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Polydnaviruses (PDVs) are virus-like particles associated with wasp species that
parasitize lepidopteran larvae. PDV particles, injected into the host’s body along with the
parasitoid egg, express genes responsible for the alteration of the host physiology,
including suppression of the immune response. These functional characteristics
stimulated a considerable interest in PDVs, viewed as a natural source of factors with
potential insecticidal or seriously detrimental activity towards pest insects. Toxoneuron
nigriceps (Hymenoptera, Braconidae) is an endophagous larval parasitoid of the tobacco
budworm, Heliothis virescens (Lepidoptera, Noctuidae). In this study, we completed the
genome sequence of its associated 7. nigriceps bracovirus (7TnBV). This genome consists
of 27 circles, ranging in size from 3.9kb to 13.9kb. 42 genes were identified by in silico
analyses. Most of them were similar to genes also found in other bracoviruses, but four
were unique to TnBV, These last genes coded for a putative aspartyl protease, a putative
DNA helicase, a putative UDP glucose 6 phosphate dehydrogenase and a putative Major
Facilitator Superfamily (MFS) secondary transporter. As already described for other
bracoviruses, 7nBV contained several members of two gene families, coding for protein
tyrosine phosphatases (PTP) and ankyrin-repeat-containing proteins (ANK). Phylogenetic
analyses aimed at establishing the evolutionary relationships between genes coding for
these proteins in 4 different bracovirus species, indicated a clear clustering pattern of PTP
proteins from viruses of the subfamily Microgastrinae (CpBV, CcBV, and MdBYV). TnBV
PTPs, on the other hand, mostly clustered together, but few of them were included in a
clade that contained also members from the other bracovirus species, suggesting that they
might have all derived from a common ancestral gene. Unlike PTPs, bracoviral ANK
proteins did not indicate a clear evolutionary relationship. The annotation of the TnBV
genome indicated that 78% of its sequences were non-coding. We report here the initial
characterization of a set of partially overlapping noncoding RNA molecules transcribed
from a single 7nBV locus. These molecules displayed a complex splicing patterns as well
as alternative polyadenylation sites. They were expressed in several tissues of parasitized
larvae including hemocytes, fat body, gut and malpighian tubules and showed sequence
complementarity with the 5' untranslated (5' UTR) region of a host RNA, named 102, that
was expressed in the same tissues except malpighian tubules. These findings suggested

that the identified 7nBV non-coding RNAs might functionally control the 102 RNA by



direct interaction. Interestingly, the 102 gene was highly expressed in haemocytes upon
immune challenge, indicating a possible role in immune response. The 102 gene is
conserved throughout evolution. Two putative homologues were identified in the
Drosophila melanogaster genome: only one of them was expressed in larval hemocytes.
This last finding might open the way to functional analyses in a model system which

offers a wide array of molecular genetics tools not available in other species.

Keywords: ncRNAs, endoparasitoids, immune challenge, hemocytes, polydnvirus






Crop losses due to insect pests are a significant factor in limiting food production. The
need for pest control strategies other than indiscriminate pesticide usage stimulated, since
the second half of the last century, the development of integrated pest management
programs including extensive exploitation of natural enemies. Among them, insect
parasitoids gained substantial interest, not only as biological control agents, but also as
sources of natural compounds which are harmful to the target host species. Actually,
parasitic insects evolved sophisticated strategies to manipulate the physiology and the
development of their hosts. These strategies rely on a set of molecular factors which may
be suitable for developing effective and environmentally safe bioinsecticides (Beckage
and Gelman, 2004). The term “bioinsecticide” is in general referred to any natural
material, deriving from animals, plants, bacteria and viruses, that represents a valuable
alternative to chemical pesticides. This is because bioinsecticides display several
advantages over chemical pesticides:, they (1) are less toxic (2) affect only the target pest
or closely related species, in contrast to traditional pesticides which have a wider
spectrum of negative effects on all organisms, including humans (3) are usually used in

smaller amount and decompose faster.

1. Parasitoid insects

Parasitic species can be classified based on several criteria. With respect to their
behavior, parasitoids are divided into iodiobionts and koinobionts. Idiobionts block host
development after parasitization, while koinobionts allow host growth till their own
maturation is complete. Parasitoids can also be classified according to their lifestyle. In
this case, they are distinguished into ectoparasitoids and endoparasitoids, which live
outside or inside their host, respectively. Moreover, depending on the number of eggs
successfully developing on a single host, parasitoids may be defined as solitary or
gregarious.

Parasitoid insects are currently believed to comprise as much as one quarter of all insect
species (Godfray, 1994). Although they belong to diverse insect orders (Diptera,
Coleoptera, Lepidoptera, Trichoptera, Neuroptera, Strepsiptera) they are especially
common in the Hymenoptera (Quicke, 1997). Phylogenetically the first hymenopteran



parasitoid appeared 160 million years ago, which is 60 million years after appearance of
the first hymenopteran insect (Rasnitsyn, 1988; Whietfield, 1998). It is believed that the
first hymenopteran parasitoid was an ectoparasitic idiobiont from which other
developmental strategies came out (Pennacchio and Strand, 2006). Sometimes later,
endoparasitism arose where some parasitoids remains idiobionts while some others

became koinibionts (Wharton, 1993).

Some hymenopteran wasps belonging to families Braconidae and Ichneumonidae
complete their egg and larval development within the hemocoel of another insect
(Mackauer and Sequeria, 1993). For successful parasitization, the endoparasitoid wasp
should overcome its host immune responses to avoid killing its eggs by the host immune
system (Li and Webb, 1994; Webb and Strand, 2005; Ibrahim and Kim, 2006; Strand et
al., 2006). They sometimes alter host larval period to complete their feeding stages (Lee
and Kim, 2004). The above mentioned factors together comprise the host regulation as
the parasitoid regulates the development and the immune system of the host for its
success. To induce the host immunosuppression and developmental arrest, several
parasitic factors are required and can be classified as maternal and embryonic factors
(Theopold et al., 2000). Maternal factors, which are delivered by the adult female wasp
during oviposition, include ovarian proteins (Webb and Luckhart, 1994), venoms
(Richards and Edwards, 1999; Richards and Parkinson, 2000), and polydnaviruses
(Strand and Pech, 1995a) while embryonic factors include teratocytes (a specific cell type
derived from the embryonic serosal membrane) and parasitoid larva itself (Krell et al.,
1982; Dahlman and Vinson, 1993; Jones and Coudron, 1993). Teratocytes have been
found in six Hymenoptera families: Braconidae, Ichneumonidae, Platygastridae,
Scelionidae, Trichogrammatidae and Aphelinidae (Basio and Kim, 2005), while
polydnaviruses have been found only in two families, Braconidae and Ichneumonidae,
and are classified into bracovirus and ichnovirus, respectively (Webb et al., 2000).
Several braconid and ichneumonid wasps have symbiotic relationships with
polydnaviruses including Cotesia congregata (Espagne et al., 2004), Micropletis
demolitor (Webb et al., 20006), Cotesia plutellae (Choi et al., 2005), Toxoneuron nigriceps
(Varricchio et al., unpublished data), Glyptapanteles indiensis, Glyptapanteles flavicoxis

10



(Desjardins et al., 2008), Campoletis sonorensis (Webb et al., 2006), Tranosema rostrale
and Hyposoter fugitivus (Xu and Stoltz, 1993; Tanaka et al., 2007).

e

Fig. 1. Teratocytes of Cotesia plutellae (arrows). Ibrahim et al., unpublished data.

Venom proteins start to be produced during the pupal stage (Jones and Wozniak,
1991). Their synthesis takes place in 2 specialized organs called venom glands which are
connected to a reservoir used for venom collection and storage (Fig.2). The reservoir is
directly attached to the terminal part of the oviduct where the venom is mixed with the
calyx fluid, produced in the swallen base of the ovary, to be injected in the host’s body at
oviposition. The size range of venom proteins varies from 10 kDa to over 100 kDa (Leluk
et al., 1989). An overwhelming number of them are enzymes with similarities to insect
metabolic enzymes, suggesting their recruitment for expression in venom glands with
modified functions. Other components include protease inhibitors, paralytic factors, and
constituents that facilitate/enhance entry and expression of genes from symbiotic viruses

or virus-like particles (Asgari and Rivers, 2010)
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Fig. 2. Venom apparatus in Cotesia rubecula (Asgari, 1996).

It is believed that venom and ovarian proteins save the parasitoid eggs during the first
few hours after parasitization before transferring this function to polydnavirus and

teratocytes for long term preservation of the parasitoid egg.

2. Host regulation

As mentioned before, parasitic insects tend to regulate the physiology of the host for
their success. In general, the immune system is the primary target of parasitization as
regulation of this host system is critical for parasite development (Ibrahim and Kim,
2006). Furthermore they sometimes alter the patten of development in the host to increase
a specific stage period in order to give the growing parasite enough time for its
development inside the host (Pennacchio et al., 1992). Finally some parasites kill their
host at the end of the parasitization period while other only block the host responses for
the parasitization period. Usually, the last behavior is performed by ectoparasitoids while
endoparasitoids tend to kill their host upon parasitoid eclusion.

Several weapons are used to introduce the host regulation including maternal and

embryonic factors as described before. Among the maternal factors are venom, ovarian
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proteins and polydnaviruses. Each of these components were shown to be able to induce
immunological and developmental alteration when injected separately to healthy larvae
of different host-parasite systems as in the case of Plutella xylostella parasitized by
Cotesia plutellae (Yu et al., 2007; Nalini et al., 2009), Spodoptera littoralis parasitized by
Microplitis rufiventris (Hegazi et al., 2005) and Pseudaletia separata parasitized by
Cotesia kariyai (Nakamatsu et al., 2001). Even teratocytes alone can inhibit the host
development and interfere with its normal development through changing the hormonal
balance in the host (Pennacchio et al., 1992; Dahlman et al., 2003). Here I am going to
stress the host regulation in terms of developmental alteration as the impact on the
immune system will discussed in details in the next part.

Almost in all polydnavirus-containing host-parasitoid system, parasitized moth larvae
take longer than nonparasitized larvae to develop until the wandering stage, and die after
egression of the full grown wasp larvae. Developmental analysis using juvenile hormone
and ecdysteroid analogs suggests that altering endocrine signals could induce the
retardation of larval developmental rate in healthy larvae (Kwon et al., 2010). This occurs
through reduction of JH Esterase (JHE) leading to accumulation of JH in the larvae as in
the case of Lymantria dispar parasitized by Glyptapanteles liparitis (Schafellner et al.,
2007). Down-regulation of JHE activity is primarily due to the injection of PDV/venom
at the time of oviposition, with only very small additive effects of teratocytes and wasp
larvae (Schafellner et al., 2007).

Using transient transfection of CpBV segment 27, it markedly interfered with the host
larval development (Kwon et al., 2010). Genetic analysis of this segment revealed that it
contains seven PTP genes. Mutations in these putative PTPs recovered the normal
development in P. xylostella indicating possible implication of development during
parasitization. Other PTP genes from 7nBV were indirectly proved to block prothoracic
gland function in H. virescens parasitized by 7. nigriceps (Falabella et al., 2006).
Similarly, Cys-motif proteins of Completis sonorensis ichnovirus capable of inducing
significant reduction in growth and developmental delay in H. virescens larvae ingesting

this protein (Fath-Goodin et al., 2006).
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3. Insect immunity and immunosuppression by parasitoid insects

Insect immunity processes can be classified into cellular and humoral immune responses
(Ratcliffe et al., 1985). This classification is not strictly correct because some humoral
factors affect cellular immune functions and immune cells may in turn contribute to the
synthesis/activation of some humoral factors. Humoral responses require several hours to
be effective and involve the synthesis of antimicrobial peptides, the activation of the
prophenoloxidase cascade and the production of reactive intermediates of oxygen and
nitrogen. The cellular defense reactions are typically induced within minutes of infection
and include phagocytosis, nodulation and encapsulation. Since parasitoid eggs usually
elicit cellular immune reactions, that must be suppressed to allow parasitoid offspring
survival, I am going to describe in more detail the different types of cellular immune
responses carried out by different hemocyte types, indicating how these responses are

elicited and what factors take part to their regulation.

3.1. Molecular events involved in cellular immune responses

Hemocyte immune functions entail a number of molecular events which take place in
a sequential manner. They can be better described in the context of three different steps:

recognition, mediation, and effectors responses.

3.1.1. Recognition

In order to be activated, hemocytes first need to recognize the target surface as nonself
(foreign). In higher eukaryotes, discrimination of self from nonself can be achieved either
by recognition molecules present in the blood or by recognition receptors located on the
surface of blood cells (Aderem and Underhill, 1999). A similar situation is found in
insects where some recognition molecules are freely circulating in the hemolymph, like
lectins (Yu and Kanost, 1999, 2000; Yu et al., 2005), hemolin, lipopolysaccharides
(LPS)-binding proteins, peptidoglycan recognition proteins (Ma and Kanost, 2000), and
thioester-containing proteins (Christophides et al., 2002). These molecules were
identified in several insects and called pattern recognition receptors (PRRs) (Bulet et al.,
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1999; Schmidt et al., 2001). They can recognize microorganisms and act as opsonins,
linking the hemocyte or fat body cell surface to the intruder. For example, the TEP1
protein of the mosquito Anopheles gambiae binds to Gram negative bacteria and acts as a
recognition receptor needed for phagocytosis, as demonstrated by gene silencing

experiments (Levashina et al., 2001).

