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FOREWORD 

Food in space 

Since the first moon-landing in 1969, one of the most important problems of space 

exploration by humans has been the generation and maintenance of optimal living conditions 

during the transit to and/or a stay on a planet (Gazenko and Shepelev, 1972; Grigoriev and 

Gazenko, 1998). One of the most difficult technical challenges for scientists is represented by 

the diet of the crew: nutrition, food storage and sanitation are important objectives to be 

reached. 

ESA (European Space Agency) and NASA (National Aeronautics and Space Administration) 

have been tried to improve food quality for human in space, considering not only nutrition but 

also the psychological well-being of astronauts: good food could provide psychological 

support for the crew, away from Earth for years. 

Weightlessness and long time living in a closed environment create additional requirements 

during the planning of astronaut nutrition. Food has to be nutritionally balanced, tasty and 

appealing, together with a degree of thickness suitable to be consumed in weightlessness, 

specially packed and easy to store for a long time. Today all the food for astronauts is brought 

from Earth, but this is not possible for longer missions (www.esa.int). 

The launch needs (propellant) and consequently the costs of a space mission is determined by 

the amount of total mass that have to be put into Earth orbit, propelled towards the targeted 

planet, enter into orbit again and finally transported back to Earth. A single crew needs on 

average 3 Kg of combined food and water a day, so for a typical Mars mission of minimum 2 

years (730–1000 days) about 12 tonnes of 'food' (consumables) would be needed. The 

frequent consumable re-supply is costly and it becomes logistically difficult as missions 

extend further. To keep the weight down, foods are eaten in their packaging (plastic pouches). 

Another issue is the food storage: many processed foods and reconstituted beverages do not 

retain their nutrition or palatability for even a year, turning off-colour or becoming mushy or 

tasteless. 

Moreover, studies conducted by NASA scientists proved that, after one year, space food 

shows notable losses of vitamin A, folic acid and thiamine, and the vitamin C totally 

disappears. Astronauts could use multi-vitamin pills, but the efficacy of vitamins diminishes 

faster in pills than in foods. Using current propulsion systems, crews will take between 6 and 

8 months to travel each way to Mars. Since Mars and Earth come close to each other only 

once every year, crews will have to stay on the planet surface for 18 months before coming 

http://www.esa.int/
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back home. Scientists‟ goal is the development of foods that will remain both safe and 

appetizing for at least five years. Canned food has a good shelf life, but can not be heated in 

microwaves and is considerably heavier than the plastic pouches. 

Crews need to eat every bite of what they open up. Crumbs from cookies or crackers can get 

into someone's eyes or create problems to the equipments. Wet foods that aren't completely 

gobbled up will eventually go bad and stink up a spacecraft: astronauts do not take out the 

trash every day but bring it back home with them or hold it for months until they can pack it 

into a craft directed towards Earth's surface (but actually incinerate in the atmosphere). 

Since journey to Mars is still many years away, probably 2035 at the earliest, there should be 

ample time to find an optimal strategy for food supplying in space missions. 

An alternative to bringing food from Earth could be the development of human Life Support 

Systems (LSS), that can allow a continual recycling of system resources. This could be 

achieved with physical-chemical approaches where, for example, CO2 is chemically reduced 

with H2 using the Sabatier process (Sabatier and Senderens, 1902) to produce methane and 

water, after which the water is electrolytically split to provide O2 for the humans (Jones and 

Ingelfinger, 1973). 

Tough the efforts spent to build a closed physical-chemical system in the last decades, there 

exist only different components (subsystems, units, aggregates etc.) of physical-chemical 

regenerative systems but not a complete system. The experiments carried out showed that it 

would be easier to design a biological regenerative system than a physical-chemical one 

(Gitelson et al., 1975). 

In example plant based life support processes could be the optimal tool for CO2 reduction and 

O2 production (Myers, 1954). In addition to the atmospheric regeneration, plants could be 

used to produce food and purify waste water (trough transpiration); this concept has been 

called “Bioregenerative Life Support System”, or “Controlled Ecological Life Support 

System” (CELSS) or “Environmental Closed Life Support System” (ECLSS). These terms 

have generally been used in a more inclusive sense for both biological and physical-chemical 

approaches. 

By growing enough plants to cover around 40% of what the crew eats, humans could get 'for 

free' the oxygen and water needed to live. Although still on the drawing board, ESA has 

already started research to see what could be grown on other planets - and what a self-

supporting eco-system might look like on Mars (www.esa.int) 

The use of plants for bioregenerative life support for space missions was first studied by the 

US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s 
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through the 1980s by Russian researchers at the Institute of Biophysics in Krasnoyarsk, 

Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated 

bioregenerative research in the 1960s but it did not include testing with plants until about 

1980, with the start of the CELSS Program (Wheeler et al., 2003). The overall objective of 

these studies was to define optimal environmental conditions for growth and high yields of 

crops that were identified as candidate species (Tibbitts and Alford, 1980) for a CELLS. 

Many LSS, containing biological regeneration components (e.g. micro algae, higher plants, 

fish) have been proposed and discussed (Krall and Kok, 1960; Gitelson et al., 1975; Gros et 

al., 2003; Sychev et al., 2003). At the present time, the most promising and the best studied 

biological regeneration components of life support systems are microalgae (Gitelson et al., 

1975;) and higher plants (Gitelson et al., 2003; Gros et al., 2003; Salisbury et al., 2002). 

However, CELSS have not been used in space yet because of their high energy consumption; 

the big area and volume required for their placing together with the high weight are a big 

trouble too. Moreover, no technologies are available to handle and maintain organisms within 

such systems and it is still a question whether living organisms will be functional in the 

biological matter cycle during in microgravity (Sychev et al., 2003). To bring closed 

regenerative life support technology to a level of development suitable to space applications, 

further research is needed to fully understand and characterize the involved biological and 

physicochemical processes. In past and current missions physicochemical life support systems 

were sufficient to provide air and a limited amount of water to the crew, while food and 

drinkable water were re-supplied and waste discarded. As human missions extend further into 

space, physicochemical and biological processes are likely to be combined to achieve a highly 

self-sustaining and robust regenerative life support system. 

Two French companies (ADF and GEM), working in a previous ESA project, tried to create 

some recipes for the astronauts. The challenge for the chefs was to offer astronauts well-

flavoured food, made with only a few ingredients that could be grown on Mars. The result 

was 11 recipes that could be used on future ESA long-duration space missions. The menus 

were all based on nine main ingredients that likely could be grown in greenhouses of future 

colonies on Mars or other planets. The nine basic ingredients are rice, onions, tomatoes, 

soybean, potatoes, lettuce, spinach, wheat and spirulina – all common ingredients except the 

last. Spirulina is a blue-green algae, a very rich source of nutrition with lots of protein (65% 

by weight), calcium, carbohydrates, lipids and various vitamins that cover essential nutritional 

needs for energy in extreme environments. The nine must comprise at least 40% of the final 
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diet, while the remaining (up to) 60% could be additional vegetables, herbs, oil, butter, salt, 

pepper, sugar and other seasoning brought from Earth. 

 

Plant production in a CELLS 

If plants are to be used for human life support in space, growing conditions will differ from 

those typically encountered in the field. Plant growth and crop yield and quality are very 

dependent on the climatic conditions experienced from seeding to harvest. Protected 

agriculture in greenhouses optimises plant growth conditions and allows shortening growth 

cycles and guaranteeing a stable product quality. For the application of plant growth and 

associated food production as a subsystem in an CELSS setting, characterisation of crop food, 

potable water, oxygen and crop waste production rates and dynamics, as well as harvested 

food nutritional content and plant nutrient and CO2 assimilation rates are a necessity. Datasets 

combining all these aspects are lacking. 

The resources needed for plant cultivation also depend on the location. CO2 as carbon source 

will always be available from crew respiration. Water could be recycled from the consumed 

food that was brought from Earth or used from in-situ planetary sources (when available). 

Nutrients for start-up can be transported from Earth, to guarantee the needed purity. In-situ 

extraction would require more equipment and analysis which is not realistic in the first steps 

of exploration. The utilisation of substrates available on planetary surfaces for plant growth 

would need a detailed characterisation of possible nutrient absorption or liberation, in order to 

keep the composition of the nutrient solution optimal for food production. 

After considering a range of horticultural approaches, a recirculating nutrient film technique 

(NFT) was selected as the method for water and nutrient delivery, to minimize the substrate 

for plant growth (Steinberg et al., 2000) and allow both air and liquid to contact the roots, to 

minimize the needed water volume for growth and avoid anoxic conditions at the root level 

(Monje et al., 2000).  

On the other hand, because of the limited water volume and buffering capacity, NFT systems 

are susceptible to crop stress or possible loss if some malfunctions happen (e.g. loss of 

circulating pumps). Moreover, using the NFT system requires monitoring and control of 

solution pH, EC and water volume. 

Under optimal and constant environmental conditions, plant growth usually results in higher 

yield and shorter life cycles than the ones obtained in traditional agriculture. Depending on 

the ecological niche where a plant is growing on Earth (sun, shadow, latitude) plant 

photosynthetic carbon assimilation operates at its highest yield at 500-2000 μmol m
-2

s
-1

, but is 
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close to zero assimilation (i.e. compensation point) when the light level drops below 50-100 

μmol m
-2

s
-1

 (Taiz and Zeiger, 2006). Hence, light availability is critical and will be limited by 

power availability during the space missions to a level of 500-1000 μmol m
-2

s
-1

, which is 

enough for medium/high yield, depending on the crop. 

Furthermore, photosynthetic assimilation is directly related to the CO2 concentration in the 

atmosphere. CO2 concentrations below the atmospheric level will limit photosynthesis. For 

many plant species, a CO2 concentration of 100 ppm will reduce photosynthetic assimilation 

by 60-70 %, and in combination with low light levels, this can even result in a more drastic 

reduction of net CO2 fixation. When light is absent, respiration leads to a net carbon loss, 

irrespective of the CO2 concentration. As a general rule, canopy photosynthesis is always less 

than the sum of photosynthetic assimilation by individual leaves and plants (Taiz and Zeiger, 

2006). Partial shading and leaf movements influence light interception and canopy 

photosynthetic assimilation. Minimization of Leaf Area Index (LAI) could be a valuable 

strategy to maximize yield with a minimum non-edible part production. 

A drop in photosynthesis also results in a decline of oxygen production, since for every mole 

of CO2 and H2O, about one mole of O2 is released. Water oxidation by a light energy 

catalysed enzymatic reaction results in both oxygen production and in the reduction of CO2 to 

sugars through the Calvin-Benson cycle. Thus, a reduction in CO2 assimilation by a factor of 

2 will result in only half the O2 formed. 

But a high light level is not always useful: in addition to the need for shielding the crew 

members from the radiation caused by solar flares and cosmic radiation, plants will also need 

to be protected against the mutagenic effects of the cosmic radiation, especially if long term 

seed-to seed production is envisaged whereby mutations can accumulate that likely would 

change the productivity or composition of the crop. It has to be mentioned however that crop 

sensitivity to radiation is far less than for humans, so a trade off with mass requirements and 

acceptable radiation level has to be investigated for FPPS concepts, based on a detailed 

literature study. Otherwise re-supply of standardised seed from Earth can be preferable if 

shielding needs outweigh the costs for consumable re-supply. 

To guarantee acceptable air and food quality for the crew, it is necessary the creation of a 

plant chamber with light, CO2, temperature and humidity level set points fit for efficient food 

production, and a control strategy for modifying these parameters within limits that do not 

affect plant product composition significantly but that will enable to stabilise O2 and CO2 

levels. 
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To illustrate the potential impact of non-optimised environmental factors on crop yield, a 

number of examples are given below. Salinity, an excess of ions at the root level (species-

dependent, for example 40mM salts for rice, 50mM for lettuce) results in a 50% reduction in 

crop yield. Lethal temperature conditions for most crops start from an exposure of 10 minutes 

at 45 °C (Levitt, 1980). Optimum temperatures for plant growth depend on the species 

considered; for agricultural crops the optimal range is from 15 to 35 °C. In addition, if plant 

growth hardware can provide an accurate and homogenous temperature and humidity control, 

the response of all plants grown within this controlled environment will be similar, and this 

will eventually be reflected in their homogeneous composition and nutritional content. 

On Earth, the impact of both biotic and abiotic factors is known to severely affect the process 

of plant growth. The crop-specific bio safety issue should be considered for long-term 

missions. Infection of the crop by plant-pathogenic micro-organisms would induce a major 

perturbation in the system, potentially leading to the temporary loss of life support function. 

Many of the risks related to plant pathogens are reduced in a relatively closed system. Despite 

this, sterilization protocols for much of the materials handling were considered at first, then 

they were abandoned in favour of sanitation and avoiding over risks (plants and seeds 

certification, seeds sterilization, cleaning of all the materials used in each cultivation cycle…). 

In addiction, extraneous plant materials (including lunch vegetables and cigarettes) and soil 

were not permitted in or near the chamber. Initial studies included disinfecting the hydroponic 

systems with either a hypochlorite solution or nitric acid between planting, but this was later 

abandoned in favour of physically cleaning and flushing the system. High-efficiency 

particulate air (HEPA) filters were used in the air ducts to remove airborne microbes and 

spores, but these were removed with little consequence on atmospheric and surface microbial 

counts. 

The relative infrequency of obvious pathogens suggests that using cleaning procedures and 

maintaining a diverse and stable microflora in the root zones (Strayer, 1994) may avoid many 

pathogen problems. Yet the possible serious consequences of an aggressive pathogen must be 

taken seriously into account and counter measures or contingencies should be part of the 

mission planning (Nelson, 1987; Schuerger, 1998). This might include the use of 

interplantings with multiple species and/or isolating different growing environments to reduce 

overall system risks, or implementing disinfections procedures if recirculating nutrient 

solutions are used (e.g. filtering nutrient solutions or treating solutions with hydrogen 

peroxide or ozone). Another possibility would be to use fungicides, but few of them are 

cleared for use on hydroponic crops. 
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In addition, in Earth circumstances plants have an associated microflora, in the rhizosphere as 

well as on the leaf surface area, colonizing the surfaces and avoiding or limiting ingress of 

pathogens by competition. Research is ongoing on formulating microbial inoculants for 

hydroponic culture that would avoid infection, especially by water moulds (Oomycetes such 

as Pythium: Johnstone et al., 2005). Combining the possible preventive measures with a 

disinfection method that leaves no toxic residue, such as aqueous ozone treatment, will 

guarantee long-term plant disease-free crop production. The root associated microflora is also 

strongly involved in nutrient exchanges.  

Most of the activities made during the cultivation of a crop in a growth chamber are carried 

out manually and are labour intensive (particularly sowing and harvesting). Further 

mechanization or automation should be considered for more sophisticated life support 

systems, to reduce the crew time requirements. Moreover, activities like threshing and 

cleaning the seeds are dusty processes; they could be carried out in a ventilated settings but in 

a closed life support system it will be a serious issue. 

In most of the studies, the entire chamber was either planted or harvested in a single day. This 

resulted in episodic, labour-intensive events. In addiction, this approach required dedicated 

storage capabilities for keeping the biomass. A more manageable approach would be to 

stagger the plantings and harvests over more frequent intervals, which would reduce the 

single-day labour requirements and allow a reduction in the processing and storage system 

components. 

 

Soybean: hydroponic cultivation for space purpose 

Soybean is a candidate crop species because of the relatively high lipid and protein content of 

its seeds and high nutritional quality (Hoff et al., 1982). Proteins, lipids, and other seed 

components may change in concentration with growing environment. 

Traditionally, soybean is an open field species. Recirculating hydroponic systems are 

necessary to allow the soybean cultivation during long duration space missions. Several 

studies on improving production efficiency of commercial systems are available for many 

crops. On the contrary, hydroponic soybean culture has been mostly used to answer 

physiological questions rather than for commercial production. Thus, there are few reports 

that directly apply Advanced Life Support (ALS) crop production goals (Wheeler et al., 

1993). 
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Plant description and crop requirements 

Soybean is an annual plant. The root system is mostly represented by secondary roots, which 

first grow horizontally for 40 cm, and then they go deep in the soil up to 150 cm. If soil depth 

is restricted, the tap root is less evident and lateral roots are more developed (www.fao.org). 

The stem can reach up to 150 cm height and is widely branched. Soybean cultivars may have 

undetermined or determined development. Generally, leaves are shed before pod ripening, 

when seeds have more than 20% humidity. Flowers are joined in racemes containing 2 to 35 

flowers. They firstly bloom on the stem base. Usually, from 20 to 80% of flowers abort, 

especially in cultivars characterised by many flowers per node. The flowering may last 3-5 

weeks or more, depending on the cultivar and sowing age. Soybean is an autogamous species; 

heterogamy is less than 1%. The pods are little; each pod contains 1-5 seeds. Seed size is 

variable (the weight of 1000 seeds ranges between 50 and 450 g). The bigger seeds are 

usually used for human nutrition. 

