agreement with the molecular formula $\text{C}_{24}\text{H}_{22}\text{N}_4\text{O}_{12}\text{S}_2$.

![Chemical structure diagram](image-url)
The photochemical behaviour of furosemide has been widely explored, but the formation of dimer 43 has never been described. To investigate its formation the reaction was run in the dark and in the light under argon atmosphere. In the first case, no trace of the dimer was detected, while under argon compound 43 was still obtained in 45 % amount. Thus, the formation of 43 cannot be ascribed to the attack of \(^3\text{O}_2 \) on the excited state of 42, but to a photoinduced nucleophilic substitution.

On the basis of these data and those previously reported (Moore and Sithipikas, 1983; Bundgaard H. et al., 1988), formation of 43 can be easily rationalized by assuming photoionization as the primary photochemical process leading to cation radical 44 (Scheme 9).

![Scheme 9](image-url)
The presence of a positive charge on 44 makes this intermediate more susceptible to nucleophilic attack by the solvent (water). The loss of HCl leads to cation radical 45 (pathway A) and expulsion of the proton affords radical 46. Dimerization of 46 should be the final event leading to 43. It cannot be excluded that, after the substitution process of the chlorine by the hydroxyl group in 44, a back electron-transfer could lead to compound 47 (pathway B), which affords radical 46 by O-H homolytic cleavage. However compound 47 was not evidenced in our experimental conditions.

Photochemical aromatic substitution (S_{RN1Ar^*}) is a well known process (Karapire and Icli, 2004), and, in particular, photohydrolysis of halobenzenes (Stegeman M.H. et al., 1993) as well as the dimerization of phenol derivatives (Horspool W.M., 2003) under radical conditions are reported.

The dehalogenation of furosemide has been previously observed by irradiating in acid methanol or acid aqueous methanol and leads to a mixture of substitution and reduction products (Moore and Sithipikas, 1983). It is likely that neutral aqueous medium favours the substitution rather than reduction and the OH function is determinant for the dimerization.

The phototransformation of furosemide was also investigated under different conditions. The experiments were run in distilled water with nitrate added (5 mg/l), in distilled water in the presence of humic acids (10 mg/l), in drinking water and in STP water. In all cases the only photoproduct was dimer 43 and the yields of photoproduct after 36 hr, calculated by HPLC, were comparable. The drug dissolved in water at the same concentration was also exposed in open tube to the direct solar light and, after 3 days, the only identified product was still dimer 43, formed at about 46 % yield.
Toxicity studies

Acute and chronic toxicity tests are reported in Tables 16 and 17.
Acute results showed that furosemide was more bioactive than compound 43 on *D. magna* and *T. platyurus*, while the rotifers *B. calyciflorus* and the bacteria *V. fischeri* did not undergo any effects up to 200 mg/l of tested compound.

Table 16: Acute toxicity tests EC50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>V. fischeri (200 ppm)</th>
<th>B. calyciflorus (101 ppm)</th>
<th>T. platyurus</th>
<th>C. dubia (70.57)</th>
<th>D. magna (84.09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>NE</td>
<td>NE</td>
<td>70.57</td>
<td>84.09</td>
<td>60.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(70.11-91.01)</td>
<td>(30.86-119.08)</td>
</tr>
<tr>
<td>43</td>
<td>NE (120 ppm)</td>
<td>NE (120 ppm)</td>
<td>81.02</td>
<td>75.79</td>
<td>NE (100 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(75.98-86.40)</td>
<td>(64.31-79.12)</td>
</tr>
</tbody>
</table>

NE= no effect at

Chronic values were one hundred times lower than the acute ones. In fact the bioactive concentrations ranged from 0.50 to 2.50 mg/l and compound 43 was more toxic than the parent compound for all tested organisms.

Table 17: Chronic toxicity tests EC50 (in mg/l) with 95% confidence range

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. dubia (2.35)</th>
<th>P. subcapitata (NE 70 ppm)</th>
<th>D. magna (2.49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>2.35 (1.38-6.49)</td>
<td>NE 70 ppm</td>
<td>2.49 (2.0-3.10)</td>
</tr>
<tr>
<td>43</td>
<td>0.56 (0.27-3.01)</td>
<td>ND</td>
<td>1.03 (0.76-1.38)</td>
</tr>
</tbody>
</table>

NE= no effect at

3.3.1.3 Conclusion

Furosemide is not stable in the aquatic environment and undergoes photolysis under solar irradiation conditions. The drug is largely transformed in dimer 43 under aerobic or anaerobic conditions. Such behaviour could justify the low
MEC/PEC ratio found by Calamari et al. (2003) in the rivers Po and Lambro and should be considered in the analytical measurement on the presence of the drug in surface waters. The possible presence of the transformation product in surface waters should be taken into account also when eco-toxicological evaluations are made since, in chronic results, it was more toxic than the parent compound.
3.3.2.1 Hydrochlorothiazide (48)

6-chloro-3,4-dihydro-2\(H\)-1,2,4-benzothiadiazine-7 sulfonamide 1,1-dioxide, hydrochlorothiazide (48), as furosemide, is a sulfonamide diuretic and antihypertensive and is supplied as tablets for oral use.

It is a white, or practically white, crystalline powder, which is slightly soluble in water. It is well-known that hydrochlorothiazide is not metabolized and at least 61 percent of the oral dose is eliminated by the kidney unchanged within 24 hours (O’Grady P. et al., 1999). In a recent study a survey was made in the Po and Lambro rivers in Italy to check presence of therapeutic drugs in the aquatic environment and HCTZ was detected in concentrations ranging from 10 to 250 ng/L (Calamari P. et al., 2003).

Previous studies on the photostability of hydrochlorothiazide are present in literature. Tamat and Moore (1983) studied its photocatalytic decomposition. In their work the drug is reported to decompose upon irradiation with near UV-light (\(\lambda > 310\) nm) in methanol and aqueous solutions.

In the aqueous (5% methanol) solution, the primary photoprocesses were photodehalogenation and photohydrolysis obtaining only small amounts of 52 and the hydrolyzed and dechlorinated 53 (Figure 8). Revelle L.K. et al. (1997) re-investigated the photolytic decomposition in methanol by UV-A fluorescent lamp with wavelengths ranging from 300 to 400 nm. Photodehalogenation was reported to be the primary degradation process in which the chlorine of HCTZ is replaced by hydrogen (49) or by a methoxyl group (50) from the methanol solvent (Figure
8). They also observed the formation of 54 and a HCTZ photodehydrogenation process that led to derivatives 52, 56 and chlorothiazide (55) (Figure 8). 49 and 52 were the main products obtained by Ulvi and Tammilehto (1989) when HCTZ was irradiated in ethanolic solution with a high-pressure mercury lamp.

![Chemical structures of compounds](image)

Figure 8

3.3.2.2 Results and Discussion

Phototransformations of hydrochlorothiazide (48)

In order to understand the fate of hydrochlorothiazide when exposed to sunlight in surface and sewage treatment plant waters, the photochemical behaviour of hydrochlorothiazide (48) was investigated in water. It was suspended in pure water (100 µM) and irradiated at different times with a solar simulator. Transformation of HTCZ was followed by injecting an aliquot of the water sample withdrawn at various times in a HPLC–UV system. After 5 h, a new peak was observed in the HPLC chromatogram (Figure 9), this peak grew with the irradiation time and became constant after 30 h of irradiation. Only after 30 h was the appearance of two other peaks observed in minor amounts and after 200 h it was evident that three main photoproducts (51, 52, 55) were present. To isolate and characterise the three photoproducts obtained, irradiation of HTCZ was performed in a preparative scale.
A dispersion of hydrochlorothiazide (0.7 mM) in distilled water was irradiated for 200 h by a solar simulator. After evaporation of the water, the mixture was submitted to flash chromatography yielding three compounds along with hydrochlorothiazide.

The three photoproducts were further purified by TLC and HPLC. Compound 51, formed in 15% after 200 h irradiation, was identified as 6-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamido-1,1-dioxide. This compound was suggested as intermediate in the mechanism of photodegradation by Tamat and Moore (1983), but it had never isolated and described before now.
In the ESI-MS spectrum the molecular peak at 278 was present in agreement with the molecular formula C$_7$H$_9$N$_3$O$_5$S$_2$. The 1H NMR spectrum showed two aromatic protons, as singlets at δ 6.24 and 7.92, and two protons of a methylene as a singlet at δ 4.70. In the 13C NMR spectrum seven carbon signals were identified. Three protonated carbons at δ 127.0, 101.9 and 56.0 and four aromatic quaternary carbons at δ 160.0, 150.0, 120.2, and 114.6 were detectable. All these data were consistent with the structure proposed. This compound was formed by photosubstitution from hydrochlorothiazide in a process where the chlorine is replaced by OH from the solvent. To verify that oxygen was not involved in this process, a hydrochlorothiazide suspension was irradiated under argon atmosphere. The most abundant compound was determined to be 4-amino-6-chloro-1,3-benzenedisulfonamide (52).

![Structure 52](image)

Two singlet aromatic protons at δ 8.34 and 6.97 were present in the 1H NMR spectrum, and six aromatic carbon signals were identified in the 13C NMR spectrum. These NMR data were consistent with literatura data (Revelle L.K. et al., 1997). Further structural information was obtained by ESI-MS analysis which showed the peak at m/z 278 corresponding to the molecular formula [C$_6$H$_8$O$_4$N$_3$ClS$_2$ – 1]$^+$. Thus, the photolysis of hydrochlorothiazide in pure water leads to fragmentation of the thiadizine ring as dominant product. After 200 h, the formation of compound 51 was observed in 50% yield. The structure 4-amino-6-hydroxy-1,3-benzenedisulfonamide was attributed to compound 55 (5%).
The molecular peak at 266, along with the elemental analysis defined the molecular formula C₆H₉N₃O₅S₂. The ¹H NMR spectrum exhibited two aromatic protons, as singlets at δ 6.18 and 8.07. In the ¹³C NMR spectrum six carbon signals were present: two protonated carbons at δ 131.9, 116.5 and four aromatic quaternary carbons at δ 152.6, 145.6, 119.5 and 116.2.

All compounds were used as standards to evaluate the phototransformation yields by HPLC analysis. The yields were also confirmed by ¹H NMR integration analysis of the mixture after irradiation. The yields of photoproduct 51, 52 and 55 after 200 h were 15%, 35% and 5%, respectively.

To verify the phototransformation in a simulated aquatic environment an irradiation experiment was also performed suspending hydrochlorothiazide in sewage treatment plant (STP) water. The photoproducts 51, 52 and 55 were obtained after 200 h. The only difference observed in this case was the slight yield of compound 55 (1%).

Finally, an experiment irradiating the hydrochlorothiazide suspension was performed in pure water under sunlight for 5 days in January. HPLC and NMR analysis of the irradiation mixture showed that hydrochlorothiazide was almost completely transformed and the main product was compound 51 (75% yield).

The occurrence of the same three photoproducts in all irradiation conditions tested suggests a unique photolysis pathway for hydrochlorothiazide in water, where the main processes are photoinduced fragmentation of the thiadazine ring and the photosubstitution of the chlorine with the hydroxyl group.
3.3.2.3 Conclusion

Hydrochlorothiazide was irradiated under biomimetic conditions for 200 hours leading to three photoproducts that were isolated and characterized. Two of them were isolated in percentages significantly higher than 10%.
We are currently investigating on eco-toxicity of hydrochlorothiazide and its phototransformation products, to assess the environmental risk.
3.4.1 Fibrates: bezafibrate, gemfibrozil, fenofibrate

During the past 20 years, fibric acid derivatives (ethyl-2-[4-chlorophenoxy]-2-methyl propionate) have been the major drugs used in the treatment of hyperlipidaemia (Baker R. et al., 1982; Harvengt C. et al., 1982) when raised cholesterol levels are associated with raised levels of triglycerides. Clofibrate and gemfibrozil were widely prescribed in the United States (The Helsinki Heart Study, 1996). After about 10 years, a new generation of fibric acid derivatives was developed in Europe and the prescription of such agents as bezafibrate (59), is common (Drouin P. et al., 1980; Michell H. et al., 1979), due to their greater potency and more satisfactory reduction at low density lipoprotein-cholesterol levels.

Bezafibrate (59), gemfibrozil (60) and fenofibrate (61) have been selected for our study because they are the most prescribed fibrate and they are included in the 2002 list of the most used drugs in the world. As fenofibrate is rapidly
metabolized to fenofibric acid (62) after administration, this metabolite has also been investigated.

Bezafibrate has been frequently identified in the environment (Andreozzi R. et al., 2003). In his investigations on effluents of German sewage treatment plants (STP) Ternes T.A. (1998) reported concentrations up to 4.6 µg/l of this drug. Calamari D. et al. (2003) in a recent investigation on Naples STP water have found concentrations of 116 ng/l.

The second fibrate under investigation is gemfibrozil. The drug has been found in surface waters (Ternes T.A., 1998) and in STP effluents in Canada (Metcalfe C. et al., 2000). Andreozzi R. et al. (2003) have found 4.76 µg/l concentrations in Naples STP effluent.

No trace of fenofibrate has been found in the aquatic environment. These data agree with the almost quantitative conversion of fenofibrate to its metabolite fenofibric acid (62) after its administration (Elsom L.F. et al., 1976). Concentrations up to 1.2 µg/l of this metabolite have been found in German STP effluents and rivers (Ternes T.A., 1998).

In recent years, light-mediated cutaneous reactions, such as pruritus, dry skin, maculopapular rashes (Blane G.F., 1987), erythema multiforme (Arif and Vahrman, 1975) and photosensitivity following the taking of these pharmaceuticals have been described. In connection with these facts, studies on photodegradation (by UV-B 290-329 nm) and phototoxicity in vitro (photohemolysis) of bezafibrate, gemfibrozil and fenofibrate were performed (Vargas F. et al., 1993). Their phototoxicity can be explained by the involvement of
3.4.2 Results and Discussion

Phototransformations of bezafibrate (59)

2-[4-2-[4-chlorobenzamido]ethylphenoxy]-2-methylpropanoic acid, bezafibrate (59) was irradiated in distilled water and its transformation monitored by thin layer chromatography at 50, 100 and 200 hr. Appreciable amounts of transformation products were obtained only after 200 hr. After removal of the water in vacuo, the residue was chromatographed on silica gel to give, along with unreacted bezafibrate (88 %), phenol 63 (2%) and ether 64 (3 %).

![Structures 63 and 64](image)

Compound 63 was identified by comparing its spectral data with those reported in literature. In fact, it was isolated in a previous study (Canudas N. et al., 1996) on phototoxicity of bezafibrate (59) which was irradiated with a 125 W medium pressure Mercury lamp in biological conditions. Structure 64 was attributed on the basis of spectroscopic data. The 1H NMR spectrum, in addition to four aromatic doublets, showed the signals of the geminal methyls as a doublet at δ 1.32 and the methine proton as a quartet at δ 4.53 according to the presence of an isopropyloxy group. The corresponding carbons in the 13C NMR spectrum were at δ 22.0 and 69.9, respectively.
The same photoproducts 63 and 64 were also obtained when bezafibrate was irradiated for 200 hr in pure water in the presence of nitrates or humic acids. The yields were comparable, so that the presence of environmental photosensitizers seems not to influence the phototransformation of bezafibrate. Instead, when using STP water after 200 hr irradiation no significant photodegradation was observed. Irradiation of bezafibrate in distilled water saturated with argon gave only compound 64 (2 mg).

The experiments were also performed by sunlight irradiation, and after 200 hr similar results were obtained.

