
DOTTORATO DI RICERCA
in

SCIENZE COMPUTAZIONALI ED INFORMATICHE
Ciclo XXIII

Consorzio tra Università di Catania, Università di Napoli Federico II,
Seconda Università di Napoli, Università di Palermo, Università di Salerno

SEDE AMMINISTRATIVA: UNIVERSITÀ DI NAPOLI FEDERICO II

Fabio Mogavero

Logics in Computer Science

TESI DI DOTTORATO DI RICERCA

                                                                              IL 
    COORDINATORE

  Prof. Luigi M. Ricciardi



LOGICS IN COMPUTER SCIENCE

Fabio Mogavero

Universitá degli Studi di Napoli “Federico II”

Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”

A thesis submitted in fulfilment of the degree of

Doctor in Computer Science

Napoli, November 30, 2010



© Copyright 2010

by

Fabio Mogavero

Supervisor: Prof. Ph.D. Aniello Murano



Abstract

In this thesis, we introduce and examine four new temporal logic formalisms that can be used

as specification languages for the automated verification of the reliability of hardware and software

designs with respect to a desired behavior.

The work is organized in two parts. In the first one, we reason about two logics for computations,

GCTL* and MCTL*, which are useful to describe a correct execution of monolithic closed systems.

In the second one, instead, we focus on two logics for strategies, SL and mATL*, which are useful

to formalize several interesting properties about interactive plays in multi-entities systems modeled

as multi-agent games.

In the “Logics for Computations” part, we first study the immersion of the idea of graded

quantifications into the temporal-logic framework. In first order logic, existential and universal

quantifiers express the concepts of the existence of at least one individual object satisfying a

formula, or that all individual objects satisfy a formula. In other logics, these quantifiers have

been generalized to express that, for a given non-negative integer n, at least n or all but n
individuals satisfy a particular formula. Here, we consider GCTL, a temporal logic with graded

path quantifiers, which allows to describe properties like “there exist at least n different classes

of computational fluxes in which a system reaches a predetermined state”, where the classes

over paths are computed by means of a predetermined equivalence relation. More precisely, we

uniformly extend the classic concept of graded quantifiers from states to paths, through the use of

a concept of path equivalence with respect to a given path formula. About this logic, in particular,

we study the expressiveness and succinctness relationships with respect to GµCALCULUS and the

complexity of the satisfiability problem, which results to be EXPTIME-COMPLETE. This research is

partially based on the works [BMM09] “Graded Computation Tree Logic” and [BMM10] “Graded

Computation Tree Logic with Binary Coding” published, respectively, in the proceedings of the

“IEEE Symposium on Logic in Computer Science, 2009” and “EACSL Annual Conference on

Computer Science Logic, 2010”. Preliminary results can be also found in [Mog07].

Furthermore, we consider special quantifiers over substructures, which allow to select, using

parametric criteria, small critical parts of a system to be successively verified. In literature, there

are some attempts to define a logic that allows to modify the underlying structure under exam and

then to verify on it some assigned property. However, as far as we know, none of them is able

to select minimal submodels of a given property describing the criteria on which then execute

the verification process. Here, we base our work on the search of a new operator that merges the

concept of quantifiers on structures with that one derived by a generalization of the concept of

pruning. The results of this work, is a class of three different extensions of CTL* with minimal

model quantifiers, which we name MCTL*. Regarding these logics, we study several reductions

among them, as well as the satisfiability problem that we prove to be highly undecidability, i.e.,

Σ1
1-HARD, for two out of the three cases. This research is partially based on the work [MM09]

“Branching-Time Temporal Logics with Minimal Model Quantifiers” published in the proceedings



of the “International Conference on Developments in Language Theory, 2009”.

In the “Logics for Strategies” part, we first study the problem of defining a new specification

language through which it is possible to express several important properties of multi-entities

systems that are neither expressible using classical monolithic temporal logics, such as CTL*, nor

using two-agent-teams temporal logics, such as ATL*. In literature, we can found some proposal

of logics that try to achieve this goal, but unfortunately, none of them succeeds completely on

all the aspects. Among them, one of the most important attempts is CHP-SL, a logics in which

one can use variables over strategies. However, this logic has a deep weakness, since it does not

allow to describe games with more than two players and even two-players concurrent games. Here,

we introduce SL, a logic with a syntax similar in some aspects to the first order logic, in which

the strategies of the agent building the game are treated as first order objects on which we can

quantify. This logic generalizes CHP-SL, by allowing the specification of the correct behavior

of multi-agent concurrent games. In SL, for example, we are able to express very complex but

useful Nash equilibria that are not expressible with CHP-SL. We enlighten that Nash equilibrium

is one of the most important concepts in game theory. For the introduced logic, we solve two

problems left open in the work on CHP-SL. Precisely, we show that the related model-checking

problem is 2EXPTIME-COMPLETE, thus not harder of the same problem for several subsumed

logics, while we prove that its satisfiability problem is highly undecidable, i.e., Σ1
1-HARD. This

research is partially based on the work [MMV10a] “Reasoning About Strategies” published in

the proceedings of the “IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, 2010”.

Finally, we consider the concept of relentful strategic reasoning, i.e., a formalism that expresses

the ability of a strategy to be used not only to achieve a first given goal, but also to change its final

goal in dependence of the history of the play. In the context of planning, memoryful quantification,

i.e., quantification over computations that does not lose information about the past along the time,

is one of the principal way to express the fact that a system is able to achieve a desired result,

and shift to a different goal if some event happens. However, this kind of quantification was not

considered before in the context of multi-agent planning. Here, we introduce mATL*, a fusion

of the classic alternating temporal logic ATL* with memoryful quantification, with the aim of

covering the previous idea. About this logics, we prove that, although it is equivalent to ATL*,

it is exponentially more succinct. Nevertheless, we prove that both the model-checking and the

satisfiability problems remain 2EXPTIME-COMPLETE, as for ATL*. This research is partially

based on the work [MMV10b] “Relentful Strategic Reasoning in Alternating-Time Temporal Logic”

published in the proceedings of the “International Conference on Logic for Programming Artificial

Intelligence and Reasoning, 2010”.



“Thought is only a flash between two long nights, but this flash is everything.”

Henri Poincare

to Antonella,

my gentle love

to my parents and grandparents



Contents

Mathematical Notation viii

I Logics for Computations 1

1 Graded Computation Tree Logic 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Graded Computation Tree Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Path Equivalence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Elementary requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Temporal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Boolean requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.4 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Prefix Path Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 GCTL vs GµCALCULUS relationships . . . . . . . . . . . . . . . . . . 33

1.6 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.1 Classic automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.2 Automata with satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 GCTL Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7.1 Binary tree model encoding . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7.2 The coherence structure satellites . . . . . . . . . . . . . . . . . . . . . 41

1.8 GCTL Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Minimal Model Quantifiers 54

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Computation Tree Logics with Minimal Model Quantifiers . . . . . . . . . . . . 57

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Expressiveness and Succinctness . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



CONTENTS

II Logics for Strategies 68

3 Reasoning About Strategies 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Strategy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Positive properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Negative properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Strategy Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Relentful Strategic Reasoning 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Memoryful Alternating-Time Temporal Logic . . . . . . . . . . . . . . . . . . . 104

4.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Expressiveness and Succinctness . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Classic automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2 Automata with satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.1 From path formulas to satellite . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.2 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vii



Mathematical Notation

In this short preliminary chapter, we introduce the classical mathematical notation and some

basic definitions that are used along the whole thesis.

Classic objects. Given two sets X and Y of objects, we denote by |X| the cardinality of X,

i.e., the number of its elements, by 2X the powerset of X, i.e., the set of all its subsets, and

by YX ⊆ 2X×Y the set of total functions f from the domain dom(f) , X to the codomain

cod(f) , Y. In addition, with rng(f) , {f(x) : x ∈ X} ⊆ cod(f) we indicate the range of f,

i.e., the set of values actually assumed by f. Often, we write f : X → Y and f : X ⇀ Y to

indicate, respectively, f ∈ YX and f ∈ ⋃
X′⊆X YX′

. Regarding the latter, note that we consider

f as a partial function from X to Y, where dom(f) ⊆ X contains all and only the elements

for which f is defined. Given a set Z, by f↾Z , f ∩ (Z × Y) we denote the restriction of f to

the set X ∩ Z, i.e., the function f↾Z : X ∩ Z ⇀ Y such that, for all x ∈ dom(f) ∩ Z, it holds

that f↾Z(x) = f(x). Moreover, with ∅ we indicate a generic empty function, i.e., a function

with empty domain. Note that X ∩ Z = ∅ implies f↾Z = ∅. In addition, by f[x 7→ y], with

x ∈ X and y ∈ Y, we denote the new function defined on dom(f[x 7→ y]) , dom(f) ∪ {x}
such that f[x 7→ y](x) , y and f[x 7→ y]↾(dom(f)\{x}) , f↾(dom(f)\{x}). For two partial functions

f, g : X ⇀ Y, we use f ⋒ g and f ⋓ g to indicate, respectively, the union and intersection of

the functions defined as follows: dom(f ⋒ g) , dom(f) ∪ dom(g) \ {x ∈ dom(f) ∩ dom(g)
: f(x) 6= g(x)}, (f ⋒ g)(x) = f(x) for x ∈ dom(f ⋒ g) ∩ dom(f), (f ⋒ g)(x) = g(x) for

x ∈ dom(f ⋒ g) ∩ dom(g), dom(f ⋓ g) , {x ∈ dom(f) ∩ dom(g) : f(x) = g(x)}, and

(f ⋓ g)(x) = f(x) for x ∈ dom(f ⋓ g). Finally, by f ◦ g with f : X ⇀ Y and g : Y ⇀ Z we denote

the composition of f and g, i.e., the function f ◦ g : X ⇀ Z such that dom(f ◦ g) , {x ∈ dom(f) :
f(x) ∈ dom(g)} and (f ◦ g)(x) = g(f(x)), for all x ∈ dom(f ◦ g).

As special sets, we consider N as the set of natural numbers and [m,n] , {k ∈ N : m ≤ k ≤
n}, [m,n[ , {k ∈ N : m ≤ k < n}, ]m,n] , {k ∈ N : m < k ≤ n}, and ]m,n[ , {k ∈ N :
m < k < n} as its interval subsets, with m ∈ N and n ∈ N̂ , N∪ {ω}, where ω is the numerable

infinity, i.e., the least infinite ordinal.

By Rn with n ∈ N we denote the n-iteration of the relation R ⊆ X × Y on the two sets X
and Y with Y ⊆ X, where R0 , {(y, y) : y ∈ Y} is the identity on Y. With R+ ,

⋃<ω
n=1 Rn

and R∗ , R+ ∪ R0 we indicate, respectively, the transitive and reflexive-transitive closure of R.

Finally, let R ⊆ X × X be an equivalence relation on X. Then, by (X/R) we denote the quotient

set of X w.r.t. R, i.e., the set of all the relative equivalence classes.

Words. By Xn with n ∈ N we denote the set of all n-tuples of elements from X, by X∗ ,⋃<ω
n=0 Xn the set of finite words on the alphabet X, by X+ , X∗ \ {ε} the set of non-empty words,

and by Xω the set of infinite words, where, as usual, ε ∈ X∗ is the empty word. Moreover, |x| ∈ N̂
indicates the length of a word x ∈ X∞ , X∗ ∪ Xω. By (x)i we denote the i-th letter of the finite

word x, with i ∈ [0, |x|[ . Furthermore, by fst(x) , (x)0 (resp., lst(x) , (x)|x|−1), we indicate the

first (resp., last) letter of x. In addition, by x≤i (resp., x>i), we denote the prefix up to (resp., suffix

after) the letter of index i of x, i.e., the finite word built by the first i+ 1 (resp., last |x| − i− 1)

viii



Mathematical Notation

letters (x)0, . . . , (x)i (resp., (x)i+1, . . . , (x)|x|−1). We also set, x<i , x≤i−1 and x≥i , x>i−1,

for i ∈ [1, |x|[ . Mutatis mutandis, the notations of i-th letter, first, prefix, and suffix apply to

infinite words too. Finally, by pfx(x1, x2) we indicate the maximal common prefix of two different

words x1, x2 ∈ X∞, i.e. the finite word x ∈ X∗ for which there are two words x′1, x
′
2 ∈ X∞ such

that x1 = x · x′1, x2 = x · x′2, and fst(x′1) 6= fst(x′2).

Trees. For a set ∆ of objects, called directions, a ∆-tree is a set T ⊆ ∆∗ closed under prefix,

i.e., if t · d ∈ T, with d ∈ ∆, then also t ∈ T, and we say that it is complete iff it also holds

that t · d′ ∈ T, for all d′ < d, where < ⊆ ∆ × ∆ is a fixed strict total order on the directions

that is clear from the context. The elements of T are called nodes and the empty word ε is the

root of T. For every t ∈ T and d ∈ ∆, the node t · d ∈ T is a successor of t in T. T is full iff

T = ∆∗. Moreover, it is b-bounded iff the maximal number b of its node successors is finite, i.e.,

b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ∞. A branch of a tree T is a subset T′ ⊆ T closed under

prefix such that, for each t ∈ T′, there exists at most one successor t · d ∈ T′. For a finite set Σ of

objects, called symbols, a Σ-labeled ∆-tree is a pair 〈T, v〉, where T is a ∆-tree and v : T → Σ is

a labeling function. When ∆ and Σ are clear from the context, we call 〈T, v〉 simply a (labeled)

tree.

ix



Part I

Logics for Computations

1



General Preliminaries I

In this section, we introduce some more preliminary definitions and further notation used in

the first part of the thesis.

Kripke structures. A Kripke structure (KS, for short) is a tuple K , 〈AP,W,R, L, w0〉, where

AP is a finite non-empty set of atomic propositions, W is an enumerable non-empty set of worlds,

w0 ∈ W is a designated initial world, R ⊆ W × W is a transition relation, and L : W → 2AP is a

labeling function that maps each world to the set of atomic propositions true in that world. A KS

is said total iff it has a total transition relation R, i.e., for all w ∈ W, there is w′ ∈ W such that

(w,w′) ∈ R. By ‖K‖ , |R| ≤ |W|2 we denote the size of K, which also corresponds to the size

of the transition relation. A finite KS is a structure of finite size.

Tracks and paths. A track in K is a finite sequence of worlds ρ ∈ W∗ such that, for all i ∈ [0,
|ρ|[ , it holds that ((ρ)i, (ρ)i+1) ∈ R. Furthermore, a path in K is a finite or infinite sequence of

worlds π ∈ W∞ such that, for all i ∈ [0, |π|[ , it holds that ((π)i, (π)i+1) ∈ R and if |π| <∞ then

there is no world w ∈ W such that (lst(π), w) ∈ R, i.e., it is maximal. Intuitively, tracks and paths

of a KS K are legal sequences of reachable worlds in K that can be seen as a partial or complete

description of the possible computations of the system modeled by K. A track ρ is said non-trivial

iff |ρ| > 0, i.e., ρ 6= ε. We use Trk(K) ⊆ W+ and Pth(K) ⊆ W∞ to indicate, respectively,

the sets of all non-trivial tracks and paths of the KS K. Moreover, by Trk(K, w) ⊆ Trk(K) and

Pth(K, w) ⊆ Pth(K) we denote the subsets of tracks and paths starting at the world w.

Bisimulation. Let K1 = 〈AP,W1,R1, L1, w01〉 and K2 = 〈AP,W2,R2, L2, w02〉 be two KSs.

Then, K1 and K2 are bisimilar iff there is a relation ∼ ⊆ W1 × W2 between worlds, called

bisimulation relation, such that w01∼ w02 and if w1∼ w2 then (i) L1(w1) = L2(w2), (ii) for all

v1 ∈ W1 such that (w1, v1) ∈ R1, there is v2 ∈ W2 such that (w2, v2) ∈ R2 and v1∼ v2, and (iii)

for all v2 ∈ W2 such that (w2, v2) ∈ R2, there is v1 ∈ W1 such that (w1, v1) ∈ R1 and v1∼ v2.

Kripke trees. A Kripke tree (KT, for short) is a KS T = 〈AP,W,R, L, ε〉, where (i) W ⊆ ∆∗

is a ∆-tree for a given set ∆ of directions and (ii), for all t ∈ W and d ∈ ∆, it holds that t · d ∈ W
iff (t, t · d) ∈ R.

Unwinding. Let K = 〈AP,W,R, L, w0〉 be a KS. Then, the unwinding of K is the KT KU ,

〈AP,W′,R′, L′, ε〉, where (i) W is the set of directions, (ii) the states in W′ , {ρ ∈ W∗ : w0 · ρ ∈
Trk(K)} are the suffixes of the tracks starting in w0, (iii) (ρ, ρ · w) ∈ R′ iff (lst(w0 · ρ), w) ∈ R,

and (iv) there is a surjective function unw : W′ → W, called unwinding function, such that (iv.i)

unw(ρ) , lst(w0 · ρ) and (iv.ii) L′(ρ) , L(unw(ρ)), for all ρ ∈ W′ and w ∈ W. It is easy to note

that a KS is always bisimilar to its unwinding, since the unwinding function is a particular relation

of bisimulation.

2



1
Graded Computation Tree Logic

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Graded Computation Tree Logics . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Path Equivalence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Elementary requirements . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Temporal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Boolean requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.4 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Prefix Path Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 GCTL vs GµCALCULUS relationships . . . . . . . . . . . . . . . . . 33

1.6 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.1 Classic automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.2 Automata with satellite . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 GCTL Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7.1 Binary tree model encoding . . . . . . . . . . . . . . . . . . . . . . . 39

1.7.2 The coherence structure satellites . . . . . . . . . . . . . . . . . . . . 41

1.8 GCTL Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



1. Graded Computation Tree Logic 1.1 - Introduction

Abstract

In modal logics, graded (world) modalities have been deeply investigated as a useful framework

for generalizing standard existential and universal modalities in such a way that they can express

statements about a given number of immediately accessible worlds. These modalities have been

recently investigated with respect to the µCALCULUS, which have provided succinctness, without

affecting the satisfiability of the extended logic, i.e., it remains solvable in EXPTIME. A natural

question that arises is how logics that allow reasoning about paths could be affected by considering

graded path modalities. In this paper, we investigate this question in the case of the branching-time

temporal logic CTL (GCTL, for short). We prove that, although GCTL is more expressive than

CTL, the satisfiability problem for GCTL remains solvable in EXPTIME, even in the case that the

graded numbers are coded in binary. This result is obtained by exploiting an automata-theoretic

approach, which involves a model of alternating automata with satellites. The satisfiability result

turns out to be even more interesting as we show that GCTL is at least exponentially more succinct

than GµCALCULUS.

1.1 Introduction

Temporal logics are a special kind of modal logics that provide a formal framework for qualita-

tively describing and reasoning about how the truth values of assertions change over time. First

pointed out by Pnueli in 1977 [Pnu77], these logics turn out to be particularly suitable for reasoning

about correctness of concurrent programs [Pnu81].

Depending on the view of the underlying nature of time, two types of temporal logics are mainly

considered [Lam80]. In linear-time temporal logics, such as LTL [Pnu77], time is treated as if

each moment in time has a unique possible future. Conversely, in branching-time temporal logics,

such as CTL [CE81] and CTL* [EH86], each moment in time may split into various possible

futures and existential and universal quantifiers are used to express properties along one or all the

possible futures. In modal logics, such as ALC [SSS91] and µCALCULUS [Koz83], these kinds of

quantifiers have been generalized by means of graded (worlds) modalities [Fin72, Tob01], which

allow to express properties such as “there exist at least n accessible worlds satisfying a certain

formula” or “all but n accessible worlds satisfy a certain formula”. For example, in a multitasking

scheduling specification, we can express properties such as every time a computation is invoked,

immediately next there are at least two spaces available for the allocation of two tasks that take

care of the computation, without expressing exactly which spaces they are. This generalization has

been proved to be very powerful as it allows to express system specifications in a very succinct

way. In some cases, the extension makes the logic much more complex. An example is the guarded

fragment of the first order logic, which becomes undecidable when extended with a very weak form

of counting quantifiers [Grä99]. In some other cases, one can extend a logic with very strong forms

of counting quantifiers without increasing the computational complexity of the obtained logic. For

example, this is the case for µALCQ (see [BCM+03] for a recent handbook) and GµCALCULUS

[KSV02, BLMV08], for which the decidability problem is EXPTIME-COMPLETE.

Despite its high expressive power, the µCALCULUS is considered in some sense a low-level

logic, making it an “unfriendly” logic for users, whereas simpler logics, such as CTL, can naturally

4



1. Graded Computation Tree Logic 1.1 - Introduction

express complex properties of computation trees. Therefore, an interesting and natural question

that arises is how the extension of CTL with graded modalities can affect its expressiveness and

decidability. There is a technical challenge involved in such an extension, which makes this task

non-trivial. In the µCALCULUS, and other modal logics studied in the graded context so far,

the existential and universal quantifiers range over the set of successors, thus it is easy to count

the domain and its elements. In CTL, on the other hand, the underlying objects are both states

and paths. Thus, the concept of graded must relapse on both of them. We solve this problem

by introducing graded path modalities that extend to classes of paths the generalization induced

to successor worlds by classical graded modalities, i.e., they allow to express properties such

as “there are at least n classes of paths satisfying a formula”. We call the logic CTL extended

with graded path modalities GCTL, for short. A point that requires few considerations here is

how we count paths along the model. We address this question by embedding in our framework

a generic equivalence relation on the set of paths, but satisfying specific consistency properties.

Therefore, the decisional algorithms we propose are very general and can be applied to different

definitions of GCTL, along with different ways to identify different paths. Along this line, one

can observe that a state in a model can have only one direct successor, but possibly different

paths going through it. This must be taken into account while satisfying a given graded path

property. To deal this difficulty, we introduce a combinatorial tool which applies to a wide class of

interesting equivalences: the partitioning of a natural number k, that is, we consider all possible

decompositions of k into summands (i.e., 3 = 3 + 0 = 2 + 1 = 1 + 1 + 1). This is used to

distribute k different paths emerging from a state onto all its direct successors. Note that, while

CTL linearly translates to µCALCULUS, the above complication makes the translation of GCTL

to GµCALCULUS not easy at all. Indeed, we show such a translation with an double-exponential

blow-up, by taking into account the above path partitioning.

As a special equivalence class over paths, we consider that one induced by the minimality and

conservativeness requirements along the paths. The minimality property allows to decide GCTL

formulas on a restricted but significant space domain, i.e., the set of paths of interest, in a very

natural way. In more detail, it is enough to consider only the part of a system behavior that is

effectively responsible for the satisfiability of a given formula, whenever each of its extensions

satisfies the formula as well. So, we only take into account a set of non-comparable paths satis-

fying the same property using in practice a particular equivalence relation on the set of all paths.

Moreover, if we drop the minimality, it may happen that to discuss the existence of a path in a

structure does not have sense anymore, where the existence of a non-minimal path satisfying a

formula may induce also the existence of an infinite number of paths satisfying it.

The ability of GCTL to reason about numbers of paths turns out to be suitable in several con-

texts. For example, it can be useful to query XML documents [ABL07, LS08]. These documents,

indeed, can be viewed as labeled unranked trees [BL05] and GCTL allows reasoning about a

number of links among tags of descendant nodes, without naming any of the intermediate ones, in a

very succinct way. We also note that our framework of graded path quantifiers has some similarity

with the concept of cyclomatic complexity, as it was defined by McCabe in a seminal work in

software engineering [McC76]. McCabe studied a way to measure the complexity of a program,

identifying it in the number of independent instruction flows. From an intuitive point of view,

since graded path quantifiers allow to specify how many classes of computational paths satisfying

5



1. Graded Computation Tree Logic 1.1 - Introduction

a given property reside in a program, GCTL subsumes the cyclomatic complexity, where the

independence concept can be embedded into an apposite equivalence class. As another and more

practical example of an application of GCTL, consider again the above multitasking scheduling,

where we may want to check that every time a non-elementary (i.e., non one-step) computation is

required, then there are at least n distinct (i.e., non completely equivalent) computational flows

that can be executed. This property can be easily expressed in GCTL. There are also other several

practical examples that show the usefulness of GCTL and we refer to [FNP08, FNP09] for a list

of them.

The introduced framework of graded path modalities turns out to be very efficient in terms

of expressiveness and complexity. Indeed, we prove that GCTL is more expressive than CTL,

it retains the tree and the finite model properties, and its satisfiability problem is solvable in

EXPTIME, therefore not harder than that for CTL [EH85]. This, along with the fact that GCTL is

at least exponentially more succinct than GµCALCULUS, makes GCTL even more appealing. The

upper bound for the satisfiability complexity result is obtained by exploiting an automata-theoretic

approach [KVW00]. To develop a decision procedure for a logic with the tree model property, one

first develops an appropriate notion of tree automata and studies their emptiness problem. Then,

the satisfiability problem for the logic is reduced to the emptiness problem of the automata.

In [BMM09], we have first addressed the specific case of GCTL where numbers are coded

in unary. In particular, it has first shown that unary GCTL indeed has the tree model property,

by showing that any formula ϕ is satisfiable on a Kripke structure iff it has a tree model whose

branching degree is polynomial in the size of ϕ. Then, a corresponding tree automaton model

named partitioning alternating Büchi tree automata (PABT) has been introduced and shown that,

for each unary GCTL formula ϕ, it is always possible to build in linear time a PABT accepting

all tree models of ϕ. Then, by using a nontrivial extension of the Miyano and Hayashi technique

[MH84] it has been shown an exponential translation of a PABT into a non-deterministic Büchi

tree automata (NBT). Since the emptiness problem for NBT is solvable in polynomial time (in the

size of the transition function that is polynomial in the number of states and exponential in the

width of the tree in input) [VW86b], we obtain that the satisfiability problem for unary GCTL is

solvable in EXPTIME.

A detailed analysis on the above technique shows two points where it fails to give a single

exponential-time algorithm when applied to binary GCTL. First, the tree model property shows

for binary GCTL the necessity to consider also tree models with a branching degree exponential in

the highest degree of the formula. Second, the number of states of the NBT derived from the PABT

is double-exponential in the coding of the highest degree g of the formula. These two points reflect

directly in the transition relation of the NBT, which turns to be double exponential in the coding

of the degree g. To take care of the first point, we develop a sharp binary encoding of each tree

model. In practice, for a given model T of ϕ we build a binary encoding TD of T , called delayed

generation tree, such that, for each node x in T having m+ 1 children x · 0, . . . , x ·m, there is

a corresponding node y of x in TD and nodes y · 0i having x · i as right child and y · 0(i+1) as

left child, for 0 ≤ i ≤ m. To address the second point, we exploit a careful construction of the

alternating automaton accepting all models of the formula, in a way that the graded numbers do

not give any exponential blow-up in the translating of the automaton into an NBT.

We now describe the main idea behind the automata construction. Basically, we use alternating

6



1. Graded Computation Tree Logic 1.1 - Introduction

tree automata enriched with satellites (ATAS) as an extension of that introduced in [KV06]. In

particular, we use the Büchi acceptance condition (ABTS). The satellite is a nondeterministic

tree automaton and is used to ensure that the tree model satisfies some structural properties along

its paths and it is kept apart from the main automaton. This separation, as it has been proved in

[KV06], allows to solve the emptiness problem for Büchi automata in a time exponential in the

number of states of the main automaton and polynomial in the number of states of the satellite.

Then, we obtain the desired complexity by forcing the satellite to take care of the graded modalities

and by noting that the main automaton is polynomial in the size of the formula.

The achieved result is even more appealing as we also show here that binary GCTL is much

more succinct than GµCALCULUS. In particular, the best known translation from GCTL to

GµCALCULUS is double-exponential in the degree of the formula [BMM10].

Related works Graded modalities along with CTL have been also studied in [FNP08, FNP09],

but under a different semantics. There, the authors consider overlapping paths (as we do) as well

as disjoint paths, but they do not consider neither the general framework of equivalence classes

over paths nor the particular concepts of minimality and conservativeness, which we deeply use

in our logics. In [FNP08] the model checking problem for non-minimal and non-conservative

unary GCTL has been investigated. In particular, by opportunely extending the classical algorithm

for CTL [CE81], they show that, in the case of overlapping paths, the model checking problem

is PTIME-COMPLETE (thus not harder than CTL), while in the case of disjoint paths, it is in

PSPACE and both NPTIME-HARD and CONPTIME-HARD. The work continues in [FNP09], by

showing a symbolic model checking algorithm for the binary coding and, limited to the unary

case, a satisfiability procedure. Regarding the comparison between GCTL and graded CTL

with overlapping paths studied in [FNP08], it can be shown that they are equivalent by using an

exponential reduction in both ways, whereas we do not know whether any of the two blow-up can

be avoid. However, it is important to note that our general technique can be also adapted to obtain

an EXPTIME satisfiability procedure for the binary graded CTL under the semantics proposed in

[FNP08]. Indeed, it is needed only to slightly modify the transition function of the main automaton

(w.r.t. until and release formulas), without changing the structure of the whole satellite. Moreover,

it can be used to prove that, in the case of unary GCTL, the complexity of the satisfiability problem

is only polynomial in the degree. Finally, our method can be also applied to the satisfiability of the

GµCALCULUS while the technique developed in [KSV02] cannot be used for GCTL.

Outline In Section 1.2, we recall the basic notions regarding the numeric partitions. Then, we

have Section 1.3, in which we introduce GCTL* and define its syntax and semantics, followed by

Sections 1.4 and 1.5, in which there are studied the main properties of path equivalence relations

and the particular case of the prefix path equivalence based on the concepts of minimality and

conservativeness. In Section 1.6, we describe the ATAS automaton model. Finally, in Section 1.7

we construct the binary tree encoding of a Kripke structure and in Section 1.8 we describe the

procedure used to solve the related satisfiability problem.

7



1. Graded Computation Tree Logic 1.2 - Preliminaries

1.2 Preliminaries

Numeric partitions. Let n ∈ [1, ω[ . We define P(n) as the set of all partition solutions p ∈ Nn

of the linear Diophantine equation 1 · (p)1 + 2 · (p)2 +. . .+ n · (p)n = n and C(n) as the set of

all the cumulative solutions c ∈ Nn+1 obtained by summing increasing sets of elements from p.

Formally, P(n) , {p ∈ Nn :
∑n

i=1 i · (p)i = n} and C(n) , {c ∈ Nn+1 : ∃p ∈ P(n). ∀i ∈ [1,
n + 1]. (c)i =

∑n
j=i(p)j}. It is easy to verify that all cumulative solutions satisfy the simple

equation (c)1 + (c)2 +. . .+ (c)n = n. Moreover, (c)i ≥ (c)i+1, for all i ∈ [1, n], and (c)n+1 = 0.

So, if (c)n = 1, we have that (c)i = 1, for all i ∈ [1, n[ . Hence, there is just one cumulative

solution c ∈ C(n), with (c)n = 1, which also corresponds to the unique solution p ∈ P(n), with

(p)n = 1. We use to define the cumulative solutions to be tuples of n+1 and not only of n elements

only for a technical reason that will be clear later. As an example of these sets, consider the case

n = 4. Then, we have that P(n) = {(4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1)}
and C(n) = {(4, 0, 0, 0, 0), (3, 1, 0, 0, 0), (2, 2, 0, 0, 0), (2, 1, 1, 0, 0), (1, 1, 1, 1, 0)}. Note that

|C(n)| = |P(n)| and, since for each solution p of the above Diophantine equation there is exactly

one partition of n, we have that |C(n)| = p(n), where p(n) is function returning the number of

partitions of n. By [Apo76] (see also [SP95]), it holds that p(n) → k1
n
· 2k2·

√
n, where k1 = 4 ·

√
3

and k2 =
√

2/3 · π · log e, for n→ ∞. Hence, |C(n)| = Θ( 1
n
· 2k2·

√
n).

1.3 Graded Computation Tree Logics

In this section, we introduce a class of extensions of the classical branching-time temporal logics

CTL [CE81] with graded path quantifiers. We show, in the next sections, that these extensions

allow to gain expressiveness without paying any extra cost on deciding their satisfiability. To

formally define the extended logics, we use the CTL* [EH86] state and path formulas framework.

1.3.1 Syntax

The graded full computation tree logic (GCTL*, for short) extends CTL* by using two

special path quantifiers, the existential E≥g and the universal A<g, where g ∈ N̂ denotes the

corresponding degree. As in CTL*, these quantifiers can prefix a linear-time formula composed of

an arbitrary Boolean combination and nesting of the temporal operators X (“next”), U (“until”),

and R (“release”) together with their weak version X̃, Ũ, and R̃. The quantifiers E≥g and A<g can

be respectively read as “there exist at least g paths” and “all but g paths”. The formal syntax of

GCTL* follows.

Definition 1.3.1 (GCTL* Syntax). GCTL* state (ϕ) and path (ψ) formulas are built inductively

from the sets of atomic propositions AP in the following way, where p ∈ AP and g ∈ N̂:

1. ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | E≥gψ | A<gψ;

2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ | X̃ ψ | ψ Ũ ψ | ψ R̃ ψ.

The class of GCTL* formulas is the set of state formulas generated by the above grammar. In

addition, the simpler class of GCTL formulas is obtained by forcing each temporal operator

occurring into a formula to be coupled with a path quantifier, as in the classical case of CTL.

8



1. Graded Computation Tree Logic 1.3 - Graded Computation Tree Logics

We now introduce some auxiliary syntactical notation. For a formula ϕ, we define the de-

gree ϕ̊ of ϕ as the maximum natural number g occurring among the degrees of all its path

quantifiers. Formally, (i) p̊ , 0, for p ∈ AP, (ii) ˚(Op ψ) , ψ̊, for all Op ∈ {¬,X, X̃}, (iii)
˚(ψ1Op ψ2) , max {ψ̊1, ψ̊2}, for all Op ∈ {∧,∨,U,R, Ũ, R̃}, (iv) ˚(Qn ψ) , max {g, ψ̊}, for all

Qn ∈ {E≥g,A<g} with g ∈ N, and (v) ˚(Qn ψ) , ψ̊ , for all Qn ∈ {E≥ω,A<ω}. We assume

that the degree is coded in binary. The length of ϕ, denoted by |ϕ|, is defined as for CTL* and

does not consider the degrees at all. Formally, (i) |p| , 1, for p ∈ AP, (ii) |Op ψ| , 1 + |ψ|,
for all Op ∈ {¬,X, X̃}, (iii) |ψ1Op ψ2| , 1 + |ψ1| + |ψ2|, for all Op ∈ {∧,∨,U,R, Ũ, R̃}, and

(iv) |Qn ψ| , 1 + |ψ|, for all Qn ∈ {E≥g,A<g}. Accordingly, the size of ϕ, denoted by ‖ϕ‖,

is defined in the same way of the length, by considering ‖E≥gψ‖ and ‖A<gψ‖ to be equal to

1+⌈log(g)⌉+‖ψ‖, for g ∈ [1, ω[, and to 1+‖ψ‖, otherwise. Clearly, it holds that ⌈log(ϕ̊)⌉ ≤ ‖ϕ‖
and |ϕ| ≤ ‖ϕ‖. We also use cl(ψ) to denote the classical Fischer-Ladner closure [FL79] of ψ
defined recursively as for CTL* in the following way: cl(ϕ) , {ϕ}∪cl′(ϕ), for all state formulas ϕ
and cl(ψ) , cl′(ψ), for all path formulas ψ, where (i) cl′(p) , ∅, for p ∈ AP, (ii) cl′(Opψ) , cl(ψ),
for all Op ∈ {¬,X, X̃}, (iii) cl′(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all Op ∈ {∧,∨,U,R, Ũ, R̃},

and (iv) cl′(Qn ψ) , cl(ψ), for all Qn ∈ {E≥g,A<g}. Intuitively, cl(ϕ) is the set of all the state

formulas that are subformulas of ϕ. Finally, by rcl(ψ) we denote the reduced closure of ψ, i.e.,

the set of the maximal states formulas contained in ψ. Formally, (i) rcl(ϕ) , {ϕ}, for all state

formulas ϕ, (ii) rcl(Op ψ) , rcl(ψ) when Op ψ is a path formula, for all Op ∈ {¬,X, X̃}, and (iii)

rcl(ψ1Opψ2) , rcl(ψ1)∪rcl(ψ2) when ψ1Opψ2 is a path formula, for all Op ∈ {∧,∨,U,R, Ũ, R̃}.

It is immediate to see that rcl(ψ) ⊆ cl(ψ) and |cl(ψ)| = O(|ψ|).

1.3.2 Semantics

We now define the semantics of GCTL* w.r.t. a KS K = 〈AP,W,R, L, w0〉. For a world

w ∈ W, we write K, w |= ϕ to indicate that a state formula ϕ holds on K at w. Moreover,

for a path π ∈ Pth(K), we write K, π |= ψ to indicate that a path formula ψ holds on π. The

semantics of GCTL* state formulas simply extends that of CTL* and is reported in the following.

In particular, for the definition of graded quantifiers, we deeply make use of a generic equivalence

relation ≡ψ
K on the set of paths Pth(K) that may depend on both the KS K and the path formula ψ.

This equivalence is used to reasonably count the number of ways a structure has to satisfy a path

formula starting from a given node, w.r.t. an a priori fixed criterion. The semantics of the GCTL*

path formulas is defined as usual for LTL and is omitted here.

Definition 1.3.2 (GCTL* Semantics). Given a KS K = 〈AP,W,R, L, w0〉, for all GCTL* state

formulas ϕ and worlds w ∈ W, the relation K, w |= ϕ is inductively defined as follows.

1. K, w |= p iff p ∈ L(w), with p ∈ AP.

2. For all state formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) K, w |= ¬ϕ iff not K, w |= ϕ, that is K, w 6|= ϕ;

(b) K, w |= ϕ1 ∧ ϕ2 iff K, w |= ϕ1 and K, w |= ϕ2;

(c) K, w |= ϕ1 ∨ ϕ2 iff K, w |= ϕ1 or K, w |= ϕ2.

9



1. Graded Computation Tree Logic 1.3 - Graded Computation Tree Logics

3. For a number g ∈ N̂ and a path formula ψ, it holds that:

(a) K, w |= E≥gψ iff |(Pth(K, w, ψ)/≡ψ
K)| ≥ g;

(b) K, w |= A<gψ iff |(Pth(K, w,¬ψ)/≡¬ψ
K )| < g;

where Pth(K, w, ψ) , {π ∈ Pth(K, w) : K, π |= ψ} is the set of paths of K starting

in w that satisfy the path formula ψ and (Pth(K, w, ψ)/≡ψ
K) denotes the quotient set of

Pth(K, w, ψ) w.r.t. the equivalence relation ≡ψ
K, i.e., the set of all the equivalence classes.

For all GCTL* path formulas ψ and paths π ∈ Pth(K), the relation K, π |= ψ is defined as

follows.

4. K, π |= ψ iff ̟K,ψ(π) |= ψ, where ψ is considered as an LTL formula over its restricted

closure rcl(ψ) and ̟K,ψ(π) ∈ (2rcl(ψ))|π| is the trace such that ϕ ∈ (̟K,ψ(π))k iff

K, (π)k |= ϕ, for all ϕ ∈ rcl(ψ) and k ∈ [0, |π|[ .

Intuitively, by using the graded existential quantifier E≥gψ, we can count how many different

equivalence classes w.r.t. ≡ψ
K there are over the set Pth(K, w, ψ) of paths satisfying ψ. The

universal quantifier A<gψ is simply the dual of E≥gψ and it allows to count how many classes

w.r.t. ≡¬ψ
K there are over the set Pth(K, w,¬ψ) of paths not satisfying ψ. It is important to note

that, since (Pth(K, w, ψ)/≡ψ
K) 6= ∅ and (Pth(K, w,¬ψ)/≡¬ψ

K ) 6= ∅) are equivalent, respectively,

to Pth(K, w, ψ) 6= ∅ and Pth(K, w,¬ψ) 6= ∅, it holds that all GCTL* formulas with degree 1 are

CTL* formulas too, and vice versa.

Observe that, in the definition of the semantics, we introduced a transformation ̟K,ψ(·), for

each path formula ψ, that maps each path π of the KS K to a trace ̟K,ψ(π) ∈ (2rcl(ψ))|π| given by

the sequence of sets of state formulas in rcl(ψ) satisfied at the worlds of π. Hence, we interpret the

path formula ψ on AP evaluated on π as an LTL formula on rcl(ψ) evaluated on ̟K,ψ(π).
Let K be a KS and ϕ be a GCTL* formula. Then, K is a model for ϕ, in symbols K |= ϕ, iff

K, w0 |= ϕ, where we recall that w0 is the initial state of K. In this case, we also say that K is a

model for ϕ on w0. A formula ϕ is said satisfiable iff there exists a model for it. Moreover, it is

an invariant for the two KSs K1 and K2 iff either K1 |= ϕ and K2 |= ϕ or K1 6|= ϕ and K2 6|= ϕ.

For all state formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff, for all

KS K, it holds that if K |= ϕ then K |= ϕ. Consequently, we say that ϕ1 is equivalent to ϕ2, in

symbols ϕ1 ≡ ϕ2, iff ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1. In the following, when we say that two GCTL*

paths formulas ψ1 and ψ2 are equivalent, in symbols ψ1 ≡ ψ2, we mean that they are equivalent if

considered as LTL formulas over the union rcl(ψ1) ∪ rcl(ψ2) of their restricted closures.

For technical reasons, we also define the relation of satisfiability of path formulas on tracks, by

simply setting K, ρ |= ψ iff ̟K,ψ(ρ) |= ψ, for all ρ ∈ Trk(K). We now show the basic properties

of the satisfiability relation |= on paths and tracks directly inherited by the LTL semantics.

Proposition 1.3.1 (Path Satisfiability Properties). Let ϕ be a state formula, ψ, ψ1, and ψ2 be path

formulas, and π ∈ (Pth(K, w) ∪ Trk(K, w)) be a path/track starting at the world w of the KS K.

Then, the following properties hold: (i) if ψ1 ≡ ψ2 then K, π |= ψ1 iff K, π |= ψ2; (ii) K, w |= ϕ iff

K, π |= ϕ; (iii) K, π |= ψ1 ∧ψ2 iff K, π |= ψ1 and K, π |= ψ2; (iv) K, π |= ψ1 ∨ψ2 iff K, π |= ψ1

or K, π |= ψ2; (v) K, π |= X ψ iff π≥1 6= ε and K, π≥1 |= ψ; (vi) K, π |= X̃ ψ iff π≥1 = ε

10



1. Graded Computation Tree Logic 1.3 - Graded Computation Tree Logics

or K, π≥1 |= ψ; (vii) K, π |= ψ1U ψ2 iff K, π |= ψ2 ∨ ψ1 ∧ X ψ1U ψ2; (viii) K, π |= ψ1R ψ2

iff K, π |= ψ2 ∧ (ψ1 ∨ X ψ1R ψ2); (ix) K, π |= ψ1Ũ ψ2 iff K, π |= ψ2 ∨ ψ1 ∧ X̃ ψ1Ũ ψ2; (x)

K, π |= ψ1 R̃ ψ2 iff K, π |= ψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2).

Proof. First note that in this proof, we make use of a slightly more general map of ̟K,ψ(·) that

associates each path in K with the sequence of state formulas belonging to a given set Z satisfied at

the worlds of π. Formally, by ̟K,Z(π) we denote the trace in (2Z)|π| such that, for all ϕ ∈ Z and

k ∈ [0, |π|[ , it holds that ϕ ∈ (̟K,Z(π))k iff K, (π)k |= ϕ. Observe that, for every GCTL* path

formula ψ, when ψ is interpreted as an LTL formula on rcl(ψ), it is satisfied on a trace ̟K,ψ(π)
iff it is satisfied on all traces ̟K,Z(π) as well, for any set Z of state formulas containing rcl(ψ).
We can now start with the proofs of all items.

i. Let Z = rcl(ψ1) ∪ rcl(ψ2). For i ∈ {1, 2}, if K, π |= ψi, then ̟K,ψi(π) |= ψi. Now, since

rcl(ψi) ⊆ Z, we have that ̟K,Z(π) |= ψi. By the equivalence ψ1 ≡ ψ2, we obtain then

that ̟K,Z(π) |= ψ3−i. So, since rcl(ψ3−i) ⊆ Z, we have that ̟K,ψ3−i
(π) |= ψ3−i and

consequently K, π |= ψ3−i.

ii. Since ϕ is a state formula, by definition of the transformation map ̟K,ϕ(·), we have that

K, w |= ϕ iff ϕ ∈ (̟K,ϕ(π))0 and so ̟K,ϕ(π) |= ϕ, from which we derive K, π |= ϕ and

vice versa.

iii. Let ψ = ψ1 ∧ ψ2. Then, it holds that K, π |= ψ iff ̟K,ψ(π) |= ψ, which is equivalent to

̟K,ψ(π) |= ψi, for i ∈ {1, 2}. At this point, since rcl(ψi) ⊆ rcl(ψ), we have that K, π |= ψ is

equivalent to ̟K,ψi(π) |= ψi, for i ∈ {1, 2}. Hence, K, π |= ψ iff K, π |= ψ1 and K, π |= ψ2.

iv. Mutatis mutandis, the proof is the same of the previous item.

v. Note that rcl(X ψ) = rcl(ψ). Then, it holds that K, π |= X ψ iff ̟K,ψ(π) |= X ψ, which is

equivalent to (̟K,ψ(π))≥1 6= ε, i.e., π≥1 6= ε, and (̟K,ψ(π))≥1 |= ψ, i.e., ̟K,ψ(π≥1) |= ψ.

Hence, K, π |= X ψ iff π≥1 6= ε and K, π≥1 |= ψ.

vi. Mutatis mutandis, the proof is the same of the previous item.

vii-x. These items can be directly derived by Item i and the classical LTL one step unfolding

equivalences ψ1U ψ2 ≡ ψ2 ∨ ψ1 ∧ X ψ1U ψ2, ψ1R ψ2 ≡ ψ2 ∧ (ψ1 ∨ X ψ1R ψ2), ψ1Ũ ψ2 ≡
ψ2 ∨ ψ1 ∧ X̃ ψ1Ũ ψ2, and ψ1 R̃ ψ2 ≡ ψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2).

In the rest of the paper, we only consider formulas in positive normal form (pnf, for short),

i.e., the negation is applied only to atomic propositions. In fact, it is to this aim that we have

considered in the syntax of GCTL* both the Boolean connectives ∧ and ∨, the path quantifiers

A<g and E≥g, and temporal operators X, U, and R together with their weak version X̃, Ũ, and R̃.

Indeed, all formulas can be linearly translated in pnf by using De Morgan’s laws and the following

equivalences, which directly follow from the semantics of the logic: ¬E≥gψ ≡ A<g¬ψ; ¬X ψ ≡
X̃ ¬ψ; ¬(ψ1U ψ2) ≡ (¬ψ1)R̃(¬ψ2); ¬(ψ1R ψ2) ≡ (¬ψ1)Ũ (¬ψ2). Under this assumption, we

consider ¬ϕ as the pnf formula equivalent to the negation of ϕ. Finally, as abbreviations we use

the Boolean values t (“true”) and f (“false”) and the path quantifiers E>gψ , E≥g+1ψ (“there

exist more than g paths”), A≤gψ , A<g+1ψ (“all but at most g paths”), E=gψ , E≥gψ ∧ ¬E>gψ

11



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

(“there exist just g paths”), and A=gψ , A≤gψ ∧ ¬A<gψ (“all but exactly g paths”), with g ∈ [0,
ω[ .

We now report some basic equivalences that are directly derived from the definition of the

logic and Proposition 1.3.1 and are independent from the particular path equivalence relation ≡·
·

considered.

Proposition 1.3.2 (Basic Equivalences). Let ϕ and ψ be a state and a path formula, respectively,

and g ∈ N̂. Then, the following equivalences hold: (i) E≥0ψ ≡ t; (ii) E≥1ϕ ≡ ϕ; (iii) E≥1ϕ∧ψ ≡
ϕ ∧ E≥1ψ; (iv) E≥1ϕ ∨ ψ ≡ ϕ ∨ E≥1ψ; (v) E≥1X ψ ≡ E≥1X E≥1ψ; (vi) E≥1 X̃ ψ ≡ E≥1 X̃ f ∨
E≥1X ψ; (vii) E>gψ ⇒ E≥gψ; (viii) A<0ψ ≡ f; (ix) A<1ϕ ≡ ϕ; (x) A<1ϕ∧ ψ ≡ ϕ∧A<1ψ; (xi)

A<1ϕ∨ψ ≡ ϕ∨A<1ψ; (xii) A<1X ψ ≡ A<1X t∧A<1 X̃ ψ; (xiii) A<1 X̃ ψ ≡ A<1 X̃ A<1ψ; (xiv)

A<gψ ⇒ A≤gψ.

Finally, we list the classical CTL fixpoint equivalences embedded in the GCTL framework,

for the four binary temporal operators U, R, Ũ, and R̃.

Proposition 1.3.3 (CTL Fixpoint Equivalences). Let ϕ1 and ϕ2 be two state formulas. Then, the

following hold:

i. E≥1ϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ E≥1X E≥1ϕ1U ϕ2;

ii. E≥1ϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ E≥1X E≥1ϕ1R ϕ2);

iii. E≥1ϕ1Ũ ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ (E≥1 X̃ f ∨ E≥1X E≥1ϕ1Ũ ϕ2);

iv. E≥1ϕ1 R̃ ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ E≥1 X̃ f ∨ E≥1X E≥1ϕ1 R̃ ϕ2);

v. A<1ϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ (A<1X t ∧ A<1 X̃ A<1ϕ1U ϕ2);

vi. A<1ϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ A<1X t ∧ A<1 X̃ A<1ϕ1R ϕ2);

vii. A<1ϕ1Ũ ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ A<1 X̃ A<1ϕ1Ũ ϕ2;

viii. A<1ϕ1 R̃ ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ A<1 X̃ A<1ϕ1 R̃ ϕ2).

1.4 Path Equivalence Properties

In the definition of GCTL* semantics, we make use of an arbitrary equivalence relation on

paths. It is useful to investigate what properties can make such an equivalence a reasonable one for

our purposes. In this section, we present a detailed exposition of its principal properties. Note that,

in order to be not repetitive, when we talk about “number of paths”, we always mean the number of

equivalence classes of paths w.r.t. a path formula, which is clear from the context. Moreover, every

equivalence concerning the universal quantifier, if not otherwise specified, is obtained through the

dualization (A<gψ ≡ ¬E≥g¬ψ) of the related existential one.

12



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

1.4.1 Elementary requirements

Suppose we have two equivalent path formulas ψ1 and ψ2. Then, we would like to have them

to be exchangeable in a GCTL* path quantification, obtaining in this way that two state formulas

Qn ψ1 and Qn ψ2 are equivalent, for all Qn ∈ {E≥n,A<n} and n ∈ N̂. Hence, what we need to

require is that, whenever two paths are equivalent w.r.t. ψ1, they are equivalent w.r.t. ψ2 too.

Definition 1.4.1 (Syntax Independence). An equivalence relation ≡ ·
K on paths is said syntax

independent iff, for all pairs of equivalent path formulas ψ1 and ψ2, it holds that π1 ≡ψ1

K π2 iff

π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K).

Theorem 1.4.1 (Equivalent Quantifications). Let ≡ ·
· be a syntax independent equivalence relation.

Moreover, let ψ1 and ψ2 be two equivalent path formulas and g ∈ N̂. Then, the following holds:

E≥gψ1 ≡ E≥gψ2 and A<gψ1 ≡ A<gψ2.

Proof. Let K be a KS and w0 its initial world. Since ψ1 ≡ ψ2, by Item i of Proposition 1.3.1,

it is immediate to see that Pth(K, w0, ψ1) = Pth(K, w0, ψ2) and so, (Pth(K, w0, ψ1)/≡ψ1

K ) =

(Pth(K, w0, ψ2)/≡ψ1

K ). Now, by the syntax independence property, we have that π1 ≡ψ1

K π2 iff

π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K). Thus, we have that (Pth(K, w0, ψ2)/≡ψ1

K ) = (Pth(K, w0,

ψ2)/≡ψ2

K ). Hence the thesis.

The following corollary is directly derived by using the classical LTL equivalences for the four

binary temporal operators.

Corollary 1.4.1 (One Step Unfolding). Let ≡ ·
· be a syntax independent equivalence relation.

Moreover, let ψ1 and ψ2 be two path formulas and g ∈ N̂. Then, the following equivalences hold:

(i) E≥gψ1U ψ2 ≡ E≥gψ2 ∨ ψ1 ∧ X ψ1U ψ2; (ii) E≥gψ1R ψ2 ≡ E≥gψ2 ∧ (ψ1 ∨ X ψ1R ψ2); (iii)

E≥gψ1Ũ ψ2 ≡ E≥gψ2 ∨ ψ1 ∧ X̃ ψ1Ũ ψ2; (iv) E≥gψ1 R̃ ψ2 ≡ E≥gψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2); (v)

A<gψ1U ψ2 ≡ A<gψ2 ∨ ψ1 ∧ X ψ1U ψ2; (vi) A<gψ1R ψ2 ≡ A<gψ2 ∧ (ψ1 ∨ X ψ1R ψ2); (vii)

A<gψ1Ũ ψ2 ≡ A<gψ2 ∨ ψ1 ∧ X̃ ψ1Ũ ψ2; (viii) A<gψ1 R̃ ψ2 ≡ A<gψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2).

Consider now a state formula ϕ on which we have to verify the equivalence between paths.

Then, we may want to have that, when a world satisfies ϕ, all paths starting from that world

are counted just once. This is because, after all, we have only one way to practically satisfy the

formula.

Definition 1.4.2 (State Focus). An equivalence relation ≡ ·
K is said state focused iff, given a state

formula ϕ, if K, w |= ϕ then π1 ≡ϕ
K π2, for all π1, π2 ∈ Pth(K, w).

Theorem 1.4.2 (State Quantification). Let ≡ ·
· be a state focused equivalence relation. Moreover,

let ϕ be a state formula and g ∈ [2, ω]. Then, the following holds: E≥gϕ ≡ f and A<gϕ ≡ t.