Germination occurs 5-10 days after sowing, when the soil moisture and the temperature are 

adequate. In hydroponic systems, soybean seeds can be sown in trays and germinated with 

nylon wicks in hydroponic tray inserts (Prince and Knoot, 1989). Seedling is covered with 

white translucent tray covers for the first 4 days after planting, to maintain high humidity and 

aid establishment. After 10 days from planting, seedlings are thinned; plant density usually 

varies from 12 to 20 plants m
-2

. A 4 h pre-soak in deionised (DI) water can be performed, in 

order to improve the germination performances (Mackowiak et al.,1999). 

In commercial controlled environment agriculture, seedlings are typically started in a nursery 

under lower light intensity and grown in a dense spacing. The seedlings are then transplanted 

to a wider spacing in a production environment just prior to when the shoots begin to grow 

rapidly. Assuming a single transplant step could save 12 days in each production cycle, edible 

biomass productivities and radiation use efficiencies would have improved by 13% for 

soybean (Wheeler et al., 2008). 

For most of commercial cultivars, lifecycle (from sowing to harvesting) lasts 80–120 days. 

Seeds are ready to be harvested when pods are completely ripened and seed humidity is about 

12-14 %. Seeds can be stored for a season (humidity 14%), 1 year (humidity 13%), about 3 

years (humidity 12%) or about 4 years (humidity 10%). Grain yield is about 35-45 q/ha. 

Regarding the climatic requirements, the minimal temperature for growing is about 4-6 °C; a 

mean temperature of 24-25 °C seems to be the optimum for most cultivars. Lower 

temperatures determine delays in the flowering. 
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Considering photoperiod, soybean is a short-day plant, but response to day-length varies 

according to the cultivar and temperature: many cultivars need 10 hours of dark to bloom. All 

cultivars bloom faster under 8 hour photoperiod. Soybean shows a high sensitivity to water 

deficit in particular developmental phases. If the water shortage is experienced during the 

flowering or at the beginning of the pod formation, flowers abortion and pods shedding can 

occur. A long flowering time allows the plant to tolerate low levels of water deficit. The 

maximum decrease of seeds production occurs when water deficit is experienced during the 

last week of pod development and during seed formation. Less damage occurs at the 

beginning of flowering and in the final stage of seed formation. Soybean can grow in a wide 

range of soil types: from clay to organic and poorly fertile. Optimum pH of soil is 6 to 6.5. 

(Baldoni and Giardini, 1989). 

The species is sensitive to water logging, but moderately tolerant to soil salinity. Yield 

decrease due to soil salinity is the following: 0% at ECe 5 dS/m, 10% at 5.5; 25% at 6.2; 50% 

at 7.5 and 100% at ECe 10 dS/m (www.fao.org). 

 

Lighting 

In a experiment (Jurgonski et al., 1997), light supply was performed by cool-white fluorescent 

lamps, 250 mol m
-2

 s
-1 

photosynthetic photon flux (PPF); Wheeler et al. (2008) used 400 W 

High Pressure Sodium lamps (HPS) or Metal Halide lamps (MH), or a combination of them, 

and light was cycled to provide a 12 h light/12 h dark or 10 h light/14 h dark photoperiod. 

Canopy PAR ranged from 477 to 815 mol m
-2

 s
-1

, depending on the combination of the 

lamps. The highest photosynthetic rate occurred during the experiments with HPS lamps, 

which had the highest PPF, while the lowest rate occurred during the experiment with MH 

lamps, which had the lowest PPF. A drop in photosynthetic rate was observed corresponding 

to a lodging event (stand collapse). It suggests that light harvesting efficiency of the canopy 

was adversely affected by the lodging and that is important to maintain stable canopy 

structure to sustain maximum photosynthesis rates (Wheeler et al., 2004). 

Short-stature, high yielding cultivars are required for controlled environments because 

volume is often limited. However, soybean grown in controlled environments is taller than 

field-grown plants (Downs and Thomas, 1990). Red:far red ratios, specifically phytochrome 

660:730 nm, have been implicated as the cause of internode elongation (Pausch et al., 1991), 

although soybean may also respond to a balance of red and blue light (Britz and Sager, 1990). 

Wheeler et al. (1991) reported that a threshold intensity of blue light (30 mol m
-2

 s
-1 

) was 

http://www.fao.org/
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necessary to reduce stem elongation. This minimum requirement could be met in three ways: 

using blue-rich lamps (e.g. fluorescent); supplementing low-level HPS lighting with sufficient 

blue fluorescent (BL); increasing the PPF of HPS to provide sufficient BL. 

Assuming the HPS PPF contains about 7% BL, Wheeler et al. suggested that a minimum of 

430 mol m
-2

 s
-1 

(7% = 30 mol m
-2

 s
-1

) would be needed to provide sufficient BL to prevent 

excessive stem growth. However elongation is also dependent upon the total photosynthetic 

photon flux from lamps (Tibbitts et al., 1983). Dougher and Bugbee (1997) studied the 

soybean canopy height, carbon partitioning and yield under HPS and MH lamps. A PPF of 

450 mol m
-2

 s
-1

 was maintained at the top of the canopy. This supplied approximately 40 and 

140 mol m
-2

 s
-1

 of blue light in HPS and MH lamps, respectively. The photoperiod was 12 h. 

MS lamps significantly reduced canopy height but slightly increased relative branch length. 

The main stem of HPS lamps was 87% the length of the longest branch while MH main stem 

was 75% of the longest branch. MH canopy height was taller than the longest branch length 

because canopy height included petiole length. Although not measured, petioles appeared to 

contribute more to height in MH canopies. Plants grown under MH lamps had 14% less 

biomass compared to plants under HPS lamps. Reduced stem length mass in MH plants was 

associated with an increase of harvest index (HI). 

According to Wells et al. (1993), a positive correlation between plant height and seed yield 

was found. Net Photosynthesis (Pnet) measurements were consistent with the yield differences 

between lamp types. Taller plants under HPS lamps may have had better light interception. 

Higher Pnet , longer internodes, larger leaves and more rapid canopy closure suggest that there 

is better light distribution and capture in the HPS canopy. Increasing plant density under MH 

lamps might overcome canopy closure differences but this would probably have increased 

stem elongation after canopy closure, which would have reduced the height advantage. 

The canopy gases exchange rates, although the irradiance was controlled to 450 mol m
-2

 s
-1

 

PPF for all treatments, increased slightly faster during early growth under warm temperatures 

(e.g.,. 29 °C) and HPS lighting (Dougher and Bugbee, 1997). 

 

Temperature 

Soybean perform well under warm temperatures (>24 °C). Mackowiak et al. (1999) reported 

values of 26/22 °C (light/dark), while Wheeler et al. reported 26/20 °C (light/dark). Also in 

Jurgonski et al. experiment (1997), temperature ranged from 26 °C (day) to 22 °C (night). 

Dougher and Bugbee (1997) studied the effects of 5 day/night temperature regimes, 
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maintaining the root temperatures constant at the average daily temperature of the shoot. They 

found that higher temperature increased seed yield via increased number of pods per square 

meter and seeds per pod, while cooler temperatures reduced the seed fill period. Total 

biomass and harvest index (Table 4) tended to decrease with lower temperatures. Percent leaf 

mass decreased with increasing temperature probably because of delayed leaf senescence. 

Warm temperatures also tended to decrease percent root mass. The day/night scheme did not 

affect canopy height. 

The canopies at +4 DIF were not significantly taller than at 0 DIF. The lack of significant 

effect on plant height indicates temperature could be manipulated to some extent to maximize 

yield without increasing canopy height. 

 

Relative humidity 

In previous experiments, relative humidity (RH) levels ranged from 65 to 75 %. Jurgonski et 

al. (1997) maintained the RH at 70% while Mackowiak et al. (1997) reported values of 

67±6% of RH. 

 

Carbon dioxide 

Wheeler et al. (2008) refer that carbon dioxide (CO2) uptake by the plants was offset by 

controlled injections of pure CO2 to hold a set point of 1000 or 1200 mol mol
-1

 during the 

light cycles, while CO2 was allowed to accumulate from plant respiration during the dark 

cycles. When the lamps came on in the morning, CO2 concentrations quickly drew down to a 

set point, where controlled injections began. These drawdowns lasted approximately 60-90 

min depending on how much CO2 accumulated during the dark cycle, which in turn depended 

on the length of the dark period and the respiration rate of the crop. 

Wheeler et al (1990, 1994) studied the proximate composition and caloric value of seeds, 

pods, leaves and stems of soybean grown at four CO2 levels (500, 1000, 2000 and 5000 ppm). 

They found significant differences between soybean cultivars in proximate composition and 

some effects of CO2 levels on protein, lipid, and crude fibre contents. Later, Wheeler et al. 

(1996b) reported higher crude fibre contents of soybean seeds from the controlled 

environmental conditions than from field literature values. Regarding the effects of the 4 CO2 

concentrations on soybean yield, Wheeler et al. (1993) reported that they depended on the 

cultivars used in the experiment: higher levels did not show significant differences on a 

dwarf, determinate cultivar, while promoted more vegetative growth and consequently greater 

yields on an indeterminate cultivar. 
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In Jurgonski et al. experiment (1997), CO2 levels ranged from 350 to 1000 ppm. Seeds, stems, 

and leaves of plants grown at 350 ppm CO2 had significantly higher protein N contents than 

did those grown at 1000 ppm. This reduced protein content of leaves at high CO2 levels is 

consistent with lower levels of Rubisco (rubilose-1, 5-biphosphate carboxylase) at high CO2. 

In testing „McCall‟ and „Pixie‟ soybeans at 500, 1000, 2000, or 5000 ppm CO2 (Wheeler et 

al., 1990, 1994), seed protein levels (by standard Kjeldahl procedure) were highest at 1000 

ppm (39.3 and 41.9%, respectively) and lowest at 2000 ppm (34.7 and 38.9%, respectively). 

Protein content of leaves, stems, and pods also varied with CO2, level (Wheeler et al., 1990, 

1994). Wheeler et al. (1990, 1994) reported increased rather than decreased levels of leaf 

protein with increased CO2 levels, but only for 5000 ppm CO2. Seeds accumulated less NO3-

N than did any other plant part. This is consistent with the findings of McKeehen et al. 

(1996a) who showed that the typical edible portions of rice, wheat, and potato do not 

accumulate NO3-N when grown with excess N. Vegetative material is known to accumulate 

nitrate and other Non Protein Nitrogen (NPN) (Aldrich, 1980). However, soybean leaves, 

stems, and pods accumulated less NO3 as a percentage of total N than did the vegetative 

portions of other CELSS candidate crops (McKeehen et al., 1996 a, b). 

The higher total N and protein N contents of seeds and leaves from plants grown at 350 ppm 

CO2 compared to 1000 ppm CO2, translated to increased amino acid levels in 350 ppm CO2 

leaves, but such increases were not the case for 350 ppm CO2 seeds. Jurgonski et al. (1997) 

also reported that lipid contents of seeds and leaves were seemingly influenced by CO2 level, 

but ash contents were not. Both trends are consistent with reports by Wheeler et al. (1990, 

1994). 

Increasing CO2 concentration decreased the total dietary fibre (TDF) content of soybean 

leaves, as was the trend for lettuce leaves (McKeehen et al., 1996b). Wheeler et al. (1990, 

1994) reported increasing amounts of crude fibre in „McCall‟ soybean leaves with increasing 

CO2 levels. However, because crude fibre and TDF assays differ in what they measure, values 

cannot be compared directly. 

 

Nutrient solution and plant nutrition 

Wheeler et al. (2008) used the following starting nutrient concentration of the solution: 7.5 

mM N, 3.0 mM K, 0.5 mM P, 2.5 mM Ca, 1.0 mM Mg, 1.0 mM S, 60 M Fe, 7.4 M Mn, 

0.96 M Zn, 1.04 M Cu, 7.13 M B and 0.01 M Mo. The composition of the solution is 
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slightly different from the concentration of a trial in 1996, when Wheeler et al. used a 

concentration of 50 M Fe and 9.50 M B. 

Nutrient solution volumes were maintained at a constant level either through daily addiction 

of deionized water or continuous recycling of condensate water (water transpired by plants 

was condensed on the cooling coils of the heating system). Following water adjustments, 

nutrient stock solution was added to maintain an electrical conductivity of 1.2 dS m
-1

. Stock 

solution nutrient concentrations were: 70 mM N, 56 mM K, 10 mM P, 12mM Ca, 10 mM Mg, 

10 mM S, 134 M Fe, 96 M Mn, 12,5 M Zn, 13.5 M Cu, 93 M B and 0.13 M Mo 

(Wheeler et al., 1999). Nutrient solution pH was controlled to 5.8 using automatic addictions 

of 0.4 mM nitric acid. In 1996 Wheeler et al. used a stock solution having a different 

composition: 75 mM N, 68 mM K, 7.5 mM P, 7.5 mM Ca, 9.8 mM Mg, 9.8 mM S, 199 M 

Fe, 68 M Mn, 8.8 M Zn, 9.5 M Cu, 87 M B and 0.1 M Mo. The EC was maintained 

close to 1.2 dS m
-1

. 

Jurgonsky (1997) used the following concentration of elements for starter and refill solution:  

reported in Table 1: 

 

 

Table 1. Starter and refill solutions used by Jurgonsky (1997) for hydroponic cultivation on soybean 

 
Starter 

solution 

Refill 

solution 

 mM 

Ca3(NO3)2 1.0 1.0 

KNO3: 1.0 5.0 

KH2PO4: 0.5 0.75 

MgSO4: 0.5 0.75 

K2SiO3: 0.1 0.1 

 M 

Fe(NO3)3 5.0 1.5 

Fe-HEDTA: 15.0 5.0 

MnCl2: 6.0 9.0 

ZnSO4: 6.0 2.0 

H3BO3: 40.0 40 

CuSO4: 0.6 0.6 

NaMoO4: 0.09 0.06 
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Soybean, Rhizobium and nitrogen fertilization interactions 

The soybean‟s seeds generally contain 37% to 45% protein. Some of the nitrogen (N) needed 

by plants comes from the oxidation of soil organic matter with the balance produced by 

bacteria (Rhizobium) living in nodules on the plant‟s roots. Each legume species requires 

different bacteria to fix nitrogen from the air and produce ammonium (NH4
+
) to be used by 

plant (Beuerlein, 2004). 

The bacterial strain of Rhizobium used by soybean is Bradyrhizobium japonicum, and the 

process by which it establishes a symbiosis with the plant is very complex, but known. 

During germination, soybean plants release chemical signals (flavonoids) into the soil, 

recognized by the bacteria, that produce a return signal “Nod factor signal” to the plant. This 

return signal results in the plants‟ roots preparing for infection. The Nod factor signal makes 

the root hairs curl, trapping rhizobia present on the root surface. An infection thread 

develops, and the rhizobia multiply until they reach the inside of the root. The cells of the 

root also begin to divide and form a specialized structure called a nodule. The rhizobia 

continue multiplying inside the nodules, increasing their size. The enzyme (nitrogenase) that 

fixes nitrogen from the air to produce NH4
+
 can not work in the presence of oxygen, so the 

plant must produce leghaemoglobin inside the nodule to absorb oxygen in the root to avoid 

its interference with the nitrogen fixation process. Since leghaemoglobin is red, the inside of 

an actively fixing nodule is pink. Sugars produced in the leaves move into the nodules 

travelling through the root system and provide energy to the rhizobium for extracting 

nitrogen from the air and make the nitrogen compounds which the plant then uses to produce 

protein. Both plant and bacteria genes govern the nitrogen fixation cycle. Stresses on the 

bacteria or the plant such as cold, flooding, drought, and low soil pH can all interfere with 

this process. Cold temperatures delay the recognition of both the plant and bacteria signals. 

The plants and bacteria have to produce more signals in order to begin nodulation, which 

delays the onset of nitrogen fixation. Once enough signal is received and nodules develop, 

NH4
+
 is produced and provided to the crop (Beuerlein, 2004). 

Drought reduces the moisture in the soil that protects the bacteria while it lives on the seed 

surface after planting. A dry seedbed and dry seeds will quickly draw moisture from the 

inoculation material causing the bacteria on the surface of the seed to dry and die. If enough 

bacteria die, there will be little nodule formation and insufficient ammonium production for a 

good yield. 

