
DOTTORATO DI RICERCA
in

SCIENZE COMPUTAZIONALI E INFORMATICHE
Ciclo XXIII

Consorzio tra Università di Catania, Università di Napoli Federico II,
Seconda Università di Napoli, Università di Palermo, Università di Salerno

SEDE AMMINISTRATIVA: UNIVERSITÀ DI NAPOLI FEDERICO II

ALESSANDRO BIANCO

MODELS AND ALGORITHMS
FOR FAIRNESS AND PRIORITY

IN SCHEDULING

TESI DI DOTTORATO DI RICERCA

` IL COORDINATORE
 Prof. Luigi M. Ricciardi

MODELS AND ALGORITHMS FOR

FAIRNESS AND PRIORITY IN

SCHEDULING

Alessandro Bianco

Universitá degli Studi di Napoli “Federico II”

Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”

A thesis submitted in fulfilment of the degree of

Doctor in Computer Science

Napoli, November 30, 2010

© Copyright 2010

by

Alessandro Bianco

Supervisor: Prof. Ph.D. Aniello Murano

Advisor: Prof. Ph.D. Marco Faella

Abstract

In this thesis we address the problem of fair and priority scheduling. We focus our attention on

systems characterized by an infinite computation, a discrete decomposition of tasks into atomic

operation and a known-a-priori set of precedence-constraints among the activities to be performed.

We analyze two fairness and two priority specifications related to the frequency of occurrence of

activities. We solve the scheduling problem both when the scheduler has complete control upon

the system’s execution and when the environment can influence the outcome of a scheduling plan.

Acknowledgments

The results presented in this thesis are fruit of the joint work of all the authors of

[BFMM09], [BFMM10a], [BFMM10b], which already contain most of the results

discussed. We thank Gimbert and Zielonka for pointing out the counterexample of

lemma 5.5.2.

Contents

Introduction vii

Preliminaries xi

0.1 Basic Notation . xiii

I Problems on Graphs 1

1 Preliminaries on Graphs 2

1.1 Colored Graphs . 3

1.2 Composition and Segmentation . 6

2 Fair Scheduling 11

2.1 Fairness Goals . 12

2.2 Graphs Characterization . 13

2.2.1 The Bounded Difference Problem . 13

2.2.2 The Balance Problem . 15

2.2.3 2-Colored Graphs . 18

2.3 Solving the Balance Problem . 20

2.4 Solving the Bounded Difference Problem . 24

2.5 The perfectly balanced finite path problem . 28

3 Priority Scheduling 31

3.1 Frequency Goals . 32

3.2 Graphs Characterization . 33

3.2.1 Frequency-f problem . 33

3.2.2 The uniform f -frequency problem . 37

3.2.3 Relating Priority to Fairness . 38

3.2.4 Limit L problem . 39

3.3 Solving the frequency-f problem . 41

3.4 Solving the uniform frequency-f problem . 42

3.5 Problems on Initialized Graphs . 44

3.6 Discussion . 45

II Problems on Arenas 47

4 Games for scheduling 48

4.1 Introduction . 49

4.1.1 Strategy and Memory . 51

4.1.2 Fairness and Priority Goals . 52

v

CONTENTS

4.2 Preliminaries on Half-positionality . 53

4.2.1 Kopczyński’s theorem . 53

4.2.2 Determining the winner . 54

4.3 Determining the winner . 55

4.3.1 Membership . 55

4.3.2 Hardness . 57

4.4 Computing the winning strategy . 59

4.4.1 Base Step . 60

4.4.2 Shuffle Strategy . 64

4.4.3 Inductive Step . 67

4.4.4 Complexity . 68

5 Half-Positionality 70

5.1 Introduction . 71

5.2 Preliminaries . 71

5.2.1 Gimbert and Zielonka’s Theorem . 72

5.3 Strong monotonicity and strong concavity . 74

5.4 Half-positionality theorem . 78

5.5 Strong Selectivity . 81

Conclusion 85

vi

Introduction

Scheduling is the problem of allocating resources to fulfill efficiently a set of partially ordered

activities. Depending on the nature of the activities, resources, and on efficient fulfillment one aims

at, different scheduling problems arise. Usually, activities are described through a precedence graph,

which shows which operation needs to be completed before another one is allowed. Activities may

be endowed with properties like the time or cost needed to be completed. Moreover, resources

are entities able to work on one activity at a time. Due to their generality, scheduling problems

have different applications and the measure of efficiency of a scheduling plan varies. In operations

research, activities are jobs that need to be distributed among workers and machines with the

purpose to complete the production of goods or the delivery of a service. So, we are interested in

minimizing the time or the cost needed to complete all the jobs ([Pin08]) or to distribute evenly the

workload on all the available resources ([SL85]). In the study of operative systems, the activities

are processes’ operations that need to be executed by one or more processors. So, we may want

to complete a given program, as soon as possible, hence, we aim at minimizing the execution

time. We may also want to ensure that the system is able to serve many little processes as soon as

possible, hence, we aim at maximizing the throughput (i.e. the number of processes completed in a

time unit), or minimizing the processes’ waiting time ([CD73], [SG98]). In computer networks,

activities are deliveries of datagrams or responses to service requests that are performed by servers.

Here, we may want to evenly distribute the workload on all servers ([LCST98]) or serve the

requests fairly or according to some priority policy due to quality of service agreements ([Tan03]).

In the study of formal verification, we are interested in ensuring that system’s processes, involved

in a possible infinite computation, satisfy a given specification. However, it is useful to take

into account some reasonable assumptions, like a scheduling policy of the activities, in order to

define less complex verification techniques([MP91]). For example, in a distributed mono-processor

environment, it is reasonable to hypothesize that each process eventually makes progress or that an

activity available for execution is eventually fulfilled ([MP91]). In all the mentioned applications,

there are scheduling problems whose aims are to not disregard particular components of the system

with respect to the others of the same type (machine in a load-balancing problem, requests in

a network problem). When the interest lays on treating equally all the possible activities in an

infinite computation, the property sought by the scheduling problem is called fairness. In general a

fairness property asks that every process or every process’ action is performed sufficiently often

whenever it meets a certain requirement along the computation ([Fra86], [AFK87], [VVK05]).

Depending on the requirement and on how much “ sufficiently ” is, different notions of fairness

are possible. As long as the scheduling problem is an abstraction that models the fact that an

available process cannot be ignored forever, it is not necessary to quantify how often an action is

taken. Indeed, simply asking that an action is eventually performed, simplify and makes possible

the verification of properties of a system ([Kup95]). Qualitative fairness is subject to different

formalizations depending on the condition an action must fulfill in order that it will be eventually

taken ([MP91], [Kwi89], [LPS81], [dA99]). However, when the scheduling problem needs to

meet the requirements of a real application, quantification becomes important. Indeed, a finite but

enormous delay of an available action is undesirable, yet allowed by an qualitative fairness property.

vii

Introduction

Moreover, adding quantification may also be a reasonable and helpful hypothesis in the verification

of system properties ([AH98]). Usually, in the context of formal verification, quantified fairness

notions put a bound on the numbers of steps that may elapse before an available action is performed

or just ask for the existence of such a bound ([Kwi89], [AH98]). However, this is still not enough

for implementable applications, because such a fairness does not guarantee that an equal share of

the computation time is reserved to each process or action. 1 In the study of computer networks

and operative systems, the suitability of a scheduling policy in serving all the requests equally,

often is analyzed through statistical means in dense time models (theory of queues, [Phi03]). These

tools allow to analyze the frequency of service of non-precedence-constrained activities when it

is not know a priori their time of occurrence, but it is still possible to model their arrival through

stochastic variables. The exact computation of the average frequency of service of a group of

activities does not only allow to evaluate fairness, but it is also useful to assign a greater priority to

a given group by letting it to have an higher frequency of service. However, when the scheduling

problem deals with an infinite execution of a given set of precedence-constrained activities, then

a statistical analysis is no longer useful. Indeed, it is possible to use a discrete time model, and

obtain more precise results than an estimate through statistical mean values.

In this thesis, we introduce a novel study of quantitative, implementation-oriented, fairness

scheduling for a set of precedence-constrained activities in discrete time models ([BFMM09]). We

define and solve a single-processor scheduling problem for two fairness notions: (i) the bounded

difference property asks that at every point in the computation the difference between the number

of times, two group of activities are performed, is bounded by some finite constant; (ii) the balance

property asks that the asymptotic frequency of every group of activities is the same. Since the

latter property requires the computation of an asymptotic frequency for each group of activities,

these values can be considered as priorities associated to the group. Hence, we also solve the

related priority scheduling problem ([BFMM10a]). All these scheduling problems are solved in

polynomial time through linear programming techniques.

Like in the theory of queues, a scheduling problem may not be characterized by the complete

knowledge of the time of availability of each activity. This happens when sources of uncontrollable

non-determinism, called environment, act upon the system in such a way to modify the available

actions at any given time. In this context, we have a game played between the scheduler and

the environment ([KVW01]). The two players alternate moves and have complementary goals,

in particular the scheduler’s (or system’s) aim is to force an infinite computation satisfying the

required scheduling property no matter the choices of the opposite player. The system-environment

game models have been studied as a mean to prove the correctness of an interactive system’s

temporal logic specification ([KVW01], [AHK02]). In particular, modal logics, such as LTL, and

CTL∗, are useful to express qualitative fairness requirements ([Kup95]). Other logics such as

RCTL and TCTL are able to put time bounds between the occurrences of actions ([EMSS90],

[ACD90]), however, the most famous modal logics are not able to evaluate exactly the frequency

of execution of activities. The models of the theory of queues can also be viewed as real time

1For example, if in a set of two actions we guarantee that each one of them is performed at least once every three

time steps, then one may performed twice as much as the other. On the other side we may not be able to guarantee

that each of them is performed at least once every two times units, due to precedence constraints. However, we may

guarantee that they are taken twice every four time units, but this property is not expressible through the previous type

of fairness.

viii

Introduction

stochastic games where the decision of the environment is determined a priori by a stochastic

variable representing the rate of occurrence of certain requests. In this thesis we also address

and study the problem of quantitative, implementation-oriented, fairness scheduling for a set of

precedence-constrained activities in discrete time models, when the environment can influence

the choices of the scheduler by acting at predetermined instants in time ([BFMM10a]). We prove

that determining whether the scheduler can force one of the discussed scheduling properties is

a CO − NP complete problem. In the proof of the latter result, we make use of a property

of the game model called half-positionality ([Kop06]). It states that the environment can play

optimally without keeping into account the history of the computation developed so far. Since the

same property may be used to prove similar results for other scheduling problems on games, we

investigated what conditions are required or are sufficient for its validity. We determined a new

sufficient condition ([BFMM10b]) that allows to classify as half-positional a wider class of game

goals.

Applications

The thesis focuses on quantitative, fairness and priority scheduling problems for systems where

the set of activities to be repeated ad infinitum 2 and their precedence relation is known a priori. The

activities are considered atomic and equally expensive (same length or cost). However, since they

are organized in groups and the scheduler tries to treat all groups equally, one may model activities

of multiple duration with a sequence of activities belonging to the same group. Unfortunately, due

to the necessity to find some atomic activity component, all the preemptive applications, where the

activity can be halted at any point in a dense time, are ruled out by our model.

In software applications, our scheduling solution may be used when all processes or tasks

involved in an infinite computation are known a priori, in this case every process or task can be

decomposed in a sequence of activities belonging to the same group. For example, a security

control systems has to continuously perform a series of predetermined measures, observations and

computations. So, one may want to ensure that all control tasks are performed equally often or

with a given priority. However, if the control tasks require a small time, a scheduling plan may be

useless, since it may be very easy to perform all controls adequately often without a plan. If the

control tasks require a lengthy time for a task and also a lengthy time for moving from a task to

another, then a plan ensuring that all tasks are performed equally often may be valuable. A concrete

application is a concurrent program accessing to peripherals that can be used in one-hour slots,

such as a telescope. In operations research applications, we can solve a variant of the traveling

salesman problem, where the aim of an infinite traveling schedule is visiting equally often all

places. In this case, the activities are the visit of a given site and the precedence relation is their

spatial order. For example, the traveling salesman may want to periodically visit cities to look

for new contacts or clients, or a controller may want to periodically monitor some characteristics

of the given areas. As further examples, we may solve a scheduling problem for crop rotation

in agriculture, where the activities are the culture of a certain plant, the relations are the optimal

order of plant culture and the fairness scheduling aims at planting all the cultures equally often

in the long run. Also, we may imagine planning a diet with the aim to receive a balanced intake

2repeated for a very long undetermined time

ix

Introduction

of all nutrients, in this case taking a particular nutrient may be considered as an activity and the

constraint on the type of food one may eat at different time of day may provide the order relation

among them.

In all mentioned applications, there may be sources of periodic non-determinism: in a control

system peripherals may be periodically rebooted or be subject to maintenance and not be available

for a certain time, the salesman may try to accommodate the requests of clients, the weather may

be too cold or too hot for a certain crop, one may be invited to dinner every Sunday, thus disabling

some food choices for that day. In all these situations, the game model may be used to determine

the existence of a fairness or priority scheduling plan.

x

Preliminaries

Graphs are mathematical models useful to visually represent and formally analyze a wide class

of systems. A transition table of an automaton, the control flow of an algorithm, the connections of

gates in a logic circuit, the geographical position of areas, the order relation of activities in a plan,

the structure of a complex software architecture are just examples of applications of graph models.

Formally, a graph is a structure composed by a set V of entities, called nodes, and a relation

E ⊆ V × V whose elements are called edges. So, for example, in a geographical representation

the set of nodes is the set of cities and the edges represent the allowed paths between them. The

nodes and the edges may be endowed with properties expressible through functions from the set of

nodes and edges respectively to the set of properties. For example, each city has a given number

of inhabitants and each path has a length. However, when we attempt to model a property of the

edges we may find out there are multiple ways to relate the same two nodes and these ways differ

from the value of the property. In such a situation we need to relate not only the nodes but the

property as well. A weighted graph is a structure composed by a set V of nodes and a relation

E ⊆ V × PE × V where PE is a set of relevant properties. In the example of the geographical

representation PE may be the set of all distances of paths expressed in meters.

In this thesis, we make use of weighted graphs to represent the order relation of activities for

a scheduling problem. The nodes represent the states of the plan and determine what activities

are allowed next, the edges represent atomic activities of equal cost: they are allowed at a given

state and, once performed, bring the system to a new state. The activities are organized in a finite

number of groups, representing for example the process they belong to or the task they contribute

to fulfill. These groups are represented by integer number in a set [k] = {0, . . . , k} and constitute

the property associated to the edges. We call such a graph, k-colored graph, since we imagine to

visualize each edge with the color of the group they belong to.

Definition 0.0.1. k-colored graph

A k-colored graph is a structure G = (V,E) such that V is a finite set of nodes and E ⊆
V × [k]× V is a set of colored edges.

Example 0.0.1. Suppose there are two infinite processes 0 and 1 in competition for the use of a

the only processor and for the use of a shared variable x. Suppose process 0 continuously acquires

x, performs one atomic operation and then releases it, and that process 1 continuously acquires x,

performs two atomic operations and then releases it. If we disregard the operation of acquiring

and releasing the variable, we can determine two system states. (i) A state v0 where variable x is

free and both processes can lock it and perform their operations (ii) a state v1 where variable x
is locked by process 1 and, hence, only the latter process can perform its second operation. The

k-colored graph representing the order relation of the activities is visualized in figure 1(a) Observe

that the edge colors represent the process the activity belongs to.

Example 0.0.2. Consider a robot patrolling an geographical area and moving between four points

A,B,C,D. The activities the robot has to perform are taking picture of four sorrounding areas: 1
the sea, 2 the cliffside, 3 the hill 4 the forest. The road from A to B is on the coast and the robot

xi

Preliminaries

v0 v10 1

1

(a)

A B

C D

1,2
1,2

3 3

4
4

3

(b)

Figure 1: Example graphs.

can see the sea and the cliffside. The road from B to C is on the hill, due to its slope the robot can

only traverse it from B to C, on this road the robot can see the hill and the sea. The road from C
to D is in the forest, hence the robot can only see the forest. The road from D to B is on the other

side of the cliffside, hence, the robot can only see the hill. (See Figure 1(b))

Systems progress in time by performing activities and changing states, such progress is called

run or execution of the system and, on a graph, it is represented by an infinite path. Some paths may

have a desirable property, while others do not meet the system’s specifications. A rule describing

what paths are desirable is called system’s goal: it may be a temporal logic formula or explicitly the

set of allowed infinite paths among those contained in the graph. In this thesis, we are interested in

expressing properties related to the frequency of execution of groups of activities, or expressed in

different term, the frequency of occurrence of colors along an infinite path. Hence, we express a

goal as a set of infinite sequences of colors.

Definition 0.0.2. Winning Condition

A goal or winning condition W on a k-colored arena, is a set of infinite sequences of colors in

[k], i.e., W ⊆ [k]ω.

Example 0.0.3. In Example 0.0.1, we may want that in four time units, each process uses the

processor for 2 units. Then the system’s goal is W = {0011, 0110, 1100, 0101, 1010, 1001}ω.

Observe that the scheduler can force a path in {0011, 0110, 1100}ω thus meeting the goal.

When the decision of the particular activity to be performed at every node cannot be always

determined by the system, it is useful to introduce a function that maps each node to the entity, the

choice is up to. In this way, the graph becomes an arena where multiple decision entities, called

players, influence the outcome of the plan. When the purpose of the model is the verification

of a system property, it is sufficient to group all factors, but the system, as one unique source of

nondeterminism called environment. In this thesis, we use a 2-players weighted arena with the

purpose to determine whether a scheduler can force a plan with a given property no matter how

much adverse the environment is.

Definition 0.0.3. k-colored arena

A k-colored arena is a structure A = (V0, V1, vini, E) where V0 and V1 are two disjunct set of

nodes, vini is an initial node and E ⊆ (V0 ∪ V1)× [k]× (V0 ∪ V1) is the set of edges.

xii

Preliminaries 0.1 - Basic Notation

v0 v1

v2

0 1

1

1

1

Figure 2: Example arenas.

The node in the set Vi are said belonging to player i. We graphically represents an arena in the

same way as a graph, with the exception that nodes in V0 are represented as circles and nodes in V1
are represented as squares.

Example 0.0.4. Suppose that processor 1 of Example 0.0.1, after performing the first operation

can non-deterministically choose to perform 1 or 2 more operations before releasing the shared

variable. Hence, in state v1, the system has no control, but the environment has the ability to choose

whether to perform another operation and release the variable or perform the same operation and

bring the system in a third state v2 where the variable is still owned by processor 1. See Figure 2.

Also on arenas, a system’s run is represented by an infinite path on the graph. The only

difference is that at every point along the run the choice of the next edge does not depend

necessarily on the system.

When an arena is paired with a winning condition, then we have a game between the system

and the environment. They alternate moves along the game arena, and construct a run. If the

run satisfies the winning condition the system wins, otherwise the environment, considered as

malicious, wins.

Definition 0.0.4. k-colored game

A k-colored game is a structure G = (A,W) composed by a k-colored arena A and a

k-colored winning condition W .

We say that a system can force a winning condition W , when the scheduler has a criteria to

make choices at every step of the execution, in such a way that the resulting infinite run satisfies

W . A criteria that describes the choice made by one player at every point in the execution is a

function called strategy. It associates to every finite path ending with a node, that belongs to that

player, the next activity to be performed. So it is interesting to determine whether a player has a

strategy that allows him to pursue its goal.

0.1 Basic Notation

Here, we introduce some basic preliminary notation that is used through the thesis.

Let X be a set then we use the following notations:

xiii

Preliminaries 0.1 - Basic Notation

1. A word on X is a finite or infinite sequence of elements of X .

2. The word with no symbols, called also the empty word, is denoted with ε.

3. A language on X is a set of words on X .

4. For an element x ∈ X we use x also to mean the language {x} when the meaning is clear

from the contest.

5. Xi is the set of all sequences of elements of X with length i, i.e., the cartesian product of X
with itself i times. We set X0 = {ε} where ε is the empty word

6. X∗ (resp., xω, x+∞) is the set of all finite (resp., infinite, finite or infinite) words on X .

7. Xn×m is the set of all matrices of dimension n×m with elements belonging to X .

8. |X| is the cardinality of X , i.e., the number of its elements.

9. 2X is the set of all subsets of X .

Automaton recognizes sets of words and are useful to determine the properties of such sets.

1. A finite state automaton is a tuple (X,Q, δ, q0, F) where X is an alphabet, Q a set of states,

q0 ∈ Q an initial state, F ⊆ Q a set of final states and δ : Q×X → 2Q a transition function.

2. A run of the automaton on a sequence x1 . . . xk ∈ X∗ is a sequence q0, . . . , qk ∈ Q∗ such

that or each i ∈ {1, . . . , k} we have qi ∈ δ(qi−1, xi).

3. A word x ∈ X∗ is said accepted by the automaton if there exists a run q0, . . . , qk ∈ Q∗ on x
ending in a final state qk ∈ F .

4. A language L ⊆ X∗ is said regular if there exists a finite state automaton that accepts all

and only the words belonging to it.

The set of numbers are described through the following notations

1. N is the set of natural number with number 0 included, N−0 = N \ {0}

2. Z (resp., Q, R) is the set of integer (resp., rational, real) numbers.

3. For a natural k ∈ N−0, we use the notation [k] = {1, . . . , k} to denote the set of the first k
non-zero natural numbers.

4. Given two real numbers a, b ∈ R, we use the notation [a, b] = {r ∈ R | a ≤ r ≤ b} to

denote the set of real numbers between a and b.

Let A ∈ Rn×m, B ∈ Rn×1 be two matrices and x ∈ Xm×1 be a variable vector, then we use

the following notation.

1. ai,j is the elements of A on row i and column j.

xiv

Preliminaries 0.1 - Basic Notation

2. A is called a square matrix if the dimension n and m are equal.

3. The determinant of a square matrix A ∈ Rn×n is a real number det(A) given inductively

by the Liebniz formula (i) for n = 1, det(A) = a1,1 (ii) for n > 1 det(A) = (−1)i+1a1,i ·
det(A1,i) where Ai,j is the matrix obtained from A by removing the i-th row and the j-th
column.

4. A is singular if it has a null determinant.

5. AT is the transpose of matrix A, i.e., that matrix AT ∈ Xm×n, such that its element of

position i, j is a′i,j = aj,i.

6. 0 is the matrix with all null components, 1 is the matrix with all elements equal to 1, when

the dimension is clear from the context.

7. Ax = B is a linear system, given by the set on equalities
∑m

j=1 ai,jxj = bi. A is called

coefficient matrix, and B is called matrix of known values.

8. A linear system Ax = B is said homogeneous if B = 0.

9. A matrix C ∈ Rm×1 is a solution of the system Ax = B if A · C = B.

10. For ∼∈ {≤, <,≥, >}, Ax ∼ B is a system of linear inequalities given by the set of the

inequalities
∑m

j=1 ai,jxj ∼ bi

We now recall some results on linear systems and systems of linear inequalities.

1. Cramer’s Theorem. Given a linear system Ax = B, if A is a square non-singular matrix

then a the system admits solutions, one such solution z has components zi =
det(Ai)
det(A) where

Ai is the matrix obtained from A by replacing the i-th column with the column matrix B.

2. If a system of linear inequalities contains only integer coefficients and has a solution, then it

has also a rational solution. [NW88]

3. Given a system of linear inequalities with real variables and with no >,< inequality sign,

then we can compute a rational solution of the system in polynomial time in the size of the

system and in the logarithm of the maximum value of the coefficients, or at least determine

that such a solution does not exists. [NW88]

4. Given a system of linear inequalities with integer variables, determining a solution of the

system is an NP -complete problem [NW88].

xv

Part I

Problems on Graphs

1

1
Preliminaries on Graphs

Contents

1.1 Colored Graphs . 3

1.2 Composition and Segmentation . 6

2

1. Preliminaries on Graphs 1.1 - Colored Graphs

In this part of the thesis, we deal with colored graph, representing the order relation of activities,

and with colored goals, representing a specific scheduling requirement. Under the hypothesis that

the scheduler has complete decision power, we define polynomial algorithms for the construction

of a plan for some specific fairness and priority conditions. This part is divided in three chapters,

the second dealing with fairness scheduling and the third with priority scheduling. The colored

goals are defined in the respective chapters. IN this chapter, we introduce preliminary notations on

colored graphs that will be used through all the thesis.

1.1 Colored Graphs

Like defined in the preliminaries of the thesis, a k-colored graph is a structure composed by

a finite set of nodes V , a set of edges E ⊆ V × [k]× V . When we highlight a starting state, the

graph is said initialized.

Definition 1.1.1. k-colored Graphs

1. A k-colored graph is a structure G = (V,E) such that V is a finite set of nodes and

E ⊆ V × [k]× V is a set of colored edges.

2. An initialized k-colored graph is a structure G = (V,E, vini), such that (V,E) is a k-

colored graph and vini ∈ V is a starting node.

3. For each edge (v, a, u) ∈ E, v is said starting node, or source of e, u is said ending node or

destination of e, a is said color of e.

4. For each node v ∈ V , the set of edges starting from v is denoted as v→ = {(v, a, u) ∈ E},

the set of edges ending in v denoted as v← = {(u, a, v) ∈ E}.

5. For each color a ∈ [k], the set of edges colored by a is denoted as E(a) = {(v, a, u) ∈ V }

6. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.

We can imagine to walk through the path from a node to another through an edge relating them.

Thus a sequence of edges represent a path on the graph.

Definition 1.1.2. Colored paths

Let G = (V,E) be a k-colored graph.

1. A finite (resp., infinite) path on G is a finite (resp., infinite) sequence of colored edges

ρ = e1 . . . em ∈ E∗ (resp., ρ = e1 . . . em . . . ∈ Eω) such that consecutive edges are related

through a node, i.e., for all i ∈ [1,m− 1] ∩N, (resp., for all i ∈ N−0) the ending node of ei
is equal to the starting node of ei+1.

2. A finite (resp., infinite) path ρ = e1 . . . em ∈ E∗ (resp., ρ = e1 . . . em . . . ∈ Eω) can

be represented as a sequence of alternating nodes and colors ρ = v1a1 . . . vmamv ∈
(V × [k])∗ × V (resp., ρ = v1a1 . . . vmam . . . ∈ (V × [k])ω) where each vi is the starting

node of ei and ai is its color. When the colors are non-relevant in the contest, we also

represent a path with the only sequence of nodes v1 . . . vm, v (resp., v1 . . . vm . . .).

3

1. Preliminaries on Graphs 1.1 - Colored Graphs

3. Given a path ρ = v1a1 . . . vmam . . . ∈ (V × [k])ω ∪ (V × [k])∗ × V , the color sequence of

ρ is the sequence of colors of its edges Col(ρ) = a1 . . . am

4. The starting node of the first edge of a path ρ is said starting node of the path. A path ρ
starting at node v is also said v-path.

5. The ending node of the last edge of a finite path ρ is said ending node of the path.

6. The length of a finite path ρ is the number of its elements and is denoted as follows:

|ρ| = |e1 . . . em| = m. The length of an infinite path ρ is infinite |ρ| = ω.

7. Given a finite path ρ and an edge e, we denote by |ρ|e the number of occurrences of the edge

e in ρ.

8. Given a finite path ρ and an color a, we denote by |ρ|a the number of occurrences of the

edges colored by a in ρ.

9. A path is said simple when it does not pass twice through the same node, unless at the

beginning and at the end i.e., ρ = v1e1, . . . , vmemvm+1 is simple if vi 6= vj for all (i, j) ∈
[m+ 1]2 \ {(1,m+ 1), (m+ 1, 1)}.

When in a graph it is possible to reach a node from any other node, we have a strong connection

property we use in course of the proofs

Definition 1.1.3. Connection properties

1. A k-colored graph G = (V,E) is said connected if for every pair of nodes (v, u) ∈ V 2 there

exists a path connecting u to v (i.e. either a path from v to u or a path from u to v).

2. A k-colored graph G = (V,E) is said strongly connected if for every pair of nodes (v, u) ∈
V 2 there exists a path from v to u.

3. A connected component of a graph G is any strongly connected subgraph G′, such that

there does not exist another strongly connected subgraph G′′ 6= G′ such that G′ is also a

subgraph of G′′.

4. Given a graphG, the strongly connected components ofG can be computed in time θ(E×V)
with Tarjan’s algorithm ([CLRS01]).

Paths can be decomposed and composed like any sequence of characters belonging to some

alphabet.

Definition 1.1.4. Prefixes and concatenations

1. The n-th edge of ρ is denoted as ρ(n).

2. The prefix of length n of a path ρ = e1 . . . em . . . (resp., color sequence x = c1 . . . xm . . .)
of length m > n is the path given by the first n edges and is demoted by ρ≤n = e1 . . . en
(resp., x≤n = c1 . . . cn . . .).

4

1. Preliminaries on Graphs 1.1 - Colored Graphs

3. The suffix after n steps of a path ρ = e1 . . . em . . . (resp., color sequence x = c1 . . . xm . . .)
of length m > n is the path given by all but the first n edges and is denoted by ρ>n =
en+1 . . . em . . . (resp., x≤n = c1 . . . cm . . .).

4. A path ρ = e1 . . . en . . . is said consecutive to a finite path ρ′ = e′1 . . . e
′
m if the ending node

of ρ′ is equal to the starting node of ρ.

5. If ρ is consecutive to ρ′ the concatenation of ρ′ with ρ is a new path obtained by adding

after ρ′ the sequence of edges of ρ. Such concatenation is denoted as ρ′ · ρ = ρ′ρ =
e′1 . . . e

′
me1e2

6. Consider a finite (resp., infinite)sequence of paths ρ1, . . . ρm (resp., ρ1 . . . ρm . . .), such that

for all i ∈ [1,m− 1] ∩ N (resp., for all i ∈ N−0) ρi+1 is consecutive to ρi. Then we denote

a finite (resp., infinite) concatenation of such paths as
∏m

i=1 ρi (resp.,
∏ω

i=1 ρi).

Among paths, those that are consecutive with themselves are particularly meaningful. Although

finite, they can be repeated ad infinitum and form an infinite path, thus providing a succinct way to

represent an infinite computation.

Definition 1.1.5. Loops

Let G be a k-colored graph.

1. A loop is a finite path whose starting node is equal to its ending node. So, it holds that

ρ = v1a1 . . . vmamvm+1 ∈ (V × [k])∗ × V is a loop if v1 = vm+1.

2. A loop σ = v1a1 . . . vmamvm+1 ∈ (V × [k])∗ × V is said simple if it pass only one time

through the intermediate nodes and only twice through the extreme nodes, i.e., for all

(i, j) ∈ [m+ 1]2 \ {(1,m+ 1), (m+ 1, 1)} it holds vi 6= vj .

3. The concatenation of a loop σ with itself i ∈ N ∪ {ω} times is denoted as σi.

4. An infinite path ρ is said periodic if there exists a loop σ such that ρ = σω

5. An infinite path ρ is said eventually periodic if there exists a finite path ρ′ and a loop σ
consecutive to ρ′ such that ρ = ρ′ · σω.

To our purposes it is useful to relate a path with the occurrences of colors on them.

Definition 1.1.6. Color’s representation

Let x ∈ [k]∗ be a finite color sequence, and let ρ be a path with color sequence x, then we

define the following notations.

1. The number of occurrences of a color a ∈ [k] on x (resp., ρ) is denoted with |x|a ∈ N (resp.,

|ρ|a = |x|a).

2. The vector of occurrences of colors on x (resp., ρ) is denoted as follows: Num(x) =
(|x|1, . . . , |x|k) ∈ Nk (resp., Num(ρ) = Num(x)).

5

1. Preliminaries on Graphs 1.2 - Composition and Segmentation

3. The difference of occurrences of two colors a, b ∈ [k] on x (resp., ρ) is denoted with

diff a,b(x) = |x|a − |x|b ∈ Rk (resp., diff a,b(ρ) = diff a,b(x)).

4. The vector of differences between the occurrences of all colors in [k] and the occurrences of a

fixed color a ∈ [k] on x (resp., ρ) is denoted with diff a(x) = (diff 1,a(x) . . . diff k,a(x)) ∈ Rk

(resp., diff a(ρ) = diff a(x)).

5. We simply call difference vector of x (resp., ρ), the vector diff (x) given by the the differences

between the number of occurrences of a given colors and the number of occurrences of the

reference color k, i.e., (diff 1,k, . . . , diff k−1,k) ∈ Rk−1.

6. The difference matrix of x (resp., ρ) is the matrix diff (x) ∈ Rk×k (resp., diff (ρ)) whose

element on row i and column j is diff i,j(x).

1.2 Composition and Segmentation

Loops may constitute a succinct way to represent infinite paths, when there is some form of

periodicity in the sequence of edges. We also have a more succinct way to represent the occurrences

of colors along a path by partitioning the color sequence in the color vectors associated to the loops.