Proof. Suppose by contradiction that E≥gϕ 6≡ f, i.e., that there is a KS K such that K, w0 |=
E≥gϕ, where w0 is the initial world of K. This means that |(Pth(K, w0, ϕ)/≡ϕ

K)| ≥ g, so

Pth(K, w0, ϕ) 6= ∅ and then, by Item ii of Proposition 1.3.1, it holds that K, w0 |= ϕ. Now,

by the state focus property, we have that π1 ≡ϕ
K π2, for all paths π1, π2 ∈ Pth(K, w0). Hence,

|(Pth(K, w0, ϕ)/≡ϕ
K)| = 1 < g, but this contradict the hypothesis.

13



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

1.4.2 Temporal requirements

Consider a path formula ψ. We would like that the number of paths satisfying X ψ at a world

w is equal to the sum of the number of paths that satisfy ψ on all successor worlds w′ of w. This

requires that two paths π1 and π2 are distinct w.r.t. X ψ iff the paths (π1)≥1 and (π2)≥1 are also

distinct w.r.t. ψ.

Definition 1.4.3 (Next Consistency). An equivalence relation ≡ ·
K on paths is said next consistent

iff it holds that π1 ≡X ψ
K π2 iff (π1)≥1 ≡ψ

K (π2)≥1, for all π1, π2 ∈ Pth(K, w).

By the state focus and next consistency properties, it is immediate to derive the following first

accessory lemma.

Lemma 1.4.1 (Next Equivalence I). Let ≡ ·
K be a state focused and next consistent equivalence

relation. Moreover, let π1, π2 ∈ Pth(K, w) be two paths starting in a common world w and ϕ be

a state formula. Then, (π1)1 = (π2)1 = w′ and K, w′ |= ϕ imply π1 ≡X ϕ
K π2.

Proof. By the state focus property, it holds that (π1)≥1 ≡ϕ
K (π2)≥1. Now, by the next consistency

property, we obtain that π1 ≡X ϕ
K π2.

For a X̃ ψ formula, the only difference w.r.t. X ψ is that the formula can be satisfied on a path

because there are no successor worlds. In such a situation there is only one path satisfying the

formula. In the other cases X̃ ψ behaves just like X ψ, hence, we would like the first to satisfy a

similar property w.r.t. the latter. However, when ψ is a tautology, we have that X̃ ψ is equivalent

to t, i.e., the formula is always satisfied. For this reason all choices are indifferent and may be

regarded as equivalent. Furthermore, the choices can be considered indifferent also in the weaker

case that ψ is not a tautology but that it is satisfied on all suffixes of paths of the reference structure

starting at a given world of interest. In order to formalize this concept, we can introduce a more

general path formula equivalence relation ≡w
K that may or may not depend on the KS K and on

the world w. In particular, to ensure that ≡w
K is a reasonable path equivalence, we assume that

ψ1 ≡ ψ2 implies ψ1 ≡w
K ψ2, which in turn implies that K, π |= ψ1 iff K, π |= ψ2, for all paths

π ∈ Pth(K, w). Moreover, we say that ψ is an ≡w
K-tautology iff it holds that ψ ≡w

K t.

Definition 1.4.4 (Weak Next Consistency). An equivalence relation ≡ ·
K on paths is said weak

next consistent iff it holds that π1 ≡X̃ ψ
K π2 iff X̃ ψ is an ≡w

K-tautology or (π1)≥1 ≡ψ
K (π2)≥1, for

all π1, π2 ∈ Pth(K, w).

By the next and weak next consistency properties, we can derive the simplification theorem for

the existential quantification of the weak next temporal operator.

Theorem 1.4.3 (Weak Next Simplification). Let ≡ ·
· be a next consistent and weak next consistent

equivalence relation. Moreover, let K be a KS, ψ be a path formula and g ∈ [2, ω]. Then,

the following holds: K |= E≥g X̃ ψ iff X̃ ψ is not an ≡w0
K -tautology and K |= E≥gX ψ and

K |= A<gX ψ iff ¬X ψ is an ≡w0
K -tautology or K |= A<g X̃ ψ, where w0 is the initial world of K.

14



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

Proof. By hypotheses, it holds that π1 ≡X̃ ψ
K π2 iff X̃ ψ is an ≡w0

K -tautology or π1 ≡X ψ
K π2, for all

π1, π2 ∈ Pth(K, w0), where w0 is the initial world of K.

[Only if]. If K, w0 |= E≥g X̃ ψ then |(Pth(K, w0, X̃ ψ)/≡X̃ ψ
K )| ≥ g. Since there are at least

two different classes w.r.t. ≡X̃ ψ
K and so, at least two non equivalent paths starting in w0, it holds

that X̃ ψ cannot be an ≡w0
K -tautology. Consequently, we have that π1 ≡X̃ ψ

K π2 iff π1 ≡X ψ
K π2,

for all π1, π2 ∈ Pth(K, w0). Moreover, since w0 has necessarily a successor, by Items v and

vi of Proposition 1.3.1, it holds that Pth(K, w0, X̃ ψ) = Pth(K, w0,X ψ). Thus, we obtain that

(Pth(K, w0, X̃ ψ)/≡X̃ψ
K ) = (Pth(K, w0,X ψ)/≡Xψ

K ). Hence, the thesis holds.

[If]. If K, w0 |= E≥gX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K )| ≥ g. Since there are at least two

different classes w.r.t. ≡X ψ
K , w0 has necessarily a successor and so, by Items v and vi of Proposition

1.3.1, it holds that Pth(K, w0,X ψ) = Pth(K, w0, X̃ ψ). Moreover, X̃ ψ is not an ≡w0
K -tautology.

Consequently, we have that π1 ≡X ψ
K π2 iff π1 ≡X̃ ψ

K π2, for all π1, π2 ∈ Pth(K, w0). Thus, we

obtain that (Pth(K, w0,X ψ)/≡X ψ
K ) = (Pth(K, w0, X̃ ψ)/≡X̃ ψ

K ). Hence, the thesis holds.

In general, there are no GCTL* formulas expressing the fact that X̃ ψ and ¬X ψ are or

not an ≡w0
K -tautology. However, in the case that a particular ≡w0

K -tautology of the previous

formulas can be expressed with the two apposite formulas ϕ
X̃ ψ and ϕ¬X ψ, we can easily state

E≥g X̃ ψ ≡ (E≥gX ψ) ∧ ¬ϕ
X̃ ψ and A<gX ψ ≡ (A<g X̃ ψ) ∨ ϕ¬X ψ, for g ∈ [2, ω]. Moreover,

we recall that Items vi and xii of Proposition 1.3.2 assert that E≥g X̃ ψ ≡ E≥1 X̃ f ∨ E≥1X ψ and

A<gX ψ ≡ A<1X t ∧ A<1 X̃ ψ, for g = 1. Then, we introduce the two macros EX̃(g, ψ, ϕ) and

AX(g, ψ, ϕ), defined below, to represent in short the expansion formula for EX̃ and AX .

• EX̃(g, ψ, ϕ) ,

{
E≥1 X̃ f ∨ E≥1X ψ, if g = 1;

(E≥gX ψ) ∧ ϕ, otherwise.

• AX(g, ψ, ϕ) ,

{
A<1X t ∧ A<1 X̃ ψ, if g = 1;

(A≥g X̃ ψ) ∨ ϕ, otherwise.

It is immediate to see that |EX̃(g, ψ, ϕ)| = |AX(g, ψ, ϕ)| = Θ(|ϕ| + |ψ|).
The above properties for the next and the weak next operators allow us to say that the number

of paths that satisfy X ψ or X̃ ψ at world w is equal to the number of paths that satisfy ψ on some

successor world w′ of w. Since two paths π1 and π2 passing through two distinct successors may

represents two different ways to satisfy X ψ, we would like to consider them as distinct w.r.t. X ψ.

So, we should have that the two paths (π1)≥1 and (π2)≥1 are not equivalent just because they

start from different nodes. Consequently, we may want to ensure that paths starting at different

successors are never counted just as one.

Definition 1.4.5 (Source Dependence). An equivalence relation ≡ ·
K on paths is said source

dependent iff π1 ≡ψ
K π2 implies (π1)0 = (π2)0, for all π1, π2 ∈ Pth(K).

At this point, by the next consistency and source dependence properties it is immediate to

derive the following second accessory lemma.

15



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

Lemma 1.4.2 (Next Equivalence II). Let ≡ ·
K be a next consistent and source dependent equivalence

relation. Moreover, let π1, π2 ∈ Pth(K, w) be two paths starting in a common world w. Then,

π1 ≡X ψ
K π2 implies (π1)1 = (π2)1.

Proof. By the next consistency property, it holds that (π1)≥1 ≡ψ
K (π2)≥1. Now, by the source

dependence property, we obtain that (π1)1 = (π2)1.

Before continuing with the discussion of the remaining properties, we have to make an

important remark on our choice to define the semantics of GCTL* on both finite and infinite

paths and, consequently, to have both the strong and weak versions of the temporal operators (see

also [EFH+03], for further non-technical motivations for logics over the so-called truncated paths).

Suppose, for a moment, to define the GCTL* semantics only on infinite paths, i.e., to consider only

total KS. Under this assumption, it is immediate to see that strong and weak temporal operators

are equivalent, i.e., X ψ ≡ X̃ ψ, ψ1U ψ2 ≡ ψ1Ũ ψ2, and ψ1R ψ2 ≡ ψ1 R̃ ψ2. In particular, it

holds that X t ≡ t and so, for the syntax independence and state focus (specifically, here we

need only that all paths are equivalent w.r.t. t) properties, we obtain that π1 ≡X t

K π2, for all

π1, π2 ∈ Pth(K). Hence, if we want to preserve the syntax independence, we are no able to simply

count the number of successors of a given world, by using the formula E≥gX t, without asserting

any stronger property. However, all the classical graded logics, such as the GµCALCULUS, allow

such a counting. Moreover, consider two paths π1, π2 ∈ Pth(K, w) such that (π1)1 6= (π2)1. By

the previous lemma, we have that π1 6≡X t

K π2, reaching in this way a contradiction. Hence, it

is evident that it is impossible to casting together the three properties of syntax independence,

next consistency, and source dependence in the framework of logics on infinite paths only. If

we want to restrict us to such a framework, we have to drop at least one property between the

last two, changing completely the semantics of the logic and indirectly the relationship with the

GµCALCULUS shown in the next section. We can now return to the main track of thought of

this section. In particular, we can enunciate a fundamental result on the lost of the bisimulation

invariance, since the operation of counting is not bisimilar invariant at all, and, consequently, on

the more expressiveness of the graded w.r.t. the related ungraded logics.

Theorem 1.4.4 (Bisimilarity Variance). Let ≡ ·
· be a next consistent and source dependent equiva-

lence relation. Then GCTL and GCTL* are not invariant under bisimilarity. Moreover, they are

more expressive than CTL and CTL*, respectively.

Proof. We show that GCTL distinguishes between bisimilar models. Consider the two KTs

T1 and T2 such as T1 contains only the root and one successor, while T2 contains also another

successor. Formally, T1 = 〈AP,W1,R1, L1, ε〉, with AP = ∅, W1 = {ε, 0}, and R1 = {(ε, 0)},

and T2 = 〈AP,W2,R2, L2, ε〉, with W2 = W1 ∪ {1}, and R2 = R1 ∪ {(ε, 1)}. By the definition

of bisimilarity, it is immediate to see that T1 and T2 are bisimilar. Now, consider the formula

ϕ = E≥2X t. It is evident that Pth(T1, ε,X t) = {π1} with π1 = ε · 0, so |(Pth(T1, ε,X t)/
≡X t

T1
)| = 1 and then T1 6|= ϕ. On the contrary, Pth(T2, ε,X t) = {π1, π2} with π2 = ε · 1. Since

(π1)1 6= (π2)2, by Lemma 1.4.2, we have that π1 6≡X t

T2
π2, so |(Pth(T2, ε,X t)/≡X t

T2
)| = 2 and then

T2 |= ϕ. Hence, ϕ is not an invariant for the two KTs T1 and T2 and so, it can distinguish between

bisimilar models. Now, it is known that both CTL and CTL* are invariant under bisimulation, so,

they cannot distinguish between T1 and T2. Moreover, CTL and CTL* are sublogics of GCTL

16



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

and GCTL*, respectively. Thus, we have that the latter can characterize more models than those

characterizable by the former logic. Consequently, the theses hold.

As third and last accessory lemma, we derive an important and completely general combinato-

rial property on the dimension of groupings of equivalences classes in base to their size.

Lemma 1.4.3 (Classes Counting). Let ≡ be an equivalence relation on a finite set S. Moreover, let

Mn = {D ∈ (S/≡) : |D| = n} be the set of equivalence classes w.r.t. ≡ having size n, for each

n ∈ [1, |S|]. Then, there is a partition solution p ∈ P(|S|) such that |Mn| = (p)n.

Proof. First note that, by definition, Mn1 ∩ Mn2 = ∅, for all n1, n2 ∈ [1, |S|] with n1 6= n2.

Moreover, for all D1,D2 ∈ Mn with D1 6= D2, it holds that D1 ∩ D2 = ∅, since they are different

equivalence classes. Furthermore, it is evident that S =
⋃|S|
n=1

⋃
D∈Mn

D. So, we have that

|S| = |⋃|S|
n=1

⋃
D∈Mn

D| =
∑|S|

n=1

∑
D∈Mn

|D| =
∑|S|

n=1

∑
D∈Mn

n =
∑|S|

n=1 n · |Mn|. Hence, by

the definition of partition solution, the thesis holds.

Finally, we can enunciate two theorems that generalize to the case of graded quantifiers the

classical CTL* expansion equivalence EX ψ ≡ EX Eψ and AX̃ ψ ≡ AX̃ Aψ. The first property is

of crucial importance for the characterization of GCTL, without quantifiers with infinite degrees

(i.e., E≥ωψ and A<ωψ), as a fragment of the GµCALCULUS, as showed in the next section.

Theorem 1.4.5 (Next Expansion I). Let ≡ ·
· be a state focused, next consistent, and source depen-

dent equivalence relation. Moreover, let ψ be a path formula and g ∈ [1, ω[ . Then, the following

equivalence holds: E≥gX ψ ≡ ∨
c∈C(g)

∧g
i=1 E≥(c)iX E≥iψ and A<g X̃ ψ ≡ ∨

c∈C(g−1)

∧g
i=1

A≤(c)i X̃ A<iψ.

Proof. [Only if]. If K, w0 |= E≥gX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K )| ≥ g, where K = 〈AP,W,

R, L, w0〉. Thus, there is a set S ⊆ Pth(K, w0,X ψ) of g non-equivalent paths w.r.t. ≡X ψ
K . Each

path in S is a representative of a different class, so |S| = |(S/≡X ψ
K )| = g.

Let now
succ≡ be the equivalence relation on Pth(K) such that π1

succ≡ π2 iff (π1)1 = (π2)1.

Moreover, let Mn , {D ∈ (S/
succ≡ ) : |D| = n} be the set of equivalence classes w.r.t.

succ≡ having

size n ∈ [1, g]. By Lemma 1.4.3, there is a partition solution p ∈ P(g) such that |Mn| = (p)n,

for all n ∈ [1, g]. At this point, we can write Mn = {Dn,1, . . . ,Dn,(p)n}. Furthermore, we can

associate to each class Dn,j a different successor wn,j of the initial world w0 such that wn,j = (π)1,

for all π ∈ Dn,j .

Since Dn,j ⊆ S, we have that K, π |= X ψ and so, by Item v of Proposition 1.3.1, K, π≥1 |= ψ,

for all π ∈ Dn,j . Hence, let D′
n,j , {π≥1 : π ∈ Dn,j}, we obtain that D′

n,j ⊆ Pth(K, wn,j , ψ).

Note that |D′
n,j | = |Dn,j | = n. Moreover, by the next consistency property, since π1 6≡X ψ

K π2,

for all π1, π2 ∈ Dn,j with π1 6= π2, we obtain that (π1)≥1 6≡ψ
K (π2)≥1 and so |(D′

n,j/≡ψ
K)| =

|D′
n,j | = n. Thus, we have that |(Pth(K, wn,j , ψ)/≡ψ

K)| ≥ n. Hence, K, wn,j |= E≥iψ, for all

i ∈ [1, n]. By Items ii and v of Proposition 1.3.1, the last statement implies that K, π |= X E≥iψ,

for all π ∈ Dn,j with n ∈ [i, g] and j ∈ [1, (p)n].

By Lemma 1.4.1, it holds that π1 ≡X E≥iψ
K π2, for all π1, π2 ∈ Dn,j , and thus |(Dn,j/≡X E≥iψ

K
)| = 1. On the contrary, by Lemma 1.4.2, for all π1 ∈ Dn1,j1 and π2 ∈ Dn2,j2 with n1 6= n2

17



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

or j1 6= j2, since (π1)1 = wn1,j1 6= wn2,j2 = (π2)1, it holds that π1 6≡X E≥iψ
K π2 and thus

((Dn1,j1 ∪ Dn2,j2)/≡X E≥iψ
K ) = (Dn1,j1/≡X E≥iψ

K ) ∪ (Dn2,j2/≡X E≥iψ
K ).

Now, we can estimate the number of equivalence classes w.r.t. ≡X E≥iψ
K of the set of paths

Pth(K, w0,X E≥iψ). Since, as previously proved,
⋃g
n=i

⋃(p)n
j=1 Dn,j ⊆Pth(K, w0,X E≥iψ), we

have that |(Pth(K, w0,X E≥iψ)/≡X E≥iψ
K )| ≥ |((⋃g

n=i

⋃(p)n
j=1 Dn,j)/≡X E≥iψ

K )| = |⋃g
n=i

⋃(p)n
j=1

(Dn,j/≡X E≥iψ
K )| =

∑g
n=i

∑(p)n
j=1 |(Dn,j/≡X E≥iψ

K )| =
∑g

n=i

∑(p)n
j=1 1 =

∑g
n=i(p)n. Let now

c ∈ Nn be the vector such that (c)i =
∑g

n=i(p)n. At this point, it is immediate to see that

K, w0 |= E≥(c)iX E≥iψ. Since the previous reasoning can be done for every i ∈ [1, g], we also

have K, w0 |= ∧g
i=1 E≥(c)iX E≥iψ. Now, by definition of cumulative partition solution, we have

that c ∈ C(g). So, K, w0 |= ∨
c∈C(g)

∧g
i=1 E≥(c)iX E≥iψ.

[If]. If K, w0 |= ∨
c∈C(g)

∧g
i=1 E≥(c)iX E≥iψ then there is a cumulative partition solution c ∈

C(g) such that, for all i ∈ [1, g], it holds that K, w0 |=E≥(c)iX E≥iψ and so |(Pth(K, w0,X E≥iψ)

/≡X E≥iψ
K )| ≥ (c)i, where K = 〈AP,W,R, L, w0〉. Let now p ∈ Nn be a vector such that

(p)g = (c)g and (p)i = (c)i − (c)i+1, for all i ∈ [1, g[ . By definition of cumulative partition

solution, it is immediate to see that p is a partition solution, i.e., p ∈ P(g).

First note that the set Vi , {w ∈ W : (w0, w) ∈ R ∧ K, w |= E≥iψ} of successors of

the initial world w0 satisfying E≥iψ has cardinality greater than or equal to (c)i. Indeed, let

π1, π2 ∈ Pth(K, w0,X E≥iψ) be two paths such that π1 6≡X E≥iψ
K π2. Then, by Lemma 1.4.1, we

have that (π1)1 6= (π2)1. So, since, as shown before, there exist at least (c)i non equivalent paths

w.r.t. ≡X E≥iψ
K , we obtain that there are at least (c)i different successors of w0.

Now, for each i ∈ [1, g[ , let Ui ⊆ Vi be a set of (p)i worlds such that Ui ∩ Uj = ∅, for all

j ∈ ]i, g]. By finite induction, it is immediate to see that we can effectively construct such sets,

since |Vi \
⋃g
j=i+1 Uj | ≥ (c)i −

∑g
j=i+1 |Uj | = (c)i −

∑g
j=i+1(p)j = (c)i − (c)i+1 = (p)i.

At this point, we can write Ui = {wi,1, . . . , wi,(p)i}. Furthermore, since K, wi,j |= E≥iψ, we

can associate to each world wi,j a set D′
i,j ⊆ Pth(K, wi,j , ψ) of i non equivalent paths w.r.t.

≡ψ
K. Now, let Di,j , {π ∈ Pth(K, w0) : π≥1 ∈ D′

i,j}. By Item v of Proposition 1.3.1,

Di,j ⊆ Pth(K, w0,X ψ). Note that |Di,j | = |D′
i,j | = i. By the next consistency property, since

(π1)≥1 6≡ψ
K (π2)≥1, for all π1, π2 ∈ Dn,j with π1 6= π2, we obtain that π1 6≡X ψ

K π2 and so |(Di,j

/≡X ψ
K )| = |Di,j | = i. Moreover, by Lemma 1.4.2, for all π1 ∈ Di1,j1 and π2 ∈ Di2,j2 with

i1 6= i2 or j1 6= j2, since (π1)1 = wi1,j1 6= wi2,j2 = (π2)1, it holds that π1 6≡X ψ
K π2 and thus

((Di1,j1 ∪ Di2,j2)/≡X ψ
K ) = (Di1,j1/≡X ψ

K ) ∪ ((Di2,j2/≡X ψ
K )).

Now, we can estimate the number of equivalence classes w.r.t. ≡X ψ
K of the set of paths

Pth(K, w0,X ψ). Since, as previously proved,
⋃g
i=1

⋃(p)i
j=1Di,j ⊆ Pth(K, w0,X ψ), we have

that |(Pth(K, w0,X ψ)/≡X ψ
K )| ≥ |((⋃g

i=1

⋃(p)i
j=1 Di,j)/≡X ψ

K )| = |⋃g
i=1

⋃(p)i
j=1(Di,j/≡X ψ

K )| =
∑g

i=1

∑(p)i
j=1 |(Di,j/≡X ψ

K )| =
∑g

i=1

∑(p)i
j=1 i =

∑g
i=1 i · (p)i = g. The last equality is due to the

fact that p is a partition solution. Hence, we have that K, w0 |= E≥gX ψ.

Theorem 1.4.6 (Next Expansion II). Let ≡ ·
· be a state focused, next consistent, and source

dependent equivalence relation. Moreover, let ψ be a path formula. Then, the following equivalence

18



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

holds: E≥ωX ψ ≡ E≥ωX E≥1ψ ∨ E≥1X E≥ωψ and A<ω X̃ ψ ≡ A<ω X̃ A<1ψ ∧ A<1 X̃ A<ωψ.

Proof. [Only if]. If K, w0 |= E≥ωX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K )| ≥ ω, where K = 〈AP,W,

R, L, w0〉. Thus, there is an infinite set S ⊆ Pth(K, w0,X ψ) of non-equivalent paths w.r.t. ≡X ψ
K .

Let now
succ≡ be the equivalence relation on Pth(K) such that π1

succ≡ π2 iff (π1)1 = (π2)1.

Moreover, let M , (S/
succ≡ ). To each class D ∈ M we can associate a different successor wD of

the initial world w0 such that wD = (π)1, for all π ∈ D.

Since D ⊆ S, we have that K, π |= X ψ and so, by Item v of Proposition 1.3.1, K, π≥1 |= ψ,

for all π ∈ D. Hence, let D′ , {π≥1 : π ∈ D}, we obtain that D′ ⊆ Pth(K, wn,j , ψ). Note that

|D′| = |D|. Moreover, by the next consistency property, since π1 6≡X ψ
K π2, for all π1, π2 ∈ D

with π1 6= π2, we obtain that (π1)≥1 6≡ψ
K (π2)≥1 and so |(D′/≡ψ

K)| = |D′|. Consequently, it

holds that |(Pth(K, wD, ψ)/≡ψ
K)| ≥ |D|. Thus, K, wD |= E≥|D|ψ. The last statement implies that

K, π |= X E≥|D|ψ, for all π ∈ D.

At this point, we have two possibilities, each implying the truth of one of the two disjuncts in

the formula E≥ωX E≥1ψ ∨ E≥1X E≥ωψ: either |M| = ω or |M| < ω.

In the first case, each class D ∈ M may be finite, so we can assert at most that |D| ≥
1, which implies K, π |= X E≥1ψ, for all π ∈ D. By Lemma 1.4.2, for all π1 ∈ D1 and

π2 ∈ D2 with D1 6= D2, since (π1)1 = wD1 6= wD2 = (π2)1, it holds that π1 6≡X E≥1ψ
K π2

and thus ((D1 ∪ D2)/≡X E≥1ψ
K ) = (D1/≡X E≥1ψ

K ) ∪ (D2/≡X E≥1ψ
K ). Now, since

⋃
D∈M D ⊆

Pth(K, w0,X E≥1ψ), we have that |(Pth(K, w0,X E≥1ψ)/≡X E≥1ψ
K )| ≥ |((⋃D∈M D)/≡X E≥1ψ

K )|
= |⋃D∈M(D/≡X E≥1ψ

K )| =
∑

D∈M |(D/≡X E≥1ψ
K )| ≥ ∑

D∈M 1 = |M| = ω. Hence, K, w0 |=
E≥ωX E≥1ψ.

In the second case, since S =
⋃

D∈M D and so |S| =
∑

D∈M |D|, we have that there is a

class D ∈ M such that |D| = ω. Thus, K, π |= X E≥ωψ, for all π ∈ D. This implies that

|Pth(K, w0,X E≥ωψ)| ≥ 1 and so |(Pth(K, w0,X E≥ωψ)/≡X E≥ωψ
K )| ≥ 1, which means that

K, w0 |= E≥1X E≥ωψ.

[If]. On one hand, if K, w0 |= E≥ωX E≥1ψ then |(Pth(K, w0,X E≥1ψ)/≡X E≥1ψ
K )| ≥ ω,

where K = 〈AP,W,R, L, w0〉. Now, let V , {w ∈ W : (w0, w) ∈ R ∧K, w |= E≥1ψ} be the set

of successors of the initial world w0 satisfying E≥1ψ. It is immediate to see that |V| = ω. Indeed,

let π1, π2 ∈ Pth(K, w0,X E≥1ψ) be two paths such that π1 6≡X E≥1ψ
K π2. Then, by Lemma 1.4.1,

we have that (π1)1 6= (π2)1. So, since there exist infinite non equivalent paths w.r.t. ≡X E≥1ψ
K , we

obtain that there are infinite different successors of w0. At this point, by Item v of Proposition

1.3.1, we can associate a path πw ∈ Pth(K, w0,X ψ) with (πw)1 = w to each world w ∈ V. Let

D , {πw : w ∈ V} be the set of all such paths. It is evident that |D| = |V| = ω. Now, by Lemma

1.4.2, for all πw1 , πw2 ∈ D with w1 6= w2, it holds that πw1 6≡X ψ
K πw2 and thus |(D/≡X ψ

K )| = |D|.
Since D ⊆ Pth(K, w0,X ψ), we have that |(Pth(K, w0,X ψ)/≡X ψ

K )| ≥ |(D/≡X ψ
K )| = |D| = ω.

Hence, K, w0 |= E≥ωX ψ.

On the other hand, if K, w0 |= E≥1X E≥ωψ, by Items ii and v of Proposition 1.3.1, there

is a successor w ∈ W with (w0, w) ∈ R of the initial world w0 satisfying E≥ωψ. Hence,

|(Pth(K, w, ψ)/≡ψ
K)| ≥ ω. Moreover, let D′ ⊆ Pth(K, w, ψ) be a set of infinite of non-equivalent

paths w.r.t. ≡ψ
K and D , {π ∈ Pth(K, w0) : π≥1 ∈ D′} be the set of their extension with w0. It is

19



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

evident that |D| = |D′| = ω. By the next consistency property, since (π1)≥1 6≡ψ
K (π2)≥1, for all

π1, π2 ∈ D with π1 6= π2, we obtain that π1 6≡X ψ
K π2 and so |(D/≡X ψ

K )| = |D|. Now, by Item v

of Proposition 1.3.1, D ⊆ Pth(K, w0,X ψ). Thus, we have that |(Pth(K, w0,X ψ)/≡X ψ
K )| ≥ |(D

/≡X ψ
K )| = |D| = ω. Hence, K, w0 |= E≥ωX ψ.

In the following, we use the four expressions EX(g, ψ), AX̃(g, ψ), EX′(g, ψ), and AX̃′(g, ψ)
defined below to represent in short the expansion formulas for the X and X̃ temporal operators

derived in the previous two theorems.

• EX(g, ψ) ,

{∨
c∈C(g)

∧g
i=1 E≥(c)iX E≥iψ, if g < ω;

E≥ωX E≥1ψ ∨ E≥1X E≥ωψ, otherwise.

• AX̃(g, ψ) ,

{∨
c∈C(g−1)

∧g
i=1 A≤(c)i X̃ A<iψ, if g < ω;

A<ωX A<1ψ ∧ A<1X A<ωψ, otherwise.

• EX′(g, ψ) ,

{∨(c)g=0
c∈C(g)

∧g−1
i=1 E≥(c)iX E≥iψ, if g < ω;

E≥ωX E≥1ψ, otherwise.

• AX̃′(g, ψ) ,

{∨
c∈C(g−1)

∧g−1
i=1 A≤(c)i X̃ A<iψ, if g < ω;

A<ωX A<1ψ, otherwise.

In this way, we obtain that E≥gX ψ ≡ EX(g, ψ) ≡ EX′(g, ψ)∨E≥1X E≥gψ and A<g X̃ ψ ≡ AX̃(g,
ψ) ≡ AX̃′(g, ψ) ∧ A<1 X̃ A<gψ, for all g ∈ N̂. For the existential case, the second equivalence

for finite degree is due to the fact that, when (c)g = 1, it holds that
∧g
i=1 E≥(c)iX E≥iψ =∧g

i=1 E≥1X E≥iψ ≡ E≥1X E≥gψ. For the universal case, instead, the same equivalence is de-

rived by the observation that, since (c)g = 0, each disjunct necessarily contains the conjunct

A≤0 X̃ A<gψ.

Now, it is interesting to note that, for finite degree, the formula EX(g, ψ) allows to partition

at least g paths through c1 ≤ g successor worlds, for a given vector c ∈ C(g). Indeed, ci is

the number of successor worlds from which at least i paths satisfying ψ start. Therefore, c1 is a

sufficient bound on the number of successor worlds we have to consider to ensure the satisfiability

of the formula. A similar dual reasoning can be done for the universal formula AX̃(g, ψ).
Observe that EX(1, ψ) and AX̃(1, ψ) are equal to the classical CTL* expansions EX Eψ and

AX̃ Aψ, respectively.

By a simple calculation, it follows that (g − 1) · (|C(g)| − 1) · (|ψ| + 4) − 1 = |EX′(g,
ψ)| < |EX(g, ψ)| = g · |C(g)| · (|ψ| + 4) − 1 and (g − 1) · |C(g − 1)| · (|ψ| + 4) − 1 = |AX̃′(g,
ψ)| < |AX̃(g, ψ)| = g · |C(g − 1)| · (|ψ| + 4) − 1. So, both the lengths of EX(g, ψ) and EX′(g,
ψ) are Θ((|ψ| + 4) · 2k·

√
g), while those of AX̃(g, ψ) and AX̃′(g, ψ) are Θ((|ψ| + 4) · 2k·

√
g−1),

for a constant k. Furthermore, the degree of EX(g, ψ), AX̃(g, ψ), EX′(g, ψ), and AX̃′(g, ψ) is

max{g, ψ̊}. As an example, consider the formula ϕ = E≥gX X p. It is evident that |ϕ| = 4, ϕ̊ = g,

and ‖ϕ‖ = 4 + ⌈log(g)⌉. Moreover, |EX(g,X p)| = Θ(2k·
√
g) = Θ(2k·

√
2‖ϕ‖−4

). Hence, the length

of an expansion EX(g, ψ) can be, in general, double exponential in the size of the original formula.

The same thing happens for the expansion AX̃(g, ψ).

20



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

1.4.3 Boolean requirements

At this point, we can reason about the properties that an equivalence has to satisfy w.r.t. the

positive Boolean combination of formulas.

Suppose we have two path formulas ψ1 and ψ2. We would like to have that, from a given world,

both the number of paths that satisfy ψ1 and ψ2 are not less than those satisfying their conjunction.

Hence, we need that paths equivalent w.r.t. both ψ1 and ψ2 are equivalent w.r.t. ψ1 ∧ ψ2 too,

otherwise, each equivalence class for ψ1 and ψ2 may provide more than one equivalence class for

ψ1 ∧ ψ2 allowing the latter formula to have more paths. Moreover, we would like that, among the

paths that satisfy ψ1 (resp., ψ2), the number of those satisfying ψ2 (resp., ψ1) is equal to those

satisfying ψ1 ∧ ψ2. Hence, we need that paths equivalent w.r.t. ψ1 ∧ ψ2 are also equivalent w.r.t.

both ψ1 and ψ2.

Definition 1.4.6 (Conjunction Consistency). An equivalence relation ≡ ·
K on paths is said con-

junction consistent iff it holds that π1 ≡ψ1∧ψ2

K π2 iff π1 ≡ψ1

K π2 and π1 ≡ψ2

K π2, for all

π1, π2 ∈ Pth(K).

By the state focus and conjunction consistency properties, we can derive an equivalence on the

quantification of a conjunction between a state and a path formula that allow to extract the first one

from the scope of the quantifier. This property is simply an extension of what we have in the case

of ungraded quantifications.

Theorem 1.4.7 (Local Conjunction Quantification). Let ≡ ·
· be a state focused and conjunction

consistent equivalence relation. Moreover, let ϕ and ψ be a state and a path formula, respectively,

and g ∈ [1, ω]. Then, the following holds: E≥gϕ ∧ ψ ≡ ϕ ∧ E≥gψ and A<gϕ ∨ ψ ≡ ϕ ∨ A<gψ.

Proof. [Only if]. If K, w0 |= E≥gϕ ∧ ψ then |(Pth(K, w0, ϕ ∧ ψ)/≡ϕ∧ψ
K )| ≥ g, where w0 is the

initial world of K. The inequality implies Pth(K, w0, ϕ ∧ ψ) 6= ∅, so, by Item iii of Proposition

1.3.1, there is a path π ∈ Pth(K, w0) such that K, π |= ϕ and, by Item ii of the same proposition,

this means that K, w0 |= ϕ. Then, again by Item iii of Proposition 1.3.1, it is immediate to see that

Pth(K, w0, ϕ ∧ ψ) = Pth(K, w0, ψ). Moreover, by the state focus property, we have that π1 ≡ϕ
K

π2, for all paths π1, π2 ∈ Pth(K, w0). Now, by the conjunction consistency property, we obtain

that π1 ≡ϕ∧ψ
K π2 iff π1 ≡ψ

K π2. So, (Pth(K, w0, ϕ ∧ ψ)/≡ϕ∧ψ
K ) = (Pth(K, w0, ψ)/≡ϕ∧ψ

K ) =

(Pth(K, w0, ψ)/≡ψ
K). Hence, K, w0 |= E≥gψ and consequently K, w0 |= ϕ ∧ E≥gψ.

[If]. If K, w0 |= ϕ ∧ E≥gψ, we have that K, w0 |= ϕ and |(Pth(K, w0, ψ)/≡ψ
K)| ≥ g.

Then, by Items ii and iii of Proposition 1.3.1, it is immediate to see that Pth(K, w0, ψ) =
Pth(K, w0, ϕ ∧ ψ). Moreover, by the state focus property, we have that π1 ≡ϕ

K π2, for all paths

π1, π2 ∈ Pth(K, w0). Now, by the conjunction consistency property, we obtain that π1 ≡ϕ∧ψ
K π2

iff π1 ≡ψ
K π2. So, (Pth(K, w0, ψ)/≡ψ

K) = (Pth(K, w0, ϕ ∧ ψ)/≡ψ
K) = (Pth(K, w0, ϕ ∧ ψ)/

≡ϕ∧ψ
K ). Hence, K, w0 |= E≥gϕ ∧ ψ.

It is interesting to note that, in order to prove the previous result, we do not need the full power

of the conjunction consistency but the weaker property, denoted local conjunction consistency, that

only links the equivalence w.r.t. a conjunction of a state and a path formula to the equivalences

21



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

w.r.t. the conjuncts. However, as we show later, we need the full power of the property when we

have to reason about complex CTL* path formulas.

Consider again the two path formulas ψ1 and ψ2. We would like that, from a given world, the

sum of the number of paths that satisfy ψ1 together with that satisfying ψ2 is not less than the

number of paths that satisfy their disjunction. Suppose that there are only two paths that satisfy ψ1

(resp., ψ2) and are equivalent w.r.t. the same formula. Then, the two paths need to be equivalent

w.r.t. ψ1 ∨ ψ2, too. Hence, one way to ensure such a property is to ask that whenever two paths

are equivalent w.r.t. one formula they are equivalent also w.r.t. its disjunctions. Moreover, we

would like that both the number of paths that satisfy ψ1 and ψ2 are not greater than those satisfying

ψ1 ∨ψ2. Hence, we need that paths satisfying ψ1 (resp., ψ2) and equivalent w.r.t. ψ1 ∨ψ2, are also

equivalent w.r.t. ψ1 (resp., ψ2). So, we would like that two paths are equivalent w.r.t. a disjunction

iff they are equivalent w.r.t. one of the two disjuncts.

Definition 1.4.7 (Disjunction Consistency). An equivalence relation ≡ ·
K on paths is said disjunc-

tion consistent iff it holds that π1 ≡ψ1∨ψ2

K π2 iff π1 ≡ψ1

K π2 or π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K).

In general, however, such a property can contradict the syntax independence, state focus, and

the next and weak next consistency properties. Indeed, let ψ1 = X p and ψ2 = ¬X p, for an atomic

proposition p ∈ AP. Then, ψ1 ∨ψ2 is equivalent to t. Consider now two paths π1, π2 ∈ Pth(K, w)
such that K, (π1)1 |= p and K, (π2)1 6|= p, and so (π1)1 6= (π2)1. Since the two paths have

different successors of the origin, they are distinct w.r.t. ψ1 and ψ2 but they are identical w.r.t.

ψ1 ∨ ψ2, because of the state focus and syntax independence properties. In this example, the

contradiction rises from the fact that the disjunction turns out to be a weaker property (a tautology)

than the two base formulas. Hence, the formula is always satisfied and, since all choices over the

paths are indifferent, they may be regarded as equivalent. Now, one may think that this is a problem

related only to tautologies that rise from the disjunction. Unfortunately, this is not the case. Indeed,

the disjunction may contain an hidden tautology that reveals itself only at some later points on

the paths. For example, let ψ1 = X X p and ψ2 = X ¬ X̃ p. Their disjunction is not a tautology,

because it is not satisfied on paths of length 1. Consider now two paths π1, π2 ∈ Pth(K, w) such

that (π1)1 = (π2)1, K, (π1)2 |= p, and K, (π2)2 6|= p. The two paths are distinct w.r.t. ψ1 and ψ2

because they have distinct third nodes, but they are identical w.r.t. ψ1 ∨ ψ2 ≡ X t. It is easy to

believe that the hidden tautology may be found arbitrary deeper in the formula, that is why the

disjunction consistency cannot hold in its entirety.

Since it is not possible to define in general an easy property that relates the equivalence on a

disjunction to the equivalence on the component formulas, we restrict our observations to a case

where the tautology derived from the disjunction can appear only at the first node of paths. Hence,

we consider only disjunction between a state ϕ and a path formula ψ. In such a case, two paths

equivalent w.r.t. the disjunction ϕ ∨ ψ ≡ ϕ ∨ ¬ϕ ≡ t are equivalent w.r.t. one of the two state

formulas, too. In the next section, we actually prove that this property does not contradict the

previous ones.

Definition 1.4.8 (Local Disjunction Consistency). An equivalence relation ≡ ·
K on paths is said

local disjunction consistent iff it holds that π1 ≡ϕ∨ψ
K π2 iff π1 ≡ϕ

K π2 or π1 ≡ψ
K π2, for all

π1, π2 ∈ Pth(K), where ϕ is a state formula.

22



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

We further discuss an incidental property.

Consider a path formula ψ. Since in the semantics we only consider paths satisfying ψ when

evaluating the truth nature of an existential or universal quantification, it is pointless to compare

two paths if one of them does not satisfy ψ. However, suppose that there exist two paths π1 and

π2 that do not satisfy a state formula ϕ, but that are equivalent w.r.t. ϕ. Also suppose that these

paths satisfy a path formula ψ, but they are not equivalent w.r.t. ψ. Then, by local disjunction

consistency the two paths would be equivalent w.r.t. ϕ ∨ ψ, but it is unreasonable that there is

only one path satisfying the disjunction while ϕ is not satisfied on them and there are two paths

satisfying the formula ψ. In order to avoid such a problem, we may want to require that two paths

are equivalent w.r.t. a formula only if they both satisfy it.

Definition 1.4.9 (Satisfiability Constraint). An equivalence relation ≡ ·
K on paths is said satisfia-

bility constrained iff it holds that if π1 ≡ψ
K π2 then K, π1 |= ψ and K, π2 |= ψ.

By the state focus, local disjunction consistency, and satisfiability constraint properties, we can

derive an equivalence on the quantification of a disjunction between a state and a path formula

that allow to extract in a negated form the first one from the scope of the quantifier. Note that this

property is not an extension of what we have in the case of ungraded quantifications.

Theorem 1.4.8 (Local Disjunction Quantification). Let ≡ ·
· be a state focused, local disjunction

consistent, and satisfiability constrained equivalence relation. Moreover, let ϕ and ψ be a state and

a path formula, respectively, and g ∈ [2, ω]. Then, the following holds: E≥gϕ ∨ ψ ≡ ¬ϕ ∧ E≥gψ
and A<gϕ ∧ ψ ≡ ¬ϕ ∨ A<gψ.

Proof. [Only if]. If K, w0 |= E≥gϕ ∨ ψ then |(Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψ
K )| ≥ g, where w0 is the

initial world of K. Suppose now by contradiction that K, w0 |= ϕ. Then, by the state focus property,

we have that π1 ≡ϕ
K π2, for all paths π1, π2 ∈ Pth(K, w0). So, by the local disjunction consistency

property, we obtain that π1 ≡ϕ∨ψ
K π2 and then that |(Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψ

K )| = 1 < g, but

this contradict the hypothesis. Hence, K, w0 6|= ϕ, i.e., K, w0 |= ¬ϕ. Then, by Item iv of

Proposition 1.3.1, it is immediate to see that Pth(K, w0, ϕ ∨ ψ) = Pth(K, w0, ψ). Moreover, by

the satisfiability constraint property, we have that π1 6≡ϕ
K π2, for all paths π1, π2 ∈ Pth(K, w0).

Now, again by the local disjunction consistency property, we obtain that π1 ≡ϕ∨ψ
K π2 iff π1 ≡ψ

K
π2. So, (Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψ

K ) = (Pth(K, w0, ψ)/≡ϕ∨ψ
K ) = (Pth(K, w0, ψ)/≡ψ

K). Hence,

K, w0 |= E≥gψ and consequently K, w0 |= ¬ϕ ∧ E≥gψ.

[If]. If K, w0 |= ¬ϕ ∧ E≥gψ, we have that K, w0 6|= ϕ and |(Pth(K, w0, ψ)/≡ψ
K)| ≥ g. Then,

by Item iv of Proposition 1.3.1, it is immediate to see that Pth(K, w0, ψ) = Pth(K, w0, ϕ ∨ ψ).
Moreover, by the satisfiability constraint property, we have that π1 6≡ϕ

K π2, for all paths π1, π2 ∈
Pth(K, w0). Now, by the local disjunction consistency property, we obtain that π1 ≡ϕ∨ψ

K π2 iff

π1 ≡ψ
K π2. So, (Pth(K, w0, ψ)/≡ψ

K)= (Pth(K, w0, ϕ ∨ ψ)/≡ψ
K)= (Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψ

K ).
Hence, K, w0 |= E≥gϕ ∨ ψ.

1.4.4 Main properties

We now summarize all the previous properties in the single concept of adequacy.

23



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

Definition 1.4.10 (Adequacy). An equivalence relation ≡ ·
K on paths is said adequate iff it holds

that it is (i) syntax independent, (ii) state focused, (iii) next consistent, (iv) weak next consistent,

(v) source dependent, (vi) conjunction consistent, (vii) local disjunction consistent, and (viii)

satisfiability constrained.

Next theorem shows four exponential fixpoint expressions that extend to graded formulas

the corresponding well-known results for ungraded ones. These interesting equivalences among

GCTL formulas, are useful to describe important properties of its semantics.

Theorem 1.4.9 (GCTL Fixpoint Equivalences). Let ≡ ·
· be an adequate equivalence relation.

Moreover, let ϕ1 and ϕ2 be two state formulas and g ∈ [2, ω]. Then, the following equivalences

hold:

i. E≥gϕ1U ϕ2 ≡ ¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1U ϕ2) ∨ E≥1X E≥gϕ1U ϕ2);

ii. E≥gϕ1R ϕ2 ≡ ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1R ϕ2) ∨ E≥1X E≥gϕ1R ϕ2);

iii. A<gϕ1Ũ ϕ2 ≡ ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1Ũ ϕ2) ∧ A<1 X̃ A<gϕ1Ũ ϕ2;

iv. A<gϕ1 R̃ ϕ2 ≡ ¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1 R̃ ϕ2) ∧ A<1 X̃ A<gϕ1 R̃ ϕ2.

Proof. To show Item i (resp., ii), it is possible to apply to the formula E≥gϕ1U ϕ2 (resp., E≥gϕ1R

ϕ2) the following chain of equivalences: Item i (resp., ii) of Corollary 1.4.1 and Theorems 1.4.8

(resp., 1.4.7), 1.4.7 (resp., 1.4.8), 1.4.5, and 1.4.6. At the same way, to show Item iii (resp., iv),

it is possible to apply to the formula A<gϕ1Ũ ϕ2 (resp., A<gϕ1 R̃ ϕ2) the following sequence of

equivalences: Item vii (resp., viii) of Corollary 1.4.1, and Theorems 1.4.7 (resp., 1.4.8), 1.4.8

(resp., 1.4.7), 1.4.5, and 1.4.6.

In the following, we use the four macros EU(g, ϕ1, ϕ2, Y ), ER(g, ϕ1, ϕ2, Y ), AŨ(g, ϕ1, ϕ2,
Y ), and AR̃(g, ϕ1, ϕ2, Y ) defined below, to represent in short the expansion formulas for the

existential U and R and the universal Ũ and R̃ temporal operators derived in the previous theorem

and in Items i, ii, vii, and viii of Proposition 1.3.3.

• EU(g, ϕ1, ϕ2, Y ) ,

{
ϕ2 ∨ ϕ1 ∧ E≥1X Y, if g = 1;

¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1U ϕ2) ∨ E≥1X Y ), otherwise.

• ER(g, ϕ1, ϕ2, Y ) ,

{
ϕ2 ∧ (ϕ1 ∨ E≥1X Y ), if g = 1;

ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1R ϕ2) ∨ E≥1X Y ), otherwise.

• AŨ(g, ϕ1, ϕ2, Y ) ,

{
ϕ2 ∨ ϕ1 ∧ A<1X Y, if g = 1;

ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1Ũ ϕ2) ∧ A<1X Y, otherwise.

• AR̃(g, ϕ1, ϕ2, Y ) ,

{
ϕ2 ∧ (ϕ1 ∨ A<1X Y ), if g = 1;

¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1 R̃ ϕ2) ∧ A<1X Y, otherwise.

24



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

It is immediate to see that |EU(g, ϕ1, ϕ2, Y )| = |ER(g, ϕ1, ϕ2, Y )| = Θ(|Y |+ (|ϕ1|+ |ϕ2|+ 5) ·
2k·

√
g) and |AŨ(g, ϕ1, ϕ2, Y )| = |AR̃(g, ϕ1, ϕ2, Y )| = Θ(|Y | + (|ϕ1| + |ϕ2| + 5) · 2k·

√
g−1), for

a constant k. Moreover, for all g ∈ [1, ω], it holds that

• E≥gϕ1U ϕ2 ≡ EU(g, ϕ1, ϕ2,E
≥gϕ1U ϕ2),

• E≥gϕ1R ϕ2 ≡ ER(g, ϕ1, ϕ2,E
≥gϕ1R ϕ2),

• A<gϕ1Ũ ϕ2 ≡ AŨ(g, ϕ1, ϕ2,A
<gϕ1Ũ ϕ2),

• A<gϕ1 R̃ ϕ2 ≡ AR̃(g, ϕ1, ϕ2,A
<gϕ1 R̃ ϕ2).

Differently from the previous cases, we cannot hope to obtain similar general fixpoint equiva-

lences for the existential Ũ and R̃ and the universal U and R temporal operators. This is due to the

fact that we do not have general equivalences between the quantifications of X ψ and those of X̃ ψ.

The next theorem shows the four exponential fixpoint properties we are able to derive for these

cases.

Theorem 1.4.10 (GCTL Almost Fixpoint Equivalences). Let ≡ ·
· be an adequate equivalence

relation. Moreover, let K be a KS, w0 its initial world, ϕ1 and ϕ2 be two state formulas, and

g ∈ [2, ω]. Then, the following hold:

i. K |= E≥gϕ1Ũ ϕ2 iff K |= ¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1Ũ ϕ2) ∨ E≥1X E≥gϕ1Ũ ϕ2) and X̃ ϕ1Ũ ϕ2

is not an ≡w0
K -tautology;

ii. K |= E≥gϕ1 R̃ ϕ2 iff K |= ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1 R̃ ϕ2) ∨ E≥1X E≥gϕ1 R̃ ϕ2) and X̃ ϕ1 R̃ ϕ2

is not an ≡w0
K -tautology;

iii. K |= A<gϕ1U ϕ2 iff K |= ϕ2 ∨¬ϕ1 ∨AX̃′(g, ϕ1U ϕ2)∧A<1 X̃ A<gϕ1U ϕ2 or ¬X ϕ1U ϕ2 is

an ≡w0
K -tautology;

iv. K |= A<gϕ1R ϕ2 iff K |= ¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1R ϕ2) ∧ A<1 X̃ A<gϕ1R ϕ2 or ¬X ϕ1R ϕ2 is

an ≡w0
K -tautology.

Proof. To show Item i (resp., ii), it is possible to apply to the formula E≥gϕ1Ũ ϕ2 (resp., E≥gϕ1 R̃

ϕ2) the following chain of equivalences: Item iii (resp., iv) of Corollary 1.4.1, and Theorems 1.4.8

(resp., 1.4.7), 1.4.7 (resp., 1.4.8), 1.4.3, 1.4.5, and 1.4.6. At the same way, to show Item iii (resp.,

iv), it is possible to apply to the formula A<gϕ1U ϕ2 (resp., A<gϕ1R ϕ2) the following sequence

of equivalences: Item v (resp., vi) of Corollary 1.4.1, and Theorems 1.4.7 (resp., 1.4.8), 1.4.8 (resp.,

1.4.7), 1.4.3, 1.4.5, and 1.4.6.

As for the previous cases, in the following, we use the macros EŨ(g, ϕ1, ϕ2, Y, ϕ), ER̃(g, ϕ1,
ϕ2, Y, ϕ), AU(g, ϕ1, ϕ2, Y, ϕ), and AR(g, ϕ1, ϕ2, Y, ϕ) defined below, to represent in short the

expansion formulas for the existential Ũ and R̃ and the universal U and R temporal operators

derived in the previous theorem and in Items iii, iv, v, and vi of Proposition 1.3.3.

• EŨ(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∨ ϕ1 ∧ (E≥1 X̃ f ∨ E≥1X Y ), if g = 1;

¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1Ũ ϕ2) ∨ E≥1X Y ) ∧ ϕ, otherwise.

25



1. Graded Computation Tree Logic 1.4 - Path Equivalence Properties

• ER̃(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∧ (ϕ1 ∨ E≥1 X̃ f ∨ E≥1X Y ), if g = 1;

ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1 R̃ ϕ2) ∨ E≥1X Y ) ∧ ϕ, otherwise.

• AU(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∨ ϕ1 ∧ A<1X t ∧ A<1X Y, if g = 1;

ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1U ϕ2) ∧ A<1 X̃ Y ∨ ϕ, otherwise.

• AR(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∧ (ϕ1 ∨ A<1X t ∧ A<1X Y ), if g = 1;

¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1R ϕ2) ∧ A<1 X̃ Y ∨ ϕ, otherwise.

It is immediate to see that |EŨ(g, ϕ1, ϕ2, Y, ϕ)| = |ER̃(g, ϕ1, ϕ2, Y, ϕ)| = Θ(|Y | + |ϕ| + (|ϕ1| +
|ϕ2| + 5) · 2k·

√
g) and |AU(g, ϕ1, ϕ2, Y, ϕ)| = |AR(g, ϕ1, ϕ2, Y, ϕ)| = Θ(|Y | + |ϕ| + (|ϕ1| +

|ϕ2| + 5) · 2k·
√
g−1), for a constant k. As yet noted above, there are no general equivalences that

directly link the formulas E≥gϕ1Ũ ϕ2, E≥gϕ1 R̃ ϕ2, A<gϕ1U ϕ2, and A<gϕ1R ϕ2 with their expan-

sions EŨ(g, ϕ1, ϕ2,E
≥gϕ1Ũ ϕ2, ϕ), ER̃(g, ϕ1, ϕ2,E

≥gϕ1 R̃ ϕ2, ϕ), AU(g, ϕ1, ϕ2,A
<gϕ1U ϕ2,

ϕ), and AR(g, ϕ1, ϕ2,A
<gϕ1R ϕ2, ϕ). Note that here the metavariable ϕ can be used at the same

way of that of the macro EX̃(g, ψ, ϕ).

Finally, we show a fundamental equivalence that allows us to extract all state formulas from

the scope of a quantification of a generic GCTL* path formula.

