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Chapter 1

Introduction

The functioning and development of living organisms is controlled on the

molecular level by networks of genes, proteins, small molecules, and their

mutual interactions, the so-called gene regulatory networks. Common inter-

actions in these systems are feedback loops, in which, as the name suggests,

information from the output of a system transformation is sent back to the

input of the system. The presence of interacting parts determines the com-

plexity of biological networks.

Moreover, the interactions are non-linear, making gene regulatory networks

emergent systems ([80], [52]). It means that, unlike systems which can be

modelled by considering averaged effects, it is not possible to reduce the sys-

tems behaviour to the sum of its parts, or study one part at a time, with the

expectation of understanding the emergent properties of the whole system

[24].

The inherent complexity and irreducibility of biological phenomena show the
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need of looking at the whole picture, in an holistic sense, and using proper

mathematical tools. The cell must be studied at the systems level by unravel-

ling the regulatory, signalling and metabolic interactions, and understanding

their coordinated action, if we are to continue to make strides in our under-

standing of these phenomena. Prediction, control, and understanding arise

mainly from modelling these systems using iterated computer simulations

and non-linear mathematical analysis. Biotechnological advances in quanti-

tative high-throughput technology, in combination with the growing inter-

disciplinarity between biology with engineering and natural sciences, have

made this challenge achievable thanks to the emerging fields of Systems and

Synthetic biology ([48] [56], [99], [23]).

1.1 System and Synthetic biology

Systems biology aims at developing a formal understanding of biologi-

cal processes using computational techniques. Systems biology can proceed

in two directions: a “bottom-up” approach, in which starting from detailed

knowledge of a biological process of interest, mathematical language is used

to quantitatively describe the biological information and the experimental

data into a model of the process under study [23]. The biological process

is thus represented as a network describing interactions between genes, pro-

teins, metabolites and other molecules. A model is a mathematical formalism

to describe changes in concentration of each gene transcript and protein as a

function of their regulatory interactions (gene regulatory network). This net-
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work can then be used to probe the behaviour of the biological process using

computer simulations and mathematical analysis, to generate novel hypothe-

ses to be then tested in vivo. The Systems biology “top-down” approach, on

the contrary, aims at learning the network of gene-gene interactions for a bi-

ological process for which very limited knowledge is available. This approach

is called “reverse engineering” and, typically, makes use of high-throughput

gene expression profiling following a variety of perturbations to the cell to

learn gene-gene interactions.

The emerging discipline of Synthetic biology can be defined as the en-

gineering of biology. Up to now, two major goals have been actively inves-

tigated: the building of new biological networks in the cell that perform a

specific task (e.g. periodic expression of a gene [32] or genetic switching [39]),

and the modification of networks that occur in nature in order to achieve

some desired functionalities (e.g. production of a specific compound useful

for medical applications [91]). Reconstructing simplified replicas of natural

genetic circuits helps to understand the sufficient and essential biological

features that drive a specific function. This approach is well-known in engi-

neering, in which problems are often tackled via simplified empirical models

of the process to be studied, where the complexity is reduced to facilitate its

handling, but its key features are kept. For example, a jumbo-jet contains

over six million parts and is complex enough to be incomprehensible to the

human mind without appropriate simplifications. Nevertheless a simplified

toy model of a flying airplane retains some of the most complex and relevant

features of the jumbo-jet (fluidodynamics and control) and it is routinely
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used to derive models and design principles for the full-scale plane [22].

Synthetic biology is an interdisciplinary area requiring a deep synergy be-

tween biology, biotechnology and nanotechnology on one side and mathe-

matical modelling, information technology and control theory on the other.

Such combination of disciplines is needed to construct robust and predictable

synthetic networks. In particular, quantitative models are needed for a pre-

cise and unambiguous description of synthetic circuits [58].

The usefulness of a model in both Systems and Synthetic biology lies in its

ability to formalise the knowledge about the biological process at hand, to

identify inconsistencies between hypotheses and observations, and to predict

the behaviour of the biological process in yet untested conditions. The aim

must be to develop holistic models which capture the essence of various in-

teractions within the system and are able to analyse and give predictions

of the system as a whole. From this perspective, the theory of dynamical

systems and control can have a fundamental role in the analysis, modelling

and design of synthetic biological circuits.

1.2 Motivation and thesis outline

The main aim of this thesis is to explore and solve some of the challenges

faced by a mathematical modeller when studying gene regulatory networks.

In particular, in Chapter 2 we will describe the systems of interest (gene

regulatory networks), and the methodology used to model them (Ordinary

Differential Equations).
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In Chapters 3 we will introduce a synthetic network that we built de novo in

the yeast Saccharomyces cerevisiae. The goal of our work was to provide the

System biology community with an in vivo benchmark, which can be used

as “ground of truth” to test and compare modelling approaches and reverse-

engineering inference strategies as, at present, the usefulness and predictive

ability of these computational approaches in the field of Synthetic biology

cannot be assessed and compared rigorously.

In Chapter 4 the mathematical modelling of the yeast synthetic biological is

derived. All the steps are reported: model derivation, experimental design,

parameter identification and model validation.

In Chapter 5, we will show how to use novel tools from numerical bifurca-

tion theory (e.g. DDE-BIFTOOL [35], able to deal with delayed systems),

together with recent results on the link between the dynamics and topology

of networks, in order to redesign the yeast synthetic circuit, turning it into

an autonomous oscillator, or a bistable switch. The results presented in this

Chapter were derived in collaboration with Dr David A. W. Barton (Applied

Non-linear Mathematics Research Group in the Department of Engineering

Mathematics of the University of Bristol).

In Chapter 6 we will analyse the response of the yeast synthetic network to

an external periodic input. Such forcing can lead to entrainment, that means

that the period of the forced oscillator is exactly the one of the external

signal and that the phase of the oscillations are locked. We will analyse the

entrainment both via simulation and analytically, using recent contraction

theory results [93].



1.2 Motivation and thesis outline 6

In Chapter 7 we will present preliminary results about the modelling and

construction of a novel synthetic oscillator in mammalian cells is presented .

A full mathematical analysis is developed for two possible topologies of the

oscillator, and preliminary data are presented with the relative parameters

fitting.

Finally, in Chapter 8, conclusions are drawn and possible directions for fu-

ture work are suggested.

Finally, Part of the research performed in this Thesis was under the European

Union funded project COBIOS [1].



Chapter 2

Background

This Chapter provides a background on the physical mechanisms involved

in gene regulatory network, and network motifs. Moreover, we present an

overview of different strategies to model gene regulatory network.

2.1 Physical mechanisms of genetic regula-

tion

Living cells are the product of gene expression programs involving regulated

transcription of thousands of genes.

The central dogma, schematically described in Figure 2.1, defines the paradigm

of molecular biology. Genes are perpetuated as sequences of nucleic acid, but

function by being expressed in the form of proteins [9]. Transcription and

translation are responsible for their conversion from one form to the other.

Transcription generates a messenger RNA (mRNA) which provides an inter-
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mediate that carries the copy of a DNA sequence that represents a protein. It

is a single-stranded RNA identical in sequence with one of the strands of the

duplex DNA. In protein-coding genes, translation will convert the nucleotide

sequence of mRNA into the sequence of amino acids comprising a protein

[9]. This two-stage process is called gene expression. Gene expression is a

complex process regulated at several stages in the synthesis of proteins [9].

Some proteins are structural and will accumulate at the cell-wall or within

the cell to give it particular properties. Other proteins can be enzymes that

catalyse certain reactions. A large group of proteins have an important role in

the regulation of the genes, known as transcription factors. Gene regulation

by transcription factors can be negative or positive. In negative regulation,

an inhibitor protein binds to the promoter (a region of DNA that facilitates

the transcription of a particular gene), and decreases the mRNA transcrip-

tion of the gene. In positive regulation, a transcription factor is required to

bind at the promoter in order to increase the mRNA transcription rate [2].

Several other steps in the gene expression process may be modulated [9].

Apart from DNA transcription regulation, the expression of a gene may be

controlled during RNA processing and transport (in eukaryotes), RNA trans-

lation, and the post-translational modification of proteins [25]. The degrada-

tion of gene products can also be regulated in the cell. Recent work is forcing

a rethink of the roles of RNA and proteins in cell control mechanisms. Until

recently, RNA was not believed to have a role in regulation of gene expres-

sion. Now it is known that small RNA molecules can act, through RNA

interference (RNAi) mechanism, to silence gene expression (see [37], [13]).
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Two examples are small interfering RNAs (siRNAs) and microRNAs (miR-

NAs) [16]. RNA interference regulates transcription by inducing degradation

of targeted mRNAs.

In this Thesis, we will present preliminary results about a synthetic oscillator

we are currently building in mammalian cells (Chapter 7) that includes in

its topology a microRNA towards the gene of interest.

Figure 2.1: Schematic diagram of the central dogma of molecular
biology. Figure reproduced from [45].

2.1.1 Gene regulatory networks and network motifs

Hence, a gene regulatory network is a collection of DNA, RNA, proteins, and

other molecules which interact with each other. How a collection of regula-

tory proteins associates with genes across a genome can be described as a

network in which the nodes are genes and the edges represent regulations

among them. In the graph, directed edges with an arrow end represent acti-

vation (Figure 2.2 (A)), whereas a dash end represents inhibition (Figure 2.2
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(B)).

Since the cell is not an isolated system, but it continuously responds to exter-

nal stimuli in order to follow a specific developmental program or to adapt to

changing environmental conditions, the transcriptional network is a dynamic

system: after an input signal arrives, transcription factor activities change,

leading to changes in the production rate of proteins.

In order to study the complex dynamics of cellular networks, during the

last years several studies aimed to identify the basic building-blocks of tran-

scriptional networks and to study the functional relevance of these modular

components ([64], [74], [75], [117]). The approach is based on the identifica-

tion of meaningful patterns on the basis of statistical significance. To define

statistical significance, the real network is compared to an ensemble of ran-

domized networks, which have the same number of nodes and edges as the

real one, but where the connections are made at random. If a pattern occurs

in the real network significantly more often than in the randomized networks,

it is defined as a network motif. The basic idea is that network motifs that

occur in the real network more often than in randomized networks must have

been preserved over evolutionary timescales against mutations that randomly

change edges. As a matter of fact, point mutations, which occur in a pro-

moter sequence, can alter the binding of a specific transcription factor to the

promoter thus resulting in the loss of an edge of the transcriptional network.

Similarly, new edges can be added to the network by either point mutations

or by duplication events in a promoter region, thus generating a new binding

site for a transcription factor. Hence, conserved network motifs must have
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been selected in order to survive during evolution because they provide some

advantage to the organism. If a motif did not offer a selective advantage, it

would be “washed out” and occur about as often as in randomized networks.

A feed-forward loop (FFL) ([70], [2]) is defined by a transcription factor (X)

that regulates a second transcription factor (Y), such that both X and Y

jointly bind a common target (Z). Since each of the regulatory interactions

may either be positive or negative there are possibly eight types of FFL mo-

tifs. Two of those are the most frequently found: the coherent type 1 showed

in Figure 2.2 (C) (where all interactions are positive) and the incoherent

type (X activates Z and also activates Y which represses Z). In addition to

the structure of the circuit, the way in which the signals from X and Y are

integrated by the Z promoter should also be considered. In most of the cases

the FFL is either an AND gate (X and Y are required for Z activation) or OR

gate (either X or Y are sufficient for Z activation), but other input function

are also possible [2].

In Figure 2.3 we report the other most common network motifs. A regulatory

chain consists of chains of three or more transcription factor in which one

regulator binds the promoter for a second regulator, and the second binds

the promoter for a third regulator and so forth.

An auto-regulation motif consists of a transcription factor that binds its own

promoter. This motif is though to reduce response time to environmental

stimuli and increase stability of gene expression.

A multi-component loop motif consists of a regulatory circuit whose closure

involves two or more factors. The closed loop structure provides the capacity
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for the feedback control and offers the potential to produce bistable sys-

tems, which switch between two alternative states. This motif is peculiar of

yeast and of developmental networks of higher eukaryotes since, with the

exception of the auto-regulation, feedback loops composed only by direct

transcriptional interactions have not been identified in bacteria.

The single input motif contains a single regulator that binds a set of target

genes. In this way the expression of the target genes is coordinated under

a specific condition. In the multiple input motif, there is the presence of

multiple regulators acting on the metabolites of the system.

X

Y

X Y

X

Y

Z

A

B

C

Figure 2.2: Representation of gene interactions and coherent feed-
forward loop. (A) Directed edges with an arrow end represent activation.
(B) Directed edges with a dash end represents inhibition. (C) Schematic
representation of a coherent feed-forward loop.

In this Thesis, we will present two novel synthetic network built at Telethon
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Figure 2.3: Examples of network motifs in the yeast regulatory net-
work. Schematic representation of network motifs identified in [64]. Regu-
latory proteins are represented as blue circles, while their target promoters
as red rectangles. A solid arrow indicates binding of a regulator to a pro-
moter. The dashed arrow links the gene to its protein product, representing
transcription and translation processes.
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Institute of Genetics and Medicine (TIGEM) of Naples, one in yeast (Chap-

ters 3, 4, 5 and 6) and one in mammalian cells (Chapter 7). The topologies of

our circuits include various kinds of the mentioned motifs, and we will show

how the presence of them is fundamental to understand and eventually tune

the networks dynamics.

2.2 Mathematical modelling of gene regula-

tory networks

In the fields of Systems and Synthetic biology, theory and experiments need

to be viewed as a close interplay. In silico predictions of the behaviour of

a biological system can be used to complement in vivo experimental obser-

vations and accelerate the hypothesis generation-validation cycle of research

[66]. Modelling a cellular process can highlight which experiments are likely

to be the most informative in testing model hypotheses, and allow testing

for the effect of drugs [28] or mutant phenotypes [94] on cellular processes,

thus paving the way for individualized medicine.

A mathematical model is a formalization of the biological knowledge about a

certain system, where each component of the system is described by an equa-

tion, which represents its behaviour as a function of its regulators. A priori

knowledge, which derives from experiments and/or literature, is essential and

needs to be formalized for the chosen framework. Ideally, all information rel-

evant to a system (not only concentrations and rates of events, but also spa-

tial distribution, diffusion parameters, and so on) would be known to make
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a maximally accurate in silico replica of the system. Unfortunately, even for

the best-studied systems, the mass of accumulated data still falls short of

describing, even qualitatively, the variety of elementary processes that each

molecular species engages in (post-translational modifications, degradation,

complex formation, and so on); even less known are details of spatial infor-

mation and the timing of events. Consequently, assumptions are necessary

(for example, that all gene copies of a multi-copy plasmid are transcription-

ally active, or that a certain molecule freely diffuses inside a cell or is always

monomeric). On the other hand, it can be beneficial to exclude some known

data to accommodate available computational power and to facilitate the

analysis (even at the expense of accuracy).

2.2.1 Model derivation approaches

Model derivation from experimental data can be carried out following three

major approaches: white-box, black-box and gray-box.

In white-box modelling, the model and parameter values are entirely derived

from first principles, while in black-box modelling the model is completely

derived from input-output data. The third alternative, the so-called gray-box

approach [83], combines the two above approaches. This is the approach we

will use in this Thesis. Specifically, first principles are used to partially derive

the model structure, while parameters or terms in the model are determined

by measurement data.

In this case, modelling entails three main steps to be executed iteratively: (i)

derivation of the model equations; (ii) identification of the model parameters
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from experimental data and/or literature; (iii) validation (or invalidation [4])

of the model.

Step (i) requires introducing simplifying hypothesis and choosing a proper

formal framework. A huge variety of mathematical formalisms have been

proposed; we will discuss them in the next subsection.

Step (ii) is required to estimate unknown model parameters from the avail-

able experimental data. A crucial issue that arises when estimating model

parameters is the structural identifiability [114]. The notion of identifiabil-

ity addresses feasibility of estimating unknown parameters from data col-

lected in well-defined stimulus-response experiments [18]. Structural non-

identifiability is related to the model structure independently from experi-

mental data. In contrast, practical non-identifiability also takes into account

the amount and the quality of measured data used for parameters calibration.

Of note, a parameter that is structurally identifiable may still be practically

non-identifiable, due to the unavoidable presence of noise in biological ex-

perimental data [90]. Unfortunately, while being well assessed in the case

of linear dynamical systems, the identifiability analysis of highly non-linear

systems remains an open problem [12]

The parameter estimation problem can be formulated from the mathematical

viewpoint as a constrained optimization problem where the goal is to mini-

mize the objective function, defined as the error between model predictions

and real data. In biological applications, the objective function usually dis-

plays a large number of local optima as measurements are strongly affected

by noise. For this kind of problems, classical optimization methods, based on
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gradient descent from an arbitrary initial guess of the solution, can be un-

feasible and show convergence difficulties. The above considerations suggest

to look at stochastic optimization algorithms, like evolutionary strategies,

which rely on random explorations of the whole space of solutions, are not

sensitive to initial conditions and avoid trapping in local optimal points.

In [77], the performance of both local and global-search optimization meth-

ods is compared in the identification of the 36 unknown parameters of a

non-linear biochemical network. The authors show that only evolutionary

strategies are able to successfully solve the parameters estimation problem,

while gradient based methods tend to converge to local minima. Among the

stochastic techniques, Genetic Algorithms (GA) [76] provide a very flexible

approach to non-linear optimization. Their application showed good results

in the parametrisation of synthetic networks [115], [107].

Finally, step (iii) is required to check the validity and usefulness of the model,

that is to evaluate its ability in predicting the behaviour of the actual physical

system. Theoretically, the modeller should be confident that the formalism

is able to describe all input-output behaviours of the system [98]. This con-

dition can be never guaranteed, since it would require an infinite number of

experiments. However, it is possible to test a necessary condition: the model

is able to describe all observed input-output behaviours of the system [98].

To this aim, one possible approach is to use a cross-validation like proce-

dure [6] by splitting the experimental data in two sets: one of them is used

for the parameter identification, while the other one is used to validate the

predictive power of the model. If the predictive performance of the model
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is not satisfactory, it is invalidated [4]. Thus, it is necessary to refine the

model (for example, by increasing the level of detail) and/or to perform new

experiments, going back to step (i) of the modelling procedure.

2.2.2 Modelling approaches

A huge variety of mathematical formalisms have been proposed in the lit-

erature, such as directed graphs, Bayesian networks, Boolean networks and

their generalizations, ordinary and partial differential equations, qualitative

differential equations, stochastic equations, and rule-based formalisms (see,

for example, [26], [29], [102] and references therein).

A major distinction can be done between qualitative and quantitative modes.

Qualitative models

In qualitative modelling, for simulations to be applied and useful in drawing

non-obvious conclusions, we need to retrieve from biological data at least the

information required for the formulation of logical statements describing, for

instance, causal relationships between events involving model components.

As an example, computer science algorithms used to perform code checks

can assess the logical consistency of a set of statements: that is, check that

no subset of statements is in contradiction with any other [8]. Automated

tools such as these and others used in qualitative reasoning approaches be-

come indispensable if logical inferences are to be made on very large sets of

experimental observations.

In qualitative modelling, kinetic processes are simulated by tracking over
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discrete time the state of the system, defined in terms of a coarse range

for each variable. The weak specification of such models conserves computer

resources needed to explore the space of possible behaviours; moreover, it

provides high-level predictions applicable to a whole family of systems. Al-

though simulation of qualitative models can be fast, even a rough exploration

of parameter space can become intractable as the size of the system increases,

highlighting the need for increasing computer resources and methods to ac-

celerate the parameters search. For genes that are naturally found in only

two states, the trade-off in accuracy may not even be high. On the other

hand, simple models can, in some cases, predict behaviours that are far away

from reality [29].

Quantitative models

Compared with qualitative models, quantitative ones have a natural appeal in

that they offer greater detail in mimicking reality. Moreover, rich qualitative

insights on the system are possible using theoretical tools such as bifurcation

and stability analysis, which, for example, indicate the precise boundaries of

parameter ranges to which steady states or sustained oscillations correspond,

or reveal the stability of the solutions before actually solving the dynamical

equations representing the system. Quantitative models can be either deter-

ministic or stochastic.

Deterministic formalisms are commonly used to describe the average be-

haviour of a population of cells [26]. They have been shown to be viable
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for the analysis of synthetic networks in a number of works (e. g. [32], [39],

[60], [107], [101]). The reaction mechanism is described by applying the law

of mass action: the rate of any given elementary reaction is proportional to

the product of the concentrations of the species reacting in the elementary

process (reactants) [2].

When Differential Equations (DEs) are used, the cellular concentration of

proteins, mRNAs and other molecules are represented by continuous time

variables with the constraint that a concentration can not be negative. Usu-

ally, the function describing transcriptional interactions are non-linear Hill

function or Michealis-Menten, the two differing for considering or not, re-

spectively, the cooperativity of a protein on the gene of interest [2]. The Hill

functions model transcriptional interaction in the following way:

• activation: H+(y; k, h) = yh

yh+kh
;

• repression: H−(z; k, h) = kh

yh+kh
;

• combination of activation or repressionH+− = H+(y; k, h)(·,+)H−(z; k1, h1),

where (·,+) indicates that we can either sum or multiply the Hill functions

in the case of multiple regulation, depending on the AND or OR kind of

interaction [2]; y and z represent transcription factor levels, h are the Hill

coefficients (pure numbers that refer to the cooperativity of the activation

binding reaction) and k are the Michaelis-Menten constants, equal to the

amount of transcription factor needed to reach half maximal activation (or

repression). In the case of Michalis-Menten term, the formalism is identical,

but the Hill coefficient h is fixed equal to 1. For a complete derivation of Hill
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and Michealis-Menten formalism please refer to [2].

The DEs modelling approach is based on the following biological assump-

tions: the quantified concentrations do not vary with respect to space and

they are continuous functions of time. These assumptions hold for processes

evolving on long time scales in which the number of molecules of the species

in the reaction volume is sufficiently large. Of note, the models presented

in this Thesis are all Differential Equations based, because the systems of

interest satisfy the above assumptions.

As the number of molecular species and consequently of reaction events de-

creases, the probabilistic nature of biological events becomes more evident. In

this case, the response of individuals within a population of genetically iden-

tical cells may be significantly different from the average population response.

Population heterogeneity arises from stochasticity in molecular events or from

noise. For instance, occurrence of noise have been found to be exploited by

cells to survive a variety of environmental changes [103] or to increase sensi-

tivity in signal transduction processes [47]. To model such stochastic systems,

two main methods are used. The first comprises using stochastic differential

equations (SDEs, derived from DEs by adding noise terms to the equations),

the solutions for which can be numerically obtained either by computing

many trajectories (Monte Carlo methods) or approximating their probabil-

ity distribution and then calculating statistical measures (such as mean and

variance). Notably, with this method noise is imposed on the system and

represented by mathematical terms chosen a priori, instead of arising from
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the underlying physical interactions.

The second method is a very successful and exact one introduced nearly 30

years ago, and recently enhanced to cope with different reaction timescales

or space constraints. With this approach, molecules are modelled individ-

ually and reaction events are calculated by their probability, basing on the

Chemical Master Equation [41]. For simulation, usually the Gillespie stochas-

tic simulation algorithm (SSA) [40] is used. It does not try to numerically

solve the Master Equation for a given system, but is a systematic, computer-

oriented procedure in which Monte Carlo techniques are employed to nu-

merically simulate the discrete Markov process that the Master Equation

describes analytically.

Of note, the price to pay for having a more physically realistic model is

the considerable increase in computational time and the need for specialized

algorithms [102].



Chapter 3

A novel synthetic network in

yeast: IRMA

Here we will introduce IRMA, a synthetic network we built in the yeast Sac-

charomyces cerevisiae to benchmark modelling approaches. In this Chapter,

we will present the design, topology and construction of the network. As

described in the following Chapter, it was necessary to go through iterative

refinement steps both in the model and in the experimental data-set. The

mathematical modelling was fundamental to design ad hoc experiments to

clarify the behaviour of the network. In Chapter 4 we will then present in

details the approaches we used to construct a dynamical model of IRMA

based on Ordinary Differential Equations. In Chapter 5, we will present an

additional analysis we performed on the non-linear model with the aim of

understanding if and how the network can be turned into an autonomous

oscillator, or a bistable switch. Finally, in Chapter 6 we will analyse the re-
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sponse of the network to external periodic input.