Phototransformations of gemfibrozil (60)

5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid, gemfibrozil (60), dispersed in distilled water, was irradiated by the solar simulator. After 200 hr, water was evaporated in vacuo and the reaction mixture was purified by silica gel flash chromatography and preparative thin layer chromatography giving gemfibrozil and a crude photoproduct in about 9% yield. The compound isolated was identified as aldehyde 65. The EI-MS spectrum showed a M\(^+\) at \(m/z\) 264 with a base peak at \(m/z\) 136. \(^1\)H-NMR spectrum showed that aromatic protons were shifted at \(\delta\) values higher than the ones of gemfibrozil, in agreement with the oxidation of a methyl group. In fact, a singlet at \(\delta\) 10.38 in the \(^1\)H-NMR spectrum and a carbonyl carbon at \(\delta\) 189.7 in the \(^13\)C NMR spectrum attested to the presence of the formyl group. The ortho position of the formyl group was established on the basis of a NOESY spectrum where the methyl gave NOE with the doublet at \(\delta\) 6.82 and with the singlet at \(\delta\) 6.73.
Irradiations in distilled water in the presence of nitrates or humic acids as well as in STP water, or in distilled water in argon atmosphere left gemfibrozil unaltered even after 300 hr. The same results were obtained by sunlight irradiation.

Phototransformations of fenofibrate (61)

2-[4-(4-Chlorobenzoyl phenoxy)]-2-methyl propionic acid-isopropyl ester, fenofibrate (61) was dispersed in distilled water and was irradiated for 200 hr by the solar simulator. Water was evaporated and the residue was chromatographed to give unreacted fenofibrate (88%), compound 62 and compound 66 with an overall yield of about 8%. These compounds were identified by comparison with authentic samples (from Aldrich).

![Chemical Structure 66]

Its irradiation in distilled water in the presence of nitrate ions, humic acids or in STP water gave products 62 and 66 in similar yields to those in pure distilled water. Fenofibrate (61) by irradiation in argon gave only fenofibric acid 62 in traces.

Phototransformations of fenofibric acid (62)

Irradiation of a distilled water solution of fenofibric acid (62), performed as for the other fibrate, gave phenol 66 (13%), ether 67 (70%) and alcohol 68 (18%).

![Chemical Structures 67 and 68]
Fenofibric acid (62) was the most photolabile among tested drugs and after 60 hr it was quantitatively converted. Similar behaviour was observed in STP water as well as by changing the lamplight with the direct sunlight. Instead, irradiation in argon gave only compounds 67 (70%) and 68 (15%). These latter were previously isolated by Miranda et al. in a study on photosensitization by fenofibrate 62 (1994a).

On the basis of the experimental and literature data, mechanistic pathways may be drawn for the formation of the photoproducts. All involve the aryloxy moiety as the key reactive site and well-stabilized radicals (or radical ions) as intermediates. Formation of phenols 63 and 66 occurs by a homolytic cleavage of the aryloxy bond followed by hydrogen abstraction from the solvent (Scheme 10), as already proposed by Canudas N. et al. (1996) for bezafibrate, and requires aerobic conditions, as confirmed by the control experiment performed in the absence of oxygen.

![Scheme 10](image)

Formation of ethers 64 and 67 can be explained by an ionic photodecarboxylation process of the dissociated acids to aryloxy-substituted carbanions which are protonated by water (Scheme 11). Photodecarboxylation is also the first event
followed by a [1,2]-Wittig rearrangement in the formation of 68 from 62 (Scheme 11) and has been already justified by Miranda M.A. et al. (1994b). These phototransformations do not require aerobic conditions.

The high photodegradation of 62 may be justified by the presence of the easily photoexciting benzophenone group. It is to be noted that in a previous work by Canudas N. et al. (1996) only dimer 69 together with phenol 63 was found.
This different result may be due to different irradiation conditions (UV lamp vs solar lamp) and also to the more diluted sample (10^{-3} M vs 10^{-4} M). Indeed, as reported by Monti S. et al. (1997), a pathway for decarboxylation may occur which is scarcely efficient especially at low light levels. This pathway would involve a radical species formed via a photoionization process upon electron release followed by loss of CO$_2$, and dimer 69 would form from a radical-radical recombination.

Formation of aldehyde 65 may be rationalized by a photooxidation promoted by the ortho aryloxy function (Scheme 12), in agreement with the easy oxidation of alkyl-substituted phenols (Horspool W.M., 2003). We are currently investigating the detailed mechanism.

![Scheme 12](image)

Toxicity studies

Results of acute toxicity for fibrates and their photoproducts are reported in Table 18. Data showed that the drugs had a limited acute toxicity on the tested organisms. Parental compounds showed no effects or low acute effects towards all the organisms ranging from 39.69 mg/l (bezafibrate vs T. platyurus) to 161.05 (gemfibrozil vs T. platyurus). Concentrations found to exercise a toxic potential were far from environmental concentrations. No effect of environmental concern was found for photoderivatives of bezafibrate and gemfibrozil, while the fenofibrate derivative showed the highest acute effects for all the organisms and
resulted the most active among all tested compounds. Preliminary acute tests performed on *T. platyurus* and *B. calyciflorus* for fenofibric acid and its derivatives showed compounds 67 and 68 were more toxic than the parent compound.

Table 18. Acute toxicity tests with confidence limits (95% probability)

<table>
<thead>
<tr>
<th>Compound</th>
<th>V. fischeri</th>
<th>C. dubia</th>
<th>T. platyurus</th>
<th>B. calyciflorus</th>
<th>D. magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>NE (110 ppm)</td>
<td>75.70</td>
<td>39.69</td>
<td>60.91</td>
<td>100.08</td>
</tr>
<tr>
<td></td>
<td>(60.13-81.01)</td>
<td>(24.93-63.17)</td>
<td>(54.03-68.66)</td>
<td>(80.02-120.54)</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>NE (130 ppm)</td>
<td>77.11</td>
<td>NE (70 ppm)</td>
<td>NE (70 ppm)</td>
<td>NE (120 ppm)</td>
</tr>
<tr>
<td></td>
<td>(65.41-84.09)</td>
<td></td>
<td>(85.91-139.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>37.24</td>
<td>90.57</td>
<td>45.96</td>
<td>109.32</td>
<td>NE (80 ppm)</td>
</tr>
<tr>
<td></td>
<td>(29.74-46.61)</td>
<td>(81.31-99.65)</td>
<td>(44.41-47.57)</td>
<td>(85.91-139.10)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>85.74</td>
<td>NE (200 ppm)</td>
<td>161.05</td>
<td>77.30</td>
<td>74.30</td>
</tr>
<tr>
<td></td>
<td>(77.22-91.74)</td>
<td></td>
<td>(136.98-189.34)</td>
<td>(59.12-101.08)</td>
<td>(66.15-88.45)</td>
</tr>
<tr>
<td>65</td>
<td>NE (100 ppm)</td>
<td>NE (100 ppm)</td>
<td>NE (190 ppm)</td>
<td>64.97</td>
<td>50.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(57.12-72.36)</td>
<td>(44.78-58.55)</td>
</tr>
<tr>
<td>61</td>
<td>NE (100 ppm)</td>
<td>NE (100 ppm)</td>
<td>NE (190 ppm)</td>
<td>64.97</td>
<td>50.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(57.12-72.36)</td>
<td>(44.78-58.55)</td>
</tr>
<tr>
<td>66</td>
<td>22.16</td>
<td>42.24</td>
<td>27.16</td>
<td>0.35</td>
<td>17.68</td>
</tr>
<tr>
<td></td>
<td>(17.15-25.62)</td>
<td>(35.47-49.66)</td>
<td>(23.35-34.40)</td>
<td>(0.27-0.41)</td>
<td>(10.32-22.15)</td>
</tr>
<tr>
<td>62</td>
<td>ND</td>
<td>ND</td>
<td>82.03</td>
<td>74.30</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(74.40-91.23)</td>
<td>(60.95-82.11)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>ND</td>
<td>ND</td>
<td>28.06</td>
<td>30.06</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(21.07-37.37)</td>
<td>(23.31-40.38)</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>ND</td>
<td>ND</td>
<td>31.27</td>
<td>55.49</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(24.64-39.70)</td>
<td>(40.49-76.06)</td>
<td></td>
</tr>
</tbody>
</table>

NE = no effects at
ND = not determined

Chronic data on the inhibition of reproduction for *B. calyciflorus* and *C. dubia* are reported in Table 19. Results confirmed the trend of acute data for bezafibrate and its derivatives even if the bioactive concentrations ranged from 0.13 to 7.36 mg/l while no significant difference was found between fenofibrate, gemfibrozil and their respective derivatives that, however, showed EC50 values less than 1 mg/l. Chronic data also demonstrated that bezafibrate is the most toxic.
Table 19. Chronic toxicity tests with confidence limits (95% probability)

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. dubia</th>
<th>B. calyciflorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>0.133 (0.038 - 0.260)</td>
<td>0.44 (0.25 – 0.51)</td>
</tr>
<tr>
<td>63</td>
<td>1.49 (0.74-2.65)</td>
<td>1.44 (1.08 -1.91)</td>
</tr>
<tr>
<td>64</td>
<td>7.35 (5.30 - 9.62)</td>
<td>7.36 (5.52-9.78)</td>
</tr>
<tr>
<td>60</td>
<td>ND</td>
<td>0.44 (0.17 – 0.69)</td>
</tr>
<tr>
<td>65</td>
<td>0.43 (0.35-0.51)</td>
<td>0.36 (0.15 – 0.54)</td>
</tr>
<tr>
<td>61</td>
<td>0.76 (0.66 - 0.88)</td>
<td>ND</td>
</tr>
<tr>
<td>66</td>
<td>0.92 (0.80 - 0.98)</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND = not determined

3.4.3 Conclusion

From an environmental point of view it is noteworthy that bezafibrate and gemfibrozil are stable in STP effluent, probably due to the filter action of this medium which has a large absorption band at \(\lambda_{\text{max}} \) 214 nm with a code up to 300 nm. Consequently, only fenofibrate 61 and its mainly biological metabolite fenofibric acid 62 call for deeper attention. Their transformations in STP water allow us to expect similar behaviours in surface waters; furthermore 62 undergoes fast and complete degradation by sunlight. According to U.S. and Europe Scientific Committees, analytical and ecotoxicological investigations should also be addressed toward their environmental metabolites 67 and 68 to assess the environmental risk.

However, preliminary acute and chronic data, here reported, indicate that high, environmentally unrealistic concentrations of fibrates and their photoproducts are needed to cause toxicity.
3.5.1 Proton Pump Inhibitors: lansoprazole and omeprazole

Lansoprazole (70a) and omeprazole (70b), two substituted pyridylmethylsulfinyl benzimidazole derivatives, are proton pump inhibitors.

Proton pump inhibitors (PPIs) are widely used for the treatment of acid-related disorders including gastroesophageal reflux disease and for peptic-ulcer disease caused by stress, nonsteroidal antiinflammatory drugs, and Helicobacter pylori infection (Langtry and Wilde, 1998; Zimmermann and Katona, 1997). These compounds inhibit acid secretion by irreversibly interacting with H\(^+\)-K\(^+\)-ATPase, the terminal proton pump of the parietal cell (Sachs G., 1997). In the acid space of the secreting parietal cell or in the vicinity of the enzyme, these drugs are converted to thiophilic sulfenamide or sulfinic acid, which reacts with Cys-813 residue in the catalytic subunit of the H\(^+\)-K\(^+\)-ATPase, which is critical for enzyme inactivation (Wolfe and Sachs, 2000).

Omeprazole has been extensively used to control these disorders (Langtry and Wilde, 1998), lansoprazole, with benzimidazole containing a trifluoroethoxy group, has also been used more recently (Zimmermann and Katona, 1997).

Omeprazole has been found in surface waters of Lambro river (Calamari D. et al., 2003). Stability studies especially on omeprazole have revealed their poor stability in acid medium or to light and heat (Wallmark B. et al., 1987), and this has been particularly noticed in the settlement of methods for their determination (Karljikovic-Rajic K. et al., 2003; El-Kousy and Bebawy, 1999; Castro D. et al., 1999).
The objective of this study was to determine the main products of hydrolytic and photolytic cleavage of lansoprazole (70a) and omeprazole (70b) under environmental conditions, in particular, in water, in water with added of humic acid or nitrates, and at different pHs.

3.5.2 Results and discussion

Transformations of lansoprazole (70a)

Dispersions of lansoprazole 70a in pure water were irradiated by the solar simulator. After 72 hr, water was evaporated and irradiation mixture was purified on preparative TLC. Unreacted lansoprazole, compounds 71a-75a and an intractable red material were obtained (Table 20).

Compound 71a was identified as dianiline by comparison of its spectral data with those of the commercially available compound.

\[\text{NH}_2 \]
\[\text{NH}_2 \]

\[71a \]

The \(^1\)H NMR spectra of compound 72a showed two doublets at \(\delta\) 8.33 and 7.06 of the pyridine moiety; in the aliphatic region, in addition to the methylene quartet of the \(\text{CH}_2\text{CF}_3\) group and the methyl singlet at \(\delta\) 2.13, a singlet at \(\delta\) 4.62, integrated for two protons.

The \(^13\)C NMR resonances were assigned on the basis of HMQC and HMBC experiments. This latter showed the correlations of the signal at \(\delta\) 4.62 with the C-2’ and C-3’ carbons. In the EI-MS spectra the molecular peak at m/z 221, the peaks at 206 and 190 due to the fragments [M-CH$_3$]$^+$ and [M-CH$_2$OH]$^+$, respectively, were present. All these data were in agreement with the structure of compound 72a.
The third compound isolated from the irradiation mixture was identified as sulfide 73a according to 1H NMR showing seven patterns of signals with almost identical chemical shifts in comparison with those of the lansoprazole, except the exchange of chemical shifts of two methylene groups. The 13C NMR signals were assigned by combination of the HMQC and HMBC experiments. The HMBC spectrum showed the correlations of the CH$_2$CF$_3$ methylene protons with the CF$_3$ and C-4' carbons, as well as that of the CH$_2$S methylene protons with the C-2', C-3' and C-6' carbons, and that of the H-6' proton with the C-4', C-2' and C-5' carbons. The shielded methylene carbon at δ 36.1 attached to the pyridine 2-position. The absence of IR band at 1050 cm$^{-1}$ typical of the stretching of SO group and the molecular peak at m/z 353 in the EI-MS spectra were in agreement with sulfur compound 73a.

Structure 73a was confirmed chemically. Indeed, an experiment was performed by adding m-chloroperbenzoic acid (0.8 mM) to a solution of 73a in anhydrous dichloromethane (1 mM). After two hours, TLC showed the presence of a compound which was identified as lansoprazole by comparison of its Rf value and spectral data with those of the corresponding standard.
Benzimidazole 74a and benzimidazolone 75a were identified by comparing of their spectral data with those of commercially available compounds. 1H NMR of benzimidazole 74a showed three signals: a singlet proton at δ 8.16, and two multiplet protons at δ 7.61 and 7.28 of the benzimidazole moiety. The signal at δ 6.85 was present in the 1H NMR spectrum of compound 75a. The HMBC experiment showed the correlations of this signal with the aromatic carbons at δ 120.2 and 109.9.

Attempts to characterize the red material failed due to its complexity and changeable nature.

The dispersion of lansoprazole in water milliQ, kept in the dark for 72 h gave, after evaporation of the water, the red-coloured residue which was cromathographed on preparative TLC affording sulfide 73a, lansoprazole, the intractable red fraction and benzimidazolone 75a at decreasing Rfs (Table 20).