The symbiosis provides usable nitrogen for the host and a reproductive niche for the 

bacterium. Because the nodulation-nitrogen fixation process is energetically costly to the host 
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(Ryle et al., 1984, Raven 1985), the plant seems to inhibit or repress nodulation when a 

sufficient quantity of usable nitrogen is present in the soil (Kohl et al., 1980; Rennie, 1982). 

Nitrogen fixation is known to be adversely affected by nitrate (NO3
-
) in at least two major 

ways: the continued presence in the rooting medium of a modest concentration of nitrate 

represses nodule formation (Ralston and Imsande, 1982), and the presence of a high 

concentration of nitrate in addition slowly inhibits the functioning of mature nodules and may 

eventually promote nodule senescence (Streeter, 1985). 

Nitrogen is the only essential element that can be absorbed as both as cation and anion. Plants 

absorb NH4
+
 much faster than NO3

-
, and the form of N have a significant effect on the uptake 

of other nutrients by competitive inhibition. The absorption or translocation of NO3
-
 or NH4

+
 

has been investigated extensively in hydroponic culture at either seedling stage or 

reproductive stage of vegetable crops (Shelp, 1987; Liu and Shelp, 1993; Kosola and Bloom, 

1996). 

The utilization of these ions was influenced by plant genotype (Gabelman et al., 1986), 

solution pH (Yokota and Ojima, 1995), solution temperature (Ikeda and Osawa, 1984) and
 

was also affected by the growth stage in lima beans (McElhannon and Mills, 1978) and sweet 

corn (Mills and McElhannon, 1982). 

The form of N absorbed also affects the pH of the rhizosphere. Absorption of NH4
+
 results in 

a efflux of H
+
 and the rhizosphere pH can shift downward as much as two units (from 7 to 5) 

in a short time. In contrast, absorption of NO3
-
 results in an efflux of OH

-
, increasing 

rhizhosphere pH (Marschner, 1995). Balancing the proportion of NO3
-
/NH4

+
 in the nutrient 

solution can be used to control pH (Lea-Cox et al., 1999). 

Stabilization of growth medium pH can also be achieved by using chemical compounds 

having buffering capacity. One of these is the 2-(N-morpholino)ethanesulphonic acid (MES), 

that appears to be biologically inert and does not interact significantly with other solution 

ions. (Bugbee and Salisbury, 1985; Ewing and Robson, 1991). 

Although mineral N generally has a negative effect on legume-rhizobia symbioses, 

experiments in hydroponic culture in laboratory (Waterer et al., 1992) demonstrated that low 

concentrations of NH4
+
 can stimulate nodulation in pea (Pisum sativum L.). This stimulation 

is not an artefact of hydroponic culture, but also occurs in a solid rooting medium such as 

sand (Gulden and Vessey, 1997). 

There is evidence that NH4
+
 has less of an inhibitory effect on legume-rhizobia symbioses 

than NO3
-
 (Streeter, 1988). In many legumes, the inhibitory effects of NO3

- 
on nodulation 

occur at much lower concentrations than NH4
+
, or, at similar concentrations of NO3

-
 and 
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NH4
+
, the inhibitory effects can be much more severe with NO3

- 
compared to NH4

+
 (Chen and 

Phillips, 1977; Rys and Phung, 1984; Silsbury et al., 1986; Svenning et al., 1996; Waterer and 

Vessey, 1993a,b). However, although less common, some studies indicate a more inhibitory 

effect of NH4
+
 on nodulation as compared to NO3

-
 (Guo et al., 1992). 

Vigue et al. (1977) and Imsande (1988) reported that urea in absence of nitrate in the nutrient 

solution do not inhibit nodulation. 
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The MELiSSA Project 

MELiSSA (Micro Ecological Life Support System Alternative) has been conceived as a 

micro-organisms and higher plants based ecosystem intended as a tool to gain understanding 

of the behaviour of artificial ecosystems, and for the development of the technology for a 

future regenerative life support system for long term manned space missions, e.g. a lunar base 

or a mission to Mars. 

The driving element of MELiSSA is the recovering of edible biomass from waste, carbon 

dioxide and minerals, using light as source of energy to promote biological photosynthesis. 

Based on the principle of an "aquatic" ecosystem, MELiSSA consists of 5 compartments 

colonised respectively by thermophilic anoxygenic bacteria, photoheterotrophic bacteria, 

nitrifying bacteria, photosynthetic bacteria, higher plants, and the crew (Fig. 1). 

 

Figure 1. MELiSSA ecosystem loop. 

 

Waste products and air pollutants are processed using the natural function of plants, which 

also provide food and contribute to water purification and oxygen for air revitalization. 

The aim of the technology developed is the understanding, modelling and controlling of every 

single unit, to obtain the closure of the ECLSS loop; consequently, many processes have to be 

coupled together. Regarding food sources, mainly higher plants, this level of characterization 

http://ecls.esa.int/ecls/?p=newmelissaloop
http://ecls.esa.int/ecls/?p=newmelissaloop
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is far from being complete and from allowing a good understanding and a proper modelling 

approach. 

The first task within MELiSSA project is the elaboration of a functional concept for a Food 

Production and Preparation System (FPPS) to be operational at the Moon (180 days) or Mars 

surface (360 days). During long term human space missions, such a FPPS should provide a 

significant share of the human diet as vegetable-derived products with high nutritional value 

and psychological acceptance for the crew. Four energy-and/or protein-rich crops with world-

wide usage have been chosen to initiate and validate the proposed approach (wheat, durum 

wheat, potato and soybean). 

The key issue is to be able to guarantee food production in a future FPPS, stable both in 

quantity and in quality. 

The latter requirement implies: the choice of a cultivar adaptable to the required growth 

conditions and with a suitable nutrient composition in agreement with dietary requirements; 

the subsequent detailed characterization of the produced food for validation or update of 

formerly published results (even obtained under different growth conditions); the 

characterization of the plant growing environment, which directly influences the final crop 

yield and the waste composition. 

Modelling of crop growth is useful for the characterisation and functional understanding of 

food production. The aim is to develop a model that will be based on plant metabolism and its 

regulation by environmental factors. 

The choice of the crops and crop cultivars is based primarily on their capacity to provide high 

yield and also to provide oxygen, recycle fresh water and consume carbon dioxide.  

Cultivar water and nutrients supply needs are to be considered a selection criterion of minor 

importance, since these are supposed to be optimal in alternative life support systems which 

are based on hydroponic cultures. 

The mission requirements (especially limitation on energy use) and scenario (environmental 

conditions) should be taken into account for the cultivar choice: maximal yield under the 

mission imposed environment would thus provide a starting point. In this respect, the 

MELiSSA crops are all C3 plants. 

C4 crops (and CAM plants) can attain a higher productivity through suppression of 

photorespiration by a sub-cellular concentration mechanism of the CO2 to be fixed by 

photosynthesis. This improvement however needs additional energy to function; hence these 

crops only thrive under warmer, high light conditions. C4 plants are also adapted to cope with 

less water than C3 plants. However high light and temperature are - from a closed 
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environment energy viewpoint - not the most efficient option for plant growth. Moreover, the 

productivity advantage of C4 over C3 plants disappears under atmospheres enriched with CO2 

at levels of 700 ppm or higher (Zhu et al., 2008). 

The selection of the 4 crops in the project (potato, soybean and 2 wheat species) is based on 

worldwide acceptance and relative ease of food production, while providing the largest share 

of nutritional needs. For wheat additional variability was introduced by selecting 2 species 

(durum wheat and bread wheat). Moreover, the combination of the 4 crops delivers an 

appropriate protein composition (Schaafsma, 2000). 

The crops considered for this study are not the most 'simple' living plants: potato has the 

particularity of tuber formation on subterranean stalks, while wheat and soybean are seed 

production crops where induction of flowering should be assured with the correct lighting 

conditions, to provide acceptable yields. 

At the end of the first phase of MELiSSA, preliminary protocols for reproducible growth and 

analysis of cultivars from 4 crops should be available, along with design plans plus a 

simulation model for a dedicated plant growth chamber intended for the continuation of this 

activity. In addition, a preliminary approach for mechanistic, metabolism-based modelling of 

plant growth will have been validated with the first obtained growth data. These results will 

provide a basis for the characterisation of crop cultivar performance under completely 

controlled conditions. 

Crop productivity data derived from growth trials under completely controlled conditions are 

lacking for most crop species, so an extensive characterisation under optimal production 

conditions is needed. Such datasets can be useful for predicting food, potable water and 

oxygen production rates and dynamics, which in a closed regenerative life support system will 

enable closure of the air, water and nutrient loops, based on the calculation of mass balances. 

The MELiSSA project is organised in four phases: Phase 1: Ground demonstration; Phase 2: 

Preliminary flight experiments; Phase 3: Space adaptation; Phase 4: Technology transfer. 

The experiments described in the following chapters are part of the first phase of the 

MELiSSA project. At first, a preliminary survey was carried out to select the 4 European 

soybean cultivars to be grown. Before the comparison among the selected cultivars on 

hydroponic cultivation, a germination test was performed on the seeds. Moreover, a 

comparison between hydroponic systems on a Canadian soybean cultivar was carried out. 
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Preliminary survey for the soybean cultivars selection 

Introduction 

A methodology for objective soybean cultivar selection was developed, based on the 

requirements advised by ESA (Tab. 2). It has to be said that many of these parameters are not 

available in the scientific literature and not provided by breeders, however they were 

considered in the view of future studies. Moreover, the selection method can be refined if 

needed, considering that it appears unlikely that the relevant criteria and their relative weight 

can be properly selected in early stage of the research. Among criteria initially proposed, the 

following ones were not considered: volatile organic compound (VOC) production and root 

exudates production (no instrumentation available); resistance to stress (plants during bench 

test should be cultivated under optimal conditions and should not be subjected to any stress); 

behaviour in extraterrestrial environments (no flight experiments were planned). 

 
Table 2. Crop cultivar selection criteria to be considered during the cultivation test according to ESA 

requirements. 

Criteria Major parameter(s) Associated parameter 

Crop cultivar stature 
Growth space  

Growth period length 

Handling (harvest) 

Crop senescence 

Cultivar harvest 

index 

Waste production 

Influence of plant growth system 
Waste degradability 

Cultivar nutritional 

composition 
Absence of anti-nutritional compounds Pro-nutritional compounds 

Cultivar edible part 

composition 

Processability  

Storage stability  

Palatability 

Possible conflict with levels of 

pro-nutritionals 

 

Storage time 

Water use efficiency 
Growth efficiency  

Atmosphere regeneration capacity 

High water turnover rate  

Regeneration rate  

O2 production 

Volatile organic 

compound (VOC) 

production 

Ethylene Growth inhibition 

Root exudate 

production 
Allelochemical inhibiting plant growth Interspecies compatibility 

Resistance to stress 
Abiotic stress  

Biotic stress 
System cleanness maintenance 

Pollination Self-pollinating cultivar requirements  

Propagation Seed to seed or vegetative Seed handling/storage 

Behaviour in 

extraterrestrial 

conditions 

Reduced gravity / reduced pressure Radiation influence 



 24 

Materials and methods 

According to the Official Journal of the European Union of 20.11.2008 (http://eur-

lex.europa.eu), the total number of soybean cultivars admitted by the EU is 297. 

Information about the main European companies and the most commercialized cultivars was 

found.  

Beside, a literature study was carried out to look for data about environmental needs and 

yields of soybean cultivars already tested in cultivation trials. However, most cultivation trials 

were carried out on genetically modified cultivars not admitted in EU, while only scarce 

information was available for a limited number of cultivars admitted in EU. 

Information about cultivars derived from different sources, often from different countries; 

cultivation trials were performed by different farmers and researchers in several places. As a 

consequence, available information about all the considered cultivars was very heterogeneous. 

Table 3 reports the number of parameters for which there are available data per each 

considered cultivar; cultivars whose information is available also in catalogues are starred (*); 

cultivars admitted and cultivated in more than one European country are reported in blue; 

cultivars not admitted in EU are reported in red. 

Conversely, table 4 summarizes, per each considered parameter, the number of cultivars for 

which there is available information. For some specific parameters, data are available only for 

a few cultivars. It is likely that these parameters will not be considered in the final choice of 

the candidate cultivars unless they are fundamental for the successful cultivation in 

ecologically closed systems. For some cultivars, data are available only for a few parameters. 

It is likely that these cultivars will not be considered in the final choice of the candidates 

unless they present specific parameters that make them particularly suitable for the successful 

cultivation in an environmental closed life support system. 

To select the 4 candidate cultivars of soybean with an objective method, an algorithm was 

created to attribute a score to the different cultivars. 

Starting from the availability of characteristics about the different cultivars, a priority factor 

(P) was assigned to each characteristic. This factor is based on the relevance of each feature 

for the choice. The highest value (P=3) was assigned to the characteristics considered very 

important (i.e. group, size, destination, antinutritional factors content, suitability to industrial 

uses, tolerance to abiotic and biotic stresses, yield, protein content). A factor P=2 was 

assigned to the feature having a medium relevance (e.g. branching, colour of hilum, 

sensitivity to lodging, stalk rating) and a factor P=1 was attributed to those characteristics less 

http://eur-lex.europa.eu/
http://eur-lex.europa.eu/
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important for the cultivar growth in a closed system (e.g. defoliation, insertion of first pods) 

(Tab. 4). 

According to available information reported above, each feature was characterized by a 

different measure unit that is expressed as continuous values or in defined classes, depending 

on data sources. In order to standardize the values attributed to each parameter, per each 

feature, also those data expressed with continuous values were summarized into classes. 

Moreover, considering that the number of classes is not equal per each parameter, the score 

attributed to different classes was expressed as a percentage factor (X). The highest level of 

satisfaction corresponds to X=1, while the absence of information corresponds to X=0 (Tab. 

5). 

A final score (S) was calculated per each cultivar, based on the available characteristics, the 

priority factor and the percentage factor, to classify them in decreasing order and to choose 

the four showing the highest values, according to the following formula: 

 

S =  (Pi * Xi) 
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Table 3. Number of parameters for which there is available information per each cultivar 

Cultivar # parameters Cultivar # parameters Cultivar # parameters 

Aires * 14 Landor 7 Sumatra * 10 

Albinos * 11 London * 5 Supra 9 

Alisa 5 Lory 4 Taira 5 

Alma ata 10 Lotus 12 Tea  11 

Anita 66 5 Magnum 4 Toliman 4 

Ascasubi * 12 Manuela 3 Tundra 9 

Askja * 10 Meli 5 Amphor 8 

Astafor 7 Merlin * 5 Dekabig * 11 

Atlantic * 14 Milor 3 Essor   6 

Avila 3 Neoplanta 9 Fukui * 8 

Bahia * 7 Nikir * 13 Giulietta * 13 

Batida 7 Nikita 3 Nikko 7 

Borneo * 14 Norma 3 Pr92b63 * 15 

Brillante * 12 Oac erin * 9 Safrana * 10 

Celior 5 Oac vision 12 Samurai 3 

Clara * 12 Orion 4 Sapporo 8 

Colorado * 12 Orlanda * 8 Sarema 4 

Condor * 14 Osaka 3 Sekoïa * 10 

Cresir * 13 Pacific * 13 Shama * 15 

Dekafast 5 Paoki 5 Sponsor 4 

Demetra * 13 Pedro * 13 Toyama 7 

Ecudor 7 Pr91b92 * 12 Zen 8 

Fasto * 7 Pr91m10 * 15 Aveline * - 

Fiume 4 Primus 8 Balkan - 

Fly 3 Pronto 6 Blanca - 

Fortezza 11 Protina * 9 Blancas * - 

Gallec * 5 Queen gt 450 5 Capnor - 

Goriziana 4 Quito 6 Casa - 

Hilario * 13 Regir * 13 Cataline * - 

Igor   3 Sakai 4 Mariana - 

Indian * 12 Sake 4 Mitsuko - 

Isidor   8 Salta   3 Proteinka - 

Katana 6 Santana * 9 Sigalia - 

Klaxon * 13 Sepia * 8 Vanessa * - 

Korada 9 Soledor   5 Venera - 

Lanca * 9 Splendor   3   
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Table 4. Priority factors (P) and number of cultivars for which information is available per each 

considered parameter. 

