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Abstract

The accumulation of  heparan  sulfate (HS) in  lysosomes  is  the primary 

consequence  of  the  enzyme  defect  (α-N-acetylglucosaminidase)  in 

Mucopolysaccharidosis  type  IIIB.  This  accumulation  triggers  a  cascade  of 

pathological  events  that  progressively  leads  to  CNS  pathology.  Here  we 

examined the activation of the three major stress kinases in the neuronal tissue 

of  a  murine model  of  the  disease.  ERK1/2  was significantly higher  in  the 

cortex  of  1-2-month-old  affected  animals  compared  to  wild  type  (Wt) 

littermates. Similarly, ERK 1/2 was stimulated in neurons cultured from MPS 

IIIB mice. SAPK/JNK was also found to be activated in the cortex of 1-2-

month-old affected animals compared to Wt subjects, and the same was found 

for cultured neurons. In contrast, the active form of p38MAPK was lower in 

the cortex of 1-month-old MPS IIIB mice compared to Wt animals,  but no 

significant  difference  was  found  between  the  two  p38MAPK  analyzed  in 

normal and affected neurons cultured  in vitro. The differential  activation of 

these kinases in the mouse brain at a very early stage of the disease course 

suggests a selective stress signature imposed by the lysosomal dysfunction.
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Background

1. Lysosomal storage diseases

Pathogenetic events in lysosomal storage diseases

Lysosomal storage diseases (LSD) represent a large group of more than 50 

genetic  disorders  characterized  by  disruption  of  normal  lysosomal  function 

(Platt  and  Walkley,  2004).  Lysosomes  are  hydrolase  rich  organelles, 

responsible  for  the  degradation  of  biological  macromolecules.  Proteins  or 

macromolecular  substrates  that  have  to  be  degraded  are  delivered  to  these 

acidified  organelles  by  various  pathways,  which  among  others  involve  the 

endocytosis,  autophagy  and  the  direct  transport  across  the  lysosomal 

membrane. So lysosomes are component of endosomal/lysosomal (E/L) system 

which,  together  with  the  ubiquitin-proteosomal  system and autophagosomal 

system,  represent  an  important  metabolic  centre  for  substrate  degradation, 

influencing several aspects of the cells, from signal transduction to regulation 

of gene expression.

Early  view  to  explain  LSD  pathogenesis  emanated  from  the  original 

concept  that  these  disorders  are  caused  by  individual  lysosomal  enzyme 

deficiencies  followed by accumulation of a  single  major  substrate  normally 

degraded by that enzyme. Following the build-up of this non degraded primary 

substrate, the endosomal/lysosomal system would eventually be overwhelmed, 

normal cell functions would collapse and cells would simply die as a result of 

this progressive constipation. This so-called “cytotoxicity hypothesis” is still 

often cited today to explain the pathogenesis of lysosomal disease, yet modern 

developments in cell biology and neuroscience offer much richer avenues of 

explanation (Walkley, 2009). Modern studies, in fact, contribute to overcome 

the  notion  of  lysosomes  as  end  organelles  in  the  serial  degradation  of 

molecules,  providing evidence  for  a  greater  role  of  these  organelles  in  cell 

metabolism. In this  respect,  recent findings demonstrated the existence of a 

gene  network  named  CLEAR,  regulating  the  lysosomal  biogenesis  and 

function (Sardiello et al., 2009). 
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As suggested  by  Tettamanti  et  al  (2003),  lysosomal  processing  include 

either the degradation or the recycling of break-down products for biosynthetic 

purpose,  known as “metabolic  salvage”.  There is  ample evidence that some 

complex molecules processed by the E/L system do not have to be degraded to 

their simplest components prior to exit from these organelles. An example are 

gangliosides, which are synthesized in the Golgi/TGN and delivered to the cell 

surface by vescicular transport in exocytic vacuoles, followed by insertion in 

the  outer  leaflet  of  the  plasmalemma.  Following  endocytosis,  complex 

gangliosides  come  into  contact  with  an  array  of  hydrolytic  enzymes  that 

facilitate  their  catabolism  to  simple  gangliosides.  However,  they  may  be 

recycled (or salvaged) after endocytosis  prior to their  complete  degradation. 

Thus, they may exit the E/L system and be trafficked to the Golgi/TGN, where 

they would be re-glycosilated and delivered again to the plasmalemma. So, the 

consequences of this failure to recycle materials (e.g. monosialogangliosides, 

cholesterol, glycosaminoglycans and others) out of the E/L system is of  great 

importance for LSD. Probably, the first consequence is that lysosomal storage 

simply overwhelms the cell’s capacity for volume expansion and causes death. 

Another possibility is that sequestered substrates like GM1 ganglioside could 

interact  with IP-3 receptor influencing the activity of this channel,  with the 

resulting efflux of Ca2+ from ER to mitochondria and, finally, the activation of 

apoptotic pathway (d’Azzo et al, 2009). 

Most LSD show wide-spread tissue and organ involvement. Brain disease 

however,  is  particularly  prevalent,  involving  two-thirds  of  all  lysosomal 

diseases. For LSD affecting brain, the pathogenic events appears to be more 

complex for several  reasons. Among these,  the wide variety of enzyme and 

non-enzyme proteins implicated in causing lysosomal disease; the complexity 

of brain itself in terms of heterogeneity of the neuronal and glial cell types that 

typically exhibit distinct metabolic identities and interrelationship; the potential 

role of the E/L system in signal transduction and in cellular homeostatic control  

(Walkley,  2009).  In neurons,  endocytic events govern a variety of signaling 
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mechanisms,  such  as  those  associated  with  neurotransmitter  actions.  For 

example,  endocytic  mechanisms  are  known  to  control  the  avaibility  of 

neurotransmitter  receptors  at  excitatory  synapses.  In  addition  to  a  possible 

compromise of neurotransmitter receptor recycling, another prominent aspect 

of signaling that may be altered in lysosomal disease involves growth factors. 

Growth factors receptors are known to be internalized by endocytosis, with this 

occurring  both  in  the  somatodendritic  as  well  as  axonal  domains.  Growth 

factors are also endocytosed at synaptic terminals and transported along with 

their receptors back to the neuronal cell body to recruit  appropriate second-

messenger  cascades  for signal  transduction purposes.  In  LSD, disruption of 

E/L function in  neurons  has  the  capacity  to  compromise  many normal  cell 

operation and to generate a host of downstream consequences. For example, 

the possible compromise in cycling of receptors critical for synaptic plasticity, 

secondary  to  lysosomal  system  compromise,  could  account  for  ectopic 

dendritogenesis that characterized many LSD. Analogously,  the formation of 

spheroids  (collection  of  mitochondria,  autophagosomal-like  and 

multivescicular-like  bodies)  may  be  contributing  to  compromise  signaling 

events  blocking  endosomes  carrying  a  growth  factor-receptors  complex 

essential for cell survival (Walkley, 2009). 

Failure to recycle materials out of the E/L system in lysosomal diseases 

may also lead to deficiency of precursor pools of metabolites and thereby alter 

cellular homeostatic functions leading to changes in synthetic pathways. The 

first consequence, in fact, might be the up-regulation of precursor synthesis, an 

event that if occurred would not solve the deficit but would simply add further 

problems  to  the  storage  process.  Another  possibility,  that  has  come  under 

increased  focus  in  lysosomal  disease,  is  the  block,  or  in  some  cases  the 

increase, of autophagy that is closely allied to protein degradative mechanisms 

associated with chaperone-mediated autophagy and the ubiquitin-proteosomal 

system (Settembre et al, 2008).

Taking  into  consideration  what  previously  described,  it  is  possible  to 
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conclude that the complexity of the pathogenetic events in LSD derive, at least 

in part,  from disruption of interrelated components of the greater lysosomal 

system  such  as  macroautophagy,  UPS,  endocytosis  (Walkley,  2009). 

Furthermore, all these evidences support the new concept of lysosomes as the 

central  element  in  the  lysosomal  system that  function  as  link  between  the 

endocytic streams from axonal domains and the “salvage pathway” (Fig 1).

New therapeutic options for lysosomal storage diseases 

Although at  present  the  sequence  of  pathological  events in  LSD is  not 

completely understood, there is no doubt that accumulation of storage materials  

is the first  pathogenetic factor which by triggering secondary structural and 

biochemical alterations leads to disease initiation and progression. Removal of 

this material should be the first therapeutic goal. Essentially, this target can be 

achieved  by  different  therapeutic  approaches  such  as  enzyme  replacement 

therapy, application of small molecules that could inhibit enzyme responsible 

for substrate synthesis (substrate deprivation) or act as chaperone to increase 

the residual activity of the lysosomal enzyme (enzyme enhancing therapy), and 

finally, gene therapy. 

The  early  in  vitro  studies  demonstrated  that  the  metabolic  defect  of 

cultured fibroblasts from mucopolysaccharidosis patients can be compensated 

by the addition of corrective factors which are secreted by cells not having the 

same defect and that the corrective factors are enzymes that are taken up from 

outside  the  cell  into  the  lysosomal  compartment  by  receptor-mediated 

endocytosis via the mannose 6-phosphate receptor (Fratantoni et al., 1968). On 

the basis of these early studies it was considered that LSD should be generally  

treatable by administration of the intact lysosomal enzyme, the so called 
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Fig. 1 Schematic summarizing the concept of the lysosome as a central element in the greater  
lysosomal system of neurons with links to the endocytic streams from somadendritic and axonal  
domains,  and  to  the  macroautophagy  stream and  its  close  allies,  the  ubiquitin-proteosomal 
system (UPS) and chaperone-mediated autophagy (CMA) components.  What flows into this 
system must also leave in some form, depicted here as the salvage pathway with delivery to the 
Golgi/TGN, mitochondria, and other sites in the cell. The complexity of the disease cascades in  
lysosomal  disorders  is  conjectured  to  emanate  in  part  from disruption  of  these  interrelated 
components of the greater lysosomal system, as described in the text. (EE, early endosome; RE, 
recycling endosome; LE, late endosome; LY, lysosome; SE, signaling endosome; AV, autophagic 
vacuole; ER, endoplasmic reticulum). (From: Walkley, 2009)



enzyme replacement  therapy (ERT).  The first  thing that must be taken into 

consideration for development of an effective ERT therapy is that various cell 

types use specific receptors for uptake of lysosomal enzymes. For example, the 

hepatocyte  membrane  contains  galactose  receptors,  macrophages  require 

mannose residues for uptake, whereas most cells bind exogenous enzymes via 

the mannose-6-phosphate receptor. In addition, the diversity in the density of 

the M6P receptor in different tissue could account for a different response of 

tissues to exogenously administered enzyme. So successfully ERT will require 

targeting to multiple cell types and the ideal drug may be that one that includes 

enzymes  with  various  sugar  residues,  designed  to  use  the  many  cellular 

receptors involved in endocytosis (Beck, 2007). 

Since  ERT has  been  successfully  introduced  for  patients  with  Gaucher 

disease, this principle of treatment has been taken into consideration for other 

LSD as well. Clinical trial for Mucopolysaccharidoses, Fabry disease, Pompe 

disease were set up with results that confirm the efficacy of the administration 

of  enzyme preparation.  However,  it  has  been  taken  into  consideration  that 

currently available replacement therapies are not able to treat all symptoms of a 

disorder  in  the  same  degree.  For  example  in  mucopolysaccharidoses  the 

enzyme preparation do not have a beneficial effect on the skeletal system, heart 

valve or brain. Another important limitation for ERT is the risk of developing 

antibodies that may lead to allergic reactions and/or inactivate enzyme activity 

following the regular intravenous administration of a protein. Humoral immune 

response to recombinant protein was investigated in MPS I patients showing 

increased IgG antibodies titers that did not inhibit enzyme activity. In most of 

the  patients,  after  continue  administration,  antibody  levels  declined  until 

dropped into the normal range suggesting that the patients developed immune 

tolerance to the recombinant human enzyme. Similar observation were made in 

clinical trials of ERT in patients with MPS VI and MPS II. In Gaucher disease, 

inhibitory  antibodies  were  found,  although most  of  them were transient.  In 

general,  the  presence  of  inhibitory  antibodies  was  not  associated  with  a 
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reduction in efficacy of the enzyme preparation. Generally it can be stated that 

enzyme replacement  therapy is  well  tolerated,  and the patients  who exhibit 

seroconversion show a decrease in their antibody titers with time and mostly 

continue to tolerate the enzyme preparation (Beck, 2007). 

Whereas  enzyme  replacement  therapy  is  aimed  at  removal  of  storage 

material accumulating within the lysosome, the principle of substrate reduction 

therapy is to partially inhibit the biosynthetic cycle to reduce substrate influx 

into the catabolically compromised lysosome. Imino-sugar for example were 

known  to  reduce  the  activity  of  the  enzyme  -glucosidase  and  were 

administered  in  clinical  trials  in  patients  with  Gaucher  disease  unable  to 

receive or to continue ERT or in combination with ERT (Cox et al, 2000). As 

glucosylceramide  represents  the  precursor  of  several  glycosphingolipids, 

imino-sugar were also considered as a treatment option for patients with G1-G2 

gangliosidoses  with  positive  results  in  mice  treated  with  this  drug.  Similar 

results  were  obtained  in  mouse  model  of  Niemann-Pick  disease  type  C  in 

which treatment delayed the onset of neurological dysfunction, increase life 

span and reduct ganglioside accumulation in the brains of animals. However, in 

Tay-Sachs disease the enzyme inhibitor could not arrest the progressive clinical 

deterioration.

Imino-sugar do not only act as enzyme  inhibitors but also have an effect as 

the so called chaperones. Chaperones, together with the ubiquitin system and 

the  proteasome  system,  have  the  task  to  control  the  quality  of  newly 

synthesized  proteins  eliminating  misfolded  or  unstable  mutant  proteins.  In 

genetic  disorders,  certain  missense  mutations  and  some  small  in-frame 

deletions  may  cause  polypeptide  misfolding,  but  may  not  impair  the 

functionally essential domains of the mutant protein (the active site, receptor-

binding site). Small molecule chemical chaperones (like imino-sugar) increase 

the  stability  of  the  mutant  protein,  restoring  the  native  conformation  of 

misfolded protein (Fig. 2). So, small molecule chemical chaperones may be 
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Fig. 2 A Normally, the lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) 
and trasported to the Golgi apparatus, where they receive the mannose-6-phosphate marker that 
is essential for receptor-mediated sorting into the lysosomes. B The mutant enzyme is misfolded 
and retained in the ER, enzyme activity is lacking in the lysosome. C N-butyldeoxynojirimycin 
increases the stability of the mutant enzyme that now is able to enter the Golgi apparatus and-
after binding the mannose-6-phosphate receptor-becomesactive within lysosome (From: Beck, 
2007).



therapeutically useful for various lysosomal storage disorders caused by mutant 

but yet catalytically active enzymes (Beck, 2007).

Although enzyme replacement therapy has become a therapeutic option for 

some lysosomal storage disorders, it has been shown to be of limited efficacy, 

especially  regarding  the  effect  on  bone  and  brain  manifestation.  Protein 

delivery  poses  serious  challenges  when sustained administration  is  required 

and when the central  nervous system (CNS) and peripheral  nervous system 

(PNS) are the major disease targets. In fact, the blood-brain and the blood-

nerve  barriers  may  severely  limit  access  of  systemically  administered 

therapeutic  molecules  to  these  tissues.  Gene-based  delivery  may  allow the 

establishment of a sustained source of therapeutic proteins within the body for 

peripheral  organs  correction,  or  within the  nervous system,  overcoming the 

anatomical barriers that limit enzyme diffusion from the circulation. 