Transformations of omeprazole (70b)
Irradiation for 42 hours of omeprazole 70b in milliQ water by the solar simulator gave, after evaporation of water and purification of the reaction mixture on preparative TLC, five photoproducts and an intractable red fraction (Table 20). The first isolated photoproduct was compound 71b. The 1H NMR spectrum showed in the aromatic region a doublet integrated for one proton and a multiplet integrated for two protons, while in the aliphatic region the methoxyl singlet at δ 3.79 was present. In the 13C NMR spectra there were seven signals, four protonated carbons and three quaternary carbons. All the resonances were
assigned on the basis of the HMQC and HMBC experiments. The EI-MS spectra showed the molecular peaks at m/z 138 in agreement with the structure of the dianiline 71b.

![Chemical Structure 71b]

Compounds 72b and 74b were identified by 1H NMR and LC-MS due to their low amounts. 1H NMR of compound 72b revealed the presence of the only pyridine proton at δ 8.14 while LC-MS showed the molecular peak at m/z 167.

![Chemical Structure 72b]

All the considerations concerning spectral data and control experiments we reported for compound 73a were found also for compound 73b.

![Chemical Structure 73b]
The singlet at δ 8.04 of the H-1 proton together with the signals typical of the benzimidazole moiety and the molecular peak at m/z 148 in the LC-MS confirmed the structure of compound 74b.

![Structure of 74b]

Compound 75b was identified as benzimidazolone by the presence of the signals at δ 6.92, 6.66 and 6.63 in the 1H NMR spectrum and by the presence of the C-2 carbonyl carbon at δ 158.4 in the 13C NMR spectrum. IR spectrum showed the band at 1720 cm$^{-1}$ due to the carbonyl group. Definitively, the EI-MS spectra revealed the presence of the molecular peak at m/z 164.

![Structure of 75b]

As for lansoprazole, the red material was intractable by chromatographic means and all attempts to characterize it failed.

When the omeprazole was dispersed in milliQ water and kept at dark for 43 h, after water evaporation, it led to an intense red-coloured residue which was separated on preparative TLC giving 71b, omeprazole, the intractable red residue and 75b at decreasing Rfs.

Photochemistry and hydrolysis of two drugs were also investigated at pHs 4.0 or 9.0 and after neutralization of the dispersions and evaporation of water, the mixtures were analyzed by 1H NMR and purified on preparative TLC showing that both lansoprazole and omeprazole degradation was accelerated in acid
conditions, also in accordance with previous results reported by Lagerström and Persson (1984).

The same products in the same yields were obtained when the drugs were irradiated in milliQ water in the presence of humic acids (5 ppm) or KNO₃ (10 ppm).

As shown in Table 20, degradation is accelerated by light (70a and 70b exhibit absorption bands at λ_{max} 292 and 300 nm, respectively). After 72 h in milliQ water, lansoprazole was present only for 24% while after 43 h omeprazole was completely degraded. The effect of light on the degradation is particularly evidenced by comparing the results at buffered pH 7.0 with those at the same conditions in the dark where the drugs are instead stable.

Table 20

<table>
<thead>
<tr>
<th>Drug</th>
<th>Condition</th>
<th>70a</th>
<th>71a</th>
<th>72a</th>
<th>red material</th>
<th>73a</th>
<th>74°</th>
<th>75a</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°</td>
<td>light</td>
<td>24</td>
<td>19</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>70°</td>
<td>dark</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>10</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>70°</td>
<td>pH 7.0/l</td>
<td>22</td>
<td>19</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>70°</td>
<td>pH 7.0/d</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70°</td>
<td>pH 4.0/d</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>70°</td>
<td>pH 9.0/d</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70b</td>
<td>light</td>
<td>-</td>
<td>10</td>
<td><1</td>
<td>20</td>
<td>16</td>
<td><1</td>
<td>20</td>
</tr>
<tr>
<td>70b</td>
<td>dark</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>25</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>70b</td>
<td>pH 7.0/l</td>
<td>5</td>
<td>16</td>
<td><1</td>
<td>15</td>
<td>12</td>
<td><1</td>
<td>20</td>
</tr>
<tr>
<td>70b</td>
<td>pH 7.0/d</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70b</td>
<td>pH 4.0/d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>50</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>70b</td>
<td>pH 9.0/d</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Reaction time 72 h. °Reaction time 43 h. 40 mg in 500 mL of milliQ water. By TLC. °By a solar simulator.

Control experiments showed that product distribution both by hydrolysis and irradiation were not to be affected under argon-saturated conditions. Moreover, it was verified that sulfides 73 were stable to hydrolysis at the dark while by
irradiation they led to dianilines 71 and to benzimidazoles 74. These conversions were almost quantitative, because of the absorption bands at λ_{max} 292 and 300 nm which are similar to those of the respective parent compounds. In contrast, benzimidazoles 74 and benzimidazolones 75 resulted stable both to hydrolysis and photolysis.

As shown in Table 20, the dark degradation of two drugs was significant leading, among the others, to sulfides 73.

An interpretation is reported in Scheme 13 and is based on literature data.

Scheme 13. Isolated degradation products from drugs 70 in aqueous suspension
Sulfides 73 have been evidenced mainly under physiological pH in the presence of thiols, in a model, for studying the mechanism of (H⁺- K⁺)-ATPase inhibition by the sulfoxides (Im W.B., et al. 1985; Sturm E. et al., 1987; Brandstrom A. et al., 1989). Their formation was explained by assuming that the sulfoxides rearrange in acidic media to a spirointermediate as 76 which, through subsequent steps, one involving reaction with thiols, leads to the sulfides, which contain the original molecular backbone (Lindberg P. et al., 1986). In our case the formation of sulfides cannot be easily justified in this way.

Another pathway is possible for formation of sulfides 73. It is reported that aromatic sulfoxides are fragmented and/or reduced via cations or radical cations as 77 and OH radical in acid solution, and the conversion, which may be slow if the acid is weak, occurs more easily with heterocyclic compounds (Shine H.J., 1967). So, the alteration of drugs 70 even in MilliQ water might be due to the mild acid medium (initially measured ca. pH 5.0) as expected on the basis of the pKa at 3.83 for 70a and 4.06 for 70b (Shin J.M. et al., 2004). Therefore it is likely that protonation involves cation (Im W.B. et al. 1985) or radical cation and/or OH radical formation which might trigger diverse oxidation reactions, presumably on the aromatic groups of the drugs, leading to the sulfides 73 and the red material. This hypothesis agrees with recent studies which have evidenced the antioxidant role of lansoprazole and omeprazole as OH-radical scavengers during ulceration in addition to acting as proton pump inhibitors (Biswas K. et al., 2003). The authors identified only sulfones among four oxidation products formed by incubation of the drug with Cu²⁺-ascorbate system. In our case sulfone was not formed. In fact control experiments showed that the sulfone 78 (spectral data are reported in appendix) purposely prepared and treated as the parent 70a was found to be stable under dark conditions.
Benzimidazolones 75 could be formed by oxidation at benzimidazole group or, better, via the pathway suggested above, by hydrolysis of the spirointermediate 76 and the easy N-S bond breakage (Umetsu N. et al., 1987). The faster degradation of omeprazole might be due to the presence of activating groups such as 5-OMe or Me on the pyridinium moiety which should favour oxidation.

When irradiated, the degradation of both drugs is accelerated. The only identified products are dianilines 71, pyridines 72, benzimidazoles 74 in addition to sulfides 73, benzimidazolones 75 and the red material. By irradiation the excited drug undergoes a series of fragmentations which are difficult to rationalize due to the low concentrations of other unidentified products and low mass balance. It has been ascertained that photodegradation does not involve oxygen. So, compounds 72 might form via decomposition of a photoisomerization product as an unstable sulfenate intermediate (Still I.W.J., 1988; Hogg D.R., 1990) while compounds 71 and 74, which are also found by irradiation of sulfides 73, might form via simple homolytic benzimidazole-sulfoxide and/or -sulfide bond cleavage (Still I.W.J, 1988) or photoinduced water addition to the benzimidazole moiety.

3.5.3 Conclusion

Lanzoprazole and omeprazole result stable enough at pH 7.0 or higher, while mild acid medium or solar light induce significant degradation, so justifying the difficulty of their determination (Karljikovic-Rajic K. et al., 2003). Redox reactions and fragmentations are mainly involved and do not require oxygen. This aspect is of particular interest and fits in with recent observations that these drugs act as both proton pump inhibitors (Horn J., 2000) and antioxidant and antiapoptotic agents (Biswas K. et al., 2003).
4. Summary

This PhD thesis has examined abiotic transformations of chemicals selected on the basis of their sale and/or their presence into the aquatic environment. In particular, reaction conditions as close as possible to natural ones in the aquatic systems have been used (aqueous solutions, sunlight irradiation, aerobic conditions). The effects of pH or of natural photosensitizers such as humic acids or nitrates have also been considered. The degradation products have been isolated and fully characterised; in many cases their mechanicistic pathways have been discussed.

In particular it has been observed that:

- Carboxin pesticide is easily photodegradated leading to eight products. Among them sulfoxide is the most photostable and least hydrolyzable. The toxicity tests have revealed that this metabolite exhibits similar or even lower activity than the parent compound.
- Benfuracarb and carbosulfan hydrolyze selectively to carbofuran and, under irradiation, to a phenol derivative, too. Degradation of carbofuran leads exclusively to the phenol derivative and occurs slowly even under sunlight irradiation. These results are in contrast with literature data which report many photoproducts likely due to the different reaction conditions used. Toxicity tests have revealed that carbosulfan and carbofuran are the most active and the phenol derivative is generally less toxic than the parent compounds.
- Irradiation of corticosteroids, prednisolone and dexamethasone, leads to seven products, among which four compounds are unprecedented and derive from cleavage, type Norrish I, of the side chain at C-17.
- Naproxen sodium salt is light-sensitive under biomimetic conditions and leads to nine products. It is to be noted that dimeric forms, previously unreported, have been isolated by irradiation in drinking water, probably due to the action of dissolved inorganic salts.
- For the first time a dimeric compound has been isolated from furosemide under sunlight irradiation. The formation of dimer has been rationalized by the formation of a radical cation intermediate. Dehalogenation-hydroxylation
(SRN1Ar*) followed by deprotonation and dimerization are the events leading to the dimer. The degradation rate of the drug is fast and could justify the low MEC/PEC ratio found.

- Irradiation of hydrochlorothiazide in water affords three photoproducts. Among these, the dehalogenation-hydroxylation product has been suggested as intermediate in the photodegradation by UV-light of the parent compound but, until this study, it had not been isolated and described.

- Degradation of fibrates under environmental conditions is very slow and lead to photoproducts previously isolated from irradiation of these drugs in organic solvents. As regards gemfibrozil, the first investigation on its photochemical behaviour has been performed which has evidenced the formation of "peculiar" oxidation product.

- Photochemical and hydrolytic behaviour of lansoprazole and omeprazole has been investigated for the first time. It has been found that both drugs degrade in water leading to sulfides, benzimidazolones and a red complex material. Benzimidazoles, dianilines and pyridines have also been identified. Degradation is accelerated in acid medium or by light. Redox reactions and fragmentations are mainly involved and do not require oxygen. This study is of particular interest because it agrees with the recent observations that these drugs act as both proton pump inhibitors and antioxidant and antiapoptotic agents and with the difficulty of their determination (pKas of lansoprazole and omeprazole 3.83 and 4.06, respectively).

All the examined drugs and respective derivatives have been found to be bioactive towards aquatic organisms only at concentrations of mg/l orders, more high than the environmental ones. However, even if they are usually detected into aquatic environment at very low concentrations (ng/l, µg/l), drugs have structural properties to be bioaccumulated in tissues of aquatic organisms bringing on long-term effects, which must be considered.

Special remarks can be drawn by this PhD thesis and are listed as follows:

1. Attention has been focused on the isolation and spectral characterization of metabolites. Their nature is very important, in fact, also in agreement with toxicity data obtained in this thesis, many derivatives are more
persistent and exhibit toxicity higher than the parent compounds, in particular in chronic results. Thus, the possible presence of transformation products in surface waters should be taken into account by including metabolites in monitoring systems of groundwater and surface waters. These analytical investigations are still limited because of the dearth of data on the environmental fate of xenobiotics and the lack of standard metabolites.

2. According to the preceding remark, a study on eco-toxicity not only of the parent compounds but also of their metabolites has been performed and evaluated towards aquatic organisms. This combination of studies is not frequent in the literature but during recent years has increasingly become of interest to the environmental chemistry community. Indeed, the validity of toxicological studies is meaningful only if they include both the parent compounds and their derivatives.

3. Finally, besides confirming known photochemical processes, this study has evidenced new photoinduced routes which can represent the starting point for further studies in the field of photochemical reactions (e.g., the photoisomerization of carboxin 1 to quinolinone 6 or the photooxidation of gemfibrozil 60 to aldehyde 65).
5. Experimental Section

Equipment and methods.

Nuclear magnetic resonance (NMR) spectra were recorded at 500 MHz for [1H] and 125 MHz for [13C] on a Fourier Transform NMR Varian 500 Unity Inova spectrometer. Carbon multiplicity was evidenced by DEPT experiments. The proton couplings were evidenced by [1H-[1H] COSY experiments. The heteronuclear chemical shift correlations were determined by HMQC and HMBC pulse sequences.

Electronic impact mass spectra (EIMS) were obtained with a HP 6890 spectrometer equipped with a MS 5973N detector (SIS Instruments). Matrix assisted laser desorption ionization (MALDI) mass spectra were recorded using a Voyager-DE MALDI-TOF spectrometer. Electrospray ionization (ESI) spectra were recorded using a Finnigan LCQ operating in negative ion mode. The scan range was 80-2000 m/z.

Infrared spectra (IR) were determined on a Fourier Transform Infrared Perkin-Elmer 1740 spectrometer in CHCl$_3$ solutions. Ultraviolet spectra (UV) were recorded on a Perkin-Elmer LAMBDA 7 spectrophotometer.

Irradiation experiments were performed with a 150-W solar simulator equipped with a Xenon lamp. The lamp had a spectral output 200 to 2.400 nm and an irradiance at 0.5 m higher than 10 mW m$^{-2}$ nm$^{-1}$; a filter was used to simulate irradiation at the earth surface (Oriel Instruments) or by 500 W high-pressure mercury lamp (Helios Italquartz).

The HPLC apparatus consisted of an Agilent 1100 HPLC system equipped with UV or refractive index detector or on a Varian Vista 5500 apparatus equipped with a refractometric detector.

Analytical TLC was made on Kieselgel 60 F$_{254}$ or RP-18 F$_{254}$ plates with 0.2 mm layer thickness (Merck). Preparative TLC was performed on Kieselgel 60 F$_{254}$ plates with 0.5 or 1 mm film thickness (Merck). Flash column chromatography (FCC) was conducted on Kieselgel 60, 230-400 mesh (Merck), at medium pressure.
Sewage treatment plant (STP) water was obtained from Mercato S. Severino treatment plant (Salerno, Italy). KNO₃ and humic acids were obtained from Aldrich.

5.1 Fungicides: carboxin (1)

Chemicals Carboxin, analytical standard grade (99%), was supplied by Labservice Analytika S.r.l.

