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“Non è la più forte delle specie che sopravvive, né la più 
intelligente, ma quella più reattiva ai cambiamenti”.

Charles Darwin
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SUMMARY
The use of gene expression microarrays is particularly important in cancer. This is 

because the accumulation and combinatorial effects of abnormalities that drive the 

initiation and malignant progression of cancer result from the altered sequence or 

expression  level  of  cancer-causing  genes.  Biological  research  on HCC mainly 

concentrates on early detection and diagnosis, elucidation of hepatocarcinogenesis 

by varieties of etiological factors, and prognosis prediction. Investigations have 

been conducted at different molecular levels including DNA level, RNA level and 

protein  level,  with  regard  to  chromosomal  imbalance  and  genetic  instability, 

epigenetic  alteration,  gene  expression,  and  gene  regulation  and  translation. 

Numbers of omics-based methods have been developed and applied. Hepatitis C 

virus  (HCV)  infection  is  a  major  cause  of  hepatocellular  carcinoma  (HCC) 

worldwide.  The  precise  molecular  mechanism  underlying  the  progression  of 

chronic  hepatitis  viral  infections  to  HCC is  currently  unknown.  The direct  or 

indirect HCV role in HCC pathogenesis is still a controversial issue and additional 

efforts  need to be made aimed to specifically dissect the relationship  between 

stages of HCV chronic infection and progression to HCC. The present study has 

been focused on investigating the genes/protein and pathways involved in viral 

carcinogenesis and progression to HCC in HCV-chronically infected patients, to 

elucidate the molecular mechanisms underlying cancer progression and to identify 

possible marker for diagnostic purposes trough DNA microarray.

In a  first  approach a pair  of liver  biopsies  from fourteen HCV-positives  HCC 

patients  and  seven  HCV-negative  non-liver  cancer  control  patients  (during 

laparoscopic cholecystectomy) were obtained, to investigate genes and pathways 

involved  in  viral  carcinogenesis  and  progression  to  HCC in  HCV-chronically 

infected patients. In a second approach to verify the consistency of  the previous 

data obtained in a very limited sample and to identify a set of genes sufficient for 

the molecular  signature of liver  diseases,  a  pair  of  liver  biopsies from twenty 

HCV-positive  HCC patients,  fifteen  metastatic  patients  and  six  HCV-negative 

non-liver  cancer  control  patients  were  collected. Gene  expression  profiling  of 

liver  tissues  has  been  performed  using  a  high-density  microarray  containing 

36'000 oligos, representing 90% of the human genes.
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Transcriptional profiles identified in liver biopsies from HCC nodules and paired 

non-adjacent non HCC liver tissue of the same HCV-positive patients and from 

metastatic patients were compared to those from HCV-negative controls by the 

Cluster  program.  The  pathway analysis  was  performed  using  the  BRB-Array- 

Tools based on the "Ingenuity System Database". Significance threshold of t-test 

was set at 0.001.

The  top  canonical  pathways  in  HCV-related  HCC  samples  include  protein 

ubiquitination  (p=1.67E-05),  antigen  presentation  (p=9.52E-04)  and  Aryl 

Hydrocarbon  receptor  signaling  pathway  (p=1.37E-03).  The  top  canonical 

pathways  in  HCV-related  non  HCC  samples  include  Interferon  Signaling 

Genes(p=1.12E-05), SAPK/JNK Signaling (p=1.07E-03) and NF-kB Activation 

by  viruses  pathway  (p=1.19E-03).  The  top  canonical  pathways  in  metastatic 

samples  include  Integrin  Signaling  (p=7.75E-04)  and  Actin  Cytoskeleton 

Signaling Pathway (p=4.43E-04)

In addition  a time course analysis was performed to identify markers of tumoral 

progression  between  normal  liver  samples,  HCV-related  non  HCC and HCV-

related HCC liver samples. Several molecular markers for early HCC diagnosis 

have  been  recognized. In  this  study,  informative  data  on  the  global  gene 

expression  pattern  in  HCV-related  HCC  as  well  as  HCV-related  non-HCC 

counterpart  liver  tissues  have  been  obtained  compared  to  normal  controls.  A 

traditional HCC diagnosis has relied on the use of a single biomarker approach 

(e.g., AFP). The use of multiple markers in combination to improve the accuracy 

of identifying HCC cases has been proposed.

All  these data altogether  suggested  developing a specific  gene-chip along with 

genes showing the highest fold up-regulation in common in two group of analysed 

samples  representing  the  different  stage  of  disease.  The  identification  of  the 

lesions and the evaluation of their  neoplastic progression will  be based on the 

gene pattern expression on the gene-chip.
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INTRODUCTION

Omics and Cancer
Systems biology is an emergent field that aims at system-level understanding of 

biological systems. With the progress of genome sequence project and range of 

other molecular biology project that accumulate in-depth knowledge of molecular 

nature  of  biological  system,  we  are  now  at  the  stage  to  seriously  look  into 

possibility  of  system-level  understanding  solidly  grounded  on  molecular-level 

understanding.  Systems  biology  focuses  on  systems  that  are  composed  of 

molecular components. 

There are numbers of exciting and profound issues that are actively investigated, 

such as robustness of biological systems, network structures and dynamics, and 

applications to drug discovery. 

Cancer arises when cells escape normal cell cycle and differentiations, being able 

to proliferate rapidly, to invade surrounding tissues, and to metastasize to distant 

sites. The development of cancer is proposed to be a multi-step process in which 

several genes and other environmental and hormonal factors play a role (Rui X.et  

al 2004).

The use of gene expression microarrays is particularly important in cancer. This is 

because the accumulation and combinatorial effects of abnormalities that drive the 

initiation and malignant progression of cancer result from the altered sequence or 

expression level of cancer-causing genes. These genetic abnormalities, which may 

be inherited or acquired, lead to the ‘big six’ hallmark traits of cancer, namely: (a) 

self-sufficiency  in  proliferative  growth  signals;  (b)  insensitivity  to  growth 

inhibitory signals; (c) evasion of apoptosis; (d) acquisition of limitless replicative 

potential;  (e)  induction  of  angiogenesis;  and  (f)  induction  of  invasion  and 

metastasis (Figure 1) (Brent R 2000, Hanahan D et al 2000).
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Figure 1 Acquired Capabilities of Cancer

The use of microarrays can be extremely valuable both in understanding the basic 

biology  and  in  the  treatment  of  cancer.  Important  applications  include: 

development of a more global understanding of the gene expression changes that 

contribute  to  malignant  progression;  discovery  of  diagnostic  and  prognostic 

indicators  and  biomarkers  of  response;  identification  and  validation  of  new 

molecular targets; provision of an improved understanding of the molecular mode 

of action during lead identification and optimization; prediction of potential side-

effects during preclinical development and toxicology studies; confirmation of the 

molecular  mode  of  action  during  hypothesis-testing  early  clinical  trials; 

identification of genes involved in conferring drug sensitivity and resistance; and 

prediction  of patients  most  likely to benefit  from the drug and use in  general 

pharmacogenomic studies.

Gene expression can be assessed by measuring the quantity of the final product, 

i.e. the protein, or its intermediate, the mRNA template. Changes in the molecular 
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phenotype of the cell should be accurately reflected by its transcriptional profile, 

and the  evaluation  of  gene expression by measuring  mRNA should  provide  a 

molecular signature of the state of the activity of the cell and by extension the 

activity of proteins that regulate that state. However, although analysis of global 

mRNA  expression  (the  transcriptome)  undoubtedly  generates  much  valuable 

information,  the ideal scenario would be one where this is measured alongside 

global protein expression (the proteome) within the same experiment (Lockhart 

DJ et al 2000).

