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Abstract

Security protocols are communication protocols that aim at enforcing secu-

rity properties through heavy use of cryptographic primitives. These proto-

cols are at the core of security-sensitive applications in a variety of domains

(e.g. transportation, health-care, online banking and commerce). Failures

are not a option as may cause heavy loss of capitals, time and even humans

life. In spite of their apparent simplicity, security protocols are notoriously

error-prone and so a number of verification techniques were developed to

cope with the verification of such protocols. However most of the proposed

protocol specification languages and verification techniques are limited to

cryptographic protocols where quantitative temporal information is not cru-

cial (e.g. delay, timeout, timed disclosure or expiration of information do not

affect the correctness of the protocol), and details about some low level tim-

ing aspects of the protocol are abstracted away (e.g.: timestamps, duration

of channel delivery, etc.).

In this thesis we face the problem of specifying and verifying security

protocols where temporal aspects explicitly appear in the description. For

these kinds of protocols we have designed a specification formalism, which

consists of a state-transition graph for each participant of the protocol, with

edges labelled by trigger/action clauses. The specification of a protocol is

translated into a Timed Automaton on which standard techniques of model

checking can be exploited (properties to be checked can be expressed in a

linear/branching untimed/timed temporal logic). We also study the protocol

insecurity problem for time dependent security protocols with a finite number

of sessions, extending to the timed case the results of M. Rusinowitch and

M. Turuani [RT03] stated for the untimed case. We show that the extension
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to time and the increased power of the intruder model we propose do not

affect the complexity of the problem which remains NP–Complete.
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Chapter 1

Introduction

The constant growth of dependency of many human activities on computer

systems and applications has made fundamental their verification phase.

Malfunctions, still largely tolerated in personal computing systems, is unac-

ceptable for safety critical systems whose failure or malfunction may result

in: death or serious injury to people, or loss or severe damage to equip-

ment or environmental harm. The usual verification techniques known as

testing, debugging or simulation usually cover only a fraction of the admis-

sible behaviours of the system and, while widely used and understood, do

not guarantee the degree of confidence required by safety critical systems.

Disasters like the explosion of Ariane 5 (due to a floating point overflow),

the Pentium FDIV bug or the death of two people caused by the software

controlled medical machine for radiotherapy Therac25 shows that conven-

tional validation techniques based on informal arguments and/or testing are

not adequate. Complementing those verification techniques formal methods

have been profitably used in various phases of the design of safety critical

systems. Such techniques can mathematically prof that a system conform to

its safety requirements. There are roughly two approaches to formal verifica-

tion, Theorem proving and Model Checking. Theorem proving consists in the

encoding of the system and its requirement in the form of some logic in the

attempt to build a formal proof of the safety of the system. This is usually

only partially automated and is driven by the user’s understanding of the
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system to validate. Model checking, otherwise, is more easily automated.

The user provide a representation of the system using an appropriate La-

belled Transition System (LTS), usually some kind of finite state automaton,

and a formula, usually in some temporal logic (LTL, CTL), representing the

safety goal to satisfy. The model checking algorithm search the state space

of the system in the attempt to violate the goal formula eventually provid-

ing the user with a counterexample. While the inherent complexity of both

techniques somehow limit they adoption and problems like the one of state

explosions limit their use to small systems, both theorem proving and model

checking were effectively used to verify safety critical systems.

A notable class of safety critical systems is the one of security, or crypto-

graphic, protocols. Our society rely on electronic communication massively.

Although much faster and less restrictive than direct communications, those

new kinds of communications seems to lack the trust and safety of usual

direct communications. For example, a third person can easily listen to a

phone communication (problem of confidentiality), or, without proper au-

thentication, send emails on behalf of someone else (SPAM, viruses). Secu-

rity protocols try to ensure some degree of safety by the use of cryptographic

primitives. However, although absolutely necessary to any safe communica-

tion, encryption algorithms are not sufficient to guarantee safety. Designing

secure protocols is a very challenging problem, a number of examples have

shown that their informal design is error prone. In wost case scenarios, the

presence of a motivated intruder or dishonest or careless principals, severe

attacks can be conducted even without breaking cryptography.

Formal methods have been profitably used in various phases of the de-

sign of cryptographic protocols (specification, construction and verification).

Much work has been then devoted to formal specification and analysis of

cryptographic protocols, leading to a number of different approaches and en-

couraging results. Most of the proposed protocol specification languages and

verification techniques are limited to cryptographic protocols where quantita-

tive temporal information is not crucial (e.g.: delay, timeout, timed disclosure

or expiration of information do not affect the correctness of the protocol), and

details about some low level timing aspects of the protocol are abstracted
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away (e.g.: timestamps, duration of channel delivery, etc.). In this con-

text, the specification language HLPSL has been proposed within the Avispa

Project (see [ABB+05]), for the specification of industrial-strength security

protocols. HLPSL allows for modular specifications, specification of control

flow patterns, data-structures, and security properties. It is also sufficiently

high-level to be used by protocol engineers.

In this thesis we focus on the problem of specifying and verifying se-

curity protocols where temporal aspects directly affect the correctness of

the protocol, and, therefore, need to be explicitly considered both in the

specification and the verification and how time affect the complexity of the

verification. Examples of time sensitive protocols are, for instance, the non-

repudiation Zhou-Gollmann protocol [ZG97], the TESLA authentication pro-

tocol [PCTS02] and the well known Wide Mouthed Frog protocol [BAN89].

1.1 Thesis Structures

This thesis is divided in the following main chapters:

- Chapter 2 - where we set the basic formal concepts this thesis build on.

In this chapter are defined the concepts of timed automaton, model

checking, and temporal logics;

- Chapter 3 - where we define what is a security protocol and how can be

modelled and verified using the industry standard HLPSL language;

- Chapter 4 - where we define what is a timed security protocols. How

this class of protocols relate with the untimed ones and the challenges

it pose for a correct specification. We will present three timed pro-

tocols and an extension to the HLPSL language that allow for a easy

specification of temporal constraints. We will end with the language

formal semantics;

- Chapter 5 - where we will describe a framework for the verification

of timed security protocols based on the extended language. We will
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verity the presented protocols and show the framework performances

compared to some alternatives;

- Chapter 6 - where we will focus on the computational complexity of the

addressed problem and how it relate to previous bibliography results;

- Chapter 7 - where we summarise the conclusions of this thesis and

future directions that may be worth exploring.
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Chapter 2

Formal Background

The purpose of this chapter is to set the basic formal concepts this Thesis

focuses on. The chapter presents the formalism of the Timed Automata in

section 2.1 and the one of the Difference Logic in 2.7. In section 2.4 are

presented decidability results related to the model checking of both those

formalisms.

2.1 Timed Automata

Timed systems, like device drivers, ATM, communication protocols, are sys-

tems whose behaviour and dynamics are dependent on time. Subject to

rather stringent timing constraints those systems must react in time: they

are time-critical.

Example 2.1.1 For a system controlling a gate is essential to close within

a certain time bound after detecting the approaching train to halt car and

pedestrian traffic before the train reaches the crossing.

Many different formalisms are used to model timed system, both in

continuous-time and discrete-time. Between those formalism the one of

Timed Automata, introduced by [AD94], have received much interest in the

past years. There are many extension of that formalism accounting many

peculiar featured and enjoying different decidability properties.
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s0start s1 s2
a

x ≤ 5

b

x := 0

Figure 2.1: An Example of Timed Automaton

We begin by giving the intuition behind the model before a more formal

insight of its syntax and semantic.

Consider the automaton depicted in figure 2.1.

Much like an usual Büchi Automaton we have a some states (s0, s1, s2),

a starting (s0) and an accepting state (s2), we have transitions triggered

by symbols of an alphabet Σ = {a, b}; however, differently from the usual

untimed models, transitions are also decorated (x := 0 and x ≤ 5 ) using

constraints and resets over a set of non negative real valued variables called

clocks. Intuitively, as the automata stay in a location, the value of all the

clocks grows synchronously from the initial value of 0. Transitions firing is

instantaneous and conditions (guards) can check for the value of those clock

variables or reset them. In our example the clock x in the automaton is

checked before taking the transition between s0 and s1 to see if its value is

less than 5 (i.e.: 5 time units passed from the last reset of the clock) and is

later resetted to 0 when taking the transition between s1 and s2. Generally

we can have an arbitrary, but finite, number of clocks in our automaton and

each transition can check and reset the value of more clocks at once. The

syntax of checks performed, the kind of resets allowed and, moreover, features

like the ability to constraint the time passed in a location (via guards like con-

straints called invariants), synchronisation between different automata, etc..,

determine the particular timed automata extension used and its decidability

properties.

Timed Automata accept sequences of symbols paired with a non-negative

real value called timed words, intuitively the time that symbol was accepted.

For example the timed automaton in figure 2.1 can accept the sequence

(a, 3), (b, 2).

We now present formally the Timed Automata syntax as defined in [AD94].

14



2.1.1 Syntax

Given a finite set of clocks C valued over a dense domain (eg.: R≥0) and a

finite set of symbols Σ.

The set of clocks constraints over C, Φ(C) is built using boolean combina-

tions of atomic constraints of the form x#c with x ∈ C, # ∈ {=,≤, <,≥, >}
and c ∈ Q≥0.

Inductively Φ(C):

- (x ≤ c) ∈ Φ(C), with x ∈ C and c ∈ Q≥0;

- (c ≤ x) ∈ Φ(C), with x ∈ C and c ∈ Q≥0;

- ¬φ ∈ Φ(C) if φ ∈ Φ(C);

- (φ1

∧
φ2) ∈ Φ(C) if φ1 ∈ Φ(C) and φ2 ∈ Φ(C).

Given a set of clocks C with their values being in R≥0, a clocks valuation

ν is a function C → R≥0 that associates to each clock x ∈ C its value in R≥0,

ν(x).

A clocks valuation ν satisfies an atomic constraint (x#c) if and only if,

using the usual semantic of the constraints, (ν(x)#c) is true.

We denote with ν |= g the fact that the clocks valuation ν satisfies a

timing constraint g.

Given a clocks valuation ν over C, for each t ∈ Q≥0, ν + t is the valuation

that assign to each clock x ∈ C the value ν(x)+t. Moreover given two subsets

X, Y ⊆ C and Y ⊆ X with ν ′ = [Y 7→ t]ν we denote the clocks valuation for

X such that ∀y ∈ Y ν ′(y) = t and ∀x ∈ X − Y ν ′(x) = ν(x).

A finite state timed automaton over the symbols alphabet Σ and the set

of clocks C is a tuple

〈Σ, L, L0, C, δ〉

where,

- Σ is the finite set of symbols;

- L is a finite set of locations;

15



- L0 ⊆ L is the set of initial locations;

- C the set of clocks;

- I : L→ Φ(C) the invariant map, associating to each location an invari-

ant guard, timely constraining the ability of the automaton to stay in

a location;

- δ ⊆ L×L×Σ× 2C ×Φ(C) is the transition function. An element of δ,

〈s, s′, a, λ, φ〉, also written as s
a,λ,φ→ s′, represent the transition between

the location s to the location s′ upon the receipt of the input symbol

a. The set λ ⊆ C is the set of the clocks resetted to 0 upon the firing

of the transition while φ ∈ Φ(C) is the guard of the transition (i.e.: the

condition that must be true before the transition take place).

The timed automaton depicted in figure 2.1 can be defined as follow:

- Σ = {a, b};

- L = {s0, s1};

- L0 = {s0};

- C = {x};

- I = ∅;

- δ = {(s0, s1, a, x, ∅), (s1, s2, b, ∅, x ≤ 5)}

A time sequence τ = τ1τ2 . . . is an infinite sequence of clock values with

τi ∈ Q≥0 satisfying the following constraints:

- Monotonicity: the values of τ grown monotonically; ∀i, ti ≤ ti+1;

- Progress: ∀t ∈ Q≥0 ∃i ≥ 1 : τi > t.

As we said a timed word on the Σ alphabet is a pair (a, τ) where a =

a1a2 . . . is a infinite sequence of symbols of Σ and τ is a time sequence. The
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set of the timed word accepted by an automaton A is the language accepted,

L(A), by that automaton.

A run r over a timed automaton is an infinite sequence like:

r : 〈s0, ν0〉
(a1,τ1)→ 〈s1, ν1〉

(a2,τ2)→ 〈s2, ν2〉 . . .

with si ∈ L and νi clock valuation satisfying the following conditions:

- Initialisation: s0 ∈ L0 e ∀x ∈ C, ν0(x) = 0;

- Sequentiality: ∀i ≥ 1 there is a transition 〈si−1, si, a, λ, φ〉 in δ and νi

is equal to [λi 7→ 0](νi−1 + τi − τi−1).

Acceptance for a timed automaton is defined like the one over generalised

Büchi automaton: defined a subset F ⊆ L of accepting states a run r is

accepting on a timed word it passes through at least one state of every set

of accepting states infinitely often; denoting with inf(r) the set of infinitely

recurring states in r i.e: ∩F 6= ∅.

2.1.2 Semantic

The semantic of a timed automaton A = 〈Σ, L, L0, C, I, δ〉 can be defined

using an infinite Labelled Transition System (LTS), TSA.

Intuitively each state in TSA is a pair 〈l, ν〉, called instantaneous descrip-

tion, with l location of the timed automaton and ν a clock valuation.

Formally the LTS associated to an automaton A = 〈Σ, L, L0, C, I, δ〉 is a

tuple TSA = 〈S, s0,→,Σ〉 where:

• S = L×R≥0;

• s0 = (l0, v0) with l0 ∈ L0 and v0(x) = 0∀x ∈ C is the clock valuation

that assign 0 to each clock;

• →: S × S × Σ the transition relation. We have:

- action transitions: (l, v) →a (l0, v0) if and only if there exists

e = (l, g, a, r, l0) such that v |= g, v0 = [r 7→ 0]v and v0 |= I(l0)

17



〈s0, x = 0〉 〈s0, x = 0.6〉

〈s1, x = 0〉 〈s1, x = 4.2〉

〈s2, x = 4.9〉

0.6

a

4.2

b

Figure 2.2: The LTS associated to the automaton of figure 2.1

i.e.: there is a transition from l to l0 on the symbol a whose guard

is satisfied by v while the valuation v0 obtained by v resetting the

clocks in r satisfy the invariant of l0;

- time transitions: if d ∈ R≥0 then (l, v)→d (l, v + d) if and only if

v + d |= I(l).

An important remark is that due to the underlying clocks dense domain

two consecutive time transition can be merged, e.g.: the two consecutive

transition (q, v) →t (q, v′ = v + t) →t′ (q, v′ + t′) are equivalent to the

transition (q, v) →t+t′ (q, v + t + t′). Inversely a time transition (q, v) →t

(q, v + t) can be decomposed in an arbitrary number of consecutive time

transitions (q, v) →t′ (q, v) →t1 . . . →tn (q, v + (t1 + tn)) →t′ for a suitable

choice of t1, tn.

As an example in figure 2.2 is the associated LTS of the timed automaton

in 2.1, double lines represent time transitions, single lines are action transition

and dashed lines represent transitions to not showed states.

2.1.3 Timed Automata Related Results

In the seminal paper [AD94], the authors prove a number of properties re-

garding timed automata. In detail:

18



s0start s1

a, b

a

x := 0

x 6= 1, a, b

Figure 2.3: A non complementable Timed Automaton

Closure Properties

Timed automata are closed under the operation of union and intersection but,

differently from the Büchi Automata, not complementation. The closure for

union and intersection come as a direct consequence of the non determinis-

tic nature of the timed automaton. The non deterministic nature of timed

automata is also the cause of its non closure under complementation. The

proof in [AD94] is based on the observation that, due to the non determinism

of the timed automaton, a timed word can have an execution ending in both

a final and a non final location making impossible to build the complement

for a timed automata. For example the timed automaton in figure 2.3 is not

complementable [AD94].

Universality, Timed Language Inclusion, Equivalence and Empti-

ness Problems

The universality problem, checking if given an alphabet Σ an automaton

accept all the words over it, for timed automata is undecidable. The prof

come by reduction from the undecidable problem of halting of 2-counter

machines. The problems of timed language inclusion, i.e.: L(A) ⊂ L(A′), and

equivalence, i.e.: L(A) = L(A′) is also undecidable since proving them require

the ability to complement a timed automata. The emptiness problem, i.e.:

the automaton recognises the empty language, it never reach an accepting

location, is PSPACE-Complete.
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Problem Results

Union Closed
Intersection Closed
Projection Closed

Complementation Not closed
Language inclusion Undecidable

Language equivalence Undecidable
Universality Undecidable

Language emptiness / reachability analysis PSPACE-Complete

Table 2.1: Timed Automata Decidability Problems

2.1.4 Timed Automata Classes and Extensions

A number of works stemmed from the [AD94] paper trying to find useful

subsets or extensions to the timed automata formalism obtaining better de-

cidability results or more expressive formalisms. We summarise the principal

results, a more thorough work is available in [BP09].

Deterministic Timed Automata

The original definition of the Timed Automata was inherently non determin-

istic, but differently from untimed automata, a source of non determinism

source could be the transition guards. In [AD94] the authors define the class

of deterministic timed automata restricting the definition by adding the con-

strains:

• there is only a single initial location;

• two transitions from the same location on the same input symbol must

have their guards disjoint.

Adding the above constrains effectively remove the non determinism caused

by the transition guards. The Deterministic Timed Automata are a less ex-

pressive subclass of (non deterministic) Timed Automata. That also mean

that the problem of determinizing a Timed Automaton is undecidable (i.e:

there is no procedure that accepts a non deterministic timed automaton and
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Class or extension Emptiness checking Language inclusion

Timed automata PSPACE-Complete Undecidable
Deterministic timed
automata

PSPACE-Complete Decidable

Event-clock automata PSPACE-Complete Decidable
Robust timed au-
tomata

PSPACE-Complete Undecidable

ε-transitions without
clocks resets

PSPACE-Complete Undecidable

ε-transitions with
clocks resets

PSPACE-Complete Undecidable

Diagonal constraints
(x− y ∼ c)

PSPACE-Complete Undecidable

Additive constraints
(x+ y ∼ c)

Decidable for 1 or 2
clocks, open problem
for 3 clocks and unde-
cidable starting from 4
clocks[BD00]

Undecidable

Constraints of the
form x = 2y

Undecidable[AD94] Undecidable

Constraints with irra-
tional constants

Undecidable[Mil00] Undecidable

Non-standard (x := 0)
clocks resets

Decidable for x := c,
undecidable for x :=
x−1 and decidable for
x := x + 1 if diago-
nal constraints are not
allowed[BP09]

Undecidable

Table 2.2: Timed Automata Extensions

returns a deterministic timed automaton that recognise the same timed lan-

guage). The problem of language inclusion is however decidable.

Event-Recording Timed Automata

The event-recording automata [AFH99] are a class of Timed Automata that

contains, for every input symbol a, a clock, Ca, that records the time of the

last occurrence of a. The fundamental property in event-recording automata
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is that the value of clocks only depends on the input word. This characteristic

make this formalism determinizable and closed under all boolean operations

while expressive enough to model timed transition systems. Being closed

under all boolean operations make also the language-inclusion problem de-

cidable.

Robust Timed Automata

The ability to measure precise time constraints is probably the main source

of undecidability and non closure under complementation [AD94]. As no

real world system can be expected to be as precise as Timed Automata

expectations, Robust Timed Automata [GHJ97] relax its time constraints

and recognises timed words with some fuzziness in the event. Unexpectedly,

the authors believed that the removal of real-time equality constraints would

lead to a decidable theory that is closed under all boolean operations like

what happen in temporal logic, however the Robust Timed Automata still

cannot be determinized.

Bounds and Extensions of the Timing Constraints, Resets, Transi-

tions

Many authors have studied how the kind of timing constraints, reset and

transitions allowed effect the decidability properties of the Timed Automata.

For example silent, ε-transition, (i.e.: transition triggered by no symbol), that

in the case of untimed automata do not add to the expressiveness and can be

removed easily, strictly adds to the expressiveness of the Timed Automata

and cannot be easily removed ([BPDG98]). In [DGP97] the authors show

a complex procedure to remove ε-transitions when they do not reset clocks.

In [AD94, BDFP04, BD00] the authors show how constraints of the form

x = 2y, additive constraints (i.e.: x + y ∼ c), diagonal constraints (i.e.:

x − y ∼ c), constraints with irrational constants, and non-standard clocks

resets (i.e., x := c), affect the the closure and decidability of an automaton.

Table 2.2 summarise some of the results.
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2.1.5 Other Timed Formalisms

Timed Automata, while widely studied, are only one of the many formalism

used to model timed system. Others used formalism for modelling timed sys-

tems are Timed Petri Nets and Temporal Logics. Timed Petri Nets [Ram74]

are an extension of the traditional Petri Nets where a transition can be

red only if its enabling duration is in a certain time window. In [BHR06]

the authors, proving that timed Petri nets are not more expressive than

Timed Automata, introduces a class called Read-arc timed Petri nets which

is language-equivalent to timed automata. Temporal Logics even if usually

used for formal verification purposes are sometimes used for modelling timed

systems, for example the Temporal Logic of Action (TLA) [Lam90]. We will

give more details about Temporal Logics in a following section.

2.2 Extended Timed Automata

While the expressiveness of Timed Automata is enough to model even com-

plex timed system trying to model by hand even a simple system can be a

daunting task. There are many extension of the Timed Automata frame-

work that, while keeping the same decidability/closure results, add features

to simplify the creation of models. In particular the Extended Time Au-

tomata (XTA) [BY04] add to the TA formalism features like parallelism and

synchronisation, integer variables, urgent transitions.

2.2.1 Parallelism and Synchronisation

In the XTA framework a network of Timed Automata A is the parallel com-

position A1 ‖ . . . ‖ An of a series of Timed Automata A1, . . . , An, sometimes

called process, combined as a single system using parallel composition in in

the style of the Calculus of Communicating Systems (CCS)[Mil89].

Automata communicate by means of channels and the synchronous com-

munication style is handshaking. Let Σ be the set of communication channels,

then the symbol a? denotes the receiving action over channel a ∈ Σ, while
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Figure 2.4: An XTA modelling the interaction between a light and its user

the symbol a! denotes the sending action over channel a. Moreover, internal

actions are denoted by an additional symbol τ .

An example of a network of Timed Automata, modelling the interaction

between a light and its user, is in figure 2.4.

The classical Timed Automaton resulting from the parallel composition

of the above network is the closed system represented in figure 2.5.

The semantics is again given by means of labelled transition systems. A

state of the LTS TSA1,...,An is a pair < l, ν >, where l and ν are vectors

of current locations and clock valuations, respectively, one for each TA in

{A1, . . . , An}. In XTA we distinguish between two kinds of transition: delay

transitions and discrete transitions. The rule for delay transition is similar

to the case of a single TA, except that the invariant of a location is the

conjunction of the location invariant of all the parallel components. There

are two rules for discrete transitions defining local actions, where one of the

components makes a move on its own, and synchronisation actions, where two

components synchronise on a channel and move simultaneously. Formally:

Delay Transitions: 〈l, ν〉 d−→ 〈l, ν + t〉 if ν satisfies I(l) and (ν + d) satisfies

I(l), where I(l) =
∧n
i=1 I(li);

Internal Transitions: 〈l, ν〉 τ−→ 〈l[l′i/li], ν ′〉, if li
g,τ,λ−−→ l′i, ν satisfies g, ν ′ =
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ν[λ := 0], ν ′ satisfies I(l[l′i/li]);

Synchronisation Transitions: 〈l, ν〉 τ−→ 〈l[l′i/li][l′j/lj], ν ′〉, if there exists i 6= j

such that:

1. li
gi,a?,λi−−−−→ l′i, lj

gj ,a!,λj−−−−→ l′j and ν satisfies gi ∧ gj, and

2. ν ′ = ν[λi ∪ λj := 0] and u′ satisfies I(l[l′i/li][l
′
j/lj]).

Is important to note that the system progress only when the conjunction

of all the invariants is verified.

2.2.2 Integer Variables

Beside the usual clocks variables XTA allow the use of bounded, initialised,

integer variables. Integer variables con have a local or network global scope

and transition predicates are augmented to allow to check those variables

and change their values.

Semantically, Integer Variables are handles like some kind of non increas-

ing clocks. The clocks valuations ν are extended accordingly as the LTS

rules. The only ambiguity come from the ability to change the value of the

same global integer variable on both the transition of a synchronisation tran-

sition. This case is explicitly handled by choosing a priority in the update

order, i.e.: first execute the update on the output side of the synchronisation

transition and then on the input side.

LTS rules are extended in the following way:

- 〈l, ν〉 τ−→ 〈l[l′i/li][l′j/lj], ν ′〉 if there is i 6= j such that

1. li
gi,a?,ri−−−−−→ l′i, lj

gj ,a!,rj−−−−−→ l′j e ν ∈ gi ∧ gj, e

2. ν ′ = [ri 7→ 0] ([rj 7→ 0]ν) e ν ′ ∈ I(l[l′i/li][l
′
j/lj])

2.2.3 Urgent Transitions

To force a strong time decisions, i.e.: to force an automaton to leave a state as

soon as possible without enforcing an invariant, XTA allow for the definition
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of urgent transitions. An automaton will not delay execution while in a state

with an enabled outbound urgent transition.