Photolysis of carboxin by natural solar light

Suspension of carboxin (20 mg) in 300 mL of deionized water was exposed to natural sunlight in Pyrex flask, under aerobic conditions, at Naples in October 2003. Similar experiments were carried out adjusting pH of suspension at 2 by HCl 1 mM and at 10 by KOH 0.1 mM, in the presence of KNO₃ (10 mg/l), with humic acid (5 mg/l). Each experiment was performed in duplicate, with one set of dark controls. After 4 days sunlight exposure, each reaction mixture was extracted with ethyl acetate. The organic layer and the aqueous extract were analyzed by ¹H-NMR. The organic extract was chromatographed by reverse phase C-18 HPLC [Agilent 1100 HPLC system equipped with refractive index detector. The column was a Phenomenex HYDRO RP-18, 4 µm, 250 x 4.5 mm, eluent H₂O-CH₃OH-CH₃CN (5:3:2)] to give unreacted carboxin (30-55%) and the photoproducts (complessively 20-35%). The aqueous extract was acidified with HCl 2M and extracted with ethyl acetate. The organic layer gave pure oxanilic acid 7. All the products were fully characterized by spectral means.

Spectral data

Compound 2: IR (CHCl₃) ν 1721, 1673, 1079 cm⁻¹, 1039; ¹H NMR (CDCl₃) δ 2.38 (s,3H, Me), 2.90 e 3.10 (2m, 2H, CH₂S), 4.40-4.70 (m, 2H, CH₂O), 7.10-7.60 (m, 5H, ArH), 8.35 (brs, 1H, NH); ¹³C NMR (CDCl₃) δ 20.7 (Me), 43.5 (CH₂S), 56.9 (CH₂O), 110.7 (C-3), 120.5 (C-2'), 124.6 (C-4'), 129.2 (C-3'), 137.8 (C-1'), 163.6 (CON), 166.6 (C-2); EIMS: m/z 251 [M]+, 234, 159, 131.

Compound 3: IR (CHCl₃) ν 3377, 1718, 1694 cm⁻¹; ¹H NMR (CDCl₃) δ 2.11 (s, 3H, Me), 2.90 - 3.26 (m, 2H, CH₂S), 4.01 e 4.42 (2m, 2H, CH₂O), 7.10-7.60 (m, 5H, ArH), 8.83 (brs, 1H, NH); ¹³C NMR (CDCl₃) δ 25.3 (Me), 33.8 (CH₂S), 71.8
(CH₂O), 92.1 (C-2), 119.8 (C-2'), 125.5 (C-4'), 129.2 (C-3'), 136.1 (C-1'), 156.2 (CON), 189.7 (CO). EIMS: m/z 251 [M]⁺, 148, 103.

Compound 4: IR (CHCl₃) ν 2852, 1717 cm⁻¹; ¹H NMR (CDCl₃) δ 2.08 (s, 3 H, Me), 2.93 (t, J = 6.3 Hz, 2H, CH₂S), 4.33 (t, J = 6.3 Hz, 2H, CH₂O). ¹³C NMR (CDCl₃) δ 23.7 (Me), 38.7 (CH₂S), 68.1 (CH₂O), 172.6 (CO₂). EIMS: m/z 87 [M-SH]⁺, 60, 43.

Compound 5: ¹H NMR (CDCl₃) δ 2.88 (t, J = 6.3 Hz, 4H, 2CH₂S), 2.98 (brs, 2H, 2OH), 3.89 (t, J = 6.3 Hz, 4H, 2CH₂O); ¹³C NMR (CDCl₃) δ 41.2 (CH₂S), 60.3 (CH₂O); EIMS m/z 154 [M]⁺, 92, 79, 64, 45.

Compound 6: IR (CHCl₃) ν 3389, 1641 cm⁻¹; ¹H NMR (CDCl₃) δ 2.92 (s, 3H, Me), 3.04 (t, J = 5.2 Hz, 2H, CH₂S), 3.70 (t, J = 5.2 Hz, 2H, CH₂O), 4.35 (brs, 1H, OH), 7.30 (t, J = 7.5 Hz, 1H, H-6), 7.45 (d, J = 7.5 Hz, 1H, H-8), 7.58 (t, J = 7.5 Hz, 1H, H-7), 7.78 (d, J = 7.5 Hz, 1H, H-5), 11.75 (brs, 1H, NH). ¹³C NMR (CDCl₃) δ 18.2 (Me), 38.8 (CH₂S), 60.2 (CH₂O), 116.7 (C-8), 120.6 (C-10), 123.2 (C-6), 124.4 (C-3), 125.5 (C-5), 131.5 (C-7), 137.2 (C-9), 155.7 (C-4), 161.1 (C-2). EIMS: m/z 235 [M]⁺, 204, 143, 77, 43.

Compound 7: IR (KBr, wafer) ν 3473, 1697 cm⁻¹; ¹H NMR (DMSO) δ 7.03 (t, J = 7.3 Hz, 1H, H-4'), 7.27 (t, J = 7.3 Hz, 2H, H-3') and 7.75 (d, J = 7.3 Hz, 2H, H-2'), 10.18 (brs, 1H, NH). ¹³C NMR (DMSO) δ 119.8 (C-2'), 125.5 (C-4'), 129.2 (C-3'), 136.1 (C-1'), 163.3 (CON), 165.5 (COOH); EIMS: m/z 167 [M]⁺, 148 [M-OH]⁺.

Compound 8: IR (CDCl₃) ν 3377, 1741, 1703, 1677 cm⁻¹; ¹H NMR (CDCl₃) δ 2.07 (3H, s, Me), 3.26 (m, J = 6.3, 2H, CH₂S), 4.27 (m, J = 6.3, 2H, CH₂O), 7.10-7.70 (m, 5H, ArH), 8.49 (brs, 1H, NH); ¹³C NMR (CDCl₃) δ 20.1 (Me), 28.0 (CH₂S), 61.8 (CH₂O), 119.9 (C-2'), 125.6 (C-4'), 129.2 (C-3'), 135.7 (C-1'), 155.8 (CON), 170.6 (CO₂), 191.6 (COS); EIMS m/z 267 [M]⁺, 224, 92.

Compound 9: IR (CDCl₃) ν 3680, 3620, 1674 cm⁻¹; ¹H NMR (CDCl₃) δ 2.33 (s, 3H, Me), 2.71 (t, J = 6.3, 2H, CH₂S), 3.76 (t, J = 6.3, 2H, CH₂O), 7.02-7.70 (m, 5H, ArH), 9.35 (brs, 1H, NH), 15.42 (s, 1H, OH); ¹³C NMR (CDCl₃) δ 21.3 (Me), 39.1 (CH₂S), 59.7 (CH₂O), 93.1 (C-3), 93.1 (C-3).
120.3 (C-2’), 124.5 (C-4’), 129.0 (C-3’), 137.3 (C-1’), 171.1 (C-2), 183.1 (C-7);
EIMS: \(m/z \) 253 [M]+, 193, 135.

5.2 Carbamic insecticides: benfuracarb (15), carbosulfan (16) and carbofuran (17)

Chemicals
Benfuracarb, carbosulfan and carbofuran were commercially available by Aldrich-Fluka and used without further purification.

Transformations of pesticides
Irradiations were performed by exposure of the compounds to sunlight or to UV lamp. In a standard procedure suspensions of benfuracarb (205 ppm) and carbosulfan (190 ppm) in MilliQ water were exposed to sunlight in Pyrex flasks, under aerobic conditions. Each experiment was performed in duplicate, with one set of dark controls. After 6 days, each reaction mixture was evaporated in vacuum and residues were analysed by \(^1\)H-NMR and by HPLC [Agilent 1100 system equipped with UV detector. The column was a Spherex 10\(\mu \)m OH (DIOL), eluent hexane-ethyl acetate (4:1), \(\lambda = 280 \) nm]. Control experiments showed that diluted solutions (4 ppm) of benfuracarb and carbosulfan afforded similar results.

Experiments using the same concentrations of pesticides were carried out at pH 5.0 and 9.0 using NaH\(_2\)PO\(_4\)/Na\(_2\)HPO\(_4\) adjusting the pH by HCl 0.2 M and KOH 0.2 M. After 6 days, each reaction mixture was neutralized and analyzed by \(^1\)H-NMR and HPLC. Experiments in presence of KNO\(_3\) (10 mg/l) and of humic acid (5 mg/l) were also performed. After 6 days, each reaction mixture was evaporated in vacuum and analyzed by \(^1\)H-NMR and HPLC.

Carbofuran (110 ppm) in MilliQ water was treated according to the standard procedure. After six days it was recovered unchanged at the dark while by irradiation it decomposed for about 7 % leading only to phenol derivative 18 (\(^1\)H NMR and HPLC).

Kinetic experiments of carbofuran (4 ppm) in MilliQ water were performed in Pyrex tubes and this compound was irradiated with UV lamp. At selected time intervals, samples were collected and analyzed directly using HPLC [Agilent
1100 system equipped with UV detector. The column was a Synergy 4 µm MAX-RP80A, eluent water-methanol-acetonitrile (21:14:15), λ = 254 nm].

Carbofuran-phenol (18) was isolated from irradiation experiments by repeated TLC [hexane-ethyl acetate (7:3)], and identified by comparison of 1H and 13C-NMR data with those of an authentic sample which was obtained by treating carbofuran (0.09 M) with methanolic KOH (5%): IR (CHCl$_3$) ν 3568 cm$^{-1}$; 1H-NMR (CDCl$_3$) δ 6.72 (m, 3H), 3.04 (s, 2H), 1.50 (s, 6H). 13C-NMR (CDCl$_3$): δ 145.8 (C-2), 140.3 (C-1), 127.8 (C-3), 120.7 (C-4, C-5), 117.0 (C-6), 88.0 (C-7), 43.5 (C-8), 28.2 (C-9, C-10).

5.3 Steroidal anti-inflammatory drugs: prednisolone (19) and dexamethasone (20)

Chemicals

Prednisolone and dexamethasone were purchased from Sigma–Aldrich and used without further purification.

Irradiation of prednisolone (19)

A suspension of prednisolone (100 mg) in water (500 ml) was irradiated by the solar simulator for 4 hr under slow magnetic stirring. The reaction mixture was extracted with ethyl acetate and the residue was subjected to silica gel flash chromatography. Elution with CHCl$_3$-acetone (19:1) gave a mixture of products 25 - 28 (5 mg), while elution with CHCl$_3$-CH$_3$OH (19:1) gave unreacted prednisolone (19) (55 %), pure 22 (13%) and crude 23 and 24. TLC chromatography on silica gel (CHCl$_3$-CH$_3$OH 19:1) gave pure 23 (10%). Reverse-phase C-18 HPLC [Varian Vista 5500 HPLC system equipped with a refractometric detector and Lichrosorb RP-8 columns, eluent H$_2$O-CH$_3$OH-CH$_3$CN (6: 2: 2)] gave pure 24 (11%).

Synthesis of 1,4-androstadien-11β-olo-3,17-dione (25)

To a solution of prednisolone (19) (200 mg) in ethyl acetate (10 ml) MnO$_2$ (4 g) was added. After 1 hr at room temperature the reaction mixture was filtered on celite eluting with ethyl acetate and methanol. Chromatography on silica gel (CHCl$_3$-acetone 19:1) of the filtrate gave 1,4-androstadien-11β-olo-3,17-dione (5d) (95%).
Irradiation of 1,4-androstadien-11β-olo-3,17-dione (25)

A suspension of 1,4-androstadien-11β-olo-3,17-dione (25) (180 mg) in water (1 l) was irradiated by the solar simulator for 4 hr under magnetic stirring. The reaction mixture was separated by silica gel flash chromatography (CHCl₃-acetone 19:1) into its components 25 (78%), 26 (8%), 27 (4%) and 28 (11%).

Irradiation of dexamethasone (20)

Dexamethasone (20) (100 mg) suspended in water (500 ml) was irradiated by the solar simulator for 8 hr. The organic material was extracted with ethyl acetate (2×150 ml) and chromatographed by flash chromatography on silica gel. Elution with CHCl₃-acetone (7:3) gave three fractions A-C. Fraction A (84%) consisted of unreacted 20. TLC chromatography on silica gel of fraction B [CHCl₃-CH₃OH (93:7)] gave 30 (4%) while TLC chromatography [organic phase of the mixture hexane-CH₂Cl₂-CH₃OH-H₂O (10:40:17:8)] of fraction C gave 29 (1%).

Spectral data

Infrared spectra (IR) were determined in CHCl₃ solutions (0.025 M), while ultraviolet spectra (UV) were recorded in ethanol (10⁻⁴ M).

Compound 22: [α]₁₀ D +18.0° (c 0.5); IR (CHCl₃): νₘₐₓ 3677, 3409, 1710 cm⁻¹; UV λₘₐₓ 231 nm; ¹H-NMR (C₅D₅N) δ 7.78 (d, J = 5.6 Hz, 1H, H-1), 6.69 (d, J = 5.6 Hz, 1H, H-2), 5.26 (d, J = 19.2 Hz, 1H, H-21), 4.82 (d, J = 19.2 Hz, 1H, H-21), 4.72 (brs, 1H, H-11), 3.20 (d, J = 19.2 Hz, 1H, H-4), 3.12 (m, 1H, H-16), 2.05 (d, J = 19.2 Hz, 1H, H-4), 1.25 (s, 3H, H-18), 1.20 (s, 3H, H-19); ¹³C-NMR (C₅D₅N) δ 168.2 (C-1), 134.2 (C-2), 209.1 (C-3), 46.4 (C-4), 74.7 (C-5), 34.3 (C-6), 28.2 (C-7), 31.8 (C-8), 50.8 (C-9), 54.5 (C-10), 69.2 (C-11), 39.5 (C-12), 47.7 (C-13), 51.7 (C-14), 24.0 (C-15), 34.6 (C-16), 89.6 (C-17), 17.9 (C-18), 23.4 (C-19), 213.4 (C-20), 67.6 (C-21); EIMS m/z 378 [M]⁺, 360 [M-H₂O]⁺, 319 [M-C₃H₅O₂]⁺.

Compound 23: [α]₁₀ D -159.0° (c 0.7); IR (CHCl₃): νₘₐₓ 3685, 3505, 1727, 1710 cm⁻¹; UV λₘₐₓ 256 nm; ¹H-NMR (C₅D₅N) δ 5.34 (dt, J = 2.1 and 7.2 Hz, 1H, H-1), 5.27 (d, J = 19.2 Hz, 1H, H-21), 4.82 (d, J = 19.2 Hz, 1H, H-21), 3.11 (ddd, J = 2.1, 4.1 and 15.2 Hz, 1H, H-2α), 3.02 (ddd, J = 3.1, 11.6 and 14.7 Hz, 1H, H-16β), 2.62 (dd, J = 7.2 and 15.2 Hz, 1H, H-2β), 2.53 (dd, J = 4.5 and 14.5 Hz, 1H, H-12α), 2.20 (dd, J = 1.7 and 14.5 Hz, 1H, H-12β); ¹³C-NMR (C₅D₅N) δ 116.6 (C-1), 38.4 (C-2), 204.3 (C-3), 86.6 (C-4), 54.0 (C-5), 26.2 (C-6), 26.9 (C-7), 31.2
Compound 24: 1H-NMR (CDCl$_3$) δ 5.90 (d, J = 1.3 Hz, 1H, H-4), 4.69 (brs, 1H, H-11), 4.64 (d, J = 19.2 Hz, 1H, H-21), 4.27 (d, J = 19.2 Hz, 1H, H-21), 0.90 (s, 3H, H-19), 1.15 (s, 3H, H-18); 13C-NMR (CD$_2$OD) δ 58.3 (C-1), 37.3 (C-2), 122.8 (C-3), 131.5 (C-4), 188.3 (C-5), 32.1 (C-6), 30.9 (C-7), 40.4 (C-8), 62.7 (C-9), 76.8 (C-10), 70.3 (C-11), 40.3 (C-12), 40.3 (C-13), 53.7 (C-14), 26.0 (C-15), 34.7 (C-16), 90.8 (C-17), 18.7 (C-18), 20.4 (C-19), 213.8 (C-20), 68.1 (C-21); EIMS m/z 360 [M]$^+$, 342 [M-H$_2$O$]^{+}$.

