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Introduction

This thesis deals with the study of the stability for the equilibria of ordinary differen-

tial nonautonomous systems generalizing the classical Lotka-Volterra bidimensional

predator-prey model.

The classical predator-prey model was introduced by A. J. Lotka in 1925 and suc-

cessively by V. Volterra in 1926, to explain the increasing of some predator fishes in

the Atlantic during the World War I. Indicated with x an y the preys and predators

densities, respectively, the system is the following



















ẋ = ax− bxy,

ẏ = −cy + dxy,

with a, b, c, d positive constants. The meaningful equilibrium point is (x, y) =
( c

d
,
a

b

)

and it is (simply) stable in the sense of Liapunov. For this model the existence of

cycles is proved. The cycles are very important from a biological point of view for

two reasons, since they assure

• the survival of both species;

• the existence of a positive constant T such that

x(t+ T ) = x(t), y(t+ T ) = y(t),

i.e. the solution is periodic.

However, the hypotheses at the base of this model are unrealistic since, for example,

they don’t take in account of limitation of time and space resources, or don’t consider

how the random effects in the environment influence the interaction between the two

population. Hence the problem to modify the assumptions at the basis of the model

arises.
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During the years, a lot of variations on the Lotka-Volterra model have been studied.

Some perturbations to the model consist in to introduce a dependence on time in the

coefficients of the classical model; others add some functions to the equations of the

Lotka-Volterra model. In these last cases the pertubed models are of the type

ẋ = (a− by)x+ F1, ẏ = (−c + dx)y + F2,

where Fi (i = 1, 2), are sufficiently smooth in order to guarantee that there is an

unique solution existing globally in time.

Some authors ([16]-[19]) consider the functions Fi(i = 1, 2) independent of time and

depending on a small parameter ε, others ([13]-[15], [41], [44]) study nonautonomous

perturbed models.

In most of the works, the nonautonomous perturbations introduced are of the kind

F1(t) = D1(t)(y − x), F2(t) = D2(t)(x− y),

since these terms take in to account of the “diffusion” of the populations among het-

erogeneous patches.

By using the Liapunov Direct Method, the nonlinear stability of the biological mean-

ingful equilibrium (x, y) has been studied under hypotheses of positive perturbations

and
c

d
=
a

b
.

Now we consider classes of generalized Lotka-Volterra models, with either coefficients

or perturbation functions Fi, (i = 1, 2), depending on time, to both equations of

the classical system. These functions Fi are chosen in a way that the perturbed

model admits the same equilibrium (x, y) of the classical system. We don’t make

any assumption on the sign of the perturbations Fi, but we only suppose that all the

hypotheses assuring the global existence in time and uniqueness of the solutions, are

satisfied.

The aim of this thesis is to study the influence of nonautonomous perturbation terms
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on the asymptotic behaviour of the solutions around (x, y).

In particular it is shown that there are conditions on the perturbations assuring the

non linear (local) asymptotic stability. When these conditions hold, then the cycles

are not possible and the solutions can’t be periodic even if all the perturbations con-

sidered are periodic of the same period.

The thesis is organized as follows.

In Chapter 1, a series of concepts and definitions on the dynamical systems are

furnished.

In Chapter 2, the Liapunov Direct Method for autonomous and nonautonomous or-

dinary differential equations is introduced. In particular, differences between these

two cases are focused.

In Chapter 3, the classical bidimensional predator-prey model is presented and some

properties on the stability of the equilibrium point (x, y) are given. It is also consid-

ered the Lotka-Volterra model in the case of a logistic growth for the preys in absence

of the predators.

In Chapter 4-5, some generalized nonautonomous Lotka-Volterra models are pre-

sented. In particular, Chapter 4 concerns perturbations to the model of the type

ẋ = f1(t)(a− by)x+ F1(t), ẏ = f2(t)(−c + dy)x+ F2(t),

where fi, Fi(i = 1, 2) are sufficiently smooth to assure the global existence in time and

uniqueness of the solutions, and Fi (i = 1, 2) depending on time and on the difference

of the populations densities in a nonlinear way.

In Chapter 5, different perturbed models are introduced. They came from considering

higher nonlinearities in the classical nonautonomous Lotka-Volterra model, and hence
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give rise to the following model


























ẋ = af1(t)x− bf1(t)
x1+py1+q

xpyq
,

ẏ = −cf2(t)y + df2(t)
x1+py1+q

xpyq
,

under the hypotheses which assure the existence and uniqueness of the solution and

(p, q) ∈ N
2.

In Chapter 6, a nonautonomous perturbed Lotka-Volterra model is studied in the

case of a logistic growth for the preys in absence of the predators. Also in this case,

the perturbations are chosen in order to guarantee that the perturbed model admits

the same equilibria of the classical Lotka-Volterra model with logistic growth for the

preys. Conditions on the perturbations which lead to the extinction of the species

are furnished.

Our analysis is based essentially on the Liapunov Direct Method and on the use

of Liapunov functions depending - together with the temporal derivative along the

solutions - on the eigenvalues of the problem in a simple direct way [38].
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Chapter 1

Dynamical systems and ordinary

differential equations

An observable phenomenon is a source of notable signals. In the study of a phe-

nomenon there are at least three phases which can be distinguished:

1) the first consists in observing the phenomenon, selecting the meaningful pa-

rameters adapt to describe the state of the phenomenon and determining a

numerical sequence of their values during a large interval of time (experimental

data);

2) the second phase deals with the construction of a mathematical model governing

the aforesaid parameters and in analyzing the model;

3) the third phase consists in a validation of the model through the comparison

with the experimental data.

Let xi (i = 1, ..., n) be the fundamental parameters selected during the phase 1. The

vector x = (x1, ..., xn) is the vector state of the phenomenon. In the general case, xi

are functions of time and space. Here and in the sequel we deal with vector state

depending only on time. A phenomenon is governed by ordinary differential equations
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(ODEs) of first order if the vector state x verifies equations of the type

dx

dt
= F(t,x(t)), (1.1)

where F is a well known function defined in a subset of R
n+1 and takes values in R

n.

If F doesn’t depend explicitly on time, the model (1.1) is said autonomous, in the

other case it is said nonautonomous. (1.1) is also called evolution equation since it

allows to understand how the vector state evolves in time.

Given a model, one has to verify the well posedness according to Hadamard, i.e.

• the solution of the model exists globally in time, that is for every (finite) interval

of time;

• once linked to the model the initial data (the vector state in an initial time),

the solution has to be unique;

• the solution depends continuously on the initial data, i.e. sufficiently small

changes in the initial data make the consequential change in the solution arbi-

trarily small.

1.1 Existence and uniqueness for the solutions of

ordinary differential equations

Let be I =]τ,∞[ and

F : (t,x) ∈ I ×D → F(t,x) ∈ R
n,

with D an open subset of R
n containing the origin. The problem



















dx

dt
= F(t,x),

x(t0) = x0,

(1.2)
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where (t0,x0) ∈ I×D, is called Cauchy problem. It consists in determining a function

x of t derivable, which verifies (1.2)1 together with the initial data (1.2)2. Hence it is

useful to recall the conditions on the function F guaranteeing the existence and the

uniqueness of the solutions.

Let’s set

R∗ = {x0i − b ≤ xi ≤ x0i + b, t0 − a ≤ t ≤ t0 + a}, (1.3)

with a, b positive constants such that R∗ ⊂ I ×D.

Definition 1.1 The function F verifies the uniform Lipschitz condition in R∗ with

respect to x if there exists a positive constant k such that

|F(x2, t) − F(x1, t)| ≤ k|x2 − x1|, ∀(xi, t) ∈ R∗ (i = 1, 2). (1.4)

The conditions on F to guarantee the (local) existence and uniqueness of the solution

of the Cauchy problem, are summarized in the following theorem [24].

Theorem 1.1 If F is continuous in R∗ and verifies the uniform Lipschitz condition,

then there exists an unique function x(t) continuous and derivable in [t0 − δ, t0 + δ],

with

δ = min

(

a,
b

M

)

, M ≥ sup
R∗

|F|, (1.5)

verifying (1.2).

The continuity is only sufficient to prove the local existence but not the uniqueness.

The theorem 1.1 provides conditions for the local existence of the solution, i.e.

the existence in the interval [t0 − δ, t0 + δ]. The existence of the solution in the whole

temporal interval in which t can assume values in the definition of the function F, is

called the global existence.

The global existence theorems are the following.
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Theorem 1.2 If F is defined in S = [t0 − a, t0 + a]×R
n, with a a positive constant,

and one of the following hypotheses is verified

• F is continuous and bounded in S and verifies the Lipschitz condition in every

rectangular domain contained in S;

• F is continuous in S and verifies the uniform Lipschitz condition in S,

then there exists a global solution of (1.2).

Theorem 1.3 If F is defined in R
n+1 and in every strip S = [t0 − α, t0 + α] × R

n,

with α a positive constant, and the hypotheses of theorem 1.2 are satisfied, then (1.2)

admits an unique solution defined in ] −∞,∞[.

Theorem 1.4 If F is defined in [t,∞[×R
n and in every strip S = [t0−α, t0+α]×R

n,

with α positive constant, and the hypotheses of theorem 1.2 are satisfied, then (1.2)

(with t0 > t) admits an unique solution defined in [t0,∞[.

Theorem 1.5 If F is defined and continuous in the strip S = [t0, t1]×R
n and verifies

the Lipschitz condition in every rectangle R∗ ⊂ S and if a solution of the problem

(1.2) is bounded, then it exists in [t0, t1].

Theorem 1.6 If F is defined and continuous in the strip I = [t0,∞[×R
n and verifies

the Lipschitz condition in every rectangle R∗ ⊂ I, then every bounded solution of the

problem (1.2) is global (in time).

1.2 Dynamical systems on R
n generated by differ-

ential models

Let x(x0, t) with x(x0, t0) = x0 be a global solution to the Cauchy problem (1.2).

Then x is a dynamical system according to the following definition [3], [20], [26]-[27],

[42].
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Definition 1.2 A map

x : (x0, t) ∈ R
n × R

+ → x(x0, t) ∈ R
n, (1.6)

is a dynamical system on R
n if verifies the following semigroup properties



















x(x0, t0) = x0,

∀x0 ∈ R
n, ∀ t, τ ∈ R

+.

x(x0, t+ τ) = x[x(x0, τ), t],

(1.7)

If x is also continuous with respect to t and x0, then it is a C0−semigroup.

If x is a dynamical system, the motion associated to an initial data x0 ∈ R
n is a

function

x(x0, ·) : t ∈ R
+ → x(x0, t) ∈ R

n, (1.8)

and it is also denoted with x(x0, t) or x(t).

If

x(t) = x0, ∀ t ∈ R
+, (1.9)

the motion is said stationary and x0 is an equilibrium point or critical point.

The dynamical system assures the forward (in time) uniqueness. This means

that only one motion is associated to an assigned initial data for t ∈ R
+, i.e.

x0 = y0 ⇒ x(t) = y(t), ∀ t > 0,

where x(t) and y(t) are two motions.

Analogously, one can define the backward (in time) uniqueness.

The positive graph of the motion x, is the set {t,x(t)} with t ∈ R
+ and its

projection on R
n, that is the set γ : {x(t) : t ∈ R

+} is said positive orbit of the

motion starting from x0. Analogously one can define the negative graph and the

negative orbit for a motion.

Definition 1.3 A motion is said to be periodic with respect to time of period T ∈ R
+,

if

x(t+ T ) = x(t), ∀t ∈ R
+. (1.10)
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1.3 Stability for dynamical systems generated by

differential equations

In modelling a real world phenomenon, inevitably one can make some errors in the

measurements of the initial data or in the formulation of the model. Hence, the

problem to see how these errors influence the motion, arises. This is the problem of

stability (with respect to the initial data).

The principal idea of the stability of a motion x(x0, ·) (the basic or unperturbed

motion), is to verify if another motion x(x1, ·) (perturbed motion), starting from a

position x1 sufficiently next to x0, for how much time will be next to the unperturbed

motion. If this happens for any finite interval of time, then there is continue depen-

dence with respect to variations of initial data. If this happens for t ∈ [0,∞[, then

x(x0, ·) is said to be stable.

Denoting with Br(x) with r > 0, the open ball in R
n centered at x and having radius

r, i.e.

Br(x) = {y ∈ R
n : d(x,y) < r} ,

with d the usual distance in R
n, the following definitions hold [6], [20], [22], [34].

Definition 1.4 A motion x(x0, ·), depends continuously on the initial data iff

∀t0 ∈ I, ∀T > 0, ∀ε ∈]0, χ[, ∃δ(ε, T, t0) ∈]0, ε[ such that

x1 ∈ Bδ(x0) ⇒ x(x1, t) ∈ Bε(x(x0, t)), ∀t ∈ [t0, t0 + T ], (1.11)

where χ = dist(0, ∂D).

Remark 1.1 In the study of some models, the function F can depend on some consti-

tutive parameters. In estimating these parameters, one can make some errors. Hence

the problem to study the stability with respect to the constitutive parameters, arises.

The continuous dependence on the parameters can be traced back to the continuous
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dependence on the initial data. In fact, for example, the following Cauchy problem


















u̇ = f(t, u, λ),

u(t0) = u0,

with f : (t, u) ∈ [t0,∞[×R → R depending on the parameter λ, is equivalent to the

following problem


































































u̇ = f(t, u, v),

v̇ = 0,

u(t0) = u0,

v(t0) = λ.

Hence the dependence on λ is transferred to the dependence on the initial data.

For the uniqueness and the continuous dependence on the initial data, the following

theorem holds.

Theorem 1.7 If F verifies the Lipschitz condition and if there is an unique solution

of (1.2) in [t0, t1] with t1 < ∞, then it is unique and depends continuously on the

initial data.

Definition 1.5 A motion x(x0, ·) is Liapunov stable (with respect to perturbations

in the initial data) iff:

∀t0∈ I,∀ε∈]0, χ[, ∃δ(ε, t0) ∈]0, ε[: x1 ∈ Bδ(x0)⇒x(x1,t)∈Bε(x(x0, t)), ∀t≥t0. (1.12)

If δ doesn’t depend on t0, the stability is uniform.

Obviously, if x(x0, ·) is a stable motion associated to an autonomous differential

equation, then the stability is uniform.
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The stability is a stronger condition then that of the continuous dependence on the

initial data, since it holds for t ≥ t0 and not for a finite temporal interval.

Definition 1.6 A motion is unstable if it is not stable, that is

∃t0∈ I, ∃ε ∈]0, χ[: ∀δ ∈]0, ε], ∃x1 :x1∈Bδ(x0), ∃t1>t0 :d [x(x1, t1),x(x0, t1)]≥ε. (1.13)

Definition 1.7 A motion x(x0, ·) is said to be an attractor (or attractive) on a set

Y if

x1 ∈ Y ⇒ lim
t→∞

d [x(x0, t),x(x1, t)] = 0. (1.14)

From (1.14) it follows that

∀ν > 0, ∃T (ν, t0,x0) > 0 : t > t0 + T ⇒ x(x1, t) ∈ Bν(x(x0, t)). (1.15)

The biggest set Y satisfying (1.14) is called the basin (or domain) of attraction of

x(x0, ·).

