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SUMMARY

A novel molecular approach to enhance the antitumour activity of 

Topoisomerase  1  (TOP1)  inhibitors  relies  on  the  use  of  chemical 

inhibitors  of  poly(ADP-ribose)  polymerase  (PARP).  Poly(ADP-

ribosyl)ation is involved in the regulation of several cellular process such 

as  DNA repair,  cell  cycle  progression  and  cell  death.  The  molecular 

mechanism  underlying  tumor  chemosensitization  to  TOP1  poisons  by 

PARP inhibitors have been in part clarified by recent findings showing 

that  poly(ADP-ribosyl)ated  PARP-1  and  PARP-2  counteract 

camptothecin  action  facilitating  resealing  of  DNA  strand  breaks. 

Moreover,  repair  of DNA strand breaks induced by poisoned TOP1 is 

slower in the presence of PARP inhibitors, leading to increased toxicity.

In the present study, we compared the effects of the camptothecin 

derivative  Topotecan (TPT)  and the  second-generation  PARP inhibitor 

PJ34, administered as single agents or in combination, in cervix (HeLa) 

and breast (MCF7) carcinoma cells, both BRCA1/2+/+ and p53+/+.

The  two  cell  lines  gave  similar  results:  (i)  TPT-dependent  cell 

growth inhibition  and cell  cycle  perturbation  were incremented  by the 

presence of PJ34; (ii) higher levels of DNA strand breaks were found in 

cells  subjected  to  TPT+PJ34 combined treatment;  (iii)  PARP-1 and -2 

modification  was  evident  in  TPT-treated  cells  and  was  reduced  by 

TPT+PJ34  combined  treatment;  (iv)  concomitantly,  a  reduction  of 

soluble/active TOP1 was observed. Likewise, PARP-1 shRNA HeLa cells 

showed increased TPT-dependent cytotoxicity and DNA damage in the 

presence of PJ34. Furthermore, TPT-dependent induction of p53 and p21 

was found 24-72 h after treatment and PJ34 further increased p53 levels 

either in PARP-1 proficient  and silenced cells.  Finally,  TPT-dependent 



onset of the apoptosis was also incremented by PARP inhibitor as shown 

by the PARP-1 proteolysis, Bax and active-caspase 3 expression.

The characterization of such signaling network can be relevant to a 

strategy to overcome acquired TOP1-poisoned chemoresistance.



RIASSUNTO

Una  nuova  strategia  molecolare  che  incrementa  l’azione 

antitumorale  degli  inibitori  della  Topoisomerasi  1  (TOP1)  si  basa 

sull’utilizzo di inibitori  delle  poli(ADP-ribosio) polimerasi  (PARP).  La 

poly(ADP-ribosil)azione è una modifica post-traduzionale coinvolta nella 

regolazione di diversi processi come il riparo del DNA, la progressione 

del  ciclo  cellulare  e  la  morte  cellulare.  Il  meccanismo molecolare  che 

sottende la chemiosensibilizzazione dei veleni di TOP1 in presenza degli 

inibitori di PARP è in parte spiegato dal fatto che PARP-1 e -2, in forma 

modificata, interagiscono con il complesso DNA-TOP1-inibitori di TOP1 

promuovendo un rapido rilascio di TOP1 dal DNA. Inoltre, il riparo delle 

rotture sul DNA indotte dai veleni di TOP1 è meno efficiente in presenza 

degli  inibitori  di  PARP,  che  incrementano  quindi  la  citotossicità 

dell’agente chemioterapico.

Nel presente studio, abbiamo comparato gli effetti dell’inibitore di 

TOP1 Topotecano (TPT) e  dell’inibitore  di  PARP PJ34,  somministrati 

come  singoli  agenti  o  in  combinazione  in  cellule  di  carcinoma  della 

cervice uterina (HeLa) e della mammella (MCF7), entrambe BRCA1/2+/+ 

e p53+/+. Sono state anche analizzate cellule HeLa silenziate stabilmente 

per PARP-1 mediante siRNA (denominate HeLaSiP-1).

Le due linee cellulari mostrano risultati simili: (i) l’inibizione della 

crescita  cellulare e la perturbazione del ciclo cellulare indotte dal TPT 

sono incrementate in presenza del PJ34; (ii) alti livelli di danno al DNA 

sono stati riscontrati in seguito al trattamento combinato TPT+PJ34; (iv) 

l’attivazione di PARP-1 e -2 è stata evidenziata nelle cellule trattate con 

TPT e ridotta dall’aggiunta del PJ34.  In particolare, le cellule HeLaSiP-1 



mostrano elevati livelli di danno al DNA ed una citotossicità maggiore, 

dipendente dal TPT, in presenza di PJ34.

E’ stata inoltre riscontrata  un’induzione dell’espressione di p53 e 

p21 TPT-dipendenti 24-72 h dal trattamento, ulterioremente incrementata 

dal PJ34, sia in cellule proficienti che deficienti per PARP-1. Infine, il 

PJ34 è in grado di aumentare l’apoptosi indotta dal TPT, evidenziato dalla 

proteolisi di PARP-1 e dalla espressione di BAX e della forma attiva della 

caspasi 3.

La caratterizzazione della segnalazione del danno indotto dal TPT 

può  essere  utile  per  mettere  a  punto  strategie  che  superino  la 

chemioresistenza acquisita  in seguito al  trattamento con gli  inibitori  di 

TOP1.
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Introduction

1. INTRODUCTION

1.1  Poly(ADP-ribose)  polymerase  (PARP)  and  Topoisomerse  1 

(TOP1) role on DNA damage repair

DNA damage signaling is crucial for the maintenance of genome 

integrity.  In  higher  eukaryotes  a  NAD+-dependent  signal  transduction 

mechanism is evolved to protect cells against the genome destabilizing 

effects of DNA strand breaks. 

The mechanism involves two nuclear enzymes,  poly(ADP-ribose) 

polymerase-1  and  -2  (PARP-1  and  PARP-2),  that  participate  to 

poly(ADP-ribosyl)ation  reaction,  a  post-translational  modification 

process which plays a critical role in different cellular functions such as 

DNA damage detection and repair, transcriptional regulation, chromatin 

modification, and cell death. PARP-1 and -2 bind to DNA strand breaks 

and form a catalytically active dimer; nicked DNA is stabilized in a V-

shaped conformation. Activated PARPs cleave  -NAD+ in nicotinamide 

and ADP-ribose to link long and branched (ADP-ribose) polymers (PAR) 

to glutamic acid residues within the primary sequence of PARP-1 and 

PARP-2  (automodification)  and  to  other  nuclear  proteins 

(heteromodification) like histones, repair proteins, DNA Topoisomerase 

1, p53.

ADP-ribose units are linked by  (1’’-2’) ribosyl-ribose glycosidic 

bonds  in  the  linear  portions  of  the  polymer  or  by  (1’’’-2’’)  ribosyl-

ribose glycosidic linkages at the branching points; their number ranges 

from a few to over 200 and branching frequency is estimated to be 2%-

3% (Figure 1).

In DNA-damaged cells, increased poly(ADP-ribose) synthesis due 
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Introduction

to PARP-1 and -2 activation is paralleled by an accelerated catabolism 

that  reduces  polymer  half  life  from  several  hours  to  a  few  seconds. 

Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the specific 

degradation  of  polymers  to  monomeric  ADP-ribose  units  and  ADP-

ribosyl protein lyase cleaves the link between the first ADP-ribose and 

modified aminoacids (Malanga et al, 2005).

Figure 1. The poly(ADP-ribosyl)ation reaction.
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PARP-1 and PARP-2 are members of a large family of enzymes 

with homologous catalytic domain but with otherwise distinct structures, 

functions and localizations.

PARP-1 is a 113 kDa nuclear protein comprised of three functional 

domains:

-  the  N-terminal  DNA-binding  domain  (DBD)  contains  the  nuclear 

localization signal (NLS) and two zinc fingers that are important for the 

binding  of  PARP-1  to  single-strand  breaks  (SSBs)  and  double  strand 

breaks (DSBs). A third zinc finger was found to be dispensable for DNA 

binding  and is  important  for  coupling  damage-induced  changes  in  the 

DBD to alterations in catalytic domain;

- in the central  automodification domain,  specific glutamate and lysine 

residues serve as PAR acceptors. This domain also comprises a BRCA1 

carboxy-terminal  (BRCT)  repeat  motif,  a  protein-protein  interaction 

domain that is found in other components of the DNA damage response 

pathway;

- the C-terminal catalytic domain transfers ADP-ribose subunits from -

NAD+ to protein acceptors.

Some of these recruited proteins bind covalently to polymers,  whereas 

others  are  indirectly  recruited  because  they  contain  a  PAR-binding 

consensus sequence. At the same time, the formation of PAR reduces the 

affinity  of PARP-1 and histones for DNA, a mechanism for removing 

PARP-1 from damaged sites and for the local modulation of chromatin 

compaction. The removal of PARP-1 provides access for repair proteins, 

but  the  enzyme  remains  in  the  vicinity  of  the  breaks,  recruiting  other 

selected proteins into multiprotein complexes to accelerate DNA damage 

repair (Rouleau et al; 2010). In contrast, when DNA damage exceeds cell 
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repair capacity,  PARP-1 undergoes cleavage by caspases (3 and 7) into 

two fragments of 89 kDa and of 24 kDa, thereby avoiding futile cycling 

of PAR that would otherwise deplete the cell of -NAD+ required for the 

onset of apoptosis (Scovassi et al; 1999).

PARP-2 is  a 62 kDa nuclear  protein,  also able  to  catalyze  DNA 

damage-dependent  automodification  and can  homo-  or  hetero-dimerize 

with PARP-1 (Figure 2). Although PARP-2 accounts for only 10-15% of 

the cellular poly(ADP-ribosyl)ation capacity under genotoxic stress, it can 

partially  compensate  for  PARP-1  loss  in  knock-out  mice  (Amè  et  al;  

1999).

The  N-terminal  domain  of  PARP-2  contains  NLS,  the  nucleolar 

localization signal (NoLS) and a highly basic DBD, that is structurally 

different  from  that  of  PARP-1,  probably  reflecting  differences  in  the 

DNA structures recognized by each enzyme (Figure 2). 

Figure 2. Structure of PARP-1 and PARP-2.
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PARP-1  and  -2  catalytic  domains  exhibit  69%  similarity;  in 

particular, PARP-2 contains an additional three aminoacid insertion that 

could  reflect  specificities  in  the  substrates  ADP-ribosylated  by  this 

enzyme (Yelamos et al; 2008).

PARP-1 and PARP-2 play a dual role as damage sensors and signal 

transducers to down-stream effectors (Figure 3). 

Figure 3. PARP-dependent signaling of DNA strand breaks.

Both proteins share several common nuclear binding partners and 

have been described as contributors to base excision repair (BER). 

In  fact,  like  PARP-1,  PARP-2 interacts  with  X-ray  repair  cross-
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complementing  1  (XRCC1),  DNA polymerase   and  DNA ligase  III, 

which are involved in BER  (Schreiber et al; 2002). However, PARP-1 

and -2 were shown to accumulate with different kinetics at laser-induced 

SSBs: whereas PARP-1 accumulates fast and transiently, PARP-2 shows 

a delayed and persistent accumulation at repair sites (Mortusewicz et al;  

2007).

