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“I learned that there is no substitute for 
combining a good intuitive feel for 
devices with the predictions of your 
program. That is, if one has a good 
intuitive “feel” for devices, then the 
computer can be used to enhance that 
intuitive capability.” 

Don Scharfetter, speech at SISPAD 2000. 
 

 
 
 
 
 
 
“Le occasioni della vita sono infinite e le loro 
armonie si schiudono ogni tanto a dar sollievo a 
questo nostro pauroso vagare per sentieri che 
non conosciamo.”  

Pier Vittorio Tondelli, Pao Pao (1982) 
 

“No. Ma sta' attento: dato che non siamo calzini 
ma persone, non siamo qui con il fine principale 
di essere puliti. I desideri sono la cosa più 
importante che abbiamo e non si può prenderli 
in giro più di tanto. Così, alle volte, vale la pena 
di non dormire per star dietro ad un proprio 
desiderio. Si fa la schifezza e poi si paga. E' solo 
questo davvero importante: che quando arriva il 
momento di pagare uno non pensi a scappare e 
stia lì, dignitosamente, a pagare. Solo questo è 
importante.” 

Alessandro Baricco, Castelli di Rabbia (1991) 
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Introduction 
 
 
 
 
I.1. Numerical simulation of silicon-germanium 

heterojunction bipolar transistors 
 
Applications in the emerging high-frequency markets for millimeter 
wave applications more and more use SiGe components for cost 
reasons. The SiGe BiCMOS technology allows integration of analog 
and digital parts, providing high integration densities and saving costs: 
the combination of SiGe heterojunction bipolar transistors (HBTs) 
with advanced Si CMOS to form a SiGe BiCMOS technology 
represents a unique opportunity for Si-based RF system-on-a-chip 
solutions. 
 Current state-of-the-art research and development is taking place 
primarily in data communication and radar systems. Technologies 
with higher cut-off frequency fT can directly lead to improved 
automotive radar systems with higher performance at lower power 
consumption, which increases road safety and energy budget. With an 
increased fT completely new and highly integrated microwave sensor 
systems are feasible.  However, until recently, this spectral region has 
resisted attempts to broadly harness its potential for everyday 
applications. This led to the expression THz gap, loosely describing 
the lack of adequate technologies to effectively bridge this transition 
region between microwaves and optics, both readily accessible via 
well developed electronic and laser-based approaches. THz 
technology is an emerging field which has demonstrated a wide-
ranging potential. Extensive research in the last years has identified 
many attractive application areas and has paved the technological path 
towards broadly usable THz systems.  
 This thesis has been developed within the European project 
DOTFIVE, planning to establish the basis for fully integrated cost 
efficient electronic THz solutions. The aggressive technology 
development effort of the DOTFIVE project has been significantly 
advancing the performance of SiGe:C HBTs towards the Terahertz 
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range. To support such a technology effort, a reliable TCAD platform 
is required for developing predictive device and process simulation, 
exploring the physics and performance of extremely scaled devices, 
identifying operating limits and investigating new device concepts. 
 The main issue in the simulation of scaled devices is related to the 
limitations of the physical models used to describe charge carrier 
transport. A widely used approach is the so called drift-diffusion (DD) 
model, which treats carrier transport as diffusion and drift processes. 
However, as the device size approaches the nanometer range, charge 
transport becomes quasi-ballistic, and non-local effects such as 
velocity overshoot occur. In an attempt to capture these phenomena, 
more advanced transport models have been proposed, often termed 
hydrodynamic (HD) or energy-transport models. Both the DD and HD 
models can be viewed as approximations of the Boltzmann transport 
equation (BTE), which represents the most rigorous approach to 
model charge carrier transport in semiconductors. The BTE is an 
integro-differential equation in the six-dimensional phase space, 
which can be solved by a stochastic approach, the Monte Carlo (MC) 
method, or a deterministic approach, the spherical harmonics 
expansion (SHE) method. While MC/SHE simulation is the most 
accurate approach, it is also very time consuming. Long simulation 
times become a concern in the technology development cycle, where 
many simulation runs of complex device architectures are typically 
needed. For this reason calibrated HD simulation to support 
technology development are highly desired.  
 However, HD simulation of scaled devices is not a trivial task.  
This is primarily due to inherent approximations in the HD formalism. 
In addition, DD/HD simulation requires some transport parameters 
(mobility, energy relaxation times,…). This thesis work offers a 
reliable infrastructure for device simulation of SiGe HBTs, including 
an exhaustive survey of HD models capability and limitations and 
providing a complete set of analytical, calibrated and verified models 
for transport parameters. 
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I.2. Thesis contents 
 
 In Chapter 1, after a brief introduction to state-of-the-art SiGe 
heterostructure bipolar transistors and to their proper figures of merit 
(FoM), a neat overview of hierarchical TCAD tool architecture is 
traced.  
 In Chapter 2, inherent approximations in the HD formalism are 
discussed. Performing device simulation with standard nonlocal 
models and default parameters values, anomalous and unphysical 
effects appear,  resulting in a negative slope for output characteristics. 
A detailed study focusing on the relation between terminal quantities 
(i.e. currents) and simulation parameters for bipolar transistor is 
reported, evaluating the link between the parameters and the above 
mentioned negative slope, providing assessment on rule played by 
each equation parameter in simulation results and tracing optimization 
procedure to obtain predictive simulation results. Analysis has been 
carried over different technology nodes, providing for the first time a 
complete survey of HD models capability and restrictions with 
scaling.  
 In Chapter 3, a complete set of models for transport parameters for 
HD device simulation is reported, including low-field mobility, energy 
relaxation time, saturation velocity, high-field mobility and effective 
density of state. Transport models for DD/HD simulation available in 
the literature refer mainly to silicon, and only partially include the 
dependence on all relevant parameters (Ge content, strain, doping, 
temperature,…). If not properly calibrated, HD simulation results can 
be strongly inaccurate, if not even unphysical. For this reason, 
analytical transport models for HD simulation of strained SiGe 
devices have been generated from MC data and, where possible, 
compared with experimental data. 
 In Chapter 4, implementation and verification of the novel 
transport models in a commercial device simulator is drawn. HD 
simulations including new analytical transport models are reported for 
several one-dimensional and two-dimensional structures with different 
fT maximum. Findings are compared with simulation results obtained 
using a standard set of models and with trustworthy results (i.e. MC 
and SHE simulation results and experimental data), validating 



4                                                                                                               . 

proposed models and clarifying their reliability and accuracy over 
different technologies. 
 Finally, in Chapter 5, electrical breakdown phenomena in SiGe 
HBTs are analyzed. After an accurate calibration of avalanche 
generation models for non-local device simulation and a review of 
main models for multiplication factor (M), a novel complete model for 
M is reported, providing an exhaustive accuracy over a wide range of 
collector voltages, as required for a correct description of the pinch-in 
effect. The new model, combined with an analytical model for the 
base current-dependent base resistance, is suitable for being 
incorporated into HBTs compact models to properly describe device 
operation above BVCEO. 



 
Chapter 1 

Silicon-germanium heterojunction 
bipolar transistors 
 
 
 The performance of semiconductor devices tends to improve as 
device dimensions shrink. This simple principle of scaling has been 
the key to the spectacular success of semiconductor industry over the 
past half-century. It has worked for virtually all types of transistors, 
including the Si-based bipolar transistor [1]. Historically, scaling has 
run into apparent hard limits multiple times in the course of bipolar 
technology evolution, which have been successfully overcome with 
help from material and structural innovations, such as the self-aligned 
base, poly emitter, epitaxial base, and, most recently, the SiGe base. 
SiGe heterojunction bipolar transistors (HBTs), which incorporate 
such a SiGe base and benefit from the availability of “bandgap 
engineering” owing to the smaller bandgap of SiGe than that of Si, are 
widely used for low-cost high frequency applications. 
 Excellent speed performance is favored for most practical 
semiconductor applications of today. The efficiency of information 
processing strongly depends on the speed of devices that compose the 
system. The speed of a device can be represented by various measures 
and corresponding speed parameters. Although some alternatives have 
been proposed [2], the most widely used speed parameters for bipolar 
transistors are the cutoff frequency (fT) and the maximum oscillation 
frequency (fMAX), which are defined as the frequency point where the 
current gain and the power gain become unity, respectively. Since the 
breakdown voltage introduces a trade-off with high frequency figures-
of-merit (FoM) in SiGe HBTs, the definition of Safe Operating Area 
(SOA) limits is a pivotal issue for designers and technologists. SOA 
limits specification is not a trivial task, as the maximum usable output 
voltages and currents depend on the driving conditions at the input 
port [3]. An additional difficulty is related to the fact that impact 
ionization mechanisms concur and interact with other limiting 
mechanisms, i.e. self-heating and hot-carrier degradation. 
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 The study of device performance and the exploration of new 
architecture to improve FoM demand predictive device simulation and 
technology computer-aided design (TCAD) tools. 
 
 
 
1.1 History, state-of-art and applications 
 
The bipolar junction transistor (BJT) was the first solid-state amplifier 
element and started the solid-state electronics revolution. Bardeen, 
Brattain and Shockley, while at Bell Laboratories, invented it in 1948 
as part of a post-war effort to replace vacuum tubes with solid-state 
devices. Solid-state rectifiers were already in use at the time and were 
preferred over vacuum diodes because of their smaller size, lower 
weight and higher reliability. A solid-state replacement for a vacuum 
triode was expected to yield similar advantages. The work at Bell 
Laboratories was highly successful and culminated in Bardeen, 
Brattain and Shockley receiving the Nobel Prize in 1956. Their work 
led them first to the point-contact transistor and then to the bipolar 
junction transistor [4]. They used germanium as the semiconductor of 
choice because it was possible to obtain high purity material. The 
extraordinarily large diffusion length of minority carriers in 
germanium due to its high minority carrier mobility provided 
functional structures despite the large dimensions of the early devices. 
 Although the small bandgap of germanium results in a small 
voltage drop across germanium pn junctions under forward bias and 
accordingly in reduced power dissipation, the resulting intrinsic 
carrier density is much larger in germanium than in silicon. As a 
consequence, germanium junctions suffer from a substantial reverse 
current that increases rapidly with temperature. This, along which 
many others advantages of silicon, was quickly recognized and, since 
the application of the Czochralski method to the growth of single 
crystal silicon, the silicon technology has progressed rapidly. The 
development of a planar process yielded the first circuits on a chip and 
bipolar transistor operational amplifiers, like the 741, and digital TTL 
circuits were for a long time the workhorses of any circuit designer.  
 In the seventies, the spectacular rise of the MOSFET market share 
has completely removed the bipolar transistor from center stage. 
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Almost all logic circuits, microprocessor and memory chips contain 
exclusively MOSFETs. Nevertheless, bipolar transistors remain 
important devices for ultra-high-speed discrete logic circuits such as 
emitter coupled logic (ECL), for power-switching applications and in 
microwave power amplifiers. Meanwhile, the heterojunction bipolar 
transistor (HBT) has emerged as the device of choice for cell phone 
amplifiers and other demanding applications.  
 The principle of heterojunction bipolar transistors has been known 
since the 1950s [5]: wide-bandgap emitters were recognized as a 
means to reduce minority-carrier injection into the emitter region, 
resulting in increased current gain and cut-off frequency. The 
realization of hetero-junctions in silicon technology, however, failed 
because the formation of silicon alloys always results in a significant 
change of the lattice constant, preventing from the formation of 
single-crystal heterostructures; therefore, heterojunction bipolar 
transistors were the exclusive domain of compound semiconductor 
technology. Successively, novel epitaxial techniques made it possible 
to grow very thin layers of SiGe on silicon crystals, with the same 
lattice constant. This is not possible without strain, thence solely thin 
layers can be grown without the formation of dislocations, which 
would relax the strain due to the different lattice constant.  
 The first SiGe HBT has been reported in the late eighties [6]. The 
use of heterojunctions provides an additional degree of freedom, 
which can result in vastly improved devices compared to the 
homojunction counterparts. Germanium has a smaller bandgap 
compared to silicon; since the current gain depends exponentially on 
the difference in bandgap energy between base and emitter regions 
[4], it’s possible to obtain a very large current gain in a heterojunction 
bipolar transistor though the base doping NB is significantly larger that 
the emitter doping density NE and the base can be much thinner even 
for the same punchthrough voltage. As a result, one can reduce the 
base transit time without increasing the emitter charging time, while 
maintaining the same emitter current density. 
 The advantages of SiGe HBTs are mostly in RF performances. 
Most of all, RF performance of SiGe HBT has been strongly improved 
by grading the composition of the germanium base layer such that it 
causes an electric field which reduces the transit time. Therefore, SiGe 
HBTs are widely used for high-frequency applications allowing to 
reach a good performance with the limited cost of BiCMOS 
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technology. SiGe technology is the driving force behind the explosion 
of low-cost, lightweight, personal communications devices like digital 
wireless handsets, as well as other entertainment and information 
technologies like digital set-top boxes, Direct Broadcast Satellite 
(DBS), automobile collision avoidance systems, and personal digital 
assistants. SiGe extends the life of wireless phone batteries, and 
allows smaller and more durable communication devices. Products 
combining the capabilities of cellular phones, global positioning, and 
Internet access in one package, are being designed using SiGe 
technology. These multifunction, low-cost, mobile client devices 
capable of communicating over voice and data networks represent a 
key element of the future of computing. 
 This thesis work has been developed within the frame of the 
european project DOTFIVE [7], whose aim is the development of 
SiGe HBTs with a maximum oscillation frequency of 500 GHz. At the 
present time, transit frequencies of 265 GHz and maximum oscillation 
frequencies of 400 GHz have been reached as record peak at room 
temperature for  conventional double-polysilicon fully self-aligned 
selective epitaxial growth HBT [8], as highlighted in the high 
frequency performance trend depicted in Fig. 1.1. 
 

 
Fig. 1.1. fMAX vs fT trade-off: current state-of-the art vs. STMicroelectronics trend for 
HBTs featuring fMAX ≥ fT. 
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1.2 Figures of Merit.  
 
The cut-off frequency fT and the maximum frequency of oscillation 
fmax are widely used figures of merit (FoM) to characterize high-
frequency bipolar technologies. Since the parameters of a bipolar 
transistor are correlated and a modification that improves one 
parameter may cause a deterioration of another one, in order to obtain 
a figure of merit that takes account for how well a trade-off between 
different parameters is performed, the product of their values is 
frequently considered [4]. However, for devices towards the terahertz 
range just the product of the collector-emitter breakdown voltage and 
the cut-off frequency fT could be of interest. The trade of between the 
breakdown voltage and the cut-off frequency is also known as the 
Johnson limit [9],  [10]. 
 
 
 
1.2.1 Cut-off frequency fT.  
 
 The cut-off frequency fT represents the frequency at which the gain 
of a bipolar transistor drops to unity, as illustrated in Fig. 1.2. Beyond 
this frequency the gain of the transistor is less than unity, so it is no 
longer useful as either an amplifying or a switching device. In 
practice, it becomes increasingly difficult to design circuits as the 
required circuit operating frequency approaches the cut-off frequency 
of the transistor. More precisely, the cut-off frequency of a bipolar 
transistor is defined as the frequency at which the extrapolated 
common emitter, small-signal current gain drops to unity under 
conditions of a short-circuit load.  
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Fig. 1.2. Variation of small-signal current gain with frequency and definition of the 
cut-off frequency fT. 
  
 Starting from the small-signal circuit model [11] and applying the 
fT definition leads to: 
 

 
( )

1

2
T

F JE JC
C

f
kT C C
qI

π τ
=

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

 (1.1) 

where CJE and CJC are the emitter/base and base/collector depletion 
capacitances and τF is the forward transit time given by: 
 
 F E EBD B CBDτ τ τ τ τ= + + +  (1.2) 

Transit times τE, τEBD, τB and τCBD are associated with the excess 
minority carrier charges in the neutral emitter, the emitter/base 
depletion region, the base and the collector/base depletion region 
respectively.  
 In the case of an 1-D-device approximation, the electron total 
transit time is given as: 
 

 ( )
0

0,
CE

L

C V const

dnL q dx
dI

τ
=

= ∫  (1.3) 

where L is the device length, and the total transit time is inversely 
proportional to the cutoff frequency: 
 

 
1

2Tf πτ
=  (1.4) 
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 In this thesis the transit time and cutoff frequency are calculated in 
the quasi–stationary approximation of (1.3) and (1.4), in accordance 
with the definition given in [12].  
 
 
 
1.2.2 Maximum oscillation frequency fmax.  
 
Another important high-frequency parameter for a bipolar transistor is 
the maximum oscillation frequency fmax. This is defined as the 
frequency at which the power gain drops to unity. An approach similar 
to that followed for the evaluation fT can be used to derive an 
expression for fmax [4]: 
 

 max 8
T

JC B

ff
C Rπ

=  (1.5) 

 Since fmax is positively correlated to fT, as indicated by (1.5), the 
benefits of vertical scaling on fT also apply to fmax, although the impact 
is relatively lower. However, fmax depends on the base resistance RB 
and on the collector/base capacitance CJC, which are actually degraded 
by vertical scaling [1]. On the other hand, lateral scaling, which has 
only a limited influence on fT, plays a major impact on fmax [1]. 
 
 
 
1.2.3 Impact ionization.  
 
Generation-recombination processes are processes that exchange 
carriers between the conduction band and the valence band and are 
very important in the operation of bipolar devices. Avalanche 
multiplication or impact ionization is by far the most common 
breakdown mechanism in practical bipolar transistors [11]. In a 
reverse biased pn junction, electron-hole pairs are continually being 
generated by thermal agitation. At low reverse voltages this gives rise 
to a leakage generation current, but at high reverse voltages the 
generated carriers gain sufficient kinetic energy between collisions 
with the silicon lattice to be able to shatter the silicon-silicon bonds. 
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This mechanism is referred to as impact ionization and leads to the 
generation of an electron–hole pair. The original carrier and the 
electron and hole generated are then accelerated in opposite directions 
by the electric field, and in turn are able to produce further electron–
hole pairs by impact ionization. This process, known as avalanche 
multiplication, rapidly leads to the generation of a large number of 
carriers and hence to a large current. For avalanche multiplication to 
occur, a critical electric field Ecrit must be established across the 
reverse-biased junction. Since the depletion width depends upon the 
doping concentration, it is clear that the breakdown voltage BV will 
also depend on the doping concentration. For a one-sided step junction 
the breakdown voltage is given by [4] 
 

 
2

0

2
r crit

L

EBV
qN

ε ε
=  (1.6) 

where NL is the doping concentration of the lightly doped side of the 
junction. 
In bipolar transistors, the breakdown voltage depends on the way the 
bipolar transistor is connected in the circuit. In the common base 
connection, the breakdown voltage of the collector junction is the 
same as that predicted by equation (1.6), whereas in the common 
emitter connection the breakdown voltage is considerably lower, [11]. 
In practice, the breakdown voltage in bipolar transistors is measured 
with the emitter open circuit, and hence in common base mode the 
breakdown voltage is referred to as BVCBO (breakdown voltage in 
common base connection with the emitter open circuit). In the 
common emitter mode the breakdown voltage is referred to as BVCEO 
(breakdown voltage in common emitter connection with the base open 
circuit). 
 The lower breakdown voltage in a common emitter connection can 
be understood by considering the currents flowing in the transistor 
when it is connected in a common emitter configuration. With 
reference to Fig. 1.3, if the current flowing across the emitter/base 
junction is IF, a fraction of this current is collected at the 
collector/base junction, given by α·IF, where α is the common base 
current gain. In addition, there will be a component of current at the 
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collector due to the leakage current of the collector/base junction ICBO. 
In this case, we can write: 
 

 E F

C F CBO

I I
I I Iα

=
= +

 (1.7) 

 
Fig. 1.3. Schematic view of current flow in forward active bias mode. 
 