Compound 25: 1H-NMR (CD$_3$OD) δ 7.45 (d, J = 5.9 Hz, 1H, H-1), 6.24 (d, J = 5.9 Hz, 1H, H-2), 6.01 (brs, 1H, H-4), 4.39 (brs, 1H, H-11), 1.18 (s, 3H, H-18), 1.52 (s, 3H, H-19); 13C-NMR (CD$_3$OD) δ 161.0 (C-1), 128.0 (C-2), 189.5 (C-3), 123.0 (C-4), 174.9 (C-5), 35.0 (C-6), 33.1 (C-7), 32.5 (C-8), 57.5 (C-9), 46.8 (C-10), 71.1 (C-11), 42.0 (C-12), 46.8 (C-13), 53.2 (C-14), 23.7 (C-15), 37.0 (C-16), 214.4 (C-17), 17.5 (C-18), 22.5 (C-19).

Compound 26: 1H-NMR (CDCl$_3$) δ 7.70 (d, J = 5.9 Hz, 1H, H-1), 6.18 (d, J = 5.9 Hz, 1H, H-2), 4.46 (brs, 1H, H-4), 2.84 (d, J = 19.5 Hz, 1H, H-4), 1.92 (d, J = 19.5 Hz, 1H, H-4), 1.15 (s, 3H, H-19), 1.09 (s, 3H, H-18); 13C-NMR (CDCl$_3$) δ 167.1 (C-1), 134.8 (C-2), 209.9 (C-3), 45.9 (C-4), 74.8 (C-5), 33.9 (C-6), 26.8 (C-7), 31.0 (C-8), 51.8 (C-9), 54.3 (C-10), 69.6 (C-11), 40.2 (C-12), 47.0 (C-13), 51.5 (C-14), 23.2 (C-15), 35.5 (C-16), 219.3 (C-17), 16.1 (C-18), 21.7 (C-19).

Compound 27: 1H-NMR (CDCl$_3$) δ 5.44 (dt, J = 2.1 and 7.2 Hz, 1H, H-1), 4.45 (brs, 1H, H-11), 4.18 (s, 1H, H-4), 1.08 (s, 3H, H-18), 1.40 (s, 3H, H-19); 13C-NMR (CDCl$_3$) δ 116.4 (C-1), 37.9 (C-2), 204.1 (C-3), 86.4 (C-4), 53.9 (C-5), 25.7 (C-6), 25.2 (C-7), 30.5 (C-8), 54.7 (C-9), 144.8 (C-10), 76.7 (C-11), 33.0 (C-12), 47.4 (C-13), 48.9 (C-14), 25.2 (C-15), 35.3 (C-16), 219.7 (C-17), 15.6 (C-18), 21.0 (C-19).

Compound 28: 1H-NMR (CD$_3$OD) δ 5.94 (s, 1H, H-4), 4.68 (m, 1H, H-11), 1.17 (s, 6H, H-18, H-19); 13C-NMR (CD$_3$OD) δ 58.2 (C-1), 36.7 (C-2), 212.6 (C-3), 131.7 (C-4), 187.9 (C-5), 32.0 (C-6), 29.4 (C-7), 40.4 (C-8), 63.4 (C-9), 76.8 (C-8).
10), 69.7 (C-11), 41.1 (C-12), 41.1 (C-13), 53.9 (C-14), 23.9 (C-15), 36.7 (C-16), 215.0 (C-17), 17.1 (C-18), 20.5 (C-19).

Compound 29: 1H-NMR (CD$_3$OD) δ 5.45 (dt, J = 2.0 and 7.0 Hz, 1H, H-1), 4.63 (d, J = 19.5 Hz, 1H, H-21), 4.27 (d, J = 19.5 Hz, 1H, H-21), 4.21 (s, 1H, H-4), 4.19 (m, 1H, H-11), 3.18 (m, 1H, H-6), 3.02 (m, 1H, H-16β), 3.00 (m, 1H, H-2), 2.75 (dd, J = 7.0 and 15.6 Hz, 1H, H-2), 2.38 (brs, 1H, H-6), 2.25 (m, 3H, H-7, H-12 and H-14), 1.80 (m, 1H, H-12), 1.65 (m, 1H, H-15), 1.53 (m, 1H, H-7), 1.37 (s, 3H, H-19), 1.17 (m, 1H, H-15), 0.92 (4H; m, 1H, H-8; d, J = 5.6 Hz, 3H, H-22), 0.90 (s, 3H, H-18); 13C-NMR (CD$_3$OD) δ 116.8 (C-1), 38.0 (C-2), 203.5 (C-3), 85.7 (C-4), 53.0 (C-5), 30.0 (C-6), 36.2 (C-7), 99.7 (C-9), 143.8 (C-10), 98.1 (C-11), 31.2 (C-12), 49.6 (C-13), 42.5 (C-14), 21.2 (C-15), 34.3 (C-16), 90.1 (C-17), 17.0 (C-18), 20.5 (C-19), 212.1 (C-20), 67.8 (C-21), 14.9 (C-22).

Compound 30: 1H-NMR (CD$_3$OD) δ 5.98 (s, 1H, H-4), 4.62 (d, J = 19.1 Hz, 1H, H-21), 4.52 (m, 1H, H-11), 4.29 (d, J = 19.1 Hz, 1H, H-21), 3.09 (m, 1H, H-16β), 3.01 (m, 1H, H-2), 2.65 (m, 1H, H-2), 2.51 (m, 2H, H-6 e H-6'β), 2.51 (m, 1H, H-7), 2.38 (m, 1H, H-12), 2.21 (m, 1H, H-14), 1.77 (m, 2H, H-1, H-7), 1.68 (m, 1H, H-15), 1.46 (m, 1H, H-12), 1.3 (m, 1H, H-15), 1.25 (m, 1H, H-8), 1.22 (s, 3H, H-19), 1.00 (s, 3H, H-18), 0.89 (d, J = 17.2 Hz, 3H, H-22); 13C-NMR (CD$_3$OD) δ 50.3 (C-1), 37.2 (C-2), 212.5 (C-3), 131.8 (C-4), 187.9 (C-5), 32.7 (C-6), 35.2 (C-7), 41.6 (C-8), 103.8 (C-9), 79.1 (C-10), 72.4 (C-11), 40.4 (C-12), 49.9 (C-13), 45.8 (C-14), 25.3 (C-15), 37.2 (C-16), 92.6 (C-17), 18.3 (C-18), 20.6 (C-19), 213.2 (C-20), 68.5 (C-21), 15.9 (C-22).

5.4 Non-steroidal antinflammatory drug: naproxen sodium salt (33)

Chemicals

Naproxen Na was purchased from Sigma–Aldrich and used without further purification.

Irradiation of naproxen Na in distilled water

A 7.8 x 10^-4 M solution of naproxen sodium salt (33) in distilled water was irradiated at 20°C for 72 h by the solar simulator. The water was evaporated in vacuo and the residue, dissolved in acetone, was filtered on HV13 Millex filter, Millipore Co. The residue was filtered on Sep-Pak C-18 cartridges, Water Co, to
give fractions A–C. Fraction A eluting 20 ml H$_2$O-CH$_3$CN 7:3 contained alcohol 35 (21%). Fraction B eluting 20 ml H$_2$O-CH$_3$CN 1:1 contained ketone 38 (48%) and olefin 39 (9%). Fraction C, eluting 20 ml H$_2$O-CH$_3$CN 3:7, contained 34 (8%) and olefin 39 (11%). Each compound was purified by reverse phase C-18 HPLC [Agilent 1100 system equipped with a ultraviolet detector and a Synergy Hydro column, eluent H$_2$O-CH$_3$CN (3:7), $\lambda = 254$ nm].

Irradiation of naproxen sodium salt in drinking water

A 7.8×10^{-4} M solution of naproxen sodium salt (33) in drinking water was irradiated at 20°C for 72 h by the solar simulator. The water was evaporated in vacuo and the residue, dissolved in acetone, was filtered in HV13 Millex filter. The residue has been filtered on Sep-Pak C-18 to give fractions A–B. Fraction A eluting 20 ml H$_2$O-CH$_3$CN (7:3) contained naproxen Na (16%), alcohol 35 (16%) and dimers 41 (2 x 5%). Fraction B eluting 20 ml H$_2$O-CH$_3$CN (1:1) contained ketone 38 (15%), ether 37 (4%), olefin 39 (3%) and dimer 40 (6%). Each compound has been purified by reverse phase C-18 HPLC.

Spectral data

Compound 34 was identified by comparison of spectral data with those previously reported by Boscá F. *et al.* (1990).

Compound 35: 1H-NMR (CDCl$_3$) δ 7.77 (m, 3H, H-1, H-4 e H-8), 7.52 (dd, $J = 1.8$ and 8.7 Hz, 1H, H-3), 7.20 (dd, $J = 2.0$ and 9.0 Hz, 1H, H-7), 7.18 (s, 1H, H-5), 5.04 (q, $J = 7.0$ Hz, 1H, H-11), 3.97 (s, 3H, OCH$_3$), 1.62 (d, $J = 7.0$ Hz, 3H, H-13); 13C-NMR (CDCl$_3$) δ 157.6 (C-6), 140.9 (C-2), 134.0 (C-10), 129.4 (C-1), 128.7 (C-9), 127.1 (C-8), 124.4 (C-3), 123.7 (C-4), 118.9 (C-7), 105.7 (C-5), 70.5 (C-11), 55.3 (OCH$_3$), 25.0 (C-13).

Compound 36: 1H NMR (CDCl$_3$) δ 7.75 (3H, H-1, H-4 and H-8), 7.47 (dd, $J = 1.8$ and 8.7 Hz, 1H, H-3), 7.16 (dd, $J = 2.5$ and 9.0 Hz, 1H, H-7), 7.14 (d, $J = 2.5$ Hz, 1H, H-5), 5.12 (q, $J = 7.0$ Hz, 1H, H-11), 3.93 (3H, s, OCH$_3$), 1.55 (d, $J = 7.0$ Hz, 3H, H-13).

Compound 37: 1H-NMR (CDCl$_3$) δ 7.74 (d, $J = 8.0$ Hz, 1H, H-4), 7.72 (d, $J = 8.5$ Hz, 1H, H-8), 7.66 (d, $J = 1.3$ Hz, 1H, H-1), 7.45 (dd, $J = 1.3$ and 8.0 Hz, 1H, H-3), 7.15 (dd, $J = 2.0$ and 8.5 Hz, 1H, H-7), 7.14 (d, $J = 2.0$ Hz, 1H, H-5), 4.55 (q, $J = 7.1$ Hz, 1H, H-11), 3.92 (s, 3H, OCH$_3$), 3.39 (q, $J = 7.0$ Hz, 2H, OCH$_2$), 1.52 (d,
$J = 7.1$ Hz, 3H, H-13), 1.20 (t, $J = 7.0$ Hz, 3H, CH$_3$); 13C-NMR (CDCl$_3$) δ 157.6 (C-6), 139.3 (C-2), 134.1 (C-10), 129.3 (C-8), 128.7 (C-9), 127.1 (C-4), 124.8 (C-1), 124.7 (C-3), 118.7 (C-7), 105.7 (C-5), 77.8 (C-11), 63.9 (OCH$_2$), 55.3 (OCH$_3$), 24.1 (C-13), 15.4 (CH$_3$).

Compound 38: 1H-NMR (CDCl$_3$) δ 8.40 (d, $J = 1.5$ Hz, 1H, H-1), 8.01 (dd, $J = 1.5$ and 8.5 Hz, 1H, H-3), 7.86 (d, $J = 9.0$ Hz, 1H, H-8), 7.77 (d, $J = 8.5$ Hz, 1H, H-4), 7.21 (dd, $J = 2.5$ and 9.0 Hz, 1H, H-7), 7.16 (d, $J = 2.5$ Hz, 1H, H-5), 3.96 (s, 3H, OCH$_3$), 2.70 (s, 3H, H-13); 13C-NMR (CDCl$_3$) δ 197.8 (CO), 159.7 (C-6), 137.2 (C-2), 132.5 (C-10), 131.1 (C-1), 131.1 (C-8), 130.0 (C-9), 127.0 (C-4), 124.6 (C-3), 119.6 (C-7), 105.7 (C-5), 55.4 (OCH$_3$), 26.5 (C-13).

Compound 39: 1H-NMR (CDCl$_3$) δ 7.70 (3H; d, $J = 8.0$ Hz, 1H, H-4; d, $J = 8$ Hz, 1H, H-8; s, 1H, H-1), 7.61 (dd, $J = 2.0$ and 8.7 Hz, 1H, H-3), 7.13 (2H; 1H, dd, H-7; 1H, s, H-5), 6.82 (dd, $J = 10.5$ and 16.5 Hz, 1H, H-11), 5.82 (dd, $J = 1.0$ and 16.5 Hz, 1H, H-13), 5.28 (dd, $J = 1.0$ and 10.5 Hz, 1H, H-12), 3.93 (s, 3H, OCH$_3$); EIMS: m/z 184 [M]$^+$, 152 [M-OCH$_3$]$^+$.

Compound 40: 1H-NMR (CDCl$_3$) δ 8.12 (d, $J = 9.0$ Hz, 1H, H-8), 7.88 (d, $J = 2.0$ Hz; 1H, H-1'), 7.74 (d, $J = 9.0$ Hz, 1H, H-8'), 7.64 (d, $J = 9.0$ Hz, 1H, H-4'), 7.59 (d, $J = 9.0$ Hz, 1H, H-4), 7.28 (dd, $J = 2.0$ and 9.0 Hz, 1H, H-3'), 7.16 (3H; d, $J = 2.5$, 1H, H-5; dd, $J = 2.5$ and 9.0 Hz, 1H, H-7; dd, $J = 2.5$ and 9.0 Hz, 1H, H-7'), 7.10 (d, $J = 2.5$ Hz, 1H, H-5'), 6.98 (d, $J = 9.0$ Hz, 1H, H-3), 5.22 (q, $J = 7.0$ Hz, 1H, H-11'), 3.92 (s, 3H, OCH$_3$), 3.91 (s, 3H, OCH$_3$), 1.87 (d, $J = 7.0$ Hz, 3H, H-13'); 13C-NMR (CDCl$_3$) δ 157.8 (C-6'), 155.6 (C-6), 150.3 (C-2), 138.9 (C-2'), 133.4 (C-10'), 129.3 (C-8'), 129.0 (C-9), 128.1 (C-9'), 128.1 (C-10), 127.9 (C-4'), 127.4 (C-4'), 127.1 (C-3'), 124.1 (C-1'), 124.1 (C-8), 123.9 (C-1), 120.0 (C-3), 119.1 (C-7), 118.9 (C-7'), 107.2 (C-5), 105.8 (C-5'), 55.5 (2 x OMe), 35.1 (C-11'), 17.3 (C-13'); MALDI-TOF m/z 358 [M]$^+$, EIMS m/z 185 [M-C$_{11}$H$_9$O$_2$]$^+$, 156 [C$_{11}$H$_9$O$_2$-OH]$^+$.