2.3 Model Checking

Model checking is a powerful and automatic technique for verifying finite

state concurrent systems. Introduced by Clarke et al. [CGP99] has been

applied widely and successfully in practise to verify digital sequential circuit

design and communication protocols and it has been integrated in the quality

assurance process of several major hardware companies.

Wide research field in computer science it use a number of different meth-

ods for solving the general model-checking problem:

M |= p

Where M is a model of system, usually in the form of a finite state tran-

sition system, and p is a logic formula, usually of a temporal logic, expressing

some desired requirement. The technique involved in answering that ques-

tion depends on the particular modelling language used to model the system

and the associated temporal logic and in a later section we will detail some

of those technique. A problem that is inherently present when using model

checking technique is the one of state explosion. The use of finite state sys-

tems force the explicit representation of all the system state and that usually

mean that the number of system states grows exponentially with the number

of system components. This problem severely limited the size the applica-

tion of model checking to designs with less than one million states (e.g. an

hardware circuit designs with at most 20 logic gates).

A partial solution to the problem was proposed by K. L. McMillan [McM93].

The proposed idea, called symbolic model checking, was based on the sym-

bolical exploration of the state space through the use of Binary Decision Di-

agrams (BDDs) whose allow computation of transition among sets of states

rather than individual states. Symbolic model checking allowed to verify sys-

tem with up to 1020 states. While addressing the state explosion problem,
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symbolic model checking itself lacked a certain robustness. The problem lied

in the fact that BDDs may grow exponentially, limiting to the amount of

available memory the size of the system to verify. Moreover BDDs are very

sensitive to how the particular system is modelled (and trying to find the

best encoding of a state space as BDDs is NP-Complete). In 1999 Biere et

al. [BCCZ] proposed a technique called Bounded Model Checking (BMC),

which uses a propositional SAT solver rather than BDDs manipulation tech-

niques. Exploiting the dramatic speed-up of propositional solvers it is able

to analyse designs with million of states. Moreover bounded model checking

has been proved to be particularly suited in finding counter-examples, i.e.:

to return paths through the transition system that violate one of the specific

system requirements.

2.4 Temporal Logics

Timed Automata, enjoying decidable reachability properties, are a well-

established model to verify real-time systems. However they are not usable

to represent property of systems in fact one of the most common technique

to verify a system is through the so called Test Automaton. The technique

revolve around the construction of a (timed) automaton representing the

property, i.e.: all the desired behaviour, that we want, and then checking if

all the behaviour of the test automaton are in the our system. This is an

inclusion question, and that problem is unfortunately undecidable for timed

automata.

From this problem the idea to extend classical untimed temporal with

timing constraints creating a formalism, the temporal logics, to express timed

properties. Traditionally temporal logics were better suited speak about the

relative order of events, not about the distance (in time) between these events.

There are two branches of temporal logics:

• linear-time temporal logics allowing reasoning over a single time line;

• branching-time temporal logics allowing reasoning over several time

lines.
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Logic Model-checking problem

TCTL PSPACE-Complete
MTL over finite runs Decidable under the pointwise semantics

Undecidable under the continuous semantics
MTL over infinite runs Undecidable under pointwise semantics
TPTL over infinite runs Undecidable under the pointwise and continu-

ous semantics

Table 2.3: Temporal Logics Decidability Results

The traditional linear-time temporal logis is the Linear Temporal Logic

(LTL) [Pnu77], while the traditional branching-time temporal logics is the

Computational Tree Logic (CTL) [CES86].

Both CTL and LTL have been extended to support quantitative time,

CTL giving birth to the Timed Computational Tree Logic (TCTL) [HNSY94]

and LTL to the Metric Temporal Logic (MTL) [Koy90] and Timed Proposi-

tional Temporal Logic (TPTL) [RT94].

The branching-time logic TCTL has a rather low complexity, and of-

fer very good decision properties. The linear-time timed temporal logics,

instead, while being more expressive, an interesting properties for writing

specifications, are more complex and offer worse decidability results. In de-

tails the table 2.3 summarise the main result regarding temporal logics.

Since it will be used in the following chapters we will give a more detailed

definition of the TCTL logic.

2.4.1 Timed Computational Tree Logic

Given a set of atomic proposition AP the syntax of TCTL is given by the

following grammar:

ϕ ::= a|¬ϕ|ϕ1 ∨ ϕ2|Eϕ1UIϕ2|Aϕ1UIϕ2

where a ∈ AP and I an integral interval of R≥0.

Given a Timed Automaton TA whose locations are encoded as atomic

proposition (i.e: there is a function between the set of locations L and AP
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such that L → 2AP ), and a run r on it 〈s, ν〉. The semantic of the TCTL

formula ϕ is given by the following:

• 〈s, ν〉 |= a⇔ a ∈ (l);

• 〈s, ν〉 |= ¬ϕ⇔ 〈s, ν〉 6|= ϕ ;

• 〈s, ν〉 |= ϕ1 ∨ ϕ2 ⇔ 〈s, ν〉 |= ϕ1 or 〈s, ν〉 |= ϕ2;

• 〈s, ν〉 |= Eϕ1UIϕ2 ⇔ there is an infinite run ρ in TA starting from

〈s, ν〉 such that ρ |= ϕ1UIϕ2;

• 〈s, ν〉 |= Aϕ1UIϕ2 ⇔ any infinite run ρ in TA starting from 〈s, ν〉 such

that ρ |= ϕ1UIϕ2;

• ρ |= ϕ1UIϕ2 ⇔ there exists a position along ρ such that ρ[π] |= ϕ1, for

every position 0 < π′ < π, ρ[π′] |= ϕ2, and duration(π≤π) ∈ I.

where ρ[π] is the state of ρ at the position π and duration(π≤π) is the

sum of all the delay along ρ up to the position π.

The exact definition of the term position change the semantic of TCTL.

In the continuous semantics, a position in a run ρ is any state appearing

along it. In the pointwise semantics, a position in a run ρ is a state only

right after a discrete action has been done. As seen in table 2.3, differently

from the other temporal logics, the use of one or the other semantics does

not change the decidability of the model checking problem on TCTL.

2.5 Model Checking: Software Tools

Model Checking technique, being almost automatic, go a wide acceptance

in checking real systems and a number of tools were developed for it. For

most uses a Model Checker can be seen as black box, it takes a model of

the system and a properties to check and gives in output the whatever the

properties is satisfied or a trace showing the problematic behaviour of the

system. Properties can be roughly classified into three categories:
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• safety properties, i.e.: something deemed bad is never reached by the

system, ”the system never does . . . ”;

• reachability properties, eventually the property will be satisfied by the

system, i.e.: ”the system can do . . . ”;

• liveness properties, something deemed good will eventually be reached

by the system, ”eventually the system does . . . ”.

Table 2.4 shows some of the most used model checker and the kind of

formalisms the use for the specification of the model of the system and the

goals.

Tool Name Modelling Language Properties Language

Kronos1 Timed Automata TCTL

UPPAAL2 Extended Timed Automata Fragment of TCTL

NuSMV3 Proprietary Language CTL, LTL

BLAST4 Proprietary Language Proprietary Language

SPIN5 Promela (Process Meta

Language)

LTL

TLA+ Proof System

(TLAPS)6

Temporal logic of actions

(TLA)

TLA

a http://www-verimag.imag.fr/ tripakis/openkronos.html
b http://www.uppaal.com/
c http://nusmv.fbk.eu/
d http://mtc.epfl.ch/software-tools/blast/index-epfl.php
e http://spinroot.com/spin/whatispin.html
f http://msr-inria.inria.fr/ doligez/tlaps/

Table 2.4: Model Checking Tools

2.5.1 UPPAAL Model Checker

We will now give more detail about the UPPAAL model checker being it the

model checker used as the verification engine in this work.

UPPAAL is an integrated environment for the modelling, the simulation

and the verification (through model checking technique) of realtime timed
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Figure 2.6: UPPAAL XTA Automata

systems. Started as a JAVA project developed at the Uppsala University

in Sweden, it has since emerged from the academy and reached commercial

maturity and has been used with success to verify a number of systems.

The core of the modelling language used by UPPAAL is the Extended

Timed Automata framework. While being considerably lower level if com-

pared to some model checking specification language the ability to use a GUI

to draw the specification make the specification process comfortable. More-

over is possible to provide a textual description of the XTA network as a,

.xta, text file.

The .xta file format is documented and its syntax is similar to the formal

notation used to describe XTA automaton. This make possible to interface

the model checker with other tools able to automatically generate compatible

.xta files.

For example the two automata in figure 2.6 can be specified using the

following .xta files.

// Comments

clock x; chan s; // Clocks and Synchronisation symbols

// (called channels)

// First Automaton -> A

process A { state a0{x<=10}, a1;// States

// x<=10 invariant of state a0
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init a0; //A initial state

// Transitions

// From a0 to a1 synchronising on s

trans a0 -> a1{sync s!; }; }

// Second Automaton -> B

process B { state b1, b2;

init b1; // B initial State

trans b1 -> b2{guard x<=5; sync s?; }; }

// The system is composed by the A and B automata

system A,B;

Simulation and Verification in UPPAAL

While not being automatic and by far exhaustive simulation can be used to

better understand complex systems behaviour. The UPPAAL GUI integrate

a simulator that allow to dynamically execute the automata network, giving

the possibility to the user to choose what transition are fired and to see the

value of the clocks step by step as shown in Fig.2.7.

One of the most useful feature of the simulator is its integration with the

model checker, in fact the error traces returned by the model checker can be

visualised in it. This allow the modeller to see what steps the system took

to end on a state violating the provided goals.

The verification language used by UPPAAL is a fragment of the TCTL

logic, particularly it doesn’t allow the nesting of the TCTL operators.

We can define as state formulae the conjunction of formulae on the loca-

tions, e.g.: A.a0, the automata A is in the location a0, clock formulae, e.g.:

x ≤ 15 ∧ y ≤ 5 and integer formulae, e.g.: X := true. There is also the

particular state formula deadlock that evaluate to true when the system is
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Figure 2.7: UPPAAL Simulation UI

unable to progress, no exit transitions enabled but forced to leave the current

location.

With φ and ψ state formulae the properties that can be checked are:

- A�φ, invariantly φ, i.e.:every reachable state verify phi;

- E♦φ, possibly φ, i.e.:there is a reachable state that verify φ;

- A♦φ, always eventually φ, i.e.: for every possible path, there exists a

state such that φ is satisfied;

- E�φ, potentially always φ, i.e.: there exists a infinite path to a state

where φ is satisfied by all states at some point;

- φ → ψ every path that contain a state that satisfy φ contain a state

that satisfy ψ. Shorthand for A�(φ⇒ A♦ψ).
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Those kind of properties are enough to express the reachability in a sys-

tem.

2.6 Boolean satisfiability problem: SAT

Boolean satisfiability (SAT) is the problem of deciding if there is an assign-

ment for the variables in a propositional formula that makes the formula true.

It was the first known NP-complete problem, as proved by Stephen Cook in

1971. It is of considerable practical interest and has received a lot of atten-

tion and many different algorithms and techniques have been devised to try

and solve it efficiently as many decision problems, such as graph colouring

problems, planning problems, and scheduling problems can be encoded into

SAT. The history of SAT solving can be roughly divided in two eras. Pre

1960, partially because the limited computational powers of time computers

and the complexity of the problem, there was no implementation of SAT

solving algorithms.

In 1960, Davis and Putnam published an algorithm [DP60] (denoted by

DP) which started the interest in SAT solvers. While being very inefficient

it motivated the subsequent development of the Davis-Logemann-Loveland

(DLL) algorithm [DLL62]. The algorithm has been used extensively to solve

many kinds of problems using computers (especially from artificial intelli-

gence and operating research).

In the beginning of the 90’s, computers became powerful enough to solve

medium sized SAT instances using simple implementations. As a conse-

quence, some researchers started studying how to improve SAT solvers in

practice. Benchmarks and worldwide competition has been established and

the quest for the fastest ever solver was born.

Formally, given a set of Boolean variables, called proposition, B, a Boolean

literal is a formula of the form b or ¬b with b ∈ B. A clause is a finite dis-

junction of literals. A formula F in the conjunctive normal form (CNF) is a

finite a conjunction of clauses.

This can be described by the following set rules:
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• Proposition ::= b1|b2| . . . |bn;

• Literal ::= ¬Proposition|Proposition;

• Atom ::= Literal|⊥|>;

• Clause ::= Atom|(Clause ∨ Clause);

• CNFFormula ::= Clause|Clause ∧ Clause;

• Formula ::= Atom|¬Formula|(Formula∧Formula)|(Formula∨Formula);

Solving the SAT problem for a propositional formula φ is the answer to

whenever exist an assignment for the proposition in B that make φ true.

Some common method for solving the problem are:

• enumerating all possible truth values and checking each of them to see

whether it satisfies f;

• performing a backtracking search algorithm through the possible truth

as- assignments of f to show that it is satisfiable. This is what the DLL

algorithm do and is by far the most common;

• checking directly if the formula is a contradiction by completely sim-

plifying or by using the resolution method and testing if the resulting

formula is empty;

• showing that the complement of f 1 is not valid using a theorem prover;

• using binary decision diagrams.

2.7 Difference Logic

The Difference Logic (DL) extend the propositional logic with difference con-

straints, i.e. inequalities of the form (x− y ∼ c) where ∼∈ {<,=}, x and y

are numerical variables, and c is a constant.

Formally let B = {B1,B2, . . .} be a set of Boolean variables and X =

{X1,X2, . . .} a set of numerical variables. The set of atomic formulae of
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DL(B,X ) consists of the Boolean variables in B and the numerical con-

straints in the form Xi −Xj ◦ c with c ∈ Q and ◦ ∈ {<,>,≤,≥}.
The set F of DL formulae is the smallest set of formulae containing B,

all the numerical constraints over X and closed under the usual Boolean

connectives (¬, ∧ and ∨).

The semantics is given w.r.t. a pair of valuation functions (vX , vB) defined

as follows.

An (X ,B) valuation consists of two functions vX : X → {T, F} and

vB : X → R which associate a Boolean value to each Boolean variable and a

real value to each numerical variable, respectively.

A (X ,B)-valuation can be extended to DL formulae in the obvious way.

In particular, 〈vX , vB〉 satisfies the constraint Xi − Xj ≤ c if and only if

vX (Xi)− vX (Xj) ≤ c.

It is well known that the satisfiability problem for DL is an NP–Complete

problem. Notice, however, that satisfiability of the conjunctive fragment of

DL can be solved in polynomial (cubic) time using a variant of the Floyd-

Warshall algorithm.

Algorithm 1 Floyd-Warshall

Require: edgeCost(i,j) cost of the edge between i and j or infinity
Require: path[i][j] = edgeCost(i,j)
Ensure: path[i][j] shortest path between i and j

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
path[i][j] = min ( path[i][j], path[i][k]+path[k][j] );
check that ∀x path[x][x] is not negative;

end for
end for

end for

Infact the conjunctive fragment of DL has the following graph interpre-

tation:

• variables are nodes;

• atoms x− y ≤ c are weighted edges;
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• a set of literals is satisfiable iff there is no negative cycle (i.e.: the there

is a minimum path).
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Chapter 3

Formal Verification of Security

Protocols

In this chapter we will introduce the problem of the formal verification of

security protocols. We will start in section 3.1 introducing some background

informations and common notations used in the protocol modelling field.

After this basic information we will show, in section 3.2, how timing infor-

mation are important for the specification of a protocol. In section 3.3 we

will conclude presenting existing, state of the art, approaches to the problem

of the formal verification of security protocols.

3.1 Communication Protocols

Communication protocols specify an exchange of messages between entity

called principals, they are distributed algorithms which focus on messages

exchange [Com00]. The principals are the agents participating in a protocol

execution and can also be called users, hosts, or processes. The communica-

tion take place over channels, ranging from secure ad hoc connection (e.g.:

the communication bus of a secure computing platform, smartcard buses),

open cabled networks, over the air radio (wireless, WiFi) channels, . . . . In

general every message sent over a networks cannot be considered secure.

Even using ad hoc network, and even more in the case of open networks
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such as the Internet, protocols should be designed ”robust” enough to work

even under worst-case assumptions, that is dishonest or careless principals

or a motivated and powerful third party intruder able to eavesdrop or tam-

per with the messages flow. A security protocol, called also cryptographic

protocol, try to secure the communications over an insecure networks and to

provide security guarantees such as authentication of principals or secrecy of

exchanged messages through the application of cryptographic primitives.

3.1.1 Cryptographic Primitives

To communicate and to create messages, agents use a number of tools, or

cryptographic primitives. These basic primitives are the following.

Concatenation

The first type of cryptographic primitive is the concatenation of messages.

Message exchanged between principals can be seen as a concatenation of

smaller sub messages. Usually concatenation is indicated with the nota-

tion 〈M1.M2〉, with M1 and M2 sub messages. A defining properties of

concatenation is whatever it is associative or not, i.e.: 〈M1.〈M2.M3〉〉 ==

〈〈M1.M2〉.M3〉. Usually in this thesis we will assume associative concate-

nation and will write 〈M1.M2.M3〉 for 〈M1.〈M2.M3〉〉 or, equivalently,

〈〈M1.M2〉.M3〉.

Nonces

Nonce (abbreviation of Number used Once) are random unique identifiers

that provide the ability to differentiate between different sessions of the same

protocol. As long as not disclosed to another principals, a nonce is a secret

owned by that particular principal and cannot be guessed by any other prin-

cipals (honest or not).
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Cryptography

Cryptography is the practise and study of hiding information and is one of

the most fundamental part of a security protocol. Informally encryption is

the process of converting information (the plaintext, e.g.: a message) into an

intelligible form (the cipher text) and decryption is its reverse. Formally a

cipher is a pair of algorithm, a encryption algorithm and a decryption algo-

rithm (for some kind of cipher the encryption and decryption algorithms are

the same but its not the norm). The cipher operation depends on the plain-

text/cipher text to, respectively, encrypt/decrypt and on some keys. How

the keys are used by the ciphers classify them into symmetric or asymmetric

ciphers. Symmetric ciphers use the same key, K, for both the encryption and

the decryption process while in asymmetric cipher there are two distinct keys

one for encryption, K called public key, and its inverse, K−1 for decryption

called private key. Its important to note that, while we use the notation

K−1, in a sound asymmetric cipher, there is no way to compute it from K.

Applying the encryption algorithm to a plaintext, M , with a key, K,

result in cipher text, {M}K that is:

1 strongly dependent on the value of M and K;

2 cannot be inverted without the knowledge of the inverse key K−1 (for

simplicity sake in the case of a symmetric cipher we will assume that

K = K−1).

Point 2, called perfect cryptography, is a really strong assumption and

while no practical cipher enjoy this property, all ciphers try to at least make,

computationally, difficult to recover a plaintext without knowing the corre-

sponding keys. On a sound cipher (i.e.: the best way to recover a decryption

key is by brute–forcing) this is achieved by the use of a large enough key

space.

As a matter of fact cryptographic algorithms ensure a high degree of con-

fidence in exchanging messages over insecure communication channels. The

best-known symmetric cryptographic algorithms are the DES (Digital En-

cryption Standard) [FIP76] and the AES (Advanced Encryption Standard)
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[Sta02]. Meanwhile the best-known asymmetric algorithm is RSA (Rivest,

Shamir, and Adleman) [RSA78].

Hash Function

A cryptographic hash function is a deterministic function that takes an ar-

bitrary block of data (e.g.: a message) and returns a fixed-size string, the

(cryptographic) hash value. Any accidental or intentional change to the data

will change the hash value. The ideal cryptographic hash function has four

main or significant properties:

• it is easy to compute the hash value for any given message;

• it is infeasible to find a message that has a given hash;

• it is infeasible to modify a message without changing its hash;

• it is infeasible to find two different messages with the same hash.

Cryptographic hash functions have many information security applications,

notably in digital signatures. Know cryptographic hash function are MD5

(Message Digest 5) [132] and SHA1 (Secure Hash Algorithm 1) [EJ01].

Digital Signatures

A digital signature is a mathematical scheme for demonstrating the authen-

ticity of a message. It gives a recipient reason to believe that the message

was created by a known sender, and that it was not altered in transit.

Usually digital signature employ asymmetric encryption algorithm and

cryptographic hash function. A common way to create a digital signature of

a message M consist in the encryption of its hash, H(M), using a private

key, K. Any principals willing to check the signature, and so the authenticity

of a message, could decrypt the hash using the corresponding public key and

then check that the hash correspond to the sent message, since it is infeasible

to modify a message without changing its hash and the key used to encrypt

the message is private.
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3.1.2 A-B Notation

A common notation used in the specification of security protocols is the

so called A–B Notation, Alice-Bob Notation [CJ]. The notation has the

following formal syntax:

SpecAB ::= Message_Flow_List

Message_Flow_List ::= Message_Flow |

Message_Flow Message_Flow_List

Message_Flow ::= Party_Name "->" Principal_Name ":" Message_Spec

Message_Spec ::= Nonce | Message | "{"Message_Spec"}"Key_Name |

Message_Spec"."Message_Spec |

"f(" Message_Spec ")"

With Message, Nonce, Key_Name e Principal_Name elements of the sets

of, respectively, messages, nonces, keys, principal names.

This notation allow the specification of the expected execution of a pro-

tocol, i.e.: the exchanged messages. One of the main problem with this

notation and is that its limited only to the message flow, important details,

like the sharing of keys, are omitted or implicit.

An Example: the Needham-Schroeder Public Key Protocol

As an example of protocol specification using the A–B Notation consider the

Needham-Schroeder Public Key Authentication Protocol (NSPK):

1. A− > B : {NA.A}KB

2. B− > A : {NA.NB}KA

3. A− > B : {NB}KB

where A and B are the principals involved in the protocol; KA and

KB are the public keys of A and B, respectively; NA and NB are nonces

generated by A and B, respectively. Step (1) of the protocol models A

sending B a message with the identity of A and the nonce NA encrypted
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with KB, here the specification assume implicitly that B known KB−1 and

so could receive the sent message and learn the value of NA. In Step (2)

B send to A his nonce NB and the received the nonce NA proving its

participation to the protocol. The message is encrypted with KA so, like in

the first message, only A is able to decrypt the message and learn the value

NB. In Step (3) A concludes by proving to B her own participation in the

protocol. The protocol end with both party assured of the identity of each

other (i.e.: the protocol perform a mutual authentication).

3.1.3 Honest Agents and Intruder Models

As we said a cryptographic protocol is basically a communication protocol

defined over a certain number of participants, called agents, trying to assure a

secure communication. However there can be of two types of agents. Honest

agents, or principals, ”official” participants to the protocol, whose behaviour

is precise defined by the specification of protocol they execute, and rogue

agents, or intruders which don’t follows the protocol specification and try to

gain an unfair advantage over the hones agents (be it gaining knowledge of

secret messages, unauthorised authentication, . . . ).

While the behaviour of the principal is defined by the protocols itself

the behaviour of the intruder is defined by its intruder model. The most

famous intruder model is the one devised by Dolev and Yao in [DY83]. The

idea behind this intruder model (Dolev-Yao Intruder Model) is to give the

intruder the most resources possible without violating the assumption of per-

fect encryption, that is without permitting the intruder to decrypt a message

without knowing the necessary key. The Dolev-Yao intruder can intercept,

read and delay any message sent by an honest agent. In addition, it can

decompose any message acquired and use the knowledge obtained to con-

struct new messages. Is can also send messages, under any false identity.

The Dolev-Yao Intruder Model infact represent the worst case scenario for a

security protocol execution to the point it is normally associated to the idea

that the intruder is itself the communication channel.
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3.1.4 Channels

Messages exchange between protocols principals take place on communica-

tion channels. While generally abstracted from the protocol specification

(e.g.: the A–B Notation does not provide any facility to specify channels

characteristics) can be of fundamental importance for a sound specification.

The characteristic of a channel determine what the agent (honest or not) can

perform on the channel. There are various kind of channels:

• unsafe channels, the most common channel type, where communication

between principals is not assured i.e.: an intruder can perform all the

operation typical of the Dolev-Yao Intruder Model;

• safe channels, where communication between principal is safe from any

intruder;

• resilient channels, unsafe channels where, however, intruder cannot

block messages.

Specifying the kind of channels gives the ability to accurately model thing

like safe, out of the band, key exchange, wireless channels and so on.

3.1.5 Goals

Cryptographic protocol try to assure a secure communication. There are

many properties that may be required by a security protocol. The following

are the most common.

Secrecy

Intuitively, a security protocol assure secrecy if there is no way for the in-

truder to know some, secret, message. This can be simply accomplished via

encryption with an undisclosed (i.e.: not obtainable by the intruder) key.

A stronger version of secrecy, called non-interference, is the inability of the

intruder to indirectly know a secret. Consider for example a simple com-

munication protocol where all the possibles message are M1 and M2 (e.g.:
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buy item 1/2, vote for 1/2). The agent A sent his choice (M1 or M2) to

B encrypted with KB, B public key. Since only B has KB−1, the protocol

preserve the (weak) secrecy of the message, hoverer, since the intruder can

infer what message was sent by simply comparing the intercepted message

with all its possibles value (remember that the key KB is public) the protocol

does not preserve the strong secrecy.