Definition 1.8 A motion x(x0, ·) is asymptotically stable if it is stable and if ∀t0 ∈ I
there exists δ1(t0) > 0 such that x(x0, ·) is attractive on Bδ1(x0).

In particular:

Definition 1.9 A motion x(x0, ·) is exponentially stable if ∀t0 ∈ I, ∃δ1(t0) > 0,

∃λ(δ1) > 0, ∃M(δ1) > 0 such that

x1 ∈ Bδ1(x0) ⇒ d(x(x0, t),x(x1, t)) ≤Me−λtd(x1,x0). (1.16)

If δ1 = ∞, then x(x0, ·) is asymptotically (exponentially) unconditionally (or globally)

stable.

If T doesn’t depend on x0, then the motion is said equiattractive.

If T doesn’t depend on x0 and t0, and δ1 doesn’t depend on t0, there is uniform

attractivity.
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If the motion is stable and attractive, it is asymptotically stable.

If x(x0, ·) is uniformly stable and uniformly attractive, then it is uniformly asymptot-

ically stable.

Analogous definitions can be given for the stability of an equilibrium point.

Remark 1.2 One can always refer to the case in which the critical point is the null

solution. In fact, if x is a critical point, then by the substitution

z = x− x,

(1.2)1 reduces to ż = F (z + x) which admits the null solution as critical point.

In the applications the asymptotic stability is more important then the stability. In

some cases the question about the extent of asymptotic stability arises. The desirable

feature is asymptotic stability in the large. If one cannot assure that, one may have

to be content with the assurance that when the perturbations are not too large the

system tends to return to the equilibrium. Hence one needs to have information about

the size of the region of asymptotic stability. To determine possible restrictions to

asymptotic stability one must examine nonlinearities.

In order to proceed with our topic is necessary to give some definitions.

Definition 1.10 A subset A of R
n is positively invariant if

x0 ∈ A⇒ x(x0, t) ∈ A, ∀t ∈ R
+. (1.17)

Definition 1.11 A set I in the phase space, is said attractor if there is an open set

H ⊃ I such that

lim
t→∞

d(x0, I) = 0, (1.18)

for any initial data x0 ∈ H, and where d is the distance of x0 from I, i.e.

d(t) = inf
I
|x − x0| .
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Definition 1.12 The biggest set H verifying (1.18) is said basin of attraction of I.

Definition 1.13 A set I in the phase space is an absorbing set if it is invariant and

attractor.

Definition 1.14 A set I is a global attractor if it is compact and its basin of attrac-

tion is the whole phase space.
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Chapter 2

The Liapunov Direct Method

Sometime solving an evolution equation which models a phenomena, is quite diffi-

cult and hence some qualitative information on the behaviour of its solutions can be

useful. The Liapunov Direct Method allows to obtain information about the asymp-

totic behaviour of the solutions around the equilibrium point of a system, without

the integration of the equations. The technique consists into introduce “auxiliary”

functions, the Liapunov functions, and to study some properties of these functions

and of their temporal derivatives along the solutions of the system. The method is

said “direct” in the sense that the temporal derivatives of the Liapunov functions,

calculated along the solutions of the equation, can be linked directly to the second

member of the same equation. In this chapter we refer to [20], [23], [28], [29], [45].

2.1 Autonomous equations

Let’s consider an autonomous system

dx

dt
= F(x). (2.1)

These kind of equations are very important especially for two reasons:
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i) they represent the motion of mechanical systems with one degree of freedom

under the action of forces independent of time;

ii) they describe a model of various eco-biological phenomena.

For the sake of simplicity, from now on, we refer to (2.1) with n = 2, and hence we

refer to the following system


















ẋ = f(x, y),

ẏ = g(x, y),

(2.2)

where we suppose f and g sufficiently smooth to guarantee the global existence of

the solutions. Without loss of generality, we can assume that

f(0, 0) = g(0, 0) = 0, (2.3)

i.e. (2.2) admits the null solution. Applying the differential theorem to f and g in

the origin, one has


















f(x, y) = fx(0, 0)x+ fy(0, 0)y + f1(x, y),

g(x, y) = gx(0, 0)x+ gy(0, 0)y + g1(x, y),

(2.4)

where

f1 = o(r), g1 = o(r), r =
√

x2 + y2.

Hence (2.2) can be written as


















ẋ = ax+ by + f1(x, y),

ẏ = cx+ dy + g1(x, y),

(2.5)

with


















a = fx(0, 0), b = fy(0, 0),

c = gx(0, 0), d = gy(0, 0).

(2.6)
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The linearized system associated to (2.5) is obtained disregarding the nonlinear terms,

and it is given by


















ẋ = ax+ by,

ẏ = cx+ dy.

(2.7)

2.2 Stability for linear autonomous systems

In this section we want to study the stability of the null solution of the system (2.7).

The behaviour of the trajectory around the critical point will depend on the two

invariants of the coefficient matrix (Aij) of system (2.7)

A = ad− bc, I = a+ d. (2.8)

In fact, searching solutions of the system (2.7) of the type eλt, one obtains the eigen-

value equation of the matrix (Aij)

∣

∣

∣

∣

∣

∣

a− λ b

c d− λ

∣

∣

∣

∣

∣

∣

= λ2 − Iλ+ A = 0. (2.9)

(2.9) admits the following solutions

λ =
I ±

√
I2 − 4A

2
, (2.10)

and hence the nature of the eigenvalues depends on the sign of ∆ = I2 − 4A.

We recall some definitions.

Definition 2.1 If the eigenvalues of (Aij) are complex with non null real part, then

the critical point is said focus and, precisely, it is a stable focus if the real part is

negative, unstable in the other case.

In the case of a focus, the trajectory is a spiral converging to the critical point in the

case of stability, diverging in the case of an unstable focus.
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Definition 2.2 If the eigenvalue of (Aij) are purely imaginary, then the critical point

is a center.

A center is linearly stable but it is not an attractor like the stable focus.

Definition 2.3 If the eigenvalues of (Aij) are real and of different sign, the critical

point is said a saddle point.

A saddle point is unstable.

Definition 2.4 If the eigenvalues of (Aij) are negative and real, then the critical

point is a stable node, in the case that both eigenvalues are positive and real, the

critical point is an unstable node.

Definition 2.5 If the eigenvalues of (Aij) are real and coincident, then in the case

b = c = 0, the critical point is said a star node and it is stable if a = d < 0, unstable

in the other case.

Definition 2.6 If the eigenvalues of (Aij) are real and coincident, then in the case

b2 + c2 > 0, the critical point is said a one tangent node.

The following theorem holds.

Theorem 2.1 The critical point of the system (2.7) is

i) unstable, if at least one eigenvalue of (Aij) has positive real part;

ii) stable, if all the eigenvalues are imaginary;

iii) asymptotically (exponentially) stable if all the eigenvalues have negative real

part.
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2.3 The Liapunov Direct Method for autonomous

equations

The conditions assuring the stability of the null solution of the system (2.7) are said

conditions for the linear stability. If a critical point is linearly stable, it doesn’t mean

that it is also nonlinearly stable. In fact considering, for example, the equation

ẋ = x2,

it follows, very easily, that the null solution is linearly stable but nonlinearly unstable.

The problem to see when it is possible to transfer the conditions for the linear stabil-

ity to the non linear system (2.5) arises.

In order to study the nonlinear stability, we introduce the Liapunov Direct Method.

We refer to the autonomous equation

dx

dt
= F(x), (2.11)

with F(0) = 0.

Definition 2.7 A scalar function V (x) = V (x1, ..., xn) ∈ C1(Ω), with Ω an open

subset of R
n containing the origin, is a Liapunov function, if verifies the following

properties:

i) V (0) = 0;

ii) V (x) > 0, ∀x ∈ Ω, x 6= 0;

iii) F(x) · ∇V ≤ 0, ∀x ∈ Ω.

Definition 2.8 If a function verifies the first two properties of the definition above,

it is positive definite in Ω.
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Definition 2.9 If a function V1 is such that −V1 is positive definite, then it is neg-

ative definite.

We observe that the temporal derivative of V , V̇ , along the solution of (2.1) is given

by

V̇ =
d

dt
V (x1, ..., xn) =

n
∑

i=1

∂V

∂xi

dxi

dt
=

n
∑

i=1

∂V

∂xi

Fi = ∇V · F,

and hence the third property iii) assures that V̇ , calculated along the solutions of the

system, is not increasing.

Definition 2.10 A function V ∈ C(Ω) is positive semidefinite if

V (0) = 0, V (x) ≥ 0 ∀x ∈ Ω\{0}.

Example For example the functions V = x2 + y2 and V = (x− y)2 are, respectively,

positive definite and positive semidefinite.

Finding a Liapunov function is not very easy. The quadratic forms or the first

integral1, are good candidates.

The following theorems for the stability of the null solution of (2.1) hold.

Theorem 2.2 If in an open set containing the origin there exists a Liapunov function

V , then the origin is stable.

Theorem 2.3 In the hypotheses of theorem 2.2, if V̇ is negative definite, then the

origin is asymptotically stable.

The instability of the null solution of (2.1) is guaranteed by the following theorems.

1A first integral is a function G(x) ∈ C1 such that, along the solutions of the system, Ġ = 0.
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Theorem 2.4 If in an open subset of Ω ⊂ R
n containing the origin, there exists a

function V ∈ C1(Ω) such that V (0) = 0, V̇ is positive definite and V takes some

positive values in each spherical set contained in Ω and containing the origin, then

the origin is unstable.

Theorem 2.5 Let S be a spherical subset of R
n containing the origin and Ω1 ⊂ S a

closed set such that O ∈ ∂ Ω1. If there exists a function V ∈ C1(Ω1) such that V

and V̇ are positive in Ω1\∂Ω1 and V is null on ∂Ω1 ∩ (S\∂S), then the null solution

of (2.1) is unstable.

This last theorem is also said Chetaiev instability theorem and has hypotheses more

general then that of theorem 2.4.

2.4 Nonlinear stability for autonomous equations

Now we return to the problem to transfer the conditions for the linear stability to the

nonlinear system. Considering the system (2.5), we introduce the function

V = A(x2 + y2) + (ay − cx)2 + (by − dx)2. (2.12)

It follows, very easily, that the temporal derivative of V along the solutions of (2.5)

is given by
1

2

dV

dt
= IA(x2 + y2) + Ψ(x, y), (2.13)

with


















Ψ(x, y) = (α1x− α3y)f1 + (α2y − α3x)g1,

α1 = A + c2 + d2, α2 = A + a2 + b2, α3 = ac + bd.

(2.14)

It is proved the following result.

Theorem 2.6 If f1 and g1 are o(r), then the theorem 2.1 for the linear stability-

instability, continues to hold also for the system (2.5) except in the critical case.
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Definition 2.11 The critical case is the case in which the eigenvalues of (Aij) are

null or pure imaginary.

In the critical case, the nonlinear part of F can be stabilizing or destabilizing. In this

case the only way to obtain information about the stability/instability of the null

solution of (2.5) is to apply the theorems of the Liapunov Direct Method.

We conclude this chapter with an important remark.

Remark 2.1 In the autonomous case, the largest conditions assuring the stability of

the null solution for the system (2.7), are the Hurwitz conditions

A = ad− bc > 0, I = a+ d < 0. (2.15)

2.5 The Liapunov Direct Method for nonautonomous

equations

In analyzing the stability-instability problems of nonautonomous systems, a big cau-

tion is needed since the conditions guaranteeing the stability-instability of the null

solution of the autonomous systems, in general, do not continue to guarantee the

stability-instability also for the null solution of the nonautonomous systems. In fact,

in the nonautonomous case not even the uniform Hurwitz conditions

I∗ = sup
t≥t0

I < 0, A∗ = inf
t≥t0

A > 0, t0 ≥ 0, (2.16)

are able to guarantee the stability of the null solution. This happens, for instance, in

the case [38]


























ẋ =

(

−1 +
3

2
cos2 t

)

x+

(

1 − 3

4
sin 2t

)

y,

ẏ = −
(

1 +
3

4
sin 2t

)

x+

(

−1 +
3

2
sin2 t

)

y.

(2.17)
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Although

I = −1

2
, A =

1

2
, ∀t ∈ R

+,

(2.17) admits the unbounded solution

x = −ce t
2 cos t, y = ce

t
2 sin 2t, ∀c ∈ R.

We want to describe the Liapunov Direct Method for the equation

dx

dt
= F(x, t), (2.18)

where F is a function defined in D ≡
◦

D ×I ⊂ R
n+1 (with I =]τ,∞[, 0 ∈ D), smooth

enough to guarantee the global existence of the solution and such that F(0, t) ≡ 0.

We recall here some useful definitions. Let be

V : (t,x) ∈ I × Γ → V (t,x) ∈ R, (2.19)

where Γ is an open subset of R
n containing the origin.

Definition 2.12 V is positive semidefinite if there exists a closed sphere contained

in Γ centered in the origin (say Bγ) such that

∀(t,x) ∈ I ×Bγ , V (t,x) ≥ 0, and V (t, 0) = 0. (2.20)

Definition 2.13 V is positive definite if

i) V (t, 0) = 0, ∀t ∈ I,

ii) there exists a continuous function W

W : x ∈ Bγ →W (x) ∈ R+,

such that

W (0) = 0, W (x) > 0, ∀x ∈ Bγ\{0},

and

V (t,x) ≥ W (x), ∀(t,x) ∈ I × Bγ .
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Analogously one can give the definitions for negative semidefiniteness and negative

definiteness.

Definition 2.14 V admits an infinitely small upper bound, if there exists a contin-

uous function W

W : x ∈ Bγ →W (x) ∈ R
+,

with W positive semidefinite such that

|V (t,x)| ≤W (x), ∀(t,x) ∈ I × Bγ.

The stability of the null solution of (2.18) is guaranteed by the following Liapunov

stability theorems.

Theorem 2.7 Let (2.18) holds with F sufficiently smooth to guarantee the global

existence and uniqueness of the solution. If there exists a function V : (t,x) ∈
I ×Bγ → V (t,x) ∈ R, where γ ∈]0, χ[ and χ = dist(0, ∂ D), V ∈ C1 and

i) V positive definite;

ii) V̇ negative semidefinite along the solutions of (2.18),

then the null solution of (2.18) is (simply) stable.

Theorem 2.8 In the hypotheses of the theorem before, if V has an upper bound which

is infinitely small at the origin, then the null solution of (2.18) is uniformly stable.