3.1.2. Mediation

Insect cellular immunity responses are mediated by the synthesis of eicosanoids
(Stanley et al., 1991; Miller et al. 1994), biogenic amines (Dunphy and Downer, 1994;
Wiesner et al., 1996) cytokines (Lavine and Strand, 2002), and Hemocyte membrane
receptors like Toll and Imd related genes found in Drosophila genome (Imler and
Hoffmann, 2000) and integrin, which may play as nonself signal mediators.

Eicosanoids are oxygenated metabolites of 20 carbon poly unsaturated fatty acids and
can be classified into three categories including prostaglandins, various lipoxygenase
products and epoxyeicosatrienoic acids (Stanley-Samuelson, 1994). The role of
eicosanoids in cellular immune responses is supported by several literature data. For
example, during the nodulation process, eicosanoids mediate the formation of hemocyte
microaggregates (Miller et al., 1994; Miller and Stanley, 2001). Moreover, in the larvae
of the wax moth, Galleria melonella, eicosanoids mediate cell spreading, which is known
to be important for both phagocytosis and encapsulation (Mandato et al., 1997).
Concerning the involvement of biogenic amines in cellular immune responses brought
about by insect hemocytes, Wiesner et al. (1996) suggested that one biogenic amine may
act as phagocytosis stimulating factor for the plasmatocytes of Galleria mellonella.
Octopamine was also reported to modulate nodulation in Galleria mellonella larvae
(Dunphy and Downer, 1994). Integrin is a well known cellular immunity mediator in
insects (Bogaert et al., 1987). Integrin is a heterodimeric molecule formed by two
subunits, a and B (Ruoslahti and Pierschbacher, 1987). In resting state, integrins are
found on the surface of hemocytes, but their activation occurs only when they are
exposed to foreign surface (Lavine and Strand, 2003). Upon non-self recognition, the

activation of several signal transduction pathways cause integrin to change from unsticky
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to sticky state. Integrins can recognize specific peptide sequence on the cell surface that
mainly contains specific amino acid sequence, RGD (Arg-Gly-Asp) (Ruoslahti, 1996).
Pech and Strand (1995b) reported that RGD-coated sepharose beads can be easily
encapsulated by hemocytes of Pseudoplusia includens. Furthermore, soluble RGD
inhibited granular cell and plasmatocyte spreading as well as the ability of these cells to
encapsulate RGD coated beads. This suggests that change of hemocytes into adhesive
state involves presence of adhesion molecules (integrins) containing RGD recognition
sequence. Several studies (Giancotti and Ruoslahti, 1999; Lavine and Strand, 2003)
reported that integrin mRNA level increases when hemocytes undergo capsule formation.
This suggests that integrin is important molecule in mediation of cellular immunity and
most especially in encapsulation. Integrin signal transduction still not yet understood in
insects but well characterized in mammals. Several studies reported that the level of
phosphorylation within the cell is a key factor in regulation of integrin activation
(Schlaepfer et al., 1999). The phosphorylation state within the cell is controlled by two
antagonistic enzymes, kinases and phosphatases, the latter are important genes in all

bracoviruses and possibly they are integrin pathway targeting.

3.1.3. Effector responses

As mentioned above, three different effector responses are performed by the

hemocytes in insect immunity: phagocytosis, nodulation, and encapsulation.

(A) Phagocytosis

Phagocytosis is the process in which hemocyte engulfs foreign bodies like bacteria,
viruses and yeast or simply particles smaller than hemocytes in size. The major type of
hemocytes reported to be phagocytic is varying among insects. For example, in
Drosophila, phagocytosis is essentially performed by plasmatocytes (Elrod-Erickson et

al., 2000) while in some lepidopteran insects like P. includens this task is carried out by
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granular cells (Strand et al., 2006). In the case of Plutella xylostella, however, both
granular cells and plasmatocytes are phagocytotic (Ibrahim and Kim, 2006). Several
studies revealed the role of polydnavirus genes in blocking the ability of host hemocytes
to phagocytose foreign bodies, especially by the direct action of viral PTPs (Ibrahim et
al., 2008; Suderman et al., 2008).

(B) Nodulation

Nodules are aggregates of hemocytes that surround and trap microorganisms (Ratcliffe
and Gagen, 1976). This is a particularly effective response to get rid of a large number of
microorganisms at one time. After nonself recognition, granular cells trap the invading
organism and then plasmatocytes aggregate around the forming nodule probably by the
action of cytokine(s) released by the granular cells (Lavine and Strand, 2002). A cytokine
isolated from the moth Pseudopulsia includens was shown to be released by granulocytes
to stimulate plasmatocyte spreading. Parasitized larvae were unable to respond to this
cytokine. It was demonstrated that transient expression of two members of the CpBVPTP
gene family suppressed the ability of P xylostella hemocytes to be activated by this
cytokine and to perform their characteristic spreading behavior. Moreover, a lectin gene
from the same virus was linked to the inactivation of the parasitized host nodule forming

capacity (Ibrahim and Kim, 2008; Lee et al., 2008).

(C) Encapsulation

The encapsulation response is triggered by non-self targets whose mass largely exceed
the hemocyte size, like protozoa, metazoan parasites and eggs or larvae of parasitoid
wasp (Gillespie et al.,, 1997). In this immune response, hemocytes form a multiple
layered capsule around the foreign body. In lepidopteran insects at least the two major
hemocyte types, plasmatocytes and granular cells, participate in this response, while in
Drosophila lamellocytes are the major cell type involved in encapsulation (Schmidt et
al., 2001; Vass and Nappi, 2001). In the Lepidopteran species P. includens, capsule

formation is initiated by granulocytes which surround the foreign body and recruit
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plasmatocytes to build up several cell layers. Finally, granulocytes complete the capsule
by assembling the outer most cell layer (Pech and Strand, 1996, 2000). This process has
been well characterized from a morphological point of view showing that granular cells
expell their granules content upon coming in contact with foreign surfaces (Pech and
Strand, 1996; Gardiner and Strand, 1999). The expelled materials is believed to include
cytokine molecules that change the behavior of plasmatocytes from nonadhesive,
unspread state to adhesive spread state (Lavine and Strand, 2002). Plasmatocyte
spreading is a very important step of cellular encapsulation in insects and can be used as
indicator for this process. One insect cytokine is known so far to stimulate plasmatocyte
spreading. It is a 23 amino acid peptide, named plasmatocyte spreading peptide (PSP),
that binds to a 190 kDa cell receptor (Clark et al., 1997; Yu et al., 2001; Clark et al.,
2004). Although this peptide was initially isolated from P. includens it can stimulate also
the hemocytes of other lepidopteran insects such as the diamondback moth, P. xylostella
(Ibrahim and Kim, 2006).

Following encapsulation, the nonself target may be killed by the toxic metabolites formed
during melanin synthesis. This process is called melanization and is regulated by a serine
protease cascade. Serine proteases are enzymes able to cut specific peptide bonds in a
protein. A structural feature shared by serine proteases is the presence of the amino acid
serine in their active site. In mammals serine proteases perform multiple physiological
functions, participating to food digestion processes, blood coagulation and complement
system activation. In all eukaryotic cells, serine protease regulation is performed by their
inhibitors, Serpins, which mimic the three dimensional structure of the normal substrate
and compete with it for enzyme binding (Hedstrom, 2002; Otlewski et al., 2005).

Serine protease cascades play multiple, essential roles in insect immune responses. A
serine protease cascade is for example responsible for the activation of the Toll signaling
pathway upon recognition of Gram-positive bacteria and fungi, leading to the synthesis of
antimicrobial peptides (Nappi and Cristensen, 2005). Serine protease function in the
melanization process was studied in several insect species including Manduca sexta and
Drosophila melanogaster (Liu et al., 2007; Zhao et al., 2007). Thus, serine proteases
were found to be responsible for activation of the Prophenoloxidase (ProPO) zymogen

into the active Phenoloxidase (PO) enzyme which catalyzes the oxidation of phenols into
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quinones, precursors of the melanin. This latter molecule is deposited on wounds or

parasites (Nappi and Cristensen, 2005).

4. Polydnavirus

Polydnavirus is a unique group of viruses, which exist in obligatory mutual
association with some hymenopteran wasp species (Krell et al., 1982). They have a
segmented double stranded DNA genome), that is integrated in the wasp genome. This
means that viral transmission does not occur by direct infection of cells but the virus is
rather inherited through the germline. Replication of the viral genome and production of
mature viral particles only occur in the cells of the ovarian calyx. It is regulated by
hormonal changes occurring during the wasp development, as it starts in the late pupal
stage and continues through adulthood (Webb and summers, 1992).

Two genera of polydnavirus are known, Bracovirus and Ichnovirus. This
classification is based on two distinctive features, the first one being the mutualistic
partner wasp family and the second one the morphology of the virus particles. Bracovirus
are associated with braconid wasps and Ichnovirus with ichneumonid wasps (Stoltz et al.,
1995). The morphological characteristics of these two groups were defined by
transmission electron microscope studies. Ichnovirus particles are released from calyx
cells through budding and this process does not damage the calyx cell (Volkoff et al.,
1995). This is not the case for Bracoviruses. Here, virus replication occurs in the nuclei of
the calyx cells, leading to nuclear swelling and invasion of the entire cell space. Finally,
virus particles are released by cell destruction, which implies the need for continuous cell
renewal (DeBuron and Beckage, 1992, Pasquier-Barre et al., 2002). Ichnovirus
nucleocaspids are ellipsoid in shape and surrounded by two membranes while bracovirus

caspids have rod shape and are surrounded by a single membrane (Webb, 1998) (Fig. 3).

19



Fig.3 Toxoneuron nigriceps bracovirus particles as seen by Electron microscopy. Like other  bracoviruses

it has rod shape nucleocaspids surrounded by a single membrane.

At oviposition, the virus is delivered into the host hemocoel, where it expresses its
genes but does not replicate (Fleming and Summers, 1991). These genes were proven to
be the major immunosuppressive agents involved in the interaction between the host and

the parasitoid (Ibrahim and Kim, 2008; Thoetkiattikul et al., 2005).

5. Polydnavirus genomes

Initial hypothesis of polydnavirus phylogeny suggested that they might be closely related
to baculoviruses based on morphological similarity especially between bracovirus and
baculovirus particles (Stoltz et al., 1976; Stoltz et al., 1981a; Stoltz et al., 1984), however,
deep molecular and biochemical analysis didn’t show close relationship between
polydnavirus and baculovirus as in the case of protein tyrosine phosphatases which are of
dual specific type in baculovirus and classical type in polydnavirus (Kim and Weaver,
1993). Several symbiotic viruses and virus like particles with hymenopteran braconid and
ichneumonid wasps able to replicate inside their lepidopteran host like CmV2 virus
which were described in Cotesia melanoscela (Stoltz and Faulkner, 1978) such kind of
virus might be originating from lepidopteran pathogens rather than wasp due to their
ability to replicate inside the host (Whitefield and Asgari, 2003). This is not the case in
polydnavirus in which replication occur only in the wasp partner. Other symbiotic
viruses, Ascovirus, are capable of replication in wasp tissues only and they are

transmitted vertically through germ line (Federici et al., 1991, 2000) suggesting that they
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might be ancestors for ichnoviruses (Whitefield and Asgari, 2003; Bigot et al., 2008). A
recent study (Bezier et al., 2009) indicated that bracovirus-associated wasp species share
genes coding for structural components of polydnavirus particles and that these genes are

related to genes of nudivirus suggesting that polydnavirus ancestor is a nudivirus.

Several sequencing projects has been launched to obtain the entire genome sequence
of several polydnaviruses, including Cotesia congregata bracovirus (CcBV) (Espagne et
al., 2004), Micropletis demolitor bracovirus (MdBV) (Webb et al., 2006), Cotesia
plutellae bracovirus (CpBYV) (Choi et al., 2005), Toxoneuron nigriceps bracovirus (TnBV)
(Varricchio et al., unpublished data), Glyptapanteles indiensis bracovirus (GiBV),
Glyptapanteles flavicoxis bracovirus (GfBV) (Desjardins et al., 2008), Campoletis
sonorensis ichnovirus (CsIV) (Webb et al., 2006), Tranosema rostrale (TrlV) and
Hyposoter fugitivus ichnoviruses (HfIV) (Xu and Stoltz, 1993; Tanaka et al., 2007). The
aggregate genome size range in polydnavirus varies among different members between
187 to 567 kb while the GC content varies from 34% to 43%.

