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Chapter 1

Introduction

La Nature est un temple où de vivants piliers

Laissent parfois sortir de confuses paroles;

L’homme y passe à travers des forêts de symboles

Qui l’observent avec des regards familiers.

(Nature is a temple in which living pillars

Sometimes give voice to confused words;

Man passes there through forests of symbols

Which look at him with understanding eyes.)

C. Baudelaire - Correspondances

Complex networked systems abound in Nature and Technology. They consist of a

multitude of interacting agents communicating over a web of connections (correspon-

dances). The Internet, power grids, flocks of birds, are all examples of networked

systems. The dynamics of such systems can be modeled in terms of three essential

ingredients: (i) a mathematical description of the behavior of each isolated agent

in the network; (ii) an interaction function, or coupling protocol, used by agents

(or nodes) to communicate; (iii) a graph describing the network of interconnections

between neighboring agents.

One of the most striking feature of networked systems is their ability to show

some emergent behavior that cannot be explained in terms of the individual dynam-

ics of each single agent. In this sense, an example is provided by the typical patterns

formed by flocks of birds and schools of fishes, [36]. Another notable example of

emerging behavior is synchronization, see e.g. [143, 178]. Many dynamical phenom-

ena in biology involve some form of synchronization, like e.g. circadian rhythms

in mammals, the cell cycle, spiking neurons, respiratory oscillations [205, 122, 84].

More generally, for networks of non-identical nodes, an interesting emerging behav-

ior is the so-called cluster synchronization [142, 164, 163]. Cluster synchronization
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is the regime where nodes having the same dynamics (i.e. identical nodes) become

synchronized with each other.

From the above discussion, it can be understood why over the past few years

much research effort within both the Physics and Control Theoretic communities

has been devoted to the study of networked and biochemical systems [4, 3, 25, 26,

117, 198, 132]. Indeed, understanding those systems may provide advances in many

application areas, like e.g. synthetic and computational biology, distributed control

and optimization, sensor networks, [126, 81, 61, 23, 187, 203, 131, 135, 83].

Typically, the analysis and control of networked systems can be recast as a sta-

bility problem of some invariant set of network dynamics. However, the systems

that are considered here are characterized by the fact that they are often non-

autonomous, affected by noise and uncertain [65, 100, 146, 147, 187]. Thus, using

classical stability tools may provide stability criteria which are too conservative, or

of difficult practical application. Often, to solve this problem, modelers and control

designers often resort to simulations in order to show the existence of some spe-

cific system’s behavior. Simulations, however, can never provide effective algebraic

conditions, and they are subject to numerical errors.

From a mathematical viewpoint, the problem of formally showing stability is

known to be extremely difficult. One approach it to analyze the convergence behav-

ior of nonlinear dynamical systems using Lyapunov functions [103, 108, 109, 45, 18].

However, in biological and network applications, the appropriate Lyapunov func-

tions are not always easy to find and, moreover, convergence is not guaranteed in

general in the presence of noise and/or uncertainties. Also, such an approach can

provide un-effective algebraic conditions, or conditions which can be hardly verifi-

able and applicable.

The above limitations can be overcome if the convergence problem is interpreted

as a property of all trajectories, asking that all solutions converge towards one

another (contraction) [111, 194, 161]. This is the viewpoint of contraction theory,

and more generally incremental stability methods, [7]. Global results are possible,

and these are robust to noise, in the sense that, if a system satisfies a contraction

property then trajectories remain bounded in the phase space. Contraction theory

has a long history. Contractions in metric functional spaces can be traced back to

the work of Banach and Caccioppoli [74] and, in the field of dynamical systems,

to [79] and even to [99] (see also [138], [7], and e.g. [113] for a more exhaustive list

of related references).

The aim of the Thesis is that of providing a coherent theoretical framework for

the study of networked systems, modeled by means of Ordinary Differential Equa-

tions (ODEs) with applications to biochemical networks, see e.g. [155, 157, 12].

In particular, our interest is twofold. For interconnected systems, we explore the

dynamical mechanisms which are responsible for the emergence of some coherent
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(coordinated) network dynamics. From the control viewpoint, we are interested in

providing guidelines for the design of decentralized communication strategies (or

protocols) for the network nodes which ensure some desired form of coordination.

For biochemical systems, the analysis is focussed on understanding the key dynami-

cal properties which are responsible for the system’s behavior, or functionality. The

main results for the analysis/control of interconnected systems that are presented

in the Thesis are based on the use of a generalized version of contraction theory,

[161, 163]. A detailed description of the contents of the Thesis is provided in the

next Section.

1.1 Thesis Outline

Chapter 2 and Chapter 3 of the Thesis are introductory chapters. Specifically, in

Chapter 2 the basic notions and definitions of contracting dynamical system are

reviewed, as presented in the work by Prof. Slotine and his co-authors, [111, 194,

142]. Then, in Chapter 3 the main definitions are given of interconnected system [70]

used in the rest of the Thesis. At the same time, in this Chapter, the main network

control problems addressed in the rest of the Thesis are introduced. Examples of

such network coordination problems are consensus, rendezvous, synchronization and

cluster synchronization, [135, 157, 164, 163].

In Chapter 4, the notion of contracting dynamical system is redefined and ex-

tended. Indeed, intuitively contraction of a dynamical system of interest depends

on how distances in the system’s phase space are measured. That is, contraction is

a property that depends on the particular norm being chosen for defining distances

in the system phase space: it can be indeed found that the results of Chapter 2

make implicitly use of the Euclideann norm. From the methodological viewpoint,

one of the major results obtained in the Thesis, and presented in this Chapter, is

that of extending the notion of contracting system to the use of arbitrary norms

(non-Euclidean norms). In the same Chapter, it is also shown that the algebraic

conditions for contraction (using arbitrary norms) can be considerably relaxed if

some structural properties of the vector field of interest are considered (symme-

tries). The results of this Chapter have been obtained in collaboration with Prof.

E. D. Sontag and Prof. J. J. E. Slotine, [161, 163].

A first implication of the use of non-Euclidean norms is shown in Chapter 5.

Specifically, it is shown that the use of such norms lead to the possibility of checking

contraction using a graphical approach, both for continuous-time and discrete-time

systems. Such an approach is shown to be particularly convenient for particular

classes of biochemical systems arising in transcriptional networks. The algorithmic

procedure for checking contraction presented in this Chapter has been obtained in

collaboration with Prof. J. J. E. Slotine, [154, 160, 159]. A preliminary version of



18 1 Introduction

the algorithm can be found in [156].

In Chapter 6, it is shown how the mathematical tools developed in Chapter 4

can be used to study stability of interconnected systems. The first result presented

in Chapter 6 is a multi-scale approach for network contraction. Its main feature is

that contraction analysis for a network of interest can be broke down in two steps:

a local level, where nodes are seen as black boxes and are characterized by some

contraction estimate and an interconnection level, where such estimates are used to

design couplings. The Chapter is then closed by presenting an approach making

use of symmetries and contraction. Specifically, it is shown that network topology

is linked to a particular class of symmetries (permutations of network nodes). Such

properties are then used to generate different symmetry patterns. The results are of

wide applications which range from control over networks, design of neural networks

and multi-purpose networks, where a specific pattern of synchrony is associated to

a particular set of inputs. The stability results presented in this Chapter arose, out

from a collaboration with Prof. Sontag and Slotine, [162, 163].

In Chapter 7 some results for the analysis and control of (cluster) synchronization

are presented. In particular, we consider a general model of interconnected system,

and show that this emerging (coordinated) behavior can be ensured by a contraction

property of some particular directions of the network phase space. We then specialize

this result to some classes of systems, providing sufficient conditions for (cluster)

synchronization based on matrix measures. This Chapter is then closed with a result

for the analysis of network synchronization, linking contraction to Lyapunov based

synchronization techniques and to the Master Stability Function. The main papers

where those results appeared are [155, 157, 41] (see also [42]).

All the networks and systems considered in the above chapters were made up by

nodes being continuous-time systems. In Chapter 8 we extend our study to networks

of discrete-time and asynchronous nodes. By the word asynchronous it is meant

here that information between network nodes occurs at time instants which are not

predetermined. In this Chapter, after generalizing the notion of contraction to the

use of arbitrary norms for discrete-time systems, we turn our attention to the study

of asynchronous networks. Specifically, we show how our results can be applied

to the design of communication protocols that allow to solve some coordination

problems, like e.g. consensus and cluster-synchronization, [158].

In Chapter 9 some applications of our mathematical tools to biochemical systems

are presented. Specifically, an approach is shown that allows to analyze/control

entrainment of transcription networks, [161] and a study is presented on quorum-

sensing networks [164]. Finally, the behavior of some important network motif is

explained [163].



Chapter 2

Nonlinear Contraction Theory: a

brief overview

In this introductory chapter we review some basic results on Contraction theory

which are systematically extended, and proved under different technical assumptions

in Chapter 4. The results presented can be found in various forms in [111], [194],

[142] to which the reader is referred for further details. This Chapter is then closed

by presenting some results linking contracting, Lipschitz and QUAD vector fields,

which can be partly found in [41].

2.1 Introduction

One of the most important problems arising in both the control and the analysis of

dynamical systems is that of determining if the system of interest is stable. Typi-

cally, stability is defined in the sense of Lyapunov [175], [169] and it is intended as

a property of some invariant set. For example, a set is said to be globally (asymp-

totically) stable if all the trajectories of the system of interest converge towards the

set.

Contraction theory (or contraction analysis) is based on a different view of sta-

bility, which is inspired by fluid mechanics. Rather than viewing stability as relative

to some nominal motion, or equilibrium point, in Contraction theory a system is

said to be stable (or contracting) if initial conditions (or temporary disturbances)

are forgotten exponentially fast, i.e. if the final behavior of the system is independent

on initial conditions. In other words, the viewpoint of contraction theory is that of

analyzing stability incrementally (or differentially): a system is contracting if tra-

jectories converge towards each other. In many cases, this differential approach is

significantly simpler than its integral counterpart both for the analysis and control

of nonlinear dynamical systems. Indeed, there is no need for finding some implicit

motion integral as in Lyapunov theory, or some global state transformation as in
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feedback linearization.

More generally, interpreting stability as a property of solutions (or trajectories)

of a dynamical system and asking that all solutions converge towards each other is

a viewpoint which is typical of incremental stability methods [7].

Contraction theory has a long history. Contractions in metric functional spaces

can be traced back to the work of Banach and Caccioppoli (see e.g. [74] for further

details). In the field of dynamical systems theory, ideas closely related to contraction

can be traced back to [79] and even to [99] (see also [138], [7], and e.g. [113] for a

more exhaustive list of related references and [89] for an historical overview).

In this Chapter we review some of the basic results of Contraction theory. The

Chapter is organized as follows: we start in Section 2.2 with presenting the basic

contraction analysis for a dynamical system. Such analysis is then generalized in

Section 2.3 and some properties of contracting systems are presented in Section 2.4.

Finally, motivated by the fact that sometimes a relaxed version of contraction is

required for applications, we present the concept of partial contraction in Section

2.5 and that of contraction towards invariant subspaces in Section 2.6.

2.2 Basic convergence result

We consider generic n-dimensional deterministic dynamical systems of the form

ẋ = f (t, x) , x(t0) = x0, t0 ≥ 0 (2.1)

The vector field f : R
+×R

n → R
n is assumed to be smooth. The key idea is to find

local conditions on the vector field guaranteeing convergence of nearby trajectories

towards each other. The next step is then to show that such conditions guarantee

global convergence properties.

Notice that (2.1) can be thought of as an n-dimensional fluid flow, with ẋ being

the n-dimensional velocity vector at the position x and time t. Since f(t, x) is

continuously differentiable, the following exact differential relation can be obtained:

δẋ =
∂f

∂x
(t, x)δx (2.2)

where δx is a virtual displacement. (This terminology comes from mechanics [13],

where a virtual displacement is an infinitesimal displacement at fixed time: formally

it may be thought of as a tangent differential form, differentiable with respect to

time.)

Consider two neighboring trajectories of (2.1) and the virtual displacement, δx,

between them. The squared (Euclidean) distance between these trajectories is δxT δx
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can be derived from (2.2):

d

dt

(
δxT δx

)
= 2δxT δẋ = 2δxT ∂f

∂x
(t, x)δx

Let λmax(t, x) the largest eigenvalue of the symmetric part of
∂f
∂x

(i.e., the largest

eigenvalue of 1
2

(
∂f
∂x
+ ∂f

∂x

T
)
) we have:

d
dt

(
δxT δx

)
= 2δxT ∂f

∂x
(t, x)δx =

= 2
(
1
2
δxT

(
∂f
∂x
− ∂f

∂x

T
)
δx+ 1

2
δxT

(
∂f
∂x
+ ∂f

∂x

T
)
δx

)
≤

≤ 2λmax(t, x)δx
T δx

Thus:

δx(t)T δx(t) ≤ δx(t0)
T δx(t0)e

R t

t0
λmax(τ,x)dτ

(2.3)

Now, assume that λmax(t, x) is uniformly negative definite, i.e.:

∃c 6= 0 : ∀x, ∀t ≥ t0, λmax(t, x) ≤ −c2 (2.4)

Then, (2.3) implies that any infinitesimal length converges exponentially to zero

with a rate (contraction rate) given by c2. By path integration this implies that

the length of any finite path converges exponentially to zero. This motivates the

following definition.

Definition 2.2.1. An open connected region in state space C ⊆ R
n, is called a

contraction region of (2.1) if system Jacobian is uniformly negative definite in C,
i.e. if:

∃c 6= 0 : ∀x, ∀t ≥ t0,
1

2

(
∂f

∂x
+
∂f

∂x

T)
≤ −c2I

Notice that the above condition is in turn implied by (2.4). We remark here that

in this Chapter all matrix inequalities are referred to the symmetric part of square

matrices.

Now, consider a ball of constant radius (defined by the Euclidean norm) about

a given trajectory for which C is forward invariant (that is, the trajectory remains
in C for any t ≥ t0). Since C is a contraction region, then any length within the ball
decreases exponentially: that is, any trajectory starting in the ball remains in the

ball and converges exponentially to the given trajectory. This leads to the following

result (see [111] for a proof).

Theorem 2.2.1. Any trajectory of (2.1) starting in a ball of constant radius centered

around a given trajectory and contained at all times in a contraction region, remains

in that ball and converges exponentially to this trajectory. Furthermore, global ex-

ponential convergence to the given trajectory is guaranteed if the whole state space

is a contraction region.
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2.3 Generalized convergence analysis

Theorem 2.2.1 can be extended by using a more general definition of differential

length. Specifically, the vector δx between nearby trajectories can be expressed

using a differential coordinate transformation:

δz = Θ(t, x)δx (2.5)

with Θ(t, x) being a square uniformly invertible matrix. This leads to the general-

ization of a squared length as:

δzT δz = δxTM(t, x)δx (2.6)

where M(t, x) = ΘTΘ is continuously differentiable and formally defines a Riemann

space. In what follows, M(t, x) will be termed as metric and it will be assumed

to be uniformly positive definite. Indeed, in this case, exponential convergence of

δzT δz to zero implies exponential convergence of δxT δx to zero.

The time derivative of δz(t) = Θ(t, x)δx(t) can be computed as:

d

dt
δz = Θ̇δẋ+Θδẋ =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1δz (2.7)

where the matrix

F :=

(
Θ̇ + Θ

∂f

∂x

)
Θ−1

is termed in what follows as generalized Jacobian. Using (2.7), the rate of change of

the squared (Euclidean) length δz can be computed as

d

dt

(
δzT δz

)
= 2δzTFδz

Therefore, if F is uniformly negative definite, then δzT δz exponentially converges

to zero, implying in turn that δxT δx exponentially converges to zero. This leads to

the following definition.

Definition 2.3.1. A region is state space, C, is a contraction region for (2.1) if

F (t, x) is uniformly negative definite in C.
The following result holds:

Theorem 2.3.1. Any trajectory of (2.1) starting in a ball of constant radius (with

respect to the metric M(t, x) = Θ(t, x)Θ(t, x)T ), centered around a given trajectory

and contained at all times in a contraction region (with respect to M(t, x)), remains

in that ball and converges exponentially to this trajectory. Furthermore, global ex-

ponential convergence to the given trajectory is guaranteed if the whole state space

is a contraction region with respect to M(t, x).
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We close this Section with the following remarks:

• for linear time-invariant systems, contraction in the sense of Theorem 2.3.1

is equivalent to strict stability, and Θ can be chosen as the transformation

matrix which diagonalizes the system or puts it in Jordan form [111];

• a convex contraction region contains at most one equilibrium point;

• in an autonomous contracting dynamical system, all trajectories converge ex-

ponentially to a unique equilibrium point;

• for autonomous systems, Theorem 2.3.1 is a sufficient condition for the exis-

tence of a Lyapunov function.

2.4 Some properties of contracting systems

We shall also use the following two properties of contracting systems, whose proofs

can be found in [111], [170]. Proofs generalized to the use of arbitrary metrics and

norms can be found in Chapter 4

Hierarchies of contracting systems. Assume that the Jacobian of (2.1) is in

the form
∂f

∂x
(t, x) =

[
J11 J12

0 J22

]
(2.8)

corresponding to a hierarchical dynamic structure. The Jii may be of different

dimensions. Then, a sufficient condition for the system to be contracting is that

(i) the Jacobians J11, J22 are contracting (possibly with different Θ’s), and (ii) the

matrix J12 is bounded.

Periodic inputs. Consider the system

ẋ = f (x, r(t)) (2.9)

where the input vector r(t) is periodic, of period T . Assume that the system is

contracting (i.e., that the Jacobian matrix ∂f
∂x
(x, r(t)) is contracting for any r(t)).

Then the system state x(t) tends exponentially towards a periodic state of period

T . A generalized version of this result will be presented in Chapter 4. In the same

Chapter, it is shown that under some structural condition on the vector field, all

system trajectories converge towards a periodic orbit with period being an integer

multiplier of T .
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2.5 Partial contraction

As shown in the previous Section, a nonlinear dynamical system is contracting if all

of its trajectories converge exponentially towards each other. Often, in applications,

one is interested in showing that, after some transient, system trajectories exhibit

some specific behavior (which may consist of e.g. relationships between state vari-

ables). An example of such a situation is the study of synchronization/consensus of

an interconnected systems. Indeed, in this case one is typically interested in show-

ing that, after some transient, all trajectories of the nodes in the network exhibit a

common behavior (see Chapter 3 for further details).

A simple yet powerful extension to nonlinear contraction theory is the concept

of partial contraction [194]. This approach is based on the use of some auxiliary

or virtual system which embeds the trajectories of the system of interest and that

is contracting. Thus, the system of interest is not contracting, but convergence

of its trajectories towards some specific behavior is ensured by contraction of this

auxiliary system.

The basic result of partial contraction can be stated as follows [194] (see Chapter

4 for a different version and relative proof).

Theorem 2.5.1. Consider a smooth nonlinear n-dimensional system of the form

ẋ = f(t, x, x) and assume that the so-called virtual system ẏ = f(t, y, x) is con-

tracting with respect to y. If a particular solution of the auxiliary y-system verifies

a smooth specific property, then all trajectories of the original x-system verify this

property exponentially. The original system is said to be partially contracting.

Indeed, the virtual y-system has two particular solutions, namely y(t) = x (t) for

all t ≥ 0 and the particular solution with the specific property. Since all trajectories

of the y-system converge exponentially to a single trajectory, this implies that x (t)

verifies the specific property exponentially.

Example

In order to clarify the notion of virtual system, we use as a representative example

the synchronization of two bidirectionally coupled oscillators. Consider the two

systems:

ż = f (t, z) + h (w)− h (z) , (2.10)

ẇ = f (t, w) + h (z)− h (w) , (2.11)

where h is some coupling function.

A suitable virtual system can be chosen as

ẏ = f (t, y)− 2h (y) + h (z) + h (w) := ϕ (y, z, w) . (2.12)
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Trajectories of the nodes are particular solutions of the y-system, i.e. ϕ (t, z, z, w) =

f (z) + h (w)− h (z) and ϕ (t, w, z, w) = f (w) + h (z) − h (w). Hence, according to

Theorem 2.5.1, if (2.12) is contracting with respect to the y state variable, the two

particular solutions z and w will converge to each other. Thus, to prove synchro-

nization of (2.10) and (2.11), it will suffice to show that (2.12) is contracting with

respect to the y state variable. In turn, according to Theorem 2.5.1 this is implied

by requiring uniform negativity of the matrix:

∂f (t, y)

∂y
− 2

∂h (y)

∂y
. (2.13)

2.6 Contraction towards linear flow invariant sub-

spaces

Often, in applications, one is interested in proving contraction of (2.1) of only some

directions in phase space. Again, this may be the case of interconnected systems: to

prove synchronization, one has to show that all system trajectories converge towards

some linear flow invariant subspace. For example, for a network ofN identical nodes,

such a subspace is

M := {xi = xj , i, j = 1, . . . , N}

where xi’s denote the set of the state variables of a node (see Chapter 3 for the

formalization of interconnected system).

We now review a result which allows to prove contraction towards some linear

flow-invariant subspace for (2.1). See Chapter 4 for an alternative proof where

arbitrary norms are considered.

Assume that there exists a linear flow invariant subspace, say M, for system

(2.1). By flow invariant subspace we mean that: f (t, x) ⊂M for any t and for any

x ∈M: that is, any trajectory with initial conditions onM remains inM. Let p be

the dimension ofM and consider an orthonormal basis of phase space: (e1, . . . , en).

In such a basis, the first p vectors form a basis of M, while the remaining n − p

vectors are a basis of M⊥. Define the (n − p) × n matrix V , whose rows are

eT
p+1, . . . , e

T
n , i.e. V

TV is a projection onMT and (see [82], [85]):

V TV + UTU = In V V T = In−p x ∈M↔ V x = 0

with U being the matrix whose rows are the basis ofM and Is be the s-dimensional

identity matrix.

Let z = V x. Notice that, by construction, x converges to M if z converges to

0. The convergence of z to 0 can be in turn assessed by studying the contraction
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properties of the reduced order dynamics

ż = V f
(
t, V T z + UTUx

)

Now, consider the following virtual system (see Theorem 2.5.1):

ẏ = V f
(
t, V Ty + UTUx

)
(2.14)

Notice that, in the spirit of Theorem 2.5.1, y(t) = z(t) is a particular solution of

the virtual system. Moreover, since UTUx ∈ M, and since M is flow invariant,

we have that y(t) = 0 is also a solution of (2.14). Therefore, contraction of (2.14)

implies that z(t) converges exponentially to zero, and hence that x(t) converges

exponentially toM. This leads to the following result [142]:

Theorem 2.6.1. Assume that for system (2.1) a linear flow invariant subspace

exists and that V ∂f
∂x
V T is uniformly negative definite. Then, all the solutions of

(2.1) exponentially converge towards M.

2.7 Contracting, Lipschitz and QUAD vector fields

We now systematically derive the links between QUAD and contraction first, and

then between the Lipschitz and QUAD conditions. In particular, it will be shown

that contraction of the vector field is a sufficient condition for it to be QUAD and

that, under certain conditions, a Lipschitz vector field is also QUAD. Moreover, we

prove that the vector field being QUAD implies under certain conditions that the

system is also contracting.

2.7.1 QUAD condition

The QUAD condition is an assumption on the vector field f in (2.1) usually made in

the literature to prove network synchronization by means of appropriate Lyapunov

functions, see for example [108, 109, 115, 106, 46, 45, 107, 48, 18]. A condition

closely related can be found in [56] and can be traced back to the 1955 paper [95].

The QUAD condition can be stated as follows:

Definition 2.7.1. A function, f : R
+ × R

→
R

n is QUAD(∆, ω) if and only if, for

any x, y ∈ R
n:

(x− y)T [f(t, x)− f(t, y)]− (x− y)T∆(x− y) ≤ −ω(x− y)T (x− y) (2.15)

where ∆ is an n× n diagonal matrix and ω is a real positive scalar.
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Dynamical system (2.1) is said to be QUAD or to satisfy the QUAD condition

if f is QUAD(∆, ω) for some ∆ and ω.

This condition is used in a number of theoretical papers on synchronization to

prove (semi-)negativity of some appropriate global Lyapunov function. For exam-

ple, this condition, together with some dissipativity property of the nodes’ vector

field, is shown in [18] to guarantee global asymptotic synchronization of the network.

In [108], after proving that the Lorenz system is QUAD, authors use this property

to derive a proof of synchronization of linearly coupled Lorenz systems, while in

[109] the analysis is extended to the case of asymmetrically coupled systems. Suffi-

cient conditions are given in [115] for the synchronization of QUAD systems in the

presence of time delays, and in [106] the QUAD condition is used to prove synchro-

nizability of networks in the presence of a unique centralized adaptive coupling gain.

This is then generalized in [46, 45] to the case of QUAD systems where the adaptive

coupling gains evolve according to local decentralized laws firstly presented in [47].

It is worth emphasizing here that the QUAD condition does not necessarily rely on

the assumption of smoothness of the vector field. In fact, in [45] it has been proved

that the Chua’s circuit is QUAD(0, ω). Finally, we remark here that the QUAD

condition is also a key assumption often considered in pinning control problems,

e.g. [76, 101, 32, 145, 199, 200].

2.7.2 Linking QUAD and contraction

Theorem 2.7.1. If (2.1) is contracting with contraction rate

β := max {β(t, x)} < 0, x ∈ R
n, t ≥ 0 (2.16)

where β(t, x) = λmax

(
0.5

(
∂f
∂x

T
+ ∂f

∂x

))
, then it is QUAD(∆, ω) for any arbitrary ∆

and ω such that ∆− ωIn ≥ βIn.

Proof. The QUAD condition (2.15), can be simply rewritten as

(x− y)T [f (t, x)− f (t, y)] ≤ (x− y)T (∆− ωIn) (x− y) (2.17)

Now, define the following function of the scalar quantity ξ ∈ [0, 1]

Ψ (ξ) = (x− y)T f (t, y + ξ (x− y)) (2.18)

which is continuous and differentiable by hypothesis. By virtue of the mean value

theorem we have:

∃ ξ̃ ∈ [0, 1] : Ψ (1)−Ψ (0) =
dΨ

(
ξ̃
)

dξ
(2.19)
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and therefore:

(x− y)T [f (t, x)− f (t, y)] =
dΨ

(
ξ̃
)

dξ
(2.20)

from which it immediately follows

(x− y)T [f (t, x)− f (t, y)] = (x− y)T
∂f(t,y+ξ̃(x−y))

∂x
(x− y) (2.21)

By hypothesis, the system is contracting, that is, the symmetric part of the system

Jacobian is negative definite in the whole state space. Thus:

(x− y)T
∂f(t,y+ξ̃(x−y))

∂x
(x− y) ≤ − (x− y)T βIn (x− y) (2.22)

Now, using (2.21), it immediately follows that system (2.1) is QUAD(∆, ω) with

∆− ωIn ≥ βIn and the theorem remains proved.

Theorem 2.7.2. Given the dynamical system (2.1) and some positive scalar c, if

the vector field f is differentiable and QUAD(∆, ω) with (∆ − ωIn) ≤ −cIn, then

system (2.1) is contracting with contraction rate β ≤ −c.

Proof. From Definition 2.7.1, we have:

(x− y)T [f (t, x)− f (t, y)] ≤ (x− y)T (∆− ωIn) (x− y) (2.23)

∀x, y ∈ R
n, ∀t ≥ 0. Then, using (2.21), the above inequality becomes:

(x− y)T
∂f(t,y+ξ̃(x−y))

∂x
(x− y) ≤ (x− y)T (∆− ωIn)(x− y) (2.24)

∀x, y ∈ R
n, ∀t ≥ 0. Since by hypothesis ∆− ωIn ≤ −cIn, we have:

1

2
(x− y)T

(
J
(
t, ξ̃

)
+ JT

(
t, ξ̃

))
(x− y) ≤ −c(x− y)T (x− y) (2.25)

with:

J
(
ξ̃
)
:=

∂f
(
t, y + ξ̃ (x− y)

)

∂x

As x and y are arbitrary points in phase space, it immediately follows that β(t, x),

as defined in Theorem 2.7.1, is such that:

β(t, x) ≤ −c (2.26)

for all x ∈ R
n and t ≥ 0. The theorem is then proved.

The following two corollaries are straightforward consequences of Theorem 2.7.1

and Theorem 2.7.2, giving necessary and sufficient conditions linking the QUAD

assumption to contracting and semi-contracting systems.
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Corollary 2.7.1. A system is contracting with contraction rate β if and only if it

is QUAD(∆, ω) with ∆− ωIn = βIn.

Corollary 2.7.2. A system is QUAD(∆, ω) with ∆ = ωIn if and only if it is semi-

contracting.

2.7.3 Linking the Lipschitz and QUAD conditions

We examine now the relationship between the Lipschitz and QUAD conditions.

Theorem 2.7.3. If f is Lipschitz, with Lipschitz constant equal to α > 0, then f

is QUAD(∆, ω), with ∆− ωIn ≥ αIn.

Proof. To prove the Theorem we will use again the definition of QUAD, written as

in (2.17). From trivial algebra and using the Cauchy-Schwarz inequality, we can

write:

(x− y)T (f(t, x)− f(t, y)) ≤ ‖x− y‖‖f(t, x)− f(t, y)‖ (2.27)

∀x, y ∈ R
n and ∀t ≥ 0. Since f is Lipschitz by hypothesis, we then have:

(x− y)T (f(t, x)− f(t, y)) ≤ α‖x− y‖2 (2.28)

which is equivalent to write:

(x− y)T (f(t, x)− f(t, y)) ≤ (x− y)TαIn(x− y) (2.29)

Thus, (2.17) and (2.29) yield that f is QUAD(∆, ω), for any ∆ and ω such that

∆− ωIn ≥ αIn (2.30)

Remarks

• Corollary 2.7.1 establishes that contracting systems are only a subset of the

more general QUAD vector fields.

• If system (2.1) is QUAD(∆, ω), with ∆ − ωIn ≤ −cIn, c > 0, and f is dif-

ferentiable, then trajectories in phase space converge to each other; this im-

mediately implies that differentiable chaotic systems cannot satisfy this con-

dition as they are characterized by local divergence of nearby trajectories.

Thus, chaotic systems cannot be contracting (see also [155]). Conversely,

if system (2.1) is QUAD(∆, ω), with Λ := ∆ − ωIn > 0, then (2.15) im-

plies (x − y)T (f(t, x) − f(t, y)) ≤ (x − y)TΛ(x − y), Λ > 0 and there might
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be regions in phase space in which nearby trajectories diverge (that is, re-

gions where (x − y)T (f(t, x) − f(t, y)) > 0) and regions where they converge

((x− y)T (f(t, x)− f(t, y)) < 0), as for instance in chaotic systems.

• If system (2.1) is Lipschitz, then it can be made contracting by means of

a simple (static) state feedback, implying the possibility of designing simple

observer/controllers. This property will be also used to synchronize complex

dynamical networks by means of an appropriately chosen constant coupling

strength.

• We remark here that an alternative way of proving Theorem 2.7.1 and Theorem

2.7.2 can be obtained by rewriting the QUAD condition as in equation (8) of

[18].
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Figure 2.1: Relationship between QUAD and Lipschitz assumptions and contrac-
tivity formalized in Section 2.7

A summarizing schematic of the relationships discussed above between the QUAD,

Lipschitz and contracting assumptions is depicted in Figure 2.1.

2.8 Concluding remarks

In this Chapter, we briefly introduced the notion of contracting dynamical system

and reviewed the basic results used for determining if a system is contracting, as

presented in [111]. We also introduced the notions of partial contraction and con-

traction towards linear flow invariant subspaces (see [194], [142]). A relationship

between QUAD, Lipschitz and contracting vector fields was also shown. These re-

sults will be then used in Chapter 7We remark here that all the results of this

Chapter make use of the Euclidean norm for measuring the distance between two

nearby trajectories of a dynamical system. However, other norms can be used to

this aim, leading to similar results but conditions in different algebraic forms. In

Chapter 4, we explore in more detail this avenue and provide alternative proofs

(generalized to the use of arbitrary norms and weaker constraints on the region C)
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to all the results briefly presented in this Chapter. These generalized versions of

the above results are then used in the rest of Thesis to analyze/control networked

systems and biochemical networks.





Chapter 3

Network coordination problems

This Chapter introduces the notion of network (or interconnected system) that

is used in the rest of the Thesis. The problem of network coordination is also

introduced. By network coordination it is meant here the emergence of a coherent

dynamics from the interaction of the elements composing the network. Such an

emerging dynamics can then be used to achieve some desired steady state behavior.

Three coordination problems are introduced in this Chapter, which will be addressed

in Chapter 7.

3.1 Introduction

Roughly speaking, a network is a set of items which communicate and interact by

means of some link. Networks are all around us: we are ourselves, as individuals,

units of a network of social relationships. But networks are also inside us: our lives

are regulated at the molecular level by networks of biochemical reactions. Other

examples of networks include: electric power grids, the Internet, subway systems,

neural networks, ensembles of robots, [25], [132], [1].

Historically, the study of networks can be traced back to 1736, when Leonhard

Euler published the solution of the famous Konigsberg bridge problem. The formal-

ization proposed by Euler gave rise to graph theory, which has been established as

an invaluable tool for answering many practical questions, like e.g.: determine the

maximum flow per unit time from source to sink in a network of pipes,how to fill n

jobs by n people with maximum total utility.

The last decade has seen the birth of a renewed research interest in the study

of complex networks: networks whose structure is irregular, dynamically evolving

in time, populated by entities which are dynamical systems. In this Thesis, we will

use the term interconnected system (typically used within the Control-Theoretic

community) as a synonymous of complex network (mainly used within the Physics

community).
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A particular important problem in the field of networked systems is that of

analyzing/controlling the behavior emerging from the interactions of the network

nodes (or emerging dynamics), and to explore its links with the network topology.

For example, recently in [45] it has been proved that the interconnections between

the elements of a network can be adapted so as guarantee a common behavior of the

nodes. Such a coordinated behavior is termed as synchronization. Another kind of

coordinated behavior is consensus, where the nodes of the network agree upon some

quantity so as to perform some computation. For example, in [135], it was shown

that it is possible to properly design decentralized coupling protocols for a network

of integrators so as to satisfy the average consensus problem, where network nodes

agree upon the average of their initial conditions.

This Chapter is organized as follows. We first formally define an interconnected

system in Section 3.2, while in Section 3.3 we present the mathematical models of

interconnected systems which are used in the rest of the Thesis. Finally, in Section

3.4 we introduce three coordination problems which are addressed in Chapter 7.

The mathematical tools used to address such coordination problems are introduced

in Chapter 4.

3.2 Basic notions of graph theory

In this Section, we briefly review some of the main notions of graph theory [26],

[196], which shall be used in the rest of this Thesis, for more details see [66].

An undirected (directed) graph, G = {N , E} consists of two sets, N , E , such
that N 6= ∅, and E is a set of unordered (ordered) pairs of elements of N . The

elements of N := {n1, . . . , nN} are the nodes of the graph, while the elements of
E := {e1, . . . , ek} are the edges (or links) of the graph. A node is usually referred

to by its order, say i, in the set N . In an undirected graph, each of the edges is

defined by a couple of nodes, i and j, and is denoted as (i, j). The edge is said to

be incident in nodes i and j that is, the two nodes are bidirectionally coupled. Two

nodes are said to be adjacent or neighboring if they are linked by an edge. The set

of the neighbors to node i is denoted with Ni.

In a directed graph, the order of the two nodes i, j is important. Indeed, in

this case (i, j) stands for an edge from node i to node j (the edge is incident in i)

and (i, j) 6= (j, i), that is, the existence of an edge between node i and node j does

not imply the existence of an edge from j to i. In a directed graph, the number

of edges incident in node i is termed as in-degree of the node and denoted as di,in.

Analogously, the number of edges starting from node i is termed as out-degree of

the node and is denoted as di,out. Notice that di,in is the cardinality of Ni. For

an undirected graph we have di,in = di,out: this common value is simply termed as

degree of node i and indicated with di.
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A central concept in graph theory is that of reachability of two different nodes

of a graph. Indeed, two nodes that are not adjacent may be reachable from one

node to another. A path between node i and node j is a sequence of adjacent nodes

that begins with i and ends with j. An undirected (directed) graph is said to be

connected (strongly connected) if there exists a path between each pair of its nodes.

It is useful for the work presented in the Thesis to represent a graph by means of

matrices. The adjacency matrix, A, of a graph is an N ×N matrix whose element

aij is positive if the edge (i, j) exists or zero otherwise. If the entries of A are either

1 or 0, we say that the graph is unweighted. On the other hand, A is said to be a

weighted adjacency matrix if each element of A, say aij, can assume any nonnegative

value (such a value is then termed as weight of the edge (i, j)). Graphs to which a

weighted adjacency matrix is associated, are termed as weighted graphs and denoted

as G = (N , E , A). From the definition above, it is straightforward to notice that the

matrix A offers a matricial representation of the topology of some graph of interest.

Sometimes, graphs whose edges are time-varying will be considered (that is, the

graph topology changes in time). In this case, the adjacency matrix is time varying,

i.e. A := A(t).

An important matrix which will be used in the what follows is the so-called

Laplacian matrix, denoted as L (see [66] for a detailed survey of the properties of

such a matrix). Here, we briefly review the definition and some of the properties of

L used in the rest of the Thesis.

Let D be the N ×N diagonal matrix having on its main diagonal the out degree

of the nodes, i.e. Dii = di,out. The (weighted) Laplacian matrix associated to a

graph is then defined as:

L := D −A (3.1)

By definition, the row sum of the Laplacian matrix is zero. Thus, L has always a

zero eigenvalue, i.e. rank(L) = N − 1. Moreover, the eigenvector corresponding to

the zero eigenvalue is the vector 1N := [1, . . . 1]T . By construction, it is also clear

that the Laplacian matrix associated to an undirected graph is symmetric.

Using a classical result from linear algebra, i.e. Gershgorin circle theorem (see

[82] and Chapter 5), it can be easily shown that all the eigenvalues of L as defined

in (3.1) are nonnegative.

The following result can be found in [135].

Theorem 3.2.1. Let G = (N , E , A) be a weighted (directed or undirected) graph

with Laplacian L. Then, G is strongly connected if and only if rank(L) = N − 1.

That is, Theorem 3.2.1 implies that if a graph is (strongly) connected, then only

one eigenvalue, λ1 is zero and all the other eigenvalue, λi, i = 2, . . . , N are positive.

In particular, for a directed graph, λ2 is termed as algebraic connectivity of the graph

and will play a key role in the dynamics of networked systems considered here [55].
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(an analogous quantity to λ2 for a directed graph is λ̂2 which is the second smallest

eigenvalue of the symmetric part of L). For an undirected graph, it can be shown

that [55]

λ2 := min
x 6=0,1T

N
x=0

xTLx

xTx
(3.2)

3.3 Networks of dynamical systems

Part of this Thesis is devoted to the study of dynamical systems interacting over a

graph. That is, in terms of the notation introduced above: each node, of the graph G
is characterized by some dynamics and the coupling between nodes is characterized

by some algebraic function which depends on the state variables of the nodes.

Such systems will be termed as interconnected systems, or (complex) networks

and we will refer to the framework introduced in [70]. We remark here that our for-

malism avoids the restrictions typically assumed in the literature like e.g. absence

of self-couplings and multiple arrows, identical nodes, additive and/or diffusive cou-

pling.

3.3.1 Definitions

In our framework the phase space of the i-th node (or cell, or neuron) is the set

Pi ⊆ R
ni (in the next Section further details on such sets will be specified), while

its state at time t is denoted with xi(t) ∈ R
ni. Each node has an intrinsic dynamics,

which is affected by the state of some other nodes (i.e. the neighbors of i) by

means of some coupling function. These interactions will be represented by means

of directed graphs. In such a graph nodes sharing the same internal dynamics will be

represented with the same symbol. Analogously, heterogeneous coupling functions

can also be taken into account. Again, identical functions will be denoted by the

same symbol.

This is formalized by the following definitions.

Definition 3.3.1. An interconnected system consists of:

1. a set of nodes N := {1, . . . , N};

2. an equivalence relation, ∼N on N ;

3. a finite set, E , of edges (arrows);

4. an equivalence relation, ∼E on E ;

5. the maps H : E → N and T : E → N such that: for e ∈ E , we have H(e) is

the head of the arrow and T (e) the tail of the arrow;
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6. equivalent arrows have equivalent tails and heads. That is, if e1, e2 ∈ E and

e1 ∼E e2, then H(e1) ∼N H(e2) and T (e1) ∼N T (e2).

Notice that the above definition coherently extends the definition of graph given

in the previous Section.

The following set of edges, defining an important equivalence relation, is associ-

ated to each node, i.

Definition 3.3.2. For any i ∈ N , the input set of i is defined as

I(i) := {e ∈ E : H(e) = i}

Any element of I(i) is termed as input edge (or arrow) of i.

Definition 3.3.3. The relation ∼I (input equivalence) on N is defined by c ∼I d
if and only if there exists an arrow type preserving bijection β : I(c)→ I(d).

Finally, our set-up is completed by defining an interconnected system as follows:

Definition 3.3.4. The dynamical system

Ẋ = Φ(t, X) (3.3)

defines an interconnected system if its phase space is defined as

P = R
+ × P1 × . . . PN

where Pi denotes the phase space of the i-th network node. Furthermore, let πi :

P → Pi be projections of (3.3), then it must hold that

πi(X(t)) = xi(t)

3.3.2 Mathematical models

In this Section we present the mathematical models of networked systems used in

the rest of the Thesis. All the mathematical models presented here are consistent

with the general definition of interconnected system given above, i.e. Definition

3.3.1.

Let: P1 ⊆ R
n1, P2 ⊆ R

n2, . . ., PN ⊆ R
nN be convex subsets (ni is the dimension

of the i-th node), P := P1 × . . . × PN , X := [xT
1 , . . . , x

T
N ]

T , xi ∈ Pi, φi(t, X) :

R
+ × P → Pi and Φ(t, X) :=

[
φ1(t, X)

T , . . . , φN(t, X)
T
]T
. We assume that φ(t, X)

is differentiable on X and that Φ(t, X) as well as ∂Φ
∂X

are both continuous on (t, X).

In some applications it will be the case that P is some closed set, given e.g. by

non-negativity constraints on variables and/or linear equalities representing mass-

conservation laws. In general, for a non-open set, P , differentiability in X means
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that the vector field Φ(t, ·) can be extended as a differentiable function to some open
set which includes P , with the continuity hypotheses with respect on (t, X) holding

on such an open set.

The mathematical model for an interconnected system considered in this Thesis

(see Chapter 6 and Chapter 7) is

ẋi = φi(t, X) := fi(t, xi) + h̃i(t, X) (3.4)

with i = 1, . . . , N , the function fi : R
+ × Pi → Pi being the vector field associated

to the intrinsic dynamics of the i-th node and the function h̃i : R
+ × P → Pi

(termed as input function, or coupling) describing the interaction of the i-th node

with the other nodes composing the interconnected system. A particular choice for

the coupling functions is:

h̃i(t, X) = hi(t, ai1(t)x1, . . . , aiNxN)

where A(t) := [aij(t)] is the N × N time varying adjacency matrix, with aij(t) :

R
+ → [0, 1] being smooth functions. That is, the above formalization allows us

to consider within a unique framework directed and undirected networks, self-loops

and multiple interactions. We will also consider networks with (smoothly) changing

topology.

Sometimes, the compact form of (3.4) will be used, given by:

Ẋ = Φ(t, X) = F (t, X) +H(t, X)

with:

F (t, X) :=
[
f1(t, x1)

T , . . . , fN(t, xN )
T
]T

and

H(t, X) :=
[
h̃1(t, X), . . . , h̃N(t, X)

]T

A mathematical model similar to (3.4) will be also used for studying discrete-

time and asynchronous systems (see Chapter 8).

In this Thesis, several assumptions on of the mathematical model (3.4) will be

alternatively made. Namely:

• the case that all network nodes share the same dynamics will be studied. That

is,

f1(t, ·) = . . . = fN (t, ·) = f(t, ·)

and F (t, X) :=
[
f(t, x1)

T , . . . , f(t, xN)
T
]T
, in (3.4).
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• the case where the coupling functions are identical for all network nodes, i.e.

h̃1(t, X) = . . . = h̃N(t, X) = h̃(t, X)

and H(t, X) :=
[
h̃(t, X)T , . . . , h̃(t, X)T

]T

, in (3.4).

Sometimes, the coupling between nodes will be modeled as diffusive, i.e.

hi(t, X) :=
∑

j∈Ni

[hj(t, xj)− hj(t, xi)]

In the next Section, we present some of the network coordination problems ad-

dressed in this Thesis. When needed, we will explicitly point out the assumptions

made on (3.4)

3.4 Network coordination problems: a quick overview

In this Section we introduce some of the control/analysis problems that are ad-

dressed in the Thesis: consensus, synchronization and cluster synchronization. We

refer to all such problems as coordination problems.

We remark here that all the coordination problems are stated for networks of

continuous-time nodes. However, a formalization to the case of discrete-time net-

works is straightforward ( see Chapter 8).

3.4.1 Consensus

One of the coordination problems which are addressed in Chapter 6 and Chapter 7

is the so-called consensus (or agreement) problem. Consensus problems have a long

history in the field of computer science [117], where groups of agents have to agree

upon certain quantities of interest in (3.4). Typically, in consensus problems, it is

assumed that the dynamics of each network node is a simple integrator dynamics,

i.e. fi(t, xi) = 0. Let ξ : R
N → R be a function of the network nodes’ state

variables, x1, . . . , xN . The ξ consensus problem is then that of calculating ξ (X(0))

by appropriately designing the coupling protocols h̃i’s. In the special case where

ξ(X) := 1
N

∑N
i=1 xi, the consensus problem is called average consensus problem.

Sometimes, a slightly more complex dynamics at the nodes are considered: this

is the case of e.g. higher order integrators dynamics. In this case, the consensus

problem is termed as higher order consensus and becomes that of properly designing

the coupling functions so as a subset of the state variables reach an agreement on

ξ (X(0)). An example of higher order consensus is the so-called rendezvous problem,

see Chapter 7 for further details.
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3.4.2 Synchronization

Another network coordination problem addressed in Chapter 7 is synchronization

[25], [132]. In a classical context, synchronization means adjustment of rhythms

of self-sustained oscillators due to some interaction. The study of synchronization

can be traced back to Huygens in the 17th century and involves today a variety of

research fields, such as mathematics [35], biology [198], neuroscience [29], robotics

[33]. Typically, in network synchronization, all nodes are identical and the coupling

between nodes is assumed to be diffusive and linear. That is, in (3.4):

hi(t, X) := Γ
∑

j∈Ni

(xj − xi)

in (3.4), where Γ is a constant coupling matrix. This choice for hi(t, X) models

the fact that, when synchronization is achieved, the effects of coupling disappear.

Notice that, in compact form, network dynamics can then be written by using the

Laplacian matrix as:

Ẋ = F (X)− (L⊗ Γ)X

where ⊗ denotes the Kronecker (or direct) product and

F (X) :=
[
f(x1)

T , . . . , f(xN)
T
]T

Notice that network synchronization is attained if all the trajectories of the above

dynamics converge to the synchronization subspace

M := {x1 = . . . = xN}

3.4.3 Concurrent synchronization

In a network of dynamical elements which have different dynamics, concurrent syn-

chronization, [142] is defined as the regime behavior where the whole network is

divided into multiple groups of synchronized elements (in the literature this phe-

nomenon is also known as cluster synchronization, or poli-synchronization). Some-

times, the term cluster synchronization will be used as a synonymous of concurrent

synchronization. Concurrent synchronization phenomena are pervasive in the brain,

where multiple rhythms are known to coexist [84] and may be useful for distributed

algorithms or sensor networks, where different nodes of the network process different

kinds of information. In terms of network dynamics, in (3.4) the coupling is assumed

to be diffusive (not necessarily linear). Further details will be given in Chapter 6,

Chapter 7, Chapter 8.
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3.5 Concluding remarks

In this introductory Chapter, we briefly presented the main notions on networked

systems used in the rest of the Thesis, together with some of the coordination

problems addressed in what follows. The mathematical models and coordination

problems introduced in this Chapter will be studied in Chapter 6, Chapter 7, Chap-

ter 8. The main mathematical tools used to this aim are instead presented in the

next Chapter.





Chapter 4

Extensions of Contraction Theory

In this Chapter we revisit and extend the ideas presented in Chapter 2. These

extended results are then used in the rest of the Thesis. As pointed out in Chapter 2,

contraction is dependent on the particular norm being considered for measuring the

distances between trajectories and all of the results presented so far make implicitly

use of the Euclidean norm. In this Chapter, arbitrary norms are instead used and

a weaker condition is considered on the geometry of the subsets in phase space.

Finally, some structural properties of the vector field together with contraction are

used to determine the steady state behavior of a system of interest. The results

presented in this Chapter were partly presented in [161], [163].

4.1 Introduction

As shown in Chapter 2, nonlinear contraction analysis [111] has been proposed as

an effective tool to study the convergent properties of dynamical systems. The main

idea of contraction theory (and more generally of incremental stability methods [7])

is to establish conditions in some phase space region of interest guaranteeing that

neighboring trajectories converge exponentially towards each other. From such local

result, global results can be obtained, and these are robust to noise, in the sense

that, if a system satisfies a contraction property then trajectories remain bounded

in the phase space [181].