Theorem 2.9 If there exists a function V : (t,x) ∈ I × Bγ → V (t,x) ∈ R, with

γ ∈]0, χ[, V ∈ C1 such that

i) V is positive definite;

ii) V has an upper bound which is infinitely small at the origin;

iii) V̇ , along the solution of (2.18), is negative definite,
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then the null solution of (2.18) is uniformly, asymptotically, stable.

The instability of the null solution of (2.18) is guaranteed by the following instability

Liapunov theorems.

Theorem 2.10 Let be V : (t,x) ∈ I × Γ → V (t,x) ∈ R, with Γ =
◦

Γ⊂ D ⊂ R
n,

V ∈ C1. If ∃t0 ∈ I, ∃γ > 0, with Bγ ⊂ Γ such that

i) ∀η ∈ ]0, γ[, ∃x ∈ Bη with V (to,x) > 0,

ii) V has an upper bound which is infinitely small at the origin,

iii) V̇ , along the solution of (2.18), is positive definite in I × Bγ,

then the null solution of (2.18) is unstable.

From this theorem it follows that if there exists a function V with an infinitely small

upper bound and temporal derivative V̇ along the solutions definite in sign and also

if for t ≥ t0 (with arbitrarily large t0) the function V has the same sign as V̇ in a

neighborhood of the origin, then the null solution is unstable.

Theorem 2.11 Let be V : I × Γ → R, V ∈ C1. Suppose that ∃t0 ∈ I, ∃γ > 0 with

Bγ ⊂ Γ such that

i) ∀η ∈]0, γ[ ∃x ∈ Bη with V (to,x) > 0,

ii) V bounded in I ×Bγ,

iii) V̇ (t,x) ≥ λ V (t,x), with λ a positive constant,

then the null solution of (2.18) is unstable.

Now we want to state the Chetaiev theorem, which furnishes a sufficient condition for

the instability of the null solution. This theorem is different from the theorems 2.10

and 2.11 since it regards an auxiliary function in a part of a particular open subset

of R
n containing the origin.
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Theorem 2.12 Suppose that for the equation (2.18) ∃t0 ∈ I, γ ∈]0, dist(0, ∂Γ)[, η ∈
]0,∞[, a continuous function V : I × Γ → R, a function a : [0, γ] → R of class k2

and an open subset Θ ⊂ Bγ such that

i) 0 < V (t,x) < µ, ∀(t,x) ∈ [t0,∞[×Θ,

ii) V (t,x) = 0, ∀(t,x) ∈ [t0,∞[×(∂Θ∩
◦

Bγ),

iii) V̇ (t,x) ≥ a(V (t,x)), ∀(t,x) ∈ [t0,∞[×Θ,

iv) 0 ∈ ∂Θ.

Then the null solution of (2.18) is unstable.

2A function a : [0, µ] → R, with µ > 0, is a function of class k (a ∈ k) if a is continuous, increasing

and a(0) = 0.
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Chapter 3

The Lotka-Volterra model

In 1925, during a conversation with Vito Volterra, a young zoologist, Umberto D’Ancona,

pointed out that in the years following the World War I the proportion of predator

fishes caught in the Upper Adriatic was up from before, whereas the proportion of

prey fishes was down. This phenomenon was predicted by one of the Volterra’s mod-

els. In the same year that Volterra became interested in the ecology, A. J. Lotka

published a work titled Elements of Physical Biology [32]. In this text he discussed

the same model utilized by Volterra for predator-prey interactions. The two were

completely unaware of each other’s work. This is the model that is known as the

Lotka-Volterra model.

This model is based, as it well known, on the assumptions [35]:

i) in absence of the predators, the preys increase at a constant rate;

ii) in absence of the preys, the predators decrease at a constant rate;

iii) the rate at which preys are eaten is proportional to the product of the densities

of predators and preys;

iv) the species live in a homogeneous environment.
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Therefore denoting with a, b, c, d positive constants and with x and y respectively the

preys and predators densities, the equations governing the model are:






ẋ = ax− bxy,

ẏ = −cy + dxy.
(3.1)

Applying the transformation

u =
dx

c
, v =

by

a
, τ = at, α =

c

a
, (3.2)

model (3.1) becomes






















du

dτ
= u(1 − v),

dv

dτ
= αv(u− 1).

(3.3)

From (3.3), it follows that {u(0)>0, v(0)>0}⇒{u(τ)>0, v(τ)>0, ∀τ >0} and hence,

the positive orthant is (positively) invariant. This is a property verified by all the

population dynamic models

From (3.3)1 and since uv > 0, one obtains that

du

dτ
≤ u. (3.4)

Multiplying each member for e−τ , one obtains

d

dτ
(ue−τ ) ≤ 0 ⇒ u(τ) ≤ u0e

τ . (3.5)

Hence u is bounded in each finite interval of τ . From (3.3)2, it follows that

dv

dτ
≤ αv(u0e

τ − 1), (3.6)

and multiplying by e−α
R τ

0
(u0eξ−1) dξ,

d

dτ

(

e−α
R τ

0
(u0eξ−1) dξv

)

≤ 0 ⇒ v ≤ v0e
αu0(eτ−1)−ατ , (3.7)

one has that, in each finite interval of τ , v is bounded.

Because u and v can be extended in each finite interval of time, there is the global

existence for the solution of (3.3).
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3.1 Equilibrium points

If v ≡ 0, from (3.3)1 one has

du

dτ
= u⇒ u = u0e

τ . (3.8)

Hence {u = u0e
τ , v = 0} is the only solution starting from {u0 > 0, v0 = 0}. Anal-

ogously {u = 0, v = v0e
−τ} is the only solution starting from {u0 = 0, v0 > 0}. We

have shown that the axes u and v of the phase space are two trajectories. The first

is covered in the sense of the u increasing while the second is covered in the sense of

the v decreasing. The other trajectories starting from a point in the positive orthant,

can not cross the axes. For this reason there can be a closed trajectory, that means a

cycle. From a biological point of view, a cycle is very important because it guarantees

the survival of both the species.

Model (3.3) admits (0, 0) and (1, 1) as equilibrium points.

Let’s start to analyze the stability of (0, 0).

Disregarding the nonlinear terms in (3.3), one obtains






















du

dτ
= u,

dv

dτ
= −αv.

(3.9)

Hence the matrix




1 0

0 −α





has an eigenvalue with positive real part. Then (0, 0) is a saddle point and it is

unstable. From a biological point of view, the instability of the null solution is very

important since it guarantees that the extinction of the species is not possible. This

can be seen also by the fact that the axis u is covered in the sense of the u increasing.
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Passing to the study of the stability of (1, 1), setting

u = x+ 1, v = y + 1, (3.10)

in order to transport the equilibrium in to the origin, one obtains






















dx

dτ
= −y(1 + x),

dy

dτ
= αx(1 + y).

(3.11)

The matrix of the coefficients of the linear system associated to (3.11)




0 −1

α 0



 ,

has two pure imaginary eigenvalues

λ = ±ı
√
α.

Hence (1, 1) is a center and is linearly stable. It follows that, considering the linear

system associated to (3.11), the motion is periodic around the equilibrium point. It

is a cycle.

If we pass to study the nonlinear stability we have a critical case. If we are able to

find a Liapunov function, we have nonlinear stability.

Dividing (3.3)2 by (3.3)1 one obtains

dv

du
=
αv(u− 1)

u(1 − v)
. (3.12)

This is a differential equation at separable variables. Integrating (3.12), it turns out

that

log v − v = α(u− log u) − k, (3.13)

with k =const. Hence, the function

V = α(u− log u) + v − log v = αu+ v − log(uαv), (3.14)
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is constant if calculated along the solutions of (3.3) and its value is given by k. Then,

along the solutions of (3.3),
dV

dτ
= 0. Now, we want to show that V is positive definite

in [−1, 1]. Let’s seek the minimum value that V assumes in the interval. The Hessian

matrix calculated in (1, 1) is
∥

∥

∥

∥

∥

∥

α 0

0 1

∥

∥

∥

∥

∥

∥

= α > 0,

then min
[−1,1]

V = (1, 1). Since V (1, 1) = α + 1 > 0, then V is positive definite. In this

way we have shown that V is a Liapunov function and hence we can conclude that

(1, 1) is nonlinearly (simply) stable.

We have proved the following theorem.

Theorem 3.1 The model (3.1) admits two equilibrium points (0, 0) and
( c

d
,
a

b

)

. The

first is unstable while the second is nonlinearly (simply) stable.

As an interesting sidelight, it was thought that records kept by the Hudson Bay

Company for the last 200 years seemed to confirm the general oscillatory behaviour

predicted by the Lotka-Volterra model. The records involved the catches of Canada

lynx and its preys, the snowshoe hare. In 1973 Gilpin analyzed this data by computer

and found three reverse cycles. If we did not know better, we might conclude that

during these cycles the hare were eating the lynx, but the most probable explanation

is an erratic trapper activity during these years.

3.2 Lotka-Volterra model with logistic growth for

the preys

The hypotheses that the preys, in absence of the predators, grow in a Malthusian

way, can hold only for short time, since it doesn’t take in account of limitation of

resources, space, ecc. In order to improve the model, the hypotheses i) has been

substituted with a weaker one
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• the preys, in absence of the predators, grow up in a logistic way.

This means that

ẋ = (a− by − ex)x,

and hence the model (3.1) becomes


















ẋ = (a− by − ex)x,

ẏ = (−c + dx)y,

(3.15)

where a, b, c, d, e are positive constants.

In this case there are three equilibrium points

(0, 0),
(a

e
, 0

)

,
( c

d
,
a

b
(1 − β)

)

, (3.16)

where 0 < β =
ec

ad
< 1. The meaningful equilibrium point is given by (3.16)3, since

(3.16)1 and (3.16)2 imply, respectively, the extinction of both populations and of the

predators. Introducing the transformation

u =
dx

c
, v =

by

a
, τ = at, α =

c

a
, (3.17)

the model becomes






















du

dτ
= (1 − βu− v)u,

dv

dτ
= αv(u− 1),

(3.18)

The equilibrium points are

(0, 0),

(

1

β
, 0

)

(1, 1 − β). (3.19)

It is proved that (3.19)1 and (3.19)2 are unstable, while for the meaningful equilibrium

point, the following theorem holds.

Theorem 3.2 The equilibrium (1, 1 − β) with 0 < β < 1, is asymptotically stable

and the attraction basin is the whole positive orthant.
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Chapter 4

Generalized Lotka-Volterra models

The assumptions at the basis of model (3.1) are unrealistic. In fact, a well established

criticism can be done to i) − iii) of Chapter 3 and hence to (3.1). The following

remarks hold [8]:

1) the growth behaviour assumed by i) is reasonable only for a limited time, since

a continuous increasing of the population will exhaust its resources;

2) the density of each species does not exhibit any structure (space location, age,

differences of sex or genotype,...);

3) changes in density are deterministic, ignoring the random effects in the envi-

ronment that influence the interaction between x and y;

4) the effects of interactions within and between the species are instantaneous,

ignoring the influence of delayed processes.

Hence the problem to modify the assumptions at the basis of the classical Lotka-

Volterra model, arises.

In the literature can be found several perturbed Lotka-Volterra models of the type

ẋ = x(a− by) + F, ẏ = y(−c+ dx) +G, (4.1)
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developed by many authors. Different types of perturbation terms F,G have been

introduced in order to account of variations of the idealized hypotheses i) − iii) as

well as to put controls on the growth of both predators and preys (see, for instance

[1]-[2], [5], [7]-[8], [11]-[19], [21], [25], [30]-[33], [36]-[41], [43]-[44] and the references

therein). The influence of the perturbation terms on the stability of the positive

ecological equilibrium state

x =
c

d
, y =

a

b
, (4.2)

of (3.1) or on the existence both of periodic solutions or perturbed critical points,

have been studied.

In particular, in [5], [13]-[15], the perturbation terms are such that

[F ](x,y) = [G](x,y) = 0. (4.3)

and hence (4.1) admits the same equilibrium point of the classical model.

In [16]-[18], the perturbation terms are

F = −εf1(x, y), G = −εf2(x, y), (4.4)

where fi (i = 1, 2), are of higher order, and ε > 0. These perturbations are the most

general to provide damping on the predators and preys. It has been observed by

Samuelson [40] that the addiction of an appropriate damping term

f1(x, y) = xf(x), f2(x, y) = 0,

leads to oscillations of the Rayleigh Van der Pol type, i.e. leads to a stable limit cycle.

The existence of a stable limit cycle provides a satisfactory explanation for animal

communities in which populations oscillate in a reproducible periodic manner. It is

proved that the stability of the equilibrium point of model (4.4) depends on ε. If ε

takes small values, then there is linear stability. For the nonlinear stability, a Lia-

punov function is introduced and the Direct Method is used. Sufficient conditions for
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the existence of a limit cycle are determined.

In [19] the same model is analyzed but it is considered the case in which the first

derivatives of the perturbation terms are zero at the critical point and the case in

which the equilibrium point is fixed, i.e. the critical point doesn’t depend on ε. The

problem is one of perturbation in the small parameter and not of higher order and it

is studied by using implicit functions techniques suggested by Loud [33]. The results

indicate the type of functions fi (i = 1, 2), which yield periodic solutions of the sys-

tem (4.4), but there is not estimate about the number of the solutions and it is not

determined whether or not this periodic solution is unique.

In [13] time dependent perturbation terms, depending on a small parameter, have

been introduced in the classic model and their influence on the stability of the equi-

librium of this model has been studied by using the multiple scale method.

In [14], [15], Fergola Rionero Tenneriello, consider the same type of nonautonomous

perturbation, but they do not make any assumption on the “smallness” of these

perturbations. Precisely, they consider the following perturbation terms

F = D(t)(y − x), G = D(t)(x− y), (4.5)

with a, b, c, d positive constants such that
c

d
=
a

b
and D : R

+ → R
+ smooth enough

to guarantee the global existence and uniqueness of the solution. In this model

the perturbations terms are given by the product between a very general function D

depending on time and on the difference between the population densities of the preys

and predators. This kind of perturbation assumes the meaning of a “diffusion” term

and it was used in [1], [2] to represent the diffusion among heterogeneous patches

of populations. Introduced a Liapunov energy function, depending on a coupling

parameter λ between the two species

V (t, λ) = u2 + λ2v2,
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with u = x− x, v = y − y, λ = cost. > 0, and setting

F (D, λ) = 2D − g, α(λ) =
4

3
√

3

(

b

λ
+ d

)

,

g =
D − a

λ
+ (D + c)λ =

m

λ
+ nλ,

it has been proved that

Theorem 4.1 If

∃λ ∈ R
+ : inf

t≥0
F ≥ 2µ > 0,

V
1

2 (0, λ) <
2µ(λ)

α(λ)
,

(4.6)

then, along the solutions of the system, V̇ is negative definite and the equilibrium

(x, y) (with x = y) is (locally) non linearly, asymptotically, exponentially stable.