For example, in a 2-colored graph, if σ is a loop with color vector (1, 2), we can represent the

color sequence of σω with (1, 2)ω. Although we lose some information on the actual succession of

colors, this does not necessarily stop us from evaluating a fairness or priority requirement on the

path. Indeed, all color sequences, represented by (1, 2)ω, achieve a priority scheduling that gives

to the second color twice as much priority as the first. Hence, investigating the possible loops in

a graph may provide insights on the existence of a scheduling plan. Since the number of loops

in a graph is infinite, we restrict our observations to their basic components: the simple loops.

The purpose of this preliminary section is to show how paths and loops can be decomposed in the

simple loops contained within.

A loop is a composition of a finite sequence of simple loops T f it is obtained by using all and

only the edges of T as many times as they appear in T .

Definition 1.2.1. Composition of Loops

The loop σ is a composition of (σ1, . . . , σl) if, for all edges e, it holds |σ|e =
∑l

i=1 |σi|e.

Given a sequence of loops T = (σ1, . . . , σl), we can define a sequence T ′ = (σ′1, . . . , σ
′
l′) of

distinct loops appearing in T and the number ci of times σ′i appears in T . Then, if a loop σ is a

composition of T , we also say that σ is a linear composition of T ′ with coefficients c1, . . . , cl′ ,
and we have |σ|e =

∑l′

i=1 ci · |σ
′
i|e.

Definition 1.2.2. Natural linear combination

Given a finite set of loops L = {σ1, . . . , σl}, the natural linear combination (n.l.c. for short)

of L with non-null coefficients c1, . . . , cl is the set T = {(σ1, c1), . . . , (σl, cl)}.

Definition 1.2.3. Composition of Natural Linear Combination

The loop σ is a composition of a natural linear combination {(σ1, c1), . . . , (σl, cl)}) if, for all

edges e, it holds |σ|e =
∑l

i=1 ci · |σi|e.

6

1. Preliminaries on Graphs 1.2 - Composition and Segmentation

A generic path ρ can be decomposed in loops, however, due to the fact that the edges do not

always coincide, an extra simple path is needed.

Definition 1.2.4. Composition of loops and a path

The path ρ is a composition of a sequence of simple loops (σ1, . . . , σl) and a simple path ρ′ if,

for all edges e, it holds |ρ|e = |ρ′|e +
∑l

i=1 |σi|e.

We show, now, that a path ρ can always be decomposed in a sequence of simple loops and

a simple path, and that when ρ is a loop, the simple path is empty. Our proof is through the

construction of an algorithm that computes a particular composition. Since the composition is

obtained by scanning the path from starting node to ending node and removing the loops along the

way, like segments, it is called quasi-segmentation. The definition of the quasi-segmentation is

recursive, so it can be immediately translated in a recursive algorithm.

Definition 1.2.5. Quasi-Segmentation

Given a path ρ, we recursively define on the length of ρ, the quasi-segmentation and the rest of

the quasi-segmentation as follows.

1. The quasi-segmentation is a sequence of simple loops, and the rest is a simple path. The rest

is either empty or ending with the last node of ρ.

2. If ρ has length 1 and it is not a loop, then the quasi-segmentation is the empty sequence and

the rest is ρ itself.

3. If ρ has length 1 and it is a loop, then the quasi-segmentation is ρ itself and the rest is the

empty sequence.

4. If ρ has size n, let ρ′ = ρ≤n−1, let σ1, . . . , σn be the quasi segmentation of ρ′ and r be its

rest. Consider the path r′ obtained by extending r with the last edge of ρ (this can be done

because the last node of r is the last node of ρ′).

(a) If r′ does not contain a loop, then the quasi-segmentation of ρ is σ1, . . . , σn and the

rest is r′. Observe that r′ ends with last node of ρ.

(b) If r′ contains a loop σ, this loop is due to the last added edge, i.e., r′ = r′′σ. In this

case the quasi-segmentation of ρ is σ1, . . . , σn, σ and the rest is r′′. Observe that if r′′

is not empty, then it ends with the first node of σ which is also equal to its last node,

hence it equal the last node of r′, and to the last node of ρ.

The following lemma shows that the quasi-segmentation and the rest constitutes actually a

decomposition of a path. It also shows that a loop is a composition of its quasi-segmentation only,

since the rest is always empty.

Lemma 1.2.1. Quasi-Segmentation Lemma

A path ρ is a composition of its quasi-segmentation and the rest of its quasi-segmentation. If

the rest is not empty, then it starts with the starting node of ρ (and ends with the ending node of ρ).

7

1. Preliminaries on Graphs 1.2 - Composition and Segmentation

Proof. The proof is by induction on the length of ρ. The base case is trivial either if ρ is a loop

or if ρ is not a loop. For the inductive case: let n = |ρ|, ρ′ = ρ≤n−1, σ1, . . . , σl be the quasi-

segmentation of ρ′ and r be its rest. By inductive hypothesis, ρ′ is a composition of σ1, . . . , σl and

r, moreover if r is not empty, it starts with the starting node of ρ′. Consider the path r′ obtained by

extending r with the last edge of ρ, i.e., r′ = r · ρ(n).

1. If r′ does not contain a loop, then the quasi-segmentation of ρ is σ1, . . . , σn and the rest

is r′. Observe that r′ starts with the starting node of ρ′ which is also the starting node

of ρ. Moreover, for all edges e 6= ρ(n) we have |ρ|e = |ρ′|e = |r|e +
∑l

i=1 |σi|e =

|r′|e +
∑l

i=1 |σi|e. Also |ρ|ρ(n) = |ρ′|ρ(m) + 1 = |r|ρ(n) + 1 +
∑l

i=1 |σi|ρ(n) = |r′|ρ(n) +∑l
i=1 |σi|ρ(n). Hence, ρ is a composition of the quasi-segmentation and its rest.

2. If r′ contains a loop σ, this loop is due to the last added edge, i.e., r′ = r′′σ. In this case the

quasi-segmentation of ρ is σ1, . . . , σn, σ and the rest is r′′. Observe that if r′′ is not empty,

then it starts with the starting node of ρ′ which is also the starting node of ρ. Moreover, for

all edges e 6= ρ(n) we have |ρ|e = |ρ′|e = |r|e +
∑l

i=1 |σi|e = |r′′|e + |σ|e +
∑l

i=1 |σi|e.

Also |ρ|ρ(n) = |ρ′|ρ(m) + 1 = |r|ρ(n) + 1 +
∑l

i=1 |σi|ρ(n) = |r′|ρ(n) +
∑l

i=1 |σi|ρ(n) =

|r′′|ρ(n) + |σ|ρ(n) +
∑l

i=1 |σi|ρ(n). Hence, ρ is a composition of the quasi-segmentation and

its rest.

Since in a loop the extremes coincide, and since the rest of a quasi-segmentation is a simple

path, the rest of a quasi-segmentation of a loop is necessarily empty. Hence the following corollary

holds

Corollary 1.2.1. A loop σ is a composition of its quasi-segmentation.

In the following sections, it is useful to quantify the least number of loops contained in

the decomposition of a loop. If a loop of length n contains at most m nodes, then every loop

in a composition can have at most length m because it needs to pass only once through every

intermediate node. Hence, a composition will contain at least ⌈ n
m⌉ simple loops. Since we proved

that every loop admits a composition of simple loops, the following corollary holds.

Corollary 1.2.2. A loop σ of length n containing m distinct nodes is a composition of at least

⌈ n
m⌉ simple loops.

For an infinite path, we can define a quasi-segmentation given by the limit of the quasi-

segmentation of all its finite prefixes.

Definition 1.2.6. Infinite quasi-segmentation

The quasi-segmentation of an infinite path ρ is the infinite sequence of loops given by the limit

of the quasi-segmentation of ρ≤n, for n→ +∞. The quasi-segmentation of an infinite path has no

rest.

8

1. Preliminaries on Graphs 1.2 - Composition and Segmentation

So far we proved that given a loop, it is always possible to decompose it, in a sequence of

simple loops. However, we do not know whether, given a sequence of simple loops, they can be

composed in order to construct a loop containing them all. In general, the answer is negative, since

the loops may belong to different connected components of the graph and not be reachable to one

another. Hence, a key requirement is the connection between the loops.

Definition 1.2.7. Connected Loops

Two loops σ, σ′ in G are connected if there exists a path from a node of σ to a node of σ′, and

vice-versa. A set or sequence L of loops in G is connected if all pairs of loops in L are connected.

However, just having connect loops does not ensure the possibility to construct a loop using

just their edges. Indeed, we may need to use the paths connecting them. Since all paths connecting

the loops may have at least an edge outside the loops, in general we cannot construct a composition.

Hence, we have to ensure that all the paths connecting the loops use only edges of the loop, and

that they can pass from a loop to another only through shared nodes.

Definition 1.2.8. Overlapping Loops

Two loops in G are overlapping if they have a node in common. A set or sequence L of loops in

G is overlapping if for all pairs of loops σ, σ′ ∈ L there exists a sequence σ1, . . . , σn of loops in L
such that (i) σ1 = σ, (ii) σn = σ′, and (iii) for all i = 1, . . . , n− 1, σi and σi+1) are overlapping.

Overlapping loops can communicate without using external edges. Hence, it is possible to pass

at every shared point from a loop to another, eventually using up all the edges as many times as

needed. Here, we describe the connection algorithm.

Definition 1.2.9. Composition Algorithm

Consider a natural linear combination of loops T = {(σ1, c1) . . . (σl, cl)}. Then we can

construct a loop σ as a composition of T with the following iterative algorithm. The algorithm

lasts l steps, at every step i we construct a temporary loop σ′i. At the end of the algorithm, the

sought loop is σ = σ′l. At every step i we also construct a set of loops Li = {σj1 , . . . σji} such

that σ′i is a composition of Li with coefficients cj1 , . . . , cji .

1. As a first step, we have L1 = {σ1} and σ′1 = σc11 .

2. For all steps i > 1, we determine a loop σji+1 ∈ L\Li such that the set Li+1 = Li∪{σji+1}
is overlapping. We determine such a loop, by scanning all loops in L \ Li, till we find one

that share a node with Li+1. Such a loop necessarily exists else we have that there is no

node in common between Li and L \ Li, which is impossible since L is overlapping. Let

v be the node in common between Li and σji+1 . Since σ′i is a composition of Li, we have

that it passes through v. Hence we can write σ′i as a loop starting from v and ending in v:

σ′i = vav1a1 . . . vmamv. We can do the same with σji+1 = vav′1a
′
1 . . . v

′
ma
′
mv. Hence, we

can set σ′i+1 = σ′i · (σji+1)
cji+1 . For each edge e, we have |σ′i+1|e = |σ′i|e + cji+1 |σji+1 |e =∑i+1

i=h cjh |σjh |e. Hence, the iteration invariant holds.

Since overlapping loops allow the construction of more complex ones, they are particularly

important in the construction of infinite paths. Here, we prove that the overlapping of a set of loops

is equivalent to the strong connection property of the subgraph containing only their edges.

9

1. Preliminaries on Graphs 1.2 - Composition and Segmentation

Definition 1.2.10. Induced Subgraph

Given a set of loops L in G, the subgraph induced by L is G′ = (V ′, E′), where V ′ and E′

are all and only the nodes and the edges, respectively, belonging to a loop in L.

Lemma 1.2.2. Overlap Lemma

Let G be a graph, L be a set of loops in G, and G′ = (V ′, E′) be the subgraph of G induced

by L, then the following statements are equivalent:

1. L is overlapping.

2. The subgraph G′ is strongly connected.

3. There exists u ∈ V ′ such that for all v ∈ V ′ there exists a path in G′ from u to v.

Proof. [1 ⇒ 2] If L is overlapping, then, for all pairs of loops σ1, σ2, there exists a sequence of

loops that links σ1 with σ2. Thus, from any node of σ1, it is possible to reach any node of σ2.

Hence, G′ is strongly connected.

[2 ⇒ 3] Trivial.

[3 ⇒ 2] Let u ∈ V ′ be a witness for (3). Let v, w ∈ V ′, we prove that there is a path from v
to w. We have that u is connected to both v and w. Since all edges in G′ belong to a loop, for

all edges (u′, ·, v′) along the path from u to v there is a path from v′ to u′. If in G′ there exists a

node u such that there is a path from u to all other nodes v of G′, since u and v are connected by a

chain c of overlapping loops, the path from u to v passes through the nodes that connect any pair

of adjacent loops in c. Since any two such nodes are connected by a path in a loop, there exists a

reverse path in the same loop. Thus we can construct a path from v to u by using the reverse paths

from the nodes that connect the pair of adjacent loops in the chain c. Since this holds for all v, then

for all v, w ∈ V ′ we can construct a path from v to w by passing trough u.

[2 ⇒ 1] If G′ is strongly connected, for all σ1, σ2 ∈ L there is a path ρ in G′ from any node of

σ1 to any node of σ2. This fact holds since G′ is induced by L, so ρ uses only edges of the loops in

L. While traversing ρ, every time we move from one loop to the next, these two loops must share a

node. Therefore, all pairs of adjacent loops used in ρ are overlapping. Thus L is overlapping.

The above lemma implies that if L is overlapping then it is also connected, since G′ is strongly

connected.

10

...

...

2
Fair Scheduling

Contents

2.1 Fairness Goals . 12

2.2 Graphs Characterization . 13

2.2.1 The Bounded Difference Problem . 13

2.2.2 The Balance Problem . 15

2.2.3 2-Colored Graphs . 18

2.3 Solving the Balance Problem . 20

2.4 Solving the Bounded Difference Problem 24

2.5 The perfectly balanced finite path problem 28

11

2. Fair Scheduling 2.1 - Fairness Goals

2.1 Fairness Goals

In this thesis we study fairness goals stronger than those definable through the most renowned

temporal logics for discrete-time and completely-determined models. These goals’ aim is to impose

that a scheduler dedicates the same amount of resources to each task.

Along a system’s run, the compliance to an equal distribution of resources, can be monitored by

observing for each pair of activities, how the difference between their occurrences grows along the

prefixes. If the module of a difference grows too much, this is symptom that one activity is executed

less often than the other. Ideally this difference should be 0, however, this is impossible because

after executing the first activity the difference is already no longer 0. Moreover the precedence

graph may be structured in a such a way, that it needs to execute an activity a lot of times in a row

before being able to switch to another one, during that time the difference inevitably grows. Hence,

our aim is to keep this difference as small as possible and bounded by some function on the length

of the prefix. The least growing function is the constant one and it provides our strongest fairness

condition.

Definition 2.1.1. A color sequence x ∈ [k]ω is said bounded (in difference) by a constant C ∈ N
if for every pair of colors i, j ∈ [k] and every prefix x≤n, the module of the difference between

their number of occurrences diff i,j(x
≤n) on that prefix is bounded by C. A path ρ in a k-colored

graph is said bounded (in difference) by C ∈ N if its color sequence is bounded by C. A path or

color sequence is said bounded, when it is bounded by some constant.

Example 2.1.1. The color sequence (0011)ω ∈ [1]ω is bounded by C = 2.

When a path is not bounded, we can still have a weaker form of fairness by bounding the

difference of activities with some other function on the length of the prefix. However, if this

function grows linearly like C · n, then on infinitely many prefixes we have diff i,j(x
≤n) = C · n.

Hence, the share of resources dedicated to activity i (i.e.
|x≤n|i

n)is greater than the share of resources

dedicated to activity j (i.e.
|x≤n|i

n) by the value C, obviously this is no fairness. When the function

grows sublinearly, like g(n) ∈ o(n), the difference between the share of resources dedicated to two

activities is not greater than
g(n)
n . Since this value tends to zero for n that tends at infinity, we have

that it becomes a negligible difference in an infinite run. Hence, when the difference between the

occurrence of two activities grows sublinearly, the path may be considered as asymptotically fair.

Definition 2.1.2. A color sequence x ∈ [k]ω is said balanced if for every pair of colors i, j ∈ [k],
the difference between their number of occurrences grows sublinearly on the length of the prefix,

i.e. limn→+∞
diff i,j

(x≤n)

n = 0. A path ρ in a k-colored graph is said balanced if its color sequence

is balanced

Example 2.1.2. The color sequence x =
∏+∞

i=1 ((1100)
i11) ∈ [1]ω is balanced but not bounded.

It is easy to see that every time a piece in the infinite concatenation ends the color difference is

increased by 2, i.e., diff 1,0(
∏n+1

i=1 ((1100)
i11)) = diff 1,0(

∏n
i=1((1100)

i11)) + 2. Hence, it holds

that diff 1,0(
∏n

i=1((1100)
i11)) = 2n and the path is not bounded. Since |

∏n
i=1((1100)

i11)| =∑n
i=1(4i + 2) = 2n(n + 2), we have that at every step 2n(n + 2) where a piece of the infinite

12

2. Fair Scheduling 2.2 - Graphs Characterization

concatenation ends, the length of the prefix grows asymptotically faster than the difference of

colors. Since in the intermediate prefixes x≤m with m ∈ [2n(n+ 2), 2(n+ 1)(n+ 3)], the color

difference oscillates in [2n, 2n+ 2] we have that limm→+∞
diff 1,0

(x≤m)

m = 0.

One may define other intermediate notions of fairness between the two defined above, by

explicitly requiring that the difference of occurrences of activities does not grow asymptotically

faster than a given sublinear function. However, we leave such a discussion to Section 3.6.

From the fair paths’ property defined, we can construct two colored winning conditions.

Definition 2.1.3. The bounded difference (resp. balance) goal Wbd (resp. Wbl)is the set of all

bounded (resp. balanced) infinite color sequences on [k].

2.2 Graphs Characterization

In this section, we characterize the existence of a balanced or bounded path by means of

properties of the underlaying colored graph. In particular, we observe that we can compose simple

loops for the construction of a fair path. On the converse, we prove that a fair path always contain

some regularities, that allow us to extract loops components. By evaluating the properties of

such loops, we show that whenever there exist of a fair path, a set of simple loops can be used to

construct some regular fair path.

2.2.1 The Bounded Difference Problem

The bounded difference property states that along the prefixes of a path, the difference between

the occurrences of two colors is bounded by some constant. Since the graph has a finite number of

nodes, and since each difference can assume at most a finite number of values, in a bounded path,

along the prefixes, there is eventually a repetition of the same ending node and the same difference

vector. When a repetition is found, we determine a loop which did not induce any change in the

difference of colors. Since the difference is additive, the loop has a null difference vector, i.e., all

colors occur the same number of times on it.

Definition 2.2.1. A loop σ is said perfectly balanced if all colors occur the same number of times

on it, i.e., diff (σ) = 0.

It is immediate to see that a perfectly balanced loop σ allows as to construct a bounded path

σω. Hence, by our previous argument we can easily prove the following lemma.

Lemma 2.2.1. Given a graph G, the following statements are equivalent:

1. There exists a bounded difference path.

2. There exists a periodic bounded difference path.

3. There exists a perfectly balanced loop.

13

2. Fair Scheduling 2.2 - Graphs Characterization

Proof. 1. [1 → 3] If ρ = v0a0 . . . vnan . . . is an infinite bounded difference path, then there

exists a constant C such that the absolute value of all color differences is smaller than

C. Since both the set of nodes and the possible difference vectors along ρ are finite, we

can find two indexes i < j such that vi = vj and diff (ρ
≤i) = diff (ρ

≤j). So, σ′ =
viaivi+1ai+1 . . . vj−1aj−1vj is a perfectly balanced loop.

2. [3 → 2] If there exists a perfectly balanced loop σ, then σω is a periodic bounded difference

path. Indeed, every time σ closes the color gap vector is zero, so each color gap in module

never increases beyond the maximum color gap in a subpath of σ.

3. [2 → 1] Trivial

The lemma relates the existence of a bounded path to the existence of a perfectly balanced loop.

At this point, obtaining a characterization in terms of simple loops is just a matter of decomposing

the balanced loop. To this aim we define a property of a set of loops, which states that, by using a

certain number of times each loop, all the colors occur the same number of times if the loops were

composed together.

Definition 2.2.2. Difference Vecto of n.l.c.

Let G be a k-colored graph. Given a set of loops L = {σ1, . . . , σl} the difference value of

a natural linear combination of L with respect to non-null coefficients c1, . . . , cl ∈ N−0, is the

difference vector
∑l

i=1 ci · diff (σi).

In this definition, we are using the color k as a reference for all other colors. Indeed, whenever

all differences between the occurrences of a color and the occurrences of color k are null, then

we can already state that all colors occur the same number of times. At this point,using the

decomposition and composition lemmas presented in the preliminary section on graphs we obtain

the following result.

Lemma 2.2.2. Let G be a k-colored graph. There exists a perfectly balanced loop in G if and

only if there exists an overlapping set L of simple loops of G, with an n.l.c. of difference value

equal to zero.

Proof. [only if] If there exists a perfectly balanced loop σ, by Lemma 1.2.1 the loop is the

composition of a tuple T of simple loops. Let L be the set of distinct loops occurring in T , and

for all σ′ ∈ L, let cσ′ be the number of times σ′ occurs in T . Since in the computation of the

difference vector of a path it does not matter the order in which the edges are considered, we have∑
σ′∈L cσ′ · diff k(σ

′) = diff k(σ) = 0. Finally, since the loops in L come from the decomposition

of a single loop σ, we have that L is overlapping.

[if] Let L = {σ1, . . . , σl} be an overlapping set of simple loops such that
∑l

i=1 ci ·diff (σi) = 0.

By using the algorithm presented in Definition 1.2.9, we construct a loop σ which is a linear

composition of L with coefficients c1, . . . , cl. Then, we have that σ is perfectly balanced, since

diff k(σ) =
∑l

i=1 ci · diff k(σi) = 0.

The following theorem is a direct consequence of the previous two lemmas.

14

2. Fair Scheduling 2.2 - Graphs Characterization

Theorem 2.2.1. A graph G satisfies the bounded difference problem if and only if there exists an

overlapping set L of simple loops of G, with an n.l.c. of difference value equal to zero.

2.2.2 The Balance Problem

The balance property states that along the prefixes of a path, the difference between the

occurrences of two given colors grows asymptotically slower than any function linear in length of

the prefix, and, hence, the difference is negligible in the long run. Due to the limit in the speed of

increment of the difference vector, in a given interval of lengths the differences are bounded by

some constant that does not grow linearly with the size of the lengths. Is it possible that during

these intervals, where the number of nodes and value of differences is limited, there is some

unavoidable periodicity, like in the case of the bounded problem? The answer lays in the necessity

for sequences of vectors of integer numbers to grow polynomially whenever a repetition is not

possible. Hence, the answer to the question is positive, as the next lemma shows that no periodicity

implies a linear increment of a component of a sequence of vectors.

Definition 2.2.3. Linear Combination

Let A = (a1, . . . , an) ⊆ Zd be a finite set of vectors, the linear combination of A with

coefficients c1, . . . , cl is them vector
∑n

i=1 ci · ai.

Lemma 2.2.3. Let A ⊂ Zd be a finite set of vectors such that there is no subset A′ ⊆ A with

an n.l.c. of value zero. Let {(an,1, . . . , an,d)}n∈N be an infinite sequence of elements of A, and

Sn,i =
∑n

j=0 aj,i be the partial sum of the i-th component, for all n ∈ N and i ∈ [d]. Then, there

exists at least an index h such that limn→∞
Sn,h

n 6= 0.

The proof of Lemma 2.2.3, makes use of the following lemma which allows to compute the

coefficients of an integer linear combination, knowing the vectors involved.

Lemma 2.2.4. Let Ax = 0 be a linear homogeneous system with A ∈ Qn×m. If the system has a

solution x such that x ≥ 0 and
∑m

i=1 xi = 1, then it has a solution with all natural components,

and at least one strictly positive component.

Proof. Let S be the set containing all and only the solutions x of Ax = 0, with all non-negative

components and such that
∑m

i=1 xi = 1. By hypothesis, S is not empty. Let A′ = (A
1,1,...,1)

and b′ = (01), we have S = {x ∈ Rm | A′x = b′, x ≥ 0}. By a well known result in linear

programming (see, for instance, Theorem 3.5 of [NW88]), S contains a basic solution, i.e., there

exists a non-singular submatrix C ∈ Rr×r of A′, given by the columns i1, . . . , ir and the rows

j1, . . . , jr of A′, such that there is a point (z1, . . . , zm) ∈ S such that z′ = (zi1 , . . . , zir) is the

unique solution to the system of linear equations Cz′ = b where b = (b′j1 , . . . , b
′
jr
)T , and for all

i 6∈ {i1, . . . , ir}, zi = 0. By Cramer’s theorem, for all k ∈ [r], we have zik =
det(C′ik

)

det(C′) where C ′ik
is the matrix obtained from C ′ by replacing the ik-th column with the column vector b. Since

the determinant of a rational matrix is rational, z is a point of S with all rational coefficients,

i.e., z is a solution of Ax = 0 with all non-negative rational coefficients such that
∑m

i=1 zi = 1.

Clearly, z has at least one positive coefficient. Now, since the system Ax = 0 is homogeneous, by

multiplying each component of z by the least common denominator of all components, we obtain

the thesis.

15

2. Fair Scheduling 2.2 - Graphs Characterization

Now we are ready to prove Lemma 2.2.3.

Proof. LetA = {(x1,1, . . . , x1,d), . . . , (xm,1, . . . , xm,d)} and consider the function f : Rm 7→ R+

such that f(c1, . . . , cm) = max1≤i≤d{|
∑m

j=1 cj · xj,i|}. By construction, f is a continuous

function. Let now K ⊂ Rm be the set {(c1, . . . , cm) ∈ [0, 1]m |
∑m

i=1 ci = 1}. Note that 0 6∈ K
and that K is compact, since it is a finite dimensional space defined by a linear equation. Hence, by

Weierstrass’ Theorem, f admits a minimum valueM Now, sinceA is a set of convexly independent

vectors, M must be strictly positive. Indeed, if by contradiction M = 0, there is a non-null vector

(c1, . . . , cm) ∈ K such that
∑m

j=1 cj · xj,1 = . . . =
∑m

j=1 cj · xj,d = M = 0. By Lemma 2.2.4

the system
∑m

j=1 cj · xj,i = 0 has a natural solution c with at least one positive component. This

solution gives rise to an n.l.c. of some vectors of A (those corresponding to positive components

of c) with value zero, which contradicts the hypotheses on A.

Then, consider the sequence {(an,1, . . . , an,d)}n and its partial sums Sn,i =
∑n

j=0 aj,i. More-

over, let δi,n be the number of times for which the vector (xi,1, . . . , xi,d) occurs in the previ-

ous sequence up to position n and let ci,n = δi,n/n. Then, (Sn,1, . . . , Sn,d) =
∑m

i=1 δi,n ·
(xi,1, . . . , xi,d) = n ·

∑m
i=1 ci,n · (xi,1, . . . , xi,d). Since we have

∑m
i=1 δi,n = n for all n ∈ N, it

is obvious that (c1,n, . . . , cm,n) ∈ K. By the convex independence hypothesis on A, it holds that

for all n ∈ N there exists at least an index i, with 1 ≤ i ≤ d, such that Sn,i 6= 0. Let {jn}n be

an index sequence such that |Sn,jn | = max1≤i≤d{|Sn,i|} > 0, for all n ∈ N. Since {jn}n can

assume at most d different values, there exists a value h which occurs infinitely often in it. Let

{hi}i be the index sequence such that jhi
= h and there is no l ∈]hi, hi+1[with jl = h. Then,

from {Sn,h}n we can construct the extracted sequence {Shi,h}i. Now, we have that |Shi,h| =
max1≤j≤d{|Shi,j |} = hi ·max1≤j≤d{|

∑m
k=1 ck,hi

·xk,j |} = hi ·f(c1,hi
, . . . , c1,hi

) ≥ hi ·M > 0.

Hence, limi→∞
|Shi,h

|

hi
≥ M > 0. Since

{ |Shi,h
|

hi

}
i

is an extracted sequence of
{ |Sn,h|

n

}
n

, we

finally obtain that limn→∞
Sn,h

n 6= 0.

The lemma proves that whenever we add incrementally a sequence of vectors that cannot

balance themselves, then at least one component does not grow sublinearly. Now, consider an

infinite path, for each prefix it is possible to consider the path quasi-segmented in an infinite

sequence of loops given by the incremental quasi-segmentation of its prefixes. Each loop is

associated with a difference vector, and every time a loop ends, the difference vector of the prefix

is the sum of the vectors of the loops met so far. Hence, if the loops cannot balance themselves

with a natural linear combination, the path cannot be balanced.

Lemma 2.2.5. In a k-colored graph G there exists a balanced path only if there exists a connected

set L of simple loops of G, with an n.l.c. of difference value equal to zero.

Proof. If there exists an infinite balanced path ρ, since the set of nodes is finite, there is a set V ′ of

nodes occurring infinitely often in ρ. Let ρ′ be a suffix of ρ containing only nodes in V ′. The path

ρ′ is balanced and it is composed by an infinite sequence of simple loops on V ′. (see Definition

1.2.6 for further details). Let L be the (finite) set of such simple loops, and let A ⊂ Zk−1 be

the set of difference vectors of the loops in L. Every time a loop trough V ′ closes along ρ′, the

difference vector up to that point is the sum of the difference vectors of the simple loops occurred

so far, plus the difference vector of the remaining simple path. Since the remaining simple path

16

2. Fair Scheduling 2.2 - Graphs Characterization

cannot have length greater than |V ′|, the difference vector up to that point differs from a sum of a

sequence of elements of A by a constant-bounded term. Let n(j) be the index of the j-th point

where a loop is closed along ρ′. Since ρ′ is balanced, each component of the difference sequence

{diff (ρ
′≤n(j))}i∈N is in o(j). By Lemma 2.2.3, this is possible only if A has a subset A′ with

an n.l.c. of value zero. Thus, the set of loops L′ with difference vectors in A′ has an n.l.c with

difference value zero. Moreover, since the loops in L′ are constructed with edges of ρ′, they are

connected. This concludes the proof.

We determined that a periodicity among the simple loops is necessary for the existence of a

balanced path. Is it sufficient as well? Provided that a set of loops is connected and admits a natural

linear combination with difference value zero, we can construct a balanced path. The key to the

construction is to use all the loops periodically as many times as multiples of the relative coefficient

of the nl.c.. However, moving from one loop to another requires the use of the connecting paths

that add a non-balanced contribution to the number of occurrences. The solution is to add such

connecting paths less and less often with respect to the use of the main loops. In such a way,

their unbalanced contribution grows sublinearly and is negligible asymptotically. This intuition is

formalized in the following lemma.

Lemma 2.2.6. In a k-colored graph G if there exists a connected set L of simple loops of G, with

an n.l.c. of difference value zero then there exists a balanced path.

Proof. Let L = {σ0, . . . , σl−1} be a connected set of simple loops having an n.l.c. with difference

value zero, and coefficients c0, . . . , cl−1. For all i = 0, . . . , l − 1, let vi be the initial node of

σi. Since L is connected, there exists a path ρi from vi to v(i+1) mod l. For all j > 0, define

the loop πj = σj·c00 ρ0σ
j·c1
1 ρ1 . . . σ

j·cl−1

l−1 ρl−1. We claim that the infinite path π =
∏

j>0 πj is

balanced. Each time a πj block ends along π, the part of the difference vector produced by

the loops of L is zero. So, when a πj ends, the difference vector is due only to the paths ρi.
Since the index of the step k(j) at which πj ends grows quadratically in j and the difference

vector diff (π1 . . . πj) grows linearly in j, we have that limj→∞ diff (π1 . . . πj)/k(j) = 0. It can

be shown that in the steps between k(j) and k(j + 1), the i-th component of the difference

vector differs from the one of diff (π1 . . . πj) no more than a function Ci,j that grows linearly in j.
Specifically, Ci,j =MPi + jMAi, where MPi is the sum, for all ρj , of the maximum modulus

of the i-th component of the difference vector along ρj , and MAi is the sum, for all σj , of the

maximum modulus of the i-th component of the difference vector along σj . As a consequence,

limk→∞ diff (π
≤k)/k = 0 and π is balanced.

By merging together the two previous lemmas, as a corollary, we obtain the graph theoretic

characterization for the balance problem.

Theorem 2.2.2. A graph G satisfies the balance problem if and only if there exists a connected set

L of simple loops of G, with an n.l.c. of difference value equal to zero.

This theorem, alongside proof of Lemma 2.2.6, shows that a connect set of simple loops having

zero as difference value of an n.l.c. constitute a representation of a balanced path.

17

2. Fair Scheduling 2.2 - Graphs Characterization

2.2.3 2-Colored Graphs

From the preliminary section, we know that a bounded path is also balanced and that a balanced

path is not necessarily bound. However, is it possible that whenever there exists a balanced path

we can also find a bounded path in the same graph? Or stated in different terms, does the existence

of a connected set of simple loops with zero as difference value of an n.l.c. imply the existence of

an overlapping set of simple loops with zero as difference value of an.l.c.? In general, the answer

to this question is negative as shown in the following example.

A

1

��

E
3

oo

2

��@
@@

@@
@@

D

3
>>~~~~~~~

F

3��~~
~~

~~
~

B

2

SS

3 // C

1

``@@@@@@@

Figure 2.1: A 3-colored graph satisfying the balance problem, but not the bounded difference

problem.

Example 2.2.1. Consider the graph G in Fig. 2.1. First note that, up to rotation, there are just

three simple loops in it: σ1 = A ·B ·A, σ2 = C ·D · E · F · C, and σ3 = A ·B · C ·D · E ·A.