Theorem 1.4.11 (GCTL* Path Expansion Equivalence). Let ≡ ·
· be a syntax independent, state

focused, conjunction consistent, local disjunction consistent, and satisfiability constrained equiva-

lence relation. Moreover, let ϕi and ψi be, respectively, k state and path formulas, Opi ∈ {X, X̃},

and g ∈ [1, ω]. Then, the following equivalences hold, where ψ =
∧k
i=1(ϕi ∨ Opiψi), ϕI =∧

i∈I ϕi ∧
∧
i∈[1,k]\I ¬ϕi and ψI = Op

∧
i∈[1,k]\I ψi with Op ∈ {X, X̃} and Op = X iff there is

i ∈ [1, k] \ I such that Opi = X .

1. E≥gψ ≡ ∨
I⊆[1,k] ϕI ∧ E≥gψI ;

2. A<g¬ψ ≡ ∨
I⊆[1,k] ϕI ∧ A<g¬ψI .

Proof. We have to prove that K, w0 |= E≥gψ iff K, w0 |= ∨
I⊆[1,k] ϕI ∧ E≥gψI (resp., K, w0 |=

A<g¬ψ iff K, w0 |= ∨
I⊆[1,k] ϕI ∧ A<g¬ψI ), where w0 is the initial world of K, for all KS K.

First, let I ⊆ [1, k] be the set of indexes of just the state formulas ϕi that are true on K, i.e., such

that (i) K, w0 |= ϕi, for all i ∈ I , and (ii) K, w0 6|= ϕi, for all i ∈ [1, k] \ I . Thus, K, w0 |= ϕI .
Note that such a set is uniquely determined by the KS K.

By Items iii and iv of Proposition 1.3.1, it holds that Pth(K, w0, ψ) = Pth(K, w0, ψI). What

remains to prove is that π1 ≡ψ
K π2 iff π1 ≡ψI

K π2, for all π1, π2 ∈ Pth(K, w0). By the conjunction

consistency property, we have that π1 ≡ψ
K π2 iff, for all i ∈ [1, k], it holds that π1 ≡ϕi∨Opiψi

K π2.

Thus, by the local disjunction consistency property, we obtain that π1 ≡ψ
K π2 iff, for all i ∈ [1,

k], it holds that π1 ≡ϕi
K π2 or π1 ≡Opiψi

K π2. Now, if i ∈ I , by the state focus property, it holds

that π1 ≡ϕi
K π2. On the contrary, if i ∈ [1, k] \ I , by the satisfiability constraint property, it holds

that π1 6≡ϕi
K π2. Hence, the previous coimplication between π1 ≡ψ

K π2 and its expansion can be

simplified as follows: π1 ≡ψ
K π2 iff, for all i ∈ [1, k] \ I , it holds that π1 ≡Opiψi

K π2. At this point,

26



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

again by the conjunction consistency property, we have that π1 ≡ψ
K π2 iff π1 ≡

V

i∈[1,k]\I Opiψi

K π2.

Now, it is easy to note that
∧
i∈[1,k]\I Opiψi ≡ ψI . So, by the syntax independence property, we

can further simplify the previous coimplication in π1 ≡ψ
K π2 iff π1 ≡ψI

K π2, obtaining directly that

(Pth(K, w0, ψ)/≡ψ
K) = (Pth(K, w0, ψI)/≡ψI

K ). Thus, the assumption K, w0 |= ϕI implies that

K, w0 |= E≥gψ iff K, w0 |= E≥gψI (resp., K, w0 |= A<g¬ψ iff K, w0 |= A<g¬ψI ).

Now, on one hand, it is easy to see that, for each KS K, there is a set I ⊆ [1, k] such that

K, w0 |= ϕI and so E≥gψ ⇒ ∨
I⊆[1,k] ϕI ∧ E≥gψI (resp., A<g¬ψ ⇒ ∨

I⊆[1,k] ϕI ∧ A<g¬ψI ).
On the other hand, the existence of a set I ⊆ [1, k] such that K, w0 |= ϕI and K, w0 |= E≥gψI
(resp., K, w0 |= A<g¬ψI ) implies E≥gψ (resp., A<g¬ψ), i.e.,

∨
I⊆[1,k] ϕI ∧ E≥gψI ⇒ E≥gψ

(resp.,
∨
I⊆[1,k] ϕI ∧ A<g¬ψI ⇒ A<g¬ψ). Hence, the thesis follows.

It may be interesting to observe that the previous result is a generalization of Theorems 1.4.7

and 1.4.8 that can be obtained as the limit cases in which there are no conjunctions or disjunctions,

respectively. Moreover, it is important to note that, differently from the case of the local conjunction

quantification, here we need the full power of the conjunction consistency property in order to

prove this equivalence.

1.5 Prefix Path Equivalence

In this section, we introduce an equivalence relation that satisfies all the previously discussed

properties. Hence, we show that those properties are not contradictory, by presenting one of the

possible meaningful graded computation tree logics.

1.5.1 Definition and properties

In the definition of the GCTL* semantics, we use a generic equivalence relation ≡·
· on paths

that allows us to count how many ways a structure has to satisfy a path formula. So, two paths

should be considered equivalent when they represent only one way to perform according to that

formula. For many formulas, such a way results to be their common finite prefix. For example,

all paths that satisfy X p and have the first two nodes in common may be regarded as equivalent

because the first two nodes constitute the one sought way to satisfy X p. For some other formula

like X̃ p, the ways to satisfy it are less clear. For example, consider two paths π1 and π2 with

only the starting node in common, such that the first satisfies X p while the latter X ¬p. Then, the

common node, if taken alone, i.e., without its successors, may be considered as a path satisfying

X̃ p. So, the two paths would be equivalent. However, this looks unreasonable because π2 does not

satisfy X̃ p and, thus, the common prefix failed to ensure the conservativeness of the satisfiability

for this formula. Hence, a common prefix between two paths may be considered as a way to satisfy

a path formula, if it satisfies the formula and somehow it allows us to deduce that this formula

is true on all paths with that prefix in the structure. The following definition of the equivalence

relation among paths formally captures the previous idea.

Definition 1.5.1 (Prefix Equivalence). Two paths π1, π2 ∈ Pth(K) are prefix equivalent w.r.t. a

path formula ψ, in symbols π1 ≡ψ
K π2, iff either π1 = π2 or (i) the common track ρ = pfx(π1, π2)

27



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

of π1 and π2 is not empty and (ii) K, ρ · π≥1 |= ψ, for every path/track π ∈ (Pth(K, lst(ρ)) ∪
Trk(K, lst(ρ))).

Observe that when two paths are distinct w.r.t. ≡ψ
K, there are always at least two successors of

the last node of their common prefix. Hence, the KS K is never allowed to stop its computations at

that node, i.e., the common prefix is a track but not a path in K.

We now give few simple examples of the behavior of GCTL* under the use of the prefix

equivalence. Consider a finite KT T having just three nodes all labeled by p, the root and its two

successors. Also, consider the formula ϕ = E≥2F p. Because of the definition of the equivalence,

the only two paths π1, π2 ∈ Pth(T , ε) of length two satisfying F p are equivalent, since the

common prefix ρ = pfx(π1, π2) containing just the root satisfies the formula too. Hence, T 6|= ϕ.

On the contrary, if we take the same tree T , but with its root not labeled with p, we obtain that

T |= ϕ, since T , ρ 6|= F p. This means that the particular equivalence allows us to count as

different events only their first appearance along the paths. Consider now an infinite KT T ′ having

just two paths all labeled by p and the formula ϕ = E≥2G p. Since G p cannot be satisfied on a

track / finite path, we have that T , ρ 6|= G p, so the two infinite paths are not equivalent w.r.t. this

formula, which implies that T ′ |= ϕ′. On the contrary, if we take ϕ′ = E≥2 G̃ p, then we obtain

T ′ 6|= ϕ′, since each track / path completely labeled with p satisfies G̃ p.

We now define a new equivalence between path formulas that results to be compatible with the

chosen prefix equivalence. Its definition, in particular, takes into account a KS K and one of its

worlds w in which we want to verify that the two formulas under exam are interchangeable for the

logic.

Definition 1.5.2 (Structure Formula Equivalence). Let K be a KS, w one of its worlds, and ψ1

and ψ2 be two path formulas. Then, ψ1 is structurally equivalent to ψ2 w.r.t. K and w, in symbols

ψ1 ≡w
K ψ2, iff, for all paths/tracks π ∈ (Pth(K, w) ∪ Trk(K, w)), it holds that K, π |= ψ1 iff

K, π |= ψ2.

The following theorem shows that the prefix path relation, satisfies the adequacy property

defined in the previous section, if we consider the structure formula equivalence when we have to

deal with the weak next operator.

Theorem 1.5.1 (Prefix Equivalence Adequacy). The prefix equivalence relation is adequate.

Proof. All the equivalence properties we want to show express that a given property on two paths

implies a derived property on the same paths. So they are trivially satisfied when they concern

two identical paths. For this reason in the following, we make the assumption that the two paths

π1, π2 ∈ Pth(K) involved in the proof are distinct. Moreover, we use ρ = pfx(π1, π2) to indicate

their common prefix.

i. (Syntax independence). For i ∈ {1, 2}, if π1 ≡ψi
K π2, then (i) ρ 6= ε and (ii) K, ρ · π≥1 |= ψi,

for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Since ψ1 ≡ ψ2, by Item i of Proposition 1.3.1,

we obtain then that K, ρ · π≥1 |= ψ3−i, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence,

π1 ≡ψ3−i

K π2.

28



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

ii. (State focus). Assume that (π1)0 = (π2)0, thus obtaining ρ 6= ε. Since ϕ is a state formula,

by Item ii of Proposition 1.3.1, we have that K, (ρ)0 |= ϕ implies K, ρ · π≥1 |= ϕ, for all

π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence, π1 ≡ϕ
K π2.

iii. (Next consistency). Assume that (π1)0 = (π2)0. Then, it is immediate to see that ρ 6= ε and

ρ≥1 = pfx((π1)≥1, (π2)≥1) is the common prefix of the suffixes of the two paths π1 and π2.

[Only if]. If π1 ≡X ψ
K π2, then K, ρ ·π≥1 |= X ψ, for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))).

Since lst(ρ) ∈ Trk(K, lst(ρ)), we have that K, ρ · ε |= X ψ, i.e., K, ρ |= X ψ and so,

ρ≥1 6= ε, by Item v of Proposition 1.3.1. Moreover, by the same item, one can note that

K, (ρ · π≥1)≥1 |= ψ, i.e., K, ρ≥1 · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪Trk(K, lst(ρ))) =

(Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))). Hence, (π1)≥1 ≡ψ
K (π2)≥1. [If]. If (π1)≥1 ≡ψ

K
(π2)≥1, then K, ρ≥1 · π≥1 |= ψ, i.e., K, (ρ · π≥1)≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ≥1)) ∪
Trk(K, lst(ρ≥1))). Now, by Item v of Proposition 1.3.1, one can note that K, ρ · π≥1 |= X ψ,

for all π ∈ (Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))) = (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))).
Hence, π1 ≡X ψ

K π2.

iv. (Weak next consistency). Assume that (π1)0 = (π2)0. As in the previous item, we have that

ρ 6= ε and ρ≥1 = pfx((π1)≥1, (π2)≥1). [Only if]. If π1 ≡X̃ ψ
K π2, then K, ρ · π≥1 |= X̃ ψ, for

all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Now, suppose that X̃ ψ is not an ≡(ρ)0
K -tautology.

Then, it is possible to see that ρ≥1 6= ε. Indeed, suppose by contradiction that ρ≥1 = ε
and let π ∈ (Pth(K, (ρ)0) ∪ Trk(K, (ρ0)) be the path/track not satisfying X̃ ψ, i.e., such

that K, π 6|= X̃ ψ. Since (ρ)0 = lst(ρ), it is immediate to see that π = ρ · π≥1, so we

have that K, ρ · π≥1 6|= X̃ ψ, and this is in contradiction with the equivalence π1 ≡X̃ ψ
K π2.

At this point, by Item vi of Proposition 1.3.1, one can note that K, ρ≥1 · π≥1 |= ψ, for all

π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))) = (Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))). Hence,

(π1)≥1 ≡ψ
K (π2)≥1. [If]. On one hand, if X̃ ψ is an ≡(ρ)0

K -tautology, then all paths/tracks

π ∈ (Pth(K, (ρ)0) ∪ Trk(K, (ρ)0)) satisfy X̃ ψ, i.e., K, π |= X̃ ψ. Thus, K, ρ · π≥1 |= X̃ ψ,

for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence, π1 ≡X̃ ψ
K π2. On the other hand, if

(π1)≥1 ≡ψ
K (π2)≥1, then K, ρ≥1·π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ≥1))∪Trk(K, lst(ρ≥1))).

Now, by Item vi of Proposition 1.3.1, one can note that K, ρ · π≥1 |= X̃ ψ, for all π ∈
(Pth(K, lst(ρ≥1))∪Trk(K, lst(ρ≥1))) = (Pth(K, lst(ρ))∪Trk(K, lst(ρ))). Hence, π1 ≡X̃ ψ

K
π2.

v. (Source dependence). By definition, if the two paths π1 and π2 have no starting node in

common, i.e., (π1)0 6= (π2)0, they cannot be prefix equivalent because ρ = ε, i.e., they do not

have any non-empty prefix in common at all.

vi. (Conjunction consistency). Let ψ = ψ1 ∧ ψ2. Then, it holds that π1 ≡ψ
K π2 iff (i) ρ 6= ε and

(ii) K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). By Item iii of Proposition

1.3.1, the condition (ii) is equivalent to K, ρ · π≥1 |= ψi, for all i ∈ {1, 2}. Hence, π1 ≡ψ
K π2

iff π1 ≡ψ1

K π2 and π1 ≡ψ2

K π2.

vii. (Local disjunction consistency). Let ψ = ϕ ∨ ψ′, where ϕ is a state formula. [Only if]. If

π1 ≡ψ
K π2, then (i) ρ 6= ε and (ii) K, ρ·π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))).

29



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

First suppose that K, (ρ)0 |= ϕ. Then, by the state focus property, we obtain that π1 ≡ϕ
K π2.

Suppose now that K, (ρ)0 6|= ϕ. By Item ii of Proposition 1.3.1, we have that K, ρ · π≥1 6|= ϕ,

for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))), and so, by Item iv of Proposition 1.3.1, we obtain

that K, ρ · π≥1 |= ψ′, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Consequently, we obtain

that π1 ≡ψ′

K π2. [If]. If π1 ≡ϕ
K π2 (resp., π1 ≡ψ′

K π2), then (i) ρ 6= ε and (ii) K, ρ · π≥1 |= ϕ
(resp., K, ρ · π≥1 |= ψ′), for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). By Item iv of

Proposition 1.3.1, we have that K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))).
Hence, π1 ≡ψ

K π2.

viii. (Satisfiability constraint). If π1 ≡ψ
K π2, then K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪

Trk(K, lst(ρ))). Now, since there are two paths π′1, π
′
2 ∈ Pth(K, lst(ρ)) such that π1 =

ρ · (π′1)≥1 and π2 = ρ · (π′2)≥1, we obtain that K, π1 |= ψ and K, π2 |= ψ.

At this point, we are able to prove that we can express the concept of tautology in GCTL itself,

due to the particular structure formula equivalence chosen for the logic.

Theorem 1.5.2 (Structure Formula Tautology). Let ≡w
K be a structure formula equivalence w.r.t. a

KS K = 〈AP,W,R, L, w0〉 and one of its worlds w ∈ W. Moreover, let ϕ, ϕ1, and ϕ2 be state

formulas and ψ be a path formula. Then, the following holds:

i. ϕ is an ≡w
K-tautology iff K, w |= ϕ;

ii. X ψ cannot be an ≡w
K-tautology;

iii. X̃ ψ is an ≡w
K-tautology iff ψ is an ≡w′

K -tautology, for all w′ ∈ W such that (w,w′) ∈ R;

iv. ϕ1U ϕ2 is an ≡w
K-tautology iff K, w |= ϕ2;

v. ϕ1R ϕ2 is an ≡w
K-tautology iff K, w |= ϕ1 ∧ ϕ2;

vi. ϕ1Ũ ϕ2 is an ≡w
K-tautology iff K, w |= A<1ϕ1Ũ ϕ2;

vii. ϕ1 R̃ ϕ2 is an ≡w
K-tautology iff K, w |= A<1ϕ1 R̃ ϕ2.

Proof. We prove the statements case by case. In particular, note that we implicitly make use of

properties of Proposition 1.3.1. Moreover, for Items vi and vii, we only prove the (if) direction,

since the converse is immediate by the definition of ≡w
K-equivalence.

i. The thesis directly derives from the definition of ≡w
K-tautology.

ii. The formula X ψ cannot be an ≡w
K-tautology, since w ∈ Trk(K, w) and K, w 6|= X ψ, where

we remind that w in the path formula satisfiability relation |= is considered as the track built

only by the world w itself.

iii. [Only if]. If X̃ ψ is an ≡w
K-tautology, then K, π |= X̃ ψ, for all π ∈ (Pth(K, w)∪Trk(K, w)).

Hence, we have that K, π≥1 |= ψ, for all π ∈ (Pth(K, w) ∪ Trk(K, w)) with π≥1 6= ε,
i.e., π 6= w, which implies that K, π |= ψ, for all π ∈ (Pth(K, w′) ∪ Trk(K, w′)) with

(w,w′) ∈ R. Hence, the thesis follows. [If]. The converse direction is perfectly specular to

the previous one.

30



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

iv. [Only if]. If ϕ1U ϕ2 is an ≡w
K-tautology, so is ϕ2∨ϕ1∧X ϕ1U ϕ2. Now, sincew ∈ Trk(K, w),

we have that K, w |= ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2 and so, K, w |= ϕ2, since K, w 6|= X ϕ1U ϕ2.

[If]. If K, w |= ϕ2, then K, π |= ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2 and so K, π |= ϕ1U ϕ2, for all

π ∈ (Pth(K, w) ∪ Trk(K, w)). Hence, ϕ1U ϕ2 is an ≡w
K-tautology.

v. [Only if]. If ϕ1R ϕ2 is an ≡w
K-tautology, so is ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2). Now, since w ∈

Trk(K, w), we have that K, w |= ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2) and so, K, w |= ϕ1 ∧ ϕ2, since

K, w 6|= X ϕ1R ϕ2. [If]. If K, w |= ϕ1 ∧ ϕ2, then K, π |= ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2) and so

K, π |= ϕ1R ϕ2, for all π ∈ (Pth(K, w) ∪ Trk(K, w)). Hence, ϕ1R ϕ2 is an ≡w
K-tautology.

vi. By the hypothesis, we have that K, π |= ϕ1Ũ ϕ2, for all π ∈ Pth(K, w). Now, suppose by

contradiction that ϕ1Ũ ϕ2 is not an ≡w
K-tautology, i.e., that there is a track ρ ∈ Trk(K, w)

such that K, ρ 6|= ϕ1Ũ ϕ2. Then, we have that K, ρ |= (¬ϕ1)R (¬ϕ2) and so K, ρ |=
(¬ϕ2)U (¬ϕ1∧¬ϕ2), since ρ is necessarily finite. Now, consider a path π ∈ Pth(K, w) having

ρ as prefix, i.e., such that π≤(|ρ|−1) = ρ. Then, it is evident that K, π |= (¬ϕ2)U (¬ϕ1 ∧¬ϕ2)

and this implies that K, π 6|= ϕ1Ũ ϕ2, since there is no prefix in π satisfying ϕ1 in all its

positions before to reach a point in which ϕ2 holds. Hence, we reached the contradiction.

vii. By the hypothesis, we have that K, π |= ϕ1 R̃ ϕ2, for all π ∈ Pth(K, w). Now, suppose by

contradiction that ϕ1 R̃ ϕ2 is not an ≡w
K-tautology, i.e., that there exists a track ρ ∈ Trk(K, w)

such that K, ρ 6|= ϕ1 R̃ ϕ2. Then, we have that K, ρ |= (¬ϕ1)U (¬ϕ2). Now, consider a path

π ∈ Pth(K, w) having ρ as prefix, i.e., such that π≤(|ρ|−1) = ρ. Then, it is evident that

K, π |= (¬ϕ1)U (¬ϕ2) and this implies that K, π 6|= ϕ1 R̃ ϕ2, since there is no prefix in π
satisfying ϕ2 in all its positions before to reach the end of the path or a point in which ϕ1 ∧ϕ2

holds. Hence, we reached the contradiction.

We now deduce two simple corollaries.

Corollary 1.5.1 (GCTL Next Equivalences). Let ≡ ·
· be the prefix path equivalence. Moreover,

let ϕ be a state formula and g ∈ [1, ω]. Then, it holds that E≥g X̃ ϕ ≡ EX̃(g, ϕ,E≥1X ¬ϕ) and

A<gX ϕ ≡ AX(g, ϕ,A<1 X̃ ¬ϕ).

Proof. By Theorem 1.5.1, ≡ ·
· is adequate. Now, the thesis can be derived by Theorem 1.4.3 and

Items i and iii of Theorem 1.5.2.

In the rest of the paper, we only consider formulas not containing any sub formula of the form

E≥g X̃ ϕ with ϕ 6= f and A<gX ϕ with ϕ 6= t. This can be done w.l.o.g. since each formula can be

converted into another one without the above quantifications and with a linear blow-up only, by

using the equivalence of the previous corollary.

Corollary 1.5.2 (GCTL Fixpoint Equivalences). Let ≡ ·
· be the prefix path equivalence. Moreover,

let ϕ1 and ϕ2 be two state formulas and g ∈ [1, ω]. Then, the following holds:

i. E≥gϕ1U ϕ2 ≡ EU(g, ϕ1, ϕ2,E
≥gϕ1U ϕ2);

ii. E≥gϕ1R ϕ2 ≡ ER(g, ϕ1, ϕ2,E
≥gϕ1R ϕ2);

iii. E≥gϕ1Ũ ϕ2 ≡ EŨ(g, ϕ1, ϕ2,E
≥gϕ1Ũ ϕ2,E

≥1X E≥1¬(ϕ1Ũ ϕ2));

31



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

iv. E≥gϕ1 R̃ ϕ2 ≡ ER̃(g, ϕ1, ϕ2,E
≥gϕ1 R̃ ϕ2,E

≥1X E≥1¬(ϕ1 R̃ ϕ2));

v. A<gϕ1U ϕ2 ≡ AU(g, ϕ1, ϕ2,A
<gϕ1U ϕ2,A

<1 X̃ A<1¬(ϕ1U ϕ2));

vi. A<gϕ1R ϕ2 ≡ AR(g, ϕ1, ϕ2,A
<gϕ1R ϕ2,A

<1 X̃ A<1¬(ϕ1R ϕ2));

vii. A<gϕ1Ũ ϕ2 ≡ AŨ(g, ϕ1, ϕ2,A
<gϕ1Ũ ϕ2);

viii. A<gϕ1 R̃ ϕ2 ≡ AR̃(g, ϕ1, ϕ2,A
<gϕ1 R̃ ϕ2).

Proof. By Theorem 1.5.1, ≡ ·
· is adequate. Now, Items i, ii, vii, and viii follow directly by Theorem

1.4.9, while Items iii, iv, v, and vi can be derived by Theorem 1.4.10 and Items iii, vi, and vii of

Theorem 1.5.2.

We now conclude this part of the section by showing two simple but fundamental properties

of GCTL* that allow the application of the automata-theoretic approach to the solution of the

satisfiability problem.

By using a proof by induction, we prove that GCTL* is invariant under the unwinding of a

model.

Theorem 1.5.3 (GCTL* Unwinding Invariance). Let ≡ ·
· be the prefix path equivalence. Then,

GCTL* is invariant w.r.t. unwinding, i.e., K |= ϕ iff KU |= ϕ, for all state formulas ϕ.

Proof. Let K = 〈AP,W,R, L, w0〉 be a KS and KU = 〈AP,W′,R′, L′, ε〉 be its unwinding. Then,

we show that for each GCTL* state formula ϕ and world w ∈ W′, it holds that K, unw(w) |= ϕ
iff KU , w |= ϕ, where unw : W′ → W is the unwinding function. As a side result, we also

prove that K, unw(π) |= ψ iff KU , π |= ψ, for all GCTL* path formulas ψ and paths/tracks

π ∈ (Pth(KU , w)∪Trk(KU , w)), where, in this case, unw : (Pth(KU )∪Trk(KU )) → (Pth(K)∪
Trk(K)) is bijective function that extends the unwinding function on worlds to paths and tracks,

i.e., (unw(π))i = unw((π)i), for all i ∈ [0, |π|[ .

The proof proceeds by induction on the structure of the formula ϕ. The basic case of atomic

propositions and the inductive cases of Boolean combinations are immediate and left to the reader.

Therefore, let us consider the inductive case where ϕ is an existential quantification of the form

E≥gψ, with g ∈ [1, ω]. The case of universal quantifications A<gψ can be treated similarly.

First observe that, by the inductive hypothesis, it holds that K, unw(w) |= ϕ iff KU , w |= ϕ,

for all ϕ ∈ rcl(ψ) and w ∈ W′. Now, it is immediate to see that K, unw(π) |= ψ iff KU , π |= ψ,

for all paths π ∈ (Pth(KU , w) ∪ Trk(KU , w)). Indeed, by the definition of semantics on paths,

we have that K, unw(π) |= ψ iff ̟K,ψ(unw(π)) |= ψ and KU , π |= ψ iff ̟KU ,ψ(π) |= ψ.

Now, by the previous observation and the definition of the path transformation, we have that

̟K,ψ(unw(π)) = ̟KU ,ψ(π). Consequently, it holds that unw(π) ∈ Pth(K, unw(w), ψ) iff

π ∈ Pth(KU , w, ψ), for all π ∈ Pth(KU , w).

At this point, in order to prove that |(Pth(K, unw(w), ψ)/≡ψ
K)| ≥ g iff |(Pth(KU , w, ψ)/

≡ψ
KU )| ≥ g, it remains to shows that π1 ≡ψ

KU π2 iff unw(π1) ≡ψ
K unw(π2). The case π1 = π2

is trivial. Thus, consider the case π1 6= π2, let ρ = pfx(π1, π2) be their common prefix, and

observe that unw(ρ) = pfx(unw(π1), unw(π2)). Now, by definition of prefix path equivalence,

we have that π1 ≡ψ
KU π2 iff ρ 6= ε and KU , ρ · π≥1 |= ψ, for all π ∈ (Pth(KU , lst(ρ)) ∪

32



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

Trk(KU , lst(ρ))), and unw(π1) ≡ψ
K unw(π2) iff unw(ρ) 6= ε and K, unw(ρ) · π′≥1 |= ψ, for all

π′ ∈ (Pth(K, lst(unw(ρ))) ∪ Trk(K, lst(unw(ρ)))). Now, using again the fact that K, unw(π) |=
ψ iff KU , π |= ψ, for all paths/tracks π ∈ (Pth(KU , w) ∪ Trk(KU , w)), the thesis follows.

Directly from the previous result, we obtain that GCTL* also enjoys the tree model property.

Corollary 1.5.3 (GCTL* Tree Model Property). Let ≡ ·
· be the prefix path equivalence. Then,

GCTL* has the tree model property.

Proof. Consider a formula ϕ and suppose that it is satisfiable. Then, there is a KS K such that

K |= ϕ. By Theorem 1.5.3, ϕ is satisfied at the root of the unwinding KU of K. Thus, since KU is

a KT, we immediately have that ϕ is satisfied on a tree model.

1.5.2 GCTL vs GµCALCULUS relationships

The µCALCULUS is a well-known modal logic augmented with fixed point operators [Koz83],

which subsumes the classical temporal logics such as LTL, CTL, and CTL*. The GµCALCULUS

simply extends the µCALCULUS with graded state quantifiers [KSV02, BLMV08].

In the next theorem, we show a double-exponential reduction from the significant fragment of

GCTL without infinite-degree quantifications to GµCALCULUS.

Theorem 1.5.4 (GCTL-GµCALCULUS Reduction). For each finite-degree GCTL formula ϕ
there is an equisatisfiable GµCALCULUS formula χ with ‖χ‖ = O(|ϕ| · 2k·

√
ϕ̊), for a constant k,

i.e., ϕ is satisfiable iff χ is satisfiable.

Proof. The reduction we now propose is almost a translation by equivalence. The only basic

formulas that cannot be directly translated are the quantifications E≥1 X̃ f and A<1X t that are

satisfied, respectively, only on worlds without and with successors. This is due to the fact that

the µCALCULUS, and so the GµCALCULUS, is usually defined only on total KS, and E≥1 X̃ f and

A<1X t are equivalent to f and t, respectively, on such a kind of structures. To overcome this gap,

we enrich each KS with a fresh atomic proposition end, representing the fact that a world has no

successors, and translate E≥1 X̃ f in end and A<1X t in ¬end. Moreover, we force the translation

of (i) E≥gX ϕ to ensure that it is satisfied only on worlds not labeled with end and (ii) A<g X̃ ϕ to

allow that it is satisfied also on worlds labeled with end, where g ∈ [1, ω[ . Apart from the cases

of the atomic propositions, the Boolean connectives, and the quantifiers E≥0ψ and A<0ψ that are

equivalent to t and f, respectively, the remaining case are solved using the equivalence showed

in Corollary 1.5.2. Formally, the translation χ = ϕ of ϕ is inductively defined as follows, where

g ∈ [1, ω[ :

1. p , p, for p ∈ AP;

2. ¬ϕ , ¬ ϕ; ϕ1 ∧ ϕ2 , ϕ1 ∧ ϕ2; ϕ1 ∨ ϕ2 , ϕ1 ∨ ϕ2;

3. E≥0ψ , t; A<0ψ , f;

4. E≥1 X̃ f , end; A<1X t , ¬end;

33



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

5. E≥gX ϕ , ¬ end ∧ 〈g − 1〉 ϕ; A<g X̃ ϕ , end ∨ [g − 1] ϕ;

6. E≥g(ϕ1U ϕ2) , µY.EU(g, ϕ1, ϕ2, Y );

7. E≥g(ϕ1R ϕ2) , νY.ER(g, ϕ1, ϕ2, Y );

8. E≥g(ϕ1Ũ ϕ2) , µY.EŨ(g, ϕ1, ϕ2, Y,E≥1X E≥1¬(ϕ1Ũ ϕ2));

9. E≥g(ϕ1 R̃ ϕ2) , νY.ER̃(g, ϕ1, ϕ2, Y,E≥1X E≥1¬(ϕ1 R̃ ϕ2));

10. A<g(ϕ1U ϕ2) , µY.AU(g, ϕ1, ϕ2, Y,A<1 X̃ A<1¬(ϕ1U ϕ2));

11. A<g(ϕ1R ϕ2) , νY.AR(g, ϕ1, ϕ2, Y,A<1 X̃ A<1¬(ϕ1R ϕ2));

12. A<g(ϕ1Ũ ϕ2) , µY.AŨ(g, ϕ1, ϕ2, Y );

13. A<g(ϕ1 R̃ ϕ2) , νY.AR̃(g, ϕ1, ϕ2, Y ).

By induction on the structure of the formula, it is not hard to see that, for each KS K = 〈AP,
W,R, L, w0〉 model of ϕ, the KS K′ = 〈AP ∪ {end},W,R′, L′, w0〉 is a model of ϕ, where (i)

R′∩ (W\W′)×W = R, (ii) L′(w) = L(w), (iii) L′(w′) = L(w′)∪{end}, and (iv) (w′, w′) ∈ R′,
for all w ∈ W \ W′ and w′ ∈ W′, with W′ = {w ∈ W : ∄w′ ∈ W.(w,w′) ∈ R}. Intuitively, we

simply add to each world having no successors a self loop and the label end. Moreover, from a KS

K = 〈AP,W,R, L, w0〉 model of ϕ, it is possible to extract a KS K′ = 〈AP,W,R′, L, w0〉 model

of ϕ, by simply substituting the transition relation R with a new relation R′ defined as follows:

(w,w′) ∈ R′ iff (w,w′) ∈ R and end 6∈ L(w), for all w,w′ ∈ W. Intuitively, we simply cut out

each edge exiting from a world labeled with end.

By the previous theorem and the fact that for GµCALCULUS the satisfiability problem is

solvable in EXPTIME [KSV02], we immediately get that the problem for the finite-degree fragment

of GCTL is decidable and solvable in 3EXPTIME. However, in the next chapters we improve this

result by showing that the problem for the whole GCTL is solvable in EXPTIME, by exploiting an

automata-theoretic approach.

Finally, we show that GCTL is at least exponentially more succinct than GµCALCULUS,

both with the binary coding of the degree. We prove the statement by showing a class of GCTL

formulas ϕg, with g ∈ [1, ω[ , whose minimal equivalent GµCALCULUS formulas χg needs to be,

in size, exponentially bigger than (the size of) ϕg. Classical techniques ([Lan08, Lut06, Wil99])

rely on the fact that in the more succinct logic there exists a formula having a least finite model

whose size is double exponential in the size of the formula, while in the less succinct logic every

satisfiable formula has finite models of size at most exponential in its size. Unfortunately, in our

case we cannot apply this idea, since, as far as we know, both GCTL and the GµCALCULUS

satisfy the small model property, i.e., all their satisfiable formulas have always a model at most

exponential in their size. Hence, to prove the succinctness of GCTL, we explore a technique based

on a characteristic property of our logic. Specifically, it is based on the fact that, using GCTL,

we can write a set of formulas ϕg each one having a number of “characterizing models” that is

34



1. Graded Computation Tree Logic 1.5 - Prefix Path Equivalence

exponential in the degree g of ϕg, while every GµCALCULUS formula has at most a polynomial

number of those models in its degree.

Consider the property “in a tree, there are exactly g grandchildren of the root labeled with

p and having only one path leading from them, while all other nodes are not”. Such a property

can be easily described by the GCTL formula ϕg = ϕ′ ∧ ϕ′′
g , where ϕ′ = ¬p ∧ A<1X (¬p ∧

A<1X (p ∧ A<1X A<1G (¬p ∧ A<2 X̃ f))) and ϕ′′
g = E=gF p. By simple a calculation, we can see

that |ϕg| = 31, ϕ̊g = g, and ‖ϕg ‖ = 32 + ⌈log(g)⌉ + ⌈log(g + 1)⌉. So, its size is Θ(⌈log(g)⌉).
We claim that a GµCALCULUS formula χg requires exponential size to express the same property.

More formally, our aim is to prove the following theorem.

Theorem 1.5.5 (GCTL Exponential Succinctness). Let ϕg = ϕ′∧ϕ′′
g , with ϕ′ = ¬p∧A<1X (¬p∧

A<1X (p∧A<1X A<1G (¬p∧A<2 X̃ f))), ϕ′′
g = E=gF p, and g ∈ [1, ω[. Then, each GµCALCULUS

formula χg equivalent to ϕg has size Ω(2‖ϕg‖).

The proof of this theorem proceeds directly by proving the following lemma and observing

that, since ‖ϕg ‖ = Θ(⌈log(g)⌉), we can easily derive that ‖χg ‖ = Ω(2‖ϕg‖).

Lemma 1.5.1 (GµCALCULUS Polynomial Degree Lower Bound). Every GµCALCULUS formula

χg equivalent to ϕg is of size Ω(g).

Proof. To prove this, we use an automata-theoretic approach. We first recall that the automata

model developed in [KSV02], used to accept all and only the tree models of a GµCALCULUS

formula χ, has as set of state the closure set of χ. On every accepting run, when the automaton

is in a state q on an node x of the input tree, the subtree rooted at that node is a model of q.

Our aim now is to prove that the automaton Aχg for χg can accept all and only the models of

χg, and so of ϕg, only if its state space contains either a formula 〈i〉ϕ′ or a formula [i]ϕ′, for all

i ∈ [0, g[ . Remind that the GµCALCULUS formulas 〈i〉ϕ′ and [i]ϕ′ mean that there are at least

i+ 1 successor satisfying ϕ and all but at most i successors satisfy ϕ, respectively. Suppose by

contradiction that there is no formula ϕ′ such that 〈i〉ϕ′ or [i]ϕ′ are in the state space of Aχg , for a

given index i. Since Aχg accepts all the models of ϕg, it accepts the input tree T = 〈T, v〉, where

T = {ε} ∪ {0, 1} ∪ {0 · 0 · 0∗, . . . , 0 · (i− 1) · 0∗, 1 · 0 · 0∗, . . . , 1 · (g − i− 1) · 0∗}, every node

x, with |x| = 2, i.e., of level equal to 2, is labeled with v(x) = {p}, and every other node y is

labeled with v(y) = ∅. Informally, node 0 has i successors labeled with p, while node 1 has g − i
successors labeled in the same way. Now, on the accepting run R of Aχg on T in the node 0, the

active states represent what are needed to be satisfied in the current node and such requirements

do no contain any existential 〈i〉ϕ′ or universal [i]ϕ′. Hence, if we substitute T with a new tree

T ′ having only i − 1 successor of 0 (labeled with p), then we obtain that also T ′ is accepted,

reaching in this way the contradiction. This is due to the fact that, we can easily modify the run

R to construct an accepting run R′ for T ′, by removing all its subtrees rooted at a node whose

labeled contains the node 0 · l, with l ∈ [0, g[ , not in T ′. Indeed, when Aχg is on the node 0, every

non-quantified formula is already satisfied. A formula 〈j〉ϕ′ with j > i could not be required on T ,

and so on T ′, since it would be trivially false anyway. A formula [j]ϕ′ with j > i is trivially true

on both the trees. Finally, formulas 〈j〉ϕ′ or [j]ϕ′, with j < i, are satisfied on T by hypothesis.

Now, since the subtrees rooted at the successor nodes of 0 are all equal, they all satisfy ϕ′. Thus,

by removing one of them, the quantifier formula is still satisfied. This reasoning shows that the

35



1. Graded Computation Tree Logic 1.6 - Alternating Tree Automata

closure of χg contains at least an existential or universal formula for each degree i ∈ [0, g[ . Hence,

the formula χg must have at least size Ω(g).

Note that, as far as we know, the size of the smallest GµCALCULUS formula χ equivalent to ϕ
has size double exponential in the binary coding of the degree g. In particular, χ can be obtained

by using the translation ϕ described in Theorem 1.5.4. So, there is an exponential gap between

upper and lower bound for the translation from GCTL to GµCALCULUS. Actually, we conjecture

that the succinctness is tight for double exponential, but the technique used in the previous lemma

does not seem to be adaptable for a double exponential lower bound.

1.6 Alternating Tree Automata

In this section, we briefly introduce an automaton model used to solve efficiently the satisfia-

bility problems for GCTL in EXPTIME w.r.t. the size of the formula, by reducing this problem

to the emptiness of the automaton. We recall that, in general, an approach with tree automata to

the solution of the satisfiability problem is only possible once the logic satisfies the tree model

property. In fact, this property holds for GCTL*, and consequently for GCTL, as we have proved

in Corollary 1.5.3.

1.6.1 Classic automata

Nondeterministic tree automata are a generalization to infinite trees of the classical nondeter-

ministic word automata (see [Tho90], for an introduction). Alternating tree automata are a further

generalization of nondeterministic tree automata [MS87]. Intuitively, on visiting a node of the

input tree, while the latter sends exactly one copy of itself to each of the successors of the node, an

ATA can send several copies of itself to the same successor.

We now give the formal definition of alternating tree automata.

Definition 1.6.1 (Alternating Tree Automata). An alternating tree automaton (ATA, for short) is

a tuple A , 〈Σ,∆,Q, δ, q0,F〉, where Σ, ∆, and Q are non-empty finite sets of input symbols,

directions, and states, respectively, q0 ∈ Q is an initial state, F is an acceptance condition to be

defined later, and δ : Q × Σ → B
+(∆ × Q) is an alternating transition function that maps each

pair of states and input symbols to a positive Boolean combination on the set of propositions of the

form (d, q) ∈ ∆ × Q, a.k.a. moves.

A nondeterministic tree automaton (NTA, for short) is a special ATA in which each conjunction

in the transition function δ has exactly one move (d, q) associated with each direction d. In addition,

a universal tree automaton (UTA, for short) is a special ATA in which all the Boolean combinations

that appear in δ are only conjunctions of moves.

The semantics of the ATAs is now given through the following concept of run.

Definition 1.6.2 (ATA Run). A run of an ATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled ∆-tree

T = 〈T, v〉 is a (Q × T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for

all nodes y ∈ R with r(y) = (q, x), there is a set of moves S ⊆ ∆ × Q with S |= δ(q, v(x))

36



1. Graded Computation Tree Logic 1.6 - Alternating Tree Automata

such that, for all (d, q′) ∈ S, there is an index j ∈ [0, |S|[ for which it holds that y · j ∈ R and

r(y · j) = (q′, x · d).

In the following, we only consider ATAs along with the parity F = (F1, . . . ,Fk) ∈ (2Q)+

with F1 ⊆ . . . ⊆ Fk = Q (APT, for short) acceptance condition (see [KVW00], for more). The

number k of sets in F is called the index of the automaton.

Let R = 〈R, r〉 be a run of an ATA A on a tree T and R′ ⊆ R one of its branches. Then, by

inf(R′) , {q ∈ Q : |{y ∈ R′ : r(y) = q}| = ω} we denote the set of states that occur infinitely

often as labeling of the nodes in the branch R′. We say that a branch R′ of T satisfies the parity

acceptance condition F = (F1, . . . ,Fk) iff the least index i ∈ [1, k] for which inf(R′) ∩ Fi 6= ∅ is

even.

At this point, we can define the concept of language accepted by an ATA.

Definition 1.6.3 (ATA Acceptance). An ATA A = 〈Σ,∆,Q, δ, q0,F〉 accepts a Σ-labeled ∆-tree

T iff is there exists a run R of A on T such that all its infinite branches satisfy the acceptance

condition F, where the concept of satisfaction is dependent from the definition of F.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by A.

Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide whether

L(A) = ∅ or not.

1.6.2 Automata with satellite

As a generalization of ATA, here we consider alternating tree automata with satellites (ATAS,

for short), in a similar way it has been done in [KV06], with the main difference that our satellites

are nondeterministic and can work on trees and not only on words. The satellite is used to ensure

that the input tree satisfies some structural properties and it is kept apart from the main automaton

as it allows to show a tight complexity for the satisfiability problems.

We now formally define this new fundamental concept of automaton.

Definition 1.6.4 (Alternating Tree Automata with Satellite). An alternating tree automaton with

satellite (ATAS, for short) is a tuple 〈A,S〉, where A , 〈Σ × PE ,∆,Q, δ, q0,F〉 is an ATA and

S , 〈Σ,∆,P, ζ,P0〉 is a nondeterministic safety automaton, a.k.a. satellite, where P = PE × PI
is a non-empty finite set of states split in two components, external PE and internal PI states,

P0 ⊆ P is a set of initial states, and ζ : P × Σ → 2P∆
is a nondeterministic transition function

that maps a state and an input symbol to a set of functions from directions to states. The set Σ is

the alphabet of the ATAS 〈A,S〉.

The semantics of satellites is given through the following concepts of run, acceptance, and

building. It is possible to note a similarity with the concept of cascade product automata that can

be found in literature.

Definition 1.6.5 (Satellite Run). A run of a satellite S = 〈Σ,∆,P, ζ,P0〉 on a Σ-labeled ∆-tree

T = 〈T, v〉 is a P-labeled ∆-tree R , 〈T, r〉 such that (i) r(ε) ∈ P0 and (ii) for all nodes x ∈ T
with r(x) = p, there is a function g ∈ ζ(p, v(x)) such that, for all d ∈ ∆ with x · d ∈ T, it holds

that r(x · d) = g(d).

37



1. Graded Computation Tree Logic 1.6 - Alternating Tree Automata

Definition 1.6.6 (Satellite Acceptance). A satellite S = 〈Σ,∆,P, ζ,P0〉 accepts a Σ-labeled

∆-tree T iff is there exists a run R of S on T .

For the coming definition we have to introduce an extra notation. Given a (Σ′ × Σ′′)-labeled

∆-tree T = 〈T, v〉, we define the projection of T on Σ′ as the Σ′-labeled ∆-tree T↓Σ′ , 〈T, v′〉
such that, for all nodes x ∈ T, we have v(x) = (v′(x), σ), for some σ ∈ Σ′′. Moreover, given a

Σ′-labeled ∆-tree T ′ = 〈T, v′〉 and a Σ′′-labeled ∆-tree T ′′ = 〈T, v′′〉, we define the combination

of T ′ with T ′′ as the (Σ′ × Σ′′)-labeled ∆-tree T ′ ⊗ T ′′ , 〈T, v〉 such that, for all nodes x ∈ T,

we have v(x) = (v′(x), v′′(x)).

Definition 1.6.7 (Satellite Building). A satellite S = 〈Σ,∆,P, ζ,P0〉 with P = PE ×PI builds a

Σ × PE-labeled ∆-tree TS over a Σ-labeled ∆-tree T iff is there exists a run R of S on T such

that TS is the combination T ⊗R↓PE of T with the projection of R on PE .

At this point, we can define the language accepted by an ATAS.

Definition 1.6.8 (ATAS Acceptance). A Σ-labeled ∆-tree T is accepted by an ATAS 〈A,S〉,
where A = 〈Σ × PE ,∆,Q, δ, q0,F〉, S = 〈Σ,∆,P, ζ,P0〉, and P = PE × PI , iff there exists a

built tree TS of S on T such that it is accepted by the ATA A.

In words, first the satellite S guesses and adds to the input tree T an additional labeling on the

set PE , thus returning the built tree TS . Then, the main automaton A computes a new run on TS
taken as input. By L(〈A,S〉) we denote the language accepted by the ATAS 〈A,S〉.

In the following, we consider, in particular, ATAS along with the parity acceptance condition

(APTS, for short).

Note that satellites are just a convenient way to describe an ATA in which the state space can

be partitioned into two components, one of which is nondeterministic, independent from the other,

and that has no influence on the acceptance. Indeed, it is just a matter of technicality to see that

automata with satellites inherit all the closure properties of alternating automata. In particular, the

following theorem, directly derived by a proof idea of [KV06], shows how the separation between

A and S gives a tight analysis of the complexity of the relative emptiness problem.

Theorem 1.6.1 (APTS Emptiness). The emptiness problem for an APTS 〈A,S〉 with alphabet

size h, where the main automaton A has n states and index k and the satellite S has m states, can

be decided in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

Proof. As first thing, we use the Muller-Schupp exponential-time nondeterminization proce-

dure [MS95] that leads from the APT A to an NPT N , with 2O((n·k)·log(n·k)) states and in-

dex O(n · k), such that L(A) = L(N ). Since an NPT is a particular APT, we immediately

have that L(〈N ,S〉) = L(〈A,S〉). At this point, by taking the product-automaton between

N and the satellite S, we obtain another NPT N ⋆, with 2O((n·k)·log(n·k)+log(m)) states and in-

dex O(n · k), such that L(N ⋆) = L(〈N ,S〉). With more details, if N = 〈Σ × PE ,∆,Q, δ,
Q0,F〉 and S = 〈Σ,∆,P, ζ,P0〉 with P = PE × PI and F = (F1, . . . ,Fk), we have that

N ⋆ , 〈Σ,∆,Q×P, δ⋆,Q0×P0,F
⋆〉 with F⋆ , (F1×P, . . . ,Fk×P) and δ⋆((q, (pE , pI)), σ) ,

(
∨

g∈ζ((pE ,pI),σ) δ(q, (σ, pE)))[(d, q′) ∈ ∆ × Q/(d, (q′, g(d)))], where by f [x ∈ X/y] we denote

the formula in which all occurrences of x in f are replaced by y. In words, δ⋆((q, (pE , pI)), σ) is

38



1. Graded Computation Tree Logic 1.7 - GCTL Model Transformations

obtained by guessing what is the choice g of the satellite in the state (pE , pI) when it reads σ and

then by substituting in δ(q, (σ, pE)) each occurrence of a move (d, q′) with a new move of the form

(d, (q′, p′)), where p′ = g(d) represents the new state sent by the satellite in the direction d. Hence,

it is evident that L(N ⋆) = L(〈A,S〉) by definition of ATAS. Now, the emptiness of N ⋆ can be

checked in polynomial running-time in its number of states, exponential in its index, and linear in

the alphabet size (see Theorem 5.1 of [KV98]). Overall, with this procedure, we obtain that the

emptiness problem for an APTS is solvable in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

1.7 GCTL Model Transformations

At this point, we can start to describe the decision procedure for the satisfiability problem

of GCTL. As we discussed in the introduction, we exploit an automata-theoretic approach by

using satellites that are able to accept binary tree-encodings of tree models of a formula. So, we

first introduce the binary tree encoding and then, in the next section, we show how to build the

automaton accepting all tree-model encodings satisfying the formula of interest.

In the following, for technical reasons, we use as unwinding of a KS K, not the KT KU , but

one of the 2AP-labeled N-tree T isomorphic to KU .

1.7.1 Binary tree model encoding

As first step in our binary encoding construction, we define the widening of a 2AP-labeled N-

tree T , i.e., a transformation that, taken T , returns a full infinite tree TW having infinite branching

degree and embedding T itself. This transformation ensures that in TW all nodes have the same

branching degree and all branches are infinite. To this aim, we use a fresh label # to denote fake

nodes, as described in the following definition. Note that, from now on, we only consider T as a

complete tree.

Definition 1.7.1 (Widening). Let T = 〈T, v〉 be a Σ-labeled ∆-tree, with ∆ ⊆ N and such

that # 6∈ Σ. Then, the widening of T is the ΣW -labeled N-tree TW , 〈N∗, vW 〉 such that (i)

ΣW , Σ ∪ {#}, (ii) for x ∈ T, vW (x) , v(x), and (iii) for y ∈ N∗ \ T, vW (y) , #.

Now, we define a sharp transformation of TW in a full binary tree TD. This is inspired but

different from that used to embed the logic SωS into S2S [Rab69]. Intuitively, the transformation

allows to delay n abstract decisions, to be take at a node y in TW and corresponding to its n
successors y · i, along some corresponding nodes x, x · 0, x · 00, . . . in TD. In particular, when we

are on a node x · 0i, we are able to split the decision on y · i into an immediate action, which is sent

to the right (effective) successor x · 0i · 1, while the remaining actions are sent to its copy x · 0i+1.

To differentiate the meaning of left and right successors we use the fresh symbol ⊥.

Definition 1.7.2 (Delayed Generation). Let TW = 〈N∗, vW 〉 be the widening of a Σ-labeled tree T
such that ⊥ 6∈ Σ. Then, the delayed generation of T is the ΣD-labeled {0, 1}-tree TD , 〈{0, 1}∗,
vD〉 such that (i) ΣD , ΣW ∪ {⊥} and (ii) there exists a surjective function s : {0, 1}∗ → N∗,

with s(ε) , ε, s(x · 0i) , s(x), and s(x · 0i · 1) , s(x) · i, where x ∈ {0, 1}∗ and i ∈ N, such

that (ii.i) vD(x) , vW (s(x)), for all x ∈ {ε} ∪ {0, 1}∗ · {1}, and (ii.ii) if vD(x · 1) = # then

vD(x · 0) , # else vD(x · 0) , ⊥, for all x ∈ {0, 1}∗.

39



1. Graded Computation Tree Logic 1.7 - GCTL Model Transformations

To complete the tree encoding, we have also to delay the degree associated to each node in

the input tree model. We recall that, an original tree model of a graded formula may require a

fixed number of paths satisfying the formula going through the same node. Such a number is the

degree associated to that node and which we need to delay. To this aim, we enrich the label of a

node with a function mapping a set of elements, named bases, into triples of numbers representing

the splitting of the node degree into two components. The first is the delayed degree, while the

second is the degree associated to one of the effective successors of the node. Such a splitting is the

delayed abstract action mentioned above, when it is customized to the need of having information

on the degrees. We further use a flag with values in {♭, 6 ♭} to indicate if the labeling is or not active,

i.e., if it actually represents the splitting of the degree of a given base that needs to be propagated

in the two tree directions. Note that, for a formula with degree g, it is not important to monitor

the presence of a finite number of paths of cardinality greater than g. To this purpose, we use the

symbol 6ω to efficiently represents the infinite set ]g, ω[ . We relate ω and 6ω to the finite number in

[0, g] in the expected way: (i) i <6ω < ω, for all i ∈ [0, g]; (ii) i+ j ,6ω, for all i, j ∈ [0, g] such

that i+ j > g; (iii) i+ j = j + i , i, for all i ∈ {6ω, ω} and j ∈ [0, g] ∪ {6ω, ω} such that j ≤ i.
The whole idea of the degree encoding is formalized through the following four definitions.

Definition 1.7.3 ((Σ,B)-Enriched g-Degree Tree). Let Σ and B be two sets, g ∈ N, and H(g) ,

{(d, d1, d2) ∈ ([0, g] ∪ {6ω, ω})3 : d = d1 + d2} × {♭, 6 ♭}. Then, a (Σ,B)-enriched g-degree tree

is a (Σ × H(g)B)-labeled {0, 1}-tree T = 〈{0, 1}∗, v〉.
We now introduce a (ΣD,B)-enriched g-degree tree TDB,g

as the extension of the delayed

generation TD of T with degree functions in its labeling. Intuitively, each function in a node

represents how to distribute and propagate an information on the degrees along its successors.

Definition 1.7.4 (B-Based g-Degree Delayed Generation). Let B be a set, g ∈ N, and TD =
〈{0, 1}∗, vD〉 be the delayed generation of a Σ-labeled tree T . Then, a B-based g-degree delayed

generation of T is a (ΣD,B)-enriched g-degree tree TDB,g
= 〈{0, 1}∗, vDB,g

〉 such that there is

an h ∈ H(g)B with vDB,g
(x) = (vD(x), h), for all x ∈ {0, 1}∗.