As  mentioned  above,  PARP-1  binds  SSBs  while  PARP-2  has  a 

higher  affinity  for  gaps  and  flaps,  structures  that  correspond  to  more 

advanced repair intermediates. Taken together, these evidences favour an 

implication of PARP-2 at later steps of the repair process.

PARP-1 is also involved in DSBs repair process. 

Eukaryotes  have  two  pathways  for  repairing  DSBs:  homologous 

recombination  (HR)  and  non  homologous  end  joining  (NHEJ).  The 

relative contribution of these two DSBs repair pathways seems to differ 

depending on the cell cycle phase: HR acts mainly in the S and G2 phases 

and NHEJ mostly in the G1 phase (Khanna et al; 2001).

In regard HR, a functional and physical interaction between ataxia 

telangiectasia mutated (ATM) and PARP-1 has been described (Haince et  

al;  2007);  recently,  it  has  been  also  shown  that  PARP-1  is  able  to 

accumulate  at  a  locally  induced  DSBs  and  is  required  for  the 

accumulation of other DSBs sensors, such as meiotic recombination 11 

(MRE11) and Nijmengen breakage syndrome 1 (NBS1) proteins (Haince  

et al; 2008). Indeed, PARP-1 is reported to interact with and poly(ADP-

ribosyl)ate the DNA-PK subunit Ku, an important factor of the alternative 

pathway NHEJ (Wang et al; 2006).

The role of PARP-2 in DSBs repair still remains to be clarified: it 

has been  observed  an interaction between PARP-2 and Ku. An early 
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embryonic  lethality  of  PARP-2-/- ATM-/-  mice  is  a  consequence  of  the 

inefficient  BER,  leading  to  conversion  of  unrepaired  SSBs  to  DSBs 

during replication (Huber et al; 2004).

PARP-1  also  affects  DSBs  repair  as  indicated  by  the  increased 

sensitivity of PARP-1-deficient cells to DSB-inducing agents, especially 

to TOP1 inhibitors.

DNA Topoisomerase 1 (TOP1) is a ubiquitous enzyme that plays 

multiple functions at the crossroads between replication, transcription and 

mRNA  maturation.  TOP1  relaxes  DNA  supercoiling  generated  by 

transcription, replication and chromatin remodeling.

The catalytic  cycle  of TOP1 starts with the formation of a DNA 

single-strand break after which it covalently binds to the 3’-end of the 

DNA phosphodiester backbone, forming TOP1-DNA cleavable complex 

(Figure 4). These complexes are reversible intermediates catalyzing the 

religation reaction of the enzyme.

RELIGATION
TPT

TOP1

CLEAVABLE 
COMPLEX

ABORTIVE 
COMPLEX

DNA 
REPLICATION

Figure 4. TOP1 catalitic cycle.

7



Introduction

Camptothecin  (CPT),  the  prototype  of  TOP1  inhibitors,  and  its 

derivatives  such as the clinically  relevant  drug Topotecan stabilize the 

cleavable complex in the  abortive complex, and thus prevents religation 

step of the enzyme catalytic cycle, generating an accumulation of SSBs. 

The cytotoxic mechanism of camptothecins is largely S-phase dependent, 

indicating that is triggered by a collision between replication fork and the 

abortive complex.  This may result  in blockage of fork movement,  and 

finally, the formation of DNA DSBs (Tomicic et al; 2005). 

The camptothecin derivative Topotecan (TPT) is approved for the 

treatment of ovarian cancer, non small-cell lung cancer and under clinical 

investigation for a number of advanced solid tumors and haematological 

malignancies (Pommier et al; 2006).

For  the  reason  that  HR  is  S  phase-dependent,  TOP1  poisons-

induced  replication-dependent  DSBs  are  usually  repaired  by  the  HR 

pathway.

It is known that PARP inhibitors increase the cytotoxic effects of 

TPT.  Furthermore,  the  molecular  mechanism  underlying  tumor 

chemosensitization to TOP1 poisons by PARP inhibitors has been in part 

clarified  by  recent  findings  showing  that  PARP-1  and  -2,  in  their 

automodified form, counteract camptothecin-action facilitating resealing 

of  DNA  strand  breaks.  This  occurs  trough  non-covalent  yet  specific 

interaction of PAR with particular TOP1 sites which results in inhibition 

of DNA cleavage and stimulation of the religation reaction  (Malanga et  

al; 2004). 

The  potential  of  PARP  inhibitors  to  increase  the  efficacy  of 

chemotherapy has  led to  the development  of  a  wide  range of  specific 

inhibitors  – quinazolinone derivatives  – like NU1025 and PJ34, which 

8



Introduction

display increased potency compared to the prototype 3-aminobenzamide 

(3-ABA) (Sandhu et al; 2010).

In this regard, it has been previously demonstrated a TPT-dependent 

PARP-1  activation  in  glioblastoma  cells,  while  co-treatment  with  the 

PARP inhibitor  NU1025 increased a TPT-dependent  p53 up-regulation 

(Cimmino et  al;  2007).  Indeed, PARP inhibitors  enhance the action of 

several SSBs-inducing agents, like alkylating agents (i.e. temozolomide) 

in tumor cell lines and in human tumors. This approach indicates a pairing 

PARP  inhibitors  with  DNA-damaging  therapy  to  achieve 

chemosensitization (Rouleau et al; 2010).

It has been reported that BRCA1/2 mutated breast carcinoma cells 

lost their ability to repair DNA breaks after PARP inhibition, which can 

result in cell cycle arrest and apoptosis, considering that BRCA proteins 

are critical for the HR pathway (Bryant et al; 2005). This specific killing 

of tumor cells  led to PARP inhibitors entering clinical trials  of repair-

deficient tumors.

Furthermore,  a  factor  supposed  to  involved  in  determining  the 

sensitivity of cells to TOP1 inhibitor is p53. However, for breast cancer 

cells  the  p53  status  is  not  found  to  be  predictive  for  sensitivity  to 

camptothecins (Davis et al; 1998).

1.2 Aim of the work

From the mean of such evidences, we have investigated the role of 

PARP-1 and PARP-2 in the DNA damage response to TOP1 inhibitor, 

TPT, in human BRCA1/2+/+ and p53+/+ breast (MCF7) and cervix (HeLa) 

carcinoma  cells  treated  with  TPT,  administered  as  single  agent  or  in 
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combination with a PARP inhibitor, PJ34. Furthermore, TPT-sensitivity 

of  HeLa  cells  in  which  PARP-1  has  been  knocked  down  by  RNA 

interference, has been compared to that of HeLa cells with PJ34.
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Materials and Methods

2. MATERIALS AND METHODS 

2.1 Drugs, antibodies and chemicals

TPT and CPT were from Glaxo Smith-Kline, PJ34 [N-(6-oxo-5,6,-

dihydrophenanthridin-2-yl)-(N,Ndimethylamino)Acetamide]  and  3-ABA 

were from  Alexis Biochemicals. The cocktail of protease inhibitors was 

from ROCHE-Diagnostic.

Nicotinamide  adenine  [adenylate-32P]  dinucleotide  –  [32P]-NAD+ 

(1,000 Ci/mmole, 10 mCi/ml) was supplied by GE Healthcare.

Propidium iodide (PI) and RNAse were from Sigma-Aldrich.

PVDF (poly-vinylidene-fluoride) membrane was from MILLIPORE 

S.p.A. Anti-PARP-1 mouse monoclonal (F1-23) and anti-PARP-2 rabbit 

polyclonal  (Yuc)  antibodies  were from  Alexis  Biochemicals,  anti-DNA 

Topoisomerase  1  human  rabbit  polyclonal  antibody  (Scl-70)  from 

Topogen and anti-H2AX rabbit polyclonal antibody (ser139, 2577) from 

Cell Signaling. Anti-p53 (DO-1), anti-p21 (C-19), anti-Bax (P-19), anti-

AIF (E-1),  anti-GAPDH (H-2) mouse  monoclonal  antibodies  and anti-

Caspase  3  rabbit  polyclonal  antibody  (H-277)  were  from  Santa-Cruz  

Biotecnology.  Anti-actin  (A2066)  rabbit  polyclonal  antibody  and  goat 

anti-mouse  and  goat  anti-rabbit  IgG  HRP-conjugated  antibodies  were 

from Sigma-Aldrich.

All other chemicals were of highest quality commercially avaible.

2.2 Cell cultures

Cervix (HeLa) and breast (MCF7) carcinoma cells were maintained 

in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% (v/v) 

heat-inactivated foetal bovine serum (FBS), 100 U/ml penicillin, 100 g/ml 
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streptomycin, 5 mM L-glutamine and incubated at 37°C in a humidified 

atmosphere, plus 5% CO2.

Stably   PARP-1  silenced  HeLa  cells   (hereafter  referred  to  as 

HeLaSiP-1)  or  trasfected  with  pBabe  vector  carrying  the  puromycin 

resistance  gene  (hereafter  referred  to  as  HeLaBabe)  were  obtained  as 

previously described (Tentori et al; 2010).

2.3 Cell growth inhibition

MCF7 and HeLa cells were seeded at 1x106 cells; after 24 h, cell 

cultures were treated with graded concentration of TPT and PJ34 (or 3-

ABA) and cell growth inhibition was assessed at different time points (24, 

48, 72 h) using trypan blue staining. All the experiments were performed 

in triplicate.

2.4 Cytofluorimetric analysis

Control  and  treated  cells  were  detached  by  enzymatic  treatment 

(Trypsin/EDTA  0.02%),  washed  in  PBS  w/o  Ca2+/Mg2+ pooled  with 

floating cells and recovered by centrifugation at 1,200 rpm for 15 min at 

4°C. Cells were fixed in 70% ethanol and stored at -20°C until analysis. 

After  washing  in  PBS  w/o  Ca2+/Mg2+,  cells  were  stained  in  2  ml  of 

propidium iodide  (PI)  staining  solution  [50  g/ml  of  PI,  1  mg/ml  of 

RNAse A, 1% Triton X-100 in PBS w/o Ca2+/Mg2+, pH 7.4] overnight at 

4°C and DNA flow cytometry was performed in duplicate by a FACScan 

flow  cytometer  (Becton  Dickinson  Franklin  Lakes)  coupled  with  a 

CICERO work station (Cytomation). Cell cycle analysis was performed 

by the ModFit LT software (Verity Software House Inc. Topsham). FL2 
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area versus FL2 width gating was done to exclude doublets from G2/M 

region. For each sample 15,000 events were stored in list mode file.

2.5 Alkaline Comet Assay

Cells were suspended in PBS at a density of 104 cells/ml and mixed 

with an equal volume of fresh low-melting agarose (LMA, 1% in PBS); 

80  l of agarose cell suspension was spread on normal-melting agarose 

(NMA, 1% in PBS) slides and covered with a cover-slip. Two slides were 

prepared per sample. After gelling for 5 min on an ice bed, the cover-slip 

was  gently  removed  and  another  layer  was  added,  cover-slipped  and 

allowed to solidify for 5 min on ice before gently removing the cover-slip. 