Gene therapy by retroviral vectors

LSD are excellent candidates for therapy by gene transfer. They represent 

generally well-characterized single gene disorders, are not subject to complex 

regulation  mechanisms and  enzyme activity  of  only  15-20% of  the  normal 

level is sufficient for clinical efficacy (Beck, 2007). At present, various vector 

delivery systems exist that can be used for direct in vivo gene transfer into the 

CNS  and  delivery  of  therapeutic  molecules  to  brain  regions  vulnerable  to 

neurodegenerative diseases. Direct injection of gene transfer vectors into CNS 

has achieved long-term protein expression and therapeutic benefit in several 

disease model of LSD (for review see Biffi and Naldini, 2005). The occurrence 

of enzyme or vector crossing the blood-brain barrier seems unlikely and is not 

supported by clear experimental  findings. However the reduction of storage 

materials  in CNS could reflect  progressive  CNS engraftment  of circulating, 

cross-corrected  monocytes,  giving  rise  to  enzymatically  active  microglia, 

which could provide a partial benefit. 
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The main cellular target of lentiviral vectors (LV) in the CNS is neurons 

whereas  glial  cells  are  transduced  in  vivo  to  a  lower  efficiency.  Cross-

correction from transduced neurons may have the advantage of achieving a 

widespread enzyme distribution within the CNS, thanks to the long-range reach 

of neural processes. Direct CNS gene delivery by viral vectors is an effective 

strategy to restore the biologic functions of LSD brains. Moreover, this strategy 

not only halt disease progression but also reverse the disease phenotype once it  

has  been  established.  The  mechanisms  by  which  such  correction  could  be 

achieved remain to be elucidated. An intriguing hypothesis is that endogenous 

neural stem cells  are targeted by the vector,  and that their  progeny may be 

capable of replacing, at least in part, the damaged tissue. It is thus possible that 

the correction of nervous system pathology observed in some studies may be 

due to neuroregeneration from gene-corrected progenitors (Biffi and Naldini, 

2005). The cellular mechanisms responsible for the widespread distribution of 

therapeutic  enzyme  within  the  injected  brain  could  be  diffusion  into  the 

extracellular space or, more likely, axonal transport within secretory vescicle 

that may be released at nerve endings, taken up, and retrogradely transported 

along neural processes. The latter mechanism would allow long-distance active 

transport and crossing of the midline. 

Regarding the evaluation of the immune responses against the therapeutic 

protein and the vector used for in vivo gene transfer, several studies reported 

the  occurrence  of  cellular  and/or  humoral  immune  responses  after 

administration  of  pure  enzyme  and  liver  directed  in  vivo  gene-therapy, 

responsible for the clearance of the transduced cells and/or the disappearance 

of enzyme activity from the circulation. However some studies indicate that 

under  specific  experimental  conditions,  in  vivo gene delivery in  adult  mice 

may escape immune responses, such as by using hepatocyte-specific promoters 

that  restrict  transgene  expression  within  antigen-presenting  cells  (Biffi  and 

Naldini, 2005).

Direct injection of gene transfer vectors, or ex vivo engineered cells into 
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the  CNS  achieved  long-term  protein  expression  and  therapeutic  benefit  in 

several  disease  models.  However,  the  probable  requirement  for  multiple 

injections and the invasiveness of the procedure may limit its application to 

humans.  Furthermore,  intravenous  delivery  of  viral  vectors  has  been 

demonstrated to be of limited efficacy in enzyme delivery to tissues protected 

by physiological barriers such as the brain or poorly vascularized like skeleton 

(Biffi et al., 2004). Thus, an alternative strategy is represented by allogeneic 

hematopoietic  stem  cells  transplantation  (HSCT).  This  strategy  has  been 

performed  with  positive  results  in  several  LSD.  Several  works  have 

demonstrated that following bone marrow transplantation, donor derived cells 

have  been detected  within  the  CNS supporting  the  notion  that  donor  bone 

marrow-derived  (BM-derived)  cells  replaced  a  fraction  of  the  CNS 

macrophage/microglia  population  in  a  probable  process  of  physiological 

turnover and that this phenomenon was enhanced upon tissue damage.

Although allogeneic HSCT has been used with increased frequency to treat 

LSD patients, the therapeutic impact of bone marrow transplantation depends 

on the specific enzymatic deficiency and the stage of the disease; for example, 

visceral symptoms can usually be improved, whereas the established skeletal 

lesions  remain  relatively unaffected  and the  effect  on neurologic  symptoms 

varies. Clinical evidence in patients with metachromatic leukodystrophy and -
mannosidosis indicate that HSCT has led to promising results provided that the 

transplantation is performed in early presymptomatic stage, especially before 

that extensive CNS injury becomes evident (Malm et al., 1996; Krivit et al., 

1999).  However,  the  lack  of  adequate  donors  and  the  high  morbidity  and 

mortality related to allogeneic transplant greatly reduce the overall number of 

candidate  patients  for  HSCT.  Furthermore,  based  on  the  positive  clinical 

experience  with  bone  marrow  transplantation  in  some  LSD,  hematopoietic 

stem cell-mediated gene therapy was considered as an attractive alternative for 

the treatment  of LSD. The autologous procedure is associated with reduced 

transplant-related morbidity and mortality and avoids the risks of graft-versus-
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host  disease.  Moreover,  autologous  cells  may  be  genetically  modified  to 

constitutively express higher levels of the therapeutic enzyme and become a 

quantitatively more effective source of enzyme than wild-type cells, possibly 

also at the level of the nervous system.

HSCs are elective targets for gene therapy because of the ease with which 

they can be manipulated ex vivo and returned to the host. Moreover, the largely 

quiescent nature of HSCs, combined with the need for vector integration to 

ensure gene delivery to the HSC progeny, makes them prime candidates for LV 

transduction.  Therapeutic  efficacy  of  HSC-based  ex  vivo  gene  therapy 

approaches in controlling disease manifestations has been shown in preclinical 

experiments on LSD models. Metachromatic leukodystrophy (MLD) represent 

one of the first LSD on which RV-based and, later,  LV-based ex vivo gene 

therapy was tested. By transplanting HSCs transduced with a third generation 

LV carrying the therapeutic arylsulfatase A (ARSA) cDNA, enzyme activity 

was reconstituted in the hematopoietic system of MLD mice at supranormal 

levels and the development of major CNS and PNS disease manifestations at 

the functional, histopathological and behavioral levels was almost completely 

prevented.  Remarkably,  ex  vivo  gene  therapy  had  a  significantly  better 

therapeutic impact than did wild-type HSC transplantation, indicating a critical 

role for enzyme overexpression in HSC progeny (Biffi et al., 2004). 

More recently,  this therapeutic  approach has been also tested in  MPS I 

mouse  model (Visigalli et al., 2010) in which previous transduction of several 

viral vectors was not able to adequately correct the CNS and skeletal disease. 

Indeed, the results shown by Visigalli and coworkers demonstrated that gene-

corrected cells are capable of effective delivery of the functional IDUA enzyme 

to diseased tissues, including the CNS, where supra-normal enzymatic activity 

was measured. The efficient delivery of IDUA was associated with metabolic 

correction of the affected tissues, as shown by the clearance of accumulated 

glycosaminoglycan (GAGs) within hematopoietic and non-hematopoietic cells, 

suggesting an active secretion of the functional enzyme by the gene corrected 
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progeny of the transplanted cells and its re-uptake by resident populations.

These promising results achieved by LV-mediated HSC gene therapy both 

in MLD (for which this therapeutic approach has now entered clinical testing) 

and in MPS I, indicate that this approach represents an efficacious strategy for 

the treatment of storage diseases with systemic and CNS involvement, capable 

of addressing the disease manifestations refractory to correction by ERT and 

HCT. 

2.   Mucopolysaccharidosis IIIB

Mucopolysaccharidosis IIIB (MPS IIIB) is a lysosomal storage disease due 

to a deficiency of a lysosomal hydrolase (-N-acetylglucosaminidase, NAGLU, 

E.C. 3.2.1.50) necessary for the stepwise degradation of the saccharide chains 

of the heparan sulfate (HS) glycosaminoglycan (GAG). As for the majority of 

LSD, in the MPS IIIB the deficiency of a single lysosomal enzyme causes the 

accumulation, in patients’ cells, of its undegraded substrate. The build-up of 

HS is believed to be primarily responsible of the disease pathogenesis. 

The  disease  is  chronic  and  progressive  and its  manifestations  are  most 

pronounced  in  the  CNS,  with  severe  mental  retardation  and  behavioral 

problems (Neufeld and Muenzer,  2001).  A mouse model of MPS IIIB, that 

recapitulated the pathology observed in human patients,  has been created in 

1999 by Li and coworkers for the purpose of studying the pathophysiology of 

the disease and for developing treatment (Li et al., 1999). At date, however, 

there is  no effective therapy for MPS IIIB although gene therapy based on 

adeno-associated vector (Cressant et al., 2004) and lentiviral vector (Di Natale 

et  al.,  2005;  Di Domenico et  al.,  2009) has been tested in mice with some 

success  and management  of  this  difficult  disease is  all  that can be offered. 

Probably,  the lack of an effective therapy relies on the fact that pathogenic 

mechanism due to abnormal HS oligosaccharide catabolism and the consequent 

neurodegeneration are not yet well understood. Pathological studies of affected 
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mouse  brain  revealed  progressive  onset  and  aggravation  of  chronic  brain 

inflammation and widespread CNS pathology (Ohmi et al., 2003; Ausseil et al., 

2008).  At  this  regard,  microglia  activation  followed  by  secretion  of  toxic 

cytokines  (Li  et  al.,  2002;  Ohmi  et  al.,  2003;  Villani  et  al.,  2007)  and 

involvement of T-cell-mediated cytotoxicity (DiRosario et al., 2009; Villani et 

al.,  2009)  have  been  shown  to  contribute  to  neuropathology.  In  addition 

alteration in neuroplasticity (Li et al., 2002), neurotrophins (Villani et al., 2007)  

and increased degradation of synaptophysin (a protein associated to synaptic 

vesicles) by the proteasome (Vitry et al., 2009) have been found to account for 

neurodegeneration. A characteristic feature of brain disease in MPS IIIB is that 

in  contrast  to  somatic  cells  which  accumulate  primarily  heparan  sulfate, 

neurons accumulate a number of apparently unrelated metabolites that do not 

need the participation of NAGLU for their metabolism such as subunit c of 

mitochondrial ATP synthase (Ryazantsev et al., 2007), GM3 ganglioside (Ohmi 

et  al.,  2003),  cholesterol  (McGlynn  et  al.,  2004)  and  more  recently 

hyperphosphorylated  tau  protein  (Ohmi  et  al.,  2009).  Interestingly,  the 

accumulation of these secondary products and of the primary product is not 

dispersed  throughout  the  brain,  but  is  limited  to  neurons  in  certain  areas, 

especially enthorinal and somatosensory cortex.                            

However,  despite  all  the  efforts  to  clarify  the  MPS  IIIB  disease 

pathogenesis, the sequence of events from the enzyme deficiency to the cellular 

dysfunction and CNS pathology is not known. 
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Aims of the PhD thesis

We have found oxidative stress as one of the main factors implicated in the 

pathogenesis of the MPS IIIB murine model (Villani et al., 2007; 2009). Our 

previous works demonstrated the involvement of the reactive oxygen species 

(ROS) in the disease pathogenesis, showing the upregulation of the component 

of NADPH oxidase, the major source of ROS during inflammation expressed 

mainly  by  microglia,  as  well  as  the  overproduction  of  superoxide  ions 

throughout the CNS. In addition, by evaluating the effect of the stress on the 

cellular macromolecules we have found that oxidative stress results primarily 

in  protein  oxidation  and  that  it  is  present  in  MPS IIIB  -/-  animals,  in  the 

cerebrum and cerebellum tissues early in the disease course, i.e. at one month 

from birth (Villani et al., 2009). One of the consequences of increased ROS 

levels  in  brain  of  affected  mice  would  be  the  activation  of  the  mitogen-

activated protein kinases (MAPK). 

The mammalian family of MAPK includes extracellular signal regulated 

kinase (ERK), c-Jun NH2 terminal kinase (JNK; also known as stress-activated 

protein kinase SAPK) and p38 (Kim et al., 2010). Once activated, these Serine-

Threonine  kinases  mediates  a  variety  of  cellular  responses:  extracellular 

regulated kinase 1/2 (ERK 1/2) typically regulates growth, proliferation and 

differentiation (McCubrey et  al.,  2006; Dhillon et  al.,  2007), whereas stress 

activated  protein  kinase/Jun kinase  (JNK) and  p38 MAPK are  activated  in 

response to osmotic shock, UV irradiation, inflammatory cytokines, oxidative 

stress (Haddad, 2004). 

To  test  the  hypothesis  of  MAPK  activation  in  the  brain  pathology  of 

Mucopolysaccharidosis  IIIB  disease,  in  the  present  thesis  we  analyzed  the 

expression of  these  three  major  stress  kinases  in  the neuronal  tissue  of  the 

murine model of the disease. In particular, we studied the activation of phospho 

ERK1/2, SAPK/JNK and p38 MAPK in the cortex and in embryonic neurons 

cultured from MPS IIIB mice.

This thesis refers to the experimental work performed in the last two years of the PhD course (2008-2010).
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Materials and Methods

Chemicals

Hanks’ Balanced Salt  Solution and MEM were  purchased from Gibco. 

Fetal  Bovine  Serum,  L-glutamine,  penicillin  G  and  streptomycin  were 

obtained  from  Cambrex.  Cell  Signaling  Technology  supplied  the  first 

antibodies raised against phospho ERK1/2, phospho SAPK/JNK and phospho 

p38MAPK  and  the  goat  anti-rabbit  IgG  horseradish  peroxidase  (HRP) 

conjugated  secondary  antibody.  Poly  D-lysine,  cytosine  arabinoside  and 

trypsin  were  purchased  from  Sigma,  as  were  the  mouse  anti--tubulin 

monoclonal primary antibody and the goat anti-mouse IgG HRP conjugated 

secondary antibody.

Animals

The mice were genotyped by PCR performed on DNA samples extracted 

from tail biopsy at 1 month after birth, as previously described (Di Natale et 

al., 2005). For the study on adult mouse cortices, homozygous mutant mice 

and wildtype (Wt) control mice of 1, 2, 3, and 6 months of age were used. At  

the  time  of  killing,  the  mice  were  sacrificed  by  cervical  dislocation  after 

profound  anesthesia.  The  cerebrum  was  rapidly  removed  and  the  cortex 

isolated by using a stereomicroscope (Zeiss) on ice-cold tissue culture plate. 

The cortices were then transferred to microcentrifuge tubes and immediately 

stored at -80 0C until used. For the preparation of primary neuronal cultures, 

timed-pregnancies of MPS IIIB and Wt mice were set up and embryos were 

obtained  by  cesarean  section  of  pregnant  mice  16  days  after  coitum.  All 

experimental protocols were approved by the Italian Ministry of Public Health.

Western blotting

Brain cortices were homogenized on ice in lysis buffer (20 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM 
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sodium  pyrophosphate,  1  mM  beta-glycerophosphate,  1  mM  Na3VO4) 

supplemented with protease inhibitors (1µg/ml leupeptin, 1µg/ml aprotinin, 1 

mM PMSF) and incubated for 30 minutes on ice. After centrifugation at 14000 

rpm  at  4°C  for  30  minutes,  the  supernatants  were  used  for  protein 

determination  by  the  Bradford  method  (Bradford,  1976)  using  BSA as  a 

standard.  The  same protocol  was  used  for  the  preparation  of  total  protein 

extract from neuronal cells. Western blotting analysis was carried out on equal 

amounts of protein extracts. Briefly, 30 µg of total protein extract were boiled 

for 5 minutes in SDS/reducing loading buffer, run on a 10% SDS-PAGE and 

then transferred onto nitrocellulose membranes (Millipore). The membranes 

were blocked for 1 hour at room temperature with 5% BSA (or 5% skim-milk 

powder for anti-tubulin) in T-TBS (30 mM Tris-HCl, 125 mM NaCl, 0.1% 

Tween 20). The blots were then incubated overnight at 4°C with the specific 

primary antibody, appropriately diluted in T-TBS containing 5% BSA for the 

phospho-MAPK antibodies or 2% milk for the tubulin antibody. The primary 

antibodies  used  were  rabbit  anti-phospho  ERK1/2  (1:1000),  rabbit  anti-

phospho  SAPK/JNK  (1:500),  rabbit  anti-phospho  p38MAPK  (1:500)  and 

mouse anti-tubulin (1:10000).  After  washing in  T-TBS (30 mM Tris-HCl, 

125 mM NaCl, 0.05% Tween 20), the membranes were incubated for 1 hour at 

room  temperature  with  goat  anti-rabbit  or  anti-mouse  HRP  conjugated 

secondary  antibody  diluted  in  T-TBS  containing  2%  milk  (1:3000).  The 

proteins were  visualized by an enhanced chemiluminescence reaction using 

E.C.L. detection reagent (Amersham) followed by exposure to film (Fuji). The 

same blots were stripped and re-probed with -tubulin monoclonal antibody to 

confirm equal loading of proteins in all lanes. Films were scanned using an HP 

scanner and subjected to densitometric analysis with ImageJ software.