 When the collector/base junction is breaking down, the current 
across the junction is multiplied by the electron–hole pairs created by 
avalanche breakdown. In this case, the current at the collector/base 
junction is multiplied by M which yields. 
 
 ( )C F CBOI M I Iα= +  (1.8) 

being M is the collector current multiplication factor due to impact 
ionization [13]. 
 If the base is open circuit, the emitter current must equal the 
collector current, so that equation (1.8) becomes: 
 
 ( )C E C C CBOI I I M I Iα= − = = +  (1.9) 

From (1.9) we obtain 
 

 
1

CBO
CEO

MII
Mα

=
−

 (1.10) 

where ICEO is the current flowing between emitter and collector when 
the base is open circuit. 
 Equation (1.10) shows that the collector/emitter current begins to 
increase very rapidly when α·M approaches unity. In contrast, in the 
common base mode the collector/base leakage current only begins to 
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increase when M approaches infinity. This explains why the 
breakdown voltage in the common emitter mode BVCEO is lower than 
that in the common base mode BVCBO.  
 
 
 
1.3 Carrier transport models and TCAD for 

SiGe HBTs development 
 
Device simulation is now an integral part of SiGe technology 
development, and is routinely used for understanding SiGe HBT 
operation and device optimization, [14]. All major commercial device 
simulators support SiGe simulation [15]; they are typically part of a 
technology computer-aided-design (TCAD) package, which includes 
process simulation, device simulation, and parameter extraction 
programs. 
 Due to the rapid evolution of semiconductor technologies, the use 
of technology computer-aided design (TCAD) has become a critical 
enablement path in the industrial development cycle. The capability to 
perform numerical process and device simulation that is able to 
accurately predict device performance under various process 
conditions can significantly reduce the time and cost of technology 
development. With experimental wafer processing costs increasing 
dramatically for advanced generation technologies, the economic 
necessity for accurate predictive TCAD is apparent. But it is not only 
the wafer cost and device complexity that is continuing to drive the 
need for accurate predictive SiGe TCAD. Unlike high-performance 
CMOS logic that can have years between generations, the analog and 
mixed-signal market that encompasses the majority of SiGe 
applications demands a significantly reduced product cycle time [15]. 
This aggressive development schedule is generating a new paradigm 
for the relationship between TCAD, process development, and circuit 
designers. 
 The traditional relationship of TCAD with technology 
development consisted of having SIMS profiles, TEMs, and various 
other physical and electrical measurements provided to the TCAD 
engineer to calibrate the process and device models in parallel to the 
process development effort, as shown in Fig. 1.4. The flow is then 
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iterated until target device characteristics are achieved and 
representative hardware can be furnished to the compact modeling 
team. The compact modeling team must then fully characterize the 
devices to generate a physically based model parameter set, which is 
then combined with the complete technology design kit. Even if the 
process of record is known, circuit designers cannot begin to design 
for a significant period of time before the processing, characterization, 
and design kit cycle is complete. With accurate process and device 
simulation early in the development cycle, the TCAD engineer can 
create the electrical device characteristics to derive an initial 
predictive compact model. The compact model can then be provided 
to circuit designers in a substantially earlier timeframe than 
traditionally available, based on calibrated physical simulations. As 
the technology development progresses, updates to the compact 
models can be provided to ensure the designers will have minimal 
design impact from the initial models to the final hardware-based 
models.  
 The main issue in the simulation of scaled devices is related to the 
limitations of the physical models used to describe charge carrier 
transport. A widely used approach is the so called drift-diffusion (DD) 
model, which treats carrier transport as diffusion and drift processes 
[16]. However, as the device size approaches the nanometer range, 
charge transport becomes quasi-ballistic, and non-local effects such as 
velocity overshoot occur. In the attempt to capture these phenomena, 
more advanced transport models have been proposed, often termed 
hydrodynamic (HD) or energy-transport models.  
 Both the DD and HD models can be viewed as approximations of 
the Boltzmann transport equation (BTE), which represents the most 
rigorous approach to model charge carrier transport in semiconductors 
[17]. The BTE is an integro-differential equation in the six-
dimensional phase space, which can be solved by a stochastic 
approach, the Monte Carlo (MC) method [16], or by a deterministic 
approach, the spherical harmonics expansion (SHE) method [18]. 
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Fig. 1.4. Flow diagram showing the traditional TCAD relationship with technology 
development and the new extended paradigm [15]. 
  
 
 
1.3.1 Boltzmann transport equation 
 
Transport equations used in semiconductor device simulation are 
normally derived from the BTE, a semiclassical kinetic equation, 
which reads [19]: 
 

 [ ]t f f f C f∂ + ⋅∇ + ⋅∇ =r k
Fu                         (1.11) 

 
where f(k,r,t) represents the carrier distribution function in the six-
dimensional phase space, and the term on the right side represents the 
rate of change due to collisions. The BTE is valid for general 
inhomogeneous materials with arbitrary band structure [20]. The 
group velocity u is defined as:  
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 ( )1( , ) ,ε= ∇ku k r k r  (1.12) 

 
where ε represents the carrier kinetic energy. 
 The BTE is an integro-differential equation in the seven-
dimensional space (k,r,t). To solve this equation numerically by 
discretization of the differential and integral operators is 
computationally very expensive. 
 
 
 
1.3.2 The drift-diffusion model 
 
At the very beginnings of semiconductor technology, electrical device 
characteristics could be estimated using simple analytical models 
relying on the drift-diffusion (DD) formalism. Various approximations 
have to be made to obtain DD equations from BTE in §1.3.1, but the 
resulting model captures the basic features of the devices. 
 The complete drift-diffusion model is based on the following set 
of equations [13]: 

1. Current equations:  
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2. Continuity equations: 
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3. Poisson’s equation: 
 

 ( )D AV p n N Nε + −∇ ⋅ ∇ = − − + −  (1.15) 

 The continuity equations are the conservation laws for the charge 
carriers, which may be easily derived taking the zeroth moment of the 
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time dependent BTE. The mobilities μn, μp and the net generation-
recombination rates Un and Up have to be modeled as functions of 
temperature, carrier concentration and electric field strength [4]. 
 Numerical device simulation based on the carrier transport 
equations (1.13) ÷ (1.15) dates back to the famous work of Scharfetter 
and Gummel [21], who proposed a robust discretization of the DD 
equations which is still in use today. The DD model is the simplest 
current transport model which can be derived from Boltzmann’s 
transport equation by either the method of moments [16] or from basic 
principles of irreversible thermodynamics [22]. For many decades, the 
DD model has been the backbone of semiconductor device simulation. 
In this model, the electron current density is phenomenologically 
expressed as consisting of two components. The drift component is 
driven by the electric field and the diffusion component by the 
electron density gradient. 
 However, as semiconductor devices were scaled into the 
submicrometer regime, the assumptions underlying the DD model lost 
their validity. Therefore, the transport models have been continuously 
refined and extended to more accurately capture transport phenomena 
occurring in submicrometer devices. As device dimensions shrink and 
doping levels increase to improve high frequency performance, the 
electric field inside the devices increases. A large electric field which 
rapidly changes over small length scales gives rise to nonlocal and 
hot-carrier effects, which begin to dominate device performance. An 
accurate description of these phenomena is required and is becoming a 
primary concern for industrial applications. To overcome some of the 
limitations of the DD model, extensions have been proposed. These 
extensions basically add an additional balance equation for the 
average carrier energy and an additional driving term in the current 
relation; the additional driving term is proportional to the gradient of 
the carrier temperature. 
 
 
 
1.3.3 Energy transport and hydrodynamic models 
 
Modeling of deep-submicrometer devices with the DD model is 
becoming more and more problematic. Although successful 
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reproduction of terminal characteristics of nanoscale devices has been 
reported with the DD model [23], the values used for the physical 
parameters significantly violate basic physical principles. In 
particular, the saturation velocity had to be set to more than twice the 
value observed in bulk measurements. This implies that the model is 
no longer capable of reproducing the results of bulk measurements 
and as such loses its consistency. Furthermore, the model can hardly 
be used for predictive simulations. These solutions may provide short-
term fixes to available models, but obtaining “correct” results from the 
wrong physics is unsatisfactory in the long run [19]. 
 To overcome some of the limitations of the DD model, energy 
balance and hydrodynamic models have been developed. However, a 
vast number of these models exists, and there is a considerable amount 
of confusion as to their relation to each other. Here the most important 
models, available in commercial device simulators [24], are 
summarized. The HD model equations read:  
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where (1.16) describe current densities, (1.17) represent energy 
balance equations and (1.18) are energy flux densities. Parameters r, 
ftd and fhf are accessible and allow to choice between different ET/HD 
models, as it will be discussed in Chap. 2. 
 
 
 
1.3.4 The Monte Carlo model 
 
A widely used numerical method for solving the BTE is the Monte 
Carlo (MC) method. The full-band MC (FB-MC) model is currently 
the most popular simulation method within the framework of semi-
classical device physics [28]. Another important feature of the FB-MC 
model is that it captures the full anisotropy of the band structure, 
which plays a significant role in the quasi-ballistic transport in deep 
submicron devices. 
 Despite its considerable success, the FB-MC method is applied in 
this thesis only to perform exemplary simulations. Due to its 
computational expense, it is used to generate reference results, to be 
used for calibration of lower level accurate semi-classical device 
models. Additionally, a proper analysis of the stochastic error must be 
performed to assess the accuracy and efficiency of Monte Carlo 
device simulations [25].  
 MC simulation results reported in this thesis work have been 
generated by Bundeswehr University using FB-MC developed by 
Prof. Jungemann and described in [17].  
 
 
 
1.3.5 The spherical harmonics expansion model 
 
For extremely scaled devices, carrier transport cannot be described 
accurately by momentum-based models (drift-diffusion or 
hydrodynamic models) [18]. In such a case, a full solution of the BTE 
is required. Although the Monte Carlo approach is the standard 
method to solve the Boltzmann equation, it has many disadvantages 
due to its stochastic nature [25]. A deterministic Boltzmann equation 
solver based on the spherical harmonics expansion (SHE) of the 
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distribution function is a viable alternative to the Monte Carlo 
approach [26], [27]. Although its application to device simulation was 
hampered for a long time mainly due to its huge memory 
consumption, the exponential growth of computer memory in the last 
decades makes this method more and more attractive.  
 A general higher order SHE solver which includes anisotropic 
band structure for the conduction band, captures FB effects and can be 
used with a higher order SHE solver has been developed by 
Bundeswehr University and described in [27]. This simulator enables 
accurate modeling of the quasi-ballistic transport in nanoscale devices  
and of high-energy effects, like impact ionization. It has been verified 
that this SHE solver, called SPRING, provides simulation results 
comparable to results of a FB Monte Carlo simulator. 
 The SPRING simulator is available on our cluster by courtesy of 
Prof. Jungemann and has been used to generate all SHE simulations 
reported in this thesis work. 
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Chapter 2 
 
 

Hydrodynamic model verification 
 
A large number of energy transport (ET) and hydrodynamic (HD) 
models have been developed during the last decades. Since these 
models base on simplifying assumptions, it’ s necessary to verify their 
accuracy with more rigorous approaches, such as Monte Carlo (MC) 
or spherical harmonic expansion simulation (SHE). Several papers 
related to ET and HD models are available in the Literature, 
addressing the accuracy of HD/ET models. However, these studies 
always refer to simplified unipolar devices (n+ - n- - n+ structure) or 
field effect transistors, and do not consider simulation issues in bipolar 
devices. In this thesis it will be shown that performing device 
simulation with standard nonlocal models and default parameters 
values, can yield anomalous and unphysical effects, such as a negative 
slope in the output characteristics. Therefore, although ET and HD 
models’ limitations have been widely investigated and many 
references are available for parameters values, a detailed analysis of 
relation between terminal quantities (i.e. currents) and simulation 
parameters for bipolar transistors is available. 
 ET and HD models available in commercial device simulators are 
based on several and widely discussed assumptions, [1] and [2]. 
Although different and more sophisticated models have been 
proposed, e.g. [3], they are not implemented in commercial tools. 
 In this thesis a detailed analysis has been performed to assess the 
role played by each equation parameter in simulation results, thus 
providing a user-addressed tool to avoid anomalous and unphysical 
results, [4]. Although this work has been developed using TCAD 
Sentaurus by Synopsys, [5], the hydrodynamic models formulation 
and parameters definition are similar in all major commercial 
simulation codes, e.g. [6]. Therefore, the results presented here can be 
also applied to other device simulator. More specifically, the present 
analysis clarifies the role of each model’s parameter and suggest a 
procedure to optimize the parameters to obtain predictive simulation 
results. All results presented in the first part of this work refer to a 100 
GHz reference structure; later, the analysis is repeated for a 450 GHz 
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device and a 700 GHz structure. Therefore, a complete study on HD 
simulation of SiGe HBTs has been carried for different technological 
nodes, thus providing a complete survey of HD models accuracy and 
limitations in connection with device scaling.  
 
 
2.1 Hydrodynamic model in commercial TCAD. 
 
The HD equations implemented in Sdevice [5] read as the system of 
equations expressed by (2.1) ÷ (2.3), where current densities are given 
by equations (2.1), energy balance equations are given by relations in 
(2.2) and energy flux densities are equations (2.3). 
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 The last terms on the right hand side of (2.1) account for the 
additional driving force due to the change in the effective masses in 
hetero-structure devices, so that the force related to the change in the 
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band edge energies is included in the valence and conduction band 
energy gradients. 
 Parameters r, ftd and fhf are accessible by user in TCAD Sentaurus 
[5], and can be modified for both electrons and holes. Table 2.1 shows 
the parameter values according to the Stratton model [7], the 
Blotekjær model [7] and the four-moments model [9]. 
 
Table 2.1. HD parameters for the Stratton, the Blotekjær and the four moments 
model. 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 
Stratton variable range 0 ÷0.5 1 

Blotekjær 1 1 variable range 
Four-moments variable range 1 1 

 
 
 The Stratton model [7], generally referred as an energy transport 
model, is derived from the Boltzmann Transport Equation (BTE) 
introducing certain assumptions on the form of the distribution 
function, while the Blotekjær [8] model equations are derived by 
considering the first three moments of the BTE. The most important 
difference between Stratton and Blotekjær approaches is the mobility 
definition. In the Stratton model the parameter ftd appearing in (2.1) is 
defined according to (2.4) after the  rearrangement of (2.5),where the 
mobility is inside the spatial gradient: 
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 On the contrary, in the Blotekjær equations the mobility is outside 
the gradient, (2.6), so that ftd must be set to one: 
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 This difference in the definition yields different mobility values 
for inhomogeneous devices, where the electric field varies rapidly. In 
the Blotekjær model the mobility in non-uniform devices can be 
approximated by its bulk value, while in the Stratton model is always 
different. Therefore, the Blotekjær formulation is more suitable for 
commercial device simulators, where the mobility is modeled as a 
function of the carrier energy only, without any dependence upon the 
electric field. 
 The method of moments transforms the BTE into an equivalent, 
infinite set of equations. To solve this equation set, a severe 
approximation is required, namely the truncation to a finite number of 
equations (normally three or four). The highest order equation 
contains the moment of the next order, which has to be suitably 
approximated using the available information. Therefore, the main 
problem of moment-based models, usually referred to as 
hydrodynamic models, is that they deliver more unknown than 
equations; this issue has to be solved by separate closure relations. 
The four-moments model is an extension of the Blotekjær model 
where the fourth moment of the BTE is included to overcome 
problems related to the energy flux density closure. 
 
 
 
2.2 Analysis of model parameters for a 100 GHz 

device 
 
In order to find a proper and possibly unique parameters set for SiGe 
HBT device simulation, the influence of each parameter on simulation 
accuracy has been first investigated by a simulation study of the 100 
GHz reference structure, depicted in Fig. 2.1.  
 To clearly elucidate the influence of each parameter, the 
parameters have been modified individually (starting from the 
Blotekjær default set, where all parameters in Table 2.1 are set to 1). 
Simulation results have been compared to MC data. The MC data used 
for this analysis were provided by Bundeswehr University in Munich 
(Germany).  
 Comparison involves terminal currents for transfer and output 
characteristics, as well as internal quantities. For internal quantities we  
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Fig. 2.1. Doping profile of the 100-GHz SiGe HBT. 
  
 
 
only show the results pertaining the electron temperature and the 
electron velocity, as they play a key role in determining the frequency 
performance. Moreover, the electron velocity is closely related to the 
electron carrier density in the neutral base, as the product between 
carrier velocity and density is constant when generation-
recombination process can be neglected. As a consequence, carrier 
velocity is linked to the collector current as well. In this comparison 
we also include the cut-off frequency. Additionally, carrier velocity 
plots are useful to clarify how velocity overshoot effects are modeled. 
 Velocity overshoot occurs at the base-collector junction, where the 
electric field increases rapidly. On the other hand, in HD simulation a 
spurious velocity overshoot located in the epitaxial collector region 
can be observed. This overshoot is referred to as "spurious" because it 
has no physical background and it is related to limitations of models. 
In [10] it was pointed out for the simplified unipolar structure (n+-n--
n+), that spurious velocity overshoot is strictly related to the closure 
relation in the moments definition, since the overshoot appears also 
for a six moments model but it’s removed when the closure is taken 
from MC simulation. 
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2.2.1 Parameter r 
 
The parameter r affects the energy flux density (2.3). It appears in the 
Stratton formulation after defining the microscopic relaxation time 
using a power law and its impact on simulation results is reported in 
Fig. 2.2 for the 100 GHz reference structure. 
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   (a)                                                               (b) 

Fig. 2.2. Transfer characteristics at VCE = 0.8 V (a) and VCE = 2 V (b) for several r 
values. 
 
 The results depicted in Fig. 2.2 clarify that the reduction in energy 
flux densities yields lower collector current values. This result is 
expected, since the energy density gradient appears in the current 
density equations (2.5) and (2.6). It can be noted that the dependence 
of the current on the parameter r is more marked for VCE = 2 V. A 
more detailed view (see Fig. 2.3 and Fig. 2.4) shows that decreasing r 
increases the electron spurious velocity overshoot, removes the real 
one at base-collector junction, and strongly overestimates electron 
temperature. This behaviour occurs for both values of the collector-
emitter voltage, but velocity profiles become more complicated and 
unrealistic at VCE = 2 V. Finally, as depicted in Fig. 2.5, the value of r 
has no impact on the output characteristic slope. This indicates that the 
absolute value of the energy density has no influence on the sign of 
the output characteristic slope. 
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Fig. 2.3. Electron velocity for several values of r at VCE = 0.8 V (a) and VCE = 2 V 
(b); VBE = 0.84 V. 
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Fig. 2.4. Electron temperature at VCE = 0.8 V (a) and VCE = 2 V (b) for several 
values of r; VBE = 0.84 V. 
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Fig. 2.5. Output characteristic for several values of r at VBE = 0.84 V. 
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2.2.2 Parameter ftd 
 
The parameter ftd modifies the value of the carrier temperature 
diffusive component in the current density with respect to the other 
components present in the drift-diffusion formulation, (2.1). In the 
moment-based models it should be set to 1. 
 As ftd is reduced, the collector current increases, yielding values 
higher than those given by MC simulations, as shown in Fig. 2.6. On 
the contrary, decreasing ftd yields a better fit of carrier velocity and 
temperature (see Fig. 2.7 and Fig. 2.8) and the negative output 
resistance disappears, Fig. 2.9. 
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Fig. 2.6. Transfer characteristics for several values of ftd at VCE = 0.8 V (a) and  VCE 
= 2 V (b). 
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Fig. 2.7. Electron velocity at VCE = 0.8 V (a) and VCE = 2 V (b) for several ftd values; 
VBE = 0.84 V. 
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Fig. 2.8. Electron temperature at VCE = 0.8 V and VCE = 2 V for several values of ftd; 
VBE = 0.84 V. 
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Fig. 2.9. Output characteristic for several values of ftd at VBE = 0.84 V. 
 