Genome analysis of Polydnavirus members clearly show that they share 4 common
characteristics in which they have low coding density ranging from 17% to 32%, their
genes are not including virus structural proteins or virus-replication related genes, virus
genes are closely related to wasp cellular proteins and with the exception of ankyrin
genes, Ichnovirus and Bracovirus genes are unrelated (Lapointe et al., 2007). On the
other hand several differences between Polydnavirus gene content were reported
previously. The largest gene family in Bracovirus is the PTP family; this family is not yet
detected in Ichnovirus genomes (Provost et al., 2004; Ibrahim et al., 2007). On the
contrary, several gene families were detected in Ichnovirus only and not in Bracovirus
including Repeated Element Protein (rep family) and Viral Innexin gene family (inx
family). Twenty eight copies of rep genes were found in Cs/V located on 10 segments
while 4 genes of inx genes were reported on 3 different segments of Cs/V (Kroemer and
Webb, 2004). Polydnavirus genome sequencing revealed a great variability in their
coding density ranging from 17% in MdBV to 32.3% in CpBV (Webb et al., 2006; Choi et
al., 2009). In the next part [ am going to summarize gene and gene families present in

Bracovirus and give indication about functional analysis of Bracovirus genes done so far.
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5.1. Coding sequences

Bioinformatics analysis of the polydnavirus genomic sequences allowed defining
their gene content. Polydnaviral genes are mostly represented by multiple members of
specific gene families, including genes coding for Protein Tyrosine Phosphatases (PTPs),
Ankyrin repeat proteins (IkB), Single copy genes may be shared by two or more
bracovirus genomes and this is for example the case of the H4 viral genes found in
Cotesia plutellae bracovirus (Ibrahim et al, 2005), Cotesia congregata bracovirus
(Espagne et al., 2004) and Cotesia glomerata bracovirus (Kim et al., 2006), but there are
also cases in which they are restricted to a single genome, like the aspartyl protease gene
found in 7oxoneuron nigriceps bracovirus (Falabella et al., 2003). In the next part I am
going to give a detailed description about the two gene families shared by all

bracoviruses, those coding for tyrosine phosphatases and ankyrins.

SPECIES No. of tyrosine phosphatases No. of Ankyrin genes

CpBV 35 8
CcBV 23 5
MdBV 13 12
TnBV 16 4

Table 1 Number of ankyrin-repeat-containing proteins and tyrosine phosphatases encoded in the

genome of 4 species of polydnavirus
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5.1.1 Main gene families

(A) Protein tyrosine phosphatases (PTPs)

Tyrosine phosphorylation plays a critical role in most cell signaling pathways (Ostman et

al., 1994). In general, once a given signal has caused an increase in the intracellular level
of phosphotyrosine, it must return to a baseline in order for the cell to respond to
subsequent signals either positively or negatively (Cote et al., 1998). This balance is
ensured by the opposing action of two different classes of enzymes, protein tyrosine
kinases (PTKs) and protein tyrosine phosphatases (PTPs), the positive and negative
regulators of the cell phosphorylation state, respectively (Fig.4). The Drosophila genome
contains 38 PTPs as well as 32 PTKs genes (Morrison et al., 2000).

PTPs are found in all eukaryotes and are characterized by the (I/'V) HCSxGxGR(S/T)G
catalytic motif. They are grouped in a superfamily that consists of classical PTPs that
specifically dephosphorylate tyrosine residues, dual specificity phosphatases that
facilitate dephosphorylation of tyrosine, serine and threonine residues, and low molecular

weight PTPs (Ramponi et al., 1989).

PTK

PTP

Fig. 4. Diagrammatic representation showing the antagonistic action of protein tyrosine phosphatase (PTP)

and protein tyrosine kinase (PTK) in regulation of the cell phosphorylation state.

Classical PTPs are characterized by a catalytic domain consisting of 10 conserved motifs
with long conserved noncatalytic region that can only regulate the enzyme activity. They

can be grouped into two structurally distinct classes: receptor-like proteins that span the
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membrane and soluble cytosolic enzymes. While receptor-like protein tyrosine
phosphatases (RPTPs) consist of intracellular, transmembrane, and extracellular domains.
The extracellular domains are extremely diverse in size, ranging from very short to very
long. The cytoplasmic domains are characterized by the presence of two active sites and
it was suggested that the membrane-proximal catalytic domain is catalytically active,
whereas the membrane-distal catalytic domain has no measurable enzymatic activity but
may have regulatory functions (Wu et al., 1996; Nam et al., 1999). Cytosolic PTPs
(CPTPs) have only the intracellular domain and are characterized by the presence of only

one active site.

The prototype of PTPs is human PTP1B, a 321 residues long cytosolic protein, whose
structure and mechanism of action have been extensively studied (Jia et al., 1995). it is
composed of 8 a helices and 12 f strands. Ten mixed B sheets form a twist that spans the
entire length of the protein. The catalytic site is located at the base of a 11A° deep cleft,
and contains the nucleophilic cysteinyl residue (Jia et al., 1995). The side chain of active
site Arg 221 positions the substrate phosphor close to the sulphur of the thiolate side
chain of the cysteinyl residue, which then performs a nucleophilic attack on the substrate
phosphor. The tyrosyl leaving group becomes protonated by Asp 181 acting as a general
acid, formation of a cysteinyl-phosphate intermediate occurs (Jia et al., 1995). Gln 262
coordinates a water molecule that forms hydrogen bonds with the amide side chain of
GIn266, the amide nitrogen of Phe 182 and the bound phosphate group to stabilize the
closed conformation. Subsquent action of Asp 181 as a general base induces hydrolysis
of the catalytic intermediate followed by release of the phosphate (Jia et al., 1995) (Fig.
5).
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Fig. 5. Catalytic action of protein tyrosine phosphatase (PTP). (A) Formation of enzyme phosphate
complex. PTP binds to phosphate group in tyrosine residue of cellular protein by the aid of arginine 221
residue of the enzyme. (B) Hydrolysis of the complex and release of the phosphate group from the tyrosine

residue.

(B) Ankyrin-repeat-containing proteins

Vertebrate ankyrins are a family of adaptor proteins which mediate the attachment of
integral membrane proteins to the spectrin-actin based membrane skeleton (Bennet and
Baines, 2001). They have binding sites for both classes of proteins which is necessary to
act as a linkage between them. This linkage is required to maintain the integrity of the
plasma membrane and to anchor specific ion channels, ion exchangers and ion

transporters in the plasma membrane. Amkyrins have 4 domains which are, N-terminal
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domain having 24 ankyrin repeats, central domain which binds spectrin, death domain
attaching apoptosis inducing proteins and C-terminal regulatory domain (Bennet and
Baines, 2001). Vertebrate ankyrins fall into three classes (R, B and G), each containing
multiple variants generated by alternative splicing of a unique gene (Mohler et al., 2002).
Ankyrin-R proteins derive their name from their restricted distribution, as they were
initially found only in erythrocytes, and are encoded by the Ankl gene. Ankyrin-B
proteins, named after their broad expression pattern and encoded by the Ank2 gene, were
characterized in the brain, but then found in most cell types. Finally, Ankyrin-G proteins,
which are also expressed in most cell types even if they were first identified in the
nervous system, got their name, Giant, because of their 480 kDa size.

Ankyrin repeat is a 33 residue motif which mediates protein-protein interactions and
present in large number of proteins involved in diverse functions including transcription
initiation, regulation of cell cycle and signal transducers (Mosavi et al., 2004).
Polydnavirus has a gene family consisting of ankyrin repeats and showing high homology
to members of IkB protein family which act as inhibitor of NF-kB signaling pathways in
insects and invertebrate (Silverman and Maniatis, 2001). Polydnavirus IkB lack specific
regulatory domains regulating signal-induced degradation (Falabella et al., 2007).
NF-kB/Rel proteins comprise a family of structurally-related eukaryotic transcription
factors that are involved in the control of a large number of physiological processes,
including immune response, development, cellular growth and apoptosis (Dea and
Hoffman, 2010). In Drosophila, NF-kB/Rel proteins participate in embryonic dorso
ventral patterning and antimicrobial response (Bergmann et al., 1996; Roth et al., 1991;
De Gregorio et al., 2001; Hoffmann, 2003).

Several IkB proteins (IkBa, IkBp, IkBa, IkBe, IkBz, P105, P100 and Bcl-3) have been
identified so far, all sharing specific functional features. They are in fact capable of (1)
binding NF-kB/Rel dimers, retaining them in a latent, inactive state, and (2) allowing for
NF-kB activation by undergoing stimulus-induced proteolysis. The canonical signaling
pathway leading to NF-kB activation involves the phosphorylation of IkB by a specific
protein kinase complex, which tags it for ubiquitination and degradation via the
proteasome. Several other IkB-like ankyrin-repeat containing NF-kB binding proteins

have been reported to modulate nuclear NF-kB transcriptional activity on a subset of
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genes (Yamamoto et al., 2004) or, when over expressed, prevent nuclear localization of
NF-kB (Hatada et al., 1992; Inoue et al., 1992; Naumann et al., 1993).

Polydnavirus ankyrin-repeat-containing proteins are structurally related to kB proteins,
their ankyrin domains comprise four ankyrin repeats which show similarity to the ankyrin
domains 3-6 of Drosophila and human IkB proteins (Fig. 6.). However, polydnavirus
ankyrins lack the regulatory motifs present in their eukaryotic counterparts. Polydnavirus
IkB lack N-terminal IKK target motif (IkB kinase phosphorylation motif) which mediate
degradation of cactus. In vertebrates and Drosophila, IKK phosphorylates kB which
binds NF-kB and block its function. Phosphorylated IkB is degraded via upiquitination
pathway, leaving NF-kB which then enters the cell allowing activation of various genes
involved in immune response. It doesn’t contain also PEST domain in the C-terminal.
PEST domain is a signal peptide for protein degradation.

The predicted mode of action in polydnavirus IkB protein may be through competition
with endogenous IkB. These proteins doesn’t respond to signals produced in the host as
they lack the phosphorylation sites for IKK which is critical for Cactus/IkB
phosphorylation and degradation in response to immune challenge. Absence of PEST
domain in polydnavirus IkB proteins might be involved in increasing the half life of these

proteins during parasitization (Falabella et al., 2007).
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Fig. 6 Schematic representation showing the structural features of the proteins encoded by 7nBV-IkB genes
compared to human and Drosophila homologous proteins. Accession numbers and amino acid number are
indicated under the name. Motifs are marked with different colors in the scheme and motif position in each
protein is marked as numbers below each color. HumlkBa regulatory regions: SRD, signal-receiving
domain mediating phosphorylation and ubiquitination; PEST, PEST region responsible for rapid protein
turnover; NES, leucine-rich nuclear-export sequences, NLS, nuclear-localization signal (Falabella et al.,
2007).

5.1.2 Functional analysis of polydnavirus gene products

Several proteins were analyzed either in 7TnBV or other members of bracoviruses. A
number of functional studies focused on bracovirus protein tyrosine phosphatases. It is
well known that signal transduction pathways involved in immune response are regulated
by reversible phosphorylation of key tyrosine residues and that several bacterial and viral
pathogens evade host immune reactions by altering the cellular phosphorylation status
(Bliska and Black, 1995, Castandet et al., 2005). Some bracoviral PTPs may act in a
similar manner. Two tyrosine phosphatases (PTP1 and PTP5) encoded by Cofesia
plutellae bracovirus inhibited the ability of diamondback moth hemocytes to either
phagocytose FITC labeled E. coli or encapsulate chromatographic beads (Ibrahim and
Kim, 2008). An anti-phagocytic function was also described for MdBV PTP-H1 and PTP-
H3, which localize to focal adhesions (Pruijssers and Strand, 2007). Moreover, MdBV
PTP-H2 induced apoptosis in insect cells (Suderman et al., 2008). Based on their
expression pattern, which includes several different tissues and cell types, bracoviral
PTPs might be involved in host physiological alterations other than immunosuppression
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For instance, Falabella et al., suggested a potential role for 7nBVPTPs in disruption of
prothoracic gland function in H. virescens larvae parasitized by 7. nigriceps (Falabella et
al., 2000).

Functional studies of bracoviral ankyrins strongly supported early hypotheses based on
their structural characteristics. As reported above, these proteins lack regulatory
elements, which are responsible for signal-induced degradation and rapid protein
turnover. It was therefore proposed that bracovirus ankyrins may bind their NF-kB targets
irreversibly, leading to their permanent inhibition (Thoetkiattikul et al., 2005, Falabella et
al, 2007). These transcription factors are implicated in mammalian and insect immune
responses, as well as in regulation of development (Dushay et al., 1996; Engstrom et al.,
1993; Kappler et al., 1993). A likely consequence of their inhibition by bracoviral
ankyrins would be host immunosuppression. Actually, two MdBV ankyrins were able to
inhibit antimicrobial peptides production (Thoetkiattikul et al., 2005). In addition,
transfection experiments in human HeLa cells demonstrated that the TnBV ankl gene
product reduced the efficiency of the TNF-alpha-induced expression of a reporter gene
under NF-kappaB transcriptional control (Falabella et al, 2007). However, bracoviral
ankyrin genes may play additional functions, as suggested by the impact of 7nBVankl
gene expression on the microtubule network in a heterologous system (Duchi et al.,
2010). Moreover, an ichnovirus ank gene was reported to have anti-apoptotic action
(Fath-Goodin et al., 2009).