Primary cortical neuronal cultures

Neuronal  cultures  were  prepared  from embryonic  day-16  (E16)  mouse 

cortices  as  described  by  Scorziello  and  colleagues  (2001)  with  some 
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modifications. Brains of mouse embryos, obtained from time-pregnant MPS 

IIIB and Wt mice, were collected and placed in ice-cold Hanks’ balanced salt 

solution  supplemented with 5 mg/ml  glucose,  7  mg/ml saccharose and 0.3 

mg/ml  sodium  bicarbonate.  Cortices  were  then  isolated  under  a 

stereomicroscope  by  removing  the  attached  meninges  and  incubated  with 

0.25% trypsin  for  20 minutes  at  37 °C.  After  centrifugation  at  600g for  5 

minutes, the cells were dissociated by careful titration through a constricted 

Pasteur  pipette.  Dissociated neurons were  resuspended in minimal essential 

medium (MEM) containing glucose, 5% heat-inactivated fetal bovine serum, 

5% heat-inactivated horse serum, 2 mM L-glutamine, 100 U/ml and 100 µg/ml 

of a mixture of penicilin-streptomycin and seeded at a density of  2 X 106 cells 

on 35 mm Petri  dishes  precoated  overnight  with 0.1 mg/ml  poly-D-lysine. 

After 24 h the medium was replaced with freshly prepared medium of similar 

composition as before and neuronal cells were maintained in humidified 5% 

CO2/95%  air  atmosphere  at  37°C  until  used.   Cytosine  -D-arabino-

furanoside  (10  µM)  was  added  at  5  days  in  vitro (DIV)  to  prevent  glial 

proliferation and experiments were performed on cultures that were 8 DIV. 

The  data  of  each  experiment  were  obtained  from at  least  three  individual 

culture preparations (i.e., one embryo was used for one culture preparation) 

and each experiment was repeated at least three times.

Confocal immunofluorescence analysis

The purity of the cultures was verified using the neuron-specific marker 

microtubule-associated  protein-2  (MAP2)  and  the  astrocyte  marker  glial 

fibrillary acidic  protein  (GFAP). Primary cortical  neurons cultured  on glass 

coverslips were rinsed in cold 0.01M saline phosphate buffer at pH 7.4 (PBS) 

and fixed in 4% (w/v) paraformaldehyde (Sigma, Milan, Italy) for 20 min at 

RT at 8-10DIV. Following three washes in PBS, cells were blocked with 3% 

(w/v) bovine serum albumin and 0.05% Tryton-X (Biorad, Milan, Italy) for 1 h 

at room temperature (RT). The coverslips were then incubated with the primary 
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antibody anti-Map2 (mouse monoclonal, 1:2000 dilution, Sigma, Milan, Italy), 

or anti-GFAP (rabbit polyclonal, 1: 1000 dilution, Sigma, Milan, Italy),  at 4 ◦C 

overnight. Following three washes in PBS, the coverslips were incubated in the 

dark with the corresponding secondary antibodies: Alexa fluor 594 anti-mouse 

IgG  and  Alexa-fluor  488  anti-rabbit  IgG  (Molecular  Probes,  Eugene,  OR; 

dilution 1:200) for 1 h at RT. After the final wash, the coverslips were mounted 

with Vectashield mounting medium (Vector Labs, Burlingame, CA,). Images 

were  observed  using  a  Zeiss  LSM510  META/laser  scanning  confocal 

microscope. Single images were taken with an optical thickness of 0.7 µm and 

a resolution of 1024X1024.

Measure of HS levels in cultured neurons

The level of HS in embryonic neurons cultured from MPS IIIB and Wt 

animals  was  measured  according  to  Bjornsson  (1993)  with  some 

modifications.  Briefly,  the  total  extract  from  neuron  pellets  (300µg)  was 

resuspended in 0.9% NaCl/0.2% Triton X-100, rotated at 4°C overnight and 

centrifuged to remove debris. GAGs were precipitated with Alcian Blue and 

absorbance was measured at 600 nm. Heparan sulfate from porcine intestinal 

mucosa was used as a standard.

Statistical analysis

All results are presented as histograms and data are expressed as means 

SD  of  five  independent  experiments.  Student’s  t test  was  used  to  assess 

whether  there  were  significant  differences  between  MPS  IIIB  and  control 

mice.
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Results

Our work was aimed at the dissection of the intracellular pathways that 

might be switched on/off in the cortex and in cultured neurons of the MPS IIIB 

mice. Three major protein kinase pathways have been shown to be responsive 

to insults such as stress, the ERK 1/2, JNK and p38MAPK (Seger and Krebs, 

1995). MAPKs are activated by phosphorylation on specific Thr and Tyr sites 

by upstream kinases. Therefore, we examined by Western blot the level of the 

three MAPKs by using antibodies specific for each phosphorylated form of 

these enzymes.

Selective activation of ERK and JNK in the cortex of MPS IIIB mice

We evaluated the activation status of ERK1/2 in the cortex of MPS IIIB 

and Wt mice by Western blot on the homogenates of cortex derived from mice 

at  different  ages.  We  used  a  primary  monoclonal  antibody  raised  against 

phospho-(Thr202/Tyr204)-ERK, selective for the two isoforms of the enzyme, 

corresponding  to  phospho-ERK1  and  phospho-ERK2  with  an  apparent 

molecular weight of 44 kDa and 42 kDa, respectively. We found that both p44 

and  p42  were  significantly  activated  in  1-2-month-old  MPS IIIB  mice,  as 

shown in Fig. 3. The quantitative analysis performed comparing the density of 

the  corresponding  bands  to  that  of  tubulin  is  shown  in  Figs.  3B and  3C, 

respectively. The levels of both p44 and p42 in MPS IIIB mice (black bars) 

were two-fold higher than in Wt littermates (white bars) and the increase was 

statistically significant. Selective upregulation of ERK1/2 was lost with older 

mice (3 and 6 months).

The activation status of SAPK/JNK was evaluated by Western blot using a 

polyclonal  antibody  raised  against  phospho-(Thr183/Tyr185)-SAPK-JNK, 

showing only two major bands at an apparent molecular weight of 54 kDa and 

46 kDa. Fig. 4A indicates that SAPK-JNK is activated in the first two months 

from  birth  of  MPS  IIIB  mice  compared  to  Wt  controls.  The  quantitative 

analyses performed comparing the density of the corresponding bands to that 
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of  tubulin  are  illustrated  in  Figs.  4B  and  4C,  respectively.  A significant 

increase was evident only at 1-2 months of age. As for pERK1/2, the selective 

upregulation of JNK decreased with age.

Selective downregulation of p38MAPK in the cortex of MPS IIIB mice

In order to evaluate the activation status of p38MAPK, a Western blot was 

performed using an anti-phospho p38MAPK antibody raised against phospho-

(Thr180/Tyr182)- p38MAPK, showing one single major band at an apparent 

molecular  weight  of  38 kDa.  Fig.  5A shows a  representative Western  blot 

showing that activation of p38 is present in the cortex of MPS IIIB mice but is 

lesser than that found in the cortex of Wt mice. A quantitative analysis of the 

data  found  in  Wt  (white  bars)  and  MPS  IIIB  (black  bars),  performed  by 

comparison  to  the  tubulin  band,  is  shown in  Fig.  5B.  The data  show that 

p38MAPK is less phosphorylated in the cortex of MPS IIIB mice at each time 

considered from birth, although the difference is statistically significant only at 

1 month of age. 
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Primary cortical neurons: isolation and measure of GAGs levels

Neurons  were  isolated  from  the  cortex  of  Wt  and  MPS  IIIB  mice  at 

embryonic day E16. The purity of the cultures was verified to be 98% using 

the neuron-specific marker microtubule-associated protein-2 (MAP2) and the 

astrocyte marker glial fibrillary acidic protein (GFAP) (Fig. 6).

The levels of GAGs measured on cultured cells were significantly higher 

(P <0.005, Student’s t test) in neurons from affected mice with respect to those 

found in Wt controls (Table 1).

Activation of MAPKs in cultured neurons from MPS IIIB mice

In  order  to  evaluate  whether  the  alterations  in  the  MAPK  pathway 

identified in the cortex of MPS IIIB mice are present already at an early stage 

of cortex development, we analyzed the phosphorylation status of MAPKs in 

neurons cultured from MPS IIIB and Wt mice. The activation of MAPKs in 

cultured neurons was analyzed by Western blotting on protein extract obtained 

from MPS IIIB and Wt cortical neurons at 8 days in vitro (8 D.I.V.). Both ERK 

and SAPK/JNK showed an increase in the phosphorylated bands in MPS IIIB 

neurons  (Figs.  7A,  C).  A  quantitative  analysis  performed  comparing  the 

immunopositive bands of each kinases with that of tubulin reveals that  the 

differences between MPS IIIB (black bars) and Wt (white bars) are statistically 

significant (Figs. 7B, D). Increased phosphorylation of the p38MAPK band is 

also present in MPS IIIB cultured neurons (Fig. 7E), although not statistically 

significant as shown by quantitative analysis (Fig. 7F). 
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Discussion

In the present  work, we studied the activation of the three main stress 

kinases (MAPK) in an MPS IIIB mouse model and showed that a selective 

activation of MAPK is involved in the disease pathogenesis.

The mammalian family of MAPK includes extracellular signal-regulated 

kinase  (ERK),  c-Jun  NH2  terminal  kinase  (JNK;  also  known  as  stress-

activated  protein  kinase  SAPK)  and  p38  (Kim  et  al.,  2010).  Extracellular 

regulated kinase 1/2 (ERK 1/2) typically regulates growth, cell proliferation 

and differentiation, whereas stress activated protein kinase/Jun kinase (JNK) 

and p38MAPK are activated in  response to osmotic shock, UV irradiation, 

inflammatory cytokines and oxidative stress (Haddad, 2004). Moreover, JNK 

has been associated with the neurofibrillary pathology (Willaime-Morawek et 

al., 2003), and its upregulation has been shown to overlap with phosphorylated 

tau (Zhu et al., 2001). Once activated, these serine-threonine kinases mediate a 

variety  of  cellular  responses  including  cell  proliferation,  differentiation, 

survival,  death  and  transformation  (McCubrey  et  al.,  2006;  Dhillon  et  al., 

2007).  However,  although  it  is  well  established  that  ERK  activation  has 

beneficial effects on the cells, recent findings on neural cells show that ERK 

may exert an opposite effect, in that its activation can either promote neuron 

survival or cause cell death. For example, in a number of neural cell systems it 

has  been  shown  that  chronic  activation  of  ERK  is  able  to  impair  the 

physiological response to neurotrophic factors and/or to drive cells to death 

(Colucci-D’Amato et al., 2003). Moreover, ERK activation was suggested to 

play a role in a caspase-independent  mechanism of cell  death involving an 

alteration of the plasma membrane (Subramaniam et al., 2004).

Our data show an increased activation of ERK and SAPK/JNK in the first 

two months after birth in the cortex of MPS IIIB animals, and this is consistent 

with the clinical onset of the disease, in which the neurological manifestations 

are evocative of a frontal pathology. However, although the increased MAPK 

expression was detected in the cortex,  at  present we cannot exclude that it 
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could also be present outside the cortical area.  Our results are in agreement 

with  the  findings  of  early  activation  of  ERK  in  some  neurodegenerative 

diseases: phosphorylated ERK immunoreactivity has been found in neurons in 

Pick’s disease, progressive supranuclear palsy and corticobasal degeneration 

(Ferrer et al., 2001), in hippocampal neurons with neurofibrillar degeneration 

in Alzheimer’s disease (AD) (Perry et al., 1999) and in astrocytes from AD 

patients (Webster et al.,  2006). 

The alterations in the CNS in MPS IIIB shared some features with other 

neurodegenerative diseases, especially AD, like the accumulation of abnormal 

products,  activation  of  microglia  and  alteration  of  the  lysosomal  and 

autophagic degradation pathway. To this regard, it is interesting to note that 

Ohmi and coworkers recently described for the first time the presence of a 

hyperphosphorylated form of microtubule-associated protein tau in the brain 

of  MPS  IIIB  mice  (Ohmi  et  al.,  2009),  a  characteristic  of  many  storage 

diseases  associated  with  dementia.  An accumulation  of  HS is  the  primary 

consequence  of  the  enzyme defect  in  MPS IIIB and triggers  a  cascade  of 

pathological  events that progressively leads to CNS pathology. Ausseil  and 

coworkers detected GAG accumulation in the brain of MPS IIIB mice already 

at the age of 10 days (Ausseil et al., 2008), but we observed a storage of HS 

starting  during  embryonic  life,  as  seen  by the  HS accumulation  in  neuron 

cultures from the brain of E16 MPS IIIB mice. It has been demonstrated that 

heparin is able to promote tau aggregation in vitro and so it is likely that this 

function is carried out by heparan sulfate  in vivo (Pandel et al., 1999). This 

observation suggests that HS accumulation in the early stage of the MPS IIIB 

disease could promote tau aggregation and consequent hyperphosphorylation 

through  the  activation  of  MAPK,  as  demonstrated  in  other  models  of 

neurodegeneration (Perez et al., 2008). Alternatively, early activation of ERK 

and  SAPK/JNK  may  represent  a  first  response  to  the  onset  of  MPS  IIIB 

pathology and thus  may be linked to  neuroprotective pathways.  In fact,  as 

discussed above, different kinetics of ERK activation can account for its dual 
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effects, i.e. survival or death of neuronal cells (Colucci-D’Amato et al., 2003). 

Interestingly,  the  rise  in  pERK  and  pSAPK/JNK  immunoreactivity  were 

transient and more characteristic of the early stage of disease and, therefore, 

may be a reaction to ongoing neuronal damage. Thus, the increase in ERK and 

SAPK/JNK phosphorylation may be a reaction to microglia activation caused 

by HS, a feature that Ausseil and coworkers (2008) identified in the early stage 

of MPS IIIB brain pathology. 

Our results obtained in the cortex of MPS IIIB mice were confirmed by 

the study of embryonic cultured cortical neurons, in which the patterns of ERK 

and SAPK/JNK phosphorylation reflect those observed in the brain of post-

natal mice and permit us to speculate that this activation is present already 

during fetal life. Moreover, our data obtained in pure neuronal cultures, devoid 

of  astrocytes  and  microglia,  allow  us  to  reasonably  assume  that  this 

phenomenon is  not  secondary to  the  activation  of microglia,  and this  is  in 

agreement with the assumption of Ausseil and coworkers (2008) that in the 

early stage of MPS IIIB disease, the pathology of the central nervous system is 

cell autonomous rather than environmental. 

We found that p38MAPK was downregulated in the cortex of MPS IIIB 

mice compared to Wt littermates. Increased activation of p38MAPK has been 

found in brain homogenates in all the tauopathies (Ferrer et al., 2005), and 

often  phosphorylated  p38MAPK  immunoreactivity  has  been  found  in  co-

localization with activated SAPK/JNK (Ferrer et al., 2001; Giovannini et al., 

2008). It is widely accepted that the activation of p38MAPK is related to the 

production of pro-inflammatory cytokines but also to an aggravation of the 

inflammatory processes, a feature shared by most chronic neurodegenerative 

diseases.  However,  the  lesser  phosphorylation  of  p38 that  we found in the 

brain cortex of 1-month-old MPS IIIB mice can be explained if we consider 

that the inflammatory pathology is prominent only in the late disease course 

(Ausseil  et  al.,  2008).  Alternatively,  the  inhibition  of  p38MAPK 

phosphorylation could support the hypothesis that early activation of ERK and 
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SAPK/JNK represent a first response to the onset of the pathology.  

The experiments conducted in this study show that a selective activation of 

MAPK is present in the murine model of MPS IIIB. In particular, the early 

stages of the disease are characterized by simultaneous activation of ERK and 

SAPK/JNK  pathways  and  inhibition  of  p38MAPK  phosphorylation.  These 

results together with our findings in pure neuronal cultures allow us to suggest 

not  only  that  the  alteration  of  the  MAPK  pathways  is  involved  in  the 

pathophysiological changes that occur early on in the brain of MPS IIIB mice, 

but  also  that  these  events  are  cell  autonomous  and  not  dependent  on 

environmental alterations, at least in the early stages of brain disease.