Authentication

Intuitively, authentication is the ability for a principal to be sure of the iden-

tity of his correspondent. For example, a bank receiving an order for money

transfer checking for the identity of his client, a mail server checking the iden-

tity of the mail box owner. This is usually achieved by sending a nonce (that

in many real network protocol is the user name/password pair) encrypted

by the public key of the client. A problem common to many authentication

methods is their vulnerability to man in the middle attacks where an intruder

use a principals as an oracle to respond to an authentication request.

Non Repudiation/Anonymity

Non-repudiation ensure that a principal, in the event of dispute cannot, repu-

diate, or refute the fact of being the originator of a message. This is usually

achieved through the extensive use of digital signatures. Opposite to the

non repudiation is the anonymity where the security protocol assure that is

impossible to charge a principal as the originator of a message.

3.2 Timed Security Protocols

Security protocols where the explicit specification of temporal aspects is

needed to correctly to preserve their security properties are called Timed

Security Protocols. Aspects like:

• Delays and Timeouts: the ability to enter a recovery phase or ter-

minate the execution of a protocol or to delay an event,

46



• Timed Messages: the ability to assign a temporal constraints on

the availability and usability of a messages (message disclosure and

expiration time). The use of timestamps (i.e.:the time at which an

event occurred),

• Channels Timings: the time that communication over a channel

takes to be performed and its subtle interaction with the intruder

model,

can affect the security of a protocol.

An Example: the Wide Mouthed Frog authentication protocol

For example consider the well known Wide Mouthed Frog authentication

protocol [BAN89]. The protocol involves three participants: Alice, Bob and

the Server. Alice sends a message to the Server containing the identity of

Bob (the intended receiver), a fresh session key Kab, and a timestamp TA,

encrypted with a symmetric key KAS, shared by Alice and the Server. The

Server then checks if the timestamp is recent and, if this is the case, forwards

the session key and a new timestamp TB to Bob, encrypted with a symmetric

key KBS, shared by Bob and the Server. Bob can now check if the timestamp

TS is recent and, if this is the case, accepts the session key as valid. Following

is a description of the protocol steps:

1. A→ S : A, {B,KAB, TA}KAS

2. S → B : {A,KAB, TS}KBS

The idea is that the participants use the timestamps to assess validity of

the session key (i.e.:a form of authentication). A session key should be con-

sidered valid if the associated timestamp is recent enough. The protocol is

known to be vulnerable to reply attacks, where an intruder simply repeatedly

intercepts the message sent by the Server and, exploiting the structural sim-

ilarity of the encrypted components in the two messages, repeatedly replies

it back to the Server, who interprets it as a request to establish a new ses-

sion key between the participants. If the intruder replies are fast enough,
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it can succeed in forcing the Server to keep the timestamps updated indef-

initely, causing a, possibly compromised, session key to be associated to a

fresh timestamp.

Abstracting the time from the protocol, i.e.: removing the timestamps

and the communication channel timings, effectively changes the nature of the

protocol. This protocol will be one of the running examples in the following

chapters.

Timed Goals

Quantitative time information can be significative also for the security goals

that the protocol is trying to achieve. For example the secrecy of a message

could be needed in a precise time interval (e.g.: the secrecy of a tempo-

rary key, after the end of the protocol its secrecy is no more needed) or an

authentication must be completed in a determined time frame.

3.3 State of the Art

Limiting our interest to the verification of the secrecy in a security protocol

there is a number of works that have researched the problem.

Unfortunately, with no restrictions on the protocol this problem is unde-

cidable [EG82]. Limiting the protocols, by limiting the number of concurrent

sessions and/or the structure of the messages, a number of interesting decid-

ability result and tools appeared in bibliography.

Notably Gavin Lowe in [Low98] applied the FDR model checker to anal-

yse security protocols specified in CSP (Communicating Sequential Processes

[Hoa85], i.e.: an abstract language for modelling concurrent systems). Intu-

itively, the various protocol steps are modelled as processes that exchange

messages through channels. Also the intruder and the network are modelled

as CSP processes and channels are used to model both the intruder abilities

and important events in the protocol. In [CJM00] D. Clarke et al. developed

Brutus, a model checker that performed a depth-first search of the state graph

and implementing a message derivation mechanism modelling the intruder’s
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capabilities. This two approaches, and others based on explicit state model

checker, suffer from the state explosion problem. Limiting a priori the size of

messages, and the number of nonces exchanged as well as using partial order

techniques the authors have partially address that problem. Differently from

explicit state model checker the tools Athena [Son99] and CASRUL [JRV00]

both use symbolic state exploration, one in the backward from the security

goal to the initial state (Athena), the other forward (CASRUL). The problem

with this approaches was that as a semi-decision methods they always end

on unsafe protocols but can loop indefinitely without proving the security

of the protocol. Also the use of symbolic methods make the production of

counterexamples more complex and time consuming.

The AVISPA Framework

The AVISPA (Automated Validation of Internet Security-sensitive Protocols

and Applications [ABB+05]) Framework is a push-button tool for the auto-

mated validation of security protocols. This framework provide a high level

specification language and number of different verification engines.

HLPSL

The idea behind the High Level Protocol Specification Language (HLPSL)

was to provide protocol engineers with a convenient, human readable, and

easy to use language easily translatable into a lower-level formalism well-

suited for implementation into model-checking tools.

The HLPSL language derive part of its syntax from the TLA logic,

modelling a protocol by describing its actual state and how this state change.

The language allow the use of typed variables, the structuring of the spec-

ification using a kind of procedural abstraction, provide the ability to express

common cryptographic primitives (concatenation, encryption, hashing) and

allow to specify the goals that a protocol specification must satisfy.

In a HLPSL specification the global state of a protocol is defined by an

assignment of values to all the system variables. First order logic formulae

on state variables are called state predicate. The evolution from a state to
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another is described by logic formulae called transition predicates that bind

the value of the variables in the current state to the value in the next state.

The variables of the next state are called primed ; given a variable X, with

X we denote its value in the current state and with X ′ (X primed) its value

after the transition.

An HLPSL specification is composed by a series of roles, a modular

template for the behaviour of the principals of the protocols.

AHLPSL specification is described by the following grammar in (var ident

are the variables of the language):

SpecHPSL ::= role_definition_list

[goal_Declaration]

main_role_call

role_definition_list ::= role_definition | role_definition_list

role_definition ::= basic_role | composition_role

main_role_call ::= var_ident "()"

goal_declaration ::= ...

A specification in HLPSL can be partitioned into transition roles (called

also basic role) and composition roles, followed by a call to a particular

composition role called main role and, eventually, by the goal specification.

Transition role definition 1

Transition role definition 2
...

Transition role definition n

Composition role definition 1

Composition role definition 2
...

Composition role definition n

Main composition role call

Goals declaration
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The Intruder

A HLPSL specification allows, like the A-B notation, to models the expected

execution of a protocol but, differently from the A-B notation, implies the

presence of an intruder.

In HLPSL to every communication channel (intuitively the media that

the principals use to exchange the messages) can be associated a different in-

truder model the determine the power that the intruder have on that partic-

ular channel. At moment the, only, allowed intruder model is the Dolev-Yao

intruder model.

The intruder in HLPSL as well as being implicitly present on the com-

munication channels can be explicitly referenced during the instantiation of

a role, using the constant i, in this way is possible to model sessions where

there is an explicit communication between the principals and the intruder.

In this way the intruder can possibly enrich his knowledge of the protocol

and use this knowledge to build attacks on the protocol.

Types and Variables: Base Types

In the roles is possible to define the variables that will be used in the protocol

specification, also the roles can be parametrised.

HLPSL is a typed language, there are many different types and for some

types additional attributes can be used to specify additional features. The

base types of the language are:

- agent variables identify the principals of the protocols. HLPSL define

the particular agent variables, i, to explicitly model the intruder;

- public key and symmetric key variables models the keys used for, re-

spectively, asymmetric (public key) cryptography and symmetric cryp-

tography. Given a public key k, the corresponding private key is de-

noted by inv(k). Given a key k and a text variable m {m} k is the

encryption of the variable m with the key k. Given {m} k the decryp-

tion is possible if the principal knows k, if symmetric, or inv(k), if

asymmetric;
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- text or msg variables represent the messages that the principals ex-

change during the protocol run. Variables of type text (fresh) (where

textttfresh is an attribute of the type) subjected to priming are used

to represent the nonces of the protocol;

- nat variables represent the natural numbers;

- bool variables represent the Boolean values;

- function variables represent non invertible function on the space of

messages. This kind of variable is used to model one way hash func-

tions. Given a variable a of type function with a(X) we denote a value

of type msg, i.e.: the application of the function a to X. A principal (or

the intruder) knowing only a(X) cannot obtain X;

- channel variables models the communication channels.

The syntax used to declare a variable is the following:

var_decl_list ::= exists var_decl{"," var_decl }

var_decl ::= var_ident {"," var_ident} ":" base_type_name["("attr_name")"]

base_type_name ::= "agent" | "public_key" | "symmetric_key" |

"text" | "nat" | "bool" | "function" |

"channel" | "msg"

attr_name ::= "fresh" | "dy"

To declare a variable, x of type t we use the expression exists x : t; its

possible to declare multiple variables on same line by sepatating them by a

comma eg.: exists x1, x2 : t. A similar syntax is used to declare the

list of the parameters of a role.

Structured Types

The basic types can be structured in three different ways :

- tuple;

- lists and sets;
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- functions and mappings on messages.

The general grammar is the following:

var_decl_list ::= "exists" var_decl{"," var_decl } |

"local" var_decl{"," var_decl }

var_decl ::= var_ident {"," var_ident} ":" type_name["("attr_name")"]

type_name ::= subtype_of | subtype_of "->" subtype_of

subtype_of ::= base_type_name |

subtype_of "list"|

subtype_of "set"|

"(" subtype_of {"," subtype_of} ")"

base_type_name ::= "agent" | "public_key" | "symmetric_key" |

"text" | "nat" | "bool" | "function" |

"channel"

For example, (1, 2, 3, 4) is a tupla whose type is (nat,nat,nat,nat),

(a, 1, 2, b) have type (bool,nat,nat,public key) if a is a bool and b is

a public key. A list of naturals is defined with exists IntList: nat

list, similarly with the keyword set we can define a set of naturals. The

list can be initialized like IntList = [], element are added to the list using

the operator cons, e.g.: IntList’=cons(10,IntList).

HLPSL allow the definition of two different types of functions: functions

on messages and mappings. The main difference between the two types

of functions is that functions on the messages are constant, i.e.: enjoy the

property that once defined do not change their value during the execution

of the protocol, which is the case of the mappings. For example, a function

on messages that associates names with numbers: F: text -> nat initialise

with F = [(A, 1), (B, 2)] (1 is associated to A and 2 to B) will not change

once initialised and for all the duration of the protocol F (A) = 1.

The mappings are defined and initialised in a manner identical to the

functions on messages with exception that at any time you can add elements

using the mapping operation, for example F ’(X) = 3 add (or change) the

mapping between X and 3.
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HLPSL Roles

A role in HLPSL is a description of the behaviour of a principal. A role can

be parametrised and have local variables. There are two types of role, the

transition roles that describe the actions of a principal and the composition

role consisting of the instantiation of one or more of role. The composition

roles allow the structuring of the specification.

A role definition is composed by the declaration of its name, any formal

parameters and, in the case of a transition role, a player declaration that

binds an agent passed as parameter to the role; the agent tells you who

is executing the role. The formal parameters are declared using the same

syntax used to declare local variables in a role.

Following there are the, optionals, role headers :

- the declaration of the local variables (using the exists/local opera-

tor);

- the declaration of the starting state (using the init operator) speci-

fying the initial values of the local variables of the role. For example

given a variable of nat type X, init X = 0 sets its value to 0. Set or list

variables can be initialised using the operator /\_ that allow iteration

on all the element of the set es: init /\_ {in(IT,X)} IT = 0 set all

the element of X to 0;

- the declaration of the accepting states for the role using the accept

operator. The operator define fir a transition role a predicate that

identify the accepting state of the role;

- the declaration of the initial knowledge of the role using the operator

knowledge. The initial knowledge allow to specify messages know by

a principal before the start of the protocol, e.g.: public, private keys,

share keys. It can also be used to specify the intruder initial knowledge,

i.e.: already. With A agent variables and k public key variables,

knowledge(A) = { k, inv(k) } state that the agent A knows the key

k and its inverse inv(k);
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- the declaration of owned variables using the own operator; while in

HLPSL is possible to share variables between roles, an own declaration

in a role state that a role will be the only one to modify that variable;

- the transition section (is we are in a transition role) or the composition

section (is we are in a composition role).

The following syntax is used for the roles specification:

role_definition ::= basic_role | composition_role basic_role ::=

role_declaration player_def role_header

[transition_declaration]

"end role"

composition_role ::= role_declaration role_header

[composition_declaration]

"end role"

role_declaration ::= "role" var_ident "(" parameter_list ")"

played_def ::= "played_by" var_ident role_header ::= "def ="

[exists_declaration]

[owns_declaration]

[init_declaration]

[accept_declaration]

[knowledge_declaration]

exists_declaration ::= "exists" var_decl{"," var_decl }

owns_declaration ::= "owns" var_decl{"," var_decl }

init_declaration ::= "init" init_declaration_list

init_declaration_list ::= var_ident "=" expression [init_declaration_list] |

"/\_{" parameter_list "}" var_ident "=" expression

accept_declaration ::= "accept" predicate

knowledge_declaration := "knowledge("var_ident")" "={ expression "}"

parameter_list ::= var_decl

Transition section

The state of a role is the value of all its non primed variables (state vari-

ables). A state predicate is a logical formula over state variables and con-
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stants (e.g.: S = 2). A transition predicate is a logical formula over state

variables, constants, and variables subjected to priming (e.g.: S = 2 /\ X’ =

1). The transition predicates model the evolution of the protocol while the

state predicates constrain it.

A transition section has the following syntax:

transition_declaration ::= "transition" transition_list

transition_list ::= transition [transition_list]

transition ::= label "." state_predicate "--|>" transition_predicate_list |

label "." state_predicate "=|>" transition_predicate_list

A transition role is composed by a transition section that contains one or

more transitions with the following form:

label . State Predicate︸ ︷︷ ︸
LHS

--|> Action︸ ︷︷ ︸
RHS

or

label . State Predicate︸ ︷︷ ︸
LHS

=|> Action︸ ︷︷ ︸
RHS

There are two different kind of state transition, the spontaneous tran-

sitions (denoted by --|>) and instantaneous transitions (=|>). Transitions

connect a predicate on the left side (LHS) with an action on right side (RHS);

spontaneous transitions, i.e.: A -|> B, indicates that if the predicate A is

satisfied by the current state then it is possible to move to the state described

by B, the principals, however, is not forced to change state and can delay

the transition. Conversely, the immediate transition has the property that

the transition is executed immediately when the predicate on the LHS is

satisfiable.

The LHS of a transition has the following syntax:

state_predicate ::= formula ["/\" state_predicate] |

var_ident"(" expression_list ")" ["/\" state_predicate] |

var_ident"(start)"

formula ::= expression "=" expression |
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expression "<" expression |

"in(" expression "," expression ")" |

"not(" expression "=" expression ")" |

"not in(" expression "," expression ")" |

expression "/=" expression |

"true" |

"false"

expression_list ::= expression [expression_list]

expression ::= var_ident"’" |

"inv("expression")" |

expression "." expression |

"{" expression "}" expression |

"(" expression ")" |

"var_ident(" expression_list ")" |

"const_ident(" expression_list ")" |

"cons(" expression "," expression ")" |

var_ident |

const_ident |

"[]" |

"[" expression_list "]"

The LHS of a transition is a predicate on the role state where is possible

to:

- test for equality and inequality two variables, A = B, not( X = Y);

- use the inequality operator on nat variables, X <4;

- test lists ans sets for the presence of elements, in(X, 1);

- receive a message on a channel (details are given in a following section).

The above operations can be composed using the conjunction operator, /\.

The LHS denote for with states the transition will be executed and the

action described in the RHS performed.

The RHS of a transition has the following syntax:
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transition_predicate_list ::= transition_predicate "/\"

transition_predicate_list

transition_predicate ::= var_ident "’=" expression |

var_ident"’(" argument ")" "=" expression |

"var_ident(" expression_list ")" |

"const_ident(" expression_list ")"

Its possible to:

- modify a variable e.g: A’ = 2;

- send a message on a channel (details are given in a following section).

The above operations can be composed using the conjunction operator, /\.

Also transitions can be labelled.

For example the following transition:

t1. S = 1 /\ RCV(M) =|> S’ = 2 /\ SND(X)

Declare a transition labelled t1 that specify that, when the variable S is

equal to 1 and on the channel RCV is available a message unifiable with M,

assign to S the value 2 and send on the channel SND the message X.

Composition section

Roles of type composition instantiate other transition or composition roles.

Composition between roles can be sequential, using the ; operator, or

parallel with interleaving semantic, using the /\ operator. The role hierarchy

is closed by a top level role, not parametrised, that is called at the end of the

specification.

A composition section have the following syntax:

composition_declaration ::= "composition" composition_list

composition_list ::= composition |

"/\_{" parameter_instance "}" composition

composition ::= role_instance [/\ composition]

role_instance ::= "(" role_instance ")" |
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role_instantiation ";" role_instance |

role_instantiation

role_instantiation ::= var_ident"(" arguments ")"

arguments ::= var_ident [, arguments ]

An example of composition could be the following:

role C( ... ) def=

composition

A1( ... ) /\ B1( ... )

A2( ... ) ; B2( ... )

end role

Where role A1 and B1 are executed sequentially while A2 and B2 in parallel.

Channels Operations

Communications between the principals of a protocol in HLPSL occur along

channels. These communications are asynchronous and the process of send-

ing on a channel is instantaneous and independent from any receipt. The

channels acts as a unlimited buffer.

Channels operations syntax is the following:

expression_list ::= expression [expression_list]

expression ::= ...

"var_ident(" expression_list ")"

...

transition_predicate_list ::= transition_predicate

["/\" transition_predicate_list]

transition_predicate ::= ...

"var_ident(" expression_list ")" |

...

An operation on a channel is interpreted differently if located on the LHS

or RHS of a transition. On the LHS of a transition its interpreted as a receive
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operation on the channel (e.g.: RCV(Msg) with RCV a channel variable). On

the RHS of a transition its interpreted as a send operation on the channel.

A receive operations on a channel state the message structure that will be

accepted. A receive operation will be successful, allowing its transition to fire,

if the message received conform to the structure (i.e.: is unifiable)specified

in the receive operation.

Side effect of a receive operation is the binding of role variables with parts

of the received messages.

For example:

role A( ... ) ...

exists X : text,

Y : public_key,

State : nat;

init State = 0;

transition

State=0 / RCV(X’.Y) =|> ...

end role

The receive operation RCV(X’.Y) denote a template of the messages that

can be received, in particular Y denote that all the messages must end with

the public key Y; as a side effect to the, primed, variable X, will be binded

the first part of the received message.

In HLPSL is possible to specify properties of the channel used by adding

a parameter to its type definition. Currently the only channel type imple-

mented is of type Dolev-Yao (channel(dy)).

Goals

HLPSL also provides the ability to specify the goals that must be satisfied

by the protocol. Currently, you can specify authentication and secrecy re-

quirements. The authentication requirements between two role constrain the

roles to agree on the value of a specific variable. The secrecy requirements
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constrain the value of a variable to be known only to role to which it belongs

and, in particular, to be unknown to the intruder. HLPSL also provides the

ability to specify constraints on the protocol in LTL.

HLPSL Example: NSPK

A possible encoding in HLPSL of the Needham-Schroeder Public Key Pro-

tocol presented in section 3.1.2 is the following:

1 role A( a, b : agent, ka, kb : public_key, SND, RVC : chanel(dy) )

2 played_by a def =

3 exist state : nat

4 na : text(fresh),

5 nb : text

6

7 knowledge(a) = { inv(ka) }

8

9 init state = 0

10

11 transition

12

13 1. state = 0 /\ RCV(start) =|> state’ = 1 /\ SND({na’.a}_kb)

14 2. state = 1 /\ RCV({nb’}_inv(ka)) =|> state’ = 2

15 end role

16

17 role B( a, b : agent, ka, kb : public_key, SND, RVC : chanel(dy) )

18 played_by b def =

19 exist state : nat

20 na : text,

21 nb : text(fresh)

22

23 knowledge(b) = { inv(kb) }

24

25 init state = 0
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26

27 transition

28

29 1. state = 0 /\ RCV(na’.a)_inv(kb) =|> state’ = 1 /\ SND({na’.nb’}_ka)

30 end role

31

32 role Session( ) def=

33 exist a, b : agent,

34 ka, kb : public_key

35 RCV, SND : chanel

36 composition

37 A( a, b, ka, kb, SND, RCV ) /\ B( a, b, ka, kb, RCV, SND )

38 end role

39

40 Session( )

The specification begin with the definition of the role A, its important

to note among its formal parameters the declaration of the two communi-

cation channels SND and RCV of type chanel(dy). Following there is the

declaration of the role local variables, lines 3-5, among them a nonce (typed

text(fresh)) na. At line 7 there is the declaration of the initial knowledge

of the role; this principals know the inverse, inv(ka), of the key ka passed

as a parameter. The variable state is initialised at line 9. At lines 13-14

there is the transition section declaration describing the behaviour of this

role; the sent and received messages are the same described in section 3.1.2

using the A-B Notation, just note the use of RCV(start) to define the start

of the protocol. Similarly, from line 17 to 30, there is the definition of the

role B describing the other principal of the protocol. The declared roles are

parametric and must be instantiated to define the desired protocol execution.

At line 32-38 a composition role, Session, create an istance of the role A and

B using the opportune parameters; it’s important to note that the channel

variables passed as role parameters, SND e RCV, are passed in inverted order

to the role B if compared to the role A; this way what is sent by A along
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channel SND is received on the channel RCV and, on the contrary what is sent

by B along the channel RCV is received on the channel SND.

At line 40 the role hierarchy is closed by the call to the composition role

Session.

AVISPA Verification Engines

In the AVISPA Framework the HLPSL language is paired with a number

of verification engines providing different ways to verify the same protocol.

• The On-the-Fly Model-Checker (OFMC) [BMV05] performs protocol

falsication and bounded verication by exploring the protocol state space

in a demand-driven way. OFMC implements a number of correct and

complete symbolic techniques. It supports the specification of alge-

braic properties of cryptographic operators (e.g.: exclusive or between

messages), and typed and untyped protocol models;

• The Constraint-Logic-based Attack Searcher (CL-AtSe) [CV02] applies

constraint solving with some powerful simplification heuristics and re-

dundancy elimination techniques;

• The SAT-based Model-Checker (SATMC) [AC04] builds a proposi-

tional formula encoding a bounded unrolling of the transition relation

specified by the protocol. The propositional formula is then fed to a

state-of-the-art SAT solver and any model found is translated back into

an attack;

• The TA4SP (Tree Automata based on Automatic Approximations for

the Analysis of Security Protocols) [BHK08] approximates the intruder

knowledge by using regular tree languages and rewriting. For secrecy

properties, TA4SP can show whether a protocol is flawed (by under-

approximation) or whether it is safe for any number of sessions (by

over-approximation).
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Timed Security Protocols Verification

The idea of using formal methods to prove time dependent security properties

is not new (e.g., see [BFST02, GLM03, NPP04, CSHM07, DG04]). A number

of those papers relies on low level formalism as specification language. For

example in [BFST02] the authors develop a theory of “non-interference” to

prove security property in concurrent systems modeled as timed automata.

The papers does not consider explicitly security protocols or issues like mod-

eling encryption or other common primitives of security protocols.

Extending the low-level formalism of the Timed Automata, [NPP04] pro-

vide the ability to express parallelism and synchronisation on structured

messages built over cryptographic primitives, allowing for a more convenient

way to model security protocols that Timed Automata. Similarly, [GLM03]

employ a timed process algebra as the specification language for security pro-

tocols. Both approaches require the designer to explicitly model the timing

aspects of protocols, as neither Timed Automata nor timed process algebra

provide, high level, timed protocol specific construct as the ones presented

above. In [CSHM07] the authors use the timed automata (in the form of

XTAs) as modelling language but, contrary to the ones above, they give an

explicitly representation of the intruder as a timed automaton and a fine

grained representation of cryptography and nonce generations; while using a

higher level formalism, the fine grained approach to the protocol modelling

(requiring explicit specification of nonce generation and cryptography oper-

ations) show how problematic is protocol modelling using only formal/low

level languages. In [DG04] the authors use constraint programming combined

with symbolic exploration to analyse infinite protocols with explicit use of

timestamps (in particular the Wide Mouthed Frog Protocol). In [BL02] the

authors using finite-state model checking and abstraction technique verify

the TESLA protocol in an untimed setting.
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Chapter 4

Timed Security Protocols

In this chapter we focus on the problem of specifying and verifying security

protocols where temporal aspects directly affect the correctness of the proto-

col, and, therefore, need to be explicitly considered both in the specification

and the verification. In section 4.1 we will present three timed protocols

showing the temporal aspects that are needed to correctly model them. In

section 4.1.4 we will present an extension of the, state of art, modelling lan-

guage HLPSL for these kinds of protocols and present in section 4.1.4 we

will account for its formal semantics.