As briefly pointed out in Chapter 2, applications to date of nonlinear contraction

theory are based on the use of negative definite generalized Jacobians and Euclidians

norms. As it was noticed in the original paper [111], other norms and their associated

matrix measures [191] can also be used to quantify contraction, leading to similar

results but conditions in different algebraic forms. The objectives of this Chapter

can be summarized as follows:

• give a self-contained exposition, with all proofs included, of the results on con-

tracting systems presented in Chapter 2 when arbitrary norms are considered.
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In so doing, the definition of contracting system has to be slightly modified;

• derive a coherent theoretical framework where symmetries and contraction

are used together to analyze (or control) dynamical systems. The approach

is further generalized by showing that the above analysis can be performed

on some auxiliary, or virtual, system, rather than the actual system itself. As

such, our results provide a systematic framework extending and generalizing

the results of [142, 64] in this context.;

• provide extensions to discrete-time systems.

All the results obtained in this Chapter are then used in the rest of the Thesis

to analyze/control networks and biochemical systems (Chapter 6 - 9).

This Chapter is organized as follows. In Section 4.2 we define the notion of in-

finitesimally contracting system and prove that this local property implies a global

property, i.e. contraction. The proof is given in a generalized form with respect to

the one given in Chapter 2. In fact, convexity of the contraction region is replaced

by a weaker constraint on the geometry of the space. In Section 4.3, we show that

all the solutions of an infinitesimally contracting system, when forced by a periodic

input, converge to a unique solution having the same period as the forcing. This is

an extension of the result on periodic inputs presented in Section 2.4. In Sections

4.4-4.6 we revisit the questions regarding combinations of contracting systems, par-

tial contraction and contraction relative to flow invariant subspaces. Finally, in the

subsequent Sections we provide a coherent theoretical framework that links symme-

tries of a dynamical system to its contracting properties. Section 4.8 extends the

notion of contraction (using arbitrary norms) to discrete-time systems.

4.2 Contraction using arbitrary norms

4.2.1 Definitions and problem statement

Consider again the generic system of ordinary differential equations (2.1). We as-

sume that such a system is defined for t ∈ [0,∞) and x ∈ C, where C ⊆ R
n. It

will be assumed that f(t, x) is differentiable on x, and that f(t, x), as well as the

Jacobian of f with respect to x, denoted as J(t, x) = ∂f
∂x
(t, x), are both continuous

in (t, x). In applications of the theory, it is often the case that C will be a closed set,

for example given by non-negativity constraints on variables as well as linear equal-

ities representing mass-conservation laws. For a non-open set C, differentiability

in x means that the vector field f(t, ·) can be extended as a differentiable function
to some open set which includes C, and the continuity hypotheses with respect to

(t, x) hold on this open set.
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We denote by ϕ(t, s, ξ) the value of the solution x(t) at time t of the differen-

tial equation (2.1) with initial value x(s) = ξ. It is implicit in the notation that

ϕ(t, s, ξ) ∈ C (“forward invariance” of the state set C). This solution is, in principle,

defined only on some interval s ≤ t < s + ε, but we will assume that ϕ(t, s, ξ) is

defined for all t ≥ s. Conditions which guarantee such a “forward-completeness”

property are often satisfied in biological applications, for example whenever the set

C is closed and bounded, or whenever the vector field f is bounded. (See Ap-

pendix C in [175] for more discussion, as well as [9] for a characterization of the

forward completeness property.) Under the stated assumptions, the function ϕ is

jointly differentiable with respect to all of its arguments (this is a standard fact on

well-posedness of differential equations, see for example Appendix C in [175]).

We recall (see for instance [124]) that, given a vector norm on Euclidean space

(|·|), with its induced matrix norm ‖A‖, the associated matrix measure µ is defined

as the directional derivative of the matrix norm, that is,

µ(A) := lim
hց0

1

h
(‖I + hA‖ − 1)

For example, if |·| is the standard Euclidean 2-norm, then µ(A) is the maximum

eigenvalue of the symmetric part of A. As we shall see, however, different norms

will be useful for our applications. Matrix measures are also known as “logarithmic

norms”, a concept independently introduced by Germund Dahlquist and Sergei

Lozinskii in 1959, [38, 114]. The limit is known to exist, and the convergence is

monotonic, see [179, 38]. Some matrix measures are reported in Table 4.1.

Table 4.1: Some matrix measures n× n matrix, A = [aij]. The i-th eigenvalue of A
is denoted with λi(A).

vector norm, |·| induced matrix measure, µ (A)

|x|1 =
∑n

j=1 |xj| µ1 (A) = maxj

(
ajj +

∑
i6=j |aij |

)

|x|2 =
(∑n

j=1 |xj |2
) 1

2

µ2 (A) = maxi

(
λi

{
A+AT

2

})

|x|∞ = max1≤j≤n |xj | µ∞ (A) = maxi

(
aii +

∑
j 6=i | aij |

)

We will say that system (2.1) is infinitesimally contracting on a convex set C ⊆
R

n if there exists some norm in C, with associated matrix measure µ such that, for

some constant c ∈ R− {0},

µ (J (t, x)) ≤ −c2, ∀x ∈ C, ∀t ≥ 0. (4.1)

Let us discuss the motivation for this concept. Since by assumption f (t, x) is

continuously differentiable, the following exact differential relation can be obtained
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from (2.1):

δẋ = J (t, x) δx (4.2)

where, as before, J = J (t, x) denotes the Jacobian of the vector field f , as a function

of x ∈ C and t ∈ R
+, and where δx denotes a small change in states and “δẋ” means

dδx/dt, evaluated along a trajectory. (In mechanics, as in [13], δx is called “virtual

displacement”, and formally it may be thought of as a linear tangent differential

form, differentiable with respect to time.) Consider now two neighboring trajectories

of (2.1), evolving in C, and the virtual displacements between them. Note that (4.2)

can be thought of as a linear time-varying dynamical system of the form:

δẋ = J (t) δx

once that J(t) = J(t, x(t)) is thought of as a fixed function of time. Hence, an upper

bound for the magnitude of its solutions can be obtained by means of the Coppel

inequality [191], yielding:

|δx| ≤ |δx0| e
R t

0
µ(J(ξ))dξ, (4.3)

where µ (J) is the matrix measure of the system Jacobian induced by the norm

being considered on the states and |δx (0)| = |δx0|. Using (4.3) and (4.1), we have
that

∃ β > 0 : |δx (t)| ≤ βe−c2t

Thus, trajectories starting from infinitesimally close initial conditions converge ex-

ponentially towards each other. In what follows we will refer to c2 as contraction

(or convergence) rate.

4.2.2 Main convergence result

The key theoretical result about contracting systems links infinitesimal and global

contractivity, and is stated below. This result can be traced, under different tech-

nical assumptions, to e.g. [111], [138], [99], [79].

Theorem 4.2.1. Suppose that C is a convex subset of R
n and that f(t, x) is in-

finitesimally contracting with contraction rate c2. Then, for every two solutions

x(t) = ϕ(t, 0, ξ) and z(t) = ϕ(t, 0, ζ) of (2.1), it holds that:

|x(t)− z(t)| ≤ e−c2t |ξ − ζ | , ∀ t ≥ 0 (4.4)

In other words, infinitesimal contractivity implies global contractivity. Moti-

vated by this, in the rest of this Thesis, we will use the word contracting to denote

an infinitesimal contracting system. We now provide a self-contained proof of Theo-

rem 4.2.1. In fact, the result is shown here in a generalized form, in which convexity
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is replaced by a weaker constraint on the geometry of the space.

K-reachable sets

We will make use of the following definition:

Definition 4.2.1. Let K > 0 be any positive real number. A subset C ⊂ R
n

is K-reachable if, for any two points x0 and y0 in C there is some continuously

differentiable curve γ : [0, 1]→ C such that:

1. γ (0) = x0,

2. γ (1) = y0 and

3. |γ′ (r)| ≤ K |y0 − x0|, ∀r.

For convex sets C, we may pick γ(r) = x0 + r(y0 − x0), so γ
′(r) = y0 − x0 and

we can take K = 1. Thus, convex sets are 1-reachable, and it is easy to show that

the converse holds as well.

Notice that a set C is K-reachable for some K if and only if the length of the

geodesic (smooth) path (parametrized by arc length), connecting any two points

x and y in C, is bounded by some multiple K0 of the Euclidean norm, |y − x|2.
Indeed, re-parametrizing to a path γ defined on [0, 1], we have:

|γ′ (r)|2 ≤ K0 |y − x|2

Since in finite dimensional spaces all the norms are equivalent, then it is possible to

obtain a suitable K for Definition 4.2.1.

Remark 4.2.1. The notion of K-reachable set is weaker that that of convex set.

Nonetheless, in Theorem 4.2.2, we will prove that trajectories of a smooth system,

evolving on a K-reachable set, converge towards each other, even if C is not convex.

This additional generality allows one to establish contracting behavior for systems

evolving on phase spaces exhibiting “obstacles”, as are frequently encountered in

path-planing problems, for example. A mathematical example of a set with obstacles

follows.

Example 4.2.1. Consider the two dimensional set, C, defined by the following

constraints:

x2 + y2 ≥ 1, x ≥ 0, y ≥ 0 .

Clearly, C is a non-convex subset of R
2. We claim that C is K-reachable, for any

positive real number K > 2
π
. Indeed, given any two points a and b in C, there are

two possibilities: either the segment connecting a and b is in C, or it intersects the

unit circle. In the first case, we can simply pick the segment as a curve (K = 1).
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In the second case, one can consider a straight segment that is modified by taking

the shortest perimeter route around the circle; the length of the perimeter path is at

most 2
π

times the length of the omitted segment. (In order to obtain a differentiable,

instead of merely a piecewise-differentiable, path, an arbitrarily small increase in K

is needed.)

Using the concept of K-reachable sets we can now relax the assumptions of

Theorem 2.3.1 in Chapter 2 and prove the following result.

Theorem 4.2.2. Suppose that C is a K-reachable subset of R
n and that f(t, x) is

infinitesimally contracting with contraction rate c2. Then, for every two solutions

x(t) = ϕ(t, 0, ξ) and z(t) = ϕ(t, 0, ζ) it holds that:

|x(t)− z(t)| ≤ Ke−c2t |ξ − ζ | ∀ t ≥ 0 . (4.5)

Proof of Theorem 4.2.2

We now prove the main result on contracting systems, i.e. Theorem 4.2.1, under the

hypotheses that the set C, i.e. the set on which the system evolves, is K-reachable.

Proof. Given any two points x (0) = ξ and z (0) = ζ in C, pick a smooth curve

γ : [0, 1] → C, such that γ (0) = ξ and γ (1) = ζ . Let ψ (t, r) = ϕ(t, 0, γ (r), that

is, the solution of system (2.1) rooted in ψ (0, r) = γ (r), r ∈ [0, 1]. Since ϕ and

γ are continuously differentiable, also ψ (t, r) is continuously differentiable in both

arguments. We define

w(t, r) :=
∂ψ

∂r
(t, r)

It follows that

∂w

∂t
(t, r) =

∂

∂t

(
∂ψ

∂r

)
=

∂

∂r

(
∂ψ

∂t

)
=

∂

∂r
f(ψ (t, r) , t)

Now,
∂

∂r
f(ψ (t, r) , t) =

∂f

∂x
(ψ (t, r) , t)

∂ψ

∂r
(t, r)

so, we have:
∂w

∂t
(t, r) = J(ψ (t, r) , t)w(t, r) (4.6)

where J(ψ (t, r) , t) = ∂f
∂x
(ψ (t, r) , t). Using Coppel’s inequality [191], yields

|w(t, r)| ≤ |w(0, r)| e
R t

0
µ(J(τ))dτ ≤ K |ξ − ζ | e−c2t (4.7)

∀x ∈ C, ∀t ∈ R
+, and ∀r ∈ [0, 1]. Notice the Fundamental Theorem of Calculus,

we can write

ψ (t, 1)− ψ (t, 0) =

∫ 1

0

w(t, s)ds
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Hence, we obtain

|x(t)− z(t)| ≤
∫ 1

0

|w(t, s)|ds

Now, using (4.7), the above inequality becomes:

|x(t)− z(t)| ≤
∫ 1

0

(
|w(0, s)| e

R t
0 µ(J(τ))dτ

)
ds ≤ K |ξ − ζ | e−c2t

The Theorem is then proved.

Proof of Theorem 4.2.1: The proof follows trivially from Theorem 4.2.2, after

having noticed that in the convex case, we may assume K = 1.

4.3 Contracting systems forced by periodic in-

puts

In actual applications, often one is given a system which depends implicitly on

the time, t, by means of a continuous function u (t), i.e. systems dynamics are

represented by ẋ = f (x, u (t)). In this case, u (t) : R
+ → U (where U is some

subset of R), represents an external input. It is important to observe that the

contractivity property does not require any prior information about this external

input. In fact, since u (t) does not depend on the system state variables, when

checking the property, it may be viewed as a constant parameter, u ∈ U . Thus, if

contractivity of f (x, u) holds uniformly ∀u ∈ U , then it will also hold for f (x, u (t)).
Given a number T > 0, we will say that system (2.1) is T -periodic if it holds

that

f(t+ T, x) = f(t, x) ∀ t ≥ 0, x ∈ C

Notice that the system ẋ = f (x, u (t)) is T -periodic, if the external input, u (t), is

itself a periodic function of period T .

The following is a theoretical result about periodic orbits which is an analogous

of the result on periodic inputs presented in Section 2.4. It may be found, under

various different technical variants, in the references given above, e.g. [111].

Theorem 4.3.1. Suppose that:

• C is a closed convex subset of R
n;

• f is infinitesimally contracting with contraction rate c2;

• f is T -periodic.

Then, there is a unique periodic solution α(t) : [0,∞)→ C of (2.1) of period T and,

for every solution x(t), it holds that |x (t)− α (t)| → 0 as t→∞.
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Now, we provide a self-contained proof of Theorem 4.3.1, in a generalized form

which does not require convexity.

4.3.1 Proof of Theorem 4.3.1

In this Section we assume that the vector field f is T -periodic and prove Theorem

4.3.1.

Remark 4.3.1. Periodicity implies that the initial time is only relevant modulo T .

More precisely:

ϕ(kT + t, kT, ξ) = ϕ(t, 0, ξ) ∀ k ∈ N, t ≥ 0, x ∈ C (4.8)

Indeed, let z(s) = ϕ(s, kT, ξ), s ≥ kT , and consider the function x(t) = z(kT + t) =

ϕ(kT + t, kT, ξ), for t ≥ 0. So,

ẋ(t) = ż(kT + t) = f(kT + t, z(kT + t)) = f(kT + t, x(t)) = f(t, x(t))

where the last equality follows by T -periodicity of f . Since x(0) = z(kT ) = ϕ(kT, kT, ξ) =

ξ, it follows by uniqueness of solutions that x(t) = ϕ(t, 0, ξ) = ϕ (kT + t, kT, ξ),

which is (4.8). As a corollary, we also have that

ϕ(kT + t, 0, ξ) = ϕ(kT + t, kT, ϕ(kT, 0, ξ)) = ϕ(t, 0, ϕ(kT, 0, ξ)) (4.9)

∀ k ∈ N, t ≥ 0, x ∈ C, where the first equality follows from the semigroup property

of solutions (see e.g. [175]), and the second one from (4.8) applied to ϕ(kT, 0, ξ)

instead of ξ.

Define now

P (ξ) = ϕ(T, 0, ξ)

where ξ = x (0) ∈ C. The following Lemma will be useful in what follows.

Lemma 4.3.1. P k(ξ) = ϕ(kT, 0, ξ) for all k ∈ N and ξ ∈ C.

Proof. We will prove the Lemma by recursion. In particular, the statement is true

by definition when k = 1. Inductively, assuming it true for k, we have:

P k+1(ξ) = P (P k(ξ)) = ϕ(T, 0, P k(ξ)) = ϕ(T, 0, ϕ(kT, 0, ξ)) = ϕ(kT + T, 0, ξ)

as wanted.

Theorem 4.3.2. Suppose that:

• C is a closed K-reachable subset of R
n;
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• f is infinitesimally contracting with contraction rate c2;

• f is T -periodic;

• Ke−c2T < 1.

Then, there is a unique periodic solution α(t) : [0,∞) → C of (2.1) having period

T . Furthermore, every solution x(t), such that x (0) = ξ ∈ C, converges to α (t),

i.e. |x(t)− α(t)| → 0 as t→∞.

Proof. Observe that P is a contraction with factor Ke−c2T < 1: |P (ξ)− P (ζ)| ≤
Ke−c2T |ξ − ζ | for all ξ, ζ ∈ C, as a consequence of Theorem 4.2.2. The set C is a

closed subset of R
n and hence complete as a metric space with respect to the distance

induced by the norm being considered. Thus, by the contraction mapping theorem,

there is a (unique) fixed point ξ̄ of P . Let α(t) := ϕ(t, 0, ξ̄). Since α(T ) = P (ξ̄) =

ξ̄ = α(0), α(t) is a periodic orbit of period T . Moreover, again by Theorem 4.2.2,

we have that |x(t)− α(t)| ≤ Ke−c2t
∣∣ξ − ξ̄

∣∣ → 0. Uniqueness is clear, since two

different periodic orbits would be disjoint compact subsets, and hence at positive

distance from each other, contradicting convergence. This completes the proof.

Proof of Theorem 4.3.1: It will suffice to note that the assumption Ke−c2T < 1

in Theorem 4.3.2 is automatically satisfied when the set C is convex (i.e. K = 1)

and the system is infinitesimally contracting.

Notice that, even in the non-convex case, the assumption Ke−c2T < 1 can be

ignored, if we are willing to assert only the existence (and global convergence to)

a unique periodic orbit, with some period kT for some integer k > 1. Indeed, the

vector field is also kT -periodic for any integer k. Picking k large enough so that

Ke−c2kT < 1, we have the conclusion that such an orbit exists, applying Theo-

rem 4.3.2.

4.3.2 A simple example

As a first example to illustrate the application of the concepts introduced so far, we

choose a simple bimolecular reaction, in which a molecule of A and one of B can

reversibly combine to produce a molecule of C.

This system can be modeled by the following set of differential equations:

Ȧ = −k1AB + k−1C

Ḃ = −k1AB + k−1C

Ċ = k1AB − k−1C

(4.10)

where we are using A = A(t) to denote the concentration of A and so forth. The

system evolves in the positive orthant of R
3. Solutions satisfy (stoichiometry) con-
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straints:
A(t) + C(t) = α

B(t) + C(t) = β
(4.11)

for some constants α and β.

We will assume that one or both of the “kinetic constants” ki are time-varying,

with period T . Such a situation arises when the ki’s depend on concentrations of

additional enzymes, which are available in large amounts compared to the concen-

trations of A,B,C, but whose concentrations are periodically varying. The only

assumption will be that k1(t) ≥ k01 > 0 and k−1(t) ≥ k0−1 > 0 for all t.

Because of the conservation laws (4.11), we may restrict our study to the equation

for C. Once all solutions of this equation are shown to globally converge to a periodic

orbit, the same will follow for A(t) = α−C(t) and B(t) = β −C(t). We have that:

Ċ = k1 (α− C) (β − C)− k−1C (4.12)

Because A(t) ≥ 0 and B(t) ≥ 0, this system is studied on the subset of R defined

by 0 ≤ C ≤ min {α, β}. The equation can be rewritten as:

Ċ = k1
(
αβ − αC − βC + C2

)
− k−1C (4.13)

Differentiation with respect to C of the right-hand side in the above system yields

this (1× 1) Jacobian:

J := k1 (− (α + β) + 2C − k−1) (4.14)

Since we know that −α + C ≤ 0 and −β + C ≤ 0, it follows that

J ≤ −k1k−1 ≤ −k01k0−1 := −c2

for c =
√
k01k

0
−1. Using any norm (this example is in dimension one) we have that

µ(J) < −c2. So (4.10) is contracting and, by means of Theorem 4.3.1, solutions

will globally converge to a unique solution of period T (notice that such a solution

depends on system parameters).

Figure 4.1 shows the behavior of the dynamical system (4.13), using two different

values of k−1. Notice that the asymptotic behavior of the system depends on the

particular choice of the biochemical parameters being used. Furthermore, it is worth

noticing here that the higher the value of k−1, the faster will be the convergence to

the attractor.
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Figure 4.1: Entrainment of (4.13) to the periodic input u(t) = 1.5 + sin(10t) for
k−1 = 10 (blue), k−1 = 1 (green), k−1 = 0.1 (red). Notice that an increase of
k−1, causes an increase of the contraction rate, hence trajectories converge faster
to the system unique periodic attractor. The other system parameters are set to:
α = β = 1, k2 = 0.1.

4.4 Hierarchies of contracting systems

An interesting property of contracting systems is that cascades of contracting sys-

tems remain contracting, it is enough to show this, inductively, for a cascade of two

systems.

Consider a system of the following form:

ẋ = f(t, x)

ẏ = g(t, x, y)

where x(t) ∈ C1 ⊆ R
n1 and y(t) ∈ C2 ⊆ R

n2 for all t (C1 and C2 are two K-

reachable sets). We write the Jacobian of f with respect to x as A(t, x) = ∂f
∂x
(t, x),

the Jacobian of g with respect to x as B(t, x, y) = ∂g
∂x
(t, x, y), and the Jacobian of g

with respect to y as C(t, x, y) = ∂g
∂y
(t, x, y),

We assume the following:

1. The system ẋ = f(t, x) is infinitesimally contracting with respect to some

norm (generally indicated as |·|∗), with some contraction rate c21, that is,

µ∗(A(t, x)) ≤ −c21 for all x ∈ C1 and all t ≥ 0, where µ∗ is the matrix measure

associated to |·|∗.

2. The system ẏ = f(t, x, y) is infinitesimally contracting with respect to some

norm (which is, in general different from |·|∗, and is denoted by |·|∗∗), with
contraction rate c22, when x is viewed a a parameter in the second system,

that is, µ∗∗(C(t, x, y)) ≤ −c22 for all x ∈ C1, y ∈ C2 and all t ≥ 0, where µ∗∗ is

the matrix measure associated to |·|∗∗.
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3. The mixed Jacobian B(t, x, y) is bounded: ‖B(t, x, y)‖ ≤ k2, for all x ∈ C1,

y ∈ C2 and all t ≥ 0, for some real number k, where “‖·‖” is the operator
norm induced by |·|∗ and |·|∗∗ on linear operators R

n1×n2×1 → R
n1×n2 . (All

norms in Euclidean space being equivalent, this can be verified in any norm.)

We claim that, under these assumptions, the complete system is infinitesimally

contracting. More precisely, pick any two positive numbers p1 and p2 such that

c21 −
p2
p1
k2 > 0

and let

c2 := min

{
c21 −

p2
p1
k2, c22

}

We will show that µ(J) ≤ −c2, where J is the full Jacobian:

J =

[
A 0

B C

]
(4.15)

with respect to the matrix measure µ induced by the following norm in R
n1×n2:

|(x1, x2)| = p1 |x1|∗ + p2 |x2|∗∗

Since

(I + hJ)x =

[
(I + hA)x1

hBx1 + (I + hC)x2

]

for all h and x, we have that:

|(I + hJ)x| = p1 |(I + hA)x1|+ p2 |hBx1 + (I + hC)x2|
≤ p1 |I + hA| |x1|+ p2 |hB| |x1|+ p2 |I + hC| |x2|

where from now on we drop subscripts for norms. Pick now any h > 0 and a unit

vector x (which depends on h) such that ‖I + hJ‖ = |(I + hJ)x|. Such a vector

x exists by the definition of induced matrix norm, and we note that 1 = |x| =
p1 |x1|∗ + p2 |x2|∗∗, by the definition of the norm in the product space. Therefore:

1

h
(‖I + hJ‖ − 1) =

1

h
(|(I + hJ)x| − |x|)

≤ 1

h
(p1 |I + hA| |x1|+ p2 |hB| |x1|+ p2 |I + hC| |x2| − p1 |x1| − p2 |x2|)

=
1

h

(
|I + hA| − 1 +

p2
p1
h |B|

)
p1 |x1|+

1

h
(|I + hC| − 1) p2 |x2|

≤ max

{
1

h
(|I + hA| − 1) +

p2
p1
k2 ,

1

h
(|I + hC| − 1)

}
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where the last inequality is a consequence of the fact that λ1a1+λ2a2 ≤ max{a1, a2}
for any nonnegative numbers with λ1 + λ2 = 1 (convex combination of the ai’s).

Now taking limits as hց 0, we conclude that

µ(J) ≤ max

{
−c21 +

p2
p1
k2,−c22

}
= −c2

as desired.

4.5 Partial contraction

The notion of partial contraction can also be extended when using arbitrary norms.

Consider, again the system (2.1) and construct an auxiliary system as follows:

ẏ = v (t, y, x(t)) (4.16)

with the property that

v (t, x, x) = f(t, x) (4.17)

We say that (4.16) is a virtual system for (2.1). Now, notice that (4.17) implies that

the solutions of (4.16) are also solutions of (4.17). Furthermore, x(t) is an input to

(4.16). Now, if the virtual system is contracting uniformly in x(t), then all of its

solutions contract towards a unique solution, say yc(t). This, in turn, implies that

for any solution of (4.16), say z(t):

|z(t)− yc(t)| → 0, t→ +∞

4.6 Contraction towards linear flow invariant sub-

spaces

We now revisit the question of contractions relative to a linear flow invariant sub-

spaceM originally posed in [142] (we will also term this as relative contractions)

Let us pick any orthogonal matrix Q (QQt = QtQ = I), and partition Q as:

Q = (VW ) ∈ R
n×n

with V T = (v1, . . . , vq) ∈ R
n×q and W T = (w1, . . . , wm) ∈ R

n×m. Since Q is

orthogonal, V TV +W TW = I, WW T = I, V V T = I, WV T = 0, and VW T = 0

(zero and identity matrices of appropriate sizes). LetM be the linear subspace of

R
n spanned by the rows of W ∈ R

n×m, say wi, i = 1, . . .m. Equivalently, the rows

of V , say vi, constitute an orthogonal basis ofM⊥, i.e.M = ker V ,. In applications
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to interconnected systems, M will typically be the synchronization manifold (see

Chapter 3). We consider the following conditions on C:

V T
R

q +W TWC ⊆ C (4.18)

(this condition is satisfied in the special case that C = R
n) and on f :

V f(t,W TWC) ⊆ C (4.19)

Since M is the range of W T and the kernel of V , condition (4.19) is satisfied if we

know thatM is a forward-invariant set, f(t,M) ⊆M.

We say that system (2.1) is infinitesimally contracting to M if there exists some

norm in R
n, with associated matrix measure µ, such that, for some constant c2 6= 0,

the contraction rate:

µ
(
V J (t, x)V T

)
≤ −c2, ∀x ∈ C, ∀t ≥ 0 (4.20)

We can then state the main result as follows.

Theorem 4.6.1. Suppose that C,M, V satisfy conditions (4.18) and (4.19), and

that f(t, x) is infinitesimally contracting to M with contraction rate c. Consider

any solution x(t) = ϕ(t, 0, ξ) of (2.1). Then

|V x(t)| ≤ e−c2t |V ξ| , ∀ t ≥ 0 (4.21)

Since V x(t) → 0 as t → ∞ is equivalent to x(t) → ker V = M, this result

implies that every trajectory of (2.1) approachesM exponentially.

Proof. Fix the particular solution x̄(t) = ϕ(t, 0, ξ) of (2.1) of interest. Let η :=

V x̄(0) ∈ R
q. We consider the following system of differential equations in R

q:

ẏ = g(t, y) := V f(t, V Ty +W TWx̄(t)) (4.22)

For each r ∈ [0, 1], let

ψ (t, r) := solution of (4.22) with ψ (0, r) = r η

The function ψ (t, r) is continuously differentiable jointly on (t, r).

Observe that x̄(t) = (V TV +W TW )x̄(t) = V T ȳ(t) +W TWx̄(t), where ȳ(t) :=

V x̄(t). Since x̄ satisfies ẋ = f(t, x), it follows that ˙̄y = V f(t, x̄) = g(t, ȳ(t)). This

means that ȳ(t) is a solution of (4.22). Since ȳ(0) = V x̄(0) = η, it follows by

uniqueness of solutions that ψ (t, 1) = ȳ(t) for all t ≥ 0.
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Similarly, y ≡ 0 is also a solution, because V f(t,W TWx̄(t)) ≡ 0 (by condi-

tion (4.19). Thus, ψ (t, 0) = 0 for all t ≥ 0.

We define

w(t, r) :=
∂ψ

∂r
(t, r)

Since ψ(0, r) = rη, we have that w(0, r) = η for all r. Furthermore,

∂w

∂t
(t, r) =

∂

∂t

(
∂ψ

∂r

)
=

∂

∂r

(
∂ψ

∂t

)

=
∂

∂r
g(t, ψ (t, r)) = A(t, r)w(t, r)

where,

A(t, r) = V J(t, x(t, r))V T

and where, using (4.18)

x(t, r) := V Tψ (t, r) +W TWx̄(t) ∈ C

Coppel’s inequality [191] yields:

|w(t, r)| ≤ |w(0, r)| e
R t
0 µ(A(τ,r))dτ ≤ |η| e−c2t (4.23)

for all t ≥ 0 and all r ∈ [0, 1]. From

ȳ(t)− 0 = ψ (t, 1)− ψ (t, 0) =

∫ 1

0

w(t, r)dr

it now follows that

|ȳ(t)| ≤
∫ 1

0

|w(t, r)| dr ≤ |η| e−ct

and the proof is complete because η = V x̄(0) = V ξ and ȳ(t) = V x̄(t).

4.7 Contraction and symmetries of dynamical sys-

tems

We now turn our attention to the study of the effects of symmetries of vector fields

on their contraction properties.

In this Section, we consider operators acting over the state space of (2.1). It will

be often the case that such operators are linear: in this case, they belong to GL,

the general linear group.

The effects of the operators on the structure of the solutions of (2.1) can be

specified in terms of a group of transformations, see e.g. [69]. In what follows, we

will denote with the term symmetries of a system of ODEs the transformations that
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preserves the structure of solutions of (2.1).

We will extensively use the following definitions:

Definition 4.7.1. Let Γ be a group of operators acting on R
n. We say that γ ∈ Γ is

a symmetry of (2.1) if for any solution, x(t), γx(t) is also a solution. Furthermore,

if γx = x, we say that the solution x(t) is γ-symmetric.

Definition 4.7.2. Let Γ be a group of operators acting on R
n, and f : R

+ ×R
n →

R
n. The vector field, f , is said to be γ-equivariant if f(t, γx) = γf(t, x), for any

γ ∈ Γ and x ∈ R
n.

Thus, γ-equivariance in essence means that γ “commutes” with f .

Definition 4.7.3. We say that a solution of (2.1) is h-symmetric, if there exist some

T > 0 such that x(t) = γx(t+ T ). The vector field, f , is said to be h-equivariant if

f(t, γx) = γf(t+ T, x).

In what follows we will refer to γ and h as actions, and id will denote the identity

action.

Symmetries, equivariance and invariant subspaces

We first review the relationship [69] between symmetries, equivariance, and the

existence of flow-invariant linear subspace.

If f is γ-equivariant, then γ is a symmetry of (2.1). Indeed, letting y(t) = γx(t),

we have

ẏ = γẋ = γf(t, x) = f(t, γx) = f(y, t)

so that y(t) is also a solution of (2.1).

If the operator γ is linear, this in turn immediately implies that the subspace

Mγ = {x ∈ R
n : γx = x} is flow-invariant under the dynamics (2.1). Thus, solutions

having symmetric initial conditions, x0 = γx0, preserve that symmetry for any t ≥ 0.

Note thatM 6= ∅ since 0 ∈M.

In the rest of the Thesis we assume γ to be any linear operator (under simple

conditions specified in the next section) and give some extensions for nonlinear oper-

ators. Therefore, our framework is somewhat broader than that typically considered

in the literature on symmetries of dynamical systems, where it is typically assumed

that γ describes finite groups or compact Lie Groups, see e.g. [69] and references

therein.

Basic results on symmetries and contraction

We first review some results from [64] which this Section shall generalize. Those

results can be summarized as follows:
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• If the dynamical system of interest is contracting, then γ and h symmetries of

the vector fields are transferred onto symmetries of trajectories.

• if f presents some spatial symmetry, then this property can be transferred

to the solutions x be only requiring contraction towards a properly defined

subspace; this condition is less strict than the previous one.

Note that, although the proofs in [64] are presented in the context of Euclid-

ian norms, they generalize straightforwardly to other norms as they just use the

definition of contraction.

Theorem 4.7.1. Assume that f (t, x) in (2.1) is γ-equivariant. Then, all the solu-

tions of (2.1) globally exponentially converge towards a unique γ-symmetric solution

if one of the following conditions hold:

1. f is contracting;

2. f is contracting towards Mγ, where Mγ := {x ∈ R
n : x = γx}.

Proof. First, recall that if f is γ-equivariant, and x(t) is a solution of (2.1), then

also γx(t) is a solution of the system.

Therefore, if the system is contracting, then for any solution, a(t), of (2.1), we

have that for all t ≥ 0,

|a(t)− γx(t)| → 0, t→ +∞

That is, a(t)→ γx(t) a t→ +∞.

We will now prove the result under hypothesis 2, i.e. f is contracting towards

Mγ. Recall thatMγ is a linear flow invariant subspace for (2.1). Now, let a(t) /∈Mγ

be a solution of (2.1). By the hypothesis, we have that a(t) → Mγ as t → +∞.

This, in turn, implies that:

a(t)→ x(t) = γx(t), t→ +∞

That is, a(t) globally exponentially converges to a γ-symmetric solution. This proves

the Theorem.

An important class of systems to which Theorem 4.7.1 can be applied is that of

Lagrangian systems. For such systems, it can be easily shown that the symmetries

of the Lagrangian function transfer onto the equations of motion, making them

invariant under the same symmetry (see e.g. [176] in the context of motion control).

A similar property (i.e. transfer of symmetries of the vector field onto symmetries

of x) holds for spatio-temporal symmetries. Let pγ be the order of γ, i.e. γ
pγ = id.

The following result holds:
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Theorem 4.7.2. If f is h-equivariant and contracting, then x is h-symmetric. Fur-

thermore, at steady state the solutions are periodic of period pγT .

Proof. Indeed, γx(t+ T ) is a solution of (2.1):

dγx(t+ T )

dt
= γẋ(t+ T ) = f(t, γx(t+ T ))

Since (2.1) is contracting, there exist some K > 0 such that

|x(t)− γx(t+ T )| ≤ Ke−c2t

i.e. x(t)→ γx(t+ T ) exponentially fast. By recursion:

x(t)→ γpγx(t+ pγT ) = x(t+ pγT )

Notice that for any t ∈ [0, pγT ], x(t + npγT ) is a Cauchy sequence. Since R
n,

equipped with the (weigthed) 1, 2 and ∞ norm is a complete space, we have that

lim
n→+∞

x(t+ npγT )

exists. This completes the proof.

Note that pγT may actually be an integer multiple of the smallest period of the

solutions.

4.7.1 Coexistence of multiple spatial symmetries

In the previous Section, we showed that the symmetries of the vector field of (2.1)

are transformed in symmetries of its solutions, x(t), if the system is contracting

(towards some linear invariant subspace). We now assume that f is equivariant

with respect to a number of s > 1 actions: the aim of this Section is to provide

sufficient conditions determining the steady state behavior of the system.

Let:

• Mi be the linear subspace defined by γi;

• ẋi = f i(t, xi) be the dynamics of (2.1) onMi;

• γ1, . . . , γs be the symmetries showed by f
i;

Theorem 4.7.3. Assume that M1 ⊂ M2 ⊂ . . . ⊂ Ms. Then, all the solutions of

(2.1) exhibit the symmetry γj (1 ≤ j ≤ s) if:

1. (2.1) contracts towards Ms;

2. ∀i = j + 1, . . . , s, ẋi = f i(t, xi) is contracting towards Mi−1.
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Proof. By assumptions we know that the setsMi are all linear invariant subspaces.

Denote with c2i the contraction rates of ẋi = f i(t, xi) towards Mi−1. Let ai(t) be

solutions of (2.1) such that ai (t0) ∈Mi, and let b(t) be a solution of (2.1) such that

b (t0) /∈Ms.

We have:

|b(t)− aj(t)| =
∣∣∣b(t) +

∑s
i=j+1 ai(t)−

∑s
i=j+1 ai(t)− aj(t)

∣∣∣ ≤ |b(t)− as(t)|+
+

∑s
i=j+1 |ai(t)− ai−1(t)|

Now, by hypotheses, the dynamics of (2.1) reduced on each of the subspaces Mi

(i = j + 1, . . . , s), i.e. ẋi = f i(t, xi), is contracting towards Mi−1. Thus, we have

that there exist some Ki > 0, i = 1, . . . , j − 1, such that:

|b(t)− as(t)| ≤ Ks+1e
−c2s+1t

|ai(t)− ai−1(t)| ≤ Kie
−c2i t i = j + 1, . . . , s

This implies that

|b(t)− aj(t)| → 0

exponentially. The Theorem is then proved.

With the following result, we show that if (2.1) is contracting towardsMγ, then

the only symmetries that the vector field, f , can eventually exhibit are those defining

invariant subspaces strictly contained inMγ.

Theorem 4.7.4. Assume that (2.1) exhibits a symmetry, γ, and that it is con-

tracting towards Mγ. Then there does not exist any other symmetry, β, such that

Mγ ∩Mβ = {0}.

Proof. The proof of this result is straightforward, by contradiction. In fact, assume

that there exist two symmetries, γ and β, such thatMγ ∩Mβ = {0}. That is, let

d(a, b, t) := |a(t)− b(t)|

be the distance between a(t) ∈Mγ and b(t) ∈Mβ. We have that

inf
a∈Mγ ,b∈Mβ ,t∈R+

{d(a, b, t)} = D > 0

since bothMγ andMβ are invariant subspaces. This in turn implies that a(t) and

b(t) cannot globally exponentially converge towards each other. That is, the system

is not contracting towardsMγ. This contradicts the hypotheses. Hence, the result

remains proved.
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With the following result we address the case where the invariant subspaces

defined by the symmetries are not strictly contained in each other but intersect:

Theorem 4.7.5. Assume that M∩ := ∩Mi 6= {0}. Then, all solutions of (2.1)

exhibit the symmetry defined by M∩ if one of the two conditions holds:

• f is contracting toward each subspace Mi;

• f is contracting.

Proof. Let xi, i = 1, . . . , s, be solutions of (2.1), such that xi(t0) ∈ Mi, and a(t)

be a solution of the system such that a(t0) /∈ Mi. Now, if f is contracting towards

each Mi, we have, by definition, that there existsKi > 0, c2i 6= 0, i = 1, . . . , s, such

that:

|a(t)− xi| ≤ Kie
−c2t

This, in turn, implies that there exists some K > 0, c2 6= 0 such that:

|xi − xj | ≤ Ke−c2t, ∀i 6= j

Now, since Mi are flow invariant, we have that xi ∈ Mi, for all t ≥ t0. Thus,

xi →M∩, as t→ +∞, implying that also a→M∩, as t→ +∞.

By using similar arguments, it is possible to prove the result under the stronger

hypothesis of f being contracting.

An example: synchronizing networks with chain topologies

The aim of this Example is to: i) introduce an important γ-symmetry for the study

of networked systems (analyzed in a broader framework in Section 6.5); ii) show

how the above results can be used to obtain convergence conditions for a system of

interest. Specifically, we show that Theorem 4.7.3 allows to study network synchro-

nization iteratively reducing the dimensionality of the problem. On the other hand,

Theorem 4.7.4 can be used to conclude that the synchronization subspace is unique.

Consider, for instance, the diffusively coupled network represented in Figure 4.2,

whose dynamics are described by:

ẋ1 = f1(X) := g(x1) + h(x2)− h(x1)

ẋ2 = f2(X) := g(x2) + h(x1) + h(x3)− 2h(x2)

ẋ3 = f3(X) := g(x4) + h(x2) + h(x4)− 2h(x3)

ẋ4 = f4(X) := g(x4) + h(x3)− h(x4)

(4.24)

where: xi ∈ R
n, X := [xT

1 , x
T
2 , x

T
3 , x

T
4 ]

T , all the nodes have the same intrinsic dy-

namics, g and are coupled by means of the output function, h. We assume that all
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the components of h(·) are strictly increasing and that its Jacobian is a bounded

diagonal matrix. Now, consider the following action:

γ2 : (x1, x2, x3, x4)→ (x4, x3, x2, x1) (4.25)

That is, γ2 permutes x1 with x4 and x2 with x3. Let

F (X) := [f1(X)
T , f2(X)

T , f3(X)
T , f4(X)

T ]T

it is straightforward to check that γ2F (X) = F (γ2X). That is, F is γ2-equivariant.

This, in turn, implies that the subspace

M2 :=
{
X ∈ R

4n : (x1, x2, x3, x4) = (x4, x3, x2, x1)
}

is flow invariant. Notice that such a subspace corresponds to the poly-synchronous

subspace, where node 1 is synchronized to node 4 and node 2 is synchronized to

node 3 (synchronous nodes are also pointed out in Figure 4.2). Let J2(X) be the

Jacobian of the network, and

V2 :=
1√
2

[
−1 0 0 1

0 −1 1 0

]

be the matrix spanning the null ofM2 (notice that the rows ofM2 are orthonormal).

All the trajectories of the network globally exponentially converge towards M2 if

the matrix V2J2(X)V
T
2 is contracting (see Theorem 4.7.1). It is straightforward to

check that such a matrix is contracting if the function g(·)−h(·) is contracting. Let
x1,4, x2,3 ∈ M2, with x1,4 = x1 = x4 and x2,3 = x2 = x3; the dynamics of (4.24)

reduced onM2 is given by:

ẋ1,4 = g(x1,4) + h(x2,3)− h(x1,4)

ẋ2,3 = g(x2,3) + h(x1,4)− h(x2,3)
(4.26)

which corresponds to an equivalent 2-nodes network (see Figure 4.2). It is straight-

forward to check that the above reduced dynamics is γ1-equivariant with respect to

the action

γ1 : (x1,4, x2,3)→ (x2,3, x1,4)

Thus, the subspace

M1 :=
{
X ∈ R

4n : (x1,4, x2,3) = (x2,3, x1,4)
}

is a flow invariant subspace. Furthermore, the trajectories of (4.26) globally expo-

nentially converge towards M1 if V1J1(X)V
T
1 is contracting, where V1 =

1√
2
[−1, 1]
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and J1(X) is the Jacobian of (4.26). Now, V1J1V
T
1 = 1

2
( ∂g

∂x1,4
−2 ∂h

∂x1,4
+ ∂g

∂x2,3
−2 ∂h

∂x2,3
),

which is contracting if g(·)− h(·) is contracting.
Thus, using Theorem 4.7.3, we can finally conclude that the network synchronizes

if the function g(·)−h(·) is a contracting function. Furthermore, the synchronization
subspace is unique by means of Theorem 4.7.4.

We remark here that:

• the dimensionality-reduction methodology presented above can also be ex-

tended to the more generic case of chain topologies of length 2r, for any integer,

r;

• the same methodology can be used to prove synchronization of networks hav-

ing hypercube topologies, as they can be seen as chains of chains. Hence,

the above approach can be used to find condition for the synchronization of

lattices. Such a topology typically arise from e.g. the discretization of partial

differential equations. In this view, our results provide a sufficient condition

for the spatially uniform behavior in reaction diffusion PDEs, similarly to

[11];

• the synchronization condition obtained above is less stringent than that ob-

tained by proving contraction of (4.24) towards the synchronization subspace

M :=
{
X ∈ R

4n : x1 = x2 = x3 = x4
}

! " # $

! " # $

!"# $"%

Figure 4.2: Top panel: the chain topology network of 4 nodes. Middle panel: poly-
synchronous subspace identified by M2. Bottom panel: equivalent network and
synchronous subspace identified byM1.

4.7.2 Generalizations using virtual systems

The results presented in the previous sections link the symmetries of a dynamical

system and contraction. Specifically, they show that if a system presents a set of
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s > 1 symmetries, then the steady state behavior is determined by the contraction

properties of the vector field.

In this Section, we extend the previous results and show that in order for the

solutions of (2.1) to exhibit a specific symmetry, equivariance and contraction of f

are not necessarily needed. Indeed, such a condition can be replaced by an equiv-

ariance condition on the vector field of some virtual system, similar in spirit to that

of Section 4.5.

Theorem 4.7.6. Assume that there exists some virtual system (4.16) for system

(2.1) and such that:

• is h (or γ) equivariant;

• is contracting (or contracting towards Mγ).

Then, any solution of (2.1) globally exponentially converges towards a h (or γ)

symmetric solution:

yc(t) = γyc(t+ T ) (yc(t) = γyc(t))

Proof. Indeed, by assumption, all the solutions y(t) of the virtual system globally

exponentially converge towards some h (γ) symmetric solution, say yc(t). Now,

notice that any solution of (2.1), say z(t), is a particular solution of (4.16). This

implies that:

|z(t)− x(t)| → 0

as t→ +∞. The result is then proved.

Note that

• Any solution of the virtual system having symmetric initial conditions, i.e.

y(t0) = γy(t0), preserves the symmetry for any y > t0. In particular, if a

solution of the real system has initial conditions verifying the symmetry of

the virtual system, i.e. x(t0) = γx(t0), then it preserves this symmetry, i.e.

x(t) = γx(t) for any t ≥ t0.

• Theorem 4.7.6 can be straightforwardly extended to the case where the virtual

system presents a set of s > 1 spatial symmetries.

4.7.3 Extensions to control

In the above Section, we presented some results that can be used to analyze the

steady state behavior of a system of interest. The main idea beyond such results is

the use of contraction to study convergence of trajectories towards some invariant

subspace. In turn, such a subspace is defined by some structural property of the
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vector field, i.e. a symmetry. In this Section, we show that this idea can be also

used to control system (2.1). In particular, we show that by using some control

inputs, it is possible to: i) generate some desired symmetries (and hence some

desired invariant subspace) for the system; ii) drive all the trajectories towards the

invariant subspace, imposing contraction.

The dynamical system considered here is

ẋ = f(x, ũ(x), ū(t), t) (4.27)

That is, the input to system (2.1) consists of: i) a feedback component, ũ(x); ii) an

exogenous component, ū(t).

Spatial symmetries

Theorem 4.7.7. Assume that in system (4.27) the control input generates a spatial

symmetry, γ, and ensures contraction towards Mγ. Then, any solution of (4.27) is

γ-symmetric.

Proof. Let

g(x, ū(t), t) := f(x, ũ(x), ū(t), t)

By hypotheses, the vector field g is γ-equivariant. This implies that, if x(t) is a

solution of (4.27), then γx(t) is also a solution. Indeed:

γẋ = γg(x, ū(t), t) = g(γx, ū(t), t)

Furthermore, by hypotheses, the control input makes the vector field g contracting.

Hence, for any solution of (4.27), a(t), we have:

|a(t)− x(t)| → 0

as t→ +∞.

The above analysis can be generalized to the case where the control inputs

generate a set of s > 1 spatial symmetries. The following result provides a sufficient

condition for selecting one of the possible steady state behaviors determined by the

symmetries.

Theorem 4.7.8. Assume that the inputs ũ(x) and ū(t) create s > 1 symmetries for

system (4.27) and that M1, . . .Ms are their associated invariant subspaces. Then,

(4.27) exhibits symmetry γk if ũ(x) and ū(t) ensure contraction towards Mk.

Proof. The proof of this result is straightforward and it is omitted here.
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Spatiotemporal symmetries

We now extend the above results to the control of spatio-temporal symmetries. As

formalized in the next result, we have now to impose some extra condition on ũ(t).

Theorem 4.7.9. Assume that

ẋ = f(x, ũ(x), ū(t), t) = g(x, ũ(t), t)

is h-equivariant, i.e.

γg(x, ũ(t), t) = g(γx, γũ(t+ T ), t+ T )

and that ũ(t) is h-symmetric, i.e.

ũ(t) = γũ(t+ T )

If g is contracting, then all the solutions of (4.27) globally exponentially converge

towards a h-symmetric solution.

Proof. In fact γx(t+ T ) is a solution of the system:

dγx(t+T )
dt

= γẋ(t+ T ) = γg(x(t+ T ), ũ(t+ T ), t+ T ) =

= g(γx(t+ T ), γũ(t+ T ), t+ T ) = g(γx(t+ T ), ũ(t), t+ T )

Since the system is contracting we have:

|x(t)− γx(t+ T )| → 0

This proves the result.

4.7.4 Controlling Symmetries of Virtual systems

In this Section, we present two results that can be used to determine the links

between the trajectories of a system when forced by different inputs.

Consider a system described by:

ẋ = f(x, u(t), t) (4.28)

Theorem 4.7.10. Assume that (4.28) is contracting with respect to x, uniformly

in u(t), and that there exist some linear transformations γi, ρi, i ≥ 1, such that:

γif(x, u(t), t) = f(γix, ρiu(t), t)



68 4 Extensions of Contraction Theory

Let xi(t) be solutions of (4.28) when forced by u(t) = ui(t), i.e.