Several polydnavirus-encoded proteins other than PTPs and ankyrins were
functionally analysed. TnBV1, a protein encoded by T nigriceps BV causes apoptosis like
programmed cell death in lepidopteran cells (Lapointe et al., 2005). A histone gene
encoded by CpBV suppress the expression of host histone H4 leading to suppression of
host immunity (Gad and Kim, 2008; Gad and Kim, 2009) and a putative protein
translation inhibitory factor encoded by the same virus inhibits plasmatocyte spreading in
response to plasmatocyte spreading peptide PSP1 (Nalini and Kim, 2007). Strand et al.
(2006) showed that the inhibitory factor came from the polydnavirus of the
endoparasitoid because M. demolitor bracovirus infection inhibited the hemocyte
phagocytosis of P. includens, and proved that a mucin-like polydnaviral protein, Glc1.8,

is an inhibitory factor in the phagocytosis. It hinders the functional interaction between
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the hemocyte receptor and foreign ligand by depressing the inducible expression of
selected a- and B-integrin or by forming a physical barrier. VHV1.1 gene of Campoletis
sonorensis ichnovirus and CrV1 gene of C. rubecula bracovirus interrupt a normal
cytoskeletal rearrangement in response to pathogen infection in parasitized host (Li and
Webb, 1994; Asgari et al., 1996). A bracovirus lectin gene was identified in Cotesia
plutellae bracovirus. It encodes for a protein with homology of about 80% to C. ruficrus
bracovirus gene. This protein was proven to act as immunosuppressive agent against host
immune responses (Lee et al., 2008). Functional analysis of PDV conserved hypothetical
protein didn’t take strong attention like those of eukaryotic like proteins. A recent study,
(Park and Kim, 2010) shows that transient transfection of bracovirus hypothetical protein
containing BEN domain induces immunosuppression of nonparasitized host in the form

of reduction of hemocyte population as well as impairment in nodule formation.

5.2.  Noncoding sequences

A large fraction of bracoviral genomes is apparently devoid of genes. Whether this huge
amount of non-coding sequences has a functional relevance, is a fully unexplored issue.
However, by analogy with other viral genomes, it can be hypothesized that also
polydnaviral genomes contain DNA sequences that give rise to non-coding RNA
molecules playing regulatory roles of the viral host physiology (Nair and Zavolan, 2006).
Up to now, the only report concerning the synthesis of non-coding RNAs in a host-
parasitoid association is related to the induction of host microRNA species in response to
parasitic action in the Lymantria dispar/Glyptapanteles flavicoxis system. In this study,
27 miRNA species were found to be up regulated as a consequence of parasitization
(Gundersen-Rindal and Pedroni, 2010).

In our lab, in the frame of a functional study of the 7TnBV genomic circle containing the
TnBVankl gene, a non-coding sequence with a putative functional role in host regulation
was identified. Since the characterization of this sequence was part of my PhD thesis
work, a general discussion of the main structural and functional features of non-coding

RNAs is reported in the next section.
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Noncoding RNAs

Noncoding RNAs (ncRNAs) are functional RNA molecules which are not translated into
proteins. Non-coding RNA genes include highly expressed RNAs (house keeping RNAs),
such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as regulatory RNAs.
This latter group of ncRNAs comprises small ncRNAs, such as small nuclear RNAs
(snoRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs), piwi associated
RNAs (piRNAs) and long ncRNAs (InRNA) (Fig. 7).

Total RNA

Coding RNA
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Noncoding RNA
96% of total

Pre rRNA | ] | NnoRNA I , INRNZ tmRNA and
other types

RNA
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| Eukaryotes

tRNA Bl Bacteria
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Fig. 7 Schematic representation of cellular RNA content. This scheme shows the different types of RNA
existing in different organisms (eukaryotes, bacteria and archaea) and those categories found only in
eukaryotic or bacterial cells. The non-coding RNAs of archaea have not yet been fully characterized and it

is not clear which types are present in addition to rRNA and tRNA (modified from Brown, 2002).

(A) Small noncoding RNA

small non-coding RNA include microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs)

and small interfering RNAs (siRNAs), and they are 18-31 nt in length and can affect

diverse cellular pathways (Plasterk, 2006).

MiRNAs are 18-25 nt, small non-coding RNAs that are able to regulate protein
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translation of target messenger RNA (mRNA) molecules. In mammals, most of
endogenous miRNA genes are transcribed initially as primary transcripts (pri-miRNAs)
that range from hundreds to thousands of nucleotides in length and contain one or more
extended hairpin structures (Du and Zamore, 2005). The biogenesis of miRNA involves
first RNAse cleavage, using two enzymes (Dorsha and DGCRS), of both strands near the
base of the primary stem-loop and yields the precursor miRNA (pre-miRNA) (Fig. 8).
This is followed by exportation of the pre-miRNA to the cytoplasm and Dicer cleavage in
the presence of TAR RNA-binding protein (TRBP). After cleavage by Dicer and
unwinding by RNA helicase, one strand of the miRNA/miRNA is then preferentially
incorporated into the RNA-induced silencing complex (RISC), whereas the other strand
is degraded (Fig. 8). The RISC uses the guide RNA to find complementary mRNA
sequences via Watson—Crick base pairing, which leads to post-transcriptional gene
silencing through inhibition of either translation initiation or elongation (Du and Zamore,
2005).

Piwi small RNA are a 24-31 nt Piwi protein interacting RNA. This protein is required
also for PiwiRNA biogenesis in a Dicer dependent manner and they are believed to play a
regulatory role in controlling gene expression in both mammals and Drosophila (Shuang
et al., 2009). Short interfering siRNA are short 20-25 nt RNA molecules and they first
discovered in RNA interference in C. elegans. Short interfering RNAs regulate gene
expression through duplex RNA formation leading to RNA degradation using Dicer
pathway (Elbashir et al., 2001).
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Fig. 8 MiRNA biogenesis. Genes encoding miRNAs are initially transcribed by RNA polymerase II or 111
to generate the pri-miRNA transcripts within the nucleus. The stem-loop structure of the pri-miRNA is
recognized and cleaved on both strands by a microprocessor complex, which consists of the nuclear RNase
III enzyme Drosha and an RNA-binding protein, DGCRS, to yield a pre-miRNA 60-70 nt in length. The
pre-miRNA is then exported from the nucleus through a nuclear pore by exportin-5 in a Ran-GTP-
dependent manner and processed in the cytoplasm by the RNase III Dicer—TRBP. Sliced RNA strands are
further unwound by an RNA helicase. One strand of the miRNA/miRNA* or siRNA duplex (the antisense,
or guide strand) is then preferentially incorporated into the RISC (or miRNP for miRNAs) and will guide
the miRNP to a target mRNA in a sequence-specific manner. Once directed to a target mRNA, the RISC
can mediate translational regulation by inhibiting the initiation or elongation step or through destabilization
of the target mRNA. Alternatively, miRNAs may also up regulate translation of target mRNAs under
certain conditions (Shuang et al., 2009).
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(B) Long noncoding RNA

Long noncoding RNAs are transcripts longer than 200 nucleotides. Up to now, most
research efforts focused on ncRNAs have been directed to the study of small ncRNA
species, however an increasing interest on longer transcripts which do not give rise to
proteins developed in the last years. Long ncRNAs may be located in the nucleus or in
the cytoplasm, may or may not be polyadenylated and may be transcribed from one or
both DNA strands (Birney et al., 2007; Carninci et al., 2005).

Unlike mRNA or miRNA the functions performed by long ncRNAs can not be predicted
based on the sequence and this makes their study particularly difficult, also because they
even lack conservation among related species. Several long ncRNAs were functionally
characterized, for example a nitric oxide synthase (NOS) pseudogene is expressed in the
CNS of the snail Lymnaea stagnalis. The pseudo-NOS transcript includes a region of
significant antisense homology to a previously reported neuronal NOS (nNOS)-encoding
mRNA. This suggested that the pseudo-NOS transcript acts as a natural antisense
regulator of nNOS protein synthesis. Furthermore a stable hybrid was detected in vivo
between sense and antisense transcripts. In vitro translation of nNOS mRNA in the
presence of the antisense region of the pseudogene revealed significant inhibition in the
nNOS protein (Korneev et al., 1999).

Long ncRNAs can be classified into five broad categories based on their structural
relationship with a second, protein coding, transcript. According to this classification a
long ncRNA may be: (1) sense or (2) antisense when it matches with one or more exons
of another transcript deriving from a different portion of the genome, either on the same
strand (sense) or on the opposite strand (antisense) (3) bidirectional when it is transcribed
from the opposite strand of a coding transcript (4) intronic when it is derived from an
intron of another transcript or (5) intergenic when it lies within the genomic distance
between two adjacent genes (Ponting et al., 2009).

A diagrammatic representation summarizing how long ncRNAs work is shown in Figure

9 (Wilusz et al., 2009).
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Fig. 9 Diagrammatic representation of long ncRNAs functional mechanisms. Transcription from an
upstream noncoding promoter (orange) can negatively (1) or positively (2) affect expression of the
downstream gene (blue) by inhibiting RNA polymerase II recruitment or inducing chromatin remodeling,
respectively. (3) An antisense transcript (purple) is able to hybridize to the overlapping sense transcript
(blue) forming a RNA-RNA hybrid and blocking recognition of the splice sites by the spliceosome, thus
resulting in an alternatively spliced transcript. (4) Alternatively, hybridization of the sense and antisense
transcripts can allow Dicer to generate endogenous siRNAs to mimic the action of RNA interference. By
binding to specific protein partners, a noncoding transcript (green) can modulate the activity of the protein
(5), serve as a structural component that allows a larger RNA—protein complex to form (6), or alter where
the protein localizes in the cell (7). (8) Long ncRNAs (pink) can be processed to yield small RNAs, such as
miRNAs, piRNAs, and other less well-characterized classes of small transcripts (Wilusz et al., 2009).
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6. The host-parasitoid association Toxoneuron nigriceps-Heliothis virescens

Toxoneuron nigriceps (Hymenoptera: Braconidae) is a solitary braconid endoparasitoid
wasp that parasitizes the larval stages of the tobacco budworm, Heliothis virescens
(Lepidoptera, Noctuidae). Parasitized H. virescens larvae display a complex array of
physiological alterations, mainly affecting developmental, immune response and
neuroendocrine processes (Falabella et al., 2006). Several lines of evidence support the
idea that Toxoneuron nigriceps bracovirus (1nBV), the polydnavirus associated with this
host-parasitoid system, plays a central role in the pathological effects induced by
parasitization, especially in the immune suppression (Malva et al., 2004). Initial studies
of the TnBV genome allowed the identification of PTP and IkB gene family members,
shared, as discussed above, with the other bracovirus genomes, as well as few TnBV
unique genes, such as an aspartyl protease gene (Falabella et al., 2003; Provost et al.,
2004; lapointe et al., 2005; Falabella et al., 2007).

This work is divided into two parts. The first part includes full characterization and
annotation of the 7nBV genome, which was achieved by combining partial sequence
information already available, with newly generated sequence data. Phylogenetic studies
aimed at establishing the evolutionary relationships between TnBV proteins and
homologous proteins encoded by different bracovirus genomes are also reported. The
second part of the work is focused on the characterization of several 7nBV noncoding
RNA molecules, which are transcribed in several tissues of parasitized H. virescens
larvae, including the hemocytes, and may be able to interact with a host transcript

possibly involved in the immune response.

Fig. 10 Toxoneuron nigriceps female parasitizes Heliothis virescens larva.
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NFATERIAL AND METHODS




1. Insects and parasitization

T. nigriceps and H. virescens were cultured in laboratory condition as described
before (Vinson et al., 1973; Pennacchio et al., 1998). Briefly, H. virescens larvae
were fed on artificial diet at 29°C. Late third instar larvae were parasitized by
adult 7. nigriceps at a ratio 1: 1. Larvae were considered parasitized when
oviposition was seen by eye. Parasitized larvae were cultured at 25°C and washed
with 10% sodium hypochlorite in order to maintain sterilized condition to avoid
secondary infection before parasitoid eclusion. After emergence, parasitoid males
and females were kept for mating for 24 h at room temperature at a ratio of
(3:1)(male: female). Adult 7. nigriceps were fed on 10% honey and cultured at

18°C to be used for parasitization or viral DNA extraction.

2. Virus DNA sequencing and 7nBV gene prediction

Sequencing of 7nBV genome was done by construction of three different genomic
libraries. The first two libraries contained viral DNA fragments, obtained by
EcoRI or HindIII restriction enzyme digestion, ranging in size between 500bps
and 7kb, cloned into the pGEM-3Z. The third library was done by mechanical
fragmentation of the TnBV genome to generate a number of shorter supercontigs
which were cloned and sequenced as described for the first two libraries. Merging
data coming from the above mentioned sequencing projects successfully closed
some circles of 7nBV genome, however many other sequences remained
unassembled. These sequences were subject to long polymerase chain reaction. In
this method phusion high fidelity DNA polymerase (Finnzymes, Thermofisher,
MA, USA) was used to close 7nBV circles or identify the junction between two
pieces of the genome using primers designed on either sides of a 7nBV sequence.
The reaction condition used in PCR was almost the same with initial denaturation
of 98°C for 30 sec, 35 cycles of 98°C for 10 sec, annealing at X°C for 15 sec and
extension at 72°C for 30sec/kb followed by 10 minutes final extension at 70°C.