Compound 41 (Rf = 0.77): 1H-NMR (CDCl$_3$) δ 7.66 (2H; d, $J = 9.0$ Hz, 1H, H-4; d, $J = 9.0$ Hz, 1H, H-8), 7.65 (d, $J = 2.0$ Hz, 1H, H-1), 7.38 (dd, $J = 2.0$ and 9.0 Hz, 1H, H-3), 7.14 (dd, $J = 2.5$ and 9.0 Hz, 1H, H-7), 7.10 (d, $J = 2.5$ Hz, 1H, H-5), 4.69 (q, $J = 7.0$, 1H; H-11), 3.91 (s, 3H, OCH$_3$), 1.56 (d, $J = 7.0$, 1H; 3H, H-13); 13C-NMR (CDCl$_3$) δ 124.8 (C-1), 157.5 (C-6), 139.4 (C-2), 133.9 (C-10), 129.3
(C-8), 128.7 (C-9), 128.7 (C-4), 125.2 (C-3), 118.6 (C-7), 105.7 (C-5), 74.5 (C-11), 55.3 (OCH₃), 22.8 (C-13); MALDI-TOF m/z 386 [M]+, EIMS m/z 185 [M-C₃H₉O₂]⁺.

Compound 41 (Rf = 0.69): ¹H-NMR (CDCl₃) δ 7.77 (d, J = 9.0 Hz, 1H, H-4), 7.72 (d, J = 9.0 Hz, 1H, H-8), 7.58 (d, J = 2.0, 1H, H-1), 7.46 (dd, J = 2.0 and 7.0 Hz, 1H, H-3), 7.17 (2H; d, J = 2.5 Hz, 1H, H-5; dd, J = 2.5 e 9.0 Hz, 1H, H-7), 4.41 (q, J = 7.0 Hz, 1H; H-11), 3.95 (s, 3H, OCH₃), 1.46 (d, J = 7.0 Hz, 3H, H-13); ¹³C-NMR (CDCl₃) δ 157.6 (C-6), 139.2 (C-2), 134.1 (C-10), 129.3 (C-8), 128.7 (C-9), 127.2 (C-4), 125.1 (C-3), 124.9 (C-1), 118.8 (C-7), 105.8 (C-5), 74.6 (C-11), 55.3 (OCH₃), 24.6 (C-13); MALDI-TOF m/z 386 [M]+, EIMS m/z 185 [M-C₃H₉O₂]⁺.

5.5 Diuretics: furosemide (42) and hydrochlorothiazide (48)

Chemicals
Furosemide and hydrochlorothiazide were purchased from Sigma–Aldrich and used without further purification.

Irradiation of furosemide (42) in water (24μM)
A solution of furosemide (24 μM) in distilled water was irradiated at room temperature for 36 hr by the solar simulator. The water was concentrated and the residue was filtered on HV13 Millex filter (Millipore Co) and injected in a HPLC equipped with a ultraviolet detector. Experiments under the same irradiation conditions were also run in distilled water under argon atmosphere, in distilled water added of nitrate ions (5 mg/l), in distilled water in the presence of humic acids (10 mg/l), in drinking water and in effluent of a sewage treatment plant (STP). In all cases the only photoproduct was dimer 8a and the yields of the photoproduct after 36 h, calculated by HPLC, were 45, 46, 47, and 45% respectively.

Phototransformation of furosemide (42) in distilled water (preparative scale)
A solution of furosemide (0.6 mM) in distilled water was irradiated at room temperature for 36 hr by the solar simulator. The water was concentrated and the residue was filtered on HV13 Millex filter (Millipore Co). The mixture (100 mg) separated by silica gel flash column chromatography eluting with CHCl₃-acetone-
CH₃OH (3:1:1), yielded two fractions: A (56 mg) and B (38 mg). Fraction A contained mainly furosemide. Fraction B was further purified by reverse phase C-18 HPLC performed on an Agilent 1100 apparatus equipped with a UV-detector and a Synergy Hydro column which was equilibrated with a mixture of A (H₂O containing 1% acetic acid) - B (MeOH containing 1% acetic acid) 10:0 and the run was with the following program: an increase of B up to 5% in 5 min and then an increase of B up to 100% in 10 min, finally isocratic run for 5 min. The detector was set at 325 nm. From HPLC compound 8a (40%) was obtained.

Spectral data

Compound 43: ¹H NMR (D₂O) δ 8.01 (s, 1H, H-2), 7.35 (d, J = 3.5 Hz, 1H, H-11), 6.30 (m, 1H, H-10), 6.24 (d, J = 5.5 Hz, 1H, H-9), 4.24 (s, 2H, H-7).

¹³C NMR (D₂O) δ 173.2 (C-12), 164.3 (C-4), 152.6 (C-6), 150.2 (C-8), 140.2 (C-11), 130.7 (C-2), 113.4 (C-3), 108.3 (C-9), 108.3 (C-5), 104.8 (C-10), 104.4 (C-1), 37.3 (C-7); MALDI-TOF m/z 560 [M – CO₂ – H₂O]⁺, 543 [M – SO₂NH]⁺ and 526 [543 – OH]⁺.

Irradiation of HCTZ (48) in water (100 µM)

In a typical procedure a suspension of HCTZ (100 µM) in distilled water was irradiated at room temperature for 200 hr by the solar simulator. To follow the irradiation experiment, an aliquot was withdrawn at various times, concentrated and the residue dissolved in methanol, and injected in a HPLC-UV system (Agilent 1100 system). The column used was a RP-18 column (Phenomenex HYDRO RP-18, 4 µm, 250 x 4.5 mm) and eluted with a mixture of A (H₂O containing 1% acetic acid) - B (MeOH containing 1% acetic acid) 90:10, detection was at 260 nm and the flow rate was 0.7 ml/min. Experiments in the same irradiation conditions were run also in distilled water under argon atmosphere, and in water of a sewage treatment plant (STP).

Irradiation of HCTZ (48) in distilled water (preparative scale)

A solution of HCTZ (0.7 mM) in distilled water was irradiated at room temperature for 200 hr by the solar simulator. The water was evaporated to dryness. The mixture (100 mg) separated by silica gel flash column chromatography eluting with hexane-ethyl ether-acetone (3:3:4), yielded two
fractions: A (70 mg) and B (26 mg). Fraction A contained HCTZ and compound 52. Compound 52 (30%) was separated from HCTZ on a preparative TLC (0.5 mm) eluting with hexane-ethyl ether-acetone (3:3:4). Fraction B was purified from reverse phase-HPLC (for experimental conditions see above) and compounds 51 (21%) and 55 (2%) were obtained.

Spectral data

Compound 51: ¹H NMR (CD₃OD) δ 7.92 (s, 1H, H-8), 6.24 (s, 1H, H-5), 4.70 (s, 2H, H-3); ¹³C NMR (CD₃OD) δ 160.0 (C-6), 150.0 (C-4'), 127.0 (C-8), 120.2 (C-7), 114.6 (C-8'), 101.9 (C-5), 56.0 (C-3); ESI-MS: m/z 278 [M–1]+.

Compound 52: ¹H NMR (CD₃OD) δ 8.34 (s, 1H, H-2), 6.97 (s, 1H, H-5); ¹³C NMR (CD₃OD) δ 150.5 (C-4), 137.0 (C-1), 132.1 (C-2), 128.2 (C-6), 123.0 (C-3), 119.2 (C-5); ESI-MS: m/z 278 [M–1]+.

Compound 55: ¹H NMR (CD₃OD) δ 8.07 (1H, s, H-2), 6.18 (1H, s, H-5); ¹³C NMR (CD₃OD) δ 152.6 (C-6), 145.6 (C-4), 131.9 (C-2), 119.5 (C-1), 116.5 (C-5), 116.2 (C-3); ESI-MS: m/z 266 [M–1]+.

5.5 Fibrates: bezafibrate (59), gemfibrozil (60), fenofibrate (61)

Chemicals

Compounds 59 - 61 were purchased from Aldrich. Fenofibric acid (62) was obtained by dissolving fenofibrate (61) (1g) in 5% methanolic KOH (40 ml) and keeping the reaction mixture at 25 °C for 24 hours. After neutralization of the solution by Amberlite IR-120, methanol was evaporated in vacuum and 62 was obtained quantitatively.

General procedure

A distilled water suspension (solution) of the selected drug (24 µM) in a beaker, equipped with a jacket thermostated at 25° C, was irradiated from the top by the solar simulator. The transformation course was monitored by thin layer chromatography after 50, 100 and/or 200 hr. For preparative purposes, 0.5-0.6 mM concentrations were used. Further experiments were run in distilled water added of nitrate ions (5 mg/l), in distilled water in the presence of humic acids (10 mg/l), in an effluent of the sewage treatment plant (STP), in distilled water after saturating with argon for 30 min.
Irradiation of bezafibrate (59)

Bezafibrate (108 mg) in distilled water (500 ml) was irradiated for 200 hr by the solar simulator. Water was evaporated in vacuo, the residue was chromatographed by silica gel flash chromatography [CHCl₃-acetone-CH₃OH (7:2:1)] to give unreacted bezafibrate (73%) and a fraction A (20 mg). Fraction A was subject to preparative TLC [hexane-acetone (7:3)] to give bezafibrate (11%), pure products 63 (2%) and 64 (3%).

From the irradiation of bezafibrate in distilled water (108 mg/500 ml) in the presence of humic acid or KNO₃ and in the irradiation with STP water, products 63 (2%) and 64 (2%) were isolated. Irradiation of bezafibrate in distilled water saturated with argon gave only compound 64 (2%).

Compound 63: ¹H NMR (CDCl₃) δ 7.74 (d, J = 9.0 Hz, 2H, H-2 and H-6), 7.45 (d, J = 9.0 Hz, 2H, H-3 and H-5), 7.06 (d, J = 8.5 Hz, 2H, H-2' and H-6'), 6.71 (d, J = 8.5 Hz, 2H, H-3' and H-5'), 3.58 (m, J = 5.5 Hz, 2H, H-8'), 2.80 (t, J = 6.9 Hz, 2H, H-7'); ¹³C NMR (CDCl₃) δ 169.4 (C-7), 157.4 (C-4'), 139.0 (C-1), 134.9 (C-1'), 131.7 (C-4), 131.2 (C-2' and C-6'), 130.3 (C-3 and C-5), 130.1 (C-2 and C-6), 116.7 (C-3' and C-5'), 43.4 (C-8'), 36.1 (C-7').

Compound 64: ¹H NMR (CDCl₃) δ 7.62 (d, J = 8.5 Hz, 2H, H-2 and H-6), 7.38 (d, J = 8.5 Hz, 2H, H-3 and H-5), 7.12 (d, J = 8.9 Hz, 2H, H-2' and H-6'), 6.85 (d, J = 8.9 Hz, 2H, H-3' and H-5'), 6.02 (brs, 1H, NH), 4.53 (q, J = 6.1 Hz, 1H, H-9'), 3.68 (m, J = 5.5 Hz, 2H, H-8'), 2.86 (t, J = 6.9 Hz, 2H, H-7'), 1.32 (d, J = 6.1 Hz, 6H, H-10' and H-11'); ¹³C NMR (CDCl₃) δ 164.6 (C-7), 156.9 (C-4'), 137.8 (C-1), 133.0 (C-1'), 130.5 (C-4), 129.7 (C-2' and C-6'), 128.8 (C-3 and C-5), 128.2 (C-2 and C-6), 116.2 (C-3' and C-5'), 69.9 (C-9'), 41.3 (C-8'), 34.7 (C-7'), 22.0 (C-10' and C-11').

Irradiation of gemfibrozil (60)

Gemfibrozil (100 mg) was dispersed in distilled water (700 ml) and irradiated by the solar simulator. After 200 hr, water was evaporated in vacuo and the reaction mixture was chromatographed by silica gel flash chromatography [hexane-ethyl acetate (4:1)] giving gemfibrozil (85%) and crude photoproduct 65 (9%) that was purified by preparative TLC eluting with hexane-ethyl acetate (7:3).
Irradiating in distilled water in the presence of nitrate ions or humic acids, in STP water or in distilled water in Argon atmosphere no transformation products were obtained, even after 300 hr.

Compound **65**: IR (CHCl₃) ν 3300-2500, 2952, 2867, 1670, 1604 cm⁻¹; ¹H NMR (CDCl₃) δ 10.38 (s, 1H, H-14), 7.71 (d, J = 7.8 Hz, 1H, H-3), 6.81 (d, J = 7.5 Hz, 1H, H-4), 6.70 (brs, 1H, H-6), 4.03 (t, J = 6.1 Hz, 2H, H-7), 2.38 (s, 3H, H-15), 1.80 (m, 2H, H-8), 1.78 (m, 2H, H-9), 1.26 (s, 6H, H-12 and H-13); ¹³C NMR (CDCl₃) δ 189.5 (C-14), 182.1 (C-11), 161.4 (C-1), 147.4 (C-5), 128.3 (C-3), 122.6 (C-2), 121.6 (C-4), 112.9 (C-6), 68.4 (C-7), 41.8 (C-8), 36.7 (C-9), 25.0 (C-12 and C-13), 24.8 (C-10), 22.3 (C-15); EIMS: m/z 264 [C₁₅H₂₀O₄]⁺, 136 [C₈H₅O₂]⁺.

Irradiation of fenofibrate (61)
The suspension of fenofibrate (108 mg) in distilled water (500 ml) was irradiated for 200 hr by the solar simulator. Water was evaporated and the residue was chromatographed by silica gel flash chromatography [hexane-ethyl acetate (9:1)] to give unreacted fenofibrate (88%) and a fraction A that was chromatographed by preparative TLC [hexane-ethyl acetate (4:1)] to give fenofibric acid (62) (4%) and compound 66 (4%).

Irradiation in distilled water in the presence of nitrate ions, humic acids, or in STP water gave products 62 and 66 in similar yields as in pure distilled water.

Fenofibrate (61) by irradiation in argon gave only fenofibric acid 13 in traces

Compound **66**: ¹H NMR (CDCl₃) δ 7.76 (d, J = 8.5 Hz, 2H, H-2 and H-6), 7.71 (d, J = 9.0 Hz, 2H, H-2’ and H-6’), 7.46 (d, J = 8.5 Hz, 2H, H-3 and H-5), 6.91 (d, J = 8.5 Hz, 2H, H-3’ and H-5’); ¹³C NMR (CDCl₃) δ 196.3 (C-7), 165.3 (C-4’), 139.1 (C-1), 138.3 (C-1’), 134.0 (C-2 and C-6), 132.2 (C-3 and C-5), 129.5 (C-2’ and C-6’), 128.8 (C-4), 116.7 (C-3’ and C-5’).

Irradiation of fenofibric acid (62)
Fenofibric acid (100 mg) was dispersed in distilled water (500 mL) and irradiated by the solar simulator. After 100 hr TLC showed the disappearance of 62. Water was evaporated under vacuum and the residue was chromatographed on silica gel eluting with hexane-acetone (4:1) to give compound 66 (3%), compound 67 (70%), compound 68 (14%).
Very similar results were obtained by irradiations in the presence of nitrate ions and of humic acids or from the experiment in STP water. Differently, irradiation in argon gave only compounds 67 (82%) and 68 (16%).