Because in the case D ≡ 0, x = y is stable, the hypotheses that D has to be a positive

function of time, appears too strong. In [5] this assumption has been replaced with

the weaker condition on

∫ t

0

D(τ)dτ

∃λ ∈ R
+ : lim

t→∞

∫ t

0

F (λ, τ) = ∞.

Once again a Liapunov function, depending on a coupling parameter, has been in-

troduced and conditions assuring the stability of the equilibrium point have been

determined even in the case of D(t) periodic function of time.

Our aim here is to consider nonautonomous perturbations which consist in in-

troducing a dependence on time either in the coefficients of the classical model or in

functions added to the second members of the equations.

We choose the perturbations in a way that the perturbed models admit the same

biological equilibrium (x, y) of (3.1). In this way we can compare all the results with
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those of the classical system.

We will study the following class of generalized Lotka-Volterra models [4], [9],

[10]:


























ẋ = f1(t)(a− by)x+D1(t)

(

x

y
y − x

)1+p

,

ẏ = f2(t)(−c + dx)y +D2(t)

(

y

x
x− y

)1+q

,

(4.7)

The hypotheses at the base of (4.7), are that:

1) fi, Di, ∈ L∞(R+) ∩ C1(R+) (i = 1, 2);

2) fi and Di, (i = 1, 2) are such that

|fi(t1) − fi(t2)| ≤ Li|t1 − t2|,
|Di(t1) −Di(t2)| ≤ Ki|t1 − t2|,

with t1, t2 ∈ R
+, and Li, Ki (i = 1, 2), positive constants;

3) a, b, c, d positive constants;

4) (p, q) ∈ [N+]
2
;

5) fi positive functions (i = 1, 2) of t;

6) the preys grow up in absence of the predators, while the predators decrease in

absence of the preys.

Remark 4.1 We remark that

• 1)− 2) guarantee the global (in time) existence and uniqueness of the solutions,

• the models (4.7) admit the same equilibrium (x, y) of the classical system (3.1),
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• in the case Di ≡ 0 (i = 1, 2), the model (4.7) becomes



















ẋ = f1(t)(a− by)x,

ẏ = f2(t)(−c+ dx)y,

that is a nonautonomous Lotka-Volterra model which has been analyzed by

Rionero in [38]. Here the author proves the following result.

Theorem 4.2 The equilibrium point (x, y) is

i) linearly stable if, setting

G1 = acf1f2 +

(

ad

b
f2

)2

, G2 = acf1f2 +

(

bc

d
f1

)2

,

one has

inf Gi > 0, sup
dGi

dt
≤ 0, i = 1, 2; (4.8)

ii) linearly asymptotically stable and nonlinearly (locally) asymptotically stable

if (4.8)2 holds with the strict inequality;

iii) unstable if

inf

{

inf

(

dG1

dt

)

, inf

(

dG2

dt

)}

> 0.

Hence a first difference between the classical model and the perturbed one is put

in evidence. In the autonomous case, one can only have the simple stability

of the meaningful biological equilibrium point. Instead, there can be nonau-

tonomous perturbations that, under some assumptions, lead to asymptotic sta-

bility. In these conditions, the model cannot admit periodic solutions, not even

if the perturbations are all periodic with the same period.

The problem to classify the nonautonomous perturbations which, under some condi-

tions, lead to the asymptotic stability, and hence to the absence of cycles, arises.
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In order to study the stability-instability of the equilibrium (x, y), we will follow the

procedure used in [38].

In [38], Rionero deals with the following nonautonomous, linear, system







ẋ = a(t)x+ b(t)y,

ẏ = c(t)x+ d(t)y,
(4.9)

and the nonlinear one






ẋ = a(t)x+ b(t)y + f(x, y, t),

ẏ = c(t)x+ d(t)y + g(x, y, t),
(4.10)

with f and g nonlinear functions of x and y such that

f(0, 0, t) ≡ g(0, 0, t) ≡ 0, ∀t ∈ R+, (4.11)

and having (together with the functions a, b, c, d) the regularity guaranteeing the

global existence of solutions.

In order to study the stability-instability of the null solution of such models, the

following functions are introduced

V =
1

2

[

A(x2 + y2) + (ay − cx)2 + (by − dx)2
]

, (4.12)

and

E =
1

2
[µ1(t)x

2 + µ2(t)y
2], (4.13)

with µi, (i = 1, 2), suitable derivable functions for t ≥ t0, bounded together with the

derivatives µ̇1, µ̇2.

The first function V is the O.D.Es “adaptation” of a peculiar Liapunov function intro-

duced by Rionero in the context of L2-stability analysis for binary reaction-diffusion
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systems of P.D.Es {cfr [36]-[37] and the appendix of [38]}. This is a “peculiar” func-

tion in the sense that its temporal derivative, calculated along the solutions of the

system, is linked directly to the eigenvalues of the problem. In fact, in the autonomous

case, the temporal derivative of V , along the solutions of (4.9), is given by

V̇ = IA(x2 + y2), (4.14)

with A = ad− bc and I = a+ d. In the nonautonomous case, one obtains

V̇ =



















IA(x2 + y2) +
1

2
Ȧ(x2 + y2)+

+(ay − cx)(ȧy − ċx) + (by − dx)(ḃy − ḋx)

(4.15)

and hence

V̇ =
1

2

3
∑

i=1

Pi(x, y, t), (4.16)

with






















P1 = (2IA+ Ȧ)(x2 + y2), P2 =
dc2

dt
x2 +

da2

dt
y2 − 2

d(ac)

dt
xy,

P3 =
dd2

dt
x2 +

db2

dt
y2 − 2

d(bd)

dt
xy.

(4.17)

Applying the Liapunov Direct Method, conditions assuring the stability and the insta-

bility of the null solution of (4.9) are determined. These conditions can be extended

also for the system (4.10), if the following inequality holds

(|x| + |y|)(|f |+ |g|) ≤ ε1(x
2 + y2)1+ε2, (4.18)

εi, (i = 1, 2) being positive constants.
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4.1 The case p = q = 0

In view of (4.7) with p = q = 0, one obtains


























ẋ = af1(t)

(

1 − y

y

)

x+ xD1(t)

(

y

y
− x

x

)

,

ẏ = cf2(t)
(

−1 +
x

x

)

y + yD2(t)

(

x

x
− y

y

)

.

(4.19)

Introducing the following bijective increasing transformation of time, in order to make

the model dimensionless


























x = xX, y = yY, τ = a

∫ t

0

f1(z) dz,

ϕ1(t) =
D1(t)

af1(t)
, ϕ2(t) =

D2(t)

af1(t)
, ψ(t) =

cf2(t)

af1(t)
,

(4.20)

by virtue of (4.19), it turns out that the model becomes






















dX

dτ
= (1 − Y )X + ϕ1(t)(Y −X),

dY

dτ
= ψ(t)(−1 +X)Y + ϕ2(t)(X − Y ),

(4.21)

(4.21) having (1, 1) as critical point when neither species is extinct. We want to study

the conditions assuring the stability-instability of this equilibrium point, because the

other equilibrium (0, 0) is not biologically meaningful, since it means that all the

species extinct.

We assume that

ψ, ϕi ∈ L∞(R+) ∩ C1(R+), (i = 1, 2), (4.22)

with

|ϕi(t1) − ϕi(t2)| ≤ Li|t1 − t2|, (i = 1, 2),

|ψ(t1) − ψ(t2)| ≤ K|t1 − t2|,

(4.23)
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where t1, t2 ∈ R
+ and Li (i = 1, 2), K positive constants. We want that all the

hypotheses at the basis of the classical Lotka-Volterra model, have to be preserved.

In particular we want that

(i) the preys grow up in absence of predators;

(ii) the predators decrease in absence of preys.

Further we require that


















ϕ1(t) < 1,

∀t ∈ R
+,

ψ(t) + ϕ2(t) > 0.

(4.24)

We remark that (4.22)−(4.23) guarantee (global) existence and uniqueness of smooth

solutions of (4.21).

We want to characterize the functions ψ, ϕi (i = 1, 2) guaranteeing the nonlinear

stability (instability) of the biological meaningful equilibrium state (1, 1), existing

∀ψ, ϕi (i = 1, 2).

4.2 Some preliminary Lemmas

In view of (4.21), by integrating the two equations, it follows that


























X = X0 exp

∫ τ

0

{

1 − Y (z) + ϕ1(z)

[

Y (z)

X(z)
− 1

]}

dz,

Y = Y0 exp

∫ τ

0

{

ψ(z)(−1 +X(z)) + ϕ2(z)

[

X(z)

Y (z)
− 1

]}

dz,

and hence {X0 > 0, Y0 > 0} ⇒ {X(τ) > 0, Y (τ) > 0, ∀τ > 0}. This means that the

positive orthant in the phase space is invariant.

Transporting the equilibrium into the origin by setting

X = u+ 1, Y = v + 1, (4.25)
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(4.21) becomes























du

dτ
= −ϕ1(t)u+ (ϕ1(t) − 1)v − uv,

dv

dτ
= (ψ(t) + ϕ2(t))u− ϕ2(t)v + ψ(t)uv.

(4.26)

In order to study the nonlinear stability/instability of (1, 1) there are introduced the

standard “energy”, which is given by

E(τ) =
1

2
(µ1(τ)u

2 + µ2(τ)v
2), (4.27)

and the Rionero “energy” (4.12), which specifies as

V (τ) =
1

2

{

A(u2 + v2) + [ϕ1v + (ψ + ϕ2)u]
2 + [(ϕ1 − 1)v + ϕ2u]

2}
, (4.28)

with


















A(t) = ϕ1ϕ2 − (ϕ1 − 1)(ψ + ϕ2) = ψ(t)[1 − ϕ1(t)] + ϕ2(t),

µi ∈ L∞(R+) ∩ C1(R+).

(4.29)

Remark 4.2 We remark that, since ψ ≥ 0, ∀τ ∈ R
+ and (4.24)1 holds, then

A ≥ ϕ2,

and hence ϕ2 ≥ 0 implies A ≥ 0. Further, from (4.24), it follows that

A = ϕ1ϕ2 − (ϕ1 − 1)(ψ + ϕ2) > ϕ1ϕ2.

Hence if ϕ1ϕ2 ≥ 0, then A > 0.
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Along the solutions of (4.26), it easily follows that

dE

dτ
=

1

2

{

dµ1

dτ
u2 +

dµ2

dτ
v2 + 2µ1u [−ϕ1u+ (ϕ1 − 1)v − uv] +

+2µ2v [(ψ + ϕ2)u− ϕ2v + ψuv] } =

=
1

2

{(

dµ1

dτ
− 2ϕ1µ1

)

u2 +

(

dµ2

dτ
− 2ϕ2µ2

)

v2+

+2 [µ1(ϕ1 − 1) + µ2(ψ + ϕ2)]uv } + Φ(τ),

(4.30)

with

Φ(τ) = (−µ1u+ ψµ2v)uv. (4.31)

Moreover, setting










































Ψ(τ) = (A1u− A3v)(−uv) + (A2v − A3u)(ψuv), I = −(ϕ1 + ϕ2),

A1 = A+ ϕ2
2 + (ψ + ϕ2)

2, A2 = A+ ϕ2
1 + (ϕ1 − 1)2,

A3 = −[ϕ1(ψ + ϕ2) + ϕ2(ϕ1 − 1)],

(4.32)

along the solutions of (4.26) it turns out that

dV

dτ
= P (τ, u, v) + Ψ(τ, u, v), (4.33)

with






















































P =
1

2

3
∑

i=1

Pi(τ, u, v), P1 =

(

2IA+
dA

dτ

)

(u2 + v2),

P2 =
d(ψ + ϕ2)

2

dτ
u2 +

dϕ2
1

dτ
v2 + 2

d[ϕ1(ψ + ϕ2)]

dτ
uv,

P3 =
dϕ2

2

dτ
u2 +

d(ϕ1 − 1)2

dτ
v2 + 2

d[ϕ2(ϕ1 − 1)]

dτ
uv.

(4.34)
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Remark 4.3 Since
d

dt
=
dτ

dt

d

dτ
= af1(t)

d

dτ
, (4.35)

and af1(t) > 0, ∀t ∈ R
+, then

df

dτ
> 0 ⇔ df

dt
> 0, ∀f ∈ C1(R+). (4.36)

By virtue of (4.36) we can state the results for the stability-instability of the null

solution of (4.26) by means of conditions on
dE

dt
and

dV

dt
instead of

dE

dτ
and

dV

dτ
.

Remark 4.4 Let be f : R
+ → R and

f∗ = inf
R+
f, f ∗ = sup

R+

f, (4.37)

then it turns out that

(i) at any instant t ∈ R
+ and ∀A(t), in any disk of the phase space, centered at the

origin O = (0, 0), there exists a domain in which V (t, u, v) > 0;

(ii) if A∗ > 0, then there exists a positive constant m1 such that

A∗(u
2 + v2) < V < m1(u

2 + v2), ∀τ ∈ R
+, (4.38)

and hence V is bounded, has an infinitely small upper bound and is positive

definite;

(iii) the property (i) holds also for the energy E either when (µ1)∗ > 0 or (µ2)∗ > 0;

(iv) the property (ii) holds also for the energy E, when (µi)∗ > 0, (i = 1, 2). In fact

one has

m2(u
2 + v2) < E < m3(u

2 + v2), (4.39)

with

m2 <
1

2
inf ((µ1)∗, (µ2)∗) , m3 >

1

2
sup ((µ1)

∗, (µ2)
∗) . (4.40)
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Lemma 4.1 The polynomial P2 reduces to






















P2 =
d(ψ + ϕ2)

2

dτ
(u± v)2 for ϕ1 = ±(ψ + ϕ2), ∀τ ∈ R

+,

P2 =
d(ψ + ϕ2)

2

dτ
u2 for ϕ1 ≡ 0, ∀τ ∈ R

+,

(4.41)

while P3 reduces to






















P3 =
d(ϕ1 − 1)2

dτ
(u± v)2 for ϕ1 = 1 ± ϕ2, ∀τ ∈ R

+,

P3 =
d(ϕ1 − 1)2

dτ
v2 for ϕ2 ≡ 0, ∀τ ∈ R

+.

(4.42)

If no one of the functions ϕi (i = 1, 2) is identically zero, the polynomials Pi (i = 2, 3),

cannot be negative definite.

Proof. (4.41) and (4.42) are easily implied by (4.34). Further, since


























[

d(ϕ1(ψ + ϕ2))

dτ

]2

− dϕ2
1

dτ

d(ψ + ϕ2)
2

dτ
=

(

dϕ1

dτ
(ψ + ϕ2) − ϕ1

d(ψ + ϕ2)

dτ

)2

,

[

d[ϕ2(ϕ1 − 1)]

dτ

]2

− dϕ2
2

dτ

d(ϕ1 − 1)2

dτ
=

(

dϕ2

dτ
(ϕ1 − 1) − ϕ2

d(ϕ1 − 1)

dτ

)2

,

(4.43)

one immediately deduces that Pi (i = 2, 3), as quadratic forms of u and v, cannot be

negative definite when no one of the functions ϕi (i = 1, 2) is identically zero.