 
2.2.3 Parameter fhf 
 
The parameter fhf affects the carrier temperature diffusive component 
in the energy flux density (2.3). Its value modifies the transfer 
characteristics at high VCE voltages (see Fig. 2.10). On one hand, the 
reduction of fhf improves the agreement between HD simulation 
results and MC data for the transfer characteristics depicted in Fig. 
2.10 and electron velocity (see Fig. 2.11), and avoids negative output 
resistance (see Fig. 2.13). On the other hand, however the carrier 
temperature overestimation is more remarked, as highlighted in Fig. 
2.12. 
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Fig. 2.10. Transfer characteristics for  several fhf values at VCE = 0.8 V (a) and VCE = 
2 V (b). 
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Fig. 2.11. Electron velocity at VCE = 0.8 V (a) and VCE = 2 V (b) for several fhf 
values; VBE = 0.84 V. 
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Fig. 2.12. Electron temperature at VCE = 0.8 V (a) and VCE = 2 V (b) for several fhf 
values; VBE = 0.84 V. 
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Fig. 2.13. Output characteristic for several fhf values at VBE = 0.84 V. 
 
 
2.2.4 Discussion 
 
The parameter r impacts the collector current, but it has no relevant 
influence on the trans-conductance and on the output conductance. 
The parameter ftd influences the collector current and output 
characteristics slope. ftd must be lower than 0.4 for the 100 GHz 
profile at VBE = 0.84 V, in order to avoid a negative output 
conductance. The parameter fhf influences the output characteristic 
slope. It has been found that the slope is positive for fhf values lower 
than 0.36 for the 100 GHz profile at VBE = 0.84 V when ftd and r are 
set to one. Since ftd and fhf determine the value of the carrier 
temperature diffusive component in current density and energy flux 
density, respectively, the negative output conductance is due to an 
overestimation of carrier diffusive components in models equation. 
 In order to elucidate the reason for the negative output resistance, 
simulation results for fhf 0.2 and 0.5 are reported for three different 
values of the collector voltage, whereas the base voltage is set to 0.84 
V. Fig. 2.14  shows the temperature distribution. This figure clarifies 
that for high fhf values the electron temperature increases with the 
collector voltage, while for low fhf values it slightly decreases with 
VCE. This different temperature behaviour determines different trends 
for mobility, which is energy dependent and decreases with increasing 
energy (see Fig. 2.15). Since the collector current is closely related to 
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the minority carrier mobility in the neutral base, for high fhf values the 
current decreases when the collector voltage increases. 
 The parameter fhf determines the balance between the convective 
and diffusive components in the energy flux density equation (2.3). 
Since an unphysical negative slope appears in the output characteristic 
when its value is high, it can be concluded that HD models 
overestimate the heat flux (diffusive component), which has to be 
reduced in order to reproduce real device behaviour. A similar 
discussion applies for ftd. 
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Fig. 2.14. Electron temperature distribution at VBE = 0.84 V, zoom in the neutral 
base region of the device in Fig. 2.1. 
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Fig. 2.15. Electron mobility distribution at VBE = 0.84 V, zoom in the neutral base 
region of the device in Fig. 2.1. 
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 The heat flux formulation in ET and HD models is based on the 
approximation of the distribution function with an heated Maxwellian 
[2], providing the closure relation for the highest order moment.  By 
relaxing the heated Maxwellian assumption and reducing empirically 
the energy flux, a reasonable accuracy can be achieved: the heat flux 
reduction improves the accuracy of the electron velocity profile, 
reduces the spurious velocity overshoot and modifies the carrier 
temperature distribution, yielding a positive slope in the output 
characteristic. The overestimation of the diffusive flux has already 
been addressed as a limitation of  HD model in [11]. The analysis 
presented in [11] is performed for a standard MOSFET and shows that 
the values of fhf can be adjusted to achieve a better agreement of the 
current with MC data. The simulation results presented in [11] 
indicate that the spurious negative slope in the output characteristics 
does not occur in MOSFETs. 
 
 
2.3 Optimization of standard models for a 100 

GHz device 
 
Bearing in mind the physical models’ formulations and the 
corresponding parameters’ sets, displayed in Table 2.1, an 
optimization can be performed for each model, in order to fit HD 
simulation results and MC data. 
 
 
2.3.1 Four moments model 
 
The four moments formulation [10] fixes ftd and fhf to one, while r is a 
variable parameter. The parameter r changes the collector current 
value, but has no relevant influence on the transconductance and on 
the output conductance. The output resistance is negative for the 
whole range of r values (see Fig. 2.5). Therefore, the four-moments 
model appears not to be suitable for HD simulations of SiGe HBT, 
since it produces a negative slope which can never be removed by 
changing the parameter r alone. 
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2.3.2 Stratton model 
 
Recalling that when parameters ftd and r are changed the Stratton ET 
model is selected, we first assumed fhf = 1. Results in Par. 2.2.2 clarify 
that ftd influences both the current values and the output characteristic 
slopes. The value of ftd must be reduced in order to avoid negative 
output conductance and the current overshoot in the output 
characteristic. Since the Stratton model involves two parameters, ftd 
and r, we can try to optimize both using MC data. This optimization 
has been performed and two different fitted parameter sets were 
obtained (see Table 2.2). 
 
 
Table 2.2. HD parameters for optimized Stratton model. 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 

Stratton_default variable range 0 ÷0.5 1 

Stratton_opt_1 0.2 0 1 

Stratton_opt_2 0.3 0.2 1 
 
 
 Using the optimized values in Table 2.2,  a reasonable 
approximation is achieved for the collector current (see Fig. 2.17 and 
Fig. 2.19), but simulation results are unsatisfactory for internal 
quantities, such as electron velocity (Fig. 2.16), since the velocity 
overshoot at the base-collector junction disappears. Moreover, when 
ftd is set to zero, the thermal diffusion current vanishes, which is 
questionable. However, this mismatch in internal quantities does not 
significantly affect the high frequency behavior, since the cut-off 
frequency is a global quantity related to the overall velocity profile.  
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Fig. 2.16. Electron velocity distribution for default and optimized Stratton model at 
VCE = 0.8 V (a) and VCE = 2 V (b); VBE = 0.84 V. 
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Fig. 2.17. Transfer characteristics for default and optimized Stratton model at VCE = 
0.8 V (a) and VCE = 2 V (b). 
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Fig. 2.18. Cut-off frequency for default and optimized Stratton model at VCE = 0.8 V 
(a) and VCE = 2 V (b). 
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Fig. 2.19. Output characteristic for default and optimized Stratton model. 
 
 
2.3.3 Blotekjær model 
 
The Blotekjær model fixes ftd and r to one, while fhf is a variable 
parameter. The parameter fhf determines the output characteristic 
slope. It has been found that the slope is positive when fhf values are 
sufficiently low (see Fig. 2.13). For the 100 GHz device it was found 
that the best fhf value for fitting MC data is 0.2, see Fig. 2.20 ÷ Fig. 
2.23. 
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Fig. 2.20. Electron velocity distribution for default and optimized Blotekjær model 
at VCE = 0.8 V (a) and VCE = 2 V (b); VBE = 0.84 V. 
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(a)                                                                (b) 

Fig. 2.21. Transfer characteristics for default and optimized Blotekjær model at VCE 
= 0.8 V (a) and VCE = 2 V (b). 
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Fig. 2.22. Cut-off frequency for default and optimized Blotekjær model at VCE = 0.8 
V (a) and VCE = 2 V (b). 
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Fig. 2.23. Output characteristic for default and optimized Blotekjær model. 
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2.3.4 Hybrid optimization 
 
The optimization of the HD models presented in sections 2.3.1 ÷ 
2.3.3, with the exception of the model of Blotekjær, yielded 
unsatisfactory results. For this reason a full optimization of all 
available parameters was performed. Since the parameter sets found 
by means of a fitting procedure do not maintain a firm connection to 
the physical formulation, the optimum parameter sets are labeled as 
“hybrid”.  The optimization of r and fhf was carried out first, providing 
the values reported in Table 2.2. Unfortunately, the results obtained 
were still unsatisfactory (see Fig. 2.24 ÷ Fig. 2.27). 
 
 
 
Table 2.2. HD parameters for optimized partial hybrid model 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 
Hybrid_opt_1 0.95 1 0.125 

Hybrid_opt_2 0.8 1 0.07 
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Fig. 2.24. Electron velocity distribution for optimized partial hybrid model at VCE = 
0.8 V (a) and VCE = 2 V (b); VBE = 0.84 V. 
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Fig. 2.25. Transfer characteristics for optimized partial hybrid model at VCE = 0.8 V 
(a) and VCE = 2 V (b). 
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Fig. 2.26. Cut-off frequency for optimized partial hybrid model at VCE = 0.8 V (a) 
and VCE = 2 V (b). 
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Fig. 2.27. Output characteristic for optimized partial hybrid model. 
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 Next, the simultaneous optimization of all available parameters 
was carried out, which did provide reasonable results. Since the three 
parameters have an influence on both external simulation data (IC, fT) 
and internal variables (electron velocity, electron temperature,...), the 
optimization is not straightforward. The best results are displayed in 
Table 2.3, and corresponding plots are depicted in Fig. 2.28 ÷ Fig. 
2.32, where a comparison is made with the Blotekjær optimum set 
already discussed. 

 
Table 2.3. HD parameters for optimized full hybrid model. 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 
Hybrid_opt_3 0.915 0.6 0.4 

Hybrid_opt_4 0.85 0.2 0.4 
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Fig. 2.28. Electron velocity distribution for optimized full hybrid model at VCE = 0.8 
V (a) and VCE = 2 V (b); VBE = 0.84 V. 
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Fig. 2.29. Electron temperature distribution for optimized full hybrid model. 
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Fig. 2.30. Transfer characteristics for optimized full hybrid model at VCE = 0.8 V (a) 
and VCE = 2 V (b). 
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Fig. 2.31. Cut-off frequency for optimized full hybrid model at VCE = 0.8 V (a) and 
VCE = 2 V (b). 
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Fig. 2.32. Output characteristic for optimized full hybrid model. 
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 A comparison between hybrid optimum values and the optimized 
Blotekjær model indicates that a trade-off appears in the fitting 
procedure. The optimized Blotekjær model gives the best fit for 
carrier velocity and cut-off frequency, but a slightly higher error for 
the collector current. On the other hand, the collector current is well 
described by the hybrid models which, however, lack accuracy in the 
carrier velocity distribution and cut-off frequency. Since the 
differences between are limited, both optimized parameter sets 
provide reasonable results and can be used to perform HD simulation 
matched to MC data. 
 
 
 
2.3.5 Models’ discussion and comparison 
 
In the previous sections different simulation approaches were 
investigated, which refer to different non-local models and hybrid 
methods. A comparison is discussed here, in order to remark the 
differences between the models and provide a simple guideline to set 
the equations parameters properly, in order to avoid unphysical results 
and to achieve agreement with MC data. 
 The parameter set labelled “Stratton_1” in Table 2.2 provides the 
most straightforward and simplest way to avoid negative output 
resistance, but the carrier velocity profile is significantly different 
from MC data, since velocity overshoot at the B-C junction 
disappears. Moreover, it removes the thermal diffusion current inside 
the device, as ftd is set to zero, which is questionable. The “Stratton_2” 
model accounts for a small thermal diffusion current, but the poor 
accuracy for internal quantities is still present. The optimization of 
Stratton model’s parameters for terminal currents requires to set r to 
small values, so as to reduce or delete the thermal diffusion current 
term in the current equation to avoid unphysical effects. For the 
optimized parameters this modification implies a strong 
underestimation of the velocity overshoot and a strong overestimation 
of the spurious one. Therefore, the electron velocity profile is never in 
accordance with MC data. This determines an overestimation of the 
cut-off frequency, mainly in the high-injection regime. Moreover, the 
r factor was introduced in the Stratton model in the definition of the 
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microscopic relaxation time and it has to be approximated by an 
average value to cover the relevant scattering processes. Therefore, 
this value actually depends on the doping profile and the applied field 
and no unique value can be given for all devices and operating 
conditions. 
 The Blotekjær approach is more suitable for optimization. It 
requires the optimization of one only parameter and provides a good 
approximation for both terminal and internal quantities, ensuring a 
proper description of the velocity overshoot at the base-collector 
junction. Since it is based on a macroscopic definition of the energy 
relaxation time, the same parameter value should be able to fit MC 
data for different doping profiles. 
 The full parameter optimization provide good results as well, as 
compared to the optimized Blotekjær model, but three parameters are 
involved. 
 From the analysis above it can be concluded that the best way to 
get reasonable and physical results using non-local transport models is 
to use the Blotekjær model, which require a single parameter 
optimization. The parameter must be reduced, to decrease the heat 
flux term in the energy flux equation. Since the energy flux in the 
Blotekjær model has been derived using an heated Maxwellian shape 
for the distribution function, the empirical reduction of the heat flux 
parameter helps in mitigating this assumption. 
 Several analysis reported for a simplified unipolar structure, 
showed that the spurious velocity overshoot peak can be reduced by 
decreasing the components of electron current density and energy flux 
density, since they are related to the carrier temperature gradient, [12]. 
Here, we have shown that these results are still valid for bipolar 
devices. In addition, it has been clarified that for bipolar transistors an 
overestimation of the thermal diffusion current and of the heat flux 
has a strong influence on carrier transport properties, such as electron 
temperature and velocity. In turns, this leads to inaccurate results and 
introduces an unphysical effect, i.e. a negative output resistance in the 
output characteristics, which is related to carrier temperature 
variations with collector voltage. 
 We also noted that the well-known cut-off frequency 
overestimation imputed to HD models can be drastically reduced by 
setting properly equation parameters; Fig. 2.22 confirms that the 
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Blotekjær model optimization reduces the maximum cut-off frequency 
error by about one order of magnitude, from 13% to 3%, when 
compared with the default one. 
 
 
2.4 Analysis and optimization for a 450 GHz 

device 
 
The optimization analysis of model parameters described in §2.2 and 
§2.3 has been repeated for a 1D structure with maximum cut-off 
frequency of  about 450 GHz (Fig. 2.33). The accuracy of HD 
simulation for this device has been investigated by means of 
comparison with SPRING [13]. 
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Fig. 2.33. Doping profile of the 450 GHz SiGe HBT. 
 
 Again, to clearly show their influence, all parameters have been 
modified individually and simulation results have been compared to 
those obtained with SPRING. 
 Simulation results for parameter r are reported in Fig. 2.34 ÷ Fig. 
2.36. It can be seen that a reduction of this parameter leads to lower 
collector current values, but the influence on the output characteristic 
slope, as already highlighted in 2.2.1. Withal, although electron drift 
velocity values change with r, a parameter reduction doesn’t affects 
the velocity overshoots.  
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Fig. 2.34. Transfer characteristic at VCE = 0 V (a) and output characteristic at VBE = 
0.6 V (b) for several r values. 
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Fig. 2.35. Electron velocity (a) and electron temperature (b) at VBE = 0.6 V and VCE 
= 0.6 V for several r values. 
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Fig. 2.36. Cut-off frequency at VCB = 0 V for several r values. 
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 The simulation results for parameter ftd are reported in Fig. 2.37 ÷ 
Fig. 2.39. Again,  as ftd is reduced, the collector current slightly 
increases and negative output resistance disappears (see Fig. 2.37). 
However, a reasonable fit with SPRING simulations cannot be reached 
for carrier velocity and temperature (see Fig. 2.38 and Fig. 2.39).  
 The fhf parameter’s reduction improves the agreement between HD 
simulation results and reference data for transfer characteristics and 
removes the negative output resistance (see Fig. 2.40). However, the 
carrier temperature overestimation is exacerbated and the electron 
velocity is poorly described (see Fig. 2.41). 
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 Fig. 2.37. Transfer characteristic at VCE = 0 V (a) and output characteristic at VBE = 
0.6 V (b) for several ftd values. 
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Fig. 2.38. Electron velocity (a) and electron temperature (b) at VBE = 0.6 V and VCE 
= 0.6 V for several ftd values. 
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Fig. 2.39. Cut-off frequency at VCB = 0 V for several ftd values. 
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Fig. 2.40. Transfer characteristic at VCE = 0 V (a) and output characteristic at VBE = 
0.6 V (b) for several fhf values. 
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Fig. 2.41. Electron velocity (a) and electron temperature (b) at VBE = 0.6 V and VCE 
= 0.6 V for several fhf values. 
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Fig. 2.42. Cut-off frequency at VCB = 0 V for several fhf values. 
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Fig. 2.43. Transfer characteristics for optimized HD models. 
 
 After the analysis of each parameter, an optimization study has 
been performed for Stratton, Blotekjær and hybrid approaches as 
described in §2.3. The results of this optimization are shown in Fig. 
2.43 ÷ Fig. 2.46, and the corresponding parameters are listed in Table 
2.4. 
 
Table 2.4. HD parameters for optimized model. 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 
Blotekjær_opt 1 1 0.07 

Stratton_opt_2 0.1 0.4 1 

Hybrid_opt_1 0.75 1 0.1 
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Fig. 2.44. Cut-off frequency for optimized HD models. 
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Fig. 2.45. Transfer characteristics for optimized HD models. 
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Fig. 2.46. Electron velocity (a) and electron temperature (b) for optimized HD 
models 
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Fig. 2.47. Transfer characteristics for optimized HD models.  
 
 
 The results indicate that the optimization of the Blotekjær model 
provides the most reliable and accurate results for IC and fT, but a good 
fitting for the electron velocity and temperature is never earned. 
Again, we can state that the optimization of the Blotekjær model 
reduces the maximum cut-off frequency overestimation, from 7% to 
3%, as depicted in Fig. 2.47. 
 
 
2.5 Analysis and optimization for a 700 GHz 

device 
 
Hydrodynamic model verification and optimization have been 
repeated for an extremely scaled profile with a maximum cut-off 
frequency of about 700 GHz (see Fig. 2.48). 
 The impact of each parameter has been found to be the same as 
described in 2.2 and 2.4. The best fitting results are obtained by the 
optimized Blotekjær model (see Table 2.5) providing the results 
shown in Fig. 2.49 and Fig. 2.50. However, for this extremely scaled 
structure internal distributions obtained by HD simulation are always 
far from MC data and SHE results even with optimized parameters. 
For this device the Blotekjær model optimization reduces the 
maximum cut-off frequency overestimation from 64% to 37% only. 
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Fig. 2.48. Doping profile of the 700 GHz SiGe HBT 
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Fig. 2.49. Transfer characteristics for optimized HD models. 
 
 
Table 2.5. HD parameters for optimized model. 
 

 rn = rp fn
td = fp

td fn
hf = fp

hf 
Blotekjær_opt 1 1 0.05 
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Fig. 2.50. Cut-off frequency for optimized HD models. 
 
 
 
2.6 Unified optimization over different 

technological nodes 
 
 SiGe HBT HD simulation issues have been studied over different 
technological nodes. In particular, a detailed study of each parameter 
influence on simulation results and the optimization of parameters 
have been carried out. The analysis highlights that the influence of 
each parameter is similar for different technologies. For different 
scaled devices the unphysical effects in the output characteristics can 
be removed by using optimizing parameters, and the best results are 
achieved with the Blotekjær model. Therefore, the maximum cut-off 
frequency overestimation of HD models can be strongly mitigated for 
frequencies under the terahertz range. However, the optimization must 
be repeated for each different technological node. Since the  
overestimation of the diffusive component of the energy density 
increases with scaling, HD models are too inaccurate for modeling 
carrier transport in devices within the terahertz range, as summarized 
in  
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Table 2.6. For HBTs with a maximum cut-off frequency above 500 
GHz, HD simulation becomes too inaccurate and more reliable 
approaches, such as Monte Carlo and Spherical Harmonic Expansion 
are needed. 
 