In order to have a sound construction for TDB,g
, we need to impose a coherence property on

the information between a node and its two successors. In particular, whenever we enter a node x
labeled with # in its first part, as it represents that the node is fictitious, we have to take no splitting

of the degree by sending to x the value 0. On the other nodes, we need to match the value of the

first component of the splitting with the degree of the left successor. Moreover, in dependence of

the flag in {♭, 6 ♭}, we may have also to match the value of the second component with the degree

of the right successor. Note that, we impose children labeled with # to have necessarily the flag

set to 6 ♭.
Definition 1.7.5 (GCTL Sup/Inf Coherence). Let T = 〈{0, 1}∗, v〉 be a (Σ ∪ {#},B)-enriched

g-degree tree. Then, T is superiorly (resp., inferiorly) coherent w.r.t. a base b ∈ B iff, for

x ∈ {0, 1}∗ and i ∈ {0, 1} with v(x) = (σ, h), h(b) = (d, d0, d1, β), v(x · i) = (σi, hi), and

hi(b) = (di, di0, d
i
1, β

i), it holds that (i) if σi = # then di = 0 and βi =6 ♭ and (ii) if i = 0 or

β = ♭ then di ≤ di (resp., di ≥ di).

Finally, with the following definition, we extend the local concept of sup/inf coherence of a

particular base to a pair of sets of bases Bsup,Binf ⊆ B.

40



1. Graded Computation Tree Logic 1.7 - GCTL Model Transformations

Definition 1.7.6 (GCTL Full Coherence). A (Σ∪{#},B)-enriched g-degree tree T is full coherent

w.r.t. a pair (Bsup,Binf), where Bsup ∪ Binf ⊆ B, iff it is superiorly and inferiorly coherent w.r.t.

all bases b ∈ Bsup and b ∈ Binf , respectively.

1.7.2 The coherence structure satellites

We now define the satellites we use to verify that the tree encoding the model of the formula has

a correct shape w.r.t. the whole transformation described in the previous paragraph. In particular,

we first introduce a satellite that checks if the “enriched degree tree” in input is the result of a

“based degree delayed generation” of the model of the formula. Then, we show how to create the

additional labeling of the tree that satisfies the coherence properties on the degrees required by the

semantics of the logic. The following automaton checks if the # and ⊥ labels of the input tree are

correct w.r.t. Definitions 1.7.1 and 1.7.2.

Definition 1.7.7 (Structure Satellite). The structure satellite is the satellite S⋆ , 〈ΣD, {0, 1},
{#,⊥,@}, ζ, {@}〉 on binary trees, where ζ is set as follows: if p = σ = # then ζ(p, σ) ,

{(#,#)} else if either p=σ=⊥ or p=@ and σ ∈ Σ then ζ(p, σ),{(⊥,@), (#,#)}, otherwise

ζ(p, σ),∅.

The satellite S⋆ has constant size 3. Its transition function ζ is defined to directly represent the

constraints on the # and ⊥ labels and, in particular, the state @ is used to represents a real node of

the original tree with values in Σ. So, next lemma easily follows.

Lemma 1.7.1 (Structure Satellite). The satellite S⋆ accepts all and only the ΣD-labeled {0, 1}-

trees TD that can be obtained as the delayed generation of Σ-labeled trees T .

The next satellite creates the additional labeling of the input tree, for the main automaton,

in such a way that it is full coherent w.r.t. the pair of sets (Bsup,Binf). Precisely, if the satellite

accepts the input tree, the additional labeling of the built tree is given by its states.

Definition 1.7.8 (GCTL Coherence Satellite). The (Σ,B)-enriched g-degree (Bsup,Binf)-cohe-

rence satellite with Bsup ∪ Binf ⊆ B is the binary satellite SΣ,(Bsup,Binf)
B,g , 〈Σ ∪ {#}, {0, 1},

H(g)B, ζ,H(g)B〉, where ζ is set as follows: (i) if σ = #, then ζ(p, σ) , {(p, p)}, if for all b ∈ B
it holds p(b) = (0, 0, 0, 6 ♭), and ζ(p, σ) , ∅, otherwise; (ii) if σ 6= # then ζ(p, σ) contains all

and only the pairs of states (p0, p1) ∈ (H(g)B){0,1} such that, for all b ∈ Bα with α = sup (resp.,

α = inf), p(b) = (d, d0, d1, β), and pi(b) = (di, di0, d
i
1, β

i), it holds that if i = 0 or β = ♭ then

di ≤ di (resp., di ≥ di), for all i ∈ {0, 1}.

The transition function is structured to directly represent the constraints of Definitions 1.7.5

and 1.7.6. Note that the satellite SΣ,(Bsup,Binf)
B,g is polynomial in g and exponential in |B|, since its

number of states is equal to (2 · (g + 3)2)|B|. Next lemma follows by construction.

Lemma 1.7.2 (GCTL Coherence Satellite). The satellite SΣ,(Bsup,Binf)
B,g builds all and only the

(Σ∪{#},B)-enriched g-degree trees T ′ over Σ∪{#}-labeled {0, 1}-tree T that are full coherent

w.r.t. the pair (Bsup,Binf).

41



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

Finally, we introduce the satellite that checks if the tree in input is coherent or not by merging

the behavior of the two previous described satellites.

Definition 1.7.9 (GCTL Coherence Structure Satellite). The B-based g-degree structure (Bsup,

Binf)-coherence satellite with Bsup ∪ Binf ⊆ B is the binary satellite SBsup,Binf

B,g = 〈ΣD, {0, 1},
PE × PI , ζ,PE0 × PI0〉, where PE = PE0 , H(g)B, PI , {#,⊥,@}, and PI0 , {@},

obtained as the product of the (Σ ∪ {⊥},B)-enriched g-degree (Bsup,Binf)-full coherent satellite

SΣ∪{⊥},(Bsup,Binf)
B,g with the structure satellite S⋆.

Clearly, the size of SBsup,Binf

B,g is polynomial in g and exponential in |B|, since its number of

states is equal to 3 · (2 · (g + 3)2)|B|. Due to the product structure of the automaton, next result

directly follows from Lemmas 1.7.1 and 1.7.2.

Theorem 1.7.1 (GCTL Coherence Structure Satellite). The satellite SBsup,Binf

B,g builds all and

only the B-based g-degree delayed generations TDB,g
of Σ-labeled trees T over their delayed

generation TD that are full coherent w.r.t. the pair (Bsup,Binf).

1.8 GCTL Satisfiability

In this section, we finally introduce an APT Aϕ that checks whether a complete 2AP-labeled

N-tree T satisfies a given formula ϕ by evaluating all B-based g-degree delayed generation trees

TDB,g
associated with T , where g , ϕ̊ is the maximum finite degree of ϕ and B , qcl(ϕ) is the

quantification closure of ϕ, i.e., the set of all the quantification formulas in the closure deprived

of the degree. To formally define this concept, we have first to introduce the extended closure

ecl(ϕ) of a GCTL formula ϕ that is construct in the same way of cl(ϕ), by also asserting that

(i) if E≥gϕ1Op ϕ2 ∈ ecl(ϕ) then E≥1ϕ1Op ϕ2 ∈ ecl(ϕ), (ii) if E≥gϕ1Õp ϕ2 ∈ ecl(ϕ) then

E≥1¬(ϕ1Õp ϕ2) ∈ ecl(ϕ), (iii) if A<gϕ1Op ϕ2 ∈ ecl(ϕ) then A<1¬(ϕ1Op ϕ2) ∈ ecl(ϕ), and

(iv) if A<gϕ1Õp ϕ2 ∈ ecl(ϕ) then A<1ϕ1Õp ϕ2 ∈ ecl(ϕ), for all Op ∈ {U,R}, and g ∈ [2,
ω]. Intuitively, the difference between cl(ϕ) and ecl(ϕ) resides in the fact that, in the latter, we

also include the formulas used to deal with the ≡x
T -tautologies and their negations. Note that

|ecl(ϕ)| = O(|cl(ϕ)|). The quantification closure is consequently defined as follows: qclE(ϕ) ,

{Eψ : E≥gψ ∈ ecl(ϕ)} \ {EX̃ f}, qclA(ϕ) , {Aψ : A<gψ ∈ ecl(ϕ)} \ {AX t}, and qcl(ϕ) ,

qclE(ϕ) ∪ qclA(ϕ). In particular, observe that we do not need any base for the formulas checking

whether there is or not a successor of a node.

The automaton runs on any B-based g-degree generation tree, even those that are not associated

to a complete tree. However, we make the assumptions that the trees in input are really associated

to this kind of trees and that they are coherent with respect to (Bsup,Binf), where Bsup , qclE(ϕ)
and Binf , qclA(ϕ). By Theorem 1.7.1, we are able to enforce such properties by using Aϕ as

the main part of an APTS having the B-based g-degree structure (Bsup,Binf)-coherence satellite

SBsup,Binf

B,g as second component.

In order to understand how the formula automaton works, it is useful to gain more insights

on the meaning of the tree TDB,g
associated with T . First of all, the widening operation has

the purpose to make the tree complete by adding fake nodes labeled with #. Through this, we

42



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

obtain the tree TW . Then, the delaying operation transforms TW into a binary tree TD, such

that at every level a node x associated to a node y in T generates only one of the successor of

y at a time in the direction 1, meanwhile it sends a duplicate of itself on the direction 0 labeled

with ⊥. The following duplicates have to generate the remaining successors in a recursive way.

However, if there are no more successors to generate, the node x does not send in the direction

0 a duplicate of itself anymore, but just a fake node labeled with #. At this point, to obtain the

tree TDB,g
, we enrich the labeling of the delayed generation tree, by adding a degree function

h : B → H(g). In the hypothesis that T satisfies ϕ, for every formula ϕ′ ∈ B and node x ∈ {0, 1}∗
with vDB,g

(x) = (σ, h), we have that h(ϕ′) = (d, d0, d1, β) describes the degree with which the

formula ϕ′ is supposed to be satisfied on x. In particular d is the degree in the current node, the

decomposition d = d0 + d1 explains how this degree is partitioned in the following left and right

children, and the β flag represents whether this splitting of degrees is meaningful or not. More

precisely, β is set to 6 ♭ iff the inner formula of ϕ′ or its negation is a structure formula tautology in

x. Hence, there is no point in spitting the degree, since the formula is already verified or falsified.

Moreover, d1 represents the degree sent to the direction 1, which usually corresponds to a concrete

node in T . Hence, it is the degree sent to that node. Meanwhile, d0 represents the degree sent to the

direction 0, which usually corresponds to a duplicate of the previous node. Hence, d0 represents

the degree that had yet to be partitioned among the remaining successors of the node y associated

to x. To this aim, the coherence requirement asks: (i) for an existential formula, the degree found

in a successor node is not lower than the degree the father sent to that node (it may be higher as the

node may satisfy the formula by finding more paths with a certain property, so it surely satisfies

what the formula requires); (ii) for a universal formula, the degree found in a successor node is not

greater than the degree the father sent to that node (it may be smaller as the node may satisfy the

formula by finding less paths with a certain negated property, so it surely satisfies what the formula

requires).

In the hypothesis of coherence, the formula automaton needs only to check that (i) the degree

of every existential and universal formula is initiated correctly on the node in which the formula

first appears in (e.g., for an existential formula it needs to check that the degree in the label of

the node is not lower than the degree required by the formula), and (ii) that every node of the

tree satisfies the existential or universal formula with the degree specified in the node labeling.

To do this, the automaton Aϕ has as state space ecl(ϕ) ∪ mcl(ϕ) ∪ qcl(ϕ) ∪ {#,¬#}, where

mcl(ϕ) is the modified closure of ϕ defied as follows: mcl(ϕ) , mcl1(ϕ) ∪ mclω(ϕ), mcl1(ϕ) ,

mclE1(ϕ)∪mclA1(ϕ), mclE1(ϕ) ,
⋃i∈{0,1}

Op∈{U,R} mclEOp,i(ϕ), mclA1(ϕ) ,
⋃i∈{0,1}

Op∈{U,R} mclAOp,i(ϕ),

mclEOp,i(ϕ) , {E≥1
i ψ : Eψ ∈ qclE(ϕ) ∧ ψ ∈ {ϕ1Op ϕ2, ϕ1Õp ϕ2}}, mclAOp,i(ϕ) , {A<1

i ψ :

Aψ ∈ qclA(ϕ) ∧ ψ ∈ {ϕ1Op ϕ2, ϕ1Õp ϕ2}}, mclω(ϕ) , mclEω(ϕ) ∪ mclAω(ϕ), mclEω(ϕ) ,

{E≥ωψ : Eψ ∈ qclE(ϕ)}, and mclAω(ϕ) , {A<ωψ : Aψ ∈ qclA(ϕ)}. On one hand, the formulas

in qcl(ϕ) ask the automaton to verify them completely relying on the degree of the labeling. On

the other hand, the existential and universal formulas in ecl(ϕ)∪mcl(ϕ) ask the automaton even to

check that their degree agrees with that contained in the labeling. The states # and ¬# are used to

verify the existence or not of a successor of a node when we have to deal with the formulas E≥1 X̃ f

and A<1X t. Finally, states in mcl(ϕ) ∪ qcl(ϕ) are also used for the parity acceptance condition.

Definition 1.8.1 (GCTL Formula Automaton). The formula automaton for ϕ is the binary APT

43



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

Aϕ , 〈Σϕ × PEϕ , {0, 1},Qϕ, δ, ϕ,Fϕ〉, where Σϕ , 2AP ∪ {#,⊥}, PEϕ , H(ϕ̊)qcl(ϕ), Qϕ ,

ecl(ϕ)∪mcl(ϕ)∪ qcl(ϕ)∪ {#,¬#}, Fϕ , (F1,F2,Q) with F1 , mclAU ,1(ϕ)∪mclAω(ϕ) and

F2 , qclA(ϕ)∪mclA1(ϕ)∪mclω(ϕ)∪mclER ,1(ϕ), and δ : Qϕ×(Σϕ×PEϕ) → B
+({0, 1}×Qϕ)

is defined in the body of the article.

We now describe the structure of the whole transition function δ(q, (σ, h)) through a case

analysis on the state space.

As first thing, when σ = #, the automaton is on a fake node x = x′ · i of the the input tree

TDB,g
, so no formula should be checked on it. However, in the instant the automaton reaches such

a node, by passing through its antecedent x′, it is not asking to verify the formula represented by

the state q. Indeed, we have that it is sent by another state q′ on x′ which corresponds to a universal

formula. In this case, we are checking that its “core” is satisfied on all successors (but a given

number of them). Hence, since x does not exist in the original tree T , we do not have to verify

the property of q on it. Moreover, we are sure that q′ does not represent any existential property.

This is due to the fact that (i) the degree di related to the state q′ in the labeling of x′ needs to be

0 by the coherence requirements of Definition 1.7.5 and (ii), as we show later, the transition on

existential formulas do not send any state to a direction j ∈ {0, 1} having dj = 0. For this reason,

we set δ(q, (#, h)) , t, for all q ∈ Qϕ and h ∈ PEϕ .

Furthermore, the structure of the transition function does not send a state q belonging to the

set (ecl(ϕ) \ mclω(ϕ)) ∪ ⋃
Op∈{U,R}(mclEOp,1(ϕ) ∪ mclAOp,1(ϕ)) to a node labeled with σ = ⊥

and a state q belonging to the set
⋃

Op∈{U,R}(mclEOp,0(ϕ) ∪ mclAOp,0(ϕ)) to a node labeled with

σ 6= ⊥. For this reason, w.l.o.g., we can set δ(q, (⊥, h)) , f, for all these cases.

Now, we describe the remaining part of the definition of δ(q, (σ, h)) with the proviso that (i)

σ 6= #, (ii) if q ∈ (ecl(ϕ) \ mclω(ϕ)) ∪ ⋃
Op∈{U,R}(mclEOp,1(ϕ) ∪ mclAOp,1(ϕ)) then σ 6= ⊥,

and (iii) if q ∈ ⋃
Op∈{U,R}(mclEOp,0(ϕ) ∪ mclAOp,0(ϕ)) then σ = ⊥.

1. If q ∈ Lit , AP ∪ ¬AP, where ¬AP , {¬p : p ∈ AP}, the automaton has to verify if the

literal is locally satisfied or not. To do this, we set δ(q, (σ, h)) , t, if either q ∈ AP and

q ∈ σ or q ∈ ¬AP and q 6∈ σ, and δ(q, (σ, h)) , f, otherwise.

2. The boolean cases are treated in the classical way: δ(ϕ1 ∧ ϕ2, (σ, h)) , δ(ϕ1, (σ, h)) ∧
δ(ϕ2, (σ, h)) and δ(ϕ1 ∨ ϕ2, (σ, h)) , δ(ϕ1, (σ, h)) ∨ δ(ϕ2, (σ, h)).

3. The case E≥1 X̃ f (resp., A<1X t) is simply solved by setting δ(E≥1 X̃ f, (σ, h)) , (1,#)
(resp., δ(A<1X t, (σ, h)) , (1,¬#)) and δ(#, (σ, h)) , t (resp., δ(¬#, (σ, h)) , f), if

σ = #, and δ(#, (σ, h)) , f (resp., δ(¬#, (σ, h)) , t), otherwise.

4. Let h(EX ϕ) = (d, d0, d1, β) (resp., h(AX̃ ϕ) = (d, d0, d1, β)). For a state of the form EX ϕ
(resp., AX̃ ϕ) we verify that this formula holds with degree d. The flag β needs to be 6 ♭,
since a next formula on a successor node is not related to one in the current node, due to

the fact that this kind of formula never propagate itself. Recall that in the input tree the

pair of degrees (d0, d1) describe the distribution of the degree d on the nodes, which need

to (resp., are allowed to not) satisfy ϕ, among the successors of the current node. Since

the nodes on the direction 1 are real successors of the node in the original input tree T we

need to ask that the state formula ϕ holds on them iff d1 = 1 (resp., d1 = 0). However,

44



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

we cannot ask that a state formula holds more than one time, so, if d1 > 1, the input tree

cannot be accepted, since E≥d1ϕ ≡ f (resp., we do not make any difference in dependence

of a value d1 > 0, since A≤d1ϕ ≡ t). Finally, on direction 0, we send the same state EX ϕ
(resp., AX̃ ϕ) if 0 < d0 < ω (resp., 0 ≤ d0 <6ω), in order to ask that the residual degree d0

is distributed on the remaining successors. When we deal with the infinite degree ω (resp.,

finite but unbounded degree 6ω) we have to ensure that the formula ϕ is verified infinitely

often (resp. falsified finitely often) on the successors of the current node. To this aim, every

time a non-null degree is sent to direction 1, we sent the state E≥ωX ϕ (resp. A<ωX ϕ) to

direction 0. Formally, δ(EX ϕ, (σ, h)) (resp., δ(AX̃ ϕ, (σ, h))) is set to f, if β = ♭, and to

the following conjunction, otherwise:

•





t, if d0 = 0;

(0,EX ϕ), if d0 < ω;

(0,EX ϕ), if d0 = ω and d1 = 0;

(0,E≥ωX ϕ), if d0 = ω and d1 6= 0;

∧





t, if d1 = 0;

(1, ϕ), if d1 = 1;

f, if d1 > 1.

•





(0,AX̃ ϕ), if d0 <6ω;

(0,AX̃ ϕ), if d0 =6ω and d1 6= 0;

(0,A<ω X̃ ϕ), if d0 =6ω and d1 = 0;

f, if d0 = ω;

∧
{

(1, ϕ), if d1 = 0;

t, if d1 > 0.

For a state of the form E≥gX ϕ (resp., A<g X̃ ϕ) we have only to further verify that the

degree g agrees with the value d, i.e., d ≥ g (resp., d < g). Formally, δ(E≥gX ϕ, (σ, h))
(resp., δ(A<g X̃ ϕ, (σ, h))) is set to f, if d < g (resp., d ≥ g), and to δ(EX ϕ, (σ, h)) (resp.,

δ(AX̃ ϕ, (σ, h))), otherwise.

5. A state E
≥1
i ψ (resp., A<1

i ψ) in mcl(ϕ) is used to verify that there is a branch satisfying (resp.,

all branch satisfy) the inner path formula ψ = ϕ1Op ϕ2, regardless the precise value of the

added degree labels. What is important is only to follow paths in which the degrees are not

null (resp., null). The related transition function simply reflects the one-step unfolding of the

CTL formulas, shown in Proposition 1.3.3. When this requirement needs to be propagated

on some successor node, we send different states in the two tree directions, with the sole

purpose to distinguish these ones for acceptance reasons.

• δ(E≥1
i ϕ1U ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧ ∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1U ϕ2);

• δ(A<1
i ϕ1U ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧ ∧

j∈{0,1}(j,A
<1
j ϕ1U ϕ2) ∧

δ(A<1X t, (σ, h));

• δ(E≥1
i ϕ1R ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∧ (δ(ϕ1, (σ, h)) ∨ ∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1R ϕ2));

• δ(A<1
i ϕ1R ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∧ (δ(ϕ1, (σ, h)) ∨ ∧

j∈{0,1}(j,A
<1
j ϕ1R ϕ2) ∧

δ(A<1X t, (σ, h)));

• δ(E≥1
i ϕ1Ũ ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧ (

∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1Ũ ϕ2) ∨

δ(E≥1 X̃ f, (σ, h)));

45



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

• δ(A<1
i ϕ1Ũ ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧ ∧

j∈{0,1}(j,A
<1
j ϕ1Ũ ϕ2);

• δ(E≥1
i ϕ1 R̃ ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∧ (δ(ϕ1, (σ, h)) ∨ ∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1 R̃ ϕ2) ∨

δ(E≥1 X̃ f, (σ, h)));

• δ(A<1
i ϕ1 R̃ ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∧ (δ(ϕ1, (σ, h)) ∨ ∧

j∈{0,1}(j,A
<1
j ϕ1 R̃ ϕ2)).

For a state of the form E≥1ψ (resp., A<1ψ) we have only to further verify that d ≥ 1 (resp.,

d < 1). Formally, δ(E≥1ψ, (σ, h)) (resp., δ(A<1ψ, (σ, h))) is set to f, if d < 1 (resp., d ≥ 1),

and to δ(E≥1
1 ψ, (σ, h)) (resp., δ(A<1

1 ψ, (σ, h))), otherwise.

6. Let h(Eψ) = (d, d0, d1, β) (resp., h(Aψ) = (d, d0, d1, β)), where ψ = ϕ1Opϕ2. For a state

of the form Eψ (resp., Aψ) we verify that this formula holds with degree d. If the node is not

a duplicate of a previous node, i.e., σ 6= ⊥, we have to check the formula that should hold

in the current node by applying the one-step unfolding property derived by the semantics

and reported in Corollary 1.5.2. At this point, we may need to propagate the formula in the

two directions of the tree, by taking into account the requirements established by the degree

in those directions. If such degree di is 0 (resp., ω) then the existential (resp., universal)

formula is immediately true (resp., false). If di = 1 (resp., di = 0), we propagate a particular

requirement with the meaning that we are looking for a path (resp., all paths) satisfying the

internal path formula ϕ1Opϕ2. Precisely, in order to differentiate between the two directions,

we sent the state E
≥1
i ϕ1Op ϕ2 (resp., A<1

i ϕ1Op ϕ2) to direction i ∈ {0, 1}. If di > 1 (resp.,

0 < di < ω) we propagate the original requirement by leaving to the degree of the successor

nodes the task to specify how many paths (resp., do not) satisfy the inner formula. However,

when we deal with the infinite degree ω (resp., finite but unbounded degree 6ω) we have to

ensure that the formula ϕ1Op ϕ2 is verified on infinitely (resp. falsified on finitely) many

paths. To this aim, we use the apposite state E≥ωϕ1Opϕ2 (resp., A<ωϕ1Opϕ2), which is sent

on one direction iff on the other one there is a non null (resp., null) degree. In this way, we

can keep track of a possible infinite splitting of the degree which is required (resp., forbidden)

by an infinite (resp., finite) number of paths. In the following we describe such a propagation

of the states by means of the following macro: γEOp(d0, d1) , γ0
EOp(d0, d1) ∧ γ1

EOp(d0, d1)

(resp., γAOp(d0, d1) , γ0
AOp(d0, d1) ∧ γ1

AOp(d0, d1)), where

• γiEOp(d0, d1) ,





t, if di = 0;

(i,E≥1
i ϕ1Op ϕ2), if di = 1;

(i,Eϕ1Op ϕ2), if di < ω;

(i,Eϕ1Op ϕ2), if di = ω and d1−i = 0;

(i,E≥ωϕ1Op ϕ2) ∧
∧ (1 − i,E≥1

1−iϕ1Op ϕ2), if di = ω and d1−i 6= 0.

46



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

• γiAOp(d0, d1) ,





(i,A<1
i ϕ1Op ϕ2), if di = 0;

(i,Aϕ1Op ϕ2), if di <6ω;

(i,Aϕ1Op ϕ2), if di =6ω and d1−i 6= 0;

(i,A<ωϕ1Op ϕ2), if di =6ω and d1−i = 0;

f, if di = ω.

Observe that the last case requires the existence of a path satisfying the inner formula ψ in

the direction 1 − i. This is due to the fact that, when we verify the existential formula with

infinite degree, we risk that the latter is always regenerated without actually completing a

real path satisfying ψ. By coupling this condition with that about the infinite generation, we

ensure that we actually find infinitely many paths satisfying ψ. (Resp., the first to last case

may also require that in the direction 1 − i there is no path falsifying the inner formula ψ.

However, this requirement is implicit in the whole structure of γAOp(d0, d1).)

7. Let h(Qn ψ) = (d, d0, d1, β) with ψ = ϕ1Op ϕ2. Due to the meaning of the flag β, when

β =6 ♭, the automaton has to verify that either ψ or ¬ψ is a tautology. On the contrary, when

β = ♭, it has to verify that no one of them is a tautology. Thus, we need two components

of the transition function, ηψ(σ, h) and ηψ(σ, h), to ensure, respectively, that ψ is or is not

a tautology on a node labeled with σ. These components have to require the automaton to

check the truth of the formulas equivalent to the tautologies, as described in Theorem 1.5.2.

• ηϕ1U ϕ2(σ, h) , δ(ϕ2, (σ, h));

• ηϕ1U ϕ2
(σ, h) , δ(¬ϕ2, (σ, h));

• ηϕ1R ϕ2(σ, h) , δ(ϕ1, (σ, h)) ∧ δ(ϕ2, (σ, h));

• ηϕ1R ϕ2
(σ, h) , δ(¬ϕ1, (σ, h)) ∨ δ(¬ϕ2, (σ, h));

• ηϕ1 Ũ ϕ2
(σ, h) , δ(A<1ϕ1Ũ ϕ2, (σ, h));

• ηϕ1 Ũ ϕ2
(σ, h) , δ(E≥1¬(ϕ1Ũ ϕ2), (σ, h));

• ηϕ1 R̃ ϕ2
(σ, h) , δ(A<1ϕ1 R̃ ϕ2, (σ, h));

• ηϕ1 R̃ ϕ2
(σ, h) , δ(E≥1¬(ϕ1 R̃ ϕ2), (σ, h)).

8. Now, we discuss the general structure of a transition function for a state of the form Eψ (resp.,

Aψ) with ψ = ϕ1Op ϕ2. Let h(Eψ) = (d, d0, d1, β) (resp., h(Aψ) = (d, d0, d1, β)). Note

that the degree d is never equal to 0 or 1 (resp. 0 or ω), because the requirement γEOp(d0, d1)
(resp., γAOp(d0, d1)) discussed above never propagates an existential (resp., universal) state

without degree on a direction i when di = 0 or di = 1 (resp. di = 0 or di = ω). If the

node is not a duplicate of a previous node, i.e., σ 6= ⊥, we verify that the formula holds in

the current node by applying the one-step unfolding property derived by the semantics, as

reported in Corollary 1.5.2. Precisely, since d > 1 (resp. 0 < d < ω) ψ cannot (resp., can)

be a tautology, otherwise (resp., since) we would find only one minimal path satisfying ψ.

On the other hand, ¬ψ cannot (resp., can) be a tautology, otherwise (resp., since) we would

find only one minimal path non satisfying ψ. So, the automaton has to verify that ψ and

47



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

¬ψ are not tautologies in the current node and has to propagate the existential state on the

successors through the γEOp(d0, d1) requirement (resp., the automaton has to verify either

that ψ or ¬ψ is a tautology or that both are not tautologies and that the universal requirement

γAOp(d0, d1) is propagated on the successors). Due to the non-tautological nature of ψ and

¬ψ, the automaton has to reject the input tree when β =6 ♭ (resp. the automaton has to verify

that ψ or ¬ψ is a tautology iff β =6 ♭). If σ = ⊥, the current node is simply a replica of a

previous node with σ 6= ⊥. Since the existential (resp., universal) state have been propagated

on direction 0, we already know that ψ and ¬ψ are not tautologies, hence we need just to

propagate the state through the relative γEOp(d0, d1) (resp., γAOp(d0, d1)) requirement. Due

to the fact that, when σ = ⊥, it holds that ψ and ¬ψ are not tautologies, the automaton has

to reject the tree when β =6 ♭.

• δ(Eψ, (σ, h)) ,





f, if β =6 ♭;
γEOp(d0, d1), if σ = ⊥ and β = ♭;

ηψ(σ, h) ∧ η¬ψ(σ, h) ∧ γEOp(d0, d1), if σ 6= ⊥ and β = ♭.

• δ(Aψ, (σ, h)) ,





f, if σ = ⊥ and β =6 ♭;
γAOp(d0, d1), if σ = ⊥ and β = ♭;

ηψ(σ, h) ∨ η¬ψ(σ, h), if σ 6= ⊥ and β =6 ♭;
ηψ(σ, h) ∧ η¬ψ(σ, h) ∧ γAOp(d0, d1), if σ 6= ⊥ and β = ♭.

Note that, the whole transition function can be simplified, case by case, because of the re-

dundancy of some of its components. For example, consider the case EU when σ 6=
⊥ and β = ♭. By definition, we obtain that δ(Eϕ1U ϕ2, (σ, h)) = δ(¬ϕ2, (σ, h)) ∧
δ(E≥1ϕ1U ϕ2, (σ, h)) ∧ γEU (d0, d1), which can be equivalently written as follows: δ(¬ϕ2,
(σ, h)) ∧ δ(ϕ1, (σ, h)) ∧ δ(E≥1X E≥1ϕ1U ϕ2, (σ, h)) ∧ γEU (d0, d1). Now, since the re-

quirement γEU (d0, d1) ensure the existence of d = d0 + d1 > 1 non equivalent paths

starting on the successors of the current node, we have that the δ(E≥1X E≥1ϕ1U ϕ2, (σ, h))
component is surely verified. So, this pieces is redundant. The remaining expression

δ(¬ϕ2, (σ, h)) ∧ δ(ϕ1, (σ, h)) ∧ γEU (d0, d1) simply reflects what is required by Item i

of Corollary 1.5.2. Now, for a state of the form E≥gψ (resp., A<gψ), with g ∈ [2, ω],
we have only to further verify that d ≥ g (resp., d < g). Formally, δ(E≥gψ, (σ, h))
(resp., δ(A<gψ, (σ, h))) is set to f, if d < g (resp., d ≥ g), and to δ(Eψ, (σ, h)) (resp.,

δ(Aψ, (σ, h))), otherwise.

We now briefly discuss the parity acceptance condition for Aϕ. Note that, in our reasonings,

we assume Fϕ = (F1,F2,F3) with F3 = Q.

Let T be a complete tree, TDB,g
be one of its B-based g-degree delayed generation in input

to Aϕ, and R be a related run. It is easy to see that states in cl(ϕ) \ mclω(ϕ) represents literals,

ands, ors, and quantified formulas with finite degree that never generate themselves, so, they

never progress infinitely often. On the other hand, formulas in mcl(ϕ) ∪ qcl(ϕ) may be generated

infinitely often, but only some of them should be allowed to do so (due to their intrinsic semantics).

1. Existential next states EX ϕ and E≥ωX ϕ are never sent to direction 1 and they can only

progress indefinitely along direction 0. The propagation of an existential formula without

48



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

degree represents a delay of the choice of the particular successors of the replicated node

on which it is needed to verify ϕ. When the associated degree is finite, the formula needs

to be satisfied on a finite number of successors. So, the choice of the successors must be

eventually made, and the formula cannot be propagated indefinitely. When the degree is

infinite, instead, the formula is allowed to progress under the condition that successors

satisfying ψ are found infinitely often. Hence, we use two states: a ω-grade version is

generated every time a successor satisfying ϕ is found and a grade-less version is used

when the successor is skipped. Hence, the existential next formulas EX ϕ is not allowed to

progress indefinitely and, thus, it belongs to F3 but not to F2. On the other hand the formulas

E≥ωX ϕ are allowed to occur infinitely often and, thus, they belong to F2 but not F1.

2. Universal next states AX ϕ and A≥ωX ϕ are never sent to direction 1 and they can only

progress indefinitely along direction 0. An infinite generation of an universal next formulas

represents the propagation of a requirement demanded on infinitely many successors of the

replicated node with the aim to check that only a finite number of them do not satisfy it. This

should be allowed, however, when the associated degree is finite but not a priori determined,

i.e., if it is 6ω. Generally, this degree can be split infinitely many times without decreasing,

so, we risk to allow infinitely many successors to not satisfy ϕ. In order to avoid such a

problem, we use two states: a ω-grade version is generated every time a successor is allowed

to not satisfy ¬ϕ and a grade-less version is used when the successor satisfies ϕ. Hence, the

universal formulas AX ϕ is allowed to progress indefinitely on such branches and, thus, it

belongs to F2 but not to F1. On the other hand the universal formula A<ωX ϕ is not allowed

to occur infinitely often, even when AX ϕ does, thus, it belongs to F1.

3. Existential non-next formulas E
≥1
i ψ, with degree 1, have to trace a path satisfying the inner

path formula ψ ∈ {ϕ1U ϕ2, ϕ1R ϕ2, ϕ1Ũ ϕ2, ϕ1 R̃ ϕ2}. When ψ is an until or weak until

formula, the path have to eventually reach a point in which the formula is locally satisfied.

So, the relative states E
≥1
i ψ are not allowed to progress indefinitely and, thus, they belong

to F3 but not to F2. When ψ is a release or weak release formula, it may happened that

there are no points in which the formula is locally satisfied. However, only paths that

progress infinitely often along direction 1 are real paths of the input tree (following the

replica indefinitely would yield no path). Hence, states E
≥1
0 ψ belong to F3 but not to F2,

and states E
≥1
1 ψ belong to F2 but not F1.

4. Universal non-next formulas A<1
i ψ, with degree 1, have to trace all paths and prove that

they satisfy the inner path formula ψ ∈ {ϕ1U ϕ2, ϕ1R ϕ2, ϕ1Ũ ϕ2, ϕ1 R̃ ϕ2}. When ψ is

a release or weak release formula, it may happened that there are no points in which the

formula is locally satisfied. So, the relative states A<1
i ψ are allowed to progress indefinitely

and, thus, they belong to F2 but not to F1. When ψ is an until or weak until formula, the

path have to eventually reach a point in which the formula is locally satisfied. However, we

need to propagate it infinitely often along direction 0, in order to ask it on all successor of

the replicated node. Now, since on paths that progress infinitely often along direction 1 it is

possible to generate both the states A
≥1
0 ψ and A

≥1
1 ψ, the infinite generation of A

≥1
1 ψ has

an higher non-acceptance priority with respect to that of A
≥1
0 ψ. This is due to the fact that

49



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

those paths represent real branches of the input tree where ψ need to eventually hold. Hence,

states A
≥1
0 ψ belong to F2 but not to F1, and states A

≥1
1 ψ belong to F1.

5. Existential non-next formulas with infinite degree E≥ωψ or without degree Eψ have to trace

a non singleton set of paths satisfying the inner path formula ψ∈{ϕ1U ϕ2, ϕ1Rϕ2, ϕ1Ũ ϕ2,
ϕ1 R̃ ϕ2}. One one hand, if the number of such paths is finite, the automaton will eventually

reach a node from which there in only one outgoing path model of ψ, since all the paths have

to eventually split. When this happens, the automaton verify the existence of such a path

with the relative 1-grade version E
≥1
i ψ. Hence, when a grade-less formula is accompanied

by a finite degree it must not progress infinitely often. On the other hand, when the number

of paths the automaton needs to follow is infinite, we should allow the existential formula to

progress infinitely often. However, by doing so, we risk to trace just one path in the input

tree along which we propagate the existential formula and, obviously, it cannot provide the

infinite number of paths we need in order to verify the formula. Thus, when we propagate

the existential requirement on direction i, we have to use the two versions of the requirement

itself. The ω-grade formula is sent on direction i when on direction 1 − i is ensured the

existence of a path satisfying ψ. Instead, the grade-less version is used when such an

existence is not verified. Consequently, when the ω-grade version is generated infinitely

often along the path, there are infinite branches coming out from this and satisfying ψ. On

the contrary, when the grade-less version is definitively propagated, we are just following a

unique path which cannot provide the infinite paths we need. Hence, all grade-less non-next

existential formula belong to F3 but not to F2 and their ω-grade versions belong to F2 but

not to F1.

6. Universal non-next formulas with infinite degree A<ωψ or without degree Aψ have to trace

a set of paths that are allowed to not satisfy the inner path formula ψ ∈ {ϕ1U ϕ2, ϕ1R ϕ2,
ϕ1Ũ ϕ2, ϕ1 R̃ ϕ2}. There may be cases in which the automaton eventually reach a node

from which there are no outgoing paths model of ¬ψ. When this happens, the automaton

needs to verify the universal validity of ψ with the relative 1-grade version A<1
i ψ. Also,

the automaton may reach a point where the ψ or ¬ψ are tautologies and, thus, it stops by

verifying one of them. However, it is also possible that the universal requirement progress

infinitely often. In such a case, we have that it is tracing one path that may not satisfy ψ,

even if it would be allowed to trace more paths. Since the accompanying degree is greater

than 0, this does not result to be a problem and, hence, we allow the infinite propagation.

Moreover, every time we meet an universal formula with finite but non a priori determined

degree, i.e., if such degree is 6ω, the formula may split in the two direction and allow paths to

not satisfy the ψ formula on both of them. If this happens infinitely often along the single

path on which we are propagating the requirement, we would allow an infinite numbers

of path to not satisfy ψ. Thus, when we propagate the universal requirement on direction

i, we have to use the two versions of the requirement itself. The ω-grade formula is sent

on direction i when on direction 1 − i is allowed the existence of a path non-satisfying ψ.

Instead, the grade-less version is used when such an existence is forbidden. Consequently,

when the ω-grade version is generated infinitely often along the path, there may be infinite

branches coming out from this and non-satisfying ψ. On the contrary, when the grade-less

50



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

version is definitively propagated, we are just following a unique path which does not allow

the existence of the infinite number of paths we want to avoid. Hence, all grade-less non-next

universal formula belong to F2 but not to F1 and their ω-grade versions belong to F1.

We now prove the following main result about the decidability of GCTL satisfiability.

Theorem 1.8.1 (GCTL Satisfiability). Let ϕ be a GCTL formula, with g = ϕ̊, B = qcl(ϕ),

Bsup = qclE(ϕ), and Binf = qclA(ϕ). Then, ϕ is satisfiable iff L(〈Aϕ,SBsup,Binf

B,g 〉) 6= ∅.

Proof. [Only if]. Given a 2AP-labeled tree T = 〈T, v〉 model of ϕ, we first show how to recur-

sively construct one of its B-based g-degree delayed generation trees TDB,g
= 〈{0, 1}∗, vDB,g

〉,
necessarily full coherent w.r.t. the pair (Bsup,Binf), along with a map t : {0, 1}∗ → T that links

each node x ∈ {0, 1}∗ of TDB,g
, with vDB,g

(x) = (σ, h) and σ 6= #, to the corresponding one

t(x) ∈ T in T . This function, is simply the restriction to real nodes, i.e., nodes not labeled with #,

of the s function introduced in Definition 1.7.2 of the delayed generation.

To each subtree T x
DB,g

of TDB,g
rooted in x = x′ · 0j , with x′ ∈ {ε} ∪ 0∗ · 1, vDB,g

(x) = (σ, h)

such that σ 6= #, we associate the subtree T x of T rooted in y = t(x). Observe that T x·1 is

the subtree of T rooted at the (j + 1)-th successor of y and that T x·0 = T x. Moreover, by T ′x

we denote the subtree of T x in which the first j successors of the root are deleted. Note that

T ′x·1 = T x·1 and T ′x·0 is the subtree of T ′x with the first successor of the root deleted.

In the rest of the proof, we say that a path formula ψ is locally determined on a node x iff

either ψ or ¬ψ is an ≡ε
T x-tautology.

For each node x ∈ {0, 1}∗ and base b ∈ B with vDB,g
(x) = (σ, h), h(b) = (d, d0, d1, β),

vDB,g
(x · 0) = (σ0, h0), and vDB,g

(x · 1) = (σ1, h1) we set: if σ = # then d = d0 = d1 , 0 and

β ,6 ♭, if σ0 = # then d0 , 0, if σ1 = # then d1 , 0. For the other cases, we set the values of the

degrees as follows, where we recall that 6ω is in place of any finite number greater than g.

1. b = EX ϕ. Then, β ,6 ♭ and d (resp., d0) is set to the maximum degree l ∈ [0, g] ∪ {6ω, ω}
with which the formula E≥lX ϕ is satisfied on T ′x (resp., T ′x·0, if σ0 6= #). Moreover, d1 is

set to 1, if ϕ is satisfied on T ′x·1, and to 0 otherwise.

2. b = AX̃ ϕ. Then, β ,6 ♭ and d (resp., d0) is set to the minimum degree l ∈ [0, g] ∪ {6ω, ω}
with which the formula A<l+1 X̃ ϕ is satisfied on T ′x (resp., T ′x·0, if σ0 6= #). Moreover,

d1 is set to 1, if ϕ is not satisfied on T ′x·1, and to 0 otherwise.

3. b = Eψ is a non-next formula. Then, β ,6 ♭ if ψ is locally determined on x. If β = ♭, then

d (resp., d0, d1) is set to the maximum degree l ∈ [0, g] ∪ {6ω, ω} with which the formula

E≥lX ψ (resp., E≥lX ψ, E≥lψ) is satisfied on T ′x (resp., T ′x·0, T ′x·1, if σ0 6= #, σ1 6= #).

If β =6 ♭, only d is set as stated before, while d0 and d1 are arbitrary.

4. b = Aψ is a non-next formula. Then, β ,6 ♭ if ψ is locally determined on x. If β = ♭, then

d (resp., d0, d1) is set to the minimum degree l ∈ [0, g] ∪ {6ω, ω} with which the formula

A<l+1X ψ (resp., A<l+1X ψ, A<l+1ψ) is satisfied on T ′x (resp., T ′x·0, T ′x·1, if σ0 6= #,

σ1 6= #). If β = ♭, only d is set as stated before, while d0 and d1 are arbitrary.

51



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

It is immediate to see that d = d0 + d1. Moreover, let h0(b) = (d0, d0
0, d

0
1, β

0) and h1(b) =
(d1, d1

0, d
1
1, β

1), we have that d0 = d0 and if β = ♭ then d1 = d1. Now, by Definition 1.7.6, we can

derive that the tree TDB,g
is actually full coherent w.r.t. the pair (Bsup,Binf). Hence, by Theorem

1.7.1, we have that it can be obtained as a building of the satellite SBsup,Binf

B,g over the delayed

generation TD of T itself.

It remains to prove that TDB,g
is accepted by Aϕ. The proof proceeds by induction on the

structure of the set of states derived by the formula ϕ and on the degree d associated to the state.

In particular, we use the following ordering ≺ ⊆ Q × Q between states: (i) for all formulas

ϕ′, ϕ′′ ∈ Q with ϕ′′ ∈ ecl(ϕ′) and ϕ′′ 6= ϕ′, we set ϕ′′ ≺ ϕ′; (ii) Eψ ≺ E≥lψ (resp., Aψ ≺ A<lψ)

and E≥ωψ ≺ E≥lψ (resp., A<ωψ ≺ A<lψ), for all l ∈ [2, ω[; (iii) E≥1ψ ≺ Eψ (resp., A<1ψ ≺ Aψ)

and E≥1ψ ≺ E≥ωψ (resp., A<1ψ ≺ A<ωψ); (iv) E
≥1
i ψ ≺ E≥1ψ (resp., A<1

i ψ ≺ A<1ψ), for all

i ∈ {0, 1}. We also use the following inductive hypotheses: (i) each state q = Eψ is sent to a

node x with the related degree greater than 1, i.e., with vDB,g
(x) = (σ, h), h(q) = (d, d0, d1, β),

and d > 1; (ii) each state q = E≥ωψ is sent to a node x with infinite related degree, i.e., with

vDB,g
(x) = (σ, h), h(Eψ) = (d, d0, d1, β), and d = ω.

Intuitively, if the automaton Aϕ is on a state q = Qn ψ (resp. q = Qn X ψ), where Qn is a

quantification, on a node x of the tree TDB,g
, with label vDB,g

(x) = (σ, h) and σ 6= #, then it

accepts the subtree T x
DB,g

if either it is able to check the truth of formulas of lower order than q
w.r.t. ≺, implying already the validity of q itself, or it checks other formulas lower than ψ w.r.t.

≺, implying the non-validity of the negation of the formula represented by q, and verifies that the

subtree T ′x satisfies the formula represented by Qn X ψ (resp., Qn ψ) with degree given either by

the formula q itself or, if such degree is not present in it, by the d component of the function h

valuated on the relative base.

We now give a detailed explanation only for the inductive case of q = Eψ with ψ = ϕ1Op ϕ2,

when we are on a node x = x′ · 1. The other cases are a variation on theme.

Let h(q) = (d, d0, d1, β). The degree d is greater than 1, by induction hypothesis, hence ψ
is not a tautology (otherwise, we would find only one path satisfying ψ). So, we have β = ♭.
Consequently, the related path formulas X ψ and ψ are true on some of the successors of t(x)
partitioned between T ′x·0 and T ′x·1. Precisely, we have E=d0X ψ is satisfied on T ′x·0 and E=d1ψ
is satisfied on T x·1. The transition function checks that ψ and ¬ψ are not tautologies, by verifying

formulas of lower order than ψ w.r.t. ≺, through the use of the components ηψ(σ, h) and η¬ψ(σ, h).
Moreover, the transition function verifies the same state q on T ′x·0 and T x·1, through the component

γEOp(d0, d1). Observe that this formula sends the states Eψ and E≥ωψ on direction i only if di > 1
and di = ω, respectively.

At this point, we have to distinguish between the two cases d < ω and d = ω.

In the first, it is possible that the automaton needs to check only states of lower order w.r.t. ≺, so

the acceptance is deduced by the inductive hypothesis. On the contrary, it may also happen that the

state propagates itself with the same degree on one direction. But, this propagation cannot happen

indefinitely, since the degree eventually splits, and so, it eventually incur in the first possibility.

In the second case, instead, the state q surely propagates on one direction q itself or its ω-

degree version E≥ωψ. So, the induction does not reach a lower case. Let t = x0 · x1 · · · · with

x0 = x be the branch on which the infinite degree d is propagated: formally, for each k ∈ N with

vDB,g
(xk) = (σ, h) and h(Eψ) = (dk, dk0, d

k
1, β

k), we have dk = ω. Moreover, let f : N → {0, 1}

52



1. Graded Computation Tree Logic 1.8 - GCTL Satisfiability

be the direction function that associates to each index k ∈ N the direction of the successor of xk,

i.e., xk+1 = xk · f(k). Then, we distinguish the two following cases, where only the first one can

actually happen, meanwhile the second one yield a contradiction.

1. dk1−f(k) > 0, for infinitely many k ∈ N. In this case, the automaton passes, on the branch t,

through the state E≥ωψ infinitely often, so it accepts the branch t.

2. dk1−f(k) = 0, for all k ∈ N. We distinguish two sub-cases: t progresses definitively on the

direction 0 and t progresses infinitely often through direction 1.

(a) f(k) = 0 so, xk = x0 · 0k, for all k ∈ N. By construction of T x0 , we have that the tree

T xk·1 does not contain a path that satisfies the until formula, for all k ∈ N. This means

that there is no path satisfying the until formula through any successor of t(x0). But

this contradicts the hypothesis that T x satisfies the q with infinite degree.

(b) f(k) = 1, for infinitely many k ∈ N. Than, there is an infinite set of indexes

{j0, j1, . . .} ⊆ N with j0 = 0 such that, for all l ∈ N and k ∈ [jl, jl+1[ , it holds that

xk = xjl · 0k−jl , and xjl+1
= xjl−1 · 1. Let yl = t(xjl), for all l ∈ N. Then, the branch

r = y0 · y1 · · · · is an infinite path in T x0 on which there are infinite non-equivalent

paths that starting in yl and satisfying ψ, for all l ∈ N. Now, since dk1−f(k) = 0,

all these paths have to pass through yl+1. By induction, we obtain that all the paths

that start from y0 and satisfy ψ must pass through all the nodes of r. But this is a

contradiction, since it means that they are actually one unique path.

[If]. The converse direction is specular. Since a tree TD is accepted by 〈Aϕ,SBsup,Binf

B,g 〉, we

can assert that (i) it is actually a delayed generation of a 2AP-labeled tree T and (ii) the B-based

g-degree delayed generation tree TDB,g
built by the satellite SBsup,Binf

B,g on TD is full coherent

w.r.t. (Bsup,Binf) and it is accepted by Aϕ. Using these facts, by induction on the structure of

the formula, we can prove that every time Aϕ is in a state q on a node x of the tree TDB,g
with

label (σ, h), T x satisfies the formula represented by q with the related degree iff the automaton

accepts the subtree T x
DB,g

. Actually, this fact happens if x is a right node, i.e., when x does not

terminates with 0. When x is a left node, the transition function only requires that T x satisfies the

next formulas in the one-step unfolding of q. However, since the formulas not in the scope of the

next are yet verified on a previous right node, we also obtain that T x satisfies the whole q. Finally,

since Aϕ accepts T ε
DB,g

by hypothesis, we have that the tree T is a model of ϕ.

By a matter of calculation, it holds that |Aϕ| = O(|ϕ|) and |SBsup,Binf

B,g | = 2O(|ϕ|·log(ϕ̊)). More-

over, also the alphabet Σϕ × PEϕ of the APTS has size 2O(|ϕ|·log(ϕ̊)). By Theorem 1.6.1, we obtain

that the emptiness problem for 〈Aϕ,SBsup,Binf

B,g 〉 can be solved in time 2O(|ϕ|
2·(log(|ϕ|)+log(ϕ̊))) ≤

2O(‖ϕ‖
3). Moreover, by recalling that GCTL subsumes CTL, the following result follows.

Theorem 1.8.2 (GCTL Satisfiability Complexity). The satisfiability problem for GCTL with

binary coding of degrees is EXPTIME-COMPLETE.

53



2
Minimal Model Quantifiers

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Computation Tree Logics with Minimal Model Quantifiers . . . . . . . . . 57

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Expressiveness and Succinctness . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

54



2. Minimal Model Quantifiers 2.1 - Introduction

Abstract

Temporal logics are a well investigated formalism for the specification and verification of

reactive systems. Using formal verification techniques, we can ensure the correctness of a system

with respect to its desired behavior, i.e., the specification, by verifying whether a model of the

system satisfies a temporal logic formula modeling the related specification.

From a practical point of view, a very challenging issue in using temporal logic in formal

verification is to come out with techniques that automatically allow to select small critical parts of

the system to be successively verified. Another challenging issue is to extend the expressiveness of

classical temporal logics, in order to model more complex specifications.

In this paper, we address both issues by extending the classical branching-time temporal logic

CTL* with minimal model quantifiers (MCTL*, for short) under three different semantics named,

respectively, m, mu, and um. These quantifiers allow to extract, from a model, minimal submodels

on which we check the specification, which is also given by an MCTL* formula. We show that

both MCTL*m and MCTL*mu are strictly more expressive than CTL*, since they are not invariant

under bisimulation and sensible to unwinding, while MCTL*um preserves all these properties. As

far as the satisfiability concerns, we prove that MCTL*m and MCTL*mu are highly undecidable,

too. We further investigate some of the MCTL* sublogics, such as MCTL and MCTL+, for which

we obtain interesting results.

2.1 Introduction

Temporal logics, which are a special kind of modal logics geared towards the description of

the temporal ordering of events [Pnu77], have been adopted as a powerful tool for specifying and

verifying correctness of concurrent systems [Pnu81], as they allow to express the temporal ongoing

behavior of a system in a well-structured way.

Two possible views regarding the nature of time induce two different types of temporal logics:

linear and branching-time [Lam80]. In linear-time temporal logics, such as LTL [Pnu77], time

is treated as if each moment in time has a unique possible future. Thus, linear temporal logic

formulas are interpreted over linear sequences. In branching-time temporal logics, such as CTL

[CE81], CTL+, and CTL* [EH85], each moment in time may split into various possible futures.

Accordingly, the structures over which branching temporal logic formulas are interpreted are infinite

trees. Many important parallel computer programs exhibit ongoing behavior that is characterized

naturally in terms of infinite execution traces, possibly organized into tree-like structures that

reflect the high degree of nondeterminism inherent in parallel computation.

From a practical point of view, a very challenging issue in using temporal logics in formal

specification and verification is to come out with automatic techniques that allow to select small

critical parts of the system in order to restrict system verification to them. This necessity is mainly

due to the fact that in a concurrent setting, the system under consideration is typically a parallel

composition of many modules. Another important issue in system design and verification is to

look for new temporal logics that are more expressive than the classical ones. In fact, although

CTL* is a very powerful logic, there are several important but complex properties that require a

more powerful framework. To overcome this limitation, several attempts have been carried out in

55



2. Minimal Model Quantifiers 2.1 - Introduction

literature in order to extend these logics by introducing appropriate semantics or operators usually

guided by embedded contexts.