The  slides  were  then  immersed  in  a  freshly  prepared  ice-cold  lysis 

solution (2.5 M NaCl, 0.1 M Na2EDTA, 0.01 M Tris, 1% Triton X-100, 

10% DMSO, pH 10) for 1 h. The slides were drained and placed in a 

horizontal electrophoresis tank filled with freshly prepared alkaline buffer 

(0.3 M NaOH, 1 mM Na2EDTA, pH 13) and electrophoresis carried out 

for 20 min at 300 mA. Finally, the slides were gently washed twice in a 

neutralization buffer (Tris-HCl 0.4 M, pH 7.5) for 5 minutes to remove 

alkali and detergent, and stained with 50  l/ml DAPI (3h). Images of a 

minimum  of  hundred  cells  from  each  sample  were  analysed  on  a 

fluorescence microscope (Nikon Instruments S.p.A.); overlapping figures 

were avoided from each slide. Quantitative assessment of DNA damage 

was  performed  using  Comet  Score  1.5  Image  Analysis  (TriTek 

Corporation)  software,  which computes  the integrated  intensity  profile 

for  each  cell.  DNA damage was measured  as olive tail  moment  value 

[(Tail  mean  -  Head  mean)  x  %  DNA  in  tail/100].  The  results  were 
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analysed by Student’s t-test and were considered statistically significant at 

P<0.008.

2.6 Analysis of [32P]-PAR synthesis 

Following  treatment  with  10  M +/-  5  M PJ34 of  intact  cells 

(5x106 cells/plate),  [32P]-PAR synthesis  was determined by substituting 

the  culture  medium  with  1  ml  of  56  mM  HEPES  buffer  pH  7.5, 

containing 28 mM KCl, 28 mM NaCl, 2 mM MgCl2, 0.01% digitonin, 0.1 

mM PMSF, 1:25 dilution of a cocktail of protease inhibitors, 0.125 M 

[32P]-NAD+ (1,000 Ci/mmole). After incubation at 37°C for 30 min, cells 

were scraped off the plates, transferred to eppendorf tubes and mixed with 

TCA at  20% (w/v)  final  concentration.  After  15  min  standing on ice, 

samples were collected by centrifugation at 1,200 rpm for 15 min, washed 

twice with 5% TCA and three times with ethanol. [32P]-PAR incorporated 

in the TCA-insoluble fraction was measured by Cerenkov counting using 

a  LS8100  liquid  scintillation  spectrometer  (Beckman  Coulter  S.p.A.). 

Finally,  TCA  protein  pellets  were  resuspended  in  Laemmli  buffer; 

proteins were separated by 5-15% SDS-PAGE and after electroblotting on 

PVDF  membrane,  [32P]-PAR  acceptors  were  visualized  by 

autoradiography. Immunodetection of specific proteins was accomplished 

on the same blots after autoradiography.

PJ34  efficacy  as  PARP  inhibitor  was  determined  in  an  in  vitro 

enzymatic  activity  assay  using  permeabilized  cells:  cell  pellets  were 

resuspended in 40 mM Tris-HCl pH 7.8, 0.6 mM EDTA, 30 mM MgCl2, 

0.05%  Triton  X-100,  1mM  -mercaptoethanol,  20%  glycerol,  1  mM 

PMSF  and  1:25  dilution  of  the  cocktail  of  protease.  To  maximally 
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stimulate PAR synthesis, DNA strand breaks were induced by sonication 

for 30 sec at medium intensity; finally, samples were incubated at 30°C 

for 1 h with 5Ci/ml [32P]-NAD+ and 50  M unlabeled  -NAD+, in the 

presence  or  absence  of  5  M PJ34.  Reactions  were  stopped by TCA 

addition (20% final concentration) and the samples were processed and 

analysed as described above.

2.7 Isolation of nuclear and post-nuclear fractions

To isolate sub-cellular fractions, cells were suspended in a buffer 

containing 30 mM Tris-HCl pH 7.5, 1.5 mM MgCl2, 10 mM KCl, 1% 

Triton  X-100,  20% glycerol,  2  mM PMSF and the  protease  inhibitors 

cocktail solution. After 30 min of incubation on ice, cellular suspensions 

were centrifuged at 960 x g for 90 sec at 4°C and the nuclear fractions 

recovered  in  the  pellet.  The  supernatant  represents  the  post-nuclear 

fraction. 

Nuclear  fractions  were  resuspended  in  20  mM  HEPES  pH  7.9, 

containing 20 mM KCl,  0.2 mM EDTA, 1.5 mM MgCl2, 25% glycerol 

and  0.2  mM  PMSF.  Protein  concentration  was  determined  using  the 

Bradford protein assay reagent (BIO-RAD) with bovine serum albumin 

(BSA) as a standard.

2.8 Autoradiographic and immunological analyses

Aliquots  of  120  g of  cellular  proteins  were  separated  by SDS-

PAGE (5-15% gradient  gels)  and transferred  onto  a  PVDF membrane 

using  an  electroblotting  apparatus  (BIO-RAD).  The  membrane  was 

subjected to autoradiographic analysis by the PhosphorImager (BIO-RAD) 
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and/or to immunodetection after blocking with 3% BSA in TBST 1 h, 

with anti-PARP-1 (diluted 1:5,000), anti-PARP-2 (diluted 1:5,000), anti-

TOP1  (diluted  1:2,500),  anti-p53  (diluted  1:5,000),  anti-p21  (diluted 

1:1,000), anti-Bax (diluted 1:500), anti-AIF (diluted 1:500), anti-Caspase 

3  (diluted  1:500),  anti-GAPDH (diluted  1:5,000),  anti-H2AX (diluted 

1:1,000) or anti-actin (diluted 1:1,000).

As  secondary  antibodies  goat-anti-mouse  or  goat-anti-rabbit  IgG 

HRP-conjugate (diluted 1:10,000-1:20,000) in 3% (w/v) non-fat milk in 

TBST  were  used.  Peroxidase  activity  was  detected  using  the  ECL 

Advance Western Blotting Kit (GE Healthcare) and quantified using the 

Immuno-Star Chemiluminescent detection system GS710 (BIO-RAD) and 

the Arbitrary Densitometric  Units  normalized on those of the GAPDH 

loading control.
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3. RESULTS

3.1 Effect of PARP inhibitors on TPT-induced growth inhibition and 

cell cycle distribution in human carcinoma cells

In preliminary experiments, we evaluated a dose-response of MCF7 

cells  to  TPT,  alone  or  in  combination  with  5  M  PJ34  at  24-48  h 

treatment. As shown in  Figure 5, TPT alone caused a strong cytotoxic 

effect  at  24  h,  starting  from  5  M  concentration  (60%  cell  growth 

inhibition),  while  the  same  amount  of  PJ34  and  1  M  TPT  slightly 

affected cell growth inhibition (18%). Therefore, in this condition it was 

difficult to evaluate additive/synergic effect of combined treatment.

Figure 5. Dose-dependece response of MCF7 cells to TPT in presence 
or absence PJ34.
MCF7 cells were treated for 24 - 48 h with TPT (1 – 5 – 10 M) in combination 
or not with PJ34 (5 M). The results are the mean of three different experiments 
giving similar results.

For  further  experiments  we  set  up  1  h  treatment  condition  with 

10 M TPT followed by different recovery times in the presence or not of 
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5 M PJ34. Furthermore, stably PARP-1 silenced HeLa cells (HeLaSiP-1) 

were also compared to PARP-1 proficient HeLa cells (HeLaBabe).

Both HeLaBabe and  MCF7 cells  showed  till  72  h  after  treatment 

mainly a cytostatic effect (Figure 6), whereas PARP-1 silencing rendered 

HeLaSiP-1 cells  more  sensitive  to the drug, causing 45% of cells  to die 

(Figure 7).  The  presence  of  PARP inhibitor  during the  recovery time 

seemed to increase TPT-toxicity, also in PARP-1 deficient cells. 

Figure 6. Cell growth inhibition of MCF7 and HeLaBabe cells treated 
with TPT and PJ34 as single agents or in combination.
The cells were treated for 1 h with 10 M TPT+/- 5 M PJ34 and left to recover 
24, 48 e 72 h in fresh medium in the presence or not of PARP inhibitor. The 
results are the mean of three different experiments giving similar results.

18



Results

Figure 7. Cell growth inhibition of HeLaSiP-1 cells treated with TPT 
and PJ34 as single agents or in combination.
The cells were treated for 1 h with 10 M TPT+/- 5 M PJ34 and left to recover 
24, 48 e 72 h in fresh medium in the presence or not of PJ34. The results are the  
mean of three different experiments giving similar results.

Figure 8 shows a comparison of cell growth inhibition determined 

in  MCF7 cells  by treatment  with  TOP1 inhibitors  (CPT and TPT)  as 

single agents at the same concentration or in combination with PJ34 or 

3-ABA. By the all of the results we observed an additive effect of the 

PARP inhibitors on the cytostatic effect of TPT. Interestingly, the same 

increment on cell  growth inhibition was observed by a 200 times dose 

reduction of PJ34 with respect to 3-ABA.

CPT, instead, caused a cytotoxic effect per se, even higher than that 

determined  by  TPT+PJ34  (or  3-ABA)  combination.  Therefore,  no 

additive effect was observed by PJ34 and 3-ABA on CPT-action.
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Figure 8. Comparison of TPT and CPT as single agents or combined 
with PARP inhibitors.
MCF7 cells were treated for 1 h with 10 M TPT or 10 M CPT +/- 5M PJ34 
or 1mM 3-ABA and left to recover 24 h in fresh medium in the presence or not 
of PJ34 or 3-ABA. The results are expressed as percentages of growth inhibition 
+/- S.E.

To go better inside into the mechanism of enhanced TPT-toxicity as 

a consequence of alteration of the cellular poly(ADP-ribosyl)ation status, 

we  analysed  cell  cycle  distribution  24  h  after  1  h  treatment  with 

increasing  concentrations  of  TPT  in  the  presence  or  not  of  fixed 

concentration of  5 M PJ34. 

As shown in Figure 9A, in HeLaBabe cells graded concentrations of 

TPT induced a progressive increase of cell  accumulation  in  the G2/M 

phase starting from 0.2  M up to 1.25  M; higher TPT-doses, instead, 
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caused the well known TPT-specific S phase arrest. Then, the addition of 

PJ34 to TPT-concentrations < 1.25 M significantly increased G2/M cell 

accumulation,  whereas  combined  with  > 1.25  M TPT concentrations 

induced S phase block of cells (that would escape TPT-action).

Figure 9. Cell cycle analysis of HeLa cells treated with TPT and PJ34 
as single agents or in combination.
Babe and SiP-1 cells were treated for 1 h with TPT (0.2 – 0.4 – 1.25 – 2.5 – 5  
M) +/- PJ34 (5 M) and left to recover 24 h in fresh medium in the presence or 
not of PJ34. The results are expressed as percentages of cells in the G1, S and 
G2/M phase of the cell cycle.

As shown in  Figure 10, cell cycle distribution was unaffected by 

treatment of HeLaBabe cells with 5  M PJ34 and 1 mM 3-ABA used as 

single  agents.  Moreover,  when  combined  with  1.25  M TPT 3-ABA 
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caused a  minor  S phase  accumulation  (27%) compare  to  PJ34 (78%), 

confirming the enhanced potency of this later PARP inhibitor.