Characteristic # cv P 

Destination 30 3 

Group 107 3 

Level of antinutritional factors 6 3 

Protein content  57 3 

Sensitivity to Sclerotinia  40 3 

Size  78 3 

Suitability to industrial uses 6 3 

Tolerance to Diaporthe  19 3 

Tolerance to Phytophthora  33 3 

Tolerance to Rhizoctonia  7 3 

Tolerance to stresses  13 3 

Yield  70 3 

1000 seeds weight  73 3 

Branching 11 2 

Colour of Hilum 30 2 

Sensitivity to lodging  84 2 

Stalk rating 3 2 

Defoliation 19 1 

Dehiscence  16 1 

Insertion 1
st 

pods 41 1 
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Table 5. Classes and percentage factors (X) per each feature 

Characteristics Classes X 

Destination first crop-first and second crop 1 

 second crop 0.5 

Group (earliness) 000 to 00 1 

 0 to 0+ 0.75 

 1- to 1+ 0.5 

 1/2 to 2 0.25 

Level of antinutritional factors very low 1 

  low 0.5 

Protein content  very high (>44 %) 1 

 high (42-44 %) 0.75 

 medium (39.4-41.9 %) 0.5 

  low (38.8-39.3 %)  0.25 

Sensitivity to Sclerotinia  low 1 

  medium 0.66 

  high 0.33 

Size  low (68-78 cm) 1 

 low-medium (79-90 cm) 0.8 

 medium (91-102 cm) 0.6 

  medium-high (103-114 cm) 0.4 

  high (>114 cm) 0.2 

Suitability to industrial uses suitable 1 

Tolerance to Diaporthe  high-excellent (score 9-10/10) 1 

  medium-good (score 8/10) 0.5 

Tolerance to Phytophthora  high-excellent ( score 8-9/10) 1 

  medium-good 0.5 

Tolerance to Rhizoctonia  high 1 

  good 0.5 

Tolerance to stresses  very high ( score 10/10) 1 

  high (score 8-9/10) 0.66 

  medium (score 7/10) 0.33 

Yield  very high (>45 q/ha) 1 

 high (score 8-8.5/9; 39-45 q/ha) 0.66 

 good (score 7/8; 33-38 q/ha) 0.33 

1000 seeds weight  very high (>217 g) 1 

  high (201-217 g) 0.8 

  medium (183-200 g) 0.6 

  low (165-182 g) 0.4 

  very low (147-164 g) 0.2 

Branching high 1 

  medium-good 0.66 

  low-absent 0.33 

Colour of Hilum colourless 1 

  yellow-imperfect yellow 0.75 

  fair 0.75 

  slightly brown 0.5 

  brown 0.25 

Sensitivity to lodging  very low (7- 18 %) 1 

  low (19-30 %) 0.75 

  medium (31-43 %) 0.5 

  high(>43 %) 0.25 

Stalk rating excellent-strong 1 
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  good 0.5 

Defoliation optimal 1 

 very rapid 1 

  rapid 0.5 

Dehiscence resistant (score 10/10) 1 

  tolerant  1 

  medium high (score 9/10) 0.66 

  medium (7) 0.33 

Insertion 1
st
 pods high (15-19 cm) 1 

 medium (score 6/9 or 13-14 cm) 0.66 

 low (11 cm) 0.33 

 

 

 

 

Results 

The cultivars were classified in decreasing order, according to the calculated score, as reported in 

table 6. 

107 cultivars were selected among the total amount of cultivars admitted in EU, according to the 

criteria suggested by ESA and the information available. Unfortunately, although they were 

inserted in the Official Journal of the European Union and they were used in field trials in 2008, 

the seeds of some cultivars were not available. Consequently, we focused our attention on the 

first 10 cultivars, to evaluate their actual availability. The first 10 cultivars are commercialized 

by the companies illustrated in table 7. 
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Table 6. Cultivar classification based on their final score. 

Cultivar Score  Cultivar Score  Cultivar Score 

Pr91m10 30.75  Alma ata 15.57  Fiume 9.68 

Clara 24.18  Korada 15.57  Goriziana 9.68 

Regir 23.42  Supra 15.30  Astafor 9.65 

Atlantic 23.05  Askja 14.93  Pronto 9.61 

Cresir 22.37  Protina 14.91  Alisa 9.53 

Colorado 22.16  Tea  14.12  Meli 9.35 

Pr91b92 20.80  Nikko  13.83  Celior 9.21 

Aires 20.42  Sapporo  13.51  Magnum 9.00 

Condor 20.30  Fukui  13.48  Bahia  8.98 

Albinos 20.20  Batida 13.47  Toliman 8.50 

Klaxon 20.12  Gallec 13.29  Lory 8.48 

Indian  20.09  Orlanda 13.22  Sponsor 7.98 

Pr92b63 19.72  Santana 13.01  London 7.59 

Fortezza 19.38  Zen 12.72  Merlin 7.59 

Neoplanta 19.29  Amphor 12.62  Sakai 7.38 

Hilario 19.06  Katana 12.58  Avila 7.23 

Nikir 18.80  Dekabig 12.54  Dekafast 7.18 

Borneo  18.51  Toyama 12.30  Sake 6.88 

Pedro 18.46  Sekoïa 12.24  Orion 6.70 

Lotus 17.71  Tundra 11.88  Samurai 6.70 

Demetra 17.64  Quito  11.71  Fly 6.60 

Pacific 17.36  Oac erin 11.63  Norma 6.20 

Sumatra 17.34  Anita 66 11.48  Soledor 6.04 

Giulietta 17.33  Sepia 11.35  Igor 6.00 

Safrana 17.28  Essor 10.79  Milor 5.73 

Primus 16.92  Fasto 10.76  Salta  5.50 

Oac vision 16.66  Sarema  10.59  Splendor 5.49 

Brillante 16.40  Paoki  10.23  Manuela 5.45 

Isidor 16.38  Ecudor 9.91  Nikita 4.25 

Ascasubi 15.96  Taira 9.75  Osaka  4.24 

Lanca 15.59  Landor 9.73    

 
 
 

Table 7. Companies selling the first 10 selected cultivars. 

Cultivar Company 

Pr91m10 Pioneer 

Clara Panam Seeds 

Regir Pioneer 

Atlantic Venturoli 

Cresir Pioneer 

Colorado SIS 

Pr91b92 Pioneer 

Aires SIS 

Condor Agroservice 

Albinos RAGT Semences 
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Experiment I. Germination test 

 

Introduction 

Seed germination includes all the events beginning with water uptake by the dry quiescent seed 

and ending with the root apex protrusion out of the seed coat as the result of the elongation of the 

embryonic axis (Bewley, 1997). 

The tight control of seed germination is fundamental for both plant establishment (and 

consequent crop development) and derived food characteristics. 

The first point to be addressed is then the analysis of seed germination of the selected cultivars. 

 

Materials and methods 

Seeds of the first 4 selected cultivars („Atlantic‟, „Clara‟, „Pr91m10‟ and „Regir‟) were 

germinated according to the Fernandez-Orozco et al. (2008) germination method. 

Ten grams of seeds were soaked for 30 min with 50 ml of 0.07% sodium hypochlorite. Seeds 

were drained and washed with distilled water until neutral pH. Afterwards, seeds were soaked 

with 50 ml of distilled water for 5 h and 30 min and shaken every 30 min, then they were put in 

imbibed tissue paper, into an environmental chamber (20 °C, 99% relative humidity, darkness). 

According to International Rules for Seed Testing (1999) the seeds were tested into 4 

replications of 100 seeds. 

The germination percentage and the Mean Germination Time (MGT) were evaluated at the end 

of the test (8 days). The MGT was calculated by counting the number of germinated seeds every 

day and according to the following formula: 

 

MGT= Σ (n*g)/N 

Where: 

n = number of germinated seeds per day 

g = number of days from the begin of the test 

N = total number of germinated seeds 
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Results and discussion 

The MGT did not show any differences among the cultivars, with a value of 4.3 days on average 

(Tab. 8). The percentage of germination after 8 days in environmental chamber was high for all 

the cultivars but „Clara‟ (Tab. 9), probably due to the scarce quality of seeds received (if seeds 

are too old, the fats can go rancid and prevent the germination process). In this respect, a further 

germination test was performed on „Cresir‟ (the following cultivar in the selection list) (Table 8 

and 9). 

On the basis of the results obtained in the test, the cultivars chosen for the following hydroponic 

cultivation were „Atlantic‟, „Cresir‟, „Pr91m10‟ and „Regir‟. 

 
 

Table 8. Mean Germination Time (MGT) of the selected soybean cultivars (Mean±St.Err.). 

Cultivar MGT (days) 

Atlantic 4,2 ± 0,1 

Clara 4,4 ± 0,2 

Pr91m10 4,2 ± 0,1 

Regir 4,4 ± 0,3 

Cresir 4.2 ± 0.3 

 

 

 
Table 9. Percentage of the selected soybean cultivars seeds germinated at the end of germination test (8 days) 

(Mean±St.Err.). 

Cultivar % 

Atlantic 93.5 ± 2.8 

Clara 17.5 ± 2.3 

Pr91m10 88,7 ± 2.9 

Regir 94.3 ± 4.7 

Cresir 86.8 ± 1.3 
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Experiment II. Comparison among European cultivars on hydroponic 

cultivation 

 

Materials and methods 

Growth chamber and hydroponic system 

The 4 selected cultivars of soybean („Atlantic‟, „Cresir‟, „Pr91m10‟, „Regir‟) are indeterminate, 

early (groups 1, 0
+
, 0

+
 and 1, respectively) and photoperiod-independent. The experiment was 

carried out in a 16 m
2
 walk in growth chamber, equipped with a recirculating NFT system. Plants 

were grown in plastic double gullies, the density was 43 plants m
-2

 (Fig. 2). Sowing was 

performed in place, at 20 °C, in the darkness. Seeds were placed in a small plastic basket in the 

gully holes, on perlite, keeping the moisture of the substrate constant. Seeds were covered with 

white acrylic covers, for 4 days after planting, to shade seedlings and maintain high humidity. 

Three seeds were used per each hole and were thinned to one after the plantlet emergence 

(approximately 8 days after sowing). Plants were sealed in the gully holes using a two sided 

polyethylene film, with the white one outside, to reflect light. 

Fertigation was performed with one separate nutrient solution reservoir per each double gully, 

equipped with its own submerged pump, in order to work independently. Nutrient solution 

returned to the reservoir by gravity dependent flow. The nutrient solution was based on the 

standard Hoagland solution 1/2 strength (Hoagland and Arnon, 1950), modified by Wheeler et 

al. (2008), according to specific requirement of soybean. The recipe and the salt composition of 

nutrient solution are reported in tables 10 and 11, respectively. 

EC and pH were kept at 2.0 dS m
-1

 and 5.8, respectively and they were controlled manually and 

adjusted every two days by adding deionized water and/or fresh nutrient solution and nitric acid 

(65% concentration) respectively in the storage tanks. Water depletion was measured every two 

days and the volume of the nutrient solution was kept at a constant level. The nutrient solution 

was completely replaced once during the experiment, on 50 days after sowing (DAS). 

The experiment was carried out under controlled environmental conditions. Light was provided 

by High Intensity Discharge lamps (HID), working on hot vapour light emission. Particularly, 

High Pressure Sodium lamps (HPS, 400 W) were used. The emission spectrum of lamps is 

shown in Figure 3. 

A minimum PAR of 350 mol m
-2

s
-1

 was obtained at the canopy level, according to a day/night 

regime of 12/12 hours. Temperature regime was established at 26/20 °C (light/dark) and relative 

humidity (RH) was kept within the optimum range of 65-75% using a fog system (Fig. 2). Air 
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change and dehumidification was guaranteed by two air extractors. The experiment was carried 

out under ambient CO2 and O2 concentration and atmospheric pressure. 

 

Table 10. Nutrient solution recipe. 

 N P K Ca Mg S Fe Mn Zn Cu B Mo 

 mM µM 

Nutrient solution 7.5 0.5 3 2.5 1 1 60 7.4 0.96 1.04 7.13 0.01 

 

 

 

Table 11. Salt composition of nutrient solution. 

Salts 

Calcium nitrate  

Potassium nitrate 

Monopotassium phosphate 

Potassium sulphate 

Magnesium sulphate 

Iron chelate (Fe EDDHA) 

Boric acid 

Copper sulphate 

Zinc sulphate 

Manganese sulphate 

Ammonium molybdate 

 

 

Figure 2. Layout of the gullies and the climate control devices.  
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Figure 3. Typical emission spectrum of HPS lamps 

 

 

 

 

Sampling and Measurements 

Plant growth and yield 

The plant growth and development were measured at 7-day intervals. 

Growth analysis was based on non-destructive measurements of plant height, number of nodes 

and leaves. Plant leaf area (LA) was estimated by measuring leaf length and width, taking into 

account the specific leaf shape (Wiersma and Bailey, 1957). Measurements were carried out on 6 

plants per each cultivar. 

Plant tissue analysis (N, P, K, Ca, Mg, S, Cl) were performed on stems and leaves at the 

beginning of pods formation (48 DAS) and at the harvest stage. Analyses were carried out using 

a spectrophotometer Hach DR 2000, on the DM of 6 plants per cultivar. Organic nitrogen was 

determined by Kjeldahl Method. Spectrophotometer readings were performed on water extracts, 

according to the protocols provided by the factory for plant tissues (Hach, 1997). 

Plant dry weight (DM) (after oven-drying at 60°C until constant weight) and carbon partitioning 

(organ DM/ total DM) were measured separately for the different organs, at the beginning of 

pods formation (48 DAS) and at harvest. 

At harvest, the number of pods and seeds was measured on a unit area basis for the different 

cultivars compared. Proximate analyses on seeds (protein, fat, carbohydrates, fibre) were 

performed on 3 samples per cultivar. 

Data were analyzed with ANOVA and means were compared by the LSD test. 
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Water consumption, biomass accumulation rates and efficiency indexes 

Crop water consumption was calculated on the basis of the water balance of each double gully, 

by measuring the volume of the supplied and the drained nutrient solution, assuming the water 

uptake unaffected by evaporation (due to the plastic covering). At the end of the growing cycle, 

total and edible biomass accumulation rates, as g of biomass per m
-2

 d
-1 

were estimated, and the 

following efficiency indexes were calculated: Water Use Efficiency (WUE), expressed as g of 

edible DM per kg of nutrient solution; Radiation Use efficiency (RUE), as g of edible DM per 

mole of PAR; finally, as nitric acid was used in order to control the pH in the nutrient solution, 

we also estimated the Acid Use Efficiency (AUE), as g of edible DM per mmole of H
+
. 

Data were analyzed with ANOVA and means were compared by the LSD test. 
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Results and discussion 

Plant growth and yield 

The time from sowing to flowering varied among the cultivars: „Cresir‟ was the earliest (33 

days) compared to the others (40 days on average). In our experiment, harvest was staggered to 

simulate a situation in which there is no much space for storing the seeds and to create a more 

manageable approach (harvesting in a single day would result in a higher single-day labour for 

astronauts). Harvests began on 90 DAS in „Cresir‟, confirming its earliness compared to the 

other cultivars (94 days on average), also in terms of duration (24 vs 39 days on average) (Tab. 

12). 

As expected, the plant growth rate did not diminish at flowering because of the indeterminate 

stem growth (Fig.4a); „Cresir‟ was the highest, with more nodes and the highest maximum leaf 

area, compared to the other cultivars. „Pr91m10‟ was the shortest (Tab. 13, Fig 4a). According to 

its earliness „Cresir‟ showed the higher rate of leaf falling (Fig. 3b), indicating a trend of early 

leaf senescence; moreover, it shown an excessive internodes elongation, probably because this 

cultivar has a limited adaptability to the reduced light intensity adopted during the experiment. 

Plant fresh and dry weight were not influenced by the cultivar, both at the beginning of pods 

formation and at harvest ( fresh weight was 1012.6 and 1596.2 respectively, on average, data not 

shown) (Tab. 14 and 15); moreover, differences were not found at 48 DAS in the % DM content 

in the different plant organs (data not shown). Harvest data expressed on a unit area basis for 

each cultivar are shown in Table 15. The cultivars did not show any differences in terms of yield 

(532 g m
-2

 of seed at 14% of water content, on average), and neither the number of pods and 

seeds per square meter nor the number of seeds per pods were influenced by the cultivars. 