The work described in Chapters 3 has been partly described in [15]. All the

in vivo experiments were carried out by Irene Cantone and Maria Aurelia

Ricci, in Dr. Maria Pia Cosma’s lab (TIGEM, Italy). Details about the ex-

perimental procedures are reported in Appendix D.

3.1 Introduction

The goal of our work was to provide the System biology community with

an in vivo benchmark, which can be used as “ground truth” to test and

compare modelling approaches and reverse-engineering inference strategies.

At present, the usefulness and predictive ability of computation approaches

in the field of Synthetic biology cannot be assessed and compared rigorously.

To this aim we constructed, in the yeast Saccharomyces cerevisiae, a synthetic

network of five genes regulating each other for In-vivo Reverse-engineering

and Modelling Assessment (IRMA).

The network was designed to be negligibly affected by endogenous genes, and

to respond to galactose, which triggers transcription of its genes. Our network

(Figure 3.1), apparently simple, is in fact very articulated in its interconnec-

tions, which include regulator chains, single-input motifs, and multiple feed-

back loops, generated by the combination of transcriptional activators and

repressors.

In order to gain information about the network dynamics, we analysed the

transcriptional response of network genes after two different perturbation
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strategies: performing a single perturbation and measuring mRNA changes

at different time points, or performing multiple perturbations and collecting

mRNA measurements at steady state. Data are presented in Chapter 4.

Figure 3.1: Construction of IRMA, a synthetic network in yeast.
Schematic diagram of the synthetic gene network is represented. New tran-
scriptional units (rectangles) were built by assembling promoters (red) with
non-self coding sequences (blue). Genes were tagged at the 3´ end with the
specified sequences (green). Each cassette encodes for a protein (represented
as a circle) regulating the transcription of another gene in the network (solid
green lines). The resulting network, IRMA, is fully active when cells are grown
in presence of galactose, while it is inhibited by the Gal80-Gal4 interaction
in presence of glucose.
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3.2 Construction of the synthetic network

3.2.1 Choice of model organism

We chose as model organism yeast Sacchamyces cerevisiae because it is the

simplest eukaryote and it shares both transcriptional machinery structure

and gene transcription mechanisms with higher eukaryotes. Considering ba-

sic biological concepts, a yeast cell is more similar to a human cell than

a bacterium one. The DNA is wrapped around proteins called histones to

form bead-like structures called nucleosomes, and the chromosomes are se-

questered in a cellular compartment called the nucleus. For these reasons,

yeast is classified as a eukaryote, as are humans, flies, worms and plants.

Most of what we know about eukaryotic gene regulation comes from stud-

ies of the yeast Saccharomyces cerevisiae. Expression of a typical eukaryotic

gene is more complex than the one of a bacterial gene, because there can

be different layers of control which involve the presence of nucleosomes and

nuclei. Furthermore, among eukaryotes, the yeast has got other convenient

features, which led us to choose it as model. This organism grows rapidly,

about 20-fold faster than mammalian cells and is only 3-fold slower than Es-

cherichia coli. It is unicellular and can be easily cultured and manipulated.

Mutants can be selected or recognised by simple assays, and sequences in and

around genes can be altered at will. The genome is completely sequenced and

comprises about 6000 genes, only about 2000 more than E. coli.
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3.2.2 Choice of the network genes

Particular care was taken in the choice of genes in order to isolate the network

from cellular environment. We searched in literature and in the SGD (Sac-

charomyces cerevisiae Genome Database; www.yeastgenome.org) for genes,

which show some essential features. In particular:

• we chose non-essential and non-redundant TF-genes, which do not

present synthetic lethality and, therefore, can be knocked out without

affecting yeast viability;

• we selected well-characterised promoter/TF-encoding-gene pairs, be-

longing to distinct and non-redundant pathways, to further minimize

external feedbacks on the network due to pathway crosstalk;

• we chose promoters for which a single transcription factor (TF) is suf-

ficient and essential to activate transcription. Thus, by removing the

endogenous TF, we maximally reduced influences from the cellular en-

vironment on each promoter.

Specifically, we selected as activators and repressors encoding genes: SWI5,

ASH1, CBF1, GAL4 and GAL80 ; as promoter genes: HO, ASH1, MET16

and GAL10 (Figure 3.1).

3.2.3 Choice of network motifs and resulting topology

In order to obtain a good benchmark, we aimed at constructing a synthetic

network that captures the behaviour of larger eukaryotic gene networks on
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smaller scale, and which includes also a variety of regulatory interactions.

In particular, the topology includes regulatory motifs (see Chapter 2) which

are peculiar of yeast.

The network, depicted in Figure 3.1, is organized in such a way that each gene

controls transcription of at least another gene in the network. We decided to

use the Regulator Chain (Cbf1-Gal4-Swi5 regulators) and the Single Input

(Swi5 which activates three promoters) motifs in order to have a sequence of

transcriptional events, which can be separately analysed in time. We added

to them both a positive (Swi5 activates HO transcription thus closing the

circuit) and a negative transcriptional feedback loop (Ash1 represses HO

transcription), thus obtaining a Multi Component Loop, with the aim of

enriching the dynamic behaviour of the network.

Finally, in order to provide the circuit of a “switch”, we also used a negative

feedback loop composed of a protein-protein interaction (Gal80-Gal4) that

can “turn-off” the system in response to an external stimulus (depletion of

galactose from the culturing medium). Galactose activates the GAL10 pro-

moter, cloned upstream of SWI5 in the network, and it is able to activate

transcription of all the five network genes. In presence of a non inducing

medium as glucose, Gal4 is inactive because of the binding of the Gal80

repressor to its activation domain through the formation of a complex, pre-

venting interaction of the transcription machinery [108]. In the presence of

galactose, Gal4 activator binds to the multiple UASGAL elements in the pro-

moter and leads to activation of transcription. Relief of inhibition by Gal80

is dependent on a functional Gal3 protein. Biochemical studies have shown
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that Gal3 interacts with Gal80, and it is this interaction that is sensitive

to the presence of galactose [108]. A diagram of the mechanism is shown in

Figure 3.2.

Figure 3.2: Schematic representation of the galactose pathway regu-
lating the GAL10 promoter. When the galactose medium is present, the
activated Gal3 alters the free concentration of Gal80 through sequestration
in the cytoplasm, thus relieving its inhibition on Gal4. In presence of glucose,
the dimerized form of Gal80 directly to the Gal4 dimer.

The system can be induced also by another external signal, methionine, which

regulates the activity of the MET16 promoter. Methionine modulates the

expression of all the MET genes by affecting the formation of the Cbf1-Met4-

Met28 transcriptional complex [62]. High levels of methionine increase the

ubiquitination and the subsequent degradation of the activator Met4, indeed

inhibiting the transcription [17]. Thus, MET16 expression is is completely

turned off in the presence of high methionine levels and, even at intermediate

methionine levels, its transcription appears to be strongly decreased.
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3.3 Testing in vivo the network response to

the inducers.

3.3.1 Switching the network on by injecting galactose

At first, we tested transcription of network genes upon culturing cells in

presence of galactose or glucose. In order to easily monitor the possibility

of switching on the network by culturing the cells in galactose, a fluorescent

tag (GFP, Green Fluorescent Protein) was cloned at the 3´ end of the CBF1

ORF (Figure 3.1). Living yeast cells grown with different carbon sources

(galactose or glucose) were analysed by fluorescent microscopy. As shown in

Figure 3.3, positive green cells were visualized only when IRMA was cultured

in galactose-containing medium.

Figure 3.3: Galactose triggers activation of IRMA synthetic net-
work. Live imaging of IRMA cells grown in glucose and galactose containing
medium. Scale bar, 10μm; 63X magnification.
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3.3.2 Indubicibility of the network using methionine

In Figure 3.4, we show in vivo data (from both semi-quantitative and quan-

titative real-time RT-PCR) representing the expression levels of the MET

genes, including MET16, when yeast cells are grown in the presence of low

(10μM) or high (1000 μM) methionine concentration. The levels are com-

pared with the standard yeast growing condition complete medium (YPD),

which contains an intermediate concentration of methionine (140 μM) and

thus show an intermediate level ofMET genes expression.MET16 expression

is tightly regulated by methionine concentrations: it is completely turned off

in the presence of high methionine levels and, even at intermediate methio-

nine levels (the control condition), its transcription appears to be strongly

decreased.

In Figure 3.5, we show the transcription levels of the genes of IRMA at

steady state upon culturing cells in the presence of different concentrations

of methionine, both in glucose and in galactose containing medium. Even in

the presence of glucose (network off in the control standard growing condition

YEP, methionine=140 μM), network genes are activated in low methionine

containing medium, and reach the same expression levels that they have

in the cells grown in galactose (network on in YEP). Thus, the increased

GAL4 expression, due to MET16 activation after the removal of methionine,

turns on all the network genes, while addition of methionine inhibits them,

independently from galactose.



3.3.2 Indubicibility of the network using methionine 32

Figure 3.4: Expression of MET genes in wild type yeast cells. MET
genes regulated by Cbf1 are transcriptionally activated in the presence of
low levels of methionine (10 μm) while they are repressed at high methionine
concentrations (1000 μm). Semi-quantitative (A) and quantitative (B) RT-
PCR (normalization against ACT1 gene) of MET genes were performed on
total RNA extracted from yeast cells grown in the standard complete medium
YPD (140 μm of methionine) and at two different methionine concentrations.
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Figure 3.5: Methionine modulates IRMA genes expression. Expres-
sion levels of IRMA genes at different methionine concentrations in glucose
(white bars) or in galactose/raffinose (grey bars). The control is the stan-
dard complete medium, YEP, which contains 140 μM of methionine. Data
represent the 2−ΔCt (mean of two experiments ± Standard Error).
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3.4 Discussion

In this Chapter, we presented the synthetic network we built in yeast Sac-

chamyces cerevisiae, describing its biological features. The design principles,

aimed at constructing a good benchmarking tool, were illustrated. In the next

Chapter, we will detail the mathematical modelling of the network through

all the iterative steps and, consequently, the model-guided experimental de-

sign and in vivo results.



Chapter 4

Derivation, identification and

validation of the mathematical

model of IRMA network.

In this Chapter we will detail the mathematical modelling of the synthetic

biological pathway network described in Chapter 3. We will illustrate all the

steps required: model derivation, experimental design, parameter identifica-

tion and model validation (see Chapter 2).

In order to build a model able to correctly predict the dynamical changes

in the mRNA concentrations of the five network genes following both inter-

nal and external perturbations (i.e. gene over-expression, galactose addition,

etc.), we adopted a gray-box approach [83], described in Chapter 2, following

all the steps mentioned therein. For step (i) (derivation of the model equa-

tions), we used a differential equations (DEs) based approach. The task was
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challenging since, to our knowledge, up to now quantitative DEs mathemati-

cal models have been developed for synthetic networks composed of a smaller

number of genes than IRMA (e. g. [39], [32], [107], [60], [101]). Regarding the

identifiability issue implicated in the step (ii) (parameters identification), we

adopted the novel approach proposed by Raue and colleagues (see [90]), able

to deal with non-linear models with an high number of parameters. This ap-

proach exploits the profile likelihood and is able to detect both structural and

practical non-identifiable parameters. For the parameters identification (step

(ii)), in order to cope with the high number of unknown quantities, the noise

of experimental data and the presence of non-linear aspects in the optimisa-

tion procedure, we used an ad hoc designed Hybrid Genetic Algorithm (see

Appendix B for further details). Finally, for the model validation (step (iii)),

we tested the predictions of the model against data not used for the param-

eters identification. Of note, the identified parameters of the mathematical

models are reported in Appendix A, the details about the algorithm used for

the identification in Appendix B, the MATLAB files used for simulations in

Appendix C and the experimental procedures of the in vivo experiments in

Appendix D.

The results presented in this Chapter have been partly described in [73].
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4.1 Derivation of model equations: step (i).

Model A

For each species in the network represented in Figure 3.1, i.e. each mRNA

(italic capital letters) and correspondent protein concentration (roman small

letters), we wrote one equation which expresses its change in time as the

result of production and degradation:

d[CBF1 ]

dt
= α1 + v1H

+−([Swi5], [Ash1]; k1, k2, h1, h2)− d1[CBF1 ](4.1)

d[Cbf1]

dt
= β1[CBF1 ]− d2 [Cbf1], (4.2)

d[GAL4 ]

dt
= α2 + v2H

+([Cbf1]; k3, h3)− d3[GAL4 ], (4.3)

d[Gal4]

dt
= β2[GAL4 ]− d4 [Gal4], (4.4)

d[SWI5 ]

dt
= α3 + v3H

+([Gal4free]; k4, h4)− d5[SWI5 ], (4.5)

d[Swi5]

dt
= β3[SWI5 ]− d6 [Swi5], (4.6)

d[GAL80 ]

dt
= α4 + v4H

+([Swi5]; k5, h5)− d7[GAL80 ], (4.7)

d[Gal80]

dt
= β4[GAL80 ]− d8 [Gal80], (4.8)

d[ASH1 ]

dt
= α5 + v5H

+([Swi5]; k6, h6)− d9[ASH1 ], (4.9)

d[Ash1]

dt
= β5[ASH1 ]− d10 [Ash1]. (4.10)

The first two terms, on the right-hand side of the mRNA equations, represent

the production, where α are the basal transcription rates; v are the maximal

transcription rates modulated by the Hill functions, H+(y; k, h) = yh

yh+kh
,
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H−(z; k, h) = kh

yh+kh
and H+− = H+(y; k, h)(·,+)H−(z; k1, h1), modelling

transcriptional activation, repression or a combination of the two, respec-

tively; (·,+) indicates that we can either sum or multiply the Hill functions

in the case of multiple regulation; y and z represent transcription factor lev-

els, h are the Hill coefficients (pure numbers that refer to the cooperativity of

the activation binding reaction) and k are the Michaelis-Menten constants,

equal to the amount of transcription factor needed to reach half maximal

activation (or repression). For protein equations, the production rates are β,

i.e. the maximal translation rates. Degradations of mRNAs and proteins are

represented by d, i.e. the degradation constants. Gal4free in equation (4.5)

depends on the interactions of the galactose pathway with the network genes.

In the model, the concentrations and the Michelis-Menten parameters k

are reported in arbitrary units [a.u.], the basal activities α in [a.u.min−1],

the maximal transcription rates v in [a.u.min−1], the translation rates β in

[min−1], the degradation constants d in [min−1].

When writing the above model, we made the following assumptions: [A1]

the transcriptional activity of each promoter is leaky (α); [A2] the degrada-

tion kinetics of both mRNAs and proteins are first-order; [A3] the protein

production terms are proportional to the corresponding mRNA concentra-

tions; [A4] the transcriptional activation-repression of each promoter by a

transcription factor can be modelled as a Hill function [56] and the HO pro-

moter driving the expression of CBF1 can be modelled either by adding the

H+ and H− functions (i.e. the promoter is activated by SWI5 OR repressed

by ASH1 ), or by multiplying them (i.e. the promoter is activated by SWI5
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AND repressed by ASH1 ) (see [2] and [70]). We chose between these two

forms only during step (iii) of the modelling process, as described later.

In order to define the Gal4free term in eq. (4.5), we needed to describe the ef-

fect of the galactose pathway on the network dynamics. The biological mech-

anism is shown in Figure 4.1 (A). The concentration of Gal4free is the amount

of Gal4 protein that is not involved in the formation of the protein-protein

complex with Gal80 and hence activates the GAL10 promoter driving SWI5

expression. In the literature, very detailed models of the galactose pathway

have been presented ([10], [111]). We decided to simplify such paradigms and

assumed ([A5]) that Gal80 directly binds to galactose ([GAL], the input of

our model) in galactose growing condition, while Gal4 and Gal80 form the

complex Gal4Gal80, when the yeast is grown in glucose (Figure 4.1 (B)).

Under this assumption, the simplified physical mechanism can be described

by the mass balance laws:

[Gal4] = [Gal4free] + [Gal4Gal80], (4.11)

and

[Gal80] = [Gal80free] + [Gal4Gal80] + [GALGal80], (4.12)

where [Gal4Gal80] and [GALGal80] indicate the concentrations of the com-

plexes. The rates of these complexes can be modelled assuming reversible



4.2 Simplification of the complete model: Model B 40

reactions for them (A+B � AB), i.e.

d[Gal4Gal80]

dt
= K1[Gal4free][Gal80free]−K2[Gal4Gal80], (4.13)

d[GALGal80]

dt
= K3[GAL][Gal80free]−K4[GALGal80], (4.14)

with K being rate constants (K1 is measured in [a.u.−1 min−1], K2 and K4

in [min−1], K3 in [nM−1 min−1] if the concentration of galactose, [GAL], is

measured in [nM ]).

The full model is described by eqs. (4.1)-(4.10) together with eqs (4.13),

(4.14) and consists of 12 equations and 41 parameters (Model A).

4.2 Simplification of the complete model: Model

B

If we assume that the time scale for the protein synthesis rate (including

translocation and post-translational modifications) is much smaller than the

time scale for the mRNA synthesis rate [49], the protein concentrations are

monotonically increasing functions of their corresponding mRNA concentra-

tions at any time. Thus, by considering mRNA transcription and translation

as a single step of synthesis for the five genes of the network ([A6]), equa-

tions (4.2), (4.4), (4.6), (4.8) and (4.10) can be removed together with the

associated 10 unknown parameters, leading to a simplified non-linear model

(Model B) of IRMA (degradation constants renumbered and Hill functions

in explicit form):
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Figure 4.1: Interactions between the galactose pathway and IRMA
genes. (A) Schematic representation of galactose pathway. When the galac-
tose medium is present, the activated Gal3 alters the free concentration of
Gal80 through sequestration in the cytoplasm, thus relieving its inhibition on
Gal4. In presence of glucose, the dimerized form of Gal80 directly to the Gal4
dimer. (B) Simplied representation of the galactose induced switch described
by models A and B. Here it’s assumed that Gal80 directly binds to galactose
when the network is on while Gal4 and Gal80 form the complex Gal4Gal80
without any prior dimerization when the network is on.
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d[CBF1 ]

dt
= α1 + v1

(
[SWI5 ]h1

kh1
1 + [SWI5 ]h1

)
(·,+)

(
kh2
2

kh2
2 + [ASH1 ]h2

)
− d1[CBF1 ](4.15)

d[[GAL4 ]

dt
= α2 + v2

(
[CBF1 ]h3

kh3
3 + [CBF1 ]h3

)
− d2[GAL4 ], (4.16)

d[SWI5 ]

dt
= α3 + v3

(
([GAL4 ]− [Gal4Gal80])h4

kh4
4 + ([GAL4 ]− [Gal4Gal80])h4

)
− d3[SWI5 ], (4.17)

d[GAL80 ]

dt
= α4 + v4

(
[SWI5 ]h5

kh5
5 + [SWI5 ]h5

)
− d4[GAL80 ], (4.18)

d[ASH1 ]

dt
= α5 + v5

(
[SWI5 ]h6

kh6
6 + [SWI5 ]h6

)
− d5[ASH1 ], (4.19)

d[Gal4Gal80]

dt
= K1([GAL4 ]− [Gal4Gal80])([GAL80 ]− [Gal4Gal80]− [GALGal80]) +

−K2[Gal4Gal80] (4.20)

d[GALGal80]

dt
= K3[GAL]([GAL80 ]− [Gal4Gal80]− [GALGal80])−K4 [GALGal80],

(4.21)

where (·,+) in (4.15) indicates that, according to assumption [A4], the mul-

tiple regulation of CBF1 can be modelled either as an AND or an OR

logic gate. Note the complexes equations (4.20), (4.21) were derived from

the rate equations (4.13), (4.14) by substituting the expressions of [Gal4free]

and [Gal80free] derived from the mass balance laws (4.11) and (4.12) un-

der the assumption [A6]. In what follows, we will explore both possibilities,

showing how comparison of the model predictions with the experimental

data motivated the final choice. Equations (4.20) and (4.21) were obtained

by substituting eqs. (4.11) and (4.12) in eqs. (4.13) and (4.14), under the

assumption of proportionality between the protein levels of Gal4 and Gal80
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and the corresponding mRNAs. Model B consists of 7 differential equations

((4.15)-(4.21)) and contains 31 unknown parameters.

4.2.1 Identification of model parameters: step (ii)

In order to reduce the number of unknown parameters in Model B, we as-

sumed that: [A7] all the promoters have null basal activity and unitary

transcription rate, so that α = 0 and v = 1; [A8] for the cooperativity co-

efficients h in the Hill functions we can consider only two options: set them

all to 1 (monomers approach), or set all to 1 with the exception of h3 and

h4, which are equal to 2 (dimers approach) in order to model the higher

cooperativity of Cbf1 and Gal4 respectively on the MET16 promoter and

the GAL10 promoter [50] [42]. Parameters K1, K2, K3 and K4 in equations

(4.20), (4.21) were fixed a priori from literature [3]. Their values are reported

in Table A.1. The remaining 11 parameters were unknown and needed to be

estimated from experimental data. To this end, we collected data of mR-

NAs expression levels during a time course experiment, by shifting cells from

glucose to galactose “switch-on” experiment) as described in Appendix D.

There are four versions of Model B due to assumptions [A4] (AND/OR regu-

lation of the HO promoter driving CBF1 expression) and [A8] (dimers versus

monomers). We labelled the four different versions of Model B as B1 (AND/-

Monomers), B2 (OR/monomers), B3 (AND/dimers) and B4 (OR/dimers).

Identifiability analysis showed that all the 11 unknown parameters of Models

B1, B2, B3 and B4 are structurally, but not practically, identifiable in the

sense of Raue [90]. Thus, the non-identifiability does not arise from incom-
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plete observation of the internal model states or redundant parametrisation,

but from the noisy nature and/or from the insufficient amount of experimen-

tal data. This makes the qualitative identification procedure we used the only

viable option. We proceeded with the identification in order to evaluate the

descriptive performance of the models and to start discriminating between

different modelling possibilities (see Appendix B for details about the iden-

tification procedure). This was done by comparing in silico and in vivo data

for each of the four B models, using direct inspection and comparison of the

corresponding values of the cost function J (see Appendix B).

The identified parameters are listed in Table A.1. Results for Models B1

and B2 are shown in Figures 4.2 (A) and 4.3 (A), respectively. Model B1

has a lower cost function (J=4.37) than the value obtained with Model B2

(J=7.951). Hence, modelling the multiple regulation of CBF1 as a product

(AND) seems to capture more accurately the dynamics of the HO promoter.

Results for the Models B3 and B4 are shown in 4.3 (B) and (C), respectively.

Model B3 (AND/dimers) has a cost function J=2.83, much lower than the

other three models, and, thus, it was selected for the next step.

4.2.2 Validation of model predictive performance: step

(iii)

In order to assess the predictive ability of Model B3, i.e. if the model is able to

predict the behaviour of the network to new perturbations, we measured the

gene expression response of the five network genes following exogenous over-

expression of each of the five genes under the control of a strong constitutive
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Figure 4.2: Identification and validation results on time-series data.
Models B1 and C. Circles represent average expression data for each of the
IRMA genes at different time points. Dashed lines represent standard errors.
Continuous colored lines represent in silico data. (A) Identification results
of Model B1 on the preliminary 5 hours “switch-on” time-series (average
of 4 time-series). (B) Identification results of Model C on the new 5 hours
“switch-on” data-set (average of 5 time-series). (C) Validation of Model C
on the 3 hours “switch-off” data-set (average of 4 time-series).
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Figure 4.3: Identification results on time-series data. Models B2, B3
and B4. Circles represent average expression data for each of the IRMA
genes at different time points. Dashed lines represent standard errors. Con-
tinuous colored lines represent in silico data. (A) Identification results of
the model B2 on the preliminary “switch-on” time-series. (B) Identification
results of the model B3 on the preliminary “switch-on” time-series. (C) Iden-
tification results of the model B4 on the preliminary “switch-on” data-set.
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promoter, as described in Appendix D. Such over-expression experiments

were performed both in glucose and in galactose. We will refer to these two

experimental data-sets as the “Galactose steady-state” and “Glucose steady-

state” (Figure 4.4 (A), (C)).

