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Introduction

This thesis describes the  design and test of the monitoring system of the 

Muon Spectrometer Read Out Driver (ROD) of the ATLAS experiment.

The Large Hadron Collider (LHC) is a particle accelerator and collider located 

at  CERN in  Geneva  (Switzerland).  It  ha  been designed in  order  to  provide 

proton-proton collisions with an energy of 14 TeV in the center-of-mass and a 

luminosity  of  1034 cm-2 s-1.  The first  beam in  the  Large Hadron Collider  was 

successfully steered in the morning of 2008, 10th September. From that day until 

now,  there have been measurements and calibration operations,  in order to 

increase the beams’ energy and luminosity to reach the foreseen values written 

above. Actually it reached energies of 7 TeV and luminosities of 1032 cm-2 s-1.

The LHC has four interaction points around its circumference. Around one of 

these points, the ATLAS detector has been built.

The general purpose detector ATLAS (A Toroidal LHC ApparatuS) has been 

designed primarily to search for the Higgs boson in a wide mass range and in 

its main decay channels. The Higgs boson is theoretically responsible for the 

electroweak symmetry breaking and for the particle mass generation.

ATLAS will also allow measurements within B meson and top quarks physics, 

the study of CP violation and the search for SUSY particles.

The ATLAS muon spectrometer is located in the outer region of the detector 

and it is fundamental for many of the program items of the ATLAS experiment.  

The production of high mass particles generates muons with high transverse 

momentum (pT), so the selection and the precision measurement on muons with 

high pT is of the outmost importance for the physics program.

In the barrel  region of  the muon spectrometer,  Resistive Plate Chambers 

(RPC)  are  used  as  trigger  detectors.  Data  from  RPCs  are  collected  by 

on-detector electronics and sent via optical fibres to the USA15 counting room, 

where they are received by RX boards and then transferred to the Read Out 

Driver (ROD) boards.
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The ROD is  a VME electronic board and it is part of the Data Acquisition 

(DAQ)  environment  of  the  ATLAS  detector.  It  performs  the  event  building, 

checks  the  correct  data  formatting  and  transmits  the  data  to  further  data 

analysis  levels.  In  the  ATLAS DAQ system,  each  RPC ROD handles  data 

coming from one of the 32 half-sectors of the ATLAS muon spectrometer. The 

ROD also controls some of the critical elements of the data acquisition system, 

such as the synchronization with the LHC collider, using some LHC signals and 

distributing  them  to  the  RX  boards.  The  ROD  event  building  algorithm is 

executed by Finite State Machines (FSMs).

My original contribution during the PhD school to the ATLAS experiment was 

to  develop  a  monitoring  system  of  the  ROD Event  Builder.  Such  system 

performs real time and statistical analysis of the ROD state machines dynamics.  

It  is  designed  around  a  microprocessor  interfaced  with  several  custom 

peripherals. The system allows to profile the ROD activity by filling histograms, 

plots and transferring the ROD monitored data via SSH to a remote terminal. 

The monitoring environment also measures the elapsed time for each event, its 

length and keeps track of status and error words produced during the event 

building operation.

The first chapter of this thesis briefly describes the ATLAS experiment, the 

LHC collider and the main items of its physics program. The muon spectrometer 

and the its trigger system based on RPC detectors are described more deeply,  

while  a  general  description  of  the  ATLAS trigger  and DAQ systems is  also 

provided.

The  second  chapter  is  about  the  level  1  trigger  system  of  the  muon 

spectrometer. The trigger system segmentation, the algorithms for the detection 

of  muons and the  synchronization of  the DAQ systems are presented.  It  is 

provided also a description of the trigger electronics

The third chapter describes the ROD board: in particular the chapter presents 

the  hardware  architecture  of  the  ROD environment,  the  devices  hosted  on 

board and the electronics developed inside the FPGAs. Details on the Event 

Builder finite state machine and on its Engine are provided.

Chapter  four  presents  the  monitoring  system  of  the  ROD  Event  Builder 

Engine, which is the original contribution I gave to this PhD thesis work. Such 

system  is  based  upon  a  soft-core  microprocessor,  connected  to  several 
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peripherals  and  embedded  inside  the  same  FPGA  hosting  the  ROD Event 

Builder  Engine.  The  hardware  environment  and  the  processor’s  software 

architecture are deeply described. Finally the results of the performed tests are 

presented.
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CHAPTER ONE – THE ATLAS EXPERIMENT 
AND ITS DETECTOR

This chapter describes the architectures of the  Large Hadron Collider, the 

ATLAS detector and its main physics goals. More in detail, a short description of 

the LHC with its main features is provided and the different sub-detectors of 

ATLAS together with the magnetic system are analyzed deeply.  A particular 

attention is focused on the Muon spectrometer and its detectors, in both the 

Barrel  and  the  End-cap  sections.  Finally  an  overview of  the  ATLAS trigger 

system is presented.

1.1 The Large Hadron Collider (LHC) main goals

LHC is the new proton-proton collider built at CERN.  It has been designed 

primarily to search for the Higgs boson, the last piece of the Standard Model, a 

theory describing the interactions of point-like fermions with spin ½ (quarks and 

leptons) as mediated by bosons of spin 1 (gluons, W, Z and  γ):  the gluons 

mediate the strong interaction between the quarks, another boson (a photon) 

mediates the electromagnetic interaction between charged particles and three 

other bosons (W+, W- and Z0) mediate the weak interaction. The Lagrangian of 

the Standard Model theory has a global gauge invariance under the symmetry 

group SU(3)C  SU(2)I  U(1)Hy where C stands for Colour, I for Isospin and Hy 

for  Hypercharge.  The  interaction  is  the  manifestation  of  a  local  gauge 

invariance,  that  implies  moreover  that  all  the  masses  of  the  fermions  and 

bosons are equal to zero.
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The  existence  of  massive  particles  is  justified  through  the  Spontaneous 

Symmetry  Breaking mechanism:  the  local  gauge  symmetry  SU(2)U(1)  is 

broken by the existence of a Higgs field that implies the existence of a neutral 

scalar boson H0, called  Higgs boson. This last is thought to be responsible of 

the  masses  of  all  the  particles.  Until  now  the  experimental  data  are  in 

agreement with the Standard Model: the discovery of the neutral weak current 

in the ‘70s, the discovery of the gluons in 1979 and the discovery of W and Z0 

bosons  in  1983.  The  mass  predictions  for  some of  these  particles  strongly 

agree with the measured ones [1] [2], as shown in Table 1.

Quantity Measured (GeV/c2) SM prediction (GeV/c2)

Mass of W boson 80.399 ± 0.023 80.390 ± 0.018

Mass of Z boson 91.1876 ± 0.0021 91.1874 ± 0.0021

Table 1 – Comparisons between experimental data and Standard Model predictions.

Figure 1 – Cross section for different processes with respect to the center-of-mass energy.
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One of the physics goal of the LHC is to discover evidence of the existence 

of  the  Higgs  boson.  In  Figure  1 are  shown  the  cross  sections  of  different 

processes with  respect to the center-of-mass energy.  The dotted line is  the 

working line foreseen for the LHC when it will be fully operative (it should reach 

energies of 14 TeV and luminosities of 1034 cm-2 s-1). Actually the LHC reached 

center-of-mass energies of 7 TeV and luminosities of 1032 cm-2 s-1. It is possible 

to see the cross section of the Higgs boson, whose mass is hypothesized to be 

500 GeV.

Figure 2 – Branching ratios for the Higgs, with respect to its mass.

Figure 2 shows the branching ratios of several decay channels for the Higgs 

boson, with respect to its mass. Some processes are difficult to be detected: for 

example, processes involving neutrinos in the final state require missing energy 

measurements, or processes with a background of hadronic jets have a difficult 

reconstruction procedure. The most easily detectable decays are:

H  ZZ  4 leptons

H  ZW*  2 leptons + 2 

H  ZZ*  4 leptons

Until now, particle accelerators have never reached the high energy levels of 

the LHC. This fact implies that every detector of the ATLAS apparatus must be 

built to give the better performances the actual technology allows, in order to 
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investigate  as  better  as  possible  eventual  physics  phenomena  beyond  the 

Standard Model.

For example, one of the new studies that will be performed at the LHC is the 

determination of the quark top mass with a resolution less than 0.05 GeV/c2. 

The most interesting decay to reach such purpose is:

t t  b b W ( j j ) W ( l  )

so the ATLAS apparatus will have to be able to detect leptons in the final state  

and reconstruct secondary decay vertexes. These characteristics will  be also 

used to investigate the B0 meson physics, e.g. the rare decay study:

B0
d  μ+ μ- (X)

or the decay:

B0
d  J/ K0

s

useful in CP violation studies.

In summary, LHC has been designed to investigate new physics in a energy 

range never reached before. In particular, the main goals of the LHC are:

— Searching for the Higgs boson;

— The investigation of the heavy quark physics (as the B and T quarks);

— Studying the CP violation;

— The study of an eventual composite quarks’ structure;

— Searching for SUSY particles;

— The investigation  of  eventual  new phenomena beyond  the  modern 

physics.

1.2 The LHC architecture

The LHC is a collider designed to accelerate two proton beams in opposite 

directions,  in  order  to  let  them to  collide  with  an  energy  of  14  TeV in  the 

center-of-mass.  The foreseen luminosity  is  1034 cm-2 s-1.  As  said  before,  the 
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actual reached values for the energy and the luminosity are respectively 7 TeV 

and 1032 cm-2 s-1.

The beams are a succession of proton bunches, each one containing 1011 

particles, spaced by 25 ns (corresponding to a frequency of 40 MHz) [3] [4].

Figure 3 – Injection scheme for the LHC.

The luminosity of the LHC is defined as:

N2

4  
x
 

y

L = f
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where N is the number of proton per bunch (1011), f is the collision frequency 

(40 MHz) and  x and  y characterize the Gaussian transverse profile  in  the 

horizontal and vertical directions.

The LHC has been built in the LEP tunnel where it is fed by particle sources 

and different pre-accelerators. The protons are produced and accelerated to 50 

MeV by the proton Linac,  before being injected into  the Proton Synchrotron 

Booster (PSB), that accelerates them to 1.4 GeV. From the PSB, the protons 

reach the Proton Synchrotron (PS), that accelerates them as far as 26 GeV. 

Finally, the Super Proton Synchrotron (SPS) injects the proton beams into the 

LHC with an energy of 450 GeV. This last accelerates every beam up to 7 TeV. 

In  Figure 3 you see the injection scheme just described for the Large Hadron 

Collider.  In  Table  2 are  shown  some  foreseen  parameters  of  the  LHC  for 

proton-proton operation [5].

Parameter Value
Energy (TeV)

Dipole field (T)
Coil aperture (mm)

Distance between apertures (mm)
Luminosity (cm-2 s-1)

Beam-beam parameter
Injection energy (GeV)

Circulating current/beam (A)
Bunch spacing (ns)
Particles per bunch

Stored beam energy (MJ)
Normalized transverse emittance (mm)

R.m.s. bunch length (m)
Beta values at I.P. (m)

Full crossing angle (mrad)
Beam lifetime (h)

Luminosity lifetime (h)
Energy loss per turn (keV)
Critical photon energy (eV)

Total radiated power per beam (kW)

7.0
8.4
56
180
1034

0.0032
450
0.53
25
1011

332
3.75
0.075
0.5
200
22
10
6.9
45.6
3.7

Table 2 – Parameters of the LHC for the proton-proton operation.
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The two proton beams channels lie side by side, 194 mm apart, in order to let 

them use the same magnets’ system. This arrangement  enabled a cost saving 

of 30%, compared to a system with two separate magnets.

In order to accelerate the proton beams to the required energy and to bend 

them properly around the LEP tunnel, the magnetic fields need to be about 9 T. 

To reach such a high field, superconductive magnets are used. These lasts, in 

order to reach superconductive temperatures, are immersed in a pressurised 

bath  of  superfluid  helium  at  about  0.13  MPa  (1.3  bar)  and  a  maximum 

temperature of 1.9 K [6].

1.3 The ATLAS detector

ATLAS is a detector built at one of the four LHC beam interaction point. It has 

a cylindrical symmetry along the beam axis and the cylinder has a 46 m length  

m and a 22 m diameter. Figure 4 shows the ATLAS architecture. Closest to the 

interaction point there is a tracking detector (called inner detector) and, from 

inner  to  outer  radius,  there are an electromagnetic  calorimeter,  an hadronic 

calorimeter and a muon spectrometer. All these sub-detectors are immersed in 

a magnetic field in order to bend the charged particle trajectories and measure 

their momentum.

In  Figure  5 the  ATLAS  coordinate  system  in  shown.  The  system  is 

right-handed with the z-axis along the beam direction and the x-axis pointing 

toward  the  center  of  the  LHC  circumference;  the  y-axis  points  from  the 

interaction  point  upward.  Because  of  the  detector’s  symmetry,  a  cylindrical 

(z, φ, θ) coordinate system is used. The azimuthal angle  φ is referred to the 

x-axis, in the x-y plane; the polar angle  θ is referred to the z-axis, in the r-z 

plane. Instead of the polar angle  θ, the pseudorapidity variable  is used. This 

last is defined as:

η  - ln ( tan( θ/2 ) )

and  allows  to identify  three  regions  in  the  detector,  Barrel,  End-cap  and 

Forward, as show in Figure 6.
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Figure 4 – The ATLAS detector architecture.

Figure 5 – The ATLAS coordinate system.
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Figure 6 – The three detector’s regions, defined by the pseudorapidity variable.

In  order  to  give the highest performances, the ATLAS detector  has been 

designed to satisfy the following requirements:

— A  tracking  system  with  a  very  high  resolution,  allowing  the 

reconstruction of secondary decay vertexes of heavy quarks;

— A very good energy and direction resolution of the electromagnetic 

calorimeter, to identify correctly electrons and photons;

— A  good  hadronic  calorimeter  to  achieve  accurate  energy 

measurements  in  order  to  perform  jets  identification  and  missing 

energy measurements;

— A muon spectrometer able to perform momentum measurements with 

a very high precision;

— Large  acceptance  in  pseudorapidity  and  almost  total  coverage  in 

azimuthal angle;

— High trigger efficiency for all interesting processes.

1.3.1 The magnetic system

Magnetic fields are essential  in the ATLAS detector,  in order to bend the 

trajectories of charged particles. There are two different structures that generate 

such fields [7]:

9



— a superconducting solenoid, producing a 2 Tesla magnetic field for the 

inner detector;

— an  external  toroidal  superconducting  magnet,  producing  a  variable 

magnetic field from 3 to 6 Tesla (depending from the pseudorapidity) for 

the muon spectrometer.

The external magnet is made of three toroids, one in the barrel region and 

two in the end-cap regions, and each one is made of eight independent coils, 

arranged with an octagonal symmetry. It has on open structure to minimize the 

contribution of multiple scattering to the momentum resolution; most of the coils 

is cooled by liquid Helium at 4.5 Kelvin.

1.3.2 The inner detector

The  Inner  detector (shown  in  Figure  7)  is  located  around  the  beam’s 

interaction zone and has a cylindrical symmetry, with a length of 7 m and an 

external diameter of 2.3 m. A superconducting solenoid surrounds entirely the 

inner detector and it generates a magnetic field of 2 Tesla parallel to the beam 

axis. This field wraps up entirely the detector.

The main task of the inner detector is to reconstruct particles’ tracks and to 

perform  measurements  of  momenta  of  charged  particles  in  the  apparatus. 

Moreover,  the  inner  detector  gives  the  position  of  primary  and  secondary 

vertexes of decays of some short-lifetime particles, such as B-Hadrons:

B0
d    J/  K0

s,

allowing to identify the produced K particles.

The core of the inner detector has a very high spatial  resolution and it  is 

made up of two concentric structures: one made by  pixel detectors with fine 

granularity,  in  order  to  grant  a  high  resolution;  the  other  is  made  by 

SemiConductor  Trackers  (SCT),  that  contributes  to  measurements  of  vertex 

position and momenta. The outer region of the detector is made up of Transition 

Radiation Trackers (TRT), that are tube detectors arranged along the beam’s 

axis  in  the  barrel  region  and  radially  in  the  end-cap  regions.  These 
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sub-detectors have electron identification capability, by employing Xenon gas to 

detect transition radiation photons. The resolutions of the three sub-detectors 

making the inner detector are reported in Table 3.

Table 3 – Spatial resolutions of the inner detector.

Figure 7 – Architecture of the inner detector.

Resolutions Rφ (μm) z (μm)
Pixel detector 12 66

SCT 16 580

TRT 170 -
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1.3.3 The calorimeters

The  energy  resolution  of  calorimeters  improves  with  increasing  energy, 

making them suitable for use at high energy colliders. Physics requirements on 

calorimeters on LHC include:

— Accurate measurements of energies and positions of both electrons 

and photons;

— Measurements of energies and directions of jets;

— Measurements of missing transverse energy of events;

— Particle identification, including separation of electrons, photons and 

hadronic  decays from jets;

— Event selection already at the first level of trigger.

The  system  is  divided  into  an  electromagnetic  (EM)  calorimeter  with  high 

resolution close to the interaction point and a large hadronic calorimeter behind 

with a coarser resolution. The first of them uses Liquid Argon (LiAr) as active 

medium  while  in  the  hadronic  calorimeter  different  technologies  are  used 

depending on the environmental constraints like radiation dose. The calorimetric 

system is shown in Figure 8.

Figure 8 – The ATLAS calorimetric system.
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The  electromagnetic  calorimeter  is  required  to  reconstruct  electron  and 

photons in the energy range from 2 GeV to 5 TeV.

The principal channels for this calorimeter are:

H  Z Z*  4e

H  γγ

These  channels  place  the  most  stringent  requirements  on  the 

electromagnetic calorimeter in terms of energy resolution,  energy range and 

particle identification.