ẋi = f(xi, ui(t), t), xi(t = 0) = x0,i

Then, for any ui(t), uj(t) such that ρiui(t) = ρjuj(t)

|γixi − γjxj | → 0

as t → +∞. Moreover, let xk
i and xk

j the k-th component of xi and xj respectively

and γk
i , (γk

j ) be the k-th component of γi (γj). If

γk
i x

k
0,i = γk

j x
k
0,j

then γk
i x

k
i (t) = γk

j x
k
j (t), for any t ≥ 0.

The second statement of the above Theorem implies that if the system when

forced by two different inputs starts with certain symmetries, then the symmetries

are preserved.

Proof. Indeed, let uv = ρiui = ρjuj and consider the following virtual system:

ẏ = f(y, uv, t) (4.29)

Notice that, for any i, j, γixi and γjxj are particular solutions of such a system.

Indeed:
γiẋi = γif(xi, ui, t) = f(γixi, ρiui, t) = f(γixi, uv, t)

γj ẋj = γjf(xj, uj, t) = f(γjxj , ρjuj, t) = f(γjxj , uv, t)

Now, since f(x, uv, t) is contracting by hypotheses, we have, for any i, j, there exists

some C such that:

|γixi − γjxj | ≤ C |γix0,i − γjx0,j | e−λt, λ > 0

This proves the first part of the result. To conclude the proof it suffices to notice

that exponential convergence of |γixi − γjxj | to 0 implies that all of its components
exponentially converge to 0. In particular, this implies that there exists some Ck,

λk such that:

∣∣γk
i x

k
i − γk

j x
k
j

∣∣ ≤ Ck

∣∣γk
i x

k
0,i − γk

j x
k
0,j

∣∣ e−λtk , λk > 0

Since
∣∣γk

i x
k
0,i − γk

j x
k
0,j

∣∣ = 0 by hypotheses, we have that

∣∣γk
i x

k
i (t)− γk

j x
k
j (t)

∣∣ , ∀t ≥ 0
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Theorem 4.7.10 can be extended by replacing the linear operators γi, ρi by more

general nonlinear transformations acting on the system

ẋ = f(t, u(t, x), x) (4.30)

The transformations considered are smooth nonlinear functions of the state and of

time,

γ = γ(t, x) ρ = ρ(t, u(t, x), x)

Following the same arguments as in Theorem 4.7.10, it is then straightforward to

show,

Theorem 4.7.11. Assume that (4.30) is contracting uniformly in u(t, x) and that

there exist some γi(t, x), ρi(t, u(t, x), x), i ≥ 1, such that:

∂γi

∂x
f(t, u(t, x), x) = f(t, ρi(u(x, t), x, t), γi(x))

Let xi(t) be solutions of (4.30) when forced by u(t) = ui(xi, t), i.e.

ẋi = f(xi, ui(xi, t), t), xi(t = 0) = x0,i

Then, for any ui(xi, t), uj(xj , t) such that ρi(u(xi, t), xi, t) = ρj(uj(xj , t), xj , t)

|γi(xi)− γj(xj)| → 0

as t → +∞. Moreover, let xk
i and xk

j the k-th component of xi and xj respectively

and γk
i , (γk

j ) be the k-th component of γi (γj). If

γk
i

(
xk
0,i

)
= γk

j

(
xk
0,j

)

then γk
i

(
xi(t)

k
)
= γk

j

(
xj(t)

k
)
, for any t ≥ 0.

Proof. The proof follows exactly the same steps as those used to prove Theorem

4.7.10, with uv in virtual system (4.29) now being chosen as uv = ρi(u(xi, t), xi, t) =

ρj(uj(xj , t), xj, t).

We close this Section by pointing out some features of the above two theorems.

• the proofs of both Theorem 4.7.10 and Theorem 4.7.11 are based on the proof

of contraction of some appropriately constructed virtual system of the form

(4.29). We now show that, if some hypotheses are made on γi’s, then the
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contraction condition can be weakened. Specifically, assume that all the inter-

section of the subspaces defined by γi,Mi, is nonempty. Then, it is straight-

forward to check that |γixi − γjxj | → 0 if: (i) f is contracting towards each

Mi, or (ii) contracting towards M∩. Notice that, since our results make use

of symmetries of virtual systems, they extend those in [64];

• Analogously, Theorem 4.7.10 and Theorem 4.7.11 can also be extended to

study the case where the input ui selects one specific symmetry γi. Indeed,

let uv = ρiui. In this case, it can be shown that symmetry γi is shown by the

solutions of (4.28) if f(x, uv, t) is contracting towardsMi.

• A particularly interesting case for Theorem 4.7.10 is when some of the com-

ponents of x0,i and x0,j are the same and the actions γi and γj leave such

components unchanged. That is, in view of the notations above γk
i = id = γk

j

and xk
0,i = xk

0,j . Indeed, in this case Theorem 4.7.10 implies that

xk
i (t) = xk

j (t) ∀t ≥ 0

That is, the k-th components of the trajectories of (4.28) have identical tem-

poral evolutions even if forced by different inputs. A similar result holds for

Theorem 4.7.11 .This consequence of the above two results is used in Section

9.4.1.

A discussion on symmetries of virtual systems

Let us briefly discuss some of the main features of our results involving the use of

virtual systems.

We showed that a given dynamical system of interest can exhibit some symmetric

steady state behavior even if the corresponding vector field is not equivariant and/or

contracting. Indeed, a sufficient condition for a system to exhibit a symmetric

final behavior is the symmetry of the vector field of some appropriately constructed

virtual system. Of course, an interesting general question is that of identifying a

virtual system explaining the final behavior of a real system, an aspect is reminiscent

of the process of identifying a Lyapunov function in stability analysis.

We also used the concept of virtual system to solve the problem of relating the

trajectories of a system when forced by two different inputs. Indeed, while the forced

systems of interest are not equivariant with respect to the same action, we showed

that it is possible to construct a symmetric and contracting virtual system which

allows us to relate the steady state behavior of the two systems.

In particular, the virtual system is constructed in a way such that it embeds

as particular solutions γixi. In this view, the construction of the virtual system

presented above is a generalization of the results presented in [194]. In that paper,
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where virtual systems and partial contraction were first introduced, the virtual sys-

tem is constructed in a way such that it embeds the solutions of the real systems,

xi. Clearly, our results reduce to the results presented in [194] when γi = γj = id

and ui(t) = uj(t).

The idea of relating non-symmetric behaviors of real systems using a symmetric

virtual system, possibly of different dimension, presents analogies with the concept of

supersymmetry in modern particle physics (see e.g. [59, 165] and references therein).

The motivation beyond the concept of supersymmetry is that non-symmetric trans-

formations of an object (the real system in our framework) in a finite dimensional

space, may be explained by a symmetric transformation of another, possibly higher-

dimensional, object (the virtual system in our framework). In particle physics,

supersymmetry can e.g. relate elementary particles characterized by a given spin to

particles differing by half a unit of spin.

4.8 Discrete-time contraction theory

We now consider the discrete-time m-dimensional nonlinear dynamical system

x (k + 1) = f (k, x (k)) , x (k0) = x0, k0 ≥ 0 (4.31)

subject to appropriate regularity constraints. The following definitions are used

throughout the Thesis:

Definition 4.8.1. We say that two trajectories, say x(k) and y(k), of (4.31) con-

verge asymptotically towards each other if

|x(k)− y(k)| → 0, k → +∞

Definition 4.8.2. We say that a matrix Θ (x (k) , k) is a uniformly invertible ma-

trix in some region R ⊆ R
m if for any x ∈ R and for any k ∈ N, the matrix

Θ−1 (x (k) , k) exists. When R ≡ R
m we will simply say that Θ (x (k) , k) is a uni-

formly invertible matrix.

Let

J(k) :=
∂f (k, x(k))

∂x

Differentiation of (4.31) gives the dynamics of the virtual displacements, say δx(k),

between two nearby trajectories (see [111]) δx (k + 1) = J(k)δx (k), δx (k0) = δx0.

Thus, an upper bound for the distance between any two trajectories of the above

equation can be obtained as |δx (k)| ≤∏k
r=1 ‖J(k − r)‖ |δx0| . It immediately follows

that (see [160]), if there exist a scalar d ∈ [0, 1[ such that ‖J(k)‖ ≤ d, ∀k ≥ k0,

then |δx (k)→ 0| as k → +∞. An immediate extension, similar to that proposed
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in [111], gives a condition on the so-called generalized Jacobian,

f(k) = Θ (k + 1, x (k + 1))J(k)Θ−1 (k, x (k))

where Θ (x (k) , k) is a uniformly invertible matrix. This motivates the following

result (see [111], [160]).

Theorem 4.8.1. Consider the discrete-time m-dimensional deterministic dynam-

ical system (4.31) and let C be a convex open subset of phase space. If there exist

a uniformly invertible matrix in C, Θ (k, x(k)), and some 0 ≤ d < 1 such that,

‖f(k)‖ ≤ d, ∀k ≥ k0, ∀x(k) ∈ C, then all system trajectories rooted in C con-

verge asymptotically towards each other. Furthermore, there exists some 0 < χ1 < 1

and some χ2 > 0 such that, for any two solutions of (4.31), say x(k), y(k) ∈ C,
|x(k)− y(k)| ≤ χ2 · χk

1 |x(k0)− y(k0)|.

If the hypotheses of Theorem 4.8.1 are all fulfilled, we say that the system is

contracting in C. If C ≡ R
m we simply say that the system is contracting and that

all of its trajectories converge towards each other.

As pointed out in [142] for continuous time systems, contraction theory can be

used to analyze the convergent behavior of systems trajectories towards a linear

invariant subspace, M, embedded in the m-dimensional system phase space, i.e. a

linear subspace such that ∀x ∈M, x(k+1) = φ(k, x) ∈ M, ∀k ≥ k0. The following

definition formalizes the notion of convergence towards a subspace, used in the rest

of the Thesis

Definition 4.8.3. Let M be a linear invariant subspace for (4.31). We say that all

the trajectories of (4.31) are contracting (or simply converge) towards M if for any

y(k) : y(k0) /∈M there exist some x(k) : x(k0) ∈M such that:

|x(k)− y(k)| → 0, k → +∞

Theorem 4.8.2. Assume that the linear subspace, M, is flow invariant for the

discrete time dynamical system (4.31). Let V be the matrix whose rows are an

orthonormal basis of M⊥. Then, all the solutions of (4.31) converge towards M if

there exist a norm such that
∥∥V J(k)V T

∥∥ ≤ d < 1 for any k ≥ k0 and ∀x ∈ R
m.

Proof. Define z (k) = V x (k). All system trajectories converge towards M if and

only if for any z(k) such that z(k0) 6= 0, z (k)→ 0, as k → +∞. Now:

V TV x+W TWx = x

That is,

x = V T z +W TWx
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and hence it follows that

z (k + 1) = V f
(
k, V T z +W TWx

)

As in [194], [142], we construct the auxiliary system

y (k + 1) = V f
(
k, V Ty +W TWx

)

which is contracting by hypotheses. Furthermore, notice that such a system has

y = z and y = 0 as particular solutions. Thus, contraction of the virtual system

immediately implies that z(k)→ 0.

4.9 Concluding remarks

In this Chapter we derived some extensions of nonlinear contraction theory. Specif-

ically, we revisited (and extended) the main results on contraction and contraction

towards subspaces presented in Chapter 2 were obtained using non-Euclidean norms.

At the same time, we presented novel results that make use of both contraction and

symmetries to determine the steady state behavior of a dynamical system of inter-

est. All the results presented in this Chapter are used in the rest of the Thesis.

In Chapter 5 we show that the use of non-Euclidean matrix measures and norms

can be effectively used to obtain a graphical procedure for imposing/checking con-

traction of a given system of interest. Later, in Chapter 6 and Chapter 7 we show

that non-Euclidean norms and measures can be used to provide sufficient condi-

tion for the stability and synchronization of networked systems with nodes being

both continuous-time and discrete-time systems. In Chapter 8 we show that the

results obtained here can be used to design/analyze decentralized control strategies

for asynchronous networks.





Chapter 5

A graphical approach to prove

contraction

This Chapter presents an approach to prove contraction of nonlinear dynamical

systems, based on the use of non-Euclidean norms and their associated matrix mea-

sures, introduced in Chapter 2. A graphical procedure is proposed to derive con-

ditions for a system to be contracting. Such conditions can also be used to design

control strategies to make a system contracting, or to design consensus and synchro-

nization strategies for networks of nonlinear oscillators. After presenting the main

steps of the approach and its proof, both for continuous-time and discrete-time sys-

tems, we illustrate the theoretical derivations on a set of representative examples.

The results presented in this Chapter were partly presented in [154], [160], [159].

Another version of the proposed graphical approach can instead be found in [156].

5.1 Introduction

Applications to date of nonlinear contraction theory are based on the use of neg-

ative definite generalized Jacobians and Euclidians norms. As shown in Chapter

4, other norms and their associated matrix measures [191] can also be used to

quantify contraction, leading to similar results but conditions in different algebraic

forms. The aim of this Chapter is to explore in more detail this avenue showing

that, as suggested in [156], it represents a natural approach for particular classes of

systems; in particular those encountered in biochemistry and in some network coor-

dination problems. Specifically, some graphical tools are developed for establishing

contraction both for continuous-time and discrete-time systems. By using vector-1

or vector-∞ norms and their associated matrix measure, a procedure is derived to

check the existence of a constant diagonal metric in which the system of interest

is contracting. Such a procedure results in a graphical condition to be verified on

a directed graph whose topology is determined by the dynamics of the system of
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interest. Thus, the outcome of our procedure, if the state variables of the system

are all homogeneous, is a set of well defined physical constraints on the system dy-

namics that ensure it to be contracting. This is the case, for example, of systems of

biochemical reactions where conditions provided by our approach are equivalent to

requiring a balance between the species involved in the reactions. We will also show

that the proposed procedure can be effectively applied to synchronization problems

providing guidelines for the design of both linear and nonlinear coupling protocols

ensuring asymptotic synchronization.

One of the main advantages of the proposed procedure is that it makes proving

contraction possible without the need of identifying explicitly a suitable metric in

which all trajectories converge. Simply, the aim of the graphical approach is to give

sufficient conditions that ensure that such a metric exists, thus extending the class

of systems to which contraction can be easily and successfully applied.

We present the procedure both for continuous-time and discrete-time systems,

validating the theoretical results on a set of representative examples. The new

graphical approach for proving contraction is presented and derived in Section 5.2.

Geometric interpretation and robustness are discussed in Section 5.3. Some appli-

cations both in continuous-time and in discrete-time are presented in Section 5.4.

Concluding remarks are offered in Section 5.5.

5.2 A graphical tool for proving contraction

We show now that by means of matrix measures and norms induced by non-

Euclidean vector norms, (such as µ1, µ∞, ‖·‖1, ‖·‖∞: see Chapter 2), it is possible
to obtain a graphical procedure for checking if a system is contracting or for impos-

ing such property. Formally, the conditions required by the procedure for a system

to be contracting are sufficient conditions. This means that, if the conditions are

satisfied, then the system is contracting, while the vice-versa is not true.

Given a nonlinear vector field, f(t, x), let J(t, x) := ∂f
∂x
(t, x) be its time varying

Jacobian matrix. The outcome of the procedure is to provide a set of conditions on

the elements of J , (and hence on the dynamics of f(·, ·)) that can be used to prove
contraction. Thus, the procedure presented here can be used both for checking

if a system is contracting and for designing some coupling function guaranteeing

contractivity (and hence some desired behavior).

In this Section, we present an outline of the proposed procedure for both continuous-

time and discrete-time systems. Then, in Section 5.2.2, proofs are given of the results

on which our approach is based.
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5.2.1 Outline

The first step of the procedure is to differentiate the system of interest, in order to

obtain the Jacobian matrix, J := ∂f
∂x
:




J1,1 (t, x) J1,2 (t, x) . . . J1,m (t, x)

J2,1 (t, x) J2,2 (t, x) . . . J2,m (t, x)

. . . . . . . . . . . .

Jm,1 (t, x) Jm,2 (t, x) . . . Jm,m (t, x)




(5.1)

which is, in general, state/time dependent.

The next step is then to construct a directed graph from the system Jacobian.

To this aim, we first derive an adjacency matrix from J , say A, using the following
rules:

1. initialize A so that A (i, j) = 0, ∀i, j;

2. for all i 6= j, set A (i, j) = A (j, i) = 1 if either Ji,j (t, x) 6= 0, or Ji,j (t, x) 6= 0.

Such a matrix describes an undirected graph (see e.g. [66]), say G (A). The

second step in the procedure is then to associate directions to the edges of G (A) to
obtain a directed graph, say Gd (A). This is done by computing the quantity

αi,j (t, x) =
|Ji,j (t, x)|
|Ji,i (t, x)|

(m− n0i − 1) (5.2)

for continuous-time systems, or the quantity

α̂i,j (t, x) = |Ji,j (t, x)| (m− n0i − 1) (5.3)

for discrete-time systems. In the above expressions n0i is the number of zero elements

on the i-th row of A. (Note that if Ji,i (t, x) = 0 for some i, then, before computing

(5.2), the system parameters/structure must be engineered so that Ji,i (t, x) 6= 0, for

all i.)

The directions of the edges of Gd (A) are then obtained using the following simple
rule:

the edge between node i and node j is directed from i to j if the quan-

tity αi,j (t, x) < 1 (or α̂i,j (t, x) < 1) while it is directed from j to i if

αi,j (t, x) ≥ 1 (or α̂i,j (t, x) ≥ 1).

Note that, the quantities αi,j (t, x) (or α̂i,j (t, x)) will be in general time-dependent,

therefore the graph directions might be time-varying.

Once the directed graph Gd (A) has been constructed, contraction is then guar-
anteed under the following conditions:
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1. uniform negativity of all the diagonal elements of the Jacobian, i.e. Ji,i (t, x) <

0 for all i, for continuous-time systems or α̂i,i (t, x) < 1 for discrete-time sys-

tems;

2. for all t, the directed graph Gd (A) does not contain loops of any length and
αij(t, x)αji(t, x) ≤ 1 (α̂ij(t, x)α̂ji(t, x) ≤ 1) for any i 6= j.

Note that, when the above conditions are not satisfied, our approach can be used

to impose contraction for the system of interest by:

1. using, if possible, a control input to impose the first condition of the above

procedure for all the elements Ji,i (t, x) that do not fulfill it;

2. re-direct (using an appropriate control input, or tuning system parameters)

some edges of the graph Gd (A) in order to satisfy the loopless condition;

3. associate to each reverted edge (e.g. the edge between node i and node j) one

of the following inequalities:

• αi,j (t, x) ≥ 1 (α̂i,j (t, x) ≥ 1), if the edge is reverted from j to i;

• αi,j (t, x) < 1 (α̂i,j (t, x) < 1), if the edge is reverted from i to j;

• ensure that αij(t, x)αji(t, x) ≤ 1;

• (or, for discrete-time systems, α̂ij(t, x)α̂ji(t, x) ≤ 1).

5.2.2 Proof

In this Section, we state and prove the basic theoretical results used to derive the

procedure presented in Section 5.2.1. The main idea for the following proofs is to

ensure contraction using µ∞ and ‖·‖∞. Notice that, in what follows, we do not

need the matrix Θ to be state/time dependent as often required when contraction

is proved using the Euclidean matrix norm/measure (see e.g. [112]). This makes

contraction theory even more powerful and, at the same time, of simpler application.

As the matrix Θ is constant, the generalized Jacobian is given by F = ΘJΘ−1.

In what follows we also assume that Θ is diagonal:

Θ :=




p1 0 . . . . . . 0

0 p2 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . . . . pm




(5.4)

with pi, i = 1, . . . , m being arbitrary positive scalars.
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Continuous-time systems

Theorem 5.2.1. The continuous-time m-dimensional dynamical system (2.1) is

contracting, if its Jacobian matrix, J , is such that

1. Ji,i (t, x) < 0, ∀ i = 1, . . . , m;

2. the graph Gd (A) constructed from J as detailed above does not contain (di-

rected) loops and αij(t, x)αji(t, x) ≤ 1.

Proof. From the discussion outlined in the above Section, to prove contraction we

have to show that there exists a negative matrix measure for J . Namely, we use

µ∞ (ΘJΘ−1), where Θ is defined as in (5.4). Such a measure is negative if and only

if:

1. ∀ i = 1, . . . , m, Ji,i (t, x) < 0;

2. ∀x, ∀t ∈ R+ and ∀ i = 1, . . . , m, ∃ p1, . . . , pm such that

m∑

j=1,j 6=i

pi

pj

|Ji,j (t, x)| < |Ji,i (t, x)| (5.5)

Now, the first set of inequalities is satisfied from the hypotheses, as Ji,i(t, x) < 0

for all i. Then, to complete the proof, we have to show that, if the loopless condi-

tion on Gd (A) is satisfied, then there exists a set of positive scalars p1, p2, . . . , pm

satisfying the second set of inequalities.

Note that, if we indicate with n0i the number of null elements on the i-th row of

(5.1), then such a set is fulfilled if ∀x, ∀t ≥ 0 and ∀ i, j = 1, . . . , m, i 6= j the set of

inequalities

|Ji,i (t, x)| >
pi

pj

|Ji,j (t, x)| (m− n0i − 1) (5.6)

is satisfied. Inequalities (5.6) can also be recast as:

pj > αi,j (t, x) pi (5.7)

where αi,j (t, x) is defined as in (5.2). Now, if the set of inequalities (5.7) is consistent,

there exists some set of (positive) scalars p1, p2, . . . , pm satisfying (5.6). Hence, the

existence of a diagonal metric in which the system is contracting is guaranteed.

We now prove that, if hypothesis 2 holds, then the set of inequalities (5.7) is

consistent.

Recall that directions of the edges of Gd (A) are determined by the coefficients

αi,j (t, x), given in (5.2). In particular, node i and node j are linked if and only if

αi,j (t, x) and/or αj,i (t, x) are different from 0. The direction of the edges linking

i and j are instead assigned by some conditions on αi,j (t, x) (or αj,i (t, x)). In

particular, from (5.7) we have that:
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• the edge is from j to i if αi,j (t, x)− 1 ≥ 0;

• the edge is from i to j if αi,j (t, x)− 1 < 0;

Notice that, if the elements Ji,j (t, x) and Jj,i (t, x) are both different from 0, then

both αi,j (t, x) and αj,i (t, x) are defined, yielding the following inequalities:

pj > αi,j (t, x) pi

pi > αj,i (t, x) pj

(5.8)

In terms of the graph, this means that the direction between node i and node j

is determined by both αi,j (t, x) and αj,i (t, x). Since by hypotheses no loops are

present in Gd (A), then it must be

(αi,j (t, x)− 1)(αj,i (t, x)− 1) ≤ 0 (5.9)

with αij(t, x)αji(t, x) ≤ 1, thus making the set of inequalities (5.8) consistent. Notice

that violating a such condition would imply the presence of loops of length 2 (i.e.

of loops consisting of bidirectional links between two nodes) and would make the

above two inequalities inconsistent.

In what follows, we will assume (5.9) to hold. If no loops are present in the undi-

rected graph G (A), then Gd (A) will be by construction an acyclic directed graph,
describing a consistent set of inequalities between its nodes. Hence contraction is

guaranteed.

Assume now that some cycle of length greater than 2 is instead present in G (A).
By hypotheses, we have that no cycles must be present in Gd (A). Therefore when
assigning directions to the edges of G (A), no loops of any length are formed. That
is, loops of any length in the undirected graph G (A), will cause the presence in the
directed graph Gd (A) of at least one node, say j, with incoming links from two of

its adjacent edges (see e.g. Figure 5.1 for a schematic loop of length 3, where the

nodes adjacent to j are labeled as i and k).

By construction, such a node will then be associated to one of the following set

of inequalities:

pj > αi,j (t, x) pi αi,j (t, x) ≥ 1

pj > αk,j (t, x) pk αk,j (t, x) ≥ 1

or
pj > αi,j (t, x) pi αi,j (t, x) ≥ 1

pk > αj,k (t, x) pj αj,k (t, x) < 1

(Notice that only the above conditions need to be considered, since loops of length

2 must be excluded.) The above conditions then exclude the case that vertices

of a loop in the undirected graph could be associated to inconsistent inequalities

between the scalars p1, p2, . . . , pm and therefore guarantee that a solution exists for
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inequalities (5.7). Hence, the Theorem remains proved.

!

"

#

Figure 5.1: A schematic representation of a loop of length 3 in G (A). Notice that,
in general the loop-less condition on the graph Gd (A), causes the presence o at least
one vertex with all incoming links (in this case, j).

Discrete-time systems

Theorem 5.2.2. A discrete-time m-dimensional dynamical system (4.31) is con-

tracting if its Jacobian matrix, J , is such that

1. ∀i = 1, . . . , n, α̂i,i (t, x) < 1;

2. the graph Gd (A) does not contain (directed) loops and α̂ij(t, x)α̂ji(t, x) ≤ 1

Proof. As for the continuous-time case, the idea of the proof is to derive a set of in-

equalities ensuring contraction of (4.31). These inequalities are again translated into

some topological condition on the graph Gd (A). In particular, to prove contraction,
we will now use ‖ΘJΘ−1‖∞, where Θ is defined as in (5.4).

By definition, such a norm is smaller than unity if:

n∑

j=1

pi

pj
|Ji,j (t, x)| < 1 ∀i = 1, . . . , n (5.10)

The above set of inequalities is satisfied if:

pi

pj
|Ji,j (t, x)| <

1

m− n0i − 1
, ∀i, j = 1, . . . , n (5.11)

where n0i denotes the number of zero elements on the i-th row.

Notice that, when i = j, the above conditions can be rewritten as α̂i,i (t, x) < 1

and hence are satisfied by hypotheses.

Thus, to complete the proof, we have to show that, if the loopless condition on

Gd (A) is satisfied, then the remaining set of inequalities is fulfilled. Specifically,

such inequalities are all fulfilled if

pj > α̂i,j (t, x) pi ∀i, j = 1, . . . , n i 6= j (5.12)
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It is then clear that, as in the continuous-time case, if the set of inequalities rep-

resented by (5.6) is consistent (i.e. there exists some set of values for p1, . . . , pn

satisfying such inequalities), then contraction will be immediately proven. We have

then to show that the loopless condition on Gd (A) implies consistency of (5.12).

We start by constructing a graph in which a node is associated to each parameter

p1, . . . , pn in (5.6) and labeled as 1, . . . , n. The topology of the graph is then deter-

mined by the coefficients α̂i,j (t, x), given in (5.3). In particular, node i and node j

are linked if and only if α̂i,j (t, x) 6= 0. The direction of the edge linking i and j are

instead assigned from (5.12) according to the magnitude of α̂i,j (t, x):

• the edge is from j to i if α̂i,j (t, x) ≥ 1;

• the edge is from i to j if α̂i,j (t, x) < 1;

The proof then follows using the same steps as those for the continuous-time case.

5.2.3 Remarks

• Notice that the procedure presented above is based on the use of µ∞ (ΘJΘ−1)

and ‖ΘJΘ−1‖∞ for proving contraction. Other matrix measures and norms

can also be used. In particular, for the continuous-time case, it is easy to prove

that, using µ1 (ΘJΘ
−1), yields the same procedure applied on JT . If this is

the case, the resulting procedure will follow the same logical steps as that of

Section 5.2.1, with the only difference being the expression of αi,j (t, x):

αi,j (t, x) :=
|Jj,i (t, x)| (m− c0i − 1)

|Ji,i (t, x)|
(5.13)

where c0i denotes the number of zero elements of the i-th column of J . Anal-

ogously, for discrete-time systems, using ‖ΘJΘ−1‖1 also yields the same steps
as those presented in Section 5.2.1 with the only difference being again the

definition of α̂i,j (t, x):

α̂i,j (t, x) := |Jj,i (t, x)| (m− c0i − 1) ; (5.14)

• The key idea for our graphical approach is to formulate contraction using

non-Euclidean norms and a metric, Θ, which is diagonal, with positive and

constant diagonal elements. We remark here that it is possible to extend the

use of our approach to more generic metrics Θ(t, x). Specifically, this can be

done by first performing a smooth change of variables on the system of interest

and by applying the presented methodology on the transformed system;
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• An interesting open problem is that of identifying the most convenient metric

Θ(t, x) to solve the problem of interest. As with any other method for the

analysis of nonlinear systems, like e.g. Lyapunov approaches, finding such a

metric may need a substantial amount of trial and error, intuition, numer-

ics and experience with a set of already-studied systems (like e.g. the ones

analyzed in this Chapter);

• While it possible to devise an algorithm to detect the presence of loops in

the graph Gd (A), an open problem is to define a general algorithm for the

automatic construction and analysis of such a graph;

• The procedure presented here can have a clear physical interpretation. This is

the case, for example, of molecular systems, i.e. systems composed by genes

and proteins, where the state variables represent the concentrations of the

species involved into the system. In this case, each term αi,j (t, x) represent a

normalized production rate between species i and species j and the resulting

set of inequalities provided in Section 5.2.1 points towards a balance of some

flow-like quantities in the system (see e.g. [156], [154] and Section 5.4.1);

• Note that our approach can also be used to check partial contraction of the

virtual system describing a network of oscillators. In this case, the approach

presented in Section 5.2.1 is applied to the Jacobian of such a system and

can be used to analyze synchronization phenomena in networks of coupled

dynamical systems (e.g. networks of biological oscillators in Section 5.4);

• The procedure can also be used to study the convergence properties of all

trajectories towards a linear invariant subspace, M . This, in turn, can be

done by applying the steps of Section 5.2.1 to the matrix

V
∂f

∂x
V T

as required from Theorem 4.6.

Example 5.2.1. As an elementary illustration, consider again the general externally-

driven transcriptional module (9.2) [40] (see Chapter 9 for further details and exten-

sions of the contraction analysis). Note that the term (ET−y) is a concentration and

therefore must be non-negative. The parameters k1 and k2 are positive constants.

We will show, using the procedure presented in Sec. 5.2.1, that this system is

contracting. As proved in [111] (Section 3.7.vi), this in turn implies that, when

forced by a periodic input u (t), system (9.2) tends globally exponentially to a pe-

riodic solution of the same period as u(t). That is, the system becomes entrained

to any periodic input. This property is often a desirable property for biological sys-

tems: many important activities of life are, in fact, regulated by periodic, clocklike
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rhythms. We can think for example of the suprachiasmatic nucleus (SCN), whose

activity is regulated by daily dark-light cycles (see e.g. [177]). Contraction analysis

of more general transcriptional modules is presented and extensively studied in [161].

Computing the Jacobian of (9.2) yields

J =

[
−δ − k2 (ET − y) k1 + k2x

k2 (ET − y) −k1 − k2x

]
(5.15)

In this case, the graph Gd (A) associated to J contains only two nodes, labeled as

1 and 2. Thus, the only possible loop in such a graph has length 2. To avoid the

presence of such a loop, we have to ensure that the direction determined by α (1, 2)

is the same as that determined by α (2, 1). Computation of these two quantities in

accordance with (5.13) yields

α (1, 2) =
k2 (ET − y)

δ + k2 (ET − y)
< 1

and

α (2, 1) =
k1 + k2x

k1 + k2x
= 1

Following the schematic procedure of Section 5.2.1, this in turn implies that the

directions determined by α (1, 2) and α (2, 1) are the same. In particular, the unique

edge of the graph is directed from node 1 to node 2 and no loop can be present.

Contraction is then proven.

5.3 A geometric interpretation of the conditions

In this Section we give a geometrical interpretation of our results.

We recall here Gershgorin disk theorems, a set of classical results from linear

algebra, which are typically used to provide an estimate of the location of the eigen-

values of a generic matrix, [82].

Theorem 5.3.1. Let A be a square m ×m matrix, and let p1, p2, ..., pm be some

positive real numbers. Then all eigenvalues of A lie in the region

GP (A) =

m⋃

i=1





z ∈ C : |z − aii| ≤

m∑

j=1
j 6=i

pj

pi
|aij |





(5.16)
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as well as in the region

GP

(
AT

)
=

m⋃

j=1




z ∈ C : |z − ajj| ≤

m∑

i=1
i6=j

pj

pi

|aij|





(5.17)

It is worth emphasizing here that both the regions GP (A) and GP

(
AT

)
can be

represented as unions of m disks (Gershgorin disks) in the complex plane. Further-

more, the i-th Gershgorin disk is centered in aii with radius given by the weighted

sum of the i-th row (or column) off-diagonal elements.

Now notice that for continuous-time systems, the conditions provided in Section

5.2.1 imply that each Gershgorin disk must be completely enclosed in the left-hand

side of the complex plane. In fact, uniform negativity of the diagonal elements of

the system Jacobian, J , implies that all Gershgorin disks are centered in the left

hand-side of the complex plane. Our approach applied to J (or equivalently, the

contraction condition given by using µ∞), the loop-less condition on the directed

graph Gd (A) implies consistency of the set of inequalities (5.6). It is worth noticing
here that the consistency of such inequalities implies consistency of (5.5). From

a geometrical viewpoint, (5.5) is a straightforward condition on the radius of the

i-th Gershgorin disk. Namely, the radius of such a disk must be smaller than the

distance of its center from the origin of the complex plane.

An identical interpretation can be given for the procedure involving JT . In

fact, in this case the conditions in Section 5.2.1 ensure uniform negativity of µ1.

This condition, in turn, is equivalent to requiring that the region GP

(
JT

)
must be

completely enclosed in the left-hand side of the complex plane.

Similarly, it is also possible to give a geometrical interpretation of the contraction

rate, c, defined as the maximum of the matrix measure identified by our graphical

approach. In particular, the contraction rate can be seen as the distance on the real

axis between the origin of the complex plane and the intersection with such axis of

the Gershgorin disk closer to the imaginary axis (see Figure 5.2).

Similar considerations can be made for discrete-time systems. In particular,

Gershgorin disks need now to be completely enclosed within the unit circle in the

complex plane. In analogy with the continuous-time case, the contraction rate is

given by the minimum of the distances between the disks and the unitary circle.

Interestingly, both for continuous-time and discrete-time systems, our conditions

yield the existence of a metric in which the system Jacobian is diagonally-dominant.

Note that one of the main advantages of the presented approach is that such a

metric does not need to be computed explicitly. In fact, the results presented in this

Chapter ensure that such a metric exists by requiring that the scalars pi are such

that the loop-less condition is satisfied.
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It is worth emphasizing here that the stronger the diagonal-dominance of the

Jacobian is, the larger is the system contraction rate. Now, as discussed in [181],

[181], a higher contraction rate corresponds to better noise rejection properties.

Finally, note that in the case of the Euclidean norm, similar arguments could be

used by constructing the Gershgorin disks of the symmetric part of the generalized

Jacobian.

!"#$%&'()

*+#,(-#./%&'()

01-2.#02(1-

.#2"

#33#44

Figure 5.2: A schematic representation of a Gershgorin region (for a real matrix A)
composed by two disks. The geometrical interpretation for the contraction rate is
pointed out (continuous-time case).

5.4 Applications

In this Section, we illustrate the application of our results to a set of representative

problems. Namely, we will first show how a set of constraints on the biochemical

parameters of a synthetic biological circuit can be derived by means of our approach,

so that it spontaneously synchronizes when coupled to other circuits. We then turn

our attention to the problem of synchronizing two chaotic discrete systems coupled

in a master-slave configuration.

5.4.1 Networks of Biological Oscillators

The problem that we address in this Section is that of using our approach to tune

the parameters of synthetic biological circuits so that, when coupled, they self syn-

chronize.

The Repressilator is a synthetic biological circuit of three genes inhibiting each

other in a cyclic way [52]. As shown in Figure 5.3, gene lacI (associated to the state-

variable ci in our model) expresses protein LacI (Ci), which inhibits transcription of

gene tetR (ai). This translates into protein TetR (Ai), which inhibits transcription
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of gene cI (bi). Finally, the protein CI (Bi) translated from cI inhibits expression

of lacI, completing the cycle. In [61], a modular addition to the classical Repres-

silator circuit is proposed with the aim of coupling different oscillators using the

quorum sensing mechanism. Specifically, the module makes use of two proteins: (i)

LuxI, which synthesizes the auto-inducer; (ii) LuxR, with which the auto-inducer

synthesized by LuxI forms a complex that activates the transcrpition of various

genes.

Quorum sensing is the process by which many bacteria coordinate gene expres-

sion according to the local density of signaling molecules produced by other bacteria.

It provides a broadcast strategy for the exchange of information between bacteria.

One could think of bacteria as nodes in a network that becomes fully connected via

an all-to-all topology when quorum sensing is present (see Chapter 9).

Figure 5.3: Repressilator circuit and coupling mechanism

To model the dynamics of gene expression in the cell, one must keep track of

the temporal evolution of all mRNA and protein concentrations. Note that, for the

sake of simplicity, variations in the cell density are neglected here. The resulting

mathematical model for the network is

ȧi = −ai +
α

1+C2
i

ḃi = −bi + α
1+A2

i

ċi = −ci + α
1+B2

i

+ kSi

1+Si

Ȧi = βAai − dAAi

Ḃi = βBbi − dBBi

Ċi = βCci − dCCi

Ṡi = −ks0Si + ks1Ai − η (Si − Se)

Ṡe = −kseSe + ηext

N∑
j=1

(Sj − Se)

(5.18)

having chosen the Hill coefficients equal to 2 as in [61]. We remark here that the

above model is dimensionless. This is done by: (i) measuring time in units of

mRNA lifetime (which is assumed equal for the three genes), and (ii) expressing the

protein levels in units of their Michaelis constant. The parameter α represents the

dimensionless transcription rate in the absence of self-repression, while k denotes
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the maximum contribution of the auto-inducer to the expression of lacI.

We first assume that the Repressilator circuits on which the procedure of Section

5.2.1 is applied are all identical. According to [61], we set parameters βA = βB =

βC = 2. In (5.18) the dynamical equations corresponding to the Repressilator

circuits, i.e. the intracellular species concentrations, are denoted with the subscript

i, while Se is the dynamical equation for the coupling auto-inducer.

The network of interest is an all-to-all network. Hence, the virtual system can be

chosen as having the same dynamics as the individual Repressilator circuit, forced

by the external coupling signal Se (see e.g. [155], [156], [154] for further examples),

i.e.
ȧ = −a + α

(1+C2)

ḃ = −b+ α
(1+A2)

ċ = −c+ α
(1+B2)

+ (kSi)
(1+Si)

Ȧ = βAa− dAA

Ḃ = βBb− dBB

Ċ = βCc− dCC

Ṡ = −ks0S + ks1A− η (S − Se)

Ṡe = −kseSe + ηext (S1 + ...+ SN)− ηextNSe

(5.19)

Indeed, by direct inspection it is easy to check that, by substituting the state vari-

ables of the nodes dynamics for the virtual variables (i.e. [ai, bi, ci, Ai, Bi, Ci, Si, Se]

for [a, b, c, A,B, C, S, Se]), gives the equations of the each Repressilator circuit in

the network. In this sense, the virtual system embeds the trajectories of all network

oscillators.

We can now check contraction of the virtual system (5.19) using the steps pre-

sented in Section 5.2.1. Differentiation of (5.19) yields the following Jacobian matrix,

J




−1 0 0 0 0 f1 (C) 0 0

0 −1 0 f1 (A) 0 0 0 0

0 0 −1 0 f1 (B) 0 f2 (S) 0

β 0 0 −β 0 0 0 0

0 β 0 0 −β 0 0 0

0 0 β 0 0 −β 0 0

0 0 0 ks1 0 0 −ks0 − η η

0 0 0 0 0 0 0 −Kq




(5.20)

where f1 and f2 denote the partial derivatives of decreasing and increasing Hill

functions with respect to the state variable of interest, kdiff = ηextN and Kq =



5.4 Applications, {November 28, 2010} 89

kse + kdiff . Note that the Jacobian matrix J has the the following structure:

J =

[
J11 J12

0 J22

]

with

J11 =




−1 0 0 0 0 f1 (C) 0

0 −1 0 f1 (A) 0 0 0

0 0 −1 0 f1 (B) 0 f2 (S)

β 0 0 −β 0 0 0

0 β 0 0 −β 0 0

0 0 β 0 0 −β 0

0 0 0 ks1 0 0 −ks0 − η




and J12 =
[
0 0 0 0 0 0 η

]T

, J22 = −Kq. Thus it represents a hierarchical

combination of dynamical systems, see Chapter 4. Furthermore, notice that J22

(associated to the quorum sensing dynamics) is negative, i.e. such dynamics is con-

tracting. This implies that the overall dynamics of the virtual system is contracting

if the submatrix J11 is contracting (see Section 4.4). Thus, our approach can be

applied directly onto the submatrix J̃ = J11. The diagonal elements of J̃ are all

negative, thus (see Section 5.2.1), Gd (A) has to be constructed. In so doing, matrix
A is derived:

A =




0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 0 1 1 1

1 1 0 0 0 0 1

0 1 1 0 0 0 0

1 0 1 0 0 0 0

0 0 1 1 0 0 0




(5.21)

From (5.21), G (A) is obtained as shown in Figure 5.4 (left panel).
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Figure 5.4: Graphs associated to J : G (A) (left panel); Gd (A) with state dependent
edges (central panel); choice for Gd (A) (right panel)

Then, computation of coefficients αi,j (t, x) (reported in Table 5.1) provides the

directions of the edges of G (A). Notice that the elements of the left column of Table
5.1 are all state dependent. This implies that the directions of the corresponding

edges in Gd (A) can be time-varying as they are associated to conditions which are
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Table 5.1: Set of coefficients αi,j (t, x)

αi,j (t, x) Algebraic expression αi,j (t, x) Algebraic expression

α1,6
2αC

(1+C2)2
α4,1

dA

βA

α2,4
2αA

(1+A2)2
α5,2

dB

βB

α3,5
4αB

(1+B2)2
α6,3

dC

βC

α3,7
2K

(1+Si)
2 α7,4

Ks1

Ks0+η

Table 5.2: Constraints on the biochemical parameters

direction between node i and node j Constraint

from node 4 to node 1 dA

βA
> 1

from node 2 to node 5 dB

βB
< 1

from node 3 to node 6 dC

βC
< 1

functions of the state. Moreover, due to biochemical constraints [61], α7,4 < 1.

However, the other coefficients in the table (right column) can be easily tuned since

they depend only on biochemical parameters of the network (recall that in this case

we can tune only the biochemical parameters of the circuits, since no control input

is available). In Figure 5.4 (central panel), a partially directed graph is shown,

obtained by assigning directions to the edges between nodes corresponding to the

first four rows and the last row of Table 5.1. Notice that the edges associated to

state-dependent conditions are all denoted with a double arrow as the directions of

these links might vary in time. The design task is then to use coefficients α4,1, α5,2,

α6,3 to avoid the formation of loops at all time as required by the conditions given in

Section 5.2.1. A possible choice is presented in the right panel of Figure 5.4, where

the edges corresponding to the above coefficients are directed to avoid loops. The

inequalities associated to the new directions are reported in Table 5.2. To satisfy

these constraints we can choose da = 2βA, dB = 0.5βB, dC = 0.4βC . Simulation

results, shown in Figure 5.5 (top), confirm that, under these conditions, complete

asymptotic synchronization is indeed achieved. In Figure 5.5 (bottom), the case is

considered of non-identical Repressilators having slightly different parameters from

each other. It is shown that, if this occurs, our results then provide conditions

for synchronization towards a boundary layer around the nominal synchronization

trajectory, [181]. Notice that, as stated in Section 5.3, the stronger the contraction

rate is, the thinner is the boundary layer. That is, the better the constraints of

Table 5.2 are satisfied, the smaller this set will be, i.e. trajectories will be better

synchronized.

From a physical viewpoint, the conditions derived above can be interpreted as

follows:

• the constraints on the biochemical parameters imposed by our approach are
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given in Table 5.2. They imply a balance between the production and degra-

dation rates of the protein concentrations involved into the reactions;

• for the system of interest, all state variables are homogeneous quantities.

Hence, each of the terms αi,j (t, x)’s, which were used to determine the di-

rections of the edge in Gd (A), can be thought of as a normalized production

rate between species i and species j. Thus, in this special case, the loop-less

condition on Gd (A) implies a balance of flows in the system (see e.g. [156]

and [154]).
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Figure 5.5: Complete (left panel) and robust (right panel) synchronization regimes.

5.4.2 Master-Slave synchronization of discrete-time chaotic

systems

To illustrate our approach to the case of discrete-time systems, we consider the

problem of synchronizing two chaotic Henon maps [136] using a master-slave syn-

chronization strategy.

In what follows, we denote the set of the state variables of the driving map by

y1, y2 and the states of the receiver map by x1 and x2. The mathematical model of

the master-slave configuration is then represented by 4 coupled difference equations:

y1 (k + 1) = a− y1 (k)
2 + by2 (k)

y2 (k + 1) = y1 (k)

x1 (k + 1) = a− x1 (k)
2 + bx2 (k) + h (y1 (k))− h (x1 (k))

x2 (k + 1) = x1 (k) + g (y2 (k))− g (x2 (k))

(5.22)

where a = 1.4 and b = 0.3 are system parameters, and the functions h (·), g (·) are
the coupling functions. We will now show how to use the proposed procedure, in

order to design the coupling so that (x1, x2)→ (y1, y2), as k → +∞.
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Notice that, in this case, we have to ensure that the slave Henon map is con-

tracting by appropriately choosing the coupling functions. In fact, its contrac-

tion will imply that all of its trajectories converge towards the particular solution

(x1, x2) = (y1, y2). Now, according to Section 5.2.1, differentiation of the slave

system with respect to its state variables yields:

J :=

[
−2x1 − ∂h(x1)

∂x1
b

1 −∂g(x2)
∂x2

]
(5.23)

where, for the sake of brevity, the dependence on the discrete time-variable, k, has

been omitted.

We now use our approach in order to obtain guidelines for the design of the

(nonlinear) protocols g and h ensuring synchronization.

In this case, the graph Gd (A) is composed by just two nodes (see Section 5.2.1)
with the edge between them going from node 1 to node 2. In fact, such direction is

determined by the values of α̂1,2 (t, x) and α̂2,1 (t, x) as:

α̂1,2 = b < 1 α̂2,1 = 1

Thus, the loop-less condition on the graph Gd (A) is already satisfied; we need only
to impose the condition on the diagonal elements of J ; namely:

α̂1,1 (t, x) =
∣∣∣−2x1 − ∂h(x1)

∂x1

∣∣∣ < 1

α̂2,2 (t, x) =
∣∣∣−∂g(x2)

∂x2

∣∣∣ < 1
(5.24)

A possible choice for satisfying the above conditions is simply to set α1,1 (t, x) =

α2,2 (t, x) = 0. These constraints then imply that the protocol functions must fulfill

the following conditions:
∂h(x1)

∂x1
= −2x1

∂g(x2)
∂x2

= 0
(5.25)

Thus, it immediately follows that h (·) and g (·) can be chosen as:

h (x) = −x2 +K1

g (x) = K2

(5.26)

where K1 and K2 are constants (in what follows we will choose K1 = K2 = 0).

Interestingly, using our approach, we find that in order to synchronize the master

slave system, we need to (appropriately) couple only the first state variable. Thus,

the outcome of the procedure outlined in Section 5.2.1 indicates theminimal number

of states that we need to couple in order to synchronize the maps.
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Using the above results, the model of the two coupled maps becomes:

y1 (k + 1) = a− y1 (k)
2 + by2 (k)

y2 (k + 1) = y1 (k)

x1 (k + 1) = a− x1 (k)
2 + bx2 (k) +

(
x1 (k)

2 − y1 (k)
2)

x2 (k + 1) = x1 (k)

(5.27)

In Figure 5.6 (top panel) the behavior of the synchronization error is shown,

i.e. y1 − x1, when the coupling protocol is set to zero. Notice that, in this case,

the error as expected does not decrease to zero and synchronization is not attained.

The bottom panel of Figure 5.6 shows, instead, the dynamics of the error when

the coupling is chosen as in (5.26). Notice that, in this case, the error decreases

uniformly to zero, indicating that synchronization between the master and the slave

is achieved.

Notice that the choice of coupling functions above suggests a cancelation of

some of the dynamics of the slave system. It is important to note that the algebraic

conditions (5.24) can also be used to design more sophisticated coupling functions.

For instance, consider the following structure for the coupling function h in (5.26):

h (x) = −γ (k)x (5.28)

where γ(k) is a time varying adaptive gain.

With this choice of coupling, the slave map equations become

x1 (k + 1) = a− x1 (k)
2 + bx2 (k) + γ(k)(x1 − y1)

x2 (k + 1) = x1 (k)
(5.29)

Now, it is straightforward to notice that all conditions of Section 5.2.1 can be sat-

isfied if the time-varying coupling gain is in the range [2x1, 2x1 + 1], ∀k. To satisfy
this condition, we consider for the time-varying coupling gain an adaptation law

depending on x1, so that γ (k) ∈ [2x1, 2x1 + 1], ∀k. In particular, we choose as a

possible adaptation law:

γ (k + 1) = 2x1(k) + c̄ e (k) , e (0) = x1 (0) (5.30)

where e (k) := x1− y1 and c̄ is a real number such that |c̄| < 1. The performance of

this adaptive coupling scheme is shown in Figure 5.7, where synchronization error

(top) and the gain (bottom) evolutions are shown. We notice that as expected the

strategy guarantees convergence of the slave map onto the master trajectory.
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Figure 5.6: Temporal behavior of the mismatch between the first state variables of
the master and slave systems when 1) no coupling is present (left panel) and 2) the
communication protocol is set as in (5.26) (right panel).
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Figure 5.7: Evolution of (left panel) the mismatch between the first state variables
of the master and slave systems when coupling (5.30) is used; (right panel) the
evolution of the adaptive gain, γ (k).