Figure 10. Cell cycle analysis of HeLaBabe cells treated with TPT and 
PARP inhibitors as single agents or in combination.
Babe cells were treated for 1 h with 1.25 M TPT +/- 5 M PJ34 or 1 mM 3-
ABA and left to recover 24 h in fresh medium in the presence or not of PJ34 or 
3-ABA.  Flow cytometric  determination  of  DNA content  after  PI  staining  is 
shown. The percentage of cells in the G1, S and G2/M is indicated.

Accordingly, HeLaSiP-1 cells underwent a more pronounced increase 

of G2/M phase or S phase accumulation, with respect to HeLaBabe cells 

exposed to the same doses of TPT; interestingly,  the combination 1.25 

M TPT and 5 M PJ34 induced S phase accumulation at higher extent 

than HeLaBabe (Figure 9B).

Cytofluorimetric analysis at longer recovery times (i.e. 72 h after 1 

22



Results

h treatment)  revealed  that  the alteration  of  the poly(ADP-ribosyl)ation 

system  determined  the  induction  of  apoptosis,  as  indicated  by  the 

appearance  of  a  sub-diploid  peak.  In  particular,  the  lack  of  PARP-1 

appeared  to  be  more  effective  than  PARP  activity  inhibition  as  the 

fraction of apoptotic cells was doubled in HeLaSiP-1 treated with 1.25 M 

TPT (62%) versus HeLaBabe subjected to a combined TPT+PJ34 treatment 

(38%) (Figure 11).

Figure 11. Cell death analysis of HeLa cells subjected to TPT+/-PJ34 
treatment.
Babe and SiP-1 cells were treated for 1 h with 1.25 M TPT +/- 5 M PJ34 and 
left  to  recover  72  h  in  fresh  medium in  the  presence  or  not  of  PJ34.  Flow 
cytometric  determination  of  DNA  content  after  PI  staining  is  shown.  The 
percentage of cells in the sub-diploid (subG1) peak is indicated.
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3.2  Analysis  of  TPT-  and/or  PJ34-dependent  DNA  damage  in 

carcinoma cells

By alkaline comet assay, we analysed the level of both DNA SSBs 

and DSBs arising 24 h after 10  M TPT +/- 5 PJ34  M 1 h treatment. 

Figure 12A shows that the olive tail moment value was comparable in all 

cell lines and further increased in the cells left to recover in the presence 

of PJ34, either PARP-1 proficient or silenced cells.

Figure 12. DNA damage in carcinoma cells subjected to TPT+/- PJ34 
treatment.
A: Hundred cells 24 h after 1 h treatment with 10 M TPT +/- 5 M PJ34 were 
analysed by alkaline comet assay on a fluorescence microscope and quantitative 
assessment of DNA damage was performed using Comet Score.
B: Western blot analysis of H2AX levels in Babe and SiP-1 cell nuclei treated 
1 h with 10 M TPT and allowed to recover in fresh medium in the presence or 
not of 5 M PJ34 for 72 h. Actin was used as loading control.
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The definition  of a DSBs level was obtained by looking at H2AX 

phosphorylation in isolated nuclei from Babe and SiP-1 cells. Figure 12B 

shows a TPT-dependent increase of -H2AX in HeLa cells until 72 h after 

treatment  that  was  further  increased  after  TPT+PJ34  cotreatment. 

Interestingly,  the  further  increment  determined  by  PJ34  in  PARP-1 

silcenced cells was suggestive of the involvement of PARP-2 (or some 

other PARP).
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3.3 Analysis of PAR synthesis in carcinoma cells after treatment with 

TPT +/- PJ34

First, PJ34 efficacy as PARP inhibitor at 5  M concentration was 

assessed by an  in vitro enzyme activity assay,  carried out in sonicated 

cells incubated with exogenous 50 M [32P]-NAD+ in the presence or not 

of PJ34. Sonication was performed to induce DNA strand breaks and thus 

maximally stimulate endogenous PARP activities.

As shown in Figure 13A, a high amount of protein-bound PAR was 

produced in HeLaBabe cells and such an activity was completely abolished 

by 5 M PJ34. 

The  corresponding  immunodetection  showed  a  reduction  of 

PARP-1  native  protein  in  the  sample  incubated  with  -NAD+ alone 

compared to that incubated with  -NAD+ + PJ34. Such a difference is 

explained  by  a  band  depletion  due  to  the  automodification-related 

electrophoretic  mobility  shift  of  a  fraction  of  heavily  poly(ADP-

ribosylated)  PARP-1. After  quantification  of immunoreactive bands by 

scanning densitometry and normalization of PARP-1 to GAPDH content, 

it  could  be  estimated  that  about  50%  of  PARP-1  underwent 

automodification (Figure 13B).
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A

B

Figure 13. PJ34-dependent inhibition of PAR synthesis in HeLa cells.
Babe and SiP-1 cells were resuspended in permeabilizing buffer, sonicated and 
incubated with 50 M [32P]-NAD+ +/- 5 M PJ34, as described in M&M.
A:  Autoradiographic  analysis  of  whole  cell  protein  after  SDS-PAGE  and 
electroblot on PVDF.
B:  Immunodetection of PARP-1 and GAPDH on the blot shown in A.
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The same kind of analysis carried out on HeLaSiP-1 cells revealed a 

strongly reduced ADP-ribosylation capacity of these cells: in fact, in the 

autoradiography  only  a  light  smear  at  top  of  the  gel  was  visualized 

(Figure 13A) and by western blotting no PARP-1 was detected (Figure 

13B),  as  a  consequence  of  silencing.  This  modest  ADP-ribosylation 

activity detected (about 18%), may be due to PARP-2 (or other PARPs) 

or to a residual PARP-1 protein: anyway it was also inhibited by PJ34.

Then, we used a different experimental setting to determine whether 

or  not  TPT could  induce  PARPs  activation  in  growing  cells.  To  this 

purpose, the MCF7 cells were first exposed to the drugs and then PAR 

synthesis was measured in situ by incubation of permeabilized cells with 

0.125 M [32P]-NAD+.

The autoradiography showed a main signal up to PARP-1 molecular 

weight (113 kDa), indicating a TPT-dependent PARP-1 automodification, 

that  appeared  already  after  1  h  treatment  and  was  sustained  for  24  h 

recovery time (Figure 14).

A  minor  autoradiographic  signal  in  the  90-50  kDa  MWs  range 

could be attributed to a modified PARP-2 (62 kDa), on the basis of a 

modification-related electrophoretic mobility shift.

The  radioactive  signals  were  significantly  reduced  in  cells  co-

treated with TPT+PJ34, accordingly with a 75% decrease of the [32P]-

PAR incorporated  in  the  TCA-insoluble  fraction  with  respect  to  cells 

treated with TPT alone, measured by the use of the liquid scintillation 

spectrometer.
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Figure 14. TPT-dependent PARPs activation in MCF7 cells.
Following 1h treatment with 10 M TPT +/- 5 M PJ34 and recovery for 24 h in 
fresh medium in the presence or not of PJ34, MCF7 cells were incubated with 
0.125 M [32P]-NAD+, as described in M&M.
A:  Autoradiographic  analysis  of  whole  cell  protein  after  SDS-PAGE  and 
electroblot on PVDF.
B:  Immunodetection of PARP-1, PARP-2 and GAPDH on the blot shown in A.
Fifty  ng  of  human  recombinant  PARP-2  (hrPARP-2)  was  also  loaded  as  a 
standard.
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3.4 Immunological analysis of different protein level in TPT +/- PJ34 

treated carcinoma cells

By western blotting,  we looked  at TPT-dependent changes in the 

endogenous  levels  of  several  proteins  in  HeLa  and  MCF7  cells  at 

different times (24, 48 and 72 h) after 1 h treatment with 10 M TPT +/- 

PJ34.

Figure  15 shows  that  the  amount  of  soluble/active  TOP1  was 

lowered  till  72  h  recovery  times,  as  a  consequence  of  the  treatments. 

Conversely, it was observed an up-regulation of p53 levels in the same 

time frame and the concomitant  p53-dependent  p21 induction,  starting 

from 24 h after TPT-treatment.

The  same  results  were  evident  in  HeLa  cells  (Figure  16):  in 

particular,  the  TPT-dependent  p53  up-regulation  was  even  higher  in 

HeLaSiP-1 cells and further increased by TPT and PJ34 co-treatment, with 

respect to HeLaBabe cells.
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Figure 15. Western blot analysis of PARP-1, TOP1, p53 and p21 in 
MCF7 cells.
MCF7 cells were treated with 10 M TPT+/- 5 M PJ34 for 1 h and allowed to 
recover in fresh medium in the presence or not of PJ34 for the indicated times.  
GAPDH was used as loading control.
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Figure 16. Western blot analysis of PARP-1,  TOP1 and p53 in HeLa 
cells.
Babe and SiP-1 cells were treated with 10 M TPT+/- 5  M PJ34 for 1 h and 
allowed  to  recover  in  fresh  medium in  the  presence  or  not  of  PJ34 for  the 
indicated times. GAPDH was used as loading control.
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Indeed,  we  also  confirmed  the  p53  activation  by  looking  to  its 

nuclear  stabilization in HeLa cells.  Figure 17 shows a TPT-dependent 

increase of nuclear p53-localization arising 24 h after treatment, that was 

even higher as a consequence of PJ34 addition. 

Figure 17. p53 nuclear stabilization in HeLa cells.
Western blot analysis of p53 levels in Babe cell nuclei treated 1 h with 10 M 
TPT+/- 5 M PJ34 and allowed to recover in fresh medium in the presence or  
not of PJ34 for 24 h. Actin was used as loading control.

By densitometric scanning of immunoreactive bands of Figure 16, 

we quantified the changes in p53 levels at different times after single and 

combined treatments. 

As shown in Figure 18, 72 h after 1 h treatment, we calculated a 10 

fold increase of p53 levels in HeLaSiP-1 cells compared with 2.25 fold in 

HeLaBabe cells treated with TPT alone; these values were increased to 13 

fold and 4.5 fold in SiP-1 and Babe respectively, by the presence of PJ34 

during the recovery time.
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Figure 18. Densitometric analysis of p53 levels in HeLa cells.
After  immunodetection on western blot,  band  intensities were quantified by 
scanning  densitometry.  Data,  expressed  as  Arbitrary  Densitometric  Units 
(ADU), were normalized to the internal control GAPDH.

Finally,  at  longer  recovery  times  we  analysed  the  expression  of 

apoptotic markers. 

As  shown  in  Figure  19A,  in  HeLaBabe cells  it  was  evident  the 

caspase-dependent PARP-1 cleavage. Instead, in MCF7 cells the PARP-1 

apoptotic  fragment  was  hardly  detectable,  but  we  observed  the  p53-

dependent BAX expression. Interestingly, we found that PJ34 was able to 

enhance both such apoptotic signals.

Moreover, we looked for other apoptotic markers in isolated nuclei 

of HeLaSiP-1 cells. 