We propose a model for the pathological mechanisms involved in MPS 

IIIB disease (Fig.8), where the selective activation of stress kinases could be 

included in the pathogenetic cascade following enzymatic deficit. It could well 

be, in fact, that an increased ROS production (Villani et al., 2007; 2009) might 

lead to the activation of MAPK (this thesis).  However,  whether or not this 

leads to cell death, as suggested for other lysosomal diseases (for review see 

Walkley,  2009),  remains  to  be demonstrated  for  MPS IIIB.  To this  regard, 

previous data on apoptotic or non-apoptotic mechanisms in brain disease of 

MPS IIIB are controversial (Li et al., 2002; Villani et al., 2007; 2009). Finally, 

although  further  studies  are  required  to  define  the  exact  sequence  of 

pathological  events  in  MPS  IIIB  brain  disease,  our  experiments  have 

demonstrated for the first time that cell signaling transduction alterations are 

involved in the MPS IIIB neuronal pathology. 
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Conclusions

In the present thesis we have studied the activation of the main mitogen-

activated protein kinase (MAPK) in MPS IIIB mouse model, showing that a 

dysregulation of MAPK is involved in  the brain disease of young mice.  In 

particular,  we found a simultaneous  activation of  ERK 1/2 and SAPK/JNK 

pathways  and  inhibition  of  p38MAPK  phosphorylation.  These  results, 

confirmed in pure neuronal cultures, allow us to suggest that the alteration of 

the  stress  kinases  is  cell-autonomous  and  not  dependent  on  environmental 

alterations  (i.e.  microglia  activation),  at  least  in  the  early  stages  of  brain 

disease.

Our results add a  new insight  in  the pathological cascade of MPS IIIB 

disease.  We  suggest  that  an  increased  ROS  production,  previously 

demonstrated in our laboratory (Villani et al., 2007; 2009) would lead to the 

activation of MAPK, and finally to cell death.

Our work, to our knowledge, is the first study reporting that cell signaling 

transduction alterations are involved in the MPS IIIB neuronal pathology. 
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Sanfilippo B syndrome (Mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease
due tomutations in the gene encoding alpha-N-acetylglucosaminidase and is characterized
by a severe neurological disorder. Although several studies have been reported for the
murine model of the disease, the molecular basis and the sequence of events leading to
neurodegeneration remain to be clarified. We previously suggested the possible
involvement of the reactive oxygen species in the disease pathogenesis. In the present
paper we extended the analysis of oxidative stress by evaluating the production of
superoxide ions throughout the CNS and by evaluating the effect of the stress on the cellular
macromolecules. These approaches applied to one-month-old, three-month-old and six-
month-old mice revealed that oxidative stress is present in the affected cerebrum and
cerebellum tissues from one month from birth, and that it results primarily in protein
oxidation, both in the cerebrum and cerebellum, with lipid peroxidation, and especially DNA
oxidation, appearing milder and restricted essentially to the cerebellum. We also identified
additional genes possibly associated with the neuropathology of MPS IIIB disease. Real time
RT-PCR analysis revealed an altered expression of the Sod1, Ret, Bmp4, Tgfb, Gzmb and Prf1
genes. Since Gzmb and Prf1 are proteins secreted by NK/cytotoxic T-cells, these data suggest
the involvement of cytotoxic cells in the neuronal pathogenesis. Extending our previous
study, findings reported in the present paper show that oxidative stress and all the analyzed
stress-related pathological changes occur very early in the disease course, most likely before
one month of age.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Mucopolysaccharidosis IIIB (MPS IIIB, Sanfilippo syndrome
type B) is a lysosomal disease due to mutations in the gene
encoding alpha-N-acetylglucosaminidase (NAGLU, EC 3.2.1.50),
which is required for the degradation of heparan sulphate (HS)
(Neufeld and Muenzer, 2001). The clinical phenotype of the

disease is characterized, primarily, by profound neurological
deterioration and behavioral disturbances associated to rela-
tively mild somatic manifestations; the genetic basis of MPS
IIIB, extensively studied in the past years, demonstrates a
broad molecular heterogeneity (Neufeld and Muenzer, 2001).
Although a murine model of the disease has been available
since 1999 (Li et al., 1999), and although it was recently studied
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on a clinical basis (Heldermon et al., 2007), the pathogenetic
basis of the neurological disease is still unclear; i.e. the rela-
tionship between abnormal lysosomal storage of partially
degraded HS and the neurodysfunction.

For lysosomal diseases, as for others neurodegenerative
diseases, much evidence points to the involvement, in the
neurological pathology, of an inflammatory response that
includes astrocyte and microglia activation followed by the
expression and secretion of potentially neurotoxic cytokines
and chemokines (Myerowitz et al., 2002; Wu and Proia, 2004).
Also for MPS IIIB a drastic induction of reactive astrocytes was
reported to be related to the expression of the glial fibrillary
acidic protein (GFAP) and GFAP-positive cell density (Li et al.,
2002) as well as the involvement of microglia (Ohmi et al.,
2003). Our group also confirmed the finding of an upregulation
of several genes involved in astrogliosis (Villani et al., 2007).
However, a recent study demonstrated that the absence of
microglia cell priming by HS oligosaccharides did not change
the onset of the expression of several markers, although the
onset of brain inflammation was delayed for several months
(Ausseil et al., 2008).

Indeed, other evidence on the reduction of the brain
function in the mouse model of MPS IIIB pointed to important
alterations in the maintenance of neuroplasticity involving
fibroblast growth factors (FGF) and their receptors (FGFR) (Li et
al. 2002) and to alterations of the neurotrophins Bdnf and
Cbln1, as well as to alterations of the microglial NADPH
oxidase complex (Villani et al., 2007), suggesting that altera-

tions in the neurotrophin and ROS levels could participate in
neuronal dysfunction.

The balance between ROS production and antioxidant
defenses determines the degree of oxidative stress: increased
ROS levels may result in a damaging of macromolecules and
constitute a stress signal that activates specific redox-sen-
sitive signaling pathways that have damaging functions
(Dröge and Schipper, 2007). The present study aims to extend
the analysis of the oxidative stress previously found to be
involved in the MPS IIIB murine model (Villani et al., 2007) by
evaluating its effect on the intracellular macromolecules in
nervous tissues of the affected mice; moreover, additional
genes were analyzed as possibly associated with the neuro-
pathology of MPS IIIB disease. We demonstrate here that
oxidative stress has modifying effects on cell macromolecules
and that stress and its effects are evident already at one
month from birth.

2. Results

2.1. Analysis of NADPH oxidase activity

Taking into account our previous results demonstrating an
increase in the superoxide ion production in the whole brain
and cerebellum of old MPS IIIB mice, in the present study we
extended the analysis of the NADPH oxidase activity in young
animals, in three different regions of the cerebrum identified

Fig. 1 – Analysis of NADPH oxidase activity. NADPH oxidase activity was determined in the brain homogenates prepared by
pooling tissues from three different regions of the cerebrum: rostral (R), intermediate (I) and caudal (C) fragment, obtained from
one-, three- and six-month-old normal (white bars) andMPS IIIB (black bars)mice (n=4 for each group). A lucigenin-based assay
was performed as described in the Experimental procedures. Reactionswere started by adding the proteins, and the production
of superoxide ions was measured every 10 s for 15 min by monitoring chemiluminescence. The data, collected as relative
luminescence units, were plotted versus time, and the area under the chemiluminescence intensity curve (integral
chemiluminescence) was used for analysis. Values are mean±SD of three experiments performed on different sets of mice
(*P<0.05; **P<0.01).
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as the rostral (R), intermediate (I) and caudal (C) fragment. The
results are shown in Fig. 1. At one month from birth the
affectedmice showed, in all the cerebrum segments analyzed,
an increased production of superoxide ions (as demonstrated
by the suppression of chemiluminescence following addi-
tion of SOD, data not shown): 208%, 173% and 160% for the
rostral, intermediate and caudal segment, respectively. At
three months and six months from birth the increase in the
superoxide ion production was restricted only to the rostral
segment of the cerebrum (232% and 182% compared to normal
levels, respectively).

Following these results, we analyzed the oxidation status
of the cellular macromolecules in affected tissues at different
animal ages by evaluating the protein carbonyl content, lipid
peroxidation and DNA oxidation.

2.2. Oxidative damage: protein oxidation analysis

Protein carbonyls may originate from backbone fragmenta-
tion, hydrogen atom abstraction at alpha carbons, or attack on
several amino acid side-chains (Lys, Arg, Pro, Thr, etc.), and
from the formation of adducts between amino acids and
products of lipid peroxidation. Moreover, several reactions of
protein radicals can result in the production of other radicals,
contributing to cause damage to other biomolecules (Sultana
et al., 2006). Protein carbonyls are chemically stable compared
with the other products of oxidative stress and so are sensitive
indices of oxidative injury. Therefore, we performed the pro-
tein oxidation analysis using a protein carbonyl ELISA kit. As
shown in Fig. 2, increased levels of protein oxidation were
obtained for both the cerebrum and cerebellum, at each time
point from birth. For the cerebrum, the main increase was
observed at 3 months of age (259%), while a protein carbonyl
content corresponding to 146% and 118% compared to normal
controls was obtained for the one-month-old and six-month-
old mice, respectively (Fig. 2, panel A). Conversely, for the
cerebellum the highest carbonyl levels were seen at 6 months
from birth (218% compared to normal brains); an increase of
135% and 123% was observed at 1 month and 3 months from
birth, respectively (Fig. 2, panel B).

2.3. Oxidative damage: lipid peroxidation analysis

Lipid peroxidation is one of the major sources of free radical-
mediated injury that directly damages membranes and
generates a number of secondary products. In particular,
markers of lipid peroxidation have been found to be elevated
in brain tissues and body fluids in several neurodegenerative
diseases (Sultana et al., 2006).

Lipid peroxidation quantified by the classic measurement
of malondialdehyde (MDA) and 4-hydroxy nonenal (4-HNE),
the degradation products of polyunsaturated fatty acid
hydroperoxides, can often lead to an inaccurate estimation
of lipid peroxidation (Mihaljević et al., 1996). We, therefore,
evaluated the lipid peroxidation in the affected tissues by
using a lipid hydroperoxide assay that measures the hydro-
peroxides (HDP) directly utilizing the redox reactions with
ferrous ions. In the cerebrum a slight increase in lipid per-
oxidation was observed only in the three-month-old affected
mice (135% compared to normal tissue), while at 1 month and
6months frombirth theHDP levels of the affected tissueswere
similar to the levels found in the normal controls (108% and
107%, respectively) (Fig. 3, panel A). For the cerebellum, a 134%
and 145% increase was obtained for the three-month-old and
six-month-old mice, respectively; HDP levels similar to that
found for the normal tissueswere observed at onemonth from
birth (Fig. 3, panel B).

2.4. Oxidative damage: DNA oxidation analysis

8-OHdG is produced during DNA repair and its measurement
is a useful marker of oxidative damage. The analysis of the
oxidative damage onDNA in theMPS IIIB animals showed that
in the cerebrum there was no significant difference compared
to normal tissues, with only a slight increase in 8-OHdG
adducts observed for one-month-old and six-month-old mice

Fig. 2 – Oxidative damage: protein oxidation analysis. The
protein oxidation analysis was performed using a protein
carbonyl ELISA kit as reported in the Experimental
procedures. Tissue samples (cerebrum, panel A, or
cerebellum, panel B) from affected (black bars) or
age-matched normal (white bars) mice, 1, 3, 6 months old
(n=5 for each age), were pooled and homogenized in water
on ice; immediately after homogenization the protein
determination was performed using the Lowry assay and
20 μg of proteins was TCA precipitated to be used in the
ELISA assay described in the Experimental procedures.
Values, reported as nmol/mg protein carbonyl concentration,
are mean±SD of three experiments performed on different
sets of animals (*P<0.05; **P<0.01).
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(113% and 112% compared to normal animals, respectively)
(Fig. 4, panel A). Conversely, affected cerebella had increased
levels of 8-OHdG adducts mainly at one and three months
from birth (150% and 144% over the normal levels, respec-
tively) while tissues from six-month-old mice showed an
increase of 120% over the normal controls (Fig. 4, panel B);
however, the differences were not statistically significant ex-
cept for the intermediate age.

2.5. Searching for altered genes: real time RT-PCR analysis
in old mice

As a preliminary experiment, this analysis was performed
twice on tissues from six-month-old MPS IIIB mice and age-

matched normal controls (single sets of n=7 animals). Pools
of RNAs were used to generate cDNAs to be subjected to
the screening. Selected members of different families of
genes were analyzed in the rostral, intermediate and caudal
fragment of the cerebrum: 1) oxidative stress-related genes;
2) DNA repair-related genes; 3) neuronal plasticity-related
genes; 4) neurotrophin genes; 5) inflammation-related genes
and 6) apoptosis-related genes. The results are shown in
Table 1; fold changes (fc) were considered significant if ≥2 fold
or ≤0.5 fold.

Among the oxidative stress-related genes, only Sod1
showed a significant variation (fc 2.7) in the intermediate
region of the cerebrum, with aminor increase in the other two

Fig. 4 –Oxidative damage: DNA oxidation analysis. DNA was
purified from tissue samples (cerebrum, panel A, or
cerebellum, panel B, from affected or age-matched normal
mice, n=4 for each group) excised at 1, 3 or six months of
age. DNA preparations obtained from three mice were
pooled and quantified and 200 μg was pretreated with
nuclease P1 as described in the Experimental procedures;
hydrolysates were filtered and applied to the wells of the
ELISA plate and the quantitative measurement of 8-OHdG
adducts was obtained (see Experimental procedures).
Values, representing ng/ml of 8-OHdG adducts, are
mean±SD of three experiments performed on different sets
of animals (*P<0.05). White bars: normal mice; black bars:
affected mice.

Fig. 3 – Oxidative damage: lipid peroxidation analysis.
Tissues (cerebrum, panel A, or cerebellum, panel B) from
affected (black bars) or age-matched normal (white bars)mice
(n=4 for each age) were excised at 1, 3 and 6 months from
birth, pooled, homogenized in water and the hydroperoxides
were extracted according to the kit instructions; 400 μl of the
extracts were used to quantify lipid hydroperoxides
according to manufacturer's instructions (see Experimental
procedures). Concentration of hydroperoxides is expressed
as nmol/ml; values are mean±SD of three experiments
performed on different sets of animals (*P<0.05; **P<0.01).
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regions analyzed. None of the analyzed DNA repair-related
genes presented significant alterations, while in the group of
genes potentially involved in neuronal plasticity, only Ret
showed a significant decrease in the caudal region (fc 0.5)
together with increased levels in the intermediate segment (fc
1.89). Among the neurotrophin genes, Bmp4 resulted in an
increased expression in the rostral and intermediate regions
(fc 1.72 and 2.00, respectively). Similar behavior was observed
for the inflammation-related Tgfb gene (fc 1.68 and 2.14 in the
rostral and intermediate segment, respectively), while an
increased expression in all the cerebrum fragments analyzed
(R, I and C) was found for the apoptosis-related genes Gzmb (fc

1.27, 6.35 and 1.90, respectively) and Prf1 (fc 3.32, 8.20 and 2.50,
respectively) (Table 1).

2.6. Searching for altered genes: real time RT-PCR analysis
in young mice

The genes found, from the previous analysis, with a signifi-
cant variation (fold change ≥2 or ≤0.5) in at least one of the
three cerebrum regions were further examined in the three
different segments of the cerebrum from one-month-old and
three-month-old affected mice; the results, obtained from
multiple pools of n>4 different animals in each replicate, are

Table 1 – Real time RT-PCR analysis: genes found deregulated in the cerebrum from six-month-old MPS IIIB mice.

GeneBank
accession no.