5.5 Concluding remarks

We presented a procedure to prove or impose contraction, for both continuous-time

and discrete-time nonlinear dynamical systems. The key idea is to use matrix norms

and measures induced by non-Euclidean norms, allowing the resulting set of alge-

braic conditions to be turned into a set of graphical conditions. At the core of

our approach is the construction of a directed graph from the generalized Jacobian,

which is then required to be loopless in order for the system to be contracting. One

of the main advantages of using the presented graphical procedure is that we do not

need to find explicitly an appropriate metric to show contraction. The possible im-

plications of our approach for both circuits and control system design are discussed,

and are shown to be particularly effective on a set of representative examples com-

ing from different areas and involving the design of circuits as well as the design of

control strategies. We illustrated the approach on a transcriptional module (that, in
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analogy with the operational amplifier, could be thought of as a basic building block

for synthetic and natural molecular circuits). We then considered the following two

problems: 1) tuning the parameters of a synthetic biological circuit so that it self-

synchronizes when coupled to similar circuits; 2) design a nonlinear communication

protocol for the master-slave synchronization of Henon maps (a discrete-time chaotic

system). The new graphical approach can have broad applications, particularly for

systems whose stability is most easily described using non-Euclidean norms, as in

the examples we studied. In the next chapters, we will show that such norms and

measures provide an effective tool for the analysis/control of networks with both

continuous-time and discrete-time nodes.





Chapter 6

Stability of interconnected systems

In this Chapter we present some results useful for studying the emerging behavior

of networked systems by means of Contraction Theory. One of the main features

of these results is that they allow to break down the analysis in two different, in-

dependent steps. Sometimes, in network coordination problems like e.g. (cluster)

synchronization, one is interested in proving that all network trajectories converge

towards a subspace of the network phase space rather than proving that all network

trajectories converge towards each other. Motivated by this, we present a method-

ology for studying contraction of an interconnected system towards linear invariant

subspaces. We start with introducing the problem in Section 6.1 and present a

general Lemma in Section 6.2. Such a result is then used to develop a multi-scale

approach for the study of interconnected systems (Section 6.3). After some nu-

merical examples (Section 6.4) we turn our attention to the problem of studying

contraction of a networked system towards poli-synchronous subspaces in Section

6.5 and finally present two applications in Section 6.6. The results presented in this

chapter have been recently published in [162], [163].

6.1 Introduction

It is often useful to break down the analysis and design of large-scale systems into

two independent steps:

(a) At a “global” level, properties of a network or interconnection graph are im-

posed so as to guarantee a desired behavior for the full interconnected system.

In this analysis, subsystems may be characterized as “black boxes” with as-

sumed input-output characteristics, but detailed knowledge of their internal

structure is not required.

(b) At a “local” level of analysis, one imposes constraints on the structure and

behavior of individual subsystems (components), so as to fit the requirements
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of the global approach. These requirements are verified independently of the

overall network structure.

This “multi-scale” or hierarchical methodology is robust in so far as a large degree

of uncertainty can be tolerated in the components, only constrained by meeting

appropriate behavioral requirements.

There are many examples of such approaches in control theory, including among

others (1) the use of small-gain theorems to guarantee stability of a negative feed-

back loop provided that the components are individually stable (qualitative property

of components) and the overall loop H∞ gain is less than one, as well as nonlinear

generalizations based on input to state stability [173, 39]; (2) input/output mono-

tone systems theory [10, 174, 8], in which input-output characteristics are the only

required “quantitative” data; (3) the use of passivity-based tools [190, 127, 12].

In Section 6.2 and Section 6.3 we present yet another example of the general

principle, this time in the framework of contractive systems discussed in [111]. We

show that contractivity of the overall system can be guaranteed if the matrix mea-

sures of Jacobians of individual components are upper bounded and a reduced-order

matrix associated to the interconnection is contractive. Note that the construction

of such reduced-order matrix uses only norm and matrix-measure estimates, but

no precise knowledge, of components. No assumptions are made on the networks.

Directed networks, self-loops, and multiple regulatory interactions are allowed.

This Chapter is then concluded by presenting a methodology for controlling net-

worked systems based on the combined use of symmetries and contraction. Specifi-

cally, we present some results that allow to impose some desired pattern of synchrony

for a network of interest (multi purpose networks).

6.2 A globalization result with matrix measures

We assume given:

• k spaces R
ni endowed respectively with “local” norms |ξi|l,i, i = 1, . . . , k, and

• an “interconnection” or “structure” norm |x|
s
on R

k.

The structure norm is assumed to be monotone, meaning that, for any two vectors

x, y ∈ R
k, we have

0 ≤ x ≤ y ⇒ |x|
s
≤ |y|

s

where an inequality such as “x ≤ y” between vectors is understood coordinate-wise,

that is, xi ≤ yi for all indices i. All the usual Lp norms, with 1 ≤ p ≤ ∞ are

monotone.

Let

N := n1 + n2 + . . .+ nk
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and introduce a “global” norm onR
N as follows. Given any vector ξ = (ξ1, . . . , ξk)

t ∈
R

N , with ξi ∈ R
ni, i = 1, . . . , k,

|ξ|
g
:=

∣∣∣∣
(
|ξ1|l,1 , . . . , |ξk|l,k

)t
∣∣∣∣
s

That is, the global norm is obtained by first computing the local norms xi = |ξi|l,i,
and then evaluating the structure norm of the resulting vector x with components

xi. Using the fact that the structure norm is assumed to be monotone, it is easy to

show that this is indeed a norm.

For example, if all local norms as well as structure norms are Lp norms, with

the same p, then the global norm is again the same Lp norm (on a larger space).

However, more generally one may mix different norms.

Given two norms, say |x|1 and |y|2, in R
q and R

p respectively, we may consider

the usual induced operator norm on matrices A ∈ R
p×q, ‖A‖12 := sup|x|1=1 |Ax|2.

In particular, for the special cases when p = ni and q = nj and the above norms,

we denote this norm as ‖A‖
l,i,j:

‖A‖
l,i,j := sup

|x|
l,i=1

|Ax|
l,j

When p = q = k we write:

‖A‖
s
:= sup

|x|
s
=1

|Ax|
s

and when p = q = N :

‖A‖
g
:= sup

|x|
g
=1

|Ax|
g

We use the notations µ
l,i[·], µs[·], and µg[·] for the matrix measures (logarithmic

norms) associated to ‖·‖
l,i,i, ‖·‖s, and ‖·‖g respectively.

Given any “global” matrix Ag ∈ R
N×N , we define its associated “structure”

matrix As ∈ R
k×k as follows. We start by partitioning Ag in the form:

Ag =




A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk




(6.1)

and for each i = 1, . . . , k, we define the following numbers:

Ãii := µ
l,i[Aii]
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and for each i, j ∈ {1, . . . , k} with i 6= j, we let:

Ãij := ‖Aij‖l,i,j

Finally, we define:

As :=




Ã11 Ã12 . . . Ã1k

Ã21 Ã22 . . . Ã2k

...
...

. . .
...

Ãk1 Ãk2 . . . Ãkk




(6.2)

(The proofs will actually show a little more, namely that upper bounds on the Ãij

could be used, instead.)

Our main result is as follows:

Theorem 6.2.1. For every set of “local” norms on R
ni, every “structure” norm on

R
k, and every matrix Ag ∈ R

N×N ,

µg[Ag] ≤ µs[As]

This Theorem follows from:

Lemma 6.2.1. For every set of “local” norms on R
ni, every “structure” norm on

R
k, and every matrix Ag ∈ R

N×N :

‖I + hAg‖g ≤ ‖I + hAs‖s + g(h) for all h > 0 (6.3)

where g : R>0 → R>0 is such that g(h) = o(h) as hց 0.

To see how Theorem 6.2.1 follows from Lemma, we recall that

µg[Ag] = lim
hց0

1

h
(‖I + hAg‖g − 1)

and similarly for µs[As]. Subtracting 1 from both sides in (6.3), dividing by h, and

taking the limit as hց 0, the Theorem results.

We now prove the Lemma.

Proof. Pick any vector ξ ∈ R
N . We will show that

|(I + hAg)ξ|g ≤ [‖I + hAs‖s + g(h)] |ξ|
g

(6.4)

for some function g as above. Since this holds in particular for all ξ with |ξ|
g
= 1,

the Lemma will follow.

We need the following observation. Since, for any norm |·| and induced matrix
norm ‖·‖, by definition the matrix measure of a matrix B is µ(B) = f ′(0), where
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f(h) = ‖I + hB‖, there is a function g(h) = o(h) such that ‖I + hB‖ = 1+hµ(B)+

g(h). In particular, there are such functions gi(h) associated to the “local” norms

|·|
l,i. We let g(h) := max{g1(h), . . . , gk(h)}. Thus,

‖1 + hAii‖l,i ≤ 1 + hµ
l,i[Aii] + g(h), i = 1, . . . , k (6.5)

Note that g(h) = o(h).

We start the proof of the Lemma by writing in block form ξ = (ξ1, . . . , ξk)
t,

with ξi ∈ R
ni, i = 1, . . . , k, and denote

η := (I + hAg) ξ

In block form, we have η = (η1, . . . , ηk)
t, with ηi ∈ R

ni, i = 1, . . . , k, where

ηi = (1 + hAii)ξi +
∑

j 6=i

hAijξj

By definition of the global norm,

|η|
g

= |x|
s

where we denote xi := |ηi|l,i for each i = 1, . . . , k and x = (x1, . . . , xk)
t. Similarly,

|ξ|
g

= |y|
s

where we denote yi := |ξi|l,i for each i = 1, . . . , k and y = (y1, . . . , yk)
t.

Using the triangle inequality, we have that, for every i = 1, . . . , k:

xi ≤ |(1 + hAii)ξi|l,i +
∑

j 6=i

|hAijξj|l,i

≤ ‖1 + hAii‖l,i |ξi|l,i +
∑

j 6=i

h ‖Aij‖l,i,j |ξj|l,j

≤
[
1 + hµ

l,i[Aii]
]
|ξi|l,i +

∑

j 6=i

h ‖Aij‖l,i,j |ξj|l,j

+ g(h) |ξi|l,i
= zi :=

[
1 + hÃii

]
yi +

∑

j 6=i

hÃijyj + g(h)yi

where we used (6.5). In terms of the following vector z ∈ R
k:

z := (I + hAs) y + g(h) y

we can summarize the above inequality as “x ≤ z” (in the coefficient-wise order),
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and hence, using monotonicity of the “structure” norm, we know that |x|
s
≤ |z|

s
.

By the triangle inequality,

|x|
s
≤ ‖I + hAs‖s |y|s + g(h) |y|

s

Recalling that |x|
s
= |η|

g
= |(I + hA) ξ|

g
and |y|

s
= |ξ|

g
, we have that

|(I + hAg) ξ|g ≤ [‖I + hAs‖s + g(h)] |ξ|
g

which is (6.4) and hence the Lemma is proved.

6.3 Application to structured systems

The above general results on contraction can be immediately applied to the study

of global stability of interconnected systems. For example, if the interconnection

structure is a graph with pure diffusion among components, then it is convenient

to employ Euclidean norm for the structure norm. The structure measure will

evaluate to zero, which implies that the interconnection structure does not destroy

contraction.

6.3.1 Stability of interconnected systems

We now sketch several ways in which the contraction results presented in this Chap-

ter can be applied to networked control systems.

We consider the interconnected system (3.4). Recall that, a particular choice for

the functions h̃i(t, x) is:

h̃i(t, x) = hi(t, ai1(t)x1, ai2(t)x2, . . . , aiN (t)xN)

where A(t) := [aij(t)] is the N × N time-varying adjacency matrix, with aij(t) :

R
+ → [0, 1] being smooth functions. Notice that the above formalization allows

us to consider within a unique framework directed and undirected networks with

(smoothly) changing topology, self loops and multiple interactions. Of course, one

could incorporate the time-varying coefficients aij(t) directly into the functions hi,

redefining this function, so that there is no need for the “tilde” in Equation (3.4).

However, we prefer to write things in this form in order to emphasize that the entries

of A(t) may be uncertain.

We denote with J := [Jij] the Jacobian of the interconnected system composed

by the N subsystems in (3.4), i.e.

Jij :=
∂fi

∂xj
+
∂h̃i

∂xj
(6.6)
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In what follows, the Jacobian matrix will play the role of the global matrix, Ag, as

defined in Section 6.2, with Aij = Jij. The elements Ãij of the structure matrix,

As, can then be defined as follows:

• Ãii := µL,i(Jii(t, x));

• Ãij := ‖Jij(t, x)‖L,i,j, i 6= j;

where the local norms can be chosen arbitrarily. Notice that in the above notation

we omitted the dependence of the global and structure matrices on the time and

state variables.

The following result shows that (3.4) is contracting if there exist a uniformly

negative matrix measure for the reduced order matrix As, obtained as described

above.

Theorem 6.3.1. The interconnected system (3.4) is contracting if there exist some

matrix measure such that

µS (As) ≤ −c, c ∈ R
+

Proof. The proof of this result is a straightforward consequence of Theorem 6.2.1.

Indeed, it suffices to recall that µS (As) upper bounds µG (J (t, x)). Thus, by hy-

potheses, we have:

µG (J (t, x)) ≤ µS (As) ≤ −c

That is, (3.4) is contracting and all of its trajectories converge towards each other

by means of Theorem 4.2.1.

Now, assume that only upper bounds of the elements Ãij are known. That is,

only some ci ∈ R and mij ≥ 0, such that Ãii ≤ ci and Ãij ≤ mij , uniformly, are

known. All norms in Euclidean space being equivalent, the finiteness of the upper

bounds mij for one norm will imply the existence of such upper bounds for any

other norm. However, the actual values are critical for the estimates.

Construct the matrix Âs := [Âij ] as follows:

• Âii := ci;

• Âij := mij .

Then, Theorem 6.3.1 immediately implies that the interconnected system (3.4) is

contracting if there exist some matrix measure such that

µS

(
Âs

)
< 0

We now present some consequences of the results presented in this Section.
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• Assume that matrix measure estimates of the intrinsic nodes dynamics and

the coupling function are known. That is,

µL,i

(
∂fi

∂xi

)
≤ α, and µL,i

(
∂h̃i

∂xi

)
≤ mii (6.7)

Then, we can take ci = α +mii. It follows that we can write Âs = αI +M ,

whereM = [mij] and I is the identity matrix of appropriate dimensions. Now,

using Theorem 6.3.1 and the sub-additivity property of matrix measures it is

straightforward to prove that the entire system is contracting if

α + µS(M) < 0 (6.8)

• We will now discuss (6.8) by distinguishing between two cases:

1. nodes dynamics are contracting, i.e. α < 0;

2. nodes dynamics are not contracting, i.e. α ≥ 0.

Case 1. As a very special consequence of (6.8), if α < 0, we have that

contraction of the networked system is ensured by any coupling such that the

associated matrix, M , fulfills the following condition:

µS (M) < |α|

This means that a network of contracting nodes remains contracting even if

the coupling strategy introduces some instability (which may be due e.g. to

the presence of some noise), or the nodes become disconnected. In turn, this

leads to the conclusion that there is no diffusion-driven instability possible for

contractive systems, in the sense that contraction of the individual systems,

when coupled by diffusive terms, ensures contraction of the entire network.

(This can be easily shown by noticing that the matrix M in this case has zero

row and column sums.)

Case 2. If α ≥ 0, from (6.8) we can immediately conclude that contraction

of the interconnected system is ensured by any coupling strategy such that

µS (M) < −α

That is, the functions hi (t, x), i = 1, . . . , N , have to compensate the (possible)

instabilities intrinsic to the nodes.

• When applied to synchronization/consensus problems, our results ensure that

all nodes globally exponentially converge to a unique point on the synchro-
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nization manifold x1 = . . . = xN as in our case such a manifold is embedded

into a contracting space. In this sense, our results guarantee a stronger result

than just convergence of all trajectories towards the synchronization manifold

in state space.

6.4 Applications

A possible application of the results derived in Section 6.2 and Section 6.3 is the

synthesis of appropriate decentralized strategies ensuring stability of networks of

dynamical systems. We consider the problem of designing a distributed control

strategy ensuring convergence of either Hopfield (HN for short) [81] or Fitzhugh-

Nagumo (FN) systems, see e.g. [151]. We remark here that by convergence we mean

that all trajectories of the network nodes converge towards each other.

In both cases, we will assume that the coupling functions are not necessarily

diffusive and that the network topology is directed. We remark here that in our

approach the individual subsystems are considered as black boxes, characterized by

their contraction estimates. Hence, the same coupling functions derived below can

be used to ensure convergence of networks of different subsystems characterized by

the same contraction estimates. For the sake of brevity the illustration of the design

process is omitted here and will be presented elsewhere.

! "

#

$ %

&

Figure 6.1: Network used for the simulations of HN and FN

Convergence of networked HNs and FNs

We start by considering the network topology of Figure 6.1. The first model we

consider is a network of HN [81] given by:

ẋi = −
xi

R
+

∑

j∈Ni

(hij(xj)− hij(xi)) + u(t) (6.9)
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Table 6.1: Coupling function for network (6.9)
edge hij(x)

1↔ 2, 6→ 2, 2→ 3, 5→ 6 G arctan(x)
3→ 1, 5↔ 2 Kx

3↔ 4 1−e−x

1+e−x

where i = 1, . . . , N . Here, xi denote the neural voltages, R is the resistance, hij

are the coupling functions, Ni is the set of neighbours of node i and u(t) represents

some periodic external input acting on all nodes. It is straightforward to check

that the synchronization subspace {x1 = x2 = . . . = xn} is an invariant subspace

for (6.9). Thus, contraction of the networked system immediately implies that all

of its trajectories converge towards such a manifold. This, in turn is implied by

the existence of some structure matrix measure, µS, such that µS(As) is uniformly

negative.

Some recent results on the synchronization/consensus of networks of identical

systems with diffusive coupling and fixed topology can be found in [194], [142],

[155], [157], [159].

Note that this network has:

fi(xi, t) = −
xi

R
+ u(t) and h̃i(x) :=

∑

j∈Ni

(hij(xj)− hij(xi))

Deriving the Jacobian of the interconnected system as in (6.6), we then have

J(x) = Ag = As = −
1

R
I +M(x)

where I is the identity matrix of appropriate dimensions and M(x) :=
[

∂hij

∂xj

]
. In

order to guarantee convergence, we need to show now that the network is contract-

ing. To this aim, we choose the coupling functions so as to to fulfill the conditions

of Theorem 6.3.1. Specifically, the coupling functions are those reported in Table

6.1 and use Theorem 6.3.1 to find simple conditions on the coupling gains G and K

in order to ensure contraction of the network. Using as structure matrix measure

the one induced by the weighted vector-1 norm, we have:

µS (As) = µ1,P (As) ≤ −
1

R
+ µ1,P (M(x))

The simplest choice for the matrix measure µ1,P is that induced by the weights

p1 = . . . = pN , obtaining:

µ1,P (M(x)) ≤ max {−G+K,G}
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Now, if we set G < 1/R and K −G < 1/R, then the Jacobian measure is uniformly

negative definite, making the network contracting. Since each node is forced by the

periodic function u(t), this implies that there exist a unique periodic orbit towards

which all trajectories of (6.9) converge (see Chapter 4 and [161]). Furthermore,

the synchronization manifold is flow invariant for network dynamics. Thus, we can

conclude that contraction of (6.9) implies that all of its trajectories converge towards

a unique solution which is embedded into the synchronization manifold. That is, at

steady state network nodes are synchronized onto a periodic orbit having the same

period as u(t).

We now turn our attention to the problem of ensuring convergence of a network

of FN oscillators described by [58]:

v̇i = c
(
vi + wi − 1

3
v3i + u(t)

)

ẇi = −1
c
(vi − a+ bwi)

(6.10)

where vi is the membrane potential, wi is a recovery variable and u(t) is the magni-

tude of the stimulus current. The parameters are set to: c = 6, a = 0, b = 2. We will

now design a non-diffusive coupling strategy, similar to the so-called excitatory-only

coupling, which may play an important role for the synchronization of neurons in

the brain (see e.g. [197]). Specifically, we couple FN oscillators in the network only

on the state variable vi, via the additive coupling function:

h̃i(vi.wi) := −γ1
∑

j∈Ni

vj − (γ2 + c)vi (6.11)

which is added to the first state equation in (6.10).

Notice that, as in this case for HN, the subspace (or synchronization manifold)

M := {xi = xj , i, j = 1, . . . , 6}

is flow invariant for the network of our interest. Thus, contraction of the network

implies that all of its trajectories converge towards a unique solution, embedded in

M.

We will use Theorem 6.3.1 to obtain a sufficient condition on the coupling func-

tions h̃i(t, xi, xj) ensuring contraction. In so doing, we use as local matrix measure,

µL,i the one induced by the∞-norm, while we use as structure matrix measure, µS,

the one induced by the vector 1-norm.

If we set the gains of the coupling function (6.11) so as to fulfill

γ2 > c+
b− 1

c
(6.12)
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we obtain

α = −b− 1

c

with α defined as in (6.7).

Now, constructing the matrix M as in (6.7) and using µ∞ as local matrix mea-

sure, µL,i, yields: 


0 γ1 γ1 0 0 0

γ1 0 0 0 γ1 γ1

0 γ1 0 γ1 0 0

0 0 γ1 0 0 0

0 γ1 0 0 0 0

0 0 0 0 γ1 0




Therefore, using Theorem 6.3.1, we can conclude that all network trajectories con-

verge towards each other (and therefore converge towards the synchronization man-

ifold) if

3γ1 <
b− 1

c
(6.13)

Figure 6.2 shows a simulation for such a network, confirming the theoretical predic-

tions.

0 5 10 15 20 25 30
−10

−5

0

5

time

x
i(
t)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

6

8

10

12

time

x
i(
t)

Figure 6.2: Simulation of: (left panel) network (6.9) with R = 1, G = K = 0.9;
(right panel) network (6.10) with γ1 = 0.05 and γ2 = 7.

6.5 Contraction towards poli-synchronous subspaces

In Section 6.2 we presented a multiscale methodology for studying contraction of the

interconnected system (3.4). That is, we presented a result for the convergence of all

network trajectories towards each other. Often, in network coordination problems

like e.g. concurrent synchronization, one is interested in proving the stability of

some invariant subset of the phase space, termed as poli-synchronous manifold (see

Chapter 3). In this Section we present an approach for studying contraction of (3.4)
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towards such poli-synchronous subspaces.

6.5.1 Analysis and control

In this Section, the objective is now that of studying the collective behavior emerging

in network described by (3.4). Our main idea can then be summarized as follows:

1. study the symmetries of (3.4) to determine the possible poli-synchronous sub-

spaces (defining the possible patterns of synchrony);

2. determine among the possible patterns, the one exhibited by (3.4) using con-

traction.

Consider a partition of the N nodes of a network into k groups, G1, . . . ,Gk,

characterized by the same intrinsic dynamics. We define the following subspaces

associated to each group of nodes:

Mp,s := {xi = xj , ∀i, j ∈ Gs} , s = 1, . . . , k

Notice that all the nodes of the i-th group are synchronous if and only if network

dynamics evolve onto the associated subspaceMp,i. The poli-synchronous subspace,

say Mp, is then defined as the intersection of all Mp,k, i.e. Mp :=
⋂

kMp,k, or

equivalently

Mp := {xi = xj , ∀i, j ∈ Gm, 1 ≤ m ≤ k}

We a say that a given pattern of synchrony is possible for the network of interest if

its corresponding poli-synchronous subspace is flow invariant. In this view, a useful

result is the following:

Theorem 6.5.1. The set Mp is invariant for network (3.3) if the nodes belonging

to group Gp: i) have the same uncoupled dynamics; ii) are input symmetric.

The proof of the above Theorem can be found in e.g. [69, 70]. In terms of

network synchronization/control, intuitively such a result implies that a specific

pattern of synchrony is possible if the aspiring synchronous nodes have synchronous

input sets.

The following result is a straightforward consequence of the results presented in

Section 4.7.

Corollary 6.5.1. Assume that for network (3.4) the sets Mp,k exist. Then, the

synchrony pattern exhibited by the network is given by:

1. the intersection Mp, if the network is contracting (or contracting towards each

Mp,k);

2. Mp,k, if the network is contracting only towards Mp,k.
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Chain topologies: revised

Consider, again, the network topology in Figure 4.2. Recall that in Section 4.7.1

we proved network synchronization in two subsequent steps. Specifically, we first

proved that all network trajectories are globally exponentially convergent towards

the poly-synchronous subspace where x1 = x4, x2 = x3. We then showed that net-

work dynamics reduced on such a subspace were globally exponentially convergent

towards the synchronous subspace.

The subspacesM2 andM1 towards which convergence was proved were, in turn,

determined by equivariance of network dynamics with respect to some permutation

action. Notice that this equivariance property is a direct consequence of the fact that

node 1 of the network is input-equivalent to node 4 and node 2 is input-equivalent

to node 3. Moreover, the equivalent nodes of the 2-nodes reduced network are also

input-equivalent.

6.5.2 Controlling symmetry patterns

We now turn our attention to the problem of imposing some desired behavior for

(3.4). The set-up that we have in mind is that of a network that can be programmed

to perform different tasks, by controlling few interconnections: in this sense, a similar

result is given in [64], where the input continuity formalism was used.

Let X :=
[
xT
1 , . . . , x

T
N

]T
and Φ(t, X) :=

[
φ1(t, X)

T , . . . , φN(t, X)
T
]T
. Network

dynamics (3.4) can then be written as:

Ẋ = Φ(t, X) (6.14)

Now, let F (t, X) be the stacks of all the functions fi(t, xi) and H̃(t, X) be the stack

of all the h̃i(t, X). We assume that the function Φ has the following form:

Φ(t, X) := F (t, X) + H̃(t, X, Ũ(X), Ū(t))

Where the possible presence of inputs to the network (6.14) is emphasized. Indeed,

Ũ := [ũ1, . . . , ũN ] and Ū := [ū1, . . . , ūN ], represents two types of inputs that can be

used to control network dynamics:

• Ũ(X) can be thought of as a feedback control input: physically, it can affect

the structure of the couplings between nodes;

• Ũ(t) denotes an exogenous input, which can be used to e.g. switch between

different coupling functions and/or to directly affect the intrinsic dynamics of

the nodes.

We define the following control task :
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ensure a desired pattern of synchrony for the interconnected system

(6.14).

Recall that a pattern of synchrony is identified in phase space by a linear subspace:

the subspace associated to the desired pattern is denoted withMd. We say that the

network control problem is solved if all the trajectories of (6.14) globally exponen-

tially converge towardsMd. The following results is a straightforward consequence

of the results obtained in Chapter 4.

Theorem 6.5.2. The control problem is solved if the inputs Ũ and Ū :

1. ensure the input equivalence to which Md is associated;

2. ensure contraction towards Md.

6.6 Applications

We now present two possible applications of the results derived in Section 6.5.

Specifically, we will show how our results can be used to analyze and/or design

networks so as to achieve some desired functionality. In Chapter 9 we will present

a further application of the above results to the analysis of network motifs arising

in transcriptional networks.

6.6.1 Multilayer perceptrons

Our first example is the analysis/control of a multilayer perceptron network. Such a

system can be seen as a generalization of feedforward loops (see e.g. [4] and Chapter

9), where a set of inputs is mapped onto a set of outputs. Examples of multilayer

systems can be found in e.g. artificial neural networks [168] and protein-protein

interaction networks [3]. A schematic representation of a multilayer perceptron

system is given in Figure 6.3. The network consists of k layers: the i-th layer

consists of ni nodes and the total number of nodes is N :=
∑k

i=1 ni. Each of the

nodes of the i-th layer communicates unidirectionally with a subset of the nodes

belonging to the layer (i+ 1)-th. Only the dynamics of the nodes of the first layer

are affected by some exogenous input, i.e. ui(t), i = 1, . . . , n1. Thus, the information

provided by the inputs is enconded by the state variables of the first layer which in

turn affect the dynamics of the nodes belonging to the second layer. In this way, the

hierarchical structure of the network allows to transfer the information provided by

the inputs ui(t) to some set of outputs, represented by the state variables of the

k-th layer.

It is then clear that if the coupling functions between nodes are properly designed,

then it is possible to program the network so that it can perform some desired



112 6 Stability of interconnected systems

task. Now, we show that the results derived so far can be used to this aim. The

mathematical model considered here is:

ẋi = g(t, xi) + ui i = 1, . . . , n1

ẋi = gi(t, xi) + hi(t, xi, xj) i = n1 + 1, . . . , N, j ∈ Ni

(6.15)

where Ni denotes set of nodes unidirectionally coupled to node i.

A first step for the analysis/control of the network of interest is that of deter-

mining the possible invariant poli-synchronous subspaces. To make this point clear,

assume that all the nodes belonging to the same layer share the same dynamics and

that the coupling functions between the nodes of the i-th layer and the nodes of

the i + 1-th layer are identical. In this case, it is straightforward to check that the

nodes within the same layer are input symmetric if they have the same number of

inputs. Thus, two nodes, say i and j, belong to the same group, Gp, if they both

belong to the layer s and if they have the same number of inputs. This implies that

it is possible to ensure the existence of some invariant subspace (corresponding to

some desired task) by simply designing the number of inputs to each node.

As a second step, we have to ensure that the network dynamics is contracting to-

wards the (desired) poli-synchronous subspace. Notice that the specific hierarchical

topology of the network implies a lower triangular structure for system Jacobian (see

Section 4.4 in Chapter 4). That is, differentiation of (6.15) yields a Jacobian matrix

representing an hierarchy of the form (4.15). Therefore, the network dynamics is

contracting if:

1. gi(t, xi) is contracting;

2. gi(t, xi) + hi(t, xi, xj) is contracting (with respect to xi);

3. hi(t, xi, xj) has bounded partial derivatives.

To show the effectiveness of the procedure outlined above, we now consider the

network in Figure 6.4. The inputs are increasing step functions with final value equal

to 1. The control task is that of ensuring, by means of the coupling functions, that

x12 = 1 if and only if ui = 1, for any i = 1, . . . , 6. In what follows, we assume that

the intrinsic dynamics of each node is linear and stable (even if more complicated,

e.g. nonlinear, dynamics can also be taken into account), i.e.

ẋi = −xi

Since our task is that of providing an high output only when all the inputs are high,

we found that a simple input function satisfying all of the requirements1. - 3. is

hi(t, xi, xj) =
∏

j∈Ni

xj
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Figure 6.3: A schematic representation of a multilayer perceptron network

Now, the individual nodes are linear systems and thus the state variables of the first

layer increase to 1 when the corresponding inputs are equal to 1. Moreover, for all

the other layers, xi → 1 if and only if xj = 1, for all j ∈ Ni. This in turn implies

that x12 = 1 if and only if ui = 1, i = 1, . . . , 6, as wanted. We remark here that

the above choice for the input function is similar to the input functions arising in

biochemical protein-protein interaction networks, [3].

Figure 6.5 shows simulation results for the above network. Notice that x12 is

activated only when the above condition is satisfied.
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Figure 6.4: Multilayer perceptron network designed in Section 6.6.1
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Figure 6.5: Behavior of x12 in the multilayer perceptron network in Figure 6.4
(top panel). The input functions, ui(t), are increasing step functions, activated at
different times (bottom panel).

6.6.2 Synchrony patterns for distributed computing

We now turn our attention to the problem of imposing some poli-synchronous be-

havior for a network of interest. Specifically, we will impose different patterns of

synchrony for a network composed of Hopfield models. The motivation that we have

in mind here is that of multi-purpose networks, i.e. networks that can be reused to

perform different tasks. For example, this may be the case of sensor networks ([120],

[204]) where each poli-synchronous steady steady is associated to a specific set of

inputs. A further notable example is the brain, where different poli-synchronous

behaviors are believed to play a key role in e.g. learning processes (see e.g. [84]).

The dynamics that we consider here is similar to (6.9) and represents a network

of HN models coupled by means of a nonlinear (not necessarily diffusive) coupling,

with a time-varying topology. Namely:

ẋi = −xi +
∑

j∈Ni

aij(t)hij(t, xi, xj) + ui (6.16)

where aij(t) is the i-th element of the time-varying interconnection matrix A(t), hij

represents the interconnection function from node j to node i and ui in an exogenous

input to the i-th node.

We start with the network in Figure 6.6. Nodes denoted by the same shape are

forced by the same exogenous input. Specifically:

• ui(t) = 1 + sin(0.7t) for the circle nodes;
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• ui(t) = 5 + 3 sin(0.5t) for the square nodes;

• ui(t) = 0 for node 13.

Analogously, identical arrows denote identical coupling functions:

• the coupling between circle nodes is diffusive, bidirectional and linear:

hij(t, xi, xj) = aij(t)(xj − xi)

• the coupling between square nodes is diffusive, unidirectional and linear;

• the coupling between circle and square nodes is diffusive, bidirectional and

nonlinear:

hij(t, xi, xj) = aij(t) (arctan(xj)− arctan(xj))

• the square nodes affect the dynamics of node 13 unidirectionally. Specifically,

the dynamics of x13 is given by:

ẋ13 = −x13 + (1− b(t))

12∑

j=9

xj

1 + xj
+ b(t)

12∑

j=9

1

1 + xj
(6.17)

where b(t) is a parameter that is smoothly increased between 0 and 1. Notice

that b(t) can be used to switch between two different coupling functions.

We remark here that the input to node 13 is a well known coupling mechanism

in the literature on neural networks, and is termed as excitatory-only coupling, see

e.g. [153].

It is straightforward to check that network dynamics are contracting (using e.g.

the matrix measure induced by the 1-norm).

In Figure 6.7 the input symmetric nodes are pointed out by means of colors: the

associated linear poli-synchronous subspace is

M1 = {xi = xj , i, j = 1, . . . , 8}
⋂
{xi = xj , i, j = 9, . . . , 12} .

Furthermore, it is easy to check that M1 is flow invariant. Now, since network

dynamics are contracting, all of its trajectories converge towards a unique solution

embedded into M1. That is, at steady state all the nodes having the same color

in Figure 6.6 are synchronized. Figure 6.8 clearly confirms the theoretical analysis,

showing the presence of the three synchronized clusters, when b(t) = 0.

The same synchronized behavior is kept even when b(t) smoothly varies from 0

to 1. Indeed, network dynamics is still contracting and the input symmetry defining

M1 is preserved. In Figure 6.9 the behavior of the network is shown when at t = 50,

b(t) is set to 1.
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Figure 6.6: Network of Hopfield models used in Section 6.6.2

Notice that the variation of b(t) from 0 to 1 causes an inhibitory effect of the

level of x13. This is due to the fact that, when b(t) = 0, x13 is forced by the sum

of increasing sigmoidal functions. Vice-versa, when b(t) = 1, x13 is forced by the

sum decreasing sigmoidal functions. We will analyze in more detail such functions

in Chapter 9, where it will be pointed out that sigmoids play a key role in the

modeling of biochemical systems.

Now, assume that we need to create a new synchronized cluster consisting of e.g.

nodes 2, 4, 6, 8. A way to achieve this task is that of modifying the input symmetry

definingM1 and to impose a new input symmetry defining the subspace

M2 = {xi = xj , i, j = 1, 3, 5, 7}
⋂
{xi = xj , i, j = 2, 4, 6, 8, }

⋂
{xi = xj , i, j = 9, . . . , 12}

In turn, this can be done by smoothly varying the topology of the network, e.g. by

diffusively coupling node 13 to the nodes 2, 4, 6, 8. The coupling function used to

this aim, which preserves the contracting property, is:

hi(t, xi, xj) = h(xj)− h(xi), h(x) :=
1− e−x

1 + e−x

In Figure 6.10 the new topology is shown, together with the class of input equiv-

alence. Figure 6.11 shows the behavior of the network, pointing out that a new

cluster of synchronized nodes arises.
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Figure 6.7: Network of Hopfield models used in Section 6.6.2: input equivalent nodes
are pointed out by means of identical colors

6.7 Concluding remarks

We presented a set of sufficient conditions ensuring stability of networked systems,

using contraction. The analysis is multi-scale, and is robust in the sense that a large

degree of uncertainty can be tolerated in the components, as long as the contraction

estimates are met for the network subsystems and their couplings. Indeed, only the

knowledge of the upper bound of matrix measures and norms are required for ap-

plying our results. Computationally, one only needs to perform the maximizations

involved in the computation of measures for individual (lower-dimensional) subsys-

tems and couplings. In fact, applied recursively, one could even reduce the problem

to a set log n computations for 2×2 matrices (for a system of dimension n). Among

other features, contraction-based analysis has the advantage that no a priori knowl-

edge is required of an attractor in order to perform stability analysis. Moreover, the

approach can be also turned into design tool. For example, for set-point regulation

or synchronization, once a system has been designed so that a particular state or

subspace is flow-invariant, contraction ensures that all system trajectories converge

to this desired point. The Chapter was then closed by presenting some results that

can be used to impose, by means of decentralized communication protocols, arbi-

trary synchrony patterns to a network of interest. All the results of this Chapter

were obtained by proving contraction of the network of interest. In the next Chapter

we will address the problems of coordinating and (cluster) synchronizing a network
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Figure 6.8: Network of Hopfield models (6.16) when b(t) in (6.17) is equal to 0

of interest. It will be shown that solving those problems is equivalent in showing

that the network dynamics is contracting towards a properly defined subspace.
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Figure 6.9: Network of Hopfield models (6.16) when b(t) in (6.17) is equal to 0
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Figure 6.10: Network of Hopfield models used in Section 6.6.2: two new links are
activated by node 13, creating a new class of input equivalent nodes (in yellow)
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Figure 6.11: Network of Hopfield models





Chapter 7

Contraction-based synchronization

and control of networks

In this Chapter we apply contraction analysis to the problem of synchronizing a

complex network. Specifically, after presenting a general result for convergence of

all network trajectories towards some (poli-) synchronous subspace, we derive some

useful results for coordinating diffusively networked systems. We start by presenting

a result on the synchronization of networks of diffusively coupled linear time-varying

systems. This is then used to solve a testbed problem in decentralized control theory,

i.e. the rendezvous problem. Then, using the matrix measure induced by the vector-

two norm we present a sufficient condition for synchronization of coupled nonlinear

systems. After presenting sufficient conditions for the stability of the synchronized

evolution, we establish some links between contracting, Lipschitz and QUAD vector

fields to study analyze network synchronization and consensus. The analysis is

then completed by presenting the relationships between contraction and the Master

Stability Function approach. The results presented in this chapter have appeared

in [155, 157, 41] (see also [42]).

7.1 Introduction

Two of the key problems which are currently subject of much ongoing research in

the field of networks are the study of the emergent, coordinated, behavior and the

design of distributed algorithms for the coordination of networks of dynamic agents

(see e.g. [135], [144]).

In particular, much attention has been focussed on synchronization and con-

sensus of all agents towards some common asymptotic evolution are two notable

examples of coordinated emerging behavior, see e.g. [133, 25, 139, 143, 195, 103,

146, 210, 88, 116, 209, 31, 43]. It has been found that these phenomena can be

used to explain the behavior of natural systems and engineered in applications, e.g.
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for secure communications, image processing, flocking and swarming behavior in

robots, synchronization in power grids [73, 80, 201].

A typical example of coordination, that has also been used as a testbed problem

in the literature, is the so called rendezvous problem. Namely, the problem is that

of designing a distributed control strategy driving all the agents towards a common

point in space, where they all have zero velocities (see for example [49], [104] and

references therein).

Different approaches have been proposed in the literature to solve those prob-

lems. The typical approach makes use of Lyapunov functions, as network analysis/-

control can be reduced to a stability problem of some invariant set in network phase

space.

In this Chapter, the above two problems are addressed by means of Contraction

Theory which has been introduced in Chapter 4. Indeed, in both analysis and

control of networks we are typically interested in finding conditions guaranteeing

the evolution of all trajectories of the nodes of a network towards each other. For

this reason, a viable approach to study agents cooperation is that of investigating

the convergence properties of all solutions.

The aim of this Chapter is to derive novel stability criteria using contraction.

These results will be then used to analyze the steady state behavior of a network of

interest and to design coupling protocols ensuring the achievement of some desired

task.

The main topics addressed in this Chapter can be summarized as follows:

1. A general result for the coordination of a network is presented where no as-

sumptions are made on nodes dynamics and topology. Then, such a result

is specialized to the case where both linear and nonlinear identical nodes are

diffusively coupled and a sufficient condition is obtained for synchronization

involving: i) network topology; ii) nodes dynamics; iii) coupling strength.

2. We then show how to use our results in order to design decentralized control

strategies guaranteeing some desired task for the network. As a representative

example, we show how to design a decentralized control strategy to solve the

rendezvous problem for a network of mobile agents. We wish to emphasize

that the design procedure is general and can be effectively extended to solve

other problems such as flocking and synchronization in complex networks of

dynamical systems.

3. Typically, when studying synchronization and consensus by means of Lya-

punov techniques, some assumptions are made on the dynamics of each node

in the network. For instance, to prove asymptotic synchronization, the nodes’

vector fields are supposed to be Lipschitz or to satisfy some other nonlinear in-

equality, upper bounding the rate of change of the vector field in phase space.



7.2 Network control, {November 28, 2010} 123

For example, the so-called QUAD condition (see Section 2.7 for further de-

tails) is often assumed to be satisfied as a starting point to derive conditions

for synchronization of the network of interest. Using the matrix measure in-

duced by the Euclidean norm, we use the links between the above hypotheses

(see Section2.7) to study synchronization, consensus and pinning control of

complex networks.

4. Finally, we obtain a link between contraction theory and the Master Stability

Function, an approach used for the local analysis of synchronization mainly

used within the Physics community, see e.g. [15]. Such a result represents an

improvement to the results presented in [155].

7.2 Network control

In this Section we provide a sufficient condition for the convergence of the networked

systems of the form (3.4) that is reported here for the sake of clarity

ẋi = φi(t, X) := fi(t, xi) + h̃i(t, X)

The main result of this Section are based on the use of Theorem 4.6.1 (see Chapter

4). Later, we will also show how to specify such a result to the case of undirected

diffusively coupled systems.

In this Section, we present a sufficient condition for network (3.4) ensuring that

all the nodes sharing the same dynamics converge towards the same steady state

behavior. Recall that in Chapter 6 we showed that the invariant poli-synchronous

subspaces of a network are determined by its symmetries and that the steady state

behavior can be determined using contraction. Now, we provide a sufficient condi-

tion for all the trajectories of (3.4) to contract towards a poli-synchronous subspace.

Let Gi, i = 1, . . . , k ≤ N be the groups of agents sharing the same dynamics.

We then say that the network achieves cluster (or concurrent) synchronization if

all of its trajectories globally exponentially converge towards the poli-synchronous

subspace

Mp := {xi = xj , ∀i, j : φi(x, t) = φj(x, t)}

That is, all the nodes sharing the same dynamics are synchronized. Sometimes, we

will also say that, in this case, network nodes are coordinated.

We will now present a condition ensuring that all network trajectories globally

exponentially converge towards Mp. The setup that we have in mind here is that

of coordination of networks, where different agents process different information.

This is the case e.g. of distributed algorithms [23]. A further notable example is

the brain, which is composed by neurons that sense and process different kind of
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informations [84].

7.2.1 Convergence towards a poli-synchronous subspace

Let X be stack of all the xi’s in (3.4), i.e. X := [xT
1 , . . . , x

T
N ]

T and:

F (t, x) :=
[
f1(t, x1)

T , . . . , fN(t, xN)
T
]T

H̃(t, X) :=
[
h̃1(t, X)

T , . . . , h̃N(t, X)
T
]T (7.1)

Our first result can be stated as follows.

Theorem 7.2.1. Assume that for network (3.4) the subspace Mp exists. Let V

be the orthonormal matrix spanning M⊥
p . Network coordination is attained if there

exist some matrix measure such that

µ

(
V
∂F

∂X
V T

)
< −µ

(

V
∂H̃

∂X
V T

)

Proof. Indeed, from Theorem 4.6.1 we have that all networks trajectories converge

towards the poli-synchronous subspace,Mp, if:

µ

(

V

(

∂F

∂X
+
∂H̃

∂X

)

V T

)

< 0

i.e. is uniformly negative definite. Now, by the subadditivity property of matrix

measure we have that the above condition is satisfied if:

µ

(

V
∂F

∂X
V T

)

+ µ

(

V
∂H̃

∂X
V T

)

is uniformly negative definite. This proves the result.

The above result shows that in order for a decentralized control strategy to

solve a coordination task (i.e. convergence towardsMp) two conditions have to be

satisfied:

• the subspaceMp exists;

• the network is contracting towards such a subspace.

We remark here that the former requirement can be ensured by properly designing

the network topology and the coupling functions h̃i’s, i.e. by requiring that nodes

sharing the same dynamics are all input symmetric (see Chapter 6 and [142],[71] for

further details).
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7.2.2 Networks of diffusively coupled linear systems

We now turn our attention to the problem of coordinating an undirected network

of diffusively coupled identical linear systems.

We consider undirected networks of N > 1, n-dimensional smooth continuous

time dynamical systems of the form:

ẋi = A(t)xi + Γ
∑

j∈Ni

[xj − xi] (7.2)

where the intrinsic dynamics at the nodes is linear, Ni denotes the set of the neigh-

bors of the i-th network node. In what follows, the cardinality of Ni, i.e. the degree

of the i-th network node, is denoted with di. In (7.2), Γ is some coupling matrix.

In what follows, the eigenvalues of network Laplacian are denoted with λi(L). The

algebraic connectivity is denoted as λ2(L), [55].

Let s(t) be a generic solution of an isolated node of (7.2), i.e. ṡ(t) = A(t)s(t).

We look for a sufficient condition ensuring that

lim
t→+∞

|xi(t)− s(t)| = 0, ∀i = 1, . . . , N

In this case, we will say that network coordination is fulfilled for network (7.2).

That is, all network trajectories converge towards the synchronization manifold

S := {x ∈ RnN : x1 = ... = xN} (7.3)

Theorem 7.2.2. Network coordination is fulfilled for network (7.2) if there exist a

matrix measures, µ, such that:

µ (A(t)− λ2(L)Γ) ≤ −c, c > 0 (7.4)

Before starting with the proof of the Theorem, we report here two useful results

(see. e.g. [17], chapter 20, [22], chapter 5 and [82], Theorem 2.3.1).

Lemma 7.2.1. Let ⊗ denote the Kronecker product. The following properties hold:

• (A⊗ B) (C ⊗D) = (AC)⊗ (BD);

• if A and B are invertible, then (A⊗ B)−1 = A−1 ⊗ B−1;

Lemma 7.2.2. For any n× n real symmetric matrix, A, there exist an orthogonal

n× n matrix, Q, such that

QTAQ = U (7.5)

where U is an n× n diagonal matrix.
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Proof of Theorem 7.2.2

Define:

X :=
[

xT
1 , . . . , x

T
N

]T
, S := 1N ⊗ s E := X − S

where 1N denotes the N -dimensional vector consisting of all ones. The network

dynamics can then be written as:

Ẋ = (IN ⊗ A(t))X − (L⊗ Γ)X

Thus, we have:

Ė = (IN ⊗ A(t))E − (L⊗ Γ)X

Furthermore, notice that

(L⊗ Γ)X =

(L⊗ Γ)(E + S) =

(L⊗ Γ)E + (L⊗ Γ)S =

(L⊗ Γ)E + (L⊗ Γ)(1N ⊗ s) =

(L⊗ Γ)E

where the last equality follows from Lemma 7.2.1 and from the fact that L · 1N = 0

(see e.g. [66]). Thus:

Ė = (IN ⊗ A(t))E − (L⊗ Γ)E (7.6)

Since L is symmetric, by means of Lemma 7.2.2 we have that there exist an N ×N
orthonormal matrix Q such that:

Λ = QTLQ

where Λ is the N ×N diagonal matrix, having on its main diagonal the eigenvalues

of L, λi(L).

Define the following coordinate transformation:

Z = (Q⊗ In)
−1E

In the new coordinates (7.6) becomes

Ż = (Q⊗ In)
−1 [(IN ⊗A(t))− (L⊗ Γ)] (Q⊗ In)Z
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Then, using Lemma 7.2.1, we have:

(Q⊗ In)
−1 (IN ⊗A(t)) (Q⊗ In) =

(Q−1 ⊗ In) (IN ⊗A(t)) (Q⊗ In) =

(Q−1 ⊗ A(t)) (Q⊗ In) =

(IN ⊗A(t))

Analogously:

(Q⊗ In)
−1 (L⊗ Γ) (Q⊗ In) =

(Q−1 ⊗ In) (L⊗ Γ) (Q⊗ In) =

(Q−1L⊗ Γ) (Q⊗ In) =

Q−1LQ⊗ Γ =

Λ⊗ Γ

That is, network dynamics can be written as:

Ż = [IN ⊗ A(t)− Λ⊗ Γ]Z (7.7)

It is straightforward to check that the above dynamics consists of N uncoupled

n-dimensional dynamics, of the form:

żi = [A(t)− λi(L)Γ] zi, i = 1, . . . , N, zi ∈ R
n

Now, recall that (see e.g. [66]) the eigenvector associated to λ1(L) = 0, is 1N .