In Figure 19B, it couldn’t observed any nuclear traslocation of AIF 

(Apoptosis-Inducing Factor) in treated cells, but it was evident the active 

form  of  caspase  3  in  nuclei  from  TPT-treated  cells,  incremented  by 

TPT+PJ34 combined treatment.
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A

B

Figure 19. Apoptotic markers in carcinoma cells.
Cells were treated with 10 M TPT+/- 5 M PJ34 for 1 h and allowed to recover 
in fresh medium in the presence or not of PJ34 for 72 h.
A:  Western  blot  analysis  of  PARP-1  and Bax  in  HeLaBabe and  MCF7 cells. 
GAPDH was used as loading control.
B:  Western blot analysis of AIF and Caspase 3 in HeLaSiP-1 cell nuclei. Actin 
was used as loading control.
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4. DISCUSSION

Clinical  investigation  of  PARP  inhibitors  follows  two  distinct 

approaches:  targeting  cells  that  are  genetically  predisposed  (repair-

deficient)  to  die  when  PARP  activity  is  lost;  and  combining  PARP 

inhibition with DNA-damaging therapy to derive additional therapeutic 

benefit  from  DNA  damage.  This  has  led  to  the  development  of  a 

multitude  of  potent  PARP  inhibitors  with  various  bioavailability  and 

pharmacokinetic characteristic whose efficacy in the treatment of cancer 

in vivo has been evaluated in animal models (Tentori et al; 2005).

In our studies, we used the hydrophilic PARP inhibitor PJ34 that 

has been recently reported to synergize with cisplatin in triple-negative 

breast  cancer (Hastak et al;  2010) and colon carcinoma (Gambi et  al;  

2008) cell lines, in combination with the DNA Topoisomerase 1 inhibitor 

TPT. For our experiments, we performed 1 h treatment up to 10 M TPT 

that was already reported to be sufficient for trapping TOP1 in MCF7 

cells (Feeney et al; 2003). PJ34 was used at 5 M concentration that was 

efficient at inhibiting PARP activity, while not being cytotoxic per se.We 

found that  TPT toxicity  was higher  when PAR synthesis  was strongly 

reduced  by  either  PARP-1  silencing  (HeLaSiP-1 cells)  or  PJ34 

administration  (both  in  HeLa  and  MCF7  cells),  as  indicated  by  cell 

growth and cell cycle analysis.

In  fact,  MCF7 and HeLa  cells,  according  with  their  comparable 

PARP-1+/+, BRCA1/2+/+ and p53+/+ status showed the same sensitivity to 

TPT, which determined a cytostatic effect and a cell cycle arrest until 72 

h after treatment. However, in combination with PJ34, TPT was cytotoxic 

even at a very low concentration (1.25 M). Accordingly, TPT alone was 
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cytotoxic in HeLaSiP-1. Interestingly, the PARP inhibitor further increased 

the  sensitivity  of  SiP-1  cells  treated  with  the  drug  combination, 

suggesting  a  PARP-2  involvement  in  the  signaling  of  TPT-dependent 

DNA damage. So, TPT-treated cells entered the apoptotic program as a 

consequence of PARP-1 silencing and/or PARP inhibition.

Consistently with the idea that poly(ADP-ribosyl)ation plays a role 

in the response to TPT-induced DNA damage, we found increased PAR 

synthesis  following  cell  exposure  to  10  M  TPT.  The  lack  of  PAR 

synthesis, by interfering with the repair of TOP1-induced DNA damage 

causes  DNA  strand  break  accumulation  and  further  delays  cell  cycle 

progression. 

In  particular,  we observed distinct  cell  cycle  perturbation  effects 

depending on the concentration of TOP1 poison and on the association 

with the PARP inhibitor:  PJ34 in combination with 0.2 - 0.4  M TPT 

caused more cells  to be arrested in G2/M phase,  while combined with 

1.25 M TPT induced a S phase block, not observed in TPT+3-ABA co-

treated cells. Furthermore, the G2/M arrest induced by 0.4  M TPT in 

PARP-1 wild type cells was magnified in PARP-1 silenced HeLa cells.

These evidences agree with the concept that after 1 h pulse of TPT 

not  all  the  cells  are  prevented  from entry  in  mitosis  and  the  G2 cell 

lineages could survive TPT-mediated cytotoxicity (Tuduri et al; 2009). 

Therefore, the persistence of cells at the G2/M phase provoked by PARP 

inhibition and PARP-1 silencing can be seen as a mechanism to overcome 

cell  resistance  to  camptothecin  derivates.  Interestingly,  in  PARP-1 

silenced HeLa cells PJ34 increased the TPT-dependent S phase block as 

further indication of PARP-2 implication.

Indeed, the TPT-dependent  DNA damage level  was increased by 
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co-treatment with PJ34 either in PARP-1 proficient and silenced cells 24 

h after treatment . In nuclei of such cells, differences in  H2AX levels 

deriving from TPT+/- PJ34 exposure support the involvement not only for 

PARP-1 but also for PARP-2 in the signaling of TPT-dependent DSBs 

repair.

Moreover, we found a sustained PAR synthesis from 1 to 24 h after 

treatment  and  most  of  the  newly  synthesized  polymer  was  linked  to 

PARP-1 itself.  Another PAR acceptor (probably PARP-2) in the lower 

molecular weight range appeared to be TPT-dependent. Accordingly with 

the magnified effect of TPT+PJ34 co-treatment in HeLaSiP-1, the PARP-2 

modification could represent the mechanism of its participation in DSBs 

signaling and HR repair (Yelamos at al; 2008). 

PARP activity assays also offered an indication of PJ34 inhibitory 

efficacy.  We  already  showed  that  5  M  PJ34  totally  inhibits  PARP 

activity  in  vitro;  according  with  the  in  situ assays  we  determined 

approximatively 75% PARP inhibition in permeabilised cells. This could 

also  explain  quantitative  differences  observed  in  the  use  of  inhibitors 

compared to PARP-1 silencing. Indeed, our results also confirmed that 

PJ34,  as  its  prototype  3-ABA,  do  not  discriminate  between  PARPs 

enzyme. Then, PARP-1 silenced cells allowed the attribution of a residual 

PARP activity (12%) to PARP-2.

The  last  set  of  results  was  based  on  mechanistic  investigations 

addressed to show the long-term response to TPT action: after 1 h pulse 

TOP1 soluble/active fraction was drastically reduced for at least  3 cell 

duplication cycle,  otherwise p53 levels increased within the same time 

frame. Such an up-regulation was even higher in cell lacking PARP-1 and 

further  increased  by  TPT+PJ34  treatment,  supporting  again  the 
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involvement of PARP-2 in the signaling of TPT-dependent DNA damage. 

These results are in agreement with those previously reported in the same 

cells  treated  with  the  methylating  agent  temozolomide  in  combination 

with the PARP inhibitor GPI 15427, suggesting the implication of PARP-

2 in the repair  of another DNA  damage-inducing agent (Tentori et  al;  

2010).

We  also  observed  that caspase  3  activation,  caspase-dependent 

PARP-1 proteolysis and p53-dependent BAX expression were sustained 

by the PARP inhibitor as a result of apoptosis induction.

By the all of such evidences, we envisaged a TPT-dependent DNA 

damage signaling network, involving PARPs. In fact, the DNA damage 

arising from the trapping of TOP1 was signaled by PARP-1 and -2 and 

gathered  by  effectors  like  p53/p21.  Previous  results  suggest  that  p53 

causes resistance of cells  to  TPT exposure (Tomicic  et  al;  2003).  Our 

findings  suggest  a PARP activation induced by TPT-dependent  double 

strand  breaks,  while  PARP-1  and  -2  inhibition  switches  on  p53  pro-

apoptotic role.

Indeed,  caspase-dependent  PARP-1  proteolysis  contributes  to 

restoring the apoptotic program in neoplastic cells and has been described 

in  camptothecin-induced  apoptosis  as  an  early event  that  precedes  the 

mitochondrial release of cytocrome c and AIF (Rodriguez-Hernandez et  

al; 2006).

In  conclusion,  our  findings  contribute  to  the  understanding  the 

molecular events triggered by TOP1 poisons-dependent genomic damage 

and  the  confirming  the  potential  of  PARP  inhibitors  as  adjuvant  of 

chemotherapy.
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1. Introduction

The camptothecin derivative topotecan (TPT) is a DNA
topoisomerase 1 (TOP1) inhibitor approved for the treatment of
ovarian cancer, non small-cell lung cancer and under clinical
investigation for a number of advanced solid tumours and
haematological malignancies [1]. The drug reversibly abolishes
the DNA religation activity of TOP1 generating single strand breaks
(SSBs) to which the protein is covalently linked. Double strand
breaks (DSBs) arise when replication forks collide with the SSBs
and run off. Thus, TPT-induced DSBs are largely replication
dependent or S phase specific [2,3].

Eukaryotes have two pathways for repairing DSBs: homologous
recombination (HR) and non homologous end joining (NHEJ). The
relative contribution of these two DSB repair pathways seems to
differ depending on the cell cycle phase; HR acts mainly in the S

and G2 phases, whereas NHEJ acts mainly in the G1 phase [4,5]. For
these reasons, TPT-induced replication-dependent DSBs are
usually repaired by the HR pathway [6].

Poly(ADP-ribosyl)ation is a post-translational modification
catalyzed by poly(ADP-ribose)polymerase-1 and -2 (PARP-1 and
PARP-2) and is one of the earliest cellular responses to DNA
damage. PARP-1 and PARP-2 belong to a family of enzymes that
cleave b-NAD+ in nicotinamide and ADP-ribose to form long and
branched (ADP-ribose) polymers (PAR) on glutamic acid residues
within the primary sequence of PARP-1 and PARP-2 (automodi-
fication) and of other cellular proteins (heteromodification). This
process causes chromatin decondensation around damage sites,
recruitment of repair machineries, such as base excision repair
complexes, and accelerates DNA damage repair [7,8]. In contrast,
when DNA damage exceeds cell repair capacity PARP-1 undergoes
cleavage by caspases into two fragments of 89 kDa and of 24 kDa,
thereby avoiding futile cycling of PAR that would otherwise
deplete the cell of b-NAD+ required for the onset of apoptosis [9].
Moreover, interaction of PAR with the p53 oncoprotein is able to
modulate its transcriptional activity [10].
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A molecular approach to enhance the antitumour activity of topoisomerase 1 (TOP1) inhibitors relies on

the use of chemical inhibitors of poly(ADP-ribose)polymerases (PARP). Poly(ADP-ribosyl)ation is

involved in the regulation of many cellular processes such as DNA repair, cell cycle progression and cell

death. Recent findings showed that poly(ADP-ribosyl)ated PARP-1 and PARP-2 counteract camptothecin

action facilitating resealing of DNA strand breaks. Moreover, repair of DNA strand breaks induced by

poisoned TOP1 is slower in the presence of PARP inhibitors, leading to increased toxicity.

In the present study we compared the effects of the camptothecin derivative topotecan (TPT), and the
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silenced, both BRCA1/2+/+ and p53+/+.