PCR products were purified from 1% agarose gel using SV gel and PCR cleaning
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system (Promega, Madison, USA) according to manufacturer instructions.
Purified DNA was quantified using nanodrop 1000 (Thermo Scientific, DE, USA)
and checked for integrity on 1% agarose gel. Sequencing of PCR products was
performed by Primm (Milan, Italy). 7nBV encoded genes were predicted using
several gene finding programs including Gene scan

(http://genes.mit.edu/GENSCAN.html), FGENESV which is designed mainly for

finding genes in viral genomes
(http://linux1.softberry.com/berry.phtml?topic=index& group=programs&subgrou
p=gfindv) and FGENESH

(http://linux1.softberry.com/berry.phtml?topic=index&group=programs&subgrou

p=gfind) which can predict genes in Eukaryotes. Predicted exons and open
reading frames were subject to Blast analysis using the basic local alignment tool

of NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

. Collection of tissues and RNA extraction

Hemolymph was collected from larvae by cutting the 3 proleg and collecting the
solution in Mead buffer. Hemocytes were pelleted by spin down at 200g for 10
minutes. RNA was extracted from hemocytes, fat body, gut, malpighian tubules
and epidermal cells of either parasitized or nonparasitized H. virescens or from
hemocytes of Drosophila melanogaster using TRI reagent (Sigma-Aldrich, MO,
USA) according to manufacturer instructions. Briefly, tissues were lysed in TRI
reagent for 5 minutes at room temperature and RNA was extracted in 20%
chloroform solution. RNA was precipitated using 0.7 volume isopropanol and the
resulting pellet was washed in 70% ethanol and resuspended in DEPC treated H,0
and quantified using nanodrop 1000 (Thermo Scientific, DE, USA).
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4. DNAse treatment and cDNA synthesis

To confirm absence of DNA contamination of RNA preparation, RNA Samples
were subject to DNAse treatment using RQI DNAse (Promega, WE, USA)
according to manufacturer instructions where one enzyme unit was used to digest
DNA from one microgram RNA for 30 minutes at 37°C. DNAse digestion of
RNA samples was followed by 3 phenol-chloroform extractions and ethanol
precipitation, this step was done to remove the DNAse from the RNA preparation.
One pg RNA was used as template for cDNA synthesis using M-MLV reverse
transcriptase (Ambion, Austin, TX, USA) according to manufacturer instructions.
The reaction was placed at 42°C for 1 hour and the enzyme was destroyed for 10
minutes at 95°C. Synthesis of the first cDNA strand was performed using oligodT
(" TTT TTT TTT TTT TTT TTT TTT T 3") (MWG Biotech AG, Ebersberg,

Germany).

5. Noncoding RNA cloning and sequencing

The sequences of the first two members of 7nBVncRNAs were identified during
screening of cDNA library from hemocytes of parasitized H. virescens larvae.
Two gene specific primers were designed and used in RT-PCR under the
following condition (3 minutes of initial denaturation at 95°C and 35 cycles of 30
seconds of denaturation at 95°C, 30 seconds of annealing at 60°C, 1 minute of
extension at 72°C followed by 10 minutes of final extension at 72°C using
Euroclone taq polymerase  (Euroclone, UK) with forward (§'
GTGCATGTACAATGAGGAAACAAGA 3" and reverse (5
GTGCATGTACAATGAGGAAACAAGA 3') primers. Amplified PCR
fragments of 7nBVncRNAs were cloned into PCR2.1 cloning vector (Invitrogen,
CA, USA) and transformed into DH5a chemically competent cells (Invitrogen,
CA, USA) according to manufacturer instructions. Plasmids DNA were purified
by Qiagen midiprep kit (Qiagen, CA, USA). Sequencing of the clones was
performed by Primm (Milano, Italy).
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6. Semi-quantitative RT-PCR

cDNA samples corresponding to different tissues of both nonparasitized and
parasitized H. virescens larvae at 6 hours after parasitization or those
corresponding to hemocytes at 3, 6, 12, 24, and 48 hours after parasitization were
used as templates in semi-quantitative RT-PCR reactions. Ribosomal SK4 RNA
was used as internal control for all PCR reactions. All PCR reactions were
performed under the same thermal cycles of 3 minutes of initial denaturation at
95°C and 24, 28, or 35 cycles for SK4, 102, and the viral antisense transcripts of
30 seconds of denaturation at 95°C, 30 seconds of annealing at 58°C, 1 minute of
at 72° C followed by 10 minutes of final extension at 72°C using Euroclone taq

polymerase (Euroclone, UK).

7. Real Time PCR

Real-time quantitative RT-PCR was performed on applied biosystems 7900HT
fast real time Quantitative Thermal Block using SYBR green chemistry and real-
time fluorescence measurements. Gene specific primers of 102 gene were
designed for real-time PCR to amplify the mid-open reading frame area of 102
based on the instructions provided by the thermal cycler producer with forward (5'
CCAAGTTAATCTGCAAGGCAAGA 3") and reverse &)
TGCAGCAAATGGCCTTATTG 3'). Template cDNA samples were constructed
as described before. Real-time RT-PCR was performed in SYBR green PCR
master mix (Applied Biosystems, Life Technologies, CA, USA). The reaction

mixture (20 W) consisted of 1X Fast SYBR green Master mix, 200 nM each of

RT primers, and 20 ng of cDNA. The reaction was performed under the following
conditions; one cycle of 20 seconds at 95°C for activation of AmpliTaq Fast DNA
Polymerase, 40 cycles under 94°C for 1 sec and 20 sec under 60°C to allow
annealing of the primers and extension of PCR. The SK4 gene was also
performed on each sample as an internal control for equivalence of template with

forward (5> TAGATGGCCTCATGATCCACTCT 3’) and reverse (5’
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GGGCCGTTCTTGCCTTGT 3’) primers. Fluorescence values were measured
and amplification plots were generated in real time by the Exicycler program.
Quantitative analysis of 102 transcript expression was done using the comparative

CT (ACT) method (Livak et al., 2001).

. Phylogenetic analysis

TnBV genome was compared to other three related species using Phylip package

for phylogenetic analysis (http://evolution.genetics.washington.edu/phylip.html)

for Neighbor Joining analysis based on multiple sequence alignments generated

by ClustalX alignment tool (http://www.clustal.org). Nine divergent PTPs were

removed by the Clustal program and the alignment file was edited by Geneious

(http://www.geneious.com) for manual adjustment when necessary. Two gene

families encoded by TnBV and the other 3 species (PTPs and IkB) were chosen
for the analysis of Neighbor Joining followed by bootstrap analysis SEQBOOT
software to find the most significant phylogenetic tree for both gene families

(Felsenstein, 1985, 1989).

42


http://evolution.genetics.washington.edu/phylip.html




1. Genome sequencing of Toxoneuron nigriceps bracovirus.

1.1. TnBYV genomic circles vary in size and abundance

The TnBV genome sequencing project required the construction of three different
genomic libraries. The first two libraries contained viral DNA fragments, obtained
by EcoRI or HindIII restriction enzyme digestion, ranging in size between 500bps
and 7kb, cloned into the pGEM-3Z plasmid (Fig. 11a). Full sequencing of these
genomic clones and assembly of the overlapping sequences allowed the
identification of fourteen circles. However, many sequences remained
unassembled. Therefore, a third library was constructed by mechanical
fragmentation of the 7nBV genome. Sequencing of this library followed by
sequence assembly generated a collection of short supercontigs, some matching
with sequences previously obtained and already assigned to defined circles and
some representing novel sequences. The latter were used to design appropriate
primers to be exploited in long PCR reactions. This strategy resulted in the
amplification of the DNA sequences spanning the ends of the supercontings and
led to the identification of additional circles. So far, 27 circles have been
identified, varying in size from 3.9Kb to 13.9Kb. The aggregated genome size of
TnBV determined in this work was 203,236 kilo bases. Based on ethidium
bromide staining, the TnBV circles did not appear to have the same abundance,
since some circles stained more intensely than other circles of similar size (Fig.
11a, lane 1). The overall GC content of the genome is 32.6% while the coding

sequences are about 22%.

44



(A)

B)

TnBV

’ A.Cut with EcoRI/Hindlll —

— B. Mechanical

fragmentation —

i Cloning and sequencing |
v l
Unassembled clones were
subject to long PCR | 14Circles identified |
v

13 circles identified I

2

Full genome sequencing, 27
circles identified

Fig. 11 (A) Polydnavirus genomic DNA undigested (1), digested with HindIII (2), EcoRI (3)
Hind III/EcoRI (4). Numbers on either sides of the photo represent circular DNA sizes (left) and
linear sizes (right). (B) Diagrammatic representation showing the sequencing strategy of 7TnBV

genomic circles.
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1.2 Genetic composition of TnBV circles

Forty two putative genes were identified in 7nBJ genome based on blast analysis
combined with ORF prediction generated by several gene finder programs, as indicated
in the methods section. The gene content of 7nBV, like other bracoviruses, was mostly
represented by multiple members of specific gene families and included genes coding for
Protein Tyrosine Phosphatases (PTPs), Ankyrin repeat containing proteins (IkB), sugar
transporters, BEN domain containing proteins, PHAO domain containing proteins and
bracovirus hypothetical proteins. Beside gene families there were also single copy genes
which included a gene coding for a putative aspartyl protease, a gene coding for a
putative UDP glucose 6 phosphate dehydrogenase, a gene coding for a putative MFS

transporter and a gene coding for a putative DNA helicase.

Gene No. of genes Predicted function
Protein Tyrosine Phosphatases 16 Signal transduction pathways
(PTPs)

Ankyrin Repeats Containing
proteins (IKB like)
Hypothetical proteins
Hypothetical proteins with BEN
and PHAO domains

NTP Sugar transporter

UDP Glucose 6 phosphate
dehydrogenase

Aspartyl protease

DNA Helicase

Similar to CG2206-PA of
Nasonia vitripennis
Similar to CG25304 of
Drosophila erecta, MFS
transporter

Inhibitor NF-KB transcription
factors

Unknown

Unknown

Bind and transport carbohydrates
Involved in phosphogluconate
pathway

Peptidase function using aspartyl
residue

DNA unwind

Unknown

Transport ions, sugar phosphates,
peptides, amino acids and
neurotransmitters across the
cytoplasm

Table 2 Gene families and single copy genes in 7TnBV genome.
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Fig. 12 Graphical representation of gene distribution in the 7nBV genomic circles. Each circle is
represented by a bar. Areas in black represent non-coding sequences. Areas in color represent coding
sequences, with each gene and gene family indicated by a distinct color. Predicted introns are marked in

grey color.

The largest gene family in 7nBV was, like in other bracoviruses, the one coding for
Protein Tyrosine Phosphatases (PTPs), which included 16 members. Like other PTPs
encoded by different polydnaviruses, 7nBVPTPs were classical cytosolic PTPs,
characterized by a catalytic domain formed by 10 conserved motifs (Fig. 13a). TnBV-
PTPs may contain mutations in their active site: this is the case for the cysteine catalytic
residue that is mutated in 2 7TnBV-PTPs out of 16 (Fig. 13a). Bracovirus PTP genes are
known to be intronless, however one 7TnBV-PTP gene located in circle 47 was predicted
to contain 3 introns. It should be mentioned that this putative PTP gene was only
identified by the FGENESH gene finder program.

The second eukaryotic-like gene family found in the 7nBV genome encoded for Ankyrin
repeat containing proteins. This gene family comprised 4 members distributed in three

circles (93, 139 and 6057). As described for other Bracovirus and Ichnovirus Ankyrin
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proteins, 7nBV ankyrin proteins were related to IkB proteins found in both vertebrates
and invertebrates, but were shorter and contained a reduced number of the characteristic
ankyrin repeats (Fig. 13b).

The third 7nBV gene family comprised two predicted sugar transporter genes, located in
two different circles (80 and 24.2).

Fifteen hypothetical genes found in the 7nBV genome were also identified in other
bracovirus and/or ichnovirus (Table 2). These genes comprised 38% of the total genes
identified in 7TnBV. Four of them coded for hypothetical proteins ranging in amino acid
length between 74 to 451 and were distributed in circles 61, 87 and 6057 (Table 3).
Eleven putative genes encoded for hypothetical proteins containing two domains also
found in other predicted polydnaviral proteins (BEN domain and PHAO domain) and
ranging in length between 74 to 819 amino acids. The absence of obvious similarity with
known proteins or protein domains with a clearly defined role did not allow any
prediction about their function.

Four single copy genes with a predicted function were identified. They encoded for a
putative aspartyl protease, a putative UDP glucose 6 phosphate dehydrogenase, a putative
Major Facilitator Superfamily (MFS) secondary transporter and a putative DNA helicase
and were located in three different circles (99, 80 and 40.1 respectively) (Fig. 12).

Finally, a gene identified in circle 80 showed significant similarity to a hymenopteran
gene (CG2206-PA of Nasonia vitripennis). However, nothing is known about its function.
Concerning the gene structure, eleven genes were predicted to contain one or more
introns, representing 26% of the total number of genes identified in the 7nBV genome.
Eight intron containing genes belonged to the group of genes coding for PDV
hypothetical proteins, as well as BEN and PHAO domain containing proteins, one coded
for a putative UDP sugar transporter, one coded for a MFS domain containing protein and
the last one was the above mentioned PTP gene that differed from all the other bracoviral

PTP genes because of its splitted structure.
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Fig. 13 Multiple sequence alignment of Bracovirus PTP and ankyrin proteins. (A) Alignment of 79 PTP

proteins encoded in four different Bracovirus genomes (CpBV, CcBV, MdBV and TnBV) with human and
Drosophila PTP proteins of the MEG?2 type (accession numbers M83738, 1.09247). 10 conserved motifs of

classical PTPs are shown on the alignment (B) Alignment of 27 ankyrin repeat containing proteins from the

same Bracovirus species as above with human IKappaBepsilon, Drosophila cactus, and Anopheles gambiae

cactus proteins (accession numbers, AAM27002.1, Q03017, and EAA12805.2) Predicted ankyrin repeats

are marked over the alignment. Ank3-Ank6 represent ankyrin repeats 3-6 of Drosophila cactus and human

IkBo. These two alignments were used to generate phylogenetic trees of Bracovirus PTPs and ankyrin

repeat containing proteins.