Therefore, the dynamics along S is

ż1 = [A(t)] z1

i.e. it is a solution of the uncoupled nodes’ dynamics, s(t). On the other hand, the

dynamics transversal to the invariant subspace are:

żi = [A(t)− λi(L)Γ] zi, i = 2, . . . , N

Now, notice that all network trajectories globally exponentially converge towards

S if all of the N − 1 above dynamics are contracting. Indeed, contraction of such

dynamics implies that

|zi| = |xi − s(t)| → 0, t→ +∞, ∀i = 2, . . . , N

Now, it is straightforward to check that such a condition is automatically fulfilled

if

ż2 = [A(t)− λ2(L)Γ] z2

is contracting. This is true by hypothesis and the result is then proved.
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We remark here two implications of Theorem 7.2.2:

1. assume that network nodes are not contracting. Then, condition (7.4) implies

that the network can be synchronized if the topology is connected (i.e. λ2(L) 6=
0) and Γ is a matrix having all of its elements positive;

2. if, on the other hand, the network nodes are contracting, then all network

trajectories converge towards each other even if the topology is not connected,

i.e. λ2(L) = 0;

3. the above result can be straightforwardly extended to the case of directed

balanced networks.

One application of Theorem 7.2.2 is the design of decentralized control strategies

solving the n-th order consensus problem []. In Section 7.3 we will show one of

such applications, where a decentralized strategy is designed in order to solve the

rendezvous problem in a network of agents moving in a plane.

7.2.3 Networks of diffusively coupled nonlinear nodes

We now specialize the general result of Section 7.2.1 by using the matrix measure

induced by the vector-2 norm. Using such a measure, we obtain a criterion for

network synchronization of nonlinear diffusively coupled systems.

Again, we study undirected graphs in which each node is a nonlinear n-dimensional

possibly non-autonomous system. Specifically we consider

Ẋ = F (t, X)− α (L⊗ In)X (7.8)

where F (t, X) is defined in (7.1) and α denotes the coupling strength. The network

is said to be synchronized if all oscillators converge towards the same synchronous

state, i.e. if all network trajectories converge towards the synchronization manifold,

S := {x1 = . . . = xN}.

Theorem 7.2.3. Network (7.8) synchronizes if:

max
x,t

λmax

(

∂f

∂x

)

≤ αλ2(L)

Proof. Let V be the orthonormal matrix spanning S⊥ and let J be the Jacobian of

(7.8), i.e.

J :=
∂F

∂X
− α (L⊗ In)

By means of Theorem 4.6.1 we have that all network trajectories converge towards
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S if µ2
(

V JV T
)

is uniformly negative definite. That is,

µ2

(

V
∂F

∂X
V T − V (α(L⊗ In))V

T

)

≤ −c c > 0.

Now, using the subadditivity property of matrix measures [191]:

µ2
(

V ∂F
∂X
V T − V (α(L⊗ In))V

T
)

≤
µ2
(

V ∂F
∂X
V T
)

+ µ2
(

−V (α(L⊗ In))V
T
)

Notice that L is a symmetric matrix with L ·1N = 0. Thus, analogously to the proof

of Theorem 7.2.2, we can choose V such that:

µ2
(

−V (α(L⊗ In))V
T
)

= αµ2 (−Λ) := −αλ2(L)

Furthermore:

µ2

(

V
∂F

∂X
V T

)

:= λmax

(

V

[

∂F

∂X

]

s

V T

)

where
[

∂F
∂X

]

s
denotes the symmetric part of ∂F

∂X
. To evaluate the above matrix

measure, consider the quadratic form:

vTV
∂F

∂X
V Tv = aT ∂F

∂X
a

Notice that for any a 6= 0, we have:

min
x,t

λmin

(

∂f

∂x

)

aTa ≤ aT ∂F

∂X
a ≤ max

x,t
λmax

(

∂f

∂x

)

aTa

where ∂f/∂x is the Jacobian of the intrinsic node’s dynamics. On the other hand

aTa = vTV V Tv = vTv. Thus:

µ2
(

V ∂F
∂X
V T − V (α(L⊗ In))V

T
)
≤

maxx,t λmax
(

∂f
∂x

)
− αλ2(L)

Since the above quantity is uniformly negative definite by hypotheses, we have that

all of network trajectories globally exponentially converge towards S. This proves
the result.

7.3 Solving the rendezvous problem

As an application of the results presented in Section 7.2, we consider the problem

of imposing a desired task to a set of N > 1 mobile agents moving in the plane.

In accordance with the existing literature [98], [182], we choose the agent dynamics
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given by

ṙi = vi

v̇i = u
(7.9)

where ri = (xi, yi) and vi = (vix, viy) represent the position and velocity vectors

of agent i in a fixed reference frame. The agents are controlled via an appropriate

acceleration vector, u = (uix, uiy).

We will consider the rendezvous problem, i.e. the problem of finding an ap-

propriate (distributed) control strategy which guides all agents towards a common

position, say r̄, i.e. such that limt→∞ ri(t) = r̄, ∀i = 1, . . . , N .

As we will see, the proposed communication protocol is composed by: (i) a local

decentralized term based on the positions of the neighbors of each node; (ii) a local

feedback function of each agent velocity.

Theorem 7.3.1. Consider a connected network of mobile agents modeled by (7.9).

Then, the following distributed strategy

uix = σ1
∑

j∈Ni
(xj − xi)− (σ1 + σ2i) vix

uiy = σ3
∑

j∈Ni
(yj − yi)− (σ3 + σ4i) viy

, (7.10)

solves the rendezvous problem if all the σ’s are positive. Furthermore, the point in

which all the agents meet is (x̄, ȳ):

x̄ = avg(xi(0))
σ1

+ 1
σ1
avg

(
vix(0)
σ2i

)

ȳ = avg(yi(0))
σ3

+ 1
σ3
avg

(
vix(0)

σ4i

) (7.11)

where avg (·) is the average operator.

Proof. We will prove the result for the x-component of (7.9), as the same proof

holds for the y-component.

Consider the following coordinate transformation:

xt
i = xi + εvix (7.12)

where ε is a scalar that will be chosen later. Using (7.12), the dynamics of (7.9)

controlled by (7.10) becomes:

ẋt
i = (1 + εNi − σ1 − σ2i) vix + εσ1

∑
j∈Ni

(xj − xt
i)

v̇ix = (εNi − σ1 − σ2i) + σ1
∑

j∈Ni
(xj − xt

i)
(7.13)

Now, let zi := [xt
i, vix]

T
. The dynamics (7.13) can then be written in compact form
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as

żi =

[
0 1 + εdi − σ1 − σ2i

0 εdi − σ1 − σ2i

]
zi +

[
εσ1 0

σ1 0

]
∑

j∈Ni
(xj − xi) (7.14)

(recall that di is the cardinality of Ni.) Since ε is an arbitrary scalar, we have that

for any σ1, σ2i,

∃ε : σ1 + σ2,i = εdi + 1

Thus, we have that there exist some ε such that (7.14) becomes

żi =

[
0 0

0 −1

]
zi +

[
εσ1 0

σ1 0

]
∑

j∈Ni
(xj − xi) (7.15)

Notice that the rendezvous problem is solved if all network trajectories converge

towards the subspace

R := {ri = rj , vi = vj = 0, ∀i, j = 1, . . . , N}

Now, the above subspace is flow invariant for network dynamics and (7.15) is in the

same form as (7.2) with:

A :=

[
0 0

0 −1

]
, Γ :=

[
εσ1 0

σ1 0

]

This implies that Theorem 7.2.2 can be applied and, hence, the rendezvous (or,

equivalently, contraction towards R) is attained if there exists a negative matrix

measure for the matrix A− λ2 (L) Γ. It Now, it is straightforward to check that the
matrix

A− λ2(L) =

[
−ελ2(L)σ1 0

−λ2(L)σ1 −1

]

is contracting. Specifically, to this aim the matrix measure µ∞,Θ can be used, with

Θ :=

[
θ1 0

0 θ2

]

and θ2/θ1 < 1/(λ2(L)σ1). The second part of the statement, i.e. convergence of

network trajectories to the fixed point (7.11), is straightforward. Indeed, it suffices

to notice that such a point belongs to R and that the quantities

x̄ = avg(xi(t))
σ1

+ 1
σ1
avg

(
vix(t)
σ2i

)

ȳ = avg(yi(t))
σ3

+ 1
σ3
avg

(
vix(t)
σ4i

)
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Figure 7.1: Initial agents’ positions in the space

are invariant for the network dynamics.

Numerical example

We now validate the strategy developed above, taking as a representative example

a network of 5 agents modeled by (7.9) and controlled by the decentralized control

strategy (7.10). The initial positions of the agents are arranged along a pentagon (see

Figure 7.1). The initial velocities were picked randomly from a normal distribution

with mean 0 and standard deviation 1. The temporal evolution of nodes’ positions

and velocities, confirming the theoretical analysis, are shown in Figure 7.2.

7.4 Linking QUAD, Lipschitz and contracting vec-

tor fields

In this Section the study of networked systems is continued by using the links

between QUAD, Lipschitz and contracting vector fields presented in Chapter 2.

Recall that in Section 2.7 we linked the contracting properties of a dynamical system

to the Lipschitz and QUAD properties of its vector field, by using the Euclidean

matrix measure, µ2. We now use those links to study synchronization and consensus

of a complex network modeled as:

ẋi = f (t, xi) + σ
∑

j∈Ni

(xj − xi), i = 1, . . . , N (7.16)

where σ is the unique coupling strength, Ni is the set of neighbors of the node i.

Before illustrating our result, we need to state the following Lemma.

Lemma 7.4.1. [82] Denote by L the Laplacian matrix of an undirected network.

The following properties hold
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Figure 7.2: Evolutions of the positions (top) and velocities (bottom) of the agents
controlled by (7.10)

1. L has a simple zero eigenvalue and all the other eigenvalues are positive if and

only if the network is connected;

2. the smallest nonzero eigenvalue λ2 (L) satisfies

λ2 (L) = min
vT 1N=0,v 6=0

vTLv

vTv

We are now ready to state the following result.

Theorem 7.4.1. Given a network of N nodes described by (7.16), if:

H1 the vector field of the uncoupled nodes is Lipschitz (with Lipschitz constant

α > 0);

H2 σ > max
{
α, α

λ2(L)

}
;
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H3 the network is connected;

then the network synchronizes.

Proof. Note that (7.16) can be rewritten as

ẋi = f (t, xi) + σ
∑

j∈Ni

xj − σdixi, i = 1, . . . , N (7.17)

where di represents the degree of node i. By hypothesis f (t, x) is Lipschitz, and

so, from Theorem 2.7.3, f (t, x) is also QUAD(∆, ω), with ∆ ≥ (α + ω) In. Let us

define a new function:

g (t, x) = f (t, x)− σx.

Clearly, we have that g is QUAD(∆, ω), with (∆−ωIn) ≥ (α−σ)In. Now, since by
hypotheses σ > max

{
α, α

λ2(L)

}
and the matrix ∆ is an arbitrary diagonal matrix,

we can choose ∆ so that (ω + α− σ) In ≤ ∆ < ωIn. Thus, by means of Theorem

2.7.2, we can then conclude that the function g (t, x) is contracting, i.e. there exists

some positive scalar β such that

λmax

{
1

2

(
J + JT

)}
≤ −β

with

J :=
∂g

∂x
=

(
∂f

∂x
− αI

)
(7.18)

Now, we show that the above condition ensures network synchronization.

To this aim, define the following quantity

x∗ :=
1

N

N∑

j=1

xj(t).

Let ei := xi − x∗ and consider the following candidate Lyapunov function

V =
1

2

N∑

i=1

eT
i ei (7.19)

The time derivative V̇ of the above function along the network dynamics is:

N∑

i=1

eT
i

[
f (t, xi)− σ

N∑

j=1

Lijxj −
1

N

N∑

j=1

f (t, xj)

]
(7.20)
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Now, adding and subtracting f (t, x∗), and noticing that (since
∑N

i=1 ei(t) = 0,)

N∑

i=1

ei (t)

[
f (t, x∗)− 1

N

N∑

j=1

f (t, xj)

]
= 0

we get:

V̇ =

N∑

i=1

eT
i

[
f (t, xi)− f (t, x∗)− σ

N∑

j=1

Lijxj

]
(7.21)

Recall, now, that the function g (t, x) defined above is QUAD, and that we can

choose ∆ in the set [(ω + α− σ) In, ωIn]. This implies that, for any two vectors

a, b ∈ R
n, we have:

(a− b)T [f (t, a)− f (t, b)] ≤ (a− b)T (∆− ωIn + σIn) (a− b)

Now, choosing ∆ = (ω + α− σ) In, the above inequality becomes:

(a− b)T [f (t, a)− f (t, b)] ≤ α (a− b)T (a− b) (7.22)

Using (7.22) with a = xi, b = x∗, from (7.21) we obtain

V̇ ≤ α

N∑

i=1

eT
i ei − σeT

i

N∑

j=1

Lijej

That is,

V̇ ≤ αeT e− σeT (L⊗ In) e

and thus

V̇ ≤ αeT e− σmin
e 6=0

[
eT (L⊗ In) e

]
(7.23)

where e denotes the stack of ei.

Notice now that eT1Nn = 0. By means of Lemma 7.4.1 we have:

min
e 6=0

[
eT (L⊗ In) e

]
= λ2 (L) e

T e

Thus,

V̇ ≤ (α− σλ2 (L)) e
T e

which is negative definite since, by hypotheses, σ > max {α, α/λ2(L)}.

Theorem 7.4.1 provides a sufficient condition for the global synchronization of a

complex network. We wish to emphasize here that one of the key steps in our proof

was that of using Theorem 2.7.2 and Theorem 2.7.3 in order to link hypothesis (H1)

of Theorem 7.4.1 to contraction of the function g(t, x) = f(t, x)− αx. Notice that

this key step allowed us to prove synchronization without requiring boundedness of
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nodes’ dynamics, as instead required in some papers addressing the synchronization

problem (see e.g. [18]). Indeed, as we translate the Lipschitz condition onto a

contracting condition, knowledge of the specific attractor where all nodes converge

is not required any longer.

Note that Theorem 7.4.1 can be used as an effective tool to analyze synchroniza-

tion properties of a network such as its synchronizability and can be easily extended

to the case of non-unique coupling gains, say αij , between pairs of mutually coupled

nodes.

7.4.1 Adaptive synchronization

So far, we assumed a fixed and unique coupling strength between nodes. We now

consider the case in which such coupling strength evolves in time following the

adaptation law:

ẋi = f (t, xi) +
∑

j∈Ni

σij (t) (xj − xi) (7.24)

σ̇ij = γ‖xj − xi‖ (7.25)

with γ > 0, σij (0) ≥ 0. Such a strategy was introduced and analyzed in [46], [45]

and [44]. Specifically, it was shown that global asymptotic stability is dependent

on the characteristics of the vector field f . In fact, in [44] it was shown that a

sufficient condition for stability was for the vector field f to be QUAD(∆, ω), with

(∆− ωIn) ≤ 0.

In general, proving that a system is QUAD(∆, ω) is not straightforward. We

now show that the mathematical tools developed in the previous Section can be

useful to immediately determine if a particular system can synchronize under the

adaptive strategy (7.24), without verifying the QUAD property.

As a representative example we use the driven damped Van der Pol oscillator, for

which proving the QUAD property is non-trivial. Nevertheless, we know from [194]

that it is semi-contracting and so, from Corollary 2.7.2 we can say that it is also

QUAD(∆, ω), with ∆ = ωIn. Thus, using the theorem in [44], which requires the

node vector field to be QUAD to guarantee network synchronization and convergence

of the gain to finite values, we can immediately conclude that applying the adaptive

coupling law to a network of driven damped Van der Pol oscillators yields a globally

asymptotically stable synchronous regime.

We validate numerically the above result, by considering a scale-free network (for

further details on this topology see for example [133, 25]) of 1000 identical driven

damped Van der Pol oscillators coupled through an adaptive edge-based strategy.

The initial condition were chosen randomly from a uniform distribution between 0
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Figure 7.3: Evolution of 1000 Van der Pol oscillators connected through a scale-free
network with adaptive coupling gains: q state variable (top), α (bottom)

and 1, while the average degree of the network was set to 5. According to [194] and

denoting the state of the i-th node by xi = [pi, qi]
T , the governing equations of the

network are:

ṗi = a3qi −
a1
3
p3i − a2pi (7.26)

q̇i = −a3pi +
u(t)

a3
+

1

a3

∑

j∈Ni

σij(qj − qi) (7.27)

σ̇ij = γ‖qi − qj‖ (7.28)

where a1, a2 and a3 are strictly positive constants and u(t) is a periodic forcing.

In our simulation we choose a1 = a2 = a3 = 1, γ = 0.1 and u(t) = sin(t). Figure

7.3 clearly shows that all oscillators converge as expected onto a common evolution,

while the adaptive gains settle to constant values.

7.4.2 Design of decentralized control strategies

Above, we used the results presented in Chapter 4 to analyze network synchroniza-

tion. That is, once the nodes dynamics were given together with a communication

strategy, we were able to predict synchronization if the node vector fields satisfied

certain conditions.

In this Section, we show that the results presented in this paper can also be used

as an effective tool for designing decentralized (nonlinear) protocols for synchroniza-

tion.

In particular, we will focus on generic networks described by the equation

ẋi = f (t, xi) + σ
∑

j∈Ni

(
h̃ (xj)− h̃ (xi)

)
, i = 1, . . . , N (7.29)

where h̃ : R
n → R

n is some smooth nonlinear function of the system states and σ is
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a positive scalar.

The following result can then be stated.

Theorem 7.4.2. Consider a network, whose nodes dynamics are given by (7.29).

If:

• the network is connected;

• h is such that ∂h̃
∂x
> 0;

• the function f(t, xi)−σdih(xi), with di being the degree of node i, is QUAD(∆, ω),

with ∆− ωIn ≤ cIn for some c < 0,

then, the network synchronizes.

Proof. The proof follows trivially from Theorem 2.7.2. In particular, it suffices to

note that, if a system is QUAD(∆, ω), with ∆ − ωIn ≤ cIn < 0, then it is also

contracting with rate β ≤ c. Thus, using the same line of argument as in Theorem

7.4.1 (see also [159, 194, 157]), it is possible to show that, if the topology is connected

and the coupling protocol is strictly increasing, that is,

∂h̃

∂x
> 0

then the network nodes synchronize. The Theorem is then proved.

Consensus of N integrators

A direct straightforward application of Theorem 7.4.2 is the average consensus prob-

lem, in which the nodes are assumed to be simple integrators. In particular, it is

easy to show that the classical communication strategy (see e.g. [135, 102])

ẋi = σ
∑

j∈Ni

(xj − xi)

satisfies all the hypotheses of Theorem 7.4.2. Thus, trajectories of all network nodes

converge towards each other. Moreover, since the quantity

x̃ :=
1

N

N∑

i=1

xi (t)

is invariant for the network dynamics, then all trajectories will converge to it. That

is, the average consensus problem is solved.

Notice that the same result can also be proven by means of Theorem 7.4.1. In

fact, for the integrator dynamics at the nodes, the Lipschitz constant is equal to 0,

and thus the nodes converge towards each other for any positive value of σ.
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7.4.3 Pinning control

We now turn our attention to the study of pinning control schemes where we assume

that a master node is attached only unidirectionally to the rest of the network (e.g.

see [76, 101, 32, 145, 199, 200] for further details). The equations of motion of the

controlled network then become:

ṡ = f (s, t)

ẋi = f (xi, t)− σ
∑

j∈Ni
(xi − xj)− δiq (xi − s)

(7.30)

with

δi =

{
1, i = 1, . . . , Npin

0, i = Npin+1, . . . , N
(7.31)

where Npin is the number of pinned nodes, q is the constant control gain and s the

desired synchronous solution to be achieved.

Theorem 7.4.3. Given the controlled network (7.30), all nodes trajectories converge

towards s (t) if:

• the vector field of the uncoupled nodes is Lipschitz (with Lipschitz constant

α > 0);

• σ > max
{
α, α

λ2(L)

}
;

• the function g (x, t) = f (x, t)− σx is QUAD(∆, ω), with ∆− ωIn < 0;

• the network is connected.

Proof. Following the same arguments used earlier, it is easy to show that the network

is made contracting by the choice of σ. Hence, all nodes converge exponentially

towards each other, that is, x1 = . . . = xN . On the synchronization manifold,

trajectories then must converge towards the desired trajectory s as the pinning

node is only coupled unidirectionally to the rest of the network.

Note that, as observed in the existing literature on pinning control (see e.g. [171]

and references therein), it suffices for just one node in the connected network to be

directly controlled. Indeed, s (t) acts as an exogenous forcing signal on the rest of

the (contracting) network.

We wish to emphasize that similar results can be extended to the case of adaptive

coupling gains, see [48] for further details.
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7.5 Linking Contraction Theory and the Master

Stability Function

In this Section we establish a link between contraction (using µ2) and a well known

approach, used within the Physics community, for analyzing local network synchro-

nization, the Master Stability Function (MSF). We first present a brief review of

the MSF approach and then present some results showing that if a (virtual) system

associated to the network is contracting (see Chapter 2), then the MSF is negative,

implying synchronization.

Throughout this Section, we will consider the network of N diffusively coupled

nonlinear autonomous systems, i.e.

Ẋ = F (X)− α (L⊗ I) H̃ (X) (7.32)

with X, F (X), H̃(X) defined as usual. Recall that the network is said to be

synchronized if all oscillators converge towards the same synchronous state, char-

acterized by the stability properties of the synchronization manifold, defined as

{x ∈ R
mN : x1 = ... = xN}.

7.5.1 The Master Stability Function approach

Let s (t) be a trajectory of ẋ = f(x) with initial conditions s(0) = xs0. In [2] the

Lyapunov exponents for s (t) are defined as follows.

Definition 7.5.1. The Lyapunov exponents of the flow φ (xs0) are defined to be the

Lyapunov exponents of the associated stroboscopic time-T map.

Thus, the Lyapunov exponents of a flow are defined in terms of the Lyapunov

exponents of a map, i.e. the time-T map. Namely, let g : R
m → R

m be a smooth

map and say g(n) the n-th iterate of g. Define Jn = ∂g(n)

∂xn and let Σ be the m-

dimensional sphere of unitary radius with JnΣ representing the deformation of the

sphere after n iterations of the map. Also, let rn
k be the length of the k -th longest

orthogonal axis of the ellipsoid JnΣ for an orbit with initial point xs0 ∈ Σ , for

k = 1, ..., m .

Definition 7.5.2. The k-th Lyapunov number, Lk, of xs0 is defined as

Lk = lim
n→∞

(rn
k )
1/n (7.33)

if this limit exists. The k-th Lyapunov exponent of xs0 is hk = lnLk. Notice that by

definition L1 ≥ L2 ≥ ... ≥ Lm and h1 ≥ h2 ≥ ... ≥ hm.
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Thus, the Lyapunov exponents measure the rates of divergence of nearby points

along m orthogonal directions determined by the dynamics of the flow. The MSF

approach makes use of the following assumptions, as shown in [57] and [140]: (i)

the coupled oscillators (nodes) and the coupling functions are all identical; (ii) the

synchronization manifold is an invariant manifold; (iii) the coupling functions are

well approximated near the synchronous state by a linear operator. The main idea

in [15] is to derive the variational equation from equation (7.32) describing small

variations, ξk, of the trajectories of (7.32) from the synchronous evolution, say s (t).

This equation is then block diagonalized to give:

ξ̇k =

[
∂f(xs)

∂x
− αλk(L)

∂H̃(xs)

∂x

]
ξk (7.34)

For k = 0, we have the variational equation along the synchronization manifold; all

other ks correspond to transverse eigenmodes to such manifold. Hence, it is shown

that local stability of the synchronous evolution can be captured by the computation

of the maximum Lyapunov exponent as a function of α, i.e. the MSF.

A first example

We start by looking at the representative example of two coupled Rossler oscillators

of the form: 



ẋ1 = − (y1 + z1) + εx (α (x2 − x1))

ẏ1 = x1 + ay1 + εy (α (y2 − y1))

ż1 = b+ z1 (x1 − c) + εz (α (z2 − z1))

, (7.35)





ẋ2 = − (y2 + z2) + εx (α (x1 − x2))

ẏ2 = x2 + ay2 + εy (α (y1 − y2))

ż2 = b+ z2 (x2 − c) + εz (α (z1 − z2))

(7.36)

We study the cases when coupling is active only on the x -variable (εy = εz = 0), or

only on the y-variable (εx = εz = 0), or on all variables (εx 6= 0, εy 6= 0, εz 6= 0). As

shown in Section 2.5, a possible virtual system is:






ẋ = − (y + z) + εx (−2αx+ αx1 + αx2)

ẏ = x+ ay + εy (−2αy + αy1 + αy2)

ż = b+ z (x− c) + εz (−2αz + αz1 + αz2)

(7.37)
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We assume a = 0.2, b = 0.2, c = 2.5, so that each Rossler system has a chaotic

attractor. The virtual velocities of (7.37) are expressed as:



δẋ

δẏ

δż


 =



−2αεx −1 −1
1 0.2− 2αεy 0

z 0 x− 2.5− 2αεz






δx

δy

δz


 (7.38)

The symmetric part of the Jacobian in (7.38), in the case of coupling on the x -

variable (εx = 1), is:

Js =




−2α 0 (z − 1) /2

0 0.2 0

(z − 1) /2 0 x− 2.5


 (7.39)

Analytical computation of the eigenvalues of (7.39) reveals that an eigenvalue is

always positive, implying that (7.37) is not contracting. However, it is well known

that the two systems can be synchronized for small coupling strengths: indeed in

[140] it is shown that the MSF is negative for small α. The symmetric part of the

Jacobian in (7.38) in the case of coupling on the y-variable (εy = 1) is:

Js =




0 0 (z − 1) /2

0 0.2− 2α 0

(z − 1) /2 0 x− 2.5


 (7.40)

The analytical expressions of the eigenvalues of Js, in (7.40), reveals that an eigen-

value is positive definite and independent on α, implying that (7.37) is not con-

tracting. However, we know that chaotic Rossler systems can be synchronized for

a sufficiently large coupling strength, i.e. their MSF is negative for large coupling

strengths. The symmetric part of the Jacobian in (7.38) in the case of coupling on

all the state variables (εx = εy = εz = 1) is:

Js =




−2α 0 (z − 1) /2

0 0.2− 2α 0

(z − 1) /2 0 x− 2α− 2.5


 (7.41)

The eigenvalues of (7.41) are all dependent on the coupling strength: particularly,

the increase of the coupling strength causes the decrease of the eigenvalues. Thus,

for large enough coupling strengths, the system is contracting and the two Rossler

systems synchronize. This result is confirmed by studying the MSF, which is nega-

tive for large α. The example indicates that if a virtual system is contracting, the

MSF is negative, but that the viceversa, as expected, is not true.

Remark 7.5.1. The MSF provides local conditions for synchronization that need to
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be checked numerically, the construction of a virtual system and the ensuing analysis

provide a stronger stability result which is global and can be proven analytically.

Remark 7.5.2. The MSF approach requires a priori knowledge of the existence

of the synchronization manifold. Contraction theory, instead, does not require the

knowledge of a specific attractor to perform the stability analysis.

7.6 Contraction and MSF

We now first present a result linking contracting systems and Lyapunov exponent

and finally show some links between contraction theory and the MSF. We remark

here that in this Section the classical notion of contracting dynamical system (based

on the Euclidean norm, see Chapter 2 and Chapter 4) will be used.

7.6.1 Lyapunov exponents and Contraction theory

Corollary 7.6.1. If Theorem 2.2.1 holds with C ≡ R
m then the transverse Lyapunov

exponents to all the system trajectories are negative.

Proof. Given a generic trajectory, xs (t), from Definition 7.5.1 and Definition 7.5.2,

in [2] (page 382) we have:

J̇t = A (t)Jt (7.42)

where Jt =
∂φ(xs0)

∂x
and A (t) = ∂f

∂x
. To prove the theorem, we show that if the

contracting property holds, then the volume of any given ball of initial conditions

in state space shrinks. To do this, we use the Liouville’s formula, given by:

∆′t = Tr (A (t))∆t

∆0 = 1
(7.43)

where ∆t = det (Jt). From (7.43) the following result can be obtained:

∆t = exp




t∫

0

Tr (A (t)) dt


 (7.44)

If the system is contracting, then:

1

2

(
∂f

∂x

T

+
∂f

∂x

)
≤ −βI (7.45)

This hypothesis holds for all x (t) and for all t ∈ R+: particularly it will be true

for xs. From [82] (page 398) we know that the trace, the determinant and all

principal minors of a negative definite matrix are negative. Thus, the integral in
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(7.44) is negative, meaning that the volume of any given ball in the phase space

decreases.

7.6.2 Synchronization of all to all networks

Theorem 7.6.1. Consider a network of N nodes with an all-to-all topology. If the

network dynamics are contracting for some range of the coupling strength, A, then

the master stability function will be negative in the same range.

Proof. The virtual system corresponding to a network of N elements with all-to-all

topology is:

ẋ = f (x)− αNh (x) + αh (x1) + ...+ αh (xN ) (7.46)

System (7.46) is contracting if:

∂f

∂x
− αN

∂h

∂x
≤ −βI (7.47)

with β > 0. Since an all-to-all network can be viewed as a complete graph, and since

the Laplacian matrix for such a graph has one zero eigenvalue (the first), while the

others are all equal to N , as shown in [66] (page 280 Lemma 13.1.3), it is possible

to rewrite (7.34) as:

ξ̇k =

[
∂f(xs)

∂x
− αN

∂h̃(xs)

∂x

]
ξk (7.48)

for each transverse mode, i.e. k 6= 0. The matrix in (7.48) has the same expression

of the Jacobian (7.47). As the virtual system is contracting in some range A of the

coupling strength by hypothesys, then system (7.48) will be contracting over the

same range. Following Corollary 7.6.1, the maximum Lyapunov exponent of (7.48)

is negative and the theorem remains proved.

Example 7.6.1. Theorem 7.6.1 is applied to reinterpret the behavior of two Rossler

systems coupled on all state variables. We have already pointed out that the virtual

system corresponding to the network of two coupled Rossler systems is contracting.

From (7.34), the variational equations for the modes of the synchronous state of the

network are:

ξ̇0 =







0 −1 −1
1 0.2 0

zs 0 xs − 2.5





 ξ0 (7.49)

ξ̇1 =







0 −1 −1
1 0.2 0

zs 0 xs − 2.5


− 2α




1 0 0

0 1 0

0 0 1





 ξ1 (7.50)

Since the matrix in (7.50) is equal to the Jacobian matrix of the virtual system and
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it is contracting for all (x, y, z) for large enough α, this will be true for (xs, ys, zs).

Thus, the dynamics of the transverse modes are contracting if α is sufficiently large,

implying the negativeness of the master stability function in the same range of the

parameter α.

Remark 7.6.1. Note that the higher is N (set equal to 2 in (7.50)), the lower

will be the value of α that synchronizes the network, confirming what stated in the

literature, see e.g. [53].

7.6.3 Synchronization of networks with general topology

Assume now that H̃(X) is linear. As shown in [194], we can associate to a generic

connected network of the form (7.32) the following auxiliary, virtual, system:

Ẏ = F (Y )− α (L⊗ In) Y − (1N×N ⊗K0) (Y −X) (7.51)

where Y :=
[
yT
1 , . . . , y

T
N

]T
is the set of virtual state variables, K0 is some symmetric

positive definite matrix and 1N×N is the N ×N matrix whose elements are all equal

to 1.

System (7.51) has y = x as a solution and admits the particular solution y1 =

. . . = yN = y∞, with y∞ such that:

ẏ∞ = f (y∞)− nK0y∞ +K0

N∑

j=1

xj (t)

Thus, contraction of such a system immediately implies synchronization of (7.32)

(see Section 4.5 and also [194]). We can then state the following result.

Theorem 7.6.2. Consider a network with N identical nodes. If (i) the network is

connected; (ii) the coupling functions are linear and increasing; (iii) the auxiliary

system (7.51) is contracting for some range of the coupling strength, α ∈ A; then

the MSF will be negative in A, i.e. the network synchronizes.

Proof. From the hypotheses, we have that system (7.51) is contracting, i.e. the

symmetric part of its Jacobian, say Js, given by

Js :=

[
∂F

∂y

]

s

− α (L⊗ In)− 1N×N ⊗K0

is negative definite ∀α ∈ A.
Let Jr = −α (L⊗ In) − 1N×N ⊗ K0. Then, its maximum eigenvalue can be

computed, as shown in [194], using Courant-Fischer Theorem (see e.g. [82]):

λmax (Jr) = −λm+1 (α (L⊗ In))
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Thus, if the auxiliary system is contracting then:

λm+1 (α (L⊗ In)) > max
i
λmax

([
∂f

∂yi

]

s

)
(7.52)

∀α ∈ A. We can then conclude that the matrix

∂F

∂y
− α (L⊗ In) (7.53)

is negative definite ∀α ∈ A. Hence, the linear system

ξ̇ =

(
∂F

∂y
− α (L⊗ In)

)
ξ

is contracting. The proof is then concluded by noticing that the dynamics of the

above system around the synchronization manifold yields the variational equation

used, according to the MSF approach [140], to calculate the Lyapunov exponents.

Now, since the system is contracting, then its Lyapunov exponents will be negative

as shown in [155], immediately implying negativity of the MSF.

7.7 Numerical validations

To validate Theorem 7.6.2 we used the classical oscillator defined in e.g. [50] as:

ẋ1 = x1 − x2 − x1 (x
2
1 + x22)

ẋ2 = x1 + x2 − x1 (x
2
1 + x22)

(7.54)

We assume that the coupling between nodes is linear and acting on both state

variables. Using a virtual system constructed as in (7.51), it is easy to see that

the second and third hypotheses of Theorem 7.6.2 are satisfied. We now consider

two connected network topologies of N = 1000 nodes in order to satisfy the first

hypothesis of Theorem 7.6.2.

7.7.1 Nearest neighbor network

This topology presents a small algebraic connectivity, thus, the coupling strength

α, computed as required by Theorem 7.6.2 is expected to be large (in this case

α ∼= 12000). In Figure 7.4 the behavior is shown of the network state variables

when the coupling strength is increased from 0 to α at time t = 10s.
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Figure 7.4: Evolution of the first state component for all oscillators (top) when the
coupling strength (c) is varied between 0 and α at t = 10s.

7.7.2 Small world network

The algebaic connectivity is increased by adding new links, with uniform probability,

to the nearest neighbor topology of Section 7.7.1. Then, the coupling strength

computed using Theorem 7.6.2 decreases considerably with respect to the previous

case. In Figure 7.5 the behavior is shown of the states of the network and the applied

coupling strength (in this case α ∼= 800).
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Figure 7.5: Evolution of the first state component for all oscillators (top) when the
coupling strength (c) is varied between 0 and α at t = 10s.

7.8 Discussion

In this Chapter, we provided a coherent theoretical study for network coordination,

based on the use of contraction theory. We first presented a generic lemma that

can be used to analyze the convergence of a dynamical system of interest towards

some linear invariant subspace. We then used such a result to coordinate complex
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dynamical networks consisting of both linear and nonlinear nodes. In order to show

the effectiveness of our results as a design tool, we designed a decentralized strategy

ensuring the rendezvous for a network of mobile agents. From the analysis view-

point, instead, we obtained novel sufficient conditions for network synchronization

by deriving some links between contraction analysis, Lyapunov-based techniques

and the Master Stability Function. In the next chapter, we will present similar

results for the analysis/control of discrete-time and asynchronous networks.



Chapter 8

Convergence of discrete-time and

asynchronous systems and

networks

All networks and systems analyzed in the previous chapters were characterized by a

continuous-time dynamics. In this Chapter, we turn our attention to the problem of

analyzing/controlling discrete time and asynchronous systems and networks. Specif-

ically, after stating sufficient conditions for general smooth discrete-time dynamical

systems, we show that these conditions can be easily specialized to the analysis and

design of communication strategies ensuring consensus, synchronization and cluster-

synchronization in discrete-time and asynchronous networks. The results presented

in this Chapter were submitted for journal publication [158]

8.1 Introduction

In all the applications discussed so far, it is assumed that each agent in a network has

the ability of performing some computation and share information with its neigh-

bors. It is implicitly assumed that interactions between the network nodes occur

synchronously. That is, all nodes only send/receive informations at predetermined

time instants and use the most recent data for performing computations. One of

the implications of this assumption is the need for each agent to be synchronized to

a common clock, thus yielding the so-called synchronization penalty ([23], pag. 97).

In applications, devices are often modeled by discrete-time systems which are asyn-

chronous rather than synchronous, in the sense that each node transmits, receives or

processes information in accordance to some individual internal clock. For example,

in decentralized, digital or event-based control problems [14] [20], controllers often

act independently at different times as this can have advantages on synchronous

implementations of the distributed control strategy. The use of asynchronous pro-
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tocols becomes even more crucial in the case of networks of systems interacting over

the internet, for example, where transmission times vary and information becomes

available to different nodes at different times (see e.g. [121] and references therein).

In the asynchronous framework no assumptions are made on the relative speeds

and phases of the agents’ clocks and no guarantee is given on the time of delivery or

even on the delivery being successful. Thus, it is possible to easily take into account

within the same framework heterogenous agents, time-varying communication de-

lays, packet dropouts. The drawback, when dealing with asynchronism, lies in the

fact that it dramatically affects and often destroys the convergence properties of

the synchronous implementation of a system or network. Thus, solving consensus

and synchronization problems in asynchronous networks becomes difficult by using

traditional stability techniques, where such problems are formulated in terms of

stability of some invariant set. To overcome this problem, our viewpoint is instead

that of nonlinear contraction theory as discussed in Chapter 6 and Chapter 7.

The aim of this Chapter is that of proposing an effective methodology for the

analysis and design of linear and nonlinear decentralized control strategies for the

coordination of discrete time and asynchronous networks of both linear and nonlin-

ear nodes. From the methodological viewpoint, the key idea is again that of using

norms which are not induced by any scalar product to prove a contracting property

on the synchronous version of the asynchronous network of interest. The approach

is based on the idea (see [23]) of giving sufficient conditions on a synchronous system

that ensure convergence to some fixed point of its asynchronous implementation. In

this Chapter, we expand and generalize the methodology presented in [23] to generic

networks of nonlinear discrete-time systems. In particular, the main contributions

of the Chapter can be summarized as follows:

1. a coherent theoretical framework is derived for the control of discrete-time and

asynchronous systems. Results are based on the use of nonlinear contraction

of discrete-time dynamical systems both in the synchronous and asynchronous

case;

2. several criteria are presented that can be used to design nonlinear distributed

communication strategies for the coordination of networks, consisting of non-

linear discrete-time and asynchronous nodes.

3. The case where identical nodes are controlled by means of heterogeneous con-

trol strategies is also addressed. Specifically, some sufficient conditions are

obtained for the coordination of networks of identical nodes where multiple

communication protocols co-exist.

4. sufficient conditions are also provided for the coordination of networks con-

sisting of multiple clusters of non-homogeneous nodes. That is, the problem
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is addressed of designing (nonlinear) decentralized protocols ensuring cluster

synchronization.

The theoretical results are illustrated by a set of representative examples of interest

in both Control and Optimization.

8.2 Problem Statement

In this Section we introduce the basic mathematical model used in this Chapter and

the problem statement.

Let S1, . . . , SN be connected sets in R, and let S := S1 × . . . × SN . For any

x ∈ S, we write x = [x1, . . . , xN ]
T , where xi ∈ Si, i = 1, . . . , N . Let Φ : S × N → S

be a smooth function defined by Φ(x, k) := [φ1(x, k), . . . , φN(x, k)]
T , ∀x ∈ S, with

φi : S × N → Si. We assume that there exists a set of times T = {0, 1, 2, . . .} at
which one or more components xi of x update their values. Let Ti be the set of

times at which the state variable xi is updated. We will consider N -dimensional

smooth dynamical systems of the form [23] (pages 426-428)

xi (k + 1) = φi (x (τ
i (k)) , k) , ∀k ∈ Ti

xi (k + 1) = xi (k) , ∀k /∈ Ti

(8.1)

i = 1, . . . , N , where x (τ i (k)) := [x1 (τ
i
1 (k)) , . . . , xN (τ i

N (k))]
T
and the quantity

τ i
j (k) corresponds to the time instant when information from xj becomes available

to xi. Note that in network coordination problems, each xi denotes the state of

heterogeneous agents, with dynamics determined by φi, interacting with each others.

Notice that 0 ≤ τ i
j (k) ≤ k, ∀k ∈ T and the difference k − τ i

j (k) can be thought of

as a form of communication delay. We are interested in the stability properties of

trajectories of system (8.1). Notice that stability in this context is not intended as

a property of some invariant set, but as a global property of solutions themselves.

The key idea is to derive conditions on the stability of (8.1), by giving conditions

on the stability of its synchronous implementation, i.e.

xi (k + 1) = φi (x (k) , k) , i = 1, . . . , N (8.2)

8.2.1 Related Work

The idea of studying the properties of an asynchronous discrete-time system in

terms of those of its synchronous implementation has been presented in a number

of papers in the existing literature. For instance in [23], Chapter 6 (and references

therein) a criterion based on the contraction mapping theorem (see e.g. [74]) is

obtained for finding the fixed point of the evolution operator of some asynchronous
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discrete-time system of interest. In this Chapter, by using nonlinear contraction

analysis we give conditions for the convergence of all trajectories of a discrete-time

asynchronous system towards some (possibly) non-stationary orbit. We then use

such results to design nonlinear communication strategies to ensure coordination of

a network of interest. Specifically, we consider networks whose nodes are discrete-

time synchronous or asynchronous systems, possibly nonlinear, controlled by linear

or nonlinear protocols.

Surprisingly, even when both nodes dynamics and coupling protocols are as-

sumed to be linear, results on consensus and synchronization of asynchronous net-

works are relatively sparse, if compared to those on both continuous-time and

discrete-time networks. A widely studied algorithm for consensus can be found

in the seminal work [186] (see also [187]). In e.g. [186], the following network of m

one-dimensional nodes is analyzed by using a different approach:

xi(k + 1) = ui(x), ui :=
∑m

j=1 aij(k)xj(k − τ i
j(k)), ∀k ∈ Ti (8.3)

where aij(k) is some nonnegative weight that agent i assigns to xj(k − τ i
j (k)). The

convergence properties of the above algorithm have also been studied under different

assumptions on agent connectivity and information exchange in e.g. [24], [85], [131].

In Section 8.5 we show that our results are more generic than those presented in the

above references as we consider a wider class of dynamical systems and networks.

Moreover, as also shown in Section 8.5, the same convergence conditions derived in

[186], [24], [85], [131] are obtained when our methodology is applied to (8.3).

In some recent works (see e.g. [54] and Section 8.6.2 for further details) the

consensus problem of the following synchronous network is analyzed:

xi(k + 1) = xi(k) + ui(x), ui(x) = ξ∗
∑

j∈Ni

(xj − xi)

where ξ∗ is a positive scalar representing the coupling strength and Ni denotes the

set of neighbors of node i. In Section 8.6.2 it is shown that our results can be

used to provide sufficient conditions ensuring consensus of the above network and

of its asynchronous implementation. Finally, we provide guidelines for the design of

nonlinear communication strategies that ensure consensus for both the synchronous

and asynchronous networks.

Another problem, related to our work and addressed in the literature, is the

design of asynchronous consensus strategies in continuous-time multi-agent systems

with time delays. In [202] (and references therein) such a problem has been ad-

dressed when the network has a switching topology. An interesting future research

direction might be extending our results to the case of switching networks.
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8.3 Mathematical preliminaries

In this Section we will introduce some results that will be used in the rest of the

Chapter.

8.3.1 The joint spectral radius and primitive matrices

The joint spectral radius of a set of matrices was firstly introduced in [152]. Let Σ

denote a nonempty set of l × l real matrices, Ai: Σ := {Ai : i ∈ I}, where I is the

set of indexes. Note that Σ is not necessarily bounded. Let’s now define

ρ̃k (Σ) := sup

{
ρ

(

k
∏

i=1

Ai

)

: Ai ∈ Σ, for 1 ≤ i ≤ k

}

For any given k, the above quantity represents the largest possible spectral radius

of all products of k matrices, chosen freely in the set Σ. We can now define the

generalized spectral radius as ρ̃ (Σ) := limk→+∞ sup (ρ̃k (Σ))
1/k, which represents

the maximal asymptotic spectral radius of the products of matrices that can be

constructed using the set Σ. Analogously, the joint spectral radius, ρ̂ (Σ), is defined

as ρ̂ (Σ) := limk→+∞ sup (ρ̂k (Σ)), where

ρ̂k (Σ) := sup

{
∥

∥

∥

∥

∥

k
∏

i=1

Ai

∥

∥

∥

∥

∥

: Ai ∈ Σ, for 1 ≤ i ≤ k

}

In [21], it was shown that for any bounded set of matrices, the above limits exist

and have a common value, denoted by ρ (Σ). In the rest of the Chapter, we will

refer to the above common value as joint spectral radius. Applications of the joint

spectral radius to the stability of time varying linear systems and linear inclusions

can be found in [37], [78], [166]. In [37], [78] the following result is proved.

Theorem 8.3.1. Consider an l-dimensional discrete linear time varying system

x (k + 1) = Akx (k), x (0) = x0 ∈ R
l. Then, ρ (Σ) < 1 if and only if limk→+∞ x (k) =

0, for any x0.

We now present some definitions which will be used in the rest of the Chapter.

Definition 8.3.1 ([82]). A square nonnegative matrix A, is said to be primitive if

it is irreducible and has only one eigenvalue of maximum modulus.

Lemma 8.3.1. Consider two n × n square matrices, A and B, having constant

column sums equal to ā and b̄ respectively. Then, AB has column sum equal for all

the columns. Furthermore, this sum is equal to āb̄.
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Proof. Let C := AB. We have cij =
∑n

r=1 airbrj. Thus, the j-th column sum of the

matrix C is given by

∑n
i=1

∑n
r=1 airbrj =

∑n
i=1 (bij

∑n
k=1 aki) =

∑n
i=1 (bij ā) = āb̄

Proofs of the following three lemmas can be found in e.g. [82], [149], and [23].

Lemma 8.3.2. Let A be a nonnegative and irreducible matrix. If at least one main

diagonal entry is positive, then A is primitive.

Lemma 8.3.3. If a nonnegative matrix A ∈ R
n×n has the same positive constant

column sums, given by µ > 0, then µ is an eigenvalue of A with an associated

eigenvector 1 and ρ (A) = µ. Furthermore, if A is primitive, with aii > 0, for all i,

then µ is the unique eigenvalue of maximum modulus.

Lemma 8.3.4. Given an n× n square nonnegative matrix, A, the following state-

ments are equivalent: (i) ρ(A) < 1; (ii) there exists Θ = diag(θ1, . . . , θn) such that

‖ΘAΘ−1‖ < 1; (iii) there exist some λ < 1 and ω > 0 such that Aω ≤ λω.

8.4 Global convergence of synchronous systems

Using the notation introduced above, the dynamics of (8.2) can then be written as

x (k + 1) = Φ (x (k) , k) (8.4)

Theorem 8.4.1. Assume that for system (8.2) the linear subspace, sayM, spanned

by the vector 1 is flow invariant. Let V be the matrix whose rows form a basis of

M⊥. Then, all system trajectories globally converge towards M if the following set

of conditions are satisfied for any x ∈ R
N and for any k ≥ k0 (possibly after some

smooth coordinate transformation): (H1) the matrix ∂Φ(x(k),k)
∂x

is irreducible; (H2)
∂φi(x(k),k)

∂xi
> 0, ∀i; (H3) ∂φi(x(k),k)

∂xj
≥ 0, ∀i, j, i 6= j; (H4)

∑N
i=1

∂φi(x(k),k)
∂xj

= c̄(k) ≤ 1,

∀j = 1, . . . , N . Furthermore, if
∑N

i=1
∂φi(x(k),k)

∂xj
= c̄(k) > 1, ∀j = 1, . . . , N , then

convergence is ensured if H1 - H3 hold and (H5)
∥

∥

∥
V ∂Φ(x(k),k)

∂x
V T
∥

∥

∥
< 1.

Proof. Differentiation of (8.4), gives the dynamics of the system virtual displace-

ments:

δx (k + 1) = J (k) δx (k) , δx (k0) = δx0 (8.5)

where J(k) := ∂Φ(x(k),k)
∂x

. The evolution of δx can be written explicitly as δx (k) =
∏k

r=1 J (k − r) δx0. Now, H1, H2, H3 imply (Lemma 8.3.2) that J is primitive.

Let Σk :=
{

∏k
i=1 Ji, Ji = J (i)

}

. We start with proving the Theorem when H4 is

satisfied. We have to distinguish between two cases.
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Case 1: c̄(k) < 1. From Theorem 8.3.1, we know that (8.5) is stable if and only

if ρ (Σ) < 1. By definition we have ρ (Σ) = supk∈N supJ∈Σk ρ (J)
1
n . Now, from H4

we know that all the column sums of all matrices Ji are equal to c̄(k) < 1. Thus, by

means of Lemma 8.3.1, we have that any product between matrices Ji has column

sums lower than 1. This, in turn, implies that ρ (Σ) < 1. Convergence is then

proved, i.e. δx(k)→ 0 as k → +∞ and for any k ∈ R
N . SinceM is flow invariant,

this implies that system trajectories globally converge toM.