Biological research on HCC mainly concentrates on early detection and diagnosis, 

elucidation  of  hepatocarcinogenesis  by  varieties  of  etiological  factors,  and 

prognosis prediction. Investigations have been conducted at different molecular 

levels  including  DNA  level,  RNA  level  and  protein  level,  with  regard  to 

chromosomal  imbalance  and  genetic  instability,  epigenetic  alteration,  gene 

expression, and gene regulation and translation (Lau SH et al 2005, Midorikawa 

Y et l 2007, Jiang J et al 2006, Herath NI et al 2008). Numbers of omics-based 

methods have been developed and applied.  Large  scale  profiling technologies, 

including  comparative  genomic  hybridization  (CGH),  array-based  CGH, 

microarray  and  2D electrophoresis  (2DE),  mass  spectrometry  (MS)  and  other 

proteomic  analysis  methods,  have  been  used  to  detect  change  of  different 

molecular levels (Feitelson MA et al 2002, Thorgeirsson SS et al 2006, Sun S et  

al 2007), and computational methods began to play important roles (He X et al 

2006, Poon TC et al 2006, Oh JH et al 2008, Xu XQ et al 2004, Zhang X et al 

2006).  A variety  of  HCC-associated  molecular  alterations  have  been detected. 

However, because of the lack of good diagnostic markers and treatment strategies 

and because of clinical heterogeneity, a coherent understanding of the mechanism 

of HCC development is still  limited (Blum HE  et al 2005). The assessment of 

complex multigenic molecular pathways in HCC remains a difficult  challenge. 

Integrating  observations  from multiple  aspects  is  an  essential  step  toward  the 

systematic understanding of the disease.
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The Hepatitis C virus
Hepatitis C virus is a member of the Flaviviridae family of enveloped, positive-

strand RNA viruses and is the only member of the genus Hepacivirus. The HCV 

genome consists of an RNA molecule, of approximately 9.6 kb, that contains a 

large open-reading frame flanked by structured 50 and 30  no-translated regions 

(NTRs). Viral proteins are translated as a polyprotein precursor from an internal 

ribosome entry site (IRES) located in the 50 NTR. The polyprotein undergoes a 

complex series of co- and posttranslational cleavage events catalysed by both host 

and viral proteinases to yield the individual HCV proteins. The structural proteins 

include  the  core protein and the envelope  glycoproteins  E1 and E2.  The non-

structural  proteins include the P7 polypeptide,  the NS2-3 autoprotease and the 

NS3 serine protease, an RNA helicase located in the C-terminal region of NS3, 

the  NS4A  polypeptide,  the  NS4B  and  NS5A  proteins,  and  the  NS5B  RNA-

dependent RNA polymerase (Tellinghuisen and Rice, 2002) (Figure 2)

Figure 2 Hepatitis C virus (HCV) proteins

The course of disease varies widely among infected persons. HCV infection is 

hardly  ever  diagnosed  during  the  acute  phase.  Progression  to  chronic  disease 

occurs in about 70-80% of infected persons, whereas 20-30% show spontaneous 

recovery.  The  early  stage  of  chronic  infection  is  typically  characterized  by  a 

prolonged asymptomatic period. Spontaneous clearance of viremia, once chronic 

infection  has  been  established,  is  rare.  Most  chronic  infections  will  lead  to 
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hepatitis  and to some degree of fibrosis.  10-20% of those infected chronically 

develop  liver  cirrhosis.  At  this  stage  of  the  disease  the  risk  of  developing 

hepatocellular carcinoma (HCC) is 1-4% per year (Tsukuma et al, 1999)

Pathogenesis of Human hepatocellular carcinoma
Hepatocellular carcinoma (HCC) ranks among the most common cancers in many 

countries (Bosch et al., 1999). A recent estimate indicates that HCC represents the 

fifth  most  common  cancer  of  males,  and  the  eighth  most  common  cancer  in 

female candidates, with a total of 560 000 new cases each year, 83% of which 

occurring  in  developing  countries,  and  more  than  one-half  in  China  alone. 

Moreover, because of its very poor prognosis, HCC represents the third leading 

cause of cancer death worldwide. Chronic hepatitis B and C and associated liver 

cirrhosis represent major risk factors for HCC development, being implicated in 

more than 70% of HCC cases worldwide. A large analysis of HCC in Europe, 

based on both serology and molecular tests, has demonstrated the major impact of 

hepatitis B virus (HBV) and hepatitis C virus (HCV). Only 29% of HCC cases 

were found negative for these viruses. The hepatitis B surface antigen (HBsAg) 

and  anti-HCV  antibodies  were  detected  in  19  and  40.1%  of  the  patients, 

respectively,  with HCV 1b being the most  prevalent  genotype  (Brechot  et  al., 

1998)  Additional  etiological  factors  that  often  represent  co-factors  of  an 

underlying HBV- or HCVrelated chronic liver disease include toxins and drugs 

(e.g., alcohol, aflatoxins, microcystin, anabolic steroids), metabolic liver diseases 

(e.g., hereditary haemochromatosis, α1-antitrypsin deficiency), steatosis (Ohata et  

al.,  2003)  and non-alcoholic  fatty  liver  diseases  (Brunt  et  al.,  2004),  diabetes 

(Davila et al., 2005). In general, HCCs are more frequent in men than in women 

and the incidence increases with age.  The prevalence of HCC in Italy,  and in 

Southern Italy in particular,  is  significantly higher  compared to  other  Western 

countries. Hepatitis virus infection, long-term alcohol and tobacco consumption 

account for 87% of HCC cases in Italian population and, among these, 61% of 

HCC are attributable to HCV. In particular, a recent seroprevalence surveillance 

study conducted in  the general  population  of Southern Italy Campania Region 

reported 7.5% positivity for HCV infection which peaked at 23.2% positivity in 

the 65 years or older age group (Fusco M et al 2008).
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As for most types of cancer, hepatocarcinogenesis is a multistep process involving 

different genetic alterations that ultimately lead to malignant transformation of the 

hepatocyte.  Malignant  transformation  of  hepatocytes  is  believed  to  occur, 

regardless  of  the  etiological  agent,  through  a  pathway  of  increased  liver  cell 

turnover,  induced  by  chronic  liver  injury  and  regeneration,  in  a  context  of 

inflammation and oxidative DNA damage. This microenvironment facilitates the 

occurrence of genetic and epigenetic alterations. Chronic viral hepatitis, alcohol, 

metabolic liver diseases such as hemochromatosis and α1-antitrypsin deficiency, 

as well as non-alcoholic fatty liver disease may act predominantly through this 

pathway  of  chronic  liver  injury,  regeneration  and  cirrhosis.  Accordingly,  the 

major clinical risk factor for HCC development is liver cirrhosis and 70–90% of 

all  HCCs develop in  a  cirrhotic  liver.  The risk of  HCC in patients  with liver 

cirrhosis depends on the activity, duration and the etiology of the underlying liver 

disease. The co-existence of multiple etiologies, for example, HCV infection with 

overt or occult HBV, aflatoxin B1(AFB1) and HBV infection, HCV infection and 

alcohol or HCV infection and liver steatosis, increases the relative risk of HCC 

development.
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The Microarray
DNA  microarrays  are  created  by  robotic  machines  that  arrange  minuscule 

amounts  of  hundreds  or  thousands of  gene  sequences  on a  single  microscope 

slide. There is a database of over 40,000 gene sequences that its possible to use 

for this  purpose.  When a gene is  activated,  cellular  machinery begins to  copy 

certain segments of that gene. The resulting product is known as messenger RNA 

(mRNA), which is the body's template for creating proteins. The mRNA produced 

by the cell is complementary, and therefore will bind to the original portion of the 