It is easy to see that diff (σ1) = (1, 1), diff (σ2) = (−1,−1), and diff (σ3) = (−1,−3). On one

hand, since the connected set of simple loops {σ1, σ2} has an n.l.c. with difference value zero, we

obtain that there is a balanced path in G. On the other hand, for all the three overlapping sets of

loops ({σ1, σ3}, {σ2, σ3}, and {σ1, σ2, σ3}) there is no way to obtain a zero difference value of an

n.l.c. with all coefficients different from zero. So, there is no bounded difference path in G.

Hence, the bounded and balance problems are not equivalent in general. However, when we

deal with 2-colored graph, the color difference vector becomes a natural number. So, if L is a

connected set of simple loops having zero as difference value of an n.l.c., then there must be either

a perfectly balanced simple loop or two loops with difference vectors of opposite sign. Notice

that two loops σ, σ′ with color differences of opposite sign have the following n.l.c. of difference

value zero: |diff (σ
′)| · diff (σ) + |diff (σ)| · diff (σ

′) = 0. If the two loops are connected but not

overlapping, we can construct a sequence of adjacent overlapping simple loops connecting them.

In this sequence, we are always able to find a perfectly balanced simple loop or two overlapping

simple loops with difference vectors of opposite sign. Therefore, on a 2-colored graph the balanced

and bounded problems coincide, as proved in more details in the following lemma.

Lemma 2.2.7. Let G be a 2-colored graph. If there exists a connected set of simple loops of G
with zero as difference value of an n.l.c., then there exists an overlapping set of simple loops of G
with zero as difference value of an n.l.c.

Proof. In a 2-colored graph, the difference vector of any path ρ is simply an integer. Let L be a

connected set of simple loops with zero as a difference value of an n.l.c.. If L contains a simple

loop σ such that diff (σ) = 0, then {σ} is trivially an overlapping set.

18

2. Fair Scheduling 2.2 - Graphs Characterization

If L contains no perfectly balanced loop, then all the difference vectors of the loops in L
cannot have the same sign, otherwise it is not possible to have a non-trivial natural combination∑

σ∈L cσdiff (σ) = 0.

Thus, let diff (σ) > 0 and diff (σ
′) < 0, for σ, σ′ ∈ L. If σ and σ′ are overlapping, then {σ, σ′}

is the overlapping set we are looking for. If σ and σ′ are not overlapping, since they are connected,

there exist a path ρ1 from σ to σ′ and a path ρ2 from σ′ to σ. σ So, there exist four indexes i, i′, j, j′

such that ρ1(i) is the last node of ρ1 in σ, ρ1(j) is the first node of ρ1 in σ′, ρ2(i
′) is the last node

of ρ2 in σ′, and ρ2(j
′) is the first node of ρ2 in σ. Then, within the loop σ there exists a simple

path ρ from ρ2(j
′) to ρ1(i) and, within the loop σ′, there exists a simple path ρ′ from ρ1(j) to

ρ2(i
′). We then set ρ′1 = ρ1(i) . . . ρ1(j) and ρ′2 = ρ2(i

′), . . . , ρ2(j
′). We observe that the pairs of

paths (ρ, ρ′1), (ρ
′, ρ′1), (ρ

′, ρ′2), and (ρ, ρ′1) have only one node in common. Moreover, ρ and ρ′

have no node in common since σ and σ′ are not overlapping. So, the loop σ′′ = ρρ′1ρ
′ρ′2 is not

simple if and only if ρ′1 and ρ′2 have a node in common. Now, observe that two loops π1 and π2
with difference vectors of opposite sign have zero as difference value of an n.l.c. with coefficients

|diff (π2)| and |diff (π1)|, since |diff (π2)|diff (π1) + |diff (π1)|diff (π2) = 0. We conclude with the

following case analysis.

1. If σ′′ is simple, then (σ, σ′′) and (σ′, σ′′) are pairs of overlapping sets.

(a) If diff (σ
′′) = 0 then {σ′′} is an overlapping set having zero as an n.l.c.

(b) If diff (σ
′′) > 0 then {σ′, σ′′} is an overlapping set having zero as an n.l.c.

(c) If diff (σ
′′) < 0 then {σ, σ′′} is an overlapping set having zero as an n.l.c.

2. If ρ′1 and ρ′2 have nodes in common, there exist two indexes k, k′ such that it holds

ρ′1(k) = ρ′2(k
′). So, we can construct two loops σ′1 = ρρ′1(1) . . . ρ

′
1(k) . . . ρ

′
2(|ρ

′
2|) and

σ′2 = ρ′ρ′2(1) . . . ρ
′
2(k
′) . . . ρ′1(|ρ

′
1|).

(a) If diff (σ
′
i) = 0, for some i ∈ {0, 1}, then {σ′i} is an overlapping set having zero as an

n.l.c.

(b) If diff (σ
′
2) > 0 then {σ′, σ′2} is an overlapping set having zero as an n.l.c.

(c) If diff (σ
′
1) < 0 then {σ, σ′1} is an overlapping set having zero as an n.l.c.

(d) If diff (σ
′
1) > 0 and diff (σ

′
2) < 0, then {σ′1, σ

′
2} is an overlapping set having zero as

an n.l.c.

Due to the above characterization, both decision problems can be solved efficiently, by using a

Bellman-Ford algorithm to find two loops of opposite color difference sign, if such exist.

Theorem 2.2.3. A 2-colored graph G = (V,E) satisfies the bounded difference problem if and

only if it satisfies the balance problem. Both problems can be solved in time O(|V | · |E|).

19

2. Fair Scheduling 2.3 - Solving the Balance Problem

Proof. The algorithm is the following: at first we use a deep-first search to construct a simple loop.

If the loop is null then it is the perfectly balanced loop and the algorithm terminates. If the loop is

positive (resp. negative) we first decompose the graph in its connected component by using Tarjan’s

algorithm in time O(|V | + |E|). Then on each connected component we apply Bellman-Ford

algorithm for single-source maximum (resp. minimum) paths, starting at any node. Bellman-Ford

algorithm finds a negative (resp. positive) loop if one exists. If one run of the algorithm, on a

connected component, finds a negative (resp. positive) loop then the balance and bounded problem

are solved with positive answer. If no run of the algorithm finds a negative (resp. positive) loop,

then the problems are solved with negative answer. Each run of the Bellman-Ford algorithm takes

time O(|V ′| · |E′|) where V ′ and E′ are the set of nodes and the set of edges of the connected

component. So if S is the set of connected components G′, we have the whole algorithm runs

in time O(|V |+ |E|+
∑

G′∈S |VG′ | · |EG′ |) ∈ O(
∑

G′∈S |VG′ | · |E|) = O(|E|
∑

G′∈S |VG′ |) =
O(|E| · |V |).

2.3 Solving the Balance Problem

In order to solve the balance problem it is sufficient to determine a set of connected simple

loops having zero as difference value of an n.l.c. Indeed, such loops can be used to construct a

balanced path as shown in the proof of Lemma 2.2.6. Since simple loops are connected if and only

if they belong to the same connected component, we can restrict our investigation only to such

connected components. Hence, in the following, we make the assumption that the underlaying

graph is strongly connected and we look for a set of loops with zero as difference value of a natural

linear combination. To this purpose we use techniques developed for the solutions of flow problems

in operative research [HL03].

Consider a strongly connected k-colored graph G = (V,E), our purpose is to relate edges

forming loops to an n.l.c. of difference value zero. Hence, our formalization needs to (i) highlight

edges as many time as they are needed in the linear combination (ii) demand that the edges contain

the same number of colors (iii) demand that all the edges are used in a finite number of loops.

The first aim is achieved by associating to each edge e a flow variable xe representing how many

times the edge is used in the linear combination. For the second point, we simply need to impose

that the flow passing through each color is the same for every color:
∑

e∈E(a) xe =
∑

e∈E(k) xe
for all a ∈ [k − 1]. The third point requires some more explanation, however, if the edges

form loops, then for each edge entering in a node there must be an edge exiting from that node:∑
e∈v← xe =

∑
e∈v→ xe. This necessary condition turns out to be also a sufficient one as shown

in the following lemma.

Lemma 2.3.1. Given a graph G = (V,E), there exists a vector xe : E → N such that for each

edge v ∈ V it holds
∑

e∈v← xe =
∑

e∈v→ xe if and only if there exists a sequence of simple loops

T = σ1, . . . , σl such that xe =
∑l

i=1 |σi|e.

if. Let T = σ1, . . . , σl be a sequence of simple loops and let xe =
∑l

i=1 |σi|e. Consider a node

v ∈ V , and let yv,i ∈ {0, 1} be a value indicating whether the node v is used in the loop σi.
Precisely yv,i = 1 if and only if the loop σi passes through v. Since each loop passing through v

20

2. Fair Scheduling 2.3 - Solving the Balance Problem

contains only one edge entering in v and only one edge exiting from v, and since a loop non-passing

through v contains none of the above, we have for each v,
∑

e∈v→ xe =
∑l

i=1 yv,i =
∑

e∈v← xe.

[only if] Let xe : E → N be a vector such that
∑

e∈v← xe =
∑

e∈v→ xe for allv ∈ V . We

propose an algorithm that computes a sequence of loops T = σ1, . . . , σl such that xe =
∑l

i=1 |σi|e.

The algorithm is recursive on the value of the sum
∑

e∈E xe.

1. For the base case, let
∑

e∈E xe = 0 then the empty sequence is the sought sequence of loops

such that xe =
∑l

i=1 |σi|e.

2. Let
∑

e∈E xe > 0. In the recursive step we construct a simple loop and we remove the edges

used by this loop from the function xe, thus obtaining a new function x′e of lower sum. The

construction is iterative and proceeds as follows:

(a) For the invariant property the following holds: we have a simple path ρ = e1, . . . , en
representing the partial construction of the loop, moreover we have a vector ye : E → N

such that for all e, we have ye = xe − |ρ|e

(b) In the first step of the iteration we choose any edge e′ such that xe′ > 0 and we set

ρ = e′ and ye : E → N as the vector such that for all e ∈ E \ {e′} we have ye = xe
and for the edge e′ we have ye = xe − 1. It is easy to see that ye = xe − |ρ|e for all

e ∈ E. At this point ρ may be a loop, in which case the iteration ends.

(c) Consider the simple path ρ and the function ye at an iterative step. Let v be the ending

edge of ρ: in ρ there is only one entering edge in v and no exiting edges. Hence,∑
e∈v← ye = (

∑
e∈v← xe)− 1 = (

∑
e∈v→ xe)− 1 = (

∑
e∈v→ ye)− 1. This implies

that
∑

e∈v→ ye > 0, hence we can find e′ ∈ v→ such that ye′ > 0. Then, compute for

the next step ρ′ = ρ · e′ and the function y′e such that y′e′ = ye′ − 1 = xe′ − |ρ|e′ − 1 =
xe′ − |ρ′|e′ and y′e = ye = xe − |ρ|e = xe − |ρ′|e, for all e 6= e′. At this point if ρ′ is a

loop the iteration ends.

(d) As the ending property we have that ρ is a simple loop and ye : E → N is such

that for all e, we have ye = xe − |ρ|e. From these properties we can also prove that∑
e∈v← ye =

∑
e∈v→ ye. For all nodes v appearing in ρ there is one exiting edge from

v and one entering edge in v, hence, there is one and only one edge e′ ∈ v← and one

and only one edge e′′ ∈ v→ appearing in ρ. So, for all edges e ∈ ()v→∪v←)\{e′, e′′}
we have ye = xe and for all edges e ∈ {e′, e′′} we have ye = xe − 1. It holds

that
∑

e∈v→ ye = (
∑

e∈v→ xe) − 1 = (
∑

e∈v← xe) − 1 =
∑

e∈v← ye. On the other

hand, for all v not appearing in ρ for all e ∈ v→ ∪ v← we have ye = xe. Hence,∑
e∈v→ ye =

∑
e∈v← ye.

At the end of the iteration we have a simple loop ρ and a vector ye : E → N such that for all

e ∈ E, we have ye = xe − |ρ|e. At this point we can apply the recursive algorithm to the

vector ye since we have
∑

e∈E ye <
∑

e∈E xe. and
∑

e∈v← ye =
∑

e∈v→ ye.

In the following we define a system of linear equations that allows us to compute vectors

xe : E → N representing a set of simple loops. Hence, the algorithm, presented in the second part

21

2. Fair Scheduling 2.3 - Solving the Balance Problem

of the proof of the previous lemma, for the computation of the simple loop, is a key component of

the scheduling algorithm.

Since we defined a way to represent the edges involved in the loops, and to relate them to the

existence of a natural linear combination of difference value zero we can define a linear system

of constraints. To the previous discussed constraints, we add two new ones: (i) we ask that the

number of time an edge is used is non negative, i.e., xe ≥ 0 for all e ∈ E, (ii) we have to use at

least one edge in order to not find the trivial solution with all values xe = 0, hence, we also ask

that
∑

e∈E xe > 0.

Definition 2.3.1. Let G = (V,E) be a k-colored graph. We call natural balance system for G the

following system of equations on the set of variables {xe | e ∈ E}.

1. for all v ∈ V
∑

e∈v→ xe =
∑

e∈v← xe
2. for all a ∈ [k − 1]

∑
e∈E(a) xe =

∑
e∈E(k) xe

3. for all e ∈ E xe ≥ 0
4.

∑
e∈E xe > 0

5. for all e ∈ E xe ∈ N.

Let m = |E| and n = |V |, the balance system has m variables and m+ n+ k constraints.

It is easy to prove that the above system of linear constraint is feasible if and only if there exists

a set of loops with zero as a difference value of an n.l.c.

Lemma 2.3.2. There exists a set L of simple loops in G with zero as a difference value of an n.l.c.

if and only if the natural balance system for G is feasible.

only if. If there exists an n.l.c. of L with difference value zero, let cσ be the coefficient associated

with a loop σ ∈ L. Then, we can determine a sequence of loops T = σ1, . . . σl obtained by

adding in arbitrary order all the loops in L as many times as their relative coefficient. We can

construct a vector x ∈ Rm that satisfies the balance system: xe =
∑

σ∈L cσ|σ|e =
∑l

i=1 |σi|e.
The first part of Lemma 2.3.1, shows already that xe satisfy the first set of constraints of the

natural balance systems. The third, fourth and fifth set are trivially satisfied. For the second set

we need to observe that the value
∑

e∈E(a) xe is the sum of edges colored by a color a ∈ [k]:∑
e∈E(a) xe =

∑
e∈E(a)

∑
σ∈L cσ|sigma|e =

∑
σ∈L cσ

∑
e∈E(a) |σ|e =

∑
σ∈L cσ|σ|a. Due

to the natural linear combination of value zero we have that for all a ∈ [k − 1] it holds that∑
σ∈L cσ|σ|a =

∑
σ∈L cσ|σ|k, and, hence, the second set of constraints hold.

[if] Let xe : E → N be a solution of the feasible system. By Lemma 2.3.1, we can construct

a sequence of simple loops T = σ1, . . . , σl such that
∑l

i=1 |σi|e = xe for all edges e ∈ E.

Let L be the set of these loops and for each σ ∈ L let cσ be the number of times σ appears

in T . Then xe =
∑

σ∈L cσ|σ|e. Due to the second set of constraints, and due to the fact that∑
e∈E(a) xe =

∑
σ∈L cσ|σ|a for all colors a ∈ [k], we have that the natural linear combination of

L with coefficients cσ for each σ ∈ L has difference value zero.

So, finding a solution to the natural balance feasibility problem is equivalent to finding a set

of simple loops with zero as a difference value of an n.l.c. and equivalent to finding a balanced

22

2. Fair Scheduling 2.3 - Solving the Balance Problem

path. However, the feasibility of a system linear inequalities with integer variables is in general an

NP -hard problem ([NW88]).On the other hand, whenever the variables are real and the inequalities

are not strict (i.e. the inequalities signs are only ≤,≥,=), then the feasibility problem becomes

polynomial in the size of the system ([NW88]). Changing from natural variable to real variables in

a system does cause an increment in the number of solutions, hence we may find a real solution

without finding a natural one. With the aim to disprove such a property we define the following

feasibility system.

Definition 2.3.2. Let G = (V,E) be a k-colored graph. We call real balance system for G the

following system of equations on the set of variables {xe | e ∈ E}.

1. for all v ∈ V
∑

e∈v→ xe =
∑

e∈v← xe
2. for all a ∈ [k − 1]

∑
e∈E(a) xe =

∑
e∈E(k) xe

3. for all e ∈ E xe ≥ 0
4.

∑
e∈E xe ≥ 1

5. for all e ∈ E xe ∈ R.

Let m = |E| and n = |V |, the balance system has m variables and m+ n+ k constraints.

Observe that not only we asked the variable to be in the set of reals number, but also the fourth

constraint has became
∑

e∈E xe ≥ 1. This has been done with the aim to remove the constraint

with the > sign which would not ensure a polynomial resolvability of the feasibility problem. Also

the substitution is reasonable because the fourth constraint was just added to avoid the solution

with all zero components, this is also achieved by the new constraint. However, the new constrain

seems to be more restrictive, nonetheless the fact that we are using real numbers make it flexible

enough, as shown by the following lemma.

Lemma 2.3.3. There exists a solution to the real balance feasibility problem if and only if there

exists a solution to the natural balance feasibility problem.

if. Suppose there exist a vector xe : E → N solution to the natural balance system. This solution

satisfy all constraints of the real version of the feasibility problem but the fourth. Hence, we

compute a new function ye : E → R such that for all edged e ∈ E we have ye =
xe∑

e∈E xe
. It is

easy to see that it satisfies all constraints of the real balance system.

[only if] If the real balance system is feasible, since it has integer coefficients, it has to have a

rational solution. Such rational solution xe : E → Q, satisfies also all the constraints of the natural

balance system but for the fact that its values do not belong to N. Therefore, if d is the minimum

common multiple among the denominators of the rational numbers xe, we can define a new vector

ye : E → N such that for all edges e ∈ E it holds ye = d · xe. Since, all constraints of the natural

system are either equalities or inequalities of the type aTx ∼ 0, for ∼∈ {>,≥}, they are also

satisfied by the function ye.

The following is a corollary of Theorem 2.2.2, and Lemmas 2.3.2 and 2.3.3.

Corollary 2.3.1. If G is strongly connected, there exists a balanced path in G if and only if the

real balance system for G is feasible.

23

2. Fair Scheduling 2.4 - Solving the Bounded Difference Problem

At this point, computing a rational solution to the real balance system provides us with a set of

loops representing a balanced path in a strongly connected graph. On the other hand, if we do not

find such a solution we conclude that there are no loops with zero as difference value of an n.l.c.

and, hence, no balanced path.

Theorem 2.3.1. The balance problem, i.e. determining whether on a graph G there exists a

balanced path and computing a representation of such path if it exists, is polynomial in the size of

G.

Proof. In order to solve the balance problem in G, first we compute the maximal connected

components of G using the classical Tarjan’s algorithm [CLRS01]. This algorithm is polynomial

in n and m. Then, in each component we compute whether the real balance system is feasible,

by using the polynomial algorithm for feasibility of sets defined by linear constraints [NW88].

This second algorithm is used at most n times and it is polynomial in the number of constraints

(n+m+ k) and in the logarithm of the maximum modulus of a coefficient in a constraint (in our

case, the maximum modulus is 1). If the feasibility algorithm answer positively to the existence

of a solution, it also provide a rational one. By the proof of Lemma 2.3.2, such a solution allows

us to compute in polynomial time a set of connected simple loops and the coefficients of an n.l.c.

of value zero. As shown in the if part of the proof of Lemma 2.2.6, this in turn allows us to

constructively characterize a balanced path in the graph.

2.4 Solving the Bounded Difference Problem

In the previous section we defined a feasibility system that allows us to compute a set of simple

loops having zero as difference value of a natural linear combination. Such set of loops is also what

is needed to determine a bounded path, provided that is is also overlapping. Hence, we need to

add some more constraints that impose the loops found actually satisfy the said property. Lemma

1.2.2 allow us to link this requirement to a reachability problem, which is also commonly solved

as flow problem in operative research. According the the lemma, in order to ensure overlapping

of the loops, we need to find a node on such loops connected to all the other nodes only through

edges belonging to the loops themselves. In the following xe represents the variable associated to

the edge e in the real balance system, and is called x-load associated to e.
In order to evaluate the connection between the nodes of the loops and a fixed node u, we

imagine there is a connection flow generated from u and moving through the graph, only on

edges belonging to the loops. Eventually some flow is absorbed by every node in the loops, thus

ensuring that u is connected to all of them. In order to represent this flow, we introduce new

variables ye representing the amount of connection flow passing through the edges e. At this point,

the constraints need to ensure that (i) there is some absorbed flow on all the nodes belonging

to the loops, (ii) the absorbed flow is generate by the fixed node u, (iii) there is a connection

flow only on edges belonging to the loops. The second problem is solved by observing that only

nodes v belonging to the loops satisfy the property
∑

e∈v← xe > 0 while for the other nodes, the

entering x-load is zero. Hence, we can imagine that every node absorbs a connection load equal to∑
e∈v← xe and be sure that all and only the nodes belonging to the loops will absorb some of it. We

24

2. Fair Scheduling 2.4 - Solving the Bounded Difference Problem

impose such condition by asking that for each node v, the exiting y-load is less than the entering

y-load by the quantity
∑

e∈v← xe, i.e., we use the constraint
∑

e∈v← ye−
∑

e∈v→ ye =
∑

e∈v← xe.

For the third point we just need to ask that u generates as much y-load as that absorbed by the other

nodes, hence,
∑

e∈u→ xe −
∑

e∈v← xe =
∑

v∈V \{u}

∑
e∈v← xe. For the third point, since edges

are used only if xe > 0, a constraint of the form 0 ≤ ye ≤ C · xe for some constant C is enough.

The value ye of a flow on e is bounded by the total flow connecting u to the other nodes, i.e., by the

value
∑

v∈V \{u}

∑
e∈v← xe. Observe that this flow is also bounded by

∑
v∈V

∑
e ∈ v←xe. Since

all the edges enter in one and only one node the above value is equal to
∑

e∈E xe. Hence, in order

to evaluate the size of C we need to determine the maximum value of
∑

e∈E xe and the minimum

value of xe in a solution of the real balance system. This values exists and we determine them in

the following lemma.

Lemma 2.4.1. Let G = (V,E) be a k-colored graph, with |V | = n, |E| = m, and sG =
min{n+ k − 1,m}. For all solutions x to the real balance system for G there exists a solution

x′ such that, for all e ∈ E, it holds (xe = 0 ⇒ x′e = 0) and (xe > 0 ⇒ 1 ≤ x′e ≤ sG!). As a

consequence, 1 ≤
∑

e∈E x
′
e ≤ m · sG!.

Due to its many technical details, we postpone the proof of this lemma later in this section (but

the interested reader can already read it). The lemma assure us that whenever there is a solution to

the real balance system there is another solution such that all components xe are no smaller than 1
and the sum

∑
e∈E xe is not greater than m · sG!. Hence, the constant C we are looking for in the

third requirement for overlapping of loops, is equal to C = m · sG!.

Once, formalized all the needed requirements, we can define the complete linear system of

inequalities that allow us to solve the bounded problem.

Definition 2.4.1. Let G = (V,E) be a k-colored graph with m = |E|, n = |V |, and sG =
min{n+ k − 1,m}, and let u ∈ V be a node. We call bounded difference system for (G, u) the

following system of equations on the set of variables {xe, ye | e ∈ E}.

1-5. The same constraints as in the balance system for G
6. for all v ∈ V \ {u}

∑
e∈v← ye −

∑
e∈v→ ye =

∑
e∈v→ xe

7.
∑

e∈u→ ye −
∑

e∈u← ye =
∑

v∈V \{u}

∑
e∈v→ xe

8. for all e ∈ E ye ≥ 0
9. for all e ∈ E ye ≤ (m · sG!)xe
10. for alle ∈ E ye ∈ R.

The bounded difference system has 2m variables and 3m+ 2n+ k constraints.

The following lemma states that the bounded difference system can be used to solve the

bounded difference problem.

Lemma 2.4.2. There exists an overlapping set of simple loops in G, passing through a node u and

having zero as difference value of an n.l.c. if and only if the bounded difference system for (G, u)
is feasible.

25

2. Fair Scheduling 2.4 - Solving the Bounded Difference Problem

only if. Let L be an overlapping set of simple loops having zero as difference value of an n.l.c.

with coefficients cσ for all loops σ ∈ L. Then by Lemma 2.3.2 we can construct a solution

xe =
∑

σ∈L cσ|σ|e to the bounded-difference system. By Lemma 2.4.1, there exists another

solution x′ ∈ Rm to the balance system, such that xe = 0 ⇒ x′e = 0 and xe > 0 ⇒ 1 ≤ x′e ≤ sG!.
If any loop of the overlapping set L passes through u, by Lemma 1.2.2, there exists a path ρv from

u to any node v occurring in L. We set ye =
∑

v∈V ′\{u}(|ρv|e
∑

e∈vE
x′e). Simple calculations

show that (x′, y) is a solution to the bounded difference system for (G, u).

[if] If there exists a vector (x, y) ∈ R2m satisfying the bounded-difference system, then like

we did in the second part of Lemma 2.3.2, using x, we can construct a set of simple loops L having

zero difference value of an n.l.c. Since
∑

e∈u→ ye −
∑

e∈u← ye =
∑

v∈V \{u}

∑
e∈v→ xe, we have

that u belongs to at least one edge used in the construction of L. If we set G′ = (V ′, E′) as the

subgraph of G induced by L, we are able to show by contradiction that there is a path in G′ from

u to every other node of V ′. Indeed if for some v ∈ V ′ \ {u} there is no path in G′ from u to v
then there is some load exiting from u that cannot reach its destination using only edges of G′.
Since the constraints (8) make it impossible to carry load on edges of G that are not used in L, the

connection constraints cannot be satisfied. So, for all v ∈ V ′ there is a path in G′ from u to v. By

Lemma 1.2.2, L is overlapping.

At this point, computing a rational x-solution to the real balance system provides us with a

set of overlapping loops representing a bounded path in a strongly connected graph. On the other

hand, if we do not find such a solution we conclude that there are no loops with zero as n.l.c. and,

hence, no balanced path.

Theorem 2.4.1. The bounded problem, i.e. determining whether on a graph G there exists a

bounded path and computing a representation of such path if it exists, is polynomial in the size of

G.

Proof. In order to solve the bounded difference problem in G, for all u ∈ V we check whether

the bounded difference system for (G, u) is feasible, by using a polynomial time algorithm for

feasibility of linear systems [NW88]. This algorithm is used at most n times and it is polynomial

in the number of constraints (2n+ 3m+ k) and in the logarithm of the maximum modulus M of a

coefficient in a constraint. In our case, M = m · sG!. Using Stirling’s approximation, we have

log(m · sG!) = log(m) + Θ(sG log(sG)). Therefore, we obtain the following.

If the feasibility algorithm answer positively to the existence of a solution, it also provide a

rational one. By the proof of Lemma 2.3.2, such the x-component of the solution allows us to

compute in polynomial time a set of simple loops and the coefficients of an n.l.c. of difference

value zero. By the properties ensured by the y-component of the solution we know that the loops

are overlapping. As shown in the proof of Lemma 2.2.6, this in turn allows us to constructively

characterize a balanced path in the graph.

The rest of this section is dedicated to the proof of Lemma 2.4.1.

We first introduce two preliminary lemmas.

Lemma 2.4.3. Let t ∈ N be a natural number and A ∈ [t]m×m0 be a square matrix, then

|det(A)| ≤ tmm!. Moreover, if A is not singular then |det(A)| ≥ 1.

26

2. Fair Scheduling 2.4 - Solving the Bounded Difference Problem

Proof. We prove the first statement by induction on m.

1. If m = 1 then |det(A)| = |a1,1| ≤ t.

2. If the statement holds for m− 1, then for any j ∈ [m] it holds that

det(A) =

m∑

i=1

(−1)i+jai,jdet(Mi,j),

where Mi,j ∈ [t]
(m−1)×(m−1)
0 is a matrix obtained from A by removing the i-th row and the

j-th column. So, |det(A)| ≤ |
∑m

i=1 ai,jdet(Mi,j)| ≤
∑m

i=1 |ai,j ||det(Mi,j)| ≤
∑m

i=1 t ·
tm−1(m− 1)! = (tm)tm−1(m− 1)! = tmm!.

Moreover, if A is not singular, since A has an integer determinant it must be |det(A)| ≥ 1.

Lemma 2.4.4. Let t be a natural number and A ∈ [t]n×m0 , A′ ∈ [t]n
′×m

0 , B ∈ [t]n×10 , and

B′ ∈ [t]n
′×1

0 be four matrices. Let S = {x ∈ Rm | Ax ≥ B,A′x ≥ B′, x ≥ 0} and

M = min{n + n′, n + m}. If S is not empty, then there exists a vector x ∈ S such that

x ∈ Qm and every component xi is less than or equal to k =M !tM .

Proof. Let I ∈ Nn×n be the identity matrix. First, we convert every inequality of the system

Ax ≥ B in an equivalent equality by adding a new variable: the inequality
∑m

i=1 ai,jxi ≥ bj
becomes

∑m
i=1 ai,jxi = bi + yj with yj ≥ 0. If we set C = (A A′

−I 0
) ∈ R(n+n′)×(n+m), and

B′′ = (B
B′), we can define the set S′ = {(x, y) ∈ Rm+n | C(x

T

yT
) = B′′, (x, y) ≥ 0}. It

is easy to see that S = {x ∈ Rm | ∃y ∈ Rn . (x, y) ∈ S′}, thus in our hypothesis S′ is not

empty. We denote as r the rank of C, so m ≤ r ≤ M since −I is not singular. By a well

known result in linear programming (see, for instance, Theorem 3.5 of [NW88]), the set S′

contains a basic solution, i.e. there exists a non-singular submatrix C ′ ∈ Rr×r of C, given

by the columns i1, . . . , ir and by the rows j1, . . . , jr of C, such that in S there is the point

(z1, . . . , zm+n) ∈ Rm+n such that z′ = (zi1 , . . . , zir) is the unique solution to the system of

linear equations Cz′T = (b′′j1 , . . . , b
′′
jr
)T = B′′′, and for all j 6∈ {i1, . . . , ir} it holds that zj = 0.

By Cramer’s theorem, for all k ∈ [r] we have zik = det(C ′ik)/det(C
′) where C ′ik is the matrix

obtained from C ′ by replacing the ik-th column with the matrix B′′′. So, z′ and z have components

in Q. Since C ′, C ′i1 , . . . , C
′
ir

∈ [t]r×r0 , by Lemma 2.4.3 |det(Ci)| ≤ r!tr. Moreover, since C ′ is

not singular we have |det(C)| ≥ 1. In conclusion, zik ≤ |det(Ci)|/|det(C)| ≤ (r)!tr ≤ M !tM ,

as requested.

Now, we are ready to prove Lemma 2.4.1.

Lemma 2.4.5. Let G = (V,E) be a k-colored graph, with |V | = n, |E| = m, and sG =
min{n + k − 1,m}. For all solutions x to the balance system for G there exists a solution x′

such that, for all e ∈ E, it holds (xe = 0 ⇒ x′e = 0) and (xe > 0 ⇒ 1 ≤ x′e ≤ sG!). As a

consequence, 1 ≤
∑

e∈E x
′
e ≤ m · sG!.

27

2. Fair Scheduling 2.5 - The perfectly balanced finite path problem

Proof. Let x be a solution to the balance system for G, and let J be the set of all edges e such

that xe > 0. By construction, |J | > 0. We represent the first two sets of equalities of the balance

system in matrix form as Dx = 0. Then, the set of points satisfying the balance system is P =
{y ∈ Rm | Dy = 0, y ≥ 0,

∑
e∈E ye > 0}. Now the subset of P , P ′ = {y ∈ P | ∀e ∈ J . ye ≥

1 and ∀e 6∈ J . ye = 0} = {y ∈ P | ∀e ∈ E . (xe > 0 ⇒ ye > 1) and (xe = 0 ⇒ ye = 0)} is not

empty. Indeed, the vector z = x(mine∈J xe)
−1 is in P ′, since (i) Dz = (mine∈J xe)

−1Dx = 0,

(ii) for all e ∈ J , we have ze = xe(mine∈J xe)
−1 ≥ 1, and (iii) for all e 6∈ J , we have ze = 0.

The set of inequalities “∀e ∈ J . ye ≥ 1” can be represented as the system of linear equations

Fy ≥ 1, with 1 ∈ {1}l×1. Similarly, the set of equalities “∀e 6∈ J . ye = 0” can be represented

as F ′y = 0. If we define D′ = (D
F ′) ∈ {−1, 0, 1}(2n+k−l−1)×m, we have P ′ = {y ∈ Rm |

D′y = 0, Fy ≥ 1}. Since D′, F,1,0 all have elements in {−1, 0, 1}, by Lemma 2.4.4 the set

P contains an element x′ ∈ Qm such that for all i ∈ [m], x′i ≤ (min{2n + k − 1, l +m})! ≤
(min{2n+ k − 1, n+m})! = sG!, which concludes the proof.