We performed in silico the over-expression experiments: as initial conditions,

we used the steady states predicted by the model in unperturbed conditions

(either in glucose or in galactose), and in addition we applied a constant

input, corresponding to the gene overexpression, to each of the five equations,

in order to match the experimental data of the perturbed gene. We collected

the predicted steady state of the other genes, and compared it with data.

It resulted that Model B3, despite its good descriptive performance, has a

very poor predictive power (simulations not shown).

Therefore, we tested the predictive performance also for Model B1 (the sec-

ond best as regards descriptive performance). Results are shown in Figure

4.4 (B), (D). Model B1 is able to partly describe and predict the network

behaviour. There are still some major pitfalls: (a) two quantities (the con-

centrations of the two complexes) are present in the model, but cannot be

measured experimentally. They were introduced by assuming a simplified

mechanism for the interactions between the medium, Gal4 and Gal80 (as-

sumption [A5] and Figure 4.1), but they are not physically consistent, and

thus not measurable. (b) The “switch-on” data-set shows almost monotonic

dynamics for the genes of IRMA, regardless of its complex topology. This

data-set is an average of four independent experiments, three lasting 3 hours,

and just one lasting 5 hours. Moreover, in such data, the early dynamic be-
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haviour of the genes GAL4 and GAL80 is highly unexpected. We should

observe an increase of all the mRNA concentrations following addition of

galactose (“switch-on”), whereas GAL4 and GAL80 show a decrease during

the initial 40 minutes, which Model B is unable to reproduce.

This modelling stage indicates that Model B has to be refined, and that new

experiments are needed in order both to obtain a better characterisation of

the dynamics of the synthetic network and to try to cope with the practical

non-identifiability of the parameters.

4.3 Additional experimental investigation

We performed one additional 5 hours “switch-on” time-series (see Appendix

D), this time including as the first point of the time-series the expression

level of the network genes after growing cells overnight in glucose, just before

shifting them from glucose to galactose [15]. The second point, taken after

10 minutes, is measured just after the shift has occurred and is equivalent

to the first point of the previous time-series. The addition of this point to

the data is fundamental to clarify the inconsistency in the early dynamics

of GAL4 and GAL80. The new averaged data-set (Figure 4.2 (B)) shows

that the standard washing steps, needed to shift cells from glucose medium

to the fresh new galactose-containing medium, induce a transient increase

in mRNA levels of GAL4 and GAL80 (Figure 4.2 (B), grey bars). This

effect is not dependent on galactose addition, but uniquely on the washing

steps [15], and it is probably due to the transient deprivation of carbon source
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Figure 4.4: Experimental and simulated over-expression experi-
ments. Models B1 and C. (A), (C) Difference between in vivo expression
levels of IRMA genes after over-expression of each gene from the constitutive
GPD promoter and levels after transformation of the empty vector. IRMA
cells were transformed with each of the constructs containing one of the five
genes or with the empty vector. At least three different colonies were grown
in glucose (C) and in galactose-raffinose (A) up to the steady-state levels of
gene expression. Quantitative PCR data are represented as 2−ΔCt (average
data from different colonies). (B),(D) In silico data obtained by simulat-
ing the over-expression of each gene with Model B1. (E), (F) In silico data
obtained by simulating the over-expression of each gene with Model C.
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during washing, which attenuates the degradation levels ofGAL4 andGAL80

mRNAs [53].

Also, in the new averaged data-set, the activation of CBF1 appears to be

delayed with respect to the other Swi5 targets, respectively GAL80 and

ASH1. Such delay, not evident from the preliminary data-set, is physically

due to the sequential recruitment of chromatin modifying complexes to the

HO promoter, which follows binding of Swi5 ([11], [20]).

We performed four additional experiments, shifting cells from galactose to

glucose, thus switching off gene expression in the network, as described in

Appendix D. The averaged time-series data-set (Figure 4.2 (C)) was used

for a further validation of the model predictive performance. We will refer to

this data-set as the “switch-off” data-set.

4.4 Model refinement: Model C (step (i))

At this stage, we had to properly refine the model both to be able to capture

the new features highlighted by the new data-set and to remove unsuitable

model complexity. First of all, we made the following extra modelling as-

sumptions: [A9] a fix time delay, τ , equal to 100 minutes, is added in the

activation of the HO promoter by Swi5; [A10] a transient decrease in the

mRNA degradation of GAL4 and GAL80 of value Δβ1 and Δβ2 ([min−1])

is added for an interval of 10 minutes to describe the effect of the washing

steps (Δ represents the transient duration of the washing effect).

Secondly, in order to remove from the model the unmeasured complexes con-
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centrations describing the effects of galactose on the network, we considered

two possible approaches: (1) to take the quasi steady-state approximation of

the protein complexes dynamics (i.e. by setting the left-hand sides of (4.13)

and (4.14) to 0); (2) to consider a new phenomenological non-linear function

describing the effect of galactose. In the first case, steady-state approxima-

tion leads to the presence of an algebraic constraint thus turning the problem

into a differential algebraic model with delays (DDAEs). This kind of prob-

lems are particularly cumbersome to solve and analyse from a mathematical

viewpoint (see [61] for further details). To avoid this, we proceeded by find-

ing a simple but effective phenomenological non-linear function to model the

effect of the galactose pathway on the dynamics of SWI5, which is regulated

by the GAL10 promoter.

We assumed [A11] that the protein-protein interaction between Gal80 and

Gal4 can be modelled as a direct inhibition of GAL80 on the promoter

of SWI5, and that the strength of such inhibition depends on the medium

(strong inhibition in glucose, weak inhibition in galactose). Actually we as-

sumed that theGAL10 promoter is activated byGAL4 and non-competitively

inhibited by GAL80 [19].

The resulting phenomenological DDEs model (Model C), derived from Model

B1, is:
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d[CBF1 ]

dt
= α1 + v1

(
[SWI5 (t − τ)]h1

kh1
1 + [SWI5(t− τ)]h1

)
·
(

kh2
2

kh2
2 + [ASH1 ]h2

)
− d1[CBF1 ],

(4.22)

d[GAL4 ]

dt
= α2 + v2

(
[CBF1 ]h3

kh3
3 + [CBF1 ]h3

)
− (d2 −Δβ1)[GAL4 ], (4.23)

d[SWI5 ]

dt
= α3 + v3

⎛⎝ [GAL4 ]h4

(kh4
4 + ([GAL4 ]h4 )(1 + [GAL80 ]h7

γ̂h7
)

⎞⎠− d3[SWI5 ], (4.24)

d[GAL80 ]

dt
= α4 + v4

(
[SWI5 ]h5

kh5
5 + [SWI5 ]h5

)
− (d4 −Δβ2)[GAL80 ], (4.25)

d[ASH1 ]

dt
= α5 + v5

(
[SWI5 ]h6

kh6
6 + [SWI5 ]h6

)
− d5[ASH1 ], (4.26)

which consists of only 5 equations without any additional constraint.

The constant γ̂ in (4.24) is the Michaelis-Menten coefficient of the phe-

nomenological description of the inhibition of GAL80, which is assumed to

be dependent on the medium (we use the symbol ̂ to indicate medium-

dependent quantities). This phenomenological DDEs model consists of 5 dif-

ferential equations ((4.22)-(4.26)) and 31 unknown parameters.

4.4.1 Identification of the model parameters and val-

idation of its predictive performance: steps (ii)

and (iii)

We set all of the Hill coefficients to 1 (monomers). For the identification of the

remaining parameters, we used again the “switch-on” data-set, but this time

using as initial values the simulated steady-state mRNA levels in glucose. The
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identifiability analysis showed that all the unknown parameters of Model C

are again structurally identifiable, but not practically. Identification results

are shown in Figure 2 (B) and the inferred parameters in Table A.1. The

model captures the delay in CBF1 activation and the small variations of

GAL4 and GAL80.

In order to validate the model predictive performance, we used again the

“Glucose steady-state” and “Galactose steady-state” over-expression exper-

iments, and compared them with their in silico counterparts by simulating

the over-expression of each of the five genes using Model C (Figure 4.4 (E),

(F)), as described in Section 4.2.2.

We further validated the predictive performance of the Model C against the

“switch-off” time-series by simulating in silico the “switch-off” experiment

(i.e. setting the medium-dependent parameters to their values in glucose

and starting the simulation from the steady-state equilibrium in galactose)

(Figure 4.2 (C)).

Model C has good descriptive and predictive performance. At this stage, it

represents the best compromise between model complexity and performance

given the experimental data-set. The model is indeed able to qualitatively

predict network behaviour to new perturbations, thus achieving the aim we

set for the modelling task. However, the 24 identified parameter values are

likely to be different from their physical values. For example, model param-

eters (Table A.1) indicate that the inhibition of Ash1 on CBF1 is so weak

that can be neglected, even if in the literature it has been reported otherwise

[20].
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4.4.2 Experimental identification of the Hill function

parameters

At this point, we needed to clarify the biological properties of the HO pro-

moter by taking direct measurements of the promoter’ parameters. We thus

performed promoter strength experiments by measuring the transcriptional

response of the promoters of GAL10, MET16, ASH1 and HO, the latter

when regulated by both Swi5 and Ash1. For details refer to Appendix D.

Actually, we could have performed these experiments from the beginning,

since the Hill functions were almost unchanged during the model refinement,

with the exception of the GAL10 and HO promoters modelling. However,

since each experiment is costly and time consuming, we tried at each step

to only perform those experiments that the mathematical modelling deemed

indispensable. The need of performing promoter strength experiments arose

after the identification of Model C since we did not trust the identified Hill

functions parameters.

The model is now significantly improved, and the number of parameters

that are practically not identifiable from the “switch-on” data-set can be

significantly reduced.

For all of the promoters, we fitted the Hill function used in Model C. For

each promoter, we fitted to data the equation at steady state of the gene

whose expression is driven by the promoter itself. For example, in the case of

HO promoter, the function fitted was the right-hand side of equation (4.22),
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thus obtaining:

[CBF1 ] =
α1

d1
+

v1
d1

⎛⎜⎝ [SWI5 ]h1

(kh1
1 + [SWI5 ]h1 ) ·

(
1 + [ASH1 ]h2

k
h2
2

)
⎞⎟⎠ . (4.27)

For the fitting, the hybrid genetic algorithm was used (see Appendix B).

In order to identify the phenomenological law for the GAL10 promoter

in eq. (4.24), we fitted all the possible forms of the inhibition law (non-

competitive,uncompetitive and competitive [19]). Uncompetitive inhibition

was found to give the best fitting (data not shown). Finally, it became ap-

parent from the new experimental data and the results of the fitting, that

galactose not only weakens the inhibition of Gal80 on the GAL10 promoter

(assumption [A11] in Model C), but also allows a faster activation of the

GAL10 promoter. Moreover, in galactose such activation is possible for val-

ues of GAL4 lower than in glucose.

The kinetic parameters that were physically estimated are given in Table

A.1, while the data and the relative fitting in Figures 4.5 and 4.6.

4.5 Further model refinement: Model D (back

to step (i))

To model the effect of galactose and, in particular, the behaviour of the

GAL10 promoter, Model C needed to be further refined. In particular, since

galactose was found to affect all of the parameters describing the GAL10

promoter activity, we considered two additional parameters in the model to
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Figure 4.5: Fitting of experimental data of promoters strength to Hill
function. Data are shown as expression values (2−ΔCt). x-axis: expression
of the transcription factor; y-axis: expression of the target gene.
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Figure 4.6: Fitting of experimental data of promoters strength to Hill
function. Data are shown as expression values (2−ΔCt). By the function
griddata of MATLAB a surface was fitted with cubic interpolation to the
promoter strength data; x-axis and y-axis: expression of the transcription
factor; z-axis: expression of the target gene. On the left panel data are shown
(grey area represent regions in which data are not present); on the right panel
fitting results are shown.
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be explicitly dependent on the medium.

Thus, we derived a new model (Model D) consisting of the equations (4.22),

(4.23), (4.25), (4.26) of Model C and of the following equation for SWI5 :

d[SWI5 ]

dt
= α3 + v̂3

⎛⎝ [GAL4 ]h4

(k̂4
h4

+ ([GAL4 ]h4 )(1 + [GAL80 ]h7

γ̂h7
)

⎞⎠− d3[SWI5 ],

(4.28)

where the symbol ̂ indicates parameters dependent on the medium. From

the analysis of data, we found that the value assumed by v̂3 in galactose is 9

times bigger than the one in glucose. Analogously, the value of k̂4 is 9 times

bigger in glucose than in galactose (see Appendix A).

4.5.1 Identification of parameters and validation of model

D: step (ii) and (iii)

The refined DDEs model (eqs. (4.22), (4.23), (4.25), (4.26), (4.28)) contains

33 unknown parameters. From the promoter data-set, we estimated 16 pa-

rameters, including the medium-dependent ones (Appendix A). From such

data, we could not fit degradation constants, nor the washing effect parame-

ters (Δβ1 and Δβ2). Thus, the remaining 17 parameters were evaluated from

the “switch-on” experiment (Table A.1). In simulations, the initial values of

mRNA concentrations were set to the steady state values predicted by the

model in glucose. The in silico “switch-on” time-series is shown in Figure 4.7

(A). Also in this case, we tested the predictive ability of the model perform-

ing in silico the previously described “Glucose steady-state” and “Galactose
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steady-state” over-expression experiments and the “switch-off” time-series

(Figure 4.8 (B), (D) and Figure 4.7 (B)). By comparing data and simulations,

it appears that Model D is quite similar to Model C, the only difference be-

ing that, this time, some of its physical parameter values have been directly

measured. Now, Model D parameters confirm that the Ash1 inhibition of the

HO promoter is indeed strong, as reported in the literature [20].

There are still discrepancies between the in vivo and in silico initial values

of CBF1, SWI5 and ASH1 in the “switch-off” data-set, and in the pre-

dicted steady state of mRNA levels in galactose. We attribute them to the

unmodelled effect of protein dynamics, which have been removed from the

original model due to the lack of experimental measurements. In particu-

lar, we noticed that the Gal4 protein is stable [81], and therefore even a

small, or transient, increase in its mRNA level is able to induce the GAL10

promoter, regulating Swi5 in our network. Since we do not explicitly model

protein dynamics, a small increase in GAL4 mRNA cannot fully activate

the GAL10 promoter in the model and does not cause the increase in SWI5

mRNA seen in vivo. In order to verify this hypothesis, we modified Model

D by additionally modelling the protein level of Gal4. Thus, in the model

we added the following equation for Gal4 protein (which is assumed to be

linearly dependent on GAL4 mRNA):

d[Gal4]

dt
= vtr[GAL4 ]− dpr [Gal4]. (4.29)

As a consequence, a new variable in the activation law of Swi5 has been



4.5.1 Identification of parameters and validation of model D: step (ii) and
(iii) 60

Figure 4.7: Identification and validation results on time-series data.
Model D. Identification results on time-series data. Circles represent average
expression data for each of the IRMA genes at different time points. Dashed
lines represent standard errors. Continuous colored lines represent in silico
data. (A) Identification results of the model D on the “switch-on” time-
series (average of 5 time-series). (B) Validation results of the model D on the
“switch-off” time-series (average of 4 time-series).
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inserted:

d[SWI5 ]

dt
= α3+ v̂3

⎛⎝ [Gal4]h4

(k̂4
h4

+ ([Gal4]h4)(1 + [GAL80 ]h7

γ̂h7
)

⎞⎠−d3[SWI5 ]. (4.30)

We fitted the parameters in equation (4.29) from the “switch-on” data-set

(Table A.1). In particular, the estimated degradation rate of Gal4 protein is

lower than all the other degradation rates, in accordance with the experimen-

tal results in [81]. Consequently, we slightly modified two parameters of the

GAL10 promoter (Table A.1). Note that such parameters were previously

estimated from the promoter data-set, but in such experiments we measured

the levels of the GAL10 promoter depending on the mRNA and not on the

protein level of Gal4. The in silico “switch-on” and “switch-off” time-series

look almost identical to the simulations of Model D (data not shown), but

the quality of the predictions of the “Glucose steady-state” and “Galactose

steady-state” over-expressions is significantly improved (see Figure 4.8 (E),

(F)). In particular, the increase in SWI5 expression, due to the accumulation

of Gal4 protein, is captured (e.g. Figure 4.8 (E), over-expression of CBF1 and

GAL4 ).
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Figure 4.8: Experimental and simulated over-expression experi-
ments. Models D and D refined.
(A), (C) Difference between in vivo expression levels of IRMA genes after
over-expression of each gene from the constitutive GPD promoter and lev-
els after transformation of the empty vector. IRMA cells were transformed
with each of the constructs containing one of the five genes or with the
empty vector. At least three different colonies were grown in glucose (C)
and in galactose-raffinose (A) up to the steady-state levels of gene expres-
sion. Quantitative PCR data are represented as 2−ΔCt (average data from
different colonies). (B), (D) In silico data obtained by simulating the over-
expression of each gene with Model D. (E), (F) In silico data obtained by
simulating the over-expression of each gene with Model D refined.
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4.6 Discussion

In this Chapter, we described in detail the steps required to build a mathe-

matical model of a synthetic biological pathway. The whole modelling proce-

dure is schematically described in Figure 4.9. This framework can be applied

equally well to naturally occurring networks in the cell, thus transforming

the drawing of a biological pathway into a computational model. Such a

model can then be easily probed in silico and its predictions checked against

experimental data in order to validate the correctness of biological hypothe-

ses. When inconsistencies between modelling and experiments arise, this is

a clue that something important is missing in our drawing of the biological

pathway. We can identify this missing link by appropriately modifying the

computational model using our biological knowledge, until a better agree-

ment between simulated and experimental data is achieved.

In our example, modelling pointed to an inconsistency between the in silico

and in vivo behaviour of GAL4 and GAL80 during the glucose-to-galactose

shift (“switch-on”); their decrease in concentration could not be captured

by the model, which was simply based on the drawing in Figure 3.1, i.e. on

the known biological function of the promoters and proteins in the network.

This hinted to the possibility of an unmodelled effect and prompted further

experimental investigation of what this could be. We discovered that cell

manipulation during the washing steps (needed to perform the medium shift)

induced a transient increase in GAL4 and GAL80.

Modelling can also suggest that additional experimental investigation is needed.

In particular, we had to face the issue of practical identifiability for the model
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parameters. Biological systems, as well as economical ones, often suffer from

this problem due to the intrinsic experimental noise [65]. However, when it is

possible, extra-experiments can be performed in order to reduce the number

of practical non-identifiable parameters. In our case, we enlarged the available

data-set by performing the promoter strength experiments.

During the modelling process, the modeller needs to simplify some aspects

of the model and to increase the level of details of others, always taking

into account the amount and quality of experimental data. For example, we

showed that adding an equation for Gal4 protein improves the predictive

power of the model. The quality of the fitting and the predictions could

be further improved by modelling the proteins levels of all the genes in the

network. However, in the actual version of the network, it is not possible

to measure protein levels with the exception of only one gene (Cbf1). Thus,

the assumption of steady state for protein dynamics is required, not only in

order to simplify the model, but mainly to do not introduce the problem of

over-fitting and non-uniqueness of parameters for proteins. In order to decide

what can be simplified, and what needs to be modelled in more details, it is

necessary to go through iterative refinement steps both in the model and in

the experimental data-set.
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Figure 4.9: Scheme of the whole modelling and experimental proce-
dure.
Schematic representation of the steps performed in the refinement of the
mathematical model of IRMA and in the set-up of the experiments.



Chapter 5

Turning IRMA into an

autonomous oscillator or a

bistable switch: non-linear

analysis and continuation

results

In this Chapter we will show how to use novel tools from numerical bifurca-

tion theory, together with recent results on the link between the dynamics

and topology of networks, in order to redesign a synthetic circuit. The need

to modify a synthetic network after its biological implementation is common

practice in Synthetic biology. When a novel network is built, e.g. a syn-

thetic oscillator, the design at the very beginning is often difficult and can
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lead to misleading results mainly due to the lack of quantitative character-

isation of network components [31]. In our model-supported approach, the

analysis of the previously identified mathematical model allows to increase

the predictability of the network dynamics and experimental re-engineering,

decreasing the amount of in vivo experiments and post hoc tweaking to be

performed [31, 71]. The model predictions are used to determine how to tune

the system parameters, and hence their physical counterparts, in order to

change the dynamic behaviour of the network. Of note, the use of bifurca-

tion theory for classification and categorization of the dynamics of species

in a reaction mechanism, initiated in [30], is now commonly adopted for the

construction and fine-tuning of synthetic networks (see [33] for an overview).

In particular, the aim is to understand if and how IRMA can be turned into

a robust and tunable synthetic oscillator or a bistable switch. Oscillations

have a crucial role in cell behaviour: the circadian clock and the cell cycle

are common examples [82]. Currently, the interest of many researchers is

focused on the properties of cellular oscillations that only depend on the

topology of the reaction network, transcending the individual species involved

[27, 46, 116].

In the case of IRMA, the goal is challenging, both in terms of the math-

ematical analysis and in terms of the in vivo implementation. Up to now,

only small topologies have been analysed, and the synthetic oscillators ex-

perimentally built consist of a few genes (e.g. [32, 7, 38, 107, 101]). Moreover,

to our knowledge, numerical continuation techniques for DDEs model have

not been applied to the analysis of synthetic gene networks up to now. We
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found that multi-step processing of gene products in the negative feedback

loop and strong cooperativity in gene regulation are the ingredients to elicit

robust oscillations.

In addition, we discovered that by reducing the topology of the network to a

single positive feedback loop, IRMA can be turned into a bistable system (a

“toggle switch”, that toggles between two discrete, alternative stable steady

states). Hysteretic examples have been observed in several natural examples,

including the control of lactose utilization in E. coli, and ensuring unidirec-

tional cell-cycle progression in eukaryotes [87]. Synthetic switches have been

built both in bacterial [39] and mammalian [60] cells for a variety of appli-

cations (e.g. gene therapy, construction of bio-sensors and research tools).

The Matlab code of all the models presented in this Chapter is given in

Appendix C.

The results presented in this Chapter have been partly published in [72].

5.1 Turning IRMA into an oscillator

With the aim of tuning the dynamics of IRMA and turning it into an au-

tonomous biochemical oscillator, we shall seek to achieve the desired dynamic

behaviour by appropriately varying the model parameters. In so doing, it is

obviously fundamental both to remain inside the physically feasible range

and to minimize the number of changes to the existing network topology and

nominal parameter values, in order to speed up the experimental implemen-

tation.
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In our specific case, the number of physical parameters is quite high (33),

thus an exhaustive exploration of the parameter space would be excessively

complicated and time consuming. On the other hand, from the analytical

view point it is cumbersome to get any results about the structural stability

of equilibria under parameters variations since the system is time-delayed and

highly non-linear, due to the large value that the Hill coefficients can assume.

For the case of our multi-parametric delayed gene network, it is then crucial

to restrict the number of parameters to be changed to induce sustained os-

cillations. For the selection of the parameter subset to be used to carry out

the bifurcation analysis, we used as guidelines the links between the topology

and the occurrence of autonomous oscillations presented in the recent liter-

ature [27, 46, 116, 84, 36, 109]. Exploiting the interplay between parameter

variations and network geometry, we decided to vary those parameters which

can affect the topology (adding-removing links).

In the analytical studies of simple two-components networks modelled by dif-

ferential equations [27, 46, 116], it was proposed that the presence of a neg-

ative feedback loop and high Hill coefficients in the kinetic functions are the

key ingredients for the occurrence of oscillatory behaviour. In [84], the authors

consider larger systems with three genes, postulating four general require-

ments for biochemical oscillations: negative feedback, time delay, sufficient

non-linearity of the reaction kinetics and proper balance of the timescales

of the reactions. In particular, a negative feedback loop with at least three

components can generate oscillations, even without an explicit time delay. It

has been further demonstrated that the inclusion of a positive auto-feedback
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loop can help in obtaining an oscillatory dynamic behaviour [36]. Extending

such an idea, in [109] the authors consider topologies in which, in addition

to a negative feedback loop, also a positive one is present, showing that it is

generally difficult to adjust a negative feedback oscillator frequency without

compromising its amplitude, whereas with positive-plus-negative feedback

one can achieve a widely tunable frequency and near-constant amplitude.