DNA strand from which it was copied. To determine which genes are turned on 

and  which  are  turned  off  in  a  given  cell,  a  researcher  must  first  collect  the 

messenger  RNA molecules  present in that  cell.  Then each mRNA molecule is 

labelled  by  using  a  reverse  transcriptase  enzyme  (RT)  that  generates  a 

complementary cDNA to the mRNA. During that process fluorescent nucleotides 

are attached to the cDNA. The tumour and the normal samples are labelled with 

different  fluorescent  dyes.  Next,  the  labelled  cDNAs  is  placed  onto  a  DNA 

microarray slide. The labelled cDNAs that represent mRNAs in the cell will then 

hybridize  or  bind  to  their  synthetic  complementary  DNAs  attached  on  the 

microarray slide, leaving its fluorescent tag. A special scanner is used to measure 

the fluorescent intensity for each spot/areas on the microarray slide. If a particular 

gene is very active, it produces many molecules of messenger RNA, thus, more 

labelled  cDNAs,  which  hybridize  to  the  DNA  on  the  microarray  slide  and 

generate  a  very  bright  fluorescent  area.  Genes  that  are  somewhat  less  active 

produce  fewer  mRNAs,  thus,  less  labelled  cDNAs,  which  results  in  dimmer 

fluorescent spots. If there is no fluorescence, none of the messenger molecules 

have hybridized to the DNA, indicating that the gene is inactive. Frequently use 

this technique is used to examine the activity of various genes at different times. 

When co-hybridizing Tumour samples (Red Dye) and Normal sample (Green dye) 

together,  they  will  compete  for  the  synthetic  complementary  DNAs  on  the 

microarray slide. As a result, if the spot is red, this means that specific gene is 

more expressed in tumour than in normal (up-regulated in cancer). If a spot is 

green,  that  means  that  gene  is  more  expressed  in  the  Normal  tissue  (down-

regulated in cancer). If a spot is yellow that means that specific gene is equally 

12



expressed  in  normal  and  tumour  (Figure3).  The  log  ratio  between  the  two 

intensities of each dye is used as the gene expression data gene expression = log 2  

Int(Cy5)/ Int(Cy3) (Lashkari et al. 1997, Derisi et al. 1997, Eisen et al. 1998).

Microarray  image  processing  uses  differential  excitation  and  emission 

wavelengths  of the two fluors to obtain a scan of the array for each emission 

wavelength,  typically as two 16-bit  grey scale TIFF images.  These images are 

then analysed to identify the spots, calculate their associated signal intensities, and 

assess  local  background noise.  Most  image acquisition  software packages  also 

contain basic filtering tools to flag spots such as extremely low intensity spots, 

ghosts spots (where background is higher than spot intensity), or damaged spots 

(e.g.,  dust  artifacts).  These  results  allow  an  initial  ratio  of  the  evaluated 

channel/reference channel intensity to be calculated for every spot on the chip. 

The products of the image acquisition are the TIFF image pairing and a quantified 

data file that has not yet been normalized. 

Figure 3 Microarray scheme
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Microarray applied to Cancer Biology
Cancer is caused by the accumulation of genetic and epigenetic changes resulting 

from  the  altered  sequence  or  expression  of  cancer-related  genes,  such  as 

oncogenes or  tumour suppressor genes, as well as genes involved in cell cycle 

control,  apoptosis,  adhesion,  DNA  repair,  and  angiogenesis.  Because  gene 

expression profiles provide a snapshot of cell functions and processes at the time 

of  sample  preparation,  comprehensive  combinatorial  analysis  of  the  gene 

expression patterns of thousands of genes in tumour cells and comparison to the 

expression profile obtained with healthy cells should provide insights concerning 

consistent  changes in gene expression that  are  associated with tumour cellular 

dysfunction and any concomitant regulatory pathways. 

The  new  bioinformatics  tools  and  development  of  genome-wide  microarray 

analyses  both  in  human,  mice  and  other  model  organisms  have  opened  new 

windows in  cancer  research.  The field  of  gene  expression  studies  has  greatly 

advanced the identification of novel tumour susceptibility genes, classification of 

tumours,  prediction  of  outcome,  treatment  response,  discovery  of  potential 

markers  and  targets  for  diagnosis  of  this  malignant  disease.  Microarray 

technology and the statistical  tools  developed for it  are  an excellent  option to 

study mRNA  expression  differences  of  normal  and  tumour  tissues  or  various 

tumours and model organisms on a global scale. Class discovery methods such as 

hierarchical or K-means clustering or self-organizing maps (MacQueen J. 1967, 

Kohonen T. 2001) provide a global overview of the cell transcript levels and can 

be very useful in identifying novel markers for cancer or to identify important 

genes or pathways for tumorigenesis. Class prediction methods, on the other hand, 

provide  detailed  information  of  specific  genetic  signatures  in  various  tumour 

subtypes,  which  may  previously  have  been  very  difficult  to  characterize  by 

conventional methods.  Additionally,  expression array technology can provide a 

tool  to  diagnose  clinical  cases  which  may  have  been  difficult  to  identify 

otherwise.  DNA  microarray  technology  has  expanded  rapidly  and  has  been 

applied to study several different types of human cancer, such as breast, (Perou 

CM et al 1999,Sorlie et al 2001, van't Veer LJ et al 2002, Hedenfalk et al 2001, 

Cunliffe HE et al 2003) prostate, (Bubendorf L et al 1999, Dhanasekaran SM et  
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al , 2001, 412, Singh D et 2002) colorectal (Alon U et al 1999) and ovarian cancer 

(Ono K et al 2000) as well as hematological malignancies (Golub TR et al 1999, 

Alizadeh A, et al 1999, Alizadeh AA et al 2000, Golub TR. et al 2001).

Yet another study of importance is the one by van’t Veer et al. (2002), where they 

were able to classify lymph node negative breast tumours into those with poor or 

good prognosis using a signature of 70 genes, with power that outstripped the 

available  clinical  prognostic  markers.  The  impact  of  classification  can be 

clinically very significant, as in prostate cancer (PC) where the surgical removal 

and risk that the surgery poses to these often older men has to be assessed. With 

molecular signatures being able to determine the possible outcome of the cancer 

these decisions can be greatly facilitated.