2.5 The perfectly balanced finite path problem

In this section, we introduce an NP-hard problem similar to the bounded difference problem.

Given a k-colored graph G and two nodes u and v, the new problem asks whether there exists

a perfectly balanced path from u to v. We call this question the perfectly balanced finite path

problem. To see that this problem is closely related to the bounded difference problem, one can

note that it corresponds to the statement of item 3 in Lemma 2.2.1, by changing the word loop to

finite path. In the following we prove that such a problem is NP-complete.

We ffirst prove that the problem is NP -hard by by a reduction from 3SAT which is known to

be NP-hard [CLRS01].

Theorem 2.5.1. The perfectly balanced finite path problem is NP-hard.

·
aj,1 // ·

aj,1

�� aj,2 // . . .
aj,kj // ·

aj,kj

��

1,...,k
CC

CC

!!C
CC

qj

1,...,k
���

??���

1,...,k
??

?

��?
??

qj+1

·
a′j,1 // ·

a′j,1

�� a′j,2 // . . .
a′
j,k′

j // ·

a′
j,k′

j

��
1,...,k
{{{{

=={{{

Figure 2.2: Proof of Theorem 2.5.1: The j-th subgraph Gj of G.

Proof. We prove the statement by a reduction from 3SAT which is known to be an NP -hard

problem [CLRS01].

Given a 3SAT formula ϕ on n variables x1, . . . , xn with k clauses C1, . . . , Ck, we construct

a k-colored graph G such that each color i is associated with the clause Ci. Precisely, for each

28

2. Fair Scheduling 2.5 - The perfectly balanced finite path problem

variable xj , we construct a subgraph Gj of G with a starting node qj and an ending node qj+1, as

shown in Figure 2.2. For 1 ≤ j ≤ n, the labels aj,1, . . . , aj,kj are the colors corresponding to the

clauses in which xj occurs affirmed and a′j,1, . . . , a
′
j,k′j

are the colors of the clauses in which xj

occurs negated. Moreover, the edges labeled with 1, . . . , k concisely represent a sequence of k
edges, each labeled with a different color. Finally, the graph G is obtained by concatenating each

graph Gj with Gj+1, as they share the node qj+1, for 1 ≤ j < n.

We show that the formula ϕ is satisfiable if and only if there exists a perfectly balanced path in

G from q1 to qn+1.

First, assume that ϕ is satisfiable. Then, there exists a truth assignment for the variables that

satisfies ϕ. Using this assignment, we construct a perfectly balanced path in which each color

appears exactly 2n+ 3 times. In particular, for all subgraphs Gj , the path takes the upper branch if

xj is assigned true and the lower branch otherwise. For each clause Ci, let Li be the indexes of

the variables that render Ci true, under the given truth assignment. We obtain that the constructed

path passes through at least 2n+ |Li| non-self-loop edges colored with i. This holds because at

each subgraph it passes through the edges labeled 1, . . . , k once at the beginning and once at the

end. Moreover, for all j ∈ Li, the path passes through another non-self-loop edge labeled with

i in Gj . Since |Li| ≥ 1, the path may pass through a self-loop labeled with i at least once in the

graph. Thus, by taking 3− |Li| times one of those self-loops, we get the desired number 2n+ 3 of

occurrences of i, for all colors i.
Conversely, assume that there exists a perfectly balanced path from q0 to qn+1. For all

subgraphs Gj the path takes either the upper or the lower branch. Then, there are two possible

situations:

1. Each color occurs 2n + l times with l ≥ 1. We define the assignment in the following

way: we set xj to true if the path takes the upper branch in the subgraph Gj , and to false

otherwise. We claim that such assignment satisfies ϕ. For all colors i the path passes through

an i-colored edge α such that it is not a self-loop and it is not a starting or an ending edge of

a subgraph Gj (those edges are the first 2n). Such edge α is on a branch of a subgraph Gj ,

consequently the assignment for xj satisfies the clause Ci. Being i arbitrary, all clauses Ci

are satisfied by the assignment of the variable.

2. Each color occurs 2n times in the path. We define the assignment as follows: we set xj to

true if the path takes the lower branch in Gj , and to false otherwise. We claim that such

assignment satisfies ϕ. For all colors i there exists at least one variable xj appearing in the

clause Ci. However, the path does not pass through any edge colored with i, except the

mandatory edges at the beginning and end of each Gj . Then, in Gj the path takes the branch

opposite to the assignment of xj that makes Ci true Then, the opposite assignment of xj (the

one we choose) makes Ci true.

We prove that the problem is in NP by reducing it to the feasibility of a system of linear

equation with integer variables, which is known to be NP -complete [NW88]. This time the

inequality signs in {<,>} are allowed. Before describing the related linear system, we recall a

result of integer programming presented in [Sch86].

29

2. Fair Scheduling 2.5 - The perfectly balanced finite path problem

Lemma 2.5.1 ([Sch86]). Let A ∈ Zn×n and B ∈ Zn×1. Let S = {x ∈ Zn | Ax ≤ B} be

an integer convex set. If S is not empty then there exists a point x ∈ S such that the sum of

the components of x is bounded by 6n3ϕ, where ϕ is the maximum sum of the coefficients of an

inequality of the system Ax ≤ B.

Definition 2.5.1. Let G = (V,E) be a k-colored graph and u,w ∈ V be two distinct nodes. We

call perfectly balanced path system for (G, u,w) the following system of equations on the set of

variables {xe, ye | e ∈ E}.

1. for all v ∈ V \ {u,w}
∑

e∈v← xe =
∑

e∈v→ xe
2.

∑
e∈u← xe = 1 +

∑
e∈u→ xe

3.
∑

e∈w← xe = −1 +
∑

e∈w→ xe
4. for all a ∈ [k − 1]

∑
e∈E(a) xe =

∑
e∈E(k) xe

5. for all e ∈ E xe ≥ 0
6.

∑
e∈E xe > 0

7. for all v ∈ V \ {u}
∑

e∈v← ye −
∑

e∈v→ ye =
∑

e∈v→ xe
8.

∑
e∈u→ ye −

∑
e∈u← ye =

∑
v∈V \{u}

∑
e∈v→ xe

9. for all e ∈ E ye ≥ 0
10. for all e ∈ E ye ≤ (6(d− 1)3ϕ)xe.

11. for all e ∈ E xe, ye ∈ Z

where ϕ is the maximum sum of the coefficients of an inequality in the first six sets of constraints.

Let m = |E| and n = |V |, the perfectly balanced path system has 2m variables and 3m+ 2n+ k
constraints.

It helps to think of the vectors x and y as two integer loads associated to the edges of G. The

constraints 1− 6 are almost the same constraints of the natural balance problem for G, and they

ask that x should represent a path from u to w and a set of simple loops such that the latter have a

n.l.c. equal to the opposite of the color difference vector of the path.

The constraints 7− 10 are connection constraints, asking that y should represent a connection

load, from u to every other node of the simple loops defined by x, and carried only on the

edges of those loops. Thus, the constraints 7 − 10 ask that the loops represented by x should

be reachable from u, using only edges represented by x, similarly to the bounded difference

system of Section 2.4. The only difference is the bound in the constraints 10, which is justified by

Lemma 2.5.1.

Lemma 2.5.2. There exists a perfectly balanced path in G from u to w if and only if the perfectly

balanced path system (G, u,w) is feasible.

The proof of the previous lemma is similar to that for the balance problem. Since the feasibility

problem for an integer linear system is in NP, and by Theorem 2.5.1, we obtain the following.

Theorem 2.5.2. The perfectly balanced finite path problem is NP-complete.

30

...

...

3
Priority Scheduling

Contents

3.1 Frequency Goals . 32

3.2 Graphs Characterization . 33

3.2.1 Frequency-f problem . 33

3.2.2 The uniform f -frequency problem . 37

3.2.3 Relating Priority to Fairness . 38

3.2.4 Limit L problem . 39

3.3 Solving the frequency-f problem . 41

3.4 Solving the uniform frequency-f problem 42

3.5 Problems on Initialized Graphs . 44

3.6 Discussion . 45

31

3. Priority Scheduling 3.1 - Frequency Goals

3.1 Frequency Goals

In the previous chapter we defined fairness requirements without actually quantifying the

resources dedicated to an activity. Here, we try to measure the amount of such resources through

frequency.The frequency of an activity can be expressed as the relative number of its occurrences

with respect to the overall number of activities performed.

Definition 3.1.1. Frequency

1. The frequency of a color i on a finite sequence x ∈ [i]∗ is the value
|x|i
|x| .

2. The frequency of a color i on a finite path in a k-colored graph is the frequency of color i on

the associated color sequence.

3. The frequency vector of a finite sequence x ∈ [i]∗ is the vector (|x|1|x| , . . . ,
|x|k
|x|) ∈ Qk

4. The frequency vector of a finite path in a k-colored graph is the frequency vector of the

associated color sequence.

Since a system’s run is infinite, we can only evaluate such a frequency at every finite prefix.

Thus, we can assume that the frequency of an infinite run is the asymptotic value to which the

frequencies along the prefixes tend to.

Definition 3.1.2. Asymptotic frequency

Let x ∈ [k]ω be an infinite sequence of colors. The asymptotic frequency fi of color i ∈ [k] on

x is the limit (if it exists) of the frequencies of i on all finite prefixes of x, i.e., fi = limm→+∞
|x≤n|i

n .

The asymptotic frequency of x is the real vector f ∈ [0, 1]k such that each component fi is the

asymptotic frequency of i on x. A path ρ on a k-colored graph has asymptotic frequency f ∈ [0, 1]k

(resp. admits frequency fi ∈ [0, 1] for color i) if its color sequence does.

Example 3.1.1. The color sequence x =
∏+∞

i=1 ((110)
i11) ∈ [1]ω has asymptotic frequency vector

f = (13 ,
2
3).

An asymptotic frequency has a drawback: it disregards all those contributions of execution

of activities that grows sublinearly in the length of the prefix. In the previous example, we can

observe that activity 1 is executed more than 2
3 of the times, but the difference between the real

frequencies of activity grows so slowly that it is asymptotically negligible. Indeed, by exploding

the definition of limit for the asymptotic frequency, it is possible to find the following equivalent

formulation.

Lemma 3.1.1. An infinite color sequence x ∈ [0, 1]ω has asymptotic frequency f ∈ [0, 1]k if and

only if there exist a function g : N → N such that g(n) ∈ o(n) and for every finite prefix x≤n the

number of occurrences of color i on the prefix does not differ from the expected fi · n more than

g(n), i.e., it belongs to the set [fi · n− g(n), fi · n+ g(n)].

32

3. Priority Scheduling 3.2 - Graphs Characterization

So, an asymptotic frequency allows intervals in the run that are not compliant with the frequency

itself, provided that their uncompensated contributions is small enough, and, hence, negligible

at infinite. However, the smaller the increment of the function g(n), the smaller this undesired

contribution grows. The smallest growing function g(n) is the constant function, which completely

halts the growth of this frequency non-compliant contribution, indeed when g(n) = C for each

color we can expect that the number of occurrences on a prefix of length n is very close n · fi
but for that constant. When g(n) is constant, we call the asymptotic frequency uniform to mean

that the unwanted contributions eventually stops or are always compensated. The smaller is the

constant the sooner the non-compliant contributions are compensated by a following one.

Definition 3.1.3. Uniform (asymptotic) frequency

Let x ∈ [k]ω be an infinite sequence of colors, with asymptotic frequency f ∈ [0, 1]k. f is said

uniform on x if there exists a constant C such that for every finite prefix x≤n of length n, and every

color i ∈ [k], the frequency of color i oscillates in the set [fi −
C
n , fi +

C
n].

Example 3.1.2. The color sequence x =
∏+∞

i=1 ((110)
i11) ∈ [1]ω has asymptotic non-uniform

frequency vector f = (13 ,
2
3). The color sequence y = (110)ω has uniform frequency vector

f = (13 ,
2
3).

It is possible to evaluate different degree of uniformity by choosing a sublinear function g(n)
in the equivalent definition of asymptotic frequency given by Lemma 3.1.1. However, we leave

such a discussion to Section 3.6 By assigning to each activity a different frequency depending on

its priority, provided that all frequency sum to 1, we are able to evaluate whether a path satisfies

the given priority policy.

Definition 3.1.4. Let f ∈ [0, 1]k be a vector of real number such that
∑k

i=1 fi = 1. Then, the

asymptotic (resp. uniform) f -frequency goal Waf (resp. Wuf)is the set of all infinite color

sequences on [k] with asymptotic (resp. uniform)frequency f .

In the following, we call f ∈ Rk a frequency vector only if f ∈ [0, 1]k and
∑k

i=1 fi = 1.

3.2 Graphs Characterization

Like we did in Section2.2, in this section, we characterize the existence of an asymptotic

frequency-f or uniform frequency-f paths by means of properties of the underlaying colored graph.

In particular, we observe that we can compose simple loops for the construction of a priority path.

On the converse, we prove that a priority paths always contain some regularities, that allow us to

extract loop components. By evaluating the properties of such loops, we show that whenever there

exist of a priority path, a set of simple loops can be used to construct some regular priority path.

3.2.1 Frequency-f problem

The asymptotic frequency-f property states that, along the prefixes of a path, the ratio between

the number of occurrences of a color i ∈ [k] and the length of the prefix, does not differ from fi,
but for a value which grows asymptotically slower than any function polynomial in the length of

33

3. Priority Scheduling 3.2 - Graphs Characterization

the prefix. Since, such a ratio has a limited interval of variability, like the color difference in the

balanced problem, is it maybe possible that even in this case there is an unavoidable periodicity?

Observe that if we want to construct a periodic path ρ = σω with asymptotic frequency f , then

is is sufficient that the loop σ is endowed with such a frequency, i.e., that for all color i ∈ [k] it

holds that
|σ|i
|σ| = fi. If we decompose σ in a combination of a sequence of loops L = σ1, . . . , σl,

then we obtain that for each i ∈ [k] it holds that fi =
∑l

j=1 |σj |i
∑l

j=1 |σj |i
. Hence, the frequency is like an

average of vectors Numσi with weights |σi|.

Definition 3.2.1. Ratio of an n.l.c

In a k-colored graph, the ratio of natural linear combination T = {(σ1, c1) . . . (σl, cl)} is the

vector
∑l

i=1 ci·Numσi
∑l

i=1 ci·|σi|
.

In general, we capture the ability of weighted natural vectors to form a weighted average

through the following definition.

Definition 3.2.2. Weighted Ratio

Let A = {(A1, w1), . . . , (Am, wm)} ⊆ Zd × N−0 be a finite set of m pairs (integer vector,

respective weight), we call combination value of A with respect to coefficients c1, . . . , cn ∈ N

(such that they are not all zeros) a vector D =
∑m

i=1 ciAi, Moreover, we define the weight of A as

nD =
∑m

i=1 ciwi and the ratio of A as D
nD

.

At this point the question about the existence of a periodicity in a path with asymptotic

frequency f , relates to the ability of the occurrence vectors of loops involved in the path, to form a

ratio of value f . The next lemma shows that an infinite weighted sum of weighted natural vectors

cannot converge to a real vector f , unless the set of vectors used can form a ratio with value f .

Lemma 3.2.1. Let f ∈ Qd, and A ⊂ Zd × N be a finite set such that no n.l.c. of A has ratio

f . Let {(Bn, un)}n be an infinite sequence of elements of A, Sn =
∑n

l=0Bl be the partial sum,

and Un =
∑n

l=0 ul be the partial sum of the weights. Then, there exist an index i ∈ [d] such that

limn→+∞
Sn,i

Un
6= fi.

Proof. Let A = {(A1, w1), . . . , (Am, wm)} and g : Rm 7→ R+ be the function such that

g(c1, . . . , cm) = max1≤i≤d
{∣∣

∑m
n=1 cnAn,i∑m
n=1 cnwn

− fi
∣∣}. First, note that g is a continuous function,

since it is the maximum of continuous functions. Let now K ⊂ Rm be the set {(c1, . . . , cm) ∈
[0, 1]m |

∑m
i=1 ci = 1}. Note that 0 6∈ K and that K is compact, since it is a finite dimen-

sional space defined by a linear equation. Hence, by Weierstrass theorem, g admits a minimum

M = minx∈K{g(x)} on K. Since, by hypothesis, there is no n.l.c. of A with ratio f , M
must be strictly positive. Indeed, if by contradiction M = 0, there should be a non-zero vector

(c1, . . . , cm) ∈ K such that for all i ∈ [d],

m∑

n=1

cnAn,i − Li

m∑

n=1

cnwn =M = 0. (3.1)

Since (3.1) is a homogeneous linear equation with rational coefficients and since it has a non-

negative solution, by Lemma 2.2.4 it also has a non-negative integer solution with at least one

34

3. Priority Scheduling 3.2 - Graphs Characterization

positive component. This solution induces a n.l.c. of A with ratio ff , contradicting the hypothesis

on A.

Now, consider the sequence {(Bn, un)}n, its partial sums Sn =
∑n

l=0Bl, and its weight partial

sum Un =
∑n

l=0 ul. Moreover, let δl,n be the number of times for which the pair (Al, wl) occurs in

the sequence up to position n and let cl,n = δl,n/n. Then Sn =
∑m

l=1 δl,n ·Al = n ·
∑m

l=1 cl,n ·Al

and Un =
∑m

l=1 δl,n · wl = n ·
∑m

l=1 cl,n · wl. Since we have
∑m

l=1 δl,n = n for all n ∈ N, it is

obvious that (c1,n, . . . , cm,n) ∈ K.

Let now Zn ∈ Rd×d be the matrix defined by Zn,i =
∣∣∣
∑m

l=1 cl,nAl,i∑m
l=1 cl,nwl

− fi

∣∣∣. Since there is no n.l.c.

of A with ratio f , it holds that for all n ∈ N there exists a non-zero element in Zn. Let {in}n be an

index sequence such that Zn,in = max1≤i≤d{Zn,i} > 0. Since {in}n can assume at most d differ-

ent values, there exists a pair i∗ that occurs infinitely often in {in}n. Let {ht}t be the index sequence

such that iht
= i∗ and there is no t′ ∈]ht, ht+1[with it′ = i∗. Then, consider the subsequence

{Zht,i∗}t of {Zn,i∗}n, Hence, limt→+∞ Zht,i∗ ≥M > 0 and consequently limn→+∞ Zn,i∗ 6= 0,

whenever these limits exist. In conclusion, limn→+∞

∑m
l=1 cl,nAl,i∑m
l=1 cc,lwl

= limn→+∞
Sn,i

Un
6= fi.

Whenever we have an path with color frequency f , we are able to decompose this path in

its quasi-segmentation. Each loop is associated with a difference vector and a length, and every

time a loop ends, the frequency vector of the prefix is the ratio between the sum of the occurrence

vectors of the loops met so far and the sum of their length. Hence, if the loops cannot form a linear

composition with frequency f , the path cannot have asymptotic frequency f .

Lemma 3.2.2. Let G be a k-colored graph and ρ be an infinite path in G with color frequency

f ∈ Rk, then there exists a connected set of simple loops having an n.l.c. of ratio f .

Proof. If there exists an infinite path ρ with asymptotic frequency f , since the set of nodes is finite,

there is a set V ′ of nodes occurring infinitely often in ρ. Let ρ′ be a suffix of ρ containing only

nodes in V ′. The path ρ′ has frequency f and it is composed by an infinite sequence of simple

loops on V ′ (see Definition 1.2.6 for further details). Let L be the (finite) set of such simple

loops, and let A = {(σ, |σ|) | σ ∈ L)} be the weighted set of occurrence vectors of the loops in L.

Every time a loop trough V ′ closes along ρ′, the difference vector up to that point is the sum of the

difference vectors of the simple loops occurred so far, plus the difference vector of the remaining

simple path. Since the remaining simple path cannot have length greater than |V ′|, the difference

vector up to that point differs from a sum of a sequence of elements of A by a constant-bounded

term. Let n(j) be the index of the j-th point where a loop is closed along ρ′. Since ρ′ has frequency

f , each component of the difference sequence {Num (ρ′≤n(j))

|ρ′≤n(j) }i∈N tends to fi. Let {σh}h∈N be the

sequence of loops such that {σh}
j
h=1 is the quasi-segmentation of ρ′≤n(j) with rest rj . Then we

have Numρ
′≤n(j) = (

∑j
h=1Num(σh)) + Num(rj) and |ρ′≤n(j)|(

∑j
h=1 |σh|) + |rj |. Since rj has

at most length |V | we have for all i ∈ [k] the sequence {
∑j

h=1 |σj |i
∑j

h=1 |σj |
}j converges to the same limit

of the sequence {
∑j

h=1 |σj |i+|rj |i
∑j

h=1 |σj |
+ |rj |}j , i.e. fi. By Lemma 3.2.1, A has an composition with

ratio f . Then, the simple loops of L, which occur with a positive coefficient in the composition of

A with ratio f , are connected, because they are extracted from the same path π.

35

3. Priority Scheduling 3.2 - Graphs Characterization

Following a similar construction developed in Lemma 2.2.6, given a set of simple loops with

a natural linear ratio f , we are able to construct a path with asymptotic frequency f . The path

is obtained by using periodically all the loops as many times as requested by the natural linear

ratio and by connecting them with connection paths used less and less often in order to make their

contribution negligible at infinite. The following lemma formalizes the construction.

Lemma 3.2.3. If a k-colored graph G contains a set of connected simple loops having an n.l.c. of

ratio f , then there exists in G an infinite path ρ with frequency f .

Proof. Let L = {α0, α1, . . . , αh−1}, and denote by vi the first node of αi in its representation as

a cyclic sequence of nodes. For all i = 0, . . . , h− 1, let πi a (possibly empty) path that starts in

the last node of αi and ends in the first node of α(i+1)mod h. Since L is connected, it is possible to

find such paths. Let Ai be the color vector of αi, and let Ai be the color difference matrix of πi.

Moreover, let (c0, c1, . . . , cn−1) be the non-negative integers such that
∑h−1

i=0 ciAi
∑h−1

i=0 cini

= f . Then, we

define the vector Z =
∑h−1

i=0 ciAi. Finally, let ni the number of edges in αi and mi the number of

edges in πi. At this point, we define n =
∑h−1

i=0 ci · ni and m =
∑h−1

i=0 mi.

In order to construct a path with color limit L, we reason as follows. Since in general the

loops in L do not share a node with each other, to move from αi to αi+1, we have to pay a price,

represented by the color vector of πi. In order to make this price disappear in the long-run, we

traverse the loops αi an increasing number of times: in the first round, we traverse it ci times, in

the second round, 2ci times, and so on. Formally, the construction is iterative and at every round

i > 0 we add, to the already constructed path, the cycle ρi defined by

ρi = αic0
0 π0α

ic1
1 π1 . . . α

ich−1

h−1 πh−1.

Note that the cycle ρi starts and ends at node v0 and contains m+ i · n edges. The required infinite

path is then ρ = ρ1ρ2 . . . ρi We now show that this path has frequency f .

Let l0 = 0 and, for all i > 0, let li =
∑i

j=1 |ρj | =
∑i

j=1(m + i · n) = i ·m + i·(i+1)
2 n =

i2

2 n+O(i), so that ρ≤li = ρ1 . . . ρi. We compute for all colors a the value |ρ≤li |a =
∑i

j=1 |ρj |a =
∑i

j=1(
∑h−1

q=0 |πq|a) + i(
∑h−1

q=0 cq|αq|a) =
i2

2 · (
∑h−1

q=0 cq|αq|a) +O(i). Consider an index j ∈ N,

there exists an index i(j) such li(j) ≤ j ≤ li(j)+1. Since for all colors a, the functions |ρ≤j |a and

|ρ≤j | are increasing in j, we have that:

|ρ≤li(j) |a

|ρ≤li(j)+1 |
≤

|ρ≤j |a
|ρ≤j |

≤
|ρ≤li(j)+1 |a

|ρ≤li(j) |

Since limj→+∞
|ρ
≤li(j)+1 |a

|ρ
≤li(j) |

=
(i+1)2·(

∑h−1
q=0 cq |αq |a)

i2·n
= fa, and limj→+∞

|ρ
≤li(j) |a

|ρ
≤li(j)+1 |

= fa, we have

that the value of limj→+∞
|ρ≤j |a
|ρ≤j |

is fa.

As an immediate corollary of the two previous lemmas, the next theorem follows.

Theorem 3.2.1. Let G be a k-colored graph, there exists an infinite path with frequency f if and

only if there exists a connected set of simple loops having a n.l.c. of ratio f .

36

3. Priority Scheduling 3.2 - Graphs Characterization

Since the natural linear combination of a set of loops can only have a ratio with rational values,

as a corollary we obtain that there does not exist a path with a non-rational asymptotic frequency.

Corollary 3.2.1. Let G be a k-colored graph, there does not exist an infinite path with frequency

f , with a non rational component fi ∈ R \Q, for some i ∈ N.

3.2.2 The uniform f -frequency problem

In the previous section we showed that a path with asymptotic frequency f needs to be

composed by a periodic repetition of a natural linear composition of simple loops with ratio f
and by some other undesired unbalanced contributions that grows sublinearly in the length of the

prefix. Since the frequency f is uniform when the expected occurrence of color on a prefix do not

differ from the effective ones by a constant, the undesired contributions need to remain bounded

and continually balance themselves. Hence, there are no growing unbalanced contributions. Like

shown in Lemma 3.2.3, the unbalanced contributions depend on the connection paths between the

loops. So, if we want to achieve an uniform frequency, we have to eliminate such connecting paths,

by demanding that the loops are not only connected but overlapping as well. Indeed we can prove

the following theorem.

Theorem 3.2.2. In a graph G there exists a path with uniform frequency f if and only if there

exists an overlapping set L of simple loops of G having an n.l.c. of ratio f .

The proof is a direct consequence of the two following lemmas. The first shows that there

exists a path with uniform frequency f if and only if there exists a loop with ratio f , the second

lemma shows how this loop can be decomposed in or composed from a set of simple loops with

natural linear combination with ratio f . Both lemmas hold for a rational frequency vector f ∈ Qk,

however, this is not restrictive, since we showed in the previous section no infinite path can have a

non-rational frequency component.

Lemma 3.2.4. Given a graph G and a frequency f ∈ Qk, the following statements are equivalent:

1. There exists a path with uniform frequency f .

2. There exists a periodic path with uniform frequency f .

3. There exists a loop with frequency f .

Proof. 1. [1 → 3] If ρ = v0a0 . . . vnan . . . is an infinite path with uniform frequency f , then

there exists a constant C such that on every prefix the absolute value of the difference

between the occurrences vector and the expected occurrences vector is smaller than C.

Precisely, for all colors i ∈ [k] and for all indexes n ∈ N we have that |n · fi − |ρ≤n|i| ≤ C.

Let d be the maximum denominator of the rational numbers f1, . . . , fk, then the vector

n · f − Num(ρ≤n) belongs to the set of rational vector {x
y ∈ Q | y ≤ d,−C ≤ x

y ≤ C}k.

Since both the set of these vectors and the set of nodes in the graph are finite, we can find two

indexes i < j such that vi = vj and i ·f −Num(ρ≤i) = j ·f −Num(ρ≤j). Consider the loop

σ′ = viaivi+1ai+1 . . . vj−1aj−1vj , its length is |σ′| = j − i and its color occurrences vector

is Numσ
′ = Num(ρ≤j)− Num(ρ≤i) = f · (j − i), hence, the frequency of σ′ is exactly f .

37

3. Priority Scheduling 3.2 - Graphs Characterization

2. [3 → 2] If there exists a loop σ with frequency Numσ
|σ = f , then σω is a periodic path with

uniform frequency f . Indeed, every prefix σn with n ∈ N has color frequency f . So, in the

intermediate prefixes, the difference between the color frequency of the prefix and f , never

increases beyond the maximum difference in a subpath of σ.

3. [2 → 1] Trivial

Lemma 3.2.5. Let G be a k-colored graph. There exists a loop with uniform frequency f in G if

and only if there exists an overlapping set L of simple loops of G, with an n.l.c. of ratio f .

Proof. [only if] If there exists a loop σ with frequency f , by Lemma 1.2.1 the loop is the com-

position of a tuple T of simple loops. Let L be the set of distinct loops occurring in T , and

for all σ′ ∈ L, let cσ′ be the number of times σ′ occurs in T . Since in the computation of the

difference vector of a path it does not matter the order in which the edges are considered, we have
∑

σ′∈L cσ′ ·Num (σ′)
∑

σ′∈L cσ′ ·|σ
′| = Num (σ)

|σ| = f . Finally, since the loops in L come from the decomposition of a

single loop σ, we have that L is overlapping.

[if] Let L = {σ1, . . . , σl} be an overlapping set of simple loops such that
∑l

i=1 ci·Numσi
∑l

i=1 ci·|σi|
= f

By using the algorithm presented in Definition 1.2.9, we construct a loop σ which is a linear

composition of L with coefficients c1, . . . , cl. Then, we have that σ has frequency f , since

Num(σ) =
∑l

i=1 ci · Num(σi), and |σ| =
∑l

i=1 ci · |σi|.

3.2.3 Relating Priority to Fairness

The graph characterizations for the existence of fair paths are very similar to the characteriza-

tions for the existence of f -frequency paths. They both require the existence of a connected or

overlapping set of simple loops. The difference is that for the fair path we need a natural linear

combination with value zero and for the f -frequency paths we need a natural linear ratio of value

f . The following lemma shows that these two properties are related.

Lemma 3.2.6. Let L = {σ1, . . . , σl} be a set of simple loops in a k-colored graph and let

c1, . . . , cl be a sequence of coefficients. Then, the natural linear combination of L with coefficients

c1, . . . , cl has value zero if and only if it has ratio f ∈ Qk with fi =
1
k for all i ∈ N.

if. If the natural linear combination has ratio with all components equal to 1
k , then for all colors

j ∈ [k] we have that
∑l

i=1 ci · |σi|j =
∑l

i=1
ci
k · |σi| = C. Hence, for every pair of colors a, b ∈ [k],

we have
∑l

i=1 ci · diff a,b(σi) =
∑l

i=1 ci · (|σi|a − |σi|b) = 0.

[only if] If for all pairs of colors a, b ∈ [k] it holds that
∑l

i=1 ci · diff a,b(σi) = 0, then we

also have
∑l

i=1 ci · |σi|a =
∑l

i=1 ci · |σi|b. Hence for all colors a, b ∈ [k] we have that the ratio

fa =
∑l

i=1 ci·|σi|a
∑l

i=1 ci·|σi|
=

∑l
i=1 ci·|σi|b

∑l
i=1 ci·|σi|

= fb. Since
∑k

j=1 fj = 1 we have fj =
1
k for all j ∈ N.

38

3. Priority Scheduling 3.2 - Graphs Characterization

The above lemma shows that we find a solution to a fairness problem if and only we find a

solution to a frequency problem with all equal components. Indeed, the following corollary is an

immediate consequence of Lemma 3.2.6, and Theorems 2.2.2, 3.2.1 (resp. Theorems 2.2.1, 3.2.2).

Corollary 3.2.2. In a k-colored graph there exists a balanced (resp., bounded) path if and only if

there exists a path with asymptotic (resp., uniform)frequency with all equal components.

As one may suspect there is a deeper correlation between fair and priority path. Indeed in the

following, we prove that a path is balanced (resp., bounded) if and only if it has asymptotic (resp.,

uniform) frequency with all equal components.

Theorem 3.2.3. In a k-colored graph, a path is bounded in difference if and only if it has uniform

frequency f with all equal components equal to 1
k .

if. If an infinite path ρ has uniform frequency f with all components equal to 1
k , then there exists

a constant C such that for all n ∈ N and i ∈ [k] we have −C ≤ n
k − |ρ≤n|i ≤ C. Hence, for all

n ∈ N and i, j ∈ [k] we have diff i,j(ρ
≤n) = (nk − |ρ≤n|j)− (nk − |ρ≤n|i). Hence, for all n ∈ N

and i, j ∈ [k] we have −2C ≤ diff i,j(ρ
≤n) ≤ 2C, and the path is bounded in difference.

[only if] If an infinite path ρ is bounded in difference , then there exists a constant C such that

for all n ∈ N and i, j ∈ [k] we have −C ≤ diff i,j(ρ
≤n) ≤ C. Hence, for all n ∈ N and i, j ∈ [k]

we have diff i,j(ρ
≤n) = (nk − |ρ≤n|j)− (nk − |ρ≤n|i). Hence, for all n ∈ N and i ∈ [k] we have

−2C ≤ n
k − |ρ≤n|i ≤ 2C, and the path is bounded in difference.

We prove the same result for the balance property and the asymptotic frequency in the next

subsection, as a corollary of a more general result.

3.2.4 Limit L problem

Fairness in a balance path in a k-colored graph is achieved by demanding that the differences

of colors along the prefixes of the path grow like a function sublinear in the length of the prefix, i.e.,

for all i, j ∈ [k] it holds that limn→+∞
diff i,j

(ρ≤n)

n = 0. Then we can define a priority requirement,

by asking that the differences of colors grows like function linear in the length of the prefix, and

hence converge to some constants.