Table 2.6. Optimum parameters and fTMAX relative error of Blotekjær model with 
scaling. 
 

f
TMAX 

 r
n 

= r
p
  f

n

td 
=  f

p

td
  f

n

hf 
= f

p

hf
  f

TMAX 
% error 

100 GHz  1  1  0.2  3%(13%)  

450 GHz  1  1  0.07  3% (7%)  

700 GHz  1  1  0.05  37% (64%) 

 
 
 
2.7 References 
 
[1] M. A. Stettler, A. A. Muhammad, and M. S. Lundstrom, “A 

Critical Examination of The Assumptions Underlying 
Macroscopic Transport Equations for Silicon Devices,” IEEE 
Transactions on Electron Devices, vol. ED-40, pp.733-740, Apr. 
1993. 

[2] T. Grasser, T. W. Tang, H. Kosina, and S. Selberherr, “A Review 
of Hydrodynamic and Energy-Transport Models for 
Semiconductor Device Simulation,” Proceedings IEEE, vol. 91, 
no. 2, pp. 251-274, Feb. 2003. 

[3] T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, “Using Six 
Moments of the Boltzmann’s Transport Equation for Device 
Simulation,” Journal of Applied Physics, vol. 90, no. 5, pp. 2389-
2396, 2001. 

[4] G. Sasso, G. Matz, C. Jungemann, and N. Rinaldi, “Accurate 
Mobility and Energy Relaxation Time Models for SiGe HBTs 
Numerical Simulation”,  International Conference on Simulation 
of Semiconductor Processes and Devices, pp. 241-244, September 
2009. 



 Chapter 2. Hydrodynamic model verification                                     57 

[5] Synopsys TCAD Software, Release 2007.03. 
[6] Atlas Users Manual, SILVACO (2000). 
[7] R. Stratton, “Diffusion of hot and cold electrons in semiconductor 

barriers,” Phys. Rev., vol. 126, no. 6, pp. 2002-2014, 1962. 
[8] K. Blotekjær, “Transport equations for electrons in two-valley 

semiconductors,” IEEE Transactions on Electron Devices, vol. 
ED-17, pp.38-47, Jan. 1970. 

[9] S. C. Lee and T. W. Tang, “Transport coefficients for a silicon 
hydrodynamic model extracted from inhomogeneous monte-carlo 
calculation,” Solid-State Electronics, vol. 35, no. 4, pp.561-569, 
1992. 

[10] T. Grasser, H. Kosina, and S. Selberherr, “Investigation of 
Spurious Velocity Overshoot Using Monte Carlo Data,” Applied 
Physics Letters, vol. 79, no. 12, pp. 1900-1903, 2001. 

[11] I. Bork, C. Jungemann, B. Meinerzhagen, and W. L. Engl, 
“Influence of Heat Flux on The Accuracy of Hydrodynamic 
Models for Ultrashort Si Mosfets,” Workshop on Numerical 
Modeling of Processes and Devices for Integrated Circuits, 
Honolulu, HI, vol. 5, 1994. 

[12] B. Meinerzhagen, R. Thoma, H. J. Peifer, and W. L. Egl, “On The 
Consistency of The Hydrodynamic and The Monte Carlo 
Models,” International Workshop on Computational Electronics, 
Urbana-Champaign, IL, pp. 7-12, 1992. 

[13] S.-M. Hong, G. Matz, and C. Jungemann, “A Deterministic 
Boltzmann Equation Solver Based on a Higher Order Spherical 
Harmonics Expansion With Full-Band Effects,” IEEE 
Transactions on Electron Devices, vol. 57, n. 10, pp. 2390-2397, 
October 2010. 



 
Chapter 3 
 

 

Analytical models for transport 
parameters 
 
 
During the past decades the complexity of IC fabrication processes 
constantly increased, whereupon the use of simulation tools for the 
development of new technologies has become more and more 
important to cope with explosive development costs and competition 
of today’s semiconductor industry. As a result, technology-CAD 
(TCAD) tools that accurately predict the process and device 
characteristics of anticipated wafer fabrication technology is 
indispensable for IC fabrication technology and device development 
[1] and [2]. 
 Challenges in TCAD for industry applications remain the 
improvement of accuracy and predictive capabilities of process and 
device simulators. Semiconductor device simulation concerns the 
description of charged carriers’ distribution and transport inside the 
device. Carriers’ distribution is described by the Poisson equation and 
the Boltzmann Transport Equation (BTE). The BTE can be solved 
numerically only at very high computational expense using Monte 
Carlo (MC) simulators. Therefore, the BTE is approximated, leading 
to the drift-diffusion equations and the hydro-dynamic equations, 
which account for non-local and hot-carrier effects.  
 Efficient device simulation demands well-calibrated models for 
transport parameters in order to accomplish realistic and predictive 
results. Several approaches can be followed to develop calibrated 
models: calibration can be performed using measured data or MC 
simulation results.   
 All device simulators include the most popular published models 
and the user can change their related parameters to match available 
data. Tuning the available model parameters allows getting calibrated 
model quite simply. However, the reliability of tuned models should 
be investigated carefully. Since models are empirically fitted to a 
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particular set of data, the model accuracy could be improved in the 
calibrated parameters range but it might have even worsened for 
different operating regions ignored in the calibration data. Besides, if 
model parameters have non-physical values, simulation predictiveness 
is missed [3]. Furthermore, tuning model parameters to fit available 
data could be unsuccessful even using an optimized fitting, since the 
data used for fitting could be inconsistent with available analytical 
model functions. 
 Most industrial device simulators allow introducing user 
customized models, both analytical and numerical [4]. Development 
of brand new analytical models (with a physical background) is the 
best solution to above-cited calibration related problems, although 
often not feasible because time-consuming. A relatively simple 
alternative calibration approach is to resort to look-up table based 
models, which rely on tables including all models dependences. 
 
 
 
3.1 Look-up table models 
 
 
A complete look-up table models set was developed in cooperation 
with Bundeswehr University in Munich (Germany). MC data have 
been generated by Bundeswehr University for holes and electrons 
from bulk simulations for n and p type doping [5], and for variables’ 
range detailed in Table 3.1. Involved models with are reported in 
Table 3.2. Such models are the essential set to get consistent 
simulation results; dependences are reported too. 
 
Table 3.1. Independent variables and ranges in look-up table models. 
 

VARIABLE RANGE 
Doping (cm-3) 1015 ÷ 1021 

Lattice temperature (K) 200 ÷ 500 
Germanium mole fraction 0.0 ÷ 0.3 

Electric field (kV/cm) 0 ÷ 350 
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Table 3.2. Look-up table models and dependences for transport parameters . 
 

PARAMETER DEPENDENCES 
Low-field mobility ND/NA, TL, x 

High-field mobility (DD) N, TL, x, E 
High-field mobility (HD) N, TL, x, E, Tc 

Bandgap narrowing N 
Effective density of states TL, x 

Energy relaxation time N, TL, x, Tc 
 
 
 Since a well-known trade-off exists between memory 
requirements and table density, a significant difficulty in look-up table 
models, as opposed to analytical ones, is the need to introduce and 
develop an interpolation technique, in order to construct new data 
points within the known ones. The choice of the interpolation method 
depends on the requirements to be met: a linear interpolation can be 
used and easily implemented but it doesn’t assure derivatives 
continuity. Irregular derivatives can be allowed when they are not 
directly involved in the equations, e.g. mobility dependence on mole 
fraction. On the other hand, their continuity must be guaranteed in 
order to ensure simulation convergence, e.g. energy relaxation time 
dependence on carrier temperature. Additionally, in electro-thermal 
simulations all temperature derivatives should be continuous. When 
regular derivatives are needed, a more-sophisticated interpolation 
technique is essential, i.e. spline interpolation. The look-up table 
models where used, verified and compared to MC data, [5].  
 Look-up table models accuracy relies on the density of tables. 
Therefore memory requirements are pivotal. Besides, look-up table 
have no predictive capability outside the calibrated variables range 
and they don’t provide a physical insight into device behavior. Hence, 
a suitable set of analytical transport parameters have been developed, 
with the exception of bandgap narrowing model. A look-up table 
formulation has been used for the bandgap narrowing, therefore it is 
described in details on end. 
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3.1.1 Bandgap narrowing model 
 
The bandgap narrowing (BGN) model includes both heavy doping 
induced bandgap narrowing and germanium-induced bandgap 
narrowing [6]. Apparent BGN, describing the effect of heavy doping 
in silicon, can be determined using experimental results reported in [7] 
concerning the product between electron mobility and the square of 
the effective intrinsic density [6], as reported in (3.1): 
 

 2 2
, ,0

gE
KT

i e in n eμ μ
Δ

⋅ = ⋅ ⋅  (3.1) 
 
 Using experimental values in [7], the apparent bandgap narrowing 
can be easily determined using the mobility values. From equation 
(3.1) the apparent BGN can be computed as given in (3.2) if intrinsic 
density values are the same in device simulator [4],  [7] and MC 
simulator [5]. 
 2 2

, [2] , [2]i e i en nμ μ⋅ = ⋅  (3.2) 

 [2]
[2] lng gE E KT

μ
μ

⎛ ⎞
Δ = Δ + ⋅ ⎜ ⎟

⎝ ⎠
 (3.3) 

 ΔEg[2], μ[2], ni0[2] denote the bandgap narrowing, mobility and 
intrinsic density reported in [7], while ΔEg, μ, ni0 refer to the values 
used in this analysis. However, we should note that the intrinsic 
density has the same value in the Klaassen model and Sdevice 
simulator, but it has a different value in MC simulator, as shown in 
Table 3.3. 

 
Table 3.3. Carrier intrinsic density value for Silicon  
 

 ni0 [cm-3] 
Klaassen [7] 1.194·1010 
Sdevice [4] 1.18·1010 

MC [5] 0.926·1010 
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 Hence, when the developed bandgap narrowing model has been 
included in MC simulator, in order to correct the difference between 
intrinsic densities and assuring consistency the offset 
 

 0[ ]

0[ ]

2 log i KLAASSEN

i MC SIM

n
kT

n −

⎛ ⎞
Δ = − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.4) 

 
has been added to (3.3). 
 For each doping value, two p-doped bulk silicon Sdevice 
simulations (a sample doped resistor) have been performed using the 
Philips unified mobility model (which matches the experimental data 
in [6]) and our low-field mobility look-up table model respectively. 
Then, simulations results have been substituted in (3.2) to compute the 
apparent BGN in the base region. This calibration procedure has been 
repeated for n-doped bulk silicon for emitter apparent BGN 
computation. The resulting values of apparent bandgap narrowing are 
reported in Fig. 3.1. for the base and emitter regions, respectively. The 
doping range considered for this calibration is 1015 ÷ 1021 cm-3 for 
acceptor type doping and 1015 ÷ 5·1021 cm-3 for donor type doping. 
The extracted BGN values, which form the BGN look-up table model, 
have been included directly into the simulator using the TableBGN 
model available in Sdevice. 
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Fig. 3.1. Apparent bandgap narrowing for acceptor (a) and donor doping (b): default 
and calibrated values. 
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 Additionally, since the lattice constant of silicon-germanium is 
larger than the lattice constant of silicon, the base region is a strained 
layer whose bandgap and effective densities of states (DOS) are 
smaller compared to silicon. Although not wholly correct, the apparent 
(heavy doping induced) BGN in silicon-germanium is assumed to be 
the same as in silicon and the effect of strain on BGN in silicon-
germanium layers is computed separately and assumed to be [8]:  
 
 0.74 0.25gE x for xΔ ≈ ⋅ ≤  (3.5)  
 
 Analyzing the silicon-germanium parameter file in Sdevice, it can 
be inferred that the default mole fraction dependent bandgap model is 
given by: 
  
 0.73127 0.245gE x for xΔ = ⋅ ≤  (3.6) 
 
 Therefore, the correct mole fraction dependent bandgap model is 
already implemented in Sdevice. 
 
 
3.2 Analytical models 
 
Commercial device simulation tools commonly used in industrial 
applications allow the simulation with DD and HD models of silicon-
based hetero-junction devices, such as silicon-germanium HBTs. 
However, analytical transport models for DD/HD simulation available 
in the literature refer to silicon, and do not include the dependence on 
all relevant parameters, in particular germanium content. Therefore, 
based on the MC data described in §3.1, a full set of transport 
parameters have been generated and new analytical models have been 
developed which include the dependence upon all relevant quantities. 
In addition, new models have been compared with state-of-art models 
and experimental results whenever possible.  
 The full set of developed models is listed in Table 3.4. All models 
are analytical, with the exception of Bandgap narrowing parameters. 
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Table 3.4. Analytical models for transport parameters 
 
PARAMETER 
Effective density of states  
Low-field mobility 
Energy relaxation time 
Saturation velocity 
High-field mobility 

 
 
3.2.1 Effective density of states 
 
Silicon-germanium device simulation requires a suitable model for the 
effective Density of States (DOS), since it has a relevant impact on 
collector current computation through the effective intrinsic density, 
(3.7). 
 
 exp( / 2 )ie C V G B Ln N N E k T= −  (3.7) 
 
 A simplified approximation was proposed in [8], based on a 
constant ratio of the product of the effective DOS for silicon-
germanium to the product of the effective DOS for silicon according 
to: 

 
( )
( )

C V SiGe

C V Si

N N
0.4

N N
≈  (3.8) 

 The constant ratio approximation disregards some critical 
dependences. In SiGe the bands degeneracies split due to strain, and 
the effective DOS are consequently modified. Moreover, the lattice 
temperature dependence should be introduced, accounting for the 
relative population of the upper bands which are degenerate in 
absence of strain. For a low germanium content the split is of the order 
of kB·TL [11], so that a strong dependence on lattice temperature is 
expected. Therefore, the dependence on the mole fraction and lattice 
temperature must be also taken into account in effective DOS models, 
as demonstrated in Fig. 3.2. 
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Fig. 3.2. MC data evaluation and constant ratio approximation in (3.8) as a function 
of germanium mole fraction for different lattice temperature values. 
  
 In device simulators effective densities are typically assumed to be 
a function of the effective masses. However, this analytical 
formulation including the dependence on the effective mass is based 
upon the assumption of a scalar effective mass. This simplification is 
not introduced in our analytical model, which is derived by fitting the 
data extracted from MC simulation, where the effective masses are 
tensors, in accordance with their definition from quantum mechanics. 
In order to overcome this limitation and develop a general effective 
DOS model, that can be easily implemented in different device 
simulators using their characteristic relation tying the effective DOS 
to the effective mass, we express the SiGe effective densities of state 
as functions of corresponding value in silicon. In detail, in Sdevice [4] 
the link between effective mass and effective DOS is expressed by: 
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or by the inverse relation: 
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 Firstly, we include the dependence on lattice temperature of 
effective Dos in silicon using the well-know power law dependence 
[12]:  

 
Cα

L
C L C_300 0

0

TN (T )=N , T =300 K
T

⎛ ⎞
⋅⎜ ⎟
⎝ ⎠

 (3.11) 

 
Vα
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V L V _300 0

0

TN (T )=N , T =300 K
T

⎛ ⎞
⋅⎜ ⎟
⎝ ⎠

 (3.12) 

The exponents in (3.11) and (3.12) have been optimized so as to fit 
MC data. The results of this optimization are depicted in Fig. 3.3 and 
model parameters are reported in Table 3.5 at the end of section. 
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Fig. 3.3. Effective DOS for valence and conductive band in silicon as a function of 
lattice temperature: MC data and model results.  
 
 
 The model for SiGe conduction band proposed in [13] includes all 
main dependences. In this model, the effective DOS for electrons is 
calculated using the relation: 

1-x x

C
C1 C2

B L
C_Si Ge L C_Si L

C1 C2

ΔE xM +M exp
k T

N (T ,x)=N (T )
M +M

⎛ ⎞⋅
⋅ ⎜ ⎟⋅⎝ ⎠⋅  (3.13) 

where all the parameters can be extracted from the schematic view of 
band degeneracy splitting proposed by Prinz [11]. The model in [11] 
provides an accurate agreement with our MC data (see Fig. 3.4). 
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Fig. 3.4. Effective DOS for conductive band in Si1-xGex as a function of germanium 
mole fraction for different lattice temperature values: MC data (symbols) and model 
results (lines). 
 
 On the other hand, valence band effective DOS for silicon-
germanium is usually assumed to be identical to bulk silicon [13] or 
assumed to be linearly dependent on the Ge mole fraction [14]. We 
propose an analytical approximation for the hole effective DOS which 
includes the germanium mole fraction and lattice temperature 
dependences. A new model has been developed starting from the 
splitting schematic view in [11], which gives a value of 0.125 eV for 
the sum between ∆EV1 and ∆EV2 for a 20% germanium mole fraction. 
The new model equation reads: 
 

1-x x

V1 V2
V1 V2 V3

B L B L
V_Si Ge L V_Si L

V3
V1 V2 V3

B L

ΔE x ΔE xM +M exp +M exp
k T k T

N (T ,x)=N (T )
ΔEM +M +M exp
k T

⎛ ⎞ ⎛ ⎞⋅ ⋅
⋅ ⋅⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠⋅

⎛ ⎞
⋅ ⎜ ⎟⋅⎝ ⎠

 (3.14)        

where single terms have been arranged to fit (3.14) with MC data.  
 The results of the effective DOS model for holes are depicted in 
Fig. 3. 5, while model parameters are summarized in Table 3.5. The 
new model provides an accurate approximation for valence band 
effective DOS in the mole fraction range of practical interest for SiGe 
HBTs (0 ÷ 0.2). The analytical models for the effective conduction 
and valence band effective density of states were successfully 
implemented in Sdevice using the physical model interface. 
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Fig. 3. 5. Effective DOS for valence band in Si1-xGex as a function of germanium 
mole fraction for different lattice temperature values: MC data (symbols) and model 
results (lines) 
 

 
Table 3.5. Parameters for SiGe alloy effective DOS. 
 