In this paper, we address both the above issues by introducing the branching-time temporal

logic MCTL*. This logic is an extension of the classical branching-time temporal logic CTL*

with minimal model quantifiers, which allow to extract, given a model, minimal and conservative

submodels of it on which we successively check a given property. The goal is to check local

properties of system components in order to deduce the global behavior of the entire one. Therefore,

the introduced logic exploits the novel idea of checking a particular module of a whole composition

system while its single modules are not known in advance. In more details, MCTL* extends

CTL* by also allowing two special (minimal model) quantifiers: EE and AA. These quantifiers

allow to write state formulas such as ϕ1EEϕ2 and ϕ1AAϕ2, which can be read, respectively, as

“there exists a minimal and conservative model of ϕ2 that is model of ϕ1” and “all minimal and

conservative models of ϕ2 are models of ϕ1”, for suitable and well-founded concepts of minimality

and conservativeness among Kripke structures. In accordance with this point of view, we call

ϕ2 the submodel extractor, ϕ1 the submodel verifier, and our modular verification method an

extract-verify paradigm. Our choice of considering only minimal and conservative submodels is

justified by the fact that in this way we precisely select the parts of the system or of its execution

that are actually responsible for the particular behavior of interest. In particular, we investigate

MCTL* and its sublogics MCTL+, MCTL and MPML (where the M indicates the extension

of the respective logics with minimal model quantifiers), from a theoretical point of view, under

three different possible semantics named m, mu, and um, respectively. These differ one from the

other in the use of the operation of unwinding embedded into the definition of the new kind of

quantifiers. As far as the expressiveness regards, we show that all these logics are strictly more

expressive than the corresponding classical ones, under the m and mu semantics. We also show

that MCTL under the um semantics is much more expressive than CTL, since it embeds LTL.

Unfortunately, this power comes at a price. Indeed, we prove that the satisfiability for MCTL

under the m and mu semantics are highly undecidable. Moreover and differently from CTL, we

have that they neither have the tree model property nor are bisimulation-invariant, while they all

are sensible to unwinding. We also investigate the succinctness, showing that MCTL is at least as

succinct as CTL+ (differently from the classical case of CTL and CTL+).

Related works It is worth recalling that logics having the ability to modify the model under

evaluation (and then check the specification on the resulting part) have been also considered in

other contexts. For example, we recall the arbitrary public announcement logic [FvD08] and

the sabotage modal logic [LR03]. However, the first allow to extract, according to a sub-model

extractor formula, submodels that do not necessarily satisfy the formula itself, and the second does

not extract submodels using a formula at all. Moreover, neither the first nor the latter are based on

the concept of minimality.

Outline In Section 2.2, we recall the basic notions regarding the substructure ordering. Then, we

have Section 2.3, in which we introduce MCTL* and define its syntax and semantics, followed by

Section 2.4, in which there are studied the expressiveness and succinctness relationships of the

introduced logics. Finally, in Section 2.5 we study the satisfiability problem.

56



2. Minimal Model Quantifiers 2.2 - Preliminaries

2.2 Preliminaries

Substructure ordering. Let K = 〈AP,W,R, L, w0〉 and K′ = 〈AP,W′,R′, L′, w0〉 be two KSs.

We say that K′ is a substructure of K, in symbols K′ � K, iff (i) W′ ⊆ W, (ii) R′ ⊆ R∩(W′×W′),
and (iii) for all w ∈ W′, it holds that L′(w) = L(w). Moreover, we say that K and K′ are

comparable iff K � K′ or K′ � K holds, otherwise, they are incomparable. Intuitively, K′ is a

substructure of K if the former is actually a subgraph of the latter in which is also preserved the

labeling, with at least the designated world w0 in common. For a set of KSs K, we define the set of

minimal substructures (antichain) min(K) as the set consisting of the minimal elements w.r.t. �,

i.e., it is the set containing all and only the KSs K ∈ K such that for all K′ ∈ K, it holds that (i)

K � K′ or (ii) K′ 6� K. Note that all KSs in min(K) are incomparable among them. A KS K is

minimal w.r.t. a set K (or simply minimal, when the context clarify the set K) iff K ∈ min(K). A

set of KSs K is minimal iff K = min(K).

2.3 Computation Tree Logics with Minimal Model Quantifiers

In this section, we introduce a family of extensions of the classical branching-time temporal

logic CTL* [EH86] with minimal model quantifiers, which allow to extract minimal submodels on

which we successively check a given property.

2.3.1 Syntax

The full computation tree logic with minimal model quantifiers (MCTL*, for short) extends

CTL* by further using two special quantifiers, the existential EE and the universal AA. Informally,

a structure satisfies a state formula ϕ1EEϕ2 iff there is a minimal and conservative substructure

satisfying ϕ2 (ϕ2 is the submodel extractor) such that it also satisfies ϕ1 (ϕ1 is the submodel

verifier). By duality, a structure satisfies a state formula ϕ1AAϕ2 iff all minimal and conservative

substructures satisfying ϕ2 satisfy ϕ1 too. As for CTL*, in MCTL* the two path quantifiers A and

E can prefix a linear time formula composed by an arbitrary combination and nesting of the linear

temporal operators X (“next”), U (“until”), and R (“release”) together with their weak version

X̃, Ũ, and R̃. The formal syntax of MCTL* follows.

Definition 2.3.1 (MCTL* Syntax). MCTL* state (ϕ) and path (ψ) formulas are built inductively

from the sets of atomic propositions AP in the following way, where p ∈ AP:

1. ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Eψ | Aψ | ϕEEϕ | ϕAAϕ;

2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ | X̃ ψ | ψ Ũ ψ | ψ R̃ ψ.

The class of MCTL* formulas is the set of state formulas generated by the above grammar. In

addition, the simpler classes of MCTL+, MCTL, and MPML formulas are obtained, respectively,

by avoiding nesting of temporal operators, by forcing each temporal operator occurring into a

formula to be coupled with a path quantifier, and by excluding from MCTL path formulas the until

and release operators, as in the classical case of CTL+, CTL, and PML.

57



2. Minimal Model Quantifiers2.3 - Computation Tree Logics with Minimal Model Quantifiers

We now introduce some auxiliary syntactical notation for MCTL*. For a formula ϕ, we define

the length |ϕ| of ϕ as for CTL*. Formally, (i) |p| , 1, for p ∈ AP, (ii) |Op ψ| , 1 + |ψ|, for

all Op ∈ {¬,X, X̃}, (iii) |ψ1Op ψ2| , 1 + |ψ1| + |ψ2|, for all Op ∈ {∧,∨,U,R, Ũ, R̃}, (iv)

|Qnψ| , 1+ |ψ|, for all Qn ∈ {E,A}, and (v) |ϕ1Qnϕ2| , 1+ |ϕ1|+ |ϕ2|, for all Qn ∈ {EE,AA}.

We also use cl(ψ) to denote the classical Fischer-Ladner closure [FL79] of ψ defined recursively

in the following way: cl(ϕ) , {ϕ} ∪ cl′(ϕ), for all state formulas ϕ and cl(ψ) , cl′(ψ), for all

path formulas ψ, where (i) cl′(p) , ∅, for p ∈ AP, (ii) cl′(Op ψ) , cl(ψ), for all Op ∈ {¬,X, X̃},

(iii) cl′(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all Op ∈ {∧,∨,U,R, Ũ, R̃}, (iv) cl′(Qn ψ) , cl(ψ), for

all Qn ∈ {E,A}, and (v) cl′(ϕ1Qn ϕ2) , cl(ϕ1) ∪ cl(ϕ2), for all Qn ∈ {EE,AA}. Intuitively, cl(ϕ)
is the set of all the state formulas that are subformulas of ϕ.

2.3.2 Semantics

We now define the semantics of MCTL* w.r.t. a KS K = 〈AP,W,R, L, w0〉. In general, we

write K |= ϕ to indicate that a state formula ϕ holds on K at its initial world w0. However, we

introduce the three different semantics for the introduced model quantifiers: minimal, minimal-

unwinding, and unwinding-minimal. Thus, to distinguish between them we use the following

modeling relations: |=m, |=mu, and |=um. The semantics of MCTL* state and path formulas

involving atomic propositions, Boolean connectives, temporal operators, and classical path quanti-

fiers is simply defined as for CTL*. Here, we only give the semantics of the remaining minimal

model quantifiers.

Definition 2.3.2 (MCTL* Semantics). Given a KS K = 〈AP,W,R, L, w0〉 and two GCTL* state

formulas ϕ1 and ϕ2, it holds that:

1. (a) K |=m ϕ1EEϕ2 iff there is a KS K′ ∈ min(Km(K, ϕ2)) such that K′ |=m ϕ1;

(b) K |=mu ϕ1EEϕ2 iff there is a KS K′ ∈ min(Kmu(K, ϕ2)) such that K′
U |=mu ϕ1;

(c) K |=um ϕ1EEϕ2 iff there is a KS K′ ∈ min(Kum(KU , ϕ2)) such that K′ |=um ϕ1;

2. (a) K |=m ϕ1AAϕ2 iff for all KSs K′ ∈ min(Km(K, ϕ2)) it holds that K′ |=m ϕ1;

(b) K |=mu ϕ1AAϕ2 iff for all KSs K′ ∈ min(Kmu(K, ϕ2)) it holds that K′
U |=mu ϕ1;

(c) K |=um ϕ1AAϕ2 iff for all KSs K′ ∈ min(Kum(KU , ϕ2)) it holds that K′ |=um ϕ1;

whereKs(K, ϕ) , {K′ � K : ∀K′′ � K.K′ � K′′ ⇒ K′′ |=s ϕ}, with s ∈ {m,mu, um}, is the

set of all the substructure of K that are conservative w.r.t. ϕ.

Intuitively, by using the existential minimal model quantifier ϕ1EEϕ2, we can prove the

existence of a representative substructure w.r.t. ϕ2 that satisfies ϕ1. The universal quantifier

ϕ1AAϕ2 is simply the dual of ϕ1EEϕ2 and it allows to ensure that all representative substructures

w.r.t. ϕ2 satisfy ϕ1. It is clear that, MCTL* (resp., MPML, MCTL, and MCTL+) formulas

without minimal model quantifiers are CTL* (resp., PML, CTL, and CTL+) formulas.

As one can easily observe, the three semantics m, mu, and um differ one from the other only

in the particular way the substructure is extracted and then used for the verification. In particular, a

fundamental role is played by the operation of unwinding, which in mu is applied to the minimal

substructure after its extraction, while in um it is applied to the original structure.

58



2. Minimal Model Quantifiers2.3 - Computation Tree Logics with Minimal Model Quantifiers

Let K be a KS, ϕ be a MCTL* formula, and s ∈ {m,mu, um} be a symbol indicating which

semantics we are interested in. Then, K is an s-model for ϕ iff K |=s ϕ. A formula ϕ is said

s-satisfiable iff there exists an s-model for it. Moreover, it is an s-invariant for the two KSs K1 and

K2 iff either K1 |=s ϕ and K2 |=s ϕ or K1 6|=s ϕ and K2 6|=s ϕ. For all state formulas ϕ1 and ϕ2,

we say that ϕ1 s-implies ϕ2, in symbols ϕ1
s⇒ ϕ2, iff, for all KS K, it holds that if K |=s ϕ then

K |=s ϕ. Consequently, we say that ϕ1 is s-equivalent to ϕ2, in symbols ϕ1
s≡ ϕ2, iff ϕ1

s⇒ ϕ2

and ϕ2
s⇒ ϕ1. In the following, when the particular semantics represented by s is unimportant or

clear from the context, we omit the relative symbol.

A substructure K′ of K is s-conservative w.r.t. a formula ϕ iff, for all models K′′ extending K′

in K, i.e., with K′ � K′′ � K, it holds that K′′ |=s ϕ. Note that this concept of conservativeness

is automatically embedded in the definition ofKs(K, ϕ), since we consider only models that, if

extended, continue to satisfy the formula ϕ. To better understand the meaning and the importance

of the conservativeness, consider the KS K built by a chain of three worlds w0 → w1 → w2,

in which w2 is the only one labeled by the atomic proposition p. Moreover, consider the two

submodels K′ and K′′ built, respectively, by w0 and w0 → w1. Clearly, K′ � K′′ � K. Moreover,

for ϕ = EX̃ F p, we have that K′ |= ϕ, K′′ 6|= ϕ, and K |= ϕ. Hence, we have that K′ satisfies ϕ,

but it is not conservative, since K′′, which extends K′, does not satisfy ϕ. Intuitively, K′ does not

contain enough information about the general model K to be considered as one of its representative

submodels w.r.t. ϕ.

In the rest of the paper, we mainly consider formulas in positive normal form (pnf, for short),

i.e., the negation is applied only to atomic propositions, and in existential normal form (enf, for

short), i.e., only existential (path and minimal model) quantifiers occur. In fact, it is to this aim

that we have considered in the syntax of MCTL* both the Boolean connectives ∧ and ∨, the

path quantifiers A<g and E≥g, the minimal model quantifiers EE and AA, and temporal operators

X, U, and R together with their weak version X̃, Ũ, and R̃. Indeed, all formulas can be linearly

translated in pnf or enf by using De Morgan’s laws and the following equivalences, which directly

follow from the semantics of the logic: ¬(ϕ1EEϕ2) ≡ (¬ϕ1)AAϕ2, ¬Eψ ≡ A¬ψ; ¬X ψ ≡ X̃ ¬ψ;

¬(ψ1U ψ2) ≡ (¬ψ1)R̃(¬ψ2); ¬(ψ1R ψ2) ≡ (¬ψ1)Ũ(¬ψ2). Finally, as abbreviations we also use

the Boolean values t (“true”) and f (“false”).

r1

�� %%KKKKKK ioo // r2

yyssssss

��
a1

��

99sssssss
r1, r2

yysss
ss

s

%%KK
KK

KK
a2

eeKKKKKKK

��
a1, r2

44iiiiiiiiiiiii
K r1, a2

jjUUUUUUUUUUUUU

Figure 2.1: A model of an ar-

biter system for shared mem-

ory locations.

As an example of application of the logics we introduced, con-

sider an arbiter system used to control a two-users access to a

shared memory location (see Figure 2.1 for a model K of the sys-

tem), where only the request (r) and the acknowledge (a) signals

are known. Suppose now that we want to verify that the idle state

i and the common request state (r1, r2) are unique w.r.t. the or-

der of user requests and arbiter acknowledges, respectively. We

can perform this check by applying the MCTL*m or MCTL*mu
model checking at the state i using a formula ϕ = ϕ1 ∧ ϕ2, where

ϕ1 = AG (r1 ∧ r2 → X t)AA(EF (r1 ∧ X F (r1 ∧ r2 ∧ X t)) ∧
EX (r2 ∧ X F r1 ∧ r2)) checks whether the common request state reached by the “request subsys-

tem” is unique and ϕ2 = AG (i → X t)AAE(F (a1 ∧ X F i) ∧ F (a2 ∧ X F i)) checks whether the

“acknowledge subsystem” reaches the same idle state after two different acknowledges.

59



2. Minimal Model Quantifiers2.3 - Computation Tree Logics with Minimal Model Quantifiers

r1

%%KKKKKK ioo // r2

{{wwwww

r1, r2

yytttttt

a1, r2 K2

r1

��

ioo

a1

��

::uuuuuu
a2

��
a1, r2

55jjjjjjjjjjj
K1 r1, a2

iiTTTTTTTTTTT

Figure 2.2: Two submodels of the arbiter system.

For two minimal and conservative submod-

els of K satisfying ϕ1 and ϕ2, respectively, see

K1 and K2 in Figure 2.2. Observe that also

their “mirror images” are models of ϕ1 and

ϕ2. Now, one may note that the above check

can not be achieved by using neither a classical

logic such as CTL* nor the introduced logic

MCTL*um. Indeed, we may have a bisimilar model of K with more idle or common request states,

for which no CTL* or MCTL*um formula can check that these states are not unique.

At this point, we report some basic equivalences regarding the new kind of quantifiers that are

directly derived by the definition of the semantics of the logics.

Proposition 2.3.1 (Basic Equivalences). Let ϕ, ϕ1, and ϕ2 be state formulas and Qn,Qn′ ∈
{EE,AA}. Then, the following equivalences hold: (i) ϕ1AAϕ2 ≡ ¬((¬ϕ1)EEϕ2); (ii) t EEϕ ≡
ϕEEϕ ≡ ϕ; (iii) f EEϕ ≡ ¬ϕEEϕ ≡ f; (iv) t AAϕ ≡ ϕAAϕ ≡ t; (v) f AAϕ ≡ ¬ϕAAϕ ≡ ¬ϕ; (vi)

(ϕ1 ∨ ϕ2)EEϕ ≡ (ϕ1EEϕ) ∨ (ϕ2EEϕ); (vii) (ϕ1 ∧ ϕ2)AAϕ ≡ (ϕ1AAϕ) ∧ (ϕ2AAϕ); (vi) ϕEE(ϕ1 ∨
ϕ2) ≡ (ϕEEϕ1) ∨ (ϕEEϕ2); (vii) ϕAA(ϕ1 ∨ ϕ2) ≡ (ϕAAϕ1) ∧ (ϕAAϕ2); (viii) (ϕ1 ∧ ϕ2)Qnϕ2 ≡
ϕ1Qn ϕ2; (ix) (ϕ1 ∨ ϕ2)Qnϕ2 ≡ ϕ2Qn ϕ2; (x) (ϕQn(ϕ1 ∧ ϕ2)) ∧ (ϕ1AAϕ2) ⇒ ϕQnϕ2; (xi)

(ϕQnϕ2) ∧ (ϕ1AAϕ2) ⇒ ϕQn(ϕ1 ∧ ϕ2); (xii) ϕQn(ϕ1Qn′ϕ2) ≡ (ϕ ∧ ϕ1)Qnϕ2.

δ γ δ γ

β

OO

δ

OO

β

OO

δ

��

β // δ

OO

β // δ

��
α

OO

// γ

OO

α

OO

// γ

OO

α

OO

// γ

OO

α

OO

// γ

OO

K1 K2 K3 K4

Figure 2.3: The four minimal models of ϕS .

We show now the principal negative properties of MCTL* under the m and mu semantics.

Theorem 2.3.1 (Negative Properties). For MPML, MCTL, MCTL+, and MCTL* under both the

m and mu semantics, it holds that:

1. they do not have the tree model property;

2. they are not invariant under unwinding;

3. they are not invariant under bisimulation.

Proof. [Item 1]. To prove the statement, we consider a formula with an existential minimal

model quantifier such that it requires to extract a graph submodel that, in order to be satisfied,

cannot be a tree. Consider the MPML formula ϕS , ϕ1EEϕ2, where ϕ1 , EX (β ∧ EX EX γ),
ϕ2 , α ∧ EX (β ∧ EX δ) ∧ EX (γ ∧ EX (δ ∧ EX γ)), α , a ∧ b, β , ¬a ∧ b, γ , a ∧ ¬b, and

δ , ¬a ∧ ¬b. This formula is satisfiable. In Figure 2.3, we show the KSs K1, K2, K3, and K4 as

60



2. Minimal Model Quantifiers2.3 - Computation Tree Logics with Minimal Model Quantifiers

the only minimal models of ϕ2, where only K1 is a tree and K3 and K4 are the only models of

ϕ. Indeed, K3 and K4 satisfy ϕ1, but K1 and K2 does not. Since any model of ϕ have to include

K3 or K4 as submodel, it follows that no tree model can satisfy ϕ. Since MPML is a sublogic of

MCTL, MCTL+, and MCTL* the thesis easily follows.

[Item 2]. By the previous item, there exists a satisfiable MPML formula ϕ that does not have a

tree model. Now, let K be its model and KU the related unwinding. Then, we have that K |= ϕ
and KU 6|= ϕ. Hence, MPML cannot be invariant under unwinding.

[Item 3]. Since an unwinding is a particular case of a bisimilarity relation, we have also

that MPML is not invariant under bisimulation, i.e., it is possible to express an MPML property

satisfied on a model K, but not on one of its bisimilar models K′.

Finally, we move to the positive results about MCTL* under the um semantics.

Theorem 2.3.2 (Positive Properties). For MPML, MCTL, MCTL+, and MCTL* under the um
semantics, it holds that:

1. they are invariant under bisimulation;

2. they are invariant under unwinding;

3. they have the (unbounded) tree model property.

Proof. [Item 1]. The proof proceeds by induction on the structure of the formula. In particular,

here we show only the most important inductive case of ϕ = ϕ1EEϕ2. The statement that we have

to prove is the following: K1 |= ϕ iff K2 |= ϕ, for all pairs of bisimilar KSs K1 = 〈AP,W1,R1,
L1, s01〉 and K2 = 〈AP,W2,R2, L2, s02〉. As first thing, due to the definition of the logics under

the um semantics, one can easily note that if K |= ϕ then KU |= ϕ, for any KS K, since KU and

(KU )U are isomorphic structures. So, w.l.o.g., we assume that both K1 and K2 are KTs. Now,

let ∼⊆ W1 × W2 be a bisimulation relation between the two KTs and ∼ ⊆ W1 × W2 be the

restriction of ∼ to nodes of the trees that are at the same level, i.e., distance from the root, defined

as follows: t1∼ t2 iff t1 ∼ t2 and |t1| = |t2| (recall that a node of a tree is a finite word on a given

set of directions). Moreover, associate to each subtree T , 〈AP,T,R, L, ε〉 � Ki, with i ∈ {1, 2},

the maximal subtree T̂i , 〈AP, T̂, R̂, L̂, ε〉 � K3−i with the set of states T̂ , {t′ ∈ W3−1 :
∃t ∈ T. t∼ t′}. Note that, since both T and T̂ are trees, they are bisimilar (the condition on the tree

shape of the original structure is fundamental for this derivation). Thus, by the inductive hypothesis,

we obtain that T |= ϕ2 iff T̂ |= ϕ2. At this point, to prove the statement, it is enough to show that,

for each tree T ∈ min(Kum(Ki, ϕ2)), there is a bisimilar tree T ′ ∈ min(Kum(K3−i, ϕ2)), for all

i ∈ {1, 2}. Indeed, by the inductive hypothesis, we have that T |= ϕ1 iff T ′ |= ϕ1. To do this,

we prove thatKum(T̂ , ϕ2) ⊆Kum(K3−i, ϕ2) and so, min(Kum(T̂ , ϕ2)) ⊆ min(Kum(K3−i, ϕ2)),
since every T ∈Kum(T̂ , ϕ2) is bisimilar to T . Indeed, suppose by contradiction that there is a

tree inKum(T̂ , ϕ2) that is not inKum(K3−i, ϕ2). Then, due to the definition of the setKum(·, ·) of

conservative substructures w.r.t. a given formula, it holds that T̂ 6∈Kum(K3−i, ϕ2), which means

that there is a structure T with T̂ � T � K3−i such that T 6|= ϕ2. Now, consider the related

bisimilar structure T̂ . It is evident that T � T̂ � Ki. Moreover, T̂ 6|= ϕ2. But this implies that

T 6∈Kum(Ki, ϕ2), which contradicts our assumption. Hence, the thesis holds.

61



2. Minimal Model Quantifiers 2.4 - Expressiveness and Succinctness

[Item 2]. It is known that every KS K is bisimilar to its unwinding KU . Now, by the previous

item, we have that every MCTL* formula ϕ is an invariant for K and KU . Hence, the thesis holds.

[Item 3]. Consider an MCTL* formula ϕ and suppose that it is satisfiable. Then, there is a

KS K such that K |= ϕ. By the previous item, ϕ is satisfied at the root of the unwinding KU of K.

Thus, since KU is a KT, we immediately have that ϕ is satisfied on a tree model.

2.4 Expressiveness and Succinctness

In this section, we describe the expressiveness and succinctness relationships between the

introduced logics and the classic ones.

As first immediate results, we have that all the logics under the m and mu semantics are more

expressive than the classics.

Theorem 2.4.1 (m and mu Expressiveness). MPML, MCTL, MCTL+, and MCTL* under both

the m and mu semantics are more expressive than PML, CTL, CTL+, and CTL*, respectively.

Proof. Th statement follows from the fact that PML, CTL, CTL+, and CTL* are all invariant

under bisimulation, while their extensions with minimal model quantifiers under the m and mu
semantics are not. Therefore, the extended logics can characterize more models than the classical

ones. Hence, they are more expressive.

In the next two theorems, we prove how the introduction of the minimal model quantifiers

allows us to translate in an efficient way both CTL+ and CTL* in MCTL.

Theorem 2.4.2 (m Reducibility of CTL+). CTL+ is polynomially reducible by satisfiability to

MCTL under the m semantics.

Proof. Given a CTL+ formula ϕ we show that there exists an equisatisfiable MCTL formula with

|ϕ′| = O(|ϕ|3). W.l.o.g we assume that ϕ is in existential normal form (we recall that any CTL+

formula can be linearly translated in this form). Moreover, by maintaining the satisfiability (not the

equivalence) using the classical formula equivalences [EH85], we can transform it into another

CTL+ formula ϕ̂ that is a Boolean combination of existential quantifiers ϕ = Eψ, where each ψ is

in turn a Boolean combination of subformulas, of the form piU qi, G r, X s, and X̃ f, where each

pi, qi, r and s are atomic propositions. Note that after this reduction, ϕ̂ does not contain nested

quantifiers, since they are replaced by apposite fresh atomic propositions, In practice, the reduction

from ϕ to ϕ′ turns out to use, as base case of the translation idea, the following equivalences:

• E(
∧n
i=1 piU qi ∧ X̃ f)

m≡ ∧n
i=1 qi ∧ EX̃ f;

• E(G r ∧ X s)
m≡ r ∧ EX (s ∧ EG r);

• E(
∧n
i=1 piU qi)

m≡ ∨n
i=1(ϕ

ver
i EEϕexti ), where ϕveri ,

∧h,k 6=i
1≤h<k≤n(EF (qh∧EF qk)∨EF (qk∧

EF qh)) and ϕexti ,
∧j 6=i

1≤j≤n E((pi ∧ pj) U (qj ∧ E(pi U qi)));

• E(
∧n
i=1 piU qi ∧ G r)

m≡ ∨n
i=1(ϕ

ver
i EEϕexti ), where ϕveri is defined as above and ϕexti ,∧j 6=i

1≤j≤n E((r ∧ pi ∧ pj) U (qj ∧ E((r ∧ pi) U (qi ∧ EG r))));

62



2. Minimal Model Quantifiers 2.4 - Expressiveness and Succinctness

• E(
∧n
i=1 piU qi ∧ X s)

m≡ (
∧n
i=1 qi ∧ EX s) ∨ ∨n

i=1(ϕ
ver
i EEϕexti ), where ϕveri is defined as

above and ϕexti ,
∧j 6=i

1≤j≤n(pi ∧ qj ∧ EX (s ∧ E(pi U qi))) ∨ (pi ∧ pj ∧ EX (s ∧ E((pi ∧
pj) U (qj ∧ E(pi U qi)))));

• E(
∧n
i=1 piU qi∧G r∧X s)

m≡ ∧n
i=1 qi∧r∧EX (s∧EG r)∨∨n

i=1(ϕ
ver
i EEϕexti ), where ϕveri

is defined as above and ϕexti ,
∧j 6=i

1≤j≤n(r ∧ pi ∧ qj ∧EX (s∧E((r ∧ pi) U (qi ∧EG r))))∨
(r ∧ pi ∧ pj ∧ EX (s ∧ E((r ∧ pi ∧ pj) U (qj ∧ E((r ∧ pi) U (qi ∧ EG r)))))).

The first two equivalences, which do not contain the minimal model quantifier EE, are derivable by

simply applying classical transformations. The proof of the last two, instead, can be obtained by

simply showing that each model satisfying the first member of an equivalence must satisfy also the

second one and vice versa. Here, we omit the technical details, while we give the basic intuition

behind the third equivalence, which shows, as in the remaining three, how to avoid the exponential

blow-up incurred by the classical translation in CTL for the corresponding case.

The key step in the translation is the selection of the right submodel of the extractor formula

ϕexti , through the verifier formula ϕveri , which must satisfy ϕ = E(
∧n
i=1 piU qi).

If a KS K = 〈AP,W,R, L, w0〉 satisfies the original formula ϕ, we have that min(Km(K, ϕ))
⊆ min(Km(K, ϕexti )), for a given index i ∈ [1, n]. Now, let K′ ∈ min(Km(K, ϕ)). Then, for

all paths π ∈ Pth(K′, w0) such that K′, π |= ∧n
i=1 piU qi, it holds that K′, π |= F (qh ∧ F qk) or

K′, π |= F (qk ∧ F qh), for all indexes h, k ∈ [1, n], with h, k 6= i. Hence, it holds that K′ |= ϕveri

and so, K |= ϕveri EEϕexti .

Vice versa, consider a KS K = 〈AP,W,R, L, w0〉 such that K |= ϕveri EEϕexti , for a given

index i ∈ [1, n]. Then, there exists a minimal model K′ ∈ min(Km(K, ϕexti )) such that K′ |= ϕveri .

Now, suppose by contradiction that K′ 6|= ϕ. Consequently, there exist at least three different

and not directly connected substructures K′
1,K′

2,K′
3 � K′ and three paths π1 ∈ Pth(K′

1, w0),
π2 ∈ Pth(K′

2, w0), and π3 ∈ Pth(K′
3, w0) such that each path formula pjU qj , with j 6= i, is

satisfied on just two of these paths. Then, each formula E((pi ∧ pj) U (qj ∧E(pi U qi))) is satisfied

in at least two ways in two different submodels of K and then there exists a submodel K′′ � K
with K′′ 6= K′ such that K′′ |= ϕexti . Thus, K′ is not minimal, but this contradicts the assumption.

Hence, K′ |= ϕ and so, K |= ϕ.

Theorem 2.4.3 (mu and um Reducibility of CTL*). CTL* is polynomially reducible by satisfia-

bility to MCTL under the mu and um semantics.

Proof. Given a CTL* formula ϕ we show that there exists an equisatisfiable MCTL formula ϕ′,
under the mu and um semantics, with |ϕ′| = O(|ϕ|). As in the previous theorem, we first consider

the derived CTL* formula ϕ̂ in which each quantifier is of the form ϕ = Eψ, where ψ is a pure

LTL formula without any nested quantifier. Then, in order to obtain ϕ′, we substitute in ϕ̂ all the

subformulas ϕ by using the equivalences ϕ
mu≡ (ψ̃E EE φ) EE φ and ϕ

um≡ ψ̃E EE φ, respectively, for

the mu and um semantics, where the verifier formula ψ̃E is obtained from ψ by coupling each of

its temporal operators with the path quantifier E and the extractor formula φ , E((EX̃ f) R t) is

used to extract both finite and infinite paths from the original structure.

The correctness of the translation is due to the following reasoning that we explicit for the um
semantics only, since the other case is similar.

63



2. Minimal Model Quantifiers 2.4 - Expressiveness and Succinctness

For one direction of the equivalence ϕ
um≡ ψ̃E EE φ, suppose that a KS K = 〈AP,W,R, L, w0〉

is a model of ϕ and let π ∈ Pth(K, w0) be a path for which K, π |= ψ holds. Then, we can assert

that there exists a KT T ∈ min(Kum(KU , φ)) such that {π′} = Pth(T , ε), where |π′| = |π| and

π′i = unw(πi), for all i ∈ [0, |π|[ . Since ψ is a pure LTL formula, it is evident that T , π′ |= ψ and

so, T |= ϕ. Consequently, T |= ψ̃E and thus, K |= ψ̃E EE φ.

The other direction is simply the converse of the previous one. The crucial point resides in the

fact that, since each KT T ∈ min(Kum(KU , φ)) contains just one path, we can surely assert that if

T |= ψ̃E then T |= ϕ.

In the case of the mu and um semantics, we can also prove that MCTL subsumes LTL, as we

show in the next theorem.

Theorem 2.4.4 (mu and um Reducibility of LTL). LTL is polynomially reducible by equivalence

to MCTL under the mu and um semantics.

Proof. Differently from the previous two theorems, we now show that, given an LTL formula ψ
in the CTL* form Aψ, there exists an equivalent and not only equisatisfiable MCTL formula ϕ′,

with |ϕ′| = O(|ψ|). In particular, we show that Aψ
mu≡ (ψ̃A AA φ) AA φ and Aψ

um≡ ψ̃A AA φ, where

ψ̃A is obtained from ψ by coupling each of its temporal operators with the path quantifier A and

φ , E((EX̃ f) R t).
Indeed, every formula Aψ is equivalent to ¬E¬ψ. Now, by applying to E¬ψ the equivalences

proved in Theorem 2.4.3, we obtain that E¬ψ mu≡ (¬̃ψE
EE φ) EE φ and E¬ψ um≡ ¬̃ψE

EE φ. At this

point, by recalling that ¬(ϕ1EEϕ2) ≡ (¬ϕ1)AAϕ2 and observing that ¬(¬̃ψE
) = ψ̃A, we have that

Aψ
mu≡ (ψ̃A AA φ) AA φ and Aψ

um≡ ψ̃A AA φ.

By the previous theorem, we directly derive that MCTL under the um semantics too is more

expressive than CTL and CTL+.

Corollary 2.4.1 (um Expressiveness of MCTL). MCTL is more expressive than CTL and CTL+.

Proof. It is known that the LTL formulas ψ = F G p in the CTL* form Aψ does not have any

equivalent in CTL and so, in CTL+ [CD88]. However, by Theorem 2.4.4, Aψ
um≡ (AF AG p) AA

E((EX̃ f) R t). Thus, we can express in MCTL the property ψ. Hence, the statement follows.

Finally, by a model-theoretic reasoning, we prove that MCTL is at least exponentially more

expressive than CTL.

Corollary 2.4.2 (Succinctness of MCTL). MCTL is exponentially more succinct than CTL.

Proof. By Theorems 2.4.2 and 2.4.3, it holds that CTL+ is polynomially reducible to MCTL.

Such a translation, preserves the structure of the model, since from one of the CTL+ formula we

construct a new model that differs from the first at most by its enriched labeling. Now, it is known

that there exists a sequence of CTL+ formulas ϕn, with |ϕn| = O(n) and n ∈ N, whose minimal

models have size O(2n · 22n) [Lan08]. Thus, also in MCTL, we can write a related sequences with

the same property. However, by the small model property of CTL [EH85], every formula of this

logics has minimal models whose size is at most exponential in its length. Hence, the statement

follows.

64



2. Minimal Model Quantifiers 2.5 - Satisfiability

2.5 Satisfiability

In this section, we show the undecidability of the satisfiability problem for MCTL, MCTL+,

and MCTL* under the m and mu semantics through a reduction of the recurrent domino problem.

The well-known domino problem, proposed for the first time by Wang [Wan61], consists

of placing a given number of tile types on an infinite grid, satisfying a predetermined set of

constraints on adjacent tiles. Its standard version asks for a compatible tiling of the whole plane

Z × Z. However, as stated by Knuth [Knu68], a compatible tiling of the first quadrant yields

compatible tilings of arbitrary large finite rectangles, which in turn yields a compatible tiling

of the whole plane. Since the existence of a solution for the original problem is known to be

Π1
0-COMPLETE [Ber66, Rob71], we have undecidable results also for the above variants of the

classical domino problem. A formal definition of the N × N tiling problem follows.

Definition 2.5.1 (Domino System). An N × N domino system D = 〈D,H ,V 〉 consists of a finite

non-empty set D of domino types and two horizontal and vertical matching relations H ,V ⊆
D × D. The domino problem asks for an admissible tiling of N × N, which is a solution mapping

∂ : N × N → D such that, for all x, y ∈ N, it holds that (i) (∂(x, y), ∂(x + 1, y)) ∈ H and (ii)

(∂(x, y), ∂(x, y + 1)) ∈ V .

In the literature, an extension of the above problem has been also introduced as the recurrent

domino problem. This problem, in addition to the tiling of the semiplane N×N, asks whether there

exists a distinguished tile type that occurs infinitely often in the first row of the grid. This problem

is known to be more complex of the classical one. Indeed, it turns out to be Σ1
1-COMPLETE [Har84].

The formal definition follows.

Definition 2.5.2 (Recurrent Domino System). A N×N recurrent tiling system D = 〈D,H ,V , t∗〉
is a structure in which D′ = 〈D,H ,V 〉 is a N × N domino system and t∗ ∈ D is a distinguished

tile type. The recurrent domino problem asks for a solution mapping ∂ : N × N → D such that (i)

∂ is an admissible tiling for D′ and (ii) |{x ∈ N : ∂(x, 0) = t∗}| = ω.

By showing a reduction from the recurrent domino problem, we prove, in particular, that

the satisfiability problem for MCTL* is Σ1
1-HARD, which implies that it is even not computably

enumerable. We achieve this reduction by describing how a given recurrent tiling system D = 〈D,
H ,V , t∗〉 can be “embedded” into a model of a particular sentence ϕdom , a ∧ b ∧ r ∧ ϕrch
over AP , {a, b, r} ∪ D, where a, b, r 6∈ D, in such a way that ϕdom is satisfiable iff D allows an

admissible tiling. For the sake of clarity, we split the reduction into four tasks where we explicit

the structure of the formula ϕrch built on the three formulas ϕgrd, ϕtil, and ϕrec.

Grid specification. It is needed to represent a “square structure” of N×N, which consists of the

four points (x, y), (x+ 1, y), (x, y + 1), and (x+ 1, y + 1), in order to yield a complete covering

of the semi-plane via a repeating regular grid structure. The basic idea is to use the minimal model

quantifiers to force the horizontal successor of (x, y + 1) and the vertical successor of (x+ 1, y)
to correspond to the unique point (x + 1, y + 1), with the aim to represent a square structure

model on which to place the domino types. Formally, this can be expressed by using the formula

ϕgrd , ϕS ∧ ϕUH ∧ ϕUV ∧ ϕA, with α , a ∧ b, β , ¬a ∧ b, γ , a ∧ ¬b, and δ , ¬a ∧ ¬b,
where ϕS , ϕUH , ϕUV , and ϕA are defined as follows:

65



2. Minimal Model Quantifiers 2.5 - Satisfiability

• ϕH(ϕ) , (α→ EX(γ ∧ϕ))∧ (β → EX(δ ∧ϕ))∧ (γ → EX(α∧ϕ))∧ (δ → EX(β ∧ϕ));

• ϕV (ϕ) , (α→ EX(β ∧ϕ))∧ (β → EX(α∧ϕ))∧ (γ → EX(δ ∧ϕ))∧ (δ → EX(γ ∧ϕ));

• ϕS , ϕV (ϕH(ϕV (t)))EE(ϕV (ϕH(t)) ∧ ϕH(ϕV (ϕV (t))));

• ϕUH , ϕH(ϕH(t) ∧ ϕV (t))AA(ϕH(ϕH(t)) ∧ ϕH(ϕV (t)));

• ϕUV , ϕV (ϕH(t) ∧ ϕV (t))AA(ϕV (ϕH(t)) ∧ ϕV (ϕV (t)));

• ϕA , ((α ∨ δ) → AX(β ∨ γ)) ∧ ((β ∨ γ) → AX(α ∨ δ)).

Compatible tiling. It is needed to express that a tiling is locally compatible, i.e., the two

horizontal and vertical neighborhood of a given point have admissible domino types with respect to

that one. The idea here is to associate to each domino type an atomic proposition and express the

horizontal and vertical matching conditions via suitable object labeling. Note that these constraints

are very easy to express. Indeed, they can be simply expressed in PML. Formally, we have

ϕtil ,
∨
t∈D(t ∧ ∧t′ 6=t

t′∈D ¬t′ ∧ ∨
(t,t′)∈H

ϕH(t′) ∧ ∨
(t,t′)∈V

ϕV (t′)).

Recurrent tile. It is required to assert that the distinguished tile type t∗ occurs infinitely often

on the first row of the semi-plane. This task can be easily achieved by using the kind of recursion

available in the basic logic CTL. By means of this recursion, we can impose that the relative

atomic proposition is satisfied in an infinite number of worlds linearly reachable from the origin of

the grid. Formally, we have ϕrec , ϕV (AG ¬r) ∧ (r → ϕH(EF (r ∧ t∗))).

Global Reachability Finally, we need to impose that the above three conditions hold on all

points of the N × N grid. As for the recurrent tile condition, also this task can be achieved by the

simple recursion given by CTL. Formally, we have ϕrch , AG (ϕgrd ∧ ϕtil ∧ ϕrec).

Construction correctness. At this point, we have all the tools to formally prove the correctness

of the undecidability reduction, by showing the equivalence between finding the solution of the

recurrent tiling problem and the satisfiability of the sentence ϕdom.

Theorem 2.5.1 (MCTL, MCTL+, and MCTL* Satisfiability for m and mu). The satisfiability

problem for MCTL, MCTL+, and MCTL* under the m and mu semantics, is highly undecidable.

In particular, it is Σ1
1-HARD.

Proof. Assume, for the direct reduction, that there exists a solution mapping ∂ : N × N → D
for the given recurrent domino system D. Then, we can build a KS K⋆

∂ , 〈AP,W,R, L, w0〉
satisfying the sentence ϕdom in the following way: (i) W , N × N; (ii) R , {((x, y), (x +
1, y)), ((x, y), (x, y + 1)) : x, y ∈ N}; (iii) a ∈ L((x, y)) iff y ≡ 0 (mod 2), b ∈ L((x, y)) iff

x ≡ 0 (mod 2), r ∈ L((x, y)) iff y = 0 and ∂(x, 0) = t∗, and L((x, y)) ∩ D = {∂(x, y)}, for all

x, y ∈ N; (iv) w0 = (0, 0) and r ∈ L((0, 0)). By a simple case analysis on the subformulas of

ϕdom, it is possible to see that K⋆
∂ |= ϕdom.

66



2. Minimal Model Quantifiers 2.5 - Satisfiability

Conversely, let K = 〈AP,W,R, L, w0〉 be a model of the sentence ϕdom. First, we show that

K is a grid-like model and then that is possible to construct a solution mapping ∂ from it. In fact,

since K, w0 |= ϕdom, we have that for all worlds v ∈ W reachable from w0, i.e., (w0, v) ∈ Rn for

some n ∈ N, it holds that K, v |= ϕgrd and thus K, v |= ϕS . Now, it is not difficult to see that K
must contain a square submodel rooted in v. Indeed, there exist only four different minimal models

of the extractor formula ϕe , (ϕV (ϕH(t)) ∧ ϕH(ϕV (ϕV (t)))) (see Figure 2.3 for the possible

submodels rooted in a node v such that K, v |= α) among which only the two models of the verifier

formula ϕv , ϕV (ϕH(ϕV (t))) have a square shape. Moreover, K, v |= ϕA, so there are only two

kinds of successors for v, i.e., if K, v |= α or K, v |= δ then, for all worlds u ∈ W with (v, u) ∈ R,

it holds that K, u |= β or K, u |= γ and vice versa. Finally, since K, v |= ϕUH ∧ ϕUV , if K, v |= α
or K, v |= δ then there exists just one world u1 ∈ W with (v, u1) ∈ R such that K, u1 |= β and

just one world u2 ∈ W with (v, u2) ∈ R such that K, u2 and vice versa. Now, it is clear that each

world v reachable from w (including w itself) has only two successors u1 and u2, which have a

common successor o. Hence, K is a grid-like model. At this point, the extraction of a solution

mapping ∂ from K is a routine task and it is left to the reader.

67



Part II

Logics for Strategies

68



General Preliminaries II

In this section we introduce some more preliminary definitions and further notation used in the

second part of the thesis.

Concurrent game structures. A concurrent game structure (CGS, for short) is a tuple G , 〈AP,
Ag,Ac,St, λ, τ, s0〉, where AP and Ag are finite non-empty sets of atomic propositions and agents,

Ac and St are enumerable non-empty sets of actions and states, s0 ∈ St is a designated initial

state, and λ : St → 2AP is a labeling function that maps each state to the set of atomic propositions

true in that state. Let Dc , AcAg be the set of decisions, i.e., functions from Ag to Ac representing

the choices of an action for each agent. Then, τ : St × Dc → St is a transition function mapping

a state and a decision to a state. Intuitively, CGSs provide a generalization of labeled transition

systems and Kripke structures, modeling multi-agent systems, viewed as multi-player games in

which players perform concurrent actions, chosen strategically as a function of the history of the

game. Note that elements in St are not global states of the system, but states of the environment in

which the agents operate. Thus, they can be viewed as states of the game, which do not include

the local states of the agents. We say that a CGS G is turn-based iff there is an additional function

η : St → Ag, named owner function, such that if d1(η(s)) = d2(η(s)) then τ(s, d1) = τ(s, d2),
for all s ∈ St and d1, d2 ∈ Dc. Intuitively, a CGS is turn-based iff it is possible to associate at each

state an agent, the owner of the state, which is the only responsible for the choice of the successor

of that state. It is immediate to note that the function η introduce a partitioning of the set of states

into |rng(η)| components. By ‖G ‖ , |St| · |Dc| we denote the size of G, which also corresponds

to the size |dom(τ)| of the transition function τ . If the set of actions is finite, i.e., b = |Ac| <∞,

we say that G is b-bounded, or simply bounded. If both the sets of actions and states are finite, we

say that G is finite. It is immediate to note that G is finite iff it has a finite size.

Tracks and paths. A track (resp., path) in G is a finite (resp., an infinite) sequence of states

ρ ∈ St∗ (resp., π ∈ Stω) such that, for all i ∈ [0, |ρ|[ (resp., i ∈ N), there exists d ∈ Dc
such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). Intuitively, tracks and paths of a

CGS G are legal sequences of reachable states in G that can be seen, respectively, as a partial

and complete description of the possible outcomes of the game modeled by G. A track ρ is said

non-trivial iff |ρ| > 0, i.e., ρ 6= ε. We use Trk(G) ⊆ St+ (resp., Pth(G) ⊆ Stω) to indicate the

set of all non-trivial tracks (resp., paths) of the CGS G. Moreover, by Trk(G, s) ⊆ Trk(G) (resp.,

Pth(G, s) ⊆ Pth(G)) we denote the subsets of tracks (resp., paths) starting at the state s.

Concurrent game trees. A concurrent game tree (CGT, for short) is a CGS T = 〈AP,Ag,Ac,
St, λ, τ, ε〉, where (i) St ⊆ ∆∗ is a ∆-tree for a given set ∆ of directions and (ii) t · d ∈ St iff there

is a decision d ∈ Dc such that τ(t, d) = t · d, for all t ∈ St and d ∈ ∆.

69



3
Reasoning About Strategies

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Strategy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Positive properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Negative properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Strategy Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

70



3. Reasoning About Strategies 3.1 - Introduction

Abstract

In open systems verification, to formally check for reliability, one needs an appropriate

formalism to model the interaction between open entities and express that the system is correct

no matter how the environment behaves. An important contribution in this context is given by

the modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL*,

and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic, which we

denote here by CHP-SL, with the aim of getting a powerful framework for reasoning explicitly

about strategies. CHP-SL is obtained by using first-order quantifications over strategies and it

has been investigated in the specific setting of two-agents turned-based game structures where a

non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive

logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning

about strategies in multi-agent concurrent systems. We prove that SL strictly includes CHP-SL,

while maintaining a decidable model-checking problem. Indeed, we show that it is 2EXPTIME-

COMPLETE, thus not harder than that for ATL* and a remarkable improvement of the same problem

for CHP-SL. We also consider the satisfiability problem and show that it is undecidable already

for the sub-logic CHP-SL under the concurrent game semantics.

3.1 Introduction

In system design, model checking is a well-established formal method that allows to auto-

matically check for global system correctness [CE81, QS81, CGP02]. In such a framework, in

order to check whether a system satisfies a required property, we express the system in a formal

model (such as a Kripke structure), specify the property with a formula of a temporal logic (such

as LTL [Pnu77], CTL [CE81], or CTL* [EH86]), and check formally that the model satisfies the

formula. In the last decade, interest has arisen in analyzing the behavior of individual components

and sets of components in systems with several entities. This interest has started in reactive systems,

which are systems that interact continually with their environments. In module checking [KVW01]

the system is modeled as a module that interacts with its environment and correctness means that a

desired property holds with respect to all such interactions.

Starting from the study of module checking, researchers have looked for logics focusing on

strategic behavior of agents in multi-agent systems [AHK02, Pau02, JvdH04]. One of the most

important development in this field is Alternating-Time Temporal Logic (ATL*, for short), intro-

duced by Alur, Henzinger, and Kupferman [AHK02]. ATL* allows reasoning about strategies for

agents with temporal goals. Formally, it is obtained as a generalization of CTL* in which the path

quantifiers, “E” (there exists) and “A” (for all) are replaced with “strategic modalities” of the form

〈〈A〉〉 and [[A]], where A is a set of agents (a.k.a. players). Strategic modalities over agent sets are

used to express cooperation and competition among agents in order to achieve certain goals. In

particular, these modalities express selective quantifications over those paths that are the results

of infinite games between the coalition and its complement. ATL* formulas are interpreted over

concurrent game structures (CGS, for short), which model interacting processes. Given a CGS G
and a set A of agents, the ATL* formula 〈〈A〉〉ψ is satisfied at a state s of G if there is a strategy

71



3. Reasoning About Strategies 3.1 - Introduction

for agents in A such that, no matter the strategy that is executed by agents not in A, the resulting

outcome of the interaction in G satisfies ψ at s. Thus, ATL* can express properties related to

the interaction among agents, while CTL* can only express property of the global system. As

an example, consider the property “processes α and β cooperate to ensure that a system (having

more than two processes) never enters a fail state”. This property can be be expressed by the

ATL* formula 〈〈{α, β}〉〉G ¬fail , where G is the classical temporal modality “globally”. CTL*, in

contrast, cannot express this property [AHK02]. Indeed, CTL* can only say whether the set of

all agents can or cannot prevent the system from entering a fail state. The price that one have to

pay for the expressiveness of ATL* is increased complexity. Indeed, both model checking and

satisfiability checking are 2EXPTIME-COMPLETE [AHK02, Sch08].

Despite its powerful expressiveness, ATL* suffers of the strong limitation that strategies are

treated only implicitly, through modalities that refer to games between competing coalitions. To

overcome this problem, Chatterjee, Henzinger, and Piterman introduced Strategy Logic (CHP-SL,

for short) [CHP07], a logic that treats strategies in two-player games as explicit first-order objects.

In CHP-SL, the ATL* formula 〈〈α〉〉ψ, for a system modeled by a CGS with agents α and β,

becomes ∃x.∀y.ψ(x, y), i.e., “there exists a player-α strategy x such that for all player-β strategies

y, the unique infinite path resulting from the two players following the strategies x and y satisfies

the property ψ”. The explicit treatment of strategies in CHP-SL allows to state many properties

not expressible in ATL*. In particular, it is shown in [CHP07] that ATL* corresponds to the

proper one-alternation fragment of CHP-SL. Chatterjee et al. have shown that the model-checking

problem for CHP-SL is decidable, although only a non-elementary algorithm for it, both in the

size of the system and the size formula, has been provided, leaving as open the question whether an

algorithm with a better complexity exists or not. The question about the decidability of satisfiability

checking for CHP-SL was also left open in [CHP07].

While the basic idea exploited in [CHP07] to quantify over strategies, and thus to commit agent

explicitly to certain strategies, turns out to be very powerful, as discussed above, the logic CHP-SL

introduced there has been defined and investigated only under the weak framework of two-players

and turn-based games. Also, the specific syntax considered for CHP-SL allows only a weak kind of

strategy commitment. For example, CHP-SL does not allow different players to share, in different

contexts, the same strategy. These considerations, as well as all questions left open about CHP-SL,

have led us to introduce and investigate a new Strategy Logic, denoted SL, as a more general

framework than CHP-SL, for explicit reasoning about strategies in multi-player concurrent game

structures. Syntactically, SL extends LTL by means of two strategy quantifiers, the existential

〈〈x〉〉 and the universal [[x]], and an agent binding (α, x), where α is an agent and x is variable.

Intuitively, these elements can be respectively read as “there exists a strategy x”, “for all strategies

x”, and “bind agent α to the strategy associated with x”. For example, in a CGS with three

agents α, β, γ, the previous ATL* formula 〈〈{α, β}〉〉G ¬fail can be translated in the SL formula

〈〈x〉〉〈〈y〉〉[[z]](α, x)(β, y)(γ, z)(G ¬fail). The variables x and y are used to select two strategies

for the agents α and β, respectively, and z is used to select all strategies for agent γ such that the

composition of all these strategies results in a play where fail is never meet. Note that we can also

require (by means of agent binding) that agents α and β share the same strategy, using the formula

〈〈x〉〉[[z]](α, x)(β, x)(γ, z)(G ¬fail). We can also vary the structure of the game by changing the

way the quantifiers alternate, for example, in the formula 〈〈x〉〉[[z]]〈〈y〉〉(α, x)(β, y)(γ, z)(G ¬fail).

72



3. Reasoning About Strategies 3.1 - Introduction

In this case, x remains uniform w.r.t. z, but y becomes dependent on z. The last two examples

show that SL is a proper extension of both ATL* and CHP-SL. It is worth to note that the pattern

of modal quantifications over strategies and binding to agents can be extended to other logics than

LTL, such as the linear µCALCULUS [Var88]. In fact, the use of LTL here is only a matter of

simplicity in presenting our framework, and changing the embedded temporal logic involves only

few side-changes in the decision procedures.

As a main result in this paper, we show that the model-checking problem for SL is decid-

able and precisely PTIME in the size of the model and 2EXPTIME-COMPLETE in the size of the

specification, thus not harder than that for ATL*. Remarkably, this result improves significantly

the complexity of the model-checking problem for CHP-SL, for which only a non-elementary

upper-bound was known [CHP07]. The lower bound for the addressed problem immediately

follows from ATL*, which SL includes. For the upper bound, we follow an automata-theoretic

approach [KVW00], by reducing the decision problem for the logic to the emptiness problem

of automata. To this aim, we use alternating parity tree automata, which are alternating tree

automata (see [GTW02], for a survey) along with a parity acceptance condition [MS95]. Due to

the exponential size of the required automaton and the EXPTIME complexity required for checking

its emptiness, we get the desired 2EXPTIME upper bound.