4.1 Timed Protocols Examples

Most of the proposed protocol specification languages and verification tech-

niques are limited to cryptographic protocols where quantitative temporal

information is not crucial (e.g. delay, timeout, timed disclosure or expira-

tion of information do not affect the correctness of the protocol), and details

about some low level timing aspects of the protocol are abstracted away

(e.g. timestamps, duration of channel delivery etc). Examples of time sen-

sitive protocols are, for instance, the non-repudiation Zhou-Gollmann pro-

tocol [ZG97], the TESLA authentication protocol [PCTS02] and the well

known Wide Mouthed Frog protocol [BAN89].

65



4.1.1 Wide Mouthed Frog Protocol

Already presented in section 3.2 for the sake of clarity we will repeat here

its detail, the Wide Mouther Frog Protocol is a well known authentication

protocol.

The protocol involves three participants: Alice, Bob and the Server. Alice

sends a message to the Server containing the identity of Bob (the intended

receiver), a fresh session key Kab, and a timestamp TA, encrypted with a

symmetric key KAS, shared by Alice and the Server. The Server then checks

if the timestamp is recent and, if this is the case, forwards the session key and

a new timestamp TB to Bob, encrypted with a symmetric key KBS, shared

by Bob and the Server. Bob can now check if the timestamp TS is recent and,

if this is the case, accepts the session key as valid. Following is a description

of the protocol steps:

1. A→ S : A, {B,KAB, TA}KAS

2. S → B : {A,KAB, TS}KBS

The idea is that the participants use the timestamps to assess validity

of the session key (i.e.:a form of authentication). A session key should be

considered valid if the associated timestamp is recent enough.

Timed Features in the Wide Mother Frog Protocol

To correctly model the protocol we need the ability to:

• model the use of the timestamp exchanged by the principals;

• model timing in both principals action and channels.

Abstracting the time from the protocol, i.e.: removing the timestamps

and the communication channel timings, effectively changes the nature of the

protocol. Abstracting time, what remain of the protocol is effectively safe.

However its possible to show that in a, realistic, timed setting the protocol

is unsafe. Infact the protocol is known to be vulnerable to reply attacks,

where an intruder simply repeatedly intercepts the message sent by the Server
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A S I B

A, {B,Kab, TA}KAS
{A,Kab, TS}KBS
B, {A,Kab, TS}KBS
{B,Kab, T

′
S}KAS

A, {B,Kab, T
′
S}KAS
{A,Kab, T

′′
S}KBS

Figure 4.1: A possible attack trace on the Wide Mouthed Frog Protocol

and, exploiting the structural similarity of the encrypted components in the

two messages, repeatedly replies it back to the Server, who interprets it

as a request to establish a new session key between the participants. If

the intruder replies are fast enough, it can succeed in forcing the Server to

keep the timestamps updated indefinitely, causing a, possibly compromised,

session key to be associated to a fresh timestamp. Figure 4.1 show a possible

attack trace on the WMF protocol.

4.1.2 TESLA Authentication Protocol

The TESLA protocol [PCTS02] is an authentication protocol developed for

multicast authentication over an unreliable channel. There are many variant

of this protocol [LN03] and its low communication and computation overhead

and tolerance to packet loss allow its application ranges from authenticated

audio/video steaming to sensor networks to vehicular networks.

What distinguishes it from other types of cryptographic protocols is its

peculiar use of timing to provide authentication. Usual authentication pro-

tocols relies on the heavy use of public key cryptography which is difficult in

scenarios where devices with low computational and networking power are

used, or where the efficiency of networking throughput is relevant.

In the TESLA protocol, however, authentication is provided by using only

symmetric keys, hash-functions and loose time synchronisation. Indeed, the

receiver is assumed to know an upper bound on the difference between the
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sender and the receiver local time, namely the maximum time synchronisa-

tion error.

A simple algorithm providing loose time synchronisation is the one de-

scribed in ([PCTS02] pag. 4-6):

• Setup: The sender S has a asymmetric encryption key pair, with the

private key K−1
S and the public key KS. The receiver have saved its

current local time tr. We assume public keys to be pre distributed

between the principals.

• Protocol steps :

1. R→ S : N

2. S → R : {ts, N}K−1
S

Where N is a random and unpredictable nonce. And ts is the sender,

S, local time. The receiver verifies the digital signature and checks that the

nonce in the packet equals the nonce it randomly generated. If the message

is authentic the receiver computes t− tr + ts that is an upper bound on the

current sender’s time.

Moreover, packet loss resilience can also be achieved by functionally re-

lating the keys used by the protocol in a one-way hash chain. Intuitively,

from a single starting secret key a chain of keys is generated by successive

applications of a hash function. From any element of the chain and the hash

function, any of the following keys can then be generated. This mechanism

is a common cryptographic primitive [Lam81], and is used, for example, in

the well know S/KEY one-time password system [Hal94].

In the following, we present two versions of the TESLA protocol. The

first one is the basic scheme, which ensures packet authentication under the

hypothesis of channel reliability (i.e., no packets get lost), while the second

version is more robust and guarantees packet authentication also under the

hypothesis of packet loss.
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Packet # P0 P1 P2 . . . Pi Pi+1 . . .

Disclosed Key − K0 K1 . . . Ki−1 Ki . . .

Key CommitmentF (K1) F (K2) F (K3) . . . F (Ki+2)F (Ki+3) . . .

Intervals
T0 T1 T2 . . . Ti Ti+1Tint

Figure 4.2: The time intervals of the TESLA protocol

Basic TESLA Scheme

The basic scheme of the protocol involves two kinds of agent: a sender,

which broadcasts a stream of packets, and many receivers, which need to

authenticate the delivered packets.

One fundamental assumption in the design of the protocol is that, while

the sender has enough computational power to execute complex operations,

the receivers may not have, and that the sender and the receivers are loosely

time synchronised.

The idea behind the protocol is quite simple. The sender splits the data

stream into uniform intervals, by choosing a time interval size Tint and the

number of intervals, so that a single packet is sent within each time interval.

We assume that the first time interval starts at time T0, the second interval

at time T1 = T0 + Tint, and so on. The packet sent in each time interval is

signed using a key which is kept secret by the sender during the current time

interval, and which is disclosed in a packet delivered in the following interval,

as shown in Figure 4.2. The receivers can then use the information contained

in later packets to authenticate earlier packets. To ensure that the packets

cannot be forged, the disclosure of the keys is scheduled in such a way that,

by the time a key is received, all the packets signed with that key must have

been already buffered by the receivers. Since the sender and the receivers are

loosely time synchronised, the receivers can estimate the scheduling of the

packets and act accordingly.

The scheduling of the time intervals, their length, the packet size, and

the key disclosure delays must be somehow known both to the sender and

the receivers. This is achieved by either including those data into the first
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bootstrapping packet sent by sender, or by assuming some predefined values.

For the bootstrapping packet some common authentication method is used,

such as public key cryptography 1.

Each packet includes, besides the payload, a Message Authentication

Code (MAC), a disclosed key and a key commitment. The MAC included

in each packet is obtained by applying a known MAC function with a sym-

metric key to the concatenation of the payload, the disclosed key and the

key commitment. The key disclosed in the packet is the one used to com-

pute the MAC signature of the packet sent in the previous interval, while

the key commitment is the result of applying a hash function F to the key

which will be used to compute the MAC of the packet in the next interval.

By knowing the key commitment and the hash function F , the receiver can

check whether the key disclosed in the next packet is indeed the key used to

sign the previous payload.

In the following, S and R are the sender and a receiver, respectively,

Tint is the interval length, and ∆ is the maximum time synchronisation error

between the sender and the receiver. In addition, MAC is a cryptographically

sound (i.e., non invertible) MAC function, F is a cryptographically sound

hash-function, and PK(S) is the sender public key.

0a. R −→ S : nR

0b. S −→ R : {F (k1).nR}PK(S)

...

i. S −→ R : Di .MAC(ki, Di) with Di = (Mi.F (ki+1).ki−1)

Following is a detailed description of each step of the protocol. With step

0a, the receiver starts a new session by sending a fresh nonce nR to the sender.

With step 0b, the sender replies to the receiver with the same nonce together

with a commitment F (k1) to the first key used. The message is signed using

the public key PK(S) of the sender. The use of public key cryptography and

of a fresh nonce allows to guarantee the receiver that the legitimate sender

1This requirement can indeed be relaxed as shown in [LN03]
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is starting a new protocol session. In addition, the receiver gains knowledge

of the first key commitment which will be used to authenticate the first key.

The receiver is therefore guaranteed, by the replied and the use of, that the

legitimate sender is starting a new protocol session and know the first key

commitment used to authenticate the first key.

In each step i, with i ≥ 1, every packet contains the concatenation of a

message Di and of the MAC of the current message Di with respect to the key

ki. Message Di is, in turn, the concatenation of the following messages: the

payload Mi, the commitment F (ki+1) to the key used in the next interval, and

the key ki−1 used to generate the MAC of the message sent in the previous

step i− 1.

Notice that the packet sent in the protocol step i = 1 contains a bogus

key, since the packet in Step 0b has no payload.

Since both functions MAC and F are cryptographically sound, after re-

ceiving a packet, a receiver cannot immediately verify the validity of the

MAC and, therefore, cannot immediately authenticate the received packet

as originating from the sender.

On the other hand, the receiver has to immediately check that the re-

ceiving time of the current packet is compatible with the scheduling, namely

that the key used to sign the current packet is not yet disclosed. This is done

by checking the following condition:

b(Tc + ∆− T0)/Tintc = i (4.1)

where Tc is the local receiver time and T0 is the protocol start time.2.

To fully authenticate a received packet, the receiver has to wait until the

sender discloses the corresponding key in the next time interval. A receiver

can authenticate packet pi, received in step i ≥ 1, if the previous packet pi−1

and next packet pi+1 have been received, and the following conditions (called

the TESLA security condition) hold:

2In its general form, TESLA allows for authenticating a message after up to d intervals
(with d ≥ 1). For simplicity sake the version of Condition (4.1) we consider here is a
simplified version where we assume d = 1 (meaning the next interval).
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1. pi−1 is an authenticated packet;

2. the key disclosed in pi+1 (i.e., ki) is the same key committed to in packet

pi−1. In other words, if c is the commitment received in pi−1, it has to

check whether F (ki) = c;

3. the application of the MAC function MAC, with respect to the key

disclosed in pi+1, to the concatenation of the payload, the disclosed key

and the key commitment of packet pi, yields the MAC component of

pi.

Condition (1) is handled differently for the first packet since it is the only

one which uses public key cryptography for authentication. Notice that, in

this scheme the loss of a packet causes not only the loss of a useful payload,

but also the loss of a key. This prevents the ability to authenticate the

previously received packet.

Second Scheme

To overcome the problem mentioned above, and make the protocol loss toler-

ant, the sender can chain the used keys. In other words, the sender generates

a random key kN and generates the other keys by successive applications of

a cryptographically sound hash function H to kN . Therefore, the second key

is kN−1 = H(kN), the third key is kN−2 = H(H(kN)) = H(kN−1), and so on.

In this way, a receiver can compute any key at position i in the chain just

by knowing some key at position greater than i in the chain.

The drawback of this scheme is that the sender must precompute all the

keys in advance so as to to schedule their disclosure in the appropriate packet.

Being able to compute a key from any subsequently received key make

superfluous including the commitment in each packet. Using the commitment

included in the initial authenticated packet, F (K1), a receiver can check the

validity of the i-sh key received by checking that F (K1) = F (H i(KN)). The

starting commitment, chaining the keys, work as a commitment to the entire

key chain.
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The protocol, written in A-B notation, is similar to the one for the first

scheme. The only relevant differences are in the structure of the messages

sent at steps i ≥ 1, and in the definition of the TESLA security condition.

Each step i (with i ≥ 1) is replaced with:

i′. S −→ R : Di .MAC(ki, Di) with Di = (Mi.ki−1)

Assuming that the receiver has received and authenticated packet pv (with

v < i), and received packet pi+d (with d > 0), conditions (2) and (3) of the

TESLA security condition for authenticating pi become:

(2′) the key disclosed in pi+d (i.e., ki+d−1) is the (i + d − 1)-th key of the

chain committed to in packet p0. In other words, it is necessary to

check whether F (H i+d−1(ki+d−1)) = c0, where c0 is the key commitment

enclosed in the message of step 0b;

(3′) the application of the MAC function MAC, with respect to the key used

in the (possibly lost) packet pi+1 (which corresponds to Hd−1(ki+d−1)),

to the message components sent in packet pi, yields the MAC compo-

nent of pi.

Timed Features in the TESLA Protocol

While there are works that show TESLA safety in an untimed setting [Arc02],

the use of a time friendly notation make its specification simpler. In partic-

ular we need the ability to:

• a way to model the splitting of the packet stream into intervals;

• a way to check the TESLA security condition (e.g.: the keys disclosure).

4.1.3 Zhou-Gollmann efficient Non Repudiation Pro-

tocol

Non-repudiation protocols are concerned with preventing a principal to deny,

repudiate, having been involved in some communication.
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In particular the Zhou-Gollmann efficient Non Repudiation Protocol (ZGNRP)

[ZG97] is interesting for its peculiar dependence on time.

There are many variants of the protocol. All describe a protocol that

allows two participants exchange messages while protecting each party of

the transaction against the other party that, in the case of a dispute, denies

the occurrence of an action. In this protocol, the principal, Alice, must send

a message to another participant, Bob, the purpose of the protocol is to

ensure that Alice can not, at any time, deny having sent the message to Bob

and vice versa, Bob can not deny having received the message from Alice.

The protocol allow the principals to acquire irrefutable evidences of the

actions.

What the protocol try to ensure is a fairness property: at any time the

protocol end with a principal having an advantage over the other, in partic-

ular, with a principal unable to prove the receipt/send of a message.

The protocol require the presence of a Trusted Third Party (TTP) that

acting as a delivery authority and is providing services needed to keep the

fairness of the protocol.

Each correct run of the protocol allow each principals to collect the fol-

lowing transmission evidences:

• Non-repudiation of origin (NRO): Bob, communicating with Alice, has

obtained an irrefutable evidence that the origin of the message is indeed

Alice; Alice, in the case of a dispute, cannot deny to have sent the

message to Bob;

• Non-repudiation of receipt (NRR): Alice, communicating with Bob, has

obtained an irrefutable evidence that the message was received by Bob;

Bob, in the case of a dispute, cannot deny to have received a message

from Alice;

The fairness property is verified if every time a participant have the NRO

evidence the other have the NRR evidence and vice versa.

The idea behind the protocol is to split the message M in half, a key K

and a commitment C = {M}K . The commitment is sent to Bob while the
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key is sent to the TTP that is responsible for its distribution to the parties

together with a receipt. The receipt (CON) provided by the TTP is part of

the NRO and NRR and can be used to solve an eventual dispute.

An important temporal aspect of the protocol is the guarantees that the

principals always finish the protocol after a certain, predetermined, finite

amount of time T during which the TTP assure to keep the key.

Let:

• M the message to send;

• K symmetric key;

• C Commitment, M encrypted with K;

• SA A private key;

• SB B private key;

• STTP TPP private key;

• fEOO flag Evidence of Origin;

• fEOR flag Evidence of Receipt;

• fSUB flag Evidence of Submission;

• fCON flag Evidence of Confirmation;

• L nonce;

• T predetermined timeout;

• EOO = sSA(fEOO, B, L, T, C), sk(m) is the signature of m using the

private key k;

• EOR = sSB(fEOR, A, L, T, C);

• subK = sSA(fSUB, B, L,K);

• conK = sSTTP (fCON , A,B, L,K).
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The protocol, in A-B notation, is the following:

1 A→ B : fEOO, B, L, T, C,EOO

2 B → A : fEOR, A, L,EOR

3 A→ TTP : fSUB, B, L, T,K, subK

4 B ↔ TTP : fCON , A,B, L,K, conK

4’ A↔ TTP : fCON , A,B, L,K, conK

In step 1, Alice has sent the commitment to Bob, Bob has not the mes-

sage still as he is lacking the key K so the property of fairness continues to be

maintained. Similarly in step 2, the sending to Alice of a message confirming

the correct receiving of the commitment from Bob does not change the fair-

ness because the key has not yet been sent and without such key Bob cannot

access the message. After this initial commitment exchange, the following

steps involve the TTP to distribute the key and the evidences. The sending

of the key in step 3 by Alice to the TTP still does not give any advantage

to the principals. The step 4 and 4’ are the most important steps of the

protocol; here Alice receive, from the TTP, the receipt stating the correct

sending of the key and the commitment and Bob receive, from the TTP, the

key and the receipt stating the correct receipt of the commitment and the

key.

Timed Features in the Zhou-Gollmann efficient Non Repudiation

Protocol

To model correctly the ZGNRP protocol we need to:

• model the duration of the protocol. As already said the protocol have

a finite predetermined duration to end while trying to keep its fairness;

• model the transmission channels.
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The last point is of particular relevance in fact the communication chan-

nels, and ultimately the subsumed intruder model, can delay, lose or other-

wise not correctly deliver the messages between the principals and the TTP

causing situations where a principals does not know whether a protocol run is

finished or not and, consequently, causing a violation of the fairness property.

We will show in a following chapter that the protocol if fair as long as the

communication channels between the principals and the TTP are safe (i.e.:

the delivery of the messages is guaranteed).

4.1.4 A Timed Specification Language

The non-repudiation Zhou-Gollmann protocol, the TESLA authentication

protocol and the Wide Mouthed Frog protocol are all examples of protocols

that cannot be correctly modelled without accounting for time. The formal

framework generally employed to reason about time, in the context of finite

state machines, is that of Timed Automata, supported by the framework of

the temporal logics for the specification of its requirements.

However, the formalism of Timed Automata cannot be employed by pro-

tocol designer as a specification formalism in itself, being a too low level

formalism, unsuited to express high-level specifications of security protocols.

For this reason, in this thesis we propose a temporal extension of the, state of

the art, specification language HLPSL called Timed HLPSL (THLPSL).

In particular, the proposed extension of HLPSL introduces four kinds

of temporal features: (a) temporal constraints of the control flow (the usual

delays and timeouts associated with performing a transition) with respect

to the occurrence of some event, (b) duration of a transition, (c) temporal

constraints on the availability and usability of messages (message disclosure

and expiration time) with respect to the occurrence of some event, and (d)

delay in channel delivery.

THLPSL Syntax

The proposed extension THLPSL allows for expressing the following tem-

poral aspects:
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a) temporal constraints on the control flow of participants to a protocol

session;

b) duration of a transition, expressed as lower and upper bounds on its

duration;

c) temporal constraints on the availability and usability of messages (mes-

sage disclosure and expiration time);

d) duration of channel delivery, expressed as lower and upper bounds on

the channel delay.

Constraints on delay/timeout and message disclosure/expiration are expressed

with respect to the occurrence of a transition executed by a participant in

the protocol.

To allow for this extension, we introduce a new variable type role_instance

for role instances, which can only be used for formal parameters of roles (and

not for the declaration of local variables). Intuitively, a formal parameter RI

of type role_instance will be instantiated with a number between 1 and

n in the definition of the main composition role, where exactly n roles are

composed in parallel. Therefore, if RI is instantiated with number i, then it

refers to the i-th role instance in the parallel composition. This new feature

will allow for expressing time constraints relative to occurrences of events

(referred to by transition labels) taking place within specific role instances.

We also replace the original HLPSL constructs for channel declaration and

transition schemas with two new constructs and extend the set of terms as

follows:

Timed channels: the channel variable declaration has two additional pa-

rameters. The new operator takes the form C:channel(dy,lb,up), speci-

fying a Dolev-Yao channel with minimum transmission delay lb (a rational

number in Q≥0) and maximum transmission delay up (a rational number in

Q≥0 ∪ {∞});

Timed transitions: a new transition operator, replacing the original one,

takes six parameters, and has the form >>(t1,t2,lb,ub,RI,label), where
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RI is a formal parameters of the current role of type role_instance, t1 and

lb are rational numbers in Q≥0, t2 and ub rational numbers in Q≥0 ∪ {∞},
and label is a transition label. It specifies a transition that will be enabled

between time t1 and t2 relative to the execution of the transition labelled

label within the role of role instance RI, that will complete between time

lb and ub. Similarly a new transition operator, takes four parameters, and

has the form ->(lb,ub,RI,label), where RI is a formal parameters of the

current role of type, lb is a rational number in Q≥0, t2 and ub rational

number in Q≥0 ∪{∞}, and label is a transition label. It specifies an urgent

transition, a transition that will fire as soon as enabled, time is not allowed

to pass in the starting state and that will complete between time lb and ub

relative to the execution of the transition labelled label within the role of

role instance RI;

Timed messages: the class of terms is extended to express timed mes-

sages by adding terms of the form X[dt,et,RI,label], where RI is a formal

parameter of type role_instance, X a variable of type text, text (fresh),

key or the result of a hashing operator, dt is a rational number in Q≥0 and ut

a rational number in Q≥0∪{∞} and label is a transition label. It intuitively

represents a term X that will be disclosed between time dt and et relative to

the execution of the transition labelled label within role instance RI, and it

will expire after the temporal bound et. Moreover, we add two predicates

of the form EXP(X), DISC(X), with X a variable of type text, text (fresh)

or key, which intuitively holds true if X is assigned to a message which has,

respectively, expired, disclosed. We also assume to have an additional label

start which represents a fictitious transition taken at time 0 to initialize the

main role. Notice that the new construct for transition schema still allows

for expressing untimed transitions. In particular, a transition without any

temporal constraints (neither delay/time out nor duration constraints) will

now take the form >>(0,∞,0,∞,RI,start), a transition having delay/time

out but no duration constraints takes the form >>(t1,t2,0,∞,RI,label),

while a transition having no delay/time out constraints but duration con-

straints takes the form >>(0,∞,lb,ul,RI,start).
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THLPSL Semantics

In an attempt to link back to previous consolidated results and theories we

provide the semantic of HLPSL in terms of its translation into Extended

Timed Automata. The translation into XTA ensures that our extension en-

joys a well-defined semantics and allows the use of some automated testing

tools (e.g.: the UPPAAL model checker) that make the formalism of au-

tomata timed their means of specification. For the sake of simplicity, we

will assume that in a THLPSL specification (a) no structured datatypes

are used, (b) transitions are uniquely labelled and (c) each transition con-

tains at most one send or one receive operation (d) there is only one main

composition role instantiating in parallel all the transition roles.

The intuition underlying the translation of Timed HLPSL into XTA is

the following:

- there is an automaton for each role instance, modelling the behaviour

of the role instance within the protocol;

- there is an intruder automaton, modelled as a Dolev-Yao intruder;

- there is no direct synchronisation between role instances. Message ex-

change is modelled by synchronising the sender with the intruder via

a channel, and then synchronising the intruder with the receiver via

another channel.

The network of automata is therefore composed of n+1 automata, where

n is the number of role instances. The automaton for i-th role instance is

denoted by RIi, while the automaton for the intruder will be denoted by IA.

Let X be a set of variables (including names for formal parameters),

partitioned according to the builtin THLPSL types. Therefore, we have

agent variables XA, text variables XT , key variables XK , channel variables

XC , role instance variables XRI , and nonces variables XNC . Let SMX be

the set of THLPSL terms built from X , as defined in the previous sections.

Given a term T , V AR(T ) denotes the set of the variables occurring in T ,

while V AR′(T ) the set of the variables occurring primed in T . Moreover, for
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a term T ∈ SMX , T denotes the term obtained by replacing every occurrence

of a primed variable X ′ with the variable X. For a term T ∈ SMX , T̃ denote

the term obtained by removing temporization from every occurrence of a

timed message occurring in T , eg.: substituting m for m[dt, et, RI, label] or

m†.

We also define a collection of concrete, pairwise disjoint, domains, one for

each THLPSL variable type: a set of agents A, text messages M, natural

numbers N , symmetric and public keys K, hash functions H, channels C,
and nonces NC . Let Σ be the union of those sets. Moreover, we add two a

distinguished (w.r.t. Σ ) sets, the set of role instances RI and labels L.

Given the collection of concrete domains, we can define the set SMΣ of

ground messages as the set obtained from THLPSL terms by (a) instantiating

any variable occurring in a term by a concrete element in Σ, chosen in a type

preserving way, and (b) adding a ground message of the form m†, for each

m ∈M∪K ∪NC , representing expired timed messages.

Let ρ : X → SMΣ be a partial valuation function associating variables to

ground messages. Valuation functions are associated with role instances. In-

tuitively, a valuation function encodes the current set of ground messages the

corresponding role instance has currently received or generated. Henceforth,

we assume that, for each formal parameter X of the role instance, ρ(X) is

set to the actual parameter associated with X in the main composition role.

Given a term T without primed variables and a valuation ρ defined on all

the variables in V AR(T ), T [ρ] denotes the ground message obtained from T

by substituting every occurrence of a variable X ∈ V AR(T ) with ρ(X).