The EM calorimeter is a lead-Liquid Argon (LiAr) detector  [8]. The barrel of 

the  electromagnetic  calorimeter  covers  |  η |  <  1.475  and  the  two  identical 

end-caps cover 1.375 < | η | < 3.2.

The Liquid Argon technology is radiation resistant and provides long-term 

stability of the detector response, excellent hermeticity, good energy resolutions 

and relatively easy detector calibration.

The  ATLAS  hadronic  calorimeters  cover  the  range  of  |  η |  <  4.9  using 

different  techniques  best  suited  for  the  widely  varying  requirements  and 

radiation environment over the large  η range. The calorimeter provides good 

resolution for high energy jets. The large η coverage will also guarantee a good 

ETmiss measurement,  which  is  important  for  many  physics  signatures  and  in 

particular for SUper SYmmetry (SUSY) particle searches.

The  hadronic  barrel  calorimeter  is  a  cylinder  divided in  three  sections:  a 

central  barrel  and  two  identical  extended  barrels.  They  are  sampling 

calorimeters  with  iron  as  absorber  material  and  scintillating  tiles  as  active 

material, called Tile Calorimeter [9].

At larger pseudo-rapidities, where higher radiation resistance is needed, the 

intrinsically radiation-hard LiAr technology was chosen: the hadronic end-cap 

calorimeters (EHCal) and the forward calorimeter (FHCal) with the front face 4.7 

m far from the interaction point.
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1.3.4 The Muon Spectrometer

One of  the most  important  proof  of  interesting physics  at the LHC is the 

creation of high-momentum muons during the interactions. The  ATLAS muon 

spectrometer [10] has been designed to provide a high precision measurement 

of  muon  momentum  and  spatial  position  without  the  need  of  any  other 

information from other detector data. Moreover, a homogeneous coverage up to 

large rapidity (| η | = 3) and high efficiency for identifying muons is required in 

order to achieve the physics goals of the experiment.

The muon spectrometer requirements are:

— A momentum resolution lower than 10%, up to values of transverse 

momentum pT ~ 1 TeV/c.

— A  spatial  resolution  of  ~  μm  in  the  measurement  of  the  particles’ 

position in the  direction and lower than 10 mm in the _ direction.

— A good performance in reconstructing events whose final states are 

characterized by the presence of 2 or 4 muons, that are events that 

can be related to a Higgs boson decay.

— A trigger system selectivity up to pT > 20 GeV/c.

Figure 9 – A section of the ATLAS Muon Spectrometer.
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The muon spectrometer is built in the outer region of the ATLAS apparatus. It 

is a tracking system in a toroidal magnetic field and it is made up of precision 

chambers and trigger detectors. The spectrometer has a barrel shape. It is 46 m 

long and 22 m wide.

The  spectrometer  has  an  octant  symmetry  in  the  R-φ plane  and  it  is 

subdivided in barrel  and end-cap spectrometers.  In  Figure 9 you can see a 

section of the detector.

The operation principle is based on the magnetic deflection of muon tracks in 

the magnetic field generated by three large toroidal magnets (one for the barrel 

and two  in  the  end-caps).  The magnetic  field  lines  in  the  spectrometer  are 

parallel to the  φ direction: hence, the component of the particles’ momenta in 

the  φ direction is parallel to the magnetic field lines. If we define a cylindrical 

coordinates system, particles’ trajectories are arcs of circumference in the r-z 

plane. The radius and the direction of the curvature of the trajectory in the r-z 

plane are depending, given the magnetic field value, by the momentum and by 

the charge of the particle. By reconstructing the trajectory, the charge and the 

momentum of the particle can be calculated.

Figure 10 – Detectors compounding the Muon Spectrometer.
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Four  different  kinds  of  gaseous  detectors  have  been  designed,  both  for  

precision measurements  and for  trigger  chambers  (Figure  10).  In  the  barrel 

region,  both precision chambers and trigger detectors are arranged in  three 

cylindrical concentric surfaces, mounted at a distance of about 5 m, 7.5 m and 

11 m from the beam axis, as shown in Figure 9; in the two end-cap regions the 

detectors are located on four vertical stations, at a distance of ~ 7 m, 10 m, 14 

m and 22 m from the interaction point.

For position measurements,  Monitored Drift  Tubes  (MDT) are used in the 

barrel region and  Cathode Strip Chambers  (CSC) are used in the region with 

high pseudorapidity ( |  η |  up to 2.7).  For trigger measurements,  stations of 

Resistive Plate Chambers  (RPC) are used in the region with |  η | < 1.05, and 

Thin Gap Chambers  (TGC), multiwire proportional chambers, are used in the 

end-cap regions.

Monitored Drift Tubes (MDT)

MDT detectors [11] are cylindrical drift tubes with a 30 mm diameter and with 

a 50 μm W-Rn wire; the gas is a mixture of Ar(91%)-CH4(4%)-N2(5%). The drift 

time is lower than 480 ns and the average spatial resolution for a single tube is 

80 μm.

In order to enhance the spatial resolution, each MDT chamber is made of two 

tracking planes, each made by a superposition of 3 or 4 layers of drift tubes.

The  geometry  and  the  position  of  the  detectors  is  granted by an  optical 

system called RASNIK [12] with a precision better than 30 μm. According to the 

azimuthal symmetry of the magnet, the spectrometer is divided in 16 sectors in 

the φ projection and every sector is completely covered by a chamber. The drift 

tubes  are  installed  perpendicularly  to  the  beam axis:  so  the  chambers  can 

measure muons’ position in the  η projection, reconstucting the track in the r-z 

plane. There is a superposition of 200 mm between two chambers of adjacent 

sectors,  to  avoid  dead  regions  in  the  apparatus  due  to  the  presence  of 

reinforcement structures and cables.

Cathode Strip Chambers (CSC)

Cathode  Strip  Chambers  [13]  are  proportional  multiwire  chambers  with 

cathode strips readout, used to achieve a better spatial resolution: they have to 
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reconstruct tracks of particles with higher transverse momentum. A precision 

measure is obtained by evaluating the charge on the cathode (made by several 

strips), induced by the avalanche formed on the anode wire. The gas contained 

into the chamber is a mixture of Ar(30%)-CO2(50%)-CF4(20%), the wires are 

supplied  by  2.6  kV  and  the  gas  gain  is  about  104.  The  spatial  resolution 

obtained is lower than 60 μm. As the MDT chambers, a CSC chamber is made 

of two planes, each made of four layers of detector.

CSC detectors are used at about ~ 7 m from the interaction point, in regions 

with high pseudorapidity, where a high flux of particles is expected. The main 

characteristic  of  the  CSC  detectors  are  a  small  drift  time  of  the  electrons 

(30 ns), a good timing resolution (7 ns) and a low sensitivity to the neutrons. 

Moreover,  using  strips  orthogonal  to  the  cathode  strips,  a  measure  of  the 

second coordinate can be also performed.

Thin Gap Chambers (TGC)

Thin Gap Chambers  [14]  [15] are used for trigger purposes in the end-cap 

regions  because  of  their  very  good  rate  capability  and  their  long  ageing 

characteristics. TGC are, like CSC detectors, multiwire proportional chambers. 

The gas mixture is made of 55% CO2 and of 45% n-pentane (n-C5H12) and the 

chambers operate at an high voltage of about 3 kV. The small distance between 

wires and the electric field configuration ensure a short drift time and a good 

timing resolution of about 4 ns.

The anode wires, with a 50 μm diameter, are arranged parallel to the MDT 

wires and produce the trigger signal; read-out strips are orthogonal to the wires 

and are used to measure the second coordinate. TGC chambers have both a 

trigger purpose, in the end-cap region, and a precision chambers purpose (for 

the measure of the second coordinate) in the forward region, in the inner and 

middle stations of the spectrometer.

In particular, in the end-cap region, the detectors are installed at a distance of 

bout 14 m from the interaction point and placed on three different planes to form 

a triplet (M1) and two doublets (M2 and M3) of chambers. In Figure 11 is shown 

the TGC disposition in the end-cap regions.
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Figure 11 – Disposition of the Thin Gap Chambers in the end-cap region.

Resistive Plate Chambers (RPC)

Resistive Plate Chambers (RPC) detectors [16] [17] [18] are installed in the 

barrel region of the apparatus, for trigger purposes. RPCs are detectors that 

guarantee good timing performances at a moderate cost. Their typical timing 

and spatial resolution are respectively 1 ns ed 1 cm with an intrinsic detection 

efficiency greater than 98%.

RPCs  are  ionization  detectors  whose  working  principle  is  based  on  the 

discharge inside the gas. Figure 12 shows the section of an RPC detector. Two 

Bakelite planes delimit a gas gap in which a uniform electric field is applied, 

whose intensity is about 4.5 kV/mm. The bakelite planes, also called resistive 

plates because of their high resistivity ( ρ = 1010 Ω cm), are externally coated 

with  two  thin  graphite  layers,  connected respectively  to  high  voltage and to 

ground.

A thin layer (few hundred microns) of PET is glued on the graphite electrodes 

in order to insulate the high voltage electrodes from the read-out strips, oriented 

in the X and Y directions.
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Figure 12 – Section of an RPC.

The graphite electrodes, because of their high resistance, are transparent to 

the electrical pulse created inside the gas gap, when a charged particle crosses 

the gap itself. For this reason, the signal can be read by induction on the read-

out metallic plates, made up of copper strips.

The RPC just described has the structure of a two dielectric planar capacitor. 

The working model of the chamber is shown in Figure 13. The capacitors C and 

Cgas and the resistors R and Rgas describe the capacitance and the resistance of 

the bakelite planes and of the gas gap, respectively.

Figure 13 – Working scheme of an RPC detector.
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In  steady  condition,  when  there  is  no  ionization,  the  gas  has  infinite 

resistance (Rgas = ∞ ). So the high voltage HV is entirely applied on the gas gap.

When there is an interaction with charged particles, there is the production of 

electrons by ionization and the gas gap behaves like an ideal current generator.  

This current generator discharges the “gas capacitor” Cgas and some of the HV 

is gradually transferred to the resistive plates, described by the C capacitance. 

The system goes back to the initial conditions following an exponential law with 

a time constant:

 = R ( C + Cgas ) = ρ ε0 ( εr + 2 d / g )

where εr is the dielectric relative constant of the bakelite, d is the thickness of 

the bakelite plates and g is the thickness of the gas gap. For ρ = 1010 Ω cm, the 

previous relationship gives  = 10 ms. This value has to be compared with the 

time of production of the discharge, that is only ~ 10 ns. In this time interval, the 

electrode plates behave like insulators and the voltage on the gas gap is too low 

to feed the discharge. This quenching mechanism is at the basis of the working 

principle of the detector.

A chamber with resistive electrode plates can be divided in a large number of 

small  “discharge  cells”  [19],  each  one  independent  from  the  others.  An 

estimation of the extension of the area where the discharge is located is given 

by the formula S = Q g / ε0 V, where Q is the charge delivered in the gas.

Therefore, the detector is “blind” only in a region of extension S, for a time . 

By this, the total charge produced inside the detector, and so the intensity of the 

electric field, has a direct influence on the rate capability of an RPC. A small  

value of Q has two important effects:  it  allows to have small  currents in the 

detector  (a  crucial  point  to  prevent  detector  ageing)  and  to  have  a  high 

detecting efficiency, also when there is a high flux of ionizing particles.

The current produced by the discharge in the gas induces a signal on the 

pick-up electrode. The pick-up electrodes can be shaped as strips or square 

pads. The strip has the advantage to behave as signal transmission line of well  

defined impedance, allowing the transmission at large distances with a small 

loss of amplitude and timing information. Two orthogonal sets of strips are used; 

the pitch of every strip is 2-3 cm. Two contiguous strips are separated by a 
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0.3 mm wire,  connected to  ground to  reduce the capacitive  coupling  of  two 

adjacent strips.

The equivalent circuit of the read-out electrode (shown in Figure 14) can be 

described as a current generator, charging a capacitor C in parallel to a resistor 

R, where C is the electrode’s capacitance and R is the resistance between the 

electrode and the ground.

Typical values for C and R are: C ~ 1 pF and R ~ 25 Ω; the time constant of 

the circuit  results to be  ’  = 25 ps, much smaller than the rising time of the 

signal. So the read-out signal is not integrated, but the current circulating in the 

read-out electrode is every instant proportional to the current produced by the 

discharge inside the gas.

Figure 14 – Equivalent circuit of the read-out electrode of an RPC strip.

1.3.5 The trigger and the Data acquisition (DAQ) systems

Because of the enormous expected background, the design of an extremely 

selective trigger is needed. The interesting physics processes must be selected 

and accepted with high efficiency. For example, at the nominal luminosity of 

LHC,  searching  for  a  Higgs  boson  with  a  mass  of  ~  80  –  100  GeV,  one 

interesting event is expected every 1013 produced.

This is achieved by defining three different trigger levels (LVL1  [20], LVL2 

and LVL3 [21], also called Event Filter). The first level receives data only from 

the detector, whilst each of the two following levels elaborates data from the 

detector and also the information collected at the previous level.

The architecture of the trigger system [22] and the three levels of the trigger 

are shown in Figure 15.
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Figure 15 – The three levels of the trigger system.

The first level trigger must identify, without ambiguity, the bunch crossing of 

the interesting event, using only data coming from the calorimeters and from the 

spectrometer, and uses synchronous parallel processors working at the bunch 

crossing frequency 40 MHz. Programmable logic devices (FPGA e CPLD) and 

ASIC (Application Specific Integrated Circuit ) are massively used.

Data produced by the detector are elaborated by  the level-1 trigger, with a 

latency  lower  than  2.5  μs;  during  this  time,  information  are  stored  in  FIFO 

memories  (First-In  First-Out).  The  output  frequency  of  data  is  75  KHz, 

increasable up to 100 Khz.

In particular, the level-1 trigger structure (Figure 16), is composed by four 

subsystems:

— the  Muon  Trigger  Processor  receives  data  from  TGC  and  RPC, 

respectively from the end-cap and the barrel regions; it detects events 

that  have  in  the  final  states  muons  with  a  transverse  momentum 

greater  than  a  programmable  threshold  and  identifies  the  spatial 

region the muon comes from;

— the  Calorimeter  Trigger  Processor  identifies  electrons,  photons, 

hadrons and jets, and measures the possible missing energy;

— the Central Trigger Processor collects and elaborates information from 

the trigger processors;
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— the  TTC distribution system (Timing, Trigger and Control) generates 

and distributes the control signals to the whole apparatus.

Figure 16 – The level-1 trigger.

When an event is accepted by the LVL1, a level-1 trigger signal is generated 

by the trigger  processor:  in this  case,  data stored in  the  L1FIFO  buffer  are 

transferred to the next elaboration levels. Data are read out from the front-end 

electronics systems of the detectors into  Read Out Drivers  (RODs) and then 

forwarded to Read Out Buffers (ROBs). Figure 17 shows the path of data from 

the detector to the elaborators, for the RPC detectors.

Figure 17 – The path of data from the detector to the elaborators.
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All the existing electronics present in the trigger and DAQ data path from the 

on-detector ones up to the Read Out Drivers are developed specifically for the 

detector  on  which  they  are  installed.  The  other  electronics  of  the  DAQ 

environment are the same for all  the detectors.  For example,  the Read Out 

Drivers of the Muon Spectrometer can’t be switched with the ones developed 

for the Calorimetric system, while the Read Out Buffers can.

The  trigger  system  is  divided  into  Regions  of  Interest  (  ROI  ),  with  a 

granularity ~ Δη x Δφ= 0.1 x 0.1. For example, in the barrel region, the trigger 

system is divided into 1664 ROI. The level-1 trigger generates and transmits to 

the level-2 trigger processors the coordinates of the ROIs where an interesting 

event  occurred.  In  this  way,  the  level-2  trigger  accesses only  to  that  ROIs, 

reducing the amount of data to be elaborated. At this stage, full granularity and 

full precision data from most of the sub-detectors are available and are used by 

the LVL2 to select interesting physics events. Moreover, even if it is possible to 

access all the data of the event, only the information needed to decide whether  

accept or reject that event are acquired.

Data for the bunch crossing selected by the LVL1 trigger are stored in the 

ROBs during the LVL2 trigger latency (expected in the range of 1-10 ms). Then, 

if data are related to an interesting event, the LVL2 trigger promotes them to the 

following  trigger  level  (otherwise  data  are  deleted).  The  data  elaboration, 

formatting and storing operations are called event building.

Whilst the level-1 trigger is based on an hardware designed for the specific 

application, both level-2 and Event Filter use commercial processors; moreover, 

the  structures  of  computing  and  communication  are  quite  similar.  The 

differences between the level-2 and Event Filter are that level-2 trigger needs 

simple and fast  algorithms,  and the  Event  Filter  uses elaboration algorithms 

similar to the ones used for the off-line analysis.

The level-2 trigger system is made of a sub-farm of commercial processors 

and the expected trigger frequency is ~ 3.5 KHz. An event accepted by the 

level-2  trigger  is  built  by  the  Event  Filter.  The  Event  Filter  uses  offline 

algorithms, based on up to date calibration and alignment information, such as 

the magnetic field map. Most of the rejection power of the Event Filter  comes 

from the use of complex algorithms and criteria that cannot be performed by the 

LVL2 trigger, because of processing time limits. The Event Filter sends data to 
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the mass memories with a bandwidth of ~ 10 – 200 Mbyte/s; a single event size 

should be ~ 1 Mbyte,  so the output frequency of the Event Filter should be 

of ~ 200 Hz.
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CHAPTER TWO –  THE LEVEL 1  TRIGGER 
AND THE DATA ACQUISITION SYSTEM OF 
THE ATLAS MUON SPECTROMETER

This chapter describes the architectures of the first level trigger and of the 

Data Acquisition system (DAQ) of the ATLAS muon spectrometer.

The signals generated by the RPCs of the spectrometer when muons are 

detected undergo several elaborations before being sent via optical fibres to the 

counting  room  USA15.  The  algorithms  of  the  coincidence  matrix,  for  the 

generation of the trigger, and the structures of the other acquisition boards are 

described.