Plant biomass at harvest was lower than that obtained by Wheeler et al in 1999 and 2007 on 

soybean grown in hydroponic cultivation but probably the lighting conditions in Wheeler 

experiments were more favourable to the plant growth (500 to 800 mol m
-2

 s
-1

). DM 

partitioning in the different tissues varied during the cycle: in all the cultivars, at 48 DAS the 

most of DM was stored into leaves compared to the other plant portion; particularly, „Pr91m10‟ 

showed the highest DM percentage in leaves and the lowest into stem, compared to the other 

cultivars. At harvest, the higher values of DM were found in seeds in all cultivars; „Atlantic‟ 

accumulated more DM in inedible plant organs (stem-pods) and showed the lowest percentage 

on DM in seeds (harvest index, HI) (Fig. 5a and 5b); even though these values matched with the 

ones listed for hydroponically-grown soybean (Dougher and Bugbee, 1997) while HI was 

slightly higher (56%) for the other cultivars. 
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Concentrations of elements in stems and leaves on 48 DAS and at harvest are reported in Tables 

14 and 15. Plants did not have any nutrient deficiencies during the growth cycle, all the values of 

main nutrient being included into the range considered optimal for plant growth 

(www.omafra.gov.on.ca). Nitrogen content of steams and leaves decreased over time, indicating 

that these tissues were the main source of nitrogen for the pods. NO3/total N rate was always 

higher in stems than in leaves, confirming that the former were the plant portion that generally 

move the nitrate through the plant while the latter are the plant tissue where the nitrate is 

transformed in organic nitrogen. A little amount of chloride was found, maybe due to its 

presence as an impurity in the fertilizers used in the experiments (e.g. potassium nitrate). 

Proximate analysis on seeds is reported in Table 17. DM percentage varied among the cultivar, 

with „Cresir‟ having the highest value. Protein content was higher in „Pr91m10‟ and lower in 

„Regir‟, that also showed the highest fibre content. Concentration of fat was not affected by the 

cultivars. 

 

 

Table 12. Beginning of harvest (DAS) and growth cycle length of hydroponically-grown soybean cultivars . 

 Beginning of 

harvest 

(DAS) 

Growth 

cycle length 

(days)t 

Altantic 93 133 

Cresir 90 114 

Pr91m10 97 133 

Regir 93 114 

 

 

 

Table 13. Main growth parameters of tested soybean cultivars 

(Mean values; ns = not significant; * = significant at P≤0.05). (
[1] 

lsd). 

 
Plant height 

(cm) 

Maximum 

n. of leaves 

Number 

of nodes 

Maximum 

LA (cm
2
) 

Atlantic 96.2 b 24.7 a 12.5 a 1005 b 

Cresir 121.7 a 24.2 a 12.3 a 1237 a 

Pr91m10 57.8 c 16.3 b 11.0 b 854 b 

Regir 99.3 b 22.3 a 10.2 c 990 b 

     

Significance 
* 

(14.65
[1]

) 

* 

(5.89) 

* 

(0.55) 

* 

(189.7) 

http://www.omafra.gov.on.ca/
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Figure 4. Trend of plant height (A), number of trifoliate leaves (B) and leaf area (C) of tested soybean 

cultivars. 
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Table 14. Total plant dry weight and dry weight of different soybean tissues calculated on a per area basis  

(48 DAS). (Mean values; ns = not significant; * = significant at P≤0.05). 

 Total DM 

(g m
-2

) 

DM stem 

(g m
-2

) 

DM leaves 

(g m
-2

) 

DM pods 

(g m
-2

) 

DM flowers 

(g m
-2

) 

Atlantic 223.6 81.7 133.3 3.01 3.01 

Cresir 219.3 73.1 133.3 9.03 2.58 

Pr91m10 167.7 43.0 116.1 2.58 3.87 

Regir 172.0 64.5 103.2 3.44 3.87 
      

Significance n.s. n.s. n.s. n.s. n.s. 

 
 

 
 

Table 15. Total biomass and yield data calculated on a per area basis at harvest  

(Mean values; ns = not significant; * = significant at P≤0.05). 

 
Total DM 

(g m
-2

) 

Yield 14% 

water content 

(g m
-2

) 

n. pods m
-2

 n. seeds m
-2

 Seeds pod
-1

 

Atlantic 951.3 506 1323 2224 1.7 

Cresir 906.5 542 1247 2225 1.8 

Pr91m10 908.7 546 1253 2184 1.7 

Regir 912.5 535 1580 2928 1.8 

      

Significance n.s. n.s. n.s. n.s. n.s. 

 

 
 

 

Figure 5. Dry matter partitioning in different plant organs at the beginning of pods formation (A) and at 

harvest (B). Values in column with differing letters are significantly different (p < 0.05). 
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Table 16a. Chemical composition of soybean stems and leaves at the beginning of pods formation (48 DAS) 

and at harvest. 

 N (%)  P (%)  K (%)  NO3/Ntot 

 48 DAS harvest  48 DAS harvest  48 DAS harvest  48 DAS harvest 

Atlantic 3.7 2.4  0.4 0.3  2.9 2.4  3.7 4.3 

Cresir 3.4 1.9  0.4 0.2  2.6 2.4  4.6 6.2 

Pr91m10 3.7 2.6  0.4 0.3  2.5 1.9  6.8 7.7 

Regir 3.8 2.6  0.3 0.2  2.8 2.1  8.2 7.1 

            

stem 2.9 2.2  0.5 0.3  2.3 2.3  8.9 8.4 

leaves 4.3 2.5  0.3 0.2  3.0 2.1  2.7 4.2 

 

 

 

 
 

Table 16b. Chemical composition of soybean stems and leaves at the beginning of pods formation (48 DAS) 

and at harvest.  

 Ca (%)  Mg (%)  S (%)  Cl (%) 

 48 DAS harvest  48 DAS harvest  48 DAS harvest  48 DAS harvest 

Atlantic 0.8 1.4  0.4 0.5  0.2 0.2  0.4 0.9 

Cresir 0.9 1.3  0.5 0.5  0.2 0.2  0.4 1.0 

Pr91m10 0.8 0.7  0.4 0.5  0.2 0.2  0.3 0.8 

Regir 0.9 1.0  0.4 0.4  0.2 0.2  0.5 1.0 

            

stem 0.5 0.6  0.4 0.4  0.2 0.3  0.2 0.5 

leaves 1.2 1.6  0.5 0.5  0.1 0.2  0.5 1.3 

 

 

 

 

 

Table 17 Proximate composition of soybean seeds. 

(Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 DM (%) Protein (%) Fat (%) Fibre (%) 

Atlantic 88.1  b 33.8 b 22.1 27.5 b 

Cresir 89.1  a 34.1 b 22.1 27.4 b 

Pr91m10 88.1  b 35.6 a 21.2 27.6 b 

Regir 88.8 ab 32.0 c 22.5 31.5 a 

     

Significance 
* 

(0.75
[1]

) 

* 

(0.31) 

n.s. * 

(1.48) 
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Water consumption, biomass accumulation rates and efficiency indexes 

Nutrient solution uptake followed the trend of leaf area, increasing rapidly during early growth 

as the total evaporating surface of foliage increased, reaching the maximum after about 65 days 

after sowing (19 litres m
-2

 on average), then declining with age. The trend for„Pr91m10‟was 

slightly different, showing the maximum of water uptake about 5 days later than the other 

cultivars with a slow decrease when the leaf fall began (Fig. 6a). Total water consumption did 

not vary among the cultivars (348 litres m
-2

 on average) and was less of that reported by Wheeler 

et al. (1999). This difference was probably due to the lower total biomass production in our 

experiment (Fig 6b). EC control strategy was very efficient in keeping the target values, with an 

average EC of 2 in the different storage tanks after adjustments (Tab. 18); on the other hand the 

EC values before the adjustments indicated a preferential uptake of water respect to mineral 

elements. Solution pH tended to rise requiring acid for pH control (Tab. 18). This result is 

consistent with previous experimental evidence, indicating a preferential uptake of anions over 

cations from a nitrate-based nutrient solution throughout the growing cycle (Willumsen, 1980; 

Marschner, 1992). The acid requirements ranged from 15.1 mmol m
-2

 d
-1 in „Atlantic‟ to 11.5 

mmol m
-2

 d
-1 in „Pr91m10‟ (Tab. 18). The high water and acid use during early vegetative 

growth was consistent with results from other studies on hydroponically-grown soybean (Vessey 

et al., 1991; Grusak and Pezeshgi, 1994). 

Data on biomass accumulation rate and efficiency indexes are shown in Table 19. The dry mass 

accumulation rate in the seeds was 3.55 g m
-2

 d
-1

 on average, without any differences among the 

cultivars. Water use Efficiency (WUE) and Radiation Use efficiency (RUE) were not affected by 

the cultivars, with 1.35 g of seed per litre
 
of nutrient solution and 0.23 g of seed per mole of PAR 

respectively, on average. These values are comparable to those reported by Wheeler et al. (2003 

and 2008) and Dougher and Bugbee (1997) in similar experiments on hydroponically-grown 

soybean. Acid Use Efficiency (AUE) was 0.27 g of DM seeds per mol H
+
 on average, according 

to the values obtained by Wheeler et al. in 2003. 
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Figure 6. Trend of water use throughout the growing cycle (A) and cumulative water use at harvest (B). 

 

 

 

Table 18a. Average fluctuation of nutrient solution EC and pH (with their coefficients of variation) during 

the growing cycle. 

  EC before 

adjustment 
CV% 

EC after 

adjustment 

pH before 

adjustment 
CV% 

pH after 

adjustment 
CV% 

Atlantic 2.36±0.02 10.2 2.00 7.37±0.06 6.4 5.37±0.04 5.6 

Cresir 2.40±0.03 12.2 2.00 7.05±0.07 7.9 5.21±0.05 8.0 

Pr91m10 2.41±0.02 8.1 2.00 7.15±0.06 7.2 5.25±0.05 7.2 

Regir 2.38±0.03 10.8 2.00 7.25±0.05 6.2 5.24±0.05 7.7 

 

 
 

Table 18b. Acid and water use during the growing cycle. 

  
Nitric acid 

(mmol m
-2

 d
-1

) 

Water consumption 

(l m
-2

 d
-1

) 

Atlantic 15.1 2.7 

Cresir 13.2 2.7 

Pr91m10 11.5 2.9 

Regir 13.1 2.6 

 
 

 
Table 19. Biomass accumulation rate and efficiency indexes of selected soybean cultivars 

(Mean values; ns = not significant; * = significant at P≤0.05). 

 
Growth cycle 

(days) 

Total DM 

(g m
-2 

d
-1

) 

DM seeds
 

(g m
-2

 d
-1

) 

WUE seeds 

(g l
-1

) 

RUE seeds 

(g mol
-1

) 

AUE 

seeds 

(g mmol
-1

) 

Atlantic 133 7.2 3.2 1.2 0.2 0.2 

Cresir 114 8.0 4.0 1.5 0.3 0.3 

Pr91m10 133 6.8 3.6 1.3 0.2 0.3 

Regir 133 6.9 3.4 1.4 0.2 0.3 
       

Significance  n.s. n.s. n.s. n.s. n.s 
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Conclusions 

Biological life support systems where higher plants are used as component in order to provide 

useful resources for humans (by photosynthesis) have been demonstrated to have good prospects.  

The NFT system and the nutrient solution management proved to be efficient in growing healthy 

soybean plants, without any nutrient deficiency or other kind of stresses (e.g. anoxic condition 

for the roots). 

The use of nitrate as the only N source in our experiments (like in all the previous studies on 

cultivation of vegetable species for space missions) is reliable, but a great input of acid is needed 

to control the nutrient solution pH. We used nitric acid to maintain pH levels suitable for plant 

growth, with a substantial increase of the acid requirements during periods of heavy nutrient 

uptake. 

For example, if an entire hectare of wheat is grown hydroponically with nitrate as the sole N 

source, this would require about 25 L of concentrated nitric acid per day to control solution pH 

(assuming PAR levels ranging from 500-800 mol m
-2

 s
-1

) (Wheelet et al., 1999). This provides 

a strong argument for reducing the acid requirement in a CELSS, which could be achieved by 

using a certain percentage of NH4-N to maintain a better charge balance in the root zone 

(Marschner, 1995). 

In a CELLS, plant size is one of the most important characteristics to be considered, because 

available volume is often limited. „Cresir‟ was the earliest cultivar but it reached the greatest 

plant dimension; „Pr91m10 showed the smaller size compared to the other cultivars, thus being 

the most fit for the growing in a closed environment. Total inedible biomass is representative of 

the production of waste in a CELLS, so it is a further parameter to be taken into account; the 

tested cultivars did not show any differences in terms neither of inedible nor in edible biomass, 

even though „Atlantic‟ showed the higher rate between inedible/edible part. The proximate 

composition of seeds revealed a higher protein content in „Pr91m10‟. 

Water use and efficiency indexes did not vary among the cultivars, with values comparable to 

those obtained in similar experiments on hydroponically-grown soybean. 

In conclusion, among the 4 tested soybean cultivars, „Pr91m10‟ could be the most suitable for 

the cultivation in a CELLS, coupling  good yield and high resource use efficiency with short size 

and good quality of seeds (highest protein content). 
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Experiment III. Comparison between hydroponic systems on a Canadian 

cultivar. 
 

Introduction  

Urea is one of the most important nitrogen fertilizers used for vegetable production in the field 

(Vavrina and Obreza, 1993). It is seldom used in hydroponic cultivation for vegetable 

production, although a few successes have been reported in reducing nitrate accumulation in 

leafy vegetables by partial replacement of nitrate with urea in the nutrient solution (Gunes et al., 

1994). In recent years much attention has been focused on whether urea should be used as the 

sole hydroponic N source for vegetables, especially for the leafy vegetables (Luo et al., 1993; 

Khan et al., 1997; Zhu et al., 1997). Studies of the utilization of hydroponically applied urea by 

fruit vegetables have been limited at seedling stage (Kirkby and Mengel, 1967; Gerendas and 

Sattelmacher, 1997). According to their findings, urea was not a suitable hydroponic N source 

compared to nitrate. Similar results were also obtained in experiment with tomatoes at seedling 

stage (Ikeda and Tan, 1998). The response of fruit vegetables at different growth stages to the 

utilization of urea in hydroponic culture has received much less attention. 

In a life support system, urea is about 85% of the recycled nitrogen available for plant growth, 

(Wydeven and Golub, 1990). Water purification is particularly relevant in a regenerative system 

since liquid wastes (urine and wash water) will be the dominant waste streams. Estimates of 

urine production range from 1.3-2.1 L person
-1

 day
-1

, while gray water production (e.g., liquid 

waste from the shower, clothes washer, and dishwasher) is estimated in the range of 25 L person
-

1
 day

-1
 (Wydeven and Golub 1990). Combined, the mass of liquid wastes will be 50 times greater 

than inedible plant biomass and 1000 times greater than faecal dry matter. A biomass production 

system scaled to meet food requirements for one human would produce approximately 40 L of 

atmospheric condensate per day (Muhlestein et al., 1999). 

Results from plant growth studies indicated that the costs of storage or re-supply to provide plant 

nutrient requirements would be significant. Mackowiak et al. (1996) estimated that the mass of 

reagent-grade salts required to support plant growth would be equivalent to 30% of the mass of 

human food requirements. The high nutrient demand of the system appears to be partially a 

result of significantly higher accumulation of nutrients in hydroponically-grown plants relative to 

field-grown crops (McKeehen et al., 1996a). Decreasing nutrient levels in the hydroponic 

solutions may reduce excessive nutrient uptake, but may also increase the potential risk of 

nutrient deficiency. Even if plant uptake can be minimized, inorganic nutrient requirements will 

remain a significant mass flux in the system. 
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Urine recycling is desiderable because it represents a significant source of water and nitrogen 

within the system. Based on an average urea content of 7000 mg L
-1

 (Putnam, 1971), urine 

production would contain nearly 900 mmol of N per person per day. Average N use for crops 

such as wheat and potato used in previous experiments equals approximately 35 mmol per 

square meter per day (Mackowiak et al., 1996a). Assuming a crop growth area requirement of 40 

m
2
 per person, the estimated N flux in urine is over half of the plant N requirement in the system. 

The simplest approach for recycling the nitrogen and water within urine would be direct 

incorporation into the plant growth system. The major problems with direct recycling are 

potential phytotoxic effects of ammonium as N source (urea can be readily converted to 

ammonium by micro-organisms), and NaCl accumulation. NH4
+
 is also toxic to plants, but this 

may be not true if pH is rigorously controlled (Lahav et al., 1976). Physical-chemical methods 

for removal of NaCl from the urine prior to recycling, and microbiological conversion of 

ammonium to nitrate (nitrification) could eliminate potential phytotoxicity. (Garland et al., 1997)  

 

Results from our previous experiment confirmed the highest acid requirement for the hydroponic 

cultivation of crops for a CELLS, due to the preferential uptake of anions over cations from a 

nitrate-based nutrient solution. On the other hand the need of minimize the weight of fertilizers 

brought from Earth pushes forward the potential employment of urea as N source. The following 

experiment, aimed to assess the effects of urea as the sole nitrogen source on productive 

behaviour and N nutrition of soybean in hydroponic cultivation. Moreover as urea, compared to 

nitrate, does not inhibit the nodulation (Vigue et al., 1977; Imsande, 1988), the interaction 

between nitrogen source and inoculation with a Rhizobium strain was tested, both on a solid 

growth medium and NFT. 
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Materials and methods 

Growth chamber and hydroponic system 

The experiment was carried out at University of Guelph, Ontario, Canada... 