HeLa and MCF7 cell lines gave similar results: (i) TPT-dependent cell growth inhibition and cell cycle

perturbation were incremented by the presence of PJ34 and a 2 fold increase in toxicity was observed in

PARP-1 stably silenced HeLa cells; (ii) higher levels of DNA strand breaks were found in cells subjected to

TPT + PJ34 combined treatment; (iii) PARP-1 and -2 modification was evident in TPT-treated cells and

was reduced by TPT + PJ34 combined treatment; (iv) concomitantly, a reduction of soluble/active TOP1

was observed. Furthermore, TPT-dependent induction of p53, p21 and apoptosis were found 24–72 h

after treatment and were increased by PJ34 both in PARP-1 proficient and silenced cells. The

characterization of such signaling network can be relevant to a strategy aimed at overcoming acquired

chemoresistance to TOP1 inhibitors.
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PARP-1 also affects DSBs repair as indicated by the increased
sensitivity of PARP-1-deficient cells to DSBs inducing agents,
especially to camptothecin [2]. Furthermore, the molecular
mechanisms underlying tumour chemosensitization to TOP1
poisons by PARP inhibitors have been in part clarified by recent
findings showing that poly(ADP-ribos)ylated PARP-1 and PARP-2
counteract camptothecin action facilitating resealing of DNA
strand breaks [11]. This occurs through noncovalent yet specific
interaction of PAR with particular TOP1 sites which results in
inhibition of DNA cleavage and stimulation of the religation
reaction [12]. Another mechanism proposed to explain the
potentiation of camptothecin cytotoxicity by PARP inhibitors, is
via the inhibition of base excision repair system, of which PARP-1
and -2 are important components. This model is supported by the
association of tyrosyl phosphodiesterase-1, which removes the
TOP1 cleavable complex, with base excision repair components
that interact with PARP-1 [13].

Indeed, PARP-1 inhibition enhances the cytotoxic effects of TPT
[14]. The potential of PARP inhibitors to increase the efficacy of
chemotherapy has led to the development of a wide range of
specific inhibitors – quinazolinone derivates – like NU1025 or PJ34
which display increased potency compared to the prototype 3-
aminobenzamide (3-ABA) [15]. In this regard, we previously
demonstrated a TPT-dependent PARP-1 activation in glioblastoma
cells, while co-treatment with the PARP inhibitor NU1025
increased the TPT-dependent p53 up-regulation [16]. Moreover,
we showed PJ34 chemo-potentiation of cisplatin in colon
carcinoma cells [17].

It has been reported that PARP inhibitors would be particularly
effective in BRCA1/2 mutated breast carcinoma cells [18]. In fact,
PARP-1 and PARP-2 are required for the base excision repair
pathway, whereas the BRCA proteins are critical for the HR
pathway. Cells can survive when one repair system breaks down,
but they start to die when both DNA repair mechanisms stop
functioning.

Furthermore, a factor supposed to be involved in determining
the sensitivity of cells to TOP1 inhibitors is p53. However, for
breast cancer cells the p53 status was not found to be predictive of
sensitivity to camptothecins [19].

On the basis of such evidences, we have investigated the role of
PARP-1 in the DNA damage response to TOP1 inhibitors, in human
BRCA1/2+/+ and p53+/+ mammary (MCF7) and cervix (HeLa)
carcinoma cells treated with TPT as single agent or in association
with a PARP inhibitor. Furthermore, TPT sensitivity of HeLa cells in
which PARP-1 has been knocked down by RNA interference, has
been compared to that of HeLa cells treated with the PARP inhibitor.

2. Materials and methods

2.1. Drugs, antibodies and chemicals

TPT was from Glaxo Smith-Kline (Verona, Italy) and PJ34 [N-(6-
oxo-5,6,-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)aceta-
mide] from Alexis Biochemicals (Vinci-Biochem, Firenze, Italy).
The cocktail of protease inhibitors was from ROCHE-Diagnostic
(Milano, Italy).

Nicotinamide adenine [adenylate-32P] dinucleotide-[32P]-NAD+

(1000 Ci/mmol, 10 mCi/ml) was supplied by GE Healthcare
(Milano, Italy).

Propidium iodide (PI) and RNAse were from Sigma–Aldrich
(Milano, Italy).

PVDF (poly-vinylidene-fluoride) membrane was from MILLI-
PORE S.p.A. (Milano, Italy). Anti-PARP-1 mouse monoclonal anti-
body (F1–23) was from Alexis Biochemicals (Vinci-Biochem,
Firenze, Italy) and anti-DNA TOP1 antibody from ABCAM, (Cam-
bridge, UK). Anti-p53 (DO-1), anti-p21 (C-19), anti-BAX (P-19) and

anti-GAPDH (H-2) mouse monoclonal antibodies were from Santa-
Cruz Biotechnology (DBA, Milano, Italy); anti-actin (A2066) mouse
monoclonal antibody and goat anti-mouse and goat anti-rabbit IgG
HRP-conjugated antibodies were from Sigma–Aldrich (Milano,
Italy). Anti-gH2AX (ser139, 2577) rabbit antibody was from Cell
Signaling (Invitrogen Milano, Italy).

All other chemicals were of the highest quality commercially
available.

2.2. Cell cultures

Cervix (HeLa) and mammary (MCF7) carcinoma cells were
maintained in Dulbecco’s modified eagle’s medium (DMEM)
containing 10% (v/v) heat-inactivated foetal bovine serum (FBS),
100 U/ml penicillin, 100 mg/ml streptomycin, 5 mM L-glutamine
and incubated at 37 8C in a humidified atmosphere, plus 5% CO2.

Stably PARP-1 silenced HeLa cells (hereafter referred to as
HeLaSiP-1) or transfected with the pBabe vector carrying the
puromycin resistance gene (hereafter referred to as HeLaBabe) were
obtained as previously described [20].

2.3. Cell growth inhibition

MCF7 and HeLa cells were seeded at 1 � 105 cells; after 24 h,
cell cultures were treated with graded concentrations of TPT and
PJ34 and cell growth inhibition was assessed at different time
points (24, 48, 72 h) using the 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay. All the experiments
were performed in triplicate.

2.4. Cytofluorimetric analysis

Control and treated cells were detached by enzymatic
treatment (trypsin/EDTA 0.02%), washed in PBS (w/o) Ca++/Mg++

pooled with floating cells and recovered by centrifugation at
1200 rpm for 15 min at 4 8C. Cells were fixed in 70% ethanol and
stored at �20 8C until analysis. After washing in PBS (w/o) Ca++/
Mg++, cells were stained in 2 ml of propidium iodide (PI) staining
solution [50 mg/ml of PI, 1 mg/ml of RNAse A in PBS (w/o) Ca++/
Mg++, pH 7.4] overnight at 4 8C and DNA flow cytometry was
performed in duplicate by a FACScan flow cytometer (Becton
Dickinson Franklin Lakes, NJ, USA) coupled with a CICERO work
station (Cytomation). Cell cycle analysis was performed by the
ModFit LT software (Verity Software House Inc., Topsham, ME,
USA). FL2 area versus FL2 width gating was done to exclude
doublets from the G2/M region. For each sample 15,000 events
were stored in list mode file.

2.5. Alkaline comet assay

Cells were suspended in PBS at a density of 104 cells/ml and
mixed with an equal volume of fresh low-melting agarose (LMA, 1%
in PBS); 80 ml of agarose cell suspension was spread on normal-
melting agarose (NMA, 1% in PBS) slides and covered with a cover-
slip. Two slides were prepared per sample. After gelling for 5 min
on an ice bed, the cover-slip was gently removed and another layer
was added, cover-slipped and allowed to solidify for 5 min on ice
before gently removing the cover-slip. The slides were then
immersed in a freshly prepared ice-cold lysis solution (2.5 M NaCl,
0.1 M Na2EDTA, 0.01 M Tris, 1% Triton X-100, 10% DMSO, pH 10) for
1 h. The slides were drained and placed in a horizontal
electrophoresis tank filled with freshly prepared alkaline buffer
(0.3 M NaOH, 1 mM Na2EDTA, pH 13). Electrophoresis was carried
out in this buffer for 20 min at 300 mA. Finally, the slides were
gently washed twice in a neutralization buffer (Tris–HCl 0.4 M, pH
7.5) for 5 min to remove alkali and detergent, and stained with
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50 ml/ml DAPI (3 h). Images of a minimum of hundred cells from
each sample were analysed on a fluorescence microscope (Nikon
Instruments S.p.A. Firenze, Italy); overlapping figures were
avoided from each slide. Quantitative assessment of DNA damage
was performed using Comet Score 1.5 Image Analysis (TriTek
Corporation, Sumerduck, VA, USA) software which computes the
integrated intensity profile for each cell. DNA damage was
measured as olive tail moment [(tail mean � head mean) � % of
DNA in the tail/100]. The results were analysed by Student’s t-test
and were considered statistically significant at P < 0.008.

2.6. Analysis of [32P]-PAR synthesis

Following treatment with 10 mM TPT � 5 mM PJ34 of intact cell
(5 � 106 cells/plate), [32P]-PAR synthesis was determined by substi-
tuting the culture medium with 1 ml of 56 mM HEPES buffer pH 7.5,
containing 28 mM KCl, 28 mM NaCl, 2 mM MgCl2, 0.01% digitonin,
0.1 mM PMSF, 1:25 dilution of a cocktail of protease inhibitors,
0.125 mM NAD+ and 5 mCi [32P]-NAD+ (1000 Ci/mmol). After
incubation at 37 8C for 30 min, cells were scraped off the plates,
transferred to Eppendorf tubes and mixed with TCA at 20% (w:v) final
concentration. After 15 min standing on ice, samples were collected
by centrifugation at 1200 rpm for 15 min, washed twice with 5% TCA
and three times with ethanol. [32P]-PAR incorporated in the TCA-
insoluble fraction was measured by Cerenkov counting using a
LS8100 liquid scintillation spectrometer (Beckman Coulter S.p.A.
Milano, Italy). Finally, TCA protein pellets were resuspended in
Laemmli buffer; proteins were separated by 5–15% SDS-PAGE and
after electroblotting on PVDF membrane, [32P]-PAR acceptors were
visualized by autoradiography. Immunodetection of specific proteins
was accomplished on the same blots after autoradiography.

PJ34 efficiency as PARP inhibitor, was determined in an in vitro
enzymatic activity assay using permeabilized cells: cell pellets were
resuspended in 40 mM Tris–HCl pH 7.8, 0.6 mM EDTA, 30 mM
MgCl2, 0.05% Triton X-100, 1 mM b-mercaptoethanol, 20% glycerol,
1 mM PMSF and a 1:25 dilution of the cocktail of protease inhibitors.
To maximally stimulate PAR synthesis, DNA strand breaks were
induced by sonication for 30 s at medium intensity; finally, samples
were incubated at 30 8C for 1 h with 5 mCi/ml [32P]-NAD+ and 50 mM
unlabeled b-NAD+, in the presence or absence of 5 mM PJ34.

Reactions were stopped by TCA addition (20% final concentra-
tion) and the samples were processed and analysed as described
above.