Remark 4.5 We call critical case, the case in which

AI ≡ 0, ∀τ ∈ R
+. (4.44)

Lemma 4.2 The quadratic polynomial P2 + P3 is

(i) positive semidefinite for either






















ϕ1(ψ + ϕ2) + ϕ2(ϕ1 − 1) = const.,
d

dτ
[ϕ2

2 + (ψ + ϕ2)
2] ≥ k1,

d

dτ
[ϕ2

1 + (ϕ1 − 1)2] ≥ k2, ∀τ ∈ R
+,

(4.45)
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or

ϕ1

ψ + ϕ2
= const.,

ϕ1 − 1

ϕ2
= const.,

d(ψ + ϕ2)
2

dτ
≥ k3,

dϕ2
2

dτ
≥ k4, (4.46)

or

ϕ1

ψ
= const., ϕ2 = 0,

dψ2

dτ
≥ k5,

d(ϕ1 − 1)2

dτ
≥ k6, ∀τ ∈ R

+, (4.47)

with ki (i = 1, ..., 6) non negative constants;

(ii) positive definite if the constants ki appearing - either in (4.45) or (4.46) or

(4.47) - are positive;

(iii) negative semidefinite for either























ϕ1(ψ + ϕ2) + ϕ2(ϕ1 − 1) = const.,
d

dτ
[ϕ2

2 + (ϕ1 − 1)2] ≤−k1,

d

dτ
[ϕ2

1 + (ϕ1 − 1)2] ≤ −k2, ∀τ ∈ R
+,

(4.48)

or

ϕ1

ψ + ϕ2
= const.,

ϕ1 − 1

ϕ2
= const.,

d(ψ + ϕ2)
2

dτ
≤−k3,

dϕ2
2

dτ
≤−k4, (4.49)

or

ϕ1

ψ
= const., ϕ2 = 0,

dψ2

dτ
≤ −k5,

d(ϕ1 − 1)2

dτ
≤ −k6, ∀τ ∈ R

+, (4.50)

with ki, (i = 1, ..., 6) non negative constants;

(iv) negative definite if the constants ki appearing - either in (4.48) or (4.49) or

(4.50) - are positive;

(v) indefinite in the other cases.

Proof. For the proof see [38].
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Remark 4.6 Apart from the critical case one immediately deduces that

(i) if A > 0, ∀τ ∈ R
+, the existence of a positive constant h such that

P1 ≤ −h(u2 + v2), (4.51)

is necessary for guaranteeing the (local) asymptotic stability;

(ii) if A < 0, ∀τ ∈ R
+, the existence of a positive constant h such that

P1 > h(u2 + v2), (4.52)

is necessary for guaranteeing the (Chetaiev) instability.

For the sake of completeness we recall here some Lemmas, proved in [38] that we will

use to obtain stability/instability results.

Lemma 4.3 Suppose that

A∗ > 0 , I∗ > 0. (4.53)

Then does not exist a positive constant h such that

P1 ≤ −h(u2 + v2) , ∀τ ∈ R
+, (4.54)

and P1 is positive semidefinite for

A ≥ A0e
−2I∗τ , A0 = A(0), (4.55)

and positive definite, according to

P1 ≥ A∗I∗(u
2 + v2), (4.56)

for
dA

dτ
≥ 0, ∀τ ∈ R

+. (4.57)
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Remark 4.7 We observe that

I∗ = inf(−(ϕ1 + ϕ2)) = − sup(ϕ1 + ϕ2). (4.58)

Hence (4.53) can be written as

A∗ > 0, (ϕ1 + ϕ2)
∗ < 0. (4.59)

Lemma 4.4 Suppose that

A∗ > 0, I∗ < 0. (4.60)

Then does not exist a positive constant h such that

P1 ≥ h(u2 + v2), (4.61)

and P1 is negative semidefinite for

A ≤ A0e
−2I∗τ , (4.62)

and negative definite, either according to

P1 ≤ −A∗|I∗|(u2 + v2), (4.63)

for
dA

dτ
≤ 0, (4.64)

or according to

P1 ≤ −2εA∗|I∗|(u2 + v2), 0 < ε = const. < 1, (4.65)

for

A ≤ A0(1 − ε)e2|I∗|τ , ∀τ > 0. (4.66)

Lemma 4.5 Suppose that

A∗ < 0, I∗ < 0. (4.67)
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Then does not exist a positive constant h such that (4.54) holds. Further P1 is positive

semidefinite for

A ≥ A0e
−2I∗τ , (4.68)

and positive definite according to

P1 ≥ A∗I∗(u
2 + v2), (4.69)

when (4.57) holds.

4.3 Stability criteria

Theorem 4.3 Suppose that (4.22)-(4.24), (4.60) and (4.62) or (4.60) and (4.64)

or (4.60) and (4.66) hold together with the condition (iii) or (iv) of Lemma 4.2.

Then the null solution of system (4.26) is nonlinearly, asymptotically, exponentially

(locally) stable.

Proof. By virtue of the hypotheses, there exist two positive constants h1 and h2,

such that


















P1 ≤ −h1(u
2 + v2),

P2 + P3 ≤ −h2(u
2 + v2) ,

(4.70)

and hence, from (4.33) and (4.70), one obtains that

dV

dτ
≤ −h

2
(u2 + v2) + |Ψ|, (4.71)

with h = inf(h1, h2)(> 0). The boundedness of ψ, ϕi (i = 1, 2), implies that

|Ψ| ≤M(u + v)(uv) ≤ M
√

2

2
(u2 + v2)

3

2 , (4.72)

with

M = max(|A3 + A2ψ|, |A1 + A3ψ|). (4.73)
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Hence, starting from (4.71), one obtains:

dV

dτ
≤ −δ1V + δ2V

3

2 = V (−δ1 + δ2V
1

2 ), (4.74)

with

δ1 =
h

2m1
(> 0), δ2 =

M
√

2

2A
3

2
∗

(> 0). (4.75)

Then the assumption V
1

2

0 <
δ1

δ2
implies, by recursive argument, that:

V ≤ V0e
δτ , δ = δ1 − δ2V

1

2

0 (> 0). (4.76)

Moreover, by virtue of (4.38), V and W = (u2 + v2) are equivalent and in particular

(4.38) is satisfied. Now, since all the hypotheses of the Liapunov (asymptotic) sta-

bility theorem are satisfied, the null solution of (4.26) is nonlinearly, asymptotically,

exponentially, locally stable.

Remark 4.8 By virtue of Lemmas 4.2-4.5 and Theorem 4.3, apart from the critical

case IA ≡ 0, the conditions (4.60) or the equivalent conditions

A∗ > 0, (AI)∗ < 0, (4.77)

appear to be the basic conditions to guarantee the stability of the null solution of

(4.26).

Theorem 4.4 Suppose that (4.22) − (4.24) hold and let (4.60) hold by virtue of

(ϕ1)∗ ≥ k1, (ϕ2)∗ ≥ k2, (4.78)

with ki (i = 1, 2) positive constants. Then


















ϕ1 ≥ 1 − (1 − ϕ1)τ=0e
2(k1−ε)τ ,

ψ + ϕ2 ≤ (ψ + ϕ2)τ=0e
2(k2−ε)τ ,

(4.79)

with 0 ≤ ε < inf(k1, k2), guarantee the (local) nonlinear asymptotic exponential sta-

bility of the null solution of (4.26).
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Proof. For the proof see [38].

Remark 4.9 Obviously (4.26) cannot admit periodic solutions when the conditions

guaranteeing the asymptotic stability of the null solution hold.

Theorem 4.5 Suppose that (4.22) − (4.24) and (4.60) hold and let us assume that














































































(ε1ϕ1)∗ > 0, (ε2ϕ2)∗ > 0, (ϕ1 + ϕ2)∗ > 0,

ψ + ϕ2

1 − ϕ1
<

(

ψ + ϕ2

1 − ϕ1

)

τ=0

e−4(1−ε1)F (τ), ∀τ > 0,

ψ + ϕ2

1 − ϕ1
>

(

ψ + ϕ2

1 − ϕ1

)

τ=0

e4(1−ε2)G(τ), ∀τ > 0,

F (τ) =

∫ τ

0

−ϕ1(z) dz, G(τ) =

∫ τ

0

−ϕ2(z) dz,

(4.80)

with εi (i = 1, 2) constants such that

(1 − ε1)ϕ1 + (1 − ε2)ϕ2 > 0, ∀τ ∈ R
+, (4.81)

then the zero solution of (4.26) is nonlinearly (locally) asymptotically exponentially

stable.

Proof. Requiring






















−2ϕ1µ1 +
dµ1

dτ
< −2ε1ϕ1µ1,

−2ϕ2µ2 +
dµ2

dτ
< −2ε2ϕ2µ2,

(4.82)

one easily obtains that


















µ1 < µ1(0)e−2(1−ε1)F (τ),

µ2 < µ2(0)e−2(1−ε2)G(τ).

(4.83)
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The hypotheses (4.80)4 − (4.80)5, are verified by

µ1 =

(

ψ + ϕ2

1 − ϕ1

) 1

2

, µ2 =

(

1 − ϕ1

ψ + ϕ2

) 1

2

. (4.84)

With this choice, the energy E(τ) given by (4.30) has to satisfy

dE

dτ
< −1

2

[

2(ε1ϕ1)∗µ1u
2 + 2(ε2ϕ2)∗µ2v

2
]

+ Φ. (4.85)

with Φ given by (4.30). Setting

h2 = 2 min((ε1ϕ1)∗, (ε2ϕ2)∗), (4.86)

one obtains
dE

dτ
< −h2E + Φ. (4.87)

The boundedness of ψ, ϕi (i = 1, 2), implies that

|Φ| ≤M ′(u+ v)(uv) ≤ M ′
√

2

2
(u2 + v2)

3

2 , (4.88)

with

M ′ = max(|µ1|, |ψµ2|). (4.89)

Hence, starting from (4.87) one obtains:

dE

dτ
≤ −δ′1E + δ′2E

3

2 = E(−δ′1 + δ′2E
1

2 ), (4.90)

with

δ′1 =
h2

m3

(> 0), δ′2 =
M ′

√
2

2m
3

2

2

(> 0). (4.91)

Then the assumption E
1

2

0 <
δ′1
δ′2

implies, by recursive argument, that:

E ≤ E0e
δ′τ , δ′ = δ′1 − δ′2E

1

2

0 (> 0). (4.92)

Moreover, by virtue of (4.39), E and W = (u2 + v2) are equivalent and in partic-

ular (4.39) − (4.40) are satisfied. Now, since all the hypotheses of the Liapunov

(asymptotic) stability theorem are satisfied, the null solution of (4.26) is nonlinearly,

asymptotically, exponentially, locally stable.
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Remark 4.10 We observe that

(i) (4.80)3 is necessary for the consistence of (4.81), while (4.81) guarantees the

consistence of (4.80)4 − (4.80)5;

(ii) theorem 4.5 does not require necessarily

(ϕ1)∗ > 0, (ϕ2)∗ > 0, (4.93)

but can hold also if

ϕ1ϕ2 < 0, ∀τ > 0, A∗ > 0. (4.94)

In fact, let



















ϕ1 = −ϕ2[ϕ(τ) + 1], ϕ2 < 0, ϕ > 0,

ε1 =
1

2
, ε2 = −1

2
, A∗ > 0.

(4.95)

Then

(1 − ε1)ϕ1 + (1 − ε2)ϕ2 = −ϕ + 1

2
ϕ2 +

3

2
ϕ2 > 0, (4.96)

is verified by

ϕ > 2, ∀τ > 0. (4.97)

Theorem 4.6 Let (4.22) − (4.24) hold and suppose that (4.60) hold by virtue of

(ϕ1)∗ > 0, (ϕ2)∗ > 0. (4.98)

Assuming that

(1 − ϕ1)∗(ψ + ϕ2)
∗ < (ϕ1)∗(ϕ2)∗, (4.99)

the zero solution of (4.26) is nonlinearly (locally) asymptotically exponentially stable.
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Proof. Choosing

µ1 =

(

(ψ + ϕ2)
∗

(1 − ϕ1)∗

)
1

2

, µ2 =

(

(1 − ϕ1)∗
(ψ + ϕ2)∗

)
1

2

, (4.100)

it follows that

dE

dτ
≤ −ϕ1µ1u

2 − ϕ2µ2v
2 + [µ1(1 − ϕ1)∗ + µ2(ψ + ϕ2)

∗] uv + Φ. (4.101)

In view of (4.99) − (4.100) one obtains

dE

dτ
≤ −(ϕ1)∗µ1u

2 − (ϕ2)∗µ2v
2 + 2

√

(1 − ϕ1)∗(ψ + ϕ2)∗uv + Φ. (4.102)

Since µ1 = µ−1
2 it turns out that











































(1 − ϕ1)∗(ψ + ϕ2)
∗ < (ϕ1)∗(ϕ2)∗ = µ1(ϕ1)∗µ2(ϕ2)∗,

(1 − ϕ1)∗(ψ + ϕ2)
∗ = η2µ1(ϕ1)∗µ2(ϕ2)∗,

2
√

(1 − ϕ1)∗(ψ + ϕ2)∗uv ≤ η(µ1(ϕ1)∗u
2 + µ2(ϕ2)∗v

2),

(4.103)

with 0 < η = const. < 1. Then (4.102) becomes

dE

dτ
≤ −(1 − η)

[

(ϕ1)∗µ1u
2 + µ2(ϕ2)∗v

2
]

+ Φ, (4.104)

and hence
dE

dτ
≤ −h3E + Φ, (4.105)

with

h3 = 2(1 − η) min((ϕ1)∗, (ϕ2)∗). (4.106)

Following the same procedure used in theorem 4.5, the thesis is hold.

Theorem 4.7 Let (4.22) − (4.24) hold together with (4.60) by virtue of

(ϕ1)∗ > 0, (ϕ2)∗ > 0, (4.107)
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and

(1 − ϕ1)∗ + (ψ + ϕ2)
∗ < 2

√

(ϕ1)∗(ϕ2)∗. (4.108)

Then the null solution of system (4.26) is nonlinearly (locally) asymptotically expo-

nentially stable.

Proof. Choosing µ1 = µ2 = 1, from (4.30) it follows that

dE

dτ
=

1

2

[

−2ϕ1u
2 − 2ϕ2v

2 + 2 (ϕ1 − 1 + ϕ2 + ψ)uv
]

+ Φ

≤ −(ϕ1)∗u
2 − (ϕ2)∗v

2 + ((1 − ϕ1)∗ + (ψ + ϕ2)
∗)uv + Φ.