Soybean plants (Glycine max L. Merr. cultivar „OT9814‟) were grown in a walk in growth 

chamber using metallic gullies equipped with a recirculating hydroponic system. Growth 

conditions were kept constant during the cycle: the temperature regime was 26/18 °C (light/dark) 

and the relative humidity (RH) was kept within the range of 70-85%. Light was provided by 

fluorescent lamps setting photosynthetic active radiation (PAR) at 750 mol cm
-2 

s
-1

 according to 

a day/night regime of 16/8 hours. Lamps could be moved towards above in order to keep the 

PAR constant at the canopy level during the cycle. Plant density was 50 plants m
-2

. 

The influences of the nutrient solution, the inoculation with Bradyrhizobium japonicum and the 

growing media on plant growth and yield were tested. 

Two different nutrient solutions were compared, differing in the source of nitrogen. The first one 

(W) was based on the standard Hoagland solution 1/2 strength (Hoagland and Arnon, 1950), 

modified by Wheeler et al. (2008), according to specific requirement of soybean and containing 

nitrogen as nitrate. The second one (U) was obtained from the first, by replacing the nitrate with 

urea (Tab. 20); consequently its salt composition was slightly different, in order to obtain the 

same concentration of the nutrients; moreover, in the solution containing urea, the concentration 

of sulphur and molybdenum were slightly increased, in order to support the bacteria infection 

(Tab. 20). In both the nutrient solutions, the 2(N-Morpholino)ethanesulfonic acid (MES) was 

added as a buffering agent, in order to stabilize the solutions pH (Tab. 20). Since urea hardly 

dissociate in a water solution (in absence of specific enzymes), causing a delay in plant growth at 

least in the early developmental stage, the effect of inoculation with a Bradirhizobium japonicum 

strain BUS-2 was also tested 

Concerning the substrates, previous studies about hydroponic cultivation of crops for space 

explorations have been usually performed using the NFT system. In this experiment, we 

compared the NFT system with the cultivation in rockwool (Grodan
©
) on inoculated plants, to 

evaluate their effects on plant development and plant-bacterium interactions (as Rhizobium 

usually lives in the soil). 

Resuming, the following 6 treatments were tested, in a two factor incomplete randomized  block 

design with 3 replicates: 

o inoculated plant grown in NFT with Wheeler solution (INW); 

o inoculated plant grown in NFT with Urea solution (INU); 

o not inoculated plant grown in NFT with Wheeler solution (NNW); 
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o not inoculated plant grown in NFT with Urea solution (NNU); 

o inoculated plant grown in rockwool with Wheeler solution (IRW); 

o inoculated plant grown in rockwool with Urea solution (IRU). 

Sowing was preceded by a sterilization (Somasegaran and Hoben, 1994) and inoculation 

procedure (Vincent, 1970): seeds were rinsed in 95% alcohol for 20 seconds to remove waxy 

materials, and then they were completely immersed in a sodium hypochlorite solution (2.5%) 

and gently swirled to bring the seeds and the disinfectant in contact. After 5 minutes, sodium 

hypochlorite was drained off and the seeds were rinsed 6 times in sterile H2O. All the seeds were 

incubated overnight in sterile H2O at room temperature in darkness. Inoculation was performed 

on a part of seeds using 200 ml of deionised water containing 0.5 g of peat carrier, and then all 

seeds were placed into the Petri dishes, with agar as growing media, at 27 °C in the darkness. 

After two days, the seedlings to be grown in NFT were moved to autoclaved glass tubes, 

wrapped in aluminium foil to protect roots from light, with seedling agar as growing media (Tab. 

22). The plants to be grown in rockwool were directly transplanted in rockwool cubes and 

irrigated constantly with nutrient solution containing the same salts of the seedling agar. A 12 h 

photoperiod was provided until 1 week after germination, when the plantlets were moved to the 

growth chamber. Before the transplant, the roots of inoculated seedlings were infected again 

dipping them in 200 ml of deionised water containing 10% sucrose and 0.5 of peat carrier. On 

not-inoculated plants only a 10% sugar solution was used on roots. 

Gullies were sealed using a two sided polyethylene film, with the black inside, to reduce the 

lighting to the roots, and the white one outside, to reflect light. 

Fertigation was performed with one separate nutrient solution reservoir per each treatment. Each 

reservoir was equipped with its own submerged pump, in order to work independently. Nutrient 

solution returned to the reservoir by gravity dependent flow. 

EC and pH target were 1.2±0.1 dS m
-1

 and 5.8±0.2, respectively and they were controlled 

manually and adjusted every day by adding HNO3 0.5M (Wheeler solution) or H3PO4 0.5M 

(Urea solution) or KOH 0.5M respectively in the storage tanks. At the beginning of the 

experiment, reservoirs were filled with nutrient solution (Tab.20), while the volume of the 

nutrient solution was kept at a constant level by adding deionised water and stock solution (Table 

20). Water depletion in each reservoir was measured twice a week. 
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Table 20. Wheeler and Urea nutrient solutions recipes. 

 N P K Ca Mg S Fe Mn Zn Cu B Mo MES 

Wheeler solution mM µM mM 

Nutrient solution 7.5 0.5 3 2.5 1 1 60 7.4 0.96 1.04 7.13 0.01 2 

Stock solution 70 10 56 12 10 10 134 96 12.5 13.5 93 0.13 - 

Urea solution mM µM mM 

Nutrient solution 12 0.25 4.3 3 1 3 54 7.4 0.96 1.04 7.13 0.05 2 

Stock solution 70 10 56 12 10 31 134 96 12.5 13.5 93 0.65 - 

 

 

 

Table 21. Salt composition of Wheeler and Urea nutrient solutions  

Urea solution Wheeler solution 

Urea  

Calcium chloride Calcium nitrate  

Monopotassium phosphate Monopotassium phosphate 

Dipotassium phosphate  

Magnesium sulphate Magnesium sulphate 

Potassium sulphate Potassium nitrate 
Iron chelate (Fe-EDTA-7% Fe) Iron chelate (Fe-EDTA-7% Fe) 

Boric acid  Boric acid 

Manganese chloride Manganese chloride 
Zinc sulphate Zinc sulphate 

Copper sulphate  Copper sulphate 
Ammonium molybdate Ammonium molybdate 

 

 

 

Table 22. Seedling agar recipe 

 g l
-1

 

Agar 10.0 

CaHPO4 1.0 

K2HPO4 0.2 

MgSO4 7H2O 0.2 

NaCl 0.2 

FeCl 0.1 
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Sampling and Measurements 

Plant growth and yield 

The plant growth and development were measured at 7-day intervals until the beginning of pods 

filling, and then were measured at 21-day intervals. 

Growth analysis was based on non-destructive measurements of plant height, number of nodes 

and leaves carried out on 6 plants per treatment. 

Additionally, the following growth indexes were calculated on 30, 52 and 80 days after sowing 

(DAS) on the basis of the collected data: Specific Leaf Area (SLA), as the Leaf Area/ DM of 

leaves ratio; Leaf Area Ratio (LAR), as the Leaf Area/total DM ratio, to assess how the plant‟s 

total stock of organic material is divided between photosynthetic organs (leaves) and the rest of 

plant parts. 

The chlorophyll content was estimated using a colorimetric method (CCM-200 chlorophyll 

meter, Opti-Sciences, Inc.), on the middle leaflet of the second and third fully expanded trifoliate 

leaves from the top of 2 plants per each treatment replicate (2 measurements per leaf). 

Destructive measurements (height and diameter of stem, number of leaves, fresh and dry weight) 

were performed on 30, 52 and 80 DAS (at the full vegetative growth, at the beginning of pods 

formation and at the beginning of pods filling). Plant LA was measured by using a leaf area 

meter (LI-3100, Li-Cor, Lincoln, USA). Fresh weight, dry weight (after oven-drying at 50°C), % 

of DM and DM partitioning were measured; plant tissue analysis was performed on 30, 52 and 

80 DAS leaves, to determine the main nutrient concentration (N, P, K, Ca, Mg), according to the 

AOAC 990.03 and AOAC 985.01 protocols (AOAC, 1990). Analyses were carried out on the 

DM of 3 plants per each combination nutrient solution x growth medium x inoculation. 

At harvest, yield was measured on a unit area basis for the different treatments compared and the 

harvest index (HI) was calculated by dividing the edible DM by the total DM in order to evaluate 

the plant yield performances. Moreover, 100 seeds weight (14% water content) was calculated. 

Chemical analysis (N, P, K, Ca, Mg) on seeds was performed according to the AOAC protocols 

(AOAC, 1990): nitrogen was detected by Kjeldahl method; the other elements were determined 

using inductively coupled argon plasma (ICAP) analysis. Proximate analysis on seeds (protein, 

fat, carbohydrates) was made following standard AOAC (1990) procedures and included ash by 

muffle furnace, protein by total Kjeldahl N (6.25 as conversion factor for protein), fibre by 

digestion and gravimetric technique, fat by acid hydrolysis and ether extraction, and 

carbohydrate by difference. All the analyses were carried out on 3 seed samples per each 

treatment. 

Data were analyzed with ANOVA and means were compared by the LSD test. 
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Nodules 

Trend of number and dry weight of nodules per plant was determined on 30 and 52 DAS and at 

harvest (122 DAS). ANOVA was performed on number and dry weight of nodules per plant and 

on the mean nodule dry weight on 52 DAS; means were compared by the LSD test. 

 

Gas exchanges 

Gas exchange measurements were performed using an open flow gas exchange system (Li-6400; 

Licor, Lincoln, NB, USA) on the middle leaflet of the second and third fully expanded trifoliate 

leaves from the top of 3 plants per each treatment, on 33, 47 and 66 DAS. Net photosynthesis 

rate (NP), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci), 

and leaf temperature (Tleaf) were determined at CO2 concentration of 400 μmol mol
−1

 and 700 

μmol m
−2

 s
−1

 of PAR. 

Data were analyzed with ANOVA and means were compared by the LSD test. 

 

Water consumption and biomass efficiency indexes 

Crop water consumption was calculated throughout the growth cycle by measuring the volume 

of the supplied and the drained nutrient solution, assuming the water uptake unaffected by 

evaporation (due to the plastic covering). At the end of the growing cycle, the cumulative water 

consumption was calculated and the following efficiency indexes were estimated: Water Use 

Efficiency (WUE), expressed as g of edible DM per kg of nutrient solution; Radiation Use 

Efficiency (RUE), by dividing edible productivities by daily PAR; moreover, considering that 

the control of pH was performed by adding acid or base during the whole experiment, and as the 

acid (and base) budget for a hydroponic cultivation has to be considered for space missions, Acid 

Use Efficiency (AUE), as g of edible DM per mmole of H
+
, and Base Use Efficiency (BUE), as 

g of edible DM per mmole of OH
-
, were estimated.  

Data were analyzed with ANOVA and means were compared by the LSD test. 
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Results 

Plant growth and yield 

A comparison of main growth parameters is shown in Table 23 and Figure 7. The highest values 

of stem length and diameter, maximum number of leaves (before leaf fall) and maximum leaf 

area (before leaf fall) occurred with plants grown in the nutrient solution containing nitrate (W). 

Nutrient solution containing urea (U) decreased all the biometric parameters; these plants also 

were the smallest in terms of total dry weight (Tab. 26-28). Thus, stem lengths in U plants were 

probably shorter because of slightly delayed development. 

Wheeler solution increased the number of leaves, even though the rockwool enhanced the 

number of leaves in both the nutrient solutions; values obtained in inoculated plants grown in 

rockwool fed urea (IRU) were comparable to those obtained in NFT fed nitrate (both inoculated 

(INW) and not inoculated (NNW) (Tab. 23). 

Growth indexes (SLA, LAR), calculated on the basis of values on 30, 52 and 80 DAS, varied 

during the growth cycle and were influenced by the nutrient solution, while were unaffected by 

the other treatments (Tab. 24). 

Considering the SLA, during the growing cycle, as the plants become bigger and heavier their 

leaves become larger, and a necessary part of the architecture of these larger leaves is 

represented by the midrib and the main veins, whose presence naturally lowers the leaf area per 

unit leaf dry weight. Also, individual leaves, once they have ceased to expand, tend to become 

gradually heavier, and this reinforces the fall in SLA (Evans, 1972). 

On 30 and 52 days from sowing, SLA was higher in W compared to U, but there were no 

differences on 80 DAS. 

LAR decreased during the plant growth, depending on SLA and on the proportion of dry matter 

going to leaves during the lifecycle of the plant (Evans, 1972). The index was significantly 

affected by nutrient solution on 30 DAS showing the highest values with W; an interaction was 

found on 52 DAS, when the lowest LAR values were recorded in inoculated plants grown in urea 

and plants grown in NFT supply with nitrate, with no differences among the treatments; the 

highest values were recorded in NNU and IRW (Fig. 8). All the differences disappeared during 

the following stages of growth. 

The estimated chlorophyll content (measured at 22, 40 and 54 DAS) showed an interaction only 

in the first measurement, when NNU had the lowest value (18.4 CCI units), while there were no 

differences among the other treatments (20.2 CCI units on average) (Fig.9). In the following 

measurements, the difference disappeared (Tab. 25). This result seems to indicate a difficulty of 

not inoculated plants in uptaking nitrogen from urea during the early growth. 
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Data about the dry mass are shown in tables 26 to 28. Considering the leaves, the dry weight 

decreased during the pod-filling (80 DAS, Tab. 28). On 30 days from sowing, plants supply with 

nitrate accumulated more biomass than the ones fed with urea, while the percentage of dry mass 

was always higher in plant U. Moreover, rockwool increased the plant biomass compared to the 

NFT (Tab. 26). On 52 days after sowing, nutrient solution and other treatments still had an 

influence on the measured parameters: considering DM content in pods, Wheeler nutrient 

solution had a negative effect in the inoculated plants compared to not inoculated ones, while in 

Urea plants there were no differences between inoculated and not inoculated. (Fig 10a). 

Moreover, nutrient solution did not have any effect on inoculated plants , while the growth in a 

substrate significantly increased the DM content in pods when plants are fed urea and showed a 

trend of higher values in W plants (Fig 10a). The total DM percentage also showed an interaction 

among the treatments: U plants tended to reach the highest values compared to W ones, 

especially when inoculated and grown in NFT (Fig. 10b). These differences were particularly 

evident observing the DM percentage in leaves and pods (Fig.10c, d). Data reported seemed to 

indicate that Wheeler solution is able to feed plants in a better way than Urea solution that 

produces plants with reduced water content. NFT in association with urea and inoculation does 

not allow the bacteria using efficiently the urea, while the rockwool enhances the dry matter 

accumulation in plants fed urea and seemed to reduce the inhibitory effect of nitrate on 

nodulation in plants supplied with Wheeler solution. Besides, rockwool in general seemed to 

anticipate plant development, allocating more biomass in pods compared to the other treatments. 

On 80 DAS Wheeler solution still recorded higher values of biomass; there were no differences 

between the nutrient solutions in terms of total DM percentage even though U showed higher 

values of DM percentage in pods and seeds (Tab. 28); dry matter content in stem and leaves 

were similar between the nutrient solutions, probably because the senescence of these plant 

organs began, as the photosynthetates were moving towards pods and seeds. The other 

treatments did not have any effects in this time of growing cycle (tab 28), indicating that the 

rockwool earliness in biomass accumulation in pods was made up from the other treatments. 

Considering the DM partitioning, as expected (Evans, 1972) the fraction of DM in leaves 

decreased with plant age, because as the dry weight increased, the proportion of dry matter going 

to new leaves steadily declines throughout the life of the plant. Moreover, on 30 DAS, U had 

higher DM percentage in leaves and W in the stem (Tab. 29), while the other treatments did not 

show any differences; in the following stages of growth, this trend was kept, even though an 

interaction was found in pods on 52 DAS (Fig 11), when the values were similar to the DM 

content in pods (see Fig. 10a). These results seemed to indicate again an early in biomass 
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allocation in pods when plants are grown in rockwool. In addition, on 80 DAS, IR treatment 

showed higher DM percentage in seeds compared to the others, and IN showed the lowest (Tab. 

29), even though the differences between NN and IN disappeared at harvest (Tab 30). 