Gene
symbol

Gene name Fold change

R I C

Oxidative stress-related genes:
NM_011434 Sod1a Superoxide dismutase 1, soluble 1.18 2.7 1.64
NM_013671 Sod2 Superoxide dismutase 2, mitoc. 0.83 1.78 0.98
NM_011435 Sod3 Superoxide dismutase 3, extrac. 0.90 0.78 0.87
NM_009007 Rac1 RAS-related C3 botulinum substrate 1 0.97 1.95 0.78
NM_010344 Gsr Glutathione reductase 1.9 0.68 0.9
NM_008160 Gpx1 Glutathione peroxidase 1 1.5 0.68 0.84
NM_009804 Cat Catalase 1.35 1.29 0.93
NM_011723 Xdh Xanthine dehydrogenase 0.86 0.84 1.12
NM_009662 Alox5 Arachidonate 5-lipoxygenase 1.29 1.38 1.07
NM_011563 Prdx2 Peroxiredoxin 2 0.85 1.26 1.15

DNA repair-related genes:
NM_010957 Ogg1 8-oxoguanine DNA-glycosylase 1 0.95 1.22 0.70
NM_176953 Lig4 Ligase IV 0.84 0.92 1.59
NM_008446 Kif4 Kinesin family member 4 0.87 0.72 1.88
NM_020032 Pol1 Polymerase (DNA directed), lambda 1.37 0.68 0.85

Neuronal plasticity-related genes:
NM_146243 (Actr2) Arp2 Actin-related protein 2 homolog 0.63 1.16 0.65
NM_023735 (Actr3) Arp3 Actin-related protein 3 homolog 0.76 1.08 0.6
NM_024441 Hsp27 Heat shock protein 2 0.71 1.12 0.56
NM_010907 NFkbi Nuclear factor of kappa light polypeptide

gene enhancer in B-cells inhibitor
0.92 1.35 0.55

NM_011952 Erk1 Mitogen-activated protein kinase 3 0.53 1.40 0.90
NM_011951 P38 Mitogen-activated protein kinase 14 0.55 1.30 0.66
NM_001080780 Reta Ret proto-oncogene 0.57 1.89 0.50

Genes found altered by previous screening on filter arrays:
Neurotrophins genes:
NM_010253 Gal Galanin 0.56 1.05 0.63
NM_007554 Bmp4a Bone morphogenetic protein 4 1.72 2.00 0.83
NM_008742 Ntf3 Neurotrophin 3 0.57 1.64 0.74

Inflammation-related genes:
NM_011577 Tgfba Transforming growth factor, beta 1 1.68 2.14 0.84
NM_007700 IKK1 Conserved helix-loop-helix ubiquitous kinase 0.71 1.23 1.51

Apoptosis-related genes:
NM_007499 Atm Ataxia telangiectasia mutated homolog 0.72 0.60 0.66
NM_013542 Gzmba Granzyme B 1.27 6.35 2.9
NM_011073 Prf1a Perforin 1 (pore forming protein) 3.32 8.20 2.50
NM_009810 Casp3 Caspase 3 1.48 1.08 0.67

Analyses were performed on pooled RNA from six-month-old MPS IIIB mice or age-matched controls (n=7). R = rostral segment; I = intermediate
segment; C = caudal segment.
a Genes showing a two fold variation (fold change ≥2 or ≤0.5) in at least one of the three analyzed cerebrum regions were further analyzed in
different sets of 1 month old, 3 months old and 6 months old affected mice (see Fig. 5).
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shown in Fig. 5. Themost important alterations concerned the
apoptosis-related and inflammation-related genes, namely
Prf1, Gzmb and Tgfb.

For Prf1 and Gzmb an increased expressionwas found from
one to six months of age in almost all the analyzed cerebrum
fragments: Prf1 at one month from birth resulted in a signi-
ficant increase only in the caudal segment (fc 2.0, P<0.05)
while at three months of age increments were >2 in all the
three cerebrum segments (fc 2.2, P<0.01, fc 4.7, P<0.01, and fc
4.0, P<0.05, for R, I and C, respectively); in the six-month-old
mice the highest Prf1 expression (fc 8.2, P<0.01) was found in
the intermediate segment (Fig. 5). As reported in the previous
section, also Gzmb showed the highest expression in the
intermediate region of the six-month-old affected cerebrum,
but its levels were significantly increased also in other regions
and times of age, particularly in the caudal segment of the
one-month-old animals (fc 4.2, P<0.01).

Tgfb was mostly expressed in the intermediate area of the
cerebrum at one month of age (fc 3.2, P<0.05) and in the same
area similar levels persisted also at the other ages (fc 2.9,
P<0.01, and fc 2.2, P<0.05, at three or six months from birth,
respectively); consistent levels were observed in the rostral
area (fc approximately 1.7, P<0.05) while a lesser expression
was found in the caudal region (Fig. 5).

Among the other analyzed genes, Bmp4 and Ret were
increased in their expression mainly in the intermediate area
at every age. Bmp4 was found in this area with a fc of 2.1, 1.8
and 2 at one, three and six months, respectively (P<0.05 for

every age); a similar value (fc 1.72, P<0.05) was found in the
rostral area at six months of age (Fig. 5). Ret in the inter-
mediate area showed fc values of 1.5, 1.7 and 1.9 for one-
month-old, three-month-old and six-month-old mice, respec-
tively (P<0.05 for every age); a slight increase was also
observed in the rostral (fc 1.5, P<0.05) and caudal area of
three-month-old mice (fc 1.4, not statistically significant),
while it was decreased in the rostral and caudal segments at
six months of age (fc 0.6, P<0.01, and 0.5, P<0.01, respectively)
(Fig. 5). Sod1 presented in the intermediate segment with fc of
0.55 (P<0.01), 1.4 (P<0.05) and 2.7 (P<0.01) at one, three and six
months of age, while its expression was consistent or slightly
increased in the caudal region and significantly decreased in
the rostral area at one and threemonths of age (fc 0.51, P<0.01,
and 0.38, P<0.01, respectively).

3. Discussion

Several processes appear to take part to the neuronal patho-
genesis in the MPS IIIB disease. An inflammatory process was
suggested to be involved in the brain pathology of the murine
model, involving astrocytes and microglia activation followed
by the secretion of potentially neurotoxic cytokines and
chemokines (Li et al., 2002; Ohmi et al., 2003; Villani et al.,
2007), as demonstrated for other neurodegenerative diseases
(Myerowitz et al., 2002; Wu and Proia, 2004). However,
inflammation is only one of the determinants of the

Fig. 5 – Relative levels of Prf1, Gzmb, Tgfb, Bmp4, Sod1 and Ret in the cerebrum of MPS IIIBmice. Results from real time analysis
performed on RNAs obtained from cerebrum segments dissected at different times from birth: = one month; = three
months; = six months. Equal amounts of RNA from each mouse were pooled before generating the cDNAs. Abl cDNA was
used to normalize the level of the gene of interest in both mutant and control preparations. Data (mean±SD of three
experiments performed on three different sets of animals, n≥4 in each replicate) are expressed as fold change in the MPS IIIB
mice compared to the normal controls (*P<0.05; **P<0.01).White bars: segment R of the cerebrum; striped bars: segment I; black
bars: segment C.
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neurodegenerative process, since a recent study on doubly
mutant mice C57Bl/6NaGlu−/−,TLR4−/− demonstrated that the
absence of microglia cell priming by HS oligosaccharides did
not change the onset of the disease markers, although the
onset of brain inflammation was delayed for several months
(Ausseil et al., 2008).

We recently suggested that alterations of ROS levels and,
hence, oxidative stress could be involved in the neuronal
dysfunction in the murine model of MPS IIIB (Villani et al.,
2007). Oxidative stress is one of the most important mediators
in the progressive decline of cellular function during aging and
in age-related neurodegenerative diseases (Poon et al., 2006).
In the brain, free radical-mediated oxidative stress plays a
critical role in the decline of cellular function as a result of the
oxidation of nucleic acids, lipids, and proteins, which alters
the structure and function of these macromolecules. Upregu-
lation of NADPH oxidase was first reported in an experimental
model of Parkinson's disease (Wu et al., 2003). We demon-
strated the upregulation of this multimeric enzyme also in the
brain of MPS IIIB mice, resulting in an increased production of
superoxide ions (Villani et al., 2007).

In the present study we extended the analysis of oxidative
stress bymeasuring the superoxide ion production in different
areas of the cerebrum and in cerebellum, and by evaluating its
effect on the cellular macromolecules. Our data indicate that
oxidative stress is already present in young mice (one month
old) and that it results primarily in protein oxidation, while
lipid peroxidation and DNA oxidation appear milder and
restricted essentially to the cerebellum.

A number of studies indicate a strong role for increases in
protein oxidation as a primary cause of cellular dysfunction
during neurodegeneration (for review: Butterfield et al., 2006;
Sultana et al., 2006). However, not all proteins are oxidized:
many proteins preserve their activity, suggesting that specific
molecules are target of oxidative modification during aging
and in neurodegenerative disorders (Poon et al., 2006; Butter-
field et al., 2006). In general, carbonylated and nitrated
proteins involved in neuronal dysfunction are related to
energy metabolism, excitotoxicity, apoptosis and neuronal
communication (Sultana et al., 2006; Dröge and Schipper,
2007); for instance, most of the proteins found oxidated in AD
and in other neurodegenerative diseases can be linked to
energy dysfunction (Butterfield et al., 2006; Martınez et al.,
2008). Interestingly, recent evidence demonstrated, in the MPS
IIIB mousemodel, the accumulation of subunit c of mitochon-
drial ATP synthase (SCMAS), which could also suggest a
mitochondrial dysfunction in this disease (Ryazantsev et al.,
2007). Carbonylation was also demonstrated in brain aging
and in neurodegenerative diseases for proteins related to
recycling of damaged proteins through the proteasome
(Sultana et al., 2006; Stefanis and Keller 2006; Dröge and
Schipper, 2007). Most of the protein damage is irreparable and
damaged molecules should be removed. One way to remove
them is their dispatch to the lysosomes, which contain
hydrolytic enzymes to degrade proteins taken into the cells
by endocytosis as well as cytoplasmic proteins and organelles
(autophagy). However, in lysosomal diseases, due to abnormal
storage, lysosomes may be impaired in their demolishing
function; impairment of the autophagic pathway was recently
suggested inMPS IIIA andmultiple sulfatase deficiencymouse

models (Settembre et al., 2008). On the other hand, also
oxidative stress can contribute to autophagic impairment
(Dröge and Schipper, 2007): in these conditions the main
pathway to remove unwanted proteins could be the protea-
some, which recognizes targets marked by attachment of
ubiquitin, that is an ATP-dependent process. Indeed, massive
accumulation of ubiquitin has been found in affected brains in
several mucopolysaccharidoses and also in MPS IIIB (Savas
et al., 2004; Ryazantsev et al., 2007).

It is interesting that, at each time point from birthwe found
the greatest superoxide production in the rostral area of the
MPS IIIB murine cerebrum; the analyzed area includes the
somatosensory cortex, the striatum and structures related to
the olfactory bulb. Interestingly, in a recent study the analysis
of human brain tissue in MPS II and MPS IIIB patients revealed
that in most of the analyzed patients the frontal cortex was
one of the main sites of immunoreactivity for 8-OHdG and
neuron-specific enolase (NSE); in the same areas the presence
of mild TUNEL-immunoreactive nuclei was reported, while
neuronal loss was essentially restricted to the substantia
nigra of the affected brains (Hamano et al., 2008). Moreover,
Ryazantsev et al. (2007) found that in the murine MPS IIIB
model SCMAS accumulated from one month of age primarily
in the entirhinal and somatosensory cortex. The frontal lobe
and the olfactory system appear to be particularly subject to
protein oxidation also in other neurodegenerative diseases
such as progressive supranuclear palsy (PSP) (Martınez et al.,
2008) and Alzheimer disease (Butterfield et al., 2006; Moreira
et al., 2005).

Our findings on the mechanisms involved in brain disease
of the MPS IIIB model prompted us to evaluate the expression
of additional genes by real time analysis. Among the analyzed
oxidative stress-related genes only Sod1 was found to be
altered in the affected cerebrum, appearing downregulated
mainly in the rostral segment of young affected animals: this
seems to correlate with the increased levels of superoxide ion
mainly present in the rostral region of the cerebrum. However,
further studies are required to establish if ROS is the cause for
the decreased Sod1 expression or vice versa. For the DNA
repair-related genes and for the neuronal plasticity-related
genes, no significant alteration was observed, except for the
Ret gene, which appeared to be slightly misregulated. The
misregulation evidenced here for Ret, as well as for the other
analyzed genes, could be ascribed to anyone of the multiple
nuclei placed in the brain; however, recent evidences seem to
link Ret signaling to the degeneration of the nigrostriatal
system; mice with selective ablations for the gene encoding
the receptor for Gdnf (Ret, Gdnfr) show progressive loss of
dopaminergic neurons in the substantia nigra, degeneration
of nerve terminals in the striatum and pronounced glial
activation (Kramer et al., 2007). Gdnf and Bdnf neurotrophic
factors can contribute to the fate of neurons: they may
determine whether the neurons resist or succumb to neuro-
degeneration. The demonstrated alteration, in the MPS IIIB
murine model, of the Bdnf (Villani et al., 2007) and Ret
expression (this paper) support the hypothesis of the involve-
ment of the nigrostriatal system in the brain pathogenesis of
the disease. Interestingly, we also observed an upregulation of
other neuroprotective members of this family of trophic
factors: Tgfb, previously reported as having a protective effect
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againstmotor neuron degeneration (Ho et al., 2000) and Bmp4,
widely involved in the development of the central nervous
system (Mikawa et al., 2006); this upregulation could represent
a countervailing mechanism to attenuate the effect of a
misregulation of Bdnf and Gdnfr.

We also analyzed some apoptosis-related genes; among
these, the Prf1 and Gzmb genes showed a clear and marked
increase in their expression in the affected cerebra, mainly in
the intermediate segment. Perforin (Prf1) and granzyme B
(Gzmb) are both proteins involved in granule-dependent
killing mediated by cytotoxic T lymphocytes (CTL) and natural
killer cells (NK). CTL are initially activated by recognizing
antigens presented, together with the proteins of class I major
histocompatibility complex (MHC), on the surface of an
antigen-presenting cell; NK cells do not require pre-activation
(Cullen and Martin, 2008). Granzyme B is a major constituent
of CTL/NK cell granules and promotes apoptosis through two
main pathways: one involving direct activation of caspases
and the other mediated through granzyme B-initiated promo-
tion of mitochondrial permeabilization. Destruction of neu-
rons by cytotoxic T-cells has been reported as a pathogenic
mechanism in some neurodegenerative disorders (Bien et al.,
2002; Metz et al., 2007; Howe et al., 2007) in which cytotoxic T
lymphocytes seem to contribute to the damage and apoptotic
death of cortical neurons. Our results, as well as the data very
recently reported by DiRosario et al. (2009), suggest that T-cell-
mediated cytotoxicity could contribute to the dysfunction of
neurons in the brain of MPS IIIB mice. It is also interesting to
note that, in accordance with this hypothesis, Ohmi et al.
(2003) reported, in the cortex of mouse models of MPS IIIB and
MPS I, an increased expression of complement C1q, for which
more recently van Montfoort et al. (2007) demonstrated a
novel role in augmenting the presentation of the antigen
captured in immune complexes to CD8+ T lymphocytes.

Our present findings on the increased expression of Prf1
and Gzmb address the apoptotic mechanisms involved in the
neuronal pathology of murine MPS IIIB. However, previous
data (Li et al., 2002; Villani et al., 2007) showed no clear
evidence of apoptosis in this animal model using immuno-
histochemistry or TUNEL test analysis. On the other hand,
Hamano et al. (2008) reported a mild occurrence of TUNEL-
immunoreactive nuclei in affected patients, predominantly in
swollen neurons in the frontal and temporal cortices and in
the globus pallidus. What could account for the markedly
increased expression of perforin and granzyme B found in the
affected cerebra of the murine model? One possibility is that
the cytotoxic T-cell attack, probably taking place in MPS IIIB
brains, does not necessarily lead to immediate apoptosis but
may in part cause sublethal cell injury, as suggested for other
neurodegenerative disorders (Behrens et al., 1997; Bien et al.,
2002). It is also possible that the low levels of apoptosis,
demonstrated only in the older animals, are due to the
cumulative cell loss caused by degeneration, apoptosis and
inflammation at younger ages. Finally, another possibility is
that MPS IIIB neurons are intrinsically resistant to apoptosis
and this resistance could be related to the expression of
specific inhibitory factors; as support to this speculation it is
an intriguing observation that Bcl-XL, an anti-apoptotic
protein, is upregulated during oxidative stress in neuronal
cultures (Luetjens et al., 2001). In conclusion, the occurrence of

neuronal death due to apoptosis requires further studies in
MPS IIIB disease.

In summary, our data suggest, for the brain pathology in
the MPS IIIB mouse model, the participation of cytotoxic cells
causing neuron injury and confirm the involvement of
oxidative stress resulting in a damaging effect on the cell
macromolecules, mainly the proteins. More importantly, this
study provides time-course data demonstrating for the first
time that pathological changes occur very early in the disease
course, most likely before one month of age.