Compound 67: 1H NMR (CDCl$_3$) δ 7.77 (d, $J = 8.9$ Hz, 2H, H-2 and H-6), 7.70 (d, $J = 8.7$ Hz, 2H, H-2' and H-6'), 7.44 (d, $J = 8.7$ Hz, 2H, H-3 and H-5), 6.92 (d, $J = 8.7$ Hz, 2H, H-3' and H-5'), 4.59 (m, $J = 6.1$ Hz, 1H, H-7'), 1.30 (d, $J = 6.1$ Hz, 6H, H-8' and H-9'); 13C NMR (CDCl$_3$) δ 194.0 (C-7), 161.6 (C-4'), 137.9 (C-1), 136.3 (C-4), 132.2 (C-2 and C-6), 130.8 (C-3 and C-5), 129.0 (C-1'), 128.2 (C-2' and C-6'), 114.7 (C-3' and C-5'), 69.8 (C-7'), 21.6 (C-8' and C-9').

Compound 68: 1H NMR (CDCl$_3$) δ 7.76 (d, $J = 8.2$ Hz, 4H, H-2 and H-6; H-2' and H-6'), 7.61 (d, $J = 8.2$ Hz, 2H, H-3 and H-5), 7.46 (d, $J = 8.7$ Hz, 2H, H-3' and H-5'), 1.98 (brs, 1H, OH); 13C NMR (CDCl$_3$) δ 195.2 (C-7), 154.0 (C-4'), 138.8 (C-1), 136.0 (C-4), 135.6 (C-1'), 131.4 (C-2 and C-6), 130.1 (C-3 and C-5), 128.6 (C-2' and C-6'), 124.5 (C-3' and C-5'), 72.6 (C-7'), 31.7 (C-8' and C-9'); EIMS: m/z 274 [M]$^+$, 259 [M-CH$_3$]$^+$.

5.6 Proton Pump Inhibitors: lansoprazole (70a) and omeprazole (70b)

Chimicals

Lansoprazole and omeprazole were obtained from Sigma and used as received. All the other chemicals have been purchased from Aldrich.

General procedure

Dispersions were prepared by suspending the drug (40 mg) in milliQ water (500 ml). Experiments at pH 7.1 were carried out using the same concentration in pure water, buffered with NaH$_2$PO$_4$/Na$_2$HPO$_4$, and at pH 4.0 or 9.0 by adjusting the pH values using HCl 2M or KOH 2M, respectively. In a typical procedure each dispersion of the drug was kept in the dark or irradiated at room temperature (in the latter case the sample was irradiated from the top and maintained in a thermostated pyrex beaker). The water was then evaporated, and the residue was first analyzed by 1H NMR and then chromatographed by TLC. The dispersions investigated at pH 4.0 or 9.0 were neutralized before water evaporation. Experiments in the presence of humic acid (5 ppm) and KNO$_3$ (10 ppm) were
carried out using the same concentration of the drug and then analyzing the mixture in the dark or by irradiation as above.

Experiments were carried out using the same concentration of the drug in closed pyrex tube after saturating with oxygen or argon and then analyzing the mixture in the dark or by irradiation, as above.

Hydrolysis of lansoprazole (70a)

The dispersion of lansoprazole (40 mg) in water milliQ (500 ml), kept in the dark for 72 h, led, after evaporation of water, to a red-coloured residue (30 mg). The latter was chromatographed on preparative TLC [CH$_2$Cl$_2$-(CH$_3$)$_2$CO (9:1)] affording sulfide 73a (10%), lansoprazole (70a) (57%), a red fraction (17%) and benzimidazolone 75a (3%) at decreasing Rfs.

Photolysis of lansoprazole (70a)

The dispersion of lansoprazole (40 mg) in milliQ water (500 ml), irradiated by solar simulator for 72 h, after water evaporation, gave a residue (38 mg) which was purified on preparative TLC [CHCl$_3$/CH$_3$OH (95:5)] giving sulfide 73a (10%), dianiline 71a (8%), fraction A (16 mg), a red fraction (15%), benzimidazole 74a (5%) and benzimidazolone 75a (5%) at decreasing Rfs. Fraction A (16 mg) was purified on preparative TLC [CH$_2$Cl$_2$/CH$_3$OH (97:3)] giving dianiline 71a (11%), pyridine 72a (5%), lansoprazole (24%) at decreasing Rfs.

Hydrolysis of omeprazole (70b)

The dispersion of omeprazole (70b), kept in the dark for 43 h, led, after water evaporation, to an intense red-coloured residue which was separated on preparative TLC [CH$_2$Cl$_2$-CH$_3$OH (95:5)], giving compound 73b (25%), omeprazole (20%), an intractable red fraction (15%) and compound 75b (10%), at decreasing Rfs. The red fractions deriving from both drugs consisted of diverse products (TLC and 1H NMR, data not shown). Attempts to separate and/or characterize the red materials failed due to their alteration over time or during chromatographic processes.

Photolysis of omeprazole (70b)

A suspension of omeprazole (80 ppm) in water milliQ was exposed to the solar simulator for 43 h. After evaporation of water, the residue (25 mg) was
chromatographed on TLC [CH₂Cl₂-CH₃OH (95:5)] leading, at decreasing Rfs, to dianiline 71b (10%), sulfide 73b (16%), benzimidazolone 75b (20%), pyridine 72b (traces, <1%) benzimidazole 74b (traces, <1%) and a red fraction (20%).

Photostability of derivatives sulfides (73), benzimidazoles (75), benzimidazolones (75).

Suspensions of benzimidazoles 74a, 75a, derivatives of lansoprazole, and 74b, 75b derivatives of omeprazole, (10 ppm) in MilliQ water were exposed to the solar simulator for 72 or 43 h, respectively. Each experiment was performed in duplicate, with one set of dark controls. Each reaction mixture was evaporated in vacuum and each residue was analysed by 1HNMR and TLC showing only the starting material.

When sulfides 73a and 73b were treated in the same conditions, analysis of dark samples showed only starting materials, while by irradiation they led to a mixture of products. The mixture from 73a (8 mg) was subjected to preparative TLC [CH₂Cl₂-CH₃OH (93:7)] affording dianiline 71a (30%) and benzimidazole 74a (38%). The mixture (7mg) deriving from irradiation of 73b was subjected to preparative TLC [CH₂Cl₂/CH₃OH (93:7)] giving dianiline 71b (43%) and benzimidazole 74b (28%).

Synthesis of 2-((4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-yl)methylsulfonyl)-1H benzo[d]imidazole (78)

To a solution of compound 70a (18 mg) in anhydrous dichloromethane (0.02 M), m-chloroperbenzoic acid (1 equiv.) was added and the resulting mixture kept at room temperature under magnetic stirring. After two hours, TLC showed that compound 70a disappeared. Then, the mixture was washed with water and anhydrified with Na₂SO₄. After filtration and evaporation of dichloromethane, the sulfone 78 (64%) was purified by TLC [eluent CH₂Cl₂-methanol (96:4)]. When the sulfone was dispersed in milliQ water and kept in the dark, analysis by TLC and 1H NMR after 72 h showed the sulfone unchanged.

Spectral data

Infrared spectra (IR) were determined in CHCl₃ solutions (0.025 M), while ultraviolet spectra (UV) were recorded in ethanol (10⁻⁴ M). Compounds 72b and 74b were identified by 1H NMR and LC-MS due to their low amounts.
Compound **71a**: IR (CHCl$_3$) ν_{max} 3448, 2929 cm$^{-1}$; 1H-NMR (CD$_3$OD) δ 7.20 (m, 4H, Ar-H); 13C-NMR (CD$_3$OD) δ 133.8 (C-1 and C-6), 124.0 (C-3 and C-4), 110.9 (C-2 and C-5).

Compound **72a**: IR (CHCl$_3$) ν_{max} 3357, 1592, 1170 cm$^{-1}$; 1H-NMR (CD$_3$OD) δ 8.33 (d, $J = 5.5$ Hz, 1H, H-6'), 7.06 (d, $J = 5.5$ Hz, 1H, H-5'), 4.82 (q, $J = 8.4$ Hz, 2H, CH$_2$CF$_3$), 4.62 (s, 2H, CH$_2$OH), 2.13 (s, 3H, CH$_3$); 13C-NMR (CD$_3$OD) δ 164.2 (C-4'), 160.3 (C-2'), 148.7 (C-6'), 122.6 (C-3'), 120.0 (CF$_3$), 108.3 (C-5'), 67.2 (OCH$_2$), 64.5 (CH$_2$OH), 10.3 (CH$_3$); EIMS m/z 221 [M$^+$].

Compound **73a**: IR (CHCl$_3$) ν_{max} 3100, 1581, 1168 cm$^{-1}$; UV λ_{max} 208, 292 nm; 1H-NMR (CD$_3$OD) δ 8.27 (d, $J = 5.6$ Hz, 1H, H-6'), 7.50 (brs, 2H, H-4, H-7), 7.22 (m, 2H, H-5, H-6), 7.02 (d, $J = 5.6$ Hz, 1H, H-5'), 4.70 (q, $J = 8.4$ Hz, 2H, CH$_2$CF$_3$), 4.59 (s, 2H, CH$_2$S), 2.29 (s, 3H, CH$_3$); 13C-NMR (CD$_3$OD) δ 163.0 (C-4'), 155.5 (C-2'), 149.4 (C-6'), 147.5 (C-2), 139.8 (C-8, C-9), 122.1 (C-5, C-6), 123.0 (C-3'), 122.0 (CF$_3$), 113.0 (C-4, C-7), 106.4 (C-5'), 64.8 (CH$_2$CF$_3$), 36.1 (CH$_2$S), 9.3 (CH$_3$); EIMS m/z 353 [M$^+$].

Compound **74a**: 1H-NMR (CD$_3$OD) δ 8.15 (s, 1H, H-2), 7.60 (m, 2H, H-4 and H-7), 7.26 (m, 2H, H-5 and H-6); 13C-NMR (CD$_3$OD) δ 142.5 (C-2), 123.8 (C-5 and C-6), 122.2 (C-8 and C-9), 110.2 (C-4 and C-7); EIMS m/z 118 [M$^+$].

Compound **75a**: 1H-NMR (DMSO) δ 7.01 (m, 4H, ArH); 13C-NMR (CD$_3$OD) δ 156.1 (CO), 128.0 (C-8 and C-9), 120.9 (C-5 and C-6), 109.5 (C-4 and C-7).

Compound **71b**: IR (CHCl$_3$) ν_{max} 3290, 3195, 1626 cm$^{-1}$; 1H-NMR (CD$_3$OD) δ 7.08 (d, $J = 9.4$ Hz, 1H, H-6), 6.78 (m, 2H, H-2, H-5), 3.79 (s, 3H, OCH$_3$). 13C-NMR (CD$_3$OD) δ 157.1 (C-1), 133.4 (C-3), 126.7 (C-4), 110.5 (C-6), 110.2 (C-5), 94.7 (C-2), 55.1 (OCH$_3$); EIMS m/z 138 [M$^+$].

Compound **72b**: 1H-NMR (CD$_3$OD) δ 8.14 (s, 1H, H-6), 4.66 (s, 2H, CH$_2$O), 3.80 (s, 3H, OCH$_3$), 2.29 (s, 3H, CH$_3$), 2.26 (s, 3H, CH$_3$); LC-MS m/z 167 [M$^+$].

Compound **73b**: IR (CHCl$_3$) ν_{max} 3100, 1591 cm$^{-1}$; UV λ_{max} 214, 300 nm; 1H-NMR (CD$_3$OD) δ 8.13 (s, 1H, H-6'), 7.38 (d, $J = 8.8$ Hz, 1H, H-7), 7.00 (d, $J = 2.4$ Hz, 1H, H-4), 6.81 (dd, $J = 8.8$ and 2.4 Hz, 1H, H-6), 4.54 (s, 2H, CH$_2$S), 3.79 (s, 3H, OCH$_3$), 3.74 (s, 3H, OCH$_3$), 2.24 (s, 3H, CH$_3$), 2.22 (s, 3H, CH$_3$); 13C-NMR (CD$_3$OD) δ 166.4 (C-4'), 158.1 (C-5), 155.6 (C-2'), 149.8 (C-6'), 150.3 (C-2), 140.8 (C-9), 135.0 (C-8), 127.7 (C-3'), 127.3 (C-5'), 116.1 (C-4), 113.1 (C-6), 77.4 (C-7), 66.8 (CH$_2$OH), 20.7 (CH$_3$); EIMS m/z 232 [M$^+$].

Compound **74b**: 1H-NMR (CD$_3$OD) δ 8.12 (s, 1H, H-2), 7.50 (m, 2H, H-4 and H-7), 7.26 (m, 2H, H-5 and H-6); 13C-NMR (CD$_3$OD) δ 142.5 (C-2), 123.8 (C-5 and C-6), 122.2 (C-8 and C-9), 110.2 (C-4 and C-7); EIMS m/z 118 [M$^+$].
97.8 (C-7), 60.6 (OCH₃), 56.2 (OCH₃), 37.8 (CH₂S), 13.4 (CH₃), 11.3 (CH₃); EIMS m/z 329 [M]+.

Compound 74b: ¹H-NMR (CD₃OD) δ 8.04 (s, 1H, H-2), 7.47 (d, J = 9.0 Hz, 1H, H-7), 7.09 (brs, 1H, H-4), 6.90 (dd, J = 9.0 and 2.5 Hz, 1H, H-6), 3.83 (s, 3H, OCH₃); LC-MS m/z 148 [M]+.

Compound 75b: IR (CHCl₃) ν max 3140, 1720 cm⁻¹; ¹H-NMR (CD₃OD) δ 6.92 (d, J = 8.0 Hz, 1H, H-7), 6.66 (d, J = 2.5 Hz, 1H, H-4), 6.63 (dd, J = 8.5 and 2.5 Hz, 1H, H-6), 3.77 (s, 3H, OCH₃). ¹³C-NMR (CD₃OD) δ 158.4 (C-2), 157.0 (C-5), 131.6 (C-9), 124.7 (C-8), 110.7 (C-7), 108.6 (C-6), 96.9 (C-4), 56.2 (OCH₃); EIMS m/z 164 [M]+.

Compound 78: IR (CHCl₃): ν max 3198, 1581, 1341, 1172, 1144 cm⁻¹; ¹H-NMR (CDCl₃) δ 8.27 (d, J = 5.3 Hz, 1H, H-6'), 7.65 (brs, 2H, H-4, H-7), 7.37 (m, 2H, H-5, H-6), 6.68 (d, J = 5.3 Hz, 1H, H-5'), 5.10 (s, 2H, SO₂CH₂), 4.37 (q, J = 8.4, 2H, CH₂CF₃), 2.35 (s, 3H, CH₃). ¹³C-NMR (CDCl₃) δ 164.0 (C-4'), 162.5 (C-2'), 148.1 (C-6'), 147.5 (C-2), 147.3 (C-8, C-9), 128.1 (C-5, C-6), 125.4 (C-3'), 125.3 (CF₃), 115.0 (C-4, C-7), 106.5 (C-5'), 65.3 (CH₂CF₃), 60.2 (CH₂SO₂), 11.4 (CH₃); EIMS m/z 385 [M]+.

6. General Procedure Toxicity Tests

Acute toxicity testing

Acute toxicity was determined on primary consumers typical of the aquatic chain: the rotifer *B. Calyciflorus* and the crustaceans *D. magna* and *T. platyurus*. All the organisms were provided in cryptobioticstages by MicroBioTests Inc., Nazareth, Belgium. The test on *D. magna* was performed according to the ISO (International Organization for Standardization) 6341, the test on *B. calyciflorus* following the ASTM (American Society for Testing and Materials, 1991) E1440-91, while the test on *T. platyurus* following the manufacturer procedure.