(4.109)

From (4.108), ∃η = const. ∈]0, 1[ such that

(1 − ϕ1)∗ + (ψ + ϕ2)
∗ = 2η

√

(ϕ1)∗(ϕ2)∗. (4.110)

Hence

dE

dτ
≤ −(ϕ1)∗u

2 − (ϕ2)∗v
2 + 2η

√

(ϕ1)∗(ϕ2)∗uv + Φ

≤ −h4(1 − η)(u2 + v2) + Φ,

(4.111)

with h4 = min((ϕ1)∗, (ϕ2)∗). Then following the same procedure used in theorem 4.5,

the thesis is hold.

Theorem 4.8 Let (4.22)-(4.24) hold and suppose that

A∗ > 0, I ≡ 0, (4.112)

together with (iii) or (iv) of Lemma 4.2. Then if

dA

dτ
≤ 0 ∀τ ∈ R

+, (4.113)

or if
(

dA

dτ

)∗

= −k̃, k̃ = const. > 0, (4.114)

the null solution of (4.26) is nonlinearly (locally) asymptotically, exponentially, stable.
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Proof. From (4.28), by virtue of (4.112), one immediately obtains that V is positive

definite. Moreover, from (4.33), on taking into account (ii) or (iv) of Lemma 4.2, it

follows that
dV

dτ
≤ −h(u2 + v2) + |Ψ|.

Adopting the same procedure followed in theorem 4.3, the thesis is hold.

Theorem 4.9 Let (4.22)-(4.24) hold together with

A ≡ 0. (4.115)

Then, if (iii) or (iv) of Lemma 4.2 hold, the null solution of (4.26) is nonlinearly

(locally) asymptotically, exponentially, stable.

Proof. V is positive definite. Moreover if A ≡ 0, then P1 = 0 and hence

dV

dτ
=

1

2
(P2 + P3) + Ψ.

From (iii) or (iv) of Lemma 4.2 it follows that

dV

dτ
≤ −δ1V + δ2V

3

2 .

Following the same procedure used in theorem 4.3, the thesis is hold.

4.4 Instability criteria

Instability criteria can be obtained, of course, by means either of the Liapunov func-

tion (4.28) or the function (4.27). We here recall the instability theorems obtained in

[38] by the function (4.28) {cfr. Theorems 4.10-4.13} and concentrated ourselves on

the instability theorems obtained by using the function (4.27).

Theorem 4.10 Suppose that (4.22)-(4.24), (4.53), (4.57) hold together with (i) of

Lemma 4.2. Then the null solution of (4.26) is unstable.
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Theorem 4.11 Suppose that (4.22)-(4.24), (4.67), (4.57) and (i) of Lemma 4.2 hold.

Then the null solution of (4.26) is unstable.

Theorem 4.12 Suppose that

I ≡ 0, (4.116)

and (i) of Lemma 4.2 hold. Then if

(

dA

dτ

)

∗

≥ k̃ = const > 0, (4.117)

the null solution of (4.26) is unstable.

Theorem 4.13 Suppose that (4.22)-(4.24) hold. If

A ≡ 0, (4.118)

and (ii) of Lemma 4.2 hold, then the null solution of (4.26) is (Chetaiev) unstable.

Theorem 4.14 Suppose that (4.53) hold by virtue of

ϕ∗
1 ≤ −h1, ϕ∗

2 ≤ −h2, (4.119)

with hi (i = 1, 2) positive constants. Then



















ψ + ϕ2 > (ψ + ϕ2)τ=0e
−2(h1−ε)τ ,

ϕ1 < 1 − (1 − ϕ1)τ=0e
−2(h2−ε)τ ,

(4.120)

with 0 < ε < inf(h1, h2) guarantee the instability of the null solution of (4.26).

Proof. Choosing

µ1 = ψ + ϕ2, µ2 = 1 − ϕ1, (4.121)

it follows that

E =
1

2

[

(ψ + ϕ2)u
2 + (1 − ϕ1)v

2
]

, (4.122)
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is positive definite and

dE

dτ
=

1

2

[(

d(ψ+ϕ2)

dτ
−2ϕ1(ψ + ϕ2)

)

u2+

(

d(1−ϕ1)

dτ
−2ϕ2(1−ϕ1)

)

v2

]

, (4.123)

where we have disregarded the contribution of Φ. Then (4.24)2 and (4.120) guarantee

that






















d(ψ + ϕ2)

dτ
− 2ϕ1(ψ + ϕ2) > 2ε(ψ + ϕ2)∗ > 0,

d(1 − ϕ1)

dτ
− 2ϕ2(1 − ϕ1) > 2ε(1 − ϕ1)∗ > 0.

(4.124)

Hence all the hypotheses of the instability Liapunov theorem are verified.

Theorem 4.15 Suppose that (4.22)-(4.24) and (4.67) hold by virtue of

(ϕ1)∗ ≥ h1, |ϕ2|∗ ≤ h2, (4.125)

with hi (i = 1, 2) positive constants such that h1 > h2. Then


















ψ + ϕ2 > (ψ + ϕ2)0e
2(ε+h2)τ ,

ϕ1 > 1 + (ϕ1 − 1)0e
−2(ε−h1)τ ,

(4.126)

imply the instability of the null solution of (4.26).

Proof. Since (4.67) hold, we have to require

ϕ1ϕ2 < (ϕ1 − 1)(ψ + ϕ2) + A∗, ∀τ ∈ R
+. (4.127)

In fact, if h1 > h2 it follows that

ϕ1 + ϕ2 ≥ h1 − |ϕ2|∗ ≥ h1 − h2 > 0,

and hence I∗ < 0.

Choosing

µ1 = ϕ1 − 1, µ2 = ψ + ϕ2, (4.128)
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one has

E =
1

2

[

(ϕ1 − 1)u2 + (ψ + ϕ2)v
2
]

, (4.129)

and

dE

dτ
=

1

2

{[

dϕ1

dτ
−2ϕ1(ϕ1−1)

]

u2+

[

d(ψ+ϕ2)

dτ
−2ϕ2(ψ+ϕ2)

]

v2+

+2 [(ϕ1 − 1)2 + (ψ + ϕ2)
2] uv } ,

(4.130)

where we have disregarded the contribution of Φ. Hence

dE

dτ
≥ 1

2

{[

d(ϕ1−1)

dτ
−2ϕ1(ϕ1−1)

]

u2+

[

d(ψ+ϕ2)

dτ
−2ϕ2(ψ+ϕ2)

]

v2

}

, (4.131)

and the conditions (4.126) guarantee that























d(ϕ1 − 1)

dτ
− 2ϕ1(ϕ1 − 1) > −2ε(ϕ1 − 1)∗ > 0,

d(ψ + ϕ2)

dτ
− 2ϕ2(ψ + ϕ2) > 2ε(ψ + ϕ2)∗ > 0.

(4.132)

Hence E satisfies all the hypotheses of the Chetaiev instability theorem.

4.5 The case p, q 6= 0

Now we want to analyze the following model



























ẋ = f1(t)(a− by)x+D1(t)

(

x

y
y − x

)1+p

,

ẏ = f2(t)(−c + dx)y +D2(t)

(

y

x
x− y

)1+q

,

(4.133)

with p, q 6= 0, under the hypotheses 1) − 6).

For the study of the stability of the equilibrium, we will use a different approach with

respect to that used for the case p = q = 0. Precisely, we will study at the first
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the linear stability-instability and we will reconduct all the results obtained for the

nonlinear system, since we proved that the nonlinear terms verify the inequality (4.18),

Applying the transformation


























x = xX, y = yY, τ = a

∫ t

0

f1(z) dz,

ϕ1(t) =
D1(t)x̄

p

af1(t)
, ϕ2(t) =

D2(t)ȳ
q

af1(t)
, ψ(t) =

cf2(t)

af1(t)
,

(4.134)

model (4.133) becomes























dX

dτ
= X −XY + ϕ1(Y −X)1+p,

dY

dτ
= −ψY + ψXY + ϕ2(X − Y )1+q.

(4.135)

Remark 4.11 From (4.135) one has



























X(τ) = X0 exp

∫ τ

0

[

1 − Y (z) +
ϕ1(z)

X(z)
(Y (z) −X(z))1+p

]

dz,

Y (τ) = Y0 exp

∫ τ

0

[

−ψ(z) + ψ(z)X(z) +
ϕ2(z)

Y (z)
(X(z)−Y (z))1+q

]

dz,

(4.136)

and hence {X0 > 0, Y0 > 0} ⇒ {X(τ) > 0, Y (τ) > 0}∀τ > 0.

Model (4.135) admits (1, 1) as equilibrium point.

Setting

X = u+ 1, Y = v + 1, (4.137)

the model becomes






















du

dτ
= −v − uv + ϕ1(t)(v − u)1+p,

dv

dτ
= ψ(t)u+ ψ(t)uv + ϕ2(t)(u− v)1+q,

(4.138)
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For the study of the stability of the null solution of system (4.138), the Liapunov

function [19] is given by

V =
1

2

[

ψ(1 + ψ)u2 + (1 + ψ)v2
]

=
1

2
(1 + ψ)

[

ψ2u2 + v2
]

. (4.139)

The temporal derivative of V , along the solution of (4.138), is

dV

dτ
=

1

2

dψ

dτ

[

(1 + 2ψ)u2 + v2
]

+ F , (4.140)

with


















F = (1 + ψ)(ψuF1 + F2),

F1 = −uv + ϕ1(v − u)1+p, F2 = ψuv + ϕ2(u− v)1+q.

(4.141)

Remark 4.12 Since ψ∗ > 0, then there exists a positive constant m1 such that

ψ∗(u
2 + v2) < V < m1(u

2 + v2), ∀τ ∈ R
+, (4.142)

and hence V is bounded, has an infinitely small upper bound and is positive definite.

4.6 Linear stability-instability theorems

Disregarding the contribution of nonlinear terms, model (4.138) can be written as






















du

dτ
= −v,

dv

dτ
= ψu.

(4.143)

Easily the following theorems hold.

Theorem 4.16 The null solution of system (4.143) is stable if

dψ

dτ
≤ 0, (4.144)

and it is asymptotically stable if
(

dψ

dτ

)∗

= −k̃, k̃ = positive constant. (4.145)
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Theorem 4.17 If
(

dψ

dτ

)∗

≥ k̃, k̃ = positive constant, (4.146)

then the null solution of (4.143) is unstable.

Remark 4.13 We recall that

i) theorems 4.16-4.17 continue to hold also when the coefficients of (4.143) are

periodic functions of τ ,

ii) when the conditions guaranteeing the asymptotic stability of the null solution of

(4.143) hold, then (4.143) cannot admit periodic solutions not even when the

coefficients are periodic functions of τ of the same period.

4.7 Nonlinear stability-instability theorems

Theorem 4.18 F1 and F2 in (4.141) verify

(|u| + |v|)(|F1| + |F2|) ≤ ε1(u
2 + v2)1+ε2, (4.147)

with εi (i = 1, 2), positive constants. Hence all the results for the linear stability-

instability, hold also for system (4.138).

Proof. Since

|u| + |v| ≤
√

2(u2 + v2)
1

2 , (4.148)

we have that (4.147) is satisfied when

|F1| + |F2| ≤ M(u2 + v2)
1

2
+ε2, (4.149)

with M positive constant. But, since the boundedness of ϕi, (i = 1, 2) and ψ,

|F1| + |F2| = | − uv + ϕ1(v − u)1+p + ψuv + ϕ2(u− v)1+q| ≤

≤ a1|uv| + a2|(v − u)1+p| + a3|(u− v)1+q|,
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ai (i = 1, 2, 3), positive constants. Setting

z = max{p, q}, (4.150)

one obtains

|F1| + |F2| ≤ b1|uv| + b2(|u| + |v|)1+z, bi = const > 0 (i = 1, 2). (4.151)

Since (4.148) and

|uv| ≤ (u2 + v2)

2
, (4.152)

hold, then

|F1| + |F1| ≤ c1(u
2 + v2) + c2(u

2 + v2)
1+z
2 ci = const > 0 (i = 1, 2). (4.153)

We have to distinguish two case:

i) u2 + v2 ≤ 1,

ii) u2 + v2 ≥ 1.

In the first case one can choose

ε2 = min

{

1

2
,
z

2

}

,

in the second case it is sufficient choose

ε2 = max

{

1

2
,
z

2

}

,

and hence, for example, one can choose ε2 =
1 + z

2
.
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Chapter 5

Generalized Lotka-Volterra models

with high nonlinearities

Now we consider another kind of nonautonomous perturbations to the classical Lotka-

Volterra model. In particular, we want to determine the most general conditions

assuring the stability-instability of the equilibrium point (x, y) for the following model


























ẋ = af1(t)x− bf1(t)
x1+py1+q

xpyq
,

ẏ = −cf2(t)y + df2(t)
x1+py1+q

xpyq
.

(5.1)

with p, q 6= 0, under the hypotheses 1) − 6) of Chapter 4.

Setting

x = xX, y = yY, τ = a

∫ t

0

f1(z) dz, ψ(t) =
cf2(t)

af1(t)
, (5.2)

(5.1) becomes






















dX

dτ
= X −X1+pY 1+q,

dY

dτ
= −ψY + ψX1+pY 1+q.

(5.3)

Remark 5.1 We remark that
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i) (1, 1) is a critical point of (5.3), ∀(p, q) ∈ (N+)2;

ii) in view of (5.3) it follows that























X = X0 exp

∫ τ

0

[

1 −Xp(z)Y 1+q(z)
]

dz,

Y = Y0 exp

∫ τ

0

[

−ψ(z) + ψ(z)X1+p(z)Y q(z)
]

dz,

and hence {X0 > 0, Y0 > 0} ⇒ {X(τ) > 0, Y (τ) > 0, ∀τ > 0}.

Setting

X = u+ 1, Y = v + 1, (5.4)

(5.3) can be written as






















du

dτ
= u+ F,

dv

dτ
= −ψv − ψF,

(5.5)

with

F = 1 − (1 + u)1+p(1 + v)1+q. (5.6)

Denoting with ξ the nonlinear part of F , it follows that

F (u, v) = −(1 + p)u− (1 + q)v + ξ. (5.7)

Hence (5.5) becomes






















du

dτ
= −pu− (1 + q)v + ξ,

dv

dτ
= (1 + p)ψu+ qψv − ψξ,

(5.8)

In order to study the stability/instability of the null solution of system (5.8), we will

consider the the standard “energy”

E =
1

2

[

µ1u
2 + µ2v

2
]

, (5.9)
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with

µi ∈ C1(R+) ∩ L∞(R+), (5.10)

and the Liapunov function [38]

V =
1

2

{

A(u2 + v2) + [pv + (1 + p)ψu]2 + [(1 + q)v + qψu]2
}

, (5.11)

where

A = −pqψ + (1 + p)ψ(1 + q) = (1 + p+ q)ψ, I = −p + qψ. (5.12)

The temporal derivative of E, along the solutions of (5.8), is

dE

dτ
=

1

2

[(

dµ1

dτ
− 2pµ1

)

u2 +

(

dµ2

dτ
+ 2qψµ2

)

v2

]

+

+[ψµ2(1 + p) − µ1(1 + q)]uv + Φ,

(5.13)

where

Φ = (µ1u− µ2ψv)ξ. (5.14)

Moreover, setting



































































F = (α1u− α3v)ξ + (α2v − α3u)(−ψξ),

α1 = A+ (1 + p)2ψ2 + q2ψ2,

α2 = A+ p2 + (1 + q)2,

α3 = −[p(1 + p) + q(1 + q)]ψ,

(5.15)

along the solutions of (5.8) it turns out that

dV

dτ
= P (τ, u, v) + F , (5.16)
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with






















































P =
1

2

3
∑

i=1

Pi(τ, u, v), P1 =

(

2IA+
dA

dτ

)

(u2 + v2),

P2 = (1 + p)2 d

dτ
ψ2 u2 + 2p(1 + p)

dψ

dτ
uv,

P3 = q2 d

dτ
ψ2 u2 + 2q(1 + q)

dψ

dτ
uv.