In this chapter, the transmission system on optical fibre will  be presented. 

The receivers of such system produce data input to the Read Out Driver (ROD), 

a VME board whose main tasks are to receive and process trigger and data 

signals, to format them into frames in order to send them to the next electronics.

The ROD will be deeply described in the next chapter.

2.1 Overview of the Level 1 trigger system

The ATLAS trigger and data-acquisition system is based on three levels of 

online  event  selection.  Each trigger  level  refines  the  decisions made at  the 

previous  level  and,  where  necessary, applies  additional  selection  criteria. 

Starting  from an initial  bunch-crossing  rate  of  40  MHz,  the  rate  of  selected 

events must be reduced to ~100 Hz for permanent storage. While this requires 

an overall  rejection factor of 107 against ‘minimum-bias’ processes, excellent 

27



efficiency must  be  retained for  the  rare  new physics,  such as  Higgs boson 

decays, that is sought in ATLAS [23].

High transverse-momentum muons are identified using only  Resistive Plate 

Chambers (RPCs) in the barrel and Thin Gap Chambers (TGCs) in the end-

caps.

An essential requirement on the LVL1 trigger is that it should uniquely identify 

the bunch crossing of interest. Given the short (25 ns) bunch crossing interval, 

this is a non-trivial consideration. In the case of the muon trigger, the physical 

size of the muon spectrometer implies times-of-flight comparable to the bunch 

crossing period. In order to select about 75000 events per second from the 10 9 

expected, the ATLAS level one trigger system has to be extremely selective and 

efficient. The requirements are:

— reconstruction of the track and discrimination of the event within the 

highest allowed LVL1 trigger latency of the experiment (2.5 μs);

— identification of the bunch-crossing of interesting events;

— identification of the Region Of Interest (ROI) of interesting events;

— high acceptance in pseudo-rapidity ( |η| < 2.4 ).

For the physics researches at the LHC, two kinds of interesting events should 

be taken into account in the design of the trigger system of the spectrometer: 

the production of muons with transverse momentum pT greater than 6 GeV/c in 

low luminosity regime, that will be indicated as low pT events; the production of 

muons with values of transverse momentum pT greater than 20 GeV/c, in high 

luminosity regime, that will be labelled as  high pT events. The spectrometer’s 

RPCs are designed for identifying both low and high pT events. In the Figure 18 

a section of the barrel spectrometer is shown. In such figure, both the high pT 

and the low pT coincidence RPC planes are schematized. The first one is made 

up of a single layer of RPCs sub-detectors, while to reveal low pT muons two 

close  RPCs  layers  are  needed.  The  trigger  algorithm  will  be  described  in 

section 2.3.
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Figure 18 – Section of the barrel muon spectrometer.

Figure 19 – The three levels of the trigger and the DAQ system.
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2.2 The trigger and DAQ system architecture

In  Figure  19 you  can see the  block diagram of  the trigger  and the Data 

Acquisition  (DAQ)  system  architecture.  Data  produced  by  the  detector  are 

elaborated by the level-1 trigger, with a latency lower than 2.5 µs. During this 

time,  information are stored in  pipelines memories.  The output  frequency of 

data goes from 75 KHz up to 100 Khz.

In particular, the level-1 trigger structure is composed by four subsystems:

 the Muon Trigger Processor receives data from TGC and RPC; it detects 

events that have in the final states muons with high pT.

 the  Calorimeter Trigger Processor  identifies electrons, photons, hadrons 

and jets, and measures the missing energy.

 the Central Trigger Processor collects and elaborates information from the 

trigger processors.

 the  Timing Trigger  Control (TTC) system generates and distributes the 

control signals to the whole apparatus.

When an event is accepted by the LVL1, the trigger processor  generates a 

LVL1  accept  signal:  in  this  case,  data  stored  in  the  L1FIFO  buffer  are 

transferred to the next elaboration levels. Data are read out from the front-end 

electronics of the detectors and sent to  Read Out Drivers  (RODs). Then they 

are forwarded to Read Out Buffers (ROBs).

In order to reduce the amount of data to be elaborated by the LVL2 trigger  

processors, the trigger system is divided into ROIs (Region of Interest), small 

detector  areas  with  a  granularity  of  φ η = 0.1 × 0.1.  The  level-1  trigger 

generates and transmits to the second level only the coordinates of the ROIs 

where an interesting event occurred. This strategy allows to transmit only the 

information needed to decide whether accept or reject the occurred event.

Data for the bunch crossing selected by the LVL1 trigger are stored in the 

ROBs during the LVL2 trigger latency. Then the LVL2 trigger promotes such 

data (if considered interesting) to the following trigger level, called Event Filter.

The level-2 trigger frequency is ~ 3.5 KHz. An event accepted by the level-2 

trigger is built by the Event Filter. The Event Filter uses offline algorithms, based 
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on calibration and alignment information, such as the magnetic field map. After 

its work, the Event Filter sends data to the mass memories with a rate between 

10 and 200 Mbyte/s.  As  a  single  event  size is  around 1 Mbyte,  the output 

frequency of the Event Filter is ~ 200 Hz.

2.3 The LVL1 trigger algorithm for muon detection

The aim of  the  trigger  system of  the  muons spectrometer  of  the  ATLAS 

apparatus is the detection of particles coming from the interaction vertex having 

a transverse momentum greater than a certain programmable threshold.

The  muon  trajectories  are  deflected  into  the  apparatus  by  the  toroidal 

magnetic  field.  The  curvature  will  depend  firstly  by  the  momentum  of  the 

particle. In Figure 20 it’s shown the functioning principle of the trigger system.

Let’s suppose that our will is to detect a muon using two different stations of 

the spectrometer, called Layer 1 and 2.

P1 and P2 are the impact points respectively in the first and in the second 

Layer. Let the dotted line crossing P2 and the interaction vertex be the axis of a 

cone with the vertex in P2 (such axis could be seen as the trajectory of a particle 

in the limit p = ∞).

Figure 20 – Schematization of the trigger system functioning principle.
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All the particles detected by the first station inside the cone volume have a 

momentum greater  than a certain  threshold  pt,  related  to  the  cone opening 

angle  α.  The  greater  is  the  threshold,  the  lower  is  the  angle.  In  the 

spectrometer, the position of the particle in the station is given by the position of 

the read-out electrodes on which the signal is induced by the muon.

The trigger algorithm is based upon the signals of the two layers, taken with 

opportune timing coincidences: for example if the hit on the layer 2 is detected 

before the  one  on  the  layer  1,  the  trigger  doesn’t  give  the  accept  signal, 

because the only allowed muon trajectories go from the interaction point toward 

the extern of the spectrometer.

The coincidence conditions  are written  into  a programmable memory that 

acts as a matrix whose raw and column indexes represent the positions of the 

strips on the detectors (Figure 21). The matrix, programmed according to the 

chosen  trigger  condition,  indicates  the  validity  (or  not)  of  the  coincidence 

between the signals corresponding to the matrix elements.

Figure 21 – The muon trajectories are reconstructed with a coincidence matrix between the
detectors read-out strips’ positions.

Interaction point
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2.4 The segmentation of the muon spectrometer

The barrel muon spectrometer has been physically segmented in 16 different 

sectors,  as  shown  in  Figure  22.  The  chamber  towers  labelled  with  even 

numbers are built “around” the coils of the octagon-shaped magnetic system. 

These  sectors  are  called  Small  Sectors,  while  the  ones  labelled  with  odd 

numbers are called Large Sectors.

The trigger and data acquisition system is segmented into 64 logic sectors: 

each of the 16 physical sectors (Large or Small) of the spectrometer is divided 

in two, and a further division is done for η > 0 and for η < 0.

Figure 22 – The spectrometer segmentation in the barrel region.

2.5 The Resistive Plate Chambers

The RPC detectors are assembled in three different stations in each of the 16 

sectors of the spectrometer, as you can see in Figure 23. The RPC1 and RPC2 

stations are installed on the top and the bottom of the middle MDT precision 

chamber,  labelled  as  BMS  (Barrel  Middle  Small);  the  RPC3 station  is  at  a 

greater distance from the beam axis, upon the MDT BOS (Barrel Outer Small) 

chamber.
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Figure 23 – Section of the muon spectrometer.

A  low pT event (pT < 6 GeV/c) is detected if a signal is seen in the RPC1 

station and one is  detected in the RPC2 station,  in  the programmed trigger 

window. An high pT event is detected if a low pT coincidence is found and also a 

signal in the RPC3 station is detected. Both for high pT and low pT events, the 

time coincidence between signals must to be in a 20 ns interval.

Each RPC detector is made of two  RPC units glued together. The junction 

point is shown in the upper side of  Figure 24. The longest dimensions of the 

various units are limited by the propagation delay of the signals on the read-out 

strips of the chambers. In order to allow the correct identification of the bunch-

crossing of the event, this delay must be lower than 11 ns.

Each  RPC  unit  is  made  of  two  RPC  chamber separated  by  insulating 

polycarbonate spacers. This structure is glued to a thick polystyrene panel that 

supports it (Figure 24).

Each RPC chamber is realized with  two bakelite planes containing a gas 

mixture  (95% C2H2F4,  4% C4H10,  1% SF6).  The RPC is  read-out  by parallel 

electrode strips, glued to the surface of the bakelite plane.
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Figure 24 – RPC detector panel, made up of two units.

The  RPC chambers are installed upon the RPC unit so that their read-out 

strips are mutually orthogonal. The strips oriented in the azimuthal direction, 

parallel to the magnetic field lines, measure the coordinates in the η projection, 

in the r-z plane. Such strips will be indicated as η strips. The strips oriented in 

the  longitudinal  direction,  and  so  parallel  to  the  beam  axis,  measure  the 

azimuthal coordinates in the φ projection, in the x-y plane. Such strips will be 

indicated as φ strips.

The RPC detectors just described allow to locate the muon hit point with a 

resolution of ~ 10 mm.

2.6 The synchronization of the apparatus

In the beams of the LHC collider  [24], protons are grouped in “bunches” of 

1011 particles  that  interact  every  25  ns.  Such  interaction  is  called  bunch 

crossing.  As  said  before,  the  ATLAS  detector  is  made  up  of  several  sub 
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detectors. In order to correctly reconstruct and correlate data generated by all 

these sources, a very precise synchronization system have been developed. 

The  entire  ATLAS  apparatus  is  a  system  working  at  the  bunch  crossing 

frequency of the LHC (40 MHz).

The  DAQ  and  trigger  systems  are  driven  by  a  common  clock  signal, 

synchronous to the bunch crossing frequency of the collider. A periodic signal, 

called  orbit, is associated to the revolution of the proton bunches in the LHC 

(Figure 25). This signal, generated by the control system of the LHC collider, 

has a period of 88924 ns and is made of 3564 elements (called trains), which 

are  bursts  of  72  bunches.  Some “holes”  (called  missing  trains),  due  to  PS 

injector dead time, are visible inside the orbit. Such holes of different amplitude 

are crucial in order to establish the correct synchronization between the LHC 

orbit and the experiments’ data acquisition systems.

Figure 25 – The bunches’ distribution in the LHC orbit signal.

In order to achieve the synchronization between the elaboration systems and 

the machine clock it has been built a transmission system, able to distribute the 

clock signal and all the other control signals to all the elements of the ATLAS 

apparatus. Because of the large dimensions of the detector, the reference clock 

signal must be transmitted over distances up to hundreds meters, in order to 

reach all the parts of the apparatus. This is one of the problems that have been 

faced to make the entire apparatus working at 40 MHz. The clock phase is 

controlled at a sub-nanosecond level, to avoid phase discrepancy between all 

the sub-systems of the ATLAS apparatus. So there is the essential need to use 

a system that allows a resynchronization procedure and that guarantees a clock 

recovery in the event of a loss of synchronization.
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2.6.1 The Timing, Trigger and Control system

In Figure 26 it is shown the control architecture  [25] designed for the LHC 

collider, in particular the Trigger Control System (TCS) and the system Timing, 

Trigger and Control  (TTC). The  Trigger Control  System  generates the timing 

and trigger signals. It receives from the LHC machine the clock and the orbit 

signals and receives from the  Central Trigger Processor  (CTP) of the ATLAS 

experiment the signal of validation of the Level 1 trigger (L1A, that means Level 

1 Accept).

The  TCS  also  manages  the  Reset  signals,  used  to  recovery  the 

synchronization in case of a loss of information, and some service signals. A 

further task of the  TCS is the control and the management of the calibration, 

synchronization and test signals for the apparatus subsystems.

Figure 26 – The control architecture of the LHC.

The Trigger Timing and Control [26] system is responsible of the distribution 

of the timing and trigger signals to the entire detector and to the different entities 

of  data  elaboration.  Moreover,  in  order  to  make  a  correct  identification  of 

interesting events, the on-detector electronics associate to data in each event a 

unique progressive number (Event Identifier, or EVID) and a number identifying 

the bunch crossing that generated the collision (Bunch Crossing Identifier, or 
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BCID). Such signals, together with the 40 MHz clock signal, the orbit signal, the 

L1A  and other service signals, are sent from the  TCS  to the TTC. All  these 

signals  are  coded  and  optically  transmitted  to  the  elaboration  systems  and 

toward different destinations in the ATLAS apparatus (Figure 27). Signals are 

reconstructed at the destination and are adapted to the protocols of every sub-

detector.

The TTC incorporates facilities to compensate for particle flight times and 

detector  electronics  propagation  delays.  In  addition it  provides simultaneous 

transmission of synchronized broadcast commands and individually-addressed 

controls and parameters, such as channel masks and calibration data.

Figure 27 – The TTC system.

At each destination, a special timing receiver (TTCrx) delivers all the signals 

required by the electronics controllers.

The distribution to the different units of the apparatus is made by the TTCrq 

board (that hosts the TTCrx ASIC), shown in  Figure 28, that reconstructs the 

signals Clock, L1A, Event Counter Reset and Bunch Counter Reset and makes 

them available on four different channels, so they can be used by the different 

elaboration structures.
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Figure 28 – The TTCrq board.

Starting  from the  TTCrx  signals,  the  data  acquisition  boards  (on-detector 

electronics) can generate the Event Identifier and the Bunch Counter Identifier. 

The EVID, incremented every time that a L1A signal occurs, is coded by 24 bit 

and is counted starting from the last EVID Reset. The  BCID,  incremented at 

every bunch of the orbit, is coded by 12 bit and is counted starting from the last  

BCID Reset.

2.7 The RPC trigger and DAQ electronics

The  electronics  of  the  RPC  detectors  are  made  of  Amplifier  Shaper 

Discriminator (ASD) boards, of Coincidence Matrixes (CM) and of PAD boards. 

The signals induced by muons on the RPC electrode strips are received by the 

ASD boards that amplify, discriminate by using a programmable threshold and 

shape them in width. Each ASD board houses eight acquisition channels (so 

eight RPC electrode strips).

The Coincidence Matrixes use the information produced by the ASD boards 

to execute the two trigger algorithms (low pT and high pT). Data produced by the 

CMs are elaborated by the PAD boards, that manage also the transmission to 

the  processors of  the next  trigger  and DAQ levels:  a  simplified path  of  the 

readout data and of trigger information is depicted in Figure 29.
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Figure 29 – Scheme of the on-detector and the off-detector electronics.

2.7.1 The Coincidence matrix

The ASD boards, installed on the RPCs, are connected to the Coincidence 

Matrixes  [27]. These lasts are distant few meters and are hosted by the PAD 

logic  boards.  Every  PAD  board  hosts  four  CMs,  relative  to  a  region  of 

granularity Δη × Δφ  0.2 × 0.2. It also hosts the modular board TTCrq and the 

modular board Link Tx, that transmits on optical fibre trigger and readout data to 

the next DAQ levels. In Figure 30 a picture of a PAD board is shown.

Figure 30 – A PAD board.
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As said before, each RPC detector is made up of two RPC chambers glued 

together,  so a “low pT”  event  is detected resolving the coincidences defined 

between the signals of the four RPC chambers of the two inner detector planes. 

The coincidence is verified in a programmable matrix, depending on the fixed 

transverse momentum threshold. Every CM board allows to program up to three 

different trigger conditions. The coincidence can be also programmed with  a 

majority 2/4, 3/4 or 4/4 check between the four detector planes.

As example, with a 3/4 majority, the trigger condition is valid only if at least 3 

up to 4 signals received from the two trigger stations are detected, within the 

trigger window and in a timing coincidence of 20 ns. This majority algorithm 

partly allows reducing the background noise of the apparatus.

To analyze the “high pT” events, information from “low pT” CMs and from the 

two detector planes of the RPC3 station are transferred to the corresponding 

“high pT” CMs, installed on the RPC3 chambers. The coincidence algorithm is 

the  same  as  before:  as  for  a  “low  pT”  event,  the  matrix  searches  a  time 

coincidence between the signals, within a time interval of 20 ns, with a 2/4, 3/4, 

4/4  majority  check  and  in  spatial  programmable  windows  (called  roads) 

depending on the threshold of the imposed transverse momentum.

Trigger data are elaborated inside the CM board and formatted into a frame. 

The header contains the code that identifies the board (CM) and two identifiers, 

FEL1ID and  FEBCID, produced by the two counters of  EVID and of  BCID on 

the board. The data frame is then transmitted to the trigger processors. Read 

Out  data are  stored  in  FIFO  (First  In  First  Out)  memories  and  wait  to  be 

transmitted (or not) to the next DAQ levels, depending on the decision of the 

level 1 trigger.

2.7.2 The PAD board

The  information  of  two  adjacent  “low  pT”  CMs  in  η direction  and  the 

corresponding information of the two CMs in φ direction are elaborated by the 

“low pT” PAD Logic board. For the “high pT” trigger algorithm, data arriving to the 

“high pT” PAD logic board come from both the CM “low” and from the CM ”high” 

(Figure 31). The PAD Logic “low pT” board and the four CM “low pT” are installed 
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on the RPC2 station, while the PAD Logic “high pT” board and the four CM “high 

pT” are installed on the RPC3 station.