Definition 3.2.3. In a k-colored graph, a path ρ has color limit L ∈ Rk×k if for all pairs of colors

i, j ∈ [k] it holds that limn→+∞
diff i,j

(ρ≤n)

n = Li,j .

The above problem turns out to be equivalent to the f -frequency problem, as shown by the

following lemma.

Lemma 3.2.7. An infinite path ρ has color limit L ∈ Rk×k if and only if it has asymptotic

frequency f and the frequency vector f is the unique solution of the following system of k2 + 1
linear equations: for all i, j ∈ [k], fi − fj = li,j;

∑k
i=1 fi = 1.

39

3. Priority Scheduling 3.2 - Graphs Characterization

Proof. First, observe that the system of linear equations fi − fj = li,j and
∑k

i=1 fi = 1 contains

k independent rows in the coefficient matrix, i.e., the rows associated with the equations f1 − fk =
l1,k, . . ., fk−1 − fk = lk−1,k, and

∑k
i=1 fi = 1. So, the system may have only one solution or no

solutions at all.

[only if] If ρ has color frequency vector f ∈ Rk, then for all i ∈ [k], it holds that fi =

limn→+∞
|ρ≤n|i

n . So, for all i, j ∈ [k], it holds that li,j = limn→+∞
|ρ≤n|i−|ρ

≤n|j
n = fi − fj .

[if] If ρ has color limit L then, for all i, j ∈ [k], it holds that li,j = limn→+∞
diff i,j

(ρ≤n)

n . We

show that (i) limj→+∞ |ρ≤j |k/j = l
∆
=

1−
∑

a∈[k−1] la,k
k ; and (ii) for all a ∈ [k − 1], the sequence

{|ρ≤j |a/j}j converges to la,k + l. First we show (i). Assume by contradiction that the sequence is

not convergent to l, then we have ∃ε > 0 . ∀m ∈ N . ∃nm ≥ m.
(
|ρ≤nm |k

nm
> l + ε or

|ρ≤nm |k
nm

<

l− ε
)
. The points {nm}m form a sequence, from which we can extract two subsequences {nmi

}i,

given by all the points such that |ρ≤nmi |k/nmi
> l + ε, and {nm′i}i, given by all the points such

that |ρ
≤nm′

i |k/nm′i < l − ε. At least one of the two subsequences is infinite. Assume w.l.o.g. that

{nmi
}i is infinite. Then,

∑k−1
a=1 la,k =

∑k
a=1

(|ρ≤nmi |a
nmi

− l
)
>

∑k−1
a=1

(|ρ≤nmi |a
nmi

− l
)
+ ε. In other

words,
∑k−1

a=1

(|ρ≤nmi |a
nmi

− l
)
<

∑k−1
a=1 la,k − ε. So, for all i ∈ N there is a color a ∈ [k − 1] such

that
|ρ≤nmi |a

nmi
− l ≤ la,k − ε

k−1 . Then, there is a color a ∈ [k − 1] and a subsequence {nma
i
}i

of {nmi
}i such that for all i ∈ N we have that

|ρ
≤nma

i |a
nma

i

< la,k + l − ε
k−1 . Moreover, for all

i ∈ N we have
diff a,k

(
ρ
≤nma

i

)

nma
i

=

∣∣ρ≤nma
i

∣∣
a
−
∣∣ρ≤nma

i

∣∣
k

nma
i

≤
(
la,k + l− 1

k−1ε
)
− (l+ ε) = la,k −

k
k−1ε.

Therefore, the sequence {diff a,k(ρ
≤nma

i)/nma
i
}i does not converge to la,k, so does not the sequence

{diff a,k(ρ
≤j)/j}j , since the first is a subsequence of the latter. So, by contradiction, we have

proved (i).
Now, we show (ii). Assume by contradiction that {|ρ≤j |a/j}j does not converge to l + la,k,

for a certain a ∈ [k − 1]. Then, we have

∃ε > 0 . ∀m ∈ N . ∃nm ≥ m.

(
|ρ≤nm |a
nm

> l + la,k + ε or
|ρ≤nm |a
nm

< l + la,k − ε

)
. (3.2)

Let ε be a witness for (3.2). By (i), there is n̄ ∈ N such that for all n ≥ n̄, we have l − ε/2 <

|ρ≤n|k/n < l+ε/2. So, for allm ≥ n̄, there is nm ≥ m such that either (a)
|ρ≤nm |a

nm
> l+ la,k+ε

or (b)
|ρ≤nm |a

nm
< l + la,k − ε, depending on which disjunction in (3.2) holds. Assuming that (a)

occurs for infinitely many nm, for all m ≥ n̄ there is nm ≥ m such that

diff a,k(ρ
≤nm)

nm
=

|ρ≤nm |a − |ρ≤n|k
nm

> l + la,k + ε−
(
l +

ε

2

)
= la,k +

ε

2
.

Thus, we have that {diff a,k(ρ
≤n)/n}n does not converge to la,k, which is a contradiction.

It i s easy to observe that a path is balanced if and only if it has color limit L = 0, since the

two definition coincides for L = 0. Hence, the following corollary follows.

40

3. Priority Scheduling 3.3 - Solving the frequency-f problem

Theorem 3.2.4. In a k-colored graph, a path is balanced if and only if it has asymptotic frequency

f with all equal components equal to 1
k .

Proof. A path is balanced if and only if it has color Limit 0, by Lemma 3.2.7 this happens if and

only if it has asymptotic frequency f , whose components are the only solution of the system of

k2 + 1 linear equations: for all i, j ∈ [k], fi − fj = 0;
∑k

i=1 fi = 1. The only solution f has all

equal components equal to 1
k .

3.3 Solving the frequency-f problem

Since the graph characterization for the existence of a path with asymptotic frequency f is very

similar to the graph characterization for the existence of a balanced path, the algorithms for the

solution of the two problems are similar as well.

In Section 2.3, we determine a connected set of simple loops with zero as a value of a natural

linear combination by means of a system of linear inequalities. There is a variable for each edge,

representing how many times that edge is used in the natural linear combination of those loops.

Moreover, a part of the constraints ensure that the edges actually form loops and the other part

ensure that the natural linear combination has value zero. The connection between the loops is

ensured by making the algorithm run only on connected components.

In order to determine a path with asymptotic frequency f ∈ Qk, we need to determine a

connected set of simple loops with a natural linear ratio of value f . Hence, we can use the same

system for the balance problem, we just need to substitute the constraints about the natural linear

combination of value zero with a new set of constraints ensuring the existence of a natural linear

combination of ratio f . Since for each e ∈ E, the variable xe represent how many times the edge e
is used in the linear combination, we have that

∑
e∈E(a) xe is the number of edges with color a in

the linear combination and
∑

e∈E Xe is the total number of edge. Hence, the natural linear ratio is

f , if and only if for all colors a ∈ [k] it holds that

∑
e∈E(a) xe

∑
e∈E xe

= fa

Definition 3.3.1. Let G = (V,E) be a k-colored graph, and f = (x1
y1
, . . . , xk

yk
) ∈ Qk a rational

vector. We call real asymptotic frequency-f system for G the following system of equations on the

set of variables {xe | e ∈ E}.

1. for all v ∈ V
∑

e∈v← xe =
∑

e∈v→ xe
2. for all a ∈ [k] xa

∑
e∈E(a) xe = ya

∑
e∈E xe

3. for all e ∈ E xe ≥ 0
4.

∑
e∈E xe = 1

5. xe ∈ R.

Letm = |E| and n = |V |, the frequency-f system hasm variables andm+n+k2+1 constraints.

Like we did in Section 2.3, we can define a natural frequency-f system which differs from the

above in two points: (i) The fourth constraint is
∑

e∈E xe > 0 and (ii) the fifth constraint asks that

the variable xe are natural numbers. Using a very similar proofs to those developed for Lemmas

2.3.2 and 2.3.3 we prove respectively the following two lemmas.

41

3. Priority Scheduling 3.4 - Solving the uniform frequency-f problem

Lemma 3.3.1. There exists a set L of simple loops in G with an n.l.c. of ratio f ∈ Qk if and only

if the natural asymptotic frequency-f system for G is feasible.

Lemma 3.3.2. There exists a solution to the real asymptotic frequency-f system if and only if

there exists a solution to the natural asymptotic frequency-f system.

Observe that the proofs just change only in the part dealing with the second set of constraints:

instead of proving that these constraints are equivalent to a value zero for the natural linear

combination, we prove instead that they are equivalent to a ratio f for the n.l.c. Since this part

is just a matter of algebra, we leave the modification of the proof to the reader. From these two

lemmas we obtain the following corollary.

Corollary 3.3.1. If G is strongly connected, there exists an asymptotic frequency-f path in G if

and only if the real asymptotic frequency-f system for G is feasible.

At this point we can develop an algorithm for determining a representation of a frequency-f
path. This algorithm is similar to the one for the determination of a balanced path.

Theorem 3.3.1. The frequency-f problem, i.e. determining whether on a graph G there exists a

path with asymptotic frequency f ∈ Qk and computing a representation of such path if it exists,

is polynomial in the size of G and the logarithm of the maximum number d ∈ N appearing as

nominator or denominator of a rational component of f .

Proof. In order to solve the frequency-f problem in G, first we compute the maximal connected

components of G using the classical Tarjan’s algorithm [CLRS01]. This algorithm is polynomial

in n and m. Then, in each component we compute whether the real balance system is feasible,

by using the polynomial algorithm for feasibility of sets defined by linear constraints [NW88].

This second algorithm is used at most n times and it is polynomial in the number of constraints

(n+m+ k) and in the logarithm of the maximum modulus of a coefficient in a constraint (in our

case, the maximum modulus is d). If the feasibility algorithm answer positively to the existence of

a solution, it also provides a rational one [NW88]. By the proof of Lemma 3.3.1, such a solution

allows us to compute in polynomial time a set of connected simple loops and the coefficients of

an n.l.c. of ratio f . As shown in the if part of the proof of Lemma 3.2.3, this in turn allows us to

constructively characterize a balanced path in the graph.

3.4 Solving the uniform frequency-f problem

Since the graph characterization for the existence of a path with uniform frequency f is very

similar to the graph characterization for the existence of a bounded path, the algorithms for the

solution of the two problems are similar as well.

Both problems are equivalent to the existence of a certain overlapping set of simple loops: the

bounded problem requires that these loops have a natural linear combination with value zero, and

the uniform frequency-f problem requires that these loops have a natural linear combination of

ratio f . Hence, one may imagine that, like it was done for the asymptotic frequency f problem, it

42

3. Priority Scheduling 3.4 - Solving the uniform frequency-f problem

is sufficient to change the second set of constraints of the bounded linear system in such a way

to require that variables represent loops with natural linear combination of ratio f , instead of a

natural linear combination of value zero. However, the change in the constraints about the variables

xe, may not ensure the validity of a lemma like Lemma 2.4.1 for the real frequency-f system.

Hence, the ninth constraint of the bounded path problem, i.e. ye ≤ (m · sG!)xe, may avoid the

possibility to find some solutions. Indeed, for a set of overlapping simple loops satisfying the

constraints of the real f -frequency problem, the connection flow (equal to
∑

e∈E xe) may be larger

than (m · sG!)xe In such a case with the ninth constraint, we do not find a connection flow and the

solution does not belong to those found by the linear system. Hence, we need a new upper bound

on the maximum value of
∑

e∈E xe and on the minimum value of a variable xe. The following

lemma answer to the question.

Lemma 3.4.1. LetG = (V,E) be a k-colored graph, with |V | = n, |E| = m, and sG = min{n+
k − 1,m}. Let f ∈ Qk be a frequency vector and d ∈ N be the maximum number appearing as a

denominator or nominator among the components of f . For all solutions x to the real balance

system for G there exists a solution x′ such that, for all e ∈ E, it holds (xe = 0 ⇒ x′e = 0) and

(xe > 0 ⇒ 1 ≤ x′e ≤ sG!). As a consequence, 1 ≤
∑

e∈E x
′
e ≤ m · sG! · d

sG .

Proof. Let x be a solution to the frequency-f system for G, and let J be the set of all edges

e such that xe > 0. By construction, |J | > 0. We represent the first two sets of equalities

of the frequency-f system in matrix form as Dx = 0. Then, the set of points satisfying the

frequency-f system is P = {y ∈ Rm | Dy = 0, y ≥ 0,
∑

e∈E ye > 0}. Now the subset of P ,

P ′ = {y ∈ P | ∀e ∈ J . ye ≥ 1 and ∀e 6∈ J . ye = 0} = {y ∈ P | ∀e ∈ E . (xe > 0 ⇒ ye >
1) and (xe = 0 ⇒ ye = 0)} is not empty. Indeed, the vector z = x(mine∈J xe)

−1 is in P ′, since

(i) Dz = (mine∈J xe)
−1Dx = 0, (ii) for all e ∈ J , we have ze = xe(mine∈J xe)

−1 ≥ 1, and

(iii) for all e 6∈ J , we have ze = 0.

The set of inequalities “∀e ∈ J . ye ≥ 1” can be represented as the system Fy ≥ 1, with

1 ∈ {1}l×1. Similarly, the set of equalities “∀e 6∈ J . ye = 0” can be represented as F ′y = 0. If

we define D′ = (D
F ′) ∈ {−1, 0, 1}(2n+k−l−1)×m, we have P ′ = {y ∈ Rm | D′y = 0, Fy ≥ 1}.

Since D′, F,1,0 all have elements in {−d,−(d− 1) . . .− 1, 0, 1 . . . d− 1, d}, by Lemma 2.4.4

the set P contains an element x′ ∈ Qm such that for all i ∈ [m], x′i ≤ (min{2n + k − 1, l +
m})! · dmin{2n+k−1,l+m} ≤ (min{2n+ k − 1, n+m})! · dmin{2n+k−1,l+m} = sG! · d

sG , which

concludes the proof.

The lemma allows us to state that whenever there exists a solution to the asymptotic frequency-

f problem, then there exists also another solution xe such that
∑

e∈E xe ≤ sG! · d
sG and xe ≥ 1.

Hence, a connection flow ye does not need to be greater than m · sG! · d
sG · xe.

By using the above constraint on the connection flow in place of the ninth constraint of the

bounded system, and by using the asymptotic frequency-f constraints in place of the balanced

constraints, from the bounded system we obtain the uniform frequency-f system.

Definition 3.4.1. Let G = (V,E) be a k-colored graph with m = |E|, n = |V |, and sG =
min{n + k − 1,m}, let u ∈ V be a node, and f ∈ Qk be a frequency vector with d ∈ N equal

to the maximum number appearing as a denominator or nominator among the components of

43

3. Priority Scheduling 3.5 - Problems on Initialized Graphs

f . We call uniform frequency-f system for (G, u) the following system of equations on the set of

variables {xe, ye | e ∈ E}.

1-4. The same constraints as in the balance system for G
5. for all v ∈ V \ {u}

∑
e∈Ev

ye −
∑

e∈vE
ye =

∑
e∈vE

xe
6.

∑
e∈uE

ye −
∑

e∈Eu
ye =

∑
v∈V \{u}

∑
e∈vE

xe
7. for all e ∈ E ye ≥ 0
8. for all e ∈ E ye ≤ (m · sG! · d

sG)xe.

The bounded difference system has 2m variables and 3m+ 2n+ k constraints.

The following lemma states that the bounded difference system can be used to solve the

bounded difference problem.

Lemma 3.4.2. There exists an overlapping set of simple loops in G, passing through a node u and

having an n.l.c. of ratio f if and only if the uniform frequency-f system for (G, u) is feasible.

The proof of the lemma is the equal to the proof of Lemma 2.4.2. We just need to use Lemmas

3.4.1 and 3.3.1 in place of Lemmas 2.4.1 and 2.3.2 respectively.

At this point, computing a rational solution x to the real frequency-f system provides us with

a set of overlapping loops representing a bounded path in a k-colored graph. On the other hand, if

we do not find such a solution we conclude that there are no loops with f as ratio of an n.l.c. and,

hence, no path with uniform frequency f .

Theorem 3.4.1. Them uniform frequency-f problem, i.e. determining whether on a graph G there

exists a path with uniform frequency f and computing a representation of such path if it exists, is

polynomial in the size of G and f

Proof. In order to solve the bounded difference problem in G, for all u ∈ V we check whether

the bounded difference system for (G, u) is feasible, by using a polynomial time algorithm for

feasibility of linear systems [NW88]. This algorithm is used at most n times and it is polynomial

in the number of constraints (2n+ 3m+ k) and in the logarithm of the maximum modulus M of a

coefficient in a constraint. In our case, M = m · sG! · d
sG . Using Stirling’s approximation, we

have log(m · sG!) = log(m) + Θ(sG log(sG)). Therefore, we obtain the following.

If the feasibility algorithm answer positively to the existence of a solution, it also provide a

rational one [NW88]. By the proof of Lemma 3.3.1, the component x of the solution allows us to

compute in polynomial time a set of simple loops and the coefficients of an n.l.c. of ratio f . By

the properties ensured by the component y of the solution we know that the loops are overlapping.

As shown in the if part of the proof of Lemma 3.2.5, this in turn allows us to constructively

characterize a uniform frequency-f path in the graph.

3.5 Problems on Initialized Graphs

In general, a system may have a starting state, in which case it makes sense to determine a fair

or priority path reachable from the graph’s starting node. Since a fair or priority path is constructed

from a set of simple loops, in order to ensure that path is reachable from the starting node, we

44

3. Priority Scheduling 3.6 - Discussion

have to ensure that the loops are reachable from this node. As long as balanced and asymptotic

frequency-f paths are considered, we solve the relative problems by looking for loops in some

strongly connected components of the graph. Hence, to make sure the loops are reachable from

the node, we just consider those connected components which are reachable from the starting

node. On the other hand for bounded in difference and uniform frequency-f path we use just one

linear system for the whole graph. At this point the problem may be solved in two ways. (i) we

decompose the graph in its connected components and then we look for a set of overlapping loops

only on those component that are reachable from the starting node. (ii) we add to the bounded or

uniform frequency-f linear system a set of constraints ensuring that the loops are reachable from

the starting node. In the same way we ensured the reachability of all the nodes of the loops from a

given node u, we can define a second connection load ze for each edge e. Such connection load

should be generated by the starting node and all the nodes of the loops should absorb some positive

amount of it. To this aim, we ask that each node v should absorb a load equal to
∑

e∈v→ xe, and

that the starting node should produce a load equal to
∑

v∈V

∑
e∈v→ xe =

∑
e∈E xe. Since such

connection load can use arbitrary any edge of the graph, we have no special requirement for the

load ze. Hence, the set of connection constraint to the starting node vini are given by the following

system.

Definition 3.5.1. Let G = (V,E) be a k-colored graph with m = |E|, n = |V |. The following is

the set of constraints to add to the bounded system or to the uniform frequency-f system in order

to ensure the reachability of the loops from a starting node vini.

1. for all v ∈ V \ {u}
∑

e∈v← ze −
∑

e∈v→ ze =
∑

e∈v→ xe
2.

∑
e∈v→ini

ze −
∑

e∈v←ini
ze =

∑
e∈E xe

3. for all e ∈ E ze ≥ 0
4. for all e ∈ E ze ∈ R.

Checking that a connected component is reachable from a starting node, running the bounded

or uniform f -frequency algorithm as many times as the number of connected components, and

adding a polynomial number of constraints to the feasibility systems, are the only operation needed

to solve the initialized version of the problems. Hence, all these problems are still solvable in

polynomial time in the size of the graph and of the frequency components.

In the next section we prove that the discussed fairness and priority properties are prefix-

independent, i.e., given a a fair of priority path ρ, a new path obtained from ρ by removing or

adding a finite prefix still satisfies the same fairness or priority property or ρ. Hence, once we find

a fair or priority path ρ reachable from a starting node vini for any finite path π connecting vini
to a node ρ(n), we have that π · ρ>n is a path starting from ρ and satisfying the same fairness or

priority property of ρ.

3.6 Discussion

In a colored graph a path has asymptotic frequency f if for all colors i the difference between

fi and the frequency of a prefix of the path grows sublinearly in the length of the prefix. When the

difference does not grow and it is bounded by a constant the frequency is called uniform. Since, the

45

3. Priority Scheduling 3.6 - Discussion

uniform frequency-f property is derived by the more general asymptotic frequency-f property by

choosing a particular sublinear function that bounds the difference between the frequency of colors

on the prefixes and f , we may think to define for each sublinear function g(n) ∈ o(n) bounding

the difference a g(n)-asymptotic frequency-f property. Depending on how slowly g(n) grows we

have a different degree of uniformity of the prefix along the path.

However, we characterized the existence of an asymptotic frequency-f path by means of a

connected set of simple loops with an n.l.c. of ratio f , and the existence of an uniform frequency-f
path by means of an overlapping set of simple loops with an n.l.c of ratio f . What would be a middle

point between connection and overlapping of loops, that allows us to achieve a g(n)-asymptotic

frequency but not yet an uniform frequency?

Observe that when we determine an n.l.c {(σ1, c1), . . . , (σlcl)} of ratio f and paths πj con-

necting σj to σ(j+1 mod l), we can construct the ρ =
∏+∞

i=1 ρi where ρi = (
∏l

j=1(σj)
id · πj).

Following a proof similar to the one of Lemma 3.2.3, one can prove that ρ has asymptotic frequency

f . Also it is possible to prove that the difference between fi and |ρ≤n|i grows as C ·n−
1

d+1 . Indeed,

every time a path ρi ends, the length isC1 ·i
d+1, and the difference of occurrences of colors from the

expected fi ·n is |i ·
∑l

j=1 |σj |i| ≤ C2 · i. In the intermediate points from ρi to ρi+1 the difference

of occurrences of colors from the expected n·fi is bounded byC2 ·(i+1)+|
∑l

j=1 |σj |
id
i | ≤ C3 ·i

d.

Hence, the difference of frequency grows like 1
i = n−

1
d+1

Hence, whenever we determine a path with asymptotic frequency-f we also determine a path

with n−ε-asymptotic frequency f for every ε > 0. We hardly believe we can find a intermediate

level of connection of loops between path-connection and overlapping, that can allow a non-

bounded path with better uniformity than any n−ε. Our conjecture is that one cannot perform better

without obtaining a bounded path, i.e. for all g(n) ∈ ∩ε>0o(n
−ε) there exists a g(n)-asymptotic

frequency-f path if and only if there exists a bounded difference path.

46

Part II

Problems on Arenas

47

...

...

4
Games for scheduling

Contents

4.1 Introduction . 49

4.1.1 Strategy and Memory . 51

4.1.2 Fairness and Priority Goals . 52

4.2 Preliminaries on Half-positionality . 53

4.2.1 Kopczyński’s theorem . 53

4.2.2 Determining the winner . 54

4.3 Determining the winner . 55

4.3.1 Membership . 55

4.3.2 Hardness . 57

4.4 Computing the winning strategy . 59

4.4.1 Base Step . 60

4.4.2 Shuffle Strategy . 64

4.4.3 Inductive Step . 67

4.4.4 Complexity . 68

48

4. Games for scheduling 4.1 - Introduction

4.1 Introduction

In this part of the thesis we extend the model of colored graph to colored games in order to

encapsulate also sources of non-determinism in a scheduling plan. Hence, the activity graph is

endowed with a partition, distinguishing between the system’s states controlled by the scheduler

and the system’s states controlled by the environment. This part is divided in two chapters. In the

first we show that determining whether the system is able to follow a path satisfying a fairness or

priority condition defined in the Part 1 is a Co−NP -hard problem. Fundamental in the proof

of this result is the property of half-positionality for our fairness and priority goals. Since, this

property may allow to prove a similar result for other game goals, maybe other fairness and

priority goals, we analyze it in the second chapter. There we define a novel sufficient condition for

half-positionality, broader than the one already known in literature.

Preliminaries on Games

Like we defined in the preliminaries of this thesis, a colored arena is an initialized colored

graph endowed with a partition V0, V1 of the set of nodes. We imagine that on an arena two players,

called 0 and 1, alternate moves and construct a path. Every time a partial path is on a node of the

set Vi, player i decides what edge is added next. In our framework, player 0 represents the system

or scheduler, meanwhile player 1 represents the environment.

Definition 4.1.1. k-colored arena

1. A k-colored arena is a structure (V0, V1, E) where (V0 ∪ V1, E) is a k-colored graph, and

the two sets V0, V1 are disjoint.

2. An initialized k-colored arena is a structure (V0, V1, E, vini) where (V0 ∪ V1, E, vini) is an

initialized k-colored graph, and the two sets V0, V1 are disjoint.

3. We call the nodes of a set Vi, nodes belonging to player i.

4. The set of edges starting from nodes of player i is denoted as E←i , the set of edges ending in

nodes of player i is denoted as E→i .

5. A finite path starting from a node v in an arena, is called finite or partial v-play, because it

is an intermediate result of the two players alternating moves.

6. An infinite path starting from a node v in an arena, is called v-play (or infinite play), because

is the definitive result of the two players alternating moves

A rule, describing what edge a player chooses at every partial play, is called a strategy for

that player. Since a play is determined, once the two player have established their strategies, the

analysis of these rules provides insights about the ability of the players to pursue their goals.

Definition 4.1.2. Strategy

49

4. Games for scheduling 4.1 - Introduction

1. A strategy for player i ∈ {0, 1} is a function τi : (V0 ∪ V1) ∪ E
+ → E that associates an

edge-choice to each partial play and to each starting node. Observe, that player i just needs

to decide an edge at every partial play ending with a node of player i and at each starting

node belonging to player i. However, this more general form of strategy makes our formal

reasoning easier and does not make a strategy’s construction more complex because the

unused values can be set arbitrary.

2. A partial play or play ρ starting at a node v is said consistent with a strategy τi for player i,
if (i) the starting edge of ρ is τi(v) and (ii) for every non-empty prefix ρ′ of ρ ending with a

node in Vi, the edge of the play following ρ′ in ρ is the one computed by the strategy, i.e.,

τi(ρ
′). The empty path is considered consistent with any strategy.

3. Given two strategies τ0 and τ1 for the two players, for every node v ∈ V0 ∪ V1, there exists

only one play starting at v and consistent with τ0 and τ1. Indeed the first edge is chosen by

the strategy of the player i to which v belongs and is τi(v). Inductively at every other partial

play the next edge is chosen by the strategy of the player the ending node belongs to.

4. A strategy τi of player i is said memoryless if the choice of player i at every partial play

depends only on the last node of the play. Formally τi is memoryless if there exists a function

τ ′i : Vi → E such that for all partial paths ρ ending with v ∈ Vi we have τi(ρ) = τ ′i(v). In

such a case, τ ′i is a synthetic way to represent τi and is considered as a strategy too.

The two player alternate moves and construct an infinite path, when one player seeks the

satisfaction of a give path property and the other player pursue the complementary goal, then

we have a game between them. In this thesis the goal of player 0 is the system specification

the scheduler aims to satisfy, meanwhile player 1, depicted as a malicious entity, tries to do the

opposite.

Definition 4.1.3. Games

1. A goal or winning condition W on a k-colored arena, is a set of infinite sequences of colors

in [k], i.e., W ⊆ [k]ω.

2. A k-colored game is a structure G = (A,W) composed by an initialized k-colored arena

A = (V0, V1, E, vini) and a k-colored winning condition W .

3. A path on A with color sequence in W is said winning for player 0, a path on A with color

sequence out of W is said winning for player 1.

4. A strategy τi for player i is said winning for player i at a node v ∈ V0 ∪ V1, if every play

starting at v and consistent with τi is winning for player i.

5. The winning set of a strategy τi for player i is a set V ′ of all and only the nodes v ∈ V0 ∪ V1,

such that τi is winning at the node v.

6. A game is said winning for player i if there exists a winning strategy for player i at the

starting node vini.

50

4. Games for scheduling 4.1 - Introduction

A winning strategy for player 0 represents a rule the scheduler can follow in order to ensure

that the sequence of planned activity satisfies the given system specification, no matter what the

environment does. On the other hand, a winning strategy for player 1 represents a way for the

environment to force a run that fails to satisfy the given property, hence, the non-existence of a valid

plan for the scheduler. Also when a winning strategy for player 0 is memoryless, the scheduling

plan is easy, since the activity the scheduler has to chose at every state depends only on the state

and not on some history of the run. Hence, it is interesting to relate a game to the existence of

winning strategy and memoryless strategy.

Definition 4.1.4. Positionality and Determinacy

1. A game is said determined if one of the two players has a winning strategy.

2. A determined game is said positional if the winning player has a memoryless winning

strategy.

3. A goal W is said determined if all games with goal W are determined.

4. A goal W is said full-positional if all determined games with goal W are positional

5. A goal W is said half-positional for player i, if all games having goal W and winning for

player i, are positional.

4.1.1 Strategy and Memory

In general, a strategy allows a player to compute the edge that needs to follow a partial play. It

is possible that such a computation does not need to evaluate the whole path, but maybe a more

succinct information extracted from the path itself. This information represents what a player

needs to remember in order to make a choice and it is called memory.

Definition 4.1.5. Memory

Consider an arena A = (V0, V1, E) and a strategy τ : (V0 ∪ V1) ∪ E
+ → E for player i. A

memory of τ is a function µ : (V0 ∪ V1)∪E
+ →M such that for all paths ρ, ρ′ ∈ (V0 ∪ V1)∪E

+

with µ(ρ) = µ(ρ′) we have τ(ρ) = τ(ρ′). The set M is called memory space.

Observe that every strategy has a memory, indeed the identity function µ(ρ) = ρ for all paths

and starting node is a valid memory for any strategy. If µ : (V0 ∪ V1) ∪ E
+ → M is memory

function for τ , then we can define a function τµ : M → E such that for all m ∈ M we have

τµ(m) = τ(ρ) for every path or starting node ρ with memory m. Since τ is the composition of τµ
with µ, we have that the triple (M,µ, τµ) is an alternative way to represent the strategy τ , and it is

called memory form of τ .

The use of memory becomes particularly interesting, when there is an updating function

ψ : M × E → M that allows to determine what is the memory ψ(m, e) of a path obtained by

adding an edge e to a prefix with known memory m.

51

4. Games for scheduling 4.1 - Introduction

Definition 4.1.6. Update function

Consider an arena A = (V0, V1, E), and a strategy (M,µ, τµ) for player i in memory form

with µ : (V0 ∪ V1) ∪E
+ →M and τ :M → E. Then, ψ :M ×E →M is an updating function,

if for all paths ρ and edges e we have µ(ρ · e) = ψ(µ(ρ), e).

If an update function exists, then the strategy (M,µ, τµ) for player i can be represented

as a quadruple (M,ψ, τµ, µ0) where τµ is the choice function, ψ is the update function and

µ0 : (V0 ∪ V1) → M is the initial memory function such that µ0(v) = µ(v) for all v ∈ V0 ∪ V1.

Indeed, player i needs just to update its memory every time and edge is added to the play, and

when the play is on a node belonging to player i, and the memory is m, then player i chooses the

next edge τµ(m). A strategy in memory-update form can easily be implemented, since at every

step the player just needs to compute the value of two functions. However, for implementation

purposes we need an algorithm for the computation of ψ and τ . Observe that, whenever M is

finite, the two function ψ and τ can always be given as tables (an |M ||E| × |M | table for ψ and an

|M | × |E| table for τ). In such case |M |2 · |E| is the size of the strategy.

Observe that given a strategy (M,ψ, τµ, µ0) in memory update form, we can compute its

memory form (M,µ, τµ), indeed µ(v) = m0(v) and for all paths π = e1 . . . , en we have µ(π) =
ψ(ψ(. . . ψ(ψ(m0, e1), e2) . . .), en).

Definition 4.1.7. Unfolding Function

For every update function ψ : M × E → M , we call unfolding of ψ, the function ψ∗ :
M × E∗ →M such that

1. ψ∗(m, ε) = m,

2. for all π = e1 . . . en of length n ≥ 1 we have that the unfolding function is equal to

ψ∗(m,π) = ψ(ψ(. . . ψ(ψ(m, e1), e2) . . .), en).

For every memory function µ : 0 : (V0∪V1) →M , we call fixed unfolding of ψ, the function ψ∗[m] :
E∗ →M such that for all π ∈ E∗ with starting node v, we have ψ∗[m](π) = u∗(µ0(v), π)

It is easy to see that the memory function for a strategy (M,ψ, τµ, µ0) is µ := ψ∗[m]. It is

immediate to prove from the definition of unfolding of ψ the following concatenation property.

Lemma 4.1.1. For every path π = π1 · π2 ∈ E∗, and for every memory m we have ψ∗[m](π) =
ψ∗(m,π) = ψ∗(ψ∗(m,π1), π2) = ψ∗[ψ∗[m](π1)](π2).

4.1.2 Fairness and Priority Goals

In this chapter we focus our attention on games with the Fairness and Priority goals introduced

respectively in Chapter 2 and Chapter 3.

1. The balance goal Wbl is the set containing all and only the balanced color sequences.

2. The bounded goal Wbn is the set containing all and only the bounded color sequences.

3. Let f ∈ Qk be such that
∑k

i=1 fi = 1. The asymptotic frequency-f goal Waf is the set

containing all and only the color sequences with color asymptotic frequency vector f .