(5.17)

Remark 5.2 It turns out that

i) since A∗ = (1 + p+ q)ψ∗ > 0 and since the boundedness of ψ, then there exists

a positive constant m1 such that

A∗(u
2 + v2) < V < m1(u

2 + v2), ∀τ ∈ R
+, (5.18)

and hence V is bounded, has an infinitely small upper bound and is positive

definite;

ii) property i) holds also for E when µi > 0, (i = 1, 2). In fact one has

m2(u
2 + v2) < E < m3(u

2 + v2), (5.19)

with

m2 <
1

2
inf((µ1)∗, (µ2)∗), m3 >

1

2
sup((µ1)

∗, (µ2)
∗); (5.20)

iii) when either µ1 > 0 or µ2 > 0, at any instant τ ∈ R
+ and in any disk of the

phase space, centered at the origin O = (0, 0), there exists a domain in which

E(t, u, v) > 0;

iv) the critical case is the case in which

ψ = const. =
p

q
, (5.21)

and hence AI ≡ 0, ∀τ ∈ R
+.
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5.1 Linear stability-instability results

Disregarding the contribution of nonlinear terms, model (5.8) becomes























du

dτ
= −pu− (1 + q)v,

dv

dτ
= (1 + p)ψu+ qψv.

(5.22)

The following theorems hold.

Theorem 5.1 Suppose that

0 < ψ = const. <
p

q
, (5.23)

then the null solution of (5.22) is asymptotically (locally) stable.

Proof. When ψ is constant, then system (5.22) is autonomous. In the case (5.23),

A = const. > 0, I = const. < 0 and P2 + P3 ≡ 0. Hence

dV

dτ
= AI(u2 + v2),

is negative definite.

Theorem 5.2 In the critical case, i.e.

ψ =
p

q
, (5.24)

the null solution of (5.22) is simply stable.

Proof. The proof follows very easily since in the case (5.24) V is constant along the

solutions of (5.22).

Theorem 5.3 If

ψ∗ <
p

q
,

dψ

dτ
< 0, (5.25)
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together with

[p(1 + p) + q(1 + q)]2
(

dψ∗

dτ

)2

< 4

{

AI+
1

2

dA

dτ
+
[

(1 + p)2 + q2
]

ψ
dψ

dτ

}

∗

·

·
{

AI +
1

2

dA

dτ

}

∗

,

(5.26)

then the null solution of (5.22) is asymptotically stable.

Proof. If (5.25)1 hold, then I∗ < 0. (5.25)2 and (5.26) assure that
dV

dτ
is negative

definite and hence all the hypotheses of the Liapunov stability theorem are satisfied.

Theorem 5.4 If

ψ ≤ ψ0e
−2hτ , h = const. = max {p, 2qψ∗} > 0, (5.27)

then the null solution of (5.22) is simply stable. If

ψ ≤ ψ0e
−2(h+ε)τ , ε > 0, (5.28)

then the null solution of (5.22) is asymptotically stable.

Proof. Choosing

µ1 = ψ2, µ2 = ψ
1 + q

1 + p
, (5.29)

it follows that E is positive definite and has an infinitely small upper bound. Moreover

dE

dτ
=

1

2

[(

dµ1

dτ
− 2pµ1

)

u2 +

(

dµ2

dτ
+ 2qψµ2

)

v2

]

=

=
1

2

[

2ψ

(

dψ

dτ
− pψ

)

u2 +
1 + q

1 + p

(

dψ

dτ
+ 2qψ2

)

v2

]

,

(5.30)

since ψµ2(1 + p) − µ1(1 + q) = 0. (5.27) guarantees that






















dψ

dτ
− pψ ≤ 0,

dψ

dτ
+ 2qψ2 ≤ 0,
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and hence
dE

dτ
≤ 0. In the case (5.28), one has























dψ

dτ
− pψ ≤ −2ε(ψ)∗ < 0,

dψ

dτ
+ 2qψ2 ≤ −4ε(ψ)∗ < 0,

and then the temporal derivative of E is negative definite and there is a positive

constant m such that
dE

dτ
≤ −mE ⇒ E ≤ E(0)e−mτ . (5.31)

For the instability, the following theorems hold.

Theorem 5.5 If

ψ = const. >
p

q
, (5.32)

then the null solution of (5.22) is unstable.

Proof. If (5.32) holds, then I = const. > 0 and

dV

dτ
= AI(u2 + v2),

is positive definite.

Theorem 5.6 If (5.26) holds together with

ψ∗ >
p

q
,

dψ

dτ
≥ 0, (5.33)

then the null solution of (5.22) is unstable.

Proof. (5.26) and (5.33) assure that
dV

dτ
is positive definite.

Theorem 5.7 Suppose that


















1 + q ≤ pq

ψ ≤ ψ0e
−2(p2+ε)τ , ε = const. > 0,

(5.34)

then the null solution of (5.22) is (Chetaiev) unstable.
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Proof. Choosing

µ1 = −ψ, µ2 =
1 + q

1 + p
, (5.35)

it follows that E assumes positive values in any disk centered in the origin and

dE

dτ
=

1

2

[(

dµ1

dτ
− 2pµ1

)

u2 + 2qψµ2v
2 − 4(1 + p)µ1µ2uv

]

≥ 1

2

[(

dµ1

dτ
− 2pµ1

)

u2 + 2qψµ2v
2 − 4(1 + p)|µ1|µ2|uv|

]

.

(5.36)

But, from (5.34)1, (1 + p)|µ1|µ2 = ψ(1 + q) ≤ pqψ. Then it follows that

2(1 + p)|µ1|µ2|uv| ≤ 2
√

pqψ
√

(1 + p)|µ1|µ2|uv|,

and hence, applying the Schwartz inequality

2
√

pqψ
√

(1 + p)|µ1|µ2|uv| ≤ (p(1 + p)|µ1|u2 + qψµ2v
2).

Hence
dE

dτ
≥ 1

2

(

dµ1

dτ
+ 2p2µ1

)

u2 = −1

2

(

dψ

dτ
+ 2p2ψ

)

u2.

If (5.34)2 holds, then
dψ

dτ
+ 2p2ψ < −2εψ∗ < 0,

i.e. the temporal derivative of E is positive definite. All the hypotheses of the

Chetaiev instability theorem are verified.

5.2 Nonlinear stability-instability results

All the results obtained for the linear system, continue to hold also for the nonlinear

one, if the nonlinear terms verify the following inequality

(|u| + |v|)(|ξ|+ | − ψξ|) ≤ ε1(u
2 + v2)1+ε2, εi = const. > 0. (5.37)

Theorem 5.8 ξ verifies (5.37).
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Proof. Since ψ is bounded

(|u| + |v|)(|ξ|+ | − ψξ|) = |ξ|(|u|+ |v|)(1 + ψ) ≤ k|ξ|(|u|+ |v|),

with k positive constant. Since

|u| + |v| ≤
√

2(u2 + v2)
1

2 ,

we have that (5.37) is satisfied when

|ξ| ≤M(u2 + v2)
1

2
+ε2 , (5.38)

with M positive constant. We begin to prove (5.38), at first, in two particular cases.

1) Case p = 1, q = 0.

In this case

F = 1 − (1 + u)2(1 + v) = −2u− v − u(u+ uv + 2v), (5.39)

and hence the system (5.5) becomes























du

dτ
= −u− v − u(u+ uv + 2v),

dv

dτ
= 2ψu+ ψu(u+ uv + 2v).

(5.40)

Hence, it turns out that

|ξ| = |u2 + u2v + 2uv)| ≤ u2 + u2|v| + 2|uv| ≤

≤ (|u| + |v|2) + (|u| + |v|)2(|u| + |v|) + (u2 + v2) ≤

≤ 2(u2 + v2) + 2(u2 + v2)
√

2(u2 + v2)
1

2 + (u2 + v2) ≤

≤ c1(u
2 + v2) + c2(u

2 + v2)
3

2 , ci = const. > 0.
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If u2 + v2 < 1, then

|ξ| ≤ a1(u
2 + v2), a1 = const. > 0,

then (5.38) holds with ε2 =
1

2
.

If u2 + v2 ≥ 1, then

|ξ| ≤ a2(u
2 + v2)

3

2 , a2 = const. > 0,

and one can choose ε2 = 1.

2) Case p = 0, q = 1.

In this case

F = 1 − (1 + u)(1 + v)2 = u− 2v − u(u+ v2 + 2v), (5.41)

and hence (5.5) becomes























du

dτ
= −2v − u(u+ v2 + 2v),

dv

dτ
= ψu+ ψv + ψu(u+ v2 + 2v).

(5.42)

The nonlinear term is

|ξ| = |u2 + uv2 + 2uv|,

and following the same procedure used in the case 1), (5.38) is hold.
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Now, we consider the general case p ≥ 1, q ≥ 1.

F =1−(1 + u)1+p(1 + v)1+q = 1−





1+p
∑

h=0





1 + p

h



 uh ·
1+q
∑

k=0





1 + q

k



 vk



 =

= 1 −



1 +

1+p
∑

h=1





1 + p

h



uh







1 +

1+q
∑

k=1





1 + q

k



 vk



 =

=−





1+p
∑

h=1





1 + p

h



uh+

1+q
∑

k=1





1 + q

k



 vk+

1+p
∑

h=1

1+q
∑

k=1





1 + p

h









1 + q

k



uhvk



 =

= −



(1 + p)u+ (1 + q)v +

1+p
∑

h=2





1 + p

h



 uh +

1+q
∑

k=2





1 + q

k



 vk+

+

1+p
∑

h=1

1+q
∑

k=1





1 + p

h









1 + q

k



 uhvk



 ,

and hence

F = −(1 + p)u− (1 + q)v + ξ, (5.43)

with

ξ=−





1+p
∑

h=2





1 + p

h



 uh+

1+q
∑

k=2





1 + q

k



 vk+

1+p
∑

h=1

1+q
∑

k=1





1 + p

h









1 + q

k



 uhvk



 . (5.44)
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But

|ξ| ≤
1+p
∑

h=2





1 + p

h



 |u|h+
1+q
∑

k=2





1 + q

k



 |v|k+
1+p
∑

i=1

1+q
∑

k=1





1 + p

h









1 + q

k



 |u|h|v|k ≤

≤
1+p
∑

h=2

C1
h,p(|u| + |v|)h +

1+q
∑

k=2

C2
k,q(|u| + |v|)k+

+

1+p
∑

i=1

1+q
∑

k=1

C1
h,pC

2
k,q(|u| + |v|)h(|u| + |v|)k.

Setting

z = max(p, q), (5.45)

one obtains

|ξ| ≤
1+z
∑

i=2

C1
z,i(|u| + |v|)i +

1+z
∑

i=2

C2
z,i(|u| + |v|)i +

[

1+z
∑

i=1

C1
z,iC

2
z,i(|u| + |v|)i

]2

≤

≤ C1

1+z
∑

i=2

(|u| + |v|)i + C2

[

1+z
∑

i=1

(|u| + |v|)i

]2

.

If |u| + |v| < 1, then

|ξ| ≤ C1(1 + z − 2)(|u| + |v|)2 + C2

[

(1 + z − 1)2(|u| + |v|)2
]

≤ C4(u
2 + v2),

then it is sufficient to choose ε2 =
1

2
.

In the case |u| + |v| ≥ 1, then

|ξ| ≤ C1(1 + z − 2)(|u| + |v|)1+z + C2

[

(1 + z − 1)2(|u| + |v|)2(1+z)
]

≤ C4(u
2 + v2)1+z,

then (5.38) holds with ε2 =
1

2
+ z.

Remark 5.3 When the conditions assuring the asymptotic stability of the null so-

lution of system (5.8) hold, then cannot exist cycles, neither if all the perturbations

are periodic of the same period. Hence, in these cases, system (4.56) can not admit

periodic solutions.
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Chapter 6

Generalized Lotka-Volterra models

with a logistic growth for the preys

Now we want to see how the nonautonomous perturbations influence the asymptotic

behaviour of the solutions of the model (3.15) around its equilibrium points. We

consider the following model



















ẋ = f1(t)(a− by − ex)x,

ẏ = f2(t)(−c + dx)y,

(6.1)

under the hypotheses

i) fi : R
+ → R

+, (i = 1, 2), verifying

|fi(t1) − fi(t2)| ≤ Ki|t1 − t2|, i = 1, 2, (6.2)

with Ki positive constants and ti ∈ R
+, (i = 1, 2);

ii) fi ∈ L∞(R+) ∩ C1(R+),

iii) a, b, c, d, e are positive constants.
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Remark 6.1 We remark that

• i) and ii) guarantee the global (in time) existence and uniqueness of the solution;

• model (6.1) admits the same equilibrium points of the model (3.15)

(0, 0),
(a

e
, 0

)

,
( c

d
,
a

b
(1 − β)

)

= (x, y), (6.3)

with 0 < β =
e

a

c

d
< 1, in order to guarantee that (6.3)3 is biologically meaning-

ful.

Introducing the following transformation

x = xX, y = yY, τ = a

∫ τ

0

f1(z) dz, ψ(t) =
c

a

f2(t)

f1(t)
> 0, (6.4)

model (6.1) becomes























dX

dτ
= [1 − (1 − β)Y − βX]X,

dY

dτ
= ψ(−1 +X)Y,

(6.5)

while the equilibrium points become

(0, 0),

(

1

β
, 0

)

, (1, 1). (6.6)

6.1 Linear stability-instability results of the criti-

cal points

The meaningful equilibrium point is (1, 1). Setting

X = u+ 1, Y = v + 1, (6.7)
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model (6.5) becomes






















du

dτ
= −βu− (1 − β)v − βu2 − (1 − β)uv,

dv

dτ
= ψu+ ψuv.

(6.8)

For this model, the Liapunov function ([38]) is

V =
1

2

[

A(u2 + v2) + (βv + ψu)2 + (1 − β)2v2
]

, (6.9)

with A = ψ(1 − β) > 0, I = −β < 0.