Figure 31 – Data path for the “high pT” events.

One PAD Logic board covers a granularity region of  Δη  ×  Δφ   0.2 × 0.2, 

whereas the dimension of a Region Of Interest is Δη × Δφ  0.1 × 0.1: so each 

PAD Logic contains information on 4 ROIs. A Small sector of the spectrometer 

is managed by 7 PADs, while a Large one is managed by 6 PADs.

The  main  task  of  the  PAD  board  is  to  perform  a  further  elaboration  of 

read-out and trigger data produced by the CMs. These data are combined and 

two different frames with different information (for read out and for trigger) are 

produced and sent  via  optical  fibre to the counting room  USA15.  The other 

tasks of a PAD board are: the identification of the  Region Of Interest  for the 

event validated by the trigger system that combines information both in η and in 

φ direction; the transmission of trigger information, of the  BCID  and of other 

signals.  Furthermore, using a TTCrq modular board, each PAD receives the 

trigger  signals  from  the  TTC  and  distributes  them  to  the  four  coincidence 

matrixes and to the PAD logic. In  Figure 32 a data flow diagram of the PAD 

board is shown.

RPC3

RPC2

RPC1

CM
“low p

T
”

CM
“high p

T
”

PAD board
“high p

T
”

PAD board
“low p

T
”

42



Figure 32 – The PAD board data flow diagram.

2.7.3 The data path architecture

Read-out data and Trigger data from a PAD are transmitted via optical fibre 

to a RX/SectorLogic (RX/SL)  board. The trigger data path must be rigorously 

synchronous, at the 40 MHz of the LHC machine, but the read out data path is 

asynchronous, because interesting data (and so the L1A signal that validates 

them) are not produced in the detector at every  bunch crossing. The  RX/SL 

board is therefore made up of two main parts, one asynchronous (the read-out 

section, named RX) and one synchronous (the trigger section, named SL) with 

the machine clock. The first one is dedicated to the reception, the elaboration 

and the transmission of read-out data to the Read Out Driver (ROD) board, 

while the second one is responsible of the reception of trigger data and of the 

transmission of them to the Muon Trigger Central Processor Interface (μTCPI).

The ROD is a VME electronic board and it is responsible of the management 

and the elaboration of the  read-out  data coming from the PAD boards of a 

whole sector (Large or Small) and of the transmission of data to the next TDAQ 

levels (Figure 33).

The ROD crate is located in the counting room USA15, at about 80 meters 

from the beam interaction point. Such crate hosts two independent structures, 

each one made up of two RXSector Logic boards (slaves) and one ROD board 

(master). Every crate is controlled by a VME central unit  CPU. Every ROD is 

connected, through a custom  bus  (RODbus), both to the trigger section (SL) 

and to the read-out section (RX) of every RX/SL board. The trigger section (SL) 

of the RX/SL board receives trigger data over optical fibre from the PAD boards, 

transmits its data to the interface to the trigger processor μTCPI (muon Trigger 

Central Processing Interface) and transfers diagnostic information to the ROD.
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Figure 33 – Data path from the PAD to the ROD.

The read-out section (RX) receives read-out data over optical fibre from up to 

eight PAD boards and, after elaboration, transmits them to the ROD.

The task of the ROD board  is to  parse the received data frames, to check 

their coherence and to build a data structure for all the RPCs of one of the 32 

sectors of the spectrometer. Each ROD sends the event fragments to the next 

DAQ  levels  for  further  event  building  and  analysis.  The  ROD  hardware 

environment and its architecture will be deeply described in the next chapter.

As just said, every ROD manages the information coming from one of the 32 

sectors into which the spectrometer is divided (16 towers, each one divided in 

two sectors, for η > 0 and η < 0). To each one of these sectors correspond two 

logic sectors into which the trigger system is divided (so 64 trigger logic sectors, 

in total). These lasts are managed by 7 PADs, if it is a  Small sector, or by 6 

PADs, if it is a Large sector. Each RX/SL manages the data produced by one of 

the 64 trigger logic sectors of the spectrometer, receiving information from 6 or 

7 PADs. The number of  the PAD boards connected to a ROD, through the 

RX/SL boards, will therefore be given by 6 × 2 = 12 (for a Large sector) or by 

7 × 2 = 14 (for a Small sector). A total of 32 structures, similar to the one shown 

in the right side of Figure 33, are needed to manage the flux of trigger and read 

out data of the whole spectrometer.

The ROD will be described in detail in the next chapter.
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CHAPTER THREE – THE READ OUT DRIVER 
OF  THE  ATLAS  MUON  SPECTROMETER 
RPCs

The ROD is part of the DAQ system of the ATLAS muon spectrometer. in this 

chapter I describe the hardware environment and the architecture of the board, 

together with the block diagram of the Event Builder, responsible of the event 

building process. The different devices present on the board are presented too.

3.1 The ROD board in the DAQ system

The Read Out Driver  [28] is a VME board located in one of the off-detector 

data acquisition subsystem shown in Figure 34. These structures are installed 

in the  USA15  counting room, at about  80 meters from the beam interaction 

point.  In  this  structure  the  ROD  manages  readout  data  of  one  of  the  32 

half-sectors into which the spectrometer is divided (considering the  η > 0 and 

η < 0 regions).

Each sector managed by the ROD corresponds to two of the 64 logic sectors 

into which the trigger system is divided. Each ROD is linked, via a custom bus 

(RODbus), with two RX-SL boards, that have the task to receive and elaborate 

trigger and read-out data from the on-detector electronics.

The RODbus is a bus that allows the boards to exchange data, control and 

timing signals.
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Figure 34 – The Read Out Driver in the DAQ system.

In particular,  data and timing signals are transmitted in LVDS standard in 

order to have high frequency, low skew and low jitter, while control signals (as 

busy, reset, offline), run at lower rate and are transmitted in TTL standard. In 

the next paragraphs a detailed description of the RODbus will be given.

3.1.1 The RX section of the RX/Sector Logic board

The RX section of the  RX/Sector Logic  board receives  read-out  data from 

PAD boards, via up to eight optical fibre. Such data are then elaborated and 

transmitted to the ROD, over  the  RODbus  backplane. The main task of the 

RX/Sector Logic board is to format in a single frame the readout  data coming 

from  different  PAD  boards.  Data  are  sorted  according  to  the  same  event 

number  and  bunch-crossing  parameters  and  some  control  bits  are  added. 

Events with the same  bunch-crossing  identifiers, even if arrived to the  RX/SL 

board at different times, are grouped in the same RX Frame. The format of the 

RX Frame is shown in Figure 35.

The RX section logic also checks the correctness of data frames, analysing 

header and footer in input from the PAD. The RX/SL board has a VME interface 

that  can  be  used  both  for  the  board  configuration  and  for  the  test  of  data 

transmission to the ROD.
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Figure 35 – Format of the RX Frame.

3.1.2 The RODbus

In the subsystem that hosts the ROD board there are two RX/SL boards and 

two Muon Central Trigger Processor Interfaces, whose task is to interface the 

trigger  section  of  the  nearest  RX/SL  board  to  the  Muon  Central  Trigger 

Processor.

The custom  backplane  RODbus  has  been designed  to  handle  all  the 

functionalities needed for this section of the trigger and data acquisition system 

of the ATLAS spectrometer. Front and rear view of the RODbus are shown in 

Figure 36. It is a 10 layer PCB (Printed Circuit Board) and it fits into the VME64x 

rear side: connectors on the bottom are assigned to control signals (i.e. busy, 

reset,  diagnostics)  driven in  TTL standard;  the three upper  connectors (that 

match the J0 connector of the VME64X) host high frequency data and timing 

signals, that are transmitted in LVDS standard.
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Figure 36 – The RODbus backplane.

As said before, trigger and read-out information arrive on the RX/SL boards, 

via optical fibre, and read-out data are sent to the ROD via the RODbus: each 

RX/SL sends 48 bit at 40 MHz. The signals received by the ROD from the LHC 

(via TTC) are sent on the  RODbus  too. Such signals are forwarded to RX/SL 

boards and to the μTCPIs. For each RX/SL there is a 18 bit TTL shared bus for 

control signals. The RODbus also allows transmission of data from each RX/SL 

to the nearest μTCPI over a 48bit TTL private bus. On the LVDS domain, the 

backplane is made of differential pairs, routed as edge-coupled microstrips. The 

noisy  TTL  lines  are  routed  on  separate  planes  and  connectors  and  are 

terminated as VME lines.

3.1.3 The Read Out Driver

The main task of the ROD is to receive information from each of the two 

RX/SL  boards connected to  the ROD via  RODbus  and to  perform a further 

framing, before transmitting data to the next DAQ levels: the Read Out Buffers 

(ROB). The scheme of the ROD event builder is shown in Figure 37.

The frames coming from each RX/SL have an RX Header, a certain number 

of  data words (payload) and a  footer.  The two 16-bit  Header  words contain 

information on L1A and BCID of the event and are checked by the ROD Event 

Builder Engine; the payload of each frame is not inspected by ROD.

48



Figure 37 – Scheme of the ROD event builder.

The ROD produces a new frame, the MUON ROD FRAME, that has a ROD 

Header  (pertaining to a specific L1A value), a payload made up of the data 

coming from the selected RX/SL boards, and a ROD Footer.

In the event building procedure, the ROD performs also a control of syntactic 

and logical coherence upon the information coming from the RX/SL boards. In 

particular, the ROD detects errors in data transmission or mismatch between 

the L1ID and BCID codes (generated by the On-detector boards and embedded 

in the  RX/SL  boards frames) and the corresponding codes transmitted by the 

TTC to the ROD. Data coming from the  RX/SL  pertaining to the same  event 

number  and  Bunch Crossing  parameters (L1ID  and  BCID) are selected and 

written  in  the  payload  of  the  Muon  ROD  frame.  If  there  is  a  discrepancy 

between L1 and/or BCID identifiers, data are transmitted but flagged with one or 

more error bits.
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Figure 38 – The output data format of the ROD board.

The output data format of the ROD board  [29] is shown in  Figure 38: the 

frame starts with a ROD Header (pertaining to a specific EVID value), includes 

as a payload the frames coming from the RX/SL boards and ends with a Footer 

containing  status  and  error  flags. Output  data  are  32  bit  words  and  both 

”Header” and “Trailer” (or “Footer”) are made of more words.

Some  ROD  features  have  been  specifically  designed  to  manage  the 

operations of flow control and error handling. These features allow a user to 

obtain information about events and errors occurred and to retrieve information 

about the internal working status of the board.

As  already  mentioned,  the  ROD also  manages  the  timing  signals  of  the 

trigger and data acquisition system. For this purpose, the ROD hosts a TTC 

receiver module (the TTCrq board) from which it receives control signals to be 

forwarded to the  RX/SL boards. The main timing signals are the  LVL1Accept, 

generated  by  the  first  level  trigger  processor  to  validate  data  related  to  a 

specific bunch-crossing, and the reset signals BCR and ECR, needed to clear 

respectively the Bunch Counter and the Event Counter registers. The ROD also 

provides the RX/SL boards with a clock signal synchronous to LHC.
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Figure 39 – The Read Out Driver VME board.

The ROD (Figure 39) has a VME interface that allows the user to access the 

Event  Builder  function  via  a  VME  CPU,  on  which  a  specifically  designed 

software runs. 

Other monitoring features of the ROD include the control of power supply, of 

the RODbus backplane’s temperature and the of the TTC timing setting. This is 

achieved by an ARM7 microcontroller, via an I2C communication protocol [30].In 

Figure 39 a photo of the ROD board is shown. The board has the form factor of 

the VME 64X 6U and is  equipped with  two  VIRTEX II  [31]  XILINX FPGAs, 

labelled in  Figure 39 as VME FPGA and ROD FPGA. The board also hosts a 

microcontroller  (labelled  as  ARM7)  and  the  deserializers  (RX  SerDes)  that 

receive data via the  RODbus  backplane from the  RX/SL  boards. In  Figure 39 

are also shown the TTCrq modular board, receiver of the TTC optical system, 

and the transmitter modular board S-Link, responsible of the data transmission 

to the next acquisition levels. Each of these elements will be discussed on later.

Figure 40 shows a block diagram of the ROD board. In this scheme it  is 

possible to see the  VMEbus connected to the  VME FPGA and the  RODbus 

connected with the two SerDes.
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Figure 40 – ROD Block diagram.

3.1.4 The VME FPGA

The VME FPGA is a Virtex-II 1000 bg575 FPGA, produced by XILINX. Its 

main task is to interface the whole ROD board with the VMEbus and so, via the 

VME CPU, with the ATLAS DAQ environment. The connection with the  ROD 

FPGA, that hosts the logic to perform the  Event building, is made by a serial 

custom protocol that will be described in the next paragraph. The VME FPGA is 

also connected to microcontroller (labelled with “μP” in  Figure 40), that allows 

the communication via I2C protocol, with the temperature sensors, power supply 

sensors and TTCrq module.

The  VME FPGA  is  fed  with  the  40  MHz board  clock  which  is  internally 

multiplied  to  80  MHz with  a  DCM  [32].  The  VME FPGA hosts  eight  32-bit 

registers, used to set and program the different functionalities of the FPGA. The 

meaning of each register is described in Appendix A.
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3.1.5 The serial custom protocol between the FPGAs

The ROD FPGA communicates with the VME FPGA via a serial synchronous 

custom protocol,  carried out  by two unidirectional  connections.  As shown in 

Figure 40, data from the VME FPGA toward the ROD FPGA are transmitted on 

the vme_to_rod link, while data from the ROD FPGA toward the VME FPGA are 

transmitted on the rod_to_vme link.

In the following, the different operations that can be performed via the serial  

protocol between the FPGAs are described. The FPGA that behaves as the 

Master  of  the communication is  always  the  VME FPGA, managing both the 

write  (for data and for address) and read operation. As a consequence, the 

ROD FPGA can transmit data only if the VME FPGA had previously requested 

them. The serial protocol allows to set the target address to write data into the 

ROD FPGA. It also allows to read data from every register of the ROD FPGA. In 

order to access the ROD FPGA‘s internal registers, two consecutive steps are 

required:

1. First, a write access is necessary, in order to set the address of the 

target register for a write or read transaction;

2. Then a further access is required in order to transmit data to be written 

in the previously addressed destination register or to receive data to 

be read from the previously addressed destination register.

The ROD FPGA internal registers are identified by a 8-bit address, but only 

16 registers are used; each register is 32 bit wide.

Figure 41 – Addressing the destination register on the ROD FPGA.

Figure 41 describes the serial  protocol,  depending on the operation to be 

performed.  The  vme_to_rod  line  is  normally  at  the  logic  level  “1”:  when  an 

operation is started, the vme_to_rod net goes down for a clock cycle, indicating 

53



the start of a transaction. The next bit will be “0” or “1”, to flag a write operation 

to the ROD FPGA or a read operation from the ROD FPGA. The third bit of the 

sequence is “0” for address setting, “1” for a data transaction. The next bit -field 

will be 8 bit long, if the operation is related to address setting, or 32 bit, if the  

operation is related to data. Then, the transaction ends and the net goes to the 

logic level “1”.

3.1.6 The ROD FPGA

The ROD FPGA is a XILINX Virtex-II 2000 bg575 FPGA. As previously said, 

its main task is to perform the event building algorithm on data transmitted by 

the RX/SL boards. After being elaborated by the Event Builder Engine, data are 

transferred to the next levels of data acquisition system via the S-Link system.

The  ROD FPGA  is also responsible for correctly framing data and for the 

management of the S-Link system. The ROD FPGA receives four timing signals 

(L1Accept, Bunch Crossing Reset, Event Counter Reset and the 40 MHz clock) 

from the TTC and distributes them, by LVDS connections over the  RODbus 

backplane, to the two RS/SL boards. The ROD FPGA also hosts the receiver 

logic of the serial custom protocol that allows the VME FPGA (and so the VME 

bus and the VME CPU) to have access to ROD FPGA registers and data.

The ROD FPGA hosts 16 32-bit  registers,  used to configure the different 

functionalities of the FPGA. Such functionalities are, as example, the setting of 

the  different  options  in  the  event  building  procedure,  the  activation  of  the 

various  error  handling  procedures  or  the  setup  for  debug  procedure.  The 

meaning of each register is described in the Appendix A.

The ROD FPGA, like the VME FPGA, uses a clock frequency of 80 MHz. 

This feature allows the whole Event Builder Engine to work two times faster 

than the  clock  frequency of  the  ATLAS apparatus  and to  achieve  a  higher 

bandwidth.
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Figure 42 – The main paths on the ROD board.

3.1.7 The Data and Control paths

Figure 42 shows the main Data and Control paths on the ROD board. The 

most important path links the ROD board to the RX/SL boards via RODbus.

This path is shown on the lower side of the  Figure 42, with the continuous 

line. Data from the RODbus enter the SerDes and then the ROD FPGA. In the 

ROD FPGA data are buffered in a 32-bit x 4K words FIFO (First In First Out) 

memory. The task of this FIFO, as will be explained in the next paragraphs, is to 

decouple the different clocks arriving on the ROD FPGA and to synchronize all  

data  with  the  board  clock.  When  data  are  read  from  the  FIFO,  they  are 

processed by the Event Builder Engine. Then data are sent over S-Link to the 

next acquisition levels or to the VMEbus for monitoring.

The data path to the VMEbus is shown with the dotted line in Figure 42. This 

path has a great importance for debugging the Event Builder Engine because it 

55



allows to monitor the correctness of data at every step of the event building 

process. In fact, data can be read when they are written by the SerDes, or when 

they are read from the external FIFO, or also when the ROD MUON FRAME is 

complete  and  ready  for  the  next  acquisition  levels.  When  ATLAS  will  be 

running, the DAQ system will be able to sample events under software control, 

reading frames with specific L1IDs, that can be set by the user.