Recall that, for communication between HLPSL roles to successfully take

place, it is required that the structure of the sent message m matches the

structure of the term T specified in the receive action within a THLPSL

transition. In particular, any unprimed variableX in term T requires that the

value ρ(X) is communicated in the matching part of m, while for any primed

variable X ′ any ground message of the same type of X can be communicated.

To capture this intuition, given a valuation function ρ : X → SMΣ, we define

a matching relation ⇒ρ⊆ SMX × SMΣ × 2X×SMΣ which associates a term

T and a ground message m with a partial valuation function ρu, binding

81



variables to ground messages, as follows:

• (X ′,m)⇒ρ {(X,m)}, with X ∈ X ;

• (X,m)⇒ρ Ø if ρ(X) = m, with X ∈ X ;

• ({T}Z , {m}k)⇒ρ ρu if ρ(Z) = k and (T,m)⇒ρ ρu;

• (T1.T2,m1.m1)⇒ρ ρ1∪ρ2 if (T1,m1)⇒ρ ρ1, (T2,m2)⇒ρ ρ2 and ρ1∪ρ2

is a partial function.

Notice that, in order to successfully match an encrypted term with an

encrypted ground message (corresponding to decryption), the encryption key

must be known (ρ(Z) = k in the third clause above). Moreover, the matching

operation cannot detach the timing attributes (possibly associated with a

ground message) from a timed ground message.

To model generation of fresh nonces, we introduce a nonce generation

function as an injective function NC : RI × N → NC , mapping a role

instance and a natural number onto an element of NC . Given a role in-

stance r and a nonce generation function NC, we define the nonce assign-

ment function AF r
NC : 2X ×N → 2X×NC such that AF r

NC ({X1, ..., Xk}, i) =

{(X1, nci+j1), ..., (Xk, nci+jk)} and for all 1 ≤ s ≤ k, the following must hold:

(a) 1 ≤ js ≤ k, (b) nci+js = NC(r, i+ js), and (c) js 6= jt if s 6= t.

Given a set of ground messages M , a role instance r and a label l occurring

in the role of r, let TM(M, r.l) = {m[k, z, r, l] : m[k, z, r, l] occurs in some

element of M and k > 0} and TM0(M, r.l) = {m[0, z, r, l] : m[0, z, r, l] occurs

some element of M}, which denote, respectively, the set of undisclosed and

disclosed timed messages occurring in M referring to label l in role instance

r. We also define:

Dis(M, r.l) = min
m[k,z,r,l]∈MT (M,r.l)

{k} Exp(M, r.l) = min
m[0,z,r,l]∈MT0(M,r.l)

{z}

denoting, respectively, the minimum disclosure and expiration times of the

timed messages in M referring to label l in role instance r. Given a valuation

function ρ, let Mρ = {m : ρ(x) = m for some x ∈ X} be the set of ground

messages in ρ.
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Let us consider the XTA channels needed in the translation. Recalling

that message exchange between role instances is modeled by synchronization

with the intruder via a pair of channels, one for message sending and one

for message delivery, and that channels in XTA do not convey values, for

each THLPSL channel c ∈ C and ground message m, we add a XTA channel

cs(m), denoting the sending channel for m, and the XTA channel cr(m),

denoting the receive channel for m. Role instances are only allowed to execute

output actions on sending channels and input actions on receive channels.

Conversely, the intruder can perform input actions on sending channels and

output actions on receive channels. Let Ξg be the set of sending/receive

channels.

As far as clocks are concerned, for each role instance r and transition

label l in the role of r, we have a clock CK(r.l). Let CKg be the set of clocks

for the pairs 〈r, l〉, plus an additional clock CK(start) used to refer to the

label start in any role.

Given a main composition role of the form:

R1(actual_parameter) /\ ... /\ Rn(actual_parameter)

where n roles are composed in parallel, we define a XTA 〈RI1 ‖ . . . ‖ RIn ‖
IA,Ξg, CKg〉 as follows.

Modeling role instances. The Timed Automaton RIi for role instance

ri, is the tuple RIi = 〈Li, Li0, Cki, Ii, δi〉, where Li is the set of tuples either

of the form 〈ρ, i〉 or 〈l, ρ, i〉, where ρ is a partial valuation function of the

role instance, i is a natural number corresponding to the last index used for

nonce generation by the role instance, and l is a label in L; Li0 is the set of

initial locations of the form 〈ρ, 0〉, where ρ satisfies (with the usual meaning)

the init predicate of the role. The set Cki of local clocks contains a clock d,

used to model the duration of transitions (as specified by the values lb and

up in THLPSL transitions).

The intuition underlying the translation of the temporal features of THLPSL

into XTA is the following:

• delay/timeout for a transition of the form >>(t1,t2,lb,ub,role_inst,l)
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is modeled by guarding the XTA transitions with the clock constraint

t1 ≤ CK(r.l) ≤ t2, where r is the actual value of role_inst (notice

that CK(r.l) is reset whenever the transition labeled l is performed by

role instance r, conforming to the timed automata model we assume

that CK(r.l) is resetted at the start if the transition labeled l of the

role instance r is still to be taken);

• duration of transitions of the form >>(t1,t2,lb,ub,role_inst,l) is

modeled by splitting the transition into a sequence of two XTA tran-

sitions, the first one used to reset the clock d measuring the required

duration time, and the second transition guarded by the clock con-

straint lb ≤ d ≤ ub. Notice that, states of the form 〈l, ρ, i〉 corresponds

to the intermediate states in the two step sequence above. To force the

completion of the transition within the required bound ub, an invariant

of the form d ≤ ub is associated to the intermediate state;

• urgency of transitions in the form ->(lb,ub,role_inst,l) is modeled

using invariant on the starting state;

• disclosure and expiration of a timed message of the form m[dt,et,r,l]

is modeled by transitions guarded with the clock constraint CK(r.l) =

dt and CK(r.l) = et, respectively. Transitions disclosing the message

simply substitute each occurrence of m[dt, et, r, l] in the valuation ρ

with m[0, et, r, l] (representing the disclosed message), while transitions

for message expiration substitute every occurrence of m[0, et, r, l] with

the expired message m†.Clearly, in order to allow correct disclosure

(resp., expiration) with respect to the flow of time, we need to associate

invariants to each XTA state. The Timed Messages Invariant for states

〈ρ, i〉 and 〈l, ρ, i〉, in symbols TMI(Mρ), is the following:∧
r.l:MT (Mρ,r.l)6=∅

CK(r.l) < Dis(Mρ, r.l) ∧
∧

r.l:MT0(Mρ,r.l) 6=∅

CK(r.l) < Exp(Mρ, r.l)

Intuitively, the invariant requires that the first disclosure (resp., expi-

ration) to be executed is the one corresponding to the least disclosure

84



time Dis(Mρ, r.l) and expiration time Exp(Mρ, r.l) ranging over the

sets of role instances and labels referenced in the timed messages in

Mρ;

• channels delays are modeled within the intruder automaton.

The relation δi and the invariant map Ii are then defined as follows:

State Transition or each transition lt. ps >>(t1,t2,lb,ub,RI,l) ps’,

we add the following XTA transitions:

〈ρ, i〉 τ,∆,Clk−→ 〈lt, ρ′, j〉 where:

• ρ |= ps,

• ρ′ |= ps′;

• Clk = {d, CK(r.lt)} with r = ρ(RI) and ∆ is t1 ≤ CK(r.l) ≤ t2

with r = ρ(RI);

Message Sending for each transition lt. ps >>(t1,t2,lb,ub,RI,l) C(T) /\ ps’,

we add the following XTA transitions:

〈ρ, i〉 cs(m)!,∆,Clk−→ 〈lt, ρ′, j〉 where:

• ρ |= ps and ρ(C) = c for the channel variable C,

• ρ′ |= ps′, with ρ′(X) = ρ(X), if X ∈ V AR(T ), and ρ′(X) = ρs(X),

if X ∈ V AR′(T ), and ρs = AF r
NC (V AR

′(T ), i);

• m = T [ρ′] and j = i+ |V AR′(T )|;

• Clk = {d, CK(r.lt)} with r = ρ(RI) and ∆ is t1 ≤ CK(r.l) ≤ t2

with r = ρ(RI);

Message Receive for each transition lt. ps /\ C(T) >>(t1,t2,lb,ub,RI,l) ps’,

we add the following XTA transitions:

〈ρ, i〉 cr(m)?,∆,Clk−→ 〈lt, ρ′, i〉 where:
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• ρ |= ps and (T,m)⇒ρ ρu;

• ρ′ |= ps′, with ρ′(X) = ρ(X), if X ∈ V AR(T ), and ρ′(X) =

ρu(X), if X ∈ V AR′(T );

• Clk = {d, CK(r.lt)} with r = ρ(RI) and ∆ is t1 ≤ CK(r.l) ≤ t2

with r = ρ(RI);

Transition Duration for each state of the form 〈lt, ρ, i〉, for some label lt,

we add the following transitions:

〈lt, ρ, i〉 τ,∆,∅−→ 〈ρ, i〉

where ∆ is lb ≤ d ≤ ub;

Urgent Transition for each transition lt. ps ->(lb,ub,RI,l) ps’, we

add the following XTA transitions:

〈ρ, i〉 τ,∆,Clk−→ 〈ρ′, i〉 where:

• ρ |= ps;

• ρ′ |= ps′;

• Clk = {d, CK(r.lt)} with r = ρ(RI) and ∆ is CK(r.l) ≥ lb with

r = ρ(RI);

Message Disclosure for any pair 〈r, l〉 we add the following transitions:

〈lt, ρ, i〉 τ,∆,Ø−→ 〈lt, ρ′, i〉 and 〈ρ, i〉 τ,∆,Ø−→ 〈ρ′, i〉 where:

• ∆ is CK(r.l) = k, with k = Dis(Mρ, r.l);

• ρ′(X) = ρ(X)[m[k, z, r, l]/m[0, z, r.l]] for any X ∈ X , for some m;

Message Expiration for any pair 〈r, l〉 we add the following transitions:

〈lt, ρ, i〉 τ,∆,Ø−→ 〈lt, ρ′, i〉 and 〈ρ, i〉 τ,∆,Ø−→ 〈ρ′, i〉 where:

• ∆ is CK(r.l) = z, with z = Exp(Mρ, r.l)
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• ρ′(X) = ρ(X)[m[0, z, r, l]/m†] for any X ∈ X , for some m;

Invariants to each state of the form 〈ρ, i〉 not created by an urgent tran-

sition we associate the invariant TMI(Mρ) to enforce message disclo-

sure/expiration, we associate (CK(r.l) < ub) ∧ TMI(Mρ) with r =

ρ(RI) otherwise; while to any state of the form 〈lt, ρ, i〉, such that ub

is the upper bound on the duration of the transition labeled lt, we

associate the following invariant (d ≤ ub) ∧ TMI(Mρ), for message

disclosure/expiration and transition completion.

Modeling the intruder. By observing the traffic over the network, a

Dolev-Yao intruder extends its knowledge, and, from its knowledge, can com-

pose and send fraudulent messages to honest participants. To model this

ability, we define the derivation relation `, which determines the messages

that the intruder is able to construct/deconstruct from a set M of (known)

messages. `⊆ 2SMΣ×SMΣ is the smallest relation closed under the following

rules:

• M ` m if m ∈M ;

• M ` m1.m2 if M ` m1 and M ` m2;

• M ` {m}k if M ` k, k ∈ K and M ` m;

• M ` m1 and M ` m2 if M ` m1.m2;

• M ` m if M ` k, k ∈ K and M ` {m}k;

• M ` h(m) if h ∈ H and M ` m;

In addition, for each c ∈ C such that c occurs as an actual parameter of type

channel(dy,lb,ub), inf(c) denotes lb and sup(c) denotes ub, an CK(c) is a

new clock which is used to model channel delay. We denote the set of clocks

associated to channels with CkIA .

Recall that massage exchange between honest participant is modeled by

a pair of synchronizations, one from the sender to the intruder and one from

the intruder to a receiver. Since a Dolev-Yao intruder is allowed to block
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messages, in our model the second synchronization is not guaranteed to take

place. Therefore, the delay of a communication can be interpreted as the

delay that the intruder introduces to complete the second synchronization.

In addition the intruder is allowed to generate and autonomously send mes-

sages along channels not involved in a communication among participants.

Therefore, we require fulfillment of delay constraints on channels only for the

first type of communication, called Message Delivery. For the second type

of communication (Autonomous Sending) no delay constraint is imposed. In

order to model delay constraints on Message Delivery, the intruder stores

the set of channels (channels queue) on which the first synchronization (from

the sender to the intruder) has occured without the second synchronization

having been completed. The channel queue does not store the messages

sent along the channels, since the intruder is allowed to alter the content of

communicated messages.

The intruder automaton IA is the tuple 〈L,L0, CkIA, I, δ〉, where L ⊆
2SMΣ × 2C is the set of intruder location. Each location is a pair 〈M,Q〉,
where M is a set of known messages and Q a channel queue. L0 ⊆ L are the

intruder initial locations (the intruder initial knowledge, as specified by the

knowledge predicate, with the empty channel queue), CkIA the set of clocks

for channels, I the invariant map, and δ the transition relation. The relation

δ and the map I are defined as follows:

Message Receive for each location 〈M,Q〉 ∈ L, ground message m ∈
SMΣ, and channel c ∈ C the following transition is added:

〈M,Q〉 cs(m)?,>,{CK(c)}−→ 〈M ∪ {m}, Q ∪ {c}〉

Message Delivery for each location 〈M,Q〉 ∈ L, ground message m ∈
SMΣ such that M ` m, and channel c ∈ Q the following transition is

added:

〈M,Q〉 cr(m)!,∆,Ø−→ 〈M,Q \ {c}〉

where ∆ is inf(c) ≤ CK(c) ≤ sup(c));

Autonomous Sending for each location 〈M,Q〉 ∈ L, ground message m ∈
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SMΣ such that M ` m, and channel c ∈ C \Q the following transition

is added:

〈M,Q〉 cr(m)!,>,Ø−→ 〈M,Q〉

Message Disclosure for each pair (r, l) such that TM(M, r.l) 6= ∅ the fol-

lowing transitions are added:

〈M,Q〉 τ,∆,Ø−→ 〈M ′, Q〉 where:

• ∆ is CK(r.l) = k, with k = Dis(M, r.l);

• M ′ = M [m[k, z, r, l]/m[0, z, r, l]], for some m.

Message Expiration for each pair (r, l) such that TM0(M, r.l) 6= ∅ the

following transitions are added:

〈M,Q〉 τ,∆,Ø−→ 〈M ′, Q〉 where:

• ∆ is CK(r.l) = z, with z = Exp(M, r.l);

• M ′ = M [m[0, z, r, l]/m†], for some m.

Invariant the Timed Message Invariant TMI(M) is associated to each lo-

cation 〈M,Q〉 ∈ L.

Notice that protocol specifications written in THLPSL are not guaranteed

to lead to XTA having a finite number of locations. On the other hand, it is

possible to define simple syntactic restrictions on the specification (e.g., re-

strictions on the presence of loops, finiteness of the concrete domains, bounds

on the size of the set of messges the intruder can generate, etc.) which guar-

antee finiteness of the sets of locations of the translation. These restrictions

still allow for specifying and verifying interesting classes of protocols.
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Chapter 5

Timed Security Protocols

Model Checking Framework

In this chapter we focus on the implementation of a model checking frame-

work for the analysis of security protocols which employs the presented

THLPSL language as a specification language. In section 5.1 we will in-

troduce the Timed Protocol Model Checker (TPMC) framework and provide

detail on its implementation. To illustrate how our framework applies, in

section 5.2 we will also provide the specification in THLPSL of the pro-

tocols presented in section 4.1. We will end in section 5.3 showing how

the framework perform and, where possible, how its performance compare

against state of the art protocols verifiers.

5.1 TPMC: Timed Security Protocols Model

Checking Framework

The TPMC (Timed Protocols Model Checker) tool we developed for the anal-

ysis of timed security protocols employs THLPSL as a specification language

and UPPAAL as the model checking engine. The analysis of a protocol in

TPMC consists in a translation of its THLPSL specification into the input

language of UPPAAL according to the semantics presented in 4.1.4. For the

sake of ease of definition, such a semantics maps THLPSL specification onto
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pure XTAs, without exploiting the full expressive power of the UPPAAL

language, which allows for shared integers variables, and integer and boolean

arrays. The use of this additional features allows for exponentially more suc-

cinct UPPAAL specifications. As a consequence, the mapping implemented

in TPMC is not the one described in the formal semantics, but a semantically

equivalent one which, taking advantage of the full expressiveness of UPPAAL

XTAs, can be more efficiently employed for implementation purposes.

5.1.1 From THLPSL specifications to UPPAAL XTAs

In this section we shall show how to encode a THLPSL specification into a

XTA suitable for model checking in UPPAAL. As we have seen in Chapter

2, UPPAAL XTA are an extension of Timed Automata, where a parallel

composition, in the style of CCS, of a collection of Timed Automata com-

municate by means of channels and the communication style is handshaking.

Input symbols in a XTA are replaced by channel names. If a is the name of

a communication channel, then the symbol a? denotes the receiving action

over channel a, while the symbol a! denotes the sending action over chan-

nel a. Moreover, XTA can use (boolean and integer) variables and arrays.

Therefore, the guard of a XTA transition may also constraints values of vari-

ables and array elements besides clocks and the updates are also generalised

allowing also assignments involving variables and arrays. Refer to Chapter 2

for a more detailed insight.

As previously said, the formal semantics of THLPSL has be given in

Section 4.1.4 by translation into a network of timed automata. In such a

translation a timed automaton is provided for each instance role and a timed

automaton is provided for the intruder.

States of both the participants and the intruder are structured and, in

particular, encode besides control information also the knowledge of the play-

ing part at the represented stage of the interaction. Knowledge is suitably

encoded by sets of ground instances of message term (ground messages).

The intruder’s knowledge is a monotonically increasing set of structured

messages. A DY intruder can send to role instances any structured message
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that it can derive from its knowledge. For every received message the in-

truder can extract any possible sub message, compatibly with its knowledge

of the necessary cryptographic keys. Conversely, known sub messages can be

recombined freely, using the algebra of message operators. Since structured

message provide an unbounded use of pairing cryptographic encoding oper-

ators, the number of message the intruder can possibly build is unbounded.

However, the messages composed by the intruder which are relevant for the

protocol are those unifiable with the message patterns expected by the role

instances. Even considering a bounded set of messages, the fact that the

intruder can compose and/or modify communicated messages results in an

explosion in the number of states (which depend on the subset construction

of the set of received messages) and in the number of transitions.

Therefore, the translation defined in Section 4.1.4 in order to give the

semantics of the THLPSL, cannot be immediately exploited for implemen-

tation purposes, and a more succinct encoding of THLPSL is required.

For a succinct encoding, the translation implemented in TPMC exploits

the ability of UPPAAL of handling XTA specifications enriched with vari-

ables and arrays. Arrays and variables are used both to encode the knowledge

of the role instances and of the intruder, as well as the intruder’s ability to

compose and decompose messages. The net result of this encoding, is that

most of the burden of managing the explosion of the space of states is left to

the model checker.

In particular, the intruder’s knowledge is encoded by a boolean array

K, where each location represents either a structured message sent along a

channel, or a (sub)message obtained by composition/decomposition of known

messages. A location of the array K is set to true when the intruder knows the

corresponding (sub)message. Similarly, each role instance ri is encoded by

an array of integers Nri, which contains the current ground instance associated

to each variable occurring in a send or receive operation of the corresponding

role.

Communication between role instances is not direct, but implemented by

a pair of synchronisations, one between the sender and the intruder and one

between the intruder and the receiver. Since communication in the formalism
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of XTA takes the form of pure communication, a different channel is provided

for each conveyed message. Therefore, for each pair < M,CHN >, with m

a structured ground message sent (resp., received) by a role instance and

CHN a channel name (intuitively, the channel where the message has been

sent), a XTA synchronisation channel named C_CHN_s_m (resp.,C_CHN_r_m)

is created.

Since delay/timeouts of timed transition and disclosure/expiration of

timed messages are specified relative to a transition label, in order to model

these timed feature a clock named CK_lab_ri is associated to every pair

〈lab,ri〉, such that transition label lab and role instance ri occur among

the parameters of some timed transition or timed message term. Moreover, a

boolean array F is used to record, for each transition label referenced within

a timed message term or timed transition, whether it has been already ex-

ecuted. An additional clock named CK_start is used to model timed con-

straints referencing the special label start, corresponding to the initialisation

time of the main role. To model the duration of transitions taken by role

instances, a local clock named dri is associated to role instance ri. To model

channels delays, to every channel CHN , for which a delay constraint is speci-

fied, a clock CK_CHN is added. Finally, in order to model disclosure/expiration

of timed messages, two boolean arrays D and E are used, which record whether

a timed message has been disclosed or has expired, respectively.

The translation of a THLPSL specification generates:

- an automaton for each role instance;

- an automaton for the intruder;

- an automaton (the Time Machine) responsible for handling disclosure

and expiration of timed messages.

As to the generation of the automata for the role instances, the first step

consists in collecting, by means of a fixpoint construction, the set GM of

ground messages and the set TM ⊆ GM of timed messages possibly gen-

erated by the protocol participants and the intruder, according to a typed
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model. This phase defines, for each role instance ri, the following correspon-

dences, recorded in suitable data structures:

i. a function ρri : MV arri −→ 2GM mapping each message variable of the

role of ri onto a set of possible instances of that variable;

ii. for every message term M occurring in a receive operation in the role of

ri, a function

χMri : V ar′ri(M) −→ 2GM , mapping the primed variable occurring in M

(V ar′ri(M)) onto sets of possible instances of ground messages.

The function ρri encodes a set of possible evaluations for the message vari-

ables of the role instance, in the sense that for a message variable X, ρri(X)

gives the set of possible values of the vector element Nri[X], up to a suitable

encoding of ground messages into integers. Function χMri encodes the re-

sult of a structure preserving unification mechanism between message terms

expected by the receiver and ground terms sent by a sender.

In the following we sketch the construction of the instance role automaton

for ri. For the sake of presentation, some of the technical details are omitted.

Each location of a role instance automaton represents a location in which

some state predicate holds. Let L be the set of atoms of the form X = c,

such that X = c occurs in a transition SPred or of the form X ′ = c, such

that X ′ = c occurs in a transition Primed_Pred. The set of locations of the

role instance automaton for ri are in correspondence with subsets of L.

The general form of a sending timed transition is:

lab. SPred /\ MPred >>(t1,t2,lb,ub,RI,lab1)

Primed_Pred /\ CHM(M)

Each THLPSL transition defines a set of pairs of XTA transitions, a pair

for each possible instantiation (given by the functions ρri and χMri ) of the mes-

sage variables {X1, ..., Xk} occurring in the transition, as shown in Fig. 5.1.

The first XTA transition models the effect of the THLPSL transition, while

the second one models its duration. With reference to Fig. 5.1, given θ =
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Figure 5.1: XTA transitions encoding a timed transition.

{m1, ...,mk} a possible instantiation of the message variable {X1, ..., Xk} ac-

cording to ρri:

• l is a location corresponding to a set of atoms in L which contains all

the atoms in SPred.

• l′ is a location corresponding to a set of atoms in L which contains all

the atoms of the form X = c, such that X ′ = c occurs in Primed_Pred,

and all the atoms X = c occurring in SPred such that X ′ does not

occurs in Primed_Pred.

• l′′ is a distinct copy of l′, introduced to model transition duration.

• φ is a conjunction of: (i) atoms of the form Nri[Xi] = mi for every

message variable Xi occurring unprimed in the message term M ; (ii)

atoms of the form Nri[Xi] = Nri[Xj] (resp., not Nri[Xi] = Nri[Xj]),

for every atom of the form Xi = Xj (resp., not Xi = Xj) occurring in

MPred, and atoms of the form E[Xi] = 1 (resp., E[Xi] = 0), for every

atom of the form EXP (Xi) (resp., not EXP (Xi)) occurring in MPred;

and (iii) the clock condition t1 ≤ CK_lab1_ri ≤ t2.

• a is C_CHM_s_m!, where m is the ground message obtained by substi-

tuting {X1, ..., Xk} by θ.

• λ is a set of assignments contag F[lab_ri] := 1, CK_d_ri := 0,

CK_lab_ri := 0, Nri[Xi] := mi for each Xi occurring primed in M .

Notice that the transition guard φ enables the transition when the current

state: (i) assigns to the unprimed variables the ground messages assigned

by θ; and (ii) satisfies all the conjuncts in MPred. The update λ sets the

flag F[lab_ri] to record the execution of the transition, resets the clocks
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associated to the transition, and assigns fresh values to the primed variables

in the message term sent. The general form of a receive timed transition is:

lab. SPred /\ MPred /\ CHM(M)

>>(t1,t2,lb,ub,RI,lab1) Primed_Pred

Each receive THLPSL transitions defines a set of XTA transitions, one for

each possible instantiation (given by the functions ρri and χMri ) of the message

variables {X1, ..., Xk} occurring in the transition. Given θ = {m1, ...,mk} a

possible instantiation of the message variable {X1, ..., Xk} according to ρri,

and ψ = {u1, ..., uz} a possible matching, according to χMri , for the message

variable {Y1, ..., Yz} occurring primed in M , a pair of XTA transitions as in

Fig. 5.1 is added, where:

• l, l′, l′′ and φ are defined as for send transitions;

• a is C_CHM_r_m? where m is the ground term obtained by substituting

the message variables in

{X1, ..., Xk} which occur unprimed in M by θ and all the message

variables in {Y1, ..., Yz} by ψ;

• λ is a set of assignments containing F[lab_ri] := 1, CK_d_ri := 0,

CK_lab_ri := 0, Nri[Yi] := ui, for each Yi ∈ {Y1, ..., Yz}.