As another important issue in this paper, we address the satisfiability problem for SL. By using

a reduction from the recurrent domino problem, we show that this problem is highly undecidable,

and in fact Σ1
1-HARD, (i.e., it is not computably enumerable). Interestingly, the reduction we

propose also holds for the fragment of CHP-SL in which only the next temporal operator is used,

under the concurrent game semantics. Thus, we show that in this setting also CHP-SL is highly

undecidable, while it remains an open question whether it is decidable or not in the turn-based

framework. A key point to prove the undecidability of SL has been to show that this logic lacks of

the bounded-tree model property, which does hold for ATL* [Sch08].

Since the rise of temporal and modal program logics in the mid-to-late 1970s, we have learned

to expect such logics to have a decidable satisfiability problem. In the context of temporal logic,

decidability results were extended from LTL to CTL* and ATL*. SL deviates from this pattern.

It has a decidable model-checking problem, but an undecidable satisfiability problem. In this,

it is similar to first-order logic. The decidability of model checking for first-order logic is the

foundation for query evaluation in relational databases, and undecidability of satisfiability is a

challenge we need to contend with. At the same time, it is clear that SL has nontrivial fragments,

for example ATL*, which do have a decidable satisfiability problem. Identifying larger fragments

of SL with a decidable satisfiability problem is an important research problem.

Related works Several works have focused on extensions of ATL* to incorporate more pow-

erful strategic constructs. Among them, we recall the logics Alternating-Time µCALCULUS

(AMC, for short) [AHK02], Game Logic (GL, for short) [AHK02], Quantified Decision Modality

µCALCULUS (QDµ, for short) [Pin07], Coordination Logic (CL, for short) [FS10], and some ex-

tensions of ATL* considered in [BLLM09]. AMC and QDµ are intrinsically different from SL (as

well as CHP-SL and ATL*) as they are obtained by extending the propositional µ-calculus [Koz83]

with strategic modalities. CL is similar to QDµ but with LTL temporal operators instead of explicit

fixpoint constructs. GL is strictly included in CHP-SL, but does not use any explicit treatment of

73



3. Reasoning About Strategies 3.2 - Preliminaries

strategies. Also the extensions of ATL* considered in [BLLM09] do not use any explicit treatment

of strategies. Rather, they consider restrictions on the memory for strategy quantifiers. Thus, all

the above logics are different from SL, which aims it at being a minimal but powerful logic to

reason about strategic behavior in multi-agent systems.

Outline In Section 3.2, we recall the basic notions regarding strategies, assignments, and plays.

Then, we have Section 3.3, in which we introduce SL and define its syntax and semantics, followed

by Sections 3.4 and 3.5, in which we study the basic properties of the logic. In Section 3.6, we

describe the ATA automaton model. Finally, in Sections 3.7 and 3.8 we describe, respectively,

the procedure used to solve the model-checking problem, and the undecidability proof of the

satisfiability problem.

3.2 Preliminaries

Strategies. Let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a CGS. A strategy for G is a partial function

f : Trk(G) ⇀ Ac whose domain is a St-tree, non associated to any particular agent, which maps

each non-trivial track in its domain to an action. Intuitively, a strategy is a plan for an agent that

contains all choices of moves as a function of the history of the current outcome. For a state s, we

say that f is s-total iff it is defined on all non-trivial tracks starting in s, i.e., dom(f) = {ρ ∈ Trk(G)
: fst(ρ) = s}. We use Str(G) (resp., Str(G, s) with s ∈ St) to indicate the set of all the (resp.,

s-total) strategies of the CGS G. For a track ρ ∈ dom(f), by fρ we denote the translation of f along

ρ, i.e., the lst(ρ)-total strategy such that fρ(lst(ρ) · ρ′) , f(ρ · ρ′), for all lst(ρ) · ρ′ ∈ dom(fρ).

Assignments. Let Var = {x, x0, x1, . . . , y, . . .} be a fixed set of variables. An assignment for G
is a partial function χ : Ag∪Var ⇀ Str(G) mapping every agent and variable, a.k.a. placeholders,

to a strategy. An assignment χ is complete iff Ag ⊆ dom(χ). For a state s, we say that χ is

s-total iff all strategies χ(l) are s-total too, for l ∈ dom(χ). We use Asg(G) (resp., Asg(G, s)
with s ∈ St) to indicate the set of all (resp., s-total) assignments of the CGS G. Moreover, by

Asg(G,V) (resp., Asg(G,V, s) with s ∈ St) we indicate the subsets of (resp., s-total) assignments

defined on V ⊆ Ag ∪ Var. Let ρ be a track and χ be an fst(ρ)-total assignment. By χρ we

denote the translation of χ along ρ, i.e., the lst(ρ)-total assignment with dom(χρ) , dom(χ),
such that χρ(l) , χ(l)ρ, for all l ∈ dom(χ). Intuitively, the translation χρ is the update of all

strategies contained into the assignment χ, after that the history of the game becomes ρ. Let χ be

an assignment, a be an agent, x be a variable, and f be a strategy. Then, by χ[a 7→ f] and χ[x 7→ f]
we denote, respectively, the new assignments defined on dom(χ) ∪ {a} and dom(χ) ∪ {x} that

return f on a and x and are equal to χ on the remaining part of their domain. Note that, if χ and f

are s-total, χ[a 7→ f] and χ[x 7→ f] are s-total, too.

Plays. Finally, a path π starting in a state s is a play w.r.t. a complete s-total assignment χ
((χ, s)-play, for short) iff, for all i ∈ N, it holds that πi+1 = τ(πi, d), where d(a) = χ(a)(π≤i),
for all a ∈ Ag. Note that there is a unique (χ, s)-play. Intuitively, a play is the outcome of the

game determined by all the agent strategies participating to the game.

74



3. Reasoning About Strategies 3.3 - Strategy Logic

In the sequel, we use the Greek letters “α, β, γ ” possibly with indexes to indicate specific

agents of a CGS, while we use the Latin letter “a” as a meta-variable on the agents themselves.

3.3 Strategy Logic

In this section, we formally introduce an extension of the classical linear-time temporal

logic LTL [Pnu77] with the concepts of strategy quantification and binding and discuss its main

properties. In particular, we show that it has a kind of tree model property, different to that proved

to hold for ATL*, but not the relative bounded version, which is usually required in order to obtain

a decidable satisfiability problem. Differently from CHP-SL, to formally define the extended logic,

we do not use the CTL* formulas framework but the LTL one.

3.3.1 Syntax

Strategy logic (SL, for short) syntactically extends LTL by means of two strategy quantifiers,

the existential 〈〈x〉〉 and the universal [[x]], and an agent binding (a, x), where a is an agent and x is

a variable. Intuitively, these new elements can be read, respectively, as “there exists a strategy x”,

“for all strategies x”, and “bind agent a to the strategy associated with variable x”. The formal

syntax of SL follows.

Definition 3.3.1 (SL Syntax). SL formulas are built inductively from the sets of atomic propositions

AP, variables Var, and agents Ag, in the following way, where p ∈ AP, x ∈ Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

We now introduce some auxiliary syntactical notation. For a formula ϕ, we define the length

|ϕ| of ϕ as for LTL. Formally, (i) |p| , 1, for p ∈ AP, (ii) |Op ψ| , 1 + |ψ|, for all Op ∈ {¬,X},

(iii) |ψ1Op ψ2| , 1 + |ψ1| + |ψ2|, for all Op ∈ {∧,∨,U,R}, and (iv) |Qn ψ| , 1 + |ψ|, for all

Qn ∈ {〈〈x〉〉, [[x]], (a, x)}. We also use free(ϕ) we denote the set of free agents/variables, a.k.a.

free placeholders, of ϕ defined as the subset of Ag ∪ Var containing (i) all the agents for which

there is no variable application after the occurrence of a temporal operator and (ii) all the variables

for which there is an application but no quantifications. For example, let ϕ = 〈〈x〉〉(α, x)(β, y)(F p)
be a formula on the agents Ag = {α, β, γ}. Then, we have free(ϕ) = {γ, y}, since γ is an agent

without any application after F p and y has no quantification at all. Formally, (i) free(p) = ∅,

for p ∈ AP; (ii) free(¬ϕ) = free(ϕ); (iii) free(ϕ1Op ϕ2) = free(ϕ1) ∪ free(ϕ2), where Op ∈
{∧,∨}; (iv) free(X ϕ) = Ag ∪ free(ϕ); (v) free(ϕ1Op ϕ2) = Ag ∪ free(ϕ1) ∪ free(ϕ2), where

Op ∈ {U,R}; (vi) free(Qn ϕ) = free(ϕ) \ {x}, where Qn ∈ {〈〈x〉〉, [[x]]}; and (vii) if a ∈ free(ϕ)
then free((a, x)ϕ) = (free(ϕ) \ {a}) ∪ {x} else free((a, x)ϕ) = free(ϕ). A formula ϕ without

free agents (resp., variables), i.e., with free(ϕ) ∩ Ag = ∅ (resp., free(ϕ) ∩ Var = ∅), is named

agent-closed (resp., variable-closed). If ϕ is both agent- and variable-closed, it is referred to as a

sentence.

3.3.2 Semantics

As for ATL* and differently from CHP-SL, we define the semantics of SL w.r.t. concurrent

game structures. For a CGS G, a state s, and an s-total assignment χ with free(ϕ) ⊆ dom(χ), we

75



3. Reasoning About Strategies 3.3 - Strategy Logic

write G, χ, s |= ϕ to indicate that the formula ϕ holds at s under the assignment χ. Similarly, if χ
is a complete assignment, for the (χ, s)-play π and a natural number k, we write G, χ, π, k |= ϕ to

indicate that ϕ holds at the position k of π. The semantics of the SL formulas involving atomic

propositions, the Boolean connectives ¬, ∧, and ∨, as well as that for the temporal operators X, U,

and R, is defined as usual in LTL. The novel part resides in the semantics of strategy quantifications

and agent binding.

Definition 3.3.2 (SL Semantics). Given a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, for all SL formulas

ϕ, states s ∈ St, and s-total assignments χ ∈ Asg(G, s) with free(ϕ) ⊆ dom(χ), the relation

G, χ, s |= ϕ is inductively defined as follows.

1. G, χ, s |= p iff p ∈ λ(s), with p ∈ AP.

2. For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ iff not G, χ, s |= ϕ, that is G, χ, s 6|= ϕ;

(b) G, χ, s |= ϕ1 ∧ ϕ2 iff G, χ, s |= ϕ1 and G, χ, s |= ϕ2;

(c) G, χ, s |= ϕ1 ∨ ϕ2 iff G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

3. For an agent a ∈ Ag, a variable x ∈ Var, and a formula ϕ, it holds that:

(a) G, χ, s |= 〈〈x〉〉ϕ iff there exists a strategy f ∈ Str(G, s) such that G, χ[x 7→ f], s |= ϕ;

(b) G, χ, s |= [[x]]ϕ iff for all strategies f ∈ Str(G, s) it holds that G, χ[x 7→ f], s |= ϕ;

(c) G, χ, s |= (a, x)ϕ iff G, χ[a 7→ χ(x)], s |= ϕ.

4. Finally, if χ is also complete, for all formulas ϕ, ϕ1, and ϕ2, where π is the (χ, s)-play and

k ∈ N, it holds that:

(a) G, χ, s |= ϕ iff G, χ, π, 0 |= ϕ;

(b) G, χ, π, k |= X ϕ iff G, χ, π, k + 1 |= ϕ;

(c) G, χ, π, k |= ϕ1U ϕ2 iff there is an index i ∈ N with k ≤ i such that G, χ, π, i |= ϕ2

and, for all indexes j ∈ N with k ≤ j < i, it holds that G, χ, π, j |= ϕ1;

(d) G, χ, π, k |= ϕ1R ϕ2 iff, for all indexes i ∈ N with k ≤ i, it holds that G, χ, π, i |= ϕ2

or there is an index j ∈ N with k ≤ j < i such that G, χ, π, j |= ϕ1;

(e) G, χ, π, k |= ϕ iff G, χπ≤k , πk |= ϕ.

Intuitively, at Items 3a and 3b, respectively, we evaluate existential and universal quantifiers

over strategies. At Item 3c, by means of an agent binding (a, x), we commit the agent a to a

strategy contained in the variable x. Finally, Items 4a and 4e can be easily understood by looking

at their analogous path and state formulas in ATL*. In fact, Item 4a can be viewed as the rule that

allows to move the evaluation process from states to plays and, vice versa, Item 4e from plays to

states.

We say that a CGS G is a model of an SL sentence ϕ, in symbols G |= ϕ, iff G,∅, s0 |= ϕ,

where ∅ is the empty assignment. In this case, we also say that G is a model for ϕ on s0. A

76



3. Reasoning About Strategies 3.4 - Basic properties

sentence ϕ is said satisfiable iff there is a model for it. Moreover, it is an invariant for the two

CGSs G1 and G2 iff either G1 |= ϕ and G2 |= ϕ or G1 6|= ϕ and G2 6|= ϕ. For two SL formulas ϕ1

and ϕ2 we say that ϕ1 implies ϕ2, formally ϕ1 ⇒ ϕ2, iff, for all CGSs G, states s, and s-defined

assignments χ ∈ Asg(G, s) with free(ϕ1)∪ free(ϕ2) ⊆ dom(χ), it holds that if G, χ, s |= ϕ1 then

G, χ, s |= ϕ2. Consequently, we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff ϕ1 ⇒ ϕ2

and ϕ2 ⇒ ϕ1.

s0

∅

s1
p

s2
p, q

s3
q

00 01

10

11

Dc

Dc Dc

Figure 3.1: The CGS G model of ϕ.

To get attitude to the introduced logic framework,

let us consider the simple sentence ϕ = 〈〈x〉〉[[y]]〈〈z〉〉
(α, x)(β, y)(X p)∧(α, y)(β, z)(X q) to see how to evaluate

it. First, note that α and β both use the strategy associated

with y to achieve the goals X q and X p, respectively. A

model for ϕ is G , 〈{p, q}, {α, β}, {0, 1}, {s0, s1, s2, s3},
λ, τ, s0〉, where λ(s0) , ∅, λ(s1) , {p}, λ(s2) , {p, q},

λ(s3) , {q}, τ(s0, (0, 0)) , s1, τ(s0, (0, 1)) , s2,

τ(s0, (1, 0)) , s3, and all the remaining transitions (with

any action) go to s0 (see Figure 3.1). Clearly, G, s0 |= ϕ
by letting, on s0, the variables x to chose action 0 (the goal

X p is satisfied for any choice of y, since we can move from s0 to s1 or s2, both labeled with p)

and z to choose action 1 when y has action 0 and, vice versa, 0 when y has 1 (in both the cases, the

goal X q is satisfied, since one can move from s0 to s2 or s3, both labeled with q).

An important property that is possible to express in SL, but neither in ATL* nor in CHP-SL,

is the existence of deterministic multi-player Nash equilibria. For example, consider n agents

α1, . . . , αn each of them having the LTL goals ψ1, . . . , ψn. Then, we can express the existence

of a strategy profile (x1, . . . , xn) that is a Nash equilibrium for α1, . . . , αn w.r.t. ψ1, . . . , ψn by

using the sentence 〈〈x1〉〉 · · · 〈〈xn〉〉(α1, x1) · · · (αn, xn)(
∧n
i=1(〈〈y〉〉(αi, y)ψi) → ψi). Informally,

this sentence asserts that every agent αi has the “best” strategy w.r.t. the goal ψi once all the

other strategies of the remaining agents have been fixed. Note that here we have only considered

equilibria under deterministic strategies.

In the following, we also consider the case in which SL has its semantics defined on turn-based

CGS only. In such an eventuality, we call the logic Turn-based strategy logic (TB-SL, for short).

3.4 Basic properties

We now investigate some basic properties of SL that turn out to be important for their own and

useful to prove the decidability of the model checking and the undecidability of the satisfiability. In

particular, for the introduced logics we investigate the concepts of bisimulation, local-isomorphism,

and unwinding as well as the tree and finite model properties.

3.4.1 Basic definitions

As principal definition, we formally state the concept of bisimilarity between CGSs. Intuitively,

two CGSs G1 and G2 are bisimilar iff we can build an association of each state of the first structure

with a state of the second one, and vice versa, in a way that each play in G1 has an equivalent

77



3. Reasoning About Strategies 3.4 - Basic properties

play in G2 and vice versa. As we show later, such a concept results to be or not enough strong to

characterize equivalent structures in dependence of the logic we want to consider.

Definition 3.4.1 (Bisimulation). Let G1 = 〈AP,Ag,Ac1,St1, λ1, τ1, s01〉 and G2 = 〈AP,Ag,
Ac2,St2, λ2, τ2, s02〉 be two CGSs. Then, G1 and G2 are bisimilar iff there are a relation ∼ ⊆
St1 × St2 between states, called bisimulation relation, and a function g : ∼ → 2Ac1×Ac2 mapping

pairs of states in ∼ to relations between actions, called bisimulation function, such that the

following holds:

1. s01∼ s02;

2. for all s1 ∈ St1 and s2 ∈ St2, if s1∼ s2 then

(a) λ1(s1) = λ2(s2);

(b) for all c1 ∈ Ac1, there is c2 ∈ Ac2 such that (c1, c2) ∈ g(s1, s2);

(c) for all c2 ∈ Ac2, there is c1 ∈ Ac1 such that (c1, c2) ∈ g(s1, s2);

(d) for all (d1, d2) ∈ ĝ(s1, s2), it holds that τ1(s1, d1) ∼ τ2(s2, d2), where ĝ : ∼ →
2Dc1×Dc2 is the lifting of g to decisions, i.e., it is the function mapping pairs of states

in ∼ to relations between decisions such that (d1, d2) ∈ ĝ(s1, s2) iff, for all a ∈ Ag, it

holds that (d1(a), d2(a)) ∈ g(s1, s2).

The bisimulation relation extends the classical concepts of bisimilarity defined for Kripke

structures by replacing the forth and back conditions considered there by means of Items 2b-2d

defined above, which intuitively state the following: Item 2b, the forth clause, (resp., Item 2c,

the back clause) says that for each action in G1 (resp., G2), there exists a bisimilar action in G2

(resp., in G1), while Item 2d asserts that bisimilar states are mapped to bisimilar successors through

bisimilar decisions.

It is easy to see that the bisimulation of two structures implies the existence of a bisimulation

between their decisions, as stated in the following proposition. However, note that the existence of

a bisimulation between decisions, on the converse, does not imply the existence of a bisimulation

function for the actions on which these decisions are built.

Proposition 3.4.1 (Decision Bisimulation). Let G1 = 〈AP,Ag,Ac1,St1, λ1, τ1, s01〉 and G2 =
〈AP,Ag,Ac2,St2, λ2, τ2, s02〉 be two bisimilar CGSs. Then, for all s1 ∈ St1 and s2 ∈ St2 with

s1 ∼ s2, the following holds:

1. for all d1 ∈ Dc1, there is d2 ∈ Dc2 such that (d1, d2) ∈ ĝ(s1, s2);

2. for all d2 ∈ Dc2, there is d1 ∈ Dc1 such that (d1, d2) ∈ ĝ(s1, s2).

We now introduce a strengthening of the bisimulation concept that allows us to characterize

the models that are invariant w.r.t. SL sentences.

Definition 3.4.2 (Local-Isomorphism). Let G1 = 〈AP,Ag,Ac1,St1, λ1, τ1, s01〉 and G2 = 〈AP,
Ag,Ac2,St2, λ2, τ2, s02〉 be two CGSs. Then, G1 and G2 are locally-isomorphic iff there is a

bisimulation relation ∼⊆ St1 × St2 satisfying all the requirements of Definition 3.4.1 such that

∼∩({τ1(s1, d) : d ∈ Dc1} × {τ2(s2, d) : d ∈ Dc2}) is a bijective function between the successors

of s1 and those of s2, for all s1 ∈ St1 and s2 ∈ St2 with s1 ∼ s2.

78



3. Reasoning About Strategies 3.4 - Basic properties

The local-isomorphism restricts the previous definition of the concept of bisimilarity, by

asserting that bisimilar states have the same number of successors, in order to ensure that strategies

over bisimilar structures maintain the same information. In this way, the branching degree of the

subtrees of Trk that are domains of the strategies does not change when we pass from a strategy to

a bisimilar one.

At this point, we define two generalizations for CGS of the classical concept of unwinding

of labeled transition systems, which allows us to show that SL has the (unbounded) tree model

property.

s0

∅
s1
p

0∗

1∗

∗1

∗0
(a) CGS G.

s0

∅

s0·s0
∅

s0·s1
p

s0·s0·s1
p

s0·s0·s0
∅

s0·s1·s0
∅

s0·s1·s1
p

0∗ 1∗

0∗ 1∗ ∗0 ∗1

(b) Part of the CGT GSU .

Figure 3.2: A CGS and its state-unwinding.

Definition 3.4.3 (State-Unwinding). Let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a CGS. Then, the state-

unwinding of G is the CGT GSU , 〈AP,Ag,Ac,St′, λ′, τ ′, ε〉, where (i) St is the set of directions,

(ii) the states in St′ = {ρ≥1 ∈ St∗ : ρ ∈ Trk(G, s0)} are the suffixes of the tracks starting in s0,

(iii) τ ′(t, d) = t · τ(lst(s0 · t), d), and (iv) there is a surjective function unw : St′ → St such that

(iv.i) unw(t) = lst(s0 · t), and (iv.ii) λ′(t) = λ(unw(t)), for all t ∈ St′ and d ∈ Dc.

s0

∅

s1

∅

s2
p

s3

∅

Dc

0∗ 1∗

Dc Dc

(a) CGS G.

ε

∅

01

∅
00

∅
10

∅
11

∅

00·11

∅
00·10

∅
00·01
p

00·00
p

· · ·
11·00
p

11·01
p

11·10

∅
11·11

∅

00 01 10 11

00 01 10 11 00 01 10 11

(b) Part of the CGT GDU .

Figure 3.3: A CGS and its decision-unwinding.

Definition 3.4.4 (Decision-Unwinding). Let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a CGS. Then,

the decision-unwinding of G is the CGT GDU , 〈AP,Ag,Ac,St′, λ′, τ ′, ε〉, where (i) Dc is the

set of directions, (ii) the states in St′ = Dc∗ are words over decisions, (iii) τ ′(t, d) = t · d,

and (iv) there is a surjective function unw : St′ → St such that (iv.i) unw(ε) = s0, (iv.ii)

unw(τ ′(t, d)) = τ(unw(t), d), and (iv.iii) λ′(t) = λ(unw(t)), for all t ∈ St′ and d ∈ Dc.

79



3. Reasoning About Strategies 3.4 - Basic properties

Note that each CGS G has unique associated state- and decision-unwindings GSU and GDU .

Moreover, it is important to observe that the state-unwinding preserves the turn-based property,

i.e., if G is turn-based then GSU is turn-based, too, while every decision-unwinding GDU cannot be

turn-based.

Before to continue, we have to show the main properties of the unwinding operations we have

just defined. These properties are simply a translation in the CGS framework of what we have in

the case of Kripke structures.

Theorem 3.4.1 (Unwinding Properties). For every CGS G, it holds that G and GSU are local-

isomorphic and G and GDU are bisimilar. Moreover, there is a CGS G such that G and GDU are

not local-isomorphic.

Proof. To see that G = 〈AP,Ag,Ac,St, λ, τ, s0〉 and GSU = 〈AP,Ag,Ac,St′, λ′, τ ′, ε〉 are local-

isomorphic, consider the unwinding function unw between them. Now, let ∼ , {(unw(t), t) :
t ∈ St′} and g(unw(t), t) , {(c, c) : c ∈ Ac}, for each t ∈ St′. Then, it is not hard to see that,

due to the Definition 3.4.3 of state-unwinding, ∼ and g satisfy, respectively, all constraints on the

bisimulation relation and bisimulation function of Definitions 3.4.1 and 3.4.2. Hence, the thesis

holds. By doing the same reasoning for G and GDU , we obtain that they are bisimilar. Finally,

to show that, in general, the construction of the decision-unwinding does not preserve enough

information about the original structure, consider a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, having

at least two states s0, s1 ∈ St and two actions, such that τ(s0, d) = s1, for all d ∈ Dc (see

Figure 3.3(a)). Moreover, consider its decision-unwinding GDU (see Figure 3.3(b)). It is evident

that every possible bisimulation relation ∼ between G and GDU cannot satisfy the constraint of

Definition 3.4.2, since the initial states of the two structures have necessarily different numbers of

successors.

3.4.2 Positive properties

We now are able to prove the unbounded tree model property for SL by showing a more general

property of this logic, i.e., that it is invariant under local-isomorphism and, consequently, under

state-unwinding.

Theorem 3.4.2 (SL Positive Properties). For SL, it holds that:

1. it is invariant under local-isomorphism;

2. it is invariant under state-unwinding;

3. it has the (unbounded) tree model property.

Proof. [Item 1]. The statement asserts that, every sentences ϕ is invariant w.r.t. all pairs of local-

isomorphic CGSs G1 and G2, i.e., that G1 |= ϕ iff G2 |= ϕ. Actually, we prove a stronger result,

which asserts that such an invariance property holds not only at the initial state of the structures

under empty assignment, but for any possible assignment and state. To this aim, we first extend the

concept of local-isomorphism to tracks, paths, strategies, and assignments. Then, we use the new

concepts to prove the statement, by induction on the structure of ϕ.

80



3. Reasoning About Strategies 3.4 - Basic properties

Two tracks ρ1 ∈ Trk(G1) and ρ2 ∈ Trk(G2) (resp., paths π1 ∈ Pth(G1) and π2 ∈ Pth(G2))
are local-isomorphic, in symbols ρ1 ∼ ρ2 (resp., π1 ∼ π2), iff (i) |ρ1| = |ρ2| and (ii) for all 0 ≤ i <
|ρ1| (resp., i ∈ N), it holds that (ρ1)i ∼ (ρ2)i (resp., (π1)i ∼ (π2)i). Two strategies f1 ∈ Str(G1)
and f2 ∈ Str(G2) are local-isomorphic, in symbols f1 ∼ f2, iff, for all k ∈ {1, 2} and ρk ∈ dom(fk)
there is ρ3−k ∈ dom(f3−k) with ρ1 ∼ ρ2 such that (f1(ρ1), f2(ρ2)) ∈ g(lst(ρ1), lst(ρ2)). Finally,

two assignments χ1 ∈ Asg(G1) and χ2 ∈ Asg(G2) are local-isomorphic, in symbols χ1 ∼ χ2, iff

(i) dom(χ1) = dom(χ2) and (ii) χ1(l) ∼ χ2(l), for all l ∈ dom(χ1). Observe that, if χ1 ∼ χ2 and

f1 ∼ f2, then χ1[l → f1] ∼ χ2[l → f2]. Moreover, if χ1 and χ2 are also complete, χ1 is s1-total,

and χ2 is s2-total, with s1 ∼ s2, we have that π1 ∼ π2 and (χ1)(π1)≤k ∼ (χ2)(π2)≤k , for all k ∈ N,

where π1 and π2 are the (χ1, s1)-play and (χ2, s2)-play, respectively.

Now, the statement we prove is the following: for all formulas ϕ in existential normal form1

and local-isomorphic CGSs G1, G2, states s1 ∈ St1, s2 ∈ St2, and assignments χ1 ∈ Asg(G1, s1),
χ2 ∈ Asg(G2, s2), where free(ϕ) ⊆ dom(χ1) = dom(χ2), it holds that G1, χ1, s1 |= ϕ iff G2, χ2,
s2 |= ϕ. The base case of atomic propositions directly follows from Item 2a of the Definition

3.4.1 of bisimulation, while the cases of Boolean connectives are immediate from the inductive

hypothesis. There are left to prove the cases of existential quantification, agent binding, and of the

two temporal operator next and until.

• ϕ = 〈〈x〉〉ϕ′. [Only if]. By Item 3a of Definition 3.3.2 of semantics, if G1, χ1, s1 |= ϕ
then there is a strategy f1 ∈ Str(G1, s1) such that G1, χ1[x → f1], s1 |= ϕ′. By Item 2b of

Definition 3.4.1, Definition 3.4.2, and the concept of local-isomorphism for strategies, there

is a strategy f2 ∈ Str(G2, s2) such that f1 ∼ f2. By the inductive hypothesis, G1, χ1[x →
f1], s1 |= ϕ′ iff G2, χ2[x → f2], s2 |= ϕ′. Hence, G1, χ1, s1 |= ϕ implies that there is a

strategy f2 ∈ Str(G2, s2) such that G2, χ2[x → f2], s2 |= ϕ′, i.e., G2, χ2, s2 |= ϕ. [If].

The converse direction easily follows by switching indexes 1 and 2 and using Item 2c of

Definition 3.4.1 instead of Item 2b.

• ϕ = (a, x)ϕ′. By Item 3c of Definition 3.3.2 of semantics, it holds that G1, χ1, s1 |= ϕ iff

G1, χ1[a → χ1(x)], s1 |= ϕ′. By the inductive hypothesis, G1, χ1[a → χ1(x)], s1 |= ϕ′ iff

G2, χ2[a→ χ2(x)], s2 |= ϕ′, since χ1[a→ χ1(x)] ∼ χ2[a→ χ2(x)]. Hence G1, χ1, s1 |=
ϕ iff G2, χ2, s2 |= ϕ.

• ϕ = X ϕ′. By Item 4a of Definition 3.3.2 of semantics, it holds that G1, χ1, s1 |= ϕ iff

G1, χ1, π1, 0 |= ϕ, where π1 is the (χ1, s1)-play. Now, by Items 4b and 4e of Definition

3.3.2, we have that G1, χ1, π1, 0 |= ϕ iff G1, (χ1)(π1)≤1
, (π1)1 |= ϕ′. Consider now the

(χ2, s2)-play π2. By Item 2d of Definition 3.4.1, it follows that the (π1)1 is local-isomorphic

to (π2)1. Hence, by the inductive hypothesis, it holds that G1, (χ1)(π1)≤1
, (π1)1 |= ϕ′ iff

G2, (χ2)(π2)≤1
, (π2)1 |= ϕ′. Now, again by Items 4e, 4b, and 4a of Definition 3.3.2, it follows

that G2, (χ2)(π2)≤1
, (π2)1 |= ϕ′ iff G2, χ2, s2 |= ϕ. Hence, we obtain that G1, χ1, s1 |= ϕ iff

G2, χ2, s2 |= ϕ.

• ϕ = ϕ1U ϕ2. The proof is similar to the previous one. The only difference is in the result of

the inductive hypothesis: G1, (χ1)(π1)≤k , (π1)k |= ϕi iff G2, (χ2)(π2)≤k , (π2)k |= ϕi, for all

1An SL formula is in existential normal form iff it has only existential quantifiers and no release temporal operators.

Using classical reasoning, it is not hard to see that every SL can be translated into this specific form.

81



3. Reasoning About Strategies 3.4 - Basic properties

k ∈ N and i ∈ {1, 2}.

[Item 2]. By Theorem 3.4.1, we know that G and GSU are local-isomorphic, for every CGS G.

Now, by the previous item, we have that every sentence ϕ is an invariant for G and GSU . Hence,

the thesis holds.

[Item 3]. Consider a sentence ϕ and suppose that it is satisfiable. Then, there is a CGS G such

that G |= ϕ. By the previous item, ϕ is satisfied at the root of the state-unwinding GSU of G. Thus,

since GSU is a CGT, we immediately have that ϕ is satisfied on a tree model.

3.4.3 Negative properties

We now move to the negative results about SL and their sublogics. In particular, we first show

that TB-SL, and so SL, is not invariant under bisimulation.

Theorem 3.4.3 (TB-SL Negative Properties). TB-SL it is not invariant under bisimulation.

Proof. Consider the two CGSs G1 = 〈AP,Ag,Ac,St, λ, τ1, s0〉 and G2 = 〈AP,Ag,Ac,St, λ, τ2,
s0〉, with AP = {p}, Ag = {α, β}, Ac = {0, 1}, and St = {s0, s′1, s′′1, s′2, s′′2, s′3, s′′3}, of Figure

3.4. It is immediate to see that they are bisimilar, by simply assuming ∼ , {(s, s) : s ∈ St} and

g(s, s) , {(c, c) : c ∈ Ac}, for each s ∈ St, since they satisfy all constraints on the bisimulation

relation and bisimulation function of Definitions 3.4.1. Moreover, they are turn-based, too. Indeed,

in G1 all states are owned by agent α, i.e., η1(s) = α, for all s ∈ St, while in G2 the initial state s0
is the only one owned by player β, i.e., η2(s0) = β and η2(s) = α, for all s ∈ St \ {s0}.

Now, consider the formula ϕ = 〈〈x〉〉(α, x)(〈〈y〉〉(β, y)(X X p)) ∧ (〈〈y〉〉(β, y)(X X ¬p)). It is

easy to see that G1 6|= ϕ while G2 |= ϕ, so TB-SL cannot be invariant under bisimulation. Indeed,

each strategy f ∈ Str(G1, s0) of the agent α in G1 forces to reach only one state at a time among

s′2, s′′2 , s′3, and s′′3 . Thus, it is impossible to satisfy both the goals X X p and X X ¬p with the same

strategy of α. On the contrary, since s0 in G2 is owned by the agent β, we can reach both s′1 and s′′1
with the same strategy f ∈ Str(G2, s0) of α. Thus, if f(s0 · s′1) 6= f(s0 · s′′1), we can reach, at the

same time, either the pair of states s′2 and s′′3 or s′3 and s′′2 . Hence, we can satisfy both the goals

X X p and X X ¬p with the same strategy of α.

s0

∅

s′1

∅
s′′1

∅

s′2
p

s′3

∅
s′′2
p

s′′3

∅

0∗ 1∗

0∗ 1∗ 0∗1∗
Dc

Dc

Dc

Dc

(a) CGS G1.

s0

∅

s′1

∅
s′′1

∅

s′2
p

s′3

∅
s′′2
p

s′′3

∅

∗0 ∗1

0∗ 1∗ 0∗1∗
Dc

Dc

Dc

Dc

(b) CGS G2.

Figure 3.4: Two bisimilar but not local-isomorphic turn-based CGSs.

82



3. Reasoning About Strategies 3.4 - Basic properties

It is interesting to note that the two structure of Figure 3.4 are not local-isomorphic, although

they are bisimilar and have the same number of successors for each state. Indeed, as shown in the

previous theorem, there is a formula that is not invariant between them.

We now show that SL does have neither the bounded-tree nor the finite model property. We

recall that a modal logic has the bounded-tree model property (resp., finite model property) if

whenever a formula is satisfiable, it is so on a model with a finite number of actions having a tree

shape (resp., finite states). Clearly, if a modal logic invariant under unwinding has the finite model

property, it has the bounded-tree model property as well. The other direction may not hold, instead.

To prove the results, we introduce, in the following definition, the formula ϕord to be used as a

counterexample.

Definition 3.4.5 (Ordering Sentence). Let x1 < x2 , 〈〈y〉〉 ϕ(x1, x2, y) be an agent-closed

formula, named partial order, on the sets AP = {p} and Ag = {α, β}, where ϕ(x1, x2, y) ,

(β, y)((α, x1)(X p)∧ (α, x2)(X ¬p)). Then, the order sentence ϕord , ϕunb∧ϕtrn is the conjunc-

tion of the following two sentences, called unboundedness and transitivity strategy requirements:

1. ϕunb , [[x1]]〈〈x2〉〉 x1 < x2;

2. ϕtrn , [[x1]][[x2]][[x3]] (x1 < x2 ∧ x2 < x3) → x1 < x3.

Intuitively, ϕunb asserts that, for each strategy x1, there is a different strategy x2 in relation

of < w.r.t. the first one, i.e., < has no upper bound. Moreover, ϕtrn expresses the fact that the

relation < is transitive. Note also that, by definition, < is not reflexive.

s0

∅

s1
p

s2

∅

Dc′ Dc \ Dc′

Dc Dc

Figure 3.5: The CGS G⋆ model of ϕord.

Obviously, the formula ϕord needs to be satisfiable,

as reported in the following lemma.

Lemma 3.4.1 (Ordering Satisfiability). The SL sentence

ϕord is satisfiable.

Proof. To prove that ϕord is satisfiable, consider the un-

bounded CGS G⋆ , 〈AP,Ag,Ac,St, λ, τ, s0〉, where (i)

Ac , N, (ii) St , {s0, s1, s2}, (iii) λ is such that λ(s0) = λ(s2) , ∅ and λ(s1) , {p}, and

(iv) τ is such that if d ∈ Dc′ , {d ∈ Dc : d(α) ≤ d(β)} then τ(s0, d) = s1 else τ(s0, d) = s2,

and τ(si, d) = si, for all d ∈ Dc and i ∈ {1, 2} (see Figure 3.5). Now, it is easy to see

that G⋆,∅, s0 |= ϕunb, since for every strategy fx1 ∈ Str(G⋆, s0) for x1, consisting of picking

a natural number n = fx1(s0) as an action at the initial state, we can reply with the strategy

fx2 ∈ Str(G⋆, s0) for x2 having fx2(s0) > n and the strategy fy ∈ Str(G⋆, s0) for y having

fy(s0) = n. Formally, we have that G⋆, χ, s0 |= ϕ(x1, x2, y), where χ(x2)(s0) > χ(x1)(s0) and

χ(y)(s0) = χ(x1)(s0), for all assignments χ ∈ Asg(G⋆, {x1, x2, y}, s0). By a similar reasoning,

we can see that G⋆,∅, s0 |= ϕtrn. Indeed, consider three strategies fx1 , fx2 , fx3 ∈ Str(G⋆, s0)
for the variables x1, x2, and x3, which respectively correspond to picking three natural num-

bers n1 = fx1(s0), n2 = fx2(s0), and n3 = fx3(s0). Now, if G⋆, χ, s0 |= x1 < x2 and

G⋆, χ, s0 |= x2 < x3, where χ(x1) = fx1 , χ(x2) = fx2 , and χ(x3) = fx3 , we have that n1 < n2

and n2 < n3, and then n1 < n3, for all assignments χ ∈ Asg(G⋆, {x1, x2, x3}, s0). Hence, using

a strategy fy ∈ Str(G⋆, s0) for y with fy(s0) = fx1(s0) we have G⋆, χ[y → fy], s0 |= ϕ(x1, x3, y)
and thus G⋆, χ, s0 |= x1 < x3.

83



3. Reasoning About Strategies 3.4 - Basic properties

However, it is also important to observe that ϕord cannot have turn-based models.

Lemma 3.4.2 (Ordering Turn-Based Unsatisfiability). The SL sentence ϕord is unsatisfiable over

turn-based CGSs.

Proof. Let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a model of ϕord. Then, we have G |= ϕunb and

so, G |= [[x1]]〈〈x2〉〉〈〈y〉〉ϕ(x1, x2, y). Directly from the satisfiability concept, we derive the

existence of an assignment χ ∈ Asg(G, {x1, x2, y}, s0) such that G, χ, s0 |= ϕ(x1, x2, y). Now,

consider the two decisions d1, d2 ∈ Dc given by the following settings: d1(α) , χ(x1)(s0),
d2(α) , χ(x2)(s0), and d1(β) = d2(β) , χ(y)(s0), It is easy to observe that λ(τ(s0, d1)) = {p}
and λ(τ(s0, d2)) = ∅. So, τ(s0, d1) 6= τ(s0, d2). Then, since d1(β) = d2(β), by definition of

owner function η : St → Ag, it is evident that β cannot be the owner of state s0, i.e., η(s0) 6= β. At

this point, again from the satisfiability concept, we derive the existence of another assignment χ′ ∈
Asg(G, {x1, x2, y}, s0) such that G, χ′, s0 |= ϕ(x1, x2, y), with χ′(x1) = χ(x2). Now, consider

the decision d3 ∈ Dc given by the following settings: d1(α) , χ′(x1)(s0) and d1(β) , χ′(y)(s0).
Also in this case, it is easy to observe that λ(τ(s0, d3)) = {p}. So, τ(s0, d2) 6= τ(s0, d3). Then,

since d2(α) = d3(α), again by definition of owner function, it is evident that also α cannot be

the owner of state s0, i.e., η(s0) 6= α. Consequently, it’s impossible to find the function η with

required conditions, which implies that G cannot be turn-based.

Next two lemmas report two important properties of the formula ϕord, for the negative state-

ments we want to show. Namely, they state that, in order to be satisfied, ϕord must require the

existence of strict partial order relations on strategies and actions that do not admit any maximal

element. From this, as stated in Theorem 3.4.4, we directly derive that ϕord needs an infinite chain

of actions to be satisfied (i.e., it cannot have a bounded model).

Lemma 3.4.3 (Strategy Order). Let G be a model of ϕord and r< ⊆ Str(G, s0) × Str(G, s0)
be a relation between s0-total strategies such that r<(f1, f2) holds iff G, χ, s0 |= x1 < x2,

where χ(x1) = f1 and χ(x2) = f2, for all strategies f1, f2 ∈ Str(G, s0) and assignments

χ ∈ Asg(G, {x1, x2}, s0), with s0 as the initial state of G. Then, r< is a strict partial order

without maximal element.

Proof. The proof derives from the fact that r< satisfies the following properties:

1. Irreflexivity: ∀f ∈ Str. ¬r<(f, f);

2. Unboundedness: ∀f1 ∈ Str ∃f2 ∈ Str. r<(f1, f2);

3. Transitivity: ∀f1, f2, f3 ∈ Str. (r<(f1, f2) ∧ r<(f2, f3)) → r<(f1, f3).

Indeed, Items (ii) and (iii) are directly derived from the strategy unboundedness and strategy transi-

tivity requirements. The proof of Item (i) derives from the following reasoning. By contradiction,

suppose that r< is not a strict order, i.e., there is a strategy f ∈ Str(G⋆, s0) for which r<(f, f) holds.

This means that, at the initial state s0 in G, there exists an assignment χ ∈ Asg(G⋆, {x1, x2, y}, s0)
for which G, χ, s0 |= ϕ(x1, x2, y), where χ(x1) = χ(x2) = f. This implies the existence of a

successor of s0 in which both p and ¬p hold, which is clearly impossible.

84



3. Reasoning About Strategies 3.4 - Basic properties

Lemma 3.4.4 (Action Order). Let G be a model of ϕord and s< ⊆ Ac×Ac be a relation between

actions such that s<(c1, c2) holds iff r<(f1, f2) holds, where c1 = f1(s0) and c2 = f2(s0), for all

actions c1, c2 ∈ Ac and strategies f1, f2 ∈ Str(G, s0), with s0 as the initial state of G. Then, s< is

a strict partial order without maximal element.

Proof. The irreflexivity and transitivity of s< are directly derived from the fact that, by Lemma

3.4.3, r< is irreflexive and transitive too. The proof of the unboundedness property derives, instead,

from the following reasoning. As first thing, observe that, since the formula x1 < x2 relies on

X p and X ¬p as the only temporal operators, it holds that r<(f1, f2) implies r<(f ′1, f
′
2), for all

strategies f1, f2, f
′
1, f

′
2 ∈ Str(G, s0) such that f1(s0) = f ′1(s0) and f2(s0) = f ′2(s0). Now, suppose

by contradiction that s< does not satisfy the unboundedness property, i.e., there is an action c ∈ Ac
such that, for all actions c′ ∈ Ac, s<(c, c′) does not hold. Then, by the definition of s< and the

previous observation, we derive the existence of a strategy f ∈ Str(G, s0) with f(s0) = c such that

r<(f, f ′) does not hold, for all strategies f ′ ∈ Str(G, s0), which is clearly impossible.

Now, we have all tools to prove also that SL lacks of the finite and bounded-tree model

properties, which hold in several commonly used multi-agent logics, such as ATL*.

Theorem 3.4.4 (SL Negative Properties). For SL, it holds that:

1. it is not invariant under decision-unwinding;

2. it is not invariant under bisimulation;

3. it does not have the bounded-tree model property;

4. it does not have the finite-model property.

Proof. [Item 1]. Assume by contraddiction that the logic is invariant under decision-unwinding

and consider the two structures G1 and G2 (see Figure 3.4) used in the proof of Theorem 3.4.3.

Also, observe that G1 and G2 have the same decision unwinding, i.e., G1DU = G2DU (see Figure

3.3(b)). Then, it is evident that G1 |= ϕ iff G2 |= ϕ, in particular for the sentence ϕ of the proof of

Theorem 3.4.3, but this is in contraddiction with what we have yet proved there.

[Item 2]. The thesis directly follows from the fact that yet the turn-based fragment is not

invariant under bisimulation, as shown in Theorem 3.4.3.

[Item 3]. To prove the statement, we show that ϕord cannot be satisfied on a bounded CGS.

Consider a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉 such that G,∅, s0 |= ϕ. The existence of such a

model is ensured by Lemma 3.4.1. Now, consider the strict partial order without maximal element

between actions s< described in Lemma 3.4.4. By a classical result on first order logic model

theory [EF95], the relation s< cannot be defined on a finite set. Hence, |Ac| = ∞.

[Item 4]. Consider again the formula ϕord. We have already proved in Item (i) that each CGS

G model of ϕord must have an infinite number of actions. Hence, the number of its decisions |Dc|
is infinite, and so |G| = ∞.

85



3. Reasoning About Strategies 3.5 - Strategy Quantification

3.5 Strategy Quantification

In this section, we introduce the concepts of quantification prefix and spectrum and show

how any strategy quantification of an SL formula can be represented by an adequate choice of a

quantification spectrum. The main idea here is inspired by what Skolem proposed for the first order

logic in order to eliminate each existential quantification over variables, by substituting them with

second order quantifications over functions, whose choice is uniform w.r.t. the universal variables.

Definition 3.5.1 (Quantification Prefixes). A quantification prefix over a set of n placeholders

P ⊆ Ag ∪ Var is a finite word ℘ ∈ {〈〈x〉〉, [[x]] : x ∈ P}n of length n such that each placeholder

x ∈ P occurs once and only once in ℘, i.e., there are no indexes i, j ∈ [0, n] with i 6= j such that

℘i, ℘j ∈ {〈〈x〉〉, [[x]]}.

Let x ∈ P. Recall that with 〈〈x〉〉 and [[x]] we represent the existential and universal quantifica-

tion of x, respectively. By Ξ(℘) , {x ∈ Var : ∃i ∈ [0, n].℘i = 〈〈x〉〉} and Λ(℘) , Var \Ξ(℘) we

denote, respectively, the sets of existential and universal placeholders in ℘. For two placeholders

x and y, we say that x precedes y in ℘, in symbols x <℘ y, iff there are two indexes i, j ∈ [0, n]
such that i < j, ℘i ∈ {〈〈x〉〉, [[x]]}, and ℘j ∈ {〈〈y〉〉, [[y]]}. Moreover, we say that y is functional

dependent on x iff y is existentially quantified after that x is universally quantified, so there may

be a dependence between the value chosen by x and that chosen by y. Formally, this definition

induces the relation Υ(℘) , {(x, y) ∈ Var × Var : x <℘ y ∧ x ∈ Λ(℘) ∧ y ∈ Ξ(℘)}. In the

following, we also use Υ(℘, y) , {x ∈ Var : (x, y) ∈ Υ(℘)} to denote the sets of placeholders

from which y depends.

As an example, let ℘ = [[x]]〈〈y〉〉〈〈z〉〉[[w]]〈〈v〉〉. Then, we have Ξ(℘) = {y, z, v}, Λ(℘) =
{x,w}, and Υ(℘) = {(x, y), (x, z), (x, v), (w, v)}.

We now give the semantics of the quantification prefixes by means of the following definition.

Definition 3.5.2 (Quantification Spectra). Let ℘ be a quantification prefix over a set of placeholders

P, and D be a set. Then, a quantification spectrum for ℘ over D is a function θ : DΛ(℘) → DP

such that the following properties hold:

1. θ(d)↾Λ(℘) = d, for all d ∈ DΛ(℘), i.e., θ takes the same values of its argument w.r.t. the

universal placeholders in ℘;

2. θ(d1)(x) = θ(d2)(x), for all d1, d2 ∈ DΛ(℘) and x ∈ Ξ(℘) such that d1↾Υ(℘,x) = d2↾Υ(℘,x),

i.e., the value of θ w.r.t. an existential placeholder x in ℘ does not depend on placeholders

not in Υ(℘, x).

By ΘD(℘) we denote the set of all quantification spectra θ for ℘ over D.

Intuitively, a quantification spectrum θ for ℘ can be considered as a set of Skolem functions

that, given a value for each placeholder in P that is universally quantified in ℘, returns a pos-

sible value for all the existential placeholders in ℘ in a way that is coherent w.r.t. the order

of quantification. Observe that, for all θ ∈ ΘD(℘), we have |rng(θ)| = |D||Λ(℘)|. Moreover,

|ΘD(℘)| =
∏
x∈Ξ(℘) |D||D||Υ(℘,x)|

.

As an example, let D = {0, 1} and ℘ = [[x]]〈〈y〉〉[[z]] be a quantification prefix over P =
{x, y, z}. Then, we have |ΘD(℘)| = 4. Moreover, the quantification spectra θi ∈ ΘD(℘) with

86



3. Reasoning About Strategies 3.5 - Strategy Quantification

i ∈ [1, 4] (in a particular order) are such that θ0(d)(y) = 0, θ1(d)(y) = d(x), θ2(d)(y) = 1−d(x),
and θ3(d)(y) = 1, for all d ∈ D{x,z}.

We now prove how to eliminate a strategy quantification of a formula by substituting it

with a choice of a quantification spectrum. This procedure can be seen as the equivalent of the

Skolemization in first order logic.

Theorem 3.5.1 (Strategy Quantification). Let G be a CGS with initial state s0 and ϕ = ℘ · ψ
be a formula being ℘ a quantification prefix over a set of placeholders P ⊆ free(ψ) ∩ Var.
Then, for all assignments χ ∈ Asg(G, free(ϕ), s0), the following holds: G, χ, s0 |= ϕ iff there

exists a quantification spectrum θ ∈ ΘStr(G,s0)(℘) such that G, χ ⋒ θ(χ′), s0 |= ψ, for all χ′ ∈
Asg(G,Λ(℘), s0).

Proof. The proof proceeds by induction on the length of the quantification prefix ℘. For the base

case |℘| = 0, the thesis immediately follows, since Λ(℘) = ∅ and, consequently, both ΘStr(℘) and

Asg(G,Λ(℘), s0) contain only the empty function (we are assuming ∅(∅) , ∅).

We now prove, separately, the two directions of the inductive case.

[Only if]. Suppose that G, χ, s0 |= ϕ, where ℘ = Qn · ℘′. Then, we have two possible cases:

either Qn = 〈〈x〉〉 or Qn = [[x]]. On one hand, if Qn = 〈〈x〉〉, by Item 3a of Definition 3.3.2

of semantics, there is a strategy f ∈ Str(G, s0) such that G, χ[x 7→ f], s0 |= ℘′ · ψ. Note that

Λ(℘) = Λ(℘′). By the inductive hypothesis, we have that there exists a quantification spectrum

θ ∈ ΘStr(G,s0)(℘
′) such that G, χ[x 7→ f] ⋒ θ(χ′), s0 |= ψ, for all χ′ ∈ Asg(G,Λ(℘′), s0). Now,

consider the function θ̂ : Asg(G,Λ(℘), s0) → Asg(G,P, s0) defined by θ̂(χ′) , θ(χ′)[x 7→ f],
for all χ′ ∈ Asg(G,Λ(℘), s0). It is easy to check that θ̂ is a quantification spectrum for ℘ over

Str(G, s0), i.e., θ̂ ∈ ΘStr(G,s0)(℘). Moreover, χ[x 7→ f]⋒θ(χ′) = χ⋒θ(χ′)[x 7→ f] = χ⋒θ̂(χ′), for

χ′ ∈ Asg(G,Λ(℘), s0). Hence, G, χ ⋒ θ̂(χ′), s0 |= ψ, for all χ′ ∈ Asg(G,Λ(℘), s0). On the other

hand, if Qn = [[x]], by Item 3b of Definition 3.3.2, we have that, for all strategies f ∈ Str(G, s0), it

holds that G, χ[x 7→ f], s0 |= ℘′ · ψ. Note that Λ(℘) = Λ(℘′) ∪ {x}. By the inductive hypothesis,

we derive that, for each f ∈ Str(G, s0), there exists a quantification spectrum θf ∈ ΘStr(G,s0)(℘
′)

such that G, χ[x 7→ f]⋒θf(χ
′), s0 |= ψ, for all χ′ ∈ Asg(G,Λ(℘′), s0). Now, consider the function

θ̂ : Asg(G,Λ(℘), s0) → Asg(G,P, s0) defined by θ̂(χ′) , θχ′(x)(χ
′
↾Λ(℘′))[x 7→ χ′(x)], for all

χ′ ∈ Asg(G,Λ(℘), s0). It is evident that θ̂ is a quantification spectrum for ℘ over Str(G, s0),
i.e., θ̂ ∈ ΘStr(G,s0)(℘). Moreover, χ[x 7→ f] ⋒ θf(χ

′) = χ ⋒ θf(χ
′)[x 7→ f] = χ ⋒ θ̂(χ′[x 7→ f]),

for f ∈ Str(G, s0) and χ′ ∈ Asg(G,Λ(℘′), s0). Hence, G, χ ⋒ θ̂(χ′), s0 |= ψ, for all χ′ ∈
Asg(G,Λ(℘), s0).