52



Circle
number

Gene
location

(bps)

N. of exons

Amino acids

Database similarity (protein
ID), % aa identity

Gene name (for
PTPs and
Ankyrin

123

133

139

140

154

154-2

34

35

44

47

1507-2400"

3020-6010"

3535-3771

5310-5831"

6428-6934"

8962-9219"

5107-5997"

2083-2442"

2083-2442°

2215-4927"

6690-8465"

3369-4678"

1309-1885"

2710-3536"

4527-9117

297

819

78

173

168

85

296

119

119

678

432

378

193

275

419

C. glomerata bracovirus PTP
AAR99279.1, 39% (114/290)

hypothetical protein ORF301
[Cotesia plutellae polydnavirus],
BEN and PHAO2737 domain,,
AAZ04269.1, 35%(219/689)

hypothetical protein CcBV_20.2
[Cotesia congregata bracovirus],
BEN and
PHAO2737domain,YP184853,
37%(26/70)

viral ankyrin [Glyptapanteles
indiensis], ACE75454.1,
38%(56/147)

GfV-B29-ORF1 [Glypta
fumiferanae ichnovirus,
YP001029373.1, 33%(55/166)
conserved hypothetical protein
[Glyptapanteles indiensis],
PHAO2744 domain,
ACE75406.1, 32%(24/75)

PTP 2 Microplitis demolitor
bracovirus, YP239391.1,
28%(82/290)

hypothetical protein

GFP_L2 0020 [Glyptapanteles
flavicoxis bracovirus], ,PHAO
2747 super family, ACE75228.1,
25%(18/71)

hypothetical protein

GFP_L2 0020 [Glyptapanteles
flavicoxis bracovirus], PHAO
2747 super family, ACE75228.1,
25%(18/71)

conserved hypothetical protein
[Glyptapanteles flavicoxis
bracovirus], BEN and PHAO2737
domain, ACE75243.1,
31%(126/378))

conserved hypothetical protein
[Glyptapanteles flavicoxis
bracovirus], BEN domain,
ACE75153.1, 44%(92/216)
conserved hypothetical protein
[Glyptapanteles flavicoxis
bracovirus], BEN and
PHAO2737 domain , ACE75501,
36%(57/149)

protein tyrosine phosphatase
[Cotesia plutellae polydnavirus],
AAZ04264.1, 26%(25/96)
protein tyrosine phosphatase
[Cotesia plutellae polydnavirus],
AAZ04264.1, 37%(48/132)

PTP 2 [Microplitis demolitor

TnBV123PTP1

TnBV139Ankl

TnBV139Ank2

TnBV140PTP1

TnBV44PTP1

TnBV44PTP2

TnBV47PTP1
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50

80

61

69

81

86

87

89

93

99

100

32

4777-5706"

5367-7214"

1894-3245"

11876-
12682"

3086-504"

660-1592"

3354-4182"

1462-2379°

6484-7434

830-1330

4097-4321

3881-4819"

601-1068"

7851-9588"

3077-3595

1835-2257°

1116-2618

837-1718"

309

615

450

271

451

310

276

305

316

166

74

312

155

532

172

140

219

293

bracovirus], YP239400.1,
40%(64/157)

PTP 2 [Microplitis demolitor
bracovirus], YP239391.1,
28%(88/304)

NTP-sugar transporter [Apis
mellifera], XP395030.3,
46%(155/332)

UDP-glucose 6-dehydrogenase
[Apis  mellifera], XP396801.3,
69%(81/117)

similar to CG2206-PA [Nasonia
vitripennis],XP001606517.1,
33%(45/135)

conserved hypothetical protein
[Glyptapanteles flavicoxis
bracovirus], ACE75505.1,
53%(119/225)

PTP 2 [Microplitis demolitor
bracovirus], YP239393.1, 27%
(80/287)

PTP 2 [Microplitis demolitor
bracovirus], YP239391.1, 27%
(42/127)

similar to GA15974-PA [Nasonia
vitripennis], XP001606932.1,
34%(103/300)

PTP 2 [Microplitis demolitor
bracovirus], YP239393.1, 30%
(91/302)

hypothetical protein ORF904
[Cotesia plutellae polydnavirus],
AAZ04286.1, 34%(29/85)
conserved hypothetical protein
[Glyptapanteles indiensis
bracovirus], ACE75434.1,
35%(25/71)

PTP 2 [Microplitis demolitor
bracovirus], YP239393.1,
28%(89/310)

viral ankyrin [Glyptapanteles
indiensis bracovirus], ace75303.1,
40%(63/154)

hypothetical protein [Microplitis
demolitor bracovirus], BEN
domain,YP239364.1,
42%(48/112)

CG25304 [Drosophila erectal,
XP001979163.1, 31%(28/91)

family A2 unassigned peptidase
(A02 family) [Schistosoma
mansoni], XP002569446.1,
34%(33/97)

DUF-like 1 [Cotesia plutellae
polydnavirus], BEN and
PHAO2737 domain,
ABK63308.1, 28%(23/80)
protein tyrosine phosphatase

TnBV50PTP1

TnBV69PTP1

TnBV69PTP2

TnBV81PTP1

TnBV86PTP1

TnBV8IPTP1

TnBV93Ank1

TnBV32PTP1
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18.1

40.1

24.2

6057

2245-3147"

1507-3379

325-1233"

2475-3368"

3967-4581"

159-410

112126117

3922-4446

1402-1644"

300

318

302

297

294

83

496

174

80

[Cotesia glomerata bracovirus],
AAR29979.1, 34%(103/300)
protein tyrosine phosphatase
[Cotesia glomerata bracovirus],
AAR29979.1, 36%(109/298)
hypothetical protein [Microplitis
demolitor bracovirus],
PHAO2744 domain, YP239392.1,
30%(42/140)

PTP1 [Glyptapanteles indiensis
bracovirus], ACE30023.1,
35%(108/302)

protein tyrosine phosphatase
[Glyptapanteles indiensis
bracovirus], ACE75313.1,
35%(108/303)

protein tyrosine phosphatase
[Glyptapanteles indiensis],
ACE75355.1, 29%(67/225)
DNA helicase [Adineta
vaga),AAZ67118.1, 64%(46/71)
UDP-sugar transporter UST74c¢
(fringe connection

protein), putative [ Nasonia
vitripennis], XP001599500.1,
44%(116/260)

GfV-B29-ORF1 [Glypta
fumiferanae ichnovirus],
YP001029373, 34%(60/174)
hypothetical protein [Cotesia
plutellae polydnavirus],
ABK63307.1, 36%(27/65)

TnBV32PTP2

TnBV18.1PTP1

TnBV18.1PTP2

TnBV40.1PTP1

TnBV6057Ank1

Table 3 Predicted genes in TnBV genomic circles. (+) Refer to genes predicted on the positive strand.
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1.3 Phylogenetic analysis of 7TnB} encoded proteins

PTP and Ankyrin protein sequences from three different bracovirus were obtained from

the NCBI Gene bank (http://www.ncbi.nlm.nih.gov/) and aligned with 7nBV-PTP and

TnBVANK  proteins, respectively, by using the Clustal X  program

(http://www.clustal.org/). Phylogenetic reconstructions were conducted separately on

PTPs and Ankyrin repeat containing proteins. Three members of the four bracovirus
species considered in this study belonged to the Microgastrinae subfamily (CpBV, CcBYV,
MdBV) while the fourth member belonged to the subfamily Cardiochiilinae (7nBV).
Construction of the phylogenetic tree was made by using the distance matrix method of
analysis (Neighbor-Joining). Tree validation was performed by bootstrap analysis in
which 100 trees were used to construct the consensus tree.

Phylogenetic analysis of 79 PTPs from the considered polydnavirus species indicated that
they can be clustered in 6 monophyletic groups containing several members and two PTP
protein pairs, one containing two CpBV-PTPs (CpS14PTP1 and CpS14PTP2) and the
other one made of two TnBV-PTPs (TnS18PTP1 and TnS18PTP2) (Fig. 14a). Among the
6 main groups, the first group G1, contained only members of 7nBVPTPs (TnS32PTPI,
TnS32PTP2, TnS123PTP1, TnS81PTP1, TnS44PTP2, and TnS40PTP1) and was
supported by high bootstrap value (100%). The corresponding genes might have been
acquired, in the evolutionary history of bracoviruses, after the divergence of
Cardiochiilinae from Microgastrinae in the Microgastroid lineage. The second group G2
was the only one with representation from all the species under investigation. It contained
20 members forming a clade that was supported by 100% bootstrap value. The
corresponding genes have possibly derived, by gene duplication events, from a common
ancestral gene, present in the bracovirus associated with the last common ancestor of
Microgastrinae and Cardiochiilinae. All the remaining groups, G3-G6, only contained
PTP members belonging to bracoviruses associated with the subfamily Microgastrinae
(Fig. 14a). The phylogenetic analysis of 27 ankyrin repeat containing proteins from the
above mentioned bracovirus species did not show a well defined clustering pattern..
Although few ankyrin proteins clustered together (Fig. 14b), a high divergence of
sequences was observed. For this reason, it was not possible to reconstruct a complete

phylogeny of bracovirus ankyrin genes.
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Fig. 14 Phylogenetic analysis of protein tyrosine phosphatases and ankyrin repeat containing proteins from

different bracovirus species (Cc, Cotesia congregata, Cp, Cotesia plutellae, Md, Microplitis demolitor, Tn,

Toxoneuron nigriceps). Phylogenetic trees, based on the Neighbor Joining method of analysis, were

obtained by using the Phylip package, and the reliability of the groups were assessed by Bootstrapping

using the program SEQBOOT to generate a total of 100 bootstrapped trees. Numbers before each node

indicate bootstrap values. Clusters were supported by internal nodes with bootstrap values >85%. The six

groups of Bracovirus PTPs are indicated as G1-G6. The tree shown in (A) was rooted by human and

Drosophila protein tyrosine phosphatases of the MEG2 type (HsPTPMEG2 and DmPTP, accession

numbers M83738and L09247) and the tree shown in (B) was rooted by human IKappaBepsilon,

Drosophila cactus, and Anopheles gambiae cactus proteins (accession numbers, AAM27002.1, Q03017

and EAA12805.2),
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2. Non-coding RNAs from Toxoneuron nigriceps polydnavirus target a host

immune gene.

2.1 A TnBYV gene gives rise to non-coding RNAs which display a complex splicing

pattern

Previous work carried out in the lab identified a TnBV sequence which is transcribed into
non-coding RNA molecules potentially implicated in the regulation of a H. virescens
gene (unpublished data). This sequence was localized in the TnBV circle 93 which also
includes a member of the ankyrin gene family (Fig. 15). Two partially overlapping
cDNAs, differing in their 5’ regions (cDNA 3: 550 base pairs and 5: 661 base pairs),
were isolated from a haemocyte cDNA library. Sequence comparisons with the genomic
circle 93 indicated that the corresponding transcripts were originated by alternative
splicing and/or different usage of alternative transcription start sites (Fig 15b). Moreover,
Northern blot analysis using a genomic probe resulted in a broad hybridization signal,
ranging from about 400 to 600 bases (data not shown). To test the hypothesis that this
size heterogeneity might derive from a complex splicing pattern, I performed several RT-
PCR experiments using different primer pairs. The products generated were cloned into a
suitable vector and sequenced. By this strategy, three different splicing patterns were

identified in the 5’ half of the ncRNA molecules generated from circle 93 (Fig. 15b).
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Ooclone.‘)}\H 05 1.0 15 0 .J 30 35 0 5
TnBV ncRNA
| ]
Gv93 partial sequence 1300-2500 | 1
Intron 1.1 Intron 1.2
cDNAS 1371-1597 1598-1778* 1779-1921*% 1922-218%* 2190-2454
Transcript(s) withoutintron 2 I . ”~ . ” I
1525-1872
Transcript(s) withoutintrons 1.1or 2 | |
1 1
Intron 2

1525-1614 1615-1778* 1779-1872
Transcript(s) withoutintrons 1.1

Intron 1.2

1664-1921* 1922-2189* 2190-2454
cDNA3

Transcript(s) withoutintrons1.1or 2

Fig. 15 Circle 93 contains a gene producing several ncRNAs. (A) Schematic representation of the circle
93in linear format. The circle contains a member of the 7TnBJ ankyrin gene family along
with a gene, transcribed into non coding RNA molecules, located on the opposite strand.
(B) Diagrammatic representation of the detected splicing patterns of the ncRNA
transcripts. Nucleotides are marked with reference to their positions in circle 93.

Numbers in red represent intronic sequences while those in blue represent exons.
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2.2 The putative target of the 7nBV ncRNAs is activated by immune

challenge

The identified ncRNAs shared a sequence which is the reverse complement of the
S'UTR of a H. virescens gene, named 102, expressed in haemocytes (Fig. 16). This
peculiar structural feature suggested that the circle93ncRNAs might be able to silence the
102 gene, either by targeting its transcript for degradation or by blocking its translation.
Several lines of evidence suggest that the 102 gene is implicated in the immune response
(unpublished data). The circle93ncRNAs might therefore function in host
immunosuppression that, as stated in the introduction, is one of the main physiological

alterations induced by parasitization.