Thus, positive-plus-negative oscillators appear to be more robust and easier

to evolve, rationalizing why they are found in contexts like heartbeats and

cell cycles [109].

For the analysis of the IRMA network, we decided to consider only the galac-

tose growing condition, since in such a condition the network is “switched

on” and the genes are significantly expressed. Note that, in such condition

the protein-protein interaction between Gal4 and Gal80 is not occurring (see

Section 3.2). Thus, the topology of IRMA consists of two loops composed

only of the transcriptional interactions active in galactose: one delayed posi-

tive feedback loop (DFBL) among the genes CBF1, GAL4, SWI5 with a de-

layed reaction due to the presence of the HO promoter (see Section 4.3), and

one negative feedback loop (NFBL) among the genes CBF1, GAL4, SWI5,

ASH1 (Figure 5.1 (A)). The presence of intermediate states in such negative

loop suggests that the network has the potentiality of being turned into an

autonomous oscillator, if a proper tuning of the parameters is performed.

In what follows, we will analyse 3 possible re-engineering scenarios in order

both to compare the oscillator tunability and robustness due to different

network topologies and to explore different experimental strategies for their
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implementation.

5.1.1 Scenario 1: stable oscillations keeping the activa-

tion of Swi5 on CBF1 (DDEs model). Simulation

and continuation results.

The mathematical model is the one presented in 4.5, but, because of the

above considerations, the medium-dependent parameters in the equation of

SWI5 are fixed to their values in galactose. Moreover, since the cells will not

be switched from the glucose to the galactose growing condition, the starva-

tion effect induced by the medium shift can be removed.

Letting [CBF1] = x1; [GAL4] = x2; [SWI5] = x3; [GAL80] = x4; [ASH1] =

x5, the model thus becomes:

dx1

dt
= α1 + v1

⎛⎜⎝ xh1
3 (t− τ)

(kh1
1 + xh1

3 (t− τ)) ·
(
1 + x5

h2

k
h2
2

)
⎞⎟⎠− d1x1, (5.1)
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(
xh3
1

kh3
3 + xh3

1

)
− d2x2, (5.2)
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4 + xh4

2 (1 +
x
h7
4

γh7
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dx4

dt
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(
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3

kh5
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3

)
− d4x4, (5.4)

dx5

dt
= α5 + v5

(
xh6
3

kh6
6 + xh6

3

)
− d5x5, (5.5)

By looking at the values of the kinetic parameters estimated from in vivo

data (Table A.2, Nominal Value column), it emerges that all the interactions
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Figure 5.1: Re-engineering the topology in order to turn IRMA into
an oscillator or a switch.
Comparison between the topology of the actual version of the network (A)
and the re-engineered topologies (B)-(E). A thicker line corresponds to an
increase of the strength (in terms of Michaelis-Menten coefficient and/or
Hill coefficient and/or maximal transcriptional velocity) of the corresponding
interaction. The parameters in red are the ones varied from the nominal value.
(A) Topology of IRMA in galactos. (B) Re-engineering of IRMA, Scenario
1. Tuning the parameters v2, k6, h2 and h6 we increase the strength of the
following interactions: Cbf1 on Gal4, Swi5 on Ash1 and Ash1 on Cbf1. Both
the original positive and the negative feedback lops are present. (C) Re-
engineering of IRMA, Scenario 2. Tuning the parameters v2, k1, k2, k6, h3 and
h6 we increase the strength of the following interactions: Cbf1 on Gal4, Swi5
on Ash1 and Ash1 on Cbf1. The original positive feedback loop is removed.
(D) Re-engineering of IRMA, Scenario 3. The topology is identical to the
one in Scenario 2 with the addition of a positive auto-feedback loop on Swi5.
The tuned parameters are: v2, k1, k2, k6, h3 and h6. (E) Re-engineering of
IRMA, Scenario 4. Tuning the parameters v2, k1, k2, h1 and h3 we increase
the strength of the following interactions: Cbf1 on Gal4, Swi5 on Cbf1. The
negative feedback loop is removed.
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in the NFBL loop are balanced in terms of strength and timescales, except

for the maximal velocity of transcription of the MET16 promoter v2 (which

drives the expression of GAL4 ) and the Michelis-Menten coefficient k6, which

describes the strength of the activation of Swi5 on ASH1 gene. In particular,

the parameter v2 is two order of magnitude lower than all other maximal

transcriptional rates while the Michealis-Menten k6 coefficient is one order of

magnitude higher. Thus, in order to balance the strength of the regulations

involved in the negative feedback loop, we started by decreasing the value of

k6 and increasing the value of v2, as schematically shown in Figure 5.1 (B).

Then, we evaluated the effect of the non-linearity of the reaction kinetics

generated by the Hill functions on the network behaviour. Since the stiff-

ness of such sigmoidal function is determined by the Hill coefficients, which

describe the cooperativity of gene regulation, we performed our numerical

investigations by increasing the Hill coefficients h2 and h6 (Figure 5.1 (B)).

With the parameters choice reported in Table A.2 (Scenario 1 A column),

the dynamic behaviour of the network appears like in Figure 5.2. Here, os-

cillations have period equal to 120 minutes, thus close to the the yeast cell

cycle period in galactose; the amplitude is physically feasible and observable

for all the mRNAs, but CBF1.

Once oscillations are obtained, a fundamental step in the theoretical analysis

is the investigation of the robustness and the tunability of the oscillator. To

this aim, we used numerical continuation techniques [96].

The transition from a stable steady state solution to a periodic state happens

through a supercritical Hopf bifurcation, which occurs when the real part of
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Figure 5.2: Turning IRMA into an oscillator: time simulations.
(A) Scenario 1 A, simulations of the DDEs model; parameters v2, k6, h2 and
h6 were varied from their nominal values (Table A.2, Scenario 1 A column).
Period of the oscillations=120 minutes. (B) Scenario 1 B, simulations of the
DDEs model; parameters k6, h2 and h6 were varied from their nominal values
like in Scenario 1 A (Table A.2, Scenario 1 B column), while v2 was tuned
according to the continuation results in order to increase the values of CBF1.
Period of the oscillations=120 minutes. (C) Scenario 2, simulations of the
ODEs model; parameters v2, k1, k2, k6, h3 and h6 were varied form their
nominal values (Table A.2, Scenario 2 column). Period of the oscillations=110
minutes. (D) Scenario 3, simulations of the ODEs model; parameters v2, k1,
k2, k6, h3 and h6 were varied form their nominal values (Table A.2, Scenario
3 column). Period of the oscillations=133 minutes.
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a complex conjugate pair of eigenvalues of the Jacobian matrix crosses zero,

while the real parts of all other eigenvalues remains negative. The software

used to perform numerical continuation is DDE-BIFTOOL [35], the first

general-purpose package for bifurcation analysis of DDEs. The characteristic

matrix appearing in the stability theory for DDEs has an infinite number of

eigenvalues because of the infinite-dimensional nature of DDEs. To determi-

nate the local stability of an equilibrium, in DDE-BIFTOOL [35] a linear

multi-step method is applied to the variational equation and the approxima-

tions to the rightmost (stability determining) characteristic roots are com-

puted. In case of periodic solution of period T, a discrete approximation on a

mesh in [0, T ] and its period are computed as solutions of the corresponding

periodic boundary value problem by using a piecewise polynomial colloca-

tion. The local asymptotic stability of a periodic solution is determined by

the spectrum of the linear so-called monodromy operator [35]. Further details

on the employed methods and the underlying theory can be found in [69, 34].

The limit cycle can be continued on each of the 4 parameters we are varying

(k6, v2, h2, h6). Moreover, once the Hopf bifurcation is localized, it is possible

to continue it on all the pairs obtainable by combining such 4 parameters.

From continuation results represented in Figure 5.3, it emerges that keeping

the Michelis-Menten parameter k6 low (i.e. keeping the activation of Swi5

on ASH1 strong enough) is fundamental to guarantee persistent oscillations.

The range of k6 that allows the desired dynamics is further enlarged when

the k1 coefficient increases (see Figure 5.3 (A)): it means that, if the strength

of the positive loop decreases, oscillations are guaranteed only if the strength
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of the negative loop decreases as well. Figure 5.3 (B) shows that k6 must

be kept small if the maximal transcriptional velocity of the MET16 pro-

moter increases, remarking that the reaction in the loop must be balanced

in terms of strength. In Figure 5.3 (C) and (D) we continue the Hopf bifur-

cation to analyse the relationship between the Hill coefficients h2 and h6 and

the Michealis-Menten parameter k6, showing that if the activation of Swi5

on ASH1 is strong enough, the cooperativity coefficient can be decreased

without losing persistent oscillations.

Furthermore, continuation allowed us to investigate the tunability of the os-

cillator in terms of amplitude and period (Figure 5.3 (E) and (F)). We found

that the amplitude and the period of the oscillations are tunable individually,

thus confirming what stated in [109] for topologies that include both a nega-

tive and a positive feedback loop. The parameter that was found to affect the

period of the oscillations the most is h2: increasing it can enlarge the period

up to 18 minutes (Figure 5.3 (F)), but the amplitude of the oscillations stays

almost constant (results not shown). Regarding the amplitude, we found that

it can be tuned by varying the parameter v2 inside the range that ensures

oscillations (Figure 5.3 (E)). Thus, using continuation, we found how to in-

crease the amplitude of CBF1 oscillations. By simulating the dynamics of

the network using the parameters of Scenario 1 B (all parameters identical

to Scenario 1 A, but v2 set equal to the value for which the amplitude of x1

has its maximum in Figure 5.3 (E)), we get observable oscillations for all the

genes (Figure 5.2 (B)).

Finally, it is useful to test for the robustness of the oscillator under initial
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Figure 5.3: Continuation results for Scenario 1.
Continuation results for Scenario 1A using DDE-BIFTOOL software. (A)
Two parameters continuation of the Hopf bifurcation on parameters k1
(Michealis-Menten coefficient of the HO promoter) and k6 (Michealis-Menten
coefficient of the ASH1 promoter). (B) Two parameters continuation of
the Hopf bifurcation on parameters v2 (maximal transcriptional rate of the
MET16 promoter) and k6 (Michealis-Menten coefficient of the ASH1 pro-
moter). (C) Two parameters continuation of the Hopf bifurcation on param-
eters k6 (Michealis-Menten coefficient of the ASH1 promoter) and h2 (Hill
coefficient of the HO promoter). (D) Two parameters continuation of the
Hopf bifurcation on parameters h2 (Hill coefficient of the HO promoter) and
h6 (Hill coefficient of the ASH1 promoter). (E) Tunability of the oscillations
in terms of amplitude. Amplitude of x1 (level of the CBF1 gene) continu-
ing the periodic solution on v2 (maximal transcriptional rate of the MET16
promoter). (F) Tunability of the oscillations in terms of period. Period of x1

(CBF1 gene) continuing the periodic solution on h2 (Hill coefficient of the
HO promoter).
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conditions variations. To this aim, we performed a significant number of

time simulations (5000) fixing the parameters to the values in Table A.2 by

changing randomly the initial conditions for all the five genes, keeping all

of them into a physical reasonable range ([0 1] [a.u.]). The simulations show

robustness with all trajectories converging to limit cycles of period 1.

Experimental implementation of Scenario 1 in vivo.

At this point, it is crucial to address the feasibility of re-engineering IRMA

in vivo according with our theoretical results.

In order to increase the maximal transcription velocity v2 of the MET16 pro-

moter, the idea is to decrease the level of methionine in the yeast. As we re-

ported in Chapter 3, methionine modulates the expression of the MET genes

by affecting the formation of the Cbf1-Met4-Met28 transcriptional complex

[62]. The activation of Cfb1 on Gal4 is the weakest in the actual version of the

network, being the MET16 promoter weak for the methionine concentrations

used in our medium (140 μm) [15].

From the experimental results presented in Section 3.3.2, we can conclude

that increasing the the maximal transcriptional rate v2, that determines the

steady state of the MET16 promoter and allows to tune the amplitude of the

oscillations, can be achieved by simply decreasing the level of methionine in

the medium.

Regarding the changes to the ASH1 promoter, we need to vary h6 and k6.

This can be done by replacing this promoter with a stronger one. A possible

candidate is the EGT2 promoter [95]. Since this gene is activated even by
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low levels of Swi5, as well as, by the mutant version of Swi5 (Swi5-AAA) that

is present in IRMA [15], it should ensure a low Michaelis-Menten parameter

k6, required for obtaining the oscillatory behaviour. Moreover, six putative

binding sites have been identified [95], thus ensuring a high Hill coefficient

h6.

The last parameter to be tuned is the Hill coefficient h2. Actually, this would

difficult since, in the analysed scenario, all the kinetic parameters of the HO

promoter are kept equal to their nominal values, but h2, that describes the

cooperativity of the inhibition of Ash1 on such promoter. Increasing such

cooperativity could be implemented in vivo by increasing the number of

binding sites for Ash1 on the HO promoter, although it has not been previ-

ously demonstrated that experimental re-engineering would affect only the

Hill coefficient and not other parameters, e.g. the Michaelis-Menten constant

of the promoter. Furthermore, such promoter is also activated by Swi5 and

the regulatory mechanisms are quite complex [15]. We can conclude that the

re-engineering of the HO promoter could be troublesome.

5.1.2 Scenario 2: stable oscillations by removing the

activation of Swi5 on CBF1 (ODEs model). Sim-

ulation and continuation results.

The positive loop in Scenario 1 seems difficult to implement in vivo. There-

fore, we considered a second scenario, in Figure 5.1 (C), in which the delayed

activation of Swi5 on Cbf1 is removed and the topology of IRMA is reduced to
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a negative feedback loop through the genes CBF1, GAL4, SWI5 and ASH1.

In the model, this corresponds to fixing the Michealis-Menten coefficient k1

to zero or equivalently rewrite equation (5.1) as:

dx1

dt
= α1 + v1

(
kh2
2

kh2
2 + x5

h2

)
− d1x1. (5.6)

Again, we tuned both the strength of the negative loop (by decreasing k6 and

increasing v2) and the non-linearity of the reaction kinetics (by increasing the

Hill coefficients h3 and h6). Moreover, we increased the strength of the in-

hibition of Ash1 on CBF1 by reducing the value of the Michaelis-Menten

coefficient k2. Using the parameters in Table A.2 (Scenario 2 column), sim-

ulations show the presence of sustained oscillations with period equal to 110

minutes (Figure 5.2 (C)). Note that the amplitude of the oscillations is pre-

dicted to be experimentally observable for all the genes, including CBF1.

Such a scenario can be analysed in terms of robustness to parameters varia-

tions and tunability by using the continuation tool DDE-BIFTOOL with no

delayed variable. The most relevant continuation results, reported in Figure

5.4, lead to conclusions similar to the ones discussed for the first scenario.

Namely, it is of utmost importance to keep the Michaelis-Menten parameters

k6 and k2 low and the Hill coefficients h3 and h6 large enough. This confirms

that, to have oscillatory behaviour, a proper balance of the reactions in the

negative feedback loop is needed together with the presence of significant

non-linearities.

Furthermore, through continuation we investigated the tunability of the oscil-
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Figure 5.4: Continuation results for Scenario 2.
Continuation results for Scenario 2 using DDE-BIFTOOL software. (A) Two
parameters continuation of the Hopf bifurcation on parameters k2 (Michealis-
Menten coefficient of the HO promoter) and h3 (Hill coefficient of theMET16
promoter). (B) Two parameters continuation of the Hopf bifurcation on pa-
rameters v2 (maximal transcriptional rate of the MET16 promoter) and k6
(Michealis-Menten coefficient of the ASH1 promoter). (C) Two parameters
continuation of the Hopf bifurcation on parameters k6 (Michealis-Menten
coefficient of the ASH1 promoter) and h3 (Hill coefficient of the MET16
promoter). (D) Two parameters continuation of the Hopf bifurcation on pa-
rameters h3 (Hill coefficient of the MET16 promoter) and h6 (Hill coefficient
of the ASH1 promoter). (E) Tunability of the oscillations in terms of am-
plitude. Amplitude of x1 (level of the CBF1 gene) continuing the periodic
solution on h3 (Hill coefficient of the MET16 promoter). (F) Tunability of
the oscillations in terms of period. Period of x1 (CBF1 gene) continuing the
periodic solution on h3 (Hill coefficient of the MET16 promoter)
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lator, discovering that in Scenario 2, contrary to what found for Scenario 1, it

is not possible to tune the amplitude independently of the period. The unique

parameter that allows to tune the dynamics of oscillations is h3, that signif-

icantly affects both the period and the amplitude (Figure 5.4, (E) and (F)).

Such results confirms what stated in [109] about the tunability of topologies

composed only by a negative feedback loop.

Testing through simulations the network dynamics under varying initial con-

ditions within the range [0 1] [a.u], we observed again that robustness is

guaranteed. All the trajectories converge to limit cycles of period 1 (results

not shown).

Experimental implementation of Scenario 2 in vivo.

The critical parameters which have to be tuned to implement scenario 2 in

vivo are v2, k6, h6, h3, k1 and k2. Concerning the first four, we could proceed

like it has been described for Scenario 1: decrease the level of methionine in

order to increase the strength of the activation of Cbf1 on Gal4 and replace

the ASH1 promoter with the EGT2 promoter. Moreover, it is possible to tune

also the h3 parameter by changing the level of methionine in the yeast. In fact,

the behaviour of the MET16 promoter with low methionine concentrations

should become switch like, thus leading to an increase of the stiffness of the

sigmoidal Hill function modelled by the h3 coefficient.

The tuning of parameters k1 and k2 requires two additional changes: first to

replace the HO promoter with a promoter which is not activated by Swi5.

Secondly, we need to replace ASH1 gene with a gene whose expression is
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driven by the EGT2 promoter and that is able to inhibit strongly the new

promoter. A good candidate inhibitor-promoter couple is given by ROX1

repressor and ANB1 promoter [59].

5.1.3 Scenario 3: stable oscillations by removing the

activation of Swi5 on CBF1 and by adding a pos-

itive auto-feedback loop on SWI5 (ODEs model).

Simulation and continuation results.

The topology proposed in Scenario 2 appears feasible for in vivo implemen-

tation and the oscillations appear robust to varying parameters and initial

conditions. For the sake of completeness, we considered also the possibility

of including in the network a positive feedback loop, in order to check if the

robustness and the tunability of the oscillations increase, according to what

shown in a number of works [68, 109, 105].

In Scenario 3, the topology of the network is the same as in Scenario 2

with the addition of an auto-activation reaction on SWI5 (Figure 5.1 (D)).

The parameters are the same of Scenario 2 (Table A.2), but in the ODEs

the changes correspond to fixing the Michealis-Menten coefficient k1 to zero,

thus substituting (5.1) with (5.6), and adding an activation term in equation

(5.3) that becomes:
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= α3 + v3
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Numerical simulations show sustained oscillations with period equal to 133

minutes (Figure 5.2 (D)). Note that the amplitude of the oscillations is phys-

ically feasible and observable for all the genes; in particular, it is significantly

higher than in Scenario 2 for the genes SWI5 and ASH1.

We can compare the robustness to parameter variations of Scenarios 2 and 3

by continuing the Hopf bifurcation on the same pairs of parameters consid-

ered previously. By comparing Figure 5.4 (A)-(D) and Figure 5.5 (A)-(D),

it appears that the parameter’s regions that ensure oscillatory behaviour are

significantly enlarged. Moreover, unlike the single negative feedback topology,

the topology of Scenario 3 allows to tune the amplitude of the oscillations

independently from the period (Figure 5.5, (E) and (F)). The period of os-

cillations can be varied up to 30 minutes, while in Scenario 2 the maximum

change was of 10 minutes. Such results confirm that the robustness and the

tunability of the network can increase by adding a positive feedback loop.

Experimental implementation of Scenario 3 in vivo.

For the in vivo implementation, we need to apply the same changes of Sce-

nario 2 and to add an extra-plasmid containing a SWI5 responsive promoter

upstream of the starting codon of SWI5. The previously described EGT2

promoter is again a good candidate.
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Figure 5.5: Continuation results for Scenario 3.
(A) Two parameters continuation of the Hopf bifurcation on parameters k2
(Michealis-Menten coefficient of the HO promoter) and h3 (Hill coefficient of
theMET16 promoter). (B) Two parameters continuation of the Hopf bifurca-
tion on parameters v2 (maximal transcriptional rate of theMET16 promoter)
and k6 (Michealis-Menten coefficient of the ASH1 promoter). (C) Two pa-
rameters continuation of the Hopf bifurcation on parameters k6 (Michealis-
Menten coefficient of the ASH1 promoter) and h3 (Hill coefficient of the
MET16 promoter). (D) Two parameters continuation of the Hopf bifurca-
tion on parameters h3 (Hill coefficient of the MET16 promoter) and h6 (Hill
coefficient of the ASH1 promoter). (E) Tunability of the oscillations in terms
of amplitude. Amplitude of x1 (level of the CBF1 gene) continuing the peri-
odic solution on h3 (Hill coefficient of the MET16 promoter). (F) Tunability
of the oscillations in terms of period. Period of x1 (CBF1 gene) continuing
the periodic solution on h6 (Hill coefficient of the ASH1 promoter).
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5.2 Turning IRMA into a bistable switch.

Our investigation confirmed the flexibility of IRMA, thus we further explored

the possibility of turning the network also into a bistable switch. A bistable

system is one that toggles between two discrete, alternative stable steady

states, in contrast to a monostable system. In biology, bistability has long

been established in control of the cell cycle and other oscillations [14], and

also recently reported in an artificial gene regulation network [39]. Bistability

arises in signaling systems that contain a positive feedback loop or a mutually

inhibitory, double negative feedback loop (which, in some regards, is equiva-

lent to a positive feedback loop) [5]. Indeed, in [104] it is demonstrated that

the existence of at least one positive feedback loop is is a necessary condition

for the existence of multiple steady states.

In our setting, the idea is to reduce the actual version of the topology to a 3

gene positive feedback loop between the genes CBF1, GAL4 and SWI5, thus

removing the inhibition on CBF1 by Ash1. The corresponding mathematical

model consists of equations (5.2)-(5.5) while equation (5.1) is replaced with:

dx1

dt
= α1 + v1

(
xh1
3

(kh1
1 + xh1

3 )

)
− d1x1. (5.8)

The ODEs model can be analysed by continuing the steady state on the crit-

ical parameters. Figure 5.6 (A) and (B) show typical bistability continuation

plots: continuing the steady state on k1 and on h1 two saddle-node bifurca-

tions delimitate the bistability region in which 3 equilibria coexist, two stable

and one unstable. In particular, we can notice that bistability is ensured for
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k1 inside the range [0.02 0.14] [a.u.] and h1 in [2.3 40], thus the activation of

Swi5 on Cbf1 must be strong enough. Figure 5.6 (C) shows the continuation

of one saddle-node bifurcation point on two parameters: a codimension 2 bi-

furcation point (cusp) is detected, from which two branches delimiting the

bistability region for the parameters v2 and h3 emanate. From such continu-

ation, it emerges that bistability is guaranteed even if we do not vary v2 and

h3 from their nominal values (Table A.2, Scenario 4 B column): continuing

the steady state on k1, in Figure 5.6 D we observe again two saddle-node

bifurcations delimitating the bistability region that, however, is now slightly

smaller ([0.03 0.08] [a.u.]).

5.2.1 Experimental implementation of Scenario 4 in

vivo.

For the in vivo implementation, a simple strategy is to replace the HO pro-

moter by inserting the previously described EGT2 promoter in front of the

CBF1 gene. Correspondingly, in the model the nominal values of k1 and

h1 (Michaelis-Menten and Hill coefficient of the HO promoter in eq. (5.1) )

are replaced respectively with k6 and h6. In so doing, the strength and the

non-linearity of the positive loop are increased.