Case 2: c̄(k) = 1. In this case, from H4 and Lemma 8.3.3, it follows that

ρ (Ji) = 1, ∀i. Hence, as Ji is nonnegative, then ‖Ji‖1 = 1 and nearby trajectories

cannot diverge from each other. Thus, the invariant subspace, M, is unique and it

is spanned by the eigenvector of J associated to the unique eigenvalue of maximum

modulus. We will now prove that all trajectories of the system will converge towards

M. Denote with e1 the vector 1 and with e2, . . . , eN the vectors completing an

orthogonal basis in R
N . Then, in the basis E, composed by the above vectors, every

matrix Ji has the following block triangular form (see e.g. [148], page 3):

Ji =

[
Ji1 Ji2

0 Ji3

]
(8.6)

where Ji1 is 1 × 1, Ji2 is 1 × (N − 1) and Ji3 is (N − 1) × (N − 1). That is, the

dynamics of the virtual displacements (8.5) in this new basis has the form

[
δxM

δx⊥

]
(k) =

k∏

r=1

[
Ji1(k − r) Ji2(k − r)

0 Ji3(k − r)

][
δxM

δx⊥

]
(k0) (8.7)

where δxM represents the dynamics onM and δx⊥ those transversal toM. Thus,

the evolution of δx⊥is given by: δx⊥(k) =
∏k

r=1 Ji3(k − r)δx⊥(k0). Define now:

Σk
3 :=

{
k∏

i=1

Ji3, Ji3 = Ji3 (i)

}

Notice that, by means of H4 and Lemma 8.3.3, the eigenvalues of Ji3 are all in

modulus strictly lower than 1, ∀k. Thus ρ
(

Σk
3

)

< 1: hence δx⊥ (k)→ 0 as k → +∞,

for any x ∈ R
N . This in turn implies that there exist a matrix norm, ‖·‖, such

that ‖Ji3‖ < 1. That is, δx⊥(k) → 0 and hence all systems trajectories converge

towardsM.

To conclude the proof, we have to show that if H4 is violated, then convergence

of the nodes is ensured if H1, H2, H3, H5 are satisfied. The proof follows the same

outline as the proof of the previous case (i.e. ρ (Σ) = 1). The additional hypothesis,

H5, obviously implies that only one invariant subspace, M, exists and that the

dynamics transversal toM are contracting (see Theorem 4.8.2).
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Remarks

• Notice that, in general, it is difficult to compute the joint spectral radius for

a set of matrices (see e.g. [137]). However, for the case of our interest (i.e.

nonnegative, irreducible matrix with constant column sum), the computation

of ρ (Σ) becomes straightforward, since it directly depends on the column sum

of the set of matrices being considered;

• under the condition c̄(k) < 1 in Theorem 8.4.1, we proved that all trajectories

of system (8.4) converge towards each other for any x ∈ R
N and for any

k ∈ N. In the case c̄(k) ≥ 1 we proved that trajectories converge towardsM
for any x ∈ R

N − {M} as k → +∞. This will be of fundamental importance

for deriving stability conditions on asynchronous systems which can be easily

checked on the synchronous implementation of the system;

• notice that, since the conditions of Theorem 8.4.1 are uniform conditions, they

might appear restrictive at first, but are required to guarantee convergence

of the asynchronous implementation of the system. Moreover, as shown in

Section 8.6.2 ad Section 8.7.1, these conditions are not difficult to satisfy when

the aim is the design of linear and nonlinear communication protocols ensuring

consensus and synchronization of discrete time and asynchronous networked

systems;

• the convergence rate towardsM is given by: (i) ρ
(

Σk
3

)

if the row column sum

of system Jacobian is smaller or equal than unity; (ii) maxx,k

{
∥

∥

∥
V ∂Φ(x,k)

∂x
V T
∥

∥

∥

}

otherwise.

8.5 Global convergence of asynchronous systems

Now consider the asynchronous version of system (8.4), given by (8.1). In what

follows, according to [23], we will say that x∗ is a fixed point of φ(x, k) if:

x∗ = φ(x∗, k), ∀k

The following two assumptions can be found in [23].

Assumption 8.5.1. The sets Ti are infinite, and if {tk} is a sequence of elements

of Ti that tends to infinity, then limk→+∞ τ i (tk) = +∞.

Assumption 8.5.2. Let x := [x1, . . . , xN ]
T , Φ (x, k) := [φ1, . . . , φN ]

T : S ×N → S,

with S = S1 × . . .× SN . There exist a sequence of non empty sets {X (k)}, with

. . . ⊂ X (k + 1) ⊂ X (k) ⊂ . . . ⊂ X (0)
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and a sequence {s(k)} with s(k) ∈ N, s(0) = 0, s(k)→ +∞ as k → +∞, such that:

1) Φ (x, β) ∈ X (k + 1), ∀k, x ∈ X (k) , β ≥ s(k), ; 2) if {y (m)} is a sequence such

that y (m) ∈ X(k), ∀k larger than some index mk, then every limit point of {y (m)}
is a fixed point of Φ(x, k); 3) for all k, we have:

∃Xi (k) ⊂ Xi (0) , i = 1, 2, . . . , N : X (k) = X1 (k)× . . .×XN (k)

The Asynchronous Convergence Theorem can then be stated as follows (see [23]

for the proof):

Theorem 8.5.1. Consider the asynchronous system (8.1). If the above assumptions

hold, and the initial state x(0) is such that x (0) = (x1 (0) , . . . , xN (0)) ∈ X (0), then

every limit point of {x (k)} is a fixed point of Φ (x, k).

Our main result can then be stated as follows.

Theorem 8.5.2. All trajectories of asynchronous system (8.1) will converge towards

each other if: i) Assumption 8.5.1 holds; ii) the synchronous system (8.2) fulfills

Theorem 8.4.1.

Proof. We will prove the Theorem by showing that if Theorem 8.4.1 is satisfied by

(8.2), then it is possible to construct an appropriate sequence of sets X(k), so that

Assumption 8.5.2 is verified. Thus, Theorem 8.5.1 can be used to prove convergence

of (8.1).

We start with the case where the column sum of the system Jacobian is upper

bounded by some positive constant c̄1 < 1. That is, in terms of the notation

introduced in Theorem 8.4.1, we have c̄(k) ≤ c̄1 < 1. This implies that ρ (Ji) < 1,

for any i. Since the Jacobian is a nonnegative matrix, this condition implies that

‖Ji‖1 ≤ c̄1 < 1, ∀i. On the other hand, notice that the following inequality holds:

|δx(k)|1 ≤
k
∏

r=1

‖J(k − r)‖1|δx0|1 ≤ c̄k1|δx0|1

Now, from the norm equivalence in finite dimensional spaces, we have that for any

vector v ∈ R
n, there exist some α1 such that ‖v‖1 ≤ α1 ‖v‖Θ,∞. Thus, the sequence

of sets, required by Theorem 8.5.1, can be defined as:

X1 (k) :=
{

δx (k) : |δx (k)|Θ,∞ ≤ c̄k1α1 |δx (k0)|Θ,∞

}

(8.8)

Furthermore, it is easy to show that such a sequence satisfies the conditions required

by Assumption 8.5.2. In fact: 1) if δx (k) ∈ X1 (k), then δx (k + 1) ∈ X1 (k + 1); 2)

the sequence {δx (k)} belongs to X1 (k), ∀k ≥ 0, and its limit point is 0; 3) since the

sets are defined using the weighted infinite norm, the third condition in Assumption
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8.5.2 is automatically satisfied. Thus, Theorem 8.5.1 can be applied, implying that

δx→ 0, as k → +∞.

We now prove the Theorem in the case where the column sum of the system

Jacobian is equal to c̄ = 1, implying that ρ (Ji) = 1 for any i. Recall from the proof

of Theorem 8.4.1 that there exist a matrix norm, ‖·‖∗, such that ‖Ji3‖∗ = c̄2 < 1,

where Ji3 denotes the Jacobian sub-matrix associated to the transversal dynamics

(see equation (8.7)). Thus, it is always possible to find a positive (finite) scalar α2

such that ‖Ji3‖∗ ≤ α2 ‖Ji3‖Θ,∞. We can then define

X2 (k) :=
{

δx⊥ (k) : |δx⊥ (k)|Θ,∞ ≤ c̄k2α2 |δx⊥ (k0)|Θ,∞

}

(8.9)

Finally, consider the case where the column sum of the system Jacobian is c̄ > 1

(notice thatM is assumed to be unique in Theorem 8.4.1), implying that ρ (Ji) > 1.

In this case, the dynamics transversal toM are contracting, since there exist a norm

such that
∥

∥V J(k)V T
∥

∥ = c3 < 1. Then, we know that there exist an α3, such that
∥

∥V J(k)V T
∥

∥ ≤ α3
∥

∥V J(k)V T
∥

∥

Θ,∞. Define now

X3 (k) :=
{

δx⊥ (k) : |δx⊥ (k)|Θ,∞ ≤ c̄k3α3 |δx⊥(k0)|Θ,∞

}

(8.10)

It is easy to show that the sequences of sets in (8.9), (8.10) satisfy conditions

required by Assumption 8.5.2, and hence can be used to analyze the convergent

behavior of the asynchronous implementation (8.1) of system (8.4). In fact:

• if δx⊥ (k) ∈ X i (k), then δx⊥ (k + 1) ∈ X i (k + 1), i = 2, 3;

• the sequence {δx⊥ (k)} belongs to X i (k), ∀k ≥ k0, i = 2, 3, and its limit point

is 0, i.e. the virtual dynamics converge towardsM;

• since the sets are defined using the weighted infinite norm, the third condition

in Assumption 8.5.2 is automatically satisfied.

Thus, Theorem 8.5.1 can be applied, implying that ∀x /∈M, δx⊥ → 0, as k → +∞,

and thus that x→M. The Theorem is then proved.

Analyzing convergence of a networked system

As a first application of our results, we now use Theorem 8.4.1 and Theorem 8.5.2

to analyze the convergence properties of the network of m nodes in (8.3), see e.g.

[186], [24], [85], [131]. A possible approach for analyzing such a network is the

one introduced in [131], where a convergence analysis of the above protocol was

performed by using an enlarged agent system. Such a system was obtained by

adding new agents to the original system, in order to deal with delays. In the above

cited Chapter, it is shown that the above protocol ensures consensus if:



8.6 Networks of discrete time and asynchronous systems, {November 28, 2010} 159

1. the graph is (strongly) connected;

2. aii(k) ≥ η, for any k ∈ N (where 0 < η < 1)

3. aij(k) ≥ η if agent i receives information from agent j at time k

4. aij(k) = 0 if agent i does not receive any information form agent j at time k

5. the following condition holds:
∑m

j=1 aij(k) = 1 for all i and for any k;

6. the delays are bounded.

We now show that by means of Theorem 8.4.1 and Theorem 8.5.2 it is possible to

prove the same result without the need of using an enlarged system for the analysis.

Indeed, consider the synchronous implementation of the above network, which is

simply:

xi(k + 1) =
m
∑

j=1

aij(k)xj(k)

It is easy to check that a sufficient condition for M := {x1 = . . . = xm} to be

invariant is
∑m

j=1 aij(k) = 1. Furthermore, notice that the Jacobian associated to

the above system is J(k) := [aij(k)]. Now, all the hypotheses of Theorem 4 are

fulfilled if conditions 1)-6) are all satisfied. Indeed:

1. if the graph is strongly connected, then J(k) is irreducible for any k;

2. condition 2) implies that all the diagonal elements of J(k) are strictly positive

for any k;

3. condition 3) implies that all the off diagonal elements of J(k) are non-negative

for any k

4.
∑m

i=1 Jij(k) = c̄(k) = 1 for any k (condition 5)).

Thus, using Theorem 8.4.1 it is possible to conclude that all trajectories of the

network globally converge towards M. That is, consensus is achieved for the syn-

chronous network. Furthermore, if the delays are all bounded, Theorem 8.5.2 imme-

diately implies that also all trajectories of the asynchronous implementation of the

network globally converge towardsM. That is, the asynchronous network achieves

consensus.

8.6 Networks of discrete time and asynchronous

systems

We now further look at the convergence of networked systems and at the design

of decentralized communication protocols. In what follows we will use standard
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definitions from graph theory (fur further details see e.g. [66]). Assume that in

(8.2) the smooth functions φi are defined as:

φi (xi, k) := f (xi(k), k) +
∑

j∈Ni

[h (xj(k))− h (xi(k))] (8.11)

where Ni is the set of neighbors of the i-th agent on the graph. The cardinality

of Ni, denoted as Di, is the degree of node i (for directed networks Di denotes the

in-degree of node i). Then, the dynamical equations (8.2) become

xi (k + 1) = f (xi (k) , k) +
∑

j∈Ni

[h (xj(k))− h (xi(k))] , i = 1, . . . , N (8.12)

with initial conditions x (k0) = xk0, k0 ≥ 0. Notice that the above equations repre-

sent a network of agents interacting diffusively, by means of the output function h,

see e.g. [83]. We will refer to (8.12) as a discrete time network, or synchronous im-

plementation of a network of asynchronous systems. The following set of differential

equations is termed as the asynchronous network, or asynchronous implementation

of the network

xi (k + 1) = f (xi (τ
i
i (k))) +

∑

j∈Ni

[

h (xi (τ
i
i (k)))− h

(

xj

(

τ i
j (k)

))]

∀k ∈ Ti

xi (k + 1) = xi (k) ∀k /∈ Ti

(8.13)

where the set of times Ti and τ
i
j are defined as in Section 8.2. We can now give suffi-

cient conditions on the function h that ensure nodes convergence for both undirected

and directed discrete time networks of the form (8.12) and (8.13).

Theorem 8.6.1. All trajectories of the (directed) undirected (strongly) connected

network described by (8.12) converge towards each other if (possibly after some

smooth coordinate transformation) the coupling functions and vector fields are such

that, for any x ∈ R
N and for any k ≥ k0: 1) ∂f(xi,k)

∂xi
−Di

∂h(xi)
∂xi

> 0, ∀i; 2)
∂h(xj)

∂xj
≥ 0,

∀i, j, i 6= j; 3) ∂f(xi,k)
∂xi

−Di
∂h(xi)

∂xi
+
∑

j∈Ni

∂h(xj)

∂xj
= c̄(k) ≤ 1

Proof. For the network of interest, the invariant subspaceM in phase space is

M := {xi = xj , i 6= j} (8.14)

To prove convergence of all trajectories towards M, it suffices to notice that

under hypotheses 1)-3) the network satisfies all the hypotheses of Theorem 8.4.1

(recall the definition of φi given in (8.11)). Indeed, note that the fact that J is

primitive in Theorem 8.4.1 is automatically guaranteed by the connectivity property

of the network and by the choice of the communication protocol.
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Corollary 8.6.1. If all the hypotheses of Theorem 8.6.1 are satisfied, then all trajec-

tories of the asynchronous implementation of the network given by (8.13), converge

towards each other.

Proof. The proof is obtained trivially from the application of Theorem 8.5.1 and

Theorem 8.6.1.

8.6.1 Coexistence of multiple protocols

Our results can be easily extended to the case where the nodes of both the network

(8.12) and its asynchronous implementation (8.13), are connected by means of het-

erogeneous (non-identical) coupling functions, hij. We will consider the following

discrete time network

xi (k + 1) = f (xi (k) , k) +
∑

j∈Ni

[hij (xj(k))− hij (xi(k))] , j ∈ Ni, i = 1, . . . , N

(8.15)

and its asynchronous implementation

xi (k + 1) = f (xi (τ
i
i (k))) +

∑

j∈Ni

[

hij (xi (τ
i
i (k)))− hij

(

xj

(

τ i
j (k)

))]

∀k ∈ Ti

xi (k + 1) = xi (k) ∀k /∈ Ti

(8.16)

Theorem 8.6.2. All trajectories of the undirected connected network (or of the

strongly connected directed network), described by (8.15) converge towards each other

if (possibly after some smooth coordinate transformation) the vector fields and the

coupling functions are such that, for any x ∈ R
N and for any k ≥ k0: 1) ∂f(xi,k)

∂xi
−

∑

j∈Ni

∂hij(xi)

∂xi
> 0, ∀i; 2)

∂hij(xj)

∂xj
≥ 0, ∀i, j, i 6= j; 3) ∂f(xi,k)

∂xi
−∑j∈Ni

∂hij(xi)

∂xi
+

∑

j∈Ni

∂hji(xj)

∂xj
= c̄(k) ≤ 1, ∀i, j

Proof. It is straightforward to check that in this case, the subspace M is given by

(8.14). The proof can then be concluded by noticing that in the above hypotheses,

the conditions required by Theorem 8.4.1 are all satisfied.

Corollary 8.6.2. If all the hypotheses of Theorem 8.6.2 are satisfied for (8.15),

then all trajectories of (8.16) converge towards each other.

8.6.2 Example: discrete time and asynchronous consensus

We illustrate the application of the results derived so far to the problem of achieving

consensus in discrete time networks. This problem is commonly addressed in syn-

chronous networks ([203], [85], [105]), while only few papers in the literature deal
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with the asynchronous case, e.g. [54]). We analyze the convergent behavior of a set

of N > 1 dynamical agents interacting with each other synchronously:

xi (k + 1) = xi (k) +
∑

j∈Ni

hij (xj (k))− hij (xi (k)) (8.17)

or asynchronously:

xi (k + 1) = xi (k) +
∑

j∈Ni
hij (xj (τ (k)))− hij (xi (τ (k))) , k ∈ Ti

xi (k + 1) = xi (k) , k /∈ Ti

(8.18)

Discrete time consensus: directed and undirected networks

We start by analyzing the classical linear agreement protocol (see also Section 8.2.1);

that is, hij (x) = h(x) = ξ∗x, with ξ∗ ∈ R
+, in (8.17). We assume that the network

topology is a strongly connected one, represented in Figure 8.1. To prove conver-

gence, we only have to satisfy hypotheses 1)-3) of Theorem 8.6.1. Notice that for

the undirected network, such hypotheses are immediately satisfied if the couplings

are chosen as ξ∗ :=
ξ̄

Dmax
, with 0 < ξ̄ < 1 and Dmax := maxi {Di}. Let’s now con-

sider a generic nonlinear protocol of the form hij (x) = h (x). Now, the hypotheses

of Theorem 8.6.1 are satisfied if: (i) 0 < 1 − Di
∂h(xi)

∂xi
< 1, ∀i = 1, . . . , N ; (ii)

∂h(xi)
∂xj

> 0. A possible choice for h that satisfies such conditions is then:

h (·) := G arctan (·) (8.19)

In fact, the derivative of this function is positive, and the gain G can be chosen

to satisfy (i). The above protocols can be slightly modified to achieve convergence

for the directed network, using Theorem 8.6.2. Specifically, to easily satisfy the

hypotheses of such a Theorem, we can choose h(x) = Kijx and h(x) = Gij arctan(x),

where the gains are chosen to fulfill condition 3) of Theorem 8.6.2. Figure 8.2 shows

simulation results for the above choices of the protocols, with properly designed

gains.

Asynchronous consensus, directed and undirected networks

Corollary 8.6.1 and Corollary 8.6.2 imply that the protocols derived above will work

for the asynchronous network (8.18). We assume that the topology of the network

is again that of Figure 8.1, while the sampling times are given in Table 8.1. Figure

Table 8.1: Values of the sampling times for each node
node 1 2 3 4 5 6 7 8

sampling time 1 0.3 2 3 0.5 2 0.4 1

8.3 shows the behavior of the state variables of the nodes in the asynchronous
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Figure 8.1: Undirected and directed networks used for the numerical validation.

network with the decentralized linear protocol (top panels), and the behavior of

the same network, controlled by the asynchronous implementation of the nonlinear

communication strategy in (8.19) (bottom panels).

Using mixed protocols to reach consensus

We now provide numerical validation for Theorem 8.6.2 and Corollary 8.6.2, by

considering the networks in Figure 8.1. The coupling functions between the nodes of

the networks are specified in Table 8.2. Figure 8.4 shows: simulation results for both

the undirected and directed discrete time networks (top panels), and the behavior of

for their asynchronous implementation (bottom panels). All the simulations confirm

the theoretical predictions.

Table 8.2: Coupling functions
edge (undirected network) edge (directed network) h (·)

1− 4, 2− 3, 6− 7, 6− 8, 1− 8 1→ 4, 2→ 3, 7→ 6, 6→ 8, 1→ 8 Gij arctan (·)
1− 2, 3− 4, 4− 5, 5− 6 1→ 2, 3→ 4, 4→ 5, 5→ 6, 6→ 7 Kijx

8.7 Cluster synchronization

We now consider the case of networks of heterogeneous nodes communicating by

means of (possibly) heterogeneous coupling functions. Here the control task for

the communication protocols is that of ensuring the so-called cluster synchroniza-

tion regime (also termed as poly-rhythm or concurrent synchronization), see e.g.

[142], [19]. At the best of our knowledge, there are currently no papers addressing

the problem of finding conditions for cluster synchronization in discrete-time and

asynchronous networks. Specifically, we will consider the following discrete time
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Figure 8.2: Simulation of the discrete-time undirected network (top-left panel) and
the discrete-time directed network (top-right panel) in Figure 8.1, with agents con-
trolled by the linear communication strategies. A consensus is also attained for the
discrete-time undirected (bottom-left) and directed (bottom-right) network, when
the nonlinear protocols are used.

network

xi (k + 1) = fγ(i) (xi (k) , k)+
∑

j∈Ni

[hij (xj(k))− hij (xi(k))] , j ∈ Ni, i = 1, . . . , N

(8.20)

and its asynchronous implementation

xi (k + 1) = fγ(i) (xi (τ
i
i (k)) , k) +

∑
j∈Ni

[
hij (xi (τ

i
i (k)))− hij

(
xj

(
τ i
j (k)

))]
∀k ∈ Ti

xi (k + 1) = xi (k) ∀k /∈ Ti

(8.21)

In both of the above equations, γ is defined between two set of indexes, γ : {1, . . . , N} →
v = {1, . . . ,Γ}, Γ ≤ N denoting the number of groups in the network. Two nodes,

i.e. i and j, have the same dynamics if and only if γ (i) = γ (j). Let now G1, . . . , GΓ

be the groups of agents sharing the same dynamics:

Gl =: {(x1, . . . , xN) : ∀i, j = 1, . . . , N, γ (i) = γ (j) = l}

Theorem 8.7.1. All trajectories of the undirected connected network (or of the
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Figure 8.3: Simulation of the asynchronous undirected network (top-left panel) and
of the asynchronous directed network (top-right panel) in Figure 8.1, with agents
controlled by the linear communication strategy. A consensus is also attained when
the agents of the undirected (bottom-left) and directed (bottom-right) are controlled
by the asynchronous nonlinear communication protocol. The values of the sampling
times are given in Table 8.1

strongly connected directed network), described by (8.20) converge towards each

other if all nodes are input-symmetric and (possibly after some smooth coordinate

transformation) the coupling functions are such that, for any x ∈ R
N and for any

k ≥ k0: 1)
∂fγ(i)(xi,k)

∂xi
− ∑

j∈Ni

∂hij(xi)

∂xi
> 0, ∀i; 2)

∂hij(xj)

∂xj
≥ 0, ∀i, j, i 6= j; 3)

∂fγ(i)(xi,k)

∂xi
−∑

j∈Ni

∂hij(xi)

∂xi
+

∑
j∈Ni

∂hji(xj)

∂xj
= c̄γ(i)(k) < 1, ∀i, j : γ (i) = γ (j)

Proof. Notice that under the input-symmetric hypothesis, the following linear in-

variant (poli-synchronous) subspace exists:

M := {xi = xj , ∀i, j : γ (i) = γ (j)}

We have to prove that all system trajectories converge towardsM. Let J(k) be the

Jacobian of network dynamics. Hypotheses 1) - 3) imply that ‖J(k)‖1 < 1 for any

x ∈ R
N and for any k ∈ N. That is, the network dynamics is contracting. Therefore,

all system trajectories globally converge towardsM.

Corollary 8.7.1. If all hypotheses of Theorem 8.7.1 are satisfied for (8.20), then
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Figure 8.4: Simulation of the synchronous discrete-time undirected network (top-
left panel) and the directed network (top-right panel) in Figure 8.1, with agents
controlled by both the linear and nonlinear communication strategies. A similar
behavior is obtained for the asynchronous undirected (bottom-left) and directed
(bottom-right) networks (the sampling times for each node are in Table 8.1). The
coupling functions are in Table 8.2.

all trajectories of (8.21) converge towards each other.

8.7.1 Example: cluster synchronization of Hopfield models

As an example, consider the problem of synchronizing a network of heterogeneous

discrete time Hopfield models (see e.g. [207]). The network that we are going to

analyze is composed by two groups of dynamical systems and is schematically rep-

resented in Figure 8.5. Thus, the objective of the decentralized control strategy is

that of ensuring that, at steady state, two clusters of synchronized nodes emerge.

In terms of the notation introduced above, the objective of the control is that of

ensuring convergence of all network trajectories towards the poli-synchronous sub-

space

M := {x1 = x6 = x7 = x8 = x9}
⋃

{x2 = x3 = x4 = x5} (8.22)
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In Figure 8.5, the nodes indicated with a square have dynamics

xi (k + 1) = a (k) xi (k)+b (k) g1 (xi(k))+ui (k)+
∑

l∈Ni

[h (xl(k))− h (xi(k))] , xi ∈ R

(8.23)

while the dynamics of nodes depicted by circles is given by

xj (k + 1) = c (k) xj (k)+d (k) g2 (xj(k))+uj (k)+
∑

l∈Nj

[h (xl(k))− h (xj(k))] , xj ∈ R

(8.24)
In (8.23) and (8.24), the functions g1 and g2 denote some activation functions, the
time-varying coefficients a (k), b (k), c (k), d (k) can be interpreted as the strength
of the activations, while ui and uj are the inputs to each node of the network. We
assume that the input is common to all nodes of the same group and that nodes can
communicate to each other. The asynchronous implementation of (8.23) and (8.24)
is given by:

xi (k + 1) = a (k)xi

(
τ i
i (k)

)
+ b (k) g1

(
xi(τ

i
i (k))

)
+ ui (k) +

∑
l∈Ni

[
h
(
xl(τ

i
l (k))

)
− h

(
xi(τ

i
i (k))

)]
, ∀k ∈ Ti

xi (k + 1) = xi (k) , ∀k /∈ Ti

xj (k + 1) = c (k)xj

(
τ j
j (k)

)
+ d (k) g2

(
xj(τ

j
j (k))

)
+ uj (k) +

∑
l∈Nj

[
h
(
xl(τ

j
l (k))

)
− h

(
xj(τ

j
j (k))

)]
, ∀k ∈ Tj

xj (k + 1) = xj (k) , ∀k /∈ Tj

(8.25)

It is straightforward to check that the subspace defined in (8.22) is flow invariant

for (8.23)-(8.24) (or (8.25 in the asynchronous case). In what follows, we set:

a (k) = 0.5 + 1
1+k

, b (k) = 0.4 + k
k2+1

sin
(

kπ
2

)
, g1 (x) = 0.5 (x− sin (x))

c (k) = 0.5, d (k) = 0.3, g2 (x) = 0.5 (x+ sin (x))

Note that the linear and arctan control strategies derived in Section 8.6.2 satisfy all

of the hypotheses of Theorem 8.7.1, if the gains are properly tuned. In Figure 8.6

(top panels) the behavior is shown of the network represented in Figure 8.5, con-

trolled by both the linear and nonlinear communication strategy. Such panels show

that, as expected, all network trajectories converge towards the poli-synchronous

subspace defined in (8.22). That is, at steady state, in accordance with Theorem

8.7.1 and Corollary 8.7.1, two clusters of nodes emerge, each synchronized onto a

different common evolution of all its nodes.

We now assume that the two groups of agents composing the network have

different computational resources. Specifically, we assume that the group of square

agents has sampling time equal to 0.3, while the group of circle agents has sampling

time equal to 0.5. As shown in Figure 8.6 (bottom panels), even in the asynchronous

case, the same control strategies ensure cluster synchronization for the network, as

predicted by Corollary 8.7.1. Finally, in Figure 8.7 the behavior is shown of the

network, when the communication strategy between the circle nodes is chosen to be

linear, while the intra-group strategy is chosen to be nonlinear.
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Figure 8.5: Network of heterogeneous Hopfield neurons. Notice that all the nodes
belonging to the same group are input-symmetric when the coupling functions cho-
sen as in Section 8.7.1. Indeed, each of the nodes belonging to the square group
receives one input from one of the circle nodes. On the other hand, each of the cir-
cle nodes receives two inputs from two square nodes and one input from one circle
node.

8.8 Concluding remarks

We have presented a coherent study of contraction in discrete-time and asynchronous

dynamical systems. After stating the problem, a set of conditions was given guar-

anteeing convergence of trajectories of discrete-time and asynchronous dynamical

systems of interest towards each other. Specifically, it was shown that, if the syn-

chronous implementation of a given asynchronous system is contracting, then all

trajectories of the asynchronous model converge towards each other. The results

were then used to investigate consensus and synchronization of both directed and

undirected networks of synchronous and asynchronous discrete time systems showing

that, under appropriate conditions on the topology and on the distributed commu-

nication protocol, all nodes of such networks evolve asymptotically towards a com-

mon solution. Following our approach, we were able to design distributed control

strategies ensuring consensus and (cluster) synchronization. We also gave condi-

tions ensuring network convergence in the case where multiple protocols are used

within the same network. The theoretical results were illustrated via a number of

numerical examples showing the effectiveness of the methodology presented in the

Chapter. We wish to emphasize that the use of nonlinear contraction theory, possi-

bly based on the use of non-euclidean norms, is a powerful analysis and design tool

in the context of consensus and synchronization of networked systems. In the next

Chapter we will provide some applications to synthetic and computational biology.
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Figure 8.6: Simulation of the discrete time network in Figure 8.5, with all nodes
controlled by: (top-left panel) the linear communication strategy; (top-right panel)
the nonlinear communication strategy. In both panels cluster synchronization is
shown, where the two groups of nodes composing the network are synchronized. A
similar poli-synchronous behavior is shown by the asynchronous network with nodes
controlled by the linear communication strategy (bottom-left) and the nonlinear
communication strategy (bottom-right).
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Figure 8.7: Behavior of the network in Figure 8.5, when both linear and nonlinear
distributed communication strategies are used. Left panel: discrete time network;
right panel: asynchronous network.





Chapter 9

Applications to synthetic and

computational biology

In this Chapter, applications of contraction theory to some interesting open prob-

lems in both synthetic and computational biology are shown. Specifically, using

some of the results on contracting systems of Chapter 4 we study: (i) entrainment

of transcriptional modules, (ii) synchronization of quorum sensing networks, (iii) the

dynamical behavior of network motifs. In particular, in this Chapter we will char-

acterize some classes of transcriptional systems showing that they can be entrained

by any exogenous input. That is, when forced by any periodic signal, such systems

present an output which is periodic, with the same period of the forcing. We then

turn our analysis into a design tool, showing that our methodology can be used to

design novel synthetic transcriptional circuits that can be entrained. As a further

application to synthetic biology, we show how to entrain a population of Repres-

silators. Such circuits are coupled by means of a shared variable, whose dynamics

cannot be neglected. This kind of network is common in many natural instances.

Motivated by this, we extend our analysis to the problem of (group, or cluster) syn-

chronizing nodes which communicate only by means of their environment (quorum

sensing). Finally, we use contraction theory and symmetries of a vector field to

analyze the functionalities of network motifs. The results presented in this Chapter

were partly presented in [161], [164], [163].

9.1 Introduction

In this Chapter, we apply nonlinear contraction theory to synthetic and computa-

tional biology. Specifically, the main problems addressed in the chapter are:

• finding sufficient conditions ensuring entrainment of transcriptional systems;

• providing guidelines for the analysis/control of synchronization in quorum

sensing networks;
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• providing a coherent theoretical framework for the analysis/control of network

motifs.

Periodic, clock-like rhythms pervade nature and regulate the function of all living

organisms. For instance, circadian rhythms are regulated by an endogenous biolog-

ical clock entrained by the light signals from the environment that then acts as a

pacemaker, [72]. Moreover, such an entrainment can be obtained even if daily vari-

ations are present, like e.g. temperature and light variations. Another important

example of entrainment in biological systems is at the molecular level, where the

synchronization of several cellular processes is regulated by the cell cycle [189].

An important question in mathematical and computational biology is that of

finding conditions ensuring entrainment to occur. The objective is to identify classes

of biological systems that can be entrained by an exogenous signal. To solve this

problem, modelers often resort to simulations in order to show the existence of

periodic solutions in the system of interest. Simulations, however, can never prove

that solutions exist for all parameter values, and they are subject to numerical errors.

Moreover, robustness of entrained solutions needs to be checked in the presence of

noise and uncertainties, which cannot be avoided experimentally.

Section 9.2 answers to the above question. Some sufficient conditions are found

ensuring entrainment for several classes of biochemical systems. In particular, we

start by showing that a well known transcriptional module exhibits an entrained

behavior for any value of its biochemical parameters. Motivated by such a module,

we then extend our analysis to different classes of transcriptional circuits as well as

to combinations of modules. The proposed methodology is then turned into a tool

for designing biological systems exhibiting entrainment when forced by a periodic

signal. Finally, we show an application of our results to synthetic biology. The where

we design is carried out of the biochemical parameters of a Repressilator circuit (see

Chapter 5) so as to guarantee entrainment of the population.

As pointed out in Section 9.2, the network of Repressilators considered can be

thought of as an all-to-all network, with nodes coupled by means of a shared quantity

(the environment), whose dynamics cannot be neglected. This modeling assumption

is in contrast with networks analyzed in Chapter 6, Chapter 7 and Chapter 8, where

communication between nodes was directed and typically present only among some

node.

However, in many natural instances, network nodes do not communicate directly,

but rather by means of noisy and continuously changing environments. Bacteria,

for instance, produce, release and sense signaling molecules (so-called autoinducers)

which can diffuse in the environment and are used for population coordination. This

mechanism, known as quorum sensing [125], [130], [134] is believed to play a key role

in bacterial infection, as well as e.g. in bioluminescence and biofilm formation [6],

[129]. In a neuronal context, a mechanism similar to that of quorum sensing may in-
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volve local field potentials, which may play an important role in the synchronization

of groups of neurons [141], [28], [181], [5], [183], [184], [60], [119], or it may occur

through a different level in a cortical hierarchy [90], [27], [63], [65], [206]. Other

examples of such a mechanism are the synchronization of chemical oscillations of

catalyst-loaded reactants in a medium of catalyst-free solution [185], cold atoms

interacting with a coherent electromagnetic field [86] and the onset of coordinated

activity in a population of micro-organisms living in a shared environment [75],

[147]. In this Chapter, we will use the generic term quorum sensing to describe the

fact that interactions between nodes occur through a shared environmental vari-

able, regardless of the dependence of this variable on the number of network nodes.

Mathematical work on such quorum sensing topologies is relatively sparse (e.g., [61],

[181], [156], [91], [208], [150]) compared to that on diffusive topologies, and it often

neglects the dynamics of the quorum variables or the environment, as well as the

global effects of nonlinearities. This sparsity of results is somewhat surprising given

that, besides its biological pervasiveness, quorum sensing may also be viewed as an

astute computational tool. Specifically, the use of a shared variable in effect signifi-

cantly reduces the number of links required to achieve a given connectivity [181]. In

sections 9.3 - 9.3.5 we address the problem of studying synchronization phenomena

in those quorum sensing networks. In Section 9.3.6 we also show how the presented

methodology can be applied to synchronize networks characterized by a quorum

sensing mechanism.

We conclude this Chapter by presenting final applications of contraction analysis

to the study of biological systems. We show how contraction can be used together

with the symmetry properties of the vector field (see Chapter 4) to determine the

behavior, and hence the functionality, of network motifs.

9.2 Entrainment of transcriptional systems

From a mathematical viewpoint, the problem of formally showing that entrainment

takes place is known to be very difficult. Indeed, if a stable linear time-invariant

model is used to represent the system of interest, then entrainment is usually ex-

pected, when the system is driven by an external periodic input, with the system

response being a filtered, shifted version of the external driving signal. However,

in general, as is often the case in biology, models are nonlinear. The response of

nonlinear systems to periodic inputs is the subject of much current systems biology

experimentation; for example, in [123], the case of a cell signaling system driven by a

periodic square-wave input is considered. From measurements of a periodic output,

the authors fit a transfer function to the system, implicitly modeling the system

as linear even though (as stated in the Supplemental Materials to [123]) there are

saturation effects so the true system is nonlinear. For nonlinear systems, driving
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the system by an external periodic signal does not guarantee the system response

to also be a periodic solution, as nonlinear systems can exhibit harmonic genera-

tion or suppression and complex behavior such as chaos or quasi-periodic solutions

[97]. This may happen even if the system is well-behaved with respect to constant

inputs; for example, there are systems which converge to a fixed steady state no

matter what is the input excitation, so long as this input signal is constant, yet

respond chaotically to the simplest oscillatory input; we outline such an example in

the Materials and Methods Section, see also [172]. Thus, a most interesting open

problem is that of finding conditions for the entrainment to external inputs of bio-

logical systems modeled by sets of nonlinear differential equations. This problem is

addressed in this Section.

For concreteness, we focus mainly on transcriptional systems, as well as related

biochemical systems, which are basic building blocks for more complex biochemical

systems. However, the results that we obtain are of more generality. To illustrate

this generality, and to emphasize the use of our techniques in synthetic biology

design, we discuss as well the entrainment of a Repressilator circuit in a parameter

regime in which endogenous oscillations to not occur, as well as the synchronization

of a network of Repressilators. A surprising fact is that, for these applications,

and contrary to many engineering applications, norms other than Euclidean, and

associated matrix measures, must be considered.

Mathematical model and problem statement

We study a general externally-driven transcriptional module. We assume that the

rate of production of a transcription factor X is proportional to the value of a time

dependent input function u(t), and X is subject to degradation and/or dilution at

a linear rate. (Later, we generalize the model to also allow nonlinear degradation

as well.) The signal u(t) might be an external input, or it might represent the

concentration of an enzyme or of a second messenger that activates X. In turn, X

drives a downstream transcriptional module by binding to a promoter (or substrate),

denoted by e with concentration e = e(t). The binding reaction of X with e is

reversible and given by:

X + e ⇋ Y

where Y is the complex protein-promoter, and the binding and dissociation rates

are k1 and k2 respectively. As the promoter is not subject to decay, its total con-

centration, eT , is conserved, so that the following conservation relation holds:

e+ Y = eT (9.1)
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We wish to study the behavior of solutions of the system that couples X and e, and

specifically to show that, when the input u(t) is periodic with period T , this coupled

system has the property that all solutions converge to some globally attracting limit

cycle whose period is also T .

Such transcriptional modules are ubiquitous in both natural and synthetic bio-

logical networks, and their behavior was recently studied in [40] in the context of

“retroactivity” (impedance or load) effects. If we think of u(t) as the concentration

of a protein Z that is a transcription factor for X, and we ignore fast mRNA dy-

namics, such a system can be schematically represented as in Figure 9.1, which is

!

"

#

$

Figure 9.1: A schematic diagram of the transcriptional system modeled in (9.2). As
explained in [40], the transcriptional component takes as input the concentration
of protein Z and gives as output the concentration of protein X. The downstream
transcriptional module takes as input the concentration of protein X.

adapted from [40]. Notice that u(t) here does not need to be the concentration of a

transcriptional activator ofX for our results to hold. The results will be valid for any

mathematical model for the concentrations, x, of X and y, of Y (the concentration

of e is conserved) of the form:

ẋ = u (t)− δx+ k1y − k2 (eT − y)x

ẏ = −k1y + k2 (eT − y)x
(9.2)

An objective in this Section is, thus, to show that, when u is a periodic input,

all solutions of system (9.2) converge to a (unique) limit cycle (Figure 9.2). The

key tool in this analysis is to show that uniform contractivity holds, i.e. the system

is contracting with respect to any (positive) input. Since in this example the input

appears additively, uniform contractivity is simply the requirement that the unforced

system (u = 0) is contractive. Thus, the main step will be to establish the following

technical result:

Theorem 9.2.1. The system

ẋ = −δx+ k1y − k2 (eT − y)x

ẏ = −k1y + k2 (eT − y)x
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Figure 9.2: Entrainment of the transcriptional module (9.2). Time in minutes on the
x-axis. The state of the system (green), y, is entrained to both u(t) = 1.5+sin(0.1t)
and to a repeating {0, 1} sequence. System parameters are set to: δ = 3, k1=1,
k2 = 0.1.

where

(x(t), y(t)) ∈ C = [0,∞)× [0, eT ] (9.3)

for all t ≥ 0, and eT , k1, k2, and δ are arbitrary positive constants, is contracting.

Appealing to Theorem 4.3.1, we then have the following immediate Corollary:

Theorem 9.2.2. For any given nonnegative periodic input u of period T , all solu-

tions of system (9.2) converge exponentially to a periodic solution of period T .

In the following sections, we introduce a matrix measure that will help establish

contractivity, and we prove Theorem 9.2.1. We will also discuss several extensions of

this result, allowing the consideration of multiple driven subsystems as well as more

general nonlinear systems with a similar structure. (A general graphical algorithm

to prove contraction of generic networks of nonlinear systems can also be found in

[159] where this transcriptional module is also studied.)
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Proof of Theorem 9.2.1

We will use Theorem 4.2.1. The Jacobian matrix to be studied is:

J :=

[
−δ − k2 (eT − y) k1 + k2x

k2 (eT − y) −k1 − k2x

]
(9.4)

As matrix measure, we will use the measure µP,1 induced by the vector norm |Px|1,
where P is a suitable nonsingular matrix. More specifically, we will pick P diagonal:

[
p1 0

0 p2

]
(9.5)

where p1 and p2 are two positive numbers to be appropriately chosen depending on

the parameters defining the system.

It follows from general facts about matrix measures that

µP,1 (J) = µ1
(
PJP−1

)
(9.6)

where µ1 is the measure associated to the |·|1 norm and is explicitly given by the

following formula:

µ1 (J) = max
j

(
Jjj +

∑

i6=j

|Jij|
)

(9.7)

Observe that, if the entries of J are negative, then asking that µ1(J) < 0 amounts

to a column diagonal dominance condition. (The above formula is for real matrices.

If complex matrices would be considered, then the term Jjj should be replaced by

its real part ℜ{Jjj}.)

Thus, the first step in computing µP,1 (J) is to calculate PJP
−1:

[
−δ − k2 (eT − y) p1

p2
(k1 + k2x)

p2

p1
[k2 (eT − y)] −k1 − k2x

]
(9.8)

Using (9.7), we obtain:

µP,1 (J) = max

{
−δ − k2 (eT − y) +

∣∣∣∣
p2
p1
k2 (eT − y)

∣∣∣∣ ;−k1 − k2x+

∣∣∣∣
p1
p2
(k1 + k2x)

∣∣∣∣
}

(9.9)

Note that we are not interested in calculating the exact value for the above measure,

but just in ensuring that it is negative. To guarantee that µP,1 (J) < 0, the following

two conditions must hold:

− δ − k2 (eT − y) +

∣∣∣∣
p2
p1
k2 (eT − y)

∣∣∣∣ < −c21 (9.10)
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− k1 − k2x+

∣∣∣∣
p1
p2
(k1 + k2x)

∣∣∣∣ < −c22 (9.11)

Thus, the problem becomes that of checking if there exists an appropriate range of

values for p1, p2 that satisfy (9.10) and (9.11) simultaneously.

The left hand side of (9.11) can be written as:

(
p1
p2
− 1

)
(k1 + k2x) (9.12)

which is negative if and only if p1 < p2. In particular, in this case we have:

(
p1
p2
− 1

)
(k1 + k2x) ≤

(
p1
p2
− 1

)
k1 := −c21

The idea is now to ensure negativity of (9.10) by using appropriate values for p1 and

p2 which fulfill the above constraint. Recall that the term eT − y ≥ 0 represents a

concentration. Thus, the left hand side of (9.10) becomes

− δ +

(
p2
p1
− 1

)
k2 (eT − y) (9.13)

The next step is to choose appropriately p2 and p1 (without violating the constraint

p2 > p1). Imposing p2/p1 = 1 + ε, ε > 0, (9.13) becomes

− δ + εk2 (eT − y) (9.14)

Then, we have to choose an appropriate value for ε in order to make the above

quantity uniformly negative. In particular, (9.14) is uniformly negative if and only

if

ε <
δ

k2 (eT − y)
≤ δ

k2eT
(9.15)

We can now choose

ε =
δ

k2eT
− ξ

with 0 < ξ < δ
k2eT

. In this case, (9.14) becomes

−δ + εk2 (eT − y) ≤ −ξk2eT := −c22

Thus, choosing p1 = 1 and p2 = 1 + ε = 1 + δ
k2eT

− ξ, with 0 < ξ < δ
k2eT

, we have

µ1,P (J) < −c2. Furthermore, the contraction rate c2, is given by:

min
{
c21, c

2
2

}

Notice that c2 depends on both system parameters and on the elements p1, p2, i.e.

it depends on the particular metric chosen to prove contraction. This completes the
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proof of the Theorem.

Generalizations

In this Section, we discuss various generalizations that use the same proof technique.

Assuming X activation by enzyme kinetics

The previous model assumed that X was created in proportion to the amount of

external signal u(t). While this may be a natural assumption if u(t) is a transcrip-

tion factor that controls the expression of X, a different model applies if, instead,

the “active” form X is obtained from an “inactive” form X0, for example through

a phosphorylation reaction which is catalyzed by a kinase whose abundance is rep-

resented by u(t). Suppose that X can also be constitutively deactivated. Thus, the

complete system of reactions consists of

X + e ⇋ Y

together with

X0 ⇋ X

where the forward reaction depends on u. Since the concentrations of X0 +X + Y

must remain constant, let us say at a value Xtot, we eliminate X0 and have:

ẋ = u(t)(Xtot − x− y)− δx+ k1y − k2 (eT − y)x

ẏ = −k1y + k2 (eT − y)x
(9.16)

We will prove that if u (t) is periodic and positive, i.e. u (t) ≥ u0 > 0, then

a globally attracting limit cycle exists. Namely, it will be shown, after having

performed a linear coordinate transformation, that there exists a negative matrix

measure for the system of interest.

Consider, indeed, the following change of the state variables:

xt = x+ y. (9.17)

The system dynamics then becomes:

ẋt = u (t) (Xtot − xt)− δxt + δy

ẏ = −k1y + k2 (eT − y) (xt − y)
(9.18)

As matrix measure, we will now use the measure µ∞ induced by the vector norm

|·|∞. (Notice that this time, the matrix P is the identity matrix).

Recall that, given a real matrix J , the matrix measure µ∞ (J) is explicitly given
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by the following formula (see e.g. [124]):

µ∞ (J) = max
i

(
Jii +

∑

j 6=i

|Jij |
)

(9.19)

(Observe that this is a row-dominance condition, in contrast to the dual column-

dominance condition used for µ1.)

Differentiation of (9.18) yields the Jacobian matrix:

J :=

[
−u (t)− δ δ

k2 (eT − y) −k1 + k2 (−eT − xt + 2y)

]

Thus, it immediately follows from (9.19) that µ∞ (J) is negative if and only if:

− u (t)− δ + |δ| < −c21 (9.20)

− k1 + k2 (−eT − xt + 2y) + |k2 (eT − y)| < −c22 (9.21)

The first inequality is clearly satisfied since by hypotheses both system parameters

and the periodic input u (t) are positive. In particular, we have:

−u (t)− δ + |δ| ≤ −u0 := −c21

By using (9.17) (recall that eT − y ≥ 0), the right hand side of the second

inequality can be written as:

−k1 + k2 (−eT − xt + 2y) + k2 (eT − y) = −k1 − k2x

Since all system parameters are positive and x ≥ 0, the above quantity is negative

and upper bounded by −k1 := −c22.
Thus, we have that µ∞ (J) < −c2, where:

c2 = min
{
c21, c

2
2

}

The contraction property for the system is then proved. By means of Theorem 4.3.1,

we can then conclude that the system can be entrained by any periodic input.

Simulation results are presented in Figure 9.3, where the presence of a stable

limit cycle having the same period as u (t) is shown.

Multiple driven systems

We may also treat the case in which the species X regulates multiple downstream

transcriptional modules which act independently from each other, as shown in Fig-
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Figure 9.3: Entrainment of the transcriptional module (9.16). Time in minutes on
the x-axis. The system state (green), y, is entrained to the periodic input (blue):
u(t) = 1.5 + sin(0.1t). The zoom on t ∈ [0, 10] min. points out that trajectories
starting from different initial conditions converge towards the attracting limit cycle.
System parameters are set to: k1 = 0.5, k2 = 5, Xtot = 1, eT = 1, δ = 20.

ure 9.4. The biochemical parameters defining the different downstream modules may

be different from each other, representing a situation in which the transcription fac-

tor X regulates different species. After proving a general result on oscillations, and

assuming that parameters satisfy the retroactivity estimates discussed in [40], one

may in this fashion design a single input-multi output module in which e.g. the

outputs are periodic functions with different mean values, settling times, and so

forth.

We denote by e1, . . . , en the various promoters, and use y1, . . . , yn to denote

the concentrations of the respective promoters complexed with X. The resulting
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Figure 9.4: Multiple driven transcriptional modules. A schematic diagram of the
transcriptional modules given in (9.2)

mathematical model becomes:

ẋ = u(t)− δx+K11y1 −K21(eT,1 − y1)x+

+K12y2 −K22(eT,2 − y2)x + · · ·
+K1nyn −K2n(eT,n − yn)x

ẏ1 = −K11y1 +K21(eT,1 − y1)x
...