The path of the timing signals is shown with the hatched line in  Figure 42. 

The four timing signals transmitted by the TTC are received by the ROD FPGA 

and distributed on the RODbus in LVDS standard.

The  path  of  the  signals  for  the  control  of  the  TTC  is  shown  with  the 

hatch-and-point line in Figure 42. TTC is controlled by the ARM7 microcontroller 

(μP) via an I2C interface, whereas the microcontroller receives information from 

the VME FPGA.

3.1.8 The serializers (SerDes)

The most relevant problem in the communication between the RX/SL boards 

and the ROD is the great amount of data (48 bit at 40 MHz) involved in the  

transaction. In fact, the number of bits involved in every transmission cycle is 

much higher than the number of connections available on the VME backplane.

For this reason a custom backplane was designed to guarantee the required 

performances in the data acquisition system.

In the adopted solution, a commercial chipset is used to serialize 48 bit data 

on 8 serial channels, with a transmission frequency of 280 MHz.

Such devices, produced by  National semiconductors,  are the DS90CR483 

and the DS90CR484  [33], respectively the transmitter (or “serializer”) and the 

receiver (or “deserializer”) of the chip-set. The data transmission architecture is 

shown in Figure 43.

The transmitter accepts as input 48-bit data words, that are multiplexed on 8 

pairs of lines. Another pair of lines is used to transmit the synchronization signal  

(clock).  The nine signals are transmitted using the LVDS standard  [34] over 

differential couples.

56



Figure 43 – The data path from serializer to deserializer.

The receiver accepts as input the nine serial LVDS channels (data+clock) 

and recovers the original 48 bit words, synchronizing them with the transmitter’s 

clock signal. The basic idea to transmit data over multiple serial connections is 

the following. The DS90CR483 and the DS90CR484 devices acquire parallel 

data, transfer them with the described “pseudo-serial” protocol, over few lines, 

and return parallel data. The total interconnections’ number is reduced and the 

interference effects are limited by the differential transmission. In each period of 

the external clock, six bit of data word and an additional bit (DC Balance) are 

sent on every connection. The task of the DC Balance bit is to limit, through a 

particular inversion algorithm, the fluctuations of the mean value of the voltage 

on the  transmission line  [33]. The transmission clock frequency can be seven 

times  greater  than  the  external  clock:  in  particular  for  this  application,  the 

transmission bandwidth over each line is 280 Mbit/s.

3.1.9 The TTCrq

As said in the previous chapter, the LHC TTC (Timing, Trigger and Control) 

system  delivers  the  level  1  trigger  accept  signal  and  all  the  timing  signals 

necessary to synchronise the detectors, i.e. the 40 MHz LHC clock, the Event 

Counter Reset (ECR) and the Bunch Counter Reset (BCR)signals.

A special timing receiver ASIC (TTCrx) has been developed by CERN for the 

TTC systems. The ROD board hosts the TTCrq modular board with the TTCrx 

ASIC, that produces the TTC signals, as will be explained next. Four of these 

signals  (the  Level  1  Accept,  the  Bunch Crossing  Reset,  the  Event  Counter 

Reset and the 40 Mhz clock) are forwarded by the ROD to the RX/SL boards 

over the RODbus LVDS timing connections.
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Figure 44 – The TTCrx ASIC pinout.

As indicated in the pinout scheme in  Figure 44, the TTCrx  [35] accepts a 

single input from the TTC photodetector/preamplifier and generates a full range 

of decoded and deskewed signals for the electronics controllers.

The ASIC comprises an analogue part (including the postamplifier and clock 

recovery/fine  deskew  PLLs)  and  a  digital  part  (including  decoding, 

demultiplexing,  bunch  counter,  event  counter  and  command  processing 

sections).

In order to obtain a fine deskew resolution, the phase of the clock may be 

adjusted in steps of 104 ps, over the full 25 ns Bunch-Crossing interval. This 

allows to take into account possible propagation variations due to differences in 

time-of-flight and optical fibre path length.
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The bunch counter  number  is  also  provided for  external  use by a  12-bit  

counter, which delivers a unique Bunch Crossing number synchronously with 

the corresponding first level trigger decision. During the 2 clock cycles following 

trigger  accept,  for  which  the  central  trigger  logic  (global  trigger)  inhibits  the 

generation of new triggers, the corresponding 24-bit event number is delivered 

on the same 12 output lines as the bunch number. Unlike the bunch counter, 

the event counter need not be reset periodically but rolls over after every 16 

millions events (about every 3 minutes at the level-1 trigger rate). All the TTCrx 

event counters are initialised by a broadcast command and may be reset by 

such command during any gap in the LHC bunch structure. 

The transmission sequence for the level 1 accept signal, the 12-bit bunch 

number and the 24-bit event number is also called the “Trigger sequence”. The 

timing of the “Trigger sequence” is shown in Figure 45.

Figure 45 – The timing of the “Trigger sequence”.

The  12-bit  bunch  number generated  by  the  TTCrx  is  required  by  the 

synchronization algorithms and permits the study of correlations between event 

data and the LHC orbit.  The 24-bit event number suffices to detect possible 

problems of  event  ordering  or  loss  in  the  data  readout  and  event  building. 

Additional information, which makes the event identification unique, is added to 

data at later stages of the DAQ chain.

The  TTC  also  allows  to  transmit  synchronised  broadcast  and 

individually-addressed  commands  and  data.  The  broadcast  commands  are 

decoded by all  TTCrx’s and can be up to 256, encoded in 8 bit  words. The 
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individually-addressed  commands  are  sent  to  specific  chips  with  a  defined 

identification number ( a 14bit ID number).

Since the broadcast protocol is common to the whole apparatus, the most 

interesting  protocol  for  the  ROD  board  logic  is  the  individually-addressed 

commands protocol, reported in Figure 46. The net data contained in the TTC 

packet amounts to 16 bits. It is divided into an 8-bit DATA byte, and an 8-bit 

SUBADDRESS byte. At the output of the TTCrx, the net 16-bit data content 

appears on the Dout<7:0> and SubAddr<7:0> pins and DoutStr validates the 

signal.

Figure 46 – The timing of the individually-addressed commands and data.

The transmission of 32 bits of a generic individually-addressed word will take 

4 individually-addressed command.

When the TTCrx receives an individually-addressed command and decodes 

the 14-bit ID, the six bit SUBADDRESS <7:2> field will have to match six bit  

written in one of the ROD FPGA registers, whereas the two bit SUBADDRESS 

<1:0> will span over the possible four values:

— “00” will validate the lower 8 bits of the word, i.e. word_data <7:0>;

— “01” will validate the word_data <15:8>;

— “10” will validate the word_data <23:16>;

— “11” will validate the word_data <31:24>.
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One of the information transmitted by an individually-addressed command is 

the “Trigger Type word”. The level-1 (LVL1) trigger system generates an 8-bit 

“Trigger Type word” for each accepted bunch crossing. The most-significant bit 

of the LVL1 trigger word (“trigger-mode” flag) is used to distinguish between 

physics triggers and calibration/test triggers. The meaning of the remaining 7 

bits is different for these two cases and is described in [36]. As an example, in 

physics trigger mode some of the remaining bits can indicate that calorimeter 

and muon triggers might  be treated differently,  or  that low pT muon triggers 

might require a special treatment.

The TTC data used by the ROD FPGA Event Builder Engine are the 24-bit  

Bunch Crossing ID word, the 12-bit Level1Accept ID word and the 8-bit Trigger 

Type word. These words are stored in two internal FIFOs, whose features are 

described in the next paragraphs. One 36-bit FIFO will host the 24-bit Bunch 

Crossing ID and the 12-bit Level1Accept ID and this FIFO will be labelled as 

TTC L1 FIFO from now on. An 8-bit FIFO will host the Trigger Type 8 bit data 

and will  be labelled as Trigger  Type FIFO.  Both the TTC L1 FIFO and the 

Trigger Type FIFO can host 511 words. Each TTC word (Bunch Crossing ID, 

Level1Accept ID and Trigger Type) is received by the ROD and stored in the 

corresponding FIFO; then it is used by the Event Builder Engine in the ROD 

FPGA to build the ROD MUON FRAME, with the format presented in the next 

chapter.

3.1.10 S-Link

S-LINK has been developed at CERN and can be thought of as a virtual 

ribbon cable, moving data or control words from one point to another. It can be 

used to connect any layer of front-end electronics to the next layer of read-out.  

S-LINKs can be constructed using different physical media and therefore even if  

S-LINKs may have different timing characteristics and data transfer rates, all will 

have to comply to [37].

 In Figure 47 the conceptual scheme of S-Link is reported.
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Figure 47 – Conceptual scheme of an S-Link.

In addition to simple data movement, S-LINK includes the following features:

— Error detection.

— Return  channel  for  flow  control  and  for  return  line  signals  (duplex 

version only).

— Self-test function.

The physical link can be conceived as the interface between the Source, on 

the Front  End  Electronics,  and  the  Destination.  The  source  is  a  Front-end 

Motherboard  (FEMB)  with  the  addition  of  a  Link  Source  Card  (LSC);  the 

destination  is  a  Link  Destination  Card  (LDC)  on  a  Read-out  Motherboard 

(ROMB). In many applications a uni-directional data channel is required.

In  some  cases  the  user  might  require  to  send  flow  control  and  other 

information back to the FEMB. The S-LINK, therefore, can be constructed in 

either a simplex or a duplex version.

In the duplex version, a return channel exists which allows the LDC to pass 

information back to  the LSC.  The main function of  this  return channel  is  to 

transmit flow control commands from the ROMB to the FEMB. Thus a duplex 

SLINK transmits only when the ROMB is available to read the data. When the 

ROMB is unavailable, data transfers from the FEMB to the S-LINK are inhibited.

In particular, the ROMB can assert a signal, XOFF, at the LDC which forces it 

to transmit an XOFF code to the LSC. This stops data transmission from the 

LSC. When the signal is de-asserted, an XON code is transmitted to the LSC 

which allows transmission to resume. This is exactly what happens on the ROD.
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Figure 48 – The connections between ROD FPGA and S-Link.

Figure 48 shows the connections between the S-Link and the ROD board, 

that can be conceived as a FEMB; the mezzanine that is hosted by the ROD 

board represents the LSC. The two pins that must be controlled by the ROD 

board are:

1. Link  Down (LDOWN):  When  low  indicates  that  the  S-LINK  is  not 

operational. It is asynchronous and can go low due to:

- S-LINK failure; in this case LDOWN is latched low until 

cleared by a reset cycle.

- S-LINK  is  undergoing  a  reset  cycle;  in  this  case 

LDOWN goes high when reset cycle is complete.

- S-LINK is in test mode.

2. Link Full Flag (LFF): Data shall only be written to the S-LINK when this 

line is high. After it goes low, up to two more words may be written.

The signals that are generated by the ROD and are inputs to the Slink are:

1. User Clock  (UCLK): Data is transferred to the S-LINK on the low-to-

high transitions of UCLK when UWEN is low. This is a free running 

clock.

2. User Write Enable (UWEN): When low enables data to be transferred 

to the S-LINK on the low-to-high transition of UCLK. Synchronous with 

UCLK.
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3. User  Reset  (URESET):  When  low  initiates  a  reset  cycle  and  is 

asynchronous.

4. User Data (UDATA): Data on these lines are transferred to the LSC on 

a low-to-high transition of UCLK when UWEN is low. UserData[3...0] 

are ignored if UCTRL is low. User Data are synchronous with UCLK.

5. User  Control  (UCTRL):  When  low  indicates  that  the  data  to  be 

transmitted is a control  word. Causes UserData[3..0]  to be ignored. 

Synchronous with UCLK.

Figure 49 shows the timing of data transmission from the ROD board (i.e. the 

FEMB) to the S-Link mezzanine. Data transfer to the LSC is based on writing to 

a FIFO memory. The ROD provides a free-running clock (UCLK) which shall be 

present  at  all  times.  When  data  are  to  be  transferred  to  the  LSC,  the 

write-enable line (UWEN) is set low and the data words are transferred on each 

subsequent low-to-high transition of UCLK. Data can only be transferred to the 

LSC when Link Full Flag (LFF) line is high. If this line goes low, the S-LINK will  

be able to receive up to two more data words (this is to allow the ROD logic 

time to react to LFF). After transferring the extra words, the ROD should not try 

to transfer datato the S-LINK or data may be lost.

Figure 49 – The timing of data transmission on S-Link.
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3.1.11 The FIFO memories

FIFO memories used inside the ROD FPGA are obtained using  its internal 

resources,  in  particular  the  hardware  RAM  blocks.  In  Figure  50 the  pinout 

scheme  of  the  Virtex  II  internal  FIFO  is  displayed.  Such  FIFOs  work  with 

synchronous read and write protocols. The input is controlled by a write clock 

(Wr_CLK ) and by the input pin Write Enable (Wr_En). Data (DIN) are written in 

the FIFO on every rising edge of the Wr_CLK, when Wr_En is asserted. The 

output of the FIFO is controlled by the read clock Rd_CLK and by the input pin  

Read Enable (Rd_En). Data are put on the FIFO’s output pins (DOUT) on every 

rising edge of the Rd_CLK, when Rd_En is asserted.

Figure 50 – The pinout scheme of the VIRTEX II internal FIFOs.

Also the  FIFO occupancy flags  can be seen:  full,  empty,  almost  full  and 

almost empty. It’s worth to point out the inputs Programmable Empty Threshold  

and  Programmable  Full  Threshold  and  the  corresponding  outputs 

Programmable  Empty  and  Programmable  Full.  The  Programmable  Empty  

Threshold  and  Programmable  Full  Threshold  inputs  allow  programming  the 

threshold values for the assertion and de-assertion of the Programmable Empty  

and Programmable Full flags.

Their values can be programmed by software and can be set by access to 

internal registers of the ROD FPGA, as can be seen in Appendix A. The ROD 
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FPGA internal FIFOs play a crucial role on the ROD board. Their function is to  

allow storing data and also acting as a buffer between different clock domains. 

This feature is very important because the board local clock is a 40 MHz local 

clock, not synchronous to the LHC clock.

3.1.12 Clock domains and clock muxes

The ROD has four concurring clock domains on board. These clock domains 

are:

— the 40 MHz clock recovered by the TTCrx receiver of the TTC signals;

— the 40 MHz clock generated by the local oscillator on the board;

— the 40 MHz clock recovered by the SerDes receiving data from the left 

RX/SL;

— the 40 MHz clock recovered by the SerDes receiving data from the 

right RX/SL;

Now will follow the descriptions of three design strategies used to match all 

the clock domains.

The use of internal FIFOs. All  clock domains are at 40 Mhz, but it’s not 

possible to predict the phase relationships between them. For this reasons, the 

use of FIFO memories to match the different clock domains is essential.

Two FIFOs have the task to receive data from the SerDes and to decouple 

the SerDes clocks from the board clock: from now on, the FIFOs will be labelled 

as SerDes FIFOs. The SerDes FIFOs are 32bit x 4K words deep.

Two FIFOs have the task to receive data from the TTC and to decouple the 

TTC clock domain from the board clock. These FIFOs are the TTC L1 FIFO and 

the Trigger Type FIFO described previously.

Two FIFOs have the task to buffer the ROD Frames produced by the Event 

Builder Engine, that are to be sent out of the board. One FIFO hosts the 32-bit 

data for the S-Link and from now on this FIFO will be labelled as S-Link FIFO.

The other FIFO also hosts data produced by the Event Builder Engine, but 

only with the purpose of sending them on demand to the VME bus; from now on 
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this FIFO will  be labelled as  VME FIFO. Both the S-Link FIFO and the VME 

FIFO are 32 bit x 4K words deep.

The definition of a new 80 MHz clock domain. This is obtained by using 2 

DLLs hosted upon the ROD FPGA and the VME FPGA.

The S-Link transmitter fed with a 40 MHz clock, obtained by the division of 

the 80 MHz ROD FPGA clock. This allows to tune the phases of the S-Link 

clock with the phase of data sent to S-Link: indeed, in this way all signals are 

synchronous with the same clock.

Figure  51 shows  the  spread  of  the  different  clock  domains  over  the 

architecture of the ROD board.

Figure 51 – The spread of the clock domains on the ROD board.
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3.1.13 The ARM7 microcontroller

The microcontroller mounted on the ROD board is an  NXP LPC2138  [38], 

based on a 32/16 bit ARM7TDMI-S CPU, that combines the microcontroller with 

embedded high speed Flash memory.

In  Figure 52 the block diagram of the LPC2138 is shown. As can be seen, 

the ARM7TDMI core is surrounded by many interfaces (or bridges) that allow 

the communication with the internal connections network.

Figure 52 – The block scheme of an LPC2138 microcontroller.
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Among the other connections, we can see:

— the ARM Peripheral Bus, that connects the ARM7 core to the internal 

peripherals (I2C interfaces, serial interfaces, A/D and D/A converters, 

etc.);

— the ARM7 local bus, that connects to the internal memory (SRAM or 

Flash) controllers;

— the  Advanced High-performance Bus,  that connects the core to the 

Vectored Interrupt controller, whose main task is to assign interrupts 

priorities from the various peripherals.

The foremost feature of the ARM7 microcontroller is that it is a register based 

load-and-store architecture: a user program must load data from memory into 

the  CPU  registers,  process  this  data  and  then  store  the  result  back  into 

memory.  Unlike  other  processors  no  memory-to-memory  instructions  are 

available. The programmer’s model of the ARM7 consists of several registers:

— Current Program Status Register (CPSR) containing flags that report 

and control the operation of the ARM7 CPU;

— 15 user registers: the 13th, the 14th and the 15th are respectively used 

as Stack register, Link register and Program Counter.

The  processor  has  seven  different  operating  modes  in  order  to  handle 

exceptions (like Fast interrupt, Interrupt, Memory error and so on). Normally, the 

application  code  runs in  the  user operating  mode,  but  when  an  exceptions 

occurs, the CPU changes mode: the registers from the first to the twelfth remain 

the same, while the Stack and Link registers are replaced by a new pair  of 

registers, unique to that operating mode. This means that each mode has its 

own Stack and Link registers. In this way, at the end of every exception, the 

addresses stored inside the Stack and the Link registers during the user mode 

can be restored.