Again, we can increase the strength of the activation of the MET16 promoter

by Cbf1 by tuning the parameters v2 and h3 as in the previously analysed

scenarios by decreasing the methionine concentration in the medium. The

overall re-engineering of the topology is schematically represented in Figure

5.1 (E); the parameters are reported in Table A.2, Scenario 4 A column.
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Figure 5.6: Continuation results for Scenario 4.
Continuation results for Scenario 4. (A) Scenario 4 A. One parameter con-
tinuation of the steady state on k1 (Michealis-Menten coefficient of the HO
promoter). Two saddle-node bifurcation points (at (k1, x1)=(0.02 0.007) and
(k1, x1)=(0.14 0.01)) delimitate the bistability region. (B) Scenario 4 A.
One parameter continuation of the steady state on h1 (Hill coefficient of
the HO promoter). Two saddle-node bifurcations (at h1, x1=(2., 0.008) and
h1, x1=(40 0.019)) delimitate the bistability region. (C) Scenario 4 A. Two
parameters continuation of one saddle-node bifurcation point on v2 (max-
imal transcriptional rate of the MET16 promoter) and h3 (Hill coefficient
of the MET16 promoter). The cusp bifurcation occurs at (v2, h3)=(0.0005
0.39). (D) Scenario 4 B. One parameter continuation of the steady state on
k1 (Michealis-Menten coefficient of the HO promoter). Two saddle-node bi-
furcation points (at (k1, x1)=(0.03 0.002) and (k1, x1)=(0.08 0.05)) delimitate
the bistability region.
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5.3 Discussion

In this Chapter, using numerical and continuation techniques, we showed how

IRMA can be turned into a robust and tunable oscillator, or a bistable ge-

netic switch. The deterministic mathematical model, previously formulated

and identified to allow data interpretation and experiment planning, is here

analysed to guide the re-engineering of the network with predictable func-

tions. Such in vivo re-engineering is actually work in progress in Dr. Diego

di Bernardo Systems and Synthetic biology Lab in TIGEM.

IRMA showed great flexibility. Its topology can be re-engineered in a number

of ways in order to achieve the desired dynamical behaviour. Of note, all the

proposed changes are viable in vivo. The robustness to parameters changes

and the tunability of the oscillator were assessed via continuations performed

using the software DDE-BIFTOOL, the first package for bifurcation analysis

of systems with delays that, up to now, has not been commonly used in the

Synthetic biology community.

The major conclusion we can draw from our results is that, aiming at con-

structing a robust and tunable oscillator, the best option is to include in the

topology both a delayed negative feedback loop and a fast positive one. This

is the case explicitly analysed in Scenario 3 that results to be most robust

and tunable as compared to Scenario 2, in which the topology of the network

is reduced to a single negative feedback loop.

In the context of Synthetic biology, our model guided re-engineering frame-

work can be applied to existing topologies with the aim of turning them into

oscillators or switches. We analysed three topologies for the oscillator case
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and one for the switch case. A crucial point was to minimize the number of

experiments needed to modify the synthetic network. Surely, other possible

ways to re-engineering IRMA can give rise to other oscillatory, switch-like

and maybe more complex dynamical behaviours. Of note, once the best per-

forming scenario has been chosen from our deterministic approach, it will be

crucial to resort to stochastic simulations in order to estimate the impact of

noise on the network dynamics [89]. Remarkably, resulting noise-induced bi-

furcations can lead to multi-stability or oscillatory dynamics in biochemical

networks even when the deterministic description predicts a stable steady

state for a certain parameter set [112], or for any parameter values [51].



Chapter 6

Response of the synthetic

network in yeast to an external

periodic input

In biology, much research effort has been spent on the analysis and investi-

gation of synchronization of biological rhythms. One way to achieve synchro-

nization is via entrainment to some external periodic input. In our everyday

life, we experience many behavioural and physiological oscillations that are

entrained with the external fluctuating environment. The most famous ex-

ample is that of circadian rhythms in mammals, regulated by an endogenous

biological clock entrained by external signals from the environment [44]. The

environmental light-dark cycle, for example, acts as one of the most impor-

tant pacemakers. Another important example of synchronization and coor-

dination of biological clocks is the cell cycle through which cells periodically
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duplicate their genome and divide [110]. Understanding the emergence and

coordination of rhythmic phenomena regulating the activities of living or-

ganisms requires the investigation of the cooperative behaviour leading to

synchronization. Of note, for non-linear systems, driving the system by an

external periodic signal does not guarantee the system response also to be a

periodic solution, as non-linear systems can exhibit harmonic generation or

suppression and complex behaviour such as chaos or quasi-periodic solutions

[63].

In this Chapter we will analyse the response of the oscillatory (re-engineered

Scenario 2 presented in Section 5.1.2) and non-oscillatory version of the yeast

synthetic network to an external periodic input. Such forcing can lead to en-

trainment, that means that the period of the forced oscillator is exactly the

one of the external signal and that the phase of the oscillations is locked. We

will analyse entrainment both via simulation and analytically, using recent

contraction theory results [93]. Of note, in this Chapter we define global en-

trainment as the convergence of the forced system to some globally attracting

limit cycle, whose period is identical to the period of the input, regardless of

the properties of the input (period/amplitude of its oscillations).
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6.1 Entrainment to periodic input; in silico

experiments

6.1.1 Numerical results of the oscillatory version of the

network (Scenario 2)

Here we apply a forcing oscillatory input to the re-engineered version of the

network, we termed as Scenario 2 in Section 5.1.2. We recall that the topology

of the network is the one presented in Figure 5.1 (C), and the corresponding

mathematical model is:

dx1

dt
= α1 + v1

(
kh2
2

kh2
2 + x5

h2

)
− d1x1 (6.1)

dx2

dt
= α2 + v2

(
xh3
1

kh3
3 + xh3

1

)
− d2x2, (6.2)

dx3

dt
= α3 + v3

⎛⎝ xh4
2

kh4
4 + xh4

2 (1 +
x
h7
4

γh7
)

⎞⎠− d3x3, (6.3)

dx4

dt
= α4 + v4

(
xh5
3

kh5
5 + xh5

3

)
− d4x4, (6.4)

dx5

dt
= α5 + v5

(
xh6
3

kh6
6 + xh6

3

)
− d5x5, (6.5)

where [CBF1] = x1; [GAL4] = x2; [SWI5] = x3; [GAL80] = x4; [ASH1] =

x5, Using the parameters in Table A.2 (Scenario 2 column), and a fixed input

(Galactose=1), simulation shows the presence of sustained oscillations with

natural period (TN) equal to 110 minutes (Figure 5.2 (C)).

Now we check the response of the network when an oscillatory input, e.g.
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galactose, is given to the cells. We will with test signals with different period,

say TG. The duty-cycle of the input signal we put is fixed to 50 %. In Figures

6.1 and 6.2 we report some simulation results. They show that, depending on

the period of the forcing input, entrainment can be lost, and quasi-periodic

dynamics can appear. In particular, in Figure 6.1 we observe that, given an

input with period TG equal to 110 minutes (A) or 220 minutes (B), the forced

system presents oscillations with period T=TG. In Figure 6.2 we observe that,

when the period of the input is equal to 55 minutes (A), 27.5 minutes (B)

or 18.33 minutes (C), dynamics of the forced system present, respectively,

period 2 oscillations, period 4 oscillations and quasi-periodic oscillations.
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Figure 6.1: Response of the network to a periodic input. Periodic
dynamics of the oscillating network (Scenario 2), providing a periodic input
with (A) TG=110 min; duty=50 %, TN/TG=1; T=110; (B) TG=220 min;
duty=50 %, TN/TG=

1
2
; T=220.
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Figure 6.2: Response of the network to a periodic input Periodic
dynamics of the oscillating network (Scenario 2), providing a periodic in-
put with (A) TG=55 min; duty=50 %, TN/TG=2; period 2 oscillations; (B)
TG=27.5 min; duty=50 %, TN/TG=4; period 4 oscillations; (C) TG=18.33
min; duty=50 %, TN/TG=6; quasi-periodic oscillations.
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6.1.2 Bifurcation analysis

In order to have a complete picture of the cells output varying input proper-

ties, we performed a brute-force two-parameter continuation (see Figure 6.3).

In particular, we consider a grid of points in the parameter space (TG, d) in

the parameter range TG ∈ [0 330] and d ∈ [0 100]. At each point, the output

was simulated and, discarding the transients, the periodicity of the steady

state solution was calculated and plotted in different colors (red= period 1,

blue= higher period).

Note that the initial conditions of all the variables for simulation are ran-

domly changed at each step in a physically feasible range.

It clearly appears that entrainment (corresponding to the red region in Figure

6.3) is strongly dependent on the properties of the periodic input.

6.1.3 Numerical results on the non-oscillatory version

of the network (Scenario 2 modified)

Now we perform a similar simulation analysis applying a forcing oscillatory

input to a modified version of topology presented in the above subsection. The

model is again composed of equations (6.1)-(6.5); the parameters are ones

reported in Table A.2 (Scenario 2 column), with the exception of parameter v2

and h3, which are fixed to the values they have in the non-oscillating version

of IRMA (Table A.2, Nominal Value column). Consequently, the topology

is again the one in Figure 5.1 (C), but the dynamics of the system, in the

presence of a fixed input (Galactose=1), are not oscillatory.
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Figure 6.3:Brute-force two-parameter bifurcation diagram (Scenario
2). Entrainment of the oscillating version of IRMA. Colors indicate the period
of the forced system oscillations.

Here we directly report simulation results of a brute-force two-parameter

continuation diagram (Figure 6.4). In each simulation we change both the

period (TG) and the duty of the periodic input. Entrainment is now always

achieved, regardless of the properties of the forcing input.
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Figure 6.4:Brute-force two-parameter bifurcation diagram (Scenario
2 modified).Entrainment of the non oscillating version of IRMA (Scenario
2 modified). Colors indicate the period of the forced system oscillations.

6.2 Analytical results

6.2.1 Introduction to contraction theory

A most interesting open problem is that of finding analytical conditions for

the entrainment to external inputs of biological systems modelled by sets of

non-linear differential equations. One approach to analyse the convergence

behaviour of non-linear dynamical systems is to use Lyapunov functions.
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However, in biological applications, the appropriate Lyapunov functions are

not always easy to find and, moreover, convergence is not guaranteed in

general in the presence of noise and/or uncertainties. Moreover, such an ap-

proach can be hard to apply to the case of non-autonomous systems (that is,

dynamical systems directly dependent on time), as is the case when dealing

with periodically forced systems.

The above limitations can be overcome if the convergence problem is inter-

preted as a property of all trajectories, asking that all solutions converge

towards one another (contraction). This is the viewpoint of contraction the-

ory [67], and more generally incremental stability methods [54].

Global results are possible, and these are robust to noise, in the sense that,

if a system satisfies a contraction property then trajectories remain bounded

in the phase space [88].

Contraction theory has been successfully applied to both non-linear con-

trol and observer problems [55], and, more recently, to synchronization and

consensus problems in complex networks [97]. In [92] it is proposed that

contraction can be particularly useful when dealing with the analysis and

characterisation of biological networks.

In this Chapter we will use the results presented in [93]. In the paper, Russo

et al. provide mathematical conditions that allow one to ensure that biolog-

ical networks, such as transcriptional systems, can be globally entrained to

external periodic inputs. Through the use of contraction theory, it is shown

that certain systems driven by external periodic signals have the property

that all their solutions converge to a fixed limit cycle.
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6.2.2 Contraction results on IRMA

As in [93], starting from the system of interest described by a system of

ordinary differential equations dx
dt

= f(x, t), we consider a matrix measure of

the Jacobian μ(J(x, t)), which is the directional derivative of the matrix norm

induced by a vector norm on Euclidian space. The system is infinitesimally

contracting on a convex set C ⊆ Rn if there exists some norm in C, with

associated matrix measure μ such that, for some constant c ∈ R− {0},

μ(J(x, t)) ≤ −c2, ∀x ∈ C, ∀x ∈ C, ∀t ≥ 0. (6.6)

In [93], the authors prove that that infinitesimal contractivity implies global

contractivity. Also, if the system is contractive, than it can be globally en-

trained to external periodic inputs.

In our system (equations (6.1)-(6.5)), letting x1=x, x2=y, x3=z, x4=v, x5=w,

the Jacobian is given by:

J=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 0 J15

J21 −d2 0 0 0

0 J32 −d3 J34 0

0 0 J43 −d4 0

0 0 J53 0 −d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

J15 = − v1 k
h2
2 wh2−1h2(

k
h2
2 +wh2

)2 , J21 =
v2 h3 xh3−1k3

h3

(k3 h3 +xh3 )
2 , J32 =

v3 h4 yh4−1γ2 h7 k4
h4

(k4 h4 γh7 +yh4 γh7 +yh4 vh7 )
2 ,
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J34 = − v3 y2 h4 γh7 vh7−1h7

(k4 h4γh7 +yh4 γh7 +yh4 vh7 )
2 , J43 =

v4 h5 zh5−1k5
h5

(k5 h5 +zh5 )
2 , J53 =

v5 h6 zh6−1k6
h6

(k6 h6 +zh6 )
2 .

As matrix measure, we will use the measure μP induced by the vector |μP |,
where P is a suitable non-singular matrix. More specifically, we will pick P

diagonal with positive elements; in our case it is a 5x5 matrix. As matrix

measure, we will use

μP,∞(J) = μ∞(PJP−1) (6.7)

We can then calculate

PJP−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 0 JP
15

JP
21 −d2 0 0 0

0 JP
32 −d3 JP

34 0

0 0 JP
43 −d4 0

0 0 JP
53 0 −d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

JP
15 = −p1 v1 k

h2
2 wh2−1h2(

k
h2
2 +wh2

)2
p5

, JP
21 =

p2 v2 h3 xh3−1k3
h3

(k3 h3 +xh3 )
2
p1

, JP
32 =

p3 v3 h4 yh4−1γ2 h7 k4
h4

(k4 h4 γh7 +yh4 γh7 +yh4 vh7 )
2
p2
,

JP
34 = − p3 v3 y2 h4 γh7 vh7−1h7

(k4 h4 γh7 +yh4 γh7 +yh4 vh7 )
2
p4
, JP

43 =
p4 v4 h5 zh5−1k5

h5

(k5 h5 +zh5 )
2
p3

, JP
53 =

p5 v5 h6 zh6−1k6
h6

(k6 h6 +zh6 )
2
p3

.

In order to prove contractivity of the system, we have to prove that it satisfies

(6.6), that is finding a set of scalars ci, pi, with i = 1 . . . 5, that guarantees

that the sum of the elements on each column of the above matrix is less or

equal to c2i .

In particular, we want to check contractivity for Scenario 2 (parameter values
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in Table A.2, Scenario 2 column), and the modified Scenario 2 (same param-

eters of Scenario 2 with the exception of parameters v2 and h3, which are

fixed to the values reported in the Nominal Value column of Table A.2). In

what follows, we will calculate the sum on the columns of the matrix PJP−1,

and fix the Hill coefficients and the Michalis-Menten coefficients, thus letting

free the maximal transcriptional rates and the degradation rates.

1. Condition on the sum of the elements of the first column of

the matrix PJP−1:

−d1 +
p2 v2 h3 x

h3−1k3
h3(

k3
h3 + xh3

)2
p1

≤ −c21. (6.8)

For Scenario 2 modified (h3=1) the inequality (6.8) becomes

−d1 +
p2 v2k3

(k3 + x)2 p1
≤ −c21. (6.9)

It is easy to check that

−d1 +
p2 v2k3

(k3 + x)2 p1
≤ −d1 +

p2
p1

v2 26.88 ≤ −c21. (6.10)

For the values of parameters of Scenario 2 modified, such inequality

holds ∀ p1, p2 > 0.

For Scenario 2 (h3=4), from (6.8) we can derive the following inequal-

ity:

−d1 +
4 p2 v2 x

3k3
4(

k3
4 + x4

)2
p1

≤ −c21. (6.11)
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Substituting the parameters value of k3 in Table A.2 (Scenario 2 col-

umn), and letting free the degradation rate d2 and the maximal tran-

scriptional rate v2, if we calculate the maximum of the resulting alge-

braic formula we get:

−d1 + 28.7 v2
p2
p1

≤ −c21. (6.12)

If we can ensure that

v2
d1

≤ 0.034, (6.13)

inequality (6.8) holds ∀ p1, p2 > 0. For the parameter values in Table

A.2 (Scenario 2 column), v2
d1

= 1.1, the inequality is not satisfied.

2. Condition on the sum of the elements of the second column

of the matrix PJP−1:

−d2 +
p3 v3 h4 y

h4−1γ2 h7 k4
h4(

k4
h4γh7 + yh4γh7 + yh4 vh7

)2
p2

≤ −c22. (6.14)

By substituting the values of the Hill coefficient, that are h4=h7=4

(identical for Scenario 2 and Scenario 2 modified), the above inequality

becomes

−d2 +
p3 v3 4 y

3γ8k4
4(

k4
4γ4 + y4γ4 + y4v4

)2
p2

≤ −c22. (6.15)

Substituting the values of the Michaelis-Menten coefficients and calcu-

lating the maximum of the embedded algebraic formula in (6.15) we

get:
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−d2 +
p3 v3 4 y

3γ8k4
4(

k4
4γ4 + y4γ4 + y4v4

)2
p2

≤ −d2 +5 ·10−10 v3p3
p2

≤ −c22. (6.16)

Thus, if we can ensure that

v3
d2

≤ 2.00 104, (6.17)

inequality (6.14) holds ∀ p2, p3 > 0. For the parameter values of both

Scenario 2 and Scenario 2 modified v3
d2

= 0.42, the inequality is satisfied.

3. Condition on the sum of the elements of the third column of

the matrix PJP−1:

−d3 +
p4 v4 h5 z

h5−1k5
h5(

k5
h5 + zh5

)2
p3

+
p5 v5 h6 z

h6−1k6
h6(

k6
h6 + zh6

)2
p3

≤ −c23. (6.18)

By substituting h5 = h6 = 1 (identical for Scenario 2 and Scenario 2

modified), we get

−d3+
p4 v4 k5

(k5 + z)2 p3
+

p5 v5 k6

(k6 + z)2 p3
≤ −d3+

p4
p3

v40.55+
p5
p3

v5 16.52 ≤ −c23.

(6.19)

Thus, if

v4
d3

≤ 1.8 (6.20)
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and

v5
d3

≤ 0.06, (6.21)

the inequality (6.18) is satisfied. It is true for the values of parameters

of both Scenario 2 and Scenario 2 modified.

4. Condition on the sum of the elements of the fourth column of

the matrix PJP−1:

−d4 +
p3 v3 y

2 h4γh7 vh7−1h7(
k4

h4γh7 + yh4γh7 + yh4 vh7
)2

p4
≤ −c24. (6.22)

By substituting h7 = h4 = 4 (identical for Scenario 2 and Scenario 2

modified) we have

−d4 +
p3 v3 4 v

3γ4y8(
k4

4γ4 + y4γ4 + y4v4
)2

p4
≤ −c24. (6.23)

Proceeding as above we find that, in order to satisfy (6.22) ∀ p3, p4 > 0

we must have

v3
d4

≤ 0.05. (6.24)

Such condition is satisfied for the parameter values of both Scenario 2

and Scenario 2 modified.

5. Condition on the sum of the elements of the fifth column of

the matrix PJP−1:

−d5 +
p1 v1 h2 w

h2−1k2
h2(

k2
h2 + wh2

)2
p5

≤ −c25. (6.25)
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By substituting h2=1 (identical for Scenario 2 and Scenario 2 modified)

we get

−d5 +
p1 v1 k2

(k2 + w)2 p5
≤ −d5 + 285v1

p1
p5

≤ −c25. (6.26)

Thus, if

v1
d5

≤ 0.0035 (6.27)

the inequality (6.25) is satisfied ∀ p1, p5 > 0. In is true for the values of

parameters values of both Scenario 2 and Scenario 2 modified.

In conclusion, we proved analytically that parameters of Scenario 2 modi-

fied, for which the autonomous system dynamics are not oscillatory, verify

the conditions required to have global entrainment. On the other hand, for

parameters of Scenario 2, entrainment is not guaranteed. In particular, the

critical parameters are v2 and h3, which are the ones that differ in Scenario

2 as compared to Scenario 2 modified.

6.3 Discussion

In this Chapter we analysed, both via simulation and analytically, the re-

sponse of IRMA to an oscillatory input. We showed that only some param-

eters guarantee that the network can always be entrained to the periodic

input. Chaotic attractor can be obtained if the forced system presents au-

tonomous oscillations.

In Dr. Diego di Bernardo Systems and Synthetic biology Lab, we are currently
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setting up a novel experimental platform based microfluidics [10] to check in

vivo the in silico predictions. This will allow to reproduce experimentally

the presented in silico analysis by providing the desired periodic galactose

input to both the non-oscillatory and oscillatory version of the network, and

to check in vivo the appearance of entrainment.



Chapter 7

Mathematical model of a novel

synthetic oscillator in

mammalian cells

In this Chapter, we present the mathematical modelling of a novel synthetic

oscillator that is being developed in the Systems and Synthetic biology Lab

of Dr. Diego di Bernardo by Velia Siciliano (for further information see

http://dibernardo.tigem.it). A full mathematical analysis is developed for

two possible topologies of the oscillator. Moreover, we present preliminary in

vivo results and the relative parameters fitting.

7.1 Aim of the project

The aim of this project is the development of a new synthetic circuit able

to express an mRNA/protein of interest independently of the cell cycle or
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other oscillatory endogenous signals in a mammalian cell. Most of the studies

carried out so far in mammalian cells are based on plasmid transfection,

which prevent precise quantitative measurements due to the unpredictable

amount of plasmids that enters in each cell, and to the transient nature of

transfection. We aim at engineering the synthetic oscillator in a lentiviral

vector, so that we can easily transfer the network in living cells and in an

in vivo animal model. Lentiviral vectors are efficient vehicles for the delivery

of genes to both dividing and non-dividing cells in vitro and in vivo [1].

In view of medical applications, our synthetic circuit will have a significant

impact for gene therapy of complex diseases. We are building two versions of

the network, in order to understand how the topology affects the oscillator

dynamics.

7.2 Description of the biological system: Os-

cillator topology 1

The first version of the oscillator (Topology 1, presented in Figure 7.1 (A)),

consists of an activator, which promotes its own transcription, as well as the

transcription of a repressor against itself, in agreement with the design of the

natural circadian oscillators [86]. As activator, we are using the tetracycline-

controlled transactivator (tTA), which is the result of the fusion between the

bacterial Tet repressor protein with the VP16 activation domain [100]. tTA

expression is self-controlled by a CMV-TET promoter responsive to the tTA

protein. The promoter is inducible by Doxycycline: it is on in absence of the
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antibiotic, and off in presence. The same promoter drives the transcription

of a destabilized yellow-green variant of enhanced green fluorescent protein

(d2EYFP) (Clontech) as readout of the system. The CMV-TET promoter

regulates also the expression of a microRNA (miR) directed against the tTA.

MicroRNAs are a class of RNA involved in a natural process, the RNA in-

terference, in which there is a sequence-specific RNA-mediated pathway for

turning off gene expression [37]. This process has been adapted also for an

“artificial” regulation of gene expression via small interfering RNA (siRNA)

designed on the mRNA sequence of the gene of interest, and then embed-

ded in the microRNA context. By repressing tTA at the post-transcriptional

level, we will overcome any problem due to the leakiness of the promoter,

since the gene will be silenced. A red fluorescent protein (mcherry) will en-

able us to follow the dynamics of the microRNA. Thus, the overall topology

is composed by a positive auto-feedback loop and a negative feedback loop

between composed of two genes (Figure 7.1 (B)).

7.3 Mathematical model of the network and

continuation results

The model we developed is based on non-linear Delay Differential Equations.

We assumed:

• Hill functions to model the rates of gene transcription, including basal

activity to describe the leakiness of the promoter (CMV-TET );
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B

A

Figure 7.1: Oscillator in mammalian cells, Topology 1. In (A) we report
the metabolites composing the network, and in (B) a schematic representa-
tion of the network topology.

• linear degradation for all genes and proteins;

• Michaelis-Menten like function to model the miR silencing on tTA;

• linear dynamics for the translation process;
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• Michaelis-Menten like modelling of the effect of the inducer (Doxycy-

cline);

• distinct dynamics for inactive and active form of the microRna (mod-

elling approach proposed in [106]). In order to silence its target gene

(tTA), the microRNA needs to be processed throughout cleavage by

Dicer and binding to the RISC complex. In order to take into account

these steps, we introduced a fixed time delay in the silencing effect by

miR on tTA (see equation (7.1));

• distinct dynamics for the unfolded (inactive) and folded (active) forms

of the reporter proteins.