Host 102 mRNA 5'UTR ORF 3'UTR

-

Circle93 ncRNA
3 A — s

Fig. 16. Diagrammatic representation showing the structural relationship between 7nBVncRNAs

transcribed from the TnBV genomic circle 93 and the 102 H. virescens transcript. Green
bars represent the region of complementarity between the host and viral transcripts. In the

host transcript, this region only includes the 5'UTR.

In the frame of a comprehensive study carried out in the lab to investigate the function of
the 102 gene and its relationship to the circle93ncRNAs, my contribution was aimed at
testing whether the 102 gene can be regulated by immune challenge. H. virescens larvae
were immunochallenged by CM-Sepharose beads injection and the changes in the level

of the 102 transcript were checked after 3, 6, 12, 24 and 48 h using Quantitative Real
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Time RT-PCR. The relative quantification of the 102 transcript, referred to non-
immunochallenged control larvae, showed an initial strong increase, reaching a peak 12 h
after immune challenge, followed by a gradual decrease (Fig. 17). This result indicated
that the 102 gene is activated by immune challenge, supporting the idea that the 102
protein is involved in immune response. A similar temporal profile of 102 transcript
accumulation was found in parasitized larvae, analysed at 3, 6, 12, 24 and 48 h after
parasitization (Fig. 17). This finding implies that also the injection of the parasitoid egg is
able to trigger a molecular pathway leading to 102 gene activation. Moreover, the
significant increase of the 102 transcript level observed after parasitization suggested that
if circle93ncRNAs target this transcript they might inhibit protein translation rather than

induce transcript degradation.
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Fig. 17 Relative quantification of 102 mRNA using qRT-PCR. RNA samples from haemocytes of
nonparasitized, parasitized or nonparasitized immunochallenged larvae were extracted at
different time intervals as indicated above. Real Time PCR was performed using SYBR
green technology. Data analysis was performed using A ¢T method (Livak et al., 2001).

All samples were calibrated against the nonparasitized control.
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2.3 Temporal transcription pattern of 7nBVncRNAs in haemocytes of parasitized

larvae

The expression pattern of 7nBVncRNAs in haemocytes, at different time-points
after parasitoid egg injection, was analyzed by semi-quantitative RT-PCR using the SK4
ribosomal protein RNA as internal control. The appropriate number of cycles for both the
control and the viral transcripts was determined separately to avoid saturation of PCR
products. TnBVncRNAs that spliced the intron situated in the 5° half of the gene
displayed maximum accumulation level at 6 hours after parasitization, were reduced at 12
hours, and then remained constant up to 48 hours after parasitization. The 7TnBVncRNAs
deriving from the same genomic locus, but retaining the 5’ end intronic sequences,
displayed an accumulation pattern somehow complementary: their level was already high
3 hours after parasitization, decreased at 6 hours and again increased at 12 and 24 hours

after parasitoid egg injection (Fig. 18).

Time after parasitization

3h 6h 12h 24h 48h

Sk4

TnBVncRNAs
withoutintron

TnBVncRNAs with
intron

Fig. 18 Temporal expression pattern of differentially spliced 7nBVncRNA transcripts, detected by
semi-quantitative RT-PCR. RNA samples were extracted from haemocytes of parasitized
larvae at 3, 6, 12, 24, 48 h after parasitoid egg injection. Gene specific primers were used

in PCR reactions for both 7nBVncRNAs and the internal control (Sk4).



2.4 Transcription pattern of 102 mRNA and 7nBVncRNAs in H. virescens tissues

The transcription levels of 102 mRNA and 7nBVncRNAs were compared in five H.
virescens tissues, including haemocytes, fat body, gut, malpighian tubules and epidermis.
The selected time-point was at 6 hours after parasitoid egg injection. In nonparasitized
larvae, the 102 mRNA was detected in 3 out of the 5 tested tissues: hemocytes, fat body
and gut, with no evident differences in levels (Fig. 19a). This pattern was reproduced in
parasitized larvae (Fig. 19b). The alternatively spliced 7TnBVncRNAs showed analogous
profiles. They were found in the same tissues as the 102 transcript. Their level did not
show significant differences in these tissues, but appeared to be higher than that of the
102 mRNA. In addition, 7nBVncRNAs were found in malpighian tubules, at a slightly
reduced level compared to the other tested tissues (Fig. 19b).

A
(A) HC FB GUT M.TUB.  EPIDERMIS

102 expression

Sk4 expression

(B)

HC FB GUT M.TUB.  EPIDERMIS

102 expression

Sk4 expression

TnBVncRNAwithoutintron

TnBVncRNAintron

Fig. 19. Expression of 102 mRNA and 7nBVncRNAs in different tissues of H. virescens larvae, tested
by semi-quantitative RT-PCR. A. Expression of 102 mRNA in hemocytes, fat body, gut, Malpighian tubules
and epidermis of nonparasitized late fourth instar larvae. B. Expression of 102 mRNA and 7nBVncRNAs in
the same tissues as above, dissected from parasitized larvae at 6 hours after parasitoid egg injection.

Relative quantification was performed using the SK4 RNA as internal control.
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2.5 Identification of Drosophila melanogaster homologues of the 102 gene

Blast analysis of the deduced amino acid sequence of the H. virescens 102 gene identified
two putative Drosophila melanogaster proteins which display high similarity with it (e
values: 3¢ and 2¢™ respectively) (Fig. 20a). Then, as a first step to distinguish the
presumptive orthologous protein, RT-PCR experiments were performed, looking for the
presence of the corresponding transcripts in larval haemocytes. One of the two genes,
CG3303, was only expressed at a very low level (Fig. 20b). On the contrary, the second
gene, CG2145, was highly expressed in haemocytes (Fig. 20b) and a strong signal was
also obtained from whole larvae (data not shown). Absence of genomic DNA
contamination in the RNA preparation was confirmed by the two controls included in the
experiment. Compared to the cDNA amplification product, the PCR fragment generated
from genomic DNA had in fact a slightly larger size, while no amplification was obtained

when using as template the RNA sample.
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Score E
Sequences producing significant alignments: (Bits) value
CG2145-PA [Drosophila melanogaster] >gb|AAF4... 2e-48 m
CG3303-PA [Drosophila melanogaster] >gb|AAK9... 3e-40
GH10845p [Drosophila melanogaster] 4e-36
C€G31292-PA [Drosophila melanogaster] >gb|AAN... 0.24 EE
CG12179-PB, isoform B [Drosophila melanogast... 3.2 m
EG:66Al1.2 [Drosophila melanogaster] 3.3
LD15043p [Drosophila melanogaster] 3.3 [ﬂ
CG12179-PA, isoform A [Drosophila melanogast... 3.3 m
CG8230-PA [Drosophila melanogaster] >gb|AAD3... 9.7 m

(B)

CG3303 CG2145
M gDNA +RT —RT gDNA +RT —RT

i e

Fig. 20 Drosophila melanogaster genome contains two putative homologues of the 102 H. virescens gene.
(A) Blast analysis identified two genes in Drosophila, CG2145 and CG3303. (B) Expression of CG2145
and CG3303 genes in Drosophila larval hemocytes, tested by RT-PCR. gDNA (positive control containing
genomic DNA), +RT (reverse transcribed RNA), -RT (negative control, containing all components of the

reverse transcriptase reaction except the enzyme).
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DISCUSSION



The destructive effects produced by insect pests on crops represent a strong limiting
factor to the increase of world food production. Effective strategies for pest management
other than the indiscriminate usage of insecticides are therefore needed to cope with food
demand, which is expected to rise more and more due to future population growth. In this
frame, control strategies used by insect’s natural enemies have attracted particular
interest.

Parasitic insects are potent control agents as they developed very efficient tools to
regulate the physiology of their hosts. Among these tools, polydnaviruses emerged as a
really striking “machinery” used by parasitic braconid and ichneumonid wasps to transfer
in their lepidopteran hosts a full set of key regulatory factors. Due to their pivotal role in
the pathological syndromes associated with parasitization, polydnaviruses have received
special attention in the last years. Therefore, along with functional analysis of
individually isolated genes, full genome sequencing projects have been carried out on
selected polydnavirus species (Espagne et al., 2004; Webb et al., 2006; Choi et al., 2009).
The information retrieved from these studies will advance our knowledge on the
molecular mechanisms underlying host-parasitoid interactions. In addition, it will allow
the identification of a number of genes potentially useful for the development of novel
bioinsecticides.

This PhD work focused on genome sequencing of the Toxoneuron nigriceps bracovirus.
Following full genome assembly and annotation, evolutionary relationships among the
members of two bracovirus gene families were studied. Finally, initial characterization of
a non-coding region of the 7TnBV genome identified a number of alternatively spliced,
non-coding transcripts, potentially involved in host immunosuppression.

The TnBV genome consists of 27 circles, varying in their size and abundance, with an
aggregate genome size of about 203 Kb. The number of circles is similar to that found in
other bracoviruses, i.e., CcBV, CpBV, Glyptapanteles indiensis bracovirus (GiBV) and
Glyptapanteles flavicoxis bracovirus (GfBV), while the total amount of the 7nBJV genome
sequence is reduced. In fact, CcBV, CpBV, GiBV and GfBV comprise 30, 27, 29 and 29
circles, respectively, with aggregate genome size of 568 Kb, 471 Kb, 517 Kb and 594 Kb
(Espagne et al., 2004; Webb et al., 2006; Desjardins et al., 2008; Choi et al., 2009). If we

include in the comparison also the MdBV genome, that consists of only 15 circles, with a
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total sequence of 187 Kb, it appears that TnBV circles have, in average, a smaller size
than all other bracoviruses whose genome was sequenced to date.

The coding density in TnBV is about 22%. This is slightly less than that of CcBV, CpBYV,
GiBV and GfBV, which was reported to be 26.9%, 32.3%, 33%, 32%, respectively, while
it is higher than that of MdBV which is 17% (Espagne et al., 2004; Webb et al., 2006;
Choi et al., 2009).

Forty two genes were identified in the 7nBV genome. This number is less than that
predicted in other bracovirus genomes: 156, 125, 197, and 193 genes in CcBV, CpBYV,
GiBV and GfBV, respectively. This difference might be in part explained by the smaller
size of the TnBV genome which is less than half compared to the other four species.
However, TnBV genes are also less than the 67 genes of MdBV, which has a slightly
smaller genome.

Eleven genes (24.2%) were predicted to have introns in 7nBV, less than in CcBV (69%),
CpBYV (40.8%), GiBV (58%) and GfBV (63%), but more than in MdB/V. (13.1%) (Webb et
al., 2006; Lapointe et al., 2007). Sixteen genes were included in the largest 7TnBV gene
family, coding for protein products that show high level similarity with protein tyrosine
phosphatases (PTPs). PTP genes have been reported from various Bracoviruses,
including CcBV, Cotesia glomerata bracovirus (CgBV), Cotesia vestalis bracovirus
(CvBY), GiBV, (GfBV), MdBV and CpBV (Kroemer and Webb, 2004; Provost et al., 2004;
Webb et al., 2006; Ibrahim et al., 2007; Lapointe et al., 2007; Shi et al., 2008a).
Interestingly, one PTP gene present in the 7nBJ} genome contains an intron, which is not
the case for all other bracovirus PTPs.

All the 16 TnBV-PTPs are classical non-receptor PTPs because, unlike receptor PTPs,
they lack a transmembrane domain and possess only a single phosphatase domain (Paul
and Lomborso, 2003).

PTPs have a catalytic domain of about 250 amino acids containing a highly conserved
11-residue sequence called the HC motif, (I/V)HCXAGXXR(S/T)G (Andersen et al.,
2001). In this motif, there is a cysteine residue that is critical for PTP activity (Guan and
Dixon, 1991, Barford et al., 1994, Bliska and Black, 1995). Two TnBV-PTPs lack this
cysteine residue in the catalytic site (Fig 13a). This is also true for 12 out of 27 CpBVPTP
and 3 out of the 14 PTPs characterized in the CpBV genome (Provost et al., 2004;
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Ibrahim et al., 2007). In C. congregata bracovirus, it was demonstrated that one PTP
family member lacking the critical cysteine residue did not show catalytic activity while
another member containing this key residue was fully functional (Provost et al., 2004).
Four PTP genes were organized in the 7TnBV genome in two pairs. The two genes located
in circle 32 (TnBVS32PTP1, TnBVS32PTP2) coded for PTP proteins which displayed
high level of similarity with a single Cotesia glomerata bracovirus PTP. The two TnBV
PTP genes located in circle 44 (TnBVS44PTP1, TnBVS44PTP2) coded for PTPs that
shared high level of similarity with a PTP from Cotesia plutellae bracovirus. (Table 2).
These findings support the hypothesis that each pair of PTP genes located on the same

circle originated as a consequence of a gene duplication event.