Parameter Value Parameter Value 
NC_300 [cm-3] 2.94·1019 NV_300 [cm-3] 2.24·1019 

αC 1.62 αV 1.79 
MC1 4 MV1 = MV2 = MV3 1 
MC2 2 ΔEV1 [eV] -0.31 

ΔEC [eV] -0.6 ΔEV2 [eV] -0.315 
  ΔEV3 [eV] -0.044 

 
 
 
3.2.2 Low-field mobility 
 
 During the past decades several analytical models were introduced 
to model the mobility dependence on doping, lattice temperature. 
However, none of these models provides an adequate description of  
the dependence on Ge mole fraction. After a critical review of 
available analytical models, a novel semi-empirical analytical model 
for silicon bulk mobility has been developed. This model is more 
accurate than existing models at low temperatures and high-doping 
levels. Then, the dependence on Ge mole fraction has been included 



 Chapter 3. Analytical models for transport parameters                       69 

for silicon-germanium alloys. A comparison with MC data and 
experimental results is reported below. 
 The first simple and analytical formulation was proposed by 
Chaughy and Thomas [14]  

 ( ) ( ) ( )
( )( ) ( ) ( )

,

max min ,
, min ,

, ,

,
1 D A

D A
D A D AN

D A r D A

T N
N T N
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μ μ
μ μ

−
= +

+
 (3.15) 

 This model predicts monotonic decreasing behavior with doping 
concentration, which turns out to be a poor approximation at high 
doping levels. Moreover no temperature dependence was included. the 
Chaughy-Thomas model was later modified by Arora in [15], by 
including the dependence upon temperature. However, in this 
formulation the role and meaning of the model parameters are not 
straightforward since the maximum mobility term disappeared. The 
“max-min” behaviour is not fairly accurate to model carrier scattering 
due to doping. Therefore several models were later developed to 
imporve the accuracy in the high doping range. The model [16] 
proposed by Masetti is based on the equation: 
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(3.16) 

where the third term accounts for the decrease of mobility at doping 
values higher than 1020 cm-3. 
 The Masetti model was later extended by researchers of Bologna 
University [17]. This model is given in the form:  
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and includes the effects of impurity scattering, the dependence on 
lattice temperature and doping type (donor or acceptor). Equations 
(3.17) ÷ (3.19) allow to distinguish between majority and minority 
mobility, yet ensuring the continuity of mobility values. The doping 
type dependence is important as it can change mobility values up to a 
factor of three. It’s well know that for device simulation mobility 
should be expressed using a single function of donor and acceptor 
doping. Therefore, the doping type dependence is reported in a 
suitable way in equations (3.17), (3.18) and (3.19), guaranteeing with 
a single equation to distinguish between majority and minority 
mobility and with a continuous equation. We will refer to (3.17) ÷ 
(3.19) as the "Bologna University model". 
 An important and well-known model was proposed by Klaassen 
and workers [18], also known as Philips model. This model includes 
the difference between majority and minority mobility. A comparison 
between MC data and the Klaassen model is reported in Fig. 3.6 for 
both majority and minority electrons. For this analysis the Klaassen 
model was implemented using a numerical computing platform. The 
Klaassen model shows a reasonable agreement with MC data for 
doping levels up to 1019 cm-3 and for a lattice temperature higher than 
room temperature.  
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Fig. 3.6. Majority (a) and minority (b) electron mobility in pure silicon as a function 
of doping for different lattice temperatures; Klaassen model [18] (lines) and MC 
data (symbols). 
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In the state-of-the-art, as well as in next generation devices, doping 
profiles for high frequency applications exceed the value of 1020 cm-3 
for  the emitter region [19] and there is a growing interest in cryogenic 
applications. Thus this model cannot be regarded as future reference 
for silicon device mobility modeling. This limitation is common to all 
mobility models available in the Literature. In [18] it is stated that the 
model is suitable to describe ultra-high doping effects (N > 1020 cm-3), 
where the mobility decay is modelled using an effective “cluster” 
concentration function. Fig. 3.6 shows that this behaviour appears 
only from medium to high temperatures, where it is only roughly 
modeled. Since the mobility is seen to increase with doping at low 
temperatures and very high doping, the Klaassen model is 
unsatisfactory. The low temperature and high-doping mobility 
behaviour is widely documented in literature [15],[20], [21], [22], 
[23], but it is not properly accounted for in the existing analytical 
models. Additionally all available models have been calibrated at 
room temperatures above and for maximum doping values around 
1020 cm-3. The increase in mobility at very high-doping and low 
temperature appears for both minority [20], [21], [22],  and majority 
carrier [15], although it’s more marked for minority carriers. In [20] a 
simple explanation is suggested for these unexpected results. 
According to [20] very high free carrier densities screen the minority 
electrons from the charged impurities. However, no further physical 
studies have been proposed until now. 
 Considering the large number of parameters involved in Philips 
model, the optimization of parameters would be very complicated and 
partly incorrect, since there is no cluster concentration at low 
temperatures. On the contrary, the Bologna University model relies on 
a more simple formulation and can be extended to include high doping 
and low temperatures effects in a relative simple way. For this reason, 
it has been  chosen as the starting point to develop a novel analytical 
calibrated model. Firstly, the original Bologna model formulation was 
implemented and comparison with MC data is depicted in Fig. 3.7. 
This model lacks accuracy for low temperatures and ultra-high doping 
levels; however. The poor accuracy at low temperatures was also 
noted by the authors. 
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Fig. 3.7. Minority-electron (a) and minority-hole (b) mobility in pure silicon as a 
function of doping for different lattice temperatures; Bologna model [16] (lines) and 
MC data (symbols). 
 
 Based on MC simulations, an analytical low field mobility model 
has been developed for both minority and majority carriers. The 
model formulation is based on an extension to the model of Reggiani 
[17] for silicon, which is already available in commercial tools. The 
main model equation is: 
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 (3.20) 

allows an accurate modeling of the silicon mobility behavior at low 
and high doping concentration, and includes the dependence upon 
lattice temperature TL, and donor and acceptor doping concentration, 
ND and NA respectively. The parameter μmax in (3.20) represents the 
lattice mobility, while the parameters μ0 and μ1 model carrier mobility 
variations at high and very high doping concentration, respectively. 
Lattice mobility is calculated by 
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 (3.21) 

while parameters μ0 and μ1 are given by 
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 Equations (3.22) and (3.23) allow distinguishing between majority 
and minority mobility. Moreover, in order to extend the model to low 
temperatures (TL < 300 K), a new formulation for μ1a,d is introduced 
here: 
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 The whole set of extracted parameters and equations for pure 
silicon is reported in Table 3.6, where Tn = TL/300 is the normalized 
lattice temperature. The new model results and MC data are depicted 
in Fig. 3.8 ÷ Fig. 3.11. The new model shows a good agreement with 
experimental data and state-of-art models for silicon. In addition, this 
model offers a regularity of the results and predictability outside the 
calibrated range. Majority and minority mobility dependences upon 
lattice temperature and doping appear to be accurately modeled. Fig. 
3.11 compares new model to experimental data taken from [15] and 
[28] at 200 K for majority electron mobility. Mobility values are 
reported in a logarithmic scale to emphasise the change of mobility 
behaviour versus doping for high-doping values. 
 
 
Table 3.6. Parameters for silicon bulk mobility. 
 

Parameters Electrons Holes 

μmax,0[cm2/V·s] 1421.6 485.51 

γ -2.24 -2.49 

μ0d [cm2/V·s] 49 123.34·Tn
-1.028 
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Parameters Electrons Holes 

μ0a [cm2/V·s] 205.25·Tn
-0.934 46.42·Tn

-0.627 

μ1d [cm2/V·s] 
2

2

24.812 84.6 132.36n n

n

T T
T

⋅ + ⋅ − 2

2

-68.8 300.19 230.53n n

n

T T
T

⋅ + ⋅ −

μ1a [cm2/V·s] 
2

2

-94.533 518.28 419n n

n

T T
T

⋅ + ⋅ − 2

2

-5.783 81.146 76.02n n

n

T T
T

⋅ + ⋅ −

Cr1 [cm-3] 8.393·1016·Tn
2.951 1.329·1017·Tn

3.07 

Cr2 [cm-3] 5.42·1016·Tn
3.045 1.631·1017·Tn

3.111 

Cs1 [cm-3] 1.81·1019 5.1·1019 

Cs2 [cm-3] 4.2·1019 5.8·1019 

α1 0.68 0.7 

α2 0.7 0.77 
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Fig. 3.8. Minority-electron (a) and majority-hole (b) mobility in pure silicon as a 
function of doping for different lattice temperatures; proposed model (lines) and MC 
data (symbols). 
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Fig. 3.9. Minority electrons (a) and holes (b) mobility in silicon as a function of 
doping at 300 K; symbols are experimental data. 
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Fig. 3. 10. Majority electrons (a) and holes (b) mobility in silicon as a function of 
lattice temperature for several doping levels; symbols are experimental data in [28] 
and [29]. 
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Fig. 3.11. Majority electrons mobility in silicon as a function of doping at 200 K. 
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 Hetero-junction bipolar transistors simulations need suitable 
models which include the dependence on germanium mole fraction. 
TCAD tools generally include the mobility dependence on mole-
fraction by means of a linear interpolation between silicon and 
germanium mobility values (see Fig. 3.12) or a piecewise polynomial 
approximation [4]. However, analytical models are generally preferred 
for computational reasons and a better physical insight. To our 
knowledge, the only mobility model including the germanium mole 
fraction dependence is [30]. In this formulation the dependence on the 
germanium content is modelled as 
 
 ( )11 1

SiGe Si Ge

x xx x
Cμμ μ μ
−−

= + +  (3.25) 

 
where Cμ is a non-linear bowing factor. A value for the bowing factor 
is given for electrons (a possible value of Cμ for holes is also 
suggested [31], but it generates negative mobility values for some 
mole fractions, an shown in Fig. 3.12). Equation (3.25) has been 
implemented and its bowing parameter has been optimized for both 
electrons and holes. Even with optimized parameters, this model gives 
a poor approximation especially for holes (see Fig. 3.13). 
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Fig. 3.12. Electrons and hole mobility in Si1-xGex as a function of germanium mole 
fraction: MC data, linear approximation and model in (3.25). 
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Fig. 3.13. Electrons and hole mobility in Si1-xGex as a function of germanium mole 
fraction: MC data and optimized results of model in (3.25). 
  
 The dependence of electron and hole mobility on germanium 
content shows a minimum. This minimum is depicted in Fig. 3.12 and 
Fig. 3.13 for holes, since for electron mobility it appears at a higher 
mole fraction [32], [33]. The alloy scattering is dominant for mole 
fraction values lower than the minimum point. After the minimum 
point, lattice scattering prevails and mobility increases with increasing 
the mole fraction. The main modeling effort is required for hole 
mobility. Since in equation (3.25) the mole fraction value 
corresponding to the minimum mobility is fixed, the equation must be 
changed in order to reach a good approximation for hole mobility. 
 Recalling the Matthiessen’s role [6], a new model for SiGe 
mobility has been developed and carefully calibrated for both 
electrons and holes. The model equation is given by  

 ( ) ( )111

0.7 0.3

x xx x n nn n
CSiGe Si Si Ge

α α

μ μ μ μ

− ⋅−
= + +  (3.26) 

 Since in SiGe HBTs the Ge mole fraction never exceeds 0.3 
(typically the maximum value is about 0.2) and limiting the mole 
fraction calibration range improves model accuracy, the germanium 
content is normalized to 0.3; xn = x/0.3. To implement the model in 
(3.26), the lattice and bulk mobility model parameters for Si0.7Ge0.3 are 
needed. These parameters are reported in Table 3.7. All parameters in 
(3.26) have been optimized and are available in Table 3.8. Model 
results are showed in Fig. 3.14 and in Fig. 3.15. Minority electron 
mobility model results are reported for different doping values and 
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compared to those obtained by the Palankovski model [30] in Fig. 
3.14. As can be seen, the new model shows a significant improvement 
in mole fraction dependence approximation. Model results for 
majority hole are reported in Fig. 3.15, and compared with MC and 
experimental data [34]. 
 
 
Table 3.7. Parameters for Si0.7Ge0.3 bulk mobility 
 

Parameters Electrons Holes 

μmax,0 [cm2/V·s] 453.23 641.08 

γ -1.14 -2.118 

μ0d [cm2/V·s] 91.587·Tn
-1.0547 130.24·Tn

-1.3315 

μ0a [cm2/V·s] 191.58·Tn
-0.92012 40.848·Tn

-0.63301 

μ1d [cm2/V·s] 
2

2

5.494 95.873 96n n

n

T T
T

⋅ + ⋅ −  
2

2

-90.178 325.95 214.83n n

n

T T
T

⋅ + ⋅ −  

μ1a [cm2/V·s] 
2

2

49.072 87.32 131.97n n

n

T T
T

⋅ + ⋅ −  
2

2

3.1834 59.611 57.091n n

n

T T
T

⋅ + ⋅ −  

Cr1 [cm-3] 3.8812·1017·Tn
2.0845

 1.1509·1017·Tn
4.2018 

Cr2 [cm-3] 1.913·1017·Tn
2.4096

 1.3873·1017·Tn
3.2117

 

Cs1 [cm-3] 6·1019 2·1020 

Cs2 [cm-3] 5.4·1019 7·1019 

α1 0.76 0.59 

α2 0.7 0.65 
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Table 3.8. Parameters for SiGe alloy mobility 

Parameters Electrons Holes 

α 0.487 0.548 

Cμ [cm2/V·s] 2379.4 556.4 
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Fig. 3.14. Si1-xGex minority electron mobility as a function of germanium mole 
fraction (x) for several doping concentrations,  TL = 300 K. 
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Fig. 3.15. Si1-xGex majority hole mobility as a function of germanium mole fraction 
(x). Doping values for MC data and model are 1015, 1017, 3·1018, 3·1019 and 1021 cm-3 
from top to bottom. Experimental data are from [33]. 
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3.2.3 Energy relaxation time 
 
 The macroscopic energy relaxation time is a critical parameter in 
the HD formulation, appearing in the collision terms of energy 
balance equation and in high field hydrodynamic mobility model. An 
accurate verification by MC simulations is needed to achieve 
consistency of the HD model and the Boltzmann transport equation. A 
relaxation time model extended to include the mole fraction 
dependence is given in [30]. This model however, disregards the 
dependence upon lattice and carrier temperatures. The model 
proposed in [34] includes the lattice and carrier temperature in silicon 
and germanium, but it is not extended to silicon-germanium. In 
addition, relaxation time values reported for silicon do not agree with 
typical values reported in literature, [35]. In [36] a quadratic 
dependence on the electron temperature was included for silicon. 
However, a constant or quadratic relation for the energy relaxation 
time are to be considered as rough approximations. For accurate and 
predictive simulations, more refined analytical formulations should be 
used [37]. 
 Using MC data, a new analytical model for the electron energy 
relaxation time was developed for silicon and silicon-germanium. This 
model incorporates the relaxation time variation with electron and 
lattice temperature, as well as germanium mole fraction. The energy 
relaxation time for holes can be set to a constant value, since it has no 
influence on hydrodynamic simulation results. Moreover, the 
dependence upon doping was found to be negligible by MC results. 
The model equation for energy relaxation times in bulk material is 
given by the Gaussian function: 

 
2

,0 ,1 1 2 3
0 0 0

exp n n L
W W W

T T TC C C
T T T

τ τ τ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + ⋅ ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.27) 

where the material composition dependence is included through the 
following parameters  
 ( ) ( )

0.7 0.3,0 ,0_ ,0_1 1W W Si n W Si Ge n n nx x C x xττ τ τ= ⋅ − + ⋅ + ⋅ − ⋅  (3.28) 

 ( ) ( )
0.7 0.31 1_ 1_1 1Si n Si Ge n C n nC C x C x C x x= ⋅ − + ⋅ + ⋅ − ⋅  (3.29) 
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where xn = x/0.3 is the normalized mole fraction, Cτ and CC are 
referred to as bowing factors and T0 is the reference temperature of 
300 K. The maximum mole fraction considered is still 0.3. All 
parameters are reported in Table 3.9. 

 
Table 3.9. Parameters for SiGe alloy energy relaxation time. 
 

Parameters Electrons 

τw,0_Si [ps] 0.391 
τw,0_Si0.7Ge0.3 [ps] 0.449 

τw,1 [ps] -0.14434 

C1_Si 0.00135 
C1_Si0.7Ge0.3 0.0028 

Cc -0.00181 

C2 -0.059 

C3 0.0107 

Cτ [ps] -0.05 
  
 A comparison between model results and  MC data is depicted in 
Fig. 3.16 and Fig. 3. 17. Note that, although at low carrier temperature 
the dependence on carrier temperature changes (Fig. 3.16), this 
behavior needs not to be modeled since when the electron temperature 
is close to the lattice temperature the term (Tn-TL)/τw appearing in the 
energy balance equation is negligible. Model shows a good agreement 
with MC data for the whole range of temperatures in Fig. 3.16 and of 
mole fraction values in Fig. 3. 17.  
 
 
3.2.4 Saturation velocity 
 
 The saturation of velocity generally appears in high-field mobility 
models. Therefore an accurate model embodying all relevant 
dependences is mandatory. In [39] Ershov et al. propose a simple model 
including the dependence on germanium mole fraction, and the model 
in  [40]  adds  the lattice temperature influence. However, all available 
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Fig. 3.16. Electron energy relaxation time in silicon as a function of electron 
temperature for several lattice temperatures, T0 = 300 K. Lines: model; symbols: MC 
data. 
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Fig. 3. 17. Si1-xGex electron energy relaxation time as a function of electron 
temperature for several germanium contents, TL = T0 = 300 K. Lines: model; 
symbols: MC data. 
 
models neglect the dependence upon the doping level. By MC 
investigation we verified that saturation velocity can vary with doping 
level more than 10% ( see Fig. 3.18). Thus, a new model has been 
developed which includes the dependence upon lattice temperature, 
germanium mole fraction and doping value. Moreover, it has been 



 Chapter 3. Analytical models for transport parameters                       83 

verified that saturation velocity values are not influenced by the 
doping type. The new model for bulk silicon is given by 

 ( ) ( )
( )( )

300
L b

L 0

v N
v N,T =

1-A 1- T T⋅
 (3.30) 

 ( ) ( )g
300 1 REFv N =v N N⋅  (3.31) 

where NREF is fixed to 1016 cm-3 and T0 represents the room 
temperature (300 K). Model extension to include the dependence upon 
the germanium mole fraction is given by  
 ( ) ( )0.7 0.3

α α
SiGe Si n Si Ge n n n vv =v 1-x +v x + 1-x x C⋅ ⋅ ⋅ ⋅  (3.32) 

where Cv is again a bowing factor. The germanium content xn is still 
normalized to 0.3. 
 Model parameters are summarized in Table 3.10 for both electrons 
and holes. Model results and a comparison with MC data are depicted 
in Fig. 3.18 and Fig. 3.19. 
 
Table 3.10. Saturation velocity model parameters. 
 

Parameter Electrons Holes 

 Si (xn = 0)  

v1 [cm/s] 9.954·106 1.1412·107 

g 0.0127 0.0084 

A 0.3163 0.218 

b 0.8091 1.0693 

 Si0.7Ge0.3 (xn = 1)  

v1 [cm/s] 6.093·106 8.1459·106 

g 0.004 0.0062 

A 0.175 0.1284 

b 1.1048 1.24 

Cv[cm/s] -5.262·106 -2.22·106 

α 0.74665 0.8223 
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Fig. 3.18. Electron saturation velocity in silicon as a function of lattice temperature 
for several doping concentrations.  
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Fig. 3.19. Electron saturation velocity in Si1-xGex as a function of germanium mole 
fraction for several lattice temperatures. N = ND = 1018 cm-3. 
 