ẏn = −K1nyn +K2n(eT,n − yn)x

(9.22)

We consider the corresponding system with no input first, assuming that the

states satisfy x(t) ≥ 0 and 0 ≤ yi(t) ≤ eT,i for all t, i.

Our generalization can be stated as follows:

Theorem 9.2.3. System (9.22) with no input (i.e. u(t) = 0) is contracting. Hence,

if u(t) is a non-zero periodic input, its solutions exponentially converge towards a

periodic orbit of the same period as u(t).

Proof. We only outline the proof, since it is similar to the proof of Theorem 9.2.2.

We employ the following matrix measure:

µP,1 (J) = µ1
(
PJP−1

)
, (9.23)
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where

P :=




p1 0 0 . . . 0

0 p2 0 . . . 0
...

...
...

...
...

0 0 0 . . . pn+1




(9.24)

and the scalars pi have to be chosen appropriately (pi > 0, ∀i = 1, . . . , n+ 1).

In this case,

J :=




−δ −∑n
i=1K2i(eT,i − yi) K11 +K21x K12 +K22x . . . K1n +K2nx

K21(eT,1 − y1) −K11 −K21x 0 . . . 0

K22(eT,2 − y2) 0 −K12 −K22x . . . 0
...

...
...

. . .
...

K2n(eT,n − yn) 0 0 . . . −K1n −K2nx




(9.25)

and

PJP−1 :=


−δ −∑n
i=1K2i(eT,i − yi)

p1

p2
(K11 +K21x)

p1

p3
(K12 +K22x) . . . p1

pn+1
(K1n +K2nx)

p2

p1
K21(eT,1 − y1) −K11 −K21x 0 . . . 0

p3

p1
K22(eT,2 − y2) 0 −K12 −K22x . . . 0

...
...

...
. . .

...
pn+1

p1
K2n(eT,n − yn) 0 0 . . . −K1n −K2nx




(9.26)

Hence, the n + 1 inequalities to be satisfied are:

− δ −
n∑

i=1

K2i(eT,i − yi) +
1

p1

n∑

i=1

pi+1 |K2i(eT,i − yi)| < −c21 (9.27)

and

−K1i −K2ix+

∣∣∣∣
p1
pi+1

(K1i +K2i)x

∣∣∣∣ < −c2i+1, i = 1, 2, . . . , n (9.28)

Clearly, the set of inequalities above admits a solution. Indeed, the left hand

side of (9.28) can be recast as

(
p1
pi+1

− 1

)
(K1i +K2ix), i = 1, 2, . . . , n

which is negative definite if and only if p1/pi+1 < 1 for all i = 1, . . . , n. Specifically,
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in this case we have

(
p1
pi+1

− 1

)
(K1i +K2ix) ≤

(
p1
pi+1

− 1

)
K1i := −c2i+1, i = 1, 2, . . . , n

Also, from (9.27), as eT,i − yi ≥ 0 for all i, we have that (9.27) can be rewritten as:

−δ −
n∑

i=1

K2i(eT,i − yi) +

n∑

i=1

pi+1

p1
(eT,i − yi) < −c21

Since p1/pi+1 < 1, we can impose pi+1/p1 = 1 + ε1,i+1 (with ε1,i+1 > 0) and the

above inequality becomes

−δ +
n∑

i=1

ε1,i+1K2i(eT,i − yi) < −c21

Clearly, such inequality is satisfied if we choose ε1,i+1 sufficiently small; namely:

ε1,i+1 <
δ

(n− 1) k2eT,i

Following a similar derivation to that of the previous Section, we can choose

εi+1 =
δ

(n− 1) k2eT,i
− ξi+1

with 0 < ξi+1 <
δ

(n−1)k2eT,i
. In this case, we have:

c21 := −
n∑

i=1

ξi+1
n− 1

K2ieT i

Thus, µ (J) < −c2, where

c2 = min
i
{ci} , i = 1, . . . , n+ 1

The second part of the Theorem is then proved by applying Theorem 4.3.1.

In Figure 9.5 the behavior of two-driven downstream transcriptional modules is

shown. Notice that both the downstream modules are entrained by the periodic

input u (t), but their steady state behavior is different.
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Figure 9.5: Entrainment of two-driven transcriptional modules. Time in minutes
on the x-axis. Outputs Y1 (top) and Y2 (bottom) of two transcriptional modules
driven by the external periodic input u(t) = 1.5 + sin(t). The parameters are set
to: δ = 0.01, k11 = 10, k21 = 10, eT,1 = 1 for module 1 and k12 = 0.1, k22 = 0.1,
eT,2 = 1 for module 2.
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Notice that, by the same arguments used above, it can be prover that

ẋ = u(t) (XTOT − x−∑n
i=1 yi)− δx+K11y1 −K21(eT,1 − y1)x+

+K12y2 −K22(eT,2 − y2)x + · · ·
+K1nyn −K2n(eT,n − yn)x

ẏ1 = −K11y1 +K21(eT,1 − y1)x
...

ẏn = −K1nyn +K2n(eT,n − yn)x

(9.29)

is contracting.

Transcriptional cascades

A cascade of (infinitesimally) contracting systems is also (infinitesimally) contract-

ing [111], [170] (see Section 4.4 for an alternative proof). This implies that any

transcriptional cascade, will also give rise to a contracting system, and, in particu-

lar, will entrain to periodic inputs. By a transcriptional cascade we mean a system

as shown in Figure 9.6. In this figure, we interpret the intermediate variables Yi as

transcription factors, making the simplifying assumption that TF concentration is

proportional to active promoter for the corresponding gene. (More complex models,

incorporating transcription, translation, and post-translational modifications could

themselves, in turn, be modeled as cascades of contracting systems.)

Figure 9.6: Transcriptional cascade discussed in the text. Each box contains the
transcriptional module described by (9.2)

More abstract systems

We can extend our results even further, to a larger class of nonlinear systems, as long

as the same general structure is present. This can be useful for example to design

new synthetic transcription modules or to analyze the entrainment properties of

general biological systems. We start with a discussion of a two dimensional system

of the form:
ẋ = u (t)− a (x) + f (x, y)

ẏ = −f (x, y)
(9.30)

In molecular biology, a(x) would typically represent a nonlinear degradation, for

instance in Michaelis-Menten form, while the function f represents the interaction
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between x and y. The aim of this Section is to find conditions on the degradation

and interaction terms that allow one to show contractivity of the unforced (no input

u) system, and hence existence of globally attracting limit cycles.

We assume that the state space C is compact (closed and bounded) as well

as convex. Since the input appears additively, we must prove contractivity of the

unforced system.

Theorem 9.2.4. System (9.30), without inputs u, evolving on a convex compact

subset of phase space is contracting, provided that the following conditions are all

satisfied, for each x, y ∈ C:

• ∂a
∂x
> 0;

• ∂f
∂y
> 0;

• ∂f
∂x

does not change sign;

• ∂a
∂x
> 2∂f

∂x
.

Notice that the last condition is automatically satisfied if ∂f
∂x
< 0, because ∂a

∂x
> 0.

Proof. As before, we prove contraction by constructing an appropriate negative

measure for the Jacobian of the vector field. In this case, the Jacobian matrix is:

J =

[
−∂a

∂x
+ ∂f

∂x
∂f
∂y

−∂f
∂x

−∂f
∂y

]
(9.31)

Once again, as matrix measure we will use:

µP,1 (J) = µ1
(
PJP−1

)
(9.32)

with

P =

[
p1 0

0 p2

]
(9.33)

and p1, p2 > 0 appropriately chosen.

Using (9.32) we have

µP,1 (J) = max

{
−∂a
∂x

+
∂f

∂x
+

∣∣∣∣
p2
p1

∂f

∂x

∣∣∣∣ ; −
∂f

∂y
+

∣∣∣∣
p1
p2

∂f

∂y

∣∣∣∣
}

(9.34)

Following the same steps as the proof of Theorem 9.2.1, we have to show that:

− ∂f

∂y
+

∣∣∣∣
p1
p2

∂f

∂y

∣∣∣∣ < −c21 (9.35)

− ∂a

∂x
+
∂f

∂x
+

∣∣∣∣
p2
p1

∂f

∂x

∣∣∣∣ < −c22 (9.36)
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Clearly, if ∂f/∂y > 0 for every x, y ∈ C and p1 < p2, the first inequality is

satisfied, with

c21 =

(
p1
p2
− 1

)
∂f

∂x

To prove the theorem we need to show that there exists p1 < p2 and c
2
2 satisfying

(9.36). For such inequality, since ∂f/∂x does not change sign in C by hypothesis,

we have two possibilities:

1. ∂f
∂x
< 0, ∀x, y ∈ C;

2. ∂f
∂x
> 0, ∀x, y ∈ C.

In the first case, the right hand side of (9.36) becomes

− ∂a

∂x
+
∂f

∂x
− p2
p1

∂f

∂x
(9.37)

Choosing p2/p1 = 1 + ε, with ε > 0, we have:

−∂a
∂x

+
∂f

∂x
− p2
p1

∂f

∂x
= −∂a

∂x
+ ε

∂f

∂x

Specifically, if we now pick

ε >
A

B

where A = max ∂a
∂x

and B = min
∣∣∂f
∂x

∣∣, we have that the above quantity is uniformly
negative definite, i.e.

∃c22,1 : −∂a
∂x

+ ε
∂f

∂x
< −c21,2

In the second case, the right hand side of (9.36) becomes

− ∂a

∂x
+
∂f

∂x
+
p2
p1

∂f

∂x
(9.38)

Again, by choosing p2/p1 = 1 + ε, with ε > 0, we have the following upper bound

for the expression in (9.38):

− ∂a

∂x
+ 2

∂f

∂x
+ ε

∂f

∂x
(9.39)

Thus, it follows that µP,1 (J) < −c2 provided that the above quantity is uniformly
negative definite. Since, by hypotheses,

∂a

∂x
> 2

∂f

∂x
∀x, y ∈ C (9.40)

then ∃c22,2 : −∂a
∂x
+ ∂f

∂x
+ p2

p1

∂f
∂x
≤ −c22,2. The proof of the Theorem is now complete.
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From a biological viewpoint, the hardest hypothesis to satisfy in Theorem 9.2.4

might be that on the derivatives of f (x, y). However, it is possible to relax the

hypothesis on ∂f/∂x if the rate of change of a (x) with respect to x, i.e. ∂a/∂x, is

sufficiently larger than ∂f/∂x. In particular, the following result can be proved.

Theorem 9.2.5. System (9.30), without inputs u, evolving on a convex compact

set, is contractive provided that:

• ∂a/∂x > 0, ∀x ∈ C;

• ∂f/∂y > 0, ∀x, y ∈ C;

• ∂a/∂x > maxC {2 |∂f/∂x|} .

Proof. The proof is similar to that of Theorem 9.2.4. In particular, we can repeat

the same derivation to obtain again inequality (9.36). Thence, as no hypothesis is

made on the sign of ∂f/∂x, choosing p2/p1 = 1 + ε we have

− ∂a

∂x
+
∂f

∂x
+

∣∣∣∣
p2
p1

∂f

∂x

∣∣∣∣ = −
∂a

∂x
+
∂f

∂x
+

∣∣∣∣
∂f

∂x

∣∣∣∣+ ε

∣∣∣∣
∂f

∂x

∣∣∣∣ (9.41)

Thus, it follows that, if ∂a/∂x ≥ 2 |∂f/∂x|, then ∃ c2 such that µP,1 (J) < −c2,
implying contractivity. The above condition is satisfied by hypotheses, hence the

theorem is proved.

Remarks

Theorems 9.2.4 and 9.2.5 show the possibility of designing with high flexibility the

self-degradation and interaction functions for an input-output module.

This flexibility can be further increased, for example in the following ways:

• Results similar to that of the above Theorems can be derived (and also ex-

tended) if some self degradation rate for y is present in (9.30), i.e.

ẋ = u (t)− a (x) + f (x, y)

ẏ = −b (y)− f (x, y)
(9.42)

with ∂b
∂y
< 0.

• Theorem 9.2.4 and Theorem 9.2.5 can also be extended to the case in which

the X-module drives more than one downstream transcriptional modules.

Applications to synthetic biology

We introduced above a methodology for checking if a given transcriptional module

can be entrained to some periodic input. The aim of this section is to show that our
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methodology can serve as an effective tool for designing synthetic biological circuits

that are entrained to some desired external input.

In particular, we will consider the synthetic biological oscillator known as the

Repressilator [52], for which an additional coupling module has been recently pro-

posed in [61]. A numerical investigation of the synchronization of a network of

non-identical Repressilators was independently reported in [211].

We will show that our results can be used to isolate a set of biochemical param-

eters for which one can guarantee the entrainment to any external periodic signal of

this synthetic biological circuit. In what follows, we will use the equations presented

in [61] to model the Repressilator and the additional coupling model, see Chapter

5.

Entrainment using an intra-cellular auto-inducer

Now, we study the entrainment of the Repressilator circuit (see Chapter 5). The

biochemical circuit is schematically represented in Figure 9.7. Now, the concentra-

tion of the auto-inducer is labeled as S. Recall that the coupling module makes

use of two proteins: (i) LuxI, which synthesizes the auto-inducer; (ii) LuxR, with

which the auto-inducer synthesized by LuxI forms a complex that activates the

transcription of various genes.

As in Chapter 5, the circuit is modeled with the simplified set of differential

equations proposed in [61]. Specifically, the dynamics of the mRNA are

ȧ = −a + α
1+C2

ḃ = −b+ α
1+A2

ċ = −c+ α
1+B2 +

kS
1+S

(9.43)

Recall that the above equations are dimensionless.

The dynamics of the proteins are described by

Ȧ = βAa− dAA

Ḃ = βBb− dBB

Ċ = βCc− dCC

(9.44)

The parameters βA, βB, βC represent the ratios between the mRNAs and the re-

spective proteins’ lifetimes and dA, dB, dC represent the protein decay rate.

The last differential equation of the model from [61] keeps track of the evolution

of the intra-cellular auto-inducer. It is assumed that the proteins TetR and LuxI

have equal lifetimes. This in turn implies that the dynamics of such proteins are

identical, and hence one uses the same variable to describe both protein concentra-
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tions. Thus, the dynamics of the auto-inducer are given by:

Ṡ = −ks0S + ks1A

where ks0 is the rate of degradation of S.

We now model the forcing on the intracellular auto-inducer concentration by

adding an external input u (t) to the above dynamical equation (see Figure 9.45).

The equation for S becomes (notice that this dynamics is different from the one

studied in 5):

Ṡ = −ks0S + ks1A− η (S − u (t)) (9.45)

where η can be thought as a diffusion rate.
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Figure 9.7: Modular addition to the Repressilator circuit. This module is used for
forcing the original circuit with some external signal (represented by an extra-cellular
molecule in the bottom panel).

We will now use the analytical methodology developed in the previous sections,

to properly tune the biochemical parameters of the Repressilator circuit, whose

mathematical model consists of the set of differential equations (9.43), (9.44), (9.45),

so that it shows entrainment to the periodic input u (t). That is, the measured

output (e.g. cI), oscillates asymptotically with a period equal to that of u (t). Of

course, the periodic orbit of the output will depend on the particular choice of the

parameters.

In what follows, we assume that all the system parameters can be varied except

for the self-degradations that we assume to be fixed as, in practice, they are difficult
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to modify.

In this case, the Jacobian matrix to be studied is

J̃ :=




−1 0 0 0 0 −2αC
(1+C2)2

0

0 −1 0 −2αA
(1+A2)2

0 0 0

0 0 −1 0 −2αB
(1+B2)2

0 k
(1+S)2

βA 0 0 −dA 0 0 0

0 βB 0 0 −dB 0 0

0 0 βC 0 0 −dC 0

0 0 0 ks1 0 0 −ks0 − η




(9.46)

The matrix measure that we will use to prove contraction is

µP,∞
(
J̃
)
= µ∞

(
P J̃P−1

)

where P is a 7×7 diagonal matrix having on the main diagonal the positive arbitrary
scalars pi. Computation of P J̃P

−1 yields

P J̃P−1 =




−1 0 0 0 0 p1

p5

−2αC
(1+C2)2

0

0 −1 0 p2

p4

−2αA
(1+A2)2

0 0 0

0 0 −1 0 p3

p5

−2αB
(1+B2)2

0 p3

p7

k
(1+S)2

p4

p1
βA 0 0 −dA 0 0 0

0 p5

p2
βB 0 0 −dB 0 0

0 0 p6

p3
βC 0 0 −dC 0

0 0 0 p7

p4
ks1 0 0 −ks0 − η




(9.47)

Thus, from the definition of µ∞ given in (9.19), we have that there exists some

c ∈ R− {0} such that µP,∞(J̃) ≤ −c2, ∀t if and only if there exists a set of scalars
ci, pi ∈ R− {0}, i = 1, . . . , 7, such that

− 1 +
p1
p5

2αC

(1 + C2)2
≤ −c21 (9.48a)

− 1 +
p2
p4

2αA

(1 + A2)2
≤ −c22 (9.48b)

− 1 +
p3
p5

2αB

(1 +B2)2
+
p3
p7

k

(1 + S)2
≤ −c23 (9.48c)

− dA +
p4
p1
βA ≤ −c24 (9.48d)

− dB +
p5
p2
βB ≤ −c25 (9.48e)
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− dC +
p6
p3
βC ≤ −c26 (9.48f)

− ks0 − η +
p7
p4
ks1 ≤ −c27 (9.48g)

It is easy to check that the nonlinear terms in the above equations satisfy the

following inequalities:

f (x) =
2αx

(1 + x2)2
≤M :=

3
√
3α

8

and

g (x) =
k

(1 + S)2
≤ k

for all x ≥ 0. Hence, the system of inequalities (9.48a)-(9.48g) are satisfied, if the

following set is fulfilled:

− 1 +
p1
p5
M ≤ −c21 (9.49a)

− 1 +
p2
p4
M ≤ −c22 (9.49b)

− 1 +
p3
p5
M +

p3
p7
k ≤ −c23 (9.49c)

− dA +
p4
p1
βA ≤ −c24 (9.49d)

− dB +
p5
p2
βB ≤ −c25 (9.49e)

− dC +
p6
p3
βC ≤ −c26 (9.49f)

− ks0 − η +
p7
p4
ks1 ≤ −c27 (9.49g)

The system can then be proved to be contracting for a given set of biochem-

ical parameters, if there exists a set of scalars pi, i = 1 . . . 7 satisfying the above

inequalities. For example, if the repressilator parameters are chosen so that

k +M < 1, βA < dA, βB < dB, βC < dC , ks1 < ks0 + η (9.50)

then it is trivial to prove that, for any constant value p̄ > 0, the set of scalars pi = p̄,

for i = 1, . . . , 7, satisfies (9.49a)-(9.49g). Indeed, in Figure 9.8 we provide a set of

biochemical parameters for which the circuit is contracting and shows entrainment

to the periodic input u(t) = 1.5 + 1.5 sin(0.5t). (These parameters, except for the

maximal transcription rate α, are in the same ranges as those used in [52], [61].

These parameters are also close to those used in [211] and [193]. The reason for

picking an α much smaller than in [61], is that we need to slow down transcription

so as to eliminate intrinsic oscillations; otherwise the entrainment effect cannot be
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shown. This lowering of α by two orders of magnitude is also found in other works,

for example in [100], where the same model is studied, with α somewhat larger but

of the same order of magnitude as here.)

Note that using the set of inequalities (9.49a)-(9.49g) as a guideline, it is possible

to find other parameter regions where the system is still contracting but exhibit

some other desired properties. For instance, to increase the amplitude of the output

oscillations shown in Figure 9.8, a possible approach can be that of increasing the

biochemical parameter k so as to make stronger the effect of the auto-inducer on

the dynamics of the gene cI (variable c(t) in the model).

Again we can prove that the set of inequalities (9.49a)-(9.49g) is satisfied for k

arbitrarily large, if we set pi = p̄, for i = 1, . . . , 6 and choose p7 such that

p̄

p7
k < 1−M

and

−ks0 − η +
p7
p̄
ks1 ≤ −c27

Now, due to biochemical constraints the parameter ks1 is considerably smaller than

ks0 and η (in our simulations the ratio is of about two orders of magnitude). There-

fore, whatever the value of k, it suffices to set p̄ = 1 and p7 = 10k+ε, with ε being a

positive arbitrary constant, to get a solution to (9.49a)-(9.49g) and hence guarantee

the system to be contracting.

Figure 9.9 shows the behavior of the system output with the modified parameters

confirming that with this choice of parameters the oscillation amplitude is indeed

larger as expected.

Observe the nonlinear character of the oscillation depicted in Figure 9.9, which

is reflected in the lack of symmetry in the behavior at minima and maxima of cI (t).

Our theory predicts the existence (and uniqueness) of such a nonlinear oscillations.

None of the usual techniques, based on linear analysis, can explain such behavior.

Entrainment using an extra-cellular auto-inducer

We now consider the case in which the extracellular auto-inducer can change due to

an external signal as well as diffusion from intracellular auto-inducer, as represented

in Figure 9.7. A new variable must be introduced, to keep track of the extracellular

auto-inducer concentration. The only difference in the new model with respect to

the previous one is that the differential equation for S becomes:

Ṡ = −ks0S + ks1A− η (S − Se) (9.51)

Notice that the parameter η measures the diffusion rate of the auto-inducer across

the cell membrane, i.e. η = σA/Vc, with σ representing the membrane permeability,
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Figure 9.8: Simulation of the Repressilator model described by (9.43), (9.44), (9.45).
Time (minutes) on the x-axis. Behavior of cI when the input u(t) = 0.4+0.4 sin(0.5t)
is applied. Notice that when no forcing is present cI converges to a non oscillatory
regime behavior. System parameters are tuned in order to satisfy (9.50). Specifi-
cally: βA = βB = βC = 1, dA = dB = dC = 1.1, α = 1.5, k = 0.1, ks0 = 1, η = 1.5,
ks1 = 0.01.
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Figure 9.9: Increasing the amplitude of oscillations for the model described by (9.43),
(9.44), (9.45). Time (minutes) on the x-axis. Behavior of cI when: (i) the input
u(t) = 0.4 + 0.4 sin(0.5t) is applied; (ii) no forcing is present. System parameters
are the same as that used in Figure 9.8, except k = 15.

A its surface area and VC the cell volume. In the above equation, Se denotes the

concentration of the extra-cellular auto-inducer, whose dynamics are given by:

Ṡe = −kseSe + ηext (S − Se) + u (t) (9.52)

where ηext = σA/Vext, with Vext denoting the total extracellular volume, while kse

stands for the decay rate.

In analogy with the previous section, we will ensure entrainment of the dynam-

ical system consisting of (9.43), (9.44), (9.51), (9.52), by tuning the biochemical

parameters of this new circuit. Again, the guidelines for engineering the parameters

will be provided by the tools developed in the previous sections.

Following the schematic of the previous section, we will prove that there exists

c ∈ R − {0} and a 8 × 8 constant diagonal matrix P̄ , such that µP̄ ,∞ (J) ≤ −c2,
where J is the system Jacobian.
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If we denote with pi, i = 1, . . . , 8 the diagonal elements of P̄ , we obtain the

following block-structure for the matrix P̄ JP̄−1:

P̄ JP̄−1 =

[
P J̃P−1 v1

vT
2 −kse − ηext

]
(9.53)

where P J̃P−1 is given in (9.47) and:

v1 =




0

0

0

0

0

0
p7

p8
η




, v2 =




0

0

0

0

0

0
p8

p7
ηext




(9.54)

Thus, we have that µ∞
(
P̄ JP̄−1

)
≤ −c2 if and only if there exist some ci ∈

R − {0}, i = 1, . . . , 8 such that inequalities (9.48a)-(9.48f) are all satisfied and

additionally:

− ks0 − η +
p7
p4
ks1 +

p7
p8
η ≤ −c27 (9.55a)

− kse − ηext +
p8
p7
ηext ≤ −c28 (9.55b)

Again, we can find sets of biochemical parameters in order to satisfy the above

inequalities and hence ensure global entrainment of the circuit to some external

input. For example, if we set

k +M < 1, βA < dA, βB < dB, βC < dC , ks1 < ks0 kse > 0 (9.56)

then, as in the previous section, it is trivial to show that setting all pi to the same

identical value satisfies the set of inequality required to prove contraction and hence

guarantee entrainemnt. Notice that the last constraint in (9.56) is automatically

satisfied by the physical (i.e. positivity) constraints on the system parameters.

In Figure 9.10, the behavior of the circuit is shown with the parameters chosen

so as to satisfy the constraints given in (9.56).

Entraining a population of Repressilators

Consider, now, a population of N Repressilator circuits, which are coupled by means

of an auto-inducer molecule. We can think of such a network as having an all-to-all

topology, with the coupling given by the concentration of the extracellular auto-

inducer, Se. The aim of this section is to show that the methodology proposed here
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Figure 9.10: Simulation of the Repressilator forced by some extra-cellular molecule.
Time (minutes) on the x-axis. Behavior of cI when the input u(t) = 0.4+0.4 sin(0.5t)
is applied. Notice that when no forcing is present, the steady state behavior is non-
oscillatory. System parameters are: βA = βB = βC = 1, dA = dB = dC = 1.1,
α = 1.5, k = 0.5, ks0 = 1, ks1 = 0.01.
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Figure 9.11: Synchronization of Repressilators. Behavior of a population of Re-
pressilator modeled as in (9.57). Time (minutes) on x-axs. Notice that all
the circuits synchronize with a steady-state evolution having the same period as
u (t) = 0.4 + 0.4 sin (0.5t). System parameters are chosen as in Figure 9.9, with
ηext = 0.1.

can also be used as an effective tool to guarantee the synchronization of an entire

population of biochemical oscillators onto some entraining external periodic input.

We denote with the subscript i the state variables of the i-th circuit in the

network, which is modelled using the equations reported in [61] as:

ȧi = −ai +
α

1+C2
i

ḃi = −bi + α
1+A2

i

ċi = −ci + α
1+B2

i

+ kSi

1+Si

Ȧi = βAai − dAAi

Ḃi = βBbi − dBBi

Ċi = βCci − dCCi

Ṡi = −ks0Si + ks1Ai − η (Si − Se)

Ṡe = −kseSe + ηext

N∑
j=1

(Sj − Se) + u(t)

(9.57)

Figure 9.11 shows a simulation of a population of Repressilators modeled as in

(9.57), with biochemical parameters tuned so as to fulfill the constraints of the pre-

vious Section: all the circuits composing the network evolve asymptotically towards

the same synchronous evolution, which has period equal to that of the input signal

u(t). The interested reader is referred to Appendix A for the proof, where we also

show a counterexample to entrainment.
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9.3 Global Convergence of Quorum sensing net-

works

This following sections derive sufficient conditions for the coordination of nodes

communicating through dynamical quorum sensing mechanisms, based on a full

nonlinear dynamic analysis. Those results can be used both to study natural net-

works and to guide design of communication mechanisms in synthetic or partially

synthetic networks.

Recall that, from a network dynamics viewpoint, the key characteristic of quorum

sensing-like mechanisms lies in the fact that communication between nodes (e.g.

bacteria) occurs by means of a shared quantity (e.g. the autoinducer concentration),

typically in the environment. Furthermore, the production and degradation rates of

such a quantity are affected by all the nodes of the network. Therefore, a detailed

model of such a mechanism needs to keep track of the temporal evolution of the

shared quantity, resulting in an additional set of ordinary differential equations.

Such an indirect coupling model has been recently reported in e.g. [91], [208] in the

context of periodic oscillations, while in [150] synchronization of two chaotic systems

coupled through the environment is investigated. In these papers it is shown that

under suitable conditions oscillators can synchronize and that this kind of coupling

can lead to a rich variety of synchronous behaviors.

After studying the case where the network nodes (e.g., the biological entities

populating the environment) are all identical or nearly identical. We then focus, in

Section 9.3.2, on networks composed of heterogeneous nodes, i.e., nodes of possibly

diverse dynamics. In this case we provide sufficient conditions ensuring that all

the network nodes sharing the same dynamics converge to a common behavior, a

particular instance of so-called concurrent synchronization [142], [77]. In Section

9.3.3, the results are further extended to a distributed version of quorum sensing,

where multiple groups of possibly heterogeneous nodes communicate by means of

multiple media. In Section 9.3.4, we show that driving the shared environmental

variable with an exogenous signal of a given period provides a mechanism for making

the network nodes oscillate at the same period, without requiring strong stability

properties of the nodes or the overall system. Finally, Section 9.3.5 studies the

dependence of synchronization properties on the number of nodes, a question of

interest e.g. in the context of cell proliferation. Section 9.3.6 illustrates the general

approach with a set of examples.
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9.3.1 The basic mathematical model and convergence anal-

ysis

We analyze the convergent behavior of networks of nodes which are globally coupled

through a shared quantity (often, the environment) see Figure 9.12 (left). In such

a network, the N nodes are assumed be all identical, i.e. to all share the same

smooth dynamics, and to communicate by means of the same common medium,

also characterized by some smooth dynamics:

ẋi = f (xi, z, t) i = 1, . . . , N

ż = g (z,Ψ (x1, . . . , xN) , t)
(9.58)

A simplified version of the above model was recently analyzed by means of a graphi-

cal algorithm in [154]. In the above equation, the set of state variables of the nodes is

xi, while the set of the state variables of the common medium dynamics is z. Notice

that the nodes dynamics and the medium dynamics can be of different dimensions

(e.g. xi ∈ R
n, z ∈ R

d). The dynamics of the nodes affect the dynamics of the

common medium by means of some (coupling, or input) function, Ψ : R
Nn → R

d.

These functions may depend only on some of the components of the xi or of z (as

the example in Section 9.3.6 illustrates).

The following result is a sufficient condition for convergence of all nodes trajec-

tories of (9.58) towards each other.

Theorem 9.3.1. All nodes trajectories of network (9.58) globally exponentially con-

verge towards each other if the function f (x, v(t), t) is contracting for any v(t) ∈ R
d.

Proof. The proof is based on partial contraction (Section 4.5). Consider the follow-

ing reduced order virtual system

ẏ = f (y, z, t) (9.59)

Notice that now z(t) is an exogenous input to the virtual system. Furthermore,

substituting xi to the virtual state variable y yields the dynamics of the i-th node.

That is, xi, i = 1, . . . , N , are particular solutions of the virtual system. Now, if such

a system is contracting, then all of its solutions will converge towards each other.

Since the nodes state variables are particular solutions of (9.59), contraction of the

virtual system implies that, for any i, j = 1, . . . , N :

|xi − xj| → 0 as t→ +∞

The Theorem is proved by noting that by hypotheses the function f(x, v(t), t) is

contracting for any exogenous input v(t). This in particular implies that f(y, z, t)

is contracting, i.e. (9.59) is contracting.
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Remarks

• In the case of diffusive-like coupling between nodes and the common medium,

system (9.58) reduces to:

ẋi = f (xi, t) + kz (z)− kx (xi) i = 1, . . . , N

ż = g (z, t) +
∑N

i=1 [ux (xi)− uz (z)]
(9.60)

That is, the nodes and the common medium are coupled by means of the

smooth functions kz : R
d → R

n, kx : R
n → R

n and ux : R
n → R

d, uz : R
d →

R
d. These functions may depend only on some of the components of the xi

or of z (as we shall illustrate in Section 9.3.6). Theorem 9.3.1 implies that

synchronization is attained if f (x, t) − kx (x) is contracting. Similar results

are easily derived for the generalizations of the above model presented in what

follows.

• The result also applies to the case where the quorum signal is based not on the

xi’s themselves, but rather on variables deriving from the xi’s through some

further nonlinear dynamics. Consider for instance the system

ẋi = f (xi, z, t) i = 1, . . . , N

ṙi = h (ri, xi, z, t) i = 1, . . . , N

ż = g (z,Ψ (r1, . . . , rN) , t)

Theorem 9.3.1 can be applied directly by describing each network node by the

augmented state (xi, ri), and using the property on hierarchical combinations

to evaluate the contraction properties of the augmented network dynamics.

• Similarly, each network ”node” may actually be composed of several subsys-

tems, with each subsystem synchronizing with its analogs in other nodes.

• As in previous contraction work, the individual node dynamics are quite gen-

eral, and could describe e.g. neuronal oscillator models as well as bio-chemical

reactions. In the case that the individual node dynamics represents a sys-

tem with multiple equilibria, then synchronization corresponds to a common

”vote” for a particular equilibrium.

• A condition for synchronization weaker than Theorem 9.3.1 is that the function

f(x, v, t) be contracting only for some values of v, i.e. v ∈ V ⊂ R
d. In

this case, the medium dynamics acts as a switch which activates/deactivates

synchronization according to the values of z.
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9.3.2 Multiple systems communicating over a common medium

We now generalize the mathematical model analyzed in the previous Section, by

allowing for s ≤ N groups (or clusters) of nodes characterized by different dynamics

(with possibly different dimensions) to communicate over the same common medium

(see Figure 9.12, right). We will prove a sufficient condition for the global exponen-

tial convergence of all nodes trajectories belonging to the same group towards each

other. This regime is called concurrent synchronization [142].

The mathematical model analyzed here is

ẋi = fγ(i) (xi, z, t)

ż = g (z,Ψ (x1, . . . , xN) , t)
(9.61)

where: i) γ is defined as in (A.6); ii) xi denotes the state variables of the network

nodes (nodes belonging to different groups may have different dimensions, say nγ(i))

and z denotes the state variables for the common medium (z ∈ R
d); iii) Ψ, defined

analogously to the previous Section, denotes the coupling function of the group γ(i)

with the common medium dynamics (Ψ : R
nγ(1) × . . .×R

nγ(N) → R
d).

Theorem 9.3.2. Concurrent synchronization is achieved in network (9.61) if the

functions fγ(i) (x, v(t), t) are all contracting for any v(t) ∈ R
d.

Proof. Recall that (9.61) is composed by N nodes having dynamics f1, . . . , fs. Now,

in analogy with the proof of Theorem 9.3.1, consider the following virtual system:

ẏ1 = f1 (y1, z, t)

ẏ2 = f2 (y2, z, t)
...

ẏs = fs (ys, z, t)

(9.62)

where z(t) is seen as an exogenous input to the virtual system. Let {Xi} be the set of
state variables belonging to the i-th group composing the network, and denote with

Xi,j any element of {Xi}. We have that (X1,j, . . . , Xs,j) are particular solutions

of the virtual system. Now, contraction of the virtual system implies that all of

its particular solutions converge towards each other, which in turn implies that

all the elements within the same group {Xi} converge towards each other. Thus,

contraction of the virtual system (9.62) implies concurrent synchronization of the

real system (9.61).
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To prove contraction of (9.62), compute its Jacobian,

J =




∂f1(y1,z,t)
∂y1

0 0 . . . 0

0 ∂f2(y2,z,t)
∂y2

0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 0 ∂fs(ys,z,t)
∂ys




Now, by hypotheses, we have that all the functions fi(x, v(t), t) are contracting

for any exogenous input. This in turn implies that the virtual system (9.62) is

contracting, since its Jacobian matrix is block diagonal with diagonal blocks being

contracting.

Figure 9.12: A schematic representation of networks analyzed in Section 9.3.1 (left)
and Section 9.3.2 (right). The nodes denoted with circles have a different dynamics
from those indicated with squares. The dynamics of the common media is denoted
with a rectangle. In our models, the dynamics of the common media is affected by
the nodes state variables: this implements a feedback.

9.3.3 Systems communicating over different media

In the previous Section, we considered networks where some (possibly heteroge-

neous) nodes communicate over a common medium. We now consider a distributed

version of such topology, where each of the s ≤ N groups composing the network

have a private medium. Communication between the groups is then obtained by

coupling only their media (see Figure 9.13). The objective of this Section, is to pro-

vide a sufficient condition ensuring (concurrent) synchronization of such network

topology.

Note that the network topology considered here presents a layer structure. In

analogy with the terminology used for describing the topology of the Internet and

World-Wide-Web (see e.g. [25], [132]), we term asmedium (or private) level the layer

consisting of the nodes of the network and their corresponding (private) media; we

then term as autonomous level, the layer of the interconnections between the media.

That is, the autonomous level is an abstraction of the network, having nodes which

consist of both the network nodes and their private medium. This in turn implies

that in order for two nodes of the autonomous level to be identical they have to
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share: i) the same dynamics and number of nodes; ii) the same medium dynamics

(see Figure 9.13).

In what follows we will denote with Gp the set of homogeneous nodes commu-

nicating over the medium zp. We will denote with Np the set of media which are

linked to the medium zp. Each medium communicates with its neighboring media

diffusively. The mathematical model is then:

ẋi = fp (xi, zp, t) xi ∈ Gp

żp = gp (zp,Ψ (Xp) , t) +
∑

j∈Np
[φp (zj)− φp (zp)] xi ∈ Gp

(9.63)

where p = 1, . . . , s and Xp is the stack of all the vectors xi ∈ Gp. We assume that the

dynamical equations for the media have all the same dimensions (e.g. zp ∈ Rd), while

the nodes belonging to different groups can have different dimensions (e.g. xi ∈ R
p,

for any i ∈ Gp). Here, the coupling functions between the media, φp : R
d → R

d, are

assumed to be continuous and to have a diagonal Jacobian matrix with diagonal

elements being nonnegative and bounded. All the matrices ∂fp/∂z are assumed to

be bounded.

Theorem 9.3.3. Concurrent synchronization is attained in network (9.63) if: i)

the nodes of its autonomous level sharing the same dynamics are input-equivalent;

ii) fp (xi, v(t), t), gp (zp, v(t), t) are all contracting functions for any v(t) ∈ R
d; iii)

∂fp

∂zp
are all uniformly bounded matrices.

Proof. Consider the following 2s-dimensional virtual system, analogous to the one

used for proving Theorem 9.3.2:

ẏ1,p = fp (y1,p, y2,p, t)

ẏ2,p = gp (y2,p, vp(t), t) +
∑

k∈Np
[φp (y2,k)− φp (y2,p)]

(9.64)

where p = 1, . . . , s, and vp(t) := Ψ (Xp). Notice that the above system is constructed

in a similar way as (9.62). In particular, solutions of (9.63) are particular solutions

of the above virtual system (see the proof of Theorem 9.3.2). That is, if concurrent

synchronization is attained for (9.64), then all the nodes sharing the same dynamics

will converge towards each other. Now, Theorem A.2.1 implies that concurrent

synchronization is attained for system (9.64) if: i) its nodes are contracting; ii)

the coupling functions have a nonnegative bounded diagonal Jacobian; iii) nodes

sharing the same dynamics are input equivalent. Since the last two conditions are

satisfied by hypotheses, we have only to prove contraction of the virtual network

nodes. Differentiation of nodes dynamics in (9.64) yields the Jacobian matrix

[
∂fp(y1,p,y2,p,t)

∂y1,p

∂fp(y1,p,y2,p,t)

∂y2,p

0
∂gp(y1,p,vi(t),t)

∂y2,p

]
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The above Jacobian has the structure of a hierarchy. Thus (see Section 4.4) the vir-

tual system is contracting if: (i)
∂fp(y1,p,y2,p,t)

∂y1,p
and

∂gp(y2,p,vi(t),t)

∂y2,p
are both contracting;

(ii)
∂fp(y1,p,y2,p,t)

∂y2,p
is bounded.

The above two conditions are satisfied by hypotheses. Thus, the virtual network

achieves concurrent synchronization (Theorem A.2.1). This proves the Theorem.

Note that Theorems 9.3.1 and 9.3.2 do not make any hypotheses on the medium

dynamics − synchronization (or concurrent synchronization) can be attained by the

network nodes independently of the particular dynamics of the single medium, pro-

vided that the function f (or the fi’s) is contracting. By contrast, Theorem 9.3.3

shows that the media dynamics becomes a key element for achieving concurrent syn-

chronization in networks where different groups communicate over different media.

Figure 9.13: A schematic representation of the network analyzed Section 9.3.3. The
connections between media (and hence the connections of the autonomous level)
are pointed out. Notice that only two nodes of the autonomous level are input
equivalent (also pointed out in the Figure) since: i) their media have the same
dynamics; ii) both media are shared by the same number of nodes, which have the
same dynamics.

Finally, note that all of the above results also allow dimensionality reduction in

the analysis of the system’s final behavior by treating each group as a single element,

similarly to [33], a point we will further illustrate in Section 9.3.5.

9.3.4 Control of Periodicity

The objective of this section is to provide a sufficient condition to guarantee that

the common node behavior, towards which all network nodes globally converge, is

oscillatory and exhibits a specified period. This is obtained by driving the environ-

mental dynamics with an exogenous signal of the given period. A related problem

has been recently addressed in [161], where entrainment of individual contracting

biological systems to periodic inputs was analyzed.

Our main result, which we shall extend later in the section, is as follows.
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Theorem 9.3.4. Consider the following network

ẋi = f (xi, z, t) i = 1, . . . , N

ż = g (z,Ψ (x1, . . . , xN) , t) + r (t)
(9.65)

where r (t) is a T -periodic signal. All the nodes of the network synchronize onto a pe-

riodic orbit of period T if: i) f (xi, v(t), t) and g (z, v(t), t) are contracting functions

for any v(t) ∈ R
d; ii) ∂f

∂z
is bounded.

Note that the dynamics f and g include the coupling terms between nodes and

environment.

Proof. Consider the virtual system

ẏ1 = f (y1, y2, t)

ẏ2 = g (y2, v(t), t) + r (t)
(9.66)

where v(t) := Ψ (x1, . . . , xN ). We will prove the Theorem by showing that such a

system is contracting. Indeed, in this case, the trajectories of (9.66) will globally

exponentially converge to a unique T -periodic solution, implying that also xi will

exhibit a T -periodic final behavior behavior. It is straightforward to check that

differentiation of the virtual system yields a matrix of the form (4.15). That is,

the virtual system is a hierarchy and thus (see Section 4.4) it is contracting if: (i)
∂f(y1,y2,t)

∂y1
and ∂g(y2,v(t),t)

∂y2
are both contracting; (ii) ∂f(y1,y2,t)

∂y2
is bounded.

The first condition is satisfied since, by hypotheses, the functions f (x, v(t), t)

and g (z, v(t), t) are contracting for any v ∈ R
d. The second condition is also satisfied

since we assumed ∂f/∂z to be bounded. The Theorem is then proved.

System (9.65) can be thought of as a dynamical system built upon a bidirectional

interaction between nodes and medium, and forced by a periodic input. In this

view, the conditions of Theorem 9.3.4 guarantee global exponential synchronization

of the network nodes onto a periodic orbit of the same period as the input, without

requiring contraction of either the nodes or the overall dynamics. And indeed, the

proof of the Theorem is based on contraction of an appropriately constructed virtual

system, a much weaker condition.

Theorem 9.3.4 can be extended to the more general case of networks of non-

homogeneous nodes communicating over non-homogeneous media.

Theorem 9.3.5. Consider the following network

ẋi = fp (xi, zp, t) xi ∈ Gp

żp = gp (zp, Ψ (Xp) , t) +
∑

k∈Np
[φ (zk)− φ (zp)] + r (t) xj ∈ Gp

(9.67)

where Xp is the stack of all the xi ∈ Gp and r (t) is a T -periodic signal. Concurrent

synchronization is attained, with a final behavior periodic behavior of period T if:
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1. the nodes of the autonomous level sharing the same dynamics are input equiv-

alent;

2. the coupling functions φ have bounded diagonal Jacobian with nonnegative

diagonal elements;

3. fp (xi, v(t), t) and gp (zp, v(t), t) are contracting functions for any v(t) ∈ R
d;

4. ∂fp

∂zp
are all uniformly bounded matrices.

Proof. The proof is formally the same as that of Theorem 9.3.3 and Theorem 9.3.4,

and thus it is omitted.

A simple example

Consider a simple biochemical reaction, consisting of a set of N > 1 enzymes sharing

the same substrate. We denote with X1, . . . , XN the concentration of the reaction

products. We also assume that the dynamics of S is affected by some T -periodic

input, r(t). We assume that the total concentration ofXi, i.e. Xi,T , is much less than

the initial substrate concentration, S0. In these hypotheses, a suitable mathematical

model for the system is given by (see e.g. [180]):

Ẋi = −aXi +
K1S

K2+S
i = 1, . . . , N

Ṡ = −∑N
i=1

K1S
K2+S

+ r(t)
(9.68)

with K1 and K2 be positive parameters. Thus, a suitable virtual system for the

network is
ẏ1 = −ay1 + K1y2

K2+y2

ẏ2 = −
∑N

i=1
K1y2

K2+y2
+ r(t)

(9.69)

Differentiation of the above system yields the Jacobian matrix

[
−a K2

(K2+y1)2

0 −N K2

(K2+y1)2

]
(9.70)

It is straightforward to check that the above matrix represents a contracting hierar-

chy (recall that biochemical parameters are all positive). Thus, all the trajectories of

the virtual system globally exponentially converge towards a unique T -periodic so-

lution. This, in turn, implies that Xi, i = 1, . . . , N , globally exponentially converge

towards each other and towards the same periodic solution.

Figure 9.14 illustrates the behavior for N = 3. Notice that, as expected from

the above theoretical analysis, X1, X2 and X3 synchronize onto a periodic orbit of

the same period as r(t).
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Figure 9.14: Simulation of (9.68), with N = 3 and r(t) = 1.1 + sin(0.1t). System
parameters are set as follows: a = 1, K2 = 1, K1 = 2.

9.3.5 Emergent properties as N increases

In this Section, we analyze how the convergence properties of a given quorum sens-

ing network vary as the number N of nodes increases. We show that for some

typical quorum sensing networks, as N becomes sufficiently large, synchronization

always occurs. One particular modeling context where these results have important

implications is that of cell proliferation in biological systems.

A lower bound on N ensuring synchronization

It is well known [194] that for all-to-all diffusively coupled networks of the form

ẋi = f(xi, t) +

N∑

i=1

k(xj − xi) (9.71)

the minimum coupling gain k required for synchronization is inversely proportional

to the number of nodes composing the network. That is,

kmin ∝
1

N

We now show that a similar bound holds for nodes coupled by means of quorum

sensing of the form

ẋi = f (xi, t) + kN(z − xi) i = 1, . . . , N

ż = g (z,Ψ(x1, . . . , xN), t)
(9.72)

To simplify notations, the above model assumes that z and all xi have the same

dimensions. In addition, the coupling strength increases with the number of nodes

N , a frequent property of actual networks based on quorum sensing mechanisms,

such as e.g. bacteria proliferation [134] or local field potentials.

Theorem 9.3.6. Assume that the Jacobian
(

∂f
∂x

)
is upper-bounded by α for some
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matrix measure µ, i.e.,

∃α ∈ R, ∀x, ∀t ≥ 0, µ

(
∂f

∂x

)
≤ α

Then, network (9.72) synchronizes if

k >
α

N

That is, kmin ∝ 1/N .

Proof. Consider the virtual system

ẏ = f(y, t) + kN(z − y) (9.73)

Synchronization is attained if the virtual system is contracting. Now, computing

the matrix measure of the Jacobian of (9.73) yields for any x and for any t ≥ 0

µ

(
∂f

∂y
− kNI

)
≤ µ

(
∂f

∂y

)
+ kNµ (−I) ≤ α− kN

Thus, the virtual system is contracting if k > α
N
.

Dependence on initial conditions

We now consider the basic quorum sensing model (9.58). We derive simple condi-

tions for the final behavior of the network to become independent of initial conditions

(in the nodes and the medium) as N becomes large.

Theorem 9.3.7. Assume that for (9.58) the following conditions hold: (i) µ
(

∂f
∂x

)
→

−∞ as N → +∞; (ii) g (z, v2(t), t) is contracting (for any v2(t) in R
d); (iii)

∥∥∂f
∂z

∥∥

and
∥∥∥ ∂g

∂v2

∥∥∥ are bounded for any x, z, v2 (where ‖·‖ is the operator norm).

Then, there exists some N∗ such that for any N ≥ N∗ all trajectories of (9.58)

globally exponentially converge towards a unique synchronized solution, independent

of initial conditions.

Proof. We know that contraction of f (x, v1(t), t) for any v1(t) (which the first con-

dition implies for N large enough) ensures network synchronization. That is, there

exists a unique trajectory, xs(t), such that, as t→ +∞,

|xi − xs| → 0, ∀i

Therefore, the final behavior is described by the following lower-dimensional system:

ẋs = f (xs, z, t)

ż = g (z,Ψ (xs) , t)
(9.74)
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If in turn this reduced-order system (9.74) is contracting, then its trajectories glob-

ally exponentially converge towards a unique solution, say x∗s(t), regardless of initial

conditions. This will prove the Theorem (similar strategies are extensively discussed

in [33]).

To show that (9.74) is indeed contracting, compute its Jacobian matrix,

[
∂f
∂xs

∂f
∂z

∂g
∂xs

∂g
∂z

]

Lemma A.2.1 in the Appendix shows that the above matrix is contracting if there

exists some strictly positive constants θ1, θ2 such that

µ

(
∂f

∂xs

)
+
θ2
θ1

∥∥∥∥
∂g

∂xs

∥∥∥∥ and µ

(
∂g

∂z

)
+
θ1
θ2

∥∥∥∥
∂f

∂z

∥∥∥∥ (9.75)

are both uniformly negative definite.