In  addition, the  Fast  Interrupt mode has duplicate registers also from the 

seventh to the twelfth and all  the exception modes have one more personal 
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register: the Saved Program Status Register (SPSR), in which the CPRS of the 

user mode is be saved during exceptions.

To  increase  the  performance  of  instructions’  execution,  the  ARM7 has  a 

three stage pipeline, with the FETCH, DECODE and EXECUTE operations. The 

hardware  of  each  stage  is  designed  to  be  independent  and  up  to  three 

instructions can be processed simultaneously. The pipeline is most effective in 

speeding  up  sequential  code.  However  a  branch  instruction  will  cause  the 

pipeline to be flushed.

The task of the microcontroller on the ROD board is to allow communication 

between the VME CPU and the TTCrq module via I2C protocol. In this way, the 

internal configuration registers of the TTCrq module can be accessed and the 

TTC module can be programmed. The microcontroller also allows sensing the 

values of the temperature, voltages and EM activity upon the LVDS bus on the 

RODbus, in order to monitor its environment.

3.2 The Event building algorithm

The  dataflow of  the  ROD FPGA is  shown  in  Figure  53.  Data  from each 

RX/SL  board  arrive  at  the  FPGA  through  the  corresponding  RX  SerDes, 

together with the recovered 40 MHz clock. Data are formatted in frames that are 

made of  a  RX Header,  a  certain  number  of  data words  and a Footer.  The 

Header contains the EVID and BCID of the event. The Footer contains a control 

code.

RX Data are received by the SerDes Interface module and are stored in 

SerDes FIFOs. Signals from TTC (clock, EVID, BCID and controls) are received 

by the TTCrq Interface module and are stored in the pertaining FIFO. From all  

these  FIFOs,  data  are  read  and  elaborated  by  the  Event  Builder  Engine, 

synchronously with the 80 MHz internal clock. 

As said  before,  the  ROD MUON FRAME produced by  the  Event  Builder 

Engine is made of 32-bit words. It starts with a Header pertaining to a specific 

EVID value, includes the frames coming from the RX/SL boards as a payload 

and ends with a Footer, containing status and error flags. Event Builder output 

data are stored in the S-Link FIFO and then read out by the S-Link transmitter 

and sent across the optical link to the Read Out Buffer.
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Figure 53 – The dataflow of the ROD FPGA.

3.2.1 The Event Builder Engine

The Event Builder Engine  is the core of the ROD board as it performs the 

framing  of  the  ATLAS  readout  data.  In  order  to  guarantee  real-time 

performance, it as been designed around three Finite State Machines (FSMs), 

working cooperatively.  The Event Builder Engine  is made of a master FSM 

called Frame Maker, that builds the ROD Muon Frame, and two identical FSM 

called FIFO reader, that are used to read the RX Frames from the RX SerDes 

FIFO and to check the correctness of the RX Frame.

The three FSM are one-hot coded and, in order to build the engine, around 

one  hundred  states  have  been  used.  For  this  reason,  describing  its 

state-by-state behaviour is very hard. However,  it is possible to define some 

“macrostates”, each corresponding to a task that is performed by the cluster of 

FSM. The bubble diagrams of the different FSMs, in terms of the corresponding 

Macrostates are shown in Figure 54 and Figure 55.

In Figure 53 you can see a bubble named Builder Monitoring System. This is 

my original contribution to the ROD design. The task of the Monitoring System 

is to perform  real time and statistical analysis of the the Event Builder FSMs 

dynamics. It can also fill histograms, measure the elapsed time and length for 

each built event, keep track of status and error words and transfer monitored 

data  via  VME.  The  Monitoring  system will  be  deeply  presented in  the  next 

chapter.
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Figure 54 – The Frame Maker Finite State Machine.

Figure 55 – The FIFO Reader Finite State Machine.
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Figure 56 – The Event Builder Engine algorithm.
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The basic algorithm of the Event Builder Engine is shown in Figure 56. Every 

ROD MUON FRAME is relative to a specific EVID value received by the TTC. 

The Event Builder Engine checks the empty flag of the EVID FIFO and waits for 

a EVID to be processed.

When a EVID is available,  the  Event Builder Engine starts writing a valid 

header into the output S-Link FIFO. The Header contains nine control words, 

such as the Start of Frame, the board identifier code and information about the 

current EVID and BCID value.

Then the Event Builder Engine waits for data from the RX/SL boards. As in 

the  previous step,  the  Event  Builder  Engine checks the empty flag of  each 

SerDes FIFO. The received RX frames are parsed to find a Header. If the frame 

is  correctly  formatted  and the  embedded  EVID and  BCID words  match  the 

current one, it is appended to the ROD frame. The ROD Event Builder does not 

inspect the payload of the RX frames: it only counts its total length.

The ROD frame is closed by a Footer, containing status words, error flags 

and the total word count. Then the Event Builder Engine restarts and waits for a 

new EVID value.

3.2.2 EVID errors handling

Some of RX frame’s control fields are parsed by the Event Builder Engine in 

order to check their correctness. In particular:

— Header, EVID and Footer are always parsed. 

— The  BCID  can  be  optionally  parsed,  depending  on  the  value  of  a 

specific bit in a register of the Configuration Register File. 

— The total length of the RX Frame is counted.

While reading an RX frame, different errors can occur: 

— EVID and BCID errors; 

— Formatting error (missing Header of Footer); 

— Length error; 

— Timeout error.
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On the left column in  Figure 57 there is the correct typical situation, i.e. a 

succession of correctly formatted RX frames, each with  a consecutive EVID 

value.  EVID and BCID errors occur when there is  a mismatch between the 

codes transmitted by the TTC and the value contained in the RX Frame Header. 

There are two kinds of EVID errors. The first one is recoverable and it is shown 

in the right column of Figure 57. While the first RX frame is correctly related to 

the  TTC EVID  value,  the  second  one  has  a  corrupted  EVID  value.  In  this 

example, the error is clearly due to a bit flip. The corrupted RX frame will be 

appended to the ROD MUON FRAME with the EVID value set to 1000 (i.e. the 

TTC value), with an error flag set in a ROD MUON FRAME Footer. Then, if the 

next  RX  frame  has  the  correct  EVID value  (i.e.  1001),  there  is  no  loss  of 

synchronization and the framing proceeds without further errors.

Figure 57 – The occurrence of a recoverable EVID error.
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Figure 58 – The occurrence of an unrecoverable EVID error.

The second error is unrecoverable and it  is shown in the right column of 

Figure 58. Also in this case, the first RX frame is correctly related to the TTC 

EVID  value,  however  the  second  one  has  a  corrupted  EVID  value.  In  this 

example, the error is due to a missing frame.

As before,  the corrupted RX frame will  be appended to  the  ROD MUON 

FRAME with the EVID value set to 1000, with an error flag set in a ROD MUON 

FRAME Footer. The next RX Frame will also have a mismatch between its own 

EVID value and the TTC EVID. Hence, the second corrupted RX frame will be 

appended to the ROD MUON FRAME with the EVID value set to 1001, with an 

error flag set in a ROD MUON FRAME Footer. All the EVIDs in the following 

frames  will  not  match  the  corresponding  TTC  EVID  values.  After  N  errors 

(where N is a programmable value in a specific register of the Configuration 

Register File) the SerDes FIFO with  the synchronization problem will  be put 

offline.
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3.2.2 Frame syntax errors handling

Three different RX frame syntax error procedures are implemented:  Figure

59 shows examples of occurrence of such errors.

In  the  left  column,  the  so-called  Incomplete  Frame  error is  shown.  An 

Incomplete Frame error is triggered when the RX Frame Footer is missing. In 

this case, there will be a realignment on next Header: this means that when the 

next RX Header is read from the SerDes FIFO, an error flag is set in the Footer 

of the ROD Muon Frame and the frame is closed; the next RX frame will be 

correctly available, starting from an Header.

In  the  central  column,  the  so-called  Corrupted  Frame  error is  shown.  A 

Corrupted Frame error  is  identified when  the  RX Frame Header  is  missing. 

There will be a realignment on next Header: this means that all SerDes FIFO’s  

data are read out and dropped until the next RX Header is found. In this case, a 

de-synchronization between frames can occur and there is no workaround.

A  Length  error is  identified when  the maximum allowed length of  an RX 

frame is exceeded: this value is called maxlenght and it is written in a specific 

register of the Configuration Register File.

 

Figure 59 – The possible RX frame syntax errors.
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A Length  error  check is  necessary  in  order  to  avoid  bandwidth  penalties 

deriving from a noisy sector and to prevent from other formatting errors. An 

example of Length error is shown on the right column of Figure 59. In the case 

of a Length error, all RX frame’s data exceeding maxlength are skipped. There 

will be a realignment on next Header: an error flag is set in a status word of the 

ROD Muon Frame and the frame is closed; then, all SerDes FIFO’s data are 

dropped until the next RX Header is found. In this way, the next RX frame will 

be correctly aligned.

A  Timeout  error occurs when a SerDes FIFO goes empty during the event 

building process and no data is available in the FIFO within a programmable 

window.  After  a  Timeout,  the  RX frame processing is  halted,  and the ROD 

frame is  closed setting an error  flag.  The builder  then realigns on the next  

available RX Header as soon as new data become available.
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CHAPTER  FOUR  –  THE  MONITORING 
SYSTEM OF THE ROD EVENT BUILDER

This chapter describes the monitoring system of the Read Out Driver Event 

Builder.  Such  system  is  my  original  contribution  to  this  thesis.  Firstly  an 

overview of the monitoring environment will be given. Then the hardware and 

the software architectures will be described. A description of the user software 

interface will also be provided. Finally simulations and test results will be shown.

4.1 The monitoring environment

In  the data acquisition environment described in  the previous chapters,  a 

monitoring  system is  fundamental  to  analyze  the  activity  of  the  Finite  State 

Machines of the Event Builder, in order to find eventual errors or anomalous 

behaviours.

During my PhD, I developed a system embedded in the ROD FPGA, working 

in parallel with the Event Builder Engine. It is able to monitor the Builder Engine 

and, if required, to report monitored data via VME or UART.

The monitoring system is a hardware software co-design: it is based upon a 

microprocessor whom several hardware peripherals are connected to.

Its tasks are:

— To help to investigate upon eventual Event Builder errors;

— To  allow to  perform fine  tuning  and  debugging  of  the  Finite  State 

Machines of its engine;
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— To help the search of anomalous behaviours of the Read Out Driver or 

of the previous electronics, by keeping trace of states occupation and 

of the time spent in the event building process;

— To allow to easily find eventual unbalanced FIFO activities, that could 

be caused by errors from the on detector electronics.

In order to perform the tasks listed above, the monitoring environment should 

be able to fill histograms of the Event Builder FSMs’ state occupation and plot 

trends of the event length of the event building time. It should also monitor the 

FIFO  occupation  flags  and  the  error  flags  generated  by  the  Event  Builder 

Engine  during the building process.

The most important requirement is to reach real-time performances: as said 

before, the Event Builder Engine is made up of different Finite State Machines 

that  could  change state  every  clock  cycle.  Keeping trace of  such high  rate 

changes means that is necessary a system able to “react” at every clock cycle.  

Furthermore, in order to track and debug the algorithm, the system must be 

able to process the data just acquired and to display them locally or send them 

to a remote computer via VME. A microprocessor is very useful for statistical  

analysis and data elaborations, but typical microprocessor latencies are several 

orders of magnitude higher of what needed in this application, synchronous to 

the 80 MHz clock of the ROD board (clock period of 12.5 ns). This means that a  

processor would never be able to reach the mandatory real-time performances.

In order to have the computational power and flexibility of a microprocessor, 

together with the high speed performances of a hardware solution, I adopted a 

hardware/software  co-design  approach,  based  upon  an  embedded 

microprocessor,  whom different  hardware  peripherals  are  connected to.  The 

peripherals’  responsibility  is  to  manage  the  real-time  operations,  while  the 

microprocessor is responsible of the off-line data elaboration.

The microprocessor  I  chose is the soft-core Xilinx MicroBlaze v.7.00  [39], 

embedded in the ROD FPGA, and the development tools used to implement its 

environment and its application code (written in C language) are Xilinx ISE [40] 

and EDK [41] respectively. The MicroBlaze will be briefly described in the next 

paragraphs.

80



Every  monitoring  session  is  started  by  providing  an OPerative  CODE 

(OPCODE) to the monitoring system via a remote computer,  using the SSH 

protocol.  Such  instruction  reaches  the  VME  CPU,  that  sends  it  to  the 

MicroBlaze. The processor initializes its environment and waits for a building 

operation from the ROD Event Builder Engine to start. When the Event Builder 

starts building a new event, the monitoring process begins.

During the process the hardware peripherals work in real-time keeping trace 

of  the  Builder  FSM state  occupation,  of  the  FIFO flags  and  the  error  flags 

produced  by  the  Event  Builder  Engine  and  of  the  event  length  and  event 

building time.

At the end of the building operation, monitored data are sent via VME and, if  

required, elaborated by the processor.

In order to give instructions to the monitoring system, a software interface 

has been developed ad-hoc.

4.2 The MicroBlaze processor

The  MicroBlaze  [39]  is  a  soft-core  processor,  designed  for  FPGAs  from 

Xilinx. The MicroBlaze is implemented entirely by using the memory and logic 

devices  of  Xilinx  FPGAs.  Its  flexibility  consists  in  the  fact  that  its  hardware 

environment  is  fully  customizable:  a  user  can  add  Intellectual  Properties 

(included in the development tool’s libraries) or also create its own peripherals, 

in VHDL, and add them to the MicroBlaze project.

The  processor  is  a  32-bit  RISC  architecture.  Its  working  frequency  is 

programmable, and its maximum possible value depends on the FPGA upon 

the which it is implemented and on the design architecture. In our case, the 

FPGA is a Xilinx Virtex-II and the processor working frequency is 80 MHz. 

MicroBlaze instruction execution is pipelined into three stages to minimize 

latency: Fetch, Decode, and Execute.

 For  most  instructions,  each  stage  takes  one  clock  cycle  to  complete. 

Consequently, the number of clock cycles necessary for a specific instruction to 

complete is equal to the number of pipeline stages (i.e three clock cycles), and 

one instruction is completed on every cycle. A few instructions require multiple 
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clock cycles in the execute stage to complete. This is achieved by stalling the 

pipeline. In Figure 60 the three stage pipeline of the processor is shown. 

Figure 60 – The three stage pipeline behaviour of the Microblaze.

The  MicroBlaze  is  implemented  with  a  Harvard  memory  architecture: 

instruction  and  data  accesses  are  done  in  separate  address  spaces.  Each 

address  space  has  a  32-bit  range,  that  allows  to  handle  up  to  4  GB  of 

instructions and data information.

The processor does not separate data accesses to I/O and memory: it uses 

memory mapped I/Os. This means that every peripheral register is accessed 

exactly like memory registers and, in some cases, by using the same memory 

interface.  In  our  architecture,  the  processor  has  two  interfaces  for  memory 

accesses:

— The LMB (Local Memory Bus) provides single-cycle access to on-chip 

dual-port block RAM;

— The OPB (On-chip Peripheral Bus) interface provides a connection to 

both on-chip and off-chip peripherals and memory blocks;

The LMB [39] is a synchronous interface, with a 32-bit wide address and data 

busses. It is used primarily to access on-chip block RAM. It uses a minimum 

number of control signals and a simple protocol to ensure that local block RAM 

are accessed in a single clock cycle. This feature makes the LMB suitable for 

interfacing  the  processor  to  application  code’s  block  RAM,  allowing  fast 

instruction  fetching  without  interferences  due  to  memory  accesses  by 

peripherals.
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The On-chip Peripheral  Bus (OPB) is an IBM interface designed for easy 

connection of on-chip peripheral devices (both masters and slaves) and block 

RAMs. In Figure 61 you can see the physical implementation of the OPB. Since 

the OPB supports multiple master devices, the address bus and data bus are 

implemented as a distributed multiplexer. The Xilinx version [42] supports 32-bit 

address and data busses, while the IBM architecture can support up to 64-bit 

address and data busses.

In our architecture, I connected on the OPB several peripherals and also a 

block RAM, reserved to the data produced by them.

Figure 61 – Physical Implementation of the OPB.
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In Figure 62 it is shown a simplified block scheme of the MicroBlaze design I 

developed.  You  can see the processor  connected to  an instruction memory 

block via the LMB bus, while a data memory block is connect via the OPB bus. 

To this last, also several peripherals are connected. In the example scheme 

shown in Figure 62, you can see a General Purpose I/O (GPIO) block, needed 

to transfer data in input and/or output direction, a UART interface and a custom 

peripheral.

Figure 62 – Block scheme of a MicroBlaze design.

4.3 MicroBlaze environment overview

In Figure 63 a block diagram of the monitoring environment inside the ROD 

FPGA is shown.

On the top side of the image you can see the MicroBlaze connected via LMB 

bus to the instruction RAM block (labelled as LMB BRAM). On the right side, it  

is possible to see the OPB bus connecting a data RAM block (labelled as OPB 

BRAM) and several peripherals to the processor.

Instruction
RAM
block

Instruction
RAM
block

Data
RAM
block

Data
RAM
block MicroBlaze MicroBlaze

GPIOsGPIOs UARTUART Custom
Peripheral
Custom

Peripheral

LMB

OPB

84



Figure 63 – Block diagram of the monitoring environment.

The  core  of  my  project  is  the  Builder  Monitor  device  (BM),  designed 

specifically to perform the real-time monitoring of the Event Builder Engine. The 

BM is interfaced with the Event Builder Engine and, like all the other MicroBlaze 

peripherals,  with  the OPB bus. This allows the processor to save monitored 

data in the OPB block RAM.