52

4. Games for scheduling 4.2 - Preliminaries on Half-positionality

4. Let f ∈ Qk be such that
∑k

i=1 fi = 1. The uniform frequency-f goal Wuf is the set

containing all and only the color sequences with color uniform frequency vector f .

Observe that, due to Corollary 3.2.1, we investigate only priority goals with a rational frequency.

Given a frequency vector f ∈ Qk with all components equal to 1
k , by Theorems 3.2.4 and 3.2.3 we

obtain that Wbl ⊆Waf and Wbn ⊆Wuf .

4.2 Preliminaries on Half-positionality

Half-positionality states that the winning capability of a player is not weakened if we make it

only use memoryless strategies, since, when that player wins, it wins with a memoryless strategy.

Half-positionality is used in the course of the first chapter to prove results on games. Hence, as

a preliminary we now discuss, a sufficient condition due to Erik Kopczyński [Kop06]. In the

following, unless otherwise stated, we just use the term half-positionality, to mean half-positionality

for player 0.

4.2.1 Kopczyński’s theorem

In [Kop06], Kopczynśki defines two properties of goal, sufficient for half-positionality. A

desirable property is that every time the play passes in a node controlled by player 0, this player

always prefer progressing through the same edge rather than alternating between different ones.

Kopczyśki captures this property through the concept of concavity, which states that no matter how

two losing words are interleaved the results is a losing word.

Definition 4.2.1. Shuffle

The shuffle of two infinite words x, y ∈ [k]ω is the set of infinite words obtained by switching

infinitely often between x and y, i.e., x, y⊗ = {z1 . . . zn . . . ∈ [k]ω | z1z3 . . . z2n+1 . . . =
x, z2z4 . . . z2n . . . = y}.

Definition 4.2.2.

A goal W ⊆ [k]ω is concave, if for each pair of losing infinite words x, y 6∈ W , all words in the

shuffle are losing, i.e., x, y ⊗ ∩W = ∅.

A goal W ⊆ [k]ω is convex, if its complement [k]ω \W is concave

Lemma 4.2.1. A goal W ⊆ [k]ω is convex if and only if for each pair of winning infinite words

x, y 6∈W , all words in the shuffle are winning, i.e., x, y⊗ ⊆W .

Every time player 0 reaches a node with multiple exiting edges, he has a choice between many

positional behaviors. If one of them is winning, player 0 uses that one. If they are all losing,

concavity ensures that they cannot be alternated in order and give a non-memoryless winning

behavior. However, it is still possible that the optimal positional choice of player 0 depends

on some finite prefix up to that node. Kopczyńsky solves the problem through the property of

prefix-independence, which states that the winning value of a word does not change whether we

modify some finite prefix.

53

4. Games for scheduling 4.2 - Preliminaries on Half-positionality

Definition 4.2.3. A goal W is prefix-independent if, for all infinite words x ∈ [k]ω, and for all

finite words z ∈ [k]∗, the word x is winning if and only if the word z · x is winning as well.

Lemma 4.2.2. A goal W ⊆ [k]ω is prefix-independent if and only if its complement [k]ω \W is

prefix independent.

Together, the two properties constitute a sufficient condition not only to half-positionality, but

also to determinacy.

Theorem 4.2.1. [Kop06] All concave and prefix-independent goals are determined and half-

positional.

4.2.2 Determining the winner

In the case the game represents a system-environment interaction, a strategy for the system

constitutes a plan of scheduling of the activities in the states it controls. Hence, determining the

winner of a game, i.e. determining which player has a winning strategy, is a fundamental problem.

Half-positionality and determinacy allow us to reduce the problem on games to a problem on

graphs through an exponential guess.

Suppose a goal W is half-positional for player 1, if player 1 has a winning strategy on game

G = (A,W) , the he has also a winning memoryless one. Hence, we simply need to evaluate all

the memoryless strategies of player 1, and if we do not find a winning one we conclude that player

0 is the winner. Since the memoryless strategies are functions τ from V1 to E, they are finite in

number, and they can be represented in polynomial space. Each memoryless strategy forms a

subarena A′ in the arena A, obtained from A by removing for all the nodes v controlled by player 1,

all edges exiting from those nodes but the one used in the strategy, i.e. τ(v). Hence, for each node

v ∈ V1 in A′ there exists only one exiting edge, in such situation player 1 has no choices. Actually

the arena can be viewed as a graph whose nodes are all controlled by player 0. Upon such a graph

we may apply an easier algorithm and check whether player 0 has a way to beat the strategy τ by

finding a path with color sequence in W . Following this idea, we prove the next lemma.

Lemma 4.2.3. Let W be a k-colored, half-positional and determined goal, such that for all

initialized graphs G = (V,E, vini) there exists a polynomial time algorithm determining whether

there exists an infinite path starting at vini with color sequence in W . Then, for each k-colored

game G = (A,W) the problem asking whether there exists winning strategy for player 1 is in NP
and the problem asking whether there exists a winning strategy for player 0 is in Co−NP .

Proof. By half-positionality, if player 1 has a winning strategy, he has a memoryless one. The

number of memoryless strategies is finite and each one of them can be represented in polynomial

space in the size of the problem. (It is the number of possible functions that associate a node in V1
with an edge exiting from that node). So, in polynomial time we can guess a memoryless strategy

τ , and verify that it is a winning strategy, using the following algorithm. We construct the subarena

A′, obtained from A by removing all the edges of player 1 that are not used by τ . It is easy to

see the set of plays on A consistent with τ is equal to the set of all plays on A′. We have that τ
is a winning strategy for player 1 in A if and only if all the plays on A′ are winning for player

1. Observe that in A′ player 1 actually has no choice. so we may consider that a play in A′ is

54

4. Games for scheduling 4.3 - Determining the winner

constructed only by player 0. Thus, player 0 has a strategy that beats τ if and only if there exists a

path starting from vini, with color sequence in W in the graph of A′. By hypothesis we known to

solve the problem in polynomial time.

Since, we evaluate whether there exists a wining strategy for player 1, by guessing a polynomial

certificate that can be checked in polynomial time, we obtain that the problem is in NP . Hence,

the complementary problem asking whether there exists a winning strategy for player 0 is in

Co−NP .

4.3 Determining the winner

When a k-colored game represents the interaction between a scheduler and the environment,

determining whether the system has a winning strategy, allows us to determine whether a scheduler

can force a desired specification. In the case of the fairness and priority goals, we show that

determining whether player 0 has winning strategy is Co−NP -complete and that determining

whether player 1 has a winning strategy is NP -complete. We also propose an algorithm that allows

us to determine the winner.

4.3.1 Membership

We first prove that the fairness and priority goals are determined and half-positional for player

1 by using Kopczyńsky’s theorem. By using lemma 4.2.3 and the algorithms on graphs for

determining fair and priority path discussed in Chapters 2 and 3, we obtain a NP algorithm that

allows us to determine whether there exists a winning strategy for player 1.

The following lemmas prove that the complements of fairness and priority goals are prefix-

independent and concave. Since a goal is prefix-independent if and only if its complement is prefix

independent, for this property the following lemma is sufficient.

Lemma 4.3.1. For every frequency vector f ∈ Qk, the priority goals Waf , Wuf and the fair goals

Wbn, Wbl are prefix independent.

Proof. Let x ∈ [k]ω, and let y ∈ [k]∗, we prove that for all the goals, the color sequence x is

winning if and only if y · x is winning. We distinguish the following cases.

1. (asymptotic frequency f) x has asymptotic frequency f if and only if for each color i ∈ [k] we

have limn→+∞
|x≤n|i

n = fi Since |x≤n|i = |(y ·x)≤n+|y||i−|y|i for by setting m = n+ |y|

we have |(y · x)≤m|i = |x≤m−|y||+ |y|i. Hence x has asymptotic frequency f , if and only

if for each color i ∈ [k] we have limm→+∞
|(y·x)≤m|i

m = limn→+∞
|x≤n|i−|yi|

n−|y| = fi and this

happens if and only if y · x has asymptotic frequency f .

2. (uniform frequency f) We already proved that x has asymptotic frequency f if and only

if y · x does, it remains to prove that such a frequency is uniform on x if and only if it is

uniform on y · x.

[only if] Since x has asymptotic frequency f , there exists a constantC such that for all n ∈ N

and i ∈ [k] we have −C ≤ n ·fi−|x≤n|i ≤ C. Let m = n+ |y|, and Ci = |y| ·fi−|y|i, let

55

4. Games for scheduling 4.3 - Determining the winner

C ′ = maxCi | i ∈ [k]. Let C ′′ = max {|m · fi| − |yleqm|i | i ∈ [k],m ≤ |y|}. Then, we

have for all m ∈ N, min {−C − C ′,−C ′′} ≤ m · fi − |(y · x)≤m|i ≤ max {C + C ′, C ′′}.

Hence, y · x has uniform frequency f .

[if] Since y · x has asymptotic frequency f , there exists a constant C such that if for all

m ∈ N and i ∈ [k] we have −C ≤ m · fi − |(y · x)≤m|i ≤ C. Let m = n + |y|, and

Ci = |y| · fi − |y|i. Then, we have for all n ∈ N, −C − C ′ ≤ n · fi − |x≤n|i ≤ C + C ′.
Hence, x has uniform frequency f .

3. (Bounded and Balanced) Since the balance (resp., bounded in difference)property is equiva-

lent to the asymptotic (resp., uniform) frequency-f property with fi equal to 1
k for all colors

i ∈ [k], the thesis holds.

Lemma 4.3.2. For every frequency vector f ∈ Qk, the priority goals Waf , Wuf and the fair goals

Wbn, Wbl are convex.

Proof. Let y, z ∈ [k]ω and x ∈ y ⊗ z. We prove that if y and z are winning, then so is x. We have

that x = x1 . . . xi . . . where y = x1x3 . . . x2k+1 . . . and z = x2x4 . . . x2k Also, for all n ∈ N

there are two indexes ny, nz such that n = ny + nz and Num(x≤n) = Num(y≤ny) +Num(z≤nz),
for all a, b ∈ [k]. We distinguish the following cases.

1. (asymptotic frequency-f) Given that y and z have asymptotic frequency f , we have that,

for all a ∈ [k] and for all ε > 0, there exists h(ε) > 0 such that for all n > h(ε), it holds

that
∣∣ |y≤n|a

n − fa
∣∣ ≤ ε and

∣∣ |z≤n|a
n − fa

∣∣ ≤ ε. Hence, given ε > 0, let n > 0 be such that

ny ≥ h(ε2) and nz ≥ h(ε2). Such n exists, due to the definition of the shuffle operation. For

all n′ > n we have that:

∣∣∣
|x≤n

′
|a

n′
− fa

∣∣∣ =
∣∣∣
|y≤n

′
y |a + |z≤n

′
z |a − (n′y + n′z)fa

n′y + n′z

∣∣∣

≤
∣∣∣
|y≤n

′
y |a − n′y · fa

n′y + n′z

∣∣∣+
∣∣∣
|z≤n

′
z |a − n′z · fa
n′y + n′z

∣∣∣

≤
∣∣∣
|y≤n

′
y |a

n′y
− fa

∣∣∣+
∣∣∣
|z≤n

′
z |a

n′z
− fa

∣∣∣ ≤ ε.

So, the color sequence x has asymptotic frequency vector f .

2. (uniform frequency-f) Since y and z have uniform frequency f , then x has asymptotic

frequency f by the previous point. Moreover, there exist two constants Cy, Cz ∈ N such

that for all i ∈ [k] and for all n > 0, |n · fi − |y≤n|i| < Cy and |n · fi − |z≤n|i| < Cz .

Therefore, let Cx = Cy + Cz , for all i ∈ [k] and n ∈ N we have |n · fi − |x≤n|i| ≤
|ny · fi − |y≤ny |i|+ |nz · fi − |z≤nz |i| ≤ Cx. Hence, the sequence x has uniform frequency

f .

56

4. Games for scheduling 4.3 - Determining the winner

3. (balanced and bounded) Since the balance (resp., bounded in difference)property is equiv-

alent to the asymptotic (resp., uniform) frequency-f property with fi equal to 1
/k for all

colors i ∈ [k], the thesis holds.

By Kopczyńsky theorem, and the previous lemmas, the following corollary follows.

Corollary 4.3.1. For every frequency vector f ∈ Qk, the priority goals Waf , Wuf and the fair

goals Wbn, Wbl are determined and half-positional for player 1.

Recall that from Section 3.5, we have a polynomial algorithm that allows us to determine a

fair or priority infinite path reachable from a starting state in a k-colored graph. Let ρ be such

a infinite path and let ρ′ be the path connecting vini to the starting node of ρ. Then, by prefix

independence the new infinite path ρ′ · ρ has the same asymptotic (resp., uniform) frequency of ρ.

Since constructing a path from vini to the starting node of ρ′ is polynomial in the size of the game

graph, we have polynomial algorithms that allow us to compute a fair or priority path starting from

a the initial node vini in any k-colored graph. By Lemma 4.2.3, we are able to construct an NP
algorithm determining whether there exists a winning strategy for player 1.

Corollary 4.3.2. Given a k-colored game with balanced, bounded, asymptotic frequency-f , or

uniform frequency-f goal, the problem asking whether there exists a winning strategy for player 1
is in NP , the problem asking whether there exists a winning strategy for player 0 is in Co−NP .

4.3.2 Hardness

In this section we prove that determining whether there exists a winning strategy for player 0
is an Co−NP -hard problem, by reducing it to the satisfiability problem of a boolean formula,

which is a known Co−NP hard problem. Hence, determining whether there exists a winning

strategy for player 1 is a NP -hard problem.

Lemma 4.3.3. Given a boolean formula ψ in conjunctive normal form, there exists a k-colored

arena A such that the following are equivalent (i) ψ is a tautology, (ii) there exists a winning

strategy for player 0 in the game G = (A,Wbl), and (iii) there exists a winning strategy for player

0 in the game G = (A,Wbn).

Proof. Let n be the number of clauses of ψ and m be the number of its variables, then we can

write ψ = ∧n
i=1ψi, where each ψi is a disjunction of literals. In the following we define ψ(x) as

the set of all clauses in which x appears in positive form, and ψ(x) as the set of all clauses in which

x appears negated.

We construct the following (n+1)-colored arena A = (V0, V1, vini, E), where the set of colors

corresponds to the set of clauses of ψ with the added control color n+ 1. The description of the

arena A makes use of uncolored edges, i.e., edges not labeled by any color. Clearly, such an edge

can be represented in our framework by a sequence of n + 1 edges, each labeled by a different

color. The arena A is composed by m subarenas Aj , one for each variable xj . Every subarena Aj

has a starting node vj , an ending node v′j and two sequences of nodes: {vj,i}
n
i=1, {vj,i}

n
i=1 where

57

4. Games for scheduling 4.3 - Determining the winner

vj,1
$$

1

::
vj,2

!!

2

==. . .
%%

n

99
vj,n+1

""E
EE

EE
EE

EE

vj

>>}}}}}}}}

 @
@@

@@
@@

@
v′j

vj,1
%%

1

99
vj,2

!!

2

==. . .
&&

n

88
vj,n+1

==zzzzzzzzz

Figure 4.1: The j-th subgraph Aj of A. The dotted edge from vj,i to vj,i+1 is present if and only if

ψi ∈ ψ(xj), and analogously for the lower branch.

every node is associated with a clause. There is an uncolored edge from vj to vj,1 and from vj
to vj,1. Moreover, if we define vj,n+1 = vj,n+1 = v′j , we have that for all 1 ≤ i ≤ n, (i) there

is an uncolored edge from vj,i to vj,i+1 and from vj,i to vj,i+1, (ii) if ψi ∈ ψ(x) then there is

an i-colored edge from vj,i to vj,i+1, and (iii) if ψi ∈ ψ(x) then there is an i-colored edge from

vj,i to vj,i+1. We call the sequence {vj,i}i the upper branch of Aj and the sequence {vj,i}i the

lower branch of Aj . The arena A is constructed by connecting the subarenas Aj as follows: for all

1 ≤ j ≤ m− 1 there is an uncolored edge from v′j to vj+1 and an n+ 1-colored edge from v′m to

v1.

The construction of A is concluded by partitioning the set of nodes in V1 = {v1, . . . , vm} and

V0 = V − V1. Intuitively, every subarena Aj represents a truth choice for the variable xj . This

choice is made by player 1 with the aim to skip the passage through some clauses. On the other

hand, as soon as there is the chance, player 0 tries to pass through each clause once during a single

loop, in order to balance the clauses’ colors with the control color n+ 1. Let G = (A,Wbl) and

G′ = (A,Wbn), we now show the correctness of the above construction. In the following, we write

ṽj,i to mean either vj,i or vj,i.

[If] If ψ is a tautology, then the winning strategy for player 0 in both games G and G′ may be

summarized as follows: as soon as there is a chance, pass through an edge of color ψi; then, do not

pass through such an edge again, until we pass again through v1. Formally, the strategy of player

0 is the following: each time the play is in a node ṽj,i, player 0 chooses to reach ṽj,i+1 through

the ψi-colored edge if and only if ψi does not appear in the least suffix of the partial play starting

with v1. then player 1 does not have a choice and it follows the only possible outgoing edge. We

observe that during a single loop from v1 to itself, a strategy of player 1 is a truth-assignment to the

variables of ψ: precisely for every subarena Aj , player 1 chooses to follow the upper branch if and

only if xj is true. Since ψ is a tautology, any such assignment is a satisfiable assignment, i.e., given

such an assignment a : {x1, . . . , xn} → {T, F}, for each clause ψi, there exists a variable x such

that ψi is true also due to the value a(x). This means that player 0 can pass through a ψi-colored

edge at least once during a single loop, and thanks to his strategy, he will pass through such an

edge exactly once. Thus, during each loop, the uncolored edges are already perfectly balanced, and

58

4. Games for scheduling 4.4 - Computing the winning strategy

the edges added by player 0 are balanced thanks to the last n+ 1-colored edge. Thus, during the

infinite play, the color differences are always zero when the play is in node v1. Since the loops from

v1 to itself have bounded length, the color differences are bounded during the play. Thus every

infinite play consistent with the strategy is bounded and it is balanced too, because in [BFMM09]

we proved that a bounded path is balanced too.

[Only If]. If ψ is not a tautology, then there is a memoryless winning strategy for player 1 on

G and on G′: player 1 follows a truth assignment of the variables of ψ that does not satisfy ψ.

For such an assignment there is an unsatisfiable clause ψi. So, during a loop from v1 to itself, if

player 1 follows this strategy, player 0 cannot pass through any ψi-colored edge. Thus, at the end

of the loop the color difference between color ψi and color n+1 is increased by one. Every play ρ
is an infinite concatenation of simple loops from v1 to itself. Since those loops have maximum

length l ≤ |E|, for all j ∈ N we have diff i,n+1(ρ
≤j) ≥ j

l , and thus limj→+∞
diff i,n+1

(ρ≤j)

j ≥ 1
l .

This means that every play consistent with said strategy of player 1 is not balanced, and hence not

bounded.

Theorem 4.3.1. Given a k-colored game G with balanced (resp., bounded, frequency-f) goal, the

problem asking whether there exists a winning strategy for player 0 is Co-NP-complete.

Proof. By Lemma 4.2.3 and Lemma 4.3.3, we have that the problems for the balance and the

bounded goal are Co-NP-complete. Since the bounded goal is a special case of frequency-f goal

(for fi = 1/k), we have that the frequency-f problem is Co-NP-hard too. Since by Lemma 4.2.3

the problem for frequency-f is in Co-NP, it is Co-NP-complete.

This Co-NP-completeness result may be regarded as essentially negative. In fact, the algorithm

showing membership in NP, once converted into a deterministic form, simply suggests to try each

one of the (exponential) memoryless strategies of player 1 in the game, and solve a linear program

to determine whether it is winning.

4.4 Computing the winning strategy

In the previous section we discussed an NP algorithm determining whether there exists a

winning strategy for player 1. Such an algorithm uses memoryless strategies as certificates, hence,

when it terminates with a valid certificate, it also provides a winning strategy for player 1. However,

when there does not exist any winning strategy for player 1, the algorithm terminates without

giving any information about the winning strategy of player 0. Such a strategy is quite interesting,

since it says how a scheduler should behave in order to ensure the construction of a fair or priority

path regardless of the environment’s choices. In this section, we show how to construct a winning

strategy for player 0 in memory-update form, by induction on the number of edges exiting from

nodes belonging to player 1. We start from the arenas controlled by player 0 where there is only

one edge exiting from nodes of player 1, on such arenas the winning strategy is given by a fair or

priority path computable through the technique of Chapters 2 and 3. We decompose a complex

arena A = (V0, V1, E) in two subarenas Ai = (V0, V1, Ei) with the same set of nodes but a

reduced set of edges exiting from node of player 1. Using the winning strategies computed by

59

4. Games for scheduling 4.4 - Computing the winning strategy

induction on the subarenas, we are able to compose them and form a winning strategy for the

complex arena.

At every induction step we propagate the following inductive hypothesis on each arena A =
(V0, V1, E).

1. We computed a strategy τ = (M,ψ, τµ, µ0) in memory update form and the winning set

D ⊆ V0 ∪ V1 for τ .

2. We know that D is the greatest possible wining set for a strategy of player 0 on A, i.e., for

each u 6∈ D, there exists a winning strategy for player 1 on A at u.

Hence, when the algorithm halts, we completely determine the set D of all and only the nodes

from which there exists a winning strategy for player 0. Moreover, we also have a strategy in

memory-update form that allows player 0 to win from every point in D.

As preliminaries to the algorithm we discuss a property of strategies for prefix-independent

goals, that allows us to state that nodes not belonging to the maximal winning set D are not

reachable by nodes in D with a path consistent with τ .

Lemma 4.4.1. Let A = (V0, V1, E) be a k-colored arena, W be a prefix-independent goal, τ be

a strategy of player 0 on A, and D be the winning set of τ . Let u 6∈ D be a node such that there

exists a winning strategy τ ′ for player 1. Then, for all nodes v ∈ D there does not exists a path

from v to u consistent with τ .

Proof. Suppose by contradiction that there exists a path π from v to u consistent with τ , then we

can construct a strategy τ1 for player 1 winning at v against τ . Indeed, let τ1(v) = π(1); for all

n < |π| let τ1(π
≤n) = π(n + 1); for all π′ ∈ E∗ starting at u let τ1(π · π′) = τ ′(π′). The play

consistent with τ and τ1 forces the path π at the beginning and it has the form π · ρ where ρ is an

infinite path starting at u consistent with τ ′. Hence, ρ is losing for player 0, by prefix independence

π · ρ is losing and τ is not a winning strategy. This contradicts the hypothesis.

4.4.1 Base Step

As a base case, consider a game arena A such that from all the nodes controlled by player 1,

there is only one exiting edge. Such an arena can be considered as a game graph where all nodes

are controlled by player 0. Hence, we can compute a winning strategy for player 0 starting at a

node v as a fair or priority path through the polynomial algorithm discussed in Chapters 2 and 3.

However, we need to construct a winning strategy for the maximal winning set of A. Hence, we

iteratively construct the setR of nodes from which there is no fair or priority path and a sequence of

pairs {(Mi, ψi, τµ,i, µ0,i), Ri)}
l
i=1 memory-update-form strategy and winning set for that strategy

such that ∪l
i=1Ri ∪ R = V0 ∪ V1. The construction is by induction on the size of the set R′ of

nodes v such that we still do not whether there exists a winning path from v. At each step we pick

a node v ∈ R′, and we determine whether there exists a fair or priority path in R′ through the

appropriate polynomial algorithm. If such a path does not exist v is put in the losing set R and

removed from R′. If the path does exist, then we construct a strategy τi winning on the set Ri of

nodes belonging to the found path. Such nodes are then removed from R′. We show in the next

subsection, how the strategy τi is constructed by case analysis on the type of goal.

60

4. Games for scheduling 4.4 - Computing the winning strategy

Once the sequence {(Mi, ψi, τµ,i, µ0,i), Ri)}
l
i=1 is constructed, we can construct a strategy

τ = (M,ψ, τµ, µ0) winning on D = ∪l
i=1Ri as follows.

1. M = ∪l
i=1({i} ×Mi)

2. For all (i,m, e) ∈M × E we have ψ(i,m, e) = ψi(m, e).

3. For all (i,m) ∈M we have τµ(i,m) = τµ,i(m)

4. For all u ∈ Ri we have µ0(u) = µ0,i(u).

The strategy is winning on D because for each u ∈ Ri it behaves like the strategy τi winning

on u. Moreover, since D ∪ R = V0 ∪ V1 and R is a set of losing nodes we have that D is the

maximal winning set on A. In the following, we show how to compute for a node v, from which a

fair or priority path ρ starts, a strategy τ winning on the set of nodes R belonging to ρ.

Uniform Frequency

For the uniform frequency-f goals (hence, also for the bounded difference ones) if the polyno-

mial algorithm finds a frequency-f path, it computes an overlapping set of simple loops σ1, . . . , σl
reachable from a node v and having a linear combination of ratio f . Such set of loops can be

composed in polynomial time to form a perfectly balanced loop σ reachable from v. Let π be a

path from v to σ, then ρ = π · (σ)ω is a path starting from v with uniform frequency f .

Hence, τ = (M,ψ, τµ, µ0) just needs to remember the part of π or the part of σ constructed so

far.

1. We use as a memory state M the set of all prefixes of π and σ. Hence, M = {π≤n | 0 ≤
n ≤ |π|} ∪ {σ≤n | 0 < n ≤ |σ|}.

2. The update function ψ :M × E →M just updates the prefixes, hence, it is such that

(a) for all n < |π|, ψ(π≤n, π(n+ 1)) = π≤n+1,

(b) ψ(π, σ(1)) = σ≤1,

(c) for all n < |σ|, ψ(σ≤n, σ(n+ 1)) = σ≤n+1,

(d) ψ(σ, σ(1)) = σ≤1.

3. The choice function τµ :M × E is such that

(a) for all n < |π|, τµ(π
≤n) = π(n+ 1),

(b) τµ(π) = σ(1),

(c) for all n < |σ|, τµ(σ
≤n) = σ(n+ 1),

(d) τµ(σ) = σ(1).

4. For the starting memory we only need to set µ0(v) = ε.

61

4. Games for scheduling 4.4 - Computing the winning strategy

5. Since, player 1 has no choice, following the strategy written so far, player 0 will surely

follow the path ρ, hence, for all other paths and memory values the value of U and τµ is not

important, and can be set arbitrary.

The above strategy is surely winning on A at v. However, one can notice that, by prefix

independence, it should win also on the set R of nodes belonging to the path ρ, because the suffix

after a node in R is also winning. In order to allow the strategy to be winning also at such nodes u,

it is sufficient that the starting memory on u is the memory developed by τ on the path starting

from v till the first occurrence of u. Precisely, for all u ∈ R \ {v}, we set µ0(u) = ψ∗(m0, πu)
where πu is the shortest prefix of ρ ending with u. If we write ρ = πu · ρu it is easy to see that ρu
is the only path starting at u and consistent with τ , and by prefix independence it is a winning path.

Asymptotic Frequency

For the asymptotic frequency-f goals (hence, also for the balanced ones) the polynomial

algorithm computes a connected set {σ1, . . . , σl} of simple loops reachable from and v and having

a linear combination with coefficients c1, . . . cl of ratio f . Let πi be a path connecting σi to

σi+1modl, then the loops, the coefficients and the paths constitute a polynomial representation of

the path ρ′ =
∏+∞

i=1 (σi)
i×ciπi. Such a path has asymptotic frequency f and is reachable from

v. By choosing π as path from v to σ1, we have that ρ = π · ρ′ is a path starting from v with

asymptotic frequency f .

Hence, τ = (M,ψ, τµ, µ0) needs to remember the part of π or the indexes i, j, the part of σj
or πj constructed so far, and in the case of σj the number of times c the loop has been created so

far.

1. We use as a memory state M the set of all prefixes of π, and the set of prefixes of σj and πj
for all j ∈ [l] and i ∈ N. Hence, M = {π≤n | 0 ≤ n ≤ |π|} ∪ N× [l]× {π≤nj | 0 < n ≤

|πj |} ∪N× [l]×N×{σ≤nj | 0 < n ≤ |σj |}. A memory (i, j, π≤nj) means the play is at the

i-th step of the outer product, at the j-th step of the inner product and the play is constructing

πj . A memory (i, j, c, σ≤nj) means the play is at the i-th step of the outer product, at the j-th

step of the inner product and the play is constructing σj after constructing it already c times.

2. The update function ψ :M × E →M just updates the prefixes, hence, it is such that

(a) for all n < |π|, ψ(π≤n, π(n+ 1)) = π≤n+1,

(b) ψ(π, σ1(1)) = (1, 1, 0, σ≤11)

(c) for all i, j, c, n with n < |σj |, ψ(i, j, cσ
≤n
j , σj(n+ 1)) = (i, j, c, σ≤n+1

j),

(d) for all i, j, c with c < i× cj , ψ(i, j, c, σj) = (i, j, c+ 1, σ≤1j).

(e) for all i, j, ψ(i, j, i · cj , σj) = (i, j, π≤1j)

(f) for all i, j, n with n < |πj |, ψ(i, j, π
≤n
j) = (i, j, π≤n+1

j)

(g) for all i, j with j < l, ψ(i, j, πj) = (i, j + 1, 0, σ≤1j+1)

(h) for all i, ψ(i, l, πl) = (i+ 1, 1, 0, σ≤11).

62

4. Games for scheduling 4.4 - Computing the winning strategy

3. The choice function τµ :M × E is such that

(a) for all n < |π|, τµ(π
≤n) = π(n+ 1),

(b) τµ(π) = σ1(1)

(c) for all i, j, c, n with n < |σj |, τµ(i, j, cσ
≤n
j , σj(n+ 1)) = σj(n+ 1),

(d) for all i, j, c with c < i× cj , τµ(i, j, c, σj) = σj(1).

(e) for all i, j, τµ(i, j, i · cj , σj) = πj(1)

(f) for all i, j, n with n < |πj |, τµ(i, j, π
≤n
j) = πj(n+ 1)

(g) for all i, j with j < l, τµ(i, j, πj) = σj+1(1)

(h) for all i, τµ(i, l, πl) = σ1(1).

4. The starting memory is µ0(v) = ε.

5. Since, player 1 has no choice, following the strategy written so far, player 0 will surely

follow the path ρ, hence, for all other paths and memory values the value of U and τµ is not

important, and can be set arbitrary.

The above strategy is surely winning on A at v. However, one can notice that, by prefix

independence, it should win also on the set R of nodes belonging to the path ρ, because the suffix

after a node in R is also winning. In order to allow the strategy to be winning also at such nodes u,

it is sufficient that the starting memory on u is the memory developed by τ on the path starting

from v till the first occurrence of u. Precisely, for all u ∈ R \ {v}, we set µ0(u) = ψ∗(m0, πu)
where πu is the shortest prefix of ρ ending with u. If we write ρ = πu · ρu it is easy to see that ρu
is the only path starting at u and consistent with τ , and by prefix independence it is a winning path.

Approximated Asymptotic Frequency

For the asymptotic frequency f the need for an infinite memory, does not allow a scheduler to

be able to update the memory forever. Hence, for practical purposes, we cannot use the asymptotic

frequency-f path found. However, the path ρ′ = π
∏+∞

i=1

∏l
j=1(σj)

≤d·cjπj may constitute a

reasonable approximation of a path with frequency f for a great enough fixed value of d. By setting

σ =
∏l

j=1(σj)
≤d·cjπj , we have that ρ′ = π · (σ)ω, hence we can construct a strategy following ρ′

like discussed above for the paths with uniform frequency.

Observe that ρ′ has uniform frequency f ′, which is given by the frequency of the loop σ′i
given by

∏l
j=1(σj)

≤d·cjπj . By construction of ρ and ρ′ we know that for each color i ∈ [k]

it holds that fi =
∑l

j=1 cj |σj |i
∑l

j=1 cj |σj

, and f ′i =
d·
∑l

j=1(cj ·|σj |i)
∑l

j=1 |πj |i

d·
∑l

j=1(cj ·|σj |)
∑l

j=1 |πj |
. Since

∑l
j=1 |πj | is finite,

there exist constants di such that |
∑l

j=1 |πj |i| ≤ di · |
∑l

j=1(cj · |σj |i)| and a constant d′ such

that |
∑l

j=1 |πj || ≤ d · |
∑l

j=1(cj · |σj |)|. Hence, we obtain that for each i ∈ N it holds that
d−di
d+d′ fi ≤ f ′i ≤

d+di
d−d′ fi, thus the greater is d the closer f ′i is to the desired frequency fi.

63

4. Games for scheduling 4.4 - Computing the winning strategy

4.4.2 Shuffle Strategy

For the inductive case, we consider an initialized arena A = (V0, V1, E) such that there are

n > |V1| edges exiting from nodes controlled by player 1. In order to reduce the computation

of a winning strategy on A, to a computation on less complex arenas, we decompose A in two

subarenas. In this subsection we show how to combine winning strategies on the two subarenas in

order to obtain winning strategies on A. We complete the construction on the inductive step of the

algorithm in the next subsection.