2.7. Isolation of nuclear and post-nuclear fractions

To isolate sub-cellular fractions, cells were suspended in a
buffer containing 30 mM Tris–HCl pH 7.5, 1.5 mM MgCl2, 10 mM
KCl, 1% (v/v) Triton X-100, 20% glycerol, 2 mM PMSF and the
protease inhibitors cocktail solution. After 30 min of incubation on
ice, cellular suspensions were centrifuged at 960 � g for 90 s at 4 8C
and the nuclear fractions recovered in the pellet. The supernatant
represents the post-nuclear fraction.

Nuclear fractions were resuspended in 20 mM HEPES pH 7.9,
containing 20 mM KCl, 0.2 mM EDTA, 1.5 mM MgCl2, 25% glycerol
and the protease inhibitors cocktail solution. Protein concentration
was determined using the Bradford protein assay reagent (BIO-
RAD, Milano, Italy) with bovine serum albumin as a standard.

2.8. Autoradiographic and immunological analyses

Aliquots of 120 mg of cellular proteins were separated by SDS-
PAGE (5–15% gradient gels) and transferred onto a PVDF membrane
using an electroblotting apparatus (BIO-RAD). The membrane was
subjected to autoradiographic analysis by the PhosphorImager
(BIO-RAD) and/or to immunodetection after blocking with 5% non-

fat milk in TBST 1 h, with anti-PARP-1 (F1–23; diluted 1:5000), anti-
TOP1 (Scl-70; diluted 1:2500), anti-p53 (DO-1; diluted 1:5000),
anti-p21 (C-19; diluted 1:1000), anti-Bax (P-19; diluted 1:500), anti-
GAPDH (H2; diluted 1:5000), anti-gH2AX (2577; diluted 1:1000)
and anti-actin (A2066; diluted 1:1000).

As secondary antibodies goat-anti-mouse or goat-anti-rabbit
IgG HRP-conjugate (diluted 1:10,000–1:20,000) in 3% (w/v) non-
fat milk in TBST were used. Peroxidase activity was detected
using the ECL Advance Western blotting kit of GE Healthcare
(Milano, Italy) and quantified using the Chemiluminescent
detection system GS710 (BIO-RAD) and the Quantity One
software: the arbitrary densitometric units were normalised
on those of the GAPDH loading control.

3. Results

3.1. Effect of PJ34 on TPT-induced growth inhibition in human

carcinoma cells

In preliminary experiments human cervical (HeLa) and
mammary (MCF7) carcinoma cell lines showed comparable TPT-
dependent growth inhibition, as measured by the MTT assay (data
not shown). Furthermore, PARP-1 silencing by stable shRNA
expression in HeLa cells (HeLaSiP-1) rendered these cells more
sensitive to the cytotoxic effects of the drug. In particular, while in
a 72 h assay, 10 mM TPT for 1 h exerted mainly cytostatic effects in
control cells (HelaBabe), the same treatment caused 45% (�5) of
PARP-1 silenced cells (HeLaSiP-1) to die. In the presence of 5 mM PJ34
30% (�6) of PARP-1 proficient and 60% (�9) of PARP-1 deficient cells
underwent cell death (data not shown).

To gain insight into the mechanism of enhanced TPT toxicity
as a consequence of alteration of the cellular poly(ADP-
ribosyl)ation status, we analysed cell cycle distribution at
different recovery times after 1 h exposure to increasing
concentrations of TPT, in the presence or absence of a functional
PARP-1 (i.e., PARP-1 wild type HeLa or MCF7 cells versus
HeLaSiP-1 cells). In another set of experiments, the PARP inhibitor
PJ34 was used in combination with TPT, at a fixed concentration
of 5 mM, maintained in the culture medium all over the recovery
time. As shown in Fig. 1, as early as 24 h after treatment, graded
concentrations of TPT induced a progressive increase of cell
accumulation in the G2/M phase starting from 0.2 mM up to
1.25 mM. Higher TPT concentrations, instead, promptly arrested
the cells in S phase.

The addition of the PARP inhibitor PJ34 to TPT concentrations
<1.25 mM significantly increased G2/M cell accumulation, where-
as when combined with �1.25 mM TPT concentrations, PJ34
induced S phase cell accumulation. As also shown in Fig. 1 cell
cycle kinetics was unaffected by treatment of HeLaBabe cells with
PJ34 used as single agent.

HeLaSiP-1 cells treated with TPT concentrations comprised
between 0.2 and 0.4 mM underwent a more pronounced increase
of G2/M cell accumulation with respect to HelaBabe cells exposed to
the same concentrations of the TOP1 poison. Interestingly, 0.4 mM
TPT caused in HeLaSiP-1 cells effects comparable to those observed
in HeLaBabe cells treated with 0.4 mM TPT plus the PARP inhibitor.
However, PARP-1 silenced cells retained sensitivity to PJ34 and the
combination 1.25 mM TPT + PJ34 caused S phase accumulation at a
higher extent in HeLaSiP-1 than in HelaBabe cells (Fig. 1).

Cytofluorimetric analyses at a longer recovery time (i.e., 72 h
after treatment), revealed that alterations of the poly(ADP-
ribosyl)ation system caused TPT to be cytotoxic at a concentra-
tion (1.25 mM) that was primarily cytostatic in control cells, as
indicated by the appearance of a sub-diploid peak (apoptotic
cells) both in PARP-1 silenced (HeLaSiP-1) and PJ34-treated PARP-
1 wild type cells (HelaBabe) (Fig. 2). In this regard, the lack of
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PARP-1 appeared to be more effective than PARP activity
inhibition as the fraction of apoptotic cells was 62% in TPT-
treated HeLaSiP-1 versus 38% in HeLaBabe, subjected to a combined
TPT + PJ34 treatment (Fig. 2).

3.2. Analysis of TPT and/or PJ34 dependent DNA damage in carcinoma

cells

By alkaline comet assay, we analysed the level of both SSBs and
DSBs [21] induced by 10 mM TPT � PJ34 treatments. Fig. 3(A) shows
that the olive tail moment determined for both HeLa (Babe and SiP-1)
and MCF7 cells 24 h after 1 h treatment with TPT was increased in the
cells left to recover in the presence of PJ34. The definition of a DSBs
level was obtained by looking at the H2AX phosphorylation in

isolated nuclei from Babe and SiP-1 cells. Fig. 3(B) shows that 72 h
after 1 h treatment TPT induced a higher level of histone phosphory-
lation in HeLaSiP-1 than in HelaBabe cells. H2AX phosphorylation was
further incremented by PJ34 addition in both PARP-1 proficient and
silenced cells.

3.3. Analysis of PAR synthesis in carcinoma cells after treatment with

TPT � PJ34

First, PJ34 efficacy as a PARP inhibitor at the concentration
used in this study was assessed in an in vitro enzyme activity
assay by incubating permeabilized and sonicated HeLa cells with
exogenous 50 mM [32P]-NAD+ in the presence or absence of 5 mM
PJ34. Sonication was performed to induce DNA strand breaks and

Fig. 1. Cell cycle analysis of HeLaBabe and HeLaSiP-1 cells treated with TPT and PJ34 as single agents or in combination. Babe and SiP-1 cells were treated for 1 h with TPT

(0.2–0.4–1.25–2.5–5 mM) in combination or not with PJ34 (5 mM) and left to recover for 24 h in fresh medium in the presence or absence of PJ34. The results are

expressed as percentages of cells in the G1, S and G2/M phase of the cell cycle. Data refer to one out of three experiments giving similar results.

Fig. 2. Cell death analysis of HeLa cells subjected to TPT and PJ34 single and combined treatments. Babe and SiP-1 cells were treated for 1 h with 1.25 mM TPT in combination

or not with 5 mM PJ34 and left to recover for 72 h in fresh medium in the presence or absence of PJ34. Flow cytometric determination of DNA content after PI staining is shown.

The percentage of cells in the sub-diploid (subG1) peak is indicated. Data refer to one out of three experiments giving similar results.
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thus maximally stimulate endogenous PARP activities. PAR
synthesis on protein acceptors was analysed by SDS-PAGE
followed by electroblotting onto PVDF membrane and autoradi-
ography. As shown in Fig. 4(A), a high amount of protein-bound
PAR was produced in HeLa cells and such an activity was
completely inhibited by 5 mM PJ34. Although a wide range of
modified proteins could be visualized, the main PAR acceptor
was most likely PARP-1 as suggested by the strong radioactivity
signal at the top of the gel and by the concomitant reduction of
the PARP-1 immunoreactive band in the sample incubated with
b-NAD+ alone compared to that incubated with b-NAD+ and PJ34
(Fig. 4(B)). Such a difference is explained by a band depletion due
to the automodification-related electrophoretic mobility shift of
a fraction of heavily poly(ADP-ribosylated) PARP-1. After
quantification of immunoreactive bands by scanning
densitometry and normalization of PARP-1 to GAPDH content
it could be estimated that about 50% of PARP-1 underwent
automodification.

The same kind of analysis carried out in HeLaSiP-1 cells, revealed
a strongly reduced ADP-ribosylation capacity of these cells as a
consequence of PARP-1 silencing (Fig. 4(A)): on the autoradiogra-
phy only a light smear at the top of the gel could be visualized. As
no PARP-1 could be detected in these cells by Western blotting
(Fig. 4(B)) the modest ADP-ribosylation activity detected by the in
vitro assay may be due to PARP-2 and/or other PARP.

Then, we used a different experimental setting to determine
whether or not TPT could induce PARP(s) activation in intact cells.
To this purpose, growing MCF7 cells were first exposed to the drugs
and then PAR synthesis was measured in situ by incubation in the
presence of 0.01% digitonin and 0.125 mM [32P]-NAD+. By
autoradiography (Fig. 5(A)) we observed a main signal slightly
up to PARP-1 molecular weight (113 kDa), indicating that DNA
damage induced by TPT caused PARP-1 activation and automo-
dification that was apparent already after 1 h treatment and
further increased in the following 24 h recovery time. Such a trend
was confirmed by scanning densitometry and normalization of

data from autoradiography (Fig. 5(A)) to those relative to PARP-1
immunoreactive band (Fig. 5(B)). Minor autoradiographic bands
were evident in the 90–50 kDa MWs range (Fig. 5(A)) indicating
other PAR acceptors, possibly including other PARP. PARP-2 was
detectable in this region as a 62 kDa protein band; a modification-
related electrophoretic mobility shift could explain the lack of
correspondence between the autoradiographic signal (Fig. 5(A))
and the PARP-2 immunoreactive band (Fig. 5(B)).

The autoradiographic signals were drastically reduced (up to
75% reduction) in cells co-treated with TPT and the PARP inhibitor
with respect to cells treated with TPT as single agent.

Similar results were obtained in HeLaBabe cells, while a [32P]-
PAR signal was undetectable in HeLaSiP-1 (data not shown).

3.4. Immunological analysis of PARP-1, TOP1, p53, p21 level in

TPT � PJ34 treated cells

By Western blotting we analysed changes in the endogenous
levels of PARP-1, TOP1 and p53 in HeLa and MCF7 cells at different
times (24, 48 and 72 h) after treatment with TPT � PJ34.

Fig. 6 shows a comparable amount of PARP-1 in MCF7 cell
samples at all time points, whereas the amount of soluble/active
TOP1 was lowered (�50%) till 72 h after treatment with TPT alone
or in combination with PJ34. Conversely, an up-regulation of p53
endogenous levels was evident until 72 h after treatment with
TPT � PJ34. Furthermore, the p53-dependent p21 induction was
evidenced starting from 24 h after TPT treatment.