In order to perform such data transfer with low latencies, I inserted into the 

project a Direct Memory Address Controller (DMA Ctrl). This device is able to 

perform  high  data  transfers  (a  word  every  two  clock  cycles)  without  the 

intervention  of  the  processor:  a  software  driven  transfer  would  take  a  time 

latency 4-5 times higher.

I  designed  the  system  in  order  to  have  low  reaction  times  respect  to 

user-given instructions and BM data storing requests. To increase such timing 
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performances, I based the processor application code upon interrupt requests. 

As you can see in Figure 63, I designed two interrupt sources:

— External Interrupt ReQuest (EIRQ), triggered every time a user gives 

an instruction to the monitoring system;

— Builder Monitor Interrupt ReQuest (BMIRQ), managed by the Builder 

Monitor device at the end of a monitoring operation, in order to let the 

MicroBlaze to save in the OPB block RAM the data just acquired.

To manage the interrupt sources’ priorities and requests,  I  inserted in the 

design an interrupt controller, connected to the unique MicroBlaze interrupt line.

The serial protocol between the FPGAs, described in the paragraph 3.1.5, is 

represented in Figure 63 by the Communication Interface (CI) block. in order to 

manage  all  the  communications  with  the  VME FPGA,  I  designed a  custom 

protocol with the CI. I implemented the signal of such protocol by using several  

General Purpose I/O (GPIO) devices.

I  also added a UART (Universal Asynchronous Receiver and Transmitter) 

device,  in  order  to  print  on  a  terminal  the  results  of  processor  elaborations 

(histograms, plots and so on) and debug operations.

In the following paragraphs, I will present a description of the custom protocol 

I developed to manage the communications with the VME. A deep presentation 

of all the monitoring environment devices will also be provided.

4.3.1 The custom protocol with the Communication Interface block

As  said  before,  every  monitoring  operation  is  started  by  an  external 

OPCODE (Operative CODE) to the monitoring system, provided by a user via a 

remote computer. Such OPCODE reaches the VME CPU, that delivers it to the 

monitoring environment and then to the MicroBlaze.

In order to do this, the CI block, managing the connection between the VME 

FPGA and the ROD FPGA (paragraph 3.1.5), must be interfaced somehow to 

the monitoring system. I developed the communication protocol to perform such 

interface, in which the CI block is the master.
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The interface is made up of two data buses (named  input and  output bus, 

respect to the monitoring system), the External Interrupt ReQuest signal (EIRQ) 

and the ACKnowledgement signal  (ACK). All  this signal  are implemented by 

using several General Purpose I/O (GPIOs) devices, available in the MicroBlaze 

libraries.

In  Figure  64 it  is  shown  a  block  scheme  of  the  custom  communication 

protocol between the CI and the monitoring system.

The input bus is divided into two fields:

— the less significant three bytes contain an eventual data sent from the 

CI to the monitoring system;

— the  remaining  most  significant  byte  contains  the  OPerative  CODE 

(OPCODE). This is a word codifying the instruction to be executed by 

the processor.

The output bus is also divided into two fields:

— the less significant 28 bits contain an eventual data provided by the 

monitoring system;

— the most significant three bits are Status signals, all in negative logic:

o DAV (Data AVailable) is the bit 29. When its value is a logic 0, it 

means that one or more data are available for being transferred 

from  the  monitoring  system’s  data  memory  to  the 

Communication Interface;

o DONE/DP (DONE/Data  Processing)  is  the  bit  28.  When an 

OPCODE involves the generation of several data words, this 

signal goes to 0 and does not change until the user reads the 

last of the available data. A logic 1, on the other hand, means 

that the processor is not executing any instructions and it  is 

ready to receive a new OPCODE.

o LOP (Legal OPCODE) is the bit 27. When its value is a logic 0, 

it means that the last received OPCODE has been recognized.
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The CI starts every operation with the MicroBlaze by asserting a logic 0 upon 

the interrupt request line EIRQ. The falling transition (from a logic 1 to a logic 0)  

upon this line triggers the interrupt controller, that generates an interrupt request 

to the microprocessor, letting it to jump to the external interrupt routine. Such 

service routine reads from the input data bus the OPCODE and the eventual 

data from the relative fields.

The  interrupt  routine  also  manages  the  three  status  signals  of  the 

communication protocol: for example, if the received OPCODE is recognized as 

valid, the LOP flag will be asserted.

After the modification of the status field of the output bus, the interrupt routine 

provides the acknowledge by asserting a logic 0 upon the line ACK. When the 

CI receives the ACK stimulus, it reads the output bus and de-assert EIRQ. Data 

and signals just read by the CI block are then sent to the VME FPGA.

Figure 64 – Scheme of the protocol between the CI and the monitoring system.
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Figure 65 – A fast-OPCODE provided to the processor.

In Figure 65 a communication example is shown: it represents a recognized 

fast-OPCODE (not involving the production of data) provided by the user. It is 

possible to see the EIRQ signal going down. 

This falling edge transition makes the processor to read the OPCODE from 

the Input Bus, to modify opportunely the status bits (in the example only the 

LOP flag) and eventually providing the Acknowledgement. When ACK goes low, 

the CI interface releases the Input Bus and de-asserts EIRQ.

In Figure 66 it is possible to see a data producing OPCODE, followed by a 

Read operation. The protocol signal transitions on the left  side of the image 

respect  the  rules  just  described  but,  in  addition,  the  signal  DONE/DP goes 

down, indicating that the OPCODE just received generated several data words 

to  be sent.  When the first  of  such words becomes available,  the processor 

asserts the DAV signal.

The right side of the image shows a  Read access. You can see the ACK 

signal strobing a logic 1 upon DAV and a 0 upon DONE/DP. This means that 

the data buffer to be sent to the VME has not been entirely read yet, but the 

processor has not yet prepared the next data word to be sent.
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Figure 66 – A data producing OPCODE, followed by a Read operation.

4.3.2 The Builder Monitor

The Builder Monitor (BM) peripheral is the most important element in this 

environment  as  it  performs  the  real-time  monitoring  of  the  Event  Builder 

Engine’s Finite State Machines.

Since the  Event Builder  is described by 17 macro-states (paragraph 3.2.1), 

the BM contains a register file of 17 32-bit counters (one for each Event Builder 

state).  In this way it  is possible to count how many clock cycles the Builder 

Engine spends in each state. This  profiling allows to understand if  there are 

anomalous  delays  or  pauses  in  any  state.  Moreover,  as  it  is  possible  to 

distinguish the Frame Maker states from the left/right FIFO Reader ones, it is 

possible  to  discover  eventual  unbalanced  FIFO  activities  by  checking  the 

correspondent state occupations.

The BM can work in two modes:  one time and logging. When the one time 

mode is set, the peripheral monitors only the next event being built, while when 

the  logging mode  is  selected,  the  events  are  monitored  continuously:  the 

counters are not reset after each event, providing an integral analysis of the 
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FSMs. The monitoring, in the logging mode, proceeds until the overflow of one 

of the 17 counters occurs.

The block diagram of the BM is shown in Figure 67.

The  Builder State bus (on the left  side of the figure) transmits the current 

state of the Builder Engine FSMs to the Builder Monitor. The bus Data (on the 

bottom side of the figure) contains some words produced by the Event Builder 

Engine. 

Such  words  are  stored  into  four internal  data  registers.  They  contain 

information about the event:

— Event Length contains the length of the event just built, expressed in 

number of words;

— Event Time is the number of clock cycles spent by the Event Builder in 

the building procedure;

— Error Flags is a word made up of flags indicating the errors occurred 

during the event building;

— FIFO Flags contains the FIFO status flags;

The signal Building Is On is asserted and de-asserted by the Builder Engine, 

respectively at the start and at the end of an event building process. When this  

signal is active, the Counting Management Logic block enables the monitoring 

by incrementing the counter correspondent to the actual Event Builder state.

On its de-assertion, the four data registers are also acquired and stored.

Every  time  a  monitoring  process  ends  (in  both  the  working  modes),  the 

Interrupt Management Logic block  asserts an interrupt  signal  request,  called 

BMIRQ in the right side of the figure. The correspondent handler routine starts a 

DMA data transfer operation in order to push into the OPB BRAM memory all 

the data just acquired by the monitor.

I  designed the inner logic of  the Builder Monitor device ad a Finite State 

Machine, shown in Figure 68.
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Figure 67 – Block diagram of the Builder Monitor peripheral.

Figure 68 – Finite State Machine implementing the Builder Monitor logic.
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Figure 69 – Simulation of an Event Builder monitoring session.

In Figure 69 a simulation of an Event Builder monitoring session is shown.

In, at the left of the screenshot, several internal signals of the BM peripheral 

are listed.

On the left  side of the screenshot window, in the section labelled  Builder 

monitor and  DMA  controller, you  can  see  the  list  of  some  internal  signals 

respectively of the Builder Monitor and of the DMA Controller peripherals. In the 

circle  it  is  highlighted  the  monitoring  activity.  It  is  possible  to  see  the  fast 

changes of the  SAVED DATA REGISTERS signals (representing the 17 BM 

inner counters) when the  BUILDING_IS_ON signal is asserted. At the end of 

the monitoring process,  it  is  possible  to  see a pulse upon the  INTERRUPT 

signal (the BM Interrupt Request).

At the right of the image, the start of a DMA data transfer is  pointed by an 

arrow.

Start of a DMA 
data transfer

Monitoring 
activity
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4.3.3 The DMA Controller device

Data transfer  operations between the BM  peripheral  and the memory are 

optimized by using a Direct Memory Access controller (DMA Ctrl) [43]. 

The DMA Controller used is a library device, providing simple Direct Memory 

Access (DMA) services for peripherals and memories on the OPB bus.  The 

controller moves a programmable quantity of data from a source address to a 

destination  address  without  processor  intervention.  In  our  case,  the  source 

address is the 17 BM inner counters, while the destination is the OPB BRAM.

In Figure 70, the DMA Controller block diagram is reported.

Once started, the DMA operation proceeds by reading source-address data 

into the internal  16-word data buffer,  then writing the data from the internal 

buffer  to  the  destination  address.  This  repeats  until  all  data  is  moved.  The 

registers update as the DMA operation progresses.

The status of the DMA operation is available in the DMA Status Register 

(DMASR):  it  contains  several  flags  indicating  occurred  errors,  busy  status, 

timeouts and so on.

Figure 70 – DMA Controller block diagram.
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A DMA operation is set up and started by writing values into the following 

registers:

— DMACR.  This  is  the  Control  Register,  needed  to  initialize  the 

Controller. For example it is possible to specify the number of bytes 

compounding each word to be transferred;

— SA: contains the source address for the transfer;

— DA: contains the destination address for the transfer;

— LENGTH: Contains the number of bytes to transfer during the all DMA 

operation. Writing into this register will start the DMA operation.

ISR and IER are respectively the Interrupt Status Register and the Interrupt 

Enable Register.

The peak transfer rate is up to a word (32 bits) every two clock cycles. The 

DMA controller reduces the data transfer latency on the OPB by a factor 4 for 

each 32-bit word, with respect to software driven cycles.

4.3.4 The Interrupt Controller device

In order to manage the two interrupt sources of the environment – EIRQ and 

BMIRQ –  I  inserted  into  the  design  an  interrupt  controller  peripheral  (IRPT 

Ctrl) [44].

The Interrupt Controller is used to collect the interrupts from the sources and 

then apply prioritization to them. The interrupt service captures and multiplexes 

the two interrupt signals into a single interrupt output line that is connected to 

the microprocessor’s internal interrupt controller. The service also provides local 

registers that the processor application code can utilize to read interrupt status, 

set up priorities to the interrupt sources, set up masking criteria and perform 

interrupt clearing for the individual interrupts. It is also possible to assign the 

proper service routines to the corresponding interrupt sources: in this way, the 

processor  is  able  to  jump  to  the  assigned  routine  when  the  corresponding 

interrupt  request  is  asserted.  Should  the  two  interrupt  request  signals  be 

asserted simultaneously, the controller would register both, serve firstly the one 

with the highest priority (EIRQ, in our case) and eventually the latter.
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4.4 The software architecture

I designed the processor OPCODE set in order to include commands relative 

to  data  acquisition  and processing:  if  required,  the  MicroBlaze can plot  bar 

charts of the 17 BM internal counters and trends of the Event Length and Event 

Time with respect to the number of event monitored. A simplified flow chart of 

the code is shown in Figure 71.

The application code is made up of a Main routine and two interrupt service 

routines, pertaining to the external interrupt request (EIRQ routine) and to the 

BM interrupt request (BMIRQ routine). 

The Main routine is responsible of the execution of the received instruction. It  

manages also the DMA data transfers. Besides the initialization procedures, the 

Main routine tests the flags OPCODE and BMIRQ, respectively set by the EIRQ 

and BMIRQ routines.

When the OPCODE flag is set, the MicroBlaze executes the last instruction 

received. If the BMIRQ flag is set, the processor initializes a DMA data transfer 

from the BM peripheral to the OPB BRAM memory.
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Figure 71 – Flow chart of the application code.
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At the end of the instruction’s execution or DMA data transfer, a report  and 

debug information can be printed, if required, via UART on a terminal and then 

the application code returns to the polling of the flags.

The EIRQ routine is accessed every time the EIRQ signal is triggered by the 

Communication Interface. To avoid serving other interrupts while the one just 

received  is  still  in  elaboration,  the  EIRQ  routine  firstly  disables  interrupt 

requests.  Then  the  OPCODE  flag  and  the  Status field  of  the  Output  bus 

(paragraph 4.3.1) are set, the ACK signal is provided and finally the interrupt  

requests are re-enabled.

The BMIRQ routine is triggered by the BM interrupt request. As for the EIRQ, 

this routine firstly disables interrupts, then it sets the BMIRQ flag and, before 

exiting, it eventually restores the interrupt requests.

4.5 Simulations and tests

In  order  to  test  the  BM  performances  and  reliability,  I  synthesized  a 

benchmark  of  events,  studied  to  cover  as  many  Event  Builder  states  as 

possible.  The events  format respect  the RX Frame format,  described in  the 

paragraph 3.1.1. The benchmark also forces accesses to infrequent states of 

the FSMs and checks the BM response to Event Builder possible timing errors.

I  validated the benchmark of events by performing a simulation of the BM’s 

behaviour and then I run the BM through the same events, in order to compare 

its results with the simulated ones. In each test session, the BM always gave 

the  same  results  seen  in  the  simulation.  These  preliminary  tests  were 

preformed  upon  a  ROD  board  installed  in  a  laboratory  located  inside  the 

department of Physics of the University of Naples “Federico II”.

In  Figure 72 you can see the simulation window of one of the benchmark 

events created for the testing of the monitoring system. It is possible to see the 

start  of  the  event  building  operation,  corresponding  to  the  assertion  of  the 

BUILDING_IS_ON signal.

97



Figure 72 – Simulation of an event provided to the ROD Event Builder Engine.

As in the ATLAS environment the ROD board builds events with high rates, I 

performed  simulations  of  thousands  of  event  building  operations  executed 

continuously,  by filling the ROD FIFOs before giving the start of the building 

procedure. In order to do this I wrote a software able to create automatically 

“random events”, made up of random data but respecting the RX frame format 

shown in the paragraph 3.1.1.

In Figure 73, a screenshot image shows a bar chart of some data produced 

by the Microblaze and representing the  Event Builder  States’ profiling for an 

event processed by the Builder Engine. At the top, the Event Time (in clock 

cycles) and the Event Length (in number of words) are written. The bar chart is  

divided  in  three  sections,  one  for  each  FSM of  the  Event  Builder  (FRAME 

MAKER, FIFO READER RIGHT and FIFO READER LEFT). On the x-axis, the 

states of the three FSMs of the  Event Builder  Engine are reported, while the 

y-axis indicates the clock cycles spent by the machines in each state.
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Figure 73 – Bar chart of a Builder States’ profiling (laboratory).

At the right side of the bar chart, the Level 1 Accept number (L1A) and the 

Bunch Counter ID (BCID) of the monitored event are written.

The bar chart allows to find anomalous behaviour of the Event Builder. If the 

FSMs dwell  on  some states  rather  than  others,  we  are  able  to  understand 

where  the error  source is and eventually fix  it.  It  also permits to easily see 

unbalanced data flow due to noisy RPC read-out channels or uneven loading of 

the DAQ system.

In Figure 74 and Figure 75 the Event Length (in number of words) and the 

Event Time (in nanoseconds) data registers are plotted respect to the Event 

number. The first point (Event nr. = 1) of both plots corresponds to the Event 

data shown in Figure 73.

We can also check the correlation between event lengths and event building 

elapsed times. A non-linear relation between them could be due to a delayed 

arrival time of data from the detector.
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Figure 74 – Plot of the Event Length data register respect to the Event number.

Figure 75 – Plot of the Event Time data register respect to the Event number.
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4.5.1 Commissioning at CERN

During the ATLAS technical stop occurred in the early days of Sept. 2010, 

the ROD FPGA firmware, integrated with the monitoring system, was installed 

on  a  ROD board  in  order  to  begin  the  commissioning  in  the  experimental 

environment. 

Such board is located with  the other  RODs in  the ATLAS counting room 

(called USA 15), nearly 80m from the ATLAS detector. In Figure 76 you can see 

a  picture  of  the  VME  crate  hosting  the  ROD  board  upon  the  which  the 

monitoring system is installed.

Firstly,  a test of the correct functioning of the communication protocol was 

performed, by connecting via SSH to the ROD and providing instructions to the 

MicroBlaze.

Then, at the end of the technical stop, the Event Builder was tested during 

physics runs, by monitoring events produced by the collisions inside the LHC.

Figure 76 – The ROD in a VME crate at the USA 15 counting room.
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In Figure 77 you can see a histogram of the Event Builder monitoring data, 

taken at the CERN during an ATLAS run. You can see the analogy with Figure

73. In this last, the S2 state occupation of both the left and right FIFO Reader 

FSMs are lower than the ones reported in Figure 77: this is due to the fact that 

the built event reported in  Figure 77 was greater than the one represented in 

Figure 73 (as you can check by comparing the Event Length words reported on 

the upper-right side of both the histograms).