4. Experimental procedures

4.1. Animals and tissues

TheMPS IIIBmousemodel used in the present study showed a
biochemical phenotype generally similar to that of the human
disorder; in this model, no excess heparan sulphate was
reported in the soluble GAG fraction of the brain although
ganglioside levels were increased (Li et al., 1999). The mice
were genotyped by PCR at 1 month from birth, as previously
described (Di Natale et al., 2005). Heterozygotes were either
intercrossed for experimental use or subjected to 12 back-
crossing to C57BL/6 mice to put the mutation on a congenic
background. At the time of sacrifice, MPS IIIB mice and age-
matched normal animals, aged 1, 3 and 6 months, were killed
by cervical dislocation performed after profound anesthesia
obtained by intraperitoneal injection of 100 mg/kg ketamine
and 1 mg/kg metedomidine. Cerebrum and cerebellum were
immediately removed; cerebrum, for some of the experi-
ments, was placed on a brain blocker (David Kopf Instruments,
CA) and subdivided into parts on ice-cold tissue culture plate:
rostral (R), up to anterior commissure, intermediate (I),
including hippocampus, thalamus and hypothalamus, and
caudal (C), from the posterior commissure up to 4th ventricle
(Fig. 1, adapted from Paxinos and Watson, 2007). Fragments
were then transferred to ice-cold microcentrifuge tubes and
immediately frozen in liquid nitrogen. The procedures on
the mice were approved by the Italian Ministry of Public
Health.

4.2. Analysis of NADPH oxidase activity

NADPH oxidase activity was measured using a chemilumi-
nescence detection system in homogenates prepared, in
100 mM phosphate buffer, pH 7, by pooling cerebrum frag-
ments (R, I or C) from three different sets of MPS IIIB or normal
mice, containing the same number of males and females,
sacrificed at 1, 3 and 6 months of age (n=4 for each group). In
these assays, 150 μg of proteins was added to amix containing
50 μM lucigenin, 50mMphosphate buffer, 1mMEGTA, 150mM
sucrose, 0.1 mM NADH and 0.1 mM NADPH. In some
experiments superoxide dismutase (SOD) 30 U/ml was added
to the previousmixture to verify that themain reactive oxygen
specie detected in the reaction was the superoxide ion (data
not shown). Reactions were started by adding the proteins,
and the production of superoxide ions was measured every
10 s for 15 min by monitoring chemiluminescence using a
Turner Biosystems 20/20n luminometer. The data, collected as
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relative luminescence units, were plotted versus time, and the
area under the curve was used for analysis.

4.3. Protein oxidation analysis

For the protein oxidation analysis, cerebrum or cerebellum
from three different sets of affected (n=5) or age-matched
normal mice (n=5), containing approximately the same
number ofmales and females, were excised at 1, 3 or 6months
from birth, pooled and homogenized in water on ice; imme-
diately after homogenization a protein determination was
made using the Lowry assay. Twenty μg of proteins was TCA
precipitated (by adding 0.8 volumes of ice-cold 28% w/v TCA
followed by centrifugation at 10,000 g for 3 min) and used in
the subsequent assay. Quantification of protein carbonyls was
performed by using the Protein Carbonyl ELISA kit (Zentech,
Alexis Corporation, Switzerland).

4.4. Lipid peroxidation analysis

For the lipid peroxidation dosage, tissues (cerebrum or
cerebellum) were excised from three different sets of affected
(n=4) or age-matched normalmice (n=4), containing the same
number of males and females, at 1, 3 or 6 months from birth,
pooled, homogenized in water, 50 mg/ml, and the hydroper-
oxides (HDP) were extracted according to the kit instructions;
the extracts were stored at −80 °C if not immediately pro-
cessed. Quantification of lipid peroxidation was performed
using the Lipid Hydroperoxide (LPO) Assay Kit (Cayman
Chemical Company, MI, USA).

4.5. DNA oxidation analysis

DNA to be used for the quantification of DNA oxidation was
purified by the classic phenol:chloroform extraction method
from tissue samples (cerebrum or cerebellum from affected,
n=4, or age-matched normal mice, n=4) obtained from three
different sets of one-, three- and six-month-old animals with
the same number ofmales and females. DNAswere pretreated
as follows: 200 μg of sample, obtained by pooling the DNA
preparation from three mice, was dissolved in 135 μl of water;
after addition of 15 μl 200 mM sodium acetate containing
6 units of nuclease P1 (Japan Institute For the Control of Aging,
Japan) samples were incubated for 1 h at 37 °C after argon
substitution. Fifteen microliters of 1 M Tris–HCl buffer, pH 7.4,
and 2 units of alkaline phosphatase (Promega, Madison WI,
U.S.A.) were then added and incubation continued for 1 h after
argon substitution. Hydrolysates were filtered through Milli-
pore Ultra free C3LGC device at 14,000 rpm for 10 min and 50 μl
of filtrate was applied to the wells of the ELISA plate. Quan-
tification of oxidative DNA adduct 8-hydroxy-2′ deoxyguano-
sine (8OHdG) was performed using the Highly Sensitive 8-OHdG
ELISA kit (Japan Institute for the Control of Aging, Japan).

4.6. Statistical analysis

All the statistical analyses given in this paper were performed
using Student's t-test or, for the real time PCR experiments,
ANOVA; 95% confidence limits were selected. The statistical
software used for all the analyses was from Glantz (1998).

4.7. Isolation of RNA

Three different sets of affected MPS IIIB mice (n≥4) containing
approximately the same number of males and females, 1, 3 and
6 months old at the time of sacrifice, and age-matched normal
controls (n≥4) were killed by cervical dislocation after anesthe-
sia and the cerebrum was removed, subdivided into parts (R, I
and C as in Fig. 1) and immediately frozen in liquid nitrogen;
total RNA was isolated from 50 mg of tissue using the RNeasy
Lipid Tissue (Qiagen, MD U.S.A.) following the manufacturer's
protocol. The concentration and purity of the RNA preparations
were determined by measuring the absorbance at 260, 280 and
230 nm by spectrophotometer. Equal amounts of RNAs from at
least four mice (normal or MPS IIIB) were then pooled before
generating the cDNAs to be used in the following experiments.

4.8. RT-PCR

The cDNA was synthesized using 3 μg total RNA in the pre-
sence of randomprimers, dNTPs, RNAse Inhibitor and Reverse
Transcriptase (all from Promega, MadisonWI U.S.A.) following
the manufacturer's protocol. The PCR was performed in 25 μl
reaction solution containing 12.5 μl RT2 Real-TimeSYBRGreen/
Fluorescein PCR Master Mix (from SuperArray Inc.), 1.0 μl of
template cDNA and 0.2 μM PCR Primer set. The PCR conditions
were as follows: 95 °C 15min, 40 cycles of 95 °C for 30 s, 55 °C for
30 s, and 72 °C for 5 min. Relative expression of mRNA for the
target genes was performed by the comparative CT (ΔΔCT)
method using the Abl gene as control. A validation experiment
was performed for each gene of interest and its control to
determine the conditions for optimal concentration of primers
and templates. The normalized CT (ΔCT) was obtained by sub-
traction of the CT for Abl from the CT for the gene of interest.
The difference between the ΔCT for mutant and control
samples gave rise to the ΔΔCT value that was used for the
calculation of the relativemRNA expression using the formula
2−ΔΔCT. The relativemRNA levelswere expressedas fold change
in MPS IIIB mice over control mice. Oligonucleotides were
obtained from PrimerBank (Wang and Seed, 2003; http://pga.
mgh.harvard.edu/primerbank) or designedusingOligo Explorer
(Gene Link, Hawthorne, NY); all primers were from PRIMM srl,
Milan, Italy. Sequences of primer pairs used for Abl (reference
gene) and for each gene of interest are available on request.
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ABSTRACT 

Type I Mucopolysaccharidosis (MPS I) is a lysosomal storage disorder 

caused by the deficiency of -L-iduronidase, which results in 

glycosaminoglycan accumulation in tissues. Clinical manifestations include 

skeletal dysplasia, joint stiffness, visual and auditory defects, cardiac 

insufficiency, hepatosplenomegaly and mental retardation, the latter being 

present exclusively in the severe Hurler variant. The available treatments - 

enzyme replacement therapy and hematopoietic stem cell transplantation 

(HCT) - can ameliorate most disease manifestations, but their outcome on the 

skeletal and brain disease could be further improved. We here demonstrate 

that hematopoietic stem cell (HSC) gene therapy based on lentiviral vectors 

(LV) completely corrects the disease manifestations in the mouse model. Of 

note, the therapeutic benefit provided by gene therapy on critical MPS I 

manifestations, such as the neurological and skeletal disease, greatly 

exceeds the one exerted by HCT, the standard of care treatment for Hurler 

patients. Interestingly, therapeutic efficacy of HSC gene therapy is strictly 

dependent from the achievement of supra-normal enzyme activity in the 

hematopoietic system of transplanted mice, which allows enzyme delivery to 

the brain and skeleton for disease correction. Overall, our data provides 

evidence of an efficacious treatment for MPS I Hurler patients warranting 

future development towards clinical testing. 
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INTRODUCTION 

 

Type I Mucopolysaccharidosis (MPS I) is one of the most frequent lysosomal 

storage disorders (LSD) and is due to the inherited deficiency of α-L-

iduronidase (IDUA) activity, which results in the accumulation of its 

unprocessed substrates (glycosaminoglycans – GAGs) in many organs1. The 

disorder is systemic and clinically heterogeneous. Clinical manifestations 

include skeletal dysplasia, joint stiffness, visual and auditory defects, cardiac 

insufficiency, hepatosplenomegaly and mental retardation. The clinical 

spectrum ranges from the severe Hurler syndrome (MPS I-H) to the 

attenuated Scheie syndrome. Mental retardation is distinctive only of MPS I-H, 

which is fatal in childhood if untreated, thus representing the variant with the 

most urgent need for new therapies. Enzyme replacement therapy 

(ERT)(parenteral administration of exogenous enzyme that can be 

internalized by tissue cells via the mannosium-6-phosphate receptor) is 

recommended only for MPS I patients without primary neurological disease, 

due to the inability of the enzyme to efficiently cross the blood-brain barrier; 

moreover, neutralizing antibodies can attenuate its efficacy2. When performed 

at early ages, hematopoietic stem cell transplantation (HCT) from healthy 

donors alleviates most of the disease manifestations in MPS I-H patients, 

likely by migration of the transplant-derived leukocytes into organs, where 

they can clear the storage and secrete the functional enzyme for correction of 

the metabolic defect in resident cells3. However, despite recent improvements 

in the outcome of HCT, the morbidity and mortality associated with the 

procedure are still not negligible, mostly due to rejection and graft-versus-host 
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disease. Moreover, the amount of enzyme that transplantation can provide to 

the organism can be limiting, especially since donors are often heterozygous 

siblings. Indeed, a relationship between circulating enzyme levels after 

transplant and the urinary GAGs has been shown4: the low enzyme levels 

achieved with heterozygote donor transplant lead to less adequate reduction 

in GAG levels. Likely due to partial metabolic correction at disease sites, the 

impact of HCT on central nervous system (CNS) and skeletal disease, despite 

being substantial in ameliorating patients’ phenotype, could still benefit from 

further improvement5.  

The benefits of different gene therapy approaches were established in MPS I 

animal models. Intravenous delivery of viral vectors, which can establish a 

tissue source for systemic enzyme distribution, was effective in controlling 

disease manifestations in MPS I animal models upon neonatal treatment6-9. 

However, residual disease still affected the nervous and skeletal tissues and 

the aorta of mice treated with this approach in adulthood10,11. This limited 

efficacy could be due to insufficient enzyme delivery via the bloodstream to 

tissues, such as the brain, protected by physiological barriers or poorly 

vascularized, like the skeleton, and/or to immune-mediated clearance of the 

liver-secreted enzyme.  

Hematopoietic stem cell (HSC) gene therapy has also been developed. When 

oncoretroviral vectors were used for gene transfer, HSC gene therapy proved 

to be effective in restoring the enzyme activity and providing therapeutic 

effects on visceral organs of MPS I mice. However, the CNS disease was not 

adequately corrected12. Others and we demonstrated that lentiviral vectors 

(LV) constitute a valuable alternative to oncoretroviral vectors, enabling more 
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efficient marking of murine and human hematopoietic stem and progenitor 

cells (HSPC) and robust, long-term transgene expression in their progeny13-19. 

LV were employed to transduce HSPC and direct IDUA expression in an 

erythroid-specific manner by the use of a lineage-specific promoter in the 

MPS I mouse model20. This approach generated an intravascular enzyme 

source, namely gene modified erythrocytes, which could efficiently release the 

enzyme in the plasma for distribution to the affected tissues. Interestingly, the 

treatment reproduced the efficacy of in vivo gene therapy approaches and of 

HCT, but did not provide an increased benefit in correcting neurological 

disease manifestations. Conversely, we previously showed that 

transplantation of HSPC transduced with ubiquitously expressing LV prevents 

and corrects neurological disease manifestations in mice affected by another 

LSD (metachromatic leukodystrophy-MLD)18,21, for which HSC gene therapy 

has now entered clinical testing. The efficacy of the approach was shown to 

be dependent on the CNS infiltration of myeloid cells producing supra-normal 

enzyme quantities and conveying the protein through the blood brain barrier18. 

According to these results, we hypothesized that LV-driven, supra-normal 

IDUA reconstitution above wild type (WT) levels in HSPC and their 

differentiated progeny could improve the outcome of the previously tested 

approaches in correcting the neurological (and skeletal) disease in MPS I. We 

thus addressed here this hypothesis and challenged MPS I disease in mice 

with the transplantation of WT and LV-transduced Idua-/- HSPC, in which 

enzymatic activity was restored to supra-normal levels.  
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MATERIALS and METHODS 

 

Mice studies  

Idua-/- mice (C57BL/6 background)22 were imported in our animal facility as a kind 

gift of Prof. J.M. Heard and intercrossed to obtain an inbred strain. Rag2-/- γchain-/- 

mice23 were obtained from the Central Institute for Experimental Animals 

(Nogawa, Japan). All procedures were approved by the Animal Care and Use 

Committee of the Fondazione San Raffaele del Monte Tabor (IACUC 325) and 

communicated to the Ministry of Health and local authorities according to Italian 

law. 

 

Transduction and transplantation of hematopoietic progenitors  

Eight-week-old WT or MPS I mice were sacrificed with CO2 and the bone marrow 

(BM) was harvested by flushing femurs and tibiae. HSPC were purified for 

lineage- selection using the Enrichment of Murine Hematopoietic Progenitors kit 

(Stem Cell Technologies Inc., Vancouver, British Columbia, Canada), and 

transduced at Multiplicity of Infection (MOI) 100 with IDUA- or GFP-encoding LV 

(IDUA-LV, GFP-LV)21. Transduced cells (106 cells/mouse) were injected in the tail 

vein of 8-week-old WT or MPS I mice after lethal irradiation (12Gy). Transduced 

cells were also cultured for 14 days for IDUA activity measurement (liquid 

culture21) and for PCR quantitative analysis for the LV sequences (clonogenic 

assays)18. 
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Behavioral studies 

Spontaneous locomotor activity was recorded in 41x41x33 (height) cm Perspex 

activity cages (Ugo Basile, Comerio, Varese, Italy), equipped with infrared light 

photocell beams. The lower arrays of aligned infrared emitters and detectors 

measured the number of transitions (horizontal activity), while vertical arrays 

measured rearing. Mice were placed individually in the activity cages and their 

activity was recorded in a low luminosity environment in a daily session of 10 

minutes for three consecutive days. The percentage change between the first and 

third trial was employed as outcome measure.  

 

Auditory brainstem response (ABR) measurement 

Needle scalp electrodes were used to record sound-evoked bioelectrical 

potentials for evaluation of the central and peripheral auditory function and to 

identify hearing deficits related to the auditory pathway from the cochlea to the 

auditory midbrain24. Five positive peaks in the ABR waves are expected. In the 

mouse, peak I refers to cochlear processing, peak II to processing in the cochlear 

nucleus complex, peak III in the complex of the superior olive, peak IV in the 

lateral lemniscus and peak V in the colliculus inferior.  