To guarantee that the duration of a timed (send or receive) transition is

modeled correctly, the intermediate location in Fig. 5.1 is equipped with the

invariant1 lb ≤ CK d ri ≤ ub.

Since urgent transitions cannot send or receive messages, neither syn-

chronization nor update is necessary. Therefore, they are encoded as XTA

transitions between a starting location l to an ending location l′ defined as in

the previous cases, with the addition that the starting location is set urgent,

and the guard condition is a conjunction of atoms of the same form as those

defined for cases (ii) and (iii) for timed send or receive transitions.

1Invariants are associated to locations; remaining in a location is allowed as long as the
invariant holds true.
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To model a DY intruder, the intruder automaton plays the role of the com-

munication channel between the role instances, and it is allowed to compose,

decompose, forward, block and delay messages. The automaton has a single

location and loop transitions for sending known messages to role instances,

receiving messages sent by role instances and composing/decomposing mes-

sages.

For every ground message m ∈ GM and channel CHN , there is a loop

transition for a send action, whose decoration 〈φ, a, λ〉 is

〈K[m] = 1 ∧ CK CHN ≥ lb , C CHN r m!, 〉,
where CK_CHN is the clock associated to channel CHN to model channel

delay.

For every a ground message m ∈ GM and channel CHN , there is a loop

transition for a receive action, whose decoration 〈φ, a, λ〉 is

〈 , C CHN s m?, K[m] := 1; CK CHN := 0〉
Transitions for composition/decomposition of messages encode the stan-

dard rules of a DY intruder. For instance, if the intruder knows two ground

messages m1 and m2 and m1.m2 ∈ GM , then it also knows m1.m2 (and

vice versa). Similarly, if it knows a ground messages {m1}k and a ground

key k, and m1 ∈ GM , then it also knows m1 (and vice versa). The loop

transitions for the above two composition, decomposition actions have the

following decorations: the former is 〈K[m1] ∧ K[m2], , K[m1.m2] := 1〉
(〈K[m1.m2], , K[m1] := 1;K[m2] := 1〉), and the latter is 〈K[{m1}k] ∧
K[k], , K[m1] := 1〉 (〈K[m1] ∧K[k], , K[{m1}k] := 1〉).

The Time Machine automaton (TM) is responsible for handling disclosure

and expiration of timed messages by updating the boolean arrays D and E.

The array F is used to record the execution of a transition referenced by some

timed message (or timed transition). Therefore, disclosure or expiration of a

timed message relative to a given transition is performed only if the referenced

transition of role instance ri labeled lab has been executed (F[lab ri]= 1).

For every ground message m which is an instance of a timed variable

message X[dt,et,RI,lab] in role instance ri, a loop transition for disclosure

97



Translation
THLPSL → XTA

UPPAAL
GUI/UPPAAL
Model Check-

ing Engine

THLPSL
Specification

XTA
Network

CTL Formula

OK/Error
Trace

Figure 5.2: The architecture of the tool.

is added, whose decoration 〈φ, a, λ〉 is

〈F[lab ri]= 1 ∧ not D[m] ∧ CK lab ri = dt, , D[m] := 1〉

and a loop transition for expiration is added whose decoration 〈φ, a, λ〉 is

〈F[lab ri]=1 ∧ not E[m] ∧ CK lab ri = et, , E[m]:= 1〉

To guarantee disclosure/expiration transition at due time without any

further delay, the location of TM is equipped with an appropriate invariant.

The invariant is a conjunction, over all the ground instances m of the timed

message terms of the form X[dt,et,RI,lab] within role instance ri, of

constraints of the form:

(F[lab_ri] ∧ not D[m])→ CK_lab_ri ≤ dt) ∧
(F[lab_ri] ∧ D[m] ∧ not E[m])→ CK_lab_ri ≤ et)

5.1.2 Framework Architecture and Limits

The general architecture of the verification environment is depicted in Figure

5.2. The system is composed of two modules, a verification engine, namely

the model checker UPPAAL [BY04], and a compiler which takes as input a

THLPSL specifications and translates it into the input language of UPPAAL.

The input language of UPPAAL is a textual representations of an XTA .

The tool takes a THLPSL specification and automatically generates a

network of XTAs, simulating the protocol and an appropriate CTL formula,

which encodes the desired security goal possibly included in the THLPSL
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specification. The compiler, then, first pre-computes this set of the ground

messages that can be generated during the protocol runs either by the le-

gal participants to the protocol or by the intruder. Once computed the set

of messages, the compiler generates: one automaton for each each role in-

stance, modeling the behavior of the role instance; an automaton modeling

the behavior of the intruder.

Notice that the full syntax of THLPSL, which allows for, e.g., integer

variables and transition systems containing infinite loops generating fresh

messages, can be used to specify system with an infinite number of loca-

tions. In addition, the language, similarly to HLPSL, does not restrict a

protocol specification to a finite number of sessions, therefore allowing an

infinite number of messages to be generated. These specification cannot be

translated into a XTA network, since XTAs are constrained to a finite num-

ber of locations. Since decision problems are not decidable for the resulting

protocol models (even in their untimed version), while the corresponding de-

cision problems for XTAs are decidable, the THLPSL language is strictly

more expressive than XTAs. To allow for automatic protocol analysis, our

translation assumes THLPSL specifications with finite number of sessions,

which do not allow for infinite generation of nonces within loops, and where

integer variables take value in a bounded domain (e.g., this is the case for

the variable used, in particular, to enforce a finite state control flow for each

automaton).

As far as verification is concerned, the environment allows both to specify

the CTL properties to be analyzed directly from the UPPAAL interface, and

to specify a set of predefined security properties in a higher lever language

within the goal section of a THLPSL specification. Currently, secrecy prop-

erties and (weak and strong) authentication properties are allowed within

the goal section. In the latter case, the translator is responsible of auto-

matically generating the corresponding CTL formula. Direct specification of

CTL properties clearly requires knowledge of the logical formalism employed,

therefore it is reserved to specialized users.

A secrecy property is a security property requiring that a given message

term is kept secret by the protocol. Since the number of ground messages in
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the protocol can be kept finite, this property can be encoded by a formula

which checks, for every reachable state, that every ground message possibly

instantiating the message term is never contained into the knowledge of the

intruder.

An authentication property in THLPSL is specified using the witness and

the request keywords. This kind of property cannot be directly encoded in

the fragment of CTL allowed by UPPAAL. To encode it in UPPAAL, we

use, for each ground message matching the message term involved in the

authentication, two additional boolean variable, one for the request and one

for the witness.

5.2 Timed Protocols Examples: Modelling in

THLPSL

In this section we will propose possible encoding in THLPSL for the timed

protocols presented in Section 4.1.

5.2.1 Wide Mouthed Frog Protocol

The temporal feature we identified in Section 4.1 as needed to model correctly

the Wide Mouthed Frog Protocol were:

• the use of the timestamp exchanged by the principals;

• the timing in both principals action and channels.

In order to model the validity of timestamps and session keys in THLPSL,

we associate to each of them an expiration time. In particular, the initiator

assigns an expiration time to the session key, wide enough to cover the esti-

mated maximum delays of both the communication channels from Alice to

the Server and from the Server to Bob. Similarly, Alice (resp., the Server) as-

signs the expiration time to each generated timestamp. An attack would be

detected if Bob receives an expired session key associated with a non expired

timestamp.
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Below is a possible specification of the protocol, where we assume a max-

imum delay 5 to the channels connecting the participants. The expiration of

the session key is set to the sum of the channels delays. The role for agent

Alice is specified as follows:

role Alice(A,B,S:agent, SND:channel(dy,0,5),

Kas:symmetric_key, AI:role_instance)

played_by A def= :

local Stat:nat, Ta:text(fresh), Kab:symmetric_key

init Stat=0

transition

a0. Stat=0 >>(0,∞,0,0,AI,start) Stat’=1 /\

SND(A.{Ta’[0,5,AI,a0].B.Kab[0,10,AI,a0]}_Kas)
end role

Notice that the role Alice is parametrised with respect to three agent

names (A, B,S), one dy channel SND, one symmetric key Kas, and one role

instance parameter AI. The played_by keyword states that the agent playing

the role corresponds to the first agent parameter A. In the local variable

declaration section the variable Stat, of type natural number, a fresh nonce

variable Ta and a symmetric key Kab are declared. The init clause opens the

variable initialisation section, while the transition clause opens the section

containing transition schemas. The transition schema, labelled a0, is a send

timed transition which takes from a state where variable Stat is equal to 0 to

a state where Stat is equal to 1, and all the remaining variables, except Ta,

remain unchanged. The additional effect of the transition is that the term

A.{Ta’[0,5,AI,a0].B.Kab[0,10,AI,a0]}_Kas is sent over the channel SND,

where Ta’[0,5,AI,a0] represents a fresh timestamp generated and assigned

to Ta by the transition, with disclosure/expiration interval between time 0

and 5 relative to the execution of the transition a0 of the current role instance

AI.

The role for agent Bob is specified as follows:

role Bob(A,B,S:agent, RCV:channel(dy,0,5),

Kbs:symmetric_key, BI:role_instance)
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played_by B def=

local Stat, Valid:nat, Ts:text, Kab:symmetric_key

init Stat=0

transition

b0. Stat=0 /\ RCV({Ts’.A.Kab’}_Kbs)
>>(0,∞,0,0,BI,start) Stat’=1

b1. Stat=1 /\ not EXP(Ts) /\ not EXP(Kab)

->(0,∞,BI,start)

Stat’=2 /\ Valid’=1

b2. Stat=1 /\ not EXP(Ts) /\ EXP(Kab)

->(0,∞,BI,start)

Stat’=2 /\ Valid’=0

end role

As to Bob’s role, the first transition is a receive transition which re-

quires that another party synchronously sends a message along the chan-

nel RVC, and that the sent message conforms to the structure of the term

{Ts’.A.Kab’}_Kbs. The primed variables Ts’ and Kab’ in the received term

are assigned, after the transition is executed, the value of the corresponding

subterm in the unifying received message. The last two transitions are urgent

transitions (always enabled) which test the validity of the timestamp and of

the key and accept (resp., reject) the key by assigning the value 1 (resp., 0)

to the boolean variable Valid.

The Server role is specified as follows:

role Server(A,B,S:agent, RCV,SND:channel(dy,0,5),

Kas,Kbs:symmetric_key, SI:role_instance)

played_by S def=

local Stat:nat, Ts:text(fresh),

Ta:text, Kab:symmetric_key

init Stat=0

transition

s00. Stat=0 /\ RCV(A.{Ta’.B.Kab’}_Kas)
>>(0,∞,0,0,SI,start) Stat’=1

s01. Stat=1 /\ not EXP(Ta) >>(0,∞,0,0,SI,start)
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Stat’=3 /\ SND({Ts’[0,5,SI,s02].A.Kab}_Kbs)
end role

Notice that both the Server and Bob check for non expiration of times-

tamps (not EXP(Ta) and not EXP(Ts)) before proceeding (resp., before ac-

cepting the session key). Moreover, the Server sets expiration of the times-

tamps it generates relative to the transition generating it. To model possible

acceptance by Bob of an invalid key, we use a variable Valid in Bob’s role,

which is set to 0 (transition b2) if the accepted key has already expired, and

to 1 (transition b1), otherwise.

The main role Main instantiates one instance of role Alice, one of the role

Bob and three of the role Server. Roles are instantiated by associating actual

parameters (i.e., constants) to formal ones. The resulting role instances are

composed in parallel.

role Main()

def=

composition

Alice(A,B,S,Snda,Kas,0) /\ Bob(A,B,S,Rcvb,Kbs,1)

/\ Server(A,B,S,Snda,,Rcvb,Kas,Kbs,2)

/\ Server(B,A,S,Sndb,Rcva,Kbs,Kas,3)

/\ Server(A,B,S,Snda,Rcvb,Kas,Kbs,4)

end role

A simple property requiring acceptance only for valid keys is the following

CTL formula

AG¬(Alice0.Stat = 1 ∧Bob1.Stat = 2 ∧ ¬Bob1.V alid),

which can be checked by the model checker UPPAAL. The property is false,

as it is possible for role instance bob to accept as valid a key after it has

expired.

5.2.2 TESLA Authentication Protocol

The modelling of the TESLA protocol in THLPSL is not straightforward

as the WMF protocols. In fact to model the TESLA protocol we need a way

103



to model the splitting of the packet stream into intervals and the condition

in equation (4.1). While it is easy to model interval by assigning to each

THLPSL transition a temporal constraint in the form of the enabling con-

dition, the ability to account for the temporal displacement ∆ between the

sender and the receiver and the corresponding condition requires a suitable

encoding.

We can account for the parameter ∆ by combining temporal constraints

on transitions and timed messages. The idea is to associate temporal con-

straints to the payload (i.e., payloads are modeled by timed messages) where

the disclose/expiration time is shifted ahead, with respect the bounds of the

interval time in which it is sent, of the amount of time ∆.

In the following, we assume a value ∆ = 2 and a Tint = 9. The sender

sends the first message between time 10 and 19. The validity of this message

(i.e., the guarantee that the message has been sent by the sender) is between

the sending time and the corresponding key disclosure time. On the other

hand, due to the displacement ∆ = 2, the receiver must account for the

maximum time synchronization error. Therefore, the receiver must consider

the packet as valid, if received between time 10 and time 21. The complete

specification of the sender is the following:

role Sender(S,R:agent, RCV,SND:channel(dy, 0, inf), F,MAC:function,

KP:public_key, RI:role_instance) played_by S

def= local State : nat, NB : text,

M1,M2,M3 : text(fresh),

K1, K2, K3, K4: symmetric_key, KB : symmetric_key

init State = 0

transition

req. State = 0 /\ RCV(NB’) >>(0,1,0,0,RI,start) State’ = 1

setup. State = 1 >>(1,10,0,0,RI,start) State’ = 2 /\

SND(NB.F(K1)_(KP))

s1. State = 2 >>(10,19,0,0,RI,start) State’ = 3

/\ SND(M1’[10,21,start,RI].F(K2).KB.MAC(K1.M1’.F(K2).KB))

/\ witness(S,R,m1,M1)

s2. State = 3 >>(19,28,0,0,RI,start) State’ = 4
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/\ SND(M2’[19,30,start,RI].F(K3).K1.MAC(K2.M2’.F(K3).K1))

s3. State = 4 >>(28,37,0,0,RI,start) State’ = 5

/\ SND(M3’[28,39,start,RI].F(K4).K2.MAC(K3.M3’.F(K4).K2))

end role

Notice that the specification considers just four iterations of the proto-

col loop. This is essentially due to the decidability issues discussed at the

end of the previous section, and to the fact that in this thesis we are only

interested in checking the time dependent packet authentication mechanism

implemented in TESLA.

In the local variable declaration section, the variable State represents

the current state of the sender. The fresh text variables M1, M2 and M3 are

the payloads of the second, third and fourth message (the first message has

no payload). The keys K1, K2, K3 and K4 are the keys used to compute the

MACs of the messages, and variable NB represents the nonce received by the

receiver and is used to ensure freshness of the session. The key KB is the

bogus key disclosed in the message in the first step. The init clause opens

the variable initialization section, while the keyword transition opens the

section containing transition schemas. Note that non initialized non nonces

variables (i.e.: of type text(fresh)) likeK1 are considered implicitly initialized

to a unique value. The first transition labeled req is a receive transition that

models the receipt of the fresh nonces sent by the receiver. It takes from

a state where variable State= 0 to a state where State= 1, and all the

other variables remain unchanged. The additional effect of the transition is

that the content of the channel RCV is assigned to the variable called NB. The

transition schema, labeled setup, is a send transition. Besides performing

the state change from 1 to 2, it sends the message term {F(K)}_(KP) over

the channel SND. This is the first message of the sender used to setup the

protocol run. This message contains the commitment to the first key (K1)

encrypted with its public key (KP). The transition scheme labeled s1, s2,

s3 send the messages to be authenticated. Let us consider the transition s1

(the other are similar). The term M1’[10,21,start,RI] represents a fresh

message, with disclosure/expiration interval between time 10 and 21, relative

to the start of the protocol (label start). Timing messages is therefore used
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to bind each payload to the temporal interval where the corresponding key

has not yet been disclosed. Note also that each transition is timed. For

instance, the decoration >>(10,19,0,0,RI,start) of transition s1 means

that the the transition is enabled only between time 10 and 19 from the

start of the protocol run. This time constraints models the assumption that

the interval size Tint is of length 9. The use of timed messages to model

intervals is exploited in the receiver to model the TESLA security condition.

A parametric receiver is, then, defined as follows:

role Receiver(S,R:agent, RCV,SND:channel(dy, 0, inf), F,MAC:function,

KP:public_key, RI:role_instance) played_by R

def= local State : nat, NB : text(fresh),

M1, M2, M3 : text, MAC1, MAC2, MAC3 : text,

KB, K1, K2 : symmetric_key, FK1, FK2, FK3, FK4 : text

init State = 0

transition

req. State = 0 >>(0,inf,0,0,RI,start) State’ = 1 /\ SND(NB’)

setup. State = 1 /\ RCV(NB.FK1’_(KP)) >>(0,inf,0,0,RI,start) State’ = 2

step1. State = 2 /\ RCV(M1’.FK2’.KB’.MAC1’) >>(0,inf,0,0,RI,start)

State’ = 3 /\ request(R,S,m1,M1)

verstep1. State = 3 /\ not EXP(M1) =|> State’ = 5

step2. State = 5 /\ RCV(M2’.FK3’.K1’.MAC2’) >>(0,inf,0,0,RI,start)

Statea’ = 6

verstep2. State = 6 /\ not EXP(M2) /\ FK1=F(K1) /\ MAC1=MAC(K1.M1.FK2.KB) =|>

State’ = 7

step3. State = 7 /\ RCV(M3’.FK4’.K2’.MAC3’) >>(0,inf,0,0,RI,start)

State’ = 8

verstep3. State = 8 /\ not EXP(M3) =|> State’ = 9

verL. State = 9 /\ FK2=F(K2) =|> State’ = 10

verMAC2. State = 10 /\ MAC2=MAC(K2.M2.FK3.K1) =|> State’ = 11

end role

The transition req sends a fresh nonce to the sender in order to start

the protocol run. The transition setup is a receive transition, where a mes-

sage with a structure compatible with {NB.FK1’}_(KP) is received along the
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channel RCV. The ground value received for component NB must match the

ground message associated to variable NB in the previous transition (where it

was generated). The side effect is that the primed variable FK1’ is assigned

to the value of the corresponding term in the received message.

Since the sender and the receiver are not necessarily synchronized (due

to possible local time displacement and delays caused by the intruder) the

receiver must be allowed to receive messages in time intervals different from

the one scheduled by the sender. Therefore, transitions of the receiver are

not constrained to specific time bounds.

Transition verstep1 is responsible for checking the condition in equa-

tion (4.1) for the first message. The check is modeled by the predicate

not EXP(M1), which verifies whether the payload contained in the received

message is not yet expired (therefore, ensuring that it has been sent before

the corresponding key was disclosed). This transition is an instantaneous

transition, as the check must be performed as soon as the message is re-

ceived.

Transition step2 receives the second message, while verstep2 performs

both the checks of condition (4.1) for the newly received message and the

authentication of the previously received one. This second check corresponds

to conditions (2) (i.e., FK1=F(K1)) and (3) (i.e., MAC1=MAC(K1.M1.FK2.KB))

of the TESLA security condition. Analogously for the remaining transitions.

For the sake of exposition, below we show a specification of a simplified

version of the second schema of TESLA, where the receiver is able to recover

the loss of the second message only. The main differences with respect to

the first schema are in the structure of the messages sent and received and,

according to the description given in the previous section, in the way the

receiver authenticates the packets.

As to the sender specification, the only difference is that instead of using

the keys K1, K2, K3 and K4, it uses H(H(H(H(K)))), H(H(H(K))), H(H(K)),

and H(K), respectively.

role Sender(S,R:agent, RCV,SND:channel(dy, 0, inf), F,H,MAC:function,

KP:public_key, RI:role_instance) played_by S

def= local State : nat, NB : text,
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M1,M2,M3,M4 : text(fresh), K : symmetric_key, KB : symmetric_key

init State = 0

transition

req. State = 0 /\ RCV(NB’)>>( 0,1,0,0,RI,start) State’ = 1

setup. State = 1 >>( 1,10,0,0,RI,start) State’ = 2

/\ SND( NB.F(H(H(H(H(K)))))_(KP) )

s1. State = 2 >>(10,19,0,0,RI,start) State’ = 3

/\ SND( M1’[10,21,start,RI].KB.MAC(H(H(H(H(K)))).M1’.KB)

/\ witness(S,R,m1,M1)

s2. State = 3 >>(19,28,0,0,RI,start) State’ = 4 /\

SND( M2’[20,30,start,RI].H(H(H(H(K)))).

MAC(H(H(H(K))).M2’.H(H(H(H(K)))))

s3. State = 4 >>(28,37,0,0,RI,start) State’ = 5 /\

SND( M3’[30,39,start,RI].H(H(H(K))).MAC(H(H(K)).M3’.H(H(H(K))))

end role

As to the receiver, recall that in this version it also needs to check if

a packet is lost and, if this is the case, perform the corresponding recover

phase.

role Receiver(S,R:agent, RCV,SND:channel(dy, 0, inf), F,H,MAC:function,

KP:public_key, RI:role_instance ) played_by R

def= local State, HC : nat, NB : text(fresh),

M1, M2, M3 : text, MAC1, MAC2, MAC3 : text,

K : symmetric_key, KB, HK, HHK, HHHK, FHHHHKP : text

init State = 0 /\ HC = 0

transition

req. State = 0 >> (0,inf,0,0,RI,start) State’ = 1 /\ SND(NB’)

setup. State = 1 /\ RCV(NB.FHHHHK’_(KP)) >>(0,inf,0,0,RI,start)

State’ = 2

step1. State = 2 /\ RCV(M1’.KB’.MAC1’) >>(0,inf,0,0,RI,start)

State’ = 3 /\ request(R,S,m1,M1)

verstep1. State = 3 /\ not EXP(M1) =|> State’ = 4

step2. State = 4 /\ RCV(M2’.HHHHK’.MAC2’) >>(0,inf,0,0,RI,start)

State’ = 5

lost2. State = 4 >>(0,inf,0,0,RI,start) State’ = 5 /\ HC’ = 1
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verstep2. State = 5 /\ HC = 0/\ not EXP(M2)

/\ FHHHHK=F(HHHHK))

/\ MAC1=MAC(HHHHK.M1.KB)=|> State’ = 7

step3. State = 7 /\ RCV(M3’.HHHK’.MAC3’) >>(0,inf,0,0,RI,start)

State’ = 8

verstep3. State = 8 /\ not EXP(M3) =|> State’ = 9

verL. State = 10 /\ FHHHHK=F(H(HHHK)) =|>

State’ = 11

verMAC2. State = 11 /\ MAC2=MAC(HHHK.M2.HHHHK) =|>

State’ = 12

recovery2. State = 12 /\ HC = 1

/\ MAC1=MAC(H(HHHK).M1.KB) =|> State’ = 13

end

The check of the packet loss is modeled using two transition, step2 and

lost2, and additional flag HC which witnesses the possible loss of a packet.

Transition step2 is executed if the expected message is delivered in the cor-

rect interval. If no packet loss occurs, the receiver proceeds similarly to the

first schema. If, on the other hand, the enabling interval of step2 elapses

without a message receipt, lost2 is executed, setting the flag HC to 1. In this

case, the receiver has to delay the authentication of the first message after

the authentication of the third message (transition recovery2).

The witness and the request operators, occurring in the transitions

step1 of the receiver and s1 of the sender, respectively, in both version of

the specifications, are used to specify the authentication property. These

operator in the roles of the parties which must authenticate each other, and

are parameterized by the name of the parties involved in the authentication

process and the message term with respect to the authentication must occur

(e.g., a term corresponding to a password). Intuitively, the witness models

the challenge for the authentication, while the matching request models the

response to the challenge. In the first model, the transitions labeled s1 in

the Sender and step1 in the Receiver contain a pair of witness and request

terms which are used to specify the authentication property. Intuitively, this

witness and request pair requires that pairs of instances of roles S and R,
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instantiated with the same values for the parameters of agent type, must

agree on the value of the message term M1. In other words, whenever the

receiver R performs a request on a ground message instantiating M1, that

message must have been previously sent (i.e., witnessed) by the sender S.

The above specifications are indeed safe. Therefore, the TESLA security

condition, together with Condition (4.1), allows the receivers to correctly

authenticate the packets. On the other hand, if one weakens the specifica-

tion by avoiding, for instance, to check Condition (4.1) on the first packet

(transition verstep1 in the first schema), the same property becomes false.