 
3.2.5 High-field mobility 
 
 The well known Canali et al. model [41] has been widely used for 
modeling high field mobility in drift-diffusion simulations. It relates 
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high-field mobility (μHIGH) to low-field mobility (μLOW), electric field 
(E) and carrier saturation velocity (vSAT) using the simple relation 
 
 

1

1

LOW

LOW

sat

E
v

β β

μμ

μ

=
⎡ ⎤⎛ ⎞⋅⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3.33) 

 
where β is a fitting parameter. 
The Canali model has been extended later [3] with an additional 
parameter α 
 ( )

( )
1

1

1
1

LOW

LOW

sat

E
v

β β

α μ
μ

α μ
α

+
=

⎡ ⎤⎛ ⎞+ ⋅
⎢ ⎥+ + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3.34) 

 However, for modern heterojunction transistors the Canali model 
becomes inaccurate. This is due to the fact that it is based on the 
assumption of local equilibrium between electrons and the lattice, 
which yields a saturation behavior for carrier velocity. With the 
ongoing downscaling of devices, the use of ET and HD models has 
become mandatory, in order to capture nonlocal effects. It is well 
known that in the presence of a strong electric field electrons gain 
energy and their temperature is highly increased [42]. The carrier 
temperature gradient introduces an additional driving force and HD 
simulations replace the electric field with an effective driving force 
[4], [43]. The effective driving force is derivable from the 
homogeneous steady state energy balance equation and is given by 
 

 
( )

C 0

E HIGH

max(W -W ,0)F=
τ q μ⋅ ⋅

 (3.35) 

where τE is the carrier energy relaxation time, W0 and WC are the 
lattice and carriers (electrons/holes) energies, respectively, and are 
expressed as 

 0 B C B
3 3W = k T , W = k T
2 2L C⋅ ⋅ ⋅ ⋅  (3.36) 

 Several high-field mobility models for HD simulations include a 
direct dependence upon the carrier temperature [31], [44]. However, 
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these models are derived by replacing the high-field mobility μHIGH in 
(3.35) with the low-field value μLOW. As a consequence, consistency 
between the electric field and the effective driving force in the 
homogenous case is lost. This has been verified by applying (3.35) to 
MC data (see Fig. 3.20). In this calculation the low field mobility and 
energy relaxation time are computed using the models described in 
§3.2.2 and §3.2.3. 
 A more general approach is available in commercial device 
simulators [3], which combines the effective driving force (3.35) with 
the model by Canali et al. [46]:

  

LOW
HIGH 1 ββ

LOW

sat

μμ =
F μ1+

v

⎡ ⎤⎛ ⎞⋅⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦                              

(3.37) 
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Fig. 3.20. Electric field in homogeneous silicon (MC data) and effective driving 
force computed by using μHIGH and μLOW MC data in (3.35).   
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Fig. 3.21. High field mobility as a function of effective driving force as given in 
(3.35) at TL = 300 K and N = NA = 1018 cm-3. 
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Fig. 3.22. Electron velocity as function of effective driving force computed by using 
(3.35) at TL = 300 K and N = NA = 1018 cm-3. Velocity is calculated as the product 
between mobility and driving force.  
 
 However, this formulation has been verified to be not suitable for 
SiGe, since it doesn’t provide an accurate dependence on all relevant 
variables (see Fig. 3.21); moreover, it does not account for the 
negative differential electron drift velocity (Gunn effect) as shown in 
Fig. 3.22. 
 One can try to optimize the parameter β in equation (3.37) by 
introducing some non-constant formulation for it. However, with tis 
simple fix a reasonable approximation cannot be reached because the 
analytical formulation can never describe the carrier velocity decay at 
high driving forces. The extended Canali model is based on the 
saturation assumption for carrier velocity. Therefore, the resulting 
carrier velocity, given by the product between carrier mobility and 
effective driving force, cannot describe the actual behavior. Although 
the Gunn effect is well known for III-V semiconductors, it has been 
verified that the transition of electrons from the twofold valley to the 
fourfold valley can occur in SiGe as well [47],[48]. However this 
behavior has been never included in any analytical mode. Thus, we 
propose a new analytical model where the high-field mobility is 
calculated from the equations: 
 

 LOW
HIGH 1

βα β
LOW

R sat

μμ =

F μF1+ 1+
F v

⎧ ⎫
⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ ⎪⋅⎢ ⎥⎢ ⎥ ⋅⎨ ⎬⎜ ⎟⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦

⎩ ⎭

 (3.38) 
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N

⎛ ⎞⎛ ⎞
⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.39) 

 
 ( )0 1 10 nα=α -α log 1+x⋅  (3.40) 
 

 ( )( )0
R R0 R1 10 REF

L

TF = exp F -F log N N
T

⋅ ⋅  (3.41) 

 
where (3.35) is used to calculate the driving force. This model 
provides an accurate description of mobility as a function of lattice 
temperature, carrier temperature, doping and mole fraction. Model 
parameter are listed in Table 3.11 (NREF in (3.39) and (3.41) is fixed to 
1015 cm-3). 
 
 
Table 3.11. High-field mobility model parameters. 
 

Parameter Electrons Holes 

β0 1.26 1.1 

β1 1 0 

β2 0.07 0.09 

β3 1 2 

α0 1 - 

α1 1.4 - 

FR0 -16.8112 - 

FR1 0.3979 - 
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 The development of this new model required a significant effort, 
since it was not simple to identify an analytical formulation able to 
reproduce correctly high field mobility variations with doping, mole 
fraction and carrier temperature, as these dependences are also 
included in different quantities (low-field mobility, driving force and 
saturation velocity). The new formulation consists of a nonlinear 
equations system ((3.35) and (3.38) ÷ (3.41)), whose unknown 
quantities F and μHIGH can be obtained from the numerical solution of 
the nonlinear equations. Using this approach we can calculate the 
effective driving force as depicted in Fig. 3.23, which is in good 
agreement with MC data. The new model includes the dependences on 
carrier temperature, lattice temperature and mole fraction (see Fig. 
3.24 and Fig. 3.25). The accuracy is strongly improved compared to 
the extended Canali model ( see Fig. 3.21 and Fig. 3.22). Additionally, 
it predicts the negative differential slope of electron velocity versus 
electric field (Fig. 3.22). Since holes have no “hot effects”, the model 
(3.37) combined with (3.39) can still be used for holes and the electric 
field is the driving force. A good accordance with MC data was found 
by introducing an adequate dependence on doping value for the β 
parameter, (3.39). 
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Fig. 3.23. Effective driving force in silicon for minority electrons as a function of 
electron temperature for several doping concentrations at TL = 300 K. 
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Fig. 3.24. Electron drift velocity in silicon ( μHIGH·F ) as a function of electron 
temperature for several lattice temperatures and N = NA = 1018 cm-3. 
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Fig. 3.25. Out-of-plane minority electron mobility in Si1-xGex as a function of 
effective driving force for several germanium mole fraction; N = NA = 1017 cm-3, TL = 
300 K. 
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Chapter 4 
 
 

Verification of transport models 
 
 
 
In Chapter 3 we presented a derivation of new analytical models for 
transport parameters and comparison with state-of-art models. In this 
chapter we present a detailed description of models’ implementation 
in a commercial device simulator [1] and report hydrodynamic device 
simulations based on the novel analytical transport models for several 
one-dimensional and two-dimensional structures with a different fT. 
HD simulation results are compared to results obtained using a 
standard set of models for silicon-germanium and to more reliable 
results (i.e. MC and SPRING simulation results and experimental 
data) with the aim of validating proposed models and clarifying their 
reliability and accuracy over different technologies.  
 
 
 
4.1 Implementation of analytical models in 

Sdevice 
 
The full set of developed models has been successfully implemented 
in the device simulator (Sdevice) of the Sentaurus TCAD by 
SYNOPSYS [1] using its Physical Model Interface (PMI). This 
interface provides a direct access to the transport parameters models to 
be used in the semiconductor transport equations. The user can 
provide new C++ functions to compute these models, and Sdevice 
loads the functions at run-time using the dynamic loader. No access to 
the Sdevice source code is necessary. For each PMI model, the user 
must implement a C++ subroutine to evaluate the model. Additional 
subroutines are necessary to evaluate the derivatives of the model with 
respect to all the input variables. More specifically, the user must 
implement a C++ class that is derived from a base class declared in 
the header file PMIModels.h. In addition, a so-called virtual 



 Chapter 4. Verification of transport models                                      97 

constructor function must be provided, which allocates an instance of 
the derived class.  
 As instances, the low field mobility and energy relaxation time 
models implementation are quoted at the end of this chapter. 
 
 
4.2 Reference state-of-art models  
 
Based on Monte Carlo simulations [2], an Sdevice parameter file is 
available in the software library of materials. This file contains 
transport parameters at 300 K for silicon-germanium under biaxial 
compressive strain present. Indeed, a biaxial compressive strain is 
occurs in the base of npn-SiGe HBTs which is grown on top of a 
relaxed silicon substrate. The parameters for electrons refer to the out-
of-plane direction (that is perpendicular to the SiGe/Si interface) and 
the parameters for holes to the in-plane direction (that is parallel to the 
SiGe/Si interface). The transport parameters have been obtained from 
the full-band Monte Carlo simulations in [2]. The band gap in relaxed 
SiGe alloys has been extracted from the measurements in [3] and the 
values in strained SiGe are calculated according to the model solid 
theory of C. G. Van de Walle [4].  
 Simulations have been performed using this parameter file for 
evaluation and comparison with the novel developed analytical 
models. The models used for this comparison are detailed in Table 4.1 
and will be referred to as “Bufler models” henceforth. 
 
 
Table 4.1. Bufler models 
 

PARAMETER MODEL 
Low-field mobility Philips unified mobility model 
High-field mobility Extended Canali model 
Bandgap narrowing Braunstein et Al. 

Effective density of states Slotboom 
Energy relaxation time Constant for Silicon 

 Linear dependent on x for Si1-xGex 
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4.3 Verification of models 
 
Having described the implementation of the novel models in Sdevice, 
we discuss their accuracy for devices of different technology nodes. 
 
 
 
4.3.1 One-dimensional 100 GHz device 
 
 
The verification of the new models has been performed for a 1D 
reference structure whose maximum cut-off frequency is about 100 
GHz and whose profile is depicted in Fig. 4.1. 
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Fig. 4.1. Doping profile of the 100-GHz SiGe HBT. 
 
 Simulation results for the new developed model set are reported in 
Fig. 4.2 and Fig. 4.3. Model results are compared to MC data and to 
results obtained for the same structure using Bufler models; MC data 
used for verification have been generated by Bundesweher University. 
As can be seen in Fig. 4.2 and Fig. 4.3, using the new models we 
achieve a marked improvement in simulation results for the collector 
current. On the other hand, the cut-off frequency versus collector 
current density plot depicted in Fig. 4.3 shows that, with the exception 
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of high current region where fT plummets due to the Kirk effect, the 
results obtained using Bufler models’ also provide an adequate 
description. 
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Fig. 4.2. Transfer characteristics at VCE = 1 V: comparison between MC data and 
HD simulation results obtained with default (Bufler) and proposed analytical models 
for transport parameters. 
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Fig. 4.3. Cut-off frequency at VCE = 1 V: comparison between MC data and HD 
simulation results obtained with default (Bufler) and proposed analytical models for 
transport parameters. 
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4.3.2 One-dimensional 450 GHz device 
 
The proposed models have been applied to the simulation of a 1D 
structure whose maximum cut-off frequency is about 450 HD 
simulations with the new models have been compared to the results 
obtained by SPRING. Device profile is depicted in Fig. 4.4. 
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Fig. 4.4. Doping profile of the 450-GHz SiGe HBT. 
 
 
 HD simulations have been performed using the proposed 
analytical parameters, Bufler models and reliable look-up tables 
described in §3.1. The results of this comparison are depicted in Fig. 
4.5 ÷ Fig. 4.7 for the collector current density, base current density 
and cut-off frequency respectively. 
 An inspection of the Gummel plot in Fig. 4.5 confirms that new 
models offer an improved accuracy with respect to the Bufler models. 
A comparison for the maximum cut-off frequency yields the same 
conclusions as in §4.3.1. Also shown are the simulation results for the 
calibrated look-up table models used for analytical models 
development.  
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Fig. 4.5. Transfer characteristic at VCB = 0 V: comparison between SHE data and 
HD simulation results obtained with default (Bufler) and proposed analytical models 
for transport parameters. 
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Fig. 4.6. Base current density in transfer characteristic at VCB = 0 V: comparison 
between SHE data and HD simulation results obtained with default (Bufler) and 
proposed analytical models for transport parameters. 
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Fig. 4.7. Cut-off frequency at VCB = 0 V: comparison between SHE data and HD 
simulation results obtained with default (Bufler) and proposed analytical models for 
transport parameters. 
 
 
 
  
4.3.3 Two-dimensional 230 GHz device. 
 
 
Models verification has been repeated for the 2D HBT simplified 
structure depicted in Fig. 4.8. The vertical doping profile is shown in 
Fig. 4.9. The 2D doping concentration is described by analytical 
expressions derived as an approximation of a complete structure 
obtained by process simulation and provided by STMicroelectronics. 
The fabrication process is described in [5] and is intended for 
millimeter-wave applications. The technology  has a 230-GHz fT / 
280-GHz fmax HBT, which is achieved with a fully self-aligned (FSA) 
architecture using selective epitaxial growth of the base. This 
technology is mainly intended for 60-GHz WLAN, 77-GHz 
automotive radars and 100-Gb/s optical communications. 
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Fig. 4.8. Two-dimensional doping concentration of the 230 GHz SiGe HBT. 
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Fig. 4.9. One-dimensional doping profile of the 230 GHz SiGe HBT for the intrinsic 
region. 
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 Simulation results for the simplified 2D structure are depicted in 
Fig. 4.10 and Fig. 4.11. In this figure the new transport models are 
compared to Bufler set and to calibrated results provided by 
STMicroelectronics. The latter results are obtained using confidential 
transport parameters’ models, empirically calibrated with 
measurements. In order to correctly evaluate the differences between 
results, it should be recalled that STMicroelectronics results refer to a 
complete 3D structure (i.e. including buried layer, shallow trench, 
substrate region, parasitic capacitances at Via0 level etc). The results 
pertaining the Gummel plot in Fig. 4.10 confirm that the proposed 
model set improves the accuracy of HD simulation. The significant 
differences in maximum cut-off frequency values at low current 
injection levels can be justified by the difference in the simulated 
structure.  
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Fig. 4.10. Transfer characteristic at VCB = 0 V: comparison between calibrated data 
and HD simulation results obtained with default (Bufler) and proposed analytical 
models for transport parameters. 
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Fig. 4.11. Cut-off frequency at VCB = 0 V: comparison between calibrated data and 
HD simulation results obtained with default (Bufler) and proposed analytical models 
for transport parameters. 
 
 
 
4.4 C++ code examples for Sdevice 

implementation 
 
 
In this section we report the details of the implementation, 
implementation of the low field mobility model and the energy 
relaxation time model.  
 
 
4.4.1 Low field mobility model  
 
#include "PMIModels.h" 
#include <cmath> 
 
#ifndef Max 
#define Max( a, b )    ((a) < (b) ? (b) : (a)) 
#endif 
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class sasso_DopingDepMobility : public PMI_DopingDepMobility { 
protected: 
 const double T0; 
 double umax0_Si, gamma_Si, u0d0_Si, u0d1_Si, u0a0_Si, u0a1_Si, 
Cr10_Si, Cr11_Si, Cr20_Si, Cr21_Si, Cs1_Si, Cs2_Si, alfa1_Si, 
alfa2_Si, u1da_Si, u1db_Si, u1dc_Si, u1aa_Si, u1ab_Si, u1ac_Si; 
 double umax0_Ge, gamma_Ge, u0d0_Ge, u0d1_Ge, u0a0_Ge, 
u0a1_Ge, Cr10_Ge, Cr11_Ge, Cr20_Ge, Cr21_Ge, Cs1_Ge, Cs2_Ge, 
alfa1_Ge, alfa2_Ge, u1da_Ge, u1db_Ge, u1dc_Ge, u1aa_Ge, 
u1ab_Ge, u1ac_Ge; 
 double Cu, alfa; 
 
public: 
 sasso_DopingDepMobility (const PMI_Environment& env, 
      const PMI_AnisotropyType anisotype ); 
 ~sasso_DopingDepMobility () {} 
 
 void Compute_m 
 (const double n, const double p, 
  const double t, double& m); 
 
 void Compute_dmdn 
 (const double n, const double p, 
  const double t, double& dmdn); 
 
 void Compute_dmdp 
 (const double n, const double p, 
  const double t, double& dmdp); 
 
 void Compute_dmdt 
 (const double n, const double p, 
  const double t, double& dmdt); 
}; 
 
sasso_DopingDepMobility:: 
sasso_DopingDepMobility (const PMI_Environment& env, 
     const PMI_AnisotropyType anisotype) : 
 PMI_DopingDepMobility (env, anisotype), 
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 T0 (300.0) 
{ 
} 
 
void sasso_DopingDepMobility:: 
Compute_m  (const double n, const double p, 
        const double t, double& m) 
{ const double umax_Si = umax0_Si * pow ((t/T0), gamma_Si); 
  const double u1d_Si = (u1da_Si * pow ((t/T0),2)+ u1db_Si * (t/ T0) 
+ u1dc_Si)/(pow((t/T0),2)); 
  const double u1a_Si = (u1aa_Si * pow ((t/T0),2)+ u1ab_Si * (t/ T0) 
+ u1ac_Si)/(pow((t/T0),2)); 
  const double u0d_Si = u0d0_Si * pow ((t/T0), u0d1_Si); 
  const double u0a_Si = u0a0_Si * pow ((t/T0), u0a1_Si); 
  const double Cr1_Si = Cr10_Si * pow ((t/T0), Cr11_Si); 
  const double Cr2_Si = Cr20_Si * pow ((t/T0), Cr21_Si); 
  const double ND = Max (ReadDoping (PMI_Donor), 1.0); 
  const double NA = Max (ReadDoping (PMI_Acceptor), 1.0); 
  const double u0_Si = (u0d_Si*ND+u0a_Si*NA)/(ND+NA); 
  const double u1_Si = (u1d_Si*ND+u1a_Si*NA)/(ND+NA); 
  const double m_Si = (umax_Si-u0_Si)/(1 + 
pow((ND/Cr1_Si),alfa1_Si)+pow((NA/Cr2_Si),alfa2_Si))+u0_Si-
u1_Si/(1+pow(((ND/Cs1_Si)+(NA/Cs2_Si)),-2.0)); 
  const double umax_Ge=umax0_Ge * pow ((t/T0), gamma_Ge); 
  const double u1d_Ge = (u1da_Ge * pow ((t/T0),2)+ u1db_Ge * (t/ 
T0) + u1dc_Ge)/(pow((t/T0),2)); 
  const double u1a_Ge = (u1aa_Ge * pow ((t/T0),2)+ u1ab_Ge * (t/ 
T0) + u1ac_Ge)/(pow((t/T0),2)); 
  const double u0d_Ge = u0d0_Ge * pow ((t/T0), u0d1_Ge); 
  const double u0a_Ge = u0a0_Ge * pow ((t/T0), u0a1_Ge); 
  const double Cr1_Ge = Cr10_Ge * pow ((t/T0), Cr11_Ge); 
  const double Cr2_Ge = Cr20_Ge * pow ((t/T0), Cr21_Ge); 
  const double u0_Ge = (u0d_Ge*ND+u0a_Ge*NA)/(ND+NA); 
  const double u1_Ge = (u1d_Ge*ND+u1a_Ge*NA)/(ND+NA); 
  const double m_Ge = (umax_Ge-u0_Ge)/(1 + 
pow((ND/Cr1_Ge),alfa1_Ge)+pow((NA/Cr2_Ge),alfa2_Ge))+u0_Ge-
u1_Ge/(1+pow(((ND/Cs1_Ge)+(NA/Cs2_Ge)),-2.0)); 
  m =pow((1-
ReadxMoleFraction()/0.3)/m_Si+(ReadxMoleFraction()/0.3)/m_Ge+(
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1-
pow(ReadxMoleFraction()/0.3,alfa))*pow((ReadxMoleFraction()/0.3)
,alfa)/Cu,-1); 
} 
 
void sasso_DopingDepMobility:: 
Compute_dmdn (const double n, const double p, 
         const double t, double& dmdn)  
{ dmdn = 0.0; 
} 
 
void sasso_DopingDepMobility:: 
Compute_dmdp (const double n, const double p, 
         const double t, double& dmdp)  
{ dmdp = 0.0; 
} 
 