Data Analysis
Microarrays can be used to investigate problems in cell biology in various ways, 

with a range of differential approaches. At the other end, the main interest lies in 

finding  a  single  change  in  gene  expression  that  might  be  a  key  to  a  given 

alteration in phenotype. At the other extreme, the aim is to look at overall patterns 

of gene expression in order to understand the architecture of genetic regulatory 

networks.  The  basic  idea  behind  the  statistical  analysis  is  to  characterize  the 

structure of the experimental data and extract statistically significant patterns from 

it.  Because  of  the  complexity  of  the  problems  and  datasets  generated  by 

microarray experiments,  the use of data analysis  software is  essential.  A large 

number of commercial and non-commercial software tools for statistical analysis 

and visualization of gene expression data have been developed, which all offer 

their own solutions to the problem at hand. GeneSpring (Agilent Technologies), 

Cluster and Treeview (Eisen MB et al 1998, Tamayo et al 1999, Golub TR et al 

1999), SAM (Tusher VG et al, 2001), and dCHIP (Wong WH  et al 2001), are 

examples of these software tools, to name a few. Methods utilized in the data 

analysis  vary  considerably.  The  analysis  of  microarray  data  is  explorative  by 

nature,  and  the  components  of  the  analysis  depend  upon  the  purpose  of  the 

experiment.  Tools  that  are  generally  used  include  filters  to  remove  redundant 

genes from the experiment, statistical tests to find differentially expressed genes 

and classification methods to discover pathway level expression patterns and find 
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distinguished expression profile signatures. The expression of a large number of 

genes that are irrelevant or unchanged add a high level of noise and uncertainty to 

the data, which makes the use of classical statistical tests problematic. Reducing 

the number of genes in the analyses benefits the power of statistical testing. Gene 

filtering and differentiation approaches can efficiently reduce the dimensionality 

of the data and help remove redundant genes. This helps to highlight the genes 

that are truly differential for the investigated trait. Typical tests used in microarray 

analysis  are  parametric  tests  such  as  Student’s  t-test  or  analysis  of  variance 

(ANOVA),  which  assume  normal  distribution  of  the  data  and try  to  estimate 

whether the variance in the data comes from the normal distribution or not. In 

addition, microarray experiments typically have large number of observations but 

only few samples that leads to testing of multiple  hypotheses.  As some of the 

observed  differences  are  expected  to  happen  by  chance  alone,  correction  for 

multiple  testing  is  desired.  These  adjustments  to  the  statistical  tests  include 

corrections  such as the Bonferroni method and the false  discovery rate  (FDR) 

suggested by Benjamini and Hochberg (Benjamini et al 1995). Permutation-based 

models are another approach to validate the results. Other methods for analysis 

include  data  transformations  such as  principal  component  analysis  (PCA) and 

singular value decomposition (SVD), which reduce the dimensionality of the data 

and aim to find the major components explaining the variance in the data. Fold 

change  was  among  the  first  methods  used  to  evaluate  whether  genes  were 

differentially expressed, but is nowadays considered an inadequate test statistic 

when used alone, as it does not account for the variance and offers no associated 

level of confidence. The choice of an appropriate correction can be challenging, as 

many of the popular correction methods, such as the Bonferroni method, have not 

been  designed  for  microarray  data,  where  there  are  few  cases  but  many 

observations per sample. This may lead to very stringent correction and loss of 

data,  with no false  positive findings,  but  also very few true positive findings. 

Therefore, permutations and FDR based methods with adjustable threshold levels 

have gained popularity in validation of microarray analyses.

Classification is a widely used analysis  method for gene expression data,  used 

either to discover new categories within a dataset or to assign cases to a given 
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category,  and  is  often  referred  to  as  clustering.  Two  principal  categories  of 

clustering exist:  the unsupervised and supervised methods.  In the unsupervised 

clustering (or class discovery), objects such as genes or samples are grouped into 

classes based on some sort of similarity metric that is computed for one or more 

variables. Typically, genes are grouped into classes on the basis of the similarity 

in  their  expression  profiles  across  cases,  tissues  or  conditions.  Unsupervised 

clustering can further be split to hierarchical clustering methods, which produce a 

tree diagram (dendrogram) and non-hierarchical clustering methods such as self-

organizing  maps  (SOM)  or  K-means  clustering,  (MacQueen  J  et  al 1967, 

Kohonen T 2001) which typically divide the cases into a predetermined number of 

groups  in  a  manner  that  maximizes  a  specific  function.  In  the  supervised 

clustering  (or  class  prediction)  methods,  algorithms  are  developed  to  assign 

objects  to predetermined categories.  The supervised methods generally involve 

the use of a training data set and an independent validation data set, and aim to 

obtain a function or rule that uses expression data to predict whether a case is of 

one type or another.

Biological interpretation of transcriptomes from human liver tissues containing 

multiple  cell  types,  each type  with its  own expression program, is  notoriously 

difficult. With gene expression data from human liver biopsies as input, was used 

IPA  to  confidently  reconstruct  and  integrate  cellular  regulatory  networks  and 

canonical  pathways.  Ingenuity Pathways  Analysis  (IPA) is  a  software/database 

search tool for finding function and pathway for specific biological states. It is 

web-delivered application makes use of the Ingenuity Pathways Knowledge Base, 

the curated database consisting of millions of individually modelled relationships 

between proteins, genes, complexes, cells, tissues, drugs, and diseases. It currently 

has data for human, rat, and mouse.
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Aim of the PhD-thesis Project
The precise molecular mechanism underlying the progression of chronic hepatitis 

viral infections to HCC is currently unknown. The direct or indirect HCV role in 

HCC pathogenesis is still a controversial issue and additional efforts need to be 

made  aimed  to  specifically  dissect  the  relationship  between  stages  of  HCV 

chronic infection and progression to HCC

The  present  study  has  been  focused  on  investigating  the  genes/protein  and 

pathways  involved  in  viral  carcinogenesis  and  progression  to  HCC  in  HCV-

chronically infected patients, to elucidate the molecular mechanisms underlying 

cancer progression and to identify possible marker for diagnostic purposes trough 

DNA microarray.
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MATERIALS AND METHODS

Patients
In a first approach liver biopsies from fourteen HCV-positive HCC patients and 

seven  HCV-negative  non-liver  cancer  control  patients  (during  laparoscopic 

cholecystectomy) were obtained with informed consent at the liver unit of the INT 

"Pascale"  in  Naples,  to  investigate  genes  and  pathways  involved  in  viral 

carcinogenesis and progression to HCC in HCV-chronically infected patients.

In a second approach to verify the consistency of  the previous data obtained in a 

very limited sample and to identify a set  of genes sufficient  for the molecular 

signature  of  liver  diseases,  liver  biopsies  from  twenty  HCV-positive  HCC 

patients, fifteen metastatic patients and six HCV-negative non-liver cancer control 

patients  were  collected. In  particular,  from  each  of  the  HCV-positive  HCC 

patients, and metastatic samples a pair of liver biopsies from HCC nodule and 

non-adjacent non-HCC counterpart were surgically excised.

All  liver  biopsies  were stored in  RNA Later  at  -80°C (Ambion,  Austin,  TX). 

Confirmation of the histopathological nature of the biopsies was performed by the 

Pathology lab at INT before the processing for RNA extraction. The non-HCC 

tissues from HCV-positive patient were an heterogeneous sample representing the 

prevalent liver condition of each subject (ranging from persistent HCV-infection 

to  cirrhotic  lesions).  Furthermore,  laboratory  analysis  confirmed  that  the  11 

controls were seronegative for hepatitis C virus antibodies (HCV Ab).

RNA Isolation
Samples  were  homogenized  in  disposable  tissue  grinders  (Kendall,  Precision). 

Total RNA was extracted by TRIzol solution (Life Technologies, Rockville, MD) 

according  to  manufacturer’s  instructions.  RNA  was  aliquoted  and  stored  at  - 

80°C.

Quantification and Analysis of Total RNA
The purity of the RNA preparation was verified by the 260:280 nm ratio (range, 

1.8-2.0) at spectrophotometric reading with NanoDrop (Thermo Fisher Scientific, 

Waltham,  MA).  Integrity  of  extracted  RNA  was  evaluated  by  Agilent  2100 
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Bioanalyzer (Agilent Technologies, Palo Alto, CA), analysing the presence of 28S 

and 18S ribosomal RNA bands as well as the 28S/18S rRNA intensity ratio equal 

or close to 1.5 (Figure 4). In addition, phenol contamination was checked and a 

260:230 nm ratio (range, 2.0-2.2) was considered acceptable.