Fig. 7 shows that the amount of soluble/active TOP1 was
drastically lowered also in HeLa cells (up to 70–80% reduction both
in PARP-1 proficient and silenced cells) as a consequence of the
treatments. Interestingly, such a decrease was sustained till 72 h
after 1 h treatment.

Fig. 3. DNA damage in HeLaBabe, HeLaSiP-1 and MCF7 cells subjected to TPT � PJ34

treatment. (A) Hundred cells 24 h after 1 h treatment with 10 mM TPT � 5 mM PJ34

were analysed by alkaline comet assay on a fluorescence microscope (Nikon) and

quantitative assessment of DNA damage was performed using Comet Score. The olive

tail moment is reported as a mean of three different experiments � S.E. (B) Western

blot analysis of gH2AX levels in HeLaBabe and HeLaSiP-1 cell nuclei treated 1 h with

10 mM TPT and allowed to recover in fresh medium in the presence or absence of 5 mM

PJ34 for 72 h. Actin was used as loading control.
Fig. 4. PJ34-dependent inhibition of PAR synthesis in HeLaBabe and HeLaSiP-1 cells.

Cells were resuspended in lysis buffer, sonicated and incubated with 50 mM [32P]-

NAD+ � 5 mM PJ34 as described in Section 2. (A) Autoradiographic analysis of whole

cell protein after SDS-PAGE and electroblot on PVDF. (B) Immunodetection of PARP-1

and GAPDH on the blot shown in (A).
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Again, we observed a TPT-dependent p53 up-regulation in both
PARP-1 proficient and silenced cells, which appeared further
increased by the use of PARP inhibitor (Fig. 7).

By densitometric scanning of immunoreactive bands we
quantified the changes in p53 levels at different times after
single and combined treatments. As shown in Fig. 8, the p53 level
was 2–4 fold increased in HeLaBabe cells 72 h after 1 h TPT � PJ34
treatment. In HeLaSiP-1 cells a 10 fold increase was induced by TPT
alone and this value increased (13 fold) in the presence of PJ34 during
the recovery time.

Finally, 72 h after TPT treatment we analysed the expression of
apoptotic markers. Fig. 9 shows in HeLaBabe cells the caspase-
dependent PARP-1 cleavage. In MCF7 cells, instead, the PARP-1
apoptotic fragment was hardly detectable but we observed the
p53-dependent expression of BAX. Interestingly, we found that
PJ34 was able to enhance both such apoptotic signals.

4. Discussion

The evaluation of PARP inhibitors as chemosensitizers is based
on evidences linking PARP-1 and recently PARP-2, to the cellular
DNA damage response [13]. This has led to the development of a
multitude of potent inhibitors with various bioavailability and
pharmacokinetic characteristics whose efficacy in the treatment of
cancer in vivo has been evaluated in animal models [14,22];
several PARP inhibitors are currently under investigation in clinical
trials [15,23]. However, a clear understanding of the mechanism(s)

whereby PARP inhibitors potentiate the activity of antineoplastic
agents is still lacking. Moreover, isoform specific PARP inhibitors
are still missing while it is known that PARP-2 accounts for 10–20%
of the total PARP activity in response to DNA damage [24 and
references therein].

In our studies we used the hydrophilic PARP inhibitor PJ34 that
has been recently reported to synergize with cisplatin in triple-
negative breast cancer cells [25], in combination with the DNA TOP1
inhibitor, TPT. For our experiments we performed 1 h treatment
with up to 10 mM TPT that was already reported to be sufficient for
trapping TOP1 in MCF7 cells [26]. PJ34 was used at a concentration
(5 mM) that was capable of inhibiting PARP activity but devoid of
cytotoxic effects we found that TPT toxicity was higher when PAR
synthesis was strongly reduced by either PARP-1 silencing (HeLaSip-1

cells) or PJ34 administration (both in HeLa and MCF7 cells).
MCF7 and HeLa cells, according with their comparable PARP-1+/

+ BRCA1/2+/+ and p53+/+ status showed the same sensitivity to TPT,
which determined a cell cycle arrest until 72 h after treatment.
However, in combination with PJ34, TPT was cytotoxic even at a
very low concentration (1.25 mM). Accordingly, 1.25 mM TPT alone
was cytotoxic in PARP-1 silenced cells (HeLaSiP-1). Nevertheless,
the PARP inhibitor further increased the sensitivity of SiP-1 cells
with respect to PARP-1 proficient cells treated with the drug
combination, suggesting a PARP-2 involvement in the signaling of
TPT-dependent DNA damage.

Consistently with the idea that poly(ADP-ribosyl)ation plays a
role in the response to TPT-induced DNA damage, we found

Fig. 6. Western blot analysis of PARP-1, TOP1, p53 and p21 in MCF7 cells. Cells were treated with 10 mM TPT for 1 h and allowed to recover in fresh medium in the presence or

absence of 5 mM PJ34 for the indicated times. GAPDH was used as loading control.

Fig. 5. TPT-dependent PARP activation in MCF7 cells. Following treatment with 10 mM TPT � PJ34 and recovery for 24 h in fresh medium in the presence or absence of 5 mM PJ34,

cells were incubated with 0.125 mM [32P]-NAD+, as described in Section 2. (A) Autoradiographic analysis of whole cell protein after SDS-PAGE and electroblot on PVDF. (B)

Immunodetection of PARP-1, PARP-2 and GAPDH on the blot shown in (A). Fifty ng of human recombinant PARP-2 (hrPARP-2) was also loaded as a standard.

G. D’Onofrio et al. / Biochemical Pharmacology xxx (2010) xxx–xxx6

G Model

BCP-10724; No. of Pages 9

Please cite this article in press as: D’Onofrio G, et al. Poly(ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage
in carcinoma cells. Biochem Pharmacol (2010), doi:10.1016/j.bcp.2010.09.019

http://dx.doi.org/10.1016/j.bcp.2010.09.019


increased PAR synthesis following cell exposure to 10 mM TPT. The
PARP inhibitor PJ34 prevented PARP activity and concomitantly
caused intensification of cell cycle perturbations and increased
DNA damage.

In particular, we observed distinct cell cycle perturbation
effects depending on the concentration of the TOP1 inhibitor and
on the association with the PARP inhibitor: in the low TPT dose
range, PJ34 in combination with 0.2–0.4 mM TPT caused more cells
to be arrested in the G2/M phase, whereas combined with 1.25 mM
TPT it arrested at the S phase cells that escaped TPT action.
Furthermore, the G2/M block induced by 0.4 mM TPT in PARP-1
wild type cells was magnified in PARP-1 silenced HeLa cells. These
evidences agree with the concept that after 1 h pulse (whatever the
dose) of TPT not all the cells are prevented from entry in mitosis
and then G2 cell lineages could survive TPT-mediated cytotoxicity
[27]. Therefore, accumulation at the G2/M phase of tumour cells
that escaped TPT action, provoked by PARP inhibition or by PARP-1

silencing, can be seen as a mechanism to overcome resistance to
camptothecin derivatives. Interestingly, in PARP-1 silenced HeLa
cells PJ34 increased the TPT S phase arrest as a further indication of
PARP-2 implication.

Consistently, the TPT-dependent DNA damage level was
increased by co-treatment with PJ34 both in PARP-1 proficient
and PARP-1 silenced cells 24 h after treatment. In nuclei of such
cells, differences in gH2AX levels deriving from TPT � PJ34, also
support PARP-1 and -2 stimulation of TPT-dependent DSBs repair.

Moreover, we found a sustained PAR synthesis from 1 to 24 h
after treatment and most of the newly synthesized polymer was
linked to PARP-1 itself. Two other PAR acceptors in the 55–95 kDa
MW’s range appeared to be TPT- and PJ34-dependent. Accordingly
with the magnified effects of TPT + PJ34 treatment in PARP-1
silenced cells the PARP-2 modification could represent the mecha-
nism of its participation in DSBs signaling and HR repair [24].

Indeed, these evidences suggest that the lack of PAR synthesis,
by interfering with the repair of TOP1-induced DNA damage,
causes DNA strand breaks accumulation and further delays cell
cycle progression. Moreover, we found that TPT-treated cells
entered the apoptotic program as a consequence of PARP-1
silencing and/or PARP inhibition.

The last set of results was based on mechanistic investigations
addressed to show the long-term response to TPT action: after 1 h
TPT pulse TOP1 soluble/active fraction was drastically reduced for
at least 3 cell duplication cycles and p53/p21 levels increased
within the same time frame. Such an up-regulation was even
higher in cells lacking PARP-1 and further increased by TPT + PJ34
treatment, supporting again the involvement of PARP-2 in the
signaling of TPT-dependent DNA damage.

These results are in agreement with those previously reported
in the same cells treated with the methylating agent temozolomide
in combination with the PARP inhibitor GPI 15427, suggesting the
involvement of PARP-2 (or other PARP) in the repair of DNA
damage provoked by temozolomide [20].

Fig. 8. Densitometric analysis of p53 levels in HeLa cell samples. After

immunodetection on Western blots, band intensities were quantified by

scanning densitometry. Data, expressed as arbitrary densitometric units (ADU),

were normalized to the internal control GAPDH. Shown are the mean of three

different experiments � S.E.

Fig. 7. Western blot analysis of PARP-1, TOP1, p53 and p21 in HeLaBabe and HeLaSiP-1 cells. Cells were treated with 10 mM TPT for 1 h and allowed to recover in fresh medium in

the presence or absence of 5 mM PJ34 for the indicated times. GAPDH was used as loading control.
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Our data also suggest a synergistic interaction of PARP-1 and
PARP-2 with p53 in tumour suppression through their role in DNA
damage response and genome integrity surveillance. Another
study showed that in MCF7 cells inhibition of endogenous PARP-1
function suppresses the transactivation function of p53 in
response to ionizing radiation [28]. We also observed that p53-
dependent BAX expression and caspase-dependent PARP-1 prote-
olysis were sustained by the PARP inhibitor as a result of apoptosis
induction.

By the all of such evidences we envisaged a TPT-dependent DNA
damage signaling network, involving PARP. Indeed, the DNA
damage arising from the trapping of TOP1 was signaled by PARP-1
and -2 and gathered by effectors like p53 and p21. Previous results
suggest that p53 causes resistance of cells to TPT [29]. Our findings
suggest a PARP modification induced by TPT-dependent DNA
damage, while PARP-1 and -2 inactivation switches on p53/p21
pro-apoptotic role.

Indeed, caspase-dependent PARP-1 proteolysis contributes to
restoring the apoptotic program in neoplastic cells. Nuclear
caspases-mediated PARP-1 cleavage has been described in
camptothecin-induced apoptosis as an early event that precedes
the release of cytochrome c and AIF, generally thought to
activate the chemotherapy-induced apoptosis by DNA-damag-
ing drugs [30].

In conclusion, our findings contribute to the understanding of
the molecular events triggered by TOP1 poison-dependent
genomic damage and provide a rationale for the development of
new approaches to sensitize cancer cells to chemotherapy.
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