5.2.3 Zhou-Gollmann efficient Non Repudiation Pro-

tocol

The encoding of the Zhou-Gollman efficient Non Repudiation Protocol in

THLPSL is the straightforward translation of its encoding in A-B notation.

The only details missing from the A-B notation, are the encoding of the

protocol duration T and the channels timings. Following is the encoding in

THLPSL of the protocol with T = 5 and instant channels.

role Alice( A, B, TTP : agent, SND, RCV : channel(dy, 0, 0),

SNDTTP, RCVTTP : channel(dy, 0, inf ),

SA, SB, STTP : public_key, K : symmetric_key, M : text )

played_by A def=

exists State : nat,

L : text(fresh),

% Costanti

FNRO : nat,

FNRR : nat,

FSUB : nat,

FCON : nat,

FGETA : nat,

T : nat
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init State = 0 /\

% Initialisation

FNRO = 1

FNRR = 2 /\

FSUB = 3 /\

FCON = 4 /\

FGETA = 5 /\

T = 5

transition

alice1. State = 0

=>>(0,5)

State’=1 /\ SND(FNRO.B.L’.T.M_(K).FNRO.B.L’.T.M_(K)_inv(SA)_(SB))

alice2. State = 1 /\ RCV( FNRR.A.L.FNRR.A.L.T.M_(K)_(SB)_inv(SA) )

=>>(0,5)

State’=2

alice3. State = 2

=>>(0,5)

State’ = 3 /\ SNDTTP( FSUB.B.L.T.K.FSUB.B.L.T.K_inv(SA)_(STTP) )

alice4. State = 3

=>>(0,5)

State’ = 4 /\ SNDTTP(FGETA)

alice5. State = 4 /\ RCVTTP( FCON.A.B.L.K.FCON.A.B.L.K_(STTP)_inv(SA) )

=>>(0,5)

State’ = 5

end role

role Bob( A, B, TTP : agent, SND, RCV : channel(dy, 0, 0),

SNDTTP, RCVTTP : channel(dy, 0, inf ),

SA, SB, STTP : public_key, K : symmetric_key, M : text )

played_by B def=
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exists State : nat,

L : text,

Y : message,

W : symmetric_key,

% Constanta

FNRO : nat,

FNRR : nat,

FSUB : nat,

FCON : nat,

FGETB : nat,

T : nat

init State = 0 /\

% Initialisations

FNRO = 1 /\

FNRR = 2 /\

FSUB = 3 /\

FCON = 4 /\

FGETB = 6 /\

T = 5

transition

bob1. State = 0 /\ RCV( FNRO.B.L’.T.Y’.FNRO.B.L’.T.Y’_(SA)_inv(SB) )

=>>(0,5)

State’ = 1

bob2. State = 1

=>>(0,5)

SND( FNRR.A.L.FNRR.A.L.T.Y_inv(SB)_(SA) ) /\ State’=2

bob3. State = 2

=>>(0,5)

State’ = 3 / SNDTTP(FGETB)
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bob4. State = 3 /\ RCVTTP( FCON.A.B.L.W’.FCON.A.B.L.W’_(STTP)_inv(SB) )

=>>(0,5)

State’ = 4

end role

role TServer( A, B, TTP : agent,

SNDTTPA, RCVTTPA : channel(dy, 0, 0),

SNDTTPB, RCVTTPB : channel(dy, 0, 0),

SA, SB, STTP : public_key ) played_by TTP def=

exists State : nat,

L : text,

W : symmetric_key,

% Constants

FSUB : nat,

FCON : nat,

FGETA : nat,

FGETB : nat,

T : nat

init State = 0 /\

% Initialisation

FSUB = 3 /\

FCON = 4 /\

FGETA = 5 /\

FGETB = 6 /\

T = 5

transition

ttp1. State=0 /\ RCVTTPA(FSUB.B.L’.T.W’.FSUB.B.L’.T.W’_(SA)_inv(STTP))

=>>(0,5)

State’ = 1

ttp2a. State = 1 /\ RCVTTPA(FGETA) =>>(0,5) State’ = 2

ttp2b. State = 1 /\ RCVTTPB(FGETB) =>>(0,5) State’ = 3
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ttp3a. State = 2

=>>(0,5)

SNDTTPA( FCON.A.B.L.W.FCON.A.B.L.W_inv(STTP) _(SA)) /\ State’ = 1

ttp3b. State = 3

=>>(0,5)

SNDTTPB( FCON.A.B.L.W.FCON.A.B.L.W_inv(STTP) _(SB)) /\ State’ = 1

end role

role Env( ) def=

composition

Alice(Ai, Bi, TTPi, Sndi, Rcvi, Sndttpia, Rcvttpia,

SAi, SBi, STTPi, Ki, Mi) /\

Bob(Ai, Bi, TTPi, Rcvi, Sndi, Sndttpib, Rcvttpib,

SAi, SBi, STTPi, Ki, Mi) /\

TServer( Ai, Bi, TTPi, Rcvttpia, Sndttpia, Rcvttpib, Sndttpib,

SAi, SBi, STTPi )

end role

goal

end goal

Env()

Differently from the other two protocols we can see, in the encoding of

the TTP rule, the use of looping. The algorithm used in our tool, generally,

cannot handle loops in protocols, this case is peculiar since the TTP does

not generate any nonces. This particular use of loops, i.e.: without nonces

generation, result in a finite state automaton and as such is handled.

Differently from the other two protocols the propertie to check is not an

authentication or a secrecy one so need some appropriate encoding directly

in CTL. The non repudiation property of the protocols, ultimately a fairness

property, can be encoded as a reachability property. In detail we want that
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when the Alice automaton is in any state generated by the label alice5, i.e.:

Alice got its receipt (NRR), Bob is in a state generated by the label bob4,

i.e.: Bob got its receipt (NRO).

The violation of fairness by Bob against Alice can be encoded in the CTL

fragment used by UPPAAL as:

E <> (Bob1.Bob14and!TServer2.TSe23andTServer2.d > 5)

where:

- Bob1.Bob1 4 is the state where Bob got the secret (i.e.: Bob final

state);

- TServer2.TSe2 3 is the state where the TTP got the Alice request;

- TServer2.d s the clock counting the duration of the protocol (5 time

unit in the example).

The symmetric fairness violation by Alice against Bob:

E <> (Alice0.Ali05and!TServer2.TSe22andTServer2.d > 5)

where:

- Alice0.Ali0 5 is the state where Alice got the secret (i.e.: Alice final

state);

- TServer2.TSe2 3 is the state where the TTP got the Bob request;

- TServer2.d s the clock counting the duration of the protocol (5 time

unit in the example).

The encoding of those properties is, of course, not automatic and require

expertise in the peculiar encoding used by the framework but is a demon-

stration of its flexibility. Adding support for goals different from the usual

secrecy and authentication is a possible extension of the framework.
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Checking the protocol using the above formulae we see that the properties

is violated when the channels are not instantaneous.

TTPs Variant

An interesting different variant of the protocol require the TTP to always

wait for the request from both the principals before answering. This variant

is safe way even when not using instantaneous channels.

role TServer( A, B, TTP : agent,

SNDTTPA, RCVTTPA : channel(dy, 0, 0),

SNDTTPB, RCVTTPB : channel(dy, 0, 0),

SA, SB, STTP : public_key ) played_by TTP def=

exists State : nat,

L : text,

W : symmetric_key,

% Constants

FSUB : nat,

FCON : nat,

FGETA : nat,

FGETB : nat,

T : nat

init State = 0 /\

% Initialisation

FSUB = 3 /\

FCON = 4 /\

FGETA = 5 /\

FGETB = 6 /\

T = 5

transition

ttp1. State=0 /\ RCVTTPA(FSUB.B.L’.T.W’.FSUB.B.L’.T.W’_(SA)_inv(STTP))

=>>(0,5)

State’ = 1
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ttp2a. State = 1 /\ RCVTTPA(FGETA) =>>(0,5) State’ = 2

ttp2ap. State = 2 /\ RCVTTPB(FGETB) =>>(0,5) State’ = 3

ttp2b. State = 1 /\ RCVTTPB(FGETB) =>>(0,5) State’ = 6

ttp2a. State = 6 /\ RCVTTPA(FGETA) =>>(0,5) State’ = 3

ttp3a. State = 3

=>>(0,5)

SNDTTPA( FCON.A.B.L.W.FCON.A.B.L.W_inv(STTP) _(SA)) /\ State’ = 4

ttp3b. State = 4

=>>(0,5)

SNDTTPB( FCON.A.B.L.W.FCON.A.B.L.W_inv(STTP) _(SB)) /\ State’ = 5

end role

The TTP now wait both request before send the receipts. We can see

that the protocol is safe using the modified fairness formula:

E <> (Alice0.Ali05and!TServer2.TSe25andTServer2.d > 5)

or its symmetric.

5.3 Experimental results

The verification environment is implemented in C++ and integrates the com-

piler from THLPSL specifications to UPPAAL XTAs with the model check-

ing engine UPPAAL. To assess the efficiency and scalability of the resulting

environment, we ran it on a number of timed and untimed protocols. An ex-

cerpt of the results of our experiments is given in Table 5.1. The experiments

have been run on a 3.0GHz Pentium IV with 1Gb of memory running Linux

(Slackware 11.0). The column Inst. in the two tables reports the number of

protocol sessions allowed in the corresponding test.

Table reports the time, expressed in seconds, spent by the tool for the

two versions of the TESLA protocol and their flawed versions, as presented
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Protocol Inst CT VT St#/Tr#/M
TESLA 1 1 .028 1.79 27/3458/10
TESLA 2 1 2.37 20.90 20/4716/10
TESLA 1 Flawed 1 2.74 29.73 27/3246/10
TESLA 2 Flawed 1 2.37 58.73 20/4328/10
ZG DY Chn. 1 .01 .33 19/48/23
ZG Oper. 1 .01 .4 19/48/23
ZG OperFix 1 .01 .1 19/48/23
ZG Res. 1 .01 .1 21/47/23
WMF 1-1-3 .01 .44 16/31/6
WMFFix 1-1-3 .01 .03 14/18/6
WMF 2-2-5 .06 129.27 28/158/14
WMFFix 2-2-5 .06 111.31 24/82/14

Table 5.1: Experimental results for Timed Protocols (times are in seconds).

Protocol Inst CT VT St#/Tr#/M# AVISPA OFMC AVISPA SatMC

NSPK 3 .056 .33 17/114/47 .090 .853

NSPK 17 18.961 55.535 93/2955/604 - 25.608

NSPKFix 3 .070 .039 17/98/42 .090 .897

NSPKFix 5 .168 21.674 29/231/74 13.638 1.343

ISO1 2 .012 .015 9/12/13 .059 .502

ISO1 32 57.405 2.727 129/2112/103 19.416 -

PBK 2 .03 .036 17/96/29 .102 .896

PBK 19 9.722 344.575 117/5547/176 - 55.618

PBKFix 2 .036 .065 17/88/37 .191 1.022

PBKFix 19 9.359 250.253 117/3644/203 - 15.659

Table 5.2: Experimental results for Untimed Protocols (times are in seconds).
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Figure 5.3: Tool performances in seconds against protocol sessions.

in the previous chapter, four version of the Zhou-Gollmann non repudiation

protocol, testing the protocol under different assumptions on the communica-

tion channel reliability (i.e., resilient, operational and unreliable channels),

and the original and fixed versions (as proposed by Lowe [Low97]) of the

Wide Mouthed Frog protocol. The column Inst. for the Wide Mouthed Frog

protocol reports the number of instances of the participants involved.

In order to allow for a comparison with state-of-the-art verification tools

for security protocols, we ran our tool on some untimed protocols. Ta-

ble 5.1 shows the experimental results both of our tool and of two verifi-

cation engines included in the AVISPA suite, namely OFMC and SATMC.

The untimed protocol analyzed (taken from the AVISPA library of proto-

cols [ABB+05, Vig06]) are the following: the Needam–Schroeder Public Key
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protocol (original and fixed version), the PBK protocol (original and fixed

version), and the ISO1 protocol. All the tests are parametric in the number

of sessions, where a session involves from two participants. Clearly, the big-

ger the number of sessions, the higher the number of automata and of ground

messages sent/received, leading to a growth in the state space to be analyzed.

The property checked for all the protocols is strong authentication. We only

report the results for the minimal and maximal instance of the protocols we

tried to analyze (the absence of a value for the time spent by a tool, indicates

that it did not terminate within 20 minutes). The results show that, even

though our tool has not been optimized for untimed protocols and the com-

piler and the model checker are not tightly integrated as in the competitor

tools, the performances are still comparable and in some cases that our tool

scales better as the number of sessions increases. Figure 5.3 also shows how

our tool scales against the number of sessions on some untimed protocols.

Both compilation and verification times are reported.

Verification and compilation times are usually not correlated. For ex-

ample in the case of the ISO1 protocol the exchanged messages are heavily

structured, so increasing the number of sessions the compiler needs to con-

sider a exponentially growing number of (sub) message (combinations). The

verification time for the same protocol scales much better since, while the

compiler have to fully generate the automata, the model checker does not

need to explore the full state space but only the portion needed to find an

attack.

Timing also plays a fundamental role in the scaling of the compila-

tion/verification procedure. For example WMF is a timed protocol whose

message structure is quite simple. The number of messages which can be

generated grows slowly as the number of sessions increases. Therefore, the

additional work of the compiler is quite limited. On the other hand, the

verification time increases rapidly, since the model checker have to work on

a timed automaton where timing constraints are actually presents, while for

ISO1 (and all the untimed protocols) timing is absent.

On all the tests, our tool correctly reports the expected attack on the

flawed versions of the protocols and no attacks for the fixed versions.
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Chapter 6

Decidability of the Protocol

Insecurity Problem

In this chapter we focus on the computational complexity of the verifica-

tion security protocols. In section 6.1 we will introduce the complexity of

the problem of verification of security problem we will present the results

already present in bibliography and then move to present, in section 6.2 the

formalism used to specify timed protocols and an example of a protocol speci-

fication. Section 6.3 describes a possible extension of the Dolev-Yao intruder

model to the timed setting. In section 6.4 the semantics of the specifica-

tion language and the notion of attack is defined, together with some crucial

properties which ensure that the space of attacks to a protocols is finite and

polynomially bounded by the size of the protocol. Finally, in section 6.5 an

NP decision procedure for timed protocols insecurity problem is proposed.

6.1 Introduction to the Decidability of the

Protocol Insecurity Problem

In most cases, the shift from an untimed to a timed model causes a signifi-

cant growth in complexity (for instance, the reachability problem for Büchi

automata is linear, while it is PSPACE for Timed Automata). However,

the experimental results with THLPSL do not exhibit a significant growth in
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With fresh terms Without fresh terms
No bound Undecidable Undecidable
Unbounded n. of sessions +
unb. depth messages

Undecidable DEXPTIME-complete

Bounded number of sessions
+ bounded steps + un-
bounded depth messages

NP-complete NP-complete

Table 6.1: Complexity Results

complexity. The question, thus, arises of what the actual computational com-

plexity of verification of THLPSL specifications is. In literature many results

about the decidability and complexity of the protocols insecurity problem

have been settled. While the general case (no bound on messages structure

and on the number of sessions) has been proved to be undecidable [EG82], for

weaker fragments, e.g. by finitely bounding the number of sessions and/or

of the messages, there are interesting decidability results [RT03], [DLMS99],

[DY83]. In particular, the complexity of the protocol insecurity problem for

finite number of sessions has been proved to be NP–Complete by M. Rusi-

nowitch and M. Turuani in [RT03]. Table 6.1 resume the main results.

In the following sections we extend the specification formalism of [RT03]

to allow the description of timed dependent security protocols. In particu-

lar, we introduce in this framework the temporal features of THLPSL pre-

sented in the previous chapters. Moreover, we propose a more powerful threat

model, by allowing the intruder to affect some temporal feature of messages.

Notice, that to the best of our knowledge, this is the first temporal extension

of the Dolev-Yao intruder model in the literature.

The main result is that, under the assumption of a finite number of ses-

sions, adding temporal features to the protocols specifications and assuming

a timed intruder model do not change the complexity of the insecurity prob-

lem, which remains NP–Complete. This result justifies the experimental

results we obtained with THLPSL and UPPAAL.
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6.2 Modelling Timed Protocols

We extend the protocol model presented in [RT03] with temporal features.

Similarly to many other specification languages, the model specifies the ac-

tions of the protocols principals as a partially ordered list of steps, which

relate what a principal expects to receive and what the principal sends as a

reaction. We start by defining the structure of messages and terms involved

in principals communication.

Names and Message primitives

We have a finite set of atomic timed messages, Atoms . This set includes

also the set Names of principal names and the set Keys of atomic keys. The

elements of the set Atoms can be composed by means of three primitives:

• pairing: 〈 , 〉;

• symmetric, asymmetric encryption: { }sk { }
p
k.

Elements of Keys are used only for asymmetric encryption, while any element

of Atoms can be used as the key for symmetric encryption. Given a k ∈ Keys ,

with k−1 we denote its inverse key. We note also that there is no explicit

hashing operator, as it can be simulated using public key encryption.

Given a set of atoms Atoms , the set of structured messages over Atoms ,

denoted by Msg [Atoms ] is generated by the following grammar:

msg ::= Atoms | 〈msg,msg〉 | {msg}pKeys | {msg}
s
msg

Moreover, given a finite set of (message) variables, Var , the set of message

terms over Atoms , denoted by Term[Atoms ] ⊇ Msg [Atoms ], is given by the

following grammar:

trm ::= Atoms |Var | 〈trm, trm〉 | {trm}ptrm | {trm}strm

In other words, Msg [Atoms ] is the set of ground atoms in Term[Atoms ].
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Given a set of atoms Atoms , a variable substitution over Atoms , ρ :

Var → Term[Atoms ], is a function mapping variables to terms. A variable

substitution is called a ground substitution when it maps variables to mes-

sages (ground terms). We denote with tρ the application of the substitution

ρ to the term t and, for any set E of structured terms, Eρ denotes the set

{tρ | t ∈ E}.

Timed Signature

Actions of principals can be temporally constrained. To this purpose consider

a relative time model where each timed constraint on actions is relative to

the execution of some protocol step, a transition/event from now on. The

general form of a timing constraint is [c, C]label where c and C are numerical

constants (e.g., in Q≥0), and label is the label identifying a transition/event

within the protocol specification. Intuitively, this constraint holds between

the time interval bounded by c + t and C + t, where t is the time when

the transition/event labeled label has occurred. The label start is a special

label which denotes the initialization event of the protocol.

A timed signature can be associated to atomic messages (in Atoms), which

specifies the disclosure and the expiration time of the atom relative to a

transition/event. We use the decoration m[d, e]label to denote that message

m has disclosure time d and expiration time e, relative to the event label.

LabelsT denotes the set of all timed signatures.

A time labeling function ϕ : Atoms → LabelsT assigns a timed signature

to each element of Atoms .

When not otherwise stated, a timed message will have the timed signature

[0,∞]start, denoting a message that is always disclosed and never expires.

Disclosure and expiration times are properties of a message stated at creation

time by some principal and cannot be altered afterwords. Principals can,

however, always check for known messages disclosure or expiration.
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Protocol Specification

A protocol specification is a partially ordered set of send/receive actions

performed by the principals.

To each principal name A ∈ Names we associate a finite set of labels and

a set of protocol steps, indexed over a partially ordered set (WA, <WA
). Let

I = {(A, i) | A ∈ Names, i ∈ WA} be the set of labels. Formally, a protocol

specification Pϕ over I is a pair:

〈{(ι, Tι, Rι
[te,T e]label−→

[rd,Rd][sd,Sd]
Sι)}ι∈I , ϕ〉 , where:

• (ι, Tι, Rι
[te,T e]label−→

[rd,Rd][sd,Sd]
Sι)}ι∈I is a family of protocol transitions/events in-

dexed over I;

• ϕ is a time labeling function

A protocol step is specified by transitions/events of the form (ι, Tι, Rι
[te,T e]label−→

[rd,Rd][sd,Sd]
Sι),

where:

• ι is the label;

• Tι is a set of Boolean predicates of the formDSC(x), EXP (x), ¬DSC(x),

¬EXP (x), with x ∈ V ar ∪ Atoms . The conjunction of the predicates

in Tι specifies the expiration and disclosure constraint of the transition;

• Rι is a term in Term[Atoms ] ∪ {Init, ε} that will be received by the

principal. Init and ε are special terms used to denote the start up of

the protocol and the empty message, respectively;

• Sι is a term in Term[Atoms ]∪{End, ε} that will be sent by the princi-

pal. End and ε are special terms used to denote the end of the protocol

and the empty message, respectively;

• the decoration
[te,T e]label−→

[rd,Rd][sd,Sd]
of the transition specifies the constraints of

the protocol step:
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– [te, Te]label is the triggering condition. It requires that the transi-

tion takes place between time te and Te, counting from occurrence

of the event label ∈ I;

– [rd,Rd] is the receipt delay, which can be used to model delays

either due to the receive channel or to principal internal activities;

– similarly, [sd, Sd] is the send delay, and can be used to model

delays either due to the send channel or to principal internal ac-

tivities;

The Specification Of The Wide Mouthed Frog Protocol

As a specific example consider again the Wide Mouthed Frog presented in

section 3.2.

1 A→ S : A, {Ta, B,Kab}Kas

2 S → B : {Ts, A,Kab}Kbs

Below is a possible specification of the protocol, the principals names

are A for Alice, B for Bob, S1, S2 and S3 for three instances of the server

since the language does not allow the use of cycles or multiple instantiation

(both allowed in the THLPSL language). The protocol specification is the

following :

((A, 1), ∅, Init [0,∞]start−→
[0,0][0,0]

〈A, {Ta, B,Kab}sKas〉)

The first step of Alice is also the starting event of the protocol, as indicated by

Init. The timing condition of this step specifies an instantaneous transition

(both delays are [0, 0]) that is always enabled ([0,∞]start). Alice sends the

message 〈A, {Ta, B,Kab}sKas〉 containing the timestamp, the identity of the

intended recipient Bob and the key Kab.

Let us consider the three instances S1, S2 and S3 of the server. Each

instance performs two steps responsible for receiving the timestamp and the

key send by some principal and, after testing that the timestamp is not yet

expired, for sending the key with a new timestamp to the other principal.

The transitions are very similar to the ones of Alice. The transitions of S1
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are the following:

((S1, 1), ∅, 〈A, {s1, B, s2}sKas〉
[0,∞]start−→
[0,5][0,0]

ε)

((S1, 2), {¬EXP (s1)}, ε [0,∞]start−→
[0,0][0,0]

〈{Ts1, A, s2}sKbs〉)

The first one receives the message, supposedly from Alice, and does not sent

anything. The transition is always enabled and takes at most 5 time units

to complete. The second one checks for the non expiration of the timestamp

sent by the principals, and sends a message containing the key and a new

fresh timestamp. S3 performs the same kind of transitions, the difference

with S2 is that S2 expects to be communicating with Bob.

((S2, 1), ∅, 〈B, {s3, A, s4}sKbs〉
[0,∞]start−→
[0,5][0,0]

ε)

((S2, 2), {¬EXP (s3)}, ε [0,∞]start−→
[0,0][0,0]

〈{Ts2, B, s4}sKas〉)

((S3, 1), ∅, 〈A, {s5, B, s6}sKas〉
[0,∞]start−→
[0,5][0,0]

ε)

((S3, 2), {¬EXP (s5)}, ε [0,∞]start−→
[0,0][0,0]

〈{Ts3, A, s6}sKbs〉)

The steps performed by Bob are specified as follows:

((B, 1), ∅, 〈{b1, A, b2}sKbs〉
[0,∞]start−→
[0,5][0,0]

ε)

((B, 2),¬EXP (b1), EXP (b2), ε
[0,0](B,1)−→
[0,0][0,0]

Secret)

((B, 3),¬EXP (b1),¬EXP (b2), ε
[0,0](B,1)−→
[0,0][0,0]

End)

The first step of the principal B is the receive transition. The timestamps

b1 from the server and b2 from principal A are tested for expiration. Notice

that the language is mainly suited to express secrecy. In order to model

authentication as a secrecy property, we introduce the atom Secret, which

will be released if authentication fails. Therefore, the second and third tran-

sitions check for authentication based on validity of the timestamps. The

second transition tests if the timestamp b1 (the one originating from the
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server) is expired while timestamp b2 (originating from A) is not. If so, the

secret is revealed (sending the special message Secret), thereby leading to a

violation of the secrecy. Otherwise, transition three correctly ends the pro-

tocol by sending the message End. Note the timing of the three transitions:

the first one is always enabled and takes at most 5 time units to complete

(the time signature is [0, 5]) modeling a 5 unit delay due to the transmission

channel; the other two transitions are both instantaneous and must be taken

immediately after the first one.

The timed labeling function ϕ is defined as follow:

ϕ = {(Ta, [0, 5](A,1)), (Kab, [0, 11](A,1)), (Ts1, [0, 5](S1,2)),

(Ts2, [0, 5](S2,2)), (Ts3, [0, 5](S3,2))}

We assume the usual ordering of the label, i.e.: 1 ≤WB
2 ≤WB

3, 1 ≤WS1
2,

1 ≤WS2
2, 1 ≤WS3

2.