void sasso_DopingDepMobility:: 
Compute_dmdt (const double n, const double p, 
         const double t, double& dmdt)  
{ const double umax_Si=umax0_Si * pow ((t/T0), gamma_Si); 
  const double u1d_Si = (u1da_Si * pow ((t/T0),2)+ u1db_Si * (t/ T0) 
+ u1dc_Si)/(pow((t/T0),2)); 
  const double u1a_Si = (u1aa_Si * pow ((t/T0),2)+ u1ab_Si * (t/ T0) 
+ u1ac_Si)/(pow((t/T0),2)); 
  const double u0d_Si = u0d0_Si * pow ((t/T0), u0d1_Si); 
  const double u0a_Si = u0a0_Si * pow ((t/T0), u0a1_Si); 
  const double Cr1_Si = Cr10_Si * pow ((t/T0), Cr11_Si); 
  const double Cr2_Si = Cr20_Si * pow ((t/T0), Cr21_Si); 
  const double ND = Max (ReadDoping (PMI_Donor), 1.0); 
  const double NA = Max (ReadDoping (PMI_Acceptor), 1.0); 
  const double u0_Si = (u0d_Si*ND+u0a_Si*NA)/(ND+NA); 
  const double u1_Si = (u1d_Si*ND+u1a_Si*NA)/(ND+NA); 
  const double u01_Si=(ND*u0d1_Si+NA*u0a1_Si)/(NA+ND); 
  const double dm_b_Si= (u0_Si+u01_Si)/t; 
  const double dm_c_Si= 
(ND*(u1db_Si+2.0*u1dc_Si*T0/t)+NA*(u1ab_Si+2.0*u1ac_Si*T0/t)
)/(T0*(NA+ND)*(1+pow((ND/Cs1_Si+NA/Cs2_Si),-2))); 
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  const double dm_a_Si= (1/t)*((gamma_Si*umax_Si-u0_Si-
u01_Si)*(1+pow((ND/Cr1_Si),alfa1_Si)+pow((NA/Cr2_Si),alfa2_Si))
+(umax_Si-
u0_Si)*(alfa1_Si*Cr11_Si*pow((ND/Cr1_Si),alfa1_Si)/ND+alfa2_Si
*Cr21_Si*pow((NA/Cr2_Si),alfa2_Si)/NA))/pow((1+pow((ND/Cr1_Si
),alfa1_Si)+pow((NA/Cr2_Si),alfa2_Si)),2); 
  const double m_Si = (umax_Si-u0_Si)/(1 + 
pow((ND/Cr1_Si),alfa1_Si)+pow((NA/Cr2_Si),alfa2_Si))+u0_Si-
u1_Si/(1+pow(((ND/Cs1_Si)+(NA/Cs2_Si)),-2.0)); 
  const double dmdt_Si= dm_a_Si+dm_b_Si-dm_c_Si; 
  const double umax_Ge=umax0_Ge * pow ((t/T0), gamma_Ge); 
  const double u1d_Ge = (u1da_Ge * pow ((t/T0),2)+ u1db_Ge * (t/ 
T0) + u1dc_Ge)/(pow((t/T0),2)); 
  const double u1a_Ge = (u1aa_Ge * pow ((t/T0),2)+ u1ab_Ge * (t/ 
T0) + u1ac_Ge)/(pow((t/T0),2)); 
  const double u0d_Ge = u0d0_Ge * pow ((t/T0), u0d1_Ge); 
  const double u0a_Ge = u0a0_Ge * pow ((t/T0), u0a1_Ge); 
  const double Cr1_Ge = Cr10_Ge * pow ((t/T0), Cr11_Ge); 
  const double Cr2_Ge = Cr20_Ge * pow ((t/T0), Cr21_Ge); 
  const double u0_Ge = (u0d_Ge*ND+u0a_Ge*NA)/(ND+NA); 
  const double u1_Ge = (u1d_Ge*ND+u1a_Ge*NA)/(ND+NA); 
  const double u01_Ge=(ND*u0d1_Ge+NA*u0a1_Ge)/(NA+ND); 
  const double dm_b_Ge= (u0_Ge+u01_Ge)/t; 
  const double dm_c_Ge= 
(ND*(u1db_Ge+2.0*u1dc_Ge*T0/t)+NA*(u1ab_Ge+2.0*u1ac_Ge*T
0/t))/(T0*(NA+ND)*(1+pow((ND/Cs1_Ge+NA/Cs2_Ge),-2))); 
  const double dm_a_Ge= (1/t)*((gamma_Ge*umax_Ge-u0_Ge-
u01_Ge)*(1+pow((ND/Cr1_Ge),alfa1_Ge)+pow((NA/Cr2_Ge),alfa2_
Ge))+(umax_Ge-
u0_Ge)*(alfa1_Ge*Cr11_Ge*pow((ND/Cr1_Ge),alfa1_Ge)/ND+alfa
2_Ge*Cr21_Ge*pow((NA/Cr2_Ge),alfa2_Ge)/NA))/pow((1+pow((N
D/Cr1_Ge),alfa1_Ge)+pow((NA/Cr2_Ge),alfa2_Ge)),2); 
  const double m_Ge = (umax_Ge-u0_Ge)/(1 + 
pow((ND/Cr1_Ge),alfa1_Ge)+pow((NA/Cr2_Ge),alfa2_Ge))+u0_Ge-
u1_Ge/(1+pow(((ND/Cs1_Ge)+(NA/Cs2_Ge)),-2.0)); 
  const double dmdt_Ge= dm_a_Ge+dm_b_Ge-dm_c_Ge; 
   
  const double mtot=pow((1-
ReadxMoleFraction()/0.3)/m_Si+(ReadxMoleFraction()/0.3)/m_Ge+(
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1-
pow(ReadxMoleFraction()/0.3,alfa))*pow((ReadxMoleFraction()/0.3)
,alfa)/Cu,-1); 
 
  dmdt=pow(mtot,2)*((1-
ReadxMoleFraction()/0.3)*dmdt_Si/pow(m_Si,2)-
(ReadxMoleFraction()/0.3)*dmdt_Ge/pow(m_Ge,2)); 
} 
 
class sasso_e_DopingDepMobility : public sasso_DopingDepMobility 
{ 
public: 
  sasso_e_DopingDepMobility (const PMI_Environment& env, 
         const PMI_AnisotropyType anisotype); 
  ~sasso_e_DopingDepMobility () {} 
}; 
sasso_e_DopingDepMobility:: 
sasso_e_DopingDepMobility(const PMI_Environment& env, 
         const PMI_AnisotropyType anisotype) : 
 sasso_DopingDepMobility (env, anisotype) 
 
{umax0_Si=InitParameter ("umax0_Si_e", 1421.6); 
 gamma_Si=InitParameter ("gamma_Si_e", -2.24); 
 u0d0_Si=InitParameter ("u0d0_Si_e", 49); 
 u0d1_Si=InitParameter ("u0d1_Si_e", 0); 
 u0a0_Si=InitParameter ("u0a0_Si_e", 205.25); 
 u0a1_Si=InitParameter ("u0a1_Si_e", -0.934); 
 Cr10_Si=InitParameter ("Cr10_Si_e", 8.393e16); 
 Cr11_Si=InitParameter ("Cr11_Si_e", 2.951); 
 Cr20_Si=InitParameter ("Cr20_Si_e", 5.42e16); 
 Cr21_Si=InitParameter ("Cr21_Si_e", 3.045); 
 Cs1_Si=InitParameter ("Cs1_Si_e", 1.81e19); 
 Cs2_Si=InitParameter ("Cs2_Si_e", 4.2e19); 
 alfa1_Si=InitParameter ("alfa1_Si_e", 0.68); 
 alfa2_Si=InitParameter ("alfa2_Si_e", 0.7); 
 u1da_Si=InitParameter ("u1da_Si_e", 24.812); 
 u1db_Si=InitParameter ("u1db_Si_e", 84.06); 
 u1dc_Si=InitParameter ("u1dc_Si_e", -132.36); 
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 u1aa_Si=InitParameter ("u1aa_Si_e", -94.533); 
 u1ab_Si=InitParameter ("u1ab_Si_e", 518.28); 
 u1ac_Si=InitParameter ("u1ac_Si_e", -419.15); 
 
umax0_Ge=InitParameter ("umax0_Ge_e", 453.23); 
 gamma_Ge=InitParameter ("gamma_Ge_e", -1.14); 
 u0d0_Ge=InitParameter ("u0d0_Ge_e", 91.587); 
 u0d1_Ge=InitParameter ("u0d1_Ge_e", -1.0547); 
 u0a0_Ge=InitParameter ("u0a0_Ge_e", 191.58); 
 u0a1_Ge=InitParameter ("u0a1_Ge_e", -0.92012); 
 Cr10_Ge=InitParameter ("Cr10_Ge_e", 3.8812e17); 
 Cr11_Ge=InitParameter ("Cr11_Ge_e", 2.0845); 
 Cr20_Ge=InitParameter ("Cr20_Ge_e", 1.913e17); 
 Cr21_Ge=InitParameter ("Cr21_Ge_e", 2.4096); 
 Cs1_Ge=InitParameter ("Cs1_Ge_e", 6e19); 
 Cs2_Ge=InitParameter ("Cs2_Ge_e", 5.4e19); 
 alfa1_Ge=InitParameter ("alfa1_Ge_e", 0.76); 
 alfa2_Ge=InitParameter ("alfa2_Ge_e", 0.7); 
 u1da_Ge=InitParameter ("u1da_Ge_e", 5.4938); 
 u1db_Ge=InitParameter ("u1db_Ge_e", 95.873); 
 u1dc_Ge=InitParameter ("u1dc_Ge_e", -96.001); 
 u1aa_Ge=InitParameter ("u1aa_Ge_e", 49.072); 
 u1ab_Ge=InitParameter ("u1ab_Ge_e", 87.321); 
 u1ac_Ge=InitParameter ("u1ac_Ge_e", -131.97); 
 
 Cu=InitParameter ("Cu_e", 2379.4);  
 alfa=InitParameter ("alfa_e", 0.487); 
} 
  
class sasso_h_DopingDepMobility : public sasso_DopingDepMobility 
{ 
public: 
  sasso_h_DopingDepMobility (const PMI_Environment& env, 
         const PMI_AnisotropyType anisotype); 
  ~sasso_h_DopingDepMobility () {} 
}; 
sasso_h_DopingDepMobility:: 
sasso_h_DopingDepMobility(const PMI_Environment& env, 
         const PMI_AnisotropyType anisotype) : 
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 sasso_DopingDepMobility (env, anisotype) 
 
{umax0_Si=InitParameter ("umax0_Si_h", 485.51); 
 gamma_Si=InitParameter ("gamma_Si_h", -2.49); 
 u0d0_Si=InitParameter ("u0d0_Si_h", 123.34); 
 u0d1_Si=InitParameter ("u0d1_Si_h", -1.028); 
 u0a0_Si=InitParameter ("u0a0_Si_h", 46.42); 
 u0a1_Si=InitParameter ("u0a1_Si_h", -0.627); 
 Cr10_Si=InitParameter ("Cr10_Si_h", 1.329e17); 
 Cr11_Si=InitParameter ("Cr11_Si_h", 3.07); 
 Cr20_Si=InitParameter ("Cr20_Si_h", 1.631e17); 
 Cr21_Si=InitParameter ("Cr21_Si_h", 3.111); 
 Cs1_Si=InitParameter ("Cs1_Si_h", 5.1e19); 
 Cs2_Si=InitParameter ("Cs2_Si_h", 5.8e19); 
 alfa1_Si=InitParameter ("alfa1_Si_h", 0.7); 
 alfa2_Si=InitParameter ("alfa2_Si_h", 0.77); 
 u1da_Si=InitParameter ("u1da_Si_h", -68.801); 
 u1db_Si=InitParameter ("u1db_Si_h", 300.19); 
 u1dc_Si=InitParameter ("u1dc_Si_h", -230.53); 
 u1aa_Si=InitParameter ("u1aa_Si_h", -5.7832); 
 u1ab_Si=InitParameter ("u1ab_Si_h", 81.146); 
 u1ac_Si=InitParameter ("u1ac_Si_h", -76.025); 
 
umax0_Ge=InitParameter ("umax0_Ge_h", 641.08); 
 gamma_Ge=InitParameter ("gamma_Ge_h", -2.118); 
 u0d0_Ge=InitParameter ("u0d0_Ge_h", 130.24); 
 u0d1_Ge=InitParameter ("u0d1_Ge_h", -1.3315); 
 u0a0_Ge=InitParameter ("u0a0_Ge_h", 40.848); 
 u0a1_Ge=InitParameter ("u0a1_Ge_h", -0.63301); 
 Cr10_Ge=InitParameter ("Cr10_Ge_h", 1.1509e17); 
 Cr11_Ge=InitParameter ("Cr11_Ge_h", 4.2018); 
 Cr20_Ge=InitParameter ("Cr20_Ge_h", 1.3873e17); 
 Cr21_Ge=InitParameter ("Cr21_Ge_h", 3.2117); 
 Cs1_Ge=InitParameter ("Cs1_Ge_h", 2e20); 
 Cs2_Ge=InitParameter ("Cs2_Ge_h", 7e19); 
 alfa1_Ge=InitParameter ("alfa1_Ge_h", 0.59); 
 alfa2_Ge=InitParameter ("alfa2_Ge_h", 0.65); 
 u1da_Ge=InitParameter ("u1da_Ge_h", -90.178); 
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 u1db_Ge=InitParameter ("u1db_Ge_h", 325.95); 
 u1dc_Ge=InitParameter ("u1dc_Ge_h", -214.83); 
 u1aa_Ge=InitParameter ("u1aa_Ge_h", 3.1834); 
 u1ab_Ge=InitParameter ("u1ab_Ge_h", 59.611); 
 u1ac_Ge=InitParameter ("u1ac_Ge_h", -57.908); 
 
 Cu=InitParameter ("Cu_h", 556.4);  
 alfa=InitParameter ("alfa_h", 0.548); 
} 
 
extern "C" 
PMI_DopingDepMobility* new_PMI_DopingDep_e_Mobility 
   (const PMI_Environment& env, const PMI_AnisotropyType 
anisotype) 
{ return new sasso_e_DopingDepMobility (env, anisotype); 
} 
 
extern "C" 
PMI_DopingDepMobility* new_PMI_DopingDep_h_Mobility 
   (const PMI_Environment& env, const PMI_AnisotropyType 
anisotype) 
{ return new sasso_h_DopingDepMobility (env, anisotype); 
} 
 
 
 
4.4.2 Energy relaxation time model 
 
 
#include "PMIModels.h" 
#include <cmath> 
 
class Analytical_EnergyRelaxationTime : public 
PMI_EnergyRelaxationTime { 
 protected: 
  const double T0; 
  double Tl; 
  double tw0Si, tw0Ge, Ctau, tw1, C1Si, C1Ge, Cc, C2, C3;  
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 public: 
  Analytical_EnergyRelaxationTime (const PMI_Environment& env); 
 
  ~Analytical_EnergyRelaxationTime (); 
   
  void Compute_tau (const double ct, double& tau) ; 
  void Compute_dtaudct (const double ct, double& dtaudct) ; 
};  
 
Analytical_EnergyRelaxationTime :: 
Analytical_EnergyRelaxationTime (const PMI_Environment& env)  : 
  PMI_EnergyRelaxationTime (env), T0 (300.0){ 
   Tl = InitParameter ("lattice_temperature", 300.); 
  } 
   
Analytical_EnergyRelaxationTime :: 
~Analytical_EnergyRelaxationTime (){ 
}  
 
void Analytical_EnergyRelaxationTime:: 
Compute_tau (const double ct, double& tau)  
{  const double tw0 = tw0Si * (1 - ReadxMoleFraction()/0.3) + tw0Ge 
* ReadxMoleFraction()/0.3 + Ctau * (1 - ReadxMoleFraction()/0.3) * 
ReadxMoleFraction()/0.3; 
   const double C1 = C1Si * (1 - ReadxMoleFraction()/0.3) + C1Ge * 
ReadxMoleFraction()/0.3 + Cc * (1 - ReadxMoleFraction()/0.3) * 
ReadxMoleFraction()/0.3;   
   tau = tw0 + tw1 * exp (C1 * pow (ct/T0, 2)+ C2 * (ct/T0) + C3 * 
(Tl/T0)); 
} 
 
void Analytical_EnergyRelaxationTime:: 
Compute_dtaudct (const double ct, double& dtaudct)  
{  const double tw0 = tw0Si * (1 - ReadxMoleFraction()/0.3) + tw0Ge 
* ReadxMoleFraction()/0.3 + Ctau * (1 - ReadxMoleFraction()/0.3) * 
ReadxMoleFraction()/0.3; 



 Chapter 4. Verification of transport models                                      115 

   const double C1 = C1Si * (1 - ReadxMoleFraction()/0.3) + C1Ge * 
ReadxMoleFraction()/0.3 + Cc* (1 - ReadxMoleFraction()/0.3) * 
ReadxMoleFraction()/0.3;   
   dtaudct = tw1 * exp (C1 * pow (ct/T0, 2)+ C2 * (ct/T0) + C3 * 
(Tl/T0)) * (2 * C1 * (ct/T0)+ C2)/ T0; 
} 
 
 
 
class Analytical_e_EnergyRelaxationTime : public 
Analytical_EnergyRelaxationTime { 
public: 
  Analytical_e_EnergyRelaxationTime (const PMI_Environment& 
env); 
  ~Analytical_e_EnergyRelaxationTime () {} 
}; 
 
Analytical_e_EnergyRelaxationTime :: 
Analytical_e_EnergyRelaxationTime (const PMI_Environment& env): 
Analytical_EnergyRelaxationTime (env) 
{ tw0Si=InitParameter ("tw0Si_e" , 0.39102e-12); 
  tw0Ge=InitParameter ("tw0Ge_e" , 0.44944e-12); 
  Ctau=InitParameter ("Ctau_e" , -0.05e-12); 
  tw1=InitParameter ("tw1_e" , -0.14434e-12); 
  C1Si=InitParameter ("C1Si_e" , 0.0013509); 
  C1Ge=InitParameter ("C1Ge_e" , 0.0028); 
  Cc=InitParameter ("Cc_e" , -0.00181); 
  C2=InitParameter ("C2_e" , -0.059019); 
  C3=InitParameter ("C3_e" , 0.010688); 
} 
 
class Analytical_h_EnergyRelaxationTime : public 
Analytical_EnergyRelaxationTime { 
public: 
  Analytical_h_EnergyRelaxationTime (const PMI_Environment& 
env); 
  ~Analytical_h_EnergyRelaxationTime () {} 
}; 
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Analytical_h_EnergyRelaxationTime :: 
Analytical_h_EnergyRelaxationTime (const PMI_Environment& env): 
Analytical_EnergyRelaxationTime (env) 
{ tw0Si=InitParameter ("tw0Si_h" , 0.29e-12); 
  tw0Ge=InitParameter ("tw0Ge_h" , 0.88e-12); 
  Ctau=InitParameter ("Ctau_h" , 0); 
  tw1=InitParameter ("tw1_h" , 0); 
  C1Si=InitParameter ("C1Si_h" , 0); 
  C1Ge=InitParameter ("C1Ge_h" , 0); 
  Cc=InitParameter ("Cc_h" , -0.00181); 
  C2=InitParameter ("C2_h" , 0); 
  C3=InitParameter ("C3_h" , 0); 
} 
 
extern "C" 
PMI_EnergyRelaxationTime* new_PMI_e_EnergyRelaxationTime 
  (const PMI_Environment& env)  
{ return new Analytical_e_EnergyRelaxationTime (env); 
} 
 
extern "C" 
PMI_EnergyRelaxationTime* new_PMI_h_EnergyRelaxationTime 
  (const PMI_Environment& env)  
{ return new Analytical_h_EnergyRelaxationTime (env); 
} 
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Chapter 5 
 

Avalanche multiplication measurements 
and modeling 
 
As demonstrated by recent published results [1], the aggressive 
technology development effort of the DOTFIVE project [2] has been 
significantly advancing the performance of SiGe:C HBTs towards the 
Terahertz range. Since the breakdown voltage introduces a trade-off 
with high frequency figures-of-merit in SiGe HBTs, the definition of 
Safe Operating Area (SOA) limits is a pivotal issue for designers and 
technologists. SOA limits specification is not a trivial task, as the 
maximum usable output voltages and currents depend on the driving 
conditions at the input port [3].  An additional difficulty is related to 
the fact that impact ionization  mechanisms concur and interact with 
other limiting mechanisms, i.e. self-heating and hot-carrier 
degradation.  
 A commonly quoted parameter used to define the operating limits 
of the bipolar transistor is the open-base breakdown voltage BVCEO. 
However, it has been noted that the maximum operating voltage in 
practical circuit configurations is actually larger than BVCEO [4], see 
Chap. 1. In fact, common circuit configurations are not characterized 
by a large impedance on the base, so that SiGe HBTs can be safely 
biased above open-base breakdown voltage. Practical circuit 
topologies using a common-base configuration include cascode stages, 
output buffers and differential pairs. Unfortunately, when the device is 
biased above BVCEO the operation is more complex, since avalanche 
multiplication effects cause a base current reversal. This in turn results 
in a distributed ohmic drop across the base region yielding a current 
focusing in the centre of the base, known as the pinch-in effect [4-6]. 
Therefore, in order to predict the SOA boundaries encountered in 
realistic circuit applications, an accurate model for the pinch-in effect 
is required. To this aim, an accurate model for multiplication factor 
(M) is required [7]. In this section we present an accurate calibration 
of avalanche generation models for device simulation and a review of 
main models for M in SiGe HBTs. Next, we propose a new complete 
model for M, which provides a good accuracy for a wide range of 
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values of the collector voltage, as required for a correct description of 
the pinch-in effect. The new model, combined with the analytical 
model for the base current-dependent base resistance [5], is suitable 
for being incorporated into HBT compact models to properly describe 
device operation above BVCEO.  
  