By setting x1 = tTA mRNA concentration; x2 = tTA protein concentration;

x3 = miR mRNA concentration; x4 = unfolded d2EYFP protein concen-

tration; x5 = folded d2EYFP protein concentration; x6 = unfolded mcherry

protein concentration; x7 = folded mcherry protein concentration, we have

the following Delay Differential Equations model:

dx1

dt
= G1v1

(
α1 + (1− α1)

(
θ

θ+D
x2

)h1

K1 +
(

θ
θ+D

x2

)h1

)
− d1x1 − λ

xh2
3 (t− τ)

K2 + xh2
3 (t− τ)

x1,

(7.1)

dx2

dt
= v2x1 − d2x2, (7.2)

dx3

dt
= G2v1

(
α1 + (1− α1)

(
θ

θ+D
x2

)h1

K1 +
(

θ
θ+D

x2

)h1

)
− d3x3, (7.3)
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dx4

dt
= v3x1 − (d4 +Kf )x4, (7.4)

dx5

dt
= Kfx4 − d4x5, (7.5)

dx6

dt
= v3x3 − (d4 +Kf )x6, (7.6)

dx7

dt
= Kfx6 − d4x7. (7.7)

Parameters di, i = 1, . . . , 4 are the degradation rates, Kj, j = 1, 2 are the

Michaelis-Menten constants, hj are the cooperativity constants, Kf is the

folding rate, α1 is the basal activities of the CMV-TET promoter, vk, k =

1, . . . , 3 represent the maximal transcription or translation rates, θ models

the inducer-CMV-TET promoter interaction, τ is the time delay. Parameters

G1 and G2 are used to model the infection efficiency. In fact,the network is

implemented on two separated lentiviral vectors, one containing the cassette

CMVTET -tTA-d2EYFP and the other the cassette CMVTET -miR-mcherry.

Of note, in what follows, we will always consider the network in the on

condition, thus we will set the concentration of the antibiotic equal to 0.

7.3.1 Identification of the parameters oscillatory re-

gion and continuation results

Using the reference parameters values reported in Table A.3 (literature values

from [106] and [107]), the dynamics of the network appear monotonically

increasing toward a steady-state value.

By properly tuning the parameters values, we found autonomous oscillations

(simulation in Figure 7.2 (A), parameters in Table A.3). In simulations, the
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time delay was fixed to 60 minutes. In order to achieve oscillatory behaviour,

as compared to the literature values, we have:

• increased the efficiency of viral infection of the vector containing the

tTA with respect of the one the miR. It means that we are imposing

that the dynamics of the positive feedback loop are faster then the

negative ones. This is in agreement with results presented in [27, 46,

116, 84, 36, 109];

• increased the strength and non-linearity of the silencing.

The predicted period of the oscillations is equal to 256 [min].

By using the continuation tool DDE-BIFTOOL [35], we performed one pa-

rameter continuation of the limit cycle and two parameters continuation of

the Hopf bifurcation on all the combinations of parameters. Continuation

results remarked the need of having faster dynamics of the positive feedback

loop as compared to the negative loop ones. In particular, the time delay is

crucial: it must be at least equal to 52 minutes (see continuation of the limit

cycle on the delay reported in Figure 7.2 (B)).

7.4 Model guided re-engineering of the net-

work: oscillator Topology 2

The mathematical analysis presented in the previous section suggested us

to implement, in parallel with Topology 1, a second topology (Topology 2

in Figure 7.3 (A)) in which the negative feedback loop encompasses a third
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A

B

Figure 7.2:Topology 1, simulation and continuation results. (A) Model
predicted oscillatory dynamics using the parameters reported in Table A.3.
(B) Continuation of the Hopf bifurcation on the time delay.

gene, namely PIT. It is activated by tTA and regulates the expression of the

microRNA via the PPIR promoter. Note that such promoter is inducible by

Pristinamycin (if it is not present in the medium, the promoter is fully active).

In this way, even if the process through which the microRNA becomes active

(cleavage by Dicer and bounding to the RISC complex) is not slow enough,

the dynamics of the overall negative feedback loop should become slower, as

it is now composed by three metabolites (Figure 7.3 (B)).
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A

B

Figure 7.3: Oscillator in mammalian cells, Topology 2. In (A) we report
the metabolites composing the network, and in (B) a schematic representa-
tion of the network topology.

In order to check the validity of the hypothesis that brought us to re-engineer

the network, we analysed a DDEs model of the modified network.
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7.4.1 Mathematical model, identification of the param-

eters oscillatory region and continuation results

By setting x1 = tTA mRNA concentration; x2 = tTA protein concentration;

x3 = PIT mRNA concentration; x4 = PIT protein concentration; x5 = miR

concentration; x6 = unfolded d2EYFP protein concentration; x7 = folded

d2EYFP protein concentration; x8 = unfolded mcherry protein concentra-

tion; x9 = folded mcherry protein concentration, with the same modelling

assumptions presented in Section 7.3, the Delay Differential Equations model

of Topology 2 is:

dx1

dt
= G1v1

(
α1 + (1− α1)

(
θ

θ+D
x2

)h1

K1 +
(

θ
θ+D

x2

)h1

)
− d1x1 − λ

x5(t− τ)h2

Kh2
2 + x5(t− τ)h2

x1,

(7.8)

dx2

dt
= v2x1 − d2x2, (7.9)

dx3

dt
= G2v1

(
α1 + (1− α1)

(
θ

θ+D
x2

)h1

K1 +
(

θ
θ+D

x2

)h1

)
− d3x3, (7.10)

dx4

dt
= v3x3 − d4x4, (7.11)

dx5

dt
= G3v4

⎛⎜⎝α2 + (1− α2)

(
γ

γ+P
x4

)h3

K3 +
(

γ
γ+P

x4

)h3

⎞⎟⎠− d5x5, (7.12)

dx6

dt
= v5x1 − (d6 +Kf )x6, (7.13)

dx7

dt
= Kfx6 − d6x7, (7.14)
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dx8

dt
= v5x5 − (d6 +Kf )x8, (7.15)

dx9

dt
= Kfx8 − d6x9. (7.16)

Note that, in this case, the entire network is implemented on three lentiviral

vectors, thus in the model we have three G parameters. We identified the

parameter region that ensures oscillatory dynamics (Table A.4, time simula-

tion in Figure 7.4 (A)). The time delay was fixed equal to 60 minutes. We

found that again, in order to achieve oscillatory behaviour, we need higher

efficiency of viral infection of the vectors containing the tTA and PIT genes

with respect of the one the miR, and a strong and stiff effect of the silencing.

The predicted period of the oscillations is equal to 482 [min].

The most significant continuation results is presented in Figure 7.4 (B). This

shows that, due to the presence of a third gene in the negative feedback

loop, the time delay can also be null, thus confirming our hypothesis that

the proposed re-engineering of the system should be effective to obtain the

desired oscillatory dynamics.

7.5 Preliminary in vivo data and parameter

identification results

In this section, we aim at characterising one part of the circuit, that is the cas-

sette containing the inducible positive feedback loop (CMV-TET promoter,

responsive to the Tetracycline-controlled transactivator tTA, driving expres-

sion of the tTA protein itself, Figure 7.5). We infected HEK 293 cells with
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A

B

Figure 7.4:Topology 2, simulation and continuation results. (A) Model
predicted oscillatory dynamics using the parameters reported in Table A.4.
(B) Continuation of the Hopf bifurcation on the time delay.

a virus carrying our circuit (Figure 7.5) and imaged them using time-lapse

microscopy. We performed two sets of time series experiments. For both the

experimental designs, at the first time point, cells were treated with Doxycy-

cline in order to switch off the system. In the first set of experiments (Data

set 1) the dynamics were followed for 37h at 37 ◦C (Figure 7.6 (A)), and the

data were collected by acquiring an inverted epifluorescence microscope(see

Methods section). The second round of experiments (Data set 2) was car-
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ried out by lowering the temperature level at 32 ◦C, as reported [57] in order

to limit cell motility and reduce the risk associated to data loss occurring

when cells exit the tracked field. In this experimental setup we tested the

behaviour of the circuit by treating cells with different amounts of Doxycy-

cline: 100 ng/mL (Figure 7.6 (B)); 1 μg/mL (Figure 7.6 (C)); 10 μg/mL

(Figure 7.6 (D)). The dynamics were followed for 61 h. Details about the ex-

perimental procedure, including image acquisition and analysis, are reported

in Appendix D.

Figure 7.5: Design of the positive feedback loop in mammalian cells.

7.5.1 Mathematical model of the inducible positive feed-

back loop and parameters fitting

The ODEs model of the cassette containing the positive feedback loop, in

agreement with the modelling assumptions presented above, letting x1 be

the tTA/d2EYFP mRNA concentration, x2 the tTA protein concentration,

x3 the unfolded d2EYFP protein concentration and x4 the folded d2EYFP
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protein concentration, is:

dx1

dt
= v1

(
α1 + (1− α1)

(
θ

θ+D
x2

)h1

Kh1
1 +

(
θ

θ+D
x2

)h1

)
− d1x1, (7.17)

dx2

dt
= v2x1 − d2x2, (7.18)

dx3

dt
= v2x1 − (d3 +Kf )x3, (7.19)

dx4

dt
= Kfx3 − d3x4. (7.20)

Of note, as compared to the system of the entire oscillator, the equation of

tTA mRNA lacks the silencing term.

For the parameter identification, we used the Genetic Algorithm implemented

in the Optimization Toolbox of Matlab to minimize the cost function de-

scribed in Appendix B. In simulations of the “switch off”, the initial values

of the metabolites were set to the steady state values predicted by the model

in the “on” condition.

The simulations of the fitted model are shown in Figure 7.6, red lines, and

the inferred parameters are reported in Table A.5. The inferred model is able

to recapitulate the system dynamics in response to different inducer concen-

trations and experimental settings. We needed to adapt the degradation rate

of the reporter protein (d2EYFP) to the different experimental conditions.

As mentioned above, in the first set of experiments (Data set 1) the cells

were kept at 37 ◦C, while, in the second round of experiments (Data set 2),

we used a lower temperature (32 ◦C) in order to limit cell motility. Figure

7.6 (A) and (C) show the response of the system using the same amount of
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inducer (1 μg/mL), with cells at 37 ◦C and 32 ◦C, respectively. The dynam-

ics of the “switch off” are faster if the temperature is higher, as the cells

metabolism is faster [57]. In the model we captured this behaviour by chang-

ing the degradation rate of the reporter protein (parameter d3 in eq. (7.19))

and (7.20)): it was estimated to be lower for Data set 2 as compared to the

one fitted using Data set 1, due to the different stability of the protein (Table

A.5).

Of note, we varied from the reported literature value is the maximal tran-

scription rate of the CMV-TET promoter (Table A.5). The physical meaning

is that the strength of the positive-feedback loop is much stronger than pre-

viously estimated, at least in the cell-line we used in this experiment (HEK

293). The presence of the auto-regulation is the key to understand the dy-

namics of the system, because it makes harder for the promoter to be down-

regulated by Doxycycline. In Figure 7.6 (E) we analyse how the presence

of the positive feedback loop affects the switch-off dynamics: decreasing its

strength (green line) or removing it (black line), the system is switched off

faster.

7.6 Discussion

In this Chapter, we presented theoretical and preliminary in vivo results

about the construction of a novel and robust synthetic oscillator in mam-

malian cells. We highlighted the importance of the mathematical analysis to

properly engineer the network. In particular the theoretical analysis showed
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that:

• both the oscillator topologies can exhibit oscillatory dynamics;

• for both the topologies the key elements to have oscillations are:

1. a strong effect of the silencing (the maximum silencing rate must

be high, while it is not necessary that the cooperativity coefficient

is very higher than its nominal value);

2. fast dynamics for the positive feedback loop;

3. slow dynamics for the negative feedback loop (obtainable by adopt-

ing Topology 2, or already present in Topology 1 if the silencing

process takes enough time). Note that Topology 2 can exhibit

oscillations even without an explicit time delay in the silencing

term.

The preliminary in vivo data-set allowed us to characterise the first cassette

of the circuit. Our experimental set-up allows to have data arising from a uni-

formly infected population of cells, overcoming troubles arising from plasmid

transfection techniques. The dynamics of the feedback loop were well defined

in the in vivo data-set, and correctly captured by the fitted mathematical

model. The estimated parameters indicated the dependance of the dynamics

on the feedback loop strength. In particular we estimated the positive feed-

back loop to be faster than how it was estimated in literature; this should

ensure us to be in the oscillatory region for the network.

Currently, we aim at characterizing the remaining two cassettes of the circuit.

This will allow us to check if the silencing process is strong enough as re-
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quired by the mathematical model for both the oscillator topologies, and slow

enough for Topology 1 only. Once we will have a complete characterisation

of the single network cassettes, we will will perform time-lapse experiments

to follow the dynamics of the entire circuit for the both topologies. Finally,

it will be of interest to study the problem of synchronization of a population

of oscillators.
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Figure 7.6: Experimental data and model predictions of the circuit
for varying concentrations of Doxycycline (1 g/mL for (A) and (C),
100 ng/mL for (B) and 10 g/mL for (D)). The sample time is equal
to 15 min. The cells were treated with the antibiotic at t=0 [min]. Model
predictions are reported in red while experimental results are represented in
blue. In (A) the cells were kept at 37 ◦C and observed up to 37 hours. In
(B)-(D) the cells were kept at 32 ◦C and observed up to 61 hours. In (E)
we report the comparison of the dynamics of the circuit obtained by varying
the strength of the positive feedback loop. Red line=model simulation of
the system including the positive feedback loop using the inferred parameter
values (Table A.5). Green line=model simulation of the system reducing the
strength of the positive feedback loop. Black line=model simulation of the
system removing the positive feedback loop.



Chapter 8

Concluding remarks and future

work

In this Thesis, modelling and analysis of gene regulatory networks has been

discussed. Firstly, we presented an overview about gene regulatory networks

and modelling strategies . We then moved to the analysis of a novel synthetic

network in yeast. Finally, we presented preliminary results about a synthetic

oscillator in mammalian cells.

More specifically, in Chapter 3 we introduced IRMA, the synthetic network

we built in yeast to benchmark modelling approaches. In this Chapter we

presented the design, topology and construction of the network.

In Chapter 4 we detailed the differential equations based mathematical mod-

elling of IRMA. We illustrated all the steps required: model derivation, ex-

perimental design, parameter identification and model validation. Of note, it

was necessary to go through iterative refinement steps both in the model and
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in the experimental data-set. The mathematical modelling was fundamental

to design ad hoc experiments to clarify the behaviour of the network. Dur-

ing the modelling process, we needed to simplify some aspects of the model

and to increase the level of detail of others, always taking into account the

amount and quality of experimental data. The framework we presented can

be applied equally well to naturally occurring networks in the cell, thus trans-

forming the drawing of a biological pathway into a computational model.

Chapter 5 dealt with the need to modify a synthetic network after its biolog-

ical implementation, that is common practice in Synthetic biology. In par-

ticular, we showed how to use novel tools from numerical bifurcation theory

(e.g. DDE-BIFTOOL [35], able to deal with delayed systems), together with

recent results on the link between the dynamics and topology of networks, in

order to redesign IRMA. The aim was to understand if and how IRMA could

be turned into a robust and tunable synthetic oscillator or a bistable switch.

IRMA showed great flexibility. Its topology can be re-engineered in a number

of ways in order to achieve the desired dynamical behaviour. We analysed

three topologies for the oscillator case and one for the switch case. The major

conclusion we drew from our results is that, aiming at constructing a robust

and tunable oscillator, the best option is to include in the topology both a

delayed negative feedback loop and a fast positive one. In addition, we dis-

covered that, by reducing the topology of the network to a single positive

feedback loop, IRMA can be turned into a bistable system. Of note, all the

proposed changes are viable in vivo.

Chapter 6 focused on the response of the non-oscillatory and the oscillatory
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version of the yeast synthetic network to an external periodic input. Such

forcing can lead to entrainment, that means that the period of the forced

oscillator is exactly the one of the external signal. We analysed the entrain-

ment both via simulation and analytically, using recent contraction theory

results. We found that only the non-oscillatory version of the network can be

globally entrained to the periodic input. Chaotic attractor can be obtained if

the forced system presents autonomous oscillations, depending on the period

and duty of oscillations of the input.

Finally, in Chapter 7 we presented the modelling and synthesis of a novel

oscillator in mammalian cells based on microRNA and lentiviral infection

techniques. The original topology is composed by two genes, and consists of

a positive auto-feedback loop and a negative one. By performing bifurcation

and continuation analysis of a delay differential equation model, we detected

the oscillatory parameter region, and studied the robustness of the oscillator.

Our analysis confirmed that the circuit can indeed behave as an oscillator if

the dynamics of the positive feedback loop are enough faster than the neg-

ative loop ones, and if the silencing is strong. The analysis also suggested

to encompass in the negative feedback loop a third gene, in order to slow

down its dynamics. Moreover, we presented preliminary in vivo data-set the

allowed us to characterise the positive feedback loop of the circuit. The dy-

namics of the feedback loop were well defined in the in vivo data-set, and

correctly captured by the fitted mathematical model. The estimated param-

eters indicated the dependance of the dynamics on the positve feedback loop

strength. In particular we estimated the positive feedback loop to be faster
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than how it was estimated in literature; this should ensure us to be in the

oscillatory region for the network.

8.1 Future work

8.1.1 Yeast synthetic network

As showed in Chapter 4, we had some problems in capturing the steady state

levels of the genes composing IRMA. We attributed them to the unmodelled

effect of protein dynamics, which have been removed from the original model

due to the lack of experimental measurements. To further address this issue,

we are currently modifying the network in order to include a fluorescent tag

for all the genes.

The re-engineering of IRMA in order to turn it into an oscillator currently

is under experimental investigation. In particular, following the model’s sug-

gestions presented in Chapter 5, we are replacing the HO promoter with

the ANB1 promoter, the ASH1 promoter with the EGT2 promoter and the

ASH1 gene with the ROX1 gene. Moreover, we are currently setting up a

novel experimental platform based microfluidics [10]. Once the oscillator will

be implemented, this will allow to provide it various kinds of periodic in-

puts, and check in vivo the presence of entrainment we analysed in vitro in

Chapter 6.
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8.1.2 Synthetic oscillator in mammalian cells

The first version (we named as Topology 1) of the synthetic oscillator dis-

cussed in Chapter 7 has been already synthesized and currently is under

experimental investigation. We now aim at characterizing the second cas-

settes of the circuit (as we reported in Chapter 7, the first cassette, that is

the one containing the tTA gene, has already been characterised). This will

allow us to understand if the silencing process is strong and slow enough as

required by the mathematical model to obtain oscillations. Once we will have

a complete characterisation of the single network cassettes, we will perform

time-lapse experiments to follow the dynamics of the entire circuit, and check

the validity of model predictions.

In parallel, we are synthesising the cassette needed to implement the re-

engineered version of the oscillator.

Finally, it will be of interest to study the problem of synchronization of a

population of oscillators.



Appendix A

Parameters of the

mathematical models

In this Appendix we report the parameters of the mathematical models pre-

sented in Chapters 4 (derived and identified models of the IRMA), 5 (models

of the re-engineering of IRMA in order to turn it into an oscillator, or a

bistable switch), 6 (analysis of the response of IRMA to a external peri-

odic input) and 7 (models of the two topologies of the synthetic oscillator in

mammalian cells).
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Parameter Model B1 Model B2 Model B3 Model B4 Model C Model D Model
D ref.

Experim.
id.

k1         [a.u.] 0.329  9.637 1.757 10      1.884   1          1          1          

k2         [a.u.] 8.027  0.002 0.071 0.001 30        0.035   0.035   0.035   

k3         [a.u.] 3.387  0.711 0.886 0.240 0.229   0.037   0.037   0.037   

k4         [a.u.] 4.003 0.853 1.011 0.133 0.216   0.09   Glu  
0.01   Gal    

0.9    Glu  
0.1    Gal    

0.09     Glu   
0.01     Gal    

k5         [a.u.] 1.750 1.972 7.375 1.313 0.16     1.884   1.884   1.884   

k6         [a.u.] 0.951 0.107 7.191 0.116 0.160   1.884   1.884   1.884   

1        [a.u. min.-1] 0 0 0 0 0 0 0 —

2        [a.u. min.-1] 0 0 0 0 1.10 10-4 1.49 10-4 1.49 10-4 —

3        [a.u. min.-1] 0 0 0 0 3.2 10-4 3 10-3 3 10-3 —

4        [a.u. min.-1] 0 0 0 0 0 7.4 10-4 7.4 10-4 —

5        [a.u. min.-1] 0 0 0 0 7.37*10-5 6.1 10-4 6.1 10-4 —

v1         [a.u. min.-1] 1 1 1 1 0.065 0.04 0.04 —

v2         [a.u. min.-1] 1 1 1 1 0.002 8.82 10-4 8.82 10-4 —

v3         [a.u. min.-1] 1 1 1 1 0.025 0.002  Glu
0.020  Gal

0.017    Glu
0.155    Gal

v3 Glu / v3 Gal  
       9 

v4         [a.u. min.-1] 1 1 1 1 0.007 0.014 0.014 —

v5         [a.u. min.-1] 1 1 1 1 0.002 0.018 0.018 —

vtr         [a.u. min.1] — — — — — — 0.080 —

d1         [min-1] 6.632 9.946 0.964 10      0.033 0.022 0.022 —

d2         [min-1] 0.273 1.268 0.013 0.124 0.042 0.047 0.047 —

d3         [min-1] 0.109 0.640 0.001 0.297 0.047 0.421 0.590 —

d4         [min-1] 1.712 1.335 0.405 2.228 0.141 0.098 0.098 —

d5         [min-1] 1.186 8.644 0.133 9.885 0.018 0.050 0.050 —

dpr        [min-1] — — — — — — 0.0144 —

h1         
1 1 1 1 1 1 1 1

h2         
1 1 1 1 1 1 1 1

h3          
1 1 2 2 1 1 1 1

h4         
1 1 2 2 1 4 4 4

h5         
1 1 1 1 1 1 1 1

h6         
1 1 1 1 1 1 1 1

h7         
— — — — 1 4 4 4

K1        [a.u.-1min-1] 100 100 100 100 — — — —

K2        [min-1] 1 1 1 1 — — — —

K3        [nM-1min-1] 0.1 0.1 0.1 0.1 — — — —

K4        [min-1] 1 1 1 1 — — — —

1         [min-1] — — — — 0.223 0.201 0.201 —

2         [min-1] — — — — 0.285 0.167 0.167 —

[a.u.] — — — — 10-4     Glu
5.55   Gal 

0.2 Glu
0.6    Gal

0.2 Glu
0.6    Gal

0.2 Glu
0.6    Gal

[min] — — — — 100 100 100 —

GAL [nM] 5.55 107 5.55 107 5.55 107 5.55 107 — — — —

J (cost 
function)

4.37 7.951 2.83 6.819 16.79 21.83 22

Table A.1 Parameters of the IRMA models.
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Parameter Nominal  
Value       

Scenario 1
(A, B)

Scenario 2 
Scenario 3

Scenario 4
(A, B)

k1         [a.u.] 1               1        —        0.0477              

k2         [a.u.] 0.035   0.035  0.00035 —          

k3         [a.u.] 0.037   0.037   0.037   0.037   

k4         [a.u.] 0.01       0.01      0.01     0.01       

k5         [a.u.] 1.884   1.884   1.884   1.884   

k6         [a.u.] 1.884   0.0477  0.0477 1.884   

1        [a.u. min.-1] 0 0 0 0

2        [a.u. min.-1] 1.49 10-4 1.49 10-4 1.49 10-4 1.49 10-4

3        [a.u. min.-1] 3 10-3 3 10-3 3 10-3 3 10-3

4        [a.u. min.-1] 7.4 10-4 7.4 10-4 7.4 10-4 7.4 10-4

5        [a.u. min.-1] 6.1 10-4 6.1 10-4 6.1 10-4 6.1 10-4

v1         [a.u. min.-1] 0.04 0.04 0.04 0.04

v2         [a.u. min.-1] 8.82 10-4 0.026    (A) 
0.001    (B)