It is possible to see also that the S1 state occupancy of the left FIFO Reader 

FSM is higher than zero. From  Figure 55, it is clear that the S1 is a  waiting 

state, in which the FSM waits for data produced by the SerDes.

From Figure 54, it is also possible to see that the left SerDes FIFO is the first 

one to be read. This means that an S1 occupancy state higher than zero is 

acceptable for the left FIFO Reader FSM, because it indicates that the Event 

Builder Engine waited for the SerDes FIFO to be filled.

Moreover, as both the left and right SerDes FIFOs should be filled together, 

at the end of the work of left FIFO Reader FSM, the Engine should find the right  

SerDes FIFO already filled and the relative S1 state occupancy should be zero.

Figure 77 – Bar chart of a Builder States’ profiling (CERN).
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if such occupancy was been higher than zero (in  Figure 77), it would have 

highlighted a possible unbalanced activity of the FIFO Reader FSMs or of the 

left/right SerDes channels.

The  monitoring  system  is  useful  also  to  provide  the  ROD data  rate.  By 

performing a logging mode monitoring (paragraph 4.3.2), it would be possible to 

understand the amount of data words produced by the Event Builder Engine in 

a certain time interval.

The tests at the CERN will continue until the next technical stop, then the 

monitoring system will be installed upon the remaining ROD boards.
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Conclusions

During my PhD research activity I  developed a monitoring system for the 

Event Builder of the ATLAS Muon Spectrometer Read Out Driver.

During the initial phases of the project, I had to choose the design philosophy 

upon which basing my work. In order to do this, I studied the Read Out Driver  

(ROD) board, its tasks and its architecture.

The ROD is a VME board that receives via optical fibres read-out data from 

the on-detector electronics of the ATLAS’ RPC Muon spectrometer.

The main task of the ROD is to arrange all the data fragments of one sector 

of the spectrometer in a unique event. This is made by the Event Builder logic, a 

cluster of Finite State Machines (FSMs) that parses the fragments, checks their 

syntax  and  builds  an  event  containing  all  the  sector  data.  Such  FSMs are 

implemented inside a Xilinx Virtex-II FPGA, hosted upon the ROD board.

As such FSMs could change state every clock cycle, a mandatory task of the 

monitoring system I had to design was to reach real-time performances.

Moreover,  a  very  useful  feature  a  monitoring  system  should  have  is  the 

possibility to make elaborations upon the monitored data and to present them in 

a manner suitably clear.

A processor is a perfect solution in data elaboration and presentation, but it 

would  be  too  slow  to  perform  real-time  monitoring.  On  the  other  hand,  a 

hardware solution is very fast and can easily reach real-time performances, but 

it is too less flexible in data elaboration.

I chose to adopt a hardware-software co-design, by developing an embedded 

system  based  upon  a  microprocessor  and  several  hardware  devices.  Such 

system is designed inside the same FPGA hosting the Event Builder.

The processor is interfaced to two RAM memories, several general purpose 

devices (like an Interrupt Controller, a DMA Controller, a UART interface, and 

so on) and to a custom device, named Builder Monitor.

This  last  is  responsible  of  the  Event  Builder  Engine  monitoring and  I 

designed it as a Finite State Machine. Since the Event Builder can be described 
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by 17 macro-states, the Builder Monitor (BM) contains a register file of 17 32-bit 

counters (one for each Builder Engine state). In this way it is possible to count 

how many clock cycles the Builder Engine spends in each state. This profiling 

allows us to understand if there are anomalous delays or pauses in any state.

The BM can work in two modes:  one time and logging. When the one time 

mode is set, the peripheral monitors only the next event being built; when the 

logging mode is selected, the events are monitored continuously: the counters 

are not reset after each event, providing an integral analysis of the FSMs.

At  the  end  of  an  event  building  process,  the  Builder  Monitor  saves 

information upon the event just built. Such information are the Event length (in 

number  of  words),  the  Event  building  time (in  clock  cycles),  the  Error  flags 

(asserted  by  the  Builder  Engine during  the  building  process)  and the  FIFO 

occupancy flags.

When the real-time performances are no more needed, at  the end of the 

event  building  operations,  the  microprocessor  can  build  histograms  of 

monitored data, draw plots of the event length and event time words respect to 

the event number (in order to give a trend of the Event Builder activity), report 

via UART debug information and send via VME monitored data.

In order to commit the system, many simulations were performed, covering a 

lot of situations the Event Builder Engine could face.

The  monitoring  system  was  deeply  tested  in  laboratory  and  it  is  now 

implemented  in  a  single  ROD  board  at  the  CERN,  installed  the  ATLAS 

experiment environment, in order to perform the final commissioning.

Up to now, all the tests performed were successful.
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Appendix A

In this appendix, the meanings of all the 32-bit internal registers of the two 

FPGAs used on the ROD boards are presented.

A.1 The VME FPGA registers

In  the  VME  FPGA,  eight  32-bit  configuration  registers  have  been 

implemented. The meanings of each register are now explained. The RESETS 

register  concerns  to  the  reset  pins  -  of  the  devices  connected  to  the  VME 

FPGA - that can be driven by the VME FPGA. Figure A.1 shows the data of the 

RESETS register. All bits are active low and are readable/writable (R/W).

Figure A.1 – The VME FPGA RESETS register.

Bit 0 is the reset of the ROD FPGA. Bit 1 is the reset of the Microcontroller  

hosted  by  the  board.  The  remaining  bits  are  reserved.  Fig.  A.2  shows  the 

content of the Geographical Address register. It’s made of six bits that allow to 

identify the position of the board inside the VME crate. It’s a Read Only register. 

The remaining bits are reserved.
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Figure A.2 – The content of the Geographical address register.

Figure A.3 shows the data of the TTC_Config register. It’s the register for the 

configuration of the TTC receiver. The three least significant bits (TTC Ready, 

TTC Locked  and  TTC Error) are  Read Only  and allow to retrieve information 

about the working status of the TTC receiver. The QPLL mode (bit 3) allows to 

choose the frequency multiplication mode (120 MHz or 160 MHz) of the QPLL 

(Quartz based Phase-Locked Loop) of the TTC receiver.

Figure A.3 – The content of the TTC_Config register.

The Auto restart  (bit 4) and the QPLL Ext control  (bit 5) allow to select the 

operations to be performed by the QPLL of the TTC receiver each time the lock 

is lost [see qpll_manual for more details]. The 4-bit field QPLL F sel  (bit [9:6]) 

allow to control the  VCXO (Voltage Controlled Crystal Oscillator) free running 

oscillation frequency.  The remaining bits are reserved.  Figure A.4 shows the 

data of the  Microcontroller_data  register. It’s the register that allows the data 

exchange between the VME FPGA and the microcontroller. It’s made of two 

bytes  that  host  data  that  are  involved  in  the  transactions  with  the 

Microcontroller. The remaining bits are reserved.

Figure A.4 – The content of the Microcontroller_data register.
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Figure A.5 – The content of the Microcontroller_control register.

Figure A.5 shows the data of the  Microcontroller_controls  register.  It’s  the 

register that contains information about the data exchange between the VME 

FPGA and the microcontroller: it contains seven bits that all  are  Read Only. 

RD/WR (Bit0)  shows the  kind  (read or  write)  of  operation  performed in  the 

transaction. All the other bits - DONE (bit 1), DAV (bit 2), LOP (bit 3), ACK (bit 

4),  ATTN (bit  5) and ERR (bit  6)  - are used by the communication protocol 

between the VME CPU and the microcontroller itself.  The remaining bits are 

reserved. The remaining three registers are general purpose registers and are 

currently reserved.

A.2 The ROD FPGA internal registers

In  the  ROD  FPGA,  sixteen  32-bit  configuration  registers  have  been 

implemented.  The  meanings  of  each  register  are  now  explained.  The 

FIFO_RESET  register  concerns  to  the  reset  pins  of  the  ROD  FPGA’s  six 

internal FIFOs. Figure A.6 shows the data of the FIFO_RESET register. All bits 

are active low and are R/W.

Figure A.6 – The FIFO_RESET register.

The two least significant bits (i.e. bit0 and bit1) are referred to the reset pins 

of the two FIFOs that receive data from the two  SerDes  (SerDes  FIFOs); the 

bit2 and bit3 are referred to the reset pins of the two FIFOs that receive Level1 

data and  TriggerType  data from the TTC receiver (L1A  FIFO and  Trig_Type 
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FIFO);  the  bit4  and  bit5  are  referred  to  the  reset  pins  of  the  two  output 

“destination FIFOs” written by the Event Builder logic: such FIFOs host data to 

be transferred to the S-Link or to the VME bus (S-Link FIFO and VME FIFO). 

The  remaining  bits  are  reserved.  This  register  is  also  useful  because  the 

programmable flags’ thresholds of a FIFO can be set only when the FIFO reset 

pin  is  low.  Figure A.7 shows the data  of  the  FIFO_SerDes_PAF_Threshold  

register. All bits are R/W.

Figure A.7 – The FIFO_SerDes_PAF_Threshold register.

This register is used to set the Programmable Almost Full Threshold value for 

the two FIFOs that receive data from the two  SerDes. It’s made of two 12-bit 

fields, each for every SerDes FIFO, that allow to choose any value between 0 

and 4095. The remaining bits are reserved.  Figure A.8 shows the data of the 

FIFO_TTC_PAF_Threshold register. All bits are R/W.

Figure A.8 – The FIFO_TTC_PAF_Threshold register.

This register is used to set the Programmable Almost Full Threshold value for 

the two FIFOs that receive  Level1  data and  TriggerType  data from the TTC 

receiver.  It’s made of a 9-bit  fields, used for both TTC FIFO (L1A  FIFO and 

Trig_Type  FIFO),  that  allow  to  choose  any value  between  0  and  511.  The 

remaining  bits  are  reserved.  Figure  A.9 shows  the  data  of  the 

FIFO_VME/SLink_PAF_Threshold register. All bit are R/W.
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Figure A.9 – The FIFO_VME/SLink_PAF_Threshold register.

This register is used to set the Programmable Almost Full Threshold value for 

the two destination FIFOs, written by the Event Builder Logic. It’s made of two 

12-bit fields, each for every FIFO, that allow to choose any value between 0 and 

4095.  The  remaining  bits  are  reserved.  Figure  A.10 shows  the  data  of  the 

FIFO_flags register. All bits are Read Only.

Figure A.10 – The FIFO_flags register.

This register is used to gather the flags of all the ROD FPGA internal FIFOs.  

Five bit for every FIFO are displayed, for a total of 30 bit. The remaining two bits 

are reserved. Figure A.11 shows the content of the Clock_config register.

Figure A.11 – The Clock_config register.

The three least significant bits of the register allow the selection of the clock 

sources for the different clock domains in the ROD FPGA. The bit3 is a Read 

Only bit that allows to monitor the lock pin of the Digital Clock Manager of the 

FPGA. Moreover, there are three 4-bit fields bit[11:8],  bit[15:12] and bit[19:16]: 

each field is Read Only and is useful to monitor the activity of the selected clock 
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source  in  every  clock  domain  of  the  ROD  FPGA.  The  remaining  bits  are 

reserved. Figure A.12 shows the content of the Event_builder_config register.

Figure A.12 – The Event_builder_config register.

The bit 0 is the Event_Builder_ON bit: writing zero in this location starts the 

Event_Builder_engine.  When  the  Event_Builder_ON  bit  is  active,  some 

operations (such as the setting of the source  Serdes  FIFO or the destination 

FIFO) are not possible. The 2-bit field Data Source ( bit [2:1]) allows the user to 

set the source SerDes FIFO: it cannot be modified if Event_Builder_ON bit is 0. 

The 2-bit  field  Data Destination  (bit  [4:3])  allows the user  to  set  the source 

destination  FIFO and it cannot be modified if  Event_Builder_ON  bit is 0. The 

possible choice is between the S-Link FIFO only,  the VME FIFO only,  both 

FIFOs or  no FIFO selected.  Table A.1 shows the different  configurations of 

these two fields.

Table A.1 – The different configurations for the Data Source and Data Destination fields.
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The 1-bit field VME FIFO rules (bit [5]) allows the user to select between the 

two modes of trapping event builder’s data in the VME FIFO. This field is read 

by the trap engine only when the Data Destination value is 00. The two possible 

values of this field refer to the following functionalities: trap the next available 

L1A  value  (VME FIFO  rules=0);  trap  a  specific  L1A  value,  written  into  the 

Event_Trap_config register (VME FIFO rules=1).

The  1-bit  field  ARM/STOP  (bit  [6])  allows  the  user  to  arm  or  stop  the 

functionality of trapping event builder’s data in the VME FIFO. The 10-bit field 

Max_length (bit [17:8]) allows the user to specify a value to define the Jumbo 

frame length. The 6-bit field N (bit [23:18]) allows the user to specify the value of 

consecutive errors before excluding a SerDes FIFO. The 8-bit field Timeout (bit 

[31:24]) allows the user to specify the Timeout value, described in the fourth 

chapter. Figure A.13 shows the content of the Event_builder_status register. All 

the bits are Read Only.

Figure A.13 – The Event_builder_status register.

The 5-bit  field  Event  Builder  machine status  (bit  [4:0])  allows  the user  to 

monitor the internal status of the Event Builder machine, described in the fourth 

chapter. The 3-bit field Right fifo reader Machine status (bit [10:8]) and the 3-bit 

field  Left fifo reader Machine status  (bit [13:11]) allow the user to monitor the 

internal status of the two SerDes FIFO reader machines, described in the fourth 

chapter. The remaining bits are reserved. Figure A.14 shows the content of the 

Trigger_Type_config register.

Figure A.14 – The Trigger_Type_config register.
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The 6-bit field TTC subaddress (bit [5:0]) allows the user to set the value of 

the correct board’s subaddress, for the reception of an individually broadcast 

command from the TTC. The 8-bit field  Sweeper event  (bit [15:8]) allows the 

user to set the value for the so-called Sweeper Event: the default value is 0x07. 

Every time a Sweeper event occurs - and so every time this code is broadcast 

from the TTC – some of the ATLAS run parameters have been changed. The 1-

bit field Trigger Type ON/OFF ( bit [16]) allows the user to exclude (or activate) 

to read data from the Trigger_Type FIFO, during the Event_Building procedure. 

The  remaining  bits  are  reserved.  Figure  A.15 shows  the  content  of  the 

Run_Number_config register.

Figure A.15 – The Run_Number_config register.

The 24-bit field Run_Number ( bit [23:0]) allows the user to set the value of 

the Run Number, used to build the ROD Muon Frame. The Run Number field is 

incremented when the Sweeper Event is received. The 8-bit field Run_Type (bit 

[31:24]) allows the user to set the value of the Run Type, used to build the ROD 

Muon Frame. Figure A.16 shows the content of the Slink_Control_Word_config  

register.

Figure A.16 – The Slink_Control_Word_config register.

The 16-bit  field  Begin_Of_Fragment  (bit  [15:0])  allows the user to set  the 

value of the Begin_Of_Fragment field, used to build the ROD Muon Frame. The 

16-bit field  End_Of_Fragment  ( bit [31:16]) allows the user to set the value of 

the  End_Of_Fragment  field, used to build the ROD Muon Frame The default 

values of these fields are respectively: 0xb0f0 and 0xe0f0.  Figure A.17 shows 

the content of the Busy_config register. All bits are set to zero at power-up.
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Figure A.17 – The Busy_config register.

The 5-bit field Busy_masks ( bit [4:0]) allows the user to exclude (or not) the 

internal FIFOs’ busy signals from the ROD’s global busy. The various bits are 

referred to SerDes Left FIFO (bit[0]), SerDes Right FIFO (bit[1]), TTC_L1A FIFO 

(bit[2]), VME FIFO (bit[3]), S-Link FIFO (bit[4]). The bit from bit[5] to bit[8] allow 

the user to exclude (or not) the external busy sources from the ROD’s global 

busy. The various bit are referred to  RX/SL Left  busy ( bit[5] ),  RX/SL Right  

busy  (bit[6]),  S-Link  busy  (bit[7]),  TTC  busy  (bit[8]).  The  bit 

Busy_forced_from_VME  (bit[9])  allow  the  user  to  force  busy  via  VME.  The 

remaining  bits  are  reserved.  Figure  A.18 shows  the  content  of  the 

Detector_event_type register.

Figure A.18 – The Detector_event_type register.

The  32-bit  field  Detector_event_type  (bit  [31:0])  host  user-programmable 

information for the Event Builder Machine, i.e. the user can set the value of the 

Detector_event_type, used to build the ROD Muon Frame. Figure A.19 shows 

the content of the Event_counter_reset_ID register.

Figure A.19 – The Event_counter_reset_ID register.
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The 8-bit  field  Event_counter_reset_ID  (bit  [7:0])  host  user-programmable 

information for the  Event Builder Machine; in particular, the user can set the 

value of the Event_counter_reset_ID, that is used to build the Extended_L1ID 

field  in  the ROD Muon Frame. The remaining bits  (bit  [31:8])  are reserved. 

Figure A.20 shows the content of the Event_Trap register.

Figure A.20 – The Event_Trap register.

The 24-bit field Event_Trap_data (bit [23:0]) allows the user to set the value 

of the Event_Trap_data, that is used to identify the event to be trapped into the 

VME FIFO during the Event_Building procedure. The remaining bits (bit [31:24]) 

are reserved.  Figure A.21 shows the content of the  Actual_L1A  register. The 

register is Read_Only.

Figure A.21 – The Actual_L1A register.

The 24-bit field  Actual_L1A_data  (bit [23:0]) allows the user to monitor the 

current L1A data, read from the L1A_FIFO by the Event_Builder Machine. The 

remaining bits (bit [31:24]) are reserved.
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