Figure 4 Representative Electropherogram of total RNA

Probe Preparation and microarray hybridization
Double-stranded cDNA was prepared from 3 μg of total RNA (T-RNA) in 9 μl 

DEPC -treated H2O using the Super script II  Kit  (Invitrogen) with a (dT) (5’ 

AAA CGA CGG CCA GTG AAT TGT AAT ACG ACT CAC TAT AGG CGC 

T(15) oligonucleotide  primer.  cDNA synthesis  was  completed  at  42°C for  1  h 

(Table 1) 

Component Volume(μl)
5 X First strand buffer 4ul

0.1- 0.5ug/ul TS 1ul
0.1M DTT 2ul 

10mM dNTP 2ul
Superscript II 1ul 

Time (min) Temperature (°C)
90 42

Table 1 First strand cDNA synthesis
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Full-length dsDNA was synthesized incubating the produced cDNA with 2 U of 

RNase-H (Promega) and 3 μl of Advantage cDNA Polymerase Mix (Clontech), in 

Advantage PCR buffer (Clontech), in presence of 10 mM dNTP and DNase-free 

water (Table 2).

Component Volume (μl)
DEPC treated H2O 106 ul 

Advantage PCR buffer 15ul
10 mM dNTP mix 3ul 

RNase H 1ul 
Advantage cDNA Polymerase mix 3ul

Time (min) Temperature (°C)
5 37
2 94
1 65
30 75

Table 2 Second strand cDNA synthesis

dsDNA was extracted with phenolchloroform- isoamyl, precipitated with ethanol 

in the presence of 1 μl linear acrylamide (0.1 μg/μl, Ambion, Austin, TX) and 

aRNA (amplified-RNA) was synthesized using Ambion's T7 MegaScript in Vitro 

Transcription Kit (Ambion, Austin, TX) (Table 3)

Component Volume (μl)
75mM NTP 2ul

reaction buffer 2ul 
enzyme mix 2ul

double stranded cDNA 8ul 

Time (hours) Temperatue (°C)
16 37

Table 3 In Vitro Tanscription
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aRNA  recovery  and  removal  of  template  dsDNA  was  achieved  by  TRIzol 

purification. For the second round of amplification, aliquots of 1 μg of the aRNA 

were reverse transcribed into cDNA using 1 μl  of random hexamer  under  the 

conditions used in the first round. (Table 4)

Component Volume (μl)
5 X First strand buffer 4ul

(0.5ug/ul) oligo dT-T7 primer 1ul
0.1M DTT 2ul 

RNAsin 1ul 
10mM dNTP 2ul 
Superscript II 2ul

Time (min) Temperature (°C)
90 42

Table 4 Second round of amplification

Second-strand cDNA synthesis was initiated by 1 μg oligo-dT-T7 primer and the 

resulting dsDNA was used as template for in vitro transcription of aRNA in the 

same experimental conditions as for the first round. 

6 μg of this aRNA was used for probe preparation, in particular test samples were 

labelled with USL-Cy5 (Kreatech) and pooled with the same amount of reference 

sample (control donor peripheral blood mononuclear cells), PBMC, seronegative 

for  hepatitis  C virus  antibodies  (HCV Ab) labelled  with  USL-Cy3  (Kreatech) 

(Figure 5). 

Figure 5 Structure of ULS_reagent
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The two  labelled aRNA probes were separated from unincorporated nucleotides 

by  filtration,  fragmented,  mixed  and  co-hybridized  to  a  custom-made  36  K 

oligoarrays at 42°C for 24 h. The oligo-chips were printed at the Immunogenetics 

Section Department of Transfusion Medicine, Clinical Center, National Institutes 

of Health (Bethesda, MD) (Table 5) 

Component Volume (μl)
2nd amp. RNA (6 µg ) 3 µl 

Cy-5 2 µl 
Cy-3 2 µl 

10x labeling solution 1 µl 
H20 2 µl 

Time (min) Temperature (°C)
85 15

Table 5 Target labelling

After hybridization the slides were washed with 2 × SSC/ 0.1%SDS for 1 min, 1 × 

SSC for  1  min,  0.2 × SSC for  1  min,  0.05 × SSC for  10 sec.,  and dried  by 

centrifugation at 800 g for 3 minutes at RT. (Table 6).

Buffer Volume Time

1st Wash 2x SSC + 0.1% SDS
450ml dd H2O, 50ml 20XSSC
5ml 0.1%SDS 10 secondi

2nd Wash 1x SSC 475ml dd H2O, 25ml 20XSSC 1min

3rd Wash 0.2 x SSC
495ml dd H2O, 
5ml 20XSSC 30 min

4th Wash 0.05x SSC
500ml dd H2O 
1.25ml 20XSSC 10 secondi

Table 6 Array washing

Hybridized arrays were scanned at 10-μm resolution with a GenePix 4000 scanner 

(Axon  Instruments)  at  variable  photomultiplier  tube  (PMT)  voltage  to  obtain 

maximal  signal intensities  with less than 1% probe saturation.  Image and data 

files were deposited at microarray data base (mAdb) at  http://madb.nci.nih.gov/ 
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and  retrieved  after  median  centred,  filtering  of  intensity  (>200)  and  spot 

elimination (bad and no signal).  Data were further analysed using Cluster and 

TreeView software (Stanford University, Stanford, CA).

Statistical Analysis of Microarray Data
For the Unsupervised analysis, a low-stringency filtering was applied, selecting 

the genes differentially expressed in 80% of all experiments with a >3 fold change 

ratio in at least one experiment. Hierarchical cluster analysis was conducted on 

these genes according to Eisen et al. (Eisen MB et al 1998); differential expressed 

genes were visualized by Treeview and displayed according to the central method 

(Ross DT et al 2000). Supervised class comparison was performed using the BRB 

ArrayTool  developed at  NCI,  Biometric  Research  Branch,  Division of  Cancer 

Treatment and Diagnosis.

Paired samples were analysed using a two-tailed paired Student's t-test. Unpaired 

samples were tested with a two-tailed unpaired Student's t-test assuming unequal 

variance  or  with  an  F-test  as  appropriate.  Gene  clusters  identified  by  the 

univariate t-test were challenged with two alternative additional tests, a univariate 

permutation  test  (PT)  and  a  global  multivariate  PT.  The  multivariate  PT was 

calibrated  to  restrict  the  false  discovery  rate  to  10%.  Genes  identified  by 

univariate  t-test as differentially expressed (p-value < 0.001 and p-value < 0.01) 

and a PT significance <0.05 were considered truly differentially expressed. Gene 

function  was  assigned  based  on  Database  for  Annotation,  Visualization  and 

Integrated Discovery (DAVID) and Gene Ontology http://www.geneontology.org/ 

Time Course Analysis
A time course analysis was performed to identify markers of tumoral progression 

between  normal  liver  samples,  HCV-related  non HCC and HCV-related  HCC 

liver samples. For this analysis, normal liver samples (CTR) were taken as the 

early time point,  HCV-related  non HCC the  intermediate  point  and the HCV-

related HCC the last time point. Parameters for gene selection were: F test p-value 

< 0.005, 80% presence call, ratio of > 2 and false discovery rate < 0.1.
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Ingenuity Pathways Analysis
The pathway analysis was performed using the gene set expression comparison kit 

implemented  in  BRB-Array-  Tools.  The  human  pathway  lists  determined  by 

"Ingenuity System Database" was selected. Significance threshold of t-test was set 

at 0.001. The Ingenuity Pathways Analysis (IPA) is a system that transforms large 

data  sets  into  a  group  of  relevant  networks  containing  direct  and  indirect 

relationships between genes based on known interactions in the literature.
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RESULTS

Quality Control of RNA
The quality  of extracted total  RNA was verified  by Agilent  2100 Bioanalyzer 

(Agilent  Technologies,  Palo  Alto,  CA),  showing  discrete  28S and  18S rRNA 

bands (Figure 6A) as well as a 28S/18S rRNA intensity ratio equal or close to 1.5 

which is considered appropriate for total RNA extracted from liver tissue biopsies 

("Assessing RNA Quality", http://www.ambion.com/techlib/tn/111/8.html). Based 

on this parameter, all extracted total RNA samples met the quality control criteria 

(Figure 6B).