0.026   0.026     (A) 
8.82 10-4    (B)

v3         [a.u. min.-1] 0.020 0.020 0.020 0.020 

v4         [a.u. min.-1] 0.014 0.014 0.014 0.014

v5         [a.u. min.-1] 0.018 0.018 0.018 0.018

d1         [min-1] 0.022 0.022 0.022 0.022 

d2         [min-1] 0.047 0.047 0.047 0.047 

d3         [min-1] 0.421 0.421 0.421 0.421 

d4         [min-1] 0.098 0.098 0.098 0.098 

d5         [min-1] 0.050 0.050 0.050 0.050 

h1         
1 1 —        4

h2         
1 4 1 —        

h3          
1 1 4 4              (A) 

1            (B)
h4         

4 4 4 4

h5         
1 1 1 1

h6         
1 4 4 1

h7        
4 4 4 4

[a.u.] 0.6     0.6    0.6    0.6    

[min] 100 100 0 0

Table A.2 Parameters of the actual version of IRMA and of the
re-engineered versions.
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Parameter Reference  
Value

Topology 1 
Model 1 

Topology 1 
Model 2 

K1        [nM] 3 3 3 
K2        [nM] — 0.1  0.3       

1        [nM min.-1] 0.085 0.085  0.085 
v1         [nM  min.-1] 0.055 0.055 0.055 
v2         [min.-1] 0.02 0.02  0.02 
v3         [min.-1] 0.02 0.02 0.02 
Kf        [min.-1] 0.0154 0.0154 0.0154 
KD       [min.-1] 0.00005 0.00005   —   
d1         [min.-1] 0.0173 0.0173 0.0173 
d2         [min.-1] 0.0231 0.0231 0.0231 
d3         [min.-1] 0.054 0.054 0.054 
d4         [min.-1] 0.0058 0.0058 0.0058 
d5         [min.-1] 0.00008 0.00008 —   
h1          2 2 2 
h2          — 4 4 

           [min-1] — 2.8 2.8 
G1         — 100 50 
G2         — 5 2 

          [min] — — 60 
D        [nM] — 0 0 

 

Table A.3 Parameters of the oscillator in mammalian cells, Topology 1.
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Parameter Reference  
Value

Topology 2 
Model 1 

Topology 2 
Model 2 

K1        [nM] 3 3 3 
K2        [nM] — 0.1  0.3       
K3        [nM] 3  3 3 

1        [nM min.-1] 0.085 0.085  0.085 

2        [nM min.-1] 0.056 0.056 0.056 
v1         [nM  min.-1] 0.055 0.055 0.055 
v2         [min.-1] 0.02 0.02  0.02 
v3         [min.-1] 0.02 0.02 0.02 
v4         [nM min.-1] 0.055 0.055 0.055 
v5         [min.-1] 0.02 0.02 0.02 
Kf        [min.-1] 0.0154 0.0154 0.0154 
KD       [min.-1] 0.00005 0.00005   —   
d1         [min.-1] 0.0173 0.0173 0.0173 
d2         [min.-1] 0.0231 0.0231 0.0231 
d3         [min.-1] 0.0173  0.0173 0.0173 
d4         [min.-1] 0.0658 0.0658 0.0658 
d5         [min.-1] 0.054 0.054 0.054 
d6         [min.-1] 0.0058 0.0058 0.0058 
d7         [min.-1]  0.0008 0.0008 — 
h1          2 2 2 
h2          — 4 4 
h3          2 2 2 

           [min-1] — 2.8 2.8 
G1         — 100 30 
G2         — 5 2 
G3         — 5 2 

          [min] — — 60 
D        [nM] — 0 0 
P          [min] — 0 0 

 

Table A.4 Parameters of the oscillator in mammalian cells, Topology 2.
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Table A.5 Parameters of the inducible positive feedback loop in mammalian
cells.



Appendix B

Hybrid Genetic Algorithm

B.1 Problem statement

We can formulate the problem of estimating parameter values in the model

derived above as a non-linear programming problem (NLP) with differential-

algebraic constraints:

min
γ

J(x, u; γ)

s.t. :

ẋ = f(x, u; γ)

g(x(t), u(t); γ) ≤ 0

h(x(t), u(t); γ) = 0

(B.1)

where x is the state vector, u is the vector of inputs acting on the systems (e.g.

galactose in our case) and γ is the vector of all parameter to be identified.

Moreover, J is an appropriate cost function to be minimized, f is the vector
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field of the system dynamics, g and h represent constraints on the variable

(e.g. the non-negativeness of the state variables).

B.2 Description of the algorithm

A Genetic Algorithm (GA) randomly initializes a population of individuals

(parameters belonging to the space of potential solutions) and then let its

members evolve towards better and better regions of the search space by

the iterative application of a randomized process of recombination, mutation

and selection. An evaluation function, related to the objective function to

be minimized, determines the quality of each search point at each iteration

step. The population is then ordered according to the evaluation criteria. On

the basis of this ordering, a fitness is associated to each individual which

determines the probability that the individual will be selected to become the

parent of new individuals; the fittest individuals, yielding the best values of

the objective function, will have the highest probabilities to be selected.

Although GAs are a quite classical optimization technique in the engineering

area, they have not been extensively tested in Biochemistry. A survey on

modelling and identification in the framework of molecular biology can be

found in [21] and [78]. In particular a hybrid algorithm or HGA is presented

that is a combination of GA and non-linear least-square method. The main

idea is to merge the global-search properties of GAs with the fast local con-

vergence of Least Square (LS) methods.

Specifically, the HGA works as follows. Let R, N be the sets of real number
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and natural number respectively. Let n be the number of parameters to be

identified, I ∈ Rn the hypercube of their possible values; we mark with a

bold character each n-tuple in I, as for example p = (p1, . . . , pn), and call it

individual. Let S ∈ I ∈ Rn be the set of the 2n vertices of I. Moreover:

• P ∗(k) = (p1(k), . . . ,pμ(k)) ∈ Iμ is the population at generation k,

consisting of μ individuals pi(k) ∈ I, with μ a parameter to be chosen;

• P = (p1, . . . ,pρ) ∈ Sρ is the vertices population, consisting of ρ indi-

viduals pi ∈ S, with ρ chosen as the minimum between the maximum

number of vertices (2n) and a properly fixed percentage of population

dimension (αμ), with α ∈ [0, 1];

• P (k) = (p1(k), . . . ,pμ(k),p1, . . . ,pρ) ∈ Iμ+ρ is the enlarged population

at generation k on which recombination and mutation operators work.

It is obtained by merging the population at generation k (i.e., P ∗(k))

and the vertices population (P ), thus consisting of μ+ ρ individuals;

• J : I → R is the evaluate function, in this paper coinciding with the

objective function to be optimized;

• β : Iμ+ρ → Nμ+ρ is the fitness function providing an estimate of the

appropriateness of the population on the basis of the value of function

J at each individual;

• λ is the offspring population size, i.e. the number of individuals created

at each generation;
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• s : Iλ+μ → Iμ is the selection operator which selects the parent popula-

tion at the next generation on the basis of the parents and the offspring

population at the current generation.

Further we will use two operators, recombination rΘr and mutation mΘm:

the former one produces a new population of λ individuals by randomly

combining the characteristics of μ+ ρ individuals; the latter one produces λ

individuals by randomly modifying the characteristics of λ individuals. The

algorithm starts by defining the initial population, generation 0, which is

determined selecting randomly μ individuals pi(0) ∈ I, i = 1, . . . , μ, and ρ

individuals pi ∈ S, i = 1, . . . , ρ. A fitness is then computed for each member

of the initial population. After this initialization, the algorithm can evolve.

An inner cycle simulates the evolution of the population using the genetic

algorithm: the recombination operator rΘr creates λ new individuals from the

enlarged population at generation k; the mutation operator mΘm modifies

these new individuals obtaining the offspring population; finally the parent

population for the next generation is selected and a fitness is associated to

each individual. In the outer cycle, after the genetic algorithm is interrupted

on the basis of the inner termination criterion, a non-linear least square

method is applied to the best individuals of the current population in order

to locally optimize the corresponding solutions. The improved individuals are

then replaced in the current population. The hybrid algorithm ends when

the outer termination criterion returns the true value. The output of the

algorithm is then computed applying the non-linear least square procedure

to the best individual. The outline of the algorithm is reported below:
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% Definition of the initial population

let k := 0;

P ∗(0) := (p1(0), . . . ,pμ(0));

P := (p1, . . . ,pρ);

P (0) := (P ∗(0), P );

compute β(P (0)) := (β1, . . . , βμ+ρ);

% Hybrid algorithm cycle

while not(outer termination criterion) do

% Genetic algorithm cycle

while not(inner termination criterion) do

recombine : P ′(k) := rΘr(P (k));

mutate : P ′′(k) := mΘm(P
′(k));

evaluate : (P ′′(k));

select : P ∗(k + 1) := s(P ′′(k), P ∗(k));

insert : P (k + 1) := (P ∗(k + 1), P );

compute β(P (k + 1)) := (β1, . . . , βμ+ρ);

k := k + 1;

od

nonlinear least square(best individuals);

put the NLS optimized individuals into the population P (k);

od

% Result

nonlinear least square(best individual).
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Having established the fundamental principles of the GA structure and op-

erational procedure, a more detailed explanation of the algorithm operators

is possible.

(a) Parent Selection. In each cycle of evolution, a subsequent generation is

created from individuals of the current population. This requires that a

group of individuals, generally called parents, are randomly selected via

a specific selection routine based on their own fitness value: the individ-

uals with the best fitness value have the highest probability of becoming

parents. In this work a Montecarlo based technique, the Roulette Wheel

Parent Selection Technique, is used.

(b) Reproduction Operator.

- Recombination

The recombination operator rΘr creates one new individual mixing

the characteristics of two or more parents. In our work, the new

individual p′ = (p′1, . . . , p
′
n) is generated component-wise from 2n

parents; in particular for each component i (i = 1, . . . , n), a pair of

parents, say pSi,i and pTi,i, are selected and their i-th components

blended according to a convex combination

p′i = pSi,i + χi(pTi,i − pSi,i),

where χi ∈ [0, 1] is a uniformly distributed random variable.

- Mutation
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The mutation operator mΘm modifies randomly the components

of an individual p′ to obtain another one p′′. Here we use

p′′i = p′i +N (0, σ),

for i = 1, . . . , n, where N (0, σ) is a gaussian stochastic variable

with mean 0 and standard deviation σ. We usually let this stan-

dard deviation decrease from one generation to the next one in

order to induce clustering around the ‘good’ regions of the param-

eter space.

During the creation of a new generation, recombination and mutation

occur with certain probabilities whose choice is a delicate point. In-

creasing the recombination probability allows the mix of genetic infor-

mation, but it may also destroy the new information previously intro-

duced by mutation. On the other hand, when the mutation probability

increases, the genetic search is transformed into a random one, but this

may help re-introduction of lost genetic material. In our approach the

recombination probability decreases over generations while the muta-

tion probability increases.

(c) Selection.

The algorithm implements a deterministic selection function; the fi-

nal step in the production of a generation evaluating new individuals

through the objective function and then selecting the best μ individ-
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uals among the old and the new ones. The selection does not allow

duplication in the resulting population.

(d) Insert Vertices.

Despite the choice of the mutation operators, an early population clus-

tering may always happen during evolution causing the non-complete

exploration of the parameter space. To avoid this drawback, at each

evolution step the GA injects into the population fresh information lo-

cated far away from the clustering by including some of the parameter

space vertices as new population members.

(e) Termination Test.

Different criteria can be selected for terminating the GA. We usually

specify a maximum number of generations.

(f) Evaluate Function.

An appropriate evaluate function has to be specified depending on the

optimization problem.
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Matlab code of the

mathematical models

C.1 Models of IRMA

Listing C.1: Model B1 of IRMA

1 function dy = model b1 ( t , y )

2

3 u= 55500000;

4 K= [0 . 3 297 8 .0278 6 .6325 3 .3874 0 .2732 4 .0031 0 .1091 1 .7501 1 .7122 0 .9515

1 .1861 100 1 0 .1000 1 ] ;

5

6 % CBF1

7 dy (1 )= (y (3 ) /(K(1)+y (3) ) ) ∗(K(2) /(K(2)+y (5) ) )−K(3) ∗y (1 ) ;
8 % GAL4

9 dy (2 )= (y (1 ) /(K(4)+y (1) ) )−K(5) ∗y (2 ) ;
10 % SWI5

11 dy (3 )= (y (2 )−y (6 ) ) /(K(6)+(y (2 )−y (6 ) ) )−K(7) ∗y (3 ) ;
12 % GAL80

13 dy (4 )= (y (3 ) /(K(8)+y (3) ) )−K(9) ∗y (4 ) ;
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14 % ASH1

15 dy (5 )= (y (3 ) /(K(10)+y (3) ) )−K(11) ∗y (5 ) ;
16 % Gal4Gal80

17 dy (6 )= K(12) ∗( y (2 )−y (6 ) ) ∗( y (4 )−y (6 )−y (7 ) )−K(13) ∗y (6 ) ;
18 % GALGal80

19 dy (7 )= K(14) ∗u∗( y (4 )−y (6 )−y (7 ) )−K(15) ∗y (7 ) ;
20 dy=dy ’ ;

21

22 return
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Listing C.2: Model B2 of IRMA

1 function dy = model b2 ( t , y )

2

3 u= 55500000;

4 K= [9 . 6 379 0 .0022 9 .9461 0 .7112 1 .2683 0 .8537 0 .6404 1 .9727 1 .3355 0 .1072

8 .6448 100 1 0 .1 1 ] ;

5

6 % CBF1

7 dy (1 )= (y (3 ) /(K(1)+y (3) ) )+(K(2) /(K(2)+y (5) ) )−K(3) ∗y (1 ) ;
8 % GAL4

9 dy (2 )= (y (1 ) /(K(4)+y (1) ) )−K(5) ∗y (2 ) ;
10 % SWI5

11 dy (3 )= (y (2 )−y (6 ) ) /(K(6)+(y (2 )−y (6 ) ) )−K(7) ∗y (3 ) ;
12 % GAL80

13 dy (4 )= (y (3 ) /(K(8)+y (3) ) )−K(9) ∗y (4 ) ;
14 % ASH1

15 dy (5 )= (y (3 ) /(K(10)+y (3) ) )−K(11) ∗y (5 ) ;
16 % Gal4Gal80

17 dy (6 )= K(12) ∗( y (2 )−y (6 ) ) ∗( y (4 )−y (6 )−y (7 ) )−K(13) ∗y (6 ) ;
18 % GALGal80

19 dy (7 )= K(14) ∗u∗( y (4 )−y (6 )−y (7 ) )−K(15) ∗y (7 ) ;
20 dy=dy ’ ;

21

22 return
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Listing C.3: Model B3 of IRMA

1 function dy = model b3 ( t , y )

2

3 u= 55500000;

4 K= [1 . 7 572 0 .0712 0 .9643 0 .8867 0 .0137 1 .0117 0 .0019 7 .3755 0 .4056 7 .1914

0 .1339 100 1 0 .1 1 ] ;

5

6 % CBF1

7 dy (1 )= (y (3 ) /(K(1)+y (3) ) ) ∗(K(2) /(K(2)+y (5) ) )−K(3) ∗y (1 ) ;
8 % GAL4

9 dy (2 )= (y (1 ) ˆ2/(K(4)ˆ2+y (1) ˆ2) )−K(5) ∗y (2 ) ;
10 % SWI5

11 dy (3 )= (y (2 )−y (6 ) ) ˆ2/(K(6) ˆ2 +(y (2 )−y (6 ) ) ˆ2)−K(7) ∗y (3 ) ;
12 % GAL80

13 dy (4 )= (y (3 ) /(K(8)+y (3) ) )−K(9) ∗y (4 ) ;
14 % ASH1

15 dy (5 )= (y (3 ) /(K(10)+y (3) ) )−K(11) ∗y (5 ) ;
16 % Gal4Gal80

17 dy (6 )= K(12) ∗( y (2 )−y (6 ) ) ∗( y (4 )−y (6 )−y (7 ) )−K(13) ∗y (6 ) ;
18 % GALGal80

19 dy (7 )= K(14) ∗u∗( y (4 )−y (6 )−y (7 ) )−K(15) ∗y (7 ) ;
20 dy=dy ’ ;

21

22 return
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Listing C.4: Model B4 of IRMA

1 function dy = model b4 ( t , y )

2

3 u= 55500000;

4 K= [ 9 . 9 9 9 0 .0016 9 .9999 0 .2401 0 .1241 0 .1333 0 .2975 1 .3132 2 .2287 0 .1167

9 .8858 100 1 0 .1 1 ] ;

5

6 % CBF1

7 dy (1 )= (y (3 ) /(K(1)+y (3) ) )+(K(2) /(K(2)+y (5) ) )−K(3) ∗y (1 ) ;
8 % GAL4

9 dy (2 )= (y (1 ) ˆ2/(K(4)ˆ2+y (1) ˆ2) )−K(5) ∗y (2 ) ;
10 % SWI5

11 dy (3 )= (y (2 )−y (6 ) ) ˆ2/(K(6) ˆ2+(y (2 )−y (6 ) ) ˆ2)−K(7) ∗y (3 ) ;
12 % GAL80

13 dy (4 )= (y (3 ) /(K(8)+y (3) ) )−K(9) ∗y (4 ) ;
14 % ASH1

15 dy (5 )= (y (3 ) /(K(10)+y (3) ) )−K(11) ∗y (5 ) ;
16 % Gal4Gal80

17 dy (6 )= K(12) ∗( y (2 )−y (6 ) ) ∗( y (4 )−y (6 )−y (7 ) )−K(13) ∗y (6 ) ;
18 % GALGal80

19 dy (7 )= K(14) ∗u∗( y (4 )−y (6 )−y (7 ) )−K(15) ∗y (7 ) ;
20 dy=dy ’ ;

21

22 return
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Listing C.5: Model C of IRMA

1 function dy = model c ( t , y , Z)

2

3 g= 1∗10ˆ−2;

4 u= 5.55∗10ˆ2∗ ( ( sign ( t−3010)+1)/2 − ( sign ( t−7000)+1)/2 ) ;

5 K= [1 . 8 840 30 0 .0523 0 .2294 14.6060 0 .2160 2 .8550 0 .1600 19.6000 0 .1602

9 .7484 77 .7600 39 .6000 0 .1031 1 .1615 0 .6378 0 .0028 0 .0167 1 .5120 0 .0019

0 0 .0384 0 .0196 0 .0072 0 0 .9896 100 0 .8 1 1 ] ;

6

7 % CBF1

8 dy (1 , 1 )= K(16) ∗(K(14) ∗(Z(3 ) ˆK(26) / ( (K(1) ˆK(26)+Z(3) ˆK(26) ) ∗(1+(y (5 ) ˆK(29) /K

(2) ) ) ) )−K(3) ∗y (1 )+K(21) ) ;

9 % GAL4

10 dy (2 , 1 )= K(17) ∗(K(30) ∗( y (1 ) /(K(4)+y (1) ) )−(K(5)−(K(12) ∗ ( ( sign ( t−3000)−1)/2−(

sign ( t−3010)−1)/2) ) ) ∗y (2 )+K(22) ) ;

11 % SWI5

12 dy (3 , 1 )= K(18) ∗(K(19) ∗( y (2 ) /((1+((K(27) ∗y (4 ) ) /( g+u) ) ) ∗(K(6)+y (2) ) ) )−K(7) ∗y
(3 )+K(23) ) ;

13 % GAL80

14 dy (4 , 1 )= K(24) ∗ ( ( y (3 ) ˆK(28) /(K(8) ˆK(28)+y (3) ˆK(28) ) )−(K(9)−(K(13) ∗ ( ( sign ( t

−3000)−1)/2−(sign ( t−3010)−1)/2) ) ) ∗y (4 )+K(25) ) ;

15 % ASH1

16 dy (5 , 1 )= K(20) ∗(K(15) ∗( y (3 ) ˆK(28) /(K(10) ˆK(28)+y (3) ˆK(28) ) )−K(11) ∗y (5 )+K(22)

) ;

17

18 end
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Listing C.6: Model D of IRMA

1 function dy=model d ( t , y , Z)

2

3 % Time de lay = 100[min ]

4 K= [0 0 .0404 1 0 .0356 0 .0221 0 .0001 0 .0008 0 .0372 0 .0477 0 .2013 0 .0029

0 .0022 0 .2000 0 .0937 0 .4216 0 .0007 0 .0146 1 .8140 0 .0980 0 .1676 0 .0006

0 .0181 1 .8140 0 .0500 9 3 9 ] ;

5 % input ( g a l a c t o s e ) i s g iven from t=3010 to t =6000.