ABR to pure tones were recorded in anesthetized animals. We recorded latency 

of peaks I, III, IV, V and the latency between peaks I-III, III-V and I-V. We 

calculated the average and SD of the latency of each peak in WT mice. In each 

mouse and for each peak a score based on the difference between the latency 

recorded and the respective average in WT animals ± SD was then calculated. 

Abnormalities in the latencies were graded in a 3-degrees ordinal scale (0=normal 

finding, i.e. individual peak latency not exceeding control mean peak latency ± 1 
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SD; 1= slight increase, with latency ranging between 1 and 2 SDs; 2= increase, 

with latency between 2 and 3 SDs; 3= great increase with latency greater than 3 

SDs, or ABR absence). This allowed not to drop out mice without ABR responses 

and to properly evaluate ABR absence as the highest degree of functional 

impairment due to pathology. 

 

Computerized Tomography  

CT scans were performed on a human-grade 64-channel multi-slice apparatus 

(Light Speed VCT, GE Healthcare USA). The imaging protocol included a bi-

planar scout and a helical volumetric CT acquisition with coverage of the whole 

body, with a tube speed rotation of 0.5 seconds (s), 0.625mm slice thickness and 

0.3mm/s table motion, 120KV, 680mA, reconstruction field of view of 17 cm and 

matrix of 512x512. CT images were filtered with both the standard parenchyma 

and the high-resolution bone algorithms.  

Skull width was measured on axial reformatted images considering the largest 

diameter; femur length was determined by measuring its long axis in between the 

two epiphysis; humerus width was measured in the middle of the diaphysis. The 

analysis was performed using OsiriX v.3.5.1 software. 

On a dedicated workstation (Advantage 4.4, GE Healthcare USA) both the 

zygomatic regions were manually isolated; an automatic segmentation with bone 

threshold >160U.H. was applied to the regions of interest and corresponding 

volumes were measured through a manufacturer’s software. 
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Animal sacrifice modalities 

At sacrifice mice were trans-cardially perfused with saline for 15 minutes, 

upon administration of 0.02ml/g body weight tribromoethanole (Avertine; 

Sigma). Thereafter, organs were collected as described in Supplemental 

Methods.  

 

IDUA activity assay 

Enzyme activity was measured fluorometrically as described12. See 

Supplemental Methods for details. 

 

Analysis of glycosaminoglycans in tissues and urine 

GAGs were quantified as described25-27. See Supplemental Methods for details. 

 

Histopathology  

Semithin sections were conducted as described18. Sections (0.5–1µm thick) were 

stained with toluidine blue and examined by light microscopy. For quantification of 

vacuoles aggregates, digitalized images of sections from all tissues, at the same 

level, were obtained with a digital camera (Leica DFC300F) at x100 magnification. 

At least three images from four different animals per group were acquired with the 

Leica QWin software (Leica Mycrosystem). An arbitrary score (from 0 to 4) was 

given by the investigators (two blinded and experienced pathologists, A.Q. and 

F.C.) on the basis of the percentage of vacuoles observed in each x100 field. 

 

Quantitative PCR analysis 

Vector copies per genome were quantified by TaqMan analysis as described17,18.  
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Peripheral quantitative CT  

Peripheral Quantitative CT (pQCT) measurements were performed ex vivo on 

fixed tibiae and femurs. The SSI was calculated by the manufacturer’s software as 

follows: SSI = i = 1,n r2 • aCD/ ND • rmax, where “r” is the distance of a voxel 

from the center of gravity, “rmax” is the maximum distance of a voxel from centre 

of gravity, “a” is the area of a voxel, “CD” is the cortical density and “ND” is the 

density of normal cortical bone tissue equal to 1200mg/cm3, as measured by 

pQCT when no spaces are included. To account for changes in the mineralization 

of bone and therefore for changes in material properties, the section modulus was 

normalized for this value in the pQCT software. See Supplemental Methods for 

details. 

 

Statistics 

Statistical analyses were made by either Student’s t test or one-way Anova for 

repeated measurements using Bonferroni’s test for post-hoc analysis after 

significant main effect of the treatment (confidence interval 95%). 
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RESULTS 

 

Gene therapy and not HCT allows efficient delivery of the functional 

enzyme to all MPS I affected tissues 

We transduced lineage- HSPC isolated from the BM of Idua-/- and Idua+/+ mice 

with IDUA-LV or GFP-LV, as described18. Idua-/- IDUA-LV transduced cells 

showed an average vector copy number per genome (VCN) of 11±3 (tested 

on clonogenic progenitors) and over-expressed the enzyme (whose 

expression was driven by the human PGK promoter) at up to 200 fold the 

levels detected in mock-transduced Idua+/+ HSPC, after 14 days of in vitro 

liquid culture (data not shown). The transduced cells were transplanted into 2 

month-old lethally irradiated MPS I and WT littermates according to the 

procedure shown in Figure 1A. Interestingly, while transplantation of WT GFP-

LV transduced cells reconstituted a normal IDUA activity in the peripheral 

blood mononuclear cells (PBMCs), supra-normal enzyme expression (up to 

150 fold the low WT levels) was measured in the PBMCs of gene therapy 

treated (GT) mice short- and long-term after the transplant (Figure 1B). Supra-

normal enzymatic activity was also measured 6 months after the transplant in 

the serum (Figure 1C) and in all the tested tissues of GT mice, including the 

brain, where activity levels up to 4.5 fold the WT were detected (Figure 1D). 

Of note, transplantation of GFP-transduced WT HSPC (HCT), despite being 

capable of reconstituting a normal enzymatic activity in the spleen of the MPS 

I mice, reconstituted only below-normal enzyme activity in the liver, kidney 

and heart, and failed to deliver detectable amounts of the functional enzyme 

to the brain (Figure 1D).  
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The efficiency of enzyme delivery to the brain of GT mice significantly 

correlated with the level of enzymatic activity in PBMCs and with the VCN 

measured in the BM (Figure S1A-C). In particular, IDUA activity values in 

PBMCs above 1500 nmol/mg/h (average value of GT mice) and VCN higher 

than 5 in the BM (average VCN measured on the BM of the GT mice cohort) 

consistently allowed efficient delivery of IDUA to the brain (up to  2 fold the 

levels of WT controls) (Figure 1D-E).  

 

Supra-normal enzymatic activity allows metabolic correction in the 

affected tissues 

To evaluate the extent of metabolic correction at diseased sites upon 

transplantation of either gene corrected or WT HSPC, we performed a semi-

quantitative assessment of the storage on tissue sections from treated and 

control animals. Cytoplasmic vacuoles were scored, being distended 

lysosomes from which GAGs were leached by fixation. Storage was abundant 

in the kidney, liver (within hepatocytes and Kuppfer cells), spleen 

(predominant in the red pulp), heart (abundant in the endothelium and 

myocytes) and in the brain (where storage occurs within endothelial cells and 

neurons) of MPS I mock-transplanted animals (Figure 2A-B). Variable 

reduction of storage was observed in HCT mice, with reduction being more 

evident in hematopoietic lineage cells rather than in resident non-

hematopoietic cell populations (see storage in hepatocytes in Figure 2A). 

Almost complete clearance of the storage was observed only in the spleen, 

where the highest enzyme activity was measured and where the 

hematopoietic lineage is the most affected (Figure 2B and Figure 1D). 
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Conversely, a significantly greater benefit was observed in GT mice, in which 

the storage material was almost undetectable in all examined tissues (Figure 

2A and 2B). Storage was cleared from both hematopoietic and non-

hematopoietic lineage cells, suggesting the occurrence of cross-correction of 

the resident populations. 

GAGs were also quantified in the urine and in the diseased tissues of mock-

transplanted and treated mice (Figure 2C-D). Normalization of urinary (Figure 

2C) and tissue GAGs (Figure 2D) was observed in GT mice, demonstrating 

complete correction of the metabolic defect, both systemically and at relevant 

diseased sites; transplantation of WT HSPC resulted in complete storage 

removal from the spleen, but only in partial clearance of GAGs from the other 

tissues (liver and kidney are shown as representative)(Figure 2D). 

The elevation of heparin cofactor II-thrombin (HCII-T) complex is a biomarker 

for MPS I that appears to correlate with disease severity and is responsive to 

treatment28,29. HCII-T presence was tested on the serum of treated and 

control animals by western blot analysis. Reduction of HCII-T complex down 

to WT levels was observed in the serum of GT mice (Figure 2E), further 

confirming that metabolic correction was attained. 

 

Differential neurological outcome of gene therapy and HCT  

Six months after the treatment, treated and control mice underwent behavioral 

studies. To study adaptive behavior and identify memory deficits, a repeated 

open field test was performed exposing the mice to the same open field for 3 

repeated trials conducted in 3 sequential days. Horizontal and rearing 

activities were scored and the percentage of change between performance at 
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first and at third trials was used as outcome measure. While the defective 

adaptive behavior of MPS I mice at horizontal activity testing was not 

ameliorated in HCT mice, which had barely detectable IDUA activity in the 

brain, it was normalized in GT mice, which showed up to 4.5 fold the WT 

enzyme activity in the CNS (Figure 3A and 1D). Interestingly, the extent of 

correction of the behavioral phenotype well correlated with the VCN measured 

in the BM and with the IDUA activity measured in the brain of the treated mice 

(Figure S1D-E). A threshold value for IDUA activity in the brain allowing for 

efficacious correction of the neurological phenotype in GT mice could be 

established at 20nmol/mg/h, which corresponds to the mean brain activity 

value of the entire cohort (Figure 3B). Similar results were observed when 

measuring rearing activity (data not shown).  

To further assess the efficacy of gene therapy in correcting MPS I-associated 

damage in the nervous system, we examined the Purkinje cell layer of the 

cerebellum of treated and control animals: we quantified the integrity of the 

layer (number of Purkinje cells within all the circumvolutions of each section) 

and evaluated the degeneration of the cells present in the layer (Figure 3C-D). 

Interestingly, the reduced density of Purkinje cells observed in mock-

transplanted MPS I mice was normalized to WT density by gene therapy 

(Figure 3C). Moreover, the degeneration of the Purkinje cells was greatly 

reduced in GT animals as compared to mock-transplanted affected controls 

(Figure 3C-D). HCT exerted only a partial benefit on the Purkinje cells (Figure 

3 C-D). 
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Differential skeletal outcome of gene therapy and HCT  

Treated and control mice underwent total body Computed Tomography (CT) 

scans to characterize their skeleton. The width of the skull and of the humerus 

and femur, as well as the length of the femur were measured on CT scans. 

Moreover, the volume of the zygomatic bones was measured on three-

dimensional reconstructions. Interestingly, direct inspection (Figure 4A), CT 

imaging (Figure 4B) and bone measurements on CT scans (Figure 4C-F) 

demonstrated an almost complete normalization of all analyzed parameters in 

GT mice as compared to mock-transplanted affected siblings, whereas HCT 

provided a partial benefit on skeletal abnormalities. The extent of correction of 

the skeletal phenotype was greater in the presence of higher IDUA expression 

in PBMCs of GT mice, as shown for the femur length, which is representative 

of the other tested parameters (Figure 4G). Similar results were obtained by 

the assessment of the densitometric and geometrical parameters of the 

appendicular long bones (femur and tibia) at pQCT. The bone phenotype of 

the affected mice was characterized by increased size and density at 

comparison with WT animals (data not shown). The polar Strength Strain 

Index (SSI) of the femur and tibia was analyzed as a representative 

parameter accounting for the resistance of the long bones towards torsion 

(obtained from pQCT cross sectional scanning), based on bone density and 

size. The SSI of GT mice was significantly lower than that of mock-

transplanted affected littermates and not distinguishable from the SSI of WT 

animals (Figure 4H). Moreover, the SSI of GT mice was also significantly 

lower than that of HCT mice, confirming the poor efficacy of the latter 

procedure in correcting the MPS I-associated skeletal disease (Figure 4H).  
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Histopathologic evaluation of the epiphysis of the long bones from control and 

treated animals confirmed the CT and pQCT findings. Disorganization of the 

growth plate, with irregular morphology and cell distribution, was 

demonstrated in both mock-transplanted MPS I mice and animals treated by 

HCT; on the contrary, the growth plate of GT animals appeared 

undistinguishable from that of WT mice for morphology and cellular 

organization (Figure 5A). In order to quantitatively describe the morphology of 

the growth plate in the different groups of animals, we performed a 

morphometric analysis (as detailed in Figure S2). Briefly, we measured i) the 

ratio between the perimeter and the length of the growth plate as a 

quantitative measure of its altered morphology (the higher is the ratio, the 

most irregular and undulate is the growth plate) and ii) the number of 

chondrocytes aligned in columns perpendicular to the major axis of the growth 

plate (chondrocytes aligned in perpendicular columns are instrumental for 

correct bone growth in length and thus are pre-requisites for a normal function 

of the growth plate). These measurements confirmed that the growth plate in 

mock-treated MPS I mice has a highly irregular morphology and is 

disorganized, having a very high perimeter/length ratio and a very low number 

of aligned chondrocytes as compared to WT mice (Figure 5B and C). 

Interestingly, gene therapy was associated to a normalization of the 

morphology of the growth plate, with normalized perimeter/length ratio and 

increased number of aligned chondrocytes; minor correction of both 

parameters was observed upon transplantation of WT HSPC (Figure 5B and 

C). 
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Restoration of auditory function and retinal thickness in GT mice 

GT and control animals underwent neurophysiological studies for 

measurement of their Auditory Brainstem Responses (ABR) (Figure 6A-B). 

Interestingly, while up to 60% of mock-transplanted MPS I mice were deaf at 

ABR testing, only 20% of the GT animals showed a substantial hearing 

impairment. Moreover, scoring of latencies of peaks I, III, IV and V 

demonstrated a significantly reduced latency of all tested waves in GT as 

compared to mock-transplanted MPS I mice (the latency of peaks I, referring 

to cochlear processing, and IV, referring to processing in the lateral 

lemniscus, are shown as representative) (Figure 6B), confirming amelioration 

of the auditory function in affected mice upon treatment.  

Measuring the thickness of the retina of treated and control mice allowed us 

assessing the impact of gene therapy on the visual system. In particular, the 

reduction of retinal thickness observed in mock-treated MPS I mice was 

corrected to values in the range of WT controls by gene therapy (Figure 6C-

D).  

 

Other phenotype outcome measures 

Treated and control mice underwent echo-cardiographic evaluation to study 

the disease-associated cardiac abnormalities. However, the study failed to 

provide relevant information, likely due to a confounding influence of the lethal 

irradiation. Indeed, echo-cardiography revealed valve disease (thickening of 

mitral and aortic valves, isolated or combined mitral and aortic regurgitation) 

in 60% and 70% of the mock-transplanted WT and MPS I animals, 

respectively. Furthermore, mock-transplanted MPS I mice did not present a 
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significant left ventricular dilatation or increased wall thickness, but rather 

showed a thickened pericardium (see also Figure S3). Splenomegaly was not 

observed in treated and mock-transplanted animals as compared to untreated 

MPS I controls due to the irradiation procedure (Figure S3).  

 

Tolerability of gene transfer and enzyme supra-normal expression in 

murine and human HSPC 

To evaluate the tolerability of the treatment, mice underwent bleeding for 

hemocytometric evaluation and cytofluorimetry (peripheral blood 

immunophenotype for T and B lymphocytes and myeloid cells) before 

sacrifice. Moreover, gross necroscopy was performed on each animal and 

liver, spleen, thymus plus any suspect lesion were processed for pathology. 

No hematological abnormalities or altered proportion of blood lineages were 

detected in the peripheral blood of tested animals after recovery from 

transplant (Figure S4). Southern-blot analysis detecting the LV sequence (by 

a PRE-specific probe21) on the spleen DNA from a small subset of treated and 

control mice demonstrated a smear suggestive of absence of predominant 

clones (data not shown). Pathology identified two liver- and spleen-infiltrating 

B cell lymphomas, one in a mock-transplanted MPS I mouse and one in the 

gene therapy cohort; the lesions were vector-negative (data not shown). 