Figure  6 (A) Electropherogram of  total  RNA extracted from samples included in the  
analysis. (B) Gel image evaluation of RNA integrity and 28S/18S rRNA ratio.
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Unsupervised Analysis
The gene expression profiles of tissue samples from the three groups of analysed 

samples (the HCV-related HCC, their non-HCC counterpart, as well as samples 

from  control  patients)  were  compared  by  an  unsupervised  analysis.  No  clear 

separation  of  the  3  different  groups  was  observed,  although  control  samples 

clustered mainly with samples from HCV-related non-HCC paired tissue, which 

includes  dysplastic  lesion  in  cirrhotic  liver,  representing  a  pre-neoplastic  step 

(Figure 7A).

In  order  to  identify  genes  differentially  modulated  in  HCV-related  lesions 

compared  to  normal  liver  tissue  samples,  an  unsupervised  analysis  was  then 

performed  including only paired  samples  from HCV-related  HCC and normal 

control  samples  and from the  HCV-related  non-  HCC counterpart  and control 

samples (Figures 7B and 7C). According to filtering described in Material  and 

Methods,  HCV-related  HCC and normal  control  samples  showed 5'473 genes 

differentially  expressed,  with  a  perfect  clustering  according  to  histological 

characteristics (Figure 6B). Similarly, HCV-related non-HCC tissue and normal 

control  samples  showed  6'069  genes  differentially  expressed  with  a  perfect 

clustering according to histological characteristics also in this case (Figure 6C). 

The only exception to this pattern is represented by the normal control sample 

(CTR#80) which did not fall in the control cluster (CTR).
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Among them, 1919 were shown to be up-regulated and 647 down-regulated in 

metastatic liver tissues (Figure 10C)

Figure  10 Heat  map  of  the  genes   differentially  expressed, identified  by  Class  
Comparison Analysis. (A) analysis including HCV-related HCC and normal control liver  
samples; (B), analysis including HCV-related non-HCC liver tissues and normal control  
liver samples; (C), analysis including liver metastasis and their paired non metastatic  
normal counterpart. The expression pattern of the genes is shown each row representing  
a single gene.

The genes showing the highest fold up-regulation in HCV related HCC, in HCV 

related non HCC in common in two works and in metastatic liver samples are 

listed respectively in Tables 7, 8, 9.

31



NAME DESCRIPTION "ENTREZ 
GENE"

ADPRHL2 ADP-ribosylhydrolase like 2 54936
ARID4B AT rich interactive domain 4B transcript variant 1 51742
ARL8A ribosylation factor-like 8A 127829
ATG3 autophagy related 3 homolog 64422
ATP5G1 synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 

9) 
516

AXIN1 axin 1, transcript variant 2 8312
BOLA2 bolA homolog 2 (E. coli) 552900
BUD31 homolog (S. cerevisiae) 8896
CAD carbamoyl-phosphate synthetase 2 790
CD52 CD52 molecule 1043
CDC2L6 cell division cycle 2-like 6 23097
CDC7 cell division cycle 7 homolog 8317
CNIH4 cornichon homolog 4 (Drosophila) 29097
COX6B1 cytochrome c oxidase subunit Vib polypeptide 1 1340
CRIP1 Cysteine-rich protein 1 1396
CROCC ciliary rootlet coiled-coil, rootletin 9696
DDX39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 10212
DR1 down-regulator of transcription 1, TBP-binding (negative cofactor 2) 1810
EIF1AY eukaryotic translation initiation factor 1A, Y-linked 9086
G6PD glucose-6-phosphate dehydrogenase 2539
GBP2 guanylate binding protein 2, interferon-inducible 2634
GNG5 guanine nucleotide binding protein (G protein), gamma 5 (GNG5) 2787
GPR172A protein-coupled receptor 172A 79581
GRN granulin (GRN) 2896
HLA-F Major histocompatibility complex, class I, F 3134
HLA-H Major histocompatibility complex, class I, H (pseudogene) 3136
HN1 hematological and neurological expressed 1, transcript variant 2, 51155
IER5 immediate early response 5 51278
IFI27 interferon, alpha-inducible protein 27 3429
ING1 inhibitor of growth family, member 1, transcript variant 3 3621
IRF5 interferon regulatory factor 5, transcript variant 7, 3663
ISG15 ubiquitin-like modifier 9636
KRTCAP2 keratinocyte associated protein 2 200185
LRP10 low density lipoprotein receptor-related protein 10 26020
M6PRBP1 mannose-6-phosphate receptor binding protein 1 10226
MAFB maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian) 9935
MAP4K2 mitogen-activated protein kinase kinase kinase kinase 2 5871
MZF1 myeloid zinc finger 1, transcript variant 1 7593
NUP62 nucleoporin 62kDa, transcript variant 4, 23636
OGFR opioid growth factor receptor 11054
PIK3IP1 phosphoinositide-3-kinase interacting protein 1 113791
PLCB1 phospholipase C, beta 1 (phosphoinositide-specific), transcript variant 1 23236
PLXDC2 plexin domain containing 1 84898
POP7 processing of precursor 7, ribonuclease P/MRP subunit (S. cerevisiae) 10248
PPP1CC protein phosphatase 1, catalytic subunit, gamma isoform 5501
PRDM1 PR domain containing 1, with ZNF domain, transcript variant 2 639
PRKD2 protein kinase D2, transcript variant 4 25865
PSIP1 PC4 and SFRS1 interacting protein 1, transcript variant 2 11168
PURA purine-rich element binding protein A 5813
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RBP7 retinol binding protein 7, cellular 116362
RELB v-rel reticuloendotheliosis viral oncogene homolog B 5971
RNF31 ring finger protein 31 55072
RRAGD Ras-related GTP binding D 58528
SERPINB1 serpin peptidase inhibitor, clade B (ovalbumin), member 1 1992
SGSH N-sulfoglucosamine sulfohydrolase (sulfamidase) 6448
SMARCC2 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin
6601

SQSTM1 sequestosome 1 8878
ST6GALNAC4 T6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1, 3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 4
27090

STAT1 signal transducer and activator of transcription 1, 91kDa, transcript variant 
beta

6772

TERF1 telomeric repeat binding factor (NIMA-interacting) 1, transcript variant 2 7013
TK1 thymidine kinase 1, soluble 7083
TMEM106C transmembrane protein 106C 79022
TXN thioredoxin 7295
TYK2 tyrosine kinase 2 7297
USP14 ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase), transcript 

variant 2
9097

USP3 ubiquitin specific peptidase 3 9960
VWF von Willebrand factor 7450
WBP5 WW domain binding protein 5 51186
ZBTB17 zinc finger and BTB domain containing 17 7709
ZNF580 zinc finger protein 580, transcript variant 2 51157
ZNF652 zinc finger protein 652 22834
ZNF706 zinc finger protein 706, transcript variant 3 51123
Table 7 Table of genes associated with HCV-related HCC
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NAME DESCRIPTION
"ENTREZ 