Parental compounds and their photoderivatives were dissolved in dimethylsulphoxide (DMSO) and further diluted in double-deionized water to
make the final stock solutions. The DMSO concentration in the exposure solutions, including controls, was 0.01% (v/v) that is a non-effect dose as estimated in preliminary tests. All bioassays were conducted under static conditions, with no renewal of the test solution, measuring dissolved oxygen and pH in each sample both at the start and at the end of testing. At the same time as toxicity testing, reference tests were performed with potassium dichromate (Aldrich) for all the organisms. Juveniles (age, 0–2 h) of the rotifer *B. Calyciflorus* were hatched from cysts after 16–18 h of incubation under a light source of 3000–4000 lux at 25 °C in synthetic reconstituted medium (moderately hard medium EPA-600/4-85-013) and then exposed to the test sample. Hardness was 80–100 mg/l CaCO3 and the dissolved oxygen content was at least 90% saturation at the beginning of the test. Tests were run in 36-well plates, five rotifers per well (0.3 ml of test solution, slightly different from the ASTM procedure), six replicates for each of the five concentrations. Test duration was 24 h, temperature 25°C, in the dark. The test parameter considered was mortality and the concentration found to kill 50% rotifers in 24 h was indicated as LC50.

The bioassay on the anostracan crustacean *T. platyurus* was conducted using second- and third-instar fairy shrimp larvae hatched from cysts after 20–22 h of incubation at 25°C in synthetic reconstituted freshwater (the same moderately hard EPA medium as rotifers) under continuous illumination (light source 3000–4000 lux). Tests were performed in 24-well plates, ten crustaceans per well (1.0 ml of test solution), three replicates for each of the five concentrations. Test duration was 24 h, temperature 25°C, in the dark. The test parameter considered was mortality and the concentration found to kill 50% crustaceans in 24 h was indicated as LC50.

The test on *D. magna* Straus was performed using juveniles (age< 24 h), hatched from ephippia after 3–4 days of incubation at 20°C under continuous illumination (light source 10 000 lux). The synthetic reconstituted freshwater, aerated before use, was the ISO hard medium (hardness 250 mg/l expressed as CaCO3). Tests were performed with neonates< 24 h, five daphnids per vessel (10 ml of test solution), four replicates for each of the five concentrations. Daphnies were exposed to the samples at temperature of 20°C in the dark. After 24 h the number...
of immobile daphnies was recorded to determine the sample concentration able to achieve 50% immobilization and it was indicated as EC50. *D. magna* was considered to be immobilized if it was not able to swim after gentle agitation of the liquid in 15 s of observation even if it can still move its antennae (ISO, 1996).

Chronic toxicity testing

The effects of the investigated drugs and their derivatives on the population growth inhibition were assessed using standard methods for chronic toxicity tests on the alga *P. subcapitata* (already known as *Selenastrum capricornutum*) and the crustacean *C. dubia*. The algal growth inhibition test was run in 72 h according to the ISO procedure 8692 (ISO, 1987). The *P. subcapitata* inoculum (1 · 104 cells/ml) was taken from an exponentially growing pre-culture (strain CCAP 278/4) and poured in 25 ml of test solution in five concentrations and three replicates. Flasks were placed in a growth chamber at 25°C under continuous illumination (8000 lux). The cell density was measured at 0 time and every 24 h for 3 days by an electronic particle dual threshold counter (Coulter Counter Z2, 100 lm capillary, Instrumentation Laboratory, Miami, FL, USA). The test on *C. dubia* was run in 7 days and performed on young daphnids (<24 h old at the start of the exposure), obtained by acyclical parthenogenesis of individual adult females for at least three generations. The first females were born from the hatching of ephippia provided by MicroBioTests. Organisms were exposed individually to seven concentrations in beakers with 20 ml of synthetic reconstituted aerated hard ISO medium (total hardness 250 mg/l as CaCO3) and the desired concentration of single compounds. Each treatment consisted of ten replicates per concentration incubated at 25°C with a 16:8-h light: dark cycle (500 lux). Daphnies were fed daily with 100 ll of a suspension of the alga *P. subcapitata* (4 · 108 cells/ml), food fish (5 g/l) and yeast (5 g/l). Also test solutions were renewed daily as well as survival and offspring production assessed. From comparison between the number of offspring born from live or dead mothers at the end of the test in the sample batch and the control it was possible to calculate the concentration which gave rise to 50% population growth inhibition (ISO, 2001).
Data analysis

Raw data for all bioassays, except algal test, were analyzed using the ToxcalcTM (1996). For acute toxicity tests, the LC50s and EC50s were calculated by concentration/response regression using probit or trimmed Spearman–Karber method, as appropriate (Peltier and Weber, 1985). For the test with *C. dubia*, the value of the concentration that gave 50% population growth inhibition was calculated using Maximum Likelihood-Logit method. Raw test data from algae were analyzed by a Microsoft Excel 5.0 program (Phoenix, AZ, USA) tailored for this test. Algal growth inhibition (%) was calculated by integrating the mean values of cell density from t_0 to t_72 h. Inhibition (%) values were tabulated against log-transformed data of concentrations to evaluate the test concentration corresponding to 50% algal growth inhibition.
7. Bibliography

- Aherne G.W., Briggs R.; The relevance of the presence of certain synthetic steroids in the aquatic environment; *J. Pharm. Pharmacol.* 41, 735–736, 1989

- Andreozzi R., Marotta R., Paxeus N.; Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment; *Chemosphere* 50, 1319-1330, 2003

- Anon; NRC urges pesticide alternatives; *Environ. Sci. Technol.* 34, 373A, 2000a

- Anon; Very little know about pesticide usage in schools; *Environ. Sci. Technol.* 34, 169A, 2000b

- Arif M.A., Vahrman J.; Skin eruption due to clofibrate; *Lancet* 2, 1202, 1975

o Balasubramanya R.H., Patil R.B.; Degradation of carboxin and oxycarboxin in different soils; *Plant Soil* 57, 195-201, 1980

o Battacharya A., Raha P., Das A.K., Adityachaudhury N.; Studies on the photodegradation of carbofuran; *Chemosphere* 29, 155-162, 1994

o Blane G.F.; Comparative toxicity and safety profile of fenofibrate and other fibric acid derivatives; *Am. J. Med.* 83, 26-36, 1987

o Boost G.; Clinical-pharmacological and pharmacokinetic studies with naproxen; *Arzneimittelforschung* 25, 281–287, 1975

- Bottoni P.; Workshop: Problematiche riguardanti prodotti fitosanitari e loro metaboliti nelle acque; Roma Boca Raton, 163, 1994

- Brown L.R., Flavin C., Kane H.; Vital signs-The trends that are shaping our future; W.W. Norton, New York 1996

• Campbell S., David M.D., Woodward L.A., Li Q.X.; Persistence of carbofuran in marine sand and water; *Chemosphere* 54, 1155-1161, 2004

• Canudas N., Vargas F., Miranda M.; Photodegradation of bezafibrate in aqueous media. Studies of its in vitro phototoxicity; *Arzneim.-Forsch./Drug Res. 46 (II)* 7, 694-69, 1996

• Colburn T., Clement C.; Chemically induced alterations in sexual and functional development: the wildlife/human connection Advances in modern environmental toxicology; *Advanced in Modern Environmental Toxicology* 21, 129-145, 1992

• Coyle J.D.; Photochemistry in Organic Synthesis; RSC, 1986

• CSTEE, Environmental Risk Assessment of Medicinal Products for Human Use; Brussels 2001

o Daughton C. G.; Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: pharmaceuticals in the environment; *J. Am. Soc. Mass Spectrometry* 12, 1067-1076, 2001

o Diffey B.L., Daymond T.J., Fairgreaves H.; Phototoxic reactions to piroxicam, naproxen and tiaprofenic acid; *Br. J. Reumatol.* 22, 239–242, 1983

o Draper W., Crosby D.G.; The photochemical generation of hydrogen peroxide in natural waters; *Archives of Environmental Contamination and Toxicology* 12, 121, 1983

○ Durand G., Barcelo D., Albaiges J. and Mansour M.; Utilization of liquid chromatography in aquatic photodegradation studies of pesticides: a comparison between distilled water and seawater; *Chromatographia* 29, 120-124, 1990

○ Dureja P., Walia S., Prasad D.; Photolysis of benfuracarb; *Toxicol Environ. Chem.* 28, 239-244, 1990

○ El-Kousy, M. N., Bebawy, L. L.; Stability-indicating for determining omeprazole and octylonium bromide in the presence of their degradation products; *J. AOAC Int.* 82, 599-606, 1999

○ EMEA, Committee for proprietary medicinal products; Note for guidance on environmental risk assessment of medicinal for human use; London 2003

○ Funari E., Ade P., Bottoni P., Ferrara F., Orru M.A.; Selezione delle sostanze prioritarie per i corpi idrici e definizione degli obiettivi di qualita'; ANPA, RTI CTN_AIM 1, Allegato 6, 35, 2001

109

Harvengt C., Heller F., Desagfer J.P.; Hypolipidemic and hypouricemic action of fenofibrate in various types of hyperlipoproteinemias; *Artery* 7, 73-82, 1982

Heberer T., Stan H.J.; Occurrence of polar organic contaminants in Berlin drinking water; *Vom Wass* 86, 19-31, 1996

Heberer T.; Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data; *Toxicology Letters* 131, 5-17, 2002

Hoigné J., Bader H., Haag W., Staehelin J.; Rate constants of reactions of ozone with organic and inorganic compounds in water - III. Inorganic compounds and radicals *Water Res* 19, 993-1004, 1985

Hoigné J., Bader H.; The role of hydroxyl radical reactions in ozonation processes in aqueous solutions; *Water Res.* 10, 377-386, 1976

Horn J.; The proton-pump inhibitors: similarities and differences; *Clin. Ther.* 22, 266-280, 2000

Horspool W.M.; Photochemistry of phenols In The chemistry of phenols, Rappoport Z. Ed., Wiley: New York, part 2

Huie R.E., Herron J.T.; Reaction of atomic oxygen (O \(^3\)P) with organic compounds; *Progress in Reaction Kinetics* 8, 1, 1975

Hustert K., Moza P.N., Kettrup A.; Photochemical degradation of carboxin and oxycarboxin in the presence of humic substances and soil; *Chemosphere*, 3423-3429, 1999

Iesce M.R., Cermola F.; Substituent and solvent effects on the photosensitized oxygenation of 5,6-dihydro-1,4-oxathiins. Intramolecular oxygen transfer vs normal cleavage of the dioxetane intermediates; *J. Org. Chem.* 67, 4937-4944, 2002b.
IMS Health Canada Ltd; Compendium of pharmaceuticals and specialties, The Canadian drug reference for health professionals; 2002

Im W.B., Sih, J.C., Blakeman D.P., McGranth J.P.; Omeprazole, a specific inhibitor of gastric proton-potassium ATPase, is a proton-activated oxidizing agent of sulfhydryl groups; *Journal of Biological Chemistry* 260, 4591-4597, 1985

• Kümmerer K.; Pharmaceuticals in the environment, 1st edn. Springer, Berlin Heidelberg New York 2001

• Langtry H.D., Wilde M.I.: Omeprazole: a review of its use in helicobacter pylori infection, gastro-oesophageal reflux disease and peptic ulcers induced by nonsteroidal anti-inflammatory drugs; *Drugs* 56, 447-486, 1998

• Ljunggren B., Lundberg K.; In vivo phototoxicity of nonsteroidal anti-inflammatory drugs evaluated by the mouse-tail technique; *Photodermatol*. 2, 377–382, 1985

Mansour M. (ed.); Fate and prediction of environmental chemicals in soils, plants, and aquatic systems; Lewis Publishers, Boca Raton, Ann Arbor (USA), London, Tokyo, 1993a

Mansour M., Scheunert I. and Korte F.; Fate of persistent organic compounds in soil and water. In: Migration and fate of pollutants in soils and subsoils; D. Petruzzelli and F.G., 1993b

Mansour M., Feicht E.A., Behechti A., Scheunert I.; Experimental approaches to studying the photostability of selected pesticides in water and soil; *Chemosphere* 35, 39-50, 1997

Miranda M.A., Bosca F., Vargas F., Canudas N.; Unusual (1,2) Wittig rearrangement of a carbanion generated in neutral aqueous medium by photodecarboxylation of a phenoxyacetic acid analogue; *J. Photochem. Photobiol. A: Chem* 78, 149-151, 1994b

Moore D.E., Sithipikas V.; Photolytic degradation of frusemide; *J. Pharm. Pharmacol.* 35 489-493, 1983

Ophaswongse S., Maibach H.; Topical nonsteroidal anti-inflammatory drugs: allergic and photoallergic contact dermatitis and phototoxicity; *Contact Dermatitis* 29, 57–64, 1993

- Sachs J.; Proton pump inhibitors and acid-related diseases; *Pharmacotherapy* 17, 22-37, 1997

- Scheunert I., Mansour M., Dörfler U. and Schroll R.; Fate of pendimethalin, carbofuran and diazinon under abiotic and biotic conditions; *Sci. Total Environ.* 132, 361-369, 1993

- Scully F. E., Hoigné J.; Rate constants for reactions of singlet oxygen with phenols and other compounds in water; *Chemosphere* 16, 681-694, 1987

○ Snel M., von Schmeling B., Edgington L.V.; Fungitoxicity and structure-activity relationship of some oxathiin and thiazole derivatives; *Phytopathology* 60, 1164-1168, 1970

○ Solomon H.M., Weis J.S.; Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion; *Teratology* 19, 51-62, 1979

○ Spurck T.P., Pickett-Heaps T.J.; Effects of diazepam on mitosis and the microtubule cytoskeleton; *J. Cell. Sci.* 107, 2643, 1994

○ Staehelin J., Hoigné J.; Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions; *Environ. Sci. Technol.* 19, 1206-1213, 1985

○ Stegeman M.H., Peijnenburg W.J.G.M., Verboom H.; A quantitative structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water; *Chemosphere* 26, 837-849, 1993

- Tanner R.W., Laangston J.W.; Do environmental toxins cause parkinson's disease? A critical review; *Neurology* 40, 17, 1990

- Ternes T.A.; Occurrence of drugs in German sewage treatment plants and rivers; *Water. Resour.* 32, 3245-3260, 1998

- Ulvi V., Tammilehto S.; Photodecomposition studies on chlorothiazide and hydrochlorothiazide; *Acta Pharm. Nord.* 1, 195-200, 1989

- Von Schmeling B., Kulka M.; Systemic fungicidal activity of 1,4-oxathiin derivatives; *Science* 152, 659-660, 1966

- Welker M., Steinberg C.; Rates of humic substances photosensitized degradation of microcystin-LR in natural waters; *Environ. Sci. Technol* 34, 3415-3419, 2000

- Wolfe M.M., Sachs G.; Acid suppression: optimizing therapy for gastroduodenal ulcer healing, gastroesophageal reflux disease, and stress-related erosive syndrome; *Gastroenterology* 118 (2 Suppl 1), S9-31, 2000

- World Health Organization, Guidelines for Drinking Water Quality; WHO, Genève 1993

o Zafiriou O. C., True M. B.; Nitrite photolysis in seawater by sunlight; Mar. Chem. 8, 9–32, 1979

o Zepp R.G., Baughman G.L., Schlotzhauer P.F.; Comparison of photochemical behaviour of various humic substances in water: II. Photosensitized oxygenations; Chemosphere 10, 119-126, 1981b

o Zika R.G., Cooper W.J.; Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight; Science 220, 711, 1983
- Zimmermann A.E., Katona B.G., Lansoprazole: a comprehensive review; *Pharmacotherapy* 17, 308-326, 1997