Precisely, consider a node v ∈ V1 from which there are at least two exiting edges. Then, we

can decompose A in two subarenas equal to A but for the fact that they contain only a part of the

set of edges exiting from v. Formally, we can partition the set v→ of edges exiting from v in two

sets Eα, Eβ . Then, for all i ∈ {α, β}, we construct the subarena Ai = (V0, V1, E
′
i,) obtained from

A by removing all edges exiting from v but the edges in Ei, i.e, E′i = E \ (v→ \ Ei).

Definition 4.4.1. v-partition

Let A = (V0, V1, E) be a k-colored arena, v ∈ V1 a node from which there are at least two

outgoing edges, and Eα, Eβ a partition of the set of edges v→ exiting from v in two non-empty,

disjoint sets. Then a v-partition of A with respect to Eα, Eβ is the pair of subarenas Aα, Aβ such

that Ai = (V0, V1, E
′
i) where E′i = E \ (v→ \ Ei).

Consider two strategies τα and τβ for player 0 on A. We can construct a strategy τ that behaves

like τα as long as the path does not pass through v. When the path passes through v, depending on

what set Ei, the last edge exiting from v belongs to, τ behaves like τi when such strategy ignores

all the paths developed in the subarena different than Ai. Precisely, if the last edge exiting from v
belongs to Eα (resp., Eβ), τ behaves like the strategy τα (resp., τβ) when it ignores all the loops

from v to v that start with an edge in Eβ (resp., it ignores the starting path from the initial node to

v and all the loops from v to v that start with an edge in Eα).

Before giving the formal definition of shuffle strategy, observe that, for all finite paths π starting

at u in A, we can write π as a concatenation between a path πu from u to v, a set of loops πj from

v to v, and a path πv, that starts from v and never passes again through v. Hence, we can write

π = πu(
∏l

j=1 πj)πu. Observe that πu is empty if u = v, the path πu is empty only if π ends with

v, and π = πu if π does not pass through v.

Definition 4.4.2. Shuffle Strategy

Let (Aα, Aβ) be a v-partition of an arena A = (V0, V1, E) with respect to Eα, Eβ . Let

u ∈ V0 ∪ V1, τα a strategy of player 0 on Aα and τβ a strategy of player 0 on Aβ .

Then the shuffle strategy τ = τα ⊗v τβ is a strategy of player 0 on the arena A such that the

value τ(π) (resp., τ(u)) for every partial play π (resp., node u) is constructed as follows.

1. Suppose u 6= v then τ(u) = τα(u).

2. Suppose π does not pass through v, we have τ(π) = τα(π).

3. Suppose π = πu(
∏l

j=1 πj)πv passes at least once through v, and the first edge of πv belongs

to Eα. We can compute the subsequence of paths πi1 , . . . , πil′ of all and only the paths

π1, . . . , πl starting with edges in Eα. We have τ(π) = τα(πu · (
∏l′

j=1 πij) · πv).

64

4. Games for scheduling 4.4 - Computing the winning strategy

4. Suppose π = πu(
∏l

j=1 πj)πv passes at least once through v, and the first edge of πv belongs

to Eβ . We can compute the subsequence of paths πi1 , . . . , πil′ of all and only the paths

π1, . . . , πl starting with edges in Eβ . We have τ(π) = τ ′β((
∏l′

j=1 πij) · πv).

5. Suppose π = πu(
∏l

j=1 πj)πv passes at least once through v, and πv is empty. Then, we do

not need to set τ on such a path, since it ends with v which is a node belonging to player 1.

The elements in (V0 ∪ V1) ∪ E
+ for which the shuffle τ has not been specified, in general,

are meaningless for player 0 (because they are path ending in nodes of V1), and, hence can be set

arbitrary.

The memory-update form of τ = τα ⊗v τβ can be computed easily starting from the memory

update forms of τα = (Mα, ψα, τµ,α, µ0,α) and τβ = (Mβ , ψβ , τµ,β , µ0,β). Indeed, τ behaves

like either τα or τβ depending on the last edge from v. Furthermore, when τ behaves like τα
(resp., τβ) it keeps into account only the part of play developed while behaving like τα (resp.,

τβ). Hence, τ is actually using both the memories from τα and τβ and switches from one to the

other, every time it passes through v and the arena is switched. Hence, the memory set for τ is

M = {α, β} ×Mα ×Mβ . A memory value m = (α,mα,mβ) (resp., m = (β,mα,mβ)) means

that τ is behaving like τα (resp., τβ) with memory mα (resp., mβ), moreover only the memory mα

(resp., mβ) is updated, while the memory mβ (resp., mα) is just stored for the next time player 1
decides to choose and edge in Eβ (resp., Eα). Hence, the memory-update form τ = (M,ψ, τµ, µ0)
is the following.

Definition 4.4.3. Memory-update form of the shuffle Strategy

1. M = {α, β} ×Mα ×Mβ .

2. ψ : M × E → M is such that: (i) for all (i,mα,mβ , e) ∈ M × (E \ v→) we have

ψ(α,mα,mβ , e) = (α, ψα(mα, e),mβ) and ψ(β,mα,mβ , e) = (β,mα, ψ(mβ , e)); (ii)

for all (i,mα,mβ , e) ∈ M × Ej we have ψ(α,mα,mβ , e) == (j, ψα(mα, e),mβ) and

ψ(β,mα,mβ , e) = (j,mα, ψ(mβ , e)).

3. τµ :M → E is such that for all (i,mα,mβ) ∈ m we have τµ(i,mα,mβ) = τµ,i(mi)

4. The starting memory function is µ0 : (V0 ∪ V1) → E such that for all u ∈ V0 ∪ V1
µ0(u) = (α, µ0,α(u), µ0,β(v)).

Observe that by construction of the shuffle in memory update form we have that τ ′ = τβ⊗vτα =
(M ′, ψ′, τ ′µ, µ

′
0) is such that:

1. M ′ = {α, β} ×Mβ ×Mα

2. for all (i,mβ ,mα, e) ∈M × E ψ′(i,mβ ,mα, e) = ψ(i,mα,mβ , e)

3. for all (i,mβ ,mα) ∈M τ ′µ(i,mβ ,mα) = τ(i,mα,mβ)

4. for all u ∈ V0 ∪ V1 µ
′
0(u) = (β, µ0,β(u), µ0,α(v)).

65

4. Games for scheduling 4.4 - Computing the winning strategy

Hence, by inverting the order of memories from α and β in τ ′ we have that τ ′ = (M,u, τ,m′′)
where µ′′0(u) = (β, µ0,α(v), µ0,β(v)). We call this property almost commutativity of the shuffle

operation.

The following lemma shows that, for prefix-independent and convex goals, the shuffle strategy

of two winning strategies is winning as well.

Lemma 4.4.2. Let (Aα, Aβ) be a v-partition of an arena A = (V0, V1, E) with respect to Eα, Eβ ,

and W be a prefix-independent and convex goal. Let u ∈ V0 ∪ V1, τα a winning strategy of player

0 on Aα at u and τβ a winning strategy of player 0 on Aβ at v.

Then the shuffle strategy τ = τα ⊗v τβ is a winning strategy for player 0 on A at u.

Proof. We prove that the strategy τ is winning, showing that all plays ρ consistent with τ are

winning by a case analysis on the type of play ρ.

1. Suppose ρ does not pass through v. Then, it is a path in Aα consistent with τα and, hence, is

a winning path.

2. Suppose the path ρ passes through v a finite number of times. Then, let ρ′ be a suffix starting

from v and not passing through v anymore, let i ∈ {α, β} be the index such that Ei contains

the first edge of ρ′, let π1, . . . , πl be all the loops from v to v in ρ, starting with edge Ei,

and π0 be the shortest prefix of ρ ending with v. Then, if i = β (resp., i = α) (
∏l

j=1 πl)ρ
′

(resp., π · (
∏l

j=1 πl)ρ
′) is consistent with τi on the arena Ai, hence, it is winning. By prefix

independence, ρ′ and ρ are both winning.

3. Suppose the path ρ passes through v an infinite number of times, and that there exists an

index i ∈ {α, β} such that ρ′ passes infinitely often through edges in Ei but not through

edges in v→ \Ei. Then, let ρ′ be a suffix starting from v and not using any edge in v→ \Ei.

Let π be the prefix of ρ before ρ′ such that ρ = π · ρ′. Let π1, . . . , πl be all the loops from v
to v in π, starting with edge Ei, and π0 be the shortest prefix of π ending with v. Then, if

i = β (resp., i = α) (
∏l

j=1 πl)ρ
′ (resp., π · (

∏l
j=1 πl)ρ

′) is consistent with τi on the arena

Ai, hence, it is winning. By prefix independence, ρ′ and ρ are both winning.

4. Suppose the path ρ passes through v an infinite number of times, and uses infinitely often

edges from both the sets Eα and Eβ . Let ρ′ be a suffix of ρ starting from v, for i ∈ {α, β}
let πi,1, . . . , πi,l, . . . be the infinite sequence of loops from v to v on ρ′, such that the loops

start with an edge in Ei and are written in the order as they appear in ρ′. Then, if i = β
(resp., i = α) the path ρi = (

∏+∞
j=1 πi,j) (resp., ρ′i = πu · (

∏+∞
j=1 πi,j)) is consistent with τi

on Ai and, hence, is winning. Since ρ′ lies in the shuffle of ρα and ρβ by convexity, ρ′ is

winning, and by prefix independence ρ is winning as well.

Due to the almost commutativity of the shuffle operation, as corollary of the previous theorem

we obtain that the union of winning sets of two strategies is a winning set of the shuffle.

66

4. Games for scheduling 4.4 - Computing the winning strategy

Corollary 4.4.1. Let (Aα, Aβ) be a v-partition of an arena A = (V0, V1, E) with respect to

Eα, Eβ , andW be a prefix-independent and convex goal. Let τi = (Mi, ψi, τµ,i, µ0,i) be a strategy

for player 0 on Ai and let Di ⊆ V0 ∪ V1 be a winning set for τi on Ai. Let τ = τα ⊗v τβ =
(M,ψ, τµ, µ) be the shuffle strategy. If v is contained in both the winning sets Dα and Dβ , then,

D = Dα ∪Dβ is the winning set set for τD = (M,ψ, τµ, µD) where µD is such that:

1. for all u ∈ Dα, w have eµD(u) = (α, µ0,α(u), µ0,β(v))

2. for all u ∈ Dβ \Dα, we have µD = (β, µ0,α(v), µ0,β(u)).

Proof. Consider the shuffle τ = τα ⊗v τβ = (M,ψ, τµ, µ0) and the shuffle τ ′ = τβ ⊗v τα =
(M,ψ, τ, µ′0). By construction the starting memory function are such that for all u ∈ V0 ∪ V1 we

have µ0(u) = (α, µ0,α(u), µ0,β(v)) and µ′0(u) = (β, µ0,α(v), µ0,β(u)).
Since τα and τβ are winning at the node v, by Lemma 4.4.2, it holds that τ is winning on every

node in Dα and τ ′ is winning on every node in Dβ . The two strategies differs just for the starting

memory. Hence, the strategy τD = (M,ψ, τµ, µD) behaves like τ when the play starts at a node

u ∈ Dα and behaves like τ ′ when the play starts at a node u ∈ Dβ \Dα. So, every play starting at

a node u ∈ D and consistent with τD is winning.

In the following section such a corollary hold because the fair and priority goals we treat are

prefix-independent and convex.

4.4.3 Inductive Step

As inductive case, consider an arena A = (V0, V1, E) such that there are n edges exiting from

nodes controlled by player 1. Furthermore, suppose we are able to construct winning strategies in

memory-update form for all arenas with less than n edges exiting from nodes controlled by player

1. Let v ∈ V1 be a node of player 1 from which there are at least two exiting edges. Let Eα, Eβ be

a partition of the set v→ in two non-empty and disjoint sets. For i ∈ {α, β}, let Ai = (V0, V1, E
′
i)

be the subarena of A obtained by removing all edges exiting from v but the edges in Ei. Then,

each arena Ai contains less than n edges exiting from nodes controlled by player 1. Then, by

induction hypothesis, we know the following informations on Ai.

1. A strategy τi = (Mi, ψi, τµ,i, µ0,i) in memory update form and the winning setDi ⊆ V0∪V1
for τi on Ai.

2. For each u 6∈ Di, there exists a winning strategy for player 1 on Ai at u.

Observe first that for all u 6∈ Dα ∩ Dβ there exists a winning strategy for player 1 on A at

u. Indeed, suppose u 6∈ Di, then there exists a winning strategy τ1 for player 1 on the arenas Ai.

Since such a strategy always chooses edges in Ei at v , player 1 can force every play to develop

in Ai and be consistent with τ1. Hence, such plays are all losing and τ1 is a winning strategy for

player 1 on A at u. Hence, the maximal winning set is not bigger than Dα ∩Dβ .

Observe also that if v 6∈ Dα then it must be Dα ⊆ Dβ . Indeed, every play starting at u ∈ Dα

and consistent with τα on Aα does not pass through v. Since, Aα and Aβ differ only for edges

67

4. Games for scheduling 4.4 - Computing the winning strategy

exiting from v, every path starting at u is consistent with τα on Aα if and only if it is consistent

with τα on Aβ . Hence, τα is also winning on Aβ at u, which means u is in the winning set Dβ . By

symmetry, if v 6∈ Dβ then it must be Dβ ⊆ Dα.

Depending on whether the node v appears in all sets Di or not, the winning strategy of player

0 on A is constructed in two ways.

1. Suppose there exists a j such that v 6∈ Dj . Without loss of generality, suppose v 6∈ Dα.

By Lemma 4.4.1, starting from a node u ∈ Dα, player 0 can force the game to never pass

through v by using the strategy τα. Let τ be a strategy that behaves like τα on all paths

in Aα starting from a node in Dα and behaves arbitrary on other paths. On the arena A,

starting from a node in Dα, τ will never allow passage through node v. Hence, the game

only develops on Aα with strategy τα and the constructed path is winning for player 0. Thus,

τ is a winning strategy on the set of nodes D = Dα. Since the maximal winning set of

nodes is Dα ∩Dβ , we have that Dα ⊆ Dα ∩Dβ ⊆ Dα. Hence, Dα = Dα ∩Dβ is also the

maximal winning set.

2. Suppose for all indexes i ∈ {α, β}, the set Di contains v. Let τ = τα ⊗v τβ be the shuffle

strategy and (M,ψ, τµ, µ0) be its memory-update form. By Corollary 4.4.1 the strategy

τD = (M,ψ, τ, µD) is a winning strategy for player 0 onA at every node inDα∪Dβ . Since

the maximal winning set of nodes isDα∩Dβ , we have thatDα∪Dβ ⊆ Dα∩Dβ ⊆ Dα∪Dβ .

Hence, Dα ∪Dβ = Dα ∩Dβ is also the maximal winning set.

This concludes both the construction and the correctness proof of the algorithm for the

computation of the winning strategy for player 0.

4.4.4 Complexity

Let A = (V0, V1, E) be an arena in input to our algorithm. Let n be the number of nodes in V1
from which there are least two outgoing edges, and m = max {|v→| | v ∈ V1} be the maximum

number of edges exiting from nodes of player 1. The base case is polynomial in the size of the

arena and requires time and space P (A). The inductive step is called at most log2(|v
→|) for each

node v ∈ V1, hence the whole algorithm is executed in time exponential in
∑

v∈V1
log2(|v

→|).
Moreover, in the worst case the strategy’s size doubles at every induction call, hence, the solution

and the whole algorithm require space exponential in
∑

v∈V1
log2(|v

→|). The maximum depth of

an induction call is
∑

v∈V1
log2(|v

→|) ≤ n · log2(m), hence every base call requires at most time

and space polynomial P (A) + P (n) = P ′(A) in the arena, hence the algorithm require space and

time P ′(A)
∑

v∈V1
log2(|v

→|)
. Since, n ≤

∑
v∈V1

log2(|v
→|) ≤ n · log2(m), the algorithm requires

time and space exponential in the number of nodes controlled by player 1 from which there are at

least two outgoing edges.

By slightly modifying the algorithm we can reduce the memory space the result strategy.

Recall that the shuffle strategy τ at a node v of two strategies τα and τβ has memory space

M = {α, β} ×Mα ×Mβ . However, by construction of the memory-update function ψ, the first

component of the memory passes from α to β or vice-versa only at the node v. This means that

when the first component is α (resp., β), then the second component of memory mβ ∈Mβ (resp.,

68

4. Games for scheduling 4.4 - Computing the winning strategy

second component of the memory mnα ∈Mα) is never updated and is fixed to the memory of τβ
(resp., τα) of a path ending with v. The memory is sensible to the ending node, because a choice

function τµ associates to each memory an edge starting from that ending node, hence two paths

with different ending node cannot have same memory. Hence, instead of using a memory space

M = {α, β}×Mα×Mβ we can use a smaller spaceM = {α}×Mα×Mβ,v∪{β}×Mα,v×Mβ ,

where Mi,v ⊆ Mi is the set of memories assumed by τi on all and only the paths ending in v.

Observe, that in order to use such a smaller space, we need to propagate inductively the informations

on the set of memories assumed by paths ending with any given node of player 1. This is done

trivially in the base case, and for the inductive case, the memory of paths ending in node of u is

{α} ×Mα,u ×Mβ,v ∪ {β} ×Mα,v ×Mβ,u.

However, the above improvement on the memory space still admits that in the worst case the

resulting strategy has exponential size. It is sufficient that at every inductive step Mi,v is close to

some fraction of Mi. For example if Mi,v = 1
|V |Mi, and in the base case the memory space is M ,

the resulting memory space at worst has size (2
|V |)

∑
v∈V1

log2(|v
→|)

(|M |)2
∑

v∈V1
log2(|v

→|)

.

69

...

...

5
Half-Positionality

Contents

5.1 Introduction . 71

5.2 Preliminaries . 71

5.2.1 Gimbert and Zielonka’s Theorem . 72

5.3 Strong monotonicity and strong concavity 74

5.4 Half-positionality theorem . 78

5.5 Strong Selectivity . 81

70

5. Half-Positionality 5.1 - Introduction

5.1 Introduction

Half-positionality is an essential property for the proof of the results in the previous chapter.

By determining that, in a system-environment game, the environment winning capability is not

weakened by using only positional strategies, we are able to evaluate whether the system can win

on all the subgraphs induced by such positional strategies. Hence, half-positionality provides a

Co−NP algorithm that determines whether there exists a winning strategy for the system. Hence,

in general half-positionality is useful to determine the winning player in a game. For example, it

may be used in a prover-disprove game to determine the validity or the contradiction of a logic

formula. It can also be used in other system-environment games with respect to goals such as other

fairness and priority conditions different from those discussed in this thesis. Moreover, when in a

system environment game, one proves that the game is half-positional for the system, the result is

also more interesting. Indeed, in this case, the system can satisfy the specification by using a very

simple strategy that allows an easy computation of the decision to take at every state. However,

Kopczyńsky’s theorem is not a characterization and, hence, there are goals whose half-positionality

is difficult to determine. In this chapter, we investigate half-positionality with the aim to find a

characterization, however, we determine only a novel sufficient condition which is broader than

the one defined by Kopczyńsky as long as determined goals are considered. By Borel Determinacy

Theorem ([Mar75], [Bry01]), all Borel games are determined. Since only a few exotic goals, hard

to meet in practical applications, are not Borel, we believe our result is an effective mean to prove

half-positionality when Kopczyńsky’s hypothesis cannot be applied.

5.2 Preliminaries

In the following we use order relations on words: for a goal W and a pair of words x, y ∈ [k]ω,

we say that (i) x is not better than y when they are both losing or y is winning, and we write

x ≤W y, (ii) y is better that x, when y is winning and x is losing, and we write x <W y. In the

same way, for a goal W and a pair of sets M,N ∈ [k]ω (i) we say that M is not better than N , i.e.

M ≤W N , to mean that if M contains a winning word then N contains a winning word too, and

(ii) we say that N is better than M , i.e. M <W N , to mean that M contains only losing words and

N contains at least a winning word. For ease of reading, when the goal W is clear from the contest,

we write x < y, x ≤ y, M < N and M ≤ N , respectively, for x <W y, x ≤W y, M <W N
and M ≤W N . With the following two lemmas, we reformulate the definition of concavity and

prefix-independence in terms of languages, rather than of single words.

Lemma 5.2.1. A goal W ⊆ [k]ω is prefix-independent if and only it for all color sequences

x ∈ [k]∗ and sets of color sequences M ⊆ [k]ω we have that xM ≤M and M ≤ xM .

Proof. Suppose that W is prefix-independent. If M contains a winning word m, then xM contains

the winning word xm, and we have both xM ≤ M and M ≤ xM . If M contains only losing

words m, then xM contains only losing words xm and we have both xM ≤M and M ≤ xM .

Suppose now that, for all languages M ⊆ [k]ω, we have xM ≤M and M ≤ xM . Moreover,

suppose by contradiction that W 6= xW . Then, there exists a word m such that xm 6∈W . Hence,

for the language M = {m} we do not have M ≤ xM .

71

5. Half-Positionality 5.2 - Preliminaries

Lemma 5.2.2. A goal W ⊆ [k]ω is concave if and only if for all languages M,N ⊆ [k]ω we have

that M ⊗N ≤M ∪N .

Proof. Suppose that W is concave. For all M,N ⊆ W , we have that M ⊗ N ⊆ W . So, for

all languages M,N ∈ [k]ω, if M or N contains a winning word in W , we have in both cases

M ⊗N ≤ M ∪N ; conversely, if M and N contain only losing words, by hypothesis, so does

M ⊗N . Hence, we have that M ⊗N ≤M ∪N .

Suppose now that for all languages M,N ⊆ [k]ω we have M ⊗N ≤M ∪N . Then, if M and

N contain only losing words, M⊗N must contain only losing words too. Thus, for allM,N ∈W
we have that M ⊗N ⊆W .

5.2.1 Gimbert and Zielonka’s Theorem

Before starting our investigation about a possible characterization of half-positionality, it is

useful to recall a similar result due to Gimbert and Zielonka [GZ05] about full-positionality. Such

a result does not only allow us to prove the positionality of some goals, but give us inspiration for

the novel sufficient condition and for a possible characterization.

When player i uses a memoryless strategy, we can construct a subgraph that is obtained

by removing all the edges not used by that strategy, from the nodes controlled by player i. In

such subgraph, there is only one exiting edge from every node of player i. Hence, player 1 − i
actually makes choice and constructs a path on a graph. Since, the graph may considered as

the representation of a finite state automaton, the color sequence of a path constructed by player

i − 1 belongs to a regular language. Also the finite paths, from a node of player i − 1 to itself

belong to a regular language. Hence, Gimbert and Zielonka observed that in order to obtain the

half-positionality for player i−1, they do not need to ask that player i−1 does not prefer switching

between different arbitrary complex behaviors, but just that player i− 1 does not prefer switching

between behaviors composed by some regular languages. So, by focusing the attention on a node v
where player i−1’s choices should not alternate, we observe that an infinite path may be composed

by a finite or infinite number of loops through that node and an infinite path starting from that node

and never coming back. We can identify the languages of color sequences of the loops, and the

language of color sequence of infinite path starting from v. We obtain different loop-language

depending on the first choice of player i− 1 at the node v. In order to evaluate the infinite words

by means of sets of regular languages that contain only finite words, Gimber and Zielonka extends

the finite set of words to infinity through a limit on the words.

Definition 5.2.1. Infinite Extension

Let M ⊆ [k]∗ be a language of finite words, then the infinite extension of M is the set 〈M〉 of

infinite words x ∈ [k]ω whose prefixes are prefixes of at least one word in M .

Then, Gimbert and Zielonka state that player i − 1 does not prefer switching between two

behaviors through the property of selectivity. It states that, given two languages M and N of loops

from v to v and a language K of paths from v, switching infinitely often between the two sets of

72

5. Half-Positionality 5.2 - Preliminaries

loops or switching finitely often and then progressing with a path in K is not better than using

always the same set of loops infinitely often or starting directly with a path in K. Observe that our

interpretation holds because 〈(M ∪N)∗K〉 = 〈(M ∪N)∗〉 ∪ (M ∪N)∗〈K〉

Definition 5.2.2. Selectivity

A goal W is selective if and only if for all x ∈ [k]∗ and for all regular languages M,N,K ⊆
[k]∗ we have that x〈(M ∪N)∗K〉 ≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉.

However, selectivity does not avoid that player i− 1’s choice depends on some finite prefix up

to a node. Hence, like in Kopczyńsky result, one may think to use the prefix-independent property.

However, Gilbert and Zielonka observe that such a strong property is not needed. Even if on some

node the choice depend on a finite prefix, we can still define an order relation on the choices and

determine which one behaves better for all the possible prefixes.

Definition 5.2.3. Definitive Order Relation

Given two languages of finite words M,N ⊆ [k]ω, N is definitively better than M if for all

prefixes x ∈ [k]∗, it holds that xM ≤ xN . We write it M ⊑ N .

When player i − 1 at a given points needs to choose between two or more behaviors, it is

sufficient to take the one which is definitively better than others. Indeed, no matter the prefix up

to that point, that choice gives better results. However, the relations needs to be total otherwise

a dominant behavior may not exists. Since a language is regular if and only if there exists a n

automaton graph that recognizes it, on graph controlled by player i− 1 the relation just needs to

be total among infinite extensions of sets of regular languages.

Definition 5.2.4. Monotonicity

A goal W ⊆ [k]ω is monotone if and only if for all pairs of regular languages M,N ⊆ [k]∗ it

holds 〈M〉 ⊑ 〈N〉 or 〈N〉 ⊑ 〈M〉.

Actually Gimbert and Zielonka state monotonicity by means of an another definition, whose

equivalence to the above one is proved by the following lemma.

Lemma 5.2.3. A goal W ⊆ [k]∗ is monotone if and only if for all words x ∈ [k]∗ and all

regular languages M,N ⊆ [k]ω it holds that x〈M〉 < x〈N〉 implies that for all y ∈ [k]∗ it is

y〈M〉 ≤ y〈N〉.

if. Suppose 〈M〉 6⊑ 〈N〉, then there exists x ∈ [k]∗ such that x〈N〉 < x〈M〉, hence, by hypothesis,

for all y ∈ [k]∗ we have y〈N〉 ≤ y〈M〉. So 〈N〉 ⊑ 〈M〉 and the thesis holds.

[only if] Suppose by contradiction that 〈M〉 6⊑ 〈N〉 and 〈N〉 6⊑ 〈M〉, then there exist

x, y ∈ [k∗] such that x〈N〉 < x〈M〉 and y〈N〉 < y〈M〉 and this contradicts the hypothesis.

The two previous property constitute a characterization to full-positionality. The following is

just a corollary of the more general result from Gimbert and Zielonka, who actually state it in the

more general framework of optimization games.

Theorem 5.2.1. Full-positionality characterization [GZ05]

A winning condition W ⊆ [k]ω is full-positional if and only if both W and [k]ω \W are

selective and monotone.

73

5. Half-Positionality 5.3 - Strong monotonicity and strong concavity

v 10

(a)

v u
0

1

1

0

(b)

v u
0

1

1

0

(c)

Figure 5.1: Three game arenas.

5.3 Strong monotonicity and strong concavity

Kopzyńsky’s theorem is not a characterization for half-positionality, but Gimbert and Zielonka

could define a characterization for full-positionality by relaxing concavity and prefix independence

to selectivity and monotonicity. Although we can no longer operate with regular languages, since

one player is allowed to use a non-positional strategy, it is still reasonable to ask whether we

can relax concavity and prefix independence to some other properties still sufficient for half-

positionality. Our investigation starts from the counter-example showing that a half-positional goal

does not need to be prefix-independent.

Example 5.3.1. Consider the winning condition W = 0(1∗0)ω + 1[1]ω. It contains all and only

the words x such that either x starts with color 1, or x starts with color 0 and contains infinitely

many 0. The goal is not prefix-independent: if y ∈ [1]ω does not contain infinite 0 then 0 · y is

losing and 1 · y is winning. However, the goal is half-positional, more exactly it is full-positional,

and we prove this through Gimbert and Zielonka’s theorem. Precisely we show that W and

W ′ = [1]ω −W = 0[1]∗1ω are both monotone and selective.

1. W is selective. Consider M,N,K ⊆ [1]∗ and x ∈ [k]∗. Suppose that the set x〈M∗〉 ∪
x〈N∗〉 ∪ x〈K〉 contains only losing words. Then there are two possible situations: (i) x is

not empty and starts with color 0, or (ii)x is empty and all words in M,N,K starts with

color 0. In both cases, necessarily no word in M or N contains occurrences of color 0
and 〈K〉 does not contain words with infinitely many 0. Hence, x〈(M ∪N)∗K〉 contains

only words starting with color 0 and containing finitely many occurrences of color 0. Thus

x〈(M ∪N)∗K〉 is never better than x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉.

2. W ′ is selective. Consider M,N,K ⊆ [1]∗ and x ∈ [k]∗. Suppose that the set x〈M∗〉 ∪
x〈N∗〉 ∪ x〈K〉 contains only losing words.(i) Suppose x starts with color 0, or x is empty

and there exists at least a word in M,N,K starting with color 0. Then, all words in M and

N contains at least one occurrence of color 0, and all words in 〈k〉 contains infinitely many

occurrences of color 0. So every word in the set x〈(M ∪N)∗K〉 starts with 0 and contain

infinitely many zero and is losing with respect to W ′. (ii) Suppose that x starts with color 1,

or all words in M,N,K start with color 1. Then all words in x〈(M ∪N)∗K〉 are losing.

3. W is monotone. Consider M,N ⊆ [1]∗ and x ∈ [1]∗ such that x〈M〉 <W x〈N〉. Then

x starts with color 0 else both sets are winning. Moreover, 〈M〉 contains only words with

finitely many occurrences of color 0 and 〈N〉 contains a word with infinite occurrences of

74

5. Half-Positionality 5.3 - Strong monotonicity and strong concavity

color 0. Consider a new word y ∈ [1]∗, if y starts with color 0 we still have y〈M〉 <W y〈N〉.
If y starts with color 1, both sets x〈M〉, x〈N〉 are winning. So in both cases x〈M〉 ≤W

x〈N〉.

4. W ′′ is monotone. Consider M,N ⊆ [1]∗ and x ∈ [1]∗ such that x〈M〉 <W x〈N〉. Then

x starts with color 0 else both sets are losing. Moreover, 〈M〉 contains only words with

infinitely many occurrences of color 0 and 〈N〉 contains a word with finite occurrences of

color 0. Consider a new word y ∈ [1]∗, if y starts with color 0 we still have y〈M〉 <W y〈N〉.
If y starts with color 1, both sets x〈M〉, x〈N〉 are losing. So in both cases x〈M〉 ≤W x〈N〉.

This counter-example shows that, like discussed in the introduction to monotonicity, prefix

independence is a strong property which is not needed for positionality. Indeed, even if the winning

nature of the decision of a player on a node depends on the prefix up to that node, it is still possible

that a decision performs better than the others on all prefixes. Then, like in the monotonicity

property, we need to ask that given two decision for a given player, there do not exist two prefixes

that completely change the winning nature of the two decisions. Since the behavior of a player is

no longer ensured to be regular by the use of a positional strategy by the other player, we make use

of a strong version of monotonicity that takes into account also non-regular behaviors.

Definition 5.3.1. Strong Monotonicity

A goal W ⊆ [k]ω is strongly monotone if and only if for all pairs of infinite languages

M,N ⊆ [k]ω it holds M ⊑ N or N ⊑M .

Like monotonicity, strong monotonicity can be defined equivalently as follows.

Lemma 5.3.1. A goal W ⊆ [k]ω is strongly monotone if and only if, for all words x ∈ [k]∗ and

languages M,N ⊆ [k]ω, it holds that xM < xN implies that for all y ∈ [k]∗ it is yM ≤ yN .

As one may easily guess, strong monotonicity is a weaker property compared to prefix-

independence, as shown by the following lemma.

Lemma 5.3.2. All prefix-independent goals are strongly monotone. Moreover, there is a goal

which is strongly monotone, but not prefix-independent.

Proof. For the first part, we have by hypothesis that, for all x ∈ [k]∗, and M ⊆ [k]ω, it holds that

M ≤ xM ≤M . Now, take two languages M,N ⊆ [k]ω, and suppose that there exists an x ∈ [k]∗

such that xM < xN , then for all y ∈ [k]∗ we have yM ≤M ≤ xM ≤ xN ≤ N ≤ yN .

For the second part, let k = 1, a strongly monotone and prefix-dependent goal is given by the

language of all words containing at least one 0, i.e., W = [k]∗0[k]ω. It is easy to see that the goal

is not prefix-independent, because the word 1ω is losing while the word 01ω is winning. We show

that the goal is strongly monotone. Consider two languages M,N ⊆ [k]∗, and suppose that there

exists an x ∈ [k]∗ such that xM < xN , then xN contains a winning word and xM contains only

losing words. Observe first that x cannot contain 0, or else all words in xM would be winning. So

x ∈ 1∗, there exists a word in N that contains 0, and all words in M contain only 1’s. So, for each

y ∈ [k]∗, there is always a word in yN containing 0. Since yN contains a winning word, we have

yM ≤ yN .