GENE"
ANXA4 annexin A4 307
APOL3 apolipoprotein L, transcript variant alpha/d 80833
AQP1 aquaporin 1 (Colton blood group) 358
ARL8A ADP-ribosylation factor-like 8A 127829
B2M beta-2-microglobulin 567
BET1L blocked early in transport 1 homolog (S. cerevisiae)-like, transcript variant 1 51272
BTN3A3 butyrophilin, subfamily 3, member A3, transcript variant 2 10384
CKB creatine kinase, brain 1152
CNN2 calponin 2, transcript variant 2 1265
CRIP1 Cysteine-rich protein 1 (intestinal) 1396
CROCC CROCC--ciliary rootlet coiled-coil, rootletin 9696
HLA-C major histocompatibility complex, class I, C 3107
HLA-
DMA DMA--major histocompatibility complex, class II, DM alpha 3108
HLA-
DPB1 DPB1--major histocompatibility complex, class II, DP beta 1 3115
HLA-F Major histocompatibility complex, class I, F 3134
HLA-H Major histocompatibility complex, class I, 3136
IFI6 interferon, gamma-inducible protein 16 2537
IGHG1 Immunoglobulin heavy constant mu 3500
IGL@ Immunoglobulin lambda joining 3 3535
ISG15 ubiquitin-like modifier 9636
ISG20 interferon stimulated exonuclease gene 20kDa 3669
KIAA074
6 KIAA0746 protein 23231

LIPT1
lipoyltransferase 1, nuclear gene encoding mitochondrial protein, transcript 
variant 5 51601

OAS1 2',5'-oligoadenylate synthetase 1, 40/46kDa , transcript variant 2 4938
OASL 2'-5'-oligoadenylate synthetase-like, transcript variant 2 8638
PKM2 pyruvate kinase, muscle, transcript variant 1 5315

PSMB9
Proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional 
peptidase 2) 5698

RARRES
3 retinoic acid receptor responder (tazarotene induced) 3 5920
SAFB2 scaffold attachment factor B2 9667
SEMA4D sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 10507

STAT1
signal transducer and activator of transcription 1, 91kDa, transcript variant 
beta 6772

TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) 6890
TESK1 testis-specific kinase 1 7016
TMEM55
A transmembrane protein 55A 55529
UBD ubiquitin D 10537
Table 8 Table of genes associated with HCV-related non HCC
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NAME DESCRIPTION
"ENTREZ 
GENE"

ACSS1 acyl-CoA synthetase short-chain family member 1 84532
ACTG1 actin, gamma 1 71
AFAP1 actin filament associated protein 1, transcript variant 1 60312
ALDOA- aldolase A, fructose-bisphosphate , transcript variant 2 226
ANXA2 annexin A2, transcript variant 3 302
AREG amphiregulin (schwannoma-derived growth factor) 374
ARFGAP
1 ADP-ribosylation factor GTPase activating protein 1, transcript variant 1 55738
ASNS asparagine synthetase, transcript variant 2 440
ATP9A ATPase, Class II, type 9A 10079
AURKA aurora kinase A, transcript variant 6 6790
BOLA2 bolA homolog 2 (E. coli), transcript variant 1 552900
BSG basigin (Ok blood group), transcript variant 682
CCT6A chaperonin containing TCP1, subunit 6A (zeta 1), transcript variant 2 908
CD44 CD44 molecule (Indian blood group), transcript variant 5 960
CD9 CD9 molecule 928
CDH3 cadherin 3, type 1, P-cadherin (placental) 1001
CEACA
M5 Carcinoembryonic antigen-related cell adhesion molecule 5 1048
CENPO centromere protein O 79172
CKB creatine kinase, brain 1152
CLIC1 chloride intracellular channel 1 1192

COL3A1
collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal 
dominant) 1281

CSDA cold shock domain protein A 8531
CTBP2 terminal binding protein 2, transcript variant 1488
DPEP1 dipeptidase 1 (renal) 1800
ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific ). 1999
FAM60A FAM60A--family with sequence similarity 60, member A 58516
FHL2 four and a half LIM domains 2, transcript variant 4 2274
GPR160 G protein-coupled receptor 160 26996
GPR56 G protein-coupled receptor 56, transcript variant 3 9289
GSTP1 GSTP1--glutathione S-transferase pi 2950
HEPH hephaestin, transcript variant 2 341208
HKDC1 hexokinase domain containing 1 80201
HN1 hematological and neurological expressed 1, transcript variant 2 51155
IER3 immediate early response 3 8870
IL8 interleukin 8 3576
KIAA074
6 KIAA0746 protein 23231
KRT18 keratin 18, transcript variant 2 3875
LAMB3 laminin, beta 3, transcript variant 1 3914
LGALS3 lectin, galactoside-binding, soluble, transcript variant 1 3958
LGALS4 lectin, galactoside-binding, soluble, 4 (galectin 4) 3960
MCM2 minichromosome maintenance complex component 2 4171
MYC v-myc myelocytomatosis viral oncogene homolog (avian) 4609
NBL1 neuroblastoma, suppression of tumorigenicity 1, transcript variant 2 4681
NQO1 NAD(P)H dehydrogenase, quinone 1, transcript variant 3 1728
NUP93 nucleoporin 93kDa 9688
OGT O-linked N-acetylglucosamine 8473
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OR2T10 olfactory receptor, family 2, subfamily T, member 10 127069
PAQR8 progestin and adipoQ receptor family member VIII 85315
PHLDA2 pleckstrin homology-like domain, family A, member 2 7262
PKM2 pyruvate kinase, muscle, transcript variant 1 5315
PTMA prothymosin, alpha (gene sequence 28), transcript variant 2 5757
PTP4A3 protein tyrosine phosphatase type IVA, member 3 , transcript variant 2 11156
PYGB phosphorylase, glycogen; brain 5834
RALGDS ral guanine nucleotide dissociation stimulator, transcript variant 1 5900
S100A10 S100 calcium binding protein A10 6281
S100A11 S100 calcium binding protein A11 6282
S100A6 S100A6--S100 calcium binding protein A6 6277
S100P S100P--S100 calcium binding protein P 6286
SERPINB
1 serpin peptidase inhibitor, clade B (ovalbumin), member 1 1992
SMARC
A4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin 6597
SNRPB small nuclear ribonucleoprotein polypeptides B and B1, transcript variant 2 6628

SOX9
SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal 
sex-reversal) 6662

SPINT2 serine peptidase inhibitor, Kunitz type, 2 10653
STK24 serine/threonine kinase 24 (STE20 homolog, yeast), transcript variant 1 8428
STMN3 stathmin-like 3 50861
SYK spleen tyrosine kinase 6850
TAX1BP
3 Tax1 (human T-cell leukemia virus type I) binding protein 3 30851
TFDP1 transcription factor Dp-1 7027
THY1 Thy-1 cell surface antigen 7070
TIMP1 TIMP metallopeptidase inhibitor 1 7076
TK1 thymidine kinase 1, soluble 7083
TMED3 transmembrane emp24 protein transport domain containing 3 24423
TMSB10 thymosin, beta 10 9168
TRIM5 tripartite motif-containing 5, transcript variant alpha 85363
UTX ubiquitously transcribed tetratricopeptide repeat, X chromosome 7403
VASP VASP--vasodilator-stimulated phosphoprotein 7408
VDR vitamin D (1,25- dihydroxyvitamin D3) receptor, transcript variant 1 7421
VIL2 villin 2 (ezrin) 7430
YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 7534
Table 9 Table of genes associated with Liver metastasis.
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Gene signature Involved in HCC progression
Time course analysis was conducted considering the CTR the early time point, the 

cirrhosis the intermedian point and the HCC the last time point. All samples were 

average belonging at the same group as it was a single array. 