Now, µ
(

∂f
∂xs

)
and µ

(
∂g
∂z

)
are both uniformly negative by hypotheses. Further-

more, µ
(

∂f
∂xs

)
tends to −∞ as N increases: since

∥∥∂f
∂z

∥∥ and
∥∥∥ ∂g

∂xs

∥∥∥ are bounded, this
implies that there exists some N∗ such that for any N ≥ N∗ the two conditions in

(9.75) are satisfied.

Also, assume that actually the dynamics f and g do not depend explicitly on

time. Then, under the conditions of the above Theorem, the reduced system is

both contracting and autonomous, and so it tends towards a unique equilibrium

point [111]. Thus, the original system converges to a unique equilibrium, where all

xi’s are equal.

In addition, note that when the synchronization rate and the contraction rate

of the reduced system both increase with N , this also increases robustness [142] to

variability and disturbances.

9.3.6 Examples

Synchronization of FitzHugh-Nagumo oscillators

To illustrate synchronization and population effects similar to those described in

Section 9.3.5, consider a network of FitzHugh-Nagumo oscillators coupled through

a dynamic medium,

v̇i = c (vi + wi − 1/3v3i + I) + kN (z − vi)

ẇ = −1/c (vi − a + bwi)

ż = De

N

∑N
i=1 (vi − z)− dez

(9.76)

In what follows, system parameters are set as a = 0.3, b = 0.2, c = 20, k = 1,
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de = De = 1. Similarly to the proof of Theorem 9.3.6, consider the virtual system

ẏ1 = c (y1 + y2 − 1/3y32 + I) + kN (z − y1)

ẏ2 = −1/c (y1 − a + by2)

whose Jacobian matrix is

J :=

[
c (1− y21)− kN c

−1
c

− b
c

]

Using the matrix measure µ2,Θ, with

Θ =

[
1 0

0 c

]

yields µ2,Θ (J) = µ2 (F ) , where

F = ΘJΘ−1 =

[
c (1− y21)− kN 1

−1 − b
c

]

Thus, the virtual system is contracting if the maximum eigenvalue of the symmetric

part of F is uniformly negative. Similarly to Theorem 9.3.6, this is obtained if

N >
c

k
(9.77)

That is, a sufficient condition for the virtual system to be contracting, and hence for

network (9.76) to fulfill synchronization, is given by (9.77). Figures 9.15 and 9.16

illustrate the corresponding system behavior for values of N below and above this

threshold.
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Figure 9.15: Simulation of network (9.76) for N = 2, showing the absence of syn-
chronization. Left: time behavior of v1, v2. Right: network phase plot, with initial
conditions denoted with a round marker.
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Figure 9.16: Simulation of network (9.76) for N = 20, showing synchronization.

9.3.7 Genetic oscillators

In Section 9.3.4 we showed that bilateral coupling with the environment also al-

lowed the synchronized behavior of the network nodes to be of a given period, by

driving the environment variable by an exogenous signal having that period. Here

we illustrate this result on a model of a population of genetic oscillators coupled by

means of the concentration of a protein in the environment.

Specifically, we consider the genetic circuit analyzed in [96] (a variant of [94]),

and schematically represented in Figure 9.17. Such a circuit is composed of two

engineered gene networks that have been experimentally implemented in E. coli ;

namely: the toggle switch [62] and an intercell communication system [205]. The

toggle switch is composed of two transcription factors: the lac repressor, encoded

by gene lacI, and the temperature-sensitive variant of the λcI repressor, encoded by

the gene cI857. The expressions of cI8547 and lacI are controlled by the promoters

Ptrc and PL∗ respectively (for further details see [96]). The intercell communication

system makes use of components of the quorum-sensing system from Vibro fischeri

(see e.g. [134] and references therein). Such a mechanism allows cells to sense

population density through the transcription factor LuxR, which is an activator of

the genes expressed by the Plux promoter, when a small molecule AI binds to it.

This small molecule, synthesized by the protein LuxI, is termed as autoinducer and

it can diffuse across the cell membrane.

In [96], the following dimensionless simplified model is analyzed (see Figure 9.18):

u̇i =
α1

1 + vβ
i

+
α3w

η
i

1 + wη
i

− d1ui (9.78a)

v̇i =
α2

1 + uγ
i

− d2vi (9.78b)

ẇi = ε

(
α4

1 + uγ
i

− d3wi

)
+ 2d (we − wi) (9.78c)
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Figure 9.17: A schematic representation of the genetic circuit: detailed circuit.

ẇe =
De

N

N∑

i=1

(wi − we)− dewe (9.78d)

where ui, vi and wi denotes the (dimensionless) concentrations of the lac repressor, λ

repressor and LuxR-AI activator respectively. The state variable we denotes instead

the (dimensionless) concentration of the extracellular autoinducer.
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Figure 9.18: Simplified circuit using for deriving the mathematical model (9.78).
Both the promoters and transcription factors are renamed.

In [96], a bifurcation analysis is performed for the above model, showing that

synchronization can be attained for some range of the biochemical parameters of

the circuit. However, as the objective of that paper was to analyze the onset of

synchronization, the problem of guaranteeing a desired oscillatory behavior was not

addressed. In what follows, using the results derived in the previous sections, we

address the open problem of guaranteeing a desired period for the final oscillatory

behavior of network (9.78).

The control mechanism that we use here is an exogenous signal acting on the

extracellular autoinducer concentration, see also [161]. That is, the idea is to modify
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(9.78d) as follows

ẇe =
De

N

N∑

i=1

(wi − we)− dewe + r (t) (9.79)

where r (t) is some T -periodic signal. In the set up that we have in mind here,

multiple copies of the genetic circuit of interest share the same surrounding solution,

on which r (t) acts. From the technological viewpoint, r (t) can be implemented

by controlling the temperature of the surrounding solution, and/or using e.g. the

recently developed microfluidics technology (see e.g. [16] and references therein).

In what follows, we will use Theorem 9.3.1 to find a set of biochemical pa-

rameters that ensure synchronization of (9.78a)-(9.78d). This, using the results of

Section 9.3.4, immediately implies that the forced network (9.78a)-(9.78c), (9.79)

globally exponentially converges towards a T -periodic final behavior.

System (9.78) has the same structure as (9.60), with xi = [ui, vi, wi]
T , z = we,

and:

f (xi, t) =




α1

1+vβ
i

+
α3wη

i

1+wη
i
− d1ui

α2

1+uγ
i
− d2vi

ε
(

α4

1+uγ
i
− d3wi

)




kz (z)− kx (xi) =




0

0

2d (we − wi)




g (z, t) = −dewe∑N
i=1 [ux (xi)− uz (z)] =

De

N

∑N
i=1 (wi − we)

We know from Theorem 9.3.4 that all nodes trajectories converge towards each other

if:

1. f (xi, t)− kx (xi) is contracting;

2. g (z, t)−Nuz (z) is contracting.

That is, contraction is ensured if there exist some matrix measures, µ∗ and µ∗∗, such

that

µ∗ ((xi, t)− kx (xi)) and µ∗∗ (g (z, t)−Nuz (z))

are uniformly negative definite. We use the above two conditions in order to obtain

a set of biochemical parameters ensuring node convergence. A possible choice for

the above matrix measures is µ∗ = µ∗∗ = µ1 (see [160], [161]). Clearly, other choices

for the matrix measures µ∗ and µ∗∗ can be made, leading to different algebraic

conditions, and thus to (eventually) a different choice of biochemical parameters.

We assume that β = η = γ = 2, and show how to find a set of biochemical

parameters satisfying the above two conditions.

Condition 1. Differentiation of ∂f
∂xi
− ∂k

∂xi
yields the Jacobian matrix (where the
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subscripts have been omitted)

Ji :=




−d1 −2α1v
(1+v2)2

2α3w
(1+w2)2

−2α2u

(1+u2)2
−d2 0

−2εα4u

(1+u2)2
0 −εd3 − 2d


 (9.80)

Now, by definition of µ1, we have:

µ1 (Ji) = max
{
−d1 + 2α2u

(1+u2)2
+ 2εα4u

(1+u2)2
,

−d2 + 2α1v

(1+v2)2
,−εd3 − 2d+ 2α3w

(1+w2)2

}

Thus, Ji is contracting if µ1 (Ji) is uniformly negative definite. That is,

−d1 + 2α2u

(1+u2)2
+ 2εα4u

(1+u2)2
< 0

−d2 + 2α1v
(1+v2)2

< 0

−εd3 − 2d+ 2α3w

(1+w2)2
< 0

(9.81)

uniformly. Notice now that the maximum of the function a (v) = āv
(1+v2)2

is â = 3
√
3ā

16
.

Thus, the set of inequalities (9.81) is fulfilled if:

−d1 + 6α2

√
3

16
+ 6εα4

√
3

16
< 0

−d2 + 6α1

√
3

16
< 0

−εd3 − 2d+ 6α3

√
3

16
< 0

(9.82)

uniformly.

Condition 2 In this case it is easy to check that the matrix Je :=
∂g
∂z
− N ∂u

∂z
is

contracting for any choice of the (positive) biochemical parameters De, de.

Thus, we can conclude that any choice of biochemical parameters fulfilling (9.82)

ensures synchronization of the network onto a periodic orbit of period T . In [96], it

was shown that a set of parameters for which synchronization is attained is: α1 = 3,

α2 = 4.5, α3 = 1, α4 = 4, ε = 0.01, d = 2, d1 = d2 = d3 = 1. We now use the

guidelines provided by (9.82) to make a minimal change of the parameters values

ensuring network synchronization with oscillations of period T . Specifically, such

conditions can be satisfied by setting d1 = 6, d2 = 2. Figure 9.19 shows the behavior

of the network for such a choice of the parameters. Finally, Figure 9.20 shows a

simulation of the network (with N = 2) when the biochemical parameters are chosen

so as to violate the two conditions above. In such a figure, both the time behavior of

wi and phase plot are shown, indicating that synchronization is indeed not attained.

Note again that, depending on actual parameter values, the overall system may

or not be contracting, and therefore synchronization to a common period is the

result of coordination through the shared variable.
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Figure 9.19: Behavior of (9.78a)-(9.78c), (9.79), when N = 10 and r (t) = 1 +
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Figure 9.20: Behavior of (9.78a)-(9.78c), (9.79), when N = 2 and all the α’s are
increased, violating condition 1 and condition 2. The phase plot shows that syn-
chronization is not attained: w1 is on the x-axis, w2 is on the y-axis.

Communication over different media

In the above Section, we assumed that all the genetic circuits shared the same

surrounding solution. We now analyze the case where two different groups of genetic

circuits are surrounded by two different media. The communication between groups

is then left to some (possibly artificial) communication strategy between the two

media.

We now assume that only one of the two media is forced by the exogenous T -

periodic signal r (t), while the two media communicate with each other in a diffusive
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way. The mathematical model that we analyze here is then:

u̇i1 =
α1

1+vβ
i1

+
α3wη

i1

1+wη
i1
− d1ui1

v̇i1 =
α2

1+uγ
i1
− d2vi1

ẇi1 = ε
(

α4

1+uγ
i1
− d3wi1

)
+ 2d (we1 − wi1)

ẇe1 =
De

N

∑N
i=1 (wi1 − we1)− dewe1 + r (t) + φ (we2)− φ (we1)

u̇i2 =
ᾱ1

1+vβ
i2

+
ᾱ3wη

i2

1+wη
i2
− d̄1ui2

v̇i2 =
ᾱ2

1+uγ
i2
− d̄2vi2

ẇi2 = ε
(

ᾱ4

1+uγ
i2
− d3wi2

)
+ 2d (we2 − wi2)

ẇe2 =
D̄e

N

∑N
i=1 (wi2 − we2)− d̄ewe2 + φ (we1)− φ (we2)

(9.83)

where xi1 = [ui1, vi1, wi1]
T and xi2 = [ui2, vi2, wi2]

T denote the set of state variables

of the i-th oscillator of the first and second group respectively. Analogously, we1

and we2 denote the extracellular autoinducer concentration surrounding the first

and second group of genetic circuits.

Notice that the biochemical parameters of the nodes composing the two groups

and of their corresponding media are not identical. Specifically, for the first group we

use the same parameters as in the previous section, while for the second group we use

parameters which differ from parameters of the first group by approximatively 50%

(so as to still satisfy the two conditions of the previous Section). To ensure concur-

rent synchronization, we design the coupling function between the media (φ (·)) by
using the guidelines provided by Theorem 9.3.3. Furthermore, using Theorem 9.3.5

we can conclude that the final behavior of the two groups is T -periodic.

It is straightforward to check that the hypotheses of Theorem 9.3.3 are all sat-

isfied if:

• the biochemical parameters of the two groups fulfill the conditions in (9.82);

• the coupling function φ (·) is increasing.

In fact, the topology of the autonomous level of the network is input equivalent

by construction. Figure 9.21 shows the behavior of (9.83) when the biochemical

parameters of the oscillators are tuned as in the previous Section, and φ (x) = Kx,

with K = 0.1.

Co-existence of multiple node dynamics

We now consider the case where the two groups analyzed above are identical, but

connected with each other by means of a third group composed of Van der Pol

oscillators. For such oscillators, the coupling between elements of the same goup

is also implemented by means of a quorum-sensing mechanism. Communication
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Figure 9.21: Behavior of (9.83) when r (t) = 1 + sin (0.1t). Both groups consists
of N = 10 nodes. Concurrent synchronization is attained for the network. The
time behavior of the first group of nodes is in red (upper line), while the time
behavior of the second group is in yellow (lower line). Both the groups exhibit a
final, synchronized, behavior having the same period as r (t).

between the three groups occurs by means of some coupling between their media.

The mathematical model considered here is then:

u̇i1 =
α1

1+vβ
i1

+
α3wη

i1

1+wη
i1
− d1ui1

v̇i1 =
α2

1+uγ
i1
− d2vi1

ẇi1 = ε
(

α4

1+uγ
i1
− d3wi1

)
+ 2d (we1 − wi1)

ẇe1 =
De

N

∑N
i=1 (wi1 − we1)− dewe1 + φ (we3)− φ (we1)

u̇i2 =
α1

1+vβ
i2

+
α3wη

i2

1+wη
i2
− d1ui2

v̇i2 =
α2

1+uγ
i2
− d2vi2

ẇi2 = ε
(

α4

1+uγ
i2
− d3wi2

)
+ 2d (we2 − wi2)

ẇe2 =
De

N

∑N
i=1 (wi2 − we2)− dewe2 + φ (we3)− φ (we2)

ẏ1i = y2i

ẏ2i = −α (y21i − β) y2i − ω2y1i +K (we3 − y1i)

ẇe3 =
K

Nvdp

∑N
i=1 (y2i − we3) + g (we3) + φ (we1) + φ (we2)− 2φ (we3)

(9.84)

with [y1i, y2i]
T denoting the state variables of the i-th Van der Pol oscillator, and with

Nvdp indicating the number of Van der Pol oscillators in the network. In the above

model the Van der Pol oscillators are coupled by means of the medium we3 ∈ R.

The three media, i.e. we1, we2, we3, communicate by means of the coupling function

φ (·), assumed to be linear. We assume that the function g governing the intrinsic

dynamics of the medium we3 is smooth with bounded derivative. The parameters

for the Van der Pol oscillator are set as follows: α = β = ω = 1. Notice that now

no external inputs is applied on the network.

Recall that Theorem 9.3.3 ensures synchronization under the following condi-

tions:
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1. contraction of each group composing the network;

2. topology of the autonomous level of the network connected and input equiva-

lent.

Notice that the second condition is satisfied for the network of our interest.

Furthermore, contraction of the two groups composed of genetic oscillators is ensured

if the their biochemical parameters satisfy the inequalities in (9.82).

To guarantee the convergent behavior of the group composed of Van der Pol

oscillators, we have to check that there exist two matrix measures, µ∗ and µ∗∗,

showing contraction of the following two matrices:

J1 =

[
0 1

−α (y22i − β)− ω2 −2αy2iy1i −K

]
(9.85a)

J2 =
∂g

∂we3
−K (9.85b)

Now in [194], using the Euclidean matrix measure µ2, it is shown that the matrix

(9.85a) is contracting if K > α. On the other hand, to ensure contraction of J2, we

have to choose K > Ḡ, where Ḡ is the maximum of ∂g
∂we3

. Thus, contraction of the

group composed of Van der Pol oscillators is guaranteed if the coupling gain, K, is

chosen such that:

K > max
{
α, Ḡ

}

Using g (x) = sin (x), K = 2.5, Nvdp = 2 and φ (x) = Kx, with K = 3,

Figure 9.22 shows that all the nodes of the two groups of genetic oscillators in

(9.84) are synchronized, in agreement with the theoretical analysis. Figure 9.23

also shows that the two nodes belonging to the group of Van der Pol oscillators are

synchronized with each other.

9.3.8 Analysis of a general Quorum-Sensing pathway

In the previous Section, we showed that our results (with appropriate choice of

matrix measure) can be used to derive easily verifiable conditions on the biochemical

parameters of the genetic oscillator ensuring contraction, and hence synchronization

(onto a periodic orbit of desired period) and concurrent synchronization. We now

show that our methodology can be applied to analyze a wide class of biochemical

systems involved in cell-to-cell communication.

We focus on the analysis of the pathway of the quorum sensing mechanism that

uses as autoinducers, molecules from the AHL (acyl homoserine lactone) family.

The quorum sensing pathway implemented by AHL (see Figure 9.24) is one of the

most common for bacteria and drives many transcriptional systems regulating their

basic activities.
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Figure 9.22: Behavior of (9.84): each of the two groups of genetic oscillators contains
N = 4 nodes. Top: phase plot of the nodes belonging to the first group of genetic
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groups of genetic oscillators (left) and their time behavior. Both the phase plots
and the time series show that synchronization is attained.
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Figure 9.23: Time behavior of the two nodes composing the group of Van der Pol
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Figure 9.24: The quorum sensing pathway implemented by AHL
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We now briefly describe the pathway of our interest (see [128] for further details).

The enzyme LuxI produces AHL at (approximately) a constant rate. AHL in turn

diffuses into and out of the cell and forms (in the cytoplasm) a complex with the

receptor LuxR. Such complex polymerizes and then acts as a transcription factor,

by binding the DNA. This causes the increase of the production of LuxI, generating

a positive feedback loop.

The pathway can be described by a set of ordinary differential equations (using

the law of mass action, see [87], [128]). Specifically, denoting with xe the mass of

AHL outside of the cell and with xc the mass of AHL within the cell, we have the

following mathematical model:

ẋc = α+ βxn
c

xn
thresh+xn

c
− γcxc − d1xc − d2xe

ẋe = d1xc − d2xe − γexe

(9.86)

The physical meaning of the parameters in (9.86) is given in Table 9.1.

Table 9.1: Biochemical parameters for system (9.86)
Parameter physical meaning

α Low production rate of AHL
β Increase of production rate of AHL
γc Degradation rate of AHL in the cytosol
γe Degradation rate of AHL outside the cell
d1 Diffusion rate of the extracellular AHL
d2 Diffusion of the intracellular AHL

xthresh Threshold of AHL between low and
increased activity

n Degree of polymerization

Now, contraction of the above system is guaranteed if

1. −γc +
2βx2

threshxc

(x2
thresh

+x2
c)

2 is uniformly negative definite;

2. −d2 − γe is uniformly negative definite.

Recall that xc and xe are both scalars. Now, the second condition is satisfied since

system parameters are all positive. That is, to prove contraction we have only to

guarantee that

−γc +
2βx2threshxc

(x2thresh + x2c)
2

is uniformly negative. Since

−γc +
2βx2threshxc

(x2thresh + x2c)
2 ≤ −γc +

3β
√
3

8xthresh
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contraction is ensured if the biochemical parameters β, g and xthresh fulfill the

following condition
β

xthresh
<

8γc

3
√
3

9.4 Symmetries and contraction in network mo-

tifs

Many research efforts have been recently devoted to the study of the emerging

behavior of complex networks. In particular, to uncover the design principles of

many Natural networks, network motifs, i.e. recurring wiring patterns of nodes,

have been recently defined. Interestingly, in [126] the authors show that identical

motifs are shared by networks arising from different areas, like e.g. biochemistry,

neuroscience, electronic, economy. In turn, this lead the authors to conclude that a

possible explanation for the presence of the network motifs in such networks is the

fact that they may perform some functionalities which are important for the whole

network. An interesting question is then that of understanding why the same motifs

perform similar functionalities in such heterogeneous networks.

To address this open problem, it is necessary to somehow abstract the structure

and functionalities of the network motif from its actual dynamics. This can be done

by using the tools developed in Chapter 4: in fact, we will show with the following

examples that the structure of such motifs guarantees some symmetry properties.

Those properties, in turn, implicitly define the possible steady state behaviors. The

desired behavior (i.e. the functionality of the motif) is then guaranteed under some

mild assumptions on the vector field describing the dynamics of the motif.

9.4.1 An example: invariance under input scaling

In a series of recent papers, input-output properties of some cellular signaling bio-

chemical systems have been analyzed [68, 167, 67, 34]. Such studies point out that

many sensory systems show the property of having their output invariant under

input scaling, which can be formally defined as follows:

Definition 9.4.1. Let xi(t), xj(t) be solutions of (4.28) with initial conditions x0 =

xi(0) = xj(0), when u(t) = χi(t) and u(t) = χj(t), respectively. System (4.28) is

invariant under input scaling if xi(t) = xj(t) for any χi(t), χj(t) such that χj(t) =

F (t)χi(t), with F (t) > 0.

Invariance under input scaling with constant F (t) = F has been recently studied

in transcription networks by Alon and his co-authors [68, 34, 167]. In such papers,

the authors focus on the study of transcriptional networks subject to step-inputs. In

this case, the invariance under input scaling is called fold-change detection behavior
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(FCD), as the output of the system depends only on fold changes in input and not

on its absolute level. For example, if the input to the system is a step function from

1 to 2, then its output is the same as if the step was increased from 2 to 4.

In [167] it is shown that FCD is necessary and sufficient to make sensory searches

in which an organism moves through a spatial sensory field invariant to the ampli-

tude of the field. This feature is of fundamental importance in e.g. vision, [167]. In

fact, as shown in [92], the reflectance of an object, say R(r), is multiplied by the

ambient light, I, to provide the contrast filed sensed by the eye. The eyes make

spatial searches by means of rapid movements (fixational eye movements) several

times per second, which scan the visual field. FCD in such a system, would allow

visual searches to be independent on the strength of the ambient light. Recent stud-

ies suggest that spatial visual searches, where the eyes search for a specific object,

are insensitive to ambient-light levels (across several order of magnitude), see e.g.

[192].

This section uses the results on symmetries presented in Chapter 4 to analyze the

associated mathematical models, arising from protein signal-transduction systems

and bacterial chemotaxis, and in particular it revisits the recent work [167] from

this point of view. It also shows how these results could, for instance, suggest

a mechanism for stable quorum sensing in bacterial chemotaxis, thus combining

symmetries in cell interactions (quorum sensing) with invariance to input scaling

(fold change detection).

9.4.2 Gene regulation

This first example considers a pattern (network motif) arising in gene regulation

networks, the Type 1 Incoherent Feed-Forward Loop (I1-FFL) [51], [126]. The I1-

FFL is one of the most common network motifs in gene regulation networks (see

also Section 5.4). As shown in Figure 9.25, it consists of an activator, X, which

controls a target gene, Z, and activate a repressor of the same gene, Y (which can

be thought of as the output of the system). It has been recently shown that such a

network motif can generate a temporal pulse of Z response, accelerate the response

time of Z and act as a band-pass amplitude filter, see e.g. [118], [93].

In [68] it has also been shown by using a dimensionless analysis that for a certain

range of biochemical parameters, the I1-FFL can exhibit invariance under step-input

scaling (i.e. FCD).

A basic model

In [68], it was shown that a minimal circuit which achieves FCD is the I1-FFL,

with the activator in linear regime and the repressor saturating the promoter of the
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Figure 9.25: A schematic representation of the I1-FFL

target gene, Z. The model in [68] is of the form

Ẏ = −α1Y + χ(t)

Ż = β2
χ(t)
Y
− α2Z

(9.87)

where α1, α2, β2 are biochemical (positive) parameters and χ(t) is the input to the

system (which can be approximated by the concentration of X). It was also shown

that the dimensionless model
dy
dτ
= F − y

r dz
dτ
= F

y
− z

with:
y = Y α1

β1χmin
Z = Z

β2α1/β1α2

F = χ(t)
χmin

τ = α1t

exhibits invariance under input scaling. Later we will also consider more detailed

mathematical models that in [68] have been analyzed numerically. In Section 5.4,

we will also analyze other important network motifs under a slightly different view-

point, i.e. by considering each of the species composing the motif as nodes of an

interconnected systems.

In this Section, we show invariance under input scaling for system (9.87) for any

input, χi(t), χj(t), such that

χi(t)

χmin,i
=

χj(t)

χmin,j
= F (t)

In the above expressions χmin,i and χmin,j denote the basal level of the inputs χi(t)

and χj(t) respectively. Such levels are assumed to be nonzero. Notice that the above

class of inputs is wider that the one used in Definition 9.4.1.

Theorem 4.7.10 is now used to prove invariance under input scaling for (9.87).

That is, we show that invariance under input scaling is a consequence of the existence

of a symmetric and contracting virtual system in the spirit of Theorem 4.7.10.

In what follows, we will denote with xi = (Yi, Zi)
T and xj = (Yj, Zj)

T the

solutions of (9.87), when χ(t) = χi(t) and χ(t) = χj(t), respectively. We assume

that Zi(0) = Zj(0). In terms of the notation introduced in Theorem 4.7.10, we have
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u(t) = χ(t) and:

f(x, u(t)) =

(

−α1Y + χ(t)

β2
χ(t)
Y
− α2Z

)

Now, define the following actions:

γi =

(

Y

Z

)

→
(

Y
χmin,i

Z

)

, ρi : χ(t)→ χ(t)
χmin,i

= F (t) (9.88)

It is straightforward to check that:

• f(x, u(t)) is contracting uniformly in u(t);

• γif(xi, χi(t)) = f(γixi, ρiχi(t))

Now, Theorem 4.7.10 implies that for any input χi(t), χj(t) such that ρiχi(t) =

ρjχj(t), γixi and γjxj globally exponentially converge towards each other. That is:

|γixi − γjxj | =
∣

∣

∣

∣

∣

(

Yi

χmin,i
− Yj

χmin,j

Zi − Zj

)
∣

∣

∣

∣

∣

→ 0 (9.89)

for any χi, χj such that:
χi(t)

χmin,i
=

χj(t)

χmin,j
= F (t) (9.90)

Now, (9.89) implies that

|Zi − Zj| → 0

exponentially. Since the initial conditions of Zi and Zj are the same we have that

Zi(t) = Zj(t) for any t ≥ 0. That is, the system exhibits invariance under input

scaling.

More detailed models

More detailed models of the I1-FFL are analyzed numerically in [68], showing that

invariance under input scaling occurs for a wide range of biochemical parameters.

Specifically, three different mechanisms are considered for binding the regulators X

and Y to the promoter Z:

1. binding of X and Y is mutually exclusive, yielding the model

Ẏ = β1χ(t)− α1Y

Ż = β2
χ(t)
K1

1+
χ(t)
K1

+ Y
K2

− α2Z
(9.91)



9.4 Symmetries and contraction in network motifs, {November 28, 2010} 227

2. binding of X and Y is independent, yielding

Ẏ = β1χ(t)− α1Y

Ż = β2
χ(t)
K1

“

1+χ(t)
K1

”“

1+ Y
K2

” − α2Z
(9.92)

3. binding of X and Y is cooperative, yielding

Ẏ = β1χ(t)− α1Y

Ż = β2
χ(t)
K1

1+χ(t)
K1

+ Y
K2

+χ(t)Y
K3

− α2Z
(9.93)

We now show that our results can be used to analyze such models, yielding con-

clusions in agreement with the numerical results obtained in [68]. Specifically, we

show that in some region of the parameter space invariance under input scaling is

determined by some symmetry of the virtual system.

Mutually exclusive binding of X and Y

Now, we show that in some region of parameter space, the model (9.91) exhibits

a symmetry which causes invariance under input scaling.

In analogy with the above Section, we consider the actions, γi and ρi, defined as

in (9.88). The class of inputs considered is that fulfilling (9.90). Notice that if

χ(t)

K1

+
Y

K2

≫ 1 (9.94)

the model (9.91) is approximated by:

Ẏ = β1χ(t)− α1Y

Ż = β2

K2

χ(t)
χ(t)+Y

− α2Z
(9.95)

Following exactly the same outline as in previous Section, it is straightforward to

check that the hypotheses of Theorem 4.7.10 are satisfied for system (9.95). This,

in turn, implies that for any input such that χi/χmin,i = χj/χmin,j = F (t),

|Zi − Zj| → 0

exponentially, proving invariance under input scaling.

We remark here that the above result holds within the region defined by (9.94),

where model (9.91) is approximated by (9.95). That is, the system exhibit invariance

under input scaling only in the region of the parameter space defined by (9.94). In

[68], it was shown numerically that (9.91) exhibits invariance under input scaling in

the region
χmin
K1

≫ 1
Ymin
K2

≫ 1
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Now, notice that the above region is a subset of (9.94).

Independent and cooperative binding of X and Y

In analogy with the previous Section, we now show that in some region of param-

eter space, invariance under input scaling is possible for system (9.92) and system

(9.93).

Specifically, in the region defined by

K2χ(t) +K1Y ≫ K1K2 + χ(t)Y (9.96)

system (9.92) is approximated by the following model:

Ẏ = −α1Y + χ(t)

Ż = β2

K2

χ(t)
K1Y+K2χ(t)

− α2Z
(9.97)

Again, we will consider the actions, γi and ρi, defined as in (9.88). The class of

inputs considered is that fulfilling (9.90). Now, the hypotheses of Theorem 4.7.10

are all satisfied for system (9.97). Thus, the invariance under input scaling behavior

in the region (9.96) remains proved.

Notice that, the region identified by the above constraints is similar to that

obtained in [68].

Following exactly the same steps as those described above, it is possible to prove

that in the region defined by

χ(t)

K1
+

Y

K2
≫ 1 +

χ(t)Y

K3
(9.98)

invariance under input scaling occurs for system (9.93). Notice that a sufficient

condition for (9.98) to hold is:

K2 ≪ Ymin ≪ K3

χmin

In turn, the above constraints define a region similar to that obtained in [68].

9.4.3 A model from chemotaxis

In bacterial chemotaxis, bacteria walk through a chemo-attractant field, say u(t, r)

(r denotes two dimensional space vector). Along their walk, bacteria sense the

concentration of u at their position and compute the tumbling rate (rate of changes

of the direction) so as to move towards the direction where the gradient increases,

see e.g. [30]. Typically, the input field is provided by means of a source of attractant

which diffuses in the medium with bacteria accumulating in the neighborhood of the

source. In this case, the information on the position of the source is encoded only in

the shape of the field and not in its strength. Therefore, it is reasonable for bacteria
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to evolve a search pattern which is dependent only on the shape of the field and not

on its strength, i.e., a search pattern which is invariant under input scaling [167].

Specifically, consider the following model [167] adapted from the chemotaxis model

of [188]:

ẋ = xf(y)

ǫẏ = φ
(

u
x

)

− y
(9.99)

where u > 0 is an increasing step-input to the system, representing the ligand

concentration, and y > 0, the output of the system, represents the average kinase

activity. The quantity x > 0 is an internal variable. We assume the function φ

to be: i) a decreasing function in x with bounded partial derivative ∂φ/∂x; ii) an

increasing function of u/x, with derivative φ′ = ∂φ/∂(u/x) ≤ b, b > 0. Note that

the above model becomes the one used in [167], when φ(u/x) = u/x. Such a model is

obtained assuming x is sufficiently large, with the term u/x actually a simplification

of a term of the form u/(x+η), with 0 < η ≪ x. The positive constant ǫ is typically

small, so as to represent a separation of time-scales.

Assume as in [188] that f(1) = 0 and that f(y) is strictly increasing with y.

Obviously, (9.99) verifies the symmetry conditions of Theorem 4.7.10 with:

γi : (xi, yi)→
(

xi

ūi
, yi

)
ρi : ui → ui

ūi
(9.100)

where ūi denotes the initial (lower) value, at time t = 0, of the step function. As

in the previous Section we assume that yi(0) = yj(0). Now, by means of Theorem

4.7.10, we can conclude that, if the system is contracting, yi(t) = yj(t), ∀t ≥ 0, for

any input such that ui

ūi
=

uj

ūj
= F .

Let us derive a condition for (9.99) to be contracting, which will give conditions

on the dynamics and inputs of (9.99) ensuring invariance under input scaling. Model

(9.99) can be recast as

ÿ +
1

ǫ
ẏ − 1

ǫ

∂φ

∂x
xf(y) = 0 (9.101)

As in [188, 167], choose f(y) = y − 1 for simplicity, so that (9.101) becomes

ÿ +
1

ǫ
ẏ − 1

ǫ

∂φ

∂x
x(y − 1) = 0 (9.102)

The above dynamics is similar to a mechanical mass-spring-damper system with a

time-varying spring,

r̈ + 2ηωṙ + ω2r = 0

with 2ηω = 1
ǫ
and ω2 = −1

ǫ
∂φ
∂x
x. Now, as shown in [110] such a dynamics is

contracting if η > 1√
2
. Thus, it immediately follows that (9.102) is contracting if:

∂φ

∂x
x > − 1

2ǫ
(9.103)



230 9 Applications to synthetic and computational biology

Hence, contraction is attained if:

φ′
(
− u

x2

)
x > − 1

2ǫ

That is, a sufficient condition for (9.102) to be contracting is

x > 2ǫub (9.104)

Notice that, in the case where φ (u/x) = u/x, (9.104) simply becomes:

x > 2ǫu (9.105)

The above inequality implies that, in this case, the system is contracting (and hence

exhibits invariance under input scaling) if the level of x is sufficiently high (which

is true by hypotheses) and its dynamics is sufficiently slow (ǫ small) with respect

to the dynamics of y. Also, given ε < 1
2
and a constant u, if contraction condition

(9.105) is verified at t = 0 with initial conditions embedded in a ball contained in

the contraction region (9.105), it remains verified for any t ≥ 0.

Finally, note that the results of this Section, and indeed of the original [68, 167],

are closely related to the idea, first introduced in [142] and further studied in [64], of

detecting a symmetry (here, in the environment) by using a dynamic system having

the same symmetry.



Chapter 10

Conclusions

In this Thesis, we presented a coherent theoretical framework for the analysis and

control of biochemical and networked systems, with applications to decentralized

control and systems biology.

Chapter 2 and Chapter 3 were introductory chapters. Specifically, in Chapter

2 the notion of contracting dynamical system was briefly introduced. All the re-

sults reviewed in this Chapter were based on the use of Euclidean norms and were

systematically generalized in Chapter 4. In Chapter 3, the main definitions of inter-

connected system used in the rest of the Thesis were introduced together with the

main network coordination problems. The mathematical model introduced in this

Chapter and coordination problems like e.g. consensus, synchronization and cluster

synchronization were then studied in chapters 6-8.

In Chapter 4, the main results on contraction presented in Chapter 2, were

revisited and extended. Specifically, we showed that: (i) contraction can be extended

by using arbitrary norms; (ii) some structural properties can be used to relax the

algebraic conditions for contraction.

The main result of this Chapter are then used in Chapter 5, where non-Euclidean

norms were used to derive a graphical procedure for proving contraction. The key

idea was to use such norms to obtain algebraic conditions that can be turned onto

a graphical algorithm. At the core of the procedure there was the construction of

a graph from system Jacobian, which was then required to be loopless. One of the

main advantages of the proposed approach was that it did not require the knowledge

of a metric for proving contraction.

The notions introduced in Chapter 4 were used in Chapter 6 to obtain a set of

sufficient conditions ensuring stability of networked systems. In such a Chapter, a

multi-scale approach for the study of stability of large scale systems was presented.

The results of this Chapter were robust, in the sense that a large degree of uncertainty

can be tolerated on the network nodes’ dynamics. Moreover, the approach was

turned into a tool for designing distributed communication protocols for network

coordination ensuring, for example, set-point regulation. In the same chapter, it was
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also shown how symmetries and contraction can be used to design multi-purpose

networks.

The study of networked systems was then continued in Chapter 7. In such a

Chapter, we first presented a generic lemma that can be used to analyze the con-

vergence of a networked system towards a linear flow invariant subspace (namely,

the synchronization, or poli-synchronization subspace). We then used such a re-

sult to coordinate complex networks of both linear and nonlinear continuous time

nodes. From the analysis viewpoint, we obtained novel sufficient conditions for net-

work synchronization by deriving some explicit links between contraction analysis,

Lyapunov-based techniques and the Master Stability Function.

In Chapter 8, we turned our attention to the problem of coordinating networks of

discrete time and asynchronous nodes. Our main idea was that of providing condi-

tions of the synchronous implementation of the network which ensured contraction

of its asynchronous counterpart. Using non-Euclidean norms, we found a set of

easily checkable conditions that were used for the design of distributed protocols

allowing to solve consensus and cluster synchronization.

Finally, some applications of our results to the study of biochemical systems

and networks were presented in Chapter 9. Specifically, sufficient conditions were

obtained for the entrainment of biochemical circuits and a study on generic-quorum

sensing networks was presented. Finally, a study on symmetries of some impor-

tant network motif was presented which showed that this property, together with

a relaxed contraction property, is responsible of the so-called fold change detection

behavior.
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Appendix A

Auxiliary results for Chapter 9

A.1 Entraining a population of Repressilators: proof

The general principle that we apply to prove entrainment of a population of Repres-

silators is as follows.

Assume that the cascade system

ẋ = f (x, y) ,

ẏ = g (y, v (t)) ,
(A.1)

with v (t) being an exogenous input, satisfies the contractivity assumptions of the

above Section. Then, consider the interconnection of N identical systems which

interact through the variable y as follows:

ẋi = f(xi, y), i = 1, . . . , N,

ẏ = g(y,
∑N

i=1 xi + u).
(A.2)

Suppose that [x1(t), . . . , xN(t), y(t)] is a solution of (A.2) defined for all t ≥ 0, for

some input u(t). Then, we have the synchronization condition: xi(t) − xj(t) → 0,

as t→ +∞.

Indeed, we only need to observe that every pair [xi(t), y(t)] is a solution of (A.1)

with the same input

v(t) =

N∑

i=1

xi(t) + u(t).

Furthermore, if u (t) is a T -periodic function, the N interconnected dynamical sys-

tems synchronize onto a T -periodic trajectory.

The above principle can be immediately applied to prove that synchronization

onto a T -periodic orbit is attained for the Repressilator circuits composing network

(9.57) (see also [156], [154]).

Specifically, let xi := [ai, bi, ci, Ai, Bi, Ci, Si] and y = Se; we have that [x1, . . . , xN , y]
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is a solution of (9.57). We notice that any pair [xi, y] is a solution of the following

cascade system

ȧ = −a+ α/ (1 + C2)

ḃ = −b+ α/ (1 + A2)

ċ = −c + α/ (1 +B2) + (kS) / (1 + S)

Ȧ = βAa− dAA

Ḃ = βBb− dBB

Ċ = βCc− dCC

Ṡ = −ks0S + ks1A− η (S − Se)

Ṡe = −kseSe − ηextNSe + u(t) + ηext (S1 + ... + SN) .

(A.3)

Thus, as shown above, contraction of (A.3) implies synchronization of (9.57). Dif-

ferentiation of (A.3) yields the Jacobian matrix

J =




−1 0 0 0 0 f1 (Cv) 0 0

0 −1 0 f1 (Av) 0 0 0 0

0 0 −1 0 f1 (Bv) 0 f2 (Sv) 0

βA 0 0 −dA 0 0 0 0

0 βB 0 0 −dB 0 0 0

0 0 βC 0 0 −dC 0 0

0 0 0 ks1 0 0 −ks0 − η η

0 0 0 0 0 0 0 −kq




(A.4)

where f1 and f2 denote the partial derivatives of decreasing and increasing Hill

functions with respect to the state variable of interest and kq = kse + kdiff , kdiff =

ηextN .

Note that the Jacobian matrix J has the structure of a cascade, i.e.

J =

[
A B

0 C

]
,

with:

A =




−1 0 0 0 0 f1 (C) 0

0 −1 0 f1 (A) 0 0 0

0 0 −1 0 f1 (B) 0 f2 (S)

βA 0 0 −dA 0 0 0

0 βB 0 0 −dB 0 0

0 0 βC 0 0 −dC 0

0 0 0 ks1 0 0 −ks0 − η




,

B =
[
0 0 0 0 0 0 η

]T

, C = −kq. Thus, to prove contraction of the virtual
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system (A.3) it suffices to prove that there exist two matrix measures, µ∗ and µ∗∗

such that:

1. µ∗ (A) ≤ −c2∗;

2. µ∗∗ (C) ≤ −c2∗∗;

where c∗, c∗∗ ∈ R − {0}. Clearly, since kq is a positive real parameter, the second

condition above is satisfied (with µ∗∗ being any matrix measure). Now, notice that

matrix A has the same form as the Jacobian matrix of the Repressilator circuit

(9.46). Hence, if the parameters of the Repressilator are chosen so that they satisfy

(9.56), then there exist a set of positive real parameters pi, i = 1, . . . , 7, such that

µP,∞ (A) ≤ −c2∗ (that is, the first condition above is also satisfied with µ∗ = µP,∞).

Thus, we can conclude that (A.3) is contracting. Furthermore, all the trajectories

of the virtual system converge towards a T -periodic solution (see Theorem 4.3.2).

This in turn implies that all the trajectories of network (9.57) converge towards

the same T -periodic solution. That is, all the nodes of (9.57) synchronize onto a

periodic orbit of period T .

A.2 A counterexample to entrainment

In [172] there is given an example of a system with the following property: when

the external signal u(t) is constant, all solutions converge to a steady state; how-

ever, when u(t) = sin t, solutions become chaotic. (Obviously, this system is not

contracting.) The equations are as follows:

ẋ = −x− u

ṗ = −p + α(x+ u)

ξ̇ = 10(ψ − ξ)

ψ̇ = 28pξ − ψ − pξζ

ζ̇ = pξψ − (8/3)ζ

where α(y) = y2/(K + y2) and K = 0.0001. Figure A.1 shows typical solutions of

this system with a periodic and constant input respectively. The function “rand”

was used in MATLAB to produce random values in the range [−10, 10].

A.2.1 Networks of contracting nodes

We consider a network where its N > 1 nodes may have different dynamics:

ẋi = fγ(i) (xi, t) +
∑

j∈Ni

[
hγ(i) (xj)− hγ(i) (xi)

]
(A.5)
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Figure A.1: Simulation of counter-example. The following randomly-chosen
input and initial conditions are used: u(t) = 1.89, x(0) = 2.95 p(0) = −0.98,
ξ(0) = 0.94, ψ(0) = −4.07, ζ(0) = 4.89. Green: inputs are u(t) = sin t (left
panel) and u(t) = 5.13 (randomly picked, right panel). Blue: ξ(t). Note chaotic-like
behavior in response to periodic input, but steady state in response to constant
input.

where Ni denotes the set of neighbors of node i and γ is a function defined between

two set of indices (not necessarily a permutation), i.e.

γ : {1, . . . , N} → {1, . . . , s} s ≤ N (A.6)

Thus, two nodes of (A.5), e.g. xi and xj , share the same dynamics and belong to

the p-th group (denoted with Gp), i.e. xi, xj ∈ Gp, if and only if γ (i) = γ (j) =

p. The dimension of the nodes’ state variables belonging to group p is nγ(i), i.e.

xi ∈ R
nγ(i) for any xi ∈ Gp. In what follows we assume that the Jacobian of the

coupling functions hγ(i) are diagonal matrices with nonnegative diagonal elements.

We will derive conditions ensuring concurrent synchronization of (A.5), i.e. all nodes

belonging to the same group exhibit the same regime behavior.

Theorem A.2.1. Assume that in (A.5) the nodes belonging to the same group are

all input-equivalent and that the nodes dynamics are all contracting. Then, all node

trajectories sharing the same dynamics converge towards each other, i.e. for any xi,

xj ∈ Gp, p = 1, . . . , s,

|xj (t)− xi (t)| → 0 as t→ +∞

In the case of networks of identical nodes dynamics, the above result amounts

to only requiring contraction for each node.

To prove Theorem A.2.1 we need the following Lemma, which is a generalization

of a result proven in [161]:

Lemma A.2.1. Consider the block- partition for a square matrix J :

J =

[
A(x) B(x, y)

C(x, y) D(y)

]
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where A and D are square matrices of dimensions nA×nA and nD×nD respectively.

Assume that A and B are contracting with respect to µA and µD (induced by the

vector norm |•|A and |•|D). Then, J is contracting if there exists two positive real

numbers θ1, θ2 such that

µA(A) +
θ2

θ1
‖C(x, y)‖A,D ≤ −c2A

µD(D) +
θ1

θ2
‖B(x, y)‖D,A ≤ −c2B

where ‖•‖A,D and ‖•‖D,A are the operator norms induced by |•|A and |•|D on the

linear operators C and B. Furthermore, the contraction rate is c2 = max {c2A, c2B}.

Proof. Let z := (x, y)T . We will show that, with the above hypotheses, J is con-

tracting with respect to the matrix measure induced by the following vector norm:

|z| := θ1 |x|A + θ2 |y|D

with θ1, θ2 > 0. In this norm, we have

|(I + hJ)z| = θ1 |(I + hA)x+ hBy|A + θ2 |(I + hD)y + hCx|D

Thus,

|(I + hJ)z| ≤ θ1 |(I + hA)x|A + hθ1 |By|D,A+

+θ2 |(I + hD)y|D + hθ2 |Cx|A,D

Pick now h > 0 and a unit vector z (depending on h) such that ‖(I + hJ)z‖ =
|(I + hJ)z|. We have, dropping the subscripts for the norms:

1
h
(‖I + hJ‖ − 1) ≤ 1

h

(
‖I + hA‖ − 1 + θ2

θ1
h ‖C‖

)
|x| θ1+

+ 1
h

(
‖I + hD‖ − 1 + θ1

θ2
h ‖B‖

)
|y| θ2

Since 1 = |z| = θ1 |x|A + θ2 |y|B, we finally have

1
h
(‖I + hJ‖ − 1) ≤ max

{
1
h

(
‖I + hA‖ − 1 + θ2

θ1
h ‖C‖

)
,

1
h

(
‖I + hD‖ − 1 + θ1

θ2
h ‖B‖

)}

Taking now the limit for h→ 0+:

µ (J) ≤ max

{
µ(A)A +

θ2
θ1
‖C‖ , µ(D)D +

θ1
θ2
‖B‖

}

thus proving the result.

Following the same arguments, Lemma A.2.1 can be straightforwardly extended
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to the case of a real matrix J partitioned as

J =



J11 J12 . . . J1N

. . . . . . . . . . . .

JN1 JN2 . . . JNN




where the diagonal blocks of J are all square matrices. Then J is contracting if

µ(J11) +
θ2

θ1
‖J12‖+ . . .+ θN

θ1
‖J1N‖ ≤ −c211

. . .

µ(JNN) +
θ1

θN
‖JN1‖+ . . .+ θN−1

θN
‖J1N‖ ≤ −c2NN

(A.7)

(where subscripts for matrix measures and norms have been neglected).

Proof of Theorem A.2.1

The assumption of input equivalence for the nodes implies the existence of a linear

invariant subspace associated to the concurrent synchronization final behavior. We

will prove convergence towards such a subspace, by proving that the network dy-

namics is contracting. Let µf be the matrix measure where the nodes dynamics is

contracting and define: X := (xT
1 , . . . , x

T
N)

T , F (X) as the stack of all intrinsic nodes

dynamics, H(X) the stack of nodes coupling functions. We want to prove that there

exist a matrix measure, µ, (which is in general different from µf) where the whole

network dynamics is contracting. Denote with L := {lij} the Laplacian matrix [66]
of the network and define the matrix L̃(X), whose ij-th block, L̃ij(X), is defined as

follows:

L̃ij(X) := lij
∂hγ(i)

∂xj

(Notice that if all the nodes are identical and have the same dynamics and the same

coupling functions, then L̃ can be written in terms of the Kronecker product, ⊗, as
(L⊗ In)

∂H
∂X
, with n denoting the dimension of the nodes and In the n× n identity

matrix.)

The Jacobian of (A.5) is then:

J :=

[
∂F

∂X
− L̃(X)

]
(A.8)

The system is contracting if

µ

(
∂F

∂X
− L̃(X)

)

is uniformly negative definite. Now:

µ

(
∂F

∂X
− L̃(X)

)
≤ µ

(
∂F

∂X

)
+ µ

(
−L̃(X)

)
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Notice that, by hypotheses, the matrix −L̃(X) has negative diagonal blocks and
zero column sum. Thus, using (A.7) with θi = θj for all i, j = 1, . . . , N , i 6= j yields

µ
(
−L̃(X)

)
= 0

Thus:

µ

(
∂F

∂X
− L̃(X)

)
≤ µ

(
∂F

∂X

)

Since the matrix ∂F
∂X

is block diagonal, i.e. all of its off-diagonal elements are zero,

(A.7) yields:

µ

(
∂F

∂X

)
= max

x,t,i

{
µf

(
∂fγ(i)

∂x

)}

The theorem is then proved by noticing that by hypothesis the right hand side of

the above expression is uniformly negative.