6.3 Intruder Model

In the Dolev-Yao model [DY83] the intruder has many degrees of freedom,

being able to eavesdrop, divert and memorize messages, compose and decom-

pose them, decrypt and encrypt messages with known keys, and generate new

messages. In the timed model we propose, the DY intruder is extended with

the ability to create, starting from a known timed atom, new timed atoms

whose timing is obtained by shifting in the future the disclosure and expi-

ration times of the original atom. This ability is enabled when the intruder

sends a message containing a timed atom.

Following the notation used in [RT03], the intruder can be specified by

means of a set of rewriting rules on sets of messages. A rule has of the form

L: l→ r, where l, r are sets of messages. A rule L: l→ r is applicable to the

set of messages E ∈ Msg [Atoms ], if l ⊆ E, and the result of the application

is the set E ′ = (E \ l)∪ r. This is denoted by E →L E
′. The rules modeling

a standard D-Y intruder are the following:

Composition Rules:
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• Lc(〈m1,m2〉) : m1,m2 → m1,m2, 〈m1,m2〉;

• Lc({m}pK) : m,K → m,K, {m}pK ;

• Lc({m1}sm2
) : m1,m2 → m1,m2, {m1}sm2

.

Decomposition Rules:

• Ld(〈m1,m2〉) : 〈m1,m2〉 → m1,m2, 〈m1,m2〉;

• Ld({m}pK) : {m}pK , K−1 → m,K−1, {m}pK ;

• Ld({m1}sm2
) : {m1}sm2

,m2 → m1,m2, {m1}sm2
.

To model the additional ability of the intruder to generate a fresh timed

atom new(a) starting from a known timed atom a, we introduce the following

rule:

• L(new(a)) : a→ a, new(a).

The atom new(a) is syntactically distinguishable from a and, as we shall

see in the semantics of protocol runs, the disclosure and expiration bounds

are induced by ϕ(a). The temporal difference between new(a) and a is the

transition/event with respect to which the disclosure and expiration times

are computed, which will correspond to the first transition/event receiving

it during a protocol run. We will write newi(a) to denote the atom obtained

by applying rule L(new(a)) to the atom newi−1(a), taking new0(a) = a.

A derivation is a sequence of rule applications E0 →L1 E1 →L2 . . . →Lk

Ek. We write E →∗ E ′ whenever there is a derivation starting from E

and leading to E ′. We say that a message m is forged from E, in symbols

m ∈ forge(E), if E →∗ E ′ and m ∈ E ′. Intuitively, forge(E) contains all

the messages that can be generated or deduced by the intruder from the set

E of known messages.

6.4 Protocol Executions and Attacks

In this section we give the semantics of the protocol specification language.

An environment for a protocol is a pair 〈E,N〉, where N is a finite set
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of timed atoms including Atoms , and E a set of messages contained in

Msg [N ], representing the set of messages sent over the communication chan-

nel. A correct execution order π for a protocol Pϕ is a one-to-one mapping

π : I → {1, 2, . . . , |I|} such that for each A ∈ Names if i <WA
j then

π((A, i)) < π((A, j)). Intuitively, π defines the execution order of the steps

of the protocol according to the partial ordering <WA
. A time sequence

τ : I × {r, s, c} → R≥0 is a mapping which defines the times at which a

particular protocol step takes place. Intuitively, τ(i, r) corresponds to the

time when the reception of a message at step i occurs, τ(i, s) to the time

when the message in step i is sent, and τ(i, c) to the completion time of step

i. To ensure monotonicity of the time sequence the following conditions must

be satisfied:

• for all i ∈ I, τ(i, r) ≤ τ(i, s) ≤ τ(i, c);

• for all i, j ∈ I, π(i) < π(j) implies τ(i, c) ≤ τ(j, r).

A protocol run Ξ for Pϕ is a tuple 〈π, ρ, τ, 〈〈E0, N0〉, 〈E1, N1〉, . . . , 〈Ev, Nv〉〉〉,
where v ≤| I |, π is a correct execution order, ρ is a ground substitution over

Nv and τ is a time sequence, and 〈〈E0, N0〉, . . . , 〈Ev, Nv〉〉 is a sequence of

environments, satisfying the following properties:

• Init ∈ E0, Atoms ⊆ N0 and Ni ⊆ Ni+1;

• for all 1 ≤ k ≤ v,Rπ−1(k)ρ ∈ Ek−1 and Sπ−1(k)ρ ∈ Ek;

• τ satisfies the following temporal constraints, according to the tempo-

ral decoration of the transitions/events and to the associated disclo-

sure/expiration guards:

1. for all 1 ≤ k ≤ v, if the π−1(k) transition is

(π−1(k), Tπ−1(k), Rπ−1(k)
[te,T e]label−→

[rd,Rd][sd,Sd]
Sπ−1(k))

, then:
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(a) te ≤ τ(π−1(k), r)− τ(label, c) ≤ Te: te and Te serve as delay

and timeout for the transition, which is enabled within the

time interval [te, Te] starting from the completion of transi-

tion/event named label;

(b) rd ≤ τ(π−1(k), s) − τ(π−1(k), r) ≤ Rd: rd and Rd serve as

bounds for the receiving channel delay;

(c) sd ≤ τ(π−1(k), s) − τ(π−1(k), c) ≤ Sd: sd and Sd serve as

bounds for the sending channel delay;

2. for all Boolean predicate ψ ∈ Tπ−1(k):

(a) if ψ has the formDSC(t) (respectively ¬DSC(t)) with ϕΞ
i (tρ) =

[d, e]label′ , then (τ(π−1(k), r) − τ(label′, s) ≥ d) (respectively,

(τ(π−1(k), r)− τ(label′, s) < d));

(b) if ψ has the form EXP (t) (respectively, ¬EXP (t)) with ϕΞ
i (tρ) =

[d, e]label′ , then (τ(π−1(k), r) − τ(label′, s) ≥ e), (respectively,

(τ(π−1(k), r)− τ(label′, s) < e)).

where the function ϕΞ
i is the extension of the timed labeling func-

tion ϕ to Msg [Ni] induced by Ξ at step i and is defined, for all

m ∈ Msg [Ni] as follows:

ϕΞ
0 (m) = ϕ(m) if m ∈ Atoms

ϕΞ
i (m) =


ϕΞ
i−1(m) if m ∈ Ni−1

[d, e]π−1(i) if m = new(b) ∈ Ni \Ni−1

and ϕΞ
i−1(b) = [d, e]label

[0,∞]start otherwise.

Notice that the disclosure/expiration times of messages in conditions

2.(a)-(b) are measured with respect to the sending time associated with

the transition/event specified in their time signature, and that to non

atomic (composed) messages the trivial time signature ([0,∞]start) is

associated.
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When a timed sequence τ satisfies conditions 1.(a)-(c) and 2.(a)-(b) we

say that τ is compatible w.r.t. π and ρ. A correct protocol execution is a

protocol run where End ∈ Ev;
Given a protocol Pϕ and a secret message Secret and assuming the in-

truder has initial knowledge S0 ⊆ Msg [Atoms ∪ {Charlie}], an attack is a

protocol run 〈π, ρ, τ, 〈〈E0, N0〉, 〈E1, N1〉, . . . , 〈Ek, Nk〉〉〉 such that:

• Sπ−1(i)ρ ∈ Ei+1, for any 1 ≤ i < k;

• Rπ−1(i)ρ ∈ forge(S0, Sπ−1(1)ρ, . . . , Sπ−1(i−1)ρ), for any 1 ≤ i ≤ k;

• Ni ⊇ Ni−1 ∪ {new(a) | new(a) ∈ Subterm(Rπ−1(i)ρ)};

• Secret ∈ forge(S0, Sπ−1(1)ρ, . . . , Sπ−1(k)ρ).

As an example, consider the specification of the WMF protocol given in

section 6.2. A possible protocol execution is 〈π, ρ, τ, 〈E0, N0〉, . . . , 〈E5, N5〉〉,
where:

• π = {((A, 1), 1), ((S1, 1), 2), ((S1, 2), 3), ((B, 1), 4), ((B, 2), 5)};

• ρ : {(b1, Ts1), (b2, Kab), (s1, Ta), (s2, Kab)};

• Ni = Atom for all i = 0, . . . , 5 and

– E0 = {Init, A,B};

– E1 = E2 = E0 ∪ {〈A, {Ta, B,Kab}sKas〉};

– E3 = E4 = E2 ∪ {〈{Ts1, A,Kab}sKbs〉};

– E5 = E4 ∪ {End};

• the function τ is reported in the left-hand side of Figure 6.1.

An example of attack to the protocol is 〈π, ρ, τ, 〈E0, N0〉, . . . , 〈E9, N9〉〉,
where:

• π = {((A, 1), 1), ((S1, 1), 2), ((S1, 2), 3), ((S2, 1), 4), ((S2, 2), 5), ((S3, 1), 6),

((S3, 2), 7), ((B, 1), 8), ((B, 2), 9)};
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label r s c
(A,1) 0 1 1
(S1,1) 1 1 2
(S1,2) 2 3 3
(B,1) 3 3 4
(B,3) 4 4 4

label r s c
(A,1) 0 1 1
(S1,1) 1 1 2
(S1,2) 2 2 2
(S2,1) 2 3 4
(S2,2) 4 5 5
(S3,1) 5 6 6
(S3,2) 7 8 8
(B,1) 8 9 10
(B,2) 11 11 11

Figure 6.1: The time sequences of a correct execution (left-hand side) and of
an attack (right-hand side).

• ρ = {(b1, Ts3), (b2, Kab), (s1, Ta), (s2, Kab), (s3, Ts1), (s4, Kab), (s5, Ts2), (s6, Kab)};

• Ni = Atom for all i = 0, . . . , 9 and

– E0 = {Init, A,B};

– E1 = E2 = E0 ∪ {〈A, {Ta, B,Kab}sKas〉};

– E3 = E4 = E2 ∪ {〈{Ts1, A,Kab}sKbs〉};

– E5 = E6 = E4 ∪ {〈{Ts2, A,Kab}sKbs〉};

– E7 = E8 = E6 ∪ {〈{Ts3, A,Kab}sKbs〉};

– E9 = E8 ∪ {Secret};

• the function τ is reported in the right-hand side of Figure 6.1.

Following [RT03], we show that for each attack there exists an equivalent

attack in a suitable normal form, whose size is polynomially bounded by the

size of the protocol specification. This is an essential property to assess the

decidability and complexity of the insecurity problem. In the rest of the

section we shall show that this property holds also in the timed extension

proposed in this thesis. We first introduce the notion of measure of attacks

as introduced in [RT03].

Let Charlie ∈ S0 be an atom known only to the intruder. The size of a

term t, denoted by | t |, is inductively defined as follows:
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• |Charlie |= 0;

• | t |= 1, if t is an atom;

• |〈x, y〉 |=|{x}y |= 1+ |x | + |y |.

The measure of an attack is given with respect to the size of the messages

received during the protocol execution. More formally, we denote the size of

an attack 〈π, ρ, τ, 〈〈E0, N0〉, 〈E1, N1〉, . . . , 〈Ek, Nk〉〉〉 by the multiset of natu-

ral numbers {|R1ρ |, . . . , |Rkρ |}. An ordering on multisets of naturals can

be defined as follows. The ordering relation � over multisets is the smallest

ordering such that X ∪ {s} � Y ∪ {t1, . . . , tn} if X = Y and s > ti for

all i = 1, . . . , n. For example, {3, 1, 1, 1} � {2, 2, 2, 1}. Given the ordering

relation �, we can define the notion of normal attack.

Definition 6.4.1 (Normal Attack) Given a protocol

P = {(ι, Tι, R′ι
[te,T e]label−→

[rd,Rd][sd,Sd]
S ′ι), ϕ}ι∈I

, an attack 〈π, ρ, τ, 〈〈E0, N0〉, 〈E1, N1〉, . . . , 〈Ek, Nk〉〉〉 is normal if the multi-

set {|R1ρ |, . . . , |Rkρ |} is minimal with respect to �, with Ri = R′π−1(i) and

Si = S ′π−1(i).

In the following, we assume the standard DAG representation of terms

(e.g., see [RT03]), and, for a term t we write | t |DAG to denote the size of the

graph representing t. Notice that the DAG representation of a term is unique,

and its size is linear in the number of distinct subterms. This allows for a

compact encoding of a protocol terms by merging possible repeated subterms,

preventing the exponential blowup in the representation of protocol runs.

Given an attack of length k, let P = {Ri|i = 1, . . . , k}∪{Si|i = 0, . . . , k},
with Ri = R′π−1(i) and Si = S ′π−1(i), denote the set of message terms involved

in the run. The same result on normal attacks proved in [RT03] can, then,

be proved to hold also in the timed setting.

Theorem 6.4.2 ([RT03]) If ρ is a ground substitution in a normal attack,

then for all x ∈ V ar, |xρ |DAG≤|P |DAG.
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The theorem above still holds in our setting since the structure of terms

introduced in this thesis is the same as the one given by [RT03]. The only no-

table difference is, indeed, the introduction of the terms of the form newj(a).

Since newj(a), for any j, is still an atom and, therefore, its size is 1, their

occurrence as subterms in an attack cannot affect its size. As a consequence,

the same proof reported in [RT03] can be trivially adapted to the present

case. In [RT03], Theorem 6.4.2 is enough to ensure that the space of normal

attacks to a protocol is finite. This does not necessarily hold if generation

of fresh atoms by the intruder is allowed (see rule L(new(a)) in the intruder

model definition). On the other hand, the following lemma can be proved.

Lemma 6.4.3 Let ρ be a ground substitution in an attack Ξ, such that the

atom newj(a) occurs as a subterm of Rπ−1(i)ρ for some i. If xρ 6= newj(a)

for all x ∈ V ar, then Ξ is not a normal attack.

Proof For the sake of space, we only report a sketch of the proof of Lemma 6.4.3.

The idea is that we can define a new ground substitution ρ′, by substituting

every occurrence of the atom newj(a) in ρ with the atom Charlie (in other

words, xρ′ = xρ[newj(a) ← Charlie], for all x ∈ V ar). A new attack Ξ′ is

then obtained from Ξ, by substituting ρ with ρ′. Ξ′ can be proved to be still

an attack. The reason is the following. First, every disclosure/expiration

guard in the new attack Ξ′ is still satisfied. This holds as no transition

guard can test the timing of the atom Charlie, since xρ 6= newj(a), for all

x ∈ V ar, and, therefore, newj(a) was never tested for disclosure or expiration

in Ξ. Second, the substitution of newj(a) with Charlie (recall that they are

both atoms) cannot prevent the derivation in Ξ′ of any term occurring in Ξ,

which does not contain newj(a) as subterm. The same holds of the derivation

of new atoms of the form newl(a), with l > j. Indeed, they can be derived

from a, and if a is derivable in Ξ, then so it is in Ξ′. Third, since no variable

is assigned to newj(a) by ρ and the substitution with Charlie is uniform,

Ξ′ satisfies that for all 1 ≤ j ≤ k,Rπ−1(j)ρ
′ ∈ Ej−1 and Sπ−1(j)ρ

′ ∈ Ej. The

new attack Ξ′ is clearly smaller than Ξ, since | Charlie |<| newj(a) | and,

therefore, {|R1ρ |, . . . , |Rkρ |} � {|R1ρ
′ |, . . . , |Rkρ

′ |}. Hence, Ξ cannot be a

normal attack.
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As a consequence of Lemma 6.4.3, the cardinality of the set of timed atoms

occurring in a normal attack of length v cannot be greater than the number

of atoms occurring in the protocol specification plus the number of variables.

In other words, in any normal attack Ξ, | Ni |≤ | V ar | + |Atom |, for any

i = 1, . . . , | v |. This allows us to state the following theorem.

Theorem 6.4.4 For every normal attack Ξ, there exists a normal attack Ξ′,

where no atom of the form newj(a), with j >| V ar |, occurs.

Since V ar, Atom and {newj(a) | a ∈ Atom, j ≤| V ar |} are all finite sets,

Theorems 6.4.2 and 6.4.4 ensure that when searching for attacks we can limit

ourselves to the finite space of normal attacks which contain a finite number

of new atoms smaller than the size | P |DAG of the protocol.

6.5 Complexity of the Timed Insecurity Prob-

lem

In this section we show that the problem of checking insecurity of a timed

protocol is an NP–Complete problem as in the untimed case. Following the

procedure in [RT03] for untimed protocols, to show that the insecurity prob-

lem belongs to NP we need to show that we can guess a run of the protocol,

namely a correct protocol execution order π of length | I |, a possibly empty

set of new timed atoms, and a ground substitution ρ, and check, in polyno-

mial time, that it is actually an attack as defined in section 6.4. The following

non-deterministic procedure will do the job:

1. Guess a correct execution order π : I → {1, . . . , v}. Let Ri = R′π−1(i)

and Si = S ′π−1(i) for i ∈ {1, . . . , v};

2. Guess a monotone sequence of sets N0 = Atoms ⊆ N1 ⊆ . . . ⊆ Nv ⊆
{newj(a) | a ∈ Atom, j ≤| V ar |};

3. Guess a ground substitution ρ : V ar → Msg [Nv], such that for all

x ∈ V, xρ has DAG-size ≤ n;
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4. For each i ∈ {1, . . . , v + 1} guess an ordered list li of n rules whose

principal terms have DAG-size ≤ n;

5. For each i ∈ {1, . . . , v} check that li applied to {Sjρ|j < i} ∪ {S0}
generates Riρ;

6. Check that lv+1 applied to {Sjρ|j < v + 1} ∪ {S0} generated Secret;

7. Check whether there exists a time sequence τ which is compatible w.r.t.

π and ρ.

If all these checks are successful, then answer YES, and the protocol is inse-

cure. Notice that, with the exception of steps 2. and 7., the other steps are

essentially the same as in the untimed case [RT03] and each can be checked

in polynomial time. Step 2. can easily be performed in polynomial time too.

In the rest of this section we shall show that step 7. can also be checked

in polynomial time. This will prove that the problem belongs to NP. NP–

Hardness results immediately from the fact the untimed security problem

can be easily encoded as a trivial timed insecurity problem.

The existence of a time sequence compatible w.r.t. π and ρ can be encoded

as a satisfiability problem of a conjunction of Difference Logic constraints.

We shall now show how to build a conjunction of DL constraints which

expresses the existence of a time sequence compatible w.r.t. π and ρ.

For each execution step i ∈ {1, ..., v}, we introduce three numerical vari-

ables Xπ−1(i),r,Xπ−1(i),s and Xπ−1(i),c, which represent the receive time, the

send time and the completion time of the transition labeled π−1(i), respec-

tively. Moreover, we need one more variable XStart,c to model the initializa-

tion time and assume that π−1(0) = Start.

We shall split the task of building the desired DL formula into five subfor-

mula schemata, each encoding one of the required properties of a compatible

time sequence.

First, we need to enforce the monotonicity conditions on a time sequence.

Given a label ι the first monotonicity condition is expressed by the formula:

ΦMon
ι = (Xι,r −Xι,s ≤ 0) ∧ (Xι,s −Xι,c ≤ 0)
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Given two labels ι, ι′, the second monotonicity condition, stating that the

event ι precedes event ι′, is expressed by the formula:

ΦPr
ι,ι′ = Xι,c −Xι′,r ≤ 0

Let us now consider the constraints on τ induced by the transition/event

temporal constraints (conditions 1.(a)–(c) in the definition of protocol run).

Given i, let π−1(i) = ι and Rι
[te,T e]ι′−→

[rd,Rd][sd,Sd]
Sι be the corresponding transition

in P . Then we build the formula:

ΦTr
ι =

 te ≤ Xι,r −Xι′,c ≤ Te ∧
rd ≤ Xι,s −Xι,r ≤ Rd ∧
sd ≤ Xι,c −Xι,s ≤ Sd


The DL formula ΦS

ι requires that the time decoration of the transition labeled

ι, namely the enabling condition with respect to label ι′ expressing the receive

delay and the send delay, are both satisfied.

Finally, for every transition/event ι we need to encode the disclosure and

expiration constraints in Tι (conditions 2.(a)–(b) in the definition of protocol

run). Let TDsc
+

ι = {tρ | DSC(t) ∈ Tι} and TDsc
−

ι = {tρ | ¬DSC(t) ∈ Tι}.
Then, the following DL formula

ΦDsc
ι =

∧
m ∈ TDsc+ι

φΞ
i (m) = [d, e]ι′

(d ≤ Xι,r −Xι′,s) ∧

∧
m ∈ TDsc−ι

φΞ
i (m) = [d, e]ι′

(Xι,r −Xι′,s < d)

requires that all the disclosure predicates for the timed atoms in the guard of

the transition labeled ι are satisfied. Similarly, let TExp
+

ι = {tρ | EXP (t) ∈
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Tι} and TExp
−

ι = {tρ | ¬EXP (t) ∈ Tι}. Then, the following DL formula

ΦExp
i =

∧
m ∈ TExp+ι

φΞ
i (m) = [d, e]ι′

(e ≤ Xι,r −Xι′,s) ∧

∧
m ∈ TExp−ι

φΞ
i (m) = [d, e]ι′

(Xι,r −Xι′,s < e)

requires that all the expiration predicates for the timed atoms in the guard

of the transition labeled ι are satisfied.

Finally, we build the formula:

ΦΞ =
∧

1≤i≤v

 ΦS
π−1(i) ∧ ΦDisc

π−1(i) ∧ ΦExp
π−1(i)∧

ΦMon
π−1(i) ∧ ΦPr

π−1(i−1),π−1(i)


It is immediate to see that satisfiability of ΦΞ ensures the existence of a time

sequence τ which is compatible with the execution of an attack. Notice also

that formula ΦΞ is a conjunction of difference constraints and its length is

clearly linear in the size of the protocol. Thus, checking the existence of a

compatible time sequence can be solved in polynomial time.
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Chapter 7

Conclusions and Perspectives

In this thesis we contributed to the research area of security protocols analysis

on the following two points:

Verification Framework for Timed Security Protocols

This work has revisited, and further extended the protocol specification lan-

guage High Level Specification Language (HLPSL) with Timed High Level

Specification Language (THLPSL), a timed extension, which explicitly al-

lows to model temporal features of time sensitive protocols. The semantics

of THLPSL was given in terms of Extended Timed Automata (XTA), the

input language of well known model checker UPPAAL. This allowed us to de-

velop an prototype verification tool, Timed Protocol Model Checker (TPMC)

where a THLPSL specification is first translated into XTA and then is given

in input to UPPAAL, together with a property encoding the security goal,

for verification. The environment permit the explicit modelling of temporal

features of protocols while remaining sufficiently high level to be used by

protocol designers and engineers. We presented a number of optimisations

that allowed to keep the size of the resulting XTA as small as possible, in

particular to reduce the number of clocks and the number of locations of

the intruder automaton, increasing the scalability of our approach and al-

lowing the verification on a number of timed and untimed security protocols,

showing encouraging performances.
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Theoretical Complexity Results for the Timed Protocol Security

Problem

Driven by the results obtained by the implementation of the TPMC check-

ing framework for timed security protocol we investigated the complexity

aspects of their insecurity problem. Using a specification language similar to

the one used by Rusinowitch and Turuani [RT03] and an extended Dolev-

Yao intruder model, we have shown that the insecurity problem for timed

security protocols with a finite number of sessions is NP-Complete. The re-

sult shows that we can add time to protocol specification and verify security

at no additional computational cost. The verification procedure proposed

suggests that state-of- the-art tools developed for untimed protocols, can

easily be extended to cope with the temporal dimension. Indeed, the test

for compatibility can be performed, e.g. using a decision procedure for DL,

independently from the secrecy tests.

7.1 Future Development

Needless to say, there is a lot of room for improvement in the design and

implementation of the verification framework. At the current stage, the envi-

ronment still suffers from some limitations both on the specification language

side and on the verification engine side. In particular, the kind of security

goals which can be tested are limited to secrecy and authentication only,

while it would be useful, in the context of timed protocols, to allow for time

dependent security properties, such as properties which must be satisfied

within some time bounds. Moreover would be interesting researching new

kind of intruders/channels models, such as models where its possible for the

intruder to alter time for some parts of the protocols. (e.g.: timestamps). As

to the verification engine, the current tool builds on top of a model checker

for Timed Automata, which, in order to ensure termination, does not allow

for parametrised temporal constrains. This limits the possibility to specify

and verify protocols where participants can negotiate temporal constants to

rule the evolution of the protocol itself. To cope with these limitation, we are
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currently investigating further extensions of the environment such as defining

suitable extensions of THLPSL to express time sensitive security goals and

parametric temporal constraints, and integrating analysis techniques based,

e.g., on constraint based decision procedure to overcome the limitations of

our current verification engine. Also, in the light of the complexity results

presented, a more radical move from the Timed Automata framework to a

SAT Modulo Theory/Difference Logic model checking engine could increase

the scalability of the tool allowing for partial order reduction like techniques.

In the formal front future work could include the investigation of the

impact on complexity of strengthening the abilities of the intruder to alter

the time signature of messages. Moreover the current result is limited to

secrecy (and authentication) problem. It would be interesting to investigate

the complexity of checking timed dependent properties (e.g.: fairness).
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