75

5. Half-Positionality 5.3 - Strong monotonicity and strong concavity

Strong monotonicity seems a good substitute to prefix-independence. Unfortunately, the

following lemma shows that strong monotonicity cannot replace prefix-independence in the

hypotheses of Theorem 4.2.1.

Lemma 5.3.3. There is a strongly monotone and concave goal which is not half-positional.

Proof. For k = 1, the strongly monotone and concave goal is W = [k]∗01ω. We prove first that

the goal is strongly monotone and concave. A word is losing if and only if it is either 1ω or it does

not have 1ω as a suffix. Let x ∈ [k]∗, n,m ∈ [k]ω with xn, xm 6∈W . There are two situations to

discuss. First, assume that x does not contain 0. Then, n and m may be both 1ω in which case

x(m ⊗ n) = 1ω or at least one between n and m contains 0 infinitely often, thus the shuffle of

n and m contains only words that pick colors from both the sequences infinitely often and thus

only words that contain 0 infinitely often. So, x(m⊗ n) contains losing word even in this case.

Instead, assume that x contains 0. Then, n and m contain 0 infinitely often and the same reasoning

above applies. So the goal is concave. Let x ∈ [k]∗, n,m ∈ [k]ω such that xm 6∈W and xn ∈W .

We prove strong monotonicity by showing that for all y ∈ [k]∗ it holds that ym 6∈W or yn ∈W .

We again distinguish two cases. First, assume that x does not contain a 0. Then, n contains 0
and a suffix 1ω thus for every y ∈ [k]∗, we have yn ∈ W since it contains 0 and a suffix 1ω.

Instead, assume that x contains a 0. Then, m contains 0 infinitely often, thus for every y ∈ [k]∗

the word ym 6∈W since it contains 0 infinitely often. The above goal is not half-positional in the

following arena ({v}, ∅, v, {(v, 0, v), (v, 1, v)}) (Fig. 5.1(a)), in such a game graph player 0 wins

by choosing at least once the edge with color 0 and then always the edge with color 1.

Observe that, in the previous counterexample, the key element that does not allow half posi-

tionality is the fact that player 0 prefers switching between two different behaviors finitely often

and then progressing indefinitely along one of them. However, concavity just requires that player 0
prefers following a fixed behavior rather than switching between two different ones infinitely often.

Thus, we introduce a modification to the property of concavity, requiring not only that alternating

infinitely often between two losing words yields a losing word, but also that alternating finitely

often between two losing words and then progressing along one of them yields a losing word.

Definition 5.3.2. Strong Shuffle

For two color sequences x, y ∈ [k]ω, the strong shuffle of x and y, denoted by x⊗s y is the

language containing

1. the set x⊗ y;

2. the words z1z2 . . . zlz
′ ∈ [k]ω, for odd l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . . zlz
′ and y = z2z4 . . . zl−1y

′, for some y′ ∈ [k]ω;

3. the words z1z2 . . . zlz
′ ∈ [k]ω, for even l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . . zl−1x
′ and y = z2z4 . . . zlz

′, for some x′ ∈ [k]ω.

For two languages M,N ⊆ [k]ω, the strong shuffle of M and N is the set M ⊗s N =
∪n∈N,m∈M (m⊗s n).

76

5. Half-Positionality 5.3 - Strong monotonicity and strong concavity

Definition 5.3.3. Strong Concavity

A goal W ⊆ [k]ω is strongly concave if and only if, for all words x ∈ [k]∗, n,m ∈ [k]ω, and

z ∈ x(m⊗s n), it holds that if z ∈W then either xn ∈W or xm ∈W .

It is immediate to see that a strongly concave goal is concave too. In the following, we make

use of an equivalent definition of strong concavity that operates on languages.

Lemma 5.3.4. A goal W ⊆ [k]ω is strongly concave if and only if, for all words x ∈ [k]∗ and

languages M,N ⊆ [k]ω, it holds that x(M ⊗s N) ≤ xM ∪ xN .

Hence, by making use of the relation ⊑, we obtain that strong concavity expresses the fact that

two words are definiteively better than their strong shuffle.

Lemma 5.3.5. A goal W ⊆ [k]ω is strongly concave if and only if, for all languages M,N ⊆ [k]ω,

it holds that (M ⊗s N) ⊑M ∪N .

Even the property of strong concavity is not sufficient to ensure half positionality.

Lemma 5.3.6. There is a strongly concave goal which is not half-positional.

Proof. For k = 1 the strongly concave goal is W = 0ω ∪ 1ω. Two losing words n and m contain

at least an occurrence of the color 1 and an occurrence of the color 0, thus every word in their

strong shuffle will contain at least an occurrence of color 1 and an occurrence of color 0 and it

will be losing. So the strong concavity of the goal is proved. The above goal is not half-positional

in the following 2-colored arena ({u}, {v}, v, {(v, 0, u), (v, 1, u), (u, 0, u), (u, 1, u)}), showed in

Figure 5.1(b). In this arena player 0 wins the game by choosing forever the edge (u, 0, u) or the

edge (u, 1, u) depending on what color was chosen by player 1 to reach u from v.

In the previous counterexample, by choosing a different prefix, player 1 can exchange the

winning nature of the following choices of player 0. That is why strong monotonicity is essential

since it somehow allows player 0 to operate while forgetting the past decisions taken by player 1.

We argue now that the two introduced properties of strong monotonicity and strong concavity

are strictly less restrictive than the properties of prefix independence and concavity.

Lemma 5.3.7. Concave and prefix-independent winning conditions are strongly monotone and

strongly concave.

Proof. By Lemma 5.3.2 we already have that a prefix-independent goal is strongly monotone. It

remains to show that a concave and prefix-independent goal is strongly concave.

For a language M ⊆ [k]ω, let suff (M) and pref (M) be the sets of suffixes and prefixes

of words in M , respectively. By concavity, for all M,N ⊆ [k]ω we have M ⊗ N ≤ M ∪ N
and by prefix independence we have for all M ∈ [k]ω and for all x ∈ [k]∗ M ≤ xM ≤ M .

Take any word x ∈ [k]∗, and any two languages M,N ⊆ [k]ω. Then we have x(M ⊗s N) =
x(M⊗N)∪x·pref (M⊗N)·suff (N)∪x·pref (M⊗N)·suff (M). First, by prefix independence

and then by concavity we have x(M ⊗ N) ≤ M ⊗ N ≤ M ∪ N ≤ x(M ∪ N) = xM ∪ xN .

Then, x · pref (M ⊗N) · suff (T) ≤ suff (T) ≤ xT ≤ xM ∪ xN , where T ∈ {M,N}. So, we

have x(M ⊗s N) ≤ xM ∪ xN .

77

5. Half-Positionality 5.4 - Half-positionality theorem

Lemma 5.3.8. There exists a strongly monotone and strongly concave goal which is not prefix

independent.

Proof. Let k = 1, the goal is given by the set of words that either start with 1, or start with 0
and contains infinitely many 0’s, i.e., W = 0(1∗0)ω ∪ 1[k]∗. It is easy to see that the goal is not

prefix-independent: indeed, for M = 1ω we have that 0M ≤ M , but not M ≤ 0M since M
contains only winning words and 0M only losing ones.

Next, we prove that the goal is strongly monotone. Consider M,N ⊆ [k]∗ and x ∈ [k]∗ and

suppose that xM < xN , so xN contains a winning word and xM contains only losing ones.

Observe that x does not start with 1, otherwise all words in xM would be winning. So, there are

two situations to discuss: x = ε or x starts with 0. If x = ε then all words in M starts with 0 and

have a suffix equal to 1ω. Now for all y ∈ 1[k]∗ we have yM ≤ yN since all the words in all

languages are winning; for all y ∈ 0∗[k]∗ we have yM ≤ yN because all the words in yM are

losing since they start with 0 and have a suffix 1ω. If instead x starts with 0 then there exists a

word n ∈ N that contains infinitely many 0, for every y ∈ [k]∗ the word yn will contain infinitely

many 0 and it will be winning, thus for all y ∈ [k]∗ we will have yM ≤ yN .

Now we prove that the goal is strongly concave. Consider x ∈ [k]∗, M,N ⊆ [k]ω and

K ⊆ [k]∗. We want to prove that x(M⊗sN) ≤ xM ∪xN . If the r.h.s. of the inequality contains a

winning word, the inequality trivially holds. So, suppose that the r.h.s. does not contain a winning

word, so it cannot be x ∈ 1[k]∗ but it must be x ∈ 0[k]∗ ∪ {ε}. If x starts with 0, every word in

M,N contains a suffix 1ω and all words in M ⊗s N contain a suffix 1ω. So, M ⊗s N contains

only losing words. If x = ε, every word in M,N contains a suffix 1ω and starts with 0, so all

words in M ⊗s N contain a suffix 1ω and start with 0, and therefore they are losing.

5.4 Half-positionality theorem

In this section, we prove that determinacy, strong monotonicity and strong concavity are

sufficient but not necessary conditions to half positionality for player 0.

Theorem 5.4.1. A determined, strongly monotone and strongly concave goal is half-positional.

Proof. The proof proceeds by induction on the number of edges exiting from the nodes controlled

by player 0 in the game arena. As a base case in the graph G for each node controlled by player 0
there exists only one exiting edge. In such a graph player 0 has only one possible strategy which is

positional. So, the result is trivially true. Suppose that in the arena there are n edges exiting from

nodes of player 0 and that, for all graphs with at most n− 1 edges exiting from nodes of player 0,

if player 0 has a winning strategy he has a positional one. Let t be a node of player 0 in G such

that there is more than one edge exiting from t. We can partition the set of edges exiting from t in

two disjoint non-empty sets Eα and Eβ . Let Gα and Gβ be the two subgraphs obtained from G by

removing the edges of Eβ and Eα, respectively. There are two cases to discuss.

First, suppose that in Gα or Gβ player 0 has a winning strategy. Then, by inductive hypothesis

he has a positional winning strategy. It is easy to see that such a strategy is winning in G too.

Indeed, since player 0 controls the node t, he is able to force the play to stay always in Gα or

Gβ . Suppose now that player 0 has no winning strategy in Gα and in Gβ . We prove the thesis by

78

5. Half-Positionality 5.4 - Half-positionality theorem

showing that player 0 has no winning strategy in G. By determinacy, there exist two strategies τα
and τβ winning for player 1 in Gα and Gβ , respectively.

Let σ be a strategy of player 0 in G, we show that there exists a strategy of player 1 in G
winning in G against σ. If one of the plays P (σ, τα) or P (σ, τβ) does not pass through t then that

play is in Gα and Gβ and so it is winning for player 1 who is using his winning strategy on one of

the graphs.

Suppose now that both of the above plays pass through t. Let xα and xβ be respectively the

color sequences of the prefixes of P (σ, τα) and P (σ, τβ), up to the first occurrence of t. Let Mα

and Mβ be the sets of color sequences of suffixes after respectively a prefix xα and xβ of plays

consistent respectively with τα and τβ . Observe that xαMα and xβMβ contain plays consistent

respectively with τα in Gα and τβ in Gβ , and such plays are losing for player 0. We prove now

that either xαMβ or xβMα contains only losing words for player 0. Indeed, if xαMβ contains a

winning word, we have that xαMα < xαMβ , since xαMα contains only plays losing for player

0. Then, by strong monotonicity we have that, for all y ∈ C∗, it holds yMα ≤ yMβ and hence

xβMα ≤ xβMβ . Since xβMβ contains only losing words, so does xβMα.

Suppose without loss of generality that xβMα contains only losing words. Then, we construct

the strategy τ ′α, which behaves like τα on all partial plays which do not have a prefix xβ . When

the partial play has a prefix xβ , it behaves like τα when it sees xα in place of xβ . More formally

τ ′α(xβπ) = τα(xαπ), and in the other cases τ ′α(π) = τα(π). Let τ ′β = τβ . We construct a strategy

τ in G: at the beginning the strategy behaves like τβ; when the play passes through t, depending

on what subgraph the last edge from t chosen by player 0 belongs to, the strategy τ behaves like

τ ′α or τ ′β when they are applied only to the initial prefix up to t and all the loops from t to t, where

the first edge belongs to Gα or Gβ , respectively.

Formally, for all prefixes π that do not pass through t, we have τ(π) = τβ(π); if πi,γi is

a loop from t to t with first edge in Gγi , for all prefixes π = xπ1,γ1 , . . . , πn,γnπγ , we have

τ ′(π) = τ ′γ(x(
∏

γi=γ πi,γiπγ)). The play P (σ, τ) coincides with P (σ, τβ) up to t, so it has a prefix

with color sequence xβ . After that prefix, the play develops in parallel and alternates pieces of two

plays: one in Gβ consistent with τβ , and the other in Gα consistent with τ ′α. So, the color sequence

of the two suffixes are respectively in Mβ and in Mα.1 Hence, the color sequence of the suffix

after xβ of the play P (σ, τ) lies in the shuffle of Mα and Mβ . By strong concavity we have that

Col(P (σ, τ)) ∈ xβ(Mα ⊗s Mβ) ≤ xβMα ∪ xβMβ . Since both xβMα and xβMβ contain only

losing words, we have that Col(P (σ, τ)) is a losing word for player 0. Hence, for all strategies σ
of player 0 there exists a strategy τ of player 1 winning over 0. We conclude that player 0 has no

winning strategy.

Since strongly concavity implies concavity, the following result states that the conditions

appearing as the hypothesis of the previous theorem and of Theorem 4.2.1 are not a complete

characterizations for half positional goals.

Lemma 5.4.1. There exists a goal that is half positional but not concave.

Proof. Let k = 1, the half positional goal is W = [k]∗1[k]∗1[k]ω. The goal states that player

0 tries to make color 1 occur at least twice. We show that the goal is not concave: let x = ε,

1Note that it is possible that one of the two suffixes does not progress indefinitely.

79

5. Half-Positionality 5.4 - Half-positionality theorem

n,m = 10ω, then we have xn, xm 6∈W , but t = 110ω ∈ m⊗ n with xt ∈W , hence the goal is

not concave. The goal is half positional because in every point in a play player 0 does not need

to look at the past, but just tries to form a path that passes through as many edges colored with 1
as possible. For a more formal proof, we prove that the goal is full-positional, through Gimbert

and Zielonka’s theorem. Precisely, we prove that W and W = [1]∗ \W are both selective and

monotone. Observe that W is the set of all the words contain at most one 1.

1. W is selective. Suppose by contradiction that W is not selective. Then, there exist x ∈ [k]∗

and M,N,K ⊆ [k]∗ such that x〈(M ∪N)∗K〉 = x〈(M ∪N)∗〉∪x(M ∪N)∗〈K〉 contains

a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words. Observe that no

word in M or N contains 1, or else if m ∈ M ∪N contains a 1, xmω ∈ x〈M∗〉 ∪ x〈N∗〉
contains infinitely many 1’s and it is a winning word. So, the words in the set x〈(M ∪N)∗〉
do not contain 1 and they are losing. Moreover, since x〈K〉 does not contain more than one

1, the words in x(M ∪N)∗〈K〉 do not contain more than one 1 and they are all losing too.

So, the set x〈(M ∪N)∗K〉 contains only losing words, hence a contradiction.

2. W is monotone. Suppose by contradiction that W is not monotone. Then there exist

x, y ∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM . So, xM and yN contain

only losing words, xN and yM contain a winning word. If x contains more than one 1,

all words in the first two sets are losing, hence a contradiction. If x contains one 1, then

no word in M contains 1. However, there is a winning word in yM , so y contains two 1’s.

Hence, yN contain only winning words, which is a contradiction. If x does not contain a 1,

there is a word in N with two 1’s. Hence, yN contains at least a winning word, which is

again a contradiction.

3. W is selective. Suppose by contradiction that W is not selective. Then, there exist x ∈ [k]∗

and M,N,K ⊆ [k]∗ such that x〈(M ∪ N)∗K〉 = x〈(M ∪ N)∗〉 ∪ x(M ∪ N)∗〈K〉
contains a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words. Observe

that no word in M or N does not contain 1, else if m ∈ M ∪ N does not contain a 1,

xmω ∈ x〈M∗〉 ∪ x〈N∗〉 does not contain 1’s and it is a winning word. So the words in the

set x〈(M ∪ N)∗〉 contain infinitely many 1’s and they are losing. Moreover, since x〈K〉
contains more than one 1, the words in x(M ∪N)∗〈K〉 contain more than one 1 and they

are all losing. So, the set x〈(M ∪N)∗K〉 contains only losing words, hence a contradiction.

4. W is monotone. Suppose by contradiction that W is not monotone. Then there exist

x, y ∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM . So, xM and yN contain

only losing words, xN and yM contain a winning word. If x contains more than one 1, all

words in the first two sets are winning, hence a contradiction. If x contains one 1, then there

is a word in N that does not contain 1’s. Since yN contains only losing words, y contains

more than one 1. So, all words in yM are losing, hence a contradiction. If x does not contain

1, then all words in M contain more than one 1, so all words in yM are losing, hence a

contradiction.

80

5. Half-Positionality 5.5 - Strong Selectivity

5.5 Strong Selectivity

We proved in the previous section that strong monotonicity, strong concavity, do not constitute

a characterization for half-positionality. Indeed, we observe that strong concavity is a stronger

property than what is needed. It asks that no matter how two losing words are interwoven the

results is still a losing word. The aim is to relate the alternation of player 0 between two behaviors

to the switching between the two words. However, on a game graph, player 0 is not actually free to

switch at every point between the two behaviors, but only at particular nodes where the two paths

meet. Moreover, since a word should represent a positional behavior for player 0 on a finite graph,

it should contain some periodicity. Both these requirements are achieved through the property of

selectivity. However, selectivity can only be used in the hypothesis player 1 is using a positional

strategy, since only in that case player 0 makes use of regular behaviors. In order to incorporate

into selectivity, the ability to evaluate also non regular sets of words, we define a new stronger

version of it.

Definition 5.5.1. A goalW is strongly selective if and only if for all x ∈ [k]∗ and for all languages

M,N,K ⊆ [k]∗ we have that x〈(M ∪N)∗K〉 ≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉.

Selectivity and strong selectivity represent two weaker properties than strong concavity.

Lemma 5.5.1. Every strongly concave goal is strongly selective.

Proof. For all words x ∈ [k]∗, for all languages M,N,K ⊆ [k]∗, we have that x〈(M ∪N)∗K〉 ⊆
x((〈M∗〉 ⊗s 〈N

∗〉)⊗s 〈K〉) ≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉.

Unfortunately, the strong versions of selectivity and monotonicity proved not to be sufficient

conditions to half positionality2.

Lemma 5.5.2. There exists a strongly monotone and strongly selective goal which is not half-

positional.

Proof. Let k ∈ N, for all colors i ∈ [k] and finite paths π, let |π|i be the number of edges

colored by i on π, and let |π| be the number of edges in π. Moreover for all n ∈ N let π≤n

be the prefix of length n of π. The strongly monotone and strongly selective goal is the set

W of all the infinite words m such that, for all colors i ∈ [k], the limit limn→+∞
|m≤n|i
|m≤n|

exists

and is finite. The goal is prefix independent. Indeed, let π = xπ′ then for all i ∈ [k]∗ we

have limn→+∞
|π′≤n|i
|π′≤n|

= limn→+∞
|π≤n+|x||i−|x|i
|π≤n+|x||−|x|

= limm→+∞
|π≤m|i
|π≤m|

. The goal is also strongly

selective. Indeed, suppose by contradiction that there exist a sequence x ∈ [k]∗, and three languages

M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉 contains one winning word and x〈M∗〉∪x〈N∗〉∪x〈K〉
contains only losing words. In this case,M andN must be empty else any periodic word π = mω ∈

M∗ ∪N∗ with m ∈M ∪N has a finite limit limn→+∞
|π≤n|i
|π≤n|

= |m|i
|m| , for all colors i. So, the set

〈x(M ∪N)∗K〉 = x〈K〉 and contains only losing words which is a contradiction. The above goal

is not half-positional in the following arena ({u}, {v}, u, {(v, 0, u), (v, 1, u), (u, 0, v), (u, 1, v)})

2We thank Zielonka and Gimbert for pointing out the counterexample

81

5. Half-Positionality 5.5 - Strong Selectivity

with k = 1 (Fig 5.1(c)). Player 0 can win with a strategy with memory by choosing from V ′ to

V the opposite of the color that player 1 chose from V to V ′ right before, thus yielding a path in

[k]∗(10)ω which has limit 1
2 for both colors. However if player 0 uses a positional strategy, it will

only choose one color from V ′ to V , let suppose without loss of generality that he chooses color

0. The player 1 can force a path π =
∏+∞

i=0 (00)
2i(10)2

i
. Then we have |

∏l
i=0(00)

2i(10)2
i
| =∑l

i=0 4 · 2i = 4(2l+1 − 1), and |(
∏l−1

i=0(00)
2i(10)2

i
) · (00)2

l
| = 4(2l + 2l−1 − 1). Moreover,

|
∏l

i=0(00)
2i(10)2

i
|1 =

∑l
i=0 ·2

i = (2l+1−1), and |(
∏l−1

i=0(00)
2i(10)2

i
) ·(00)2

l
|1 =

∑l−1
i=0 ·2

i =

2l − 1. So we have
|
∏l

i=0(00)
2i (10)2

i
|1

|
∏l

i=0(00)
2i (10)2

i
|
= 1

4 , moreover
|(
∏l−1

i=0(00)
2i (10)2

i
)·(00)2

l
|1

|(
∏l−1

i=0(00)
2i (10)2

i
)·(00)2

l
|
= 2l−1

3(2l−1)+2(2l)
=

2l−1
5(2l)−3

=
2l− 3

5

5(2l)−3
−

2
5

5(2l)−3
< 1

5 . This shows that in the limit
|π≤n|1
|π≤n|

oscillates between 1
4 and

something less than 1
5 .

Although the following theorem is obtained easily from the techniques developed in [GZ05],

we think that it is worth mentioning that half positionality on arenas controlled only by player 0 is

equivalent to the selectivity of the goal. Since the selectivity is similar in a way to strong concavity,

we show that strong concavity is a condition useful to assert that, on decisions independent from

player 1, player 0 prefers a fixed behavior rather than switching between two different ones. We

prove the above statement by making use of the following lemma proved in [GZ05].

Lemma 5.5.3 ([GZ05]). Let A be a finite co-accessible 3 automaton recognizing a language

L ⊂ [k]∗ and having starting state q. Then, 〈L〉 is the set of infinite color sequences on the graph

of A starting in q.

Theorem 5.5.1. A goal is selective if and only if it is half-positional on all arenas controlled by

player 0.

Proof. [only if] Suppose that a goal W is half-positional on all game graph controlled by player

0 but non-selective. Let x ∈ [k]∗ and M,N,K ⊆ [k]∗ be three recognizable languages such

that x〈(M ∪ N)∗K〉 6≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉. This means that there is a winning word in

x〈(M ∪N)∗K〉 and x〈M∗〉∪x〈N∗〉∪x〈K〉 contains only losing words. Let Gx, GM , GN be the

minimized finite automata recognizing the languages {x},M,N , respectively, and having only one

starting state with no transition returning to it and one final state with no transition exiting from it.

Let GK be the minimized finite automaton recognizing the language K, having only one starting

state with no transition returning to it. We construct the game graph G by combining together the

graphs Gx, GM , GN , GK . Precisely we glue together the final state of Gx, the initial and final

states of GM and GN and the initial state of GK in a new node t. Observe that, by gluing together

the initial and final states, the automata GM , GN recognize M∗ and N∗, respectively. The initial

state of G is the starting state of Gx. Thus the graph G recognizes the language x(M ∪N)∗K.

Hence by Lemma 5.5.3, every infinite path in G is in 〈x(M ∪N)∗K〉 = x〈(M ∪N)∗K〉. Since

this set contains a winning word, there is a winning strategy for player 0. However, if player 0 uses

a positional strategy he cannot win. Indeed, player 0 reaches first the node t by constructing the

3An automaton is co-accessible if and only if from every state there is a path reaching an accepting state. It’s easy to

see that a minimized automaton is co-accessible.

82

5. Half-Positionality 5.5 - Strong Selectivity

color sequence x on Gx. In the node t player 0 chooses once and for all which of the subgraphs

GM , GN , GK he will use, so the infinite play will be of the form xm where m is an infinite path

in GM ,GN or GK . By Lemma 5.5.3, xm ∈ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉. But this set contains only

losing words. Hence, xm is losing.

[if] Suppose that a goal W is selective, we prove by induction on the number of edges exiting

from the nodes of the arena G controlled by player 0 that if there exists a winning strategy for

player 0 then there exists a positional one. As base case there exists only one edge exiting from the

nodes of G, hence player 0 has only one strategy, which is trivially positional. Suppose that in the

arena there are n edges exiting from nodes of player 0 and that for all graphs with at most n− 1
edges exiting from nodes of player 0, if player 0 has a winning strategy he has a positional one. Let

t be a node of player 0 in G such that there is more than one edge exiting from t. We can partition

the set of edges exiting from t in two disjoint non-empty sets Eα and Eβ . Let Gα and Gβ be the

two subgraphs obtained from G by removing the edges of Eβ and Eα, respectively. There are two

cases to discuss. First, suppose that either in Gα or Gβ player 0 has a winning strategy. Then, by

inductive hypothesis he has a positional winning strategy. It is easy to see that such a strategy is

winning in G too, indeed player 0 is able to play always in Gα or Gβ since he controls every node.

Suppose now that player 0 has no winning strategy in Gα and in Gβ . We prove the thesis by

showing that player 0 has no winning strategy in G. Let Mα and Mβ be the sets of all finite color

sequences from t to t and Kα and Kβ be the sets of all finite color sequences starting from t, in

Gα and Gβ , respectively. Such sets are regular languages: Mα and Mβ are recognized by the

automata having respectively Gα and Gβ as state graphs, with starting node t and accepting set

{t}. The sets Kα and Kβ are the languages accepted by the automata with state graphs Gα and

Gβ , respectively, with starting node t and accepting set given by all the states.

Suppose now by contradiction that there exists a winning strategy for player 0 in G. Then this

strategy will form a winning path π. Such a path cannot be in Gα or Gβ , or else player 0 has a

winning strategy in one of those subgraphs. So the path is in G and passes through t. Let x be

the shortest prefix of π ending in t, then π belongs to the set x〈(Mα ∪Mβ)
∗(Kα ∪Kβ)〉, since it

starts with x, then either loops forever from t to t in Gα and Gβ , or possibly ends with an infinite

path that never comes back to t. However, for γ ∈ {α, β}, the sets x〈M∗γ 〉 and x〈Kγ〉 contain

only paths in Gγ , so they are losing. Thus, we have x〈(M ∪N)∗K〉 6≤ x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉,
which contradicts selectivity.

Figure 5.5 summarizes the relations between half-positionality and the properties described in

this chapter.

83

5. Half-Positionality 5.5 - Strong Selectivity

Concavity

Prefix Independence

Strong Concavity

Strong Monotonicity Strong Selectivity

Half Positionality

L. 5.3.2

L. 5.5.1
L. 5.3.7

L. 5.3.8

T. 4.2.1 T. 5.4.1

L. 5.5.2

L. 5.4.1 L. 5.4.1

Figure 5.2: Summary of results. Continuous arrows represent a holding implication and dashed

ones a false one. Arrows are labeled with the corresponding lemma or theorem. Moreover, a gray

box represents a conjunction of conditions.

84

Conclusion

In this thesis we discussed how to determine scheduling plans for ensuring that on a system’s

executions every task is performed with a desired asymptotic frequency or uniform asymptotic

frequency. We showed that when the scheduler has complete control of the system it is possible to

determine a suitable plan in polynomial time, and that when the environment can influence the

executions, determining the existence of a scheduling plan is a Co−NP -complete problem. In

the latter case, we also proposed an exponential space algorithm for the computation of winning

strategy for the scheduler.

All the above results hold for k-colored graphs and can be used when the tasks can be

decomposed into atomic components representable by means of a single edge. Although time and

length are considered to belong to a dense domain, we can still consider approximations to multiple

of a given unit of costs. Such a unit becomes the value of an atomic task. However, every time we

decompose a task in its components, we add to the graphs as many consecutive edges and a nodes in

as the number of atomic components. In non-preemptive situation where a task needs to complete

before a new one is allowed, this is not a problem. Indeed, every task is represented as a sequence

of consecutive edges whose nodes just allow one exiting edge representing the next atomic task to

be performed. In this case our algorithms can be easily modified to avoid a complexity explosion.

For the deterministic scheduling we can just have one variable for a sequence of consecutive edges

in the feasibility systems. Moreover, the algorithm for the computation of a winning strategy

is exponential in the number of nodes of player 1, and nodes with just an exiting edge can be

safely attribute to player 0. On the other hand, when the scheduling is preemptive, we are in the

hypothesis that tasks can he halted only at some discrete instants in time in order to decompose it

in atomic steps. So, the fact that every intermediate atomic activity can be followed by an activity

from another task, induces a necessary complexity explosion in our algorithm. The explosion

becomes worse the more refined the unit of cost becomes. Hence, it may be worth investigating,

the existence of frequency-f paths on dense-cost models, such as timed graphs.

85

Bibliography

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time

systems. In LICS, pages 414–425, 1990.

[AFK87] K. R. Apt, N. Francez, and S. Katz. Appraising fairness for languages in distributed

programming. In POPL, pages 136–145, 1987.

[AH98] R. Alur and T.A. Henzinger. Finitary fairness. ACM Trans. on Programming

Languages and Systems, 20(6), 1998.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.

Journal of the ACM, 49(5):672–713, 2002.

[BFMM09] A. Bianco, M. Faella, F. Mogavero, and A. Murano. Balanced Paths in Colored

Graphs. In MFCS’09, volume 5734 of LNCS, pages 149–161. Springer, 2009.

[BFMM10a] A. Bianco, M. Faella, F. Mogavero, and A. Murano. Quantitative fairness games.

In QAPL10, 8th Workshop on Quantitative Aspects of Programming Languages,

Electronic Proceedings in Theoretical Computer Science, 2010. To appear.

[BFMM10b] Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. Exploring

the boundary of half positionality. In CLIMA XI, pages 171–185, 2010.

[Bry01] R. Bryant. Borel Determinancy and Metamathematic. PhD thesis, University of

North Texas, 2001.

[CD73] E.G. Coffman and P.J. Denning. Operating Systems Theory. Prentice Hall, 1973.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 2001. Second Edition.

[dA99] L. de Alfaro. From fairness to chance. ENTCS, 22:55–87, 1999.

[EMSS90] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla, and Jai Srinivasan. Quantita-

tive temporal reasoning. In CAV, pages 136–145, 1990.

[Fra86] N. Francez. Fairness. Springer, 1986.

[GZ05] H. Gimbert and W. Zielonka. Games where you can play optimally without any

memory. In CONCUR’05, volume 3653 of LNCS, pages 428–442. Springer, 2005.

[HL03] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. MCGrawHill,

2003.

[Kop06] E. Kopczyński. Half-positional determinancy of infinite games. In ICALP’06,

volume 4052 of LNCS, pages 336–347. Springer, 2006.

86

BIBLIOGRAPHY

[Kup95] O. Kupferman. Model Checking for Branching-Time Temporal Logics. PhD thesis,

The Technion, 1995.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. Information and

Computation, 164:322–344, 2001.

[Kwi89] M. Kwiatkowska. Survey of fairness notions. In Information and Software Technol-

ogy, volume 31(7), pages 371–386, 1989.

[LCST98] J. C. S. Lui, M. F. Chan, O. K. Y. So, and T. S. Tam. Balancing workload and

communication cost for a distributed virtual environment. In Advances in Multimedia

Information Systems, volume 1508/1998, pages 130–135. Lecture Notes in Computer

Science, 1998.

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics

of concurrent termination. In ICALP’81, volume 115 of LNCS, pages 264–277.

Springer, 1981.

[Mar75] A.D. Martin. Borel determinancy. 102(2):363–371, 1975.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1991.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-

Interscience, 1988.

[Phi03] R. Philippe. Stochastic networks and queues. Springer, 2003.

[Pin08] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley and Sons,

1986.

[SG98] A. Silberschatz and P. B. Galvini. Operating System Concepts. Addison Wesley,

1998.

[SL85] K. E. Stecke and T. L.Morin. The optimality of balancing workloads in certain types

of flexible manufacturing systems. In European Journal of Operational Research,

pages 68–82, 1985.

[Tan03] A. Tanenbaum. Computer Networks. Pearson Prentice, 2003.

[VVK05] Hagen Völzer, Daniele Varacca, and Ekkart Kindler. Defining fairness. In CONCUR,

pages 458–472, 2005.

87

List of Figures

1 Example graphs. xii

2 Example arenas. xiii

2.1 A 3-colored graph satisfying the balance problem, but not the bounded difference

problem. 18

2.2 Proof of Theorem 2.5.1: The j-th subgraph Gj of G. 28

4.1 The j-th subgraph Aj of A. The dotted edge from vj,i to vj,i+1 is present if and

only if ψi ∈ ψ(xj), and analogously for the lower branch. 58

5.1 Three game arenas. 74

5.2 Summary of results. Continuous arrows represent a holding implication and dashed

ones a false one. Arrows are labeled with the corresponding lemma or theorem.

Moreover, a gray box represents a conjunction of conditions. 84

88