Flowering started on 35 DAS in all treatments; the entire growth chamber was harvested in a 

single day, on 122 DAS. Yield was affected by all the treatments, particularly W produced more 

than U and plants in rockwool had the highest value; the weight of 100 seeds did not vary among 

the treatments (25.4 g on average) and was higher than that obtained from cultivation trial in 

open field (Tab 30). The number of seeds per pod did not vary among the treatments (2.4 seeds 

pods
-1

), so it‟s thanks to the number of pods that yield was different (data not shown). The 

Harvest Index (HI) was lower in U plants compared to W; the growth in rockwool increased the 

HI compared to the growth in NFT. Nevertheless, the results compared favourably to those 

obtained in previous experiments on hydroponically-grown soybean (Wheeler et al. 2003 and 

2008). 

Results from the growth indexes (see Tab. 24) indicate a delay in leaf biomass production during 

the early phases of growth; this gap seemed to be only partially closed in the following 

developmental stages, because both total biomass production and yield were affected.  

A possible explanation of increased seed yield for nitrate-fertilized soybeans may be that such 

plants received a better start, since nodules are not visible on soybean seedlings until about 9 

days after planting and N2 fixation under favourable moisture and temperature begins at about 14 

days (Ham et al., 1975). 

Compositional data about leaves showed that all the plants did not have any nutrient deficiencies 

during the growth cycle, all the values of main nutrient being higher than the critical 

concentration estimated for soybean (www.omafra.gov.on.ca) (Tab. 31a,b). The nitrogen 

accumulation in leaves over time showed a pattern similar to that observed for accumulation of 

dry weight, declining during pod-filling, indicating that leaves were sources of N for the pods 

(Tab. 31a). 

During vegetative growth plants supplied with urea had less nitrogen in leaves compared to W 

but the difference diminished with plant age: on 52 DAS, only plants fed urea grown in rockwool 

had less nitrogen in leaves compared to plants grown in NFT (Fig.12a) and on 80 DAS U plants 

showed higher nitrogen content in leaves when grown in NFT (Fig.12b). On this last sampling, 

IR plants fed urea continued to have less nitrogen in leaves, comparable to the values obtained 

from W plants, indicating a higher leaf senescence, according to the data on DM partitioning (see 

Tab. 29). (Tab. 31a and Fig. 12b). Plants fed nitrate did not show any statistical differences when 

inoculated. These results confirmed that urea is not able to provide a high amount of nitrogen at 

http://www.omafra.gov.on.ca/
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least in the early stages of plant growth, according to the estimated chlorophyll content in leaves 

(see Tab. 25 and Fig. 9). The higher reduction of nitrogen content in plants supplied with 

Wheeler solution showed a greater mobilization (probably also due to a greater availability) 

towards the reproductive organs. 

Considering the other mineral nutrients in leaves, phosphorous content on 30 DAS was higher in 

U not inoculated plants and the lowest values were recorded in W plants (Fig. 13a). The reduced 

P content in IN plants was also observed on 52 DAS, even though there were no differences 

among all the treatments on 80 DAS (Tab. 31a). Calcium content on 30 DAS was the lowest in 

IRU plants, but on the other sampling dates the differences were found only between the nutrient 

solutions, with highest values in W. Magnesium content on 30 DAS was lower in U plants, 

particularly in inoculated ones; in the following samplings only the nutrient solution had an 

effect, with lower values in Urea. The higher rates of Mg and Ca intake in the solution 

containing NO3 as the sole N source can be attributed to reduced competition in the absorption 

process.  

Analyses on seeds showed higher nutrient content compared to reference values 

(www.omafra.gov.on.ca) but compared favorably with those obtained by Wheeler et al. in 

several experiments. 

Nitrogen content in seeds (and consequently the protein content) was higher in plants U (that 

also showed the lowest phosphorous and potassium content) and in plants grown in NFT(Tab. 

32). The highest nitrogen content could be explained considering the low yield obtained from 

these treatments, so the total nitrogen had to move towards a reduced number of seeds. 

Moreover, plants fed nitrate had a higher total carbohydrates content compared to U plants (Tab. 

32), that showed a lower fat content when plants were grown in NFT, while plants in rockwool 

showed values of fat percentage comparable with W plants (Fig. 15). 
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Figure 7. Trend of soybean plant height, number of trifoliate leaves and leaf area throughout the growing 

cycle for the different treatments. 
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Table 23. Main biometric characteristics of soybean plants in response to nutrient solution, growth medium 

and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) ([1] lsd). 

  Plant height 

(cm) 

Number 

of nodes 

Stem diameter 

(mm) 

Maximum 

number of 

leaves 

Maximum 

leaf area 

(cm
2
) 

LA/leaf 

(cm
2
) 

Nutrient solution       

U 98.3 b 13.4 b 3.2 b 22.0 b 1242 b 56.5 b 

W 118.0 a 16.2 a 4.1 a 43.6 a 3837 a 88.0 a 

Treatments       

NN 106.8 15.5 3.4 28.2 b 1629 b 57.8 b 

IN 108.4 14.8 3.8 27.8 b 1726 b 62.1 b 

IR 109.2 14.2 3.8 42.3 a 3715 a 87.8 a 

Significance       

Nutrient solution * 

 

* 

 

* 

 

* 

 

* 

 

* 

 

Treatments n.s. n.s. n.s. * 

(9.47
[1]

) 

* 

(552.1) 

* 

(16.8) 

Interaction n.s. n.s. n.s. * 

(13.4) 

n.s. n.s. 

 

 

 

 

 
Table 24. Growth indexes of soybean plants calculated on 30, 52 and 80 DAS in response to nutrient solution, 

growth medium and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 30 DAS  52 DAS  80 DAS 

 LAR 

(cm
2
 g

-1
) 

SLA 

(cm
2
 g

-1
) 

 
LAR 

(cm
2
 g

-1
) 

SLA 

(cm
2
 g

-1
) 

 
LAR 

(cm
2
 g

-1
) 

SLA 

(cm
2
 g

-1
) 

Nutrient solution         

U    180.6 b    229.6 b  163.8    247.5 b  69.2 213.0 

W    223.0 a    292.7 a  176.8    320.6 a  61.0 235.0 

Treatments         

NN 206.3 269.0  178.8 303.0  67.3 215.7 

IN 206.5 267.7  154.2 255.5  63.5 206.7 

IR 192.5 246.8  177.9 293.7  64.7 249.7 

Significance         

Nutrient solution * *  n.s. *  n.s. n.s. 

Treatments n.s. n.s.  n.s. n.s.  n.s. n.s. 

Interaction n.s. n.s.  * 

(30.87
[1]) 

n.s.  n.s. n.s. 
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Figure 8. Nutrient solution x growth medium x inoculation interaction on LAR on 52 DAS. 

 

 

 

Table 25. Estimated chlorophyll content in soybean leaves on 22, 40 and 54 DAS in response to nutrient 

solution, growth medium and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 22 DAS 40 DAS 54 DAS 

Nutrient solution     

U 18.8 24.7 36.2 

W 20.8 25.2 41.0 

Treatments    

NN 18.4 25.2 38.0 

IN 20.4 25.1 37.8 

IR 20.7 24.5 40.1 

Significance    

Nutrient solution * n.s. n.s. 

Treatments * 

(1.8[1]
) 

n.s. n.s. 

Interaction * 

(2.76) 

n.s. n.s. 
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Figure 9. Nutrient solution x growth medium x inoculation interaction on chlorophyll content on 22 DAS. 

 

 
Table 26. Total DM and DM of different organs on 30 DAS of soybean plants in response to nutrient solution, 

growth medium and inoculation (values per plant) (Mean values; ns = not significant; * = significant at 

P≤0.05) (
[1] 

lsd). 

 
Total DM 

(g) 

DM 

stem (g) 

DM leaves 

(g) 

Total DM 

(g 100 g
-1 

FW) 

DM stem 

(g 100 g
-1 

FW) 

DM leaves 

(g 100 g
-1 

FW) 

Nutrient solution       

U 2.2 b 0.5 b 1.7 b     16.9 a    14.5 a    17.9 a 

W 4.0 a 1.0 a 3.1 a     14.0 b    11.6 b    15.0 b 

Treatments       

NN 2.7 b 0.6 b 2.0 b 15.6 13.1 16.5 

IN 2.8 b 0.7 b 2.1 b 15.4 12.9 16.4 

IR 3.9 a 0.9 a 3.1 a 15.4 13.1 16.4 

Significance       

Nutrient solution * * * * * * 

Treatments * 

(0.76
[1]

) 

* 

(0.20) 

* 

(0.58) 

n.s. n.s. n.s. 

Interaction n.s. n.s. n.s. n.s. n.s. n.s. 
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Figure 10. Nutrient solution x growth medium x inoculation interaction on pods DM (A) total DM (B), DM 

percentage in leaves (C) and pods (D) on 52 DAS. 
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Table 27. Total DM and DM of different organs on 52 DAS of soybean plants in response to nutrient solution, growth medium and inoculation (values per plant) 

(Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 DM total 

(g) 

DM stem 

(g) 

DM leaves 

(g) 

DM pods 

(g) 

Total DM 

(g 100 g
-1 

FW) 

DM stem 

(g 100 g
-1 

FW) 

DM leaves 

(g 100 g
-1 

FW) 

DM pods 

(g 100 g
-1 

FW) 

Nutrient solution         

U  10.3 b   3.3 b   6.7 b 0.29    18.5 a 16.4    20.2 a    17.3 a 

W 25.5 a 10.4 a 15.0 a 0.20    13.5 b 14.8    13.4 b      8.9 b 

Treatments         

NN 17.6 6.9 10.6    0.23 b 15.5 15.7 16.0 11.9 

IN 13.4 5.3 8.1    0.02 b 16.5 14.5 18.3 12.0 

IR 22.7 8.3 13.9    0.49 a 15.9 16.5 16.0 15.3 

Significance         

Nutrient solution * * * n.s. * n.s. * * 

Treatments n.s. n.s. n.s. * 

(0.21
[1]

) 

n.s. n.s. n.s. n.s. 

Interaction n.s. n.s. n.s. * 

(0.31) 

* 

(3.85) 

n.s. * 

(5.27) 

* 

(7.0) 

 

 

 

Table 28. Total DM and DM of different organs on 80 DAS of soybean plants in response to nutrient solution, growth media and inoculation (values per plant). 

(Mean values; ns = not significant; * = significant at P≤0.05). 

 DM 

Total 

(g) 

DM 

stem 

(g) 

DM 

leaves 

(g) 

DM 

pods 

(g) 

DM seeds 

(g) 

DM total 

(g 100 g
-1 

FW) 

DM stem 

(g 100 g
-1 

FW) 

DM leaves 

(g 100 g
-1 

FW) 

DM pods 

(g 100 g
-1 

FW) 

DM seeds 

(g 100 g
-1 

FW) 

Nutrient solution           

U 14.4 b 3.8 b 4.8 b   2.7 b 3.2 15.8 19.6 18.7    17.7 a    27.2 a 

W 47.1 a 18.4 a 12.9 a 10.4 a 5.4 14.7 17.9 17.2    14.3 b    17.7 b 

Treatments           

NN  28.7  10.4   8.6    5.9 3.8 15.8 19.5 19.5 16.0 20.8 

IN  29.9  11.5   9.3    6.1 3.0 14.5 17.9 14.9 15.7 21.7 

IR  33.7  11.5   8.6    7.6 6.1 15.5 18.9 19.6 16.2 24.9 

Significance           

Nutrient solution * * * * n.s. n.s. n.s. n.s. * * 

Treatments n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Interaction n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 



Table 29. DM partitioning in the different organs on 30, 52 and 80 DAS in response to nutrient solution, 

growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 30 DAS  52 DAS  80 DAS 

 stem leaves  stem leaves pods  stem leaves pods seeds 

Nutrient solution            

U     21.3 b     78.7 a  31.7 b 66.4 a 1.9  34.8 b 44.2 a 21.0 20.7 a 

W     23.8 a     76.2 b  43.6 a 56.0 b 0.4  47.0 a 29.6 b 23.4 11.1 b 

Treatments            

NN 23.1 76.9   39.1  60.4 0.7   37.9 38.3 23.9 15.9 b 

IN 22.6 77.4   37.9  61.9 0.3   45.7 36.5 17.8 11.2 c 

IR 21.9 78.1   36.1  61.5 2.5   39.1 36.0 24.9 20.7 a 

Significance            

Nutrient solution * *  * * *  * *  * 

Treatments n.s. n.s.  n.s. n.s. * 

(0.74[1]
) 

 n.s. n.s. n.s. * 

(4.04) 

Interaction n.s. n.s.  n.s. n.s. * 

(1.1) 

 n.s. n.s. n.s. n.s. 

 
 

Figure 12. Nutrient solution x growth medium x inoculation interaction in DM partitioning in pods on 52 

DAS 

 

 

 
Table 30. Yield, 100 seeds weight and Harvest Index of soybean plants in response to nutrient solution, 

growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

  Yield 

(g m
-2

) 

100 seeds weight 

(g) 
HI 

Nutrient solution    

U   183.8 b 24 0.30 b 

W 1000.7 a 27 0.41 a 

Treatments    

NN   315.6 b 32 0.29 b 

IN   291.8 b 21 0.33 b 

IR 1169.3 a 23 0.44 a 

Significance    

Nutrient solution * n.s. * 

Treatments * 

(250.6
[1]

) 

n.s. * 

(0.09) 

Interaction n.s. n.s. n.s. 
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Table 31a. Chemical analysis on leaves of soybean plants in response to nutrient solution, growth media and 

inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 N  P  K 

 30 

DAS 

52 

DAS 

80 

DAS 
 

30 

DAS 

52 

DAS 

80 

DAS 
 

30 

DAS 

52 

DAS 

80 

DAS 

Nutrient solution            

U    4.5 b 6.8 6.1  0.91 0.64 b 0.8     3.5 b    2.7 b 2.8 

W    6.2 a 6.7 3.8  0.65 0.78 a 0.6     4.7 a    4.0 a 2.7 

Treatments            

NN 5.1 6.9 5.3  0.83 0.83 a 0.9  3.9 3.1 2.6 

IN 5.3 7.2 5.2  0.75 0.61 b 0.5  4.3 3.6 2.8 

IR 5.6 6.3 4.3  0.77 0.69 a 0.8  4.0 3.5 2.8 

Significance            

Nutrient solution * n.s. *  * * n.s.  * * n.s. 

Treatments 
n.s. n.s. n.s.  * 

(0.03) 

* 

(0.45) 

n.s.  n.s. n.s. n.s. 

Interaction n.s. * 

(1.04
[1]

) 

* 

(1.04) 

 * 

(0.05) 

n.s. n.s.  n.s. n.s. n.s. 

 

 

 
Table 31b. Chemical analysis on leaves of soybean plants in response to nutrient solution, growth media and 

inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 Ca  Mg 

 30 

DAS 

52 

DAS 

80 

DAS 

 30 

DAS 

52 

DAS 

80 

DAS 

Nutrient solution        

U 1.4    1.2 b    1.2 b  0.3 0.3 b    0.3 b 

W 1.8    1.8 a    2.9 a  0.4 0.4 a    0.7 a 

Treatments        

NN 1.8 1.5 1.9  0.4 0.3 b 0.4 

IN 1.6 1.5 1.8  0.3 0.3 b 0.4 

IR 1.4 1.4 2.5  0.4 0.4 a 0.6 

Significance        

Nutrient solution * * *  * * * 

Treatments * n.s. n.s.  * * n.s. 

Interaction * 

(0.28
[1]

) 

n.s. n.s.  * 

(0.03) 

n.s. n.s. 
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Figure 12. Nutrient solution x growth medium x inoculation interaction on Phosphorus (A), Calcium (B) and 

Magnesium (C) content in leaves on 30 DAS 

 

 

Figure 13. Nutrient solution x growth medium x inoculation interaction on nitrogen content in leaves on 52 

(A) and 80 (B) DAS 
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Table 32. Chemical and proximate composition of seeds of soybean plants in response to nutrient solution, 

growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05; ). (
[1] 

lsd). 