6 u= ( ( sign ( t−3010)+1)/2 −(sign ( t−6000)+1)/2) ;

7

8 % CBF1

9 dy (1 , 1 )= K(1)+ K(2) ∗(Z(3 ) / ( (K(3)+Z(3) ) ∗(1+(y (5 ) /K(4) ) ) ) )−K(5) ∗y (1 ) ;
10 % GAL4

11 dy (2 , 1 )= (K(6)+K(7) ∗( y (1 ) /(K(8)+y (1) ) )−(K(9)−(K(10) ∗ ( ( sign ( t−3000)−1)/2−(

sign ( t−3010)−1)/2) ) ) ∗y (2 ) ) ;
12 % SWI5 ( note t ha t the va lue s o f 3 parameters change depending on the

13 % medium)

14 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) . ˆ 4 . / ( (K(14) ∗(1−u)+u∗(K
(14) /K(27) ) ) .ˆ4+y (2) .ˆ4 .∗ (1+( y (4 ) . ˆ 4 . / ( (K(13) ∗(1−u)+u∗(K(13) ∗K(26) ) ) . ˆ 4 )

) ) ) )−K(15) ∗y (3 ) ;
15 % GAL80

16 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−(K(19)−(K(20) ∗ ( ( sign ( t−3000)−1)/2−(

sign ( t−3010)−1)/2) ) ) ∗y (4 ) ;
17 % ASH1

18 dy (5 , 1 )= K(21)+ K(22) ∗( y (3 ) /(K(23)+y (3) ) )−K(24) ∗y (5 ) ;
19

20 end
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C.2 Models of the re-engineered versions of

IRMA

Listing C.7: Oscillator model Scenario 1 A

1 function dy = scena r i o1a ( t , y , Z)

2

3 % Time de lay = 100 [min ]

4 K= [0 0 .0404 1 0 .0356 0 .0221 0 .0001 0 .0240 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

5 u= 1 ;

6

7 % CBF1

8 dy (1 , 1 )= K(1)+ K(2) ∗(Z(3 ) / ( (K(3) )+Z(3) ) ) ∗ ( (K(4) ∗1) ˆ4/((K(4) ∗1)ˆ4+y (5) ˆ4) )−K
(5) ∗y (1 ) ;

9 % GAL4

10 dy (2 1)= K(6)+K(7) ∗( y (1 ) /(K(8)+y (1) ) )−K(9) ∗y (2 ) ;
11 % SWI5

12 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4) )−K(15) ∗y (3 ) ;
13 % GAL80

14 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
15 % ASH1

16 dy (5 , 1 )= K(21)+ K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
17

18 end
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Listing C.8: Oscillator model Scenario 1 B

1 function dy = scenar i o1b ( t , y , Z)

2

3 % Time de lay = 100 [min ]

4 K= [0 0 .0404 1 0 .0356 0 .0221 0 .0001 0 .0015 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

5 u= 1 ;

6

7 % CBF1

8 dy (1 , 1 )= K(1)+ K(2) ∗(Z(3 ) / ( (K(3) )+Z(3) ) ) ∗ ( (K(4) ∗1) ˆ4/((K(4) ∗1)ˆ4+y (5) ˆ4) )−K
(5) ∗y (1 ) ;

9 % GAL4

10 dy (2 , 1 )= K(6)+K(7) ∗( y (1 ) /(K(8)+y (1) ) )−K(9) ∗y (2 ) ;
11 % SWI5

12 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4) )−K(15) ∗y (3 ) ;
13 % GAL80

14 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
15 % ASH1

16 dy (5 , 1 )= K(21)+ K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
17

18 end
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Listing C.9: Oscillator model Scenario 2

1 function dy = sc ena r i o 2 ( t , y )

2

3 K= [0 0 .0404 1 0.00035 0 .0221 0 .0001 0 .0260 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

4 u= 1 ;

5

6 % CBF1

7 dy (1 , 1 )= K(1)+ K(2) ∗(K(4) /(K(4)+y (5) ) )−K(5) ∗y (1 ) ;
8 % GAL4

9 dy (2 , 1 )= K(6)+K(7) ∗( y (1 ) ˆ4 /(K(8)ˆ4+y (1) ˆ4) )−K(9) ∗y (2 ) ;
10 % SWI5

11 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4∗(1+(y (4 ) ˆ4/((K(13) ∗(1−u)+u∗(K(13) ∗K(26) ) ) ˆ4) ) ) ) )−K
(15) ∗y (3 ) ;

12 % GAL80

13 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
14 % ASH1

15 dy (5 , 1 )= K(21)+K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
16

17 end
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Listing C.10: Oscillator model Scenario 3

1 function dy = sc ena r i o 3 ( t , y )

2

3 K= [0 0 .0404 1 0.00035 0 .0221 0 .0001 0 .0260 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

4 u= 1 ;

5

6 % CBF1

7 dy (1 , 1 )= K(1)+ K(2) ∗(K(4) /(K(4)+y (5) ) )−K(5) ∗y (1 ) ;
8 % GAL4

9 dy (2 , 1 )= K(6)+K(7) ∗( y (1 ) ˆ4 /(K(8)ˆ4+y (1) ˆ4) )−K(9) ∗y (2 ) ;
10 % SWI5

11 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4∗(1+(y (4 ) ˆ4/((K(13) ∗(1−u)+u∗(K(13) ∗K(26) ) ) ˆ4) ) ) ) )+ K

(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(15) ∗y (3 ) ;
12 % GAL80

13 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
14 % ASH1

15 dy (5 , 1 )= K(21)+K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
16

17 end
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Listing C.11: Bistable switch model Scenario 4 A

1 function dy = scena r i o4a ( t , y )

2

3 K=[0 0 .0404 0 .0477 0 .0356 0 .0221 0 .0001 0 .0260 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

4 u=1;

5

6 % CBF1

7 dy (1 , 1 )= K(1)+ K(2) ∗( y (3 ) ˆ4/((K(3) )ˆ4+y (3) ˆ4) )−K(5) ∗y (1 ) ;
8 % GAL4

9 dy (2 , 1 )= K(6)+K(7) ∗( y (1 ) /(K(8)+y (1) ) )−K(9) ∗y (2 ) ;
10 % SWI5

11 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4) )−K(15) ∗y (3 ) ;
12 % GAL80

13 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
14 % ASH1

15 dy (5 , 1 )= K(21)+ K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
16

17 end
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Listing C.12: Bistable switch model Scenario 4 B

1 function dy = scenar i o4b ( t , y )

2

3 K= [0 0 .0404 0 .0477 0 .0356 0 .0221 0 .0001 0 .0008 0 .0372 0 .0477 0 .2013 0 .0029

0 .0020 0 .2000 0 .0937 0 .4210 0 .0007 0 .0146 1 .8140 0 .0980 0 .0167 0 .0006

0 .0181 0 .0477 0 .0500 9 3 9 ] ;

4 u= 1 ;

5

6 % CBF1

7 dy (1 , 1 )= K(1)+ K(2) ∗( y (3 ) ˆ4/((K(3) )ˆ4+y (3) ˆ4) )−K(5) ∗y (1 ) ;
8 % GAL4

9 dy (2 , 1 )= K(6)+K(7) ∗( y (1 ) /(K(8)+y (1) ) )−K(9) ∗y (2 ) ;
10 % SWI5

11 dy (3 , 1 )= K(11)+(K(12) ∗(1−u)+u∗(K(12) ∗K(25) ) ) ∗( y (2 ) ˆ4/((K(14) ∗(1−u)+u ∗ ( (K(14)

) /K(27) ) )ˆ4+y (2) ˆ4) )−K(15) ∗y (3 ) ;
12 % GAL80

13 dy (4 , 1 )= K(16)+K(17) ∗( y (3 ) /(K(18)+y (3) ) )−K(19) ∗y (4 ) ;
14 % ASH1

15 dy (5 , 1 )= K(21)+ K(22) ∗( y (3 ) ˆ4/(K(23)ˆ4+y (3) ˆ4) )−K(24) ∗y (5 ) ;
16

17 end
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C.3 Models of the synthetic oscillator in mam-

malian cells

Listing C.13: Oscillator in mammalian cells, Topology 1, DDEs model

1 function dy = topology1 ( t , y , Z)

2

3 % To reproduce s imu la t ion r e s u l t s presented in the Thesis , f i x the de lay to

4 % 60 [min ] .

5 D= 0 ;

6 K= [0 . 0 550 0 .0850 2 3 0.01730 2 .8500 4 0 .3000 0 .0200 0 .0231 0 .0540 0 .0500

0 .0154 0 .0058 0 . 0 0 0 0 5 ] ;

7 G= [50 2 ] ;

8

9 % TTA mRNA

10 dy (1 , 1 )= G(1) ∗K(1) ∗(K(2)+(1−K(2) ) ∗ ( ( (K(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) /(K(4) +((K

(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) ) ) )−K(5) ∗y (1 )−K(6) ∗(Z(3 ) ˆK(7) /(K(8) ˆK(7)+Z(3) ˆ

K(7) ) ) ∗y (1 ) ;
11 % TTA pro te in

12 dy (2 , 1 )= K(9) ∗y (1 )−K(10) ∗y (2 ) ;
13 % MIR

14 dy (3 , 1 )= G(2) ∗K(1) ∗(K(2)+(1−K(2) ) ∗ ( ( (K(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) /(K(4) +((K

(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) ) ) )−(K(11)+K(15) ) ∗y (3 ) ;
15 % Unfolded dGFP

16 dy (4 , 1 )= K(9) ∗y (1 )−K(13) ∗y (4 )−K(14) ∗y (4 ) ;
17 % Folded dGFP

18 dy (5 , 1 )= K(13) ∗y (4 )−K(14) ∗y (5 ) ;
19 % Unfolded mcherry

20 dy (6 , 1 )= K(9) ∗y (3 )−K(13) ∗y (6 )−K(14) ∗y (6 ) ;
21 % Folded mcherry

22 dy (7 , 1 )= K(13) ∗y (6 )−K(14) ∗y (7 ) ;
23

24 end
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Listing C.14: Oscillator in mammalian cells, Topology 2, DDEs model

1 function dy = topology2 ( t , y , Z)

2

3 % To reproduce s imu la t ion r e s u l t s presented in the Thesis , f i x the de lay to

4 % 60 [min ] .

5 D= 0 ;

6 K= [0 . 0 550 0 .0850 2 3 0.01730 2 .850 4 0 .3000 0 .0200 0 .0231 0 .0540 0 .0500

0 .0154 0 .0058 0 .0173 0 .0200 0 .0658 0 .0550 0 .0560 3 0 . 0 0 0 0 5 ] ;

7 G= [30 2 2 ] ;

8

9 % TTA mRNA

10 dy (1 , 1 )= G(1) ∗K(1) ∗(K(2)+(1−K(2) ) ∗ ( ( (K(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) /(K(4) +((K

(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) ) ) )−K(5) ∗y (1 )−K(6) ∗(Z(5 ) ˆK(7) /(K(8) ˆK(7)+Z(5) ˆ

K(7) ) ) ∗y (1 ) ;
11 % TTA pro te in

12 dy (2 , 1 )= K(9) ∗y (1 )−K(10) ∗y (2 ) ;
13 % PIT mRNA

14 dy (3 , 1 )= G(2) ∗K(1) ∗(K(2)+(1−K(2) ) ∗ ( ( (K(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) /(K(4) +((K

(12) /(K(12)+D) ) ∗y (2 ) ) ˆK(3) ) ) )−K(15) ∗y (3 ) ;
15 % PIT pro t e in

16 dy (4 , 1 )= K(16) ∗y (3 )−K(17) ∗y (4 ) ;
17 % MIR

18 dy (5 , 1 )= G(3) ∗K(18) ∗(K(19)+(1−K(19) ) ∗ ( ( (K(12) /(K(12)+D) ) ∗y (4 ) ) ˆK(3) /(K(20)

+((K(12) /(K(12)+D) ) ∗y (4 ) ) ˆK(3) ) ) )−(K(11)+K(21) ) ∗y (5 ) ;
19 % Unfolded dGFP

20 dy (6 , 1 )= K(9) ∗y (1 )−K(13) ∗y (6 )−K(14) ∗y (6 ) ;
21 % Folded dGFP

22 dy (7 , 1 )= K(13) ∗y (6 )−K(14) ∗y (7 ) ;
23 % Unfolded mcherry

24 dy (8 , 1 )= K(9) ∗y (5 )−K(13) ∗y (8 )−K(14) ∗y (8 ) ;
25 % Folded mcherry

26 dy (9 , 1 )= K(13) ∗y (8 )−K(14) ∗y (9 ) ;
27

28 end
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Listing C.15: Positive feedback loop in mammalian cells

1 function dy = po s i t i v e l o o p ( t , y )

2

3 % Note t ha t the va lue o f Doxycyc l ine must be changed depending on the

4 % experiment . The parameters va lue s repor ted here are v a l i d f o r Data s e t 2 ;

f o r Data s e t 1 , parameter K(15) i s equa l to

5 % 0.002 .

6

7 D= 2.25∗10ˆ3∗ ( ( sign ( t−3000)+1)/2 − ( sign ( t−8000)+1)/2 ) ;

8 K= [0 . 0 550 0 .0850 2 3 0 .0173 0 0 0 0 .0200 0 .0231 0 .0540 0 .0500 0 .0154 0 .0058

0 .3500 90 0 . 0 0 1 4 ] ;

9

10 % TTA mRNA

11 dy (1 , 1 )= K(15) ∗(K(2)+(1−K(2) ) ∗ ( ( (G(2) /(G(2)+D) ) ∗y (2 ) ) ˆK(3) /(K(4) ˆK(3) +((K

(16) /(K(16)+D) ) ∗y (2 ) ) ˆK(3) ) ) )−K(5) ∗y (1 ) ;
12 % TTA pro te in

13 dy (2 , 1 )= K(9) ∗y (1 )−K(10) ∗y (2 ) ;
14 % Unfold dEYFProtein

15 dy (3 , 1 )= K(9) ∗y (1 )−K(13) ∗y (3 )−K(17) ∗y (3 ) ;
16 % Fold dEYFProtein

17 dy (4 , 1 )= K(13) ∗y (3 )−K(17) ∗y (4 ) ;
18

19 end



Appendix D

Experimental procedures

D.1 Experiments performed on the yeast syn-

thetic network

D.1.1 Construction of S. cerevisiae strains

To construct the IRMA containing strain, sequential PCR−based genomic

integrations were made with the cassettes described in the text below. All

the integrations were confirmed by PCR.

At first, two HA epitopes were cloned in pAG32 [43] among Hind III and Bgl

II sites. The 2xHA−hphMX4 cassette was amplified by PCR and inserted in

front of the stop codon of ASH1 gene in YM4271 strain resulting in P278

strain.

To generate P280 strain MET16 promoter (−446 to −1, ATG = +1) was

amplified from W303 and cloned in YIplac128 between Hind III and Sac
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I; GAL4ORF was then cloned between Sac I and Nde I thus resulting

in pMET16pGAL4. The MET16pGAL4−LEU2 cassette was integrated in

SHE2 locus (−11 to +751).

CBF1ORF was amplified from W303 and cloned among Bam HI and Pac I

of pFA6a−
GFP(S65T)−kanMX6 [113]. Then, the CBF1−GFP−kanMX6 cassette was

integrated downstream of the HO promoter (between −1 to +1758) of P280

strain, obtaining P324.

ASH1 promoter (−591 to −1) was cloned in Pst I and Bam HI of YIplac211

where the GAL80−3xFLAG was then inserted between Bam HI and Sac I.

The ASH1pGAL80−
3XFLAG−URA3 was integrated in SWI5 locus (−50 to +2299) thus yield-

ing P326. In this strain, ACE2 gene was also deleted (from −345 to +2314)

by integrating natMX4 cassette from pAG25 [43].

To buildGAL10pSWI5AAA−MYC9−KlTRP1, the SWI5AAA locus was tagged

at the C−terminus with nine Myc epitopes in K2072 strain that was kindly

provided by K. Nasmyth [79]. SWI5AAA −MYC9−KlTRP1 was then ampli-

fied by PCR from the resulting strain and cloned in YIplac204 between Eco

RI and Aat II. The GAL10 promoter (−523 to −1) was cloned in YIplac204

between Hind III and Eco RI yielding the vector containing the entire inte-

grated cassette.

Finally, GAL10pSWI5AAA−MYC9−KlTRP1 was integrated in CBF1 locus

(−1 to +1464) resulting in IRMA containing strain (P340).

Strains used for promoter strength measurements were constructed by inte-
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grating the “ad hoc” built promoters containing cassettes. The kanMX4−MET25p

cassette was amplified by PCR from plasmid pYM-N34 (EUROSCARF)

and integrated upstream of the starting codon of GAL4 (in P265, a wild

type strain), and upstream of the ATG of ASH1 and SWI5 (in P358, a

she2Δace2Δ strain) to obtain respectively P549, P362 and P364 strains.

In order to obtain strains which express the CBF1 TF at different levels, we

integrated at the 5’ of this gene constitutive promoters of variable strength

(CYC1, ADH1, TEF, GPD promoters) and the CUP1 inducible promoter,

obtaining P353, P351, P360, P354 and P365 strains, respectively. The pro-

moters were amplified (together with the kanMX4 resistence cassette) from

plasmids pYM-N10, pYM-N6, pYM-N18, pYM-N14,pYM-N1 (EUROSCARF).

The promoters of the network, chosen in such a way that for each of them

a single transcription factor (TF) is sufficient and essential to activate tran-

scription, were assembled upstream of non-self gene coding sequences. Fur-

ther details can be found in [15]. All data presented refer to mRNA levels of

the five IRMA genes and were measured by quantitative real-time RT-PCR

(q-PCR).

D.1.2 Data collection

For the preliminary “switch-on” data-set (used for the identification of Mod-

els B1, B2, B3 and B4), we collected samples every 20 minutes up to 5 hours

in four independent experiments and we measured mRNA levels of the five

IRMA genes by quantitative real-time RT-PCR (q-PCR). Out of the four

time-series, three were 3 hours long, and one lasted 5 hours. The averaged
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data-set is shown in Fig. 4.2 (A) and Fig. 4.3. We then performed one addi-

tional 5 hour “switch-on” time-series. The experimental set up is identical,

but we included as the first point of the time-series the expression level of

the network genes after growing cells overnight in glucose. The new averaged

“switch-on” data-set was used for the identification of Models C and D and

is shown in Fig. 4.2 (B).

The “switch-off” data-set (Fig. 4.2 (C)) is the average of 4 experiments per-

formed by shifting cells from galactose to glucose and collecting samples every

10 minutes up to 3 hours [15].

For the “Galactose steady-state” and “Glucose steady-state” data-set(Fig.

4.4 (A), (C)), the over-expression of each gene was performed in cells grown

either in glucose, or in galactose. The steady-state expression levels of IRMA

genes were measured by q-PCR.

For the promoters data-set, each of the transcription factor genes was stably

expressed at different levels in a wild-type strain, and the transcription of

the corresponding promoter genes were measured by q-PCR at steady-state,

for a total of 165 data points [15].
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D.2 Preliminary experiments performed on

the synthetic oscillator in mammalian cells

D.2.1 Construction of the inducible positive feedback

loop

To implement the gene circuit in a lentiviral vector, we used the ViraPower

Promotrless Lentiviral Gateway Expression System (Invitrogen) which takes

advantage of the site-specific recombination properties of bacteriophage lambda,

making the transfer of single DNA sequences faster than the usual cloning

strategies.

The pMAtTA-IRES-EGFP vector containing the transactivator tTA, the

IRES element and the enhanced green fluorescent protein (EGFP) was syn-

thesized by GENEART together with the recombination sites.

The d2EYFP was amplified from pd2EYFP-1 (clontech) by PCR with a

forward primer containing a NheI recognition sequence and a reverse primer

containing an EcoRV recognition sequence. The PCR product and pMAtTA-

IRES-EGFP were then digested with NheI-EcoRV restriction enzymes and

the d2EYFP ligated in place of EGFP, generating a new vector termed

pMAtTA-IRES-d2EYFP. The pMAtTA-IRES-d2EYFP was then linearized

with the AseI restriction enzyme and recombined with the pDONR221 (in-

vitrogen) following the manufacturer instruction. In this way we generated

pENTRtTA-IRES-d2EYFP vector with specific recombination sites.

The CMV-TET promoter was amplified from pTRE2 (clontech) by PCR.
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The PCR was performed with the Taq polymerase provided by Invitrogen

that adds a single deoxyadenosine (A) to the 3’ ends of PCR products.

This allows PCR inserts to ligate efficiently with the pENTR5’-TOPO vec-

tor which is supplied linearized with single 3’-deoxythymidine (T) overhangs,

obtaining the pENTR5’-TOPO-CMV-TET with specific recombination sites.

Finally we performed a recombination reaction between the pENTRtTA-

IRES-d2EYFP, pENTR5’-TOPO-CMV-TET and the pLenti/R4R2/V5-DEST

according to manufacturer instructions. The lentivirus was then produced in

293FTcells as described in the instructions provided by Invitrogen.

D.2.2 Cell culture lentiviral transduction switch-off ex-

periment

293FT cells were maintained at 37 ◦C in a 5% CO2-humidified incubator, and

cultured in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated

fetal bovine serum (FBS) (Invitrogen), 1% L-glutamine, 1% MEM Non-

Essential Amino Acids, 1% MEM Sodium pyruvate and 1% antibiotic/an-

timycotic solution (GIBCO BRL). Hek 293 cells were maintained at 37 ◦C

in a 5% C O2-humidified incubator, and cultured in DMEM (GIBCO BRL)

supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Invit-

rogen), 1% L-glutammine and 1% antibiotic/antimycotic solution (GIBCO

BRL).

To transduce cells with the virus produced, 500000 HEK293 cells were plated

and incubated overnight. The day of transduction the medium was removed

and 1mL of the virus was added to the cells together with polybrene (In-
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vitrogen) to a final concentration of 6ug/mL. After an overnight incubation

the medium containing the virus was removed and replaced with complete

culture medium containing the blasticidin (Sigma) to a final concentration of

3 μg/mL to select for stably transduced cells. For the switch off experiment

500 stably-integrated-HEK293 cells were plated in chamber slide (lab-Tek)

and treated with Doxycycline (Clontech) to a final concentration ranging

from 100 ng/mL to 10 μg/mL).

Image acquisition and analysis

Images were acquired using an inverted epifluorescence microscope (Nikon

Eclipse TI-E, Nikon Instruments) equipped with an incubation chamber

(H201-OP R2 ,Okolab), a digital camera (Andor Clara, Andor), a 20X ob-

jective (Obj. CFI PF DLL 20X Ph1, Nikon) and a 512-nm/529-nm (B/G/R)

d2EYFP-specific excitation/emission filter set. Temperature was maintained

at a constant level as the experimental setup required, while CO2 concen-

tration was set to be 5% of the total air volume injected in the incubation

chamber. Both phase-contrast images and fluorescent fields were acquired at

intervals of 15 minutes. Exposure times for the phase-contrast field was set

to 2ms (transmitted light lamp voltage was set to 4.5V) while 300ms (In-

tensilight lamp set at 10% of the maximum power) was chosen as exposure

time for the fluorescent images: this choice was meant to prevent photo-

bleaching while optimizing the ratio between the quality of the images and

reflected-light-induced stress on the cells. Experiments were carried out using

NIS-Elements AR v.3.10 644 (Nikon Instruments) software package and the
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built in Autofocus routine was employed to maintain the same focal plane

during the whole duration of the experiment. At the end of the acquisition

process, images were extracted as raw data for the fluorescence quantification

procedures.

Image segmentation was carried out in Mathworks Matlab R2008b (Math-

works Inc.); the algorithm we used to quantify fluorescence was meant to

distinguish the foreground (living cells) from the background in the phase-

contrast field. A new binary image was then built in order to find areas of the

fluorescence images where cells were located and compute the mean d2EYFP

intensity over those pixels only.

D.2.3 Data processing

Data from the quantification algorithm have been processed in order to re-

duce the impact of noise on the following steps. In particular a Savitzky-Golay

smoothing filter [85] has been applied to the fluorescence signals of Figure 3

(A) using a first order interpolating polynomial and a 15 samples window.

Data were further normalised in the range [0, 1] in order to standardise the

fitting process.
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Brown, Paul E., Turner, Matthew S., and Millar, Andrew J. Extension of a genetic

network model by iterative experimentation and mathematical analysis. Molecular

systems biology, 1(1):msb4100018–E1–msb4100018–E9, June 2005.

[67] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-

linear systems. Automatica, 34:683–696, 1998.

[68] Jane L. Lubischer. The Cell Cycle, Principles of Control. New Science Press, 2007.



Bibliography 177

[69] Tatyana Luzyanina and Dirk Roose. Numerical stability analysis and computation

of Hopf bifurcation points for delay differential equations. J. Comput. Appl. Math.,

72, 1996.

[70] Shmoolik Mangan and Uri Alon. Structure and function of the feed-forward loop

network motif. Proc Natl Acad Sci U S A, 100(21):11980–11985, 2003.

[71] Philippe Marguet, Frederick Balagadde, Cheemeng Tan, and Lingchong You. Biol-

ogy by design: reduction and synthesis of cellular components and behaviour. Jour-

nal of the Royal Society, Interface / the Royal Society, 4(15):607–23, 2007.

[72] Lucia Marucci, David A. W. Barton, Irene Cantone, Maria Aurelia Ricci, Maria Pia

Cosma, Stefania Santini, Diego di Bernardo, and Mario di Bernardo. How to turn a

genetic circuit into a synthetic tunable oscillator, or a bistable switch. PLoS ONE,

4(12):e8083, 12 2009.

[73] Lucia Marucci, Stefania Santini, Mario di Bernardo, and Diego di Bernardo. Deriva-

tion, identification and validation of a computational model of a novel synthetic

regulatory network in yeast. Journal of Mathematical Biology, June 2010.

[74] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal

Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed

networks. Science, 303(5663):1538–1542, 2004.

[75] Milo, Ron, Shen-Orr, Shai , Itzkovitz, Shalev, Kashtan, Nadav, Chklovskii, Dmitri,

and Alon, Uri. Network Motifs: Simple Building Blocks of Complex Networks.

Science, 298(5594):824–827, 2002.

[76] Melanie Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive Sys-

tems). The MIT Press, February 1998.

[77] Carmen G. Moles, Pedro Mendes, and Julio R. Banga. Parameter estimation in

biochemical pathways: A comparison of global optimization methods. Genome Res.,

13(11):2467–2474, 2003.



Bibliography 178

[78] C.G. Moles, P. Mendes, and J.R. Banga. Parameter estimation in biochemical path-

ways: a comparison of global optimization methods. Genome Res., 13:2467–2474,

2003.

[79] T. Moll, G Tebb, U. Surana, H. Robitsch, and K. Nasmyth. The role of phospho-

rylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the

S. cerevisiae transcription factor SWI5. Cell, 66:743–58, 1991.

[80] Harold J. Morowitz. The emergence of everything : how the world became complex.

Oxford University Press, 2002.

[81] M. Muratani, C. Kung, K.M. Shokat, and W.P. Tansey. The f box protein

dsg1/mdm30 is a transcriptional coactivator that stimulates gal4 turnover and co-

transcriptional mrna processing. Cell, 120:887–899, 2005.

[82] James Dickson Murray. Mathematical Biology, Vol. 1: An Introduction. Springer-

Verlag, 2008.

[83] Oliver Nelles. Nonlinear System Identification: From Classical Approaches to Neural

Networks and Fuzzy Models. Springer, 1 edition, December 2000.
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