[If]. Suppose that there exists a quantification spectrum θ ∈ ΘStr(G,s0)(℘) such that G, χ ⋒

θ(χ′), s0 |= ψ, for all χ′ ∈ Asg(G,Λ(℘), s0), where ℘ = Qn · ℘′. Then, we have two possible

cases: either Qn = 〈〈x〉〉 or Qn = [[x]]. On one hand, if Qn = 〈〈x〉〉, there is f ∈ Str(G, s0)
such that f = θ(χ′)(x), for all χ′ ∈ Asg(G,Λ(℘), s0). Note that Λ(℘) = Λ(℘′) and consider

the function θ̂ : Asg(G,Λ(℘′), s0) → Asg(G,P \ {x}, s0) defined by θ̂(χ′) , θ(χ′)↾(P\{x}), for

all χ′ ∈ Asg(G,Λ(℘′), s0). It is easy to check that θ̂ is a quantification spectrum for ℘′ over

Str(G, s0), i.e., θ̂ ∈ ΘStr(G,s0)(℘
′). Moreover, χ⋒ θ(χ′) = χ⋒ θ̂(χ′)[x 7→ f] = χ[x 7→ f] ⋒ θ̂(χ′),

for χ′ ∈ Asg(G,Λ(℘′), s0). Then, it is evident that G, χ[x → f] ⋒ θ̂(χ′), s0 |= ψ, for all

χ′ ∈ Asg(G,Λ(℘′), s0). By the inductive hypothesis, we derive that G, χ[x 7→ f], s0 |= ℘′ · ψ,

87



3. Reasoning About Strategies 3.5 - Strategy Quantification

which, by Item 3a of Definition 3.3.2 of semantics, means that G, χ, s0 |= ϕ. On the other hand, if

Qn = [[x]], note that Λ(℘) = Λ(℘′) ∪ {x} and consider the functions θ̂f : Asg(G,Λ(℘′), s0) →
Asg(G,P \ {x}, s0) defined by θ̂f(χ

′) , θ(χ′[x 7→ f])↾(P\{x}), for each f ∈ Str(G, s0) and

χ′ ∈ Asg(G,Λ(℘′), s0). It is evident that every θ̂f is a quantification spectrum for ℘′ over

Str(G, s0), i.e., θ̂f ∈ ΘStr(G,s0)(℘
′). Moreover, χ ⋒ θ(χ′) = χ ⋒ θ̂χ′(x)(χ

′
↾(P\{x}))[x 7→ χ′(x)] =

χ[x 7→ χ′(x)] ⋒ θ̂χ′(x)(χ
′
↾(P\{x})), for χ′ ∈ Asg(G,Λ(℘), s0). Then, it is evident that G, χ[x →

f]⋒ θ̂f(χ
′), s0 |= ψ, for all f ∈ Str(G, s0) and χ′ ∈ Asg(G,Λ(℘′), s0). By the inductive hypothesis,

we derive that G, χ[x 7→ f], s0 |= ℘′ · ψ for all f ∈ Str(G, s0), which, by Item 3b of Definition

3.3.2, means that G, χ, s0 |= ϕ.

In the following, we give a fundamental definition and two relative lemmas that are used to

show how every quantification over strategies on a model can be split into a quantification over

actions for each track of the model itself.

Definition 3.5.3 (Adjoint Functions). Let ℘ be a quantification prefix over a set of placeholders P,

D and T be two sets, and θ : (T → D)Λ(℘) → (T → D)P and θ̂ : T → (DΛ(℘) → DP) be two

functions. Then, we say that θ̂ is the adjoint of θ w.r.t. D, T, and ℘ iff θ(h)(x)(t) = θ̂(t)(h(t))(x),
for all h ∈ (T → D)Λ(℘), x ∈ P, and t ∈ T, where h : T → DΛ(℘) is such that h(t)(y) = h(y)(t),
for each y ∈ P and t ∈ T.

Next lemma formally states that each quantification spectrum over a set T → D can be seen as

a set of quantification spectra over D, one for each element of T and vice versa.

Lemma 3.5.1 (Adjoint Functions). Let ℘ be a quantification prefix over a set of placeholders P,

D and T be two sets, and θ : (T → D)Λ(℘) → (T → D)P and θ̂ : T → (DΛ(℘) → DP) be two

functions such that θ̂ is the adjoint of θ w.r.t. D, T, and ℘. Then, θ ∈ ΘT→D(℘) iff, for all t ∈ T,

it holds that θ̂(t) ∈ ΘD(℘).

Proof. To prove the statement, it is enough to show separately that Items 1 and 2 of Definition

3.5.2 hold for one function if all the others satisfy the same items, and vice versa.

[Item 1, if]. Assume that θ̂(t) satisfies Item 1, for each t ∈ T, i.e., θ̂(t)(d)↾Λ(℘) = d, for all

d ∈ DΛ(℘). Then, we have that θ̂(t)(h(t))(x) = h(t)(x), for all h ∈ (T → D)Λ(℘) and x ∈ Λ(℘).
By hypothesis, we have that θ(h)(x)(t) = θ̂(t)(h)(t)(x), thus θ(h)(x)(t) = h(x)(t), which means

that θ(h)↾Λ(℘) = h, for all h ∈ (T → D)Λ(℘).

[Item 1, only if]. Assume now that θ satisfies Item 1, i.e., θ(h)↾Λ(℘) = h, for all h ∈
(T → D)Λ(℘). Then, we have that θ(h)(x)(t) = h(x)(t), for all x ∈ Λ(℘) and t ∈ T. By

hypothesis, we have that θ̂(t)(h(t))(x) = θ(h)(x)(t), so θ̂(t)(h(t))(x) = h(t)(x), which means

that θ̂(t)(h(t))↾Λ(℘) = h(t). Now, since for each d ∈ DΛ(℘), there is an h ∈ (T → D)Λ(℘) such

that h(t) = d, we obtain that θ̂(t)(d)↾Λ(℘) = d, for all d ∈ DΛ(℘) and t ∈ T.

[Item 2, if]. Assume that θ̂(t) satisfies Item 2, for each t ∈ T, i.e., θ̂(t)(d1)(x) = θ̂(t)(d2)(x),
for all d1, d2 ∈ DΛ(℘) and x ∈ Ξ(℘) such that d1↾Υ(℘,x) = d2↾Υ(℘,x). Then, we have that

θ̂(t)(h1(t))(x) = θ̂(t)(h2(t))(x), for all h1, h2 ∈ (T → D)Λ(℘) such that h1↾Υ(℘,x) = h2↾Υ(℘,x).

By hypothesis, we have that θ(h1)(x)(t) = θ̂(t)(h1(t))(x) and θ̂(t)(h2(t))(x) = θ(h2)(x)(t),

88



3. Reasoning About Strategies 3.6 - Alternating Tree Automata

thus θ(h1)(x)(t) = θ(h2)(x)(t). Hence, θ(h1)(x)=θ(h2)(x), for all h1, h2 ∈ (T → D)Λ(℘) and

x ∈ Ξ(℘) such that h1↾Υ(℘,x) = h2↾Υ(℘,x).

[Item 2, only if]. Assume that θ satisfies Item 2, i.e., θ(h1)(x) = θ(h2)(x), for all h1, h2 ∈
(T → D)Λ(℘) and x ∈ Ξ(℘) such that h1↾Υ(℘,x) = h2↾Υ(℘,x). Then, we have that θ(h1)(x)(t) =

θ(h2)(x)(t), for all t ∈ T. By hypothesis, we have that θ̂(t)(h1(t))(x) = θ(h1)(x)(t) and

θ(h2)(x)(t) = θ̂(t)(h2(t))(x), hence θ̂(t)(h1(t))(x) = θ̂(t)(h2(t))(x). Now, since for each

d1, d2 ∈ DΛ(℘) there are h1, h2 ∈ (T → D)Λ(℘) such that h1(t) = d1 and h2(t) = d2, we obtain

that θ̂(t)(d1)(x) = θ̂(t)(d2)(x), for all d1, d2 ∈ DΛ(℘) and x ∈ Ξ(℘) such that d1↾Υ(℘,x) =
d2↾Υ(℘,x).

Before to state the last result, we have to define the following concept.

Definition 3.5.4 (Binding Functions). Let ℘ be a quantification prefix over a set of placeholders P.

Then, a binding function for ℘ is a function ζ : Ag 7→ P that assigns to each agent a placeholder,

with the proviso that if ζ(a) ∈ Ag, for a ∈ Ag, then ζ(a) = a. By Bnd(℘) we denote the set of all

binding functions of ℘.

Finally, we show how each play w.r.t. a complete assignment derived from a quantification

spectrum can be characterized, in an equivalent way, in base of the adjoint function of that spectrum.

This fact is used in the construction of the model checking procedure and, in particular, in the

automaton to which we relay for the building of the pruning of the unwinding of the model. This

pruning needs to be coherent with the quantification of the sentence that is represented as an action

quantification in each node of the tree.

Lemma 3.5.2 (Adjoint Paths). Let G be a CGS, s be one of its states and ℘ be a quantification prefix

over a set of placeholders P. Moreover, let θ ∈ ΘStr(G,s)(℘) be a quantification spectrum for ℘, χ ∈
Asg(G,Λ(℘), s) be a assignment on Λ(℘), ζ ∈ Bnd(℘) be a binding function, and π ∈ Pth(G, s)
be a path. Then, it holds that π is a (ζ ◦ θ(χ), s)-play iff πi+1 = τ(πi, ζ ◦ θ̂(π≤i)(χ(π≤i))), for

all i ∈ N.

Proof. By definition, a path π is a (ζ ◦θ(χ), s)-play iff, for all i ∈ N, it holds that πi+1 = τ(πi, di),
where di(a) = (ζ ◦ θ(χ))(a)(π≤i), for all a ∈ Ag. Hence, to prove the statement, we have to

show that (ζ ◦ θ(χ))(a)(π≤i) = (ζ ◦ θ̂(π≤i)(χ(π≤i)))(a) holds. Indeed, by the meaning of

composition of functions, we have that (ζ ◦ θ̂(π≤i)(χ(π≤i)))(a) = θ̂(π≤i)(χ(π≤i))(ζ(a)). Now,

by Definition 3.5.3 of adjoint function, it holds that θ̂(π≤i)(χ(π≤i))(ζ(a)) = θ(χ)(ζ(a))(π≤i).
Finally, again by the meaning of composition, we obtain that θ(χ)(ζ(a)) = (ζ ◦ θ(χ))(a) and so,

θ(χ)(ζ(a))(π≤i) = (ζ ◦ θ(χ))(a)(π≤i). Hence, the thesis holds.

3.6 Alternating Tree Automata

Nondeterministic tree automata are a generalization to infinite trees of the classical nondeter-

ministic word automata (see [Tho90], for an introduction). Alternating tree automata are a further

generalization of nondeterministic tree automata [MS87]. Intuitively, on visiting a node of the

input tree, while the latter sends exactly one copy of itself to each of the successors of the node, an

89



3. Reasoning About Strategies 3.6 - Alternating Tree Automata

ATA can send several copies of itself to the same successor. Here we use, in particular, alternating

parity tree automata, which are ATAs along with a parity acceptance condition (see [GTW02], for

a survey).

We now give the formal definition of alternating tree automata.

Definition 3.6.1 (Alternating Tree Automata). An alternating tree automaton (ATA, for short) is

a tuple A , 〈Σ,∆,Q, δ, q0,F〉, where Σ, ∆, and Q are non-empty finite sets of input symbols,

directions, and states, respectively, q0 ∈ Q is an initial state, F is an acceptance condition to be

defined later, and δ : Q × Σ → B
+(∆ × Q) is an alternating transition function that maps each

pair of states and input symbols to a positive Boolean combination on the set of propositions of the

form (d, q) ∈ ∆ × Q, a.k.a. moves.

A nondeterministic tree automaton (NTA, for short) is a special ATA in which each conjunction

in the transition function δ has exactly one move (d, q) associated with each direction d. In addition,

a universal tree automaton (UTA, for short) is a special ATA in which all the Boolean combinations

that appear in δ are only conjunctions of moves.

The semantics of the ATAs is now given through the following concept of run.

Definition 3.6.2 (ATA Run). A run of an ATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled ∆-tree

T = 〈T, v〉 is a (Q × T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for

all nodes y ∈ R with r(y) = (q, x), there is a set of moves S ⊆ ∆ × Q with S |= δ(q, v(x))
such that, for all (d, q′) ∈ S, there is an index j ∈ [0, |S|[ for which it holds that y · j ∈ R and

r(y · j) = (q′, x · d).

In the following, we consider ATAs along with the parity F = (F1, . . . ,Fk) ∈ (2Q)+ with

F1 ⊆ . . . ⊆ Fk = Q (APT, for short) acceptance condition (see [KVW00], for more). The number

k of sets in F is called the index of the automaton. We also use ATAs with the Co-Büchi acceptance

condition F ⊆ Q (ACT, for short) that are APTs of index 2 in which the set of final states is

represented by F1.

Let R = 〈R, r〉 be a run of an ATA A on a tree T and R′ ⊆ R one of its branches. Then, by

inf(R′) , {q ∈ Q : |{y ∈ R′ : r(y) = q}| = ω} we denote the set of states that occur infinitely

often as labeling of the nodes in the branch R′. We say that a branch R′ of T satisfies the parity

acceptance condition F = (F1, . . . ,Fk) iff the least index i ∈ [1, k] for which inf(R′) ∩ Fi 6= ∅ is

even.

At this point, we can define the concept of language accepted by an ATA.

Definition 3.6.3 (ATA Acceptance). An ATA A = 〈Σ,∆,Q, δ, q0,F〉 accepts a Σ-labeled ∆-tree

T iff is there exists a run R of A on T such that all its infinite branches satisfy the acceptance

condition F, where the concept of satisfaction is dependent from the definition of F.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by A.

Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide whether

L(A) = ∅ or not.

90



3. Reasoning About Strategies 3.7 - Model Checking

3.7 Model Checking

In this section, we study the model-checking problem for SL and show that it is decidable and

2EXPTIME-COMPLETE, as for ATL*. The lower bound immediately follows from ATL*, which

SL properly includes. For the upper bound, we follow an automata-theoretic approach [KVW00],

reducing the decision problem for the logic of interest to the emptiness problem of automata.

We recall that an approach with tree automata to model checking is only possible once the

logic satisfies invariance under unwinding. In fact, this property holds for SL as we have proved in

Item 2 Theorem 3.4.2. By the size of the automaton and the complexity required for checking its

emptiness, we get the desired 2EXPTIME upper bound.

We now proceed with the model-checking algorithm for SL. As for ATL*, we use a bottom-up

model-checking algorithm, in which we start with the innermost sub-sentences and terminate

with the sentence under checking. At each step, we label each state of the model with all the

sub-sentences that are satisfied on it. The procedure we propose here extends that used for ATL*

in [AHK02] by means of a richer structure of the automata involved in.

First, we introduce some extra notation. A principal sentence ϕ is a sentence of the form

Qn1x1 · · ·Qnkxk ψϕ, where Qnixi ∈ {〈xi〉, [xi]} and the matrix ψϕ is an agent-closed formula,

with free(ψϕ) = {x1, . . . , xk}, such that it does not contain any quantification. For the sake of

space and clarity of exposition, we only discuss the model checking of principal formulas. By a

slight variation of both the notion of principal formulas and our procedure, we can also address

the full SL. We also need the notion of atom. An atom ψ is an agent-closed formula of the form

(α1, y1) · · · (αn, yn)ψ′, where Ag = {α1, . . . , αn}, y1, . . . , yn are possible equal variables and

either (i) ψ′ does not contain any quantification and binding, i.e., it is an LTL formula, or (ii) the

derived formula ψ̂′ does not contain any quantification and binding at all, where ψ̂′ is obtained

by ψ′ substituting its sub-atoms with fresh atomic propositions. W.l.o.g., we assume that each

principal sentence has a matrix that is a Boolean combination of atoms. Atm(ϕ) denotes the set of

all sub-formulas of ϕ that are atoms.

The core idea behind our model-checking procedure is the following. Let G = 〈AP,Ag,Ac,
St, λ, τ, s0〉 be a CGS and ϕ be an SL principal sentence over the set Ag = {α1, . . . , αn} of n
different agents, for which we want to check if G |= ϕ holds or not. We first build an NPT DG
recognizing the unwinding GU of G. Then, we build an APT A′

G,ϕ accepting all prunings of GU

that are coherent with the strategy quantification of ϕ. Such prunings are done by properly labeling

its paths with elements from the set Z , Atm(ϕ) × {start, pass} of atoms associated with a flag

in {start, pass}, in a way similar as it has been done for ATL* satisfiability in [Sch08]. The start
and pass flags are used to indicate whether a path guessed to satisfy at a specific state an atom

ψ ∈ Atm(ϕ), starts or passes through that state, respectively. Namely, the unlabeled paths are the

pruned ones that are not needed in order to satisfy the formula. Hence, A′
G,ϕ accepts GU with this

additional labeling. The automata DG and A′
G,ϕ have index 2 and a number of states polynomial in

the size of G and ϕ, respectively. With more details, they are both safety automata2. Finally, we

build an APT A′′
ϕ that checks that all paths of a pruned model accepted by A′

G,ϕ, i.e., all labeled

paths, satisfy the atoms of ϕ. The automaton A′′
ϕ has index 2 and a number of states exponential in

ϕ.

2A safety condition is the special parity condition (∅, Q) of index 2.

91



3. Reasoning About Strategies 3.7 - Model Checking

Now, recall that APTs are linearly closed under intersection. More precisely, two APTs

having n1 and n2 states and k1 and k2 as indexes, respectively, can be intersected in an APT

with n1 + n2 states and index max{k1, k2} [MS95]. So, we can build an APT AG,ϕ such that

L(AG,ϕ) = L(A′
G,ϕ) ∩ L(A′′

ϕ), having in particular index 2. Also, by [MS95], we can translate an

APT with n states and index k in an equivalent NPT having nO(n) states and index O(n). Hence, we

can transform AG,ϕ in an NPT NG,ϕ with a number of states double exponential in ϕ and an index

exponential in ϕ. It is well known that an NPT having n states and index k and a safety automaton

with m states can be intersected in an NPT with n ·m states and index k. Hence, by intersecting

DG with NG,ϕ, we get an NPT N ′
G,ϕ such that L(N ′

G,ϕ) = L(DG) ∩ L(NG,ϕ). At this point, it is

possible to prove that G |= ϕ iff L(N ′
G,ϕ) 6= ∅. Observe that N ′

G,ϕ has a number of states double

exponential in ϕ and polynomial in G, while it has an index exponential in ϕ, but independent from

G. Moreover, the automata run over the alphabet Σ = {σ ⊆ AP ∪ St ∪ Z : |σ ∩ St| = 1}, where

|Z| = O(|G| × 2|ϕ|). Since the emptiness of an NPT with n states, index k, and alphabet size h can

be checked in time O(h · nk) [KV98], we get that to check whether G |= ϕ can be done in time

double exponential in ϕ and polynomial in G. More precisely, the algorithm runs in |G|2O(|ϕ|) . The

details of the automata construction follow.

The NPT DG = 〈Σ,St,St, δ, s0, (∅,St)〉 has the set of directions and states formed by the

states of G that are used to build its unwinding. Moreover, the transition function is defined as

follows. At the state s ∈ St, the automaton first checks that the labeling of the node of the input

tree corresponds to the union of {s} and its labeling λ(s) in G. Then, it sends all successors of s in

the relative directions. Formally, δ(s, σ) is set to f (false) if λ(s) ∪ {s} 6= σ ∩ (AP ∪ St) and to∧
s′∈{τ(s,d):d∈Dc} (s′, s′) otherwise. Note that |DG | = O(|G|).

The APT A′
G,ϕ = 〈Σ,St, {q0} ∪ Atm(ϕ), δ, q0, (∅, {q0} ∪ Atm(ϕ))〉 has the set of states

formed by a distinguished state q0, which is also initial, and from the atoms in Atm(ϕ) that are

used to verify the correctness of the additional labeling Z. Moreover, the transition function is

defined as follows. δ(ψ, σ) is equal to t (true) if (ψ, pass) ∈ σ ∩ Z and to f (false) otherwise.

The automaton at state q0 sends the same state in all the directions individuated by the quantifi-

cation, together with the control state ψ. It is important to note that the quantification here is

reproduced by conjunctions and disjunctions on all possible actions of G. Formally, δ(q0, σ) is set

to Op1 c1∈Ac· · ·Opk ck∈Ac

∧
(ψ,⋆)∈σ∩Z (τ(s, d), q0)∧ (τ(s, d), ψ), where Opi ci∈Ac is a disjunction

if Qnixi = 〈xi〉 and a conjunction if Qnixi = [xi], {s} = σ ∩ St, and d(αi) = cj iff in the atom

ψ the binding (αi, xj) appears. Note that |A′
G,ϕ| = O(|ϕ|).

Finally, we build the APT A′′
ϕ. Let ψ̂ be the LTL formula obtained by replacing in ψ ∈ Atm(ϕ)

all the occurrences of each other atom ψ′ ∈ Atm(ψ) with the fresh atomic proposition (ψ′, start).
By using a slight variation of the procedure developed in [VW86a], we can translate ψ̂ into a

universal co-Büchi word automaton3 Uψ = 〈Σ,Qψ, δψ,Q0ψ,Fψ〉, with a number of states at most

exponential in |ψ|, accepting the infinite words on Σ that are models of ψ̂. At this point, we can

construct the automaton A′′
ϕ that recognizes the trees whose paths, labeled with the flags (ψ, ⋆),

for ⋆ ∈ {start, pass}, and starting with the label (ψ, start), satisfy the LTL formula ψ̂, for all

3Word automata can be seen as tree automata in which the tree has just one path. A universal word automaton is a

particular case of alternating automata in which there is no nondeterminism. A co-Büchi acceptance condition F ⊆ Q is

the special parity condition (F, Q) of index 2.

92



3. Reasoning About Strategies 3.8 - Satisfiability

ψ ∈ Atm(ϕ).

Formally, A′′
ϕ = 〈Σ,St, {q0, qc} ∪ Q, δ, q0, (F, {q0, qc} ∪ Q)〉 is built as follows. Q =⋃

ψ∈Atm(ϕ){ψ} × Qψ and F =
⋃
ψ∈Atm(ϕ){ψ} × Fψ are, respectively, the disjoint union of

the set of states and final states of the word automata Uψ, for every atom ψ ∈ Atm(ϕ). q0 is

the initial state used to verify that the formula ψϕ (the matrix of ϕ) holds at the root of the tree

in input, by checking whether the labeling of the root contains all the propositions required by

ψϕ to hold. If the checking succeeds, q0 behaves as the state qc. Formally, let ψϕ be considered

as a boolean formula on the set of atoms Atm(ϕ) in which we assume ψ = (ψ, start), for all

ψ ∈ Atm(ϕ). Then, δ(q0, σ) is set to δ(qc, σ), if σ ∩ Z |= ψϕ and to f (false), otherwise. qc is

the checking state used to start the verification of the atoms ψ in every node of the input tree

that contains the flag (ψ, start), which indicates the existence of a path starting in that node that

satisfies ψ. To do this, qc sends in all the directions (i) a copy of the state itself, to continue the

control on the remaining part of the tree, and (ii) the states derived by all initial states of the

automata Uψ, for all the atoms ψ for which a flag (ψ, start) appears in the labeling σ. Formally,

δ(qc, σ) is
∧
s∈St(s, qc)∧

∧
(ψ,start)∈σ∩Z

∧
q∈Q0ψ

∧
q′∈δψ(q,σ∩AP)(s,(ψ, q

′)). The states of the form

(ψ, q) are used to run Uψ on all paths labeled by the related flags (ψ, pass). Formally, δ((ψ, q), σ)
is set to t (true) if (ψ, pass) 6∈ σ ∩ Z and to

∧
s∈St

∧
q′∈δψ(q,σ∩AP)(s, (ψ, q

′)) otherwise. Note that

|A′′
ϕ| = O(2|ϕ|).
By a simple calculation, it follows that the overall procedure results in an algorithm that is in

PTIME w.r.t the size of G and in 2EXPTIME w.r.t. the size of ϕ. Hence, by getting the lower bound

from ATL*, the following result holds.

Theorem 3.7.1 (SL Model Checking). The SL model-checking problem is PTIME-COMPLETE

w.r.t. the size of the model and 2EXPTIME-COMPLETE w.r.t the size of the specification.

We conclude this section by pointing out that the model checking procedure described above

for SL is completely different from that one used in [CHP07] for CHP-SL. Indeed in [CHP07],

the authors use a top-down approach and, most important, for every quantification in the formula,

they make a projection of the automaton they build at each stage (one for each quantification).

Since at each projection they have an exponential blow-up, at the end their procedure results in

a non-elementary one, both in the size of the system and the formula. Our iterative approach,

instead, does not make use of any projection, since we reduce strategy quantifications to action

quantifications, which, as we have stated, can be handled locally on each state of the model.

3.8 Satisfiability

In this section, we show the undecidability of the satisfiability problem for SL through a

reduction of the recurrent domino problem. In particular, as we discuss later, the reduction also

holds for CHP-SL under the concurrent game semantics.

The domino problem, proposed for the first time by Wang [Wan61], consists of placing a given

number of tile types on an infinite grid, satisfying a predetermined set of constraints on adjacent

tiles. One of its standard versions asks for a compatible tiling of the whole plane N × N. The

recurrent domino problem further requires the existence of a distinguished tile type that occurs

93



3. Reasoning About Strategies 3.8 - Satisfiability

infinitely often in the first row of the grid. This problem was proved to be highly undecidable by

Harel, and in particular, Σ1
1-COMPLETE [Har84]. The formal definition follows.

Definition 3.8.1 (Recurrent Domino System). An N × N recurrent domino system D = 〈D,H ,
V , t∗〉 consists of a finite non-empty set D of domino types, two horizontal and vertical matching

relations H ,V ⊆ D × D, and a distinguished tile type t∗ ∈ D. The recurrent domino problem

asks for an admissible tiling of N × N, which is a solution mapping ∂ : N × N → D such that, for

all x, y ∈ N, it holds that (i) (∂(x, y), ∂(x+ 1, y)) ∈ H , (ii) (∂(x, y), ∂(x, y + 1)) ∈ V , and (iii)

|{x ∈ N : ∂(x, 0) = t∗}| = ω.

By showing a reduction from the recurrent domino problem, we prove that the satisfiability

problem for SL is Σ1
1-HARD, which implies that it is even not computably enumerable. We

achieve this reduction by describing how a given recurrent tiling system D = 〈D,H ,V , t∗〉 can be

“embedded” into a model of a particular sentence ϕdom , ϕgrd ∧ ϕtil ∧ ϕrec over AP , {p} ∪ D
and Ag , {α, β}, where p 6∈ D, in such a way that ϕdom is satisfiable iff D allows an admissible

tiling. For the sake of clarity, we split the reduction into three tasks where we explicit the sentences

ϕgrd, ϕtil, and ϕrec.

Grid specification. Consider the sentence ϕgrd ,
∧
a∈Ag ϕ

ord
a , where ϕorda = ϕunba ∧ ϕtrna are

the order sentences and ϕexsa and ϕtrna are the unboundedness and transitivity strategy requirements

for agents α and β defined, similarly to Definition 3.4.5, as follows:

1. ϕunba , [[z1]]〈〈z2〉〉 z1 <a z2;

2. ϕtrna , [[z1]][[z2]][[z3]] (z1 <a z2 ∧ z2 <a z3) → z1 <a z3;

where x1 <α x2 , 〈〈y〉〉 (β, y)((α, x1)(X p)∧ (α, x2)(X ¬p)) and y1 <β y2 , 〈〈x〉〉 (α, x)((β, y1)
(X ¬p) ∧ (β, y2)(X p)) are the two partial order formulas on strategies of α and β, respectively.

Intuitively, <α and <β correspond to the horizontal and vertical ordering of the positions in the

grid, respectively.

It is easy to see that ϕgrd is satisfiable, as it follows by the use of the same candidate model G⋆
(see Figure 3.5) and of a proof argument similar to that proposed in Lemma 3.4.1 for the simpler

order sentence.

Lemma 3.8.1 (Grid Ordering Satisfiability). The SL sentence ϕgrd is satisfiable.

Moreover, is is also immediate to see that ϕgrd cannot have turn-based models, by using the

same proof of Lemma 3.4.2.

Lemma 3.8.2 (Grid Ordering Turn-Based Unsatisfiability). The SL sentence ϕgrd is unsatisfiable

over turn-based CGSs.

Consider now a model G = 〈AP,Ag,Ac,St, λ, τ, s0〉 of ϕgrd and, for all agents a ∈ Ag, the

relation r<a ⊆ Str(G, s0) × Str(G, s0) between s0-total strategies defined as follows: r<a (f1, f2)
holds iff G, χ, s0 |= z1 <a z2, where χ(z1) = f1 and χ(z2) = f2, for all strategies f1, f2 ∈
Str(G, s0) and assignments χ ∈ Asg(G, {z1, z2}, s0). By using a proof similar to that of Lemma

3.4.3, it is possible to see that r<a is a strict partial order without maximal element on Str(G, s0).
Now, to apply the desired reduction, we need to transform r<a into a total order over strategies, by

using the following two lemmas.

94



3. Reasoning About Strategies 3.8 - Satisfiability

Lemma 3.8.3 (Strategy Equivalence). Let r≡a ⊆ Str(G, s0) × Str(G, s0), with a ∈ Ag, be the

relation between strategies such that r≡a (f1, f2) holds iff neither r<a (f1, f2) nor r<a (f2, f1) holds, for

all f1, f2 ∈ Str(G, s0). Then r≡a is an equivalence relation.

Proof. It is immediate to see that the relation r≡a is reflexive, since r<a is not reflexive, and

symmetric, by definition. Moreover, due to the definition of the partial order formula <a, it is also

transitive and, thus, r≡a is an equivalence relation. Indeed, if both r≡α (f1, f2) and r≡α (f2, f3) hold,

we have that either G, χ1, ε |= (β, y)((α, x1)(X p)∧(α, x2)(X p)) or G, χ1, ε |= (β, y)((α, x1)(X
¬p) ∧ (α, x2)(X ¬p)) holds and either G, χ2, ε |= (β, y)((α, x2)(X p) ∧ (α, x3)(X p)) or G, χ2,
ε |= (β, y)((α, x2)(X ¬p) ∧ (α, x3)(X ¬p)) holds, for all assignments χ1 ∈ Asg(G, {x1, x2}, s0)
and χ2 ∈ Asg(G, {x2, x3}, s0) such that χ1(α, x1) = f1, χ1(α, x2) = χ2(α, x2) = f2, and

χ2(α, x3) = f3. Hence, we have also that either G, χ3, ε |= (β, y)((α, x1)(X p)∧ (α, x3)(X p)) or

G, χ3, ε |= (β, y)((α, x1)(X ¬p) ∧ (α, x3)(X ¬p)) holds, for all assignments χ3 ∈ Asg(G, {x1,
x3}, s0) such that χ3(α, x1) = f1 and χ3(α, x3) = f3, i.e., for all strategies of β assigned to y.

Thus, r≡α (f1, f3) holds, too. The same reasoning applies to r≡β .

Let Str≡a = (Str(G, s0)/r≡a ) be the quotient set of Str(G, s0) w.r.t. r≡a , for a ∈ Ag, i.e., the

set of the related equivalence classes over s0-total strategies. Then, the following holds.

Lemma 3.8.4 (Strategy Total Order). Let s<a ⊆ Str≡a ×Str≡a , with a ∈ Ag, be the relation between

classes of strategies such that s<a (F1,F2) holds iff r<a (f1, f2) holds, for all f1 ∈ F1, f2 ∈ F2, and

F1,F2 ∈ Str≡a . Then s<a is a strict total order with minimal element but no maximal element.

Proof. The fact that s<a is a strict partial order without maximal element derives directly from the

same property of r<a . Indeed, due to the definition of the partial order formula <a, if r≡a (f ′, f ′′)
and r<a (f ′, f) (resp., r<a (f, f ′)) hold, we obtain that r<a (f ′′, f) (resp., r<a (f, f ′′)) holds too. Hence, if

there are f1 ∈ F1 and f2 ∈ F2 such that r<a (f1, f2) holds, we directly obtain that s<a (F1,F2) holds

as well, for all F1,F2 ∈ Str≡a and a ∈ Ag.

Moreover, s<a is total, since r≡a is an equivalence relation that cluster together all strategies

of the agent a that are not in relation w.r.t. either r<a or its inverse (r<a )−1. Indeed, suppose by

contradiction that there are two different classes F1,F2 ∈ Str≡a such that neither s<a (F1,F2) nor

s<a (F2,F1) holds. This means that, for all f1 ∈ F1 and f2 ∈ F2, neither r<a (f1, f2) nor r<a (f2, f1)
holds, so r≡a (f1, f2). However, this contradict the fact that F1 and F2 are different equivalences

classes.

Finally, it is important to note that in Str≡a there is also a minimal element w.r.t. s<a . Indeed,

for a strategy f ∈ Str(G, s0) for α (resp., for β) that forces the play to reach only nodes labeled

with p (resp., ¬p), as successor of the root in G, independently from the strategy of β (resp., α),

the relation r<α (f ′, f) (resp., r<β (f ′, f)) does not hold, for any f ′ ∈ Str(G, s0).

By a classical result on first order logic model theory [EF95], the relation s<a cannot be defined

on a finite set. Hence, |Str≡a | = ω, for all a ∈ Ag. Now, let s≺a be the successor relation on

Str≡a compatible with the strict total order s<a , i.e., such that s≺a (F1,F2) holds iff (i) s<a (F1,F2)
holds and (ii) there is no F3 ∈ Str≡a for which both s<a (F1,F3) and s<a (F3,F2) hold, for all

F1,F2 ∈ Str≡a . Then, we can write the two sets of classes Str≡α and Str≡β as the infinite ordered

95



3. Reasoning About Strategies 3.8 - Satisfiability

lists {Fα0 ,Fα1 , . . .} and {Fβ0 ,Fβ1 , . . .}, respectively, such that s≺a (Fai ,F
a
i+1) holds, for all indexes

i ∈ N. Note that Fa0 is the class of minimal strategies w.r.t the relation s<a .

At this point, we have all the machinery to build an embedding of the plane N × N into the

model G of ϕgrd. In particular, we are able to construct a bijective map ℵ : N×N → Str≡α × Str≡β
such that ℵ(i, j) = (Fαi ,F

β
j ), for all i, j ∈ N.

Compatible tiling. Given the grid structure built on the model G of ϕgrd through the bijective

map ℵ, we can express that a tiling of the grid is admissible by making use of the formula

z1 ≺a z2 , z1 <a z2 ∧ ¬〈〈z3〉〉 z1 <a z3 ∧ z3 <a z2 corresponding to the successor relation

s≺a , for all a ∈ Ag. Indeed, it is not hard to see that G, χ, ε |= z1 ≺a z2 iff χ(z1) ∈ Fai and

χ(z2) ∈ Fai+1, for all assignments χ ∈ Asg(G, {z1, z2}, s0) and indexes i ∈ N. The idea here is to

associate to each domino type t ∈ D a corresponding atomic proposition t ∈ AP and to express

the horizontal and vertical matching conditions via suitable object labeling. In particular, we can

express, respectively, that the tiling is locally compatible, that the horizontal neighborhood of a tile

satisfies the H requirement, and that also its vertical neighborhood satisfies the V requirement, all

through the following three agent-closed formulas:

1. ϕt,loc(x, y) , (α, x)(β, y)(X (t ∧ ∧t′ 6=t
t′∈D ¬t′));

2. ϕt,hor(x, y) ,
∨

(t,t′)∈H
[[x′]] x ≺α x

′ → (α, x′)(β, y)(X t′);

3. ϕt,ver(x, y) ,
∨

(t,t′)∈V
[[y′]] y ≺β y

′ → (α, x)(β, y′)(X t′).

Informally, we have the following: ϕt,loc(x, y) asserts that t is the only domino type labeling the

successors of the root of the model G that can be reached using the strategies related to the variables

x and y; ϕt,hor(x, y) asserts that the tile t′ labeling the successors of the root reachable through

the strategies x′ and y is compatible with t w.r.t. the horizontal requirement H , for all strategies

x′ that immediately follow that related to x w.r.t. the order r<α ; ϕt,ver(x, y) asserts that the tile t′

labeling the successors of the root reachable through the strategies x and y′ is compatible with t
w.r.t. the vertical requirement V , for all strategies y′ that immediately follow that related to y w.r.t.

the order r<β .

Finally, to express that the whole grid has an admissible tiling, we use the sentence ϕtil ,

[[x]][[y]]
∨
t∈D ϕ

t,loc(x, y) ∧ ϕt,hor(x, y) ∧ ϕt,ver(x, y) that asserts the existence of a domino type

t satisfying the three conditions mentioned above, for every point individuated by the strategies x
and y.

Recurrent tile. As last task, we impose that the grid embedded into G has the distinguished

domino type t∗ occurring infinitely often in its first row. To do this, we first use two formulas that

determine if a row or a column is the first one w.r.t. the orders s<α and s<β , respectively. Formally, we

use 0a(z) , ¬〈〈z′〉〉 z′ <a z, for a ∈ Ag. One can easily prove that G, χ, ε |= 0α(z) iff χ(z) ∈ Fa0,

for all assignments χ ∈ Asg(G, {z}, s0). Now, the infinite occurrence requirement on t∗ can be

expressed with the following sentence: ϕrec , [[x]][[y]](0β(y) ∧ (0α(x) ∨ (α, x)(β, y)(X t∗))) →
〈〈x′〉〉 x <α x′ ∧ (α, x′)(β, y)(X t∗). Informally, ϕrec asserts that, when we are on the first row

96



3. Reasoning About Strategies 3.8 - Satisfiability

individuated by the variable y and at a column individuated by x such that it is the first column or

the node of the “intersection” between x and y is labeled by t∗, we have that there exists a greater

column individuated by x′ such that its “intersection” with y is labeled by t∗ as well.

Construction correctness. At this point, we have all the tools to formally prove the correctness

of the undecidability reduction, by showing the equivalence between finding the solution of the

recurrent tiling problem and the satisfiability of the sentence ϕdom. In particular, one can note that

in the reduction we propose, only the CHP-SL fragment of SL is involved. Thus, we prove that

CHP-SL under the concurrent semantics has an highly undecidable satisfiability problem, while

it remains an open question whether this problem is undecidable in the turned-based framework

too, since the proof we propose cannot be applied to this case, as reported in Lemma 3.8.2.

s0

∅

(p,t1)

p, t1
(p,t2)

p, t2

(¬p,t3)

t3
(p,t4)

p, t4

00
01

10 11

Dc Dc

Dc Dc

Figure 3.6: Part of the CGS G⋆∂ model of

ϕdom, where ∂(0, 0) = t1, ∂(0, 1) = t2,

∂(1, 0) = t3, and ∂(1, 1) = t4.

Theorem 3.8.1 (SL Satisfiability). The satisfiability

problem for SL and CHP-SL, under the concurrent

semantics, is highly undecidable. In particular, it is

Σ1
1-HARD.

Proof. Assume, for the direct reduction, that there

exists a solution mapping ∂ : N×N → D for the given

recurrent domino system D. Then, we can build a CGS

G⋆∂ , 〈AP,Ag,Ac,St, λ, τ, s0〉 similar to that used in

Lemma 3.4.1 and satisfying the sentence ϕdom in the

following way: (i) Ac , N; (ii) there are 2 · |D| + 1
different states St , {s0} ∪ ({p,¬p} × D) such that

λ(s0) , ∅, λ((p, t)) , {p, t}, and λ((¬p, t)) , {t},

for all t ∈ D; (iii) each state (z, t) ∈ {p,¬p} × D
has only loops τ((z, t), d) , (z, t) on itself and the initial state s0 is connected to (z, t) through

the decision d, in symbols τ(s0, d) , (z, t), iff (iii.i) t = ∂(d(α), d(β)) and (iii.ii) z = p iff

d(α) ≤ d(β), for all d ∈ Dc (see Figure 3.6). By a simple case analysis on the subformulas of

ϕdom, it is possible to see that G⋆∂ |= ϕdom.

Conversely, let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a model of the sentence ϕdom, and ℵ :
N × N → Str≡α × Str≡β be the related bijective map built for the grid specification task. As first

thing, we have to prove the existence of a coloring function ð : Str≡α × Str≡β → D such that, for

all pairs of classes of strategies (Fα,Fβ) ∈ Str≡α × Str≡β and assignments χ ∈ Asg(G, {α, β}, s0)
with χ(α) ∈ Fα and χ(β) ∈ Fβ , it holds that G, χ, s0 |= X ð(Fα,Fβ). Then, it remains to note

that the solution mapping ∂ = ð ◦ ℵ built as a composition of the bijective map ℵ and the coloring

function ð is an admissible tiling of the plane N × N.

Due to the ϕt,loc formula in ϕtil, we have that, for all assignments χ ∈ Asg(G, {α, β}, s0),
there exists just one domino type t ∈ D satisfying the property G, χ, s0 |= X t. Let ð̂ :Str(G, s0)×
Str(G, s0) → D be the function that returns such a type, for all pair of strategies of α and β, i.e.,

such that G, χ, s0 |= X ð̂(χ(α), χ(β)), for all assignments χ ∈ Asg(G, {α, β}, s0). It is not hard

to see that, due to the formulas ϕt,hor and ϕt,ver in ϕtil, it holds (i) (ð̂(fα, fβ), ð̂(f ′α, fβ)) ∈ H and

(ii) (ð̂(fα, fβ), ð̂(fα, f
′
β)) ∈ V , for all fα ∈ Fαi , f ′α ∈ Fαi+1, fβ ∈ Fβj , f ′β ∈ Fβj+1, and i, j ∈ N.

97



3. Reasoning About Strategies 3.8 - Satisfiability

Moreover, since the guess of the tile type t′ adjacent to t is uniform w.r.t. the choice of the

successor strategy, we have that, for all f ′α, f
′′
α ∈ Fαi and f ′β , f

′′
β ∈ Fβj with i, j ∈ N and i+ j > 0, it

holds that ð̂(f ′α, f
′
β) = ð̂(f ′′α, f

′′
β). This fact, is not necessarily true for strategies that both belong to

the minimal classes Fα0 and Fβ0 , since the sentence ϕdom does not contain a relative requirement.

However, every domino type ð̂(fα, fβ), with fα ∈ Fα0 and fβ ∈ Fβ0 , can be used to label the origin

of the plane N×N in order to obtain an admissible tiling. So, we can consider a function ð, defined

as follows: (i) ð(Fα0 ,F
β
0 ) ∈ {ð̂(fα, fβ) : fα ∈ Fα0 ∧ fβ ∈ Fβ0}; (ii) ð(Fαi ,F

β
j ) = ð̂(fα, fβ), for all

fα ∈ Fαi , fβ ∈ Fβj , and i, j ∈ N with and i+ j > 0.

Clearly, (i) (ð(Fαi ,F
β
j ),ð(Fαi+1,F

β
j )) ∈ H , (ii) (ð(Fαi ,F

β
j ),ð(Fαi ,F

β
j+1)) ∈ V , and (iii) |{i :

ð(Fαi ,F
β
0 ) = t∗}| = ω, for all i, j ∈ N. So, ∂ = ð ◦ ℵ is an admissible tiling.

98



4
Relentful Strategic Reasoning

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Memoryful Alternating-Time Temporal Logic . . . . . . . . . . . . . . . . 104

4.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Expressiveness and Succinctness . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Alternating Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Classic automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2 Automata with satellite . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.1 From path formulas to satellite . . . . . . . . . . . . . . . . . . . . . . 113

4.6.2 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

99



4. Relentful Strategic Reasoning 4.1 - Introduction

Abstract

Temporal logics are a well investigated formalism for the specification, verification, and

synthesis of reactive systems. Within this family, the Alternating-Time Temporal Logic (ATL*,

for short), has been introduced as a useful generalization of classical linear- and branching-time

temporal logics, by allowing temporal operators to be indexed by coalitions of agents. Classically,

temporal logics are memoryless: once a path in the computation tree is quantified at a given node,

the computation that has led to that node is forgotten. Recently, mCTL* has been defined as a

memoryful variant of CTL*, where path quantification is memoryful. In the context of multi-agent

planning, memoryful quantification enables agents to “relent” and change their goals and strategies

depending on their past history. In this paper, we define mATL*, a memoryful extension of

ATL*, in which a formula is satisfied at a certain node of a path by taking into account both

the future and the past. We study the expressive power of mATL*, its succinctness, as well as

related decision problems. We also investigate the relationship between memoryful quantification

and past modalities and show their equivalence. We show that both the memoryful and the past

extensions come without any computational price; indeed, we prove that both the satisfiability and

the model-checking problems are 2EXPTIME-COMPLETE, as they are for ATL*.

4.1 Introduction

Multi-agent systems recently emerged as a new paradigm for better understanding distributed

systems [FHMV95, Woo01]. In multi-agent systems, different processes can have different goals

and the interactions between them may be adversarial or cooperative. Interactions between pro-

cesses in multi-agent systems can thus be seen as games in the classical framework of game

theory, with adversarial coalitions [OR94]. Classical branching-time temporal logics, such as

CTL* [EH86], turn out to be of limited power when applied to multi-agent systems. For example,

consider the property p: “processes 1 and 2 cooperate to ensure that a system (having more than

two processes) never enters a fail state”. It is well known that CTL* cannot express p [AHK02].

Rather, CTL* can only say whether the set of all agents can or cannot prevent the system from

entering a fail state.

In order to allow the temporal-logic framework to work within the setting of multi-agent

systems, Alur, Henzinger, and Kupferman introduced Alternating-Time Temporal Logic (ATL*, for

short) [AHK02]. This is a generalization of CTL* obtained by replacing the path quantifiers, “E”

(there exists) and “A” (for all), with “cooperation modalities” of the form 〈〈A〉〉 and [[A]], where

A is a set of agents, which can be used to represent the power that a coalition of agents has to

achieve certain results. In particular, these modalities express selective quantifications over those

paths that can be effected as outcomes of infinite games between the coalition and its complement.

ATL* formulas are interpreted over concurrent game structures (CGS, for short), closely related

to systems in [FHMV95], which model a set of interacting processes. Given a CGS G and a set

A of agents, the ATL* formula 〈〈A〉〉ψ is satisfied at a state s of G iff there exists a strategy for

the agents in A such that, no matter the strategy that is executed by agents not in A, the resulting

outcome of the interaction in G satisfies ψ at s. Coming back to the previous example, one can

see that the property p can be expressed by the ATL* formula 〈〈{1, 2}〉〉G ¬fail , where G is the

100



4. Relentful Strategic Reasoning 4.1 - Introduction

classical temporal modality “globally”.

Traditionally, temporal logics are memoryless: once a path in the underlying structure (usually

a computation tree) is quantified at a given state, the computation that led to that state is forgot-

ten [KV06]. In the case of ATL*, we have even more: the logic is also “relentless”, in the sense that

the agents are not able to formulate their strategies depending on the history of the computation;

when 〈〈A〉〉ψ is asserted in a state s, its truth is independent of the path that led to s. Inspired by a

work on strong cyclic planning [DTV00], Pistore and Vardi proposed a logic that can express the

spectrum between strong goal Aψ and the weak goal Eψ in planning [PV07]. A novel aspect of

the Pistore-Vardi logic is that it is “memoryful”, in the sense that the satisfiability of a formula at a

state s depends on the future as well as on the past, i.e., the trace starting from the initial state and

leading to s. Nevertheless, this logic does not have a standard temporal logical syntax (for example,

it is not closed under conjunction and disjunction). Also, it is less expressive than CTL*. This

has lead Kupferman and Vardi [KV06] to introduce a memoryful variant of CTL* (mCTL*, for

short), which unifies in a common framework both CTL* and the Pistore-Vardi logic. Syntactically,

mCTL* is obtained from CTL* by simply adding a special proposition present, which is needed to

emulate the ability of CTL* to talk about the “present” time. Semantically, mCTL* is obtained

from CTL* by reinterpreting the path quantifiers of the logic to be memoryful.

Recently, ATL* has become a very popular specification logic in the context of multi-agent

system planning [vdHW02, Jam04]. In such a framework, a memoryful enhancement of ATL*

enables “relentful” planning, that is, agents can relent and change their goals, depending on their

history1. That is, when a specific goal at a certain state is checked, agents may learn from the past

to change their goals. Note that this does not mean that agents change their strategy, but that they

can choose a strategy that allows them to change their goals. For example, consider the ATL*

formula 〈〈∅〉〉G 〈〈A〉〉ψ. In the memoryful framework, this formula is satisfied by a CGS G (at its

starting node) iff for each possible trace (history) ρ the agents in A can ensure that the evolution of

G that extends ρ satisfies ψ from the start state.

In this paper, we introduce and study the logic mATL*, a memoryful extension of ATL*. Thus,

mATL* can be thought of as a fusion of mCTL* and ATL* in a common framework. Similarly

to mCTL*, the syntax of mATL* is obtained from ATL* by simply adding a special proposition

present. Semantically, mATL* is obtained from ATL* by reinterpreting the path quantifiers of

the logic to be memoryful. More specifically, for a CGS G, the mATL* formula 〈〈A〉〉ψ holds at a

state s of G if there is a strategy for agents in A such that, no matter which is the strategy of the

agents not in A, the resulting outcome of the game, obtained by extending the execution trace of

the system ending in s, satisfies ψ. As an example of the usefulness of the relentful reasoning,

consider the situation in which the agents in a set A have the goal to eventually satisfy q and, if they

see r, they can also change their goal to eventually satisfy v. It is easy to formalize this property in

ATL* with the formula 〈〈A〉〉(F (q ∨ r) ∧ G f), where f is r → 〈〈A〉〉(F v). Consider, instead, the

situation in which the agents in A have the goal to satisfy p until q holds, unless they see r in which

case they change their goal to satisfy u until v holds from the start of the computation. This cannot

be easily handled in ATL*, since the specification depends on the past. On the other hand, it can be

handled in mATL*, with the formula 〈〈A〉〉((p U (q ∨ r)) ∧ G f), where f is r → 〈〈A〉〉(u U v).
In the paper, we also consider an extension of mATL* with past operators (mpATL*, for

1In Middle English to relent means to melt. In modern English it is used only in the combination of “relentless”.

101



4. Relentful Strategic Reasoning 4.1 - Introduction

short). As for classical temporal logics, past operators allow reasoning about the past in a computa-

tion [LPZ85]. In mpATL*, we can further require that coalitions of agents had a memoryful goal

in the past. In more details, we can write a formula whose satisfaction, at a state s, depends on the

trace starting from the initial state and leading to a state s′ occurring before s. Coming back to the

previous example, by using P as the dual of F , we can change the alternative goal f of agents in

A to be r → P (h∧ 〈〈A〉〉(uU v)), which requires that once r occurs at a state s, at a previous state

s′ of s in which h holds, the subformula u until v from the start of the computation must be true.

An important contribution of this work is to show for the first time a clear and complete picture

of the relationships among ATL* and its various extensions with memoriful quantification and past

modalities, which goes beyond the expressiveness results obtained in [KV06] for mCTL*. Since

memoryfulness refers to behavior from the start of the computation, which occurred in the past,

memoryfulness is intimately connected to the past. Indeed, we prove this formally. We study the

expressive power and the succinctness of mATL* w.r.t ATL*, as well as the memoryless fragment

of mpATL* (i.e., the extension of ATL* with past modalities), which we call pATL*. We show

that the three logics have the same expressive power, but both mATL* and pATL* are at least

exponentially more succinct than ATL*. As for m−ATL* (where the minus stands for the variant of

the logic without the “present” proposition, but the path interpretation is still memoryful), we prove

that it is strictly less expressive than ATL*. On the other hand, we prove that pATL* is equivalent

to p−ATL*, but exponentially more succinct.

From an algorithmic point of view, we examine, for mpATL*, the two classical decision

problems: model checking and satisfiability. We show that model checking is not easier than satisfi-

ability and in particular that both are 2EXPTIME-COMPLETE, as for ATL*. We recall that this is not

the case for mCTL*, where the model checking is EXPSPACE-COMPLETE, while satisfiability is

2EXPTIME-COMPLETE. For upper bounds, we follow an automata-theoretic approach [KVW00].

In order to develop a decision procedure for a logic with the tree-model property, one first develops

an appropriate notion of tree automata and studies their emptiness problem. Then, the decision

problem for the logic can be reduced to the emptiness problem of such automata. To this aim, we

introduce a new automaton model, the complex symmetric alternating tree automata with satellites

(SATAS, for short), which extends both automata over concurrent game structures in [SF06] and

alternating automata with satellites in [KV06], in a common setting. For technical convenience,

the states of the whole automaton are partitioned into states regarding the satellite and those

regarding the rest of the automaton, which we call the main automaton. The complexity results

then come from the fact that mpATL* formulas can be translated into a SATAS with an exponential

number of states for the main automaton and doubly exponential number of states for the satellite,

and from the fact that the emptiness problem for this kind of automata is solvable in EXPTIME

w.r.t. both the size of the main automaton and the logarithm of the size of the satellite.

As for mCTL*, the interesting properties shown for mATL* make this logic not only useful to

its own, but also advantageous to efficiently decide other logics (once it is shown a tight reduction

to it). In the case of mCTL*, we recall that this logic has been useful to decide the embedded

CTL* logic, recently introduced in [NPP08]. This logic allows to quantify over good and bad

system executions. In [NPP08], the authors also introduce a new model checking methodology,

which allows to group the system executions as good and bad, w.r.t the satisfiability of a base

LTL specification. By using an embedded CTL* specification, this model checking algorithm

102



4. Relentful Strategic Reasoning 4.2 - Preliminaries

allows checking not only whether the base specification holds or fails to hold in a system, but also

how it does so. In [NPP08], the authors use a polynomial translation of their logic into mCTL* to

solve efficiently its decision problems. In the context of coalition logics, the use of an “embedded”

framework seems even more interesting. In particular, an embedded ATL* logic could allow to

quantify coalition of agents over good and bad system executions. Analogously to the CTL* case,

one may show a polynomial translation from embedded ATL* to mATL* and use this result to

efficiently solve its decision problems.

Related works We report that recently, the authors of [FKL10] have considered a variant of

Strategy Logic [CHP07], named ESL, extended with a quantification over the history of the game,

in which it is embedded a concept of memoryful quantification, too. Their aim was to propose a

suitable framework for the synthesis of multi-player systems with rational agents. However, it is

worthful to note that the semantics of ESL is quite different form that one we use for mATL* and

the two logics turn to be incomparable. In particular, ESL does not allow the requantification over

paths as instead mATL* does (e.g., ESL cannot express mATL* formulas such as 〈〈A〉〉F [[B]]G p).