Four genes coding for ankyrin repeat containing proteins were predicted in the TnBV
genome, in comparison with 12 found in MdBV, 8 in CpBV, 5 in CcBV.. Ankyrin genes
have been also reported for other bracoviruses including CvBV, GiBV and GfBV (Espagne
et al., 2004; Kroemer and Webb, 2004; Kroemer and Webb, 2005; Webb et al., 2006;
Lapointe et al., 2007; Tian et al., 2007; Shi et al., 2008b). In addition, ankyrin genes were
predicted in ichnoviruses (Kroemer and Webb, 2005; Tian et al., 2007).

The smallest gene family found in the 7nBV genome includes 2 members coding for
putative UDP sugar transporters. Similar genes were found also in GiBV and GfBV
genomes, in number of 3 and 5, respectively (Desjardins et al., 2008). It can be
hypothesized that bracoviral UDP sugar transporters may affect the glycosilation profile
of host cells, by altering the transport balance of the UDP-sugars across the Golgi
membrane. Interestingly, the 7nBV genome also contains a gene coding for a UDP
glucose 6 phosphate dehydrogenase, an enzyme that is also involved in protein

glycosylation (see below).

Previous analysis of bracoviral genomes identified several genes that are present only in
one or few species. Sequence comparisons with the 7nBV genome extended these
observations, by clearly recognizing the absence of particular bracoviral genes, as well as
by identifying TnBV specific genes. TnBV lacks EP1 genes, found in Bracoviruses
associated with Cotesia plutellae (Chen et al., 2009) Cotesia kariyai, Cotesia congregata
and Glyptapanteles indiensis (Tanaka et al., 2002, 2003; Harwood et al., 1998; Desjardins
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et al.,, 2008). One member of this protein family was suggested to be involved in the
disruption of hemocyte activity in parasitized hosts, since it was highly expressed in
hemocytes at early times after parasitoid egg injection (Tanaka et al., 2002).

TnBV does not contain E94-related genes. E94 is a gene originally identified in
Autographa Californica nucleopoly-hedrosis virus as an apoptosis inducer (Freisen et al.,
1987; Clem et al., 1994). A gene similar to E94 was found in CpBV. It was proposed that
this gene might impair the immune system of Plutella xylostella larval hosts, by causing
apoptosis of host hemocytes (Ibrahim et al., 2005).

H4 histone-related genes were found in CpBV, CcBV and CgBV genomes. Functional
analysis performed on the CpBV gene suggested that it may regulate host gene expression
(Turner, 1991; Gad and Kim, 2009). H4-related genes were not found in the TnBV
genome.

The list of TnBV specific genes, not found in any other bracoviral genome, contains four
members. One codes for a putative aspartyl protease that is expressed abundantly in
several tissues of parasitized larvae, including fat body, haemocytes and prothoracic
glands (Falabella et al., 2003). The other 7nBV-specific genes code for a putative DNA
helicase, a protein with MFS secondary transporter domain, and a UDP glucose 6
phosphate dehydrogenase. The functional analyses of the last gene have recently started
in our lab. UDP-glucose dehydrogenases play multiple roles in different biological
systems. These enzymes catalyze the oxidation of UDP-glucose, to generate UDP-
glucuronic acid, which, in turn, originates important polymers. For example, in plants, a
significant amount of matrix polysaccharides may derive from monosaccharides donated
from UDP-glucuronic acid derivatives (Zablakis et al., 1995). In animals, the synthesis of
glycoproteins and proteoglycans is dependent from pathways originating from UDP-
glucuronic acid (Roden, 1980). Moreover, UDP-glucose dehydrogenase is involved in the
production of an antiphagocytic capsule, which contains UDP-glucuronic acid derivatives
(Griffith et al., 2004). Therefore, the expression of a viral encoded UDP-glucose
dehydrogenase, combined with the expression of the TnBV genes encoding UDP-sugar
transporters (see above), may have a significant impact on carbohydrate metabolism. A
likely consequence would be the alteration of the cell surface characteristics, which are

important in cell-cell interactions, including those involved in capsule formation during
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the immune response against foreign intruders.

Several hypothetical proteins with BEN and PHAO domains were found in 7nBV as well
as other bracoviruses. The BEN domain is a 90-100 amino acid long domain that derives
its name from the three proteins in which it was originally found: human BANP, vaccinia
virus ESR and vertebrate NACI. Its function is currently unknown, but it was predicted
to mediate protein—-DNA and protein—protein interactions during chromatin organization
and transcription (Abhiman et al., 2008).

There is considerable diversity in the number of copies of the BEN domain coded by
different polydnaviruses. For instance, the Cotesia congregata bracovirus has 11 BEN
domain containing proteins, while Microplitis demolitor bracovirus codes a single BEN
domain. In this respect, TnBV genome displays a somehow intermediate situation since it
contains 7 sequences coding for BEN domains. The presence of genes coding for
hypothetical proteins with BEN domains in the bracovirus particles suggests a possible
role in transcriptional regulation of viral and/or host genes. It might be also possible that
these viral proteins are used to modify host cell functions by mimicking molecular
interactions of endogenous proteins containing BEN domains. The only report
concerning the impact of BEN domain proteins on host physiology indicated a role for a

CpBV member of this class of proteins in host immunosuppression (Park and Kim, 2010).
The PHAO domain, which is also present in several 7nBJ hypothetical proteins, has not
been characterized and its biological functions are still fully unknown.

On the basis of detailed phylogenetic studies, it was shown that the bracovirus associated
wasps form a monophyletic group known as microgastroid complex and it was
hypothesized that a single integration event of a viral genome, as a provirus, occurred in
the microgastroid lineage (Whitfield, 2002, Murphy et al., 2008). This hypothesis was
corroborated by the finding that bracovirus-associated wasp species share genes coding
for structural components of polydnavirus particles and that these genes are related to
genes of nudivirus, a sister group of baculovirus. These genes are not integrated in the
packaged bracoviral genomes, that do not contain any nudivirus-related gene, but display
structural and functional characteristics that are typical of eukaryotic genomes. It has
been therefore suggested that, shortly after initial integration of the nudivirus ancestor,

viral DNA might have been replaced by wasp DNA in the viral particles and that most
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genes promoting parasitism were acquired later in bracovirus-associated wasps (Bezier et
al., 2009).

Sequence aligment of 88 PTPs from four BV genomes (CpBV, CcBV, TnBV, and MdBYV)
indicated that 9 are very divergent and were therefore discarded from further analyses.
The remaining 79 PTPs were used for phylogenetic studies aimed at establishing their
evolutionary relationships. These studies indicated a clear clustering pattern of PTP
proteins from viruses of the subfamily Microgastrinae (CpBV, CcBV, and MdBYV). TnBV
PTPs, on the other hand, mostly clustered together, but few of them were included in a
clade that contained also members from the other bracovirus species, suggesting that they
might have all derived from a common ancestral gene. This hypothesis would imply that
gene duplication events, which occurred before and/or after the divergence of the
Microgastrinae from the Cardiochiilinae, as well as during the evolution of the two
subfamilies, generated all members of the PTP clade shared by the four bracovirus
species. Unlike PTPs, bracoviral ANK proteins did not indicate a clear evolutionary
relationship. The non-coding portion of the 7TnBV genome, as well as other polydnaviral
genomes, is unusually high when compared to typical viral genomes, while it is similar to
that found in insect genomes. In Drosophila melanogaster, for example, the total amount
of non-coding sequences is about 80% (Halligan and Keightley, 2006). Unlike
polydnaviral protein coding regions, which are actively studied at molecular and
functional level, up to now the huge amount of polydnaviral non-coding sequences did
not receive much attention. The only report dealing with the role of non coding RNA
species in host-parasitoid interactions concerned the identification of 27 miRNAs that
were up regulated in Lymantria dispar parasitized by Glyptapanteles flavicoxis in
response to parasitization (Gundersen-Rindal and Pedroni, 2010). However, these non
coding RNA species were produced by the host genome and the study did not give any
hint about the possible presence, in the small RNA population isolated from parasitized
individuals, of non coding RNAs deriving from the GfBV bracovirus.

Therefore, the TnBV non coding RNA species described in this PhD thesis work are the
first identified in a polydnavirus. These ncRNA molecules were expressed in several
tissues, including haemocytes, fat body, gut and malpighian tubules. Interestingly, they all

derived from a single locus located in the 7nBV genomic circle 93. The definition of their
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full structure and number is still in progress, but the identification of at least three
different splicing patterns anticipate a complex picture consisting of a network of
partially overlapping transcripts. It is at the moment unclear whether this complexity has
a functional meaning. It should be anyway noticed that the different non coding RNA
isoforms seem to be differentially regulated during parasitization, at least in hemocytes.
The two non-coding cDNAs, isolated from a haemocyte cDNA library, share a common
sequence that is complementary to the 5S'UTR of a host gene. This gene codes for a
protein product that is highly conserved throughout evolution. In particular, it displays
85% identity to a protein present in the venom of the bristles of Lonomia obliqua
(Lepidoptera, Saturnidae) larvae, which is a member of a novel protein class, the
“XendoU family” (Snjider et al., 2003; Renzi et al., 2006). The members of this protein
family were thought to be serine protease-like enzymes, based on a study on Human
Placental Protein 11 (PP11) (Grundmann et al., 1990), which has been recently
reconsidered, assigning to PP11 RNA binding and hydrolytic activities (Laneve et al.,
2008).

The sequence complementarity between the identified 7nBV ncRNA species and the
5’UTR of the 102 host gene suggests a possible role of the ncRNAs in the silencing of
this gene.

Antisense transcript pairs have been described in different organisms (Werner et al.,
2005). They can be transcribed from opposite strands at the same genomic locus (cis-
sense/antisense pair) and thus potentially lead to overlapping, perfectly matching RNA-
RNA hybrids, or can derive from different genomic loci and in this case may have
imperfect sequence complementarity (trans-sense/antisense pair). While cis-antisense
transcripts have been extensively studied both computationally and experimentally,
studies of trans-antisense RNAs have mainly focused on small RNAs, which play
important regulatory roles (Korneev et al., 1999). There is evidence suggesting that long
trans-antisense RNAs may also perform key regulatory functions. In eukaryotes, to date,
the activity of long trans-antisense has been experimentally characterized in only three
cases. Translation of the nitric oxide synthase (NOS) protein in the central nervous
system of the snail Lymnaea stagnalis was prevented by the an antisense transcript

produced by a NOS pseudo gene that formed a stable hybrid in vivo with NOS mRNA
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(Korneev et al., 1999). Variant 6 of the meiotic recombination gene Msh4 contains
antisense RNA for the endoplasmic reticulum chaperon gene Hspa5. This variant forms a
double stranded RNA structure with Hspa5, possibly inducing Hspa5 mRNA degradation
(Hirano and Noda, 2004). MBP antisense RNA produced by gene duplication in the mld
mouse mutant formed a RNA duplex with the MBP gene transcript, resulting in MBP
protein decrease, either by reduced nuclear export or degradation of the RNA duplex
(Okano et al., 1991).

Real time PCR relative quantification experiments demonstrated that the 102 gene is
activated in haemocytes by immune challenge, supporting the hypothesis that this gene is
involved in immune response. Interestingly, 102 transcript level strongly increased not
only after chromatographic bead injection, but also after parasitoid egg injection. Since
two types of stimuli that have a very different nature induced a similar effect on the 102
gene, the molecular pathways leading to this effect might be rather unspecific or might be
simply triggered by injection.

It should be stressed that, in the haemocytes of parasitized larvae, the amount of the 102
transcripts reached its maximal level at a time-point when also the 7nBV ncRNA species
that are complementary to their S’UTR were actively transcribed in the same cell type.
Based on this finding, it is very unlikely that these 7nB} ncRNAs exert a negative control
on the stability of the 102 transcripts. Therefore, if these 7nBV ncRNAs play any
regulatory role on the 102 transcripts, this must occur at the translation level. In this
respect, their mechanism of action would be similar to that reported above for the
NOS/anti-NOS transcript pair in the nervous system of Lymnaea stagnalis.

The widespread conservation of the 102 protein sequence all along the evolutionary tree,
makes the study of this protein particularly interestingly. The finding that a putative
Drosophila melanogaster homologue is highly expressed in larval hemocytes raises the
possibility of a conserved function, at least in insects. The investigation of this issue in
this model organism can benefit from the huge amount of molecular and genetic tools it
can offer, the availability of the full genome sequence and the possibility to use
transgenesis for functional analyses.

In conclusion, this study identified the putative genes present in 7nBV genome and

provided preliminary support to the hypothesis that also its non-coding regions may have
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important functional roles.

As already stated in the introduction, polydnaviral genes are of potential interest for the
development of safe bioinsecticides useful for crop protection against insect pests.
Genetically modified plants expressing immunosuppressive genes of viral origin, making
pests more susceptible to other natural pathogens, might be produced, or the genomes of
insect pathogens like baculoviruses and Bacillus thurinogenesis might be modified by the
introduction of polydnaviral genes, to increase their ability to induce mortality in
phytophagous insects. This scenario raises a question about the criteria to be used in the
choice of polydnavirus genes suitable for either control strategy. Since an ideal
bioinsecticide should be harmful only to pest target species and should not affect other
living organisms, polydnavirus hypothetical proteins might turn to be good candidates.
These proteins might be in fact rather specific; as they were not described in any other
biological organism. Non-coding RNAs from polydnavirus are also a very promising
tool. In this case, specificity would be guaranteed by the specificity of base pairing with

the target transcript.
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