 
 
5.1 Device simulation of the avalanche 

multiplication 
 
 
5.1.1 Simulation approaches 
 
Several approaches are possible to include impact ionization 
phenomena in device simulation, namely: 

- Newton approach. 
- Gummel approach. 
- Equivalent collector current control  

 Newton’s method is a coupled procedure which solves the 
semiconductor equations (ref semicond. equs) simultaneously, through 
a generalization of the Newton-Raphson method for determining the 
roots of an equation [8]. Gummel’s method [8], [9] solves the coupled 
set of semiconductor equations together with the Poisson equation via 
a decoupled procedure (see [10] for details on both methods). In 
general, the Gummel’s method is preferred at low bias because of its 
faster convergence and low cost for iteration. At medium and high 
bias the Newton’s method becomes more convenient, since the 
convergence rate of Gummel’s method becomes worse as the coupling 
between equations becomes stronger at higher bias. 
 When impact ionization phenomena areincludedin device 
simulation, Gummel’s method becomes unfeasible because 
convergence is too weak. Newton’s approach works better, but 
convergence is lost close to the breakdown point (i.e. the point where 
the output conductance reaches infinity) or before. Therefore, we must 
resort to the equivalent collector current control method by 
introducing a resistor at the collector node. Using this method we can 
perform the simulation of the output characteristics of a bipolar 
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transistor where snapback behaviour occurs. For a collector voltage 
lower than the snapback voltage the simulation results are identical to 
those obtained by using until voltage control. However, the current 
control method is able to go over the breakdown point and describe 
the portion of the output characteristic with a negative conductance. 
Moreover, by choosing a proper value for collector resistance, the 
simulation time is reasonable and not longer compared to a simulation 
performed with a voltage control. Therefore this last technique has 
been chosen for breakdown simulations. 
 
 
 
5.1.2 Avalanche generation models for HD simulations 
 
Electron–hole pair production due to avalanche generation (impact 
ionization) requires a certain threshold field strength and the 
possibility of acceleration, that is, wide space charge regions. If the 
width of a space charge region is greater than the mean free path 
between two ionizing impacts, charge multiplication occurs, which 
can cause electrical breakdown. The reciprocal of the mean free path 
is called the ionization coefficient. The generation rate is expressed in 
device simulators as  
 
 ii

n n p pG nv pvα α= +  (5.1) 
 
where αn and αp are the ionization coefficients for electrons and holes.
 The ionization coefficients strongly depend on the field strength. 
Several models are available in Sdevice, [11], for both DD and HD 
simulations, but only the following ones have been considered for HD 
simulations: 

-Van Overstraeten – de Man model [12]. 
-Okuto-Crowell model [13]. 
-Lackner model [14]. 

Van Overstraeten model is based on the Chynoweth law [15]: 
 

 ( ) expava
ava

bF a
F
γα γ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (5.2) 
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 The coefficients a, b, and ћωop, have been measured by van 
Overstraeten and de Man [12]. This model, however, does not work at 
all for HD simulations, since convergence is lost in the starting point, 
i.e. VC = 0 V.  
 Lackner [14] derived a pseudo-local ionization rate in the form of 
a modification to the Chynoweth law, assuming stationary conditions. 
The temperature-dependent factor was introduced to the original 
model: 
 

 ( ) expava
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 Device simulations were performed to compared the Okuto and 
Lackner. It was found that the simulation time for the Lackner model 
is almost twice higher compared to the Okuto model. For this reason 
the Okuto model has been chosen for calibration. 
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5.1.3 Okuto-Crowell model calibration 
 
MC simulation results have been provided by Bundeswehr University 
for the 100 GHz reference structure already described in §4.3.1. In 
these simulations the multiplication factor, ξ = M-1 is extracted from 
base current and collector current versus collector-base voltage at a 
fixed emitter-base bias, using (5.7) 
 

 
( ) ( )
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 Equation (5.7) is derived under the assumption that the variation 
of the base current is only due to impact ionization (II). In [16] it was 
suggested to improve the accuracy of this method by including the 
Early effect in the base current equation. This can be done, by 
computing variations of the base current due to base width modulation 
and substituting IB(0) in (5.7) with a base current linearly dependent 
on collector bias. The slope of the IB vs. VCB dependence should be 
extracted at low VCB (where II is negligible). However, the extraction 
of the base current slope failed for the simulated device because it 
appears independent from collector bias in the analyzed range, VBC = 
0 ÷ 0.5 V. As a matter of fact, the Early effect influence on (5.7) is 
negligible for the reference structure. 
 Equation (5.7) is valid at low collector current densities, where 
high injection effects are negligible. ξ is the ratio of the generated 
electron-hole pairs to the injected current and M is the multiplication 
factor. ξ equals M-1 only at low current densities, when ∆IC and ∆IB 
are comparable: 
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 Moreover, it was found that the contribution of secondary holes to 
the total multiplication is more than two orders of magnitude lower 
than the contribution of primary electrons [17] therefore hole II 
calibration has been neglected. 
 The Okuto-Crowell empirical model [13] for avalanche generation 
is given by 
 

( ) ( )( ) [ ]0
0

1
1 expava ava

ava

b dT T
F a c T T F

F

δ

γα
⎡ ⎤⎛ ⎞+ −
⎢ ⎥= ⋅ + − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  (5.9) 

 In (5.9) T0 is the reference temperature, fixed at 300 K, T is the 
lattice temperature and a, b, c, d, γ and δ are user-adjustable 
parameters, whose default values are reported in Table 5.1. 
 If a  local carrier temperature-dependent impact ionization model 
is selected, the driving force Fava equals an effective field Eeff 
calculated from the carrier temperature using the conversion formulas  
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n en
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where the default parameters’ values for silicon are reported in Table 
5.2.  

 
 

Table 5.1. Default coefficients for Okuto-Crowell model. 
 

Parameter Electrons Holes 
a [V-1] 0.426 0.243 

b [V/cm] 4.81·105 6.53·105 
c [K-1] 3.05·10-4 5.35·10-4 

d [K-1] 6.86·10-4 5.67·10-4 

γ 1 1 
δ 2 2 
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Table 5.2. Hydrodynamic avalanche model: default parameters for silicon. 
 

Parameter Default 
λn 1 
λp 1 
Υn 1 
Υp 1 
δn 1.5 
δp 1.5 

 
 
 
 Based on MC data for VBE = 0.8, parameter calibration was 
performed. Since isothermal simulations have been performed, 
parameters c and d in (5.9) have no influence on results. An inverse 
calibration procedure has been carried out: parameters a and b have 
been changed in order to get the best fit between ξ, as computed by 
using (5.7) from terminal quantities and MC data. The results of this 
parameter extraction procedure are displayed in Fig. 5.1 and the 
corresponding parameter values are in Table 5.3. It can be noted that 
parameters for holes were scaled according to the values for electrons, 
keeping constant at the default value in Table 5.1 the ratio between 
them.  
 

. 
Table 5.3. Calibrated coefficients for Okuto-Crowell model. 
 

Parameter Electrons Holes 
a [V-1] 0.39 0.222 

b [V/cm] 4.4·105 5.95·105 
c [K-1] 3.05·10-4 5.35·10-4 

d [K-1] 6.86·10-4 5.67·10-4 

γ 1 1 
δ 2 2 
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Fig. 5.1. Multiplication ratio vs. collector voltage; comparison between MC data and 
simulation results for VBE = 0.8 V. 
 
 
 
5.2 Avalanche multiplication factor model 
 
 
5.2.1 Main models review 
 
Several formulations for the multiplication factor have been proposed 
in the literature (e.g. [18-21]). These models retain a reasonable 
accuracy only for a limited range of the collector voltage. On the other 
hand, a correct description of the pinch-in effect [4] requires a model 
valid for a wide range of VCB values (>BVCEO), possibly close to the 
open-emitter breakdown voltage BVCBO. Multiplication factor values 
have been generated using a MC simulator by Bundeswehr University 
for the 100 GHz reference structure described in §2.2, whose BVCBO is 
about 12.5 V. Thus, using MC data, a comparison between available 
multiplication factor models has been carried out.  
 The impact-ionization multiplication coefficient, defined as the 
ratio of electron-hole pairs generated via impact ionization to the 
electron current entering the base-collector space-charge region, is 
obtain from [22] as 
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 In the simplest form, it can be expressed using Miller’s empirical 
model [19]: 
 

 
( )

1
1 N

CB CBO

M
V BV

=
−

 (5.13) 

 
where BVCBO denotes the collector-base breakdown voltage under 
open-emitter conditions and represents the base-collector junction 
breakdown voltage. Miller formulation is very simple and includes 
only one fitting parameter, N, determining the slope of the double-
logarithmic plot of 1-1/M versus VCB (see Fig. 5.2). Since depicted 
data are not on a straight line, Miller formula cannot provide a 
reasonable accuracy over a wide VCB range. For this reason, Reisch 
[20] proposed a “double Miller model”  
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 (5.14) 

 
 This formulation combines two limiting formulas similar to (5.13) 
by suitable weighting factors f1 and f2, and allowing two independent 
fittings for low and high current levels. The weighting factors are 
expressed as 
 

 ( )
( )1,2

1,2

1
1 expCR

CR

f V V
V Vα β

− =
⎡ ⎤+ −⎣ ⎦

 (5.15) 

 
 In (5.14) δ is a small positive constant (e. g. δ = 10-8) introduced to 
avoid singularities in the case VCB  = 0. The value of α is determined 
so as to obtain the correct value of 1-1/M at VCB  = VCR: 
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where the crossover voltage VCR is given by 
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 A comparison between MC data and (optimized) Miller and 
Reisch models is depicted in Fig. 5.2 and Fig. 5.3. These results 
indicate that, although the Reisch model show a better accuracy 
compared to the Miller model, it is not suitable for SiGe HBTs, 
despite all the involved parameters.  
 The model proposed by Rickelt and Rein [18] provides acceptable 
results for weak avalanche [see Fig. 5.4 and Fig. 5.5]:  
 
 ( ) ( )1 2

1 21 m m
CB CBM c V V c V V= + ⋅ + ⋅  (5.18) 
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Fig. 5.2. Parameters extraction of the carrier multiplication factor M for Miller and 
Reisch models by fitting MC simulation data, BVCBO = 12.5 V. 
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Fig. 5.3. Avalanche multiplication ratio for Miller and Reisch models over a wide 
VCB range (BVCBO = 12.5 V). 
 
 However, in this formulation the multiplication factor does not 
tend to infinity as VCB approaches the breakdown voltage BVCBO and 
does not include high current effects, (5.18).  
 A different approach has been proposed in [21]. The multiplication 
factor is given by 

 1 tan
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 (5.20) 

and 
 ( )expT BVf Tα= Δ  (5.21) 
 This formulation is more accurate for high VCB values and 
accounts for the current dependence of the multiplication factor [see 
(5.20)], whereas it suffers from a lack of accuracy at low VCB values, 
as shown in Fig. 5.4 and Fig. 5.5. The empirical correction factor fI 
(5.20) introduces an additional fitting parameter and allows to account 
for the decrease of M at high-current levels due to the ohmic drop 
across the collector resistance and the Kirk effect. The correction 
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parameter fT is introduced to account for the temperature dependence 
of the breakdown voltage BVCBO. Since this effect was estimated to be 
negligible for the devices considered in this study, which are 
essentially thermally limited, we assumed αBV ≈ 0 (i.e., fT = 1). For 
devices with a lower thermal resistance, this effect may be quite 
significant and should be taken into account.  
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Fig. 5.4. Avalanche multiplication ratio over a wide VCB range (BVCBO = 12.5 V): 
comparison between models and  MC results. 
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Fig. 5.5. Avalanche multiplication ratio for weak avalanche (BVCBO = 12.5 V): 
comparison between models and  MC results. 
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5.2.2 A new multiplication factor model 

 
 Bearing in mind models limitations emphasized in §5.2.1, a novel 
analytical formulation has been developed. Model parameters were 
calibrated by comparison with MC data. The model was successfully 
verified by measurements, allows an accurate fitting for low and high 
VCB values. The multiplication factor is given by 
 

 ( )1 exp
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ca xM b x
x
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= + − ⋅
−

 (5.22) 
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The new formulation has been developed starting from weak 
avalanche models available in industrial compact model for high 
frequency bipolar devices, HICUM [23] and MEXTRAM [24], which 
have been extended in order to guarantee an infinite value for M as 
VCB approaches the breakdown voltage BVCBO. In addition, the model 
can include the collector current dependence by adding the parameter 
fI which is defined as  
 

0

exp C
I

T
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I

⎛ ⎞
= −⎜ ⎟

⎝ ⎠                                   (5.24) 

 
 In Figs. 5.6 ÷ 5.9 the new model results are compared with MC 
simulation data for the 100 GHz SiGe HBT reference structure and 
with optimized results obtained from previous formulations described 
in §5.2.1 for a narrow and a wide VCB range. As can be seen, the new 
model provides an accurate fit despite the limited number of  
parameters. 
 The model proposed in [18] shows a maximum percentage error of 
about 40%, while the new model with optimized parameters reduces 
the maximum percentage error below 10%.  
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Fig. 5.6. Parameters extraction of the carrier multiplication factor M for Miller, 
Reisch and proposed model by fitting MC simulation data, BVCBO = 12.5 V 
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Fig. 5.7. Avalanche multiplication ratio over a wide VCB range (BVCBO = 12.5 V): 
comparison of Miller, Reisch and proposed model with MC results. 
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Fig. 5.8. Avalanche multiplication ratio for weak avalanche (BVCBO = 12.5 V): 
comparison between models and  MC results. 

 
 

2 4 6 8 10
10-4

10-3

10-2

10-1

100

101

VCB [V]

M
ul

tip
lic

at
io

n 
ra

tio
 ξ

 =
 (M

-1
) 

 

 

MC data
Rickelt and Rein model
Rinaldi and d Alessandro model
New model

 
Fig. 5.9. Avalanche multiplication ratio over a wide VCB range (BVCBO = 12.5 V): 
comparison between models and  MC results. 
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5.2.3 Measurements and model parameters’ extraction 
 
 Parameter extraction has been also performed using experimental 
data for two different technologies. The first technology is an IBM’s 
300-GHz SiGe HBT process. For this technology the  measured 
multiplication factor data are published in [25]. The second 
technology is a ST double-polysilicon FSA-SEG SiGe:C HBT process 
with fMAX of about 300 GHz [1]. The multiplication factor was 
extracted from measurements by means of equation (5.12). The 
collector current was measured as a function of the collector voltage 
with a grounded base and a fixed VEB, as described in [19]. Model 
results are depicted in Fig. 5.10. The optimized model parameters 
values are given in Table 5.4, together with the relevant parameters of 
the corresponding process. These results indicate that the new 
proposed model provides accurate results for different technological 
nodes. Moreover, parameters values’ regularity with BVCBO assures 
the reliability and accuracy of the proposed multiplication factor 
model.  
 
 
 
 
Table 5.4. HBT Parameters Comparison. 
 

Parameter MC results IBM ST 
BVCBO [V] 12.5 6 5.5 
fT [GHz] 100 250 230 

fMAX [GHz] - 315 290 
a 31.9 79.92 118.05 
b 2.34 4.18 4.3 
c -0.54 -0.47 -0.46 
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Fig. 5.10. Avalanche multiplication ratio as a function of VCB at low VCB values. 
Comparison of proposed model (lines) with experimental data and MC results 
(symbols). 
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Conclusions and outlook 
 
 
The basic purpose of this thesis was to set capabilities and limits of 
HD models and to develop physical models for transport parameters, 
in order to allow reliable and predictive HD simulation of advanced 
SiGe heterostructure devices in commercial TCADs.  
 The issues related to device simulation with HD models have been 
studied over different technological nodes. The analysis highlights that 
the influence of each parameter is similar for different technologies. 
For different scaled devices the unphysical effects in the output 
characteristics can be removed by using optimizing parameters, and 
the best results are achieved with the Blotekjær model. Therefore, the 
maximum cut-off frequency overestimation of HD models can be 
strongly mitigated for frequencies under the terahertz range. However, 
the optimization must be repeated for each different technological 
node. Since the overestimation of the diffusive component of the 
energy density increases with scaling, HD models are too inaccurate 
for modeling carrier transport in devices within the terahertz range. 
For HBTs with a maximum cut-off frequency above 500 GHz, HD 
simulation becomes too inaccurate and more reliable approaches, such 
as Monte Carlo and Spherical Harmonic Expansion are needed. 
 However, analytical transport models for DD/HD simulation 
available in the literature refer to silicon, and do not include the 
dependence on all relevant parameters, in particular germanium 
content. Therefore, based on the MC data, a full set of transport 
parameters have been generated and new analytical models have been 
developed which include the dependence upon all relevant quantities. ; 
In addition, new models have been compared with state-of-art models 
and experimental results.  
 Novel transport models have been successfully implemented in a 
commercial device simulator and hydrodynamic simulation results 
have been reported for several one-dimensional and two-dimensional 
structures with a different fT maximum. HD simulation results have 
been compared to results obtained using a standard set of models for 
silicon-germanium and to more reliable results (i.e. MC and SPRING 
simulation results and experimental data), validating proposed models 
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and clarifying their reliability and accuracy over different 
technologies. 
 Finally, after an accurate calibration of model by Okuto and 
Crowell for avalanche generation in HD device simulation and a 
review of main models for multiplication factor (M) in SiGe HBTs, a 
new complete model for M has been proposed. New model provides a 
good accuracy for a wide range of values of the collector voltage. The 
new model is suitable for being incorporated into HBT compact 
models to properly describe device operation above BVCEO. 