The temporal derivative of V , along the solutions of (6.8), is given by

dV

dτ
=

1

2

[(

2AI +
dA

dτ

)

(u2 + v2) + 2β
dψ

dτ
uv + 2ψ

dψ

dτ
u2

]

+ F =

=
1

2

[(

−2β(1−β)ψ+(1 − β)
dψ

dτ
+
dψ2

dτ

)

u2+

(

−2β(1−β)ψ+(1−β)
dψ

dτ

)

v2+

+ 2β
dψ

dτ
uv

]

+ F ,

(6.10)

where


















F = (A1u−A3v)(−βu2 − (1 − β)uv) + (A2v − A3u)(ψuv),

A1 = A + ψ2, A2 = A+ β2 + (1 − β)2, A3 = −βψ.

(6.11)

Disregarding the contribution of nonlinear terms in (6.8), the following theorem holds.

Theorem 6.1 If


























(

−2β(1 − β)ψ + (1 − β)
dψ

dτ
+
dψ2

dτ
, −2β(1 − β)ψ + (1 − β)

dψ

dτ

)∗

< −h,

β2

(

dψ

dτ

)2

<

(

−2β(1−β)ψ+(1−β)
dψ

dτ
+
dψ2

dτ

)

·
(

−2β(1−β)ψ+(1−β)
dψ

dτ

)

,

(6.12)

with h a positive constant, then the null solution of (6.8) is linearly asymptotically

stable.
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Proof. Since (ψ)∗ > 0, then A∗ > 0. Since ψ is bounded, then there is a positive

constant m such that

A∗(u
2 + v2) < V < m(u2 + v2), (6.13)

and hence V is positive definite and has an upper bound which is infinitesimal at the

origin.

If (6.12) holds, then
dV

dτ
is negative definite and the thesis is hold.

Remark 6.2 If
dψ

dτ
≤ 0, then (6.12)1 is satisfied. An example in which all the

hypotheses of the theorem 6.1 are verified is given by

ψ = αe−2γτ ,

where α is a positive constant and γ is chosen in the following way























γ = const. > 0 if 0 < β ≤ 1

2
,

0 < γ = const. <
β(1 − β)

2β − 1
if

1

2
< β < 1.

For the (linear) instability the following theorem holds.

Theorem 6.2 If (6.12)2 holds together with

(

−2β(1 − β)ψ + (1 − β)
dψ

dτ
+
dψ2

dτ
, −2β(1 − β)ψ + (1 − β)

dψ

dτ

)

∗

≥ k, (6.14)

with k a positive constant, then the null solution of (6.8), disregarding the contribution

of nonlinear terms, is unstable.

Proof. Under the hypotheses (6.14), and since ψ∗ > 0, V and its derivative along

the solution of system, are positive definite.

Now we want to study the linear stability of (0, 0).
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Disregarding the contribution of nonlinear terms in (6.5), the model becomes























dX

dτ
= X,

dY

dτ
= −ψY.

(6.15)

The Liapunov function [38] is given by

V =
1

2

[

A(X2 + Y 2) + Y 2 + ψ2X2
]

(6.16)

where A = −ψ, I = 1 − ψ, i.e.

V =
1

2
(ψ − 1)(ψX2 − Y 2), (6.17)

while the standard “energy” is

E =
1

2

(

µ1X
2 + µ2Y

2
)

, (6.18)

where µi : R
+ → R ∈ L∞ ∩ C1.

Remark 6.3 We remark that

i) V assumes positive values in each ball centered in the origin,

ii) property i) holds also for E when µ1 or µ2 are positive,

iii) if µi, (i = 1, 2), are positive then E is positive definite and the following in-

equality holds

m1(X
2 + Y 2) < E < m2(X

2 + Y 2),

and hence E is bounded and has an upper bound which is infinitely small at the

origin.
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The temporal derivative of V along the solution of (6.15) is given by

dV

dτ
=

1

2

[(

2AI +
dA

dτ

)

(X2 + Y 2) + 2ψ
dψ

dτ
X2

]

=

=
1

2

[(

2AI +
dA

dτ
+
dψ2

dτ

)

X2 +

(

2AI +
dA

dτ

)

Y 2

]

=

=
1

2

[(

−2ψ(1 − ψ) − dψ

dτ
+
dψ2

dτ

)

X2 −
(

2ψ(1 − ψ) +
dψ

dτ

)

Y 2

]

.

(6.19)

The temporal derivative of E along the solution of (6.15) is

dE

dτ
=

1

2

[

dµ1

dτ
X2 +

dµ2

dτ
Y 2 + 2µ1X

2 + 2µ2Y (−ψY )

]

=

=
1

2

[(

dµ1

dτ
+ 2µ1

)

X2 +

(

dµ2

dτ
− 2µ2ψ

)

Y 2

]

.

(6.20)

Theorem 6.3 If

ψ ≤ ψ(0)e−2τ , (6.21)

then the null solution of (6.15) is (simply) stable. If

ψ ≤ ψ(0)e−2(1+ε)τ , (6.22)

with ε a positive constant, then the null solution of (6.15) is asymptotically stable.

Proof. Choosing

µ1 = ψ, µ2 = 1, (6.23)

it follows that E is given by

E =
1

2

(

ψX2 + Y 2
)

, (6.24)

and is positive definite and has an upper bound infinitely small at the origin. The

temporal derivative of E along (6.15) is given by

dE

dτ
=

1

2

[(

dψ

dτ
+ 2ψ

)

X2 − 2ψY 2

]

. (6.25)
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(6.21) guarantees that
dψ

dτ
+ 2ψ ≤ 0, (6.26)

and hence
dE

dτ
is negative semidefinite, while in the case (6.22) one has

dψ

dτ
+ 2ψ ≤ −2εψ, (6.27)

and hence there is a positive constant m such that

dE

dτ
≤ −mE ⇔ E(τ) ≤ E0e

−mτ . (6.28)

Remark 6.4 In the hypotheses of theorem 6.3, all the species extinct.

For the linear instability, the following theorem holds.

Theorem 6.4 If























ψ >

(

1, ψ(0)e
2

“

ε−h2
h1

”

τ

)

, h1 = (2ψ − 1)∗, h2 = (ψ − 1)∗,

dψ

dτ
≤ 0, 0 < ε < h2,

(6.29)

then the null solution of (6.15) is (Chetaiev) unstable.

Proof. Since A = −ψ < 0, then V assumes positive values in each ball centered at

the origin.

From the hypotheses, it follows that























dV

dτ
≥ 1

2

[

(2ψ − 1)
dψ

dτ
− 2ψ(1 − ψ)

]

X2,

(2ψ − 1)
dψ

dτ
− 2ψ(1 − ψ) > 2εψ,

(6.30)

and hence
dV

dτ
is positive definite.
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We analyze now the linear stability of

(

1

β
, 0

)

.

Setting

u = X − 1

β
, v = Y, (6.31)

system (6.5) becomes



























du

dτ
= −u−

(

1 − β

β

)

v − βu2 − (1 − β)uv,

dv

dτ
= ψ

(

1 − β

β

)

v + ψuv.

(6.32)

In order to study the stability-instability of the null solution of model (6.32), we

introduce the standard “energy” and the Liapunov function [38]

V =
1

2

[

A(u2 + v2) + v2 +

(

1 − β

β

)2

(v + ψu)2

]

, (6.33)

with A = −ψ
(

1 − β

β

)

< 0, I = −1 − ψ

(

β − 1

β

)

.

The temporal derivative of V , calculated along the solutions of (6.32), is given by

dV

dτ
=

1

2

[

(

2AI+
dA

dτ

)

(u2+v2)+
dψ2

dτ

(

1 − β

β

)2

u2+2
dψ

dτ

(

1−β
β

)2

uv

]

+Ψ=

=
1

2

(

1 − β

β

) {[

2ψ

(

1 − ψ

(

1 − β

β

))

− dψ

dτ
+

(

1 − β

β

)

dψ2

dτ

]

u2 +

+

[

2ψ

(

1 − ψ

(

1 − β

β

))

− dψ

dτ

]

v2 + 2

(

1 − β

β

)

dψ

dτ
uv

}

+ Ψ,

(6.34)
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where


















































Ψ = (A1u− A3v)(−βu2 − (1 − β)uv) + (A2v − A3u)ψuv,

A1 = A2 + ψ2 +

(

1 − β

β

)2

, A2 = A2 + 1 +

(

1 − β

β

)2

,

A3 = −ψ
(

1 − β

β

)2

.

(6.35)

The temporal derivative of E is given by

dE

dτ
=

1

2

[(

dµ1

dτ
−2µ1

)

u2+

(

dµ2

dτ
+2µ2ψ

(

1−β
β

))

v2−2µ1

(

1−β
β

)

uv

]

+Φ, (6.36)

with

Φ = u[µ1u(−βu− (1 − β)v) + µ2ψv
2]. (6.37)

Theorem 6.5 If µi are positive bounded functions (i = 1, 2), and



























(

dµ1

dτ
− 2µ1,

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

))∗

< −h,

(

1 − β

β

)2

µ2
1 <

(

dµ1

dτ
− 2µ1

)(

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

))

,

(6.38)

with h a positive constant, then there is linear asymptotic stability for the null solution

of (6.32).

Proof. In these hypotheses E is positive definite, admits an upper bound infinitely

small at the origin, and
dE

dτ
is negative definite.

Theorem 6.6 If µi are positive bounded functions (i = 1, 2), such that



























µ1 ≤ µ1(0)e
−

˛

˛

˛

˛

˛

˛

1 − 3β

β

˛

˛

˛

˛

˛

˛

τ

,

µ2 ≤ µ2(0)e−kτ − h

k
,

(6.39)
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with h =
β − 1

β
µ1(0) = const. < 0, k = 2

(

1 − β

β

)

ψ∗ = const. > 0, then the null

solution of (6.32) is linearly simply stable, while if


























µ1 ≤ µ1(0)e
−

0

@

˛

˛

˛

˛

˛

˛

1 − 3β

β

˛

˛

˛

˛

˛

˛

+ε

1

Aτ

,

µ2 ≤ µ2(0)e−(k+ε)τ − h

k + ε
,

(6.40)

where ε > 0, then there is linear asymptotic stability.

Proof. If µi are positive definite, then E is positive definite and admits an upper

bound infinitely small at the origin. The temporal derivative of E, along the solutions

of the linear system linked to (6.32), is given by

dE

dτ
=

1

2

[(

dµ1

dτ
− 2µ1

)

u2 +

(

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

))

v2 − 2µ1

(

1 − β

β

)

uv

]

≤

≤ 1

2

[(

dµ1

dτ
− 2µ1

)

u2 +

(

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

))

v2 + 2µ1

(

1 − β

β

)

|uv|
]

≤

≤ 1

2

[(

dµ1

dτ
+ µ1

(

1 − 3β

β

))

u2 +

(

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

)

+ µ1

(

1 − β

β

))

v2

]

.

In the hypotheses (6.39), it follows that


























dµ1

dτ
+ µ1

(

1 − 3β

β

)

≤ 0,

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

)

+ µ1

(

1 − β

β

)

≤ 0

and hence
dE

dτ
≤ 0, while in the case (6.40) the temporal derivative of E is negative

definite, since


























dµ1

dτ
+ µ1

(

1 − 3β

β

)

≤ −εµ1,

dµ2

dτ
+ 2µ2ψ

(

1 − β

β

)

+ µ1

(

1 − β

β

)

≤ −εµ2.
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Remark 6.5 In the hypotheses of theorems 6.5 or 6.6, the predators extinct.

For the instability, the following result holds.

Theorem 6.7 If























































[

2ψ

(

1−ψ
(

1−β
β

))

−dψ
dτ

+

(

1−β
β

)

dψ2

dτ
, 2ψ

(

1−ψ
(

1−β
β

))

−dψ
dτ

]

∗

>h,

(

1 − β

β

)2 (

dψ

dτ

)2

<

[

2ψ

(

1 − ψ

(

1 − β

β

))

− dψ

dτ
+

(

1 − β

β

)

dψ2

dτ

]

·

·
[

2ψ

(

1 − ψ

(

1 − β

β

))

− dψ

dτ

]

,

(6.41)

with h a positive constant, then the null solution of (6.32) is linearly (Chetaiev)

unstable.

Proof. Since A = −ψ
(

1 − β

β

)

< 0, then V assumes positive values in each ball

centered at the origin. The conditions (6.41) assure that the temporal derivative of

V , calculated along the solutions of the linear system linked to (6.32), is positive

definite.

Theorem 6.8 If

ψ ≤ ψ(0)e
−

0

@

˛

˛

˛

˛

˛

˛

1 − 2β

β

˛

˛

˛

˛

˛

˛

+ε

1

Aτ

, (6.42)

with ε = const. > 0, then the null solution of (6.32) is linearly (Chetaiev) unstable.

Proof. Choosing

µ1 = −ψ, µ2 = µ2 = const. > 1,
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then E assumes positive values in each ball centered at the origin. The temporal

derivative of E, along the solutions of the linear system linked to (6.32), is given by

dE

dτ
=

1

2

[(

−dψ
dτ

+ 2ψ

)

u2 + 2µ2ψ

(

1 − β

β

)

v2 + 2ψ

(

1 − β

β

)

uv

]

≥

≥ 1

2

[(

−dψ
dτ

+ 2ψ

)

u2 + 2µ2ψ

(

1 − β

β

)

v2 − 2ψ

(

1 − β

β

)

|uv|
]

≥

≥ 1

2

[(

−dψ
dτ

+ 2ψ

)

u2 + 2µ2ψ

(

1 − β

β

)

v2 − 2ψ

(

1 − β

β

)

(u2 + v2)

]

=

=
1

2

[(

−dψ
dτ

+ 2ψ

(

2β − 1

β

))

u2 + 2ψ

(

1 − β

β

)

(µ2 − 1)v2

]

≥

≥ 1

2

[(

−dψ
dτ

+ 2ψ

(

2β − 1

β

))

u2

]

.

(6.42) assures that
dψ

dτ
+ 2ψ

(

1 − 2β

β

)

≤ −2εψ,

and hence
dE

dτ
is positive definite.

6.2 Nonlinear stability-instability results

Theorem 6.9 All the results guaranteeing the linear stability-instability of (1, 1),

(0, 0) and

(

1

β
, 0

)

guarantee also the local nonlinear stability-instability since, re-

spectively, the following inequalities hold

(|u|+ |v|)(| − βu2 − (1 − β)uv|+ |ψuv|) ≤ ε1(u
2 + v2)1+ε2; (6.43)

(|X| + |Y |)(| − (1 − β)XY − βX2| + |ψXY |) ≤ ε1(X
2 + Y 2)1+ε2, (6.44)

(|u| + |v|)(| − βu2 − (1 − β)v| + |ψuv|) ≤ ε1(u
2 + v2)1+ε2 . (6.45)

with εi (i = 1, 2), positive constants.
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