  N 

(%) 

P 

(%) 

K 

(%) 

Ca 

(%) 

Mg 

(%) 

Protein 

(%) 

Fat 

(%) 

Carbohydrates 

(%) 

Nutrient solution         

U  7.6 a   0.7 b   1.9 b 0.12 0.3 46.2 a 12.2   31.0 b 

W  6.5 b   0.8 a   2.3 a 0.14 0.3 39.9 b 12.9   35.9 a 

          

Treatments         

NN 7.1 a 0.8 2.1 0.14 0.3 43.3 a 12.2 33.5 

IN 7.1 a 0.8 2.1 0.12 0.3 43.9 a 12.3 32.8 

IR 6.8 b 0.7 2.1 0.13 0.3 41.9 b 13.2 34.1 

          

Significance         

Nutrient solution * * * n.s n.s * n.s * 

Treatments * 

(0.18
[1]

) 

n.s n.s n.s n.s * 

(1.34) 

n.s n.s 

Interaction n.s. n.s n.s n.s n.s n.s * 

(1.31) 

n.s 

 

 

 

 

Figure 14. Nutrient solution x growth medium x inoculation interaction on fat content in soybean seeds. 
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Nodules 

Nodule count reflected the efficiency of rhizobia. As expected, NN plants were poorly 

nodulated; the other treatments showed an increasing in number of nodules, followed by a 

reduction during the pod-filling (Fig. 16). A decline in the rate of nitrogen fixation per plant with 

the onset of pod filling has been reported for peas grown under field conditions (Dean and Clark, 

1980) and under controlled-environment conditions (Bethlenfalvay and Phillips, 1977; LaRue 

and Kurz, 1973). There are similar reports for soybeans and common beans (Bethlenfalvay and 

Phillips, 1977; Quebedeaux et al., 1975). 

On 52 days after sowing, inoculated plants in urea reached the highest nodule number (Fig.15a); 

in plants fed nitrate there were no differences between inoculated and not inoculated plants. 

Colonization was greater for IR plants respect to IN when fed nitrate and comparable to 

inoculated plants fed urea (Fig.15a). Urea increased the total dry weight of nodules per plant; 

rockwool also had a positive effect on this parameter, while the lowest values were obtained in 

not inoculated plants (Tab. 33).  

Dry weight per nodule showed a statistical interaction among the treatments: urea increased the 

weight in association to all the other treatments, with highest values in NN plants; IR only 

increased the weight in plants fed urea compared to IN, while there were no differences among 

the treatments in plants fed nitrate, showing the lowest values (fig.15b). Considering the data 

obtained, urea seemed to promote or at least to not inhibit the nodulation compared to nitrate, 

that decreased the rate of nodule formation and also reduced the dry mass of nodules. These 

results are in agreement to that reported in previous studies (Vigue et al., 1977; Imsande, 1988). 

The growth in rockwool seemed to reduce the inhibitory effect of nitrate on nodulation even 

though it did not allow the nodule biomass accumulation in presence of nitrate. 

Well nodulated plants did not have more dry matter than the poorly nodulated (see Tab. 26-28), 

probably because of the lower energy requirement for deriving organic N from NH4
+
 than from 

N2,balanced advantage of inoculation in terms of nitrogen uptake. These results are in agreement 

with those reported by  Bethlenfalvay et al. (1978) on pea.  
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Table 33. Number and DM of nodules per plant and nodule average DM on 52 DAS in response to nutrient 

solution, growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05) (
[1] 

lsd). 

 Number nodules 

plant 
-1

 

Total nodule DM 

(mg plant 
-1

) 

Dry weight 

(mg nodule
-1

) 

Nutrient solution    

U 144.8 256.8 a 2.53 

W 107.9 111.4 b 0.97 

     

Treatments    

NN   19.0   48.3 c 2.70 

IN 139.0 189.0 b 1.13 

IR 221.0 315.0 a 1.42 

     

Significance    

Nutrient solution n.s. * * 

Treatments * 

(67.07
[1]

) 

* 

(110) 

* 

(0.56) 

Interaction * 

(94.8) 

n.s. * 

(0.79) 

 

 

 

Figure 15. Nutrient solution x growth medium x inoculation interaction on number of nodules per plant (A) 

and nodule average DM (B) 
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Figure 16. Trend of number (A) and DM (B)of nodules per plant throughout the growing cycle in response to 

nutrient solution, growth media and inoculation (Mean±St.Err). 
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Data on net photosynthesis (NP), stomatal conductance (gs), transpiration rate (Tr), CO2 

concentration (Ci) and leaf temperature (Tleaf) are shown in Tab. 34a,b. Net photosynthesis was 

always included in the values considered optimal for soybean (Salisbury and Ross, 1992) and 

ranged from 16.8 mol CO2 m
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Stomatal conductance and transpiration rate followed a similar trend during plant growth; IN 

showed lower values in the average of all measurement dates, compared to the other treatments. 

CO2 concentration also was lower for IN on the average, indicating a probable difficulty for 

inoculated plants grown in NFT, where roots are submerged during the whole cultivation cycle. 
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Table 34a. Net photosynthetic rate (NP), stomatal conductance (gs) and transpiration rate (Tr), in response to 

nutrient solution, growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05). 

(
[1] 

lsd). 

 NP (mol CO2 m
-2

 s
-1

)  gs (mol m
-2

 s
-1

)  Tr (mmol m
-2

 s
-1

) 

 
33 DAS 47 DAS 66 DAS  

33 

DAS 

47 

DAS 
66 DAS  33 47 66 

Nutrient solution            

U    16.2 b 14.0 b 12.3  0.4 0.5 0.2  4.8 5.2 3.5 

W    17.4 a 15.3 a 15.4  0.4 0.5 0.4  5.3 6.4 5.6 

Treatments            

NN 17.0 13.4 b 13.7  0.5 0.5 0.4  6.5 6.0 5.5 

IN 17.1 16.1 a 12.6  0.3 0.5 0.2  4.1 5.4 2.7 

IR 16.2   14.6 ab 15.2  0.4 0.5 0.4  4.7 6.0 5.5 

Significance            

Nutrient solution * * *  n.s. n.s. *  * * * 

Treatments n.s. * 

(1.67
[1]

) 

n.s.  * 

(0.09) 

n.s. *  * 

(0.60) 

n.s. * 

(0.64) 

Interaction n.s. n.s. * 

(3.47) 

 * 

(0.12) 

* 

(0.12) 

* 

(0.11) 

 * 

(0.73) 

* 

(1.02) 

* 

(0.91) 

 

 

 

Table 34b. intercellular CO2 concentration (Ci) and leaf temperature (Tleaf) in response to nutrient solution, 

growth media and inoculation (Mean values; ns = not significant; * = significant at P≤0.05; ). (
[1] 

lsd). 

  
Ci (mol m

-2
 s

-1
)  Tleaf(°C) 

  33 DAS 47 DAS 66 DAS  33 DAS 47 DAS 66 DAS 

Nutrient solution         

U  292.0 310.0 259.4  24.5 23.5 24.7 

W  293.4 312.5 283.7  24.5 23.4 24.2 

Treatments         

NN  307.0 321.1 312.3  23.9 23.4 23.9 

IN  280.8 309.4 231.5  25.2 23.2 25.1 

IR  290.2 303.3 270.9  24.6 23.8 24.3 

Significance         

Nutrient solution  n.s. n.s. *  n.s. n.s. * 

Treatments  * 

(12.17
[1]

) 

* 

(16.47) 

* 

(19.41) 

 * 

(0.51) 

* 

(0.34) 

* 

(0.41) 

Interaction  * 

(17.98) 

* 

(23.29) 

* 

(27.46) 

 n.s. * 

(0.52) 

* 

(0.58) 
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Water consumption and efficiency indexes 

Rate and trend of nutrient solution uptake during the growing cycle varied among the treatments: 

in plants fed nitrate and in plants grown in rockwool with urea (IRU) it increased rapidly during 

early growth as the total evaporating surface of foliage increased, reached the maximum on 

about 60 DAS, and then declined with age. In NNU and INU, however, the water consumption 

was almost constant during the entire growing cycle (3 litres m
-2

 on average) (fig. 17a). 

Total water use throughout the growth ranged from 89 (INU) to 599 litres m
-2

 (IRW) (Fig. 17b). 

The lower values of nutrient solution uptake in NNU and INU were related to the reduced 

number and surface of foliage. These two treatments also showed a reduced difference between 

the EC before and after the correction (by adding deionized water and fresh nutrient solution), 

indicating a difficulty in uptaking nutrients during the growth (Tab.35), probably due to the 

reduced urea hydrolysis in the nutrient solution. However, IRU plants showed a slightly greater 

water use compared to the other urea treatments, cushioning the negative effects of nutrient 

unavailability. The water use calculated on a per area and per day basis was consistent with date 

reported above (Tab. 35) and were comparable to those obtained by Wheeler et al. in 2008. 

Solution pH tended to rise in Wheeler treatments requiring acid for pH control (44.5 mmol H
+
 m

-

2
 d

-1
, on average), while a reduced amount of acid was used in Urea treatments (7.6 mmol H

+
 m

-2
 

d
-1

, on average) (Tab 36). The maximum acid use was recorded in plants IRW. pH tended to 

decrease in Urea treatments, so a greater amount of KOH was used to control it, compared to 

Wheeler solution (12.9 vs 3.1 mmol OH
-
 m

-2
 d

-1
, on average) (Tab 36). Moreover, plants grown 

in rockwool had a trend of greater acid requirement, in both Wheeler and Urea solution, and a 

higher base requirement in plants fed urea, compared to plant grown in NFT. 

These results are consistent with previous experimental evidence, indicating a preferential uptake 

of anions over cations from a nitrate-based nutrient solution throughout the growing cycle 

(Willumsen, 1980), while for plants assimilating NH4
+
 and urea, in the absence of the readily 

permeable NO3 anion, inorganic cation uptake exceeds inorganic anion uptake substantially, with 

a resulting acidification of the rooting medium (Lahav et al., 1976; Breteler, 1973; Houba et al., 

1971; Kirkby and Mengel, 1967). 

Data on biomass efficiency indexes are shown in Table 37. Plants grown in NFT fed urea had 

lowest values of Water use Efficiency (WUE) (0.33 g of seed per litre
 
of nutrient solution, on 

average); the index was a little higher for U plants grown in rockwool and was the highest in W 

plants (Tab. 37). Thus, apart from NNU and INU plants, the results compared favourably to 

those obtained in previous experiments on hydroponically-grown soybean (Wheeler et al. 2003 

and 2008). 
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In experiments on hydroponically-grown soybean, Wheeler et al. (2008) reported a value of 

Radiation Use efficiency (RUE) of 0.19 g seeds per mole of
 
PAR and Dougher and Bugbee 

(1997) a RUE of 0.25-0.28 g seeds per mole of
 
PAR. U plants showed lower RUE, particularly 

in NNU and INU (0.02 g seeds mol
-1

 PAR, on average). Plants fed nitrate recorded a higher 

RUE, particularly in IR (Tab. 37). Acid Use Efficiency (AUE) was very low in NNU and INU 

plants (0.12 g seeds mmol
-1

 H
+
 on average) but was the highest in IRU plants; nutrient solution 

containing nitrate showed an average value of 0.35 g seeds mmol
-1

 H
+
, comparable to that 

obtained by Wheeler et al. in 2003. NNU and INU also had low Base Use Efficiency (BUE), 

indicating a reduced uptake of NH
4
-N (Tab. 37). 
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Figure 17. Trend of water use throughout plant growth in Urea (A) and Wheeler (B) solutions and 

cumulative water use at the end of the experiment (C) for the different treatments. 

 

 

 

 

 
Table 35. Average fluctuations of nutrient solution EC (with their coefficients of variation) and plant water 

use on a per area and per day basis for the different treatments. 

 EC before 

adjustment 

(dS m
-1

) 

CV 

(%) 

EC after 

adjustment 

(dS m
-1

) 

CV 

(%) 

Water 

consumption 

(l m
-2

 d
-1

) 

NNU 1.73 ± 0.04 18.2 1.72 ± 0.06 17.4   2.6 

INU 1.67 ± 0.04 23.0 1.56 ± 0.07 24.7   2.5 

IRU 1.73 ± 0.04 19.5 1.45 ± 0.04 16.0   6.3 

NNW 1.28 ± 0.02 12.0 1.15 ± 0.03 14.4 10.9 

INW 1.34 ± 0.02 12.8 1.16 ± 0.03 14.3 11.4 

IRW 1.42 ± 0.04 22.3 1.20 ± 0.04 18.0 16.5 
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Table 36. Average fluctuations of nutrient solution EC (with their coefficients of variation) and plant acid and 

base use on a per area and per day basis for the different treatments. 

 
pH 

before correction 

CV 

(%) 

pH after 

correction 

CV 

(%) 

Acid 

(mmol H
+
 m

-2
 d

-1
) 

Base 

(mmol OH
-
 m

-2
 d

-1
) 

NNU 5.76±0.05 7.3 6.06±0.02 2.2   6.8 12.7 

INU 5.90±0.05 7.1 6.04±0.03 3.9   7.4   7.4 

IRU 5.75±0.05 8.4 6.07±0.02 3.0   8.5 18.6 

NNW 6.42±0.06 8.9 5.92±0.02 3.4 38.7   4.3 

INW 6.53±0.05 7.4 5.95±0.03 4.2 40.3   2.7 

IRW 6.87±0.05 7.1 5.93±0.03 4.1 54.4   2.3 

 

 

 

 

 

Table 37. Biomass efficiency indexes for the different treatments 

 Growth 

cycle 

(days) 

WUE seeds 

(g l
-1

) 

RUE seeds 

(g mol
-1

) 

AUE 

seeds 

(g mmol
-1

) 

BUE 

seeds 

(g mmol
-1

) 

NNU 122 0.33 0.02 0.13 0.07 

INU 122 0.33 0.02 0.10 0.10 

IRU 122 0.88 0.12 0.63 0.29 

NNW 122 1.18 0.29 0.33 2.91 

INW 122 1.12 0.29 0.31 4.64 

IRW 122 1.29 0.51 0.40 9.59 
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Conclusions 

The realization of CELSS based on higher plants is a complex objective as it involves the 

development of new technologies and the understanding of the effects of space factors both on 

the behaviour of biological systems and on the functioning of physical principles. (De Micco et 

al., 2009). 

Apart from challenges in engineering research and medical aspects to face the constraints to the 

long permanence of the human body under space conditions, there are also many technical 

problems regarding the supplying of resources. 

To bring down the materials to be brought in space for plant cultivation, a reduction in the 

amount of fertilizer or growth media can be supposed. 

In our experiment, results from chemical and proximate analyses on seeds showed a higher 

mineral content compared to reference values, which could have been a result of the luxuriant 

nutrient uptake by the hydroponically grown plants. Methods for controlling excessive nutrient 

uptake by the plant might be explored. This could include selection of low nutrient accumulating 

cultivars and/or the use of less nutrient-rich solutions for growing plants, that would allow the 

reduction of fertilizers to be brought in space for plant cultivation. 

The use of urea as nitrogen source for plant growth could be a good way to recycle human waste 

(urine) in a CELLS, but our experiment confirmed that is not able to provide a sufficient amount 

of nitrogen at least in the early stages of plant growth. This early disadvantage was not recovered 

by plant in the following phases of lifecycle, consequently, water use was very low and both 

growth and yield were reduced in plants fed urea as sole source of nitrogen; HI also was lower, 

indicating a higher production of inedible tissues (waste) in relation to the edible ones; however, 

the quality of seeds was enhanced thanks to the concentration of nitrogen in a reduced amount of 

seeds. 

The inoculation with Rhizobium did not improve plant performances when fed urea, because 

symbiotic N fixation starts after nodule formation and is much slower in plant early stage (Brun, 

1978), so plants were not provided with nitrogen at seedling stages (due to the reduced urea 

hydrolysis in nutrient solution); the positive effect of urea on nodulation was not sufficient to 

obtain good results in terms of plant yield. Failed bacteria positive effects on plants seemed to be 

related to the growth in NFT, (most of roots are submerged during the whole cultivation cycle), 

that in plants fed Wheeler solution are gathered to the nitrate inhibitory effect on bacteria. 

Growth in substrate enhances the dry matter accumulation in plants fed urea and seemed to 

reduce the inhibitory effect of nitrate on nodulation in plants supplied with Wheeler solution. 
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Moreover, the growth in rockwool increased the HI compared to the growth in NFT and 

improved the plant efficiency in both Urea and Wheeler solution. 

Considering the results obtained in this experiment, further research could be performed using a 

nutrient solution containing both urea and nitrate as sources of nitrogen, at least in early plant 

growth; moreover, the inoculation with Rhizobium could be involved, as during early 

developmental stages plants could use nitrate from the nutrient solution while bacteria are 

becoming active on root surface; urea could limit the inhibiting effect of nitrate on nodules. In 

following plant growth stages, when plants are well nodulated and nitrogen fixation has begun, 

nitrate supplying could be interrupted and urea could be used as sole nitrogen source. 

Furthermore, as solid substrate seemed to have some positive effects on plant performances, 

even when nitrogen availability is limited (urea), further testing could be performer in order to 

evaluate the effect of other solid substrates, even having a reduced weight or being recyclables, 

and the use of enzymes (ureases) in the nutrient solution could be tested, in order to improve the 

efficiency of urea in plant nutrition.  
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