In addition, mATL* is able to express in its framework the ESL history quantification. For example,

consider the property “for every history of the game, player 1 has a strategy that force player 2 to

satisfy ψ”. In ESL, it requires to use a quantification over history variables. In mATL* instead,

this property simply becomes AG 〈〈1〉〉ψ. Finally, we enlight that in [FKL10], it is only addressed

and solved the synthesis problem, while here we address and solve the satisfiability and the model

checking problems (note that their algorithm does not imply any result about ESL satisfiability,

since they do not provide any bound on the width of ESL models).

Outline In Section 4.2, we recall the basic notions regarding strategies, plays, and unwinding.

Then, we have Section 4.3, in which we introduce mATL* and define its syntax and semantics,

followed by Section 4.4, in which it is defined the extension mpATL* and there are studied the

expressiveness and succinctness relationship of both the logics. In Section 4.5, we introduce the

SATAS automaton model. Finally, in Section 4.6 we describe how to solve the satisfiability and

model-checking problems for both mATL* and mpATL*.

4.2 Preliminaries

Decisions and counterdecisions. Let G = 〈AP,Ag,Ac,St, λ, τ, s0〉 be a CGS. For a set of

agents A ⊆ Ag, a decision for A is an element dA ∈ AcA and a counterdecision for A is a decision

dcA ∈ AcAg\A for agents not in A. By d = (dA, d
c
A) we denote the composition of dA and dcA, i.e.,

d↾A = dA and d↾(Ag\A) = dcA.

Strategies. A strategy for G w.r.t. a set of agents A ⊆ Ag is a partial function fA : Trk(G) ⇀
AcA whose domain is a St-tree, which maps a non-empty trace ρ to a decision fA(ρ) of agents

in A. A strategy fA is called memoryless iff all its values depend only on the last state of the

trace, otherwise, it is called memoryful. Formally, fA is memoryless iff, for all traces ρ and states

s with ρ · s ∈ dom(fA), it holds that fA(ρ · s) = fA(s). Intuitively, a strategy for agents in A

103



4. Relentful Strategic Reasoning4.3 - Memoryful Alternating-Time Temporal Logic

is a combined plan that contains all choices of moves as a function of the history of the current

outcome. For a state s, we say that fA is s-total iff it is defined on all non-trivial tracks starting in s
and reachable through fA itself, i.e., ρ · s′ ∈ dom(fA), with ρ ∈ Trk(G), iff fst(ρ) = s and there

is a counterdecision dcA ∈ AcAg\A for A such that τ(lst(ρ), (fA(ρ), dcA)) = s′. We use Str(G, A)
(resp., Str(G, A, s) with s ∈ St) to indicate the set of all the (resp., s-total) strategies of agents in

A on the CGS G.

Plays. A path π in G starting in a state s is a play w.r.t. an s-total strategy fA (fA-play, for

short) iff, for all i ∈ N, there is a counterdecision dcA ∈ AcAg\A such that πi+1 = τ(πi, d), where

d = (fA(π≤i), dcA). Note that π is an fA-play iff π≤i ∈ dom(fA), for all i ∈ N. Intuitively, a play

is the outcome of the game determined by all the agents participating to the game. By Ply(G, fA)
we denote the set of all fA-plays in G.

Unwinding. For a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, the unwinding of G is the CGT GU ,

〈AP,Ag,Ac,Dc∗, λ′, τ ′, ε〉, with τ ′(t, d) = t · d, for which there is a surjective function unw :
Dc∗ → St such that (i) unw(ε) = s0, (ii) unw(τ ′(t, d)) = τ(unw(t), d), and (iii) λ′(t) =
λ(unw(t)), for all t ∈ Dc∗ and d ∈ Dc.

4.3 Memoryful Alternating-Time Temporal Logic

In this section, we introduce an extension of the classical alternating-time temporal logic

ATL* [AHK02], obtained by allowing the use of memoryful quantification over paths, in a similar

way it has been done for the memoryful branching-time temporal logic mCTL* [KV06].

4.3.1 Syntax

The memoryful alternating-time temporal logic (mATL*, for short) inherits from ATL* the

existential 〈〈A〉〉 and the universal [[A]] strategy quantifiers, where A denotes a set of agents. We

recall that these two quantifiers can be read as “there exists a collective strategy for agents in A”

and “for all collective strategies for agents in A”, respectively. The syntax of mATL* is similar to

that for ATL*: there are two types of formulas, state and path formulas. Strategy quantifiers can

prefix an assertion composed of an arbitrary Boolean combination and nesting of the linear-time

operators X (“next”), U (“until”), and R (“release”). The only syntactical difference between

the two logics is that mATL* formulas can refer to a special proposition present, which enables

us to refer to the present time. Readers familiar with mCTL* can see mATL* as mCTL* where

strategy quantifiers substitute path quantifiers. The formal syntax of mATL* follows.

Definition 4.3.1 (mATL* Syntax). mATL* state (ϕ) and path (ψ) formulas are built inductively

from the sets of atomic propositions AP and agents Ag in the following way, where p ∈ AP and

A ⊆ Ag:

1. ϕ ::= present | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉ψ | [[A]]ψ;

2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ.

104



4. Relentful Strategic Reasoning4.3 - Memoryful Alternating-Time Temporal Logic

The class of mATL* formulas is the set of all the state formulas generated by the above grammar,

in which the occurrences of the special proposition present is in the scope of a strategy quantifier.

We now introduce some auxiliary syntactical notation. For a formula ϕ, we define the length

|ϕ| of ϕ as for ATL*. Formally, (i) |p| , 1, for p ∈ AP ∪ {present}, (ii) |Op ψ| , 1 + |ψ|, for all

Op ∈ {¬,X}, (iii) |ψ1Opψ2| , 1+|ψ1|+|ψ2|, for all Op ∈ {∧,∨,U,R}, and (iv) |Qnψ| , 1+|ψ|,
for all Qn ∈ {〈〈A〉〉, [[A]]}. We also use cl(ψ) to denote a variation of the classical Fischer-Ladner

closure [FL79] of ψ defined recursively as for ATL* in the following way: cl(ϕ) , {ϕ} ∪ cl′(ϕ),
for all basic formulas ϕ = Qn ψ, with Qn ∈ {〈〈A〉〉, [[A]]}, and cl(ψ) , cl′(ψ), in all other cases,

where (i) cl′(p) , ∅, for p ∈ AP ∪ {present}, (ii) cl′(Op ψ) , cl(ψ), for all Op ∈ {¬,X}, (iii)

cl′(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all Op ∈ {∧,∨,U,R}, and (iv) cl′(Qn ψ) , cl(ψ), for all

Qn ∈ {〈〈A〉〉, [[A]]}. Intuitively, cl(ϕ) is the set of all the basic formulas that are subformulas

of ϕ. Finally, by rcl(ψ) we denote the reduced closure of ψ, i.e., the set of the maximal basic

formulas contained in ψ. Formally, (i) rcl(ϕ) , {ϕ}, for all basic formulas ϕ = Qn ψ, with

Qn ∈ {〈〈A〉〉, [[A]]}, (ii) rcl(Opψ) , rcl(ψ) when Opψ is a path formula, for all Op ∈ {¬,X}, and

(iii) rcl(ψ1Opψ2) , rcl(ψ1)∪ rcl(ψ2) when ψ1Opψ2 is a path formula, for all Op ∈ {∧,∨,U,R}.

It is immediate to see that rcl(ψ) ⊆ cl(ψ) and |cl(ψ)| = O(|ψ|).

4.3.2 Semantics

As for ATL*, the semantics of mATL* is defined w.r.t. a concurrent game structure. However,

the two logics differ on interpreting state formulas. First, in mATL* the satisfaction of a state

formula is related to a specific track, while in ATL* it is related only to a state. Moreover, a path

quantification in mATL* ranges over paths that start at the initial state and contain as prefix the

track that lead to the present state. We refer to this track as the present track. The whole concept is

what we name memoryful quantification. In contrast, in ATL* path quantification ranges over paths

that start at the present state. For example, consider the formula ϕ = [[A]]G 〈〈B〉〉ψ. Considered

as an ATL* formula, ϕ holds in the initial state of a structure if the agents in B can force a path

satisfying ψ from every state that can be reached by a strategy of the agents in A. In contrast,

considered as an mATL* formula, ϕ holds in the initial state of the structure if the agents in B can

extend to a path satisfying ψ every track generated by a strategy of the agent in A. Thus, when

evaluating path formulas in mATL* one cannot ignore the past, and satisfaction may depend on the

event that preceded the point of quantification. In ATL*, state formulas are evaluated w.r.t. states

in the structure and path formulas are evaluated w.r.t. paths in the structure. In mATL* we add

an additional parameter, the present track, which is the track that led from the initial state to the

point of quantification. Path formulas are again evaluated w.r.t. paths, but state formulas are now

evaluated w.r.t. tracks, which are viewed as partial executions.

We now formally define mATL* semantics w.r.t. a CGS G. For two non-empty initial tracks

ρ, ρp ∈ Trk(G, s0), where ρp is the present track, we write G, ρ, ρp |= ϕ to indicate that the state

formula ϕ holds at ρ, with ρp being the present. Similarly, for a path π ∈ Pth(G, s0), a non-empty

present track ρp ∈ Trk(G, s0) and a natural number k, we write G, π, k, ρp |= ψ to indicate that

the path formula ψ holds at the position k of π, with ρp being the present. The semantics of the

mATL* state formulas involving ¬, ∧, and ∨, as well as that for mATL* path formulas, except for

the state formula case, is defined as usual in ATL*. The semantics of the remaining part, which

105



4. Relentful Strategic Reasoning4.3 - Memoryful Alternating-Time Temporal Logic

involves the memoryful feature, follows.

Definition 4.3.2 (mATL* Semantics). Given a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, two initial

traces ρ, ρp ∈ Trc(G, s0), a path π ∈ Pth(G, s0), and a number k ∈ N, it holds that:

1. G, ρ, ρp |= present iff ρ = ρp;

2. G, ρ, ρp |= p iff p ∈ λ(lst(ρ)), with p ∈ AP;

3. G, ρ, ρp |= 〈〈A〉〉ψ iff there exists a strategy fA ∈ Str(G, A, lst(ρ)) such that, for all plays

π ∈ Ply(G, fA), it holds that G, ρ<(|ρ|−1) · π, 0, ρ |= ψ;

4. G, ρ, ρp |= [[A]]ψ iff, for all strategies fA ∈ Str(G, A, lst(ρ)), there exists a play π ∈
Ply(G, fA) such that G, ρ<(|ρ|−1) · π, 0, ρ |= ψ;

5. G, π, k, ρp |= ϕ iff G, π≤k, ρp |= ϕ.

Note that the present track ρp comes into the above definition only at item 1 and that formulas

of the form 〈〈A〉〉ψ and [[A]]ψ “reset the present”, i.e., their satisfaction w.r.t ρ and ρp is independent

of ρp, and the present trace, for the path formula ψ, is set to ρ. Moreover, observe that we do not

require any restriction on the kind of strategy that a set of agents can choose in order to achieve a

goal. In particular, the strategy fA is in general memoryful. In fact, there are some goals that need

a memoryful strategy to be satisfied and if we restrict our attention to memoryless strategies we

obtain a logic with a complete different semantics.

Let G be a CGS and ϕ be an mATL* formula. Then, G is a model for ϕ, in symbols G |= ϕ, iff

G, s0, s0 |= ϕ, where we recall that s0 is the initial state of G. In this case, we also say that G is a

model for ϕ on s0. A formula ϕ is said satisfiable iff there exists a model for it. Moreover, it is

an invariant for the two CGSs G1 and G2 iff either G1 |= ϕ and G2 |= ϕ or G1 6|= ϕ and G2 6|= ϕ.

For all state formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff, for all

CGS G and non-empty traces ρ, ρp ∈ Trc(G, s0), it holds that G, ρ, ρp |= ϕ1 iff G, ρ, ρp |= ϕ2.

Consequently, we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1.

W.l.o.g., in the rest of the paper, we mainly consider formulas in existential normal form (enf,

for short), i.e., only existential strategy quantifiers occur.

By induction on the syntactical structure of the sentences, it is possible to prove the following

two classical results. Note that these are the basic steps towards the automata-theoretic approach

we use to solve the model-checking and the satisfiability problems for mATL*.

Theorem 4.3.1 (mATL* Unwinding Invariance). mATL* is invariant under unwinding, i.e., for

each CGS G and formula ϕ, it holds that ϕ is an invariant for G and GU .

Directly from the previous result, we obtain that mATL* also enjoys the tree model property.

Corollary 4.3.1 (mATL* Tree Model Property). mATL* has the tree model property.

106



4. Relentful Strategic Reasoning 4.4 - Expressiveness and Succinctness

4.4 Expressiveness and Succinctness

In this section, we compare mATL* with other derived logics. The basic comparisons are in

terms of expressiveness and succinctness.

Let L1 and L2 be two logics whose semantics are defined on the same kind of structure. We say

that L1 is as expressive L2 iff every formula in L2 is logically equivalent to some formula in L1. If

L1 is as expressive as L2, but there is a formula in L1 that is not logically equivalent to any formula

in L2, then L1 is more expressive than L2. If L1 is as expressive as L2 and vice versa, then L1 and

L2 are expressively equivalent. Note that, in the case L1 is more expressive than L2, there are two

sets of structuresM1 andM2 and an L1 formula ϕ such that, for all M1 ∈M1 and M2 ∈M2, it

holds that M1 |= ϕ and M2 6|= ϕ and, for all L2 formulas ϕ′, it holds that there are two models

M1 ∈M1 and M2 ∈M2 such that M1 |= ϕ′ iff M2 |= ϕ′. Intuitively, each L2 formula is not

able to distinguish between two models that instead are different w.r.t. L1.

We define now the comparison of the two logics L1 and L2 in terms of succinctness, which

measures the necessary blow-up when translating between them. Note that comparing logics in

terms of succinctness makes sense also when the logics are not expressively equivalent, by focusing

on their common fragment. In fact, a logic L1 can be more expressive than a logic L2, but at the

same time, less succinct than the latter. Formally, we say that L1 is (at least) exponentially more

succinct than L2 iff there exist two infinite lists of models {M1,M2, . . .} and of L1 formulas

{ϕ1, ϕ2, . . .}, with Mi |= ϕi and |ϕi| = O(p1(i)), where p1(n) is a polynomial, i.e., |ϕi| is

polynomial in i ∈ N, such that, for all L2 formulas ϕ, if Mi |= ϕ then |ϕ| ≥ 2p2(i), where p2(n)
is another polynomial, i.e., |ϕ| is (at least) exponential in i.

We now discuss expressiveness and succinctness of mATL* w.r.t. ATL* as well as some

extensions/restrictions of mATL*. In particular, we consider the logics mpATL* and pATL* to be,

respectively, mATL* and ATL* augmented with the past-time operators “previous” and “since”,

which dualize the future-time operators “next” and “until” as in pLTL [LPZ85] and pCTL* [KP95].

Note that pATL* still contains the present proposition and that, as for pCTL*, the semantics of its

quantifiers is as for ATL*, where the past is considered linear, i.e., deterministic. Moreover, we

consider the logic m−ATL*, p−ATL*, and mp−ATL* to be, respectively, the syntactical restriction of

mATL*, pATL*, and mpATL* in which the use of the atomic proposition present is not allowed.

On one hand, we have that all mentioned logics are expressively equivalent, except for m−ATL* and

p−ATL*. On the other hand, the ability to refer to the past makes all of them at least exponentially

more succinct than the corresponding ones without the past. For example, a pATL* formula ϕ
can be translated into an equivalent ATL* one ϕ′, but ϕ′ may require a nonelementary space in

|ϕ| (shortly, we say that pATL* is nonelementary reducible to ATL*). Note that, to get a better

complexity for this translation is not an easy question. Indeed, it would improve the non-elementary

reduction from first order logic to LTL, which is an outstanding open problem [Gab87]. All the

discussed results are reported in the following theorem.

Theorem 4.4.1 (Reductions). The following properties hold:

1. ATL* (resp., pATL*) is linearly reducible to mATL* (resp., mpATL*);

2. mpATL* (resp., mp−ATL*) is linearly reducible to pATL* (resp., p−ATL*);

107



4. Relentful Strategic Reasoning 4.4 - Expressiveness and Succinctness

3. mpATL* (resp., mp−ATL*) is nonelementarily reducible to mATL* (resp., m−ATL*);

4. pATL* is nonelementarily reducible to ATL*;

5. m−ATL* and p−ATL* are at least exponentially more succinct than ATL*;

6. m−ATL* is less expressive then ATL*.

Proof. Let ϕ be an input formula for items 1-4. Items 1 and 2 follow by replacing each subformula

〈〈A〉〉ψ in ϕ by 〈〈A〉〉F (present ∧ ψ) and 〈〈A〉〉P ((Ỹ f) ∧ ψ), respectively, where P ψ′ is the

corresponding past-time operator for F ψ′ and Ỹ ψ′ is the weak previous time operator, which is

true if either ψ′ is true in the previous time-step or such a time-step does not exist. Item 3 follows

by replacing each subformula 〈〈A〉〉ψ in ϕ by 〈〈A〉〉ψ′, where ψ′ is obtained by the Separation

Theorem (see Theorem 2.4 of [Gab87]), which allows to eliminate all pure-past formulas2. Note

that all the above substitutions start from the innermost subformula. Item 4 proceeds as for the

translation of pCTL* into CTL* (see Lemma 3.3 and Theorem 3.4 of [KP95]). The only difference

here is that, when we apply the Separation Theorem to obtain a path formula as a disjunction

of formulas of the form ps ∧ pr ∧ ft, where ps, pr, and ft are respectively pure-past, pure-

present (i.e., Boolean combinations of atomic propositions and basic formulas), and pure-future

formulas, we need to substitute the present proposition with f in ps and ft and with t in pr. For

items 3 and 4 the non-elementary blow-up is inherited from the use of the Separation Theorem.

Item 5 follows by using the formula ϕ , 〈〈A〉〉G (
∧n
i=1(pi ↔ [[∅]]pi) → (p0 ↔ [[∅]]p0)) (resp.,

ϕ , 〈〈A〉〉G (
∧n
i=1(pi ↔ P ((Ỹ f)∧ pi)) → (p0 ↔ P ((Ỹ f)∧ p0)))), which is similar to that used

to prove that pLTL is exponentially more succinct than LTL (see Theorem 3.1 of [LMS02]). By

using an argument similar to that used in [LMS02], we obtain the desired result. Item 6 follows by

using a proof similar to that used for m−CTL* (see Theorem 3.4 of [KV06]), and so showing that

the ATL formula ϕ , 〈〈A〉〉F (([[∅]]X p) ∧ ([[∅]]X ¬p)) has no m−ATL* equivalent formula.

As an immediate consequence of combinations of the results shown into the previous theorem,

it is easy to prove the following corollary.

Corollary 4.4.1 (Expressiveness). mATL*, p−ATL*, pATL*, and mpATL* have the same ex-

pressive power of ATL*. m−ATL* and mp−ATL* have the same expressive power, but are less

expressive than ATL*. Moreover, all of them are at least exponentially more succinct than ATL*.

mATL*

/

��

nelm
MMMMM

&&MMMMM

lin ((
mpATL*nelm[3]oo

nelm

��

lin[2] // pATL*

nelm

��

nelm[4]
qqqq

xxqqq
qq

lin[1]vv

ATL*

lin[1]

YY

lin

BB

lin

��

/[6]

��
/

��

lin

DD

m−ATL*

lin

FF

nelm[5]
qqqqq

88qqqqq

lin
66mp−ATL*nelm[3]oo

nelm

BB

lin[2] // p−ATL*

lin

OO

nelm[5]LLLL

ffLLLLL

/
hh

Figure 4.1: Hierarchy of expressive power and

succinctness.

Figure 4.1 summarizes all the above results

regarding expressiveness and succinctness. The

acronym “lin” (resp., “nelm”) means that the

translation exists and it is linear (resp., nonele-

mentarily) in the size of the formula, and “/”

means that such a translation is impossible. The

numbers in brackets represent the item of Theo-

rem 4.4.1 in which the translation is shown. We

use no numbers when the translation is trivial or

comes by a composition of existing ones.

2A pure-past formula contains only past-time operators. In item 4, we also consider pure-future formulas, which

contain only future-time operators, and pure-present formulas, which do not contain any temporal operator at all.

108



4. Relentful Strategic Reasoning 4.5 - Alternating Tree Automata

4.5 Alternating Tree Automata

In this section, we briefly introduce an automaton model used to solve efficiently the satisfi-

ability and model-checking for mpATL*, by reducing them, respectively, to the emptiness and

membership problems of the automaton. We recall that, in general, such an approach is only

possible once the logic satisfies the invariance under unwinding. In fact, this property holds for

mpATL*, as we have proved in Theorem 4.3.1.

4.5.1 Classic automata

Alternating tree automata [MS87] are a generalization of nondeterministic tree automata.

Intuitively, while a nondeterministic automaton that visits a node of the input tree sends exactly

one copy of itself to each of the successors of the node, an alternating automaton can send several

copies of itself to the same successor. Symmetric automata [JW95] are a variation of classical

(asymmetric) alternating automata in which it is not necessary to specify the direction (i.e., the

choice of the successors) of the tree on which a copy is sent. In fact, through two generalized

directions (existential and universal moves), it is possible to send a copy of the automaton, starting

from a node of the input tree, to one or all its successors. Hence, the automaton does not distinguish

between directions. As a generalization of symmetric alternating automata, here we consider

automata that can send copies to successor nodes, according to some entity choice. These automata

are a slight variation of automata over concurrent game structures introduced in [SF06].

We now give the formal definition of symmetric and asymmetric alternating tree automata.

Definition 4.5.1 (Symmetric Alternating Tree Automata). A symmetric alternating tree automaton

(SATA, for short) is a tuple A , 〈Σ,E,Q, δ, q0,F〉, where Σ, E, and Q are non-empty finite sets

of input symbols, entities, and states, respectively, q0 ∈ Q is an initial state, F is an acceptance

condition to be defined later, and δ : Q × Σ → B
+(D × Q) is an alternating transition function,

where D = {3,2} × 2E is an extended set of abstract directions, which maps each pair of states

and input symbols to a positive Boolean combination on the set of propositions, a.k.a. abstract

moves, of the following form: existential ((3, A), q) and universal ((2, A), q) propositions, with

A ⊆ E and q ∈ Q.

Definition 4.5.2 (Asymmetric Alternating Tree Automata). An asymmetric alternating tree au-

tomaton (AATA, for short) is a tuple A , 〈Σ,∆,Q, δ, q0,F〉, where Σ, Q, q0, and F are defined as

for the symmetric one, ∆ is a non-empty finite set of real directions, and δ : Q×Σ → B
+(∆×Q)

is an alternating transition function that maps each pair of states and input symbols to a positive

Boolean combination on the set of propositions of the form (d, q) ∈ ∆ × Q, a.k.a. real moves.

A nondeterministic tree automaton (NTA, for short) is a special AATA in which each conjunc-

tion in the transition function δ has exactly one move (d, q) associated with each direction d. In

addition, a universal tree automaton (UTA, for short) is a special AATA in which all the Boolean

combinations that appear in δ are only conjunctions of moves.

In the following, we simply write ATA when we indifferently refer to its symmetric or asym-

metric version.

The semantics of ATAs is now given through the following related concepts of run.

109



4. Relentful Strategic Reasoning 4.5 - Alternating Tree Automata

Definition 4.5.3 (SATA Run). A run of an SATA A = 〈Σ,E,Q, δ, q0,F〉 on a Σ-labeled BE-tree

T = 〈T, v〉, for a given set B, is a (Q × T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε)
and (ii) for all nodes y ∈ R with r(y) = (q, x), there is a set of abstract moves S ⊆ ∆ × Q with

S |= δ(q, v(x)) such that, for all (z, q′) ∈ S, it holds that:

• if z = (3, A) then there exists a choice d ∈ BA such that, for all counterchoices d′ ∈ BE\A,

it holds that (q′, x · (d, d′)) ∈ l(y);

• if z = (2, A) then, for all choices d ∈ BA, there exists a counterchoice d′ ∈ BE\A such that

(q′, x · (d, d′)) ∈ l(y);

where (d, d′) ∈ BE denotes composition of d and d′, i.e., the function such that (d, d′)↾A = d and

(d, d′)↾(E\A) = d′ and l(y) , {r(y · j) : j ∈ N∧ y · j ∈ R} is the set of labels of successors of the

node y in the run R.

Definition 4.5.4 (AATA Run). A run of an AATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled ∆-tree

T = 〈T, v〉 is a (Q × T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for all

nodes y ∈ R with r(y) = (q, x), there is a set of real moves S ⊆ ∆ × Q with S |= δ(q, v(x))
such that, for all (d, q′) ∈ S, there is an index j ∈ [0, |S|[ for which it holds that y · j ∈ R and

r(y · j) = (q′, x · d).

In the following, we consider ATAs along with the parity F = (F1, . . . ,Fk) ∈ (2Q)+ with

F1 ⊆ . . . ⊆ Fk = Q (APT, for short) acceptance condition (see [KVW00], for more). The number

k of sets in F is called the index of the automaton. We also use ATAs with the Co-Büchi acceptance

condition F ⊆ Q (ACT, for short) that are APTs of index 2 in which the set of final states is

represented by F1.

Let R = 〈R, r〉 be a run of an ATA A on a tree T and R′ ⊆ R one of its branches. Then, by

inf(R′) , {q ∈ Q : |{y ∈ R′ : r(y) = q}| = ω} we denote the set of states that occur infinitely

often as labeling of the nodes in the branch R′. We say that a branch R′ of T satisfies the parity

acceptance condition F = (F1, . . . ,Fk) iff the least index i ∈ [1, k] for which inf(R′) ∩ Fi 6= ∅ is

even.

At this point, we can define the concept of language accepted by an ATA.

Definition 4.5.5 (ATA Acceptance). A SATA A = 〈Σ,E,Q, δ, q0,F〉 (resp., AATA A = 〈Σ,∆,Q,
δ, q0,F〉) accepts a Σ-labeled BE-tree (resp., ∆-tree) T iff is there exists a run R of A on T such

that all its infinite branches satisfy the acceptance condition F, where the concept of satisfaction is

dependent from of the definition of F.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by A.

Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide whether

L(A) = ∅ or not.

Now, we show how to reduce, for equivalence, a SATA to an AATA when it is known a priori

the structure of the trees of interest.

Theorem 4.5.1 (SATA-AATA Reduction). Let A = 〈Σ,E,Q, δ, q0,F〉 be a SATA and B be a

finite set. Then there is an AATA A′ = 〈Σ,BE,Q, δ′, q0,F〉 such that every Σ-labeled BE-tree is

accepted by A iff it is accepted by A′.

110



4. Relentful Strategic Reasoning 4.5 - Alternating Tree Automata

Proof. The transition function δ′ of A′ is obtained from that of A by substituting each existential

((3, A), q′) and universal ((2, A), q′) move with the formulas
∨
d∈BA

∧
d′∈BE\A((d, d′), q′) and∧

d∈BA
∨
d′∈BE\A((d, d′), q′), respectively. At this point, it is immediate to see that the thesis

follows directly by Definition 4.5.3 of SATA run.

4.5.2 Automata with satellite

As a generalization of ATA, here we also consider alternating tree automata with satellites

(ATAS, for short), in a similar way it has been done in [KV06]. The satellite is used to take a

bounded memory of the evaluated part of a path in a given structure and it is kept apart from the

main automaton as it allows to show a tight complexity for the satisfiability problems. We use

symmetric ATAS (SATAS, for short) for the solution of the satisfiability problem and asymmetric

ATAS (AATAS, for short) for the model-checking problem.

We now formally define this new fundamental concept of automaton.

Definition 4.5.6 (Alternating Tree Automata with Satellite). A symmetric (resp., asymmetric)

alternating tree automaton with satellite (SATAS (resp., AATAS), for short) is a tuple 〈A,S〉,
where A , 〈Σ × P,E,Q, δ, q0,F〉 (resp., A , 〈Σ × P,∆,Q, δ, q0,F〉) is an SATA (resp., AATA)

and S , 〈Σ,P, ζ, p0〉 is a deterministic safety word automaton, a.k.a. satellite, where P is a

non-empty finite set of states, p0 ∈ P is an initial states, and ζ : P × Σ → P is a deterministic

transition function that maps a state and an input symbol to a state. The sets Σ and E (resp., ∆)

are, respectively, the alphabet and the entity set (resp., direction sets) of the ATAS 〈A,S〉.
At this point, we can define the language accepted by an ATAS.

Definition 4.5.7 (ATAS Acceptance). A Σ-labeled BE-tree (resp., ∆-tree) T is accepted by a

SATAS (resp., AATAS) 〈A,S〉, where A , 〈Σ × P,E,Q, δ, q0,F〉 (resp., A = 〈Σ × P,∆,Q, δ,
q0,F〉) and S = 〈Σ,P, ζ, p0〉, iff it is accepted by the product-automaton A⋆ , 〈Σ,E,Q × P, δ⋆,
(q0, p0),F

⋆〉 (resp., A⋆ , 〈Σ,∆,Q × P, δ⋆, (q0, p0),F
⋆〉) with δ⋆((q, p), σ) , δ(q, (σ, p))[q′ ∈

Q/(q′, ζ(p, σ))], where by f [x ∈ X/y] we denote the formula in which all occurrences of x in f
are replaced by y, and F⋆ is the acceptance condition directly derived from F.

In words, δ⋆((q, p), σ) is obtained by substituting in δ(q, (σ, p)) each occurrence of a state q′

with a tuple of the form (q′, p′), where p′ = ζ(p, σ) is the new state of the satellite. By L(〈A,S〉)
we denote the language accepted by the ATAS 〈A,S〉.

In the following, we consider, in particular, ATAS along with the parity acceptance condition

(APTS, for short), where F⋆ , (F1 × P, . . . ,Fk × P).
Note that satellites are just a convenient way to describe an ATA in which the state space can

be partitioned into two components, one of which is deterministic, independent from the other,

and that has no influence on the acceptance. Indeed, it is just a matter of technicality to see that

automata with satellites inherit all the closure properties of alternating automata. In particular, we

prove how to translate an AAPTS into an equivalent NPT with only an exponential blow-up in the

number of states.

Theorem 4.5.2 (AAPTS Nondeterminization). Let 〈A,S〉 be an AAPTS, where the main automa-

ton A has n states and index k and the satellite S has m states. Then there is an NPT N ⋆ with

2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ⋆) = L(〈A,S〉).

111



4. Relentful Strategic Reasoning 4.5 - Alternating Tree Automata

Proof. To deduce the thesis, we use the Muller-Schupp exponential-time nondeterminization

procedure [MS95] that leads from the AAPT A to an NPT N , with 2O((n·k)·log(n·k)) states and

index O(n · k), such that L(N ) = L(A). Since an NPT is a particular AAPT, we immediately

have that L(〈N ,S〉) = L(〈A,S〉). At this point, by taking the product-automaton between N and

the satellite S, as described in Definition 4.5.7 of ATAS acceptance, we obtain a new NPT N ⋆,

with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ⋆) = L(〈N ,S〉). Hence, it is

evident that L(N ⋆) = L(〈A,S〉).

The following theorem, directly derived by a proof idea of [KV06], shows how the separation

between A and S gives a tight analysis of the complexity of the relative emptiness problem.

Theorem 4.5.3 (APTS Emptiness). The emptiness problem for an APTS 〈A,S〉 with alphabet

size h, where the main automaton A has n states and index k and the satellite S has m states, can

be decided in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

Proof. The proof proceeds in two steps, the first of which is used only if A is a SATA, in order to

translate it into an AATA. First, in order to obtain a linear translation from SATAs to AATAs, we

use a bounded model theorem (see Theorem 2 of [SF06]), which asserts that a SATA A accepts

a tree iff it accepts a |Z × E||E|-bounded tree, where Z is the set of abstract moves used in its

transition function. Hence, by Theorem 4.5.1, there is an AATA A′, with the same set of states

and acceptance condition of the original automaton A and a set Z × EE of directions, such that

L(A′) = ∅ iff L(A) = ∅. Hence, by definition of ATAS, we obtain that L(〈A′,S〉) = ∅ iff L(〈A,
S〉) = ∅. At this point, by Theorem 4.5.2, we obtain an NPT N ⋆, with 2O((n·k)·log(n·k)+log(m))

states and index O(n · k), such that L(N ⋆) = L(〈A′,S〉). Now, the emptiness of N ⋆ can be

checked in polynomial running-time in its number of states, exponential in its index, and linear in

the alphabet size (see Theorem 5.1 of [KV98]). Overall, with this procedure, we obtain that the

emptiness problem for an APTS is solvable in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

Finally, we show how much costs to verify if a given tree language, represented by a safety

NPT, is recognized by an APTS.

Theorem 4.5.4 (APTS-NTA Intersection Emptiness). The emptiness problem for the intersection

of an APTS 〈A,S〉 with alphabet size h, where the main automaton A has n states and index k
and the satellite S has m states, and a safety NTA N with n′ states, both running over BE-trees,

can be decided in time n′O(n·k) · 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

Proof. As for Theorem 4.5.3, the proof proceeds in two steps. First, by Theorem 4.5.1, there is an

AATA A′, with the same set of states and acceptance condition of A and a set BE of directions,

such that L(A′) = L(A) and so, L(〈A′,S〉) = L(〈A,S〉). Now, by Theorem 4.5.2, we obtain an

NPT N ⋆, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ⋆) = L(〈A′,S〉).
Intersecting N ⋆ with N , we obtain a new NPT N ′ such that L(N ′) = L(〈A,S〉) ∩ L(N ), with

n′ · 2O((n·k)·log(n·k)+log(m)) states and same index of N ⋆. Finally, we check the emptiness of N ′ in

time n′O(n·k) · 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

112



4. Relentful Strategic Reasoning 4.6 - Decision Procedures

4.6 Decision Procedures

In this section, we directly study the satisfiability and model-checking for the richer mpATL*,

since we prove a tight 2EXPTIME upper bound for both the problems.

4.6.1 From path formulas to satellite

As mentioned before, an mATL* path formula is satisfied at a certain node of a path by taking

into account both the future and the past. Although the past is unlimited, it only requires a finite

representation. This is due to the fact that LTL with past operators (pLTL, for short) [Gab87,

LPZ85] can be translated into automata on infinite words of bounded size [Var88], and that it

represents the temporal path core of mpATL* (as LTL is the corresponding one for ATL*). Here,

we show how to build the satellite that represents the memory on the past in order to solve

satisfiability and model-checking for mpATL*.

To this aim, we first introduce the following notation, where ϕ is an enf state formula:

APϕ = AP ∪ cl(ϕ), APrϕ = AP ∪ rcl(ϕ), and APprsϕ = APrϕ ∪ {present}. Intuitively, we are

enriching the set of atomic propositions AP, to be used as input symbols of the automata, with the

basic formulas of ϕ and the special proposition present.

Before showing the full satellite construction, we first describe how to build it from a single

basic formula b = 〈〈Ab〉〉ψb. Let ψ̂b be the pLTL formula obtained by replacing in ψb all the

occurrences of a direct basic subformula b′ ∈ rcl(b) by the label b′ read as atomic proposition.

By using a slight variation of the procedure developed in [Var88], we can translate ψ̂b into a

universal co-Büchi word automaton Ub = 〈APprsb ,Qb, δb,Q0b,Fb〉, with a number of states at

most exponential in |ψb|, i.e., |Qb| = 2O(|ψb|), that accepts all and only the infinite traces on APprsb

that are models of ψ̂b. By applying the classical subset construction to Ub [RS59], we obtain

the satellite Db = 〈APrb , 2
Qb , ζb,Q0b〉, where ζb(p, σ) ,

⋃
q∈p δb(q, σ), for all states p ⊆ Qb and

labels σ ⊆ APrb .

To better understand the usefulness of the satellite Db, consider Ub after that a prefix ρ = ̟≤i
of an infinite trace ̟ ∈ (APrb)

ω is read. Since Ub is universal, there exists a number of active states

that are ready to continue with the evaluation of the remaining part ̟>i of the trace ̟. Consider

now the satellite Db after that the same prefix ρ is read. Since Db is deterministic, there is only one

active state that, by construction, is exactly the set of all the active states of Ub. It is clear then that,

using Db, we are able to maintain all possible computations of Ub.
We now define the product-satellite that maintains, at the same time, a memory for all path

formulas ψb contained in a basic subformula b ∈ cl(ϕ) of the mpATL* formula ϕ we want to

check.

Definition 4.6.1 (Memory Satellite). The memory satellite for a state formula ϕ is the satellite

Sϕ , 〈APϕ,Pϕ, ζϕ, p0ϕ〉, where (i) Pϕ , {p ∈ (
⋃
b∈cl(ϕ) 2Qb)cl(ϕ) : ∀b ∈ cl(ϕ). p(b) ⊆ Qb}, (ii)

p0ϕ(b) , Q0b, and (iii) ζϕ(p, σ)(b) ,
⋃
q∈p(b) δb(q, σ ∩ APrb), for all p ∈ Pϕ, σ ⊆ APϕ, and

b ∈ cl(ϕ).

Intuitively, this satellite record the temporal evolution of the formula ϕ from the root of the tree

model by means of its states, which are represented by functions mapping each basic subformula

113



4. Relentful Strategic Reasoning 4.6 - Decision Procedures

b ∈ cl(ϕ) to a set of active states of the related word automaton Ub. Note that the size of the

satellite Sϕ is doubly-exponential in |ϕ|, i.e., its number of states is 22O(|ϕ|) .

4.6.2 Satisfiability

The satisfiability procedure we now propose technically extends that used for ATL* in [Sch08]

along with that for mCTL* in [KV06]. Such an extension is possible due to the fact that the

memoryful quantification has no direct interaction with the strategic features of the logic. In

particular as for ATL*, it is possible to show that every CGS model of an mpATL* formula ϕ can

be transformed into an explicit CGT model of ϕ. Such a model includes a certificate for both the

truth of each of its basic subformula b ∈ cl(ϕ) in the respective node of the tree and the strategy

used by the agents Ab to achieve the goal described by the corresponding path formula ψb (for a

formal definition see [Sch08]). The main difference of our definition of explicit models w.r.t. that

given in [Sch08] is in the fact that the witness of a basic formula b does not start in the node from

which the path formula ψb needs to be satisfied, but from the node in which the quantification is

applied, i.e., the present node. This difference, which directly derives from the memoryful feature

of mpATL*, is due to the request that ψb needs to be satisfied on a path that starts at the root of the

model. The proof of an explicit model existence is exploited by constructing an SATAS that accepts

all and only the explicit models of the specification. The proof follows that used in Theorem 4

of [Sch08] and changes w.r.t. the use of the satellite Sϕ that helps the main automaton Aϕ whenever

it needs to start with the verification of a given path formula ψb, with b ∈ cl(ϕ). In particular,

Aϕ needs to send to the successors of a node x labeled with b in the tree given in input, all the

states of the universal Co-Büchi automaton Ub that are active after Ub has read the word derived by

the trace starting in the root of the tree and ending in x. By extending an idea given in [KV06],

this requirement is satisfied by Aϕ by defining the transition function, for the part of interest,

as follows: δ(qb, (σ, p)) = ((2,Ag), qb) ∧
∧
q∈p(b)

∧
q′∈δb(q,σ∩APrb∪{present})((2,Ag), (q′, new)),

where b ∈ σ and p(b) is the component relative to b of the product-state of Sϕ.

Putting the above reasoning all together, the following result holds.

Theorem 4.6.1 (mpATL* Satisfiability). Given an mpATL* formula ϕ, we can build a Co-Büchi

SATAS 〈Aϕ,Sϕ〉, where Aϕ and Sϕ have, respectively, 2O(|ϕ|) and 22O(|ϕ|) states, such that L(〈Aϕ,
Sϕ〉) is exactly the set of all the tree models of ϕ.

By using Theorems 4.6.1 and 4.5.3, we obtain that the check of the existence of a model for a

given mpATL* specification ϕ can be done in time 22O(|ϕ|) , resulting in a 2EXPTIME algorithm in

the length of ϕ. Since mpATL* subsumes mCTL*, which has a satisfiability problem 2EXPTIME-

HARD [KV06], we then derive the following result.

Theorem 4.6.2 (mpATL* Satisfiability Complexity). The satisfiability problem for mpATL* is

2EXPTIME-COMPLETE.

4.6.3 Model checking

As for mCTL*, for the new logic mpATL* we use a top-down model-checking algorithm that

checks whether the initial state of the CGS under exam satisfies the formula. In particular, the

114



4. Relentful Strategic Reasoning 4.6 - Decision Procedures

procedure we propose is similar to that used for mCTL* in [KV06] and so, it is different from that

used for ATL* in [AHK02], which is bottom-up and uses a global model-checking method.

With more details, from the CGS G and an mpATL* formula ϕ, we easily construct a safety

NTA NG,ϕ that recognize all the extended unwindings of G itself, in which each state is also labeled

by the basic subformulas ϕ′ ∈ cl(ϕ) of ϕ that are true in that state [KVW00]. This automaton

is simply linear in the size of G. Then, by calculating the product of NG,ϕ with the SATAS of

Theorem 4.6.1, we obtain an automata that is empty iff the model does not satisfy the specification.

Now, by a simple calculation based on the result of Theorem 4.5.4, we derive that the whole

procedure takes time ‖G ‖2O(|ϕ|)
, resulting in an algorithm that is in PTIME w.r.t. the size of G and

in 2EXPTIME w.r.t. the size of ϕ. Since, by Item 1 of Theorem 4.4.1, there is a linear translation

from ATL* to mpATL* and ATL* has a model-checking problem that is PTIME-HARD w.r.t. G
and 2EXPTIME-HARD w.r.t ϕ [AHK02], we then derive the following result.

Theorem 4.6.3 (mpATL* Model Checking Complexity). The mpATL* model checking problem is

PTIME-COMPLETE w.r.t. the size of the model and 2EXPTIME-COMPLETE w.r.t. the size of the

specification.

115



Bibliography

[ABL07] M. Arenas, P. Barceló, and L. Libkin. Combining Temporal Logics for Querying

XML Documents. In International Conference on Database Theory’07, LNCS 4353,

pages 359–373. Springer, 2007.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.

Journal of the ACM, 49(5):672–713, 2002.

[Apo76] T.M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.

[BCM+03] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press, 2003.

[Ber66] R. Berger. The Undecidability of the Domino Problem. Memoirs of the American

Mathematical Society, 66:1–72, 1966.

[BL05] P. Barceló and L. Libkin. Temporal Logics over Unranked Trees. In IEEE Symposium

on Logic in Computer Science’05, pages 31–40. IEEE Computer Society, 2005.

[BLLM09] T. Brihaye, A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Con-

texts and Bounded Memory. In Symposium on Logical Foundations of Computer

Science’09, LNCS 5407, pages 92–106. Springer, 2009.

[BLMV08] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The Complexity of Enriched

Mu-Calculi. Logical Methods in Computer Science, 4(3):1–27, 2008.

[BMM09] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In

IEEE Symposium on Logic in Computer Science’09, pages 342–351. IEEE Computer

Society, 2009.

[BMM10] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic with

Binary Coding. In EACSL Annual Conference on Computer Science Logic’10, LNCS

6247, pages 125–139. Springer, 2010.

[CD88] E.M. Clarke and I.A. Draghicescu. Expressibility Results for Linear-Time and

Branching-Time Logics. In REX Workshop’88, LNCS 354, pages 428–437. Springer,

1988.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching-Time Temporal Logic. In Logic of Programs’81, LNCS 131, pages

52–71. Springer, 1981.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.

[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In International

Conference on Concurrency Theory’07, LNCS 4703, pages 59–73. Springer, 2007.

116



BIBLIOGRAPHY

[DTV00] M. Daniele, P. Traverso, and M.Y. Vardi. Strong Cyclic Planning Revisited. In

European Conference on Planning’99, pages 35–48, 2000.

[EF95] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[EFH+03] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout.

Reasoning with Temporal Logic on Truncated Paths. In Computer Aided Verifica-

tion’03, LNCS 2725, pages 27–39. Springer, 2003.

[EH85] E.A. Emerson and J.Y. Halpern. Decision Procedures and Expressiveness in the

Temporal Logic of Branching Time. Journal of Computer and System Science,

30(1):1–24, 1985.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On

Branching Versus Linear Time. Journal of the ACM, 33(1):151–178, 1986.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT

Press, 1995.

[Fin72] K. Fine. In So Many Possible Worlds. Notre Dame Journal of Formal Logic, 13:516–

520, 1972.

[FKL10] D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems’10,

LNCS 6015, pages 190–204. Springer, 2010.

[FL79] M.J. Fischer and R.E. Ladner. Propositional Dynamic Logic of Regular Programs.

Journal of Computer and System Science, 18(2):194–211, 1979.

[FNP08] A. Ferrante, M. Napoli, and M. Parente. CTL Model-Checking with Graded Quan-

tifiers. In International Symposium on Automated Technology for Verification and

Analysis’08, LNCS 5311, pages 18–32. Springer, 2008.

[FNP09] A. Ferrante, M. Napoli, and M. Parente. Graded-CTL: Satisfiability and Symbolic

Model Checking. In International Conference on Formal Engineering Methods’10,

LNCS 5885, pages 306–325. Springer, 2009.

[FS10] B. Finkbeiner and S. Schewe. Coordination Logic. In EACSL Annual Conference on

Computer Science Logic’10, LNCS 6247, pages 305–319. Springer, 2010.

[FvD08] T. French and H.P. van Ditmarsch. Undecidability for Arbitrary Public Announcement

Logic. In Advances in Modal Logic’08, pages 23–42, 2008.

[Gab87] D.M. Gabbay. The Declarative Past and Imperative Future: Executable Temporal

Logic for Interactive Systems. In Temporal Logic in Specification’87, LNCS 398,

pages 409–448. Springer, 1987.

[Grä99] Erich Grädel. On The Restraining Power of Guards. Journal of Symbolic Logic,

64(4):1719–1742, 1999.

117



BIBLIOGRAPHY

[GTW02] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide

to Current Research. LNCS 2500. Springer-Verlag, 2002.

[Har84] D. Harel. A Simple Highly Undecidable Domino Problem. In Logic and Computation

Conference’84, 1984.

[Jam04] W. Jamroga. Strategic Planning Through Model Checking of ATL Formulae. In

International Conference on Artificial Intelligence and Soft Computing’04, LNCS

3070, pages 879–884. Springer, 2004.

[JvdH04] W. Jamroga and W. van der Hoek. Agents that Know How to Play. Fundamenta

Informaticae, 63(2-3):185–219, 2004.

[JW95] D. Janin and I. Walukiewicz. Automata for the Modal µ-Calculus and Related Results.

In International Symposiums on Mathematical Foundations of Computer Science’95,

LNCS 969, pages 552–562. Springer, 1995.

[Knu68] D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms.

Addison-Wesley, 1968.

[Koz83] D. Kozen. Results on the Propositional mu-Calculus. Theoretical Computer Science,

27(3):333–354, 1983.

[KP95] O. Kupferman and A. Pnueli. Once and For All. In IEEE Symposium on Logic in

Computer Science’95, pages 25–35. IEEE Computer Society, 1995.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded µ-Calculus.

In Conference on Automated Deduction’02, LNCS 2392, pages 423–437. Springer-

Verlag, 2002.

[KV98] O. Kupferman and M.Y. Vardi. Weak Alternating Automata and Tree Automata

Emptiness. In ACM Symposium on Theory of Computing’98, pages 224–233, 1998.

[KV06] O. Kupferman and M.Y. Vardi. Memoryful Branching-Time Logic. In IEEE Sym-

posium on Logic in Computer Science’06, pages 265–274. IEEE Computer Society,

2006.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to

Branching-Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Information and

Computation, 164(2):322–344, 2001.

[Lam80] L. Lamport. “Sometime“ is Sometimes “Not Never“: On the Temporal Logic of

Programs. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages’80, pages 174–185, 1980.

[Lan08] M. Lange. A Purely Model-Theoretic Proof of the Exponential Succinctness Gap

between CTL+ and CTL. Information Processing Letters, 108(5):308–312, 2008.

118



BIBLIOGRAPHY

[LMS02] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal Logic with Forgettable

Past. In IEEE Symposium on Logic in Computer Science’02, pages 383–392. IEEE

Computer Society, 2002.

[LPZ85] O. Lichtenstein, A. Pnueli, and L.D. Zuck. The Glory of the Past. In Logic of

Programs’85, pages 196–218, 1985.

[LR03] C. Löding and P. Rohde. Model Checking and Satisfiability for Sabotage Modal

Logic. In IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science’03, LNCS 2914, pages 302–313. Springer, 2003.

[LS08] L. Libkin and C. Sirangelo. Reasoning About XML with Temporal Logics and Au-

tomata. In International Conference on Logic for Programming Artificial Intelligence

and Reasoning’08, LNCS 5330, pages 97–112. Springer, 2008.

[Lut06] C. Lutz. Complexity and Succinctness of Public Announcement Logic. In Autonomous

Agents and Multiagent Systems’06, pages 137–143, 2006.

[McC76] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,

2:308–320, 1976.

[MH84] S. Miyano and T. Hayashi. Alternating Finite Automata on ω-Words. Theoretical

Computer Science, 32(3):321–330, 1984.

[MM09] F. Mogavero and A. Murano. Branching-Time Temporal Logics with Minimal Model

Quantifiers. In International Conference on Developments in Language Theory’09,

LNCS 5583, pages 396–409. Springer, 2009.

[MMV10a] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer

Science’10, LIPIcs 8, pages 133–144, 2010.

[MMV10b] F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in

Alternating-Time Temporal Logic. In International Conference on Logic for Pro-

gramming Artificial Intelligence and Reasoning’10, LNAI 6355. Springer, 2010.

[Mog07] F. Mogavero. Branching-Time Temporal Logics (Theoretical Issues and a Computer

Science Application). Master’s thesis, Universitá degli Studi di Napoli ”Federico II”,

Italy, October 2007.

[MS87] D.E. Muller and P.E. Schupp. Alternating Automata on Infinite Trees. Theoretical

Computer Science, 54(2-3):267–276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondetermin-

istic Automata: New Results and New Proofs of Theorems of Rabin, McNaughton

and Safra. Theoretical Computer Science, 141(1-2):69–107, 1995.

[NPP08] P. Niebert, D. Peled, and A. Pnueli. Discriminative Model Checking. In Computer

Aided Verification’08, LNCS 5123, pages 504–516. Springer, 2008.

119



BIBLIOGRAPHY

[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[Pau02] M. Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic and

Computation, 12(1):149–166, 2002.

[Pin07] S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expressive

Constraints on Strategies. In International Symposium on Automated Technology for

Verification and Analysis’07, LNCS 4762, pages 253–267. Springer, 2007.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Foundation of Computer Science’77,

pages 46–57, 1977.

[Pnu81] A. Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical Computer

Science, 13:45–60, 1981.

[PV07] M. Pistore and M.Y. Vardi. The Planning Spectrum - One, Two, Three, Infinity.

Journal of Artificial Intelligence Research, 30:101–132, 2007.

[QS81] J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs in

Cesar. In International Symposium on Programming’81, LNCS 137, pages 337–351.

Springer, 1981.

[Rab69] M.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.

Transactions of the American Mathematical Society, 141:1–35, 1969.

[Rob71] R.M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inven-

tiones Mathematicae, 12:177–209, 1971.

[RS59] M.O. Rabin and D.S. Scott. Finite Automata and their Decision Problems. IBM

Journal of Research and Development, 3:115–125, 1959.

[Sch08] S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In International Colloquium

on Automata, Languages and Programming’08, LNCS 5126, pages 373–385. Springer,

2008.

[SF06] S. Schewe and B. Finkbeiner. Satisfiability and Finite Model Property for the

Alternating-Time µ-Calculus. In EACSL Annual Conference on Computer Science

Logic’06, LNCS 4207, pages 591–605. Springer, 2006.

[SP95] N.J.A. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences. Academic

Press, 1995.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with Comple-

ments. Artificial Intelligence, 48(1):1–26, 1991.

[Tho90] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer

Science (vol. B), pages 133–191. MIT Press, 1990.

120



BIBLIOGRAPHY

[Tob01] S. Tobies. PSpace Reasoning for Graded Modal Logics. Journal of Logic and

Computation, 11(1):85–106, 2001.

[Var88] M.Y. Vardi. A Temporal Fixpoint Calculus. In ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages’88, pages 250–259, 1988.

[vdHW02] W. van der Hoek and M. Wooldridge. Tractable Multiagent Planning for Epistemic

Goals. In Autonomous Agents and Multiagent Systems’02, pages 1167–1174, 2002.

[VW86a] M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program

Verification. In IEEE Symposium on Logic in Computer Science’86, pages 332–344.

IEEE Computer Society, 1986.

[VW86b] M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of

Programs. Journal of Computer and System Science, 32(2):183–221, 1986.

[Wan61] H. Wang. Proving Theorems by Pattern Recognition II. Bell System Technical Journal,

40:1–41, 1961.

[Wil99] T. Wilke. CTL+ is Exponentially More Succinct than CTL. In IARCS Annual Confer-

ence on Foundations of Software Technology and Theoretical Computer Science’99,

pages 110–121. Springer, 1999.

[Woo01] M.J. Woolridge. Introduction to Multiagent Systems. John Wiley & Sons, 2001.

121



List of Figures

2.1 A model of an arbiter system for shared memory locations. . . . . . . . . . . . . 59

2.2 Two submodels of the arbiter system. . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 The four minimal models of ϕS . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 The CGS G model of ϕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 A CGS and its state-unwinding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 A CGS and its decision-unwinding. . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Two bisimilar but not local-isomorphic turn-based CGSs. . . . . . . . . . . . . . 82

3.5 The CGS G⋆ model of ϕord. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Part of the CGS G⋆∂ model of ϕdom, where ∂(0, 0) = t1, ∂(0, 1) = t2, ∂(1, 0) = t3,

and ∂(1, 1) = t4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Hierarchy of expressive power and succinctness. . . . . . . . . . . . . . . . . . . 108

122