These findings are consistent with the reported high incidence of B cell 

lymphomas in the C57Bl6 strain30,31. The repopulation and differentiation 

ability of the transduced cells in the lethally irradiated recipients (Figure S4) 

indicates that IDUA supra-normal expression does not affect the function of 

murine HSPC (engraftment failure frequency <10%).  
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In the perspective of a future clinical translation of this approach, we assessed 

the feasibility and tolerability of IDUA supra-normal expression at the levels 

shown to be therapeutic in mice on human CD34+ HSPC isolated from 

normal cord blood. Transduction performed according to established 

protocols17 allowed obtaining enzyme supra-normal expression up to 150 

folds above un-transduced controls (measured after 14 days of in vitro liquid 

culture) (Figure S5 A) in the presence of a number of LV integrations (1.05 ± 

0.35, measured after 14 days of in vitro semisolid culture of progenitors – 

colonies from CFC assay) lower than that required to obtain similar 

expression levels in murine HSPC. Importantly, when transplanted into sub-

lethally irradiated Rag2-/- γchain-/- mice23, IDUA over-expressing cells long-

term repopulated the hematopoietic organs of chimeric mice with efficiency 

comparable to un-transduced cells (Figure S5B) and underwent multilineage 

differentiation (Figure S5C-E). Importantly, the cells retained IDUA supra-

normal expression long-term in vivo (Figure S5F). Of note, IDUA activity 

measured in the murine tissues was proportional to the human cell 

engraftment in each organ (Figure S5G).  
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DISCUSSION 

 

The data here described, which result from a comparison of the 

transplantation of engineered versus WT HSPC, indicate that gene therapy 

represents an effective and applicable therapeutic opportunity for MPS I 

patients warranting future development towards clinical testing. Indeed, we 

here demonstrate that gene-corrected cells are capable of robust and 

effective delivery of the functional IDUA enzyme to diseased tissues, including 

the CNS, where supra-normal enzymatic activity was measured. This finding 

is particularly relevant in light of the inability of WT HSPC transplantation as 

well as of other tested gene therapy approaches to deliver comparable 

amounts of enzyme to the brain. The efficient delivery of IDUA to diseased 

sites was associated with metabolic correction of the affected tissues, as 

shown by the clearance of accumulated GAGs within hematopoietic and non-

hematopoietic cells. This finding suggests the occurrence of active secretion 

of the functional enzyme by the gene corrected progeny of the transplanted 

cells and its re-uptake by the resident populations. Importantly, the efficient 

clearance of the storage material achieved by gene therapy allowed obtaining 

complete correction of the MPS I-associated phenotype. To our knowledge, 

we here provide first evidence of correction to normal of the MPS I 

neurological and skeletal defects. In particular, behavioral defects as well as 

neurodegeneration in the CNS were corrected, with dependence from 

enzymatic activity levels. Similarly, IDUA over-expression in the hematopoietic 

system allowed correcting the disease-associated morphological, 

morphometric and densitometric abnormalities of the skeleton and a dose-
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effect relationship was shown. Despite functional data on the correction of the 

heart disease could not be obtained due to limitations of the procedure, the 

differential clearance of the storage in the heart confirmed the higher 

proficiency of gene therapy as compared to HCT also at this disease site. 

Further studies employing either sub-lethal irradiation or pharmacological 

myeloablation will better investigate this finding. Furthermore, when other 

outcome measures were considered, GT mice showed a significantly 

improved phenotype up to almost complete normalization of each of the 

tested parameters. Overall, these results indicate that LV-mediated gene 

therapy has a superior proficiency as respect to both HCT and other 

previously tested HSC gene therapy approaches, which were shown to 

reduce the manifestations of MPS I in mice in a similar way to HCT in 

humans12,20. Notably, disease correction was obtained upon treatment of adult 

animals. Furthermore, these data demonstrate that LV-mediated gene 

transfer into HSPC and their progeny is critical for attaining IDUA supra-

normal delivery to those tissues requiring high enzyme levels for metabolic 

and functional correction.  

 

Increasing evidences of partial amelioration of histopathological abnormalities 

related to lysosomal storage after systemic vector or enzyme administration in 

LSD animal models treated in adulthood are accumulating32-36. These results, 

which in some cases are not associated to an overt benefit in terms of 

neurological symptoms alleviation, are far from being understood. Anyhow, 

the efficacy of HSC gene therapy could also be related to some IDUA protein 

being secreted by the transduced hematopoietic cells into the bloodstream. 
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From the circulation the enzyme could have crossed the blood-brain-barrier 

and reached the brain independently from the infiltration of gene-corrected 

myeloid cells. However, the results recently obtained by Wang and colleagues 

using an erythroid specific expression cassette in the context of a HSPC 

transplant protocol, demonstrate that enzyme delivery to the brain by serum 

enzyme crossing the blood-brain-barrier can provide only partial benefit to the 

MPS I neurological disease20. We can thus hypothesize that the amount of 

enzyme delivered to the CNS by this approach is lower than what we 

obtained, indicating that myeloid cells over-expressing the enzyme could 

significantly increase IDUA delivery to the CNS (and possibly to the skeleton). 

Of note, these results were obtained in the context of a procedure well known 

to induce tolerance to the foreign protein without the need for long-term 

immuno-suppression of the host10. 

 

Therapeutic efficacy shown by gene therapy is here strictly dependent from 

supra-normal levels of IDUA activity within the hematopoietic system of 

treated mice: high levels of enzyme are indeed required to correct the 

metabolic and functional defect in the MPS I brain and skeleton. Such a 

requirement for lysosomal enzyme robust delivery to disease sites could be 

met only upon the efficient transduction of HPSC by advance generation LV. 

An experimental threshold of 1500nmol/mg/h measured on circulating 

hematopoietic cells (~100 fold the activity detected in the PBMC of WT 

animals) could be identified as critical for achieving the largest benefit in 

treated mice. Importantly, in terms of potential for clinical translation, we 

demonstrated that similar expression levels could be obtained in human 
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HSPC with a limited amount of LV integrations (1 LV copy per cell on 

average) due to the higher proficiency of the human phosphoglycerate kinase 

promoter in human cells. Moreover, we tested the tolerability of LV-mediated 

IDUA expression at these supra-normal values in both murine and human 

HSPC. The unaffected long-term repopulation and differentiation potential of 

the transduced IDUA over-expressing HSPC demonstrated that supra-normal 

IDUA activity does not detectably affect HSPC functional properties, as tested 

in vivo. Further follow up studies will allow demonstrating the long-term safety 

of this approach. However, the safety and the overall therapeutic potential of 

HSC gene therapy are already supported by a large amount of preclinical 

studies37,38 and, most importantly, by the recently reported promising follow up 

of the adrenoleukodystrophy patients treated by means of LV-based HSC 

gene therapy19.  

 

In conclusion, we here demonstrate that LV-mediated HSC gene therapy 

allows efficacious enzyme delivery to all MPS I affected tissues, resulting in 

complete correction of disease manifestations, including neurological and 

skeletal abnormalities that are refractory to correction by other therapeutic 

approaches. Therefore, LV-based HSC gene therapy represents an 

efficacious strategy for the treatment of storage diseases with systemic and 

CNS involvement, and, upon further development, might become an attractive 

option for MPS I-H patients, potentially capable of addressing the disease 

manifestations refractory to correction by ERT and HCT.  
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FIGURE LEGENDS 

 

Figure 1. Reconstitution of IDUA activity in MPS I mice upon 

transplantation of wild type or gene corrected HSPC. 

(A) Experimental scheme. Idua-/- and Idua+/+ cells were transduced with IDUA-

LV or GFP-encoding LV (in which transgene expression was driven by the 

human phosphoglycerate kinase [PGK] promoter) and then transplanted 

(1x106 cells/mouse) into lethally irradiated mice, as indicated. GT: gene 

therapy treated Idua-/- mice; HCT: Idua-/- mice transplanted with WT HSPC 

transduced with GFP-LV; MPS I: Idua-/- mice transplanted with GFP-LV 

transduced Idua-/- HSPC (mock-transplanted affected controls); WT: Idua+/+ 

mice transplanted with GFP-LV transduced Idua+/+ HSPC (mock-transplanted 

WT controls). (B-D) IDUA activity was measured in the PBMCs (B), in the 

serum (C) and in the tissues indicated below the “x” axis (D) of mice 

transplanted with either mock-transduced or gene corrected HSPC at 4 weeks 

(B) or 6 months after the transplant (at sacrifice) (B, C and D). Each dot 

represents one mouse, average values are shown (black line). (E) Gene 

therapy treated mice were divided into two groups according to the IDUA 

activity measured in total PBMCs (at 6 months from the transplantation)(left 

chart) and to the vector copy number per genome (VCN) measured on total 

BM cells (right chart). IDUA activity measured in the brain is shown for 

animals having IDUA activity in PBMCs below (<) or above (>) 

1500nmol/mg/h and carrying less (<) or more (>) than 5 LV copies per 

genome in the BM (being 1500 and 5 the average values measured in the 
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entire pool of gene therapy treated mice). Mean ± min/max are shown. **= 

p<0.01; ***=p<0.001 at Student’s t test.  

 

Figure 2. Supra-normal enzymatic activity allows storage removal in the 

MPS I affected tissues. 

(A) Morphological analysis of 1-µm sections, toluidine blue stained, from 

different organs of treated and control animals, as indicated. Representative 

images show the lysosomal distention in the indicated tissues in MPS I mice 

(no distention is present in WT animals). Kidney: arrows and arrowheads 

identify lysosomal storage, which is evident in the tubules (arrows), in the 

glomeruli (arrowheads)(* marks the glomeruli) and in interstitial fibroblasts; 

liver: arrows highlight storage within hepatocytes, and storage is also present 

within Kuppfer cells; spleen: pathological storages (arrows) are predominant 

in the red pulp; heart: pathological storage is abundant in the endothelium and 

in myocytes (arrows); frontal cortex: pathological storage is present within 

neurons (arrows) and in endothelial cells (v=vessels); subjective score in MPS 

I: 3-4 in the different examined tissues. Magnification 100X and 200X. 

Residual storage is present in all tissues of mice treated with HCT. Two 

representative animals [HCT(a) and HCT (b), both having donor cell 

engraftment >70%, as assessed by quantification of donor GFP+ cells in 

peripheral blood by cytofluorimetric analysis] are shown demonstrating a 

different grade of storage [subjective score HCT(a): 1-2 and HCT (b): 2-3 in 

the different examined tissues]. Magnification 100X and 200X. A strong 

reduction of the storage is evident in all the examined tissues from a 

representative GT mouse having a VCN of 5 in the BM (subjective score: 0-1 
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in the different examined tissues). Magnification 100X. (B) Lysosomal 

distention/cell engulfment was scored (see methods for details) in liver, 

spleen, heart, kidney and cortex of treated and control mice. Mean ± SEM are 

shown; n=4 representative mice analyzed per group ( 3 representative 

images per mouse). *=p<0.05; **= p<0.01; ***=p<0.001 at One Way Anova. 

(C-D) GAGs were quantified in the urine (C) and in the tissues (D, as 

indicated below x axis; liver, spleen and kidney were chosen as 

representative tissues) of treated and control mice. Mean ± SEM are shown; 

n 4 representative mice analyzed per group. *=p<0.05; **= p<0.01; 

***=p<0.001 at One Way Anova. (E) Western Blot for heparin co-factor II-

thrombin (HCII-T) complex was performed on the serum of MPS I, GT and 

WT mice. GAPDH (lower image) was used as internal control. 

 

Figure 3. Differential neurological outcome of gene therapy and HCT.  

(A) Repeated open field test was performed on treated and control mice 6 

months after the transplantation. Horizontal activity of MPS I (n=20), HCT 

(n=18), GT (n=17) and WT (n=14) mice is reported as percentage (%) of 

change between the 1st and the 3rd day. (B) GT mice were divided into two 

groups according to the IDUA activity measured on their brain. The % change 

in horizontal activity between 1st and 3rd trial is shown for animals having brain 

IDUA activity lower (<, n=8) or higher (>, n=9) than 20nmol/mg/h (being 

20nmol/mg/h the average activity value measured on the brain of the entire 

population of GT mice). Mean ± SD are shown; *=p<0.05; **=p<0.01; 

***=p<0.001 at one-way Anova in (A) and Student’s t test in (B). (C) Purkinje 

cell frequency (expressed as % of the cells counted in WT mice)(dense area) 
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and % of degenerated Purkinje cells among the total cells (scattered area) in 

cerebellum slices from affected, WT, HCT and GT treated mice are shown 

(see methods for details). Mean ± SD values are shown; n 4 representative 

mice analyzed per group ( 3 representative sections per mouse). (D) 

Representative semithin section images from the Purkinje cell layer of treated 

and control mice, as indicated. The pictures show degenerating Purkinje cells, 

which besides accumulating GAGs display shrunken cell bodies and darkly 

stained nuclei (arrows, “gl” marks granular layer), in mock-transplanted MPS I 

mice; in HCT mice residual storage and Purkinje cell degeneration were seen, 

while in the GT treated mice we observed a complete rescue of the 

pathological phenotype. Magnification 100X in the images from the upper row, 

200X in the bottom row. 

 

Figure 4. Differential skeletal outcome of gene therapy and HCT.  

(A-B) Pictures (A) and 3D reconstructions of CT scans (B) from MPS I, WT, 

HCT and GT mice 6 months after the treatment, showing the different gross 

appearance of the treated and control mice (the GT mouse shown in [A] and 

[B] had a VCN of 5.4 on bone marrow; the HCT mouse had a donor cell 

engraftment of 74% on PBMCs). (C-F) Measurements of skull width (C), 

zygomus volume (D), femur length (E) and humerus width (F) were performed 

on CT scan images as shown on the right side of each chart (see methods for 

details) from MPS I (n=19), HCT (n=14), GT (n=15) and WT (n=14). For 

avoiding sex biases, the femur length of only the male mice is reported (MPS I 

n=10, HCT n=10, GT n=8, WT n=8); similar results were obtained in females. 

(G) Gene therapy treated mice were divided into two groups according to the 
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IDUA activity measured on their PBMCs. The femur length is shown for 

animals (males and females) having PBMC IDUA activity lower (<) or higher 

(>) than 1500nmol/mg/h (being 1500nmol/mg/h the average activity value 

measured in the entire population of gene therapy treated mice). (H) Strength 

Strain Index (SSI) (calculated as described in the methods section) was 

evaluated by pQCT on the diaphysis of the femur (left chart) and tibia (right 

chart) from MPS I (n=19), HCT (n=14), GT (n=15) and WT (n=14). Mean and 

min/max values are shown; *= p<0.05; **=p<0.01; ***=p<0.001 at one-way 

Anova in (C-F) and (H); *=p<0.05 at Student’s t test in G. 

 

Figure 5. Differential effect on the growth plate of gene therapy and HCT. 

(A) Representative pictures of the proximal epiphysis of the tibiae from mock-

transplanted and treated mice (hematoxylin and eosin staining), as indicated. 

The growth plate is disorganized and has an irregular morphology in both 

mock-transplanted MPS I and HCT mice (the GT mouse shown in [A] and [B] 

had a VCN of 6 on bone marrow; the HCT mouse had a donor cell 

engraftment of 80% on PBMCs). Magnification 5X and 20X.  (B-C) The ratio 

between the perimeter and the length of the growth plate (B) was calculated 

and the number of chondrocytes aligned in columns perpendicular to the 

major axis of the growth plate (C) was counted (see Figure S2 for detailed 

explanation) for 5 representative MPS I, HCT, GT and WT mice ( 3 

representative sections per mouse). Mean and min/max values are shown; *= 

p<0.05; **=p<0.01; ***=p<0.001 at one-way Anova. 
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Figure 6. Effect of gene therapy on auditory brainstem responses and 

retina integrity. 

(A-B) ABR were measured on gene therapy treated (n=9) and control mice 

(n=9 for WT and 5 for MPS I) 6 months after treatment. (A) Representative 

response after auditory stimulation in WT, MPS I and GT mice: for each 

mouse 3 series of waves (obtained by average of 500 electrical signals each) 

were recorded (shown in the upper panel). In the lower panel the resultant 

wave obtained by the average of the three traces is shown. The latency of 

wave I and IV was measured as shown by the pink and green lines, 

respectively. (B) ABR scores of wave I (left chart) and wave IV (right chart) 

latencies are shown. (C-D) Retinal thickness (D) of MPS1, GT, and WT mice 

(n=3) measured on 20x magnification pictures upon DAPI staining, as shown 

in the representative images in (C). n=3 mice analyzed per group ( 6 

representative images per mouse). PE = photoreceptor layer; ONL = outer 

nuclear layer; INL = inner nuclear layer; GCL = ganglion cell layer. The white 

bar in picture on the left shows the measured thickness. Mean and SD are 

shown (*= p<0.05; **=p<0.01; ***=p<0.001 at One-way Anova). 
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