Testing the significant gene expression increase or decrease across the tissue types 

from normal (n = 6) to HCV related non HCC (n =20) to HCV-related HCC (n = 

20) 450 genes with a significant decreasing trend and 136 genes with a significant 

increasing trend in expression values were identified.  Genes with a significant 

increasing trend in expression values were considered as possible diagnostic and 

prognostic markers (Figure 11). 

Figure  11 Time  course  analysis.  (A)  Genes  up  regulated  in  the  CTR  and  then  lost  
completely in the HCC(decreasing trend);(B) Genes switched off in the control and up  
regulated in HCV positive and in the HCC; (C) Genes were down-regulated in CTR and  
HCV positive and up-regulated in HCC (increasing trend).

Relevant genes are reported in Table 10.
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NAME DESCRIPTION
"ENTREZ 
GENE"

ADH1A. alcohol dehydrogenase 1A (class I), alpha polypeptide 124
AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 57016
ANKRD2
9 ankyrin repeat domain 29 147463
APOA1 apolipoprotein A-I 335
ASCC3 activating signal cointegrator 1 complex subunit 3, transcript variant 1 10973
AURKC Aurora kinase C 6795
BHMT betaine-homocysteine methyltransferase 635
CLEC4G C-type lectin superfamily 4, member G 339390
COL1A1 collagen, type I, alpha 1 1277
COL4A2 collagen, type IV, alpha 2 1284

CXCL12
chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1), 
transcript variant 1 6387

CXCL2 chemokine (C-X-C motif) ligand 2 2920
DNASE1
L3 deoxyribonuclease I-like 3 6387
DPT dermatopontin 1805
ENO3 enolase 3 (beta, muscle), transcript variant 2 2027
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 2353
GLUL glutamate-ammonia ligase (glutamine synthetase), transcript variant 2 2752
GPC3 glypican 3 2719
HAL histidine ammonia-lyase 3034
HAO2 hydroxyacid oxidase 2 (long chain), transcript variant 1 51179
HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 3158
IFI27 interferon, alpha-inducible protein 27 3429

IGF2
insulin-like growth factor 2 (somatomedin A) (IGF2), transcript variant 2, 
mRNA. 3481

IGKC Netrin 2-like 3514
IQCH IQ motif containing H, transcript variant 1 64799
ISG15 ISG15 ubiquitin-like modifier 9636
ITIH3 inter-alpha (globulin) inhibitor H3 (ITIH3), mRNA. 3699

LIPT1
lipoyltransferase 1, nuclear gene encoding mitochondrial protein, transcript 
variant 5 51601

LRRC46 leucine rich repeat containing 46 90506
LRRC8D leucine rich repeat containing 8 family, member D 55144
RGL3 Ral guanine nucleotide dissociation stimulator-like 3 57139
RNF125 ring finger protein 125 54941
SPINK1 serine peptidase inhibitor, Kazal type 1 6690

STAT1
signal transducer and activator of transcription 1, 91kDa , transcript variant 
beta 6772

TDRD1 tudor domain containing 1 56165
THY1 Thy-1 cell surface antigen 7070
TRIM55 tripartite motif-containing 55, transcript variant 4 84675
UBD ubiquitin D 10537
Table 10 Genes associated with liver disease progression to HCC
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Ingenuity Pathway Analysis 
To  define  the  biological  significance  of  the  genes  with  relevant  expression 

modifications their biological interactions was investigated using the IPA tool and 

all  genes  were  mapped  to  their  molecular/cellular  functions  and  to  relevant 

canonical pathways.

The more important molecular and cellular functions (High p value) of the genes 

up-regulated in HCV-related HCC samples were related to cell death (p=1.11E-

04-3.28E-02) [81 molecules]), cell to cell signaling and interaction (p=8.09E-06-

3.28E-02) [116 molecules]) and Antigen Presentation (p=1.25E-04 - 3.28E-02 56 

[56  molecules]).The  top  canonical  pathways  included  protein  ubiquitination 

(p=1.67E-05), antigen presentation (p=9.52E-04) and Aryl Hydrocarbon receptor 

signaling pathway (p=1.37E-03) (Figure 12).

Figure 12 The human pathway lists determined by "Ingenuity System Database" in HCV-
related HCC samples.

The more important molecular and cellular functions (High p value) of genes up-

regulated in HCV-related non HCC samples were related to cellular growth and 

proliferation (p = 2.60E-09 - 1.59E-02) [112 molecules]), Antigen Presentation 

(p=3.63E-08 - 1.19E-02) [77 molecules]) and cell to cell signaling and interaction 

(p=1.30E-05 -  1.59E-02 [76  molecules]).The  top  canonical  pathways  included 

Interferon Signaling Genes(p=1.12E-05), SAPK/JNK Signaling (p=1.07E-03) and 

NF-kB Activation by viruses pathway (p=1.19E-03) (Figure 13).
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Figure 13 The human pathway lists determined by "Ingenuity System Database" in HCV-
related non HCC samples

The more important molecular and cellular functions (High p value) of genes up-

regulated in metastasis were related to cellular growth and proliferation (p=1.83E-

09  -  1.28E-02  [264  molecules])cell  death  (p=5.92E-10  -  1.24E-02  [259 

molecules]), and cellular assembly and organization (p=1.99E-08 - 1.12E-02 [111 

molecules]).The top canonical pathways included Integrin Signaling (p=7.75E-

04) and Actin Cytoskeleton Signaling Pathway (p=4.43E-04).
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DISCUSSION
HCC is a common and aggressive malignant  tumour worldwide with a dismal 

outcome. Early detection and resection may offer an opportunity to improve the 

long-term  survival  for  HCC  patients.  Unfortunately,  with  current  diagnostic 

approaches, only about 10% to 20% of HCC patients are eligible for resection 

(Lai EC et al 1995).

The  present  study  has  been  focused  on  investigating  the  genes/protein  and 

pathways  involved  in  viral  carcinogenesis  and  progression  to  HCC  in  HCV-

chronically infected patients, to elucidate the molecular mechanisms underlying 

cancer progression and to identify possible marker for diagnostic purposes trough 

DNA microarray. The study was conducted performing two set of experiments.

First  the study was conducted on liver biopsies with a small  number of HCV-

positive  HCC patients  and  HCV-negative  non-liver  cancer  control  patients  to 

investigate genes and pathways involved in viral carcinogenesis and progression 

to  HCC  in  HCV-chronically  infected  patients.  Then,  in  order  to  verify  the 

consistency of the previous data obtained in a very limited sample and to identify 

a set of genes sufficient for the molecular signature of liver diseases, the study 

was conducted  on a  larger  number  of  liver  biopsies  from HCV-positive  HCC 

patients, metastatic patients and HCV-negative non-liver cancer control patient.

In the first  batch of samples,  microarray analyses  of liver  biopsies  from HCC 

nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive 

patients  were  compared  to  biopsies  from HCV-negative  control  subjects.  The 

class comparison analysis used in that study successfully identified a set of genes 

significant  differentially  expressed.  Moreover  the  up-regulated  genes  identified 

within the individual class comparison analysis were evaluated and classified by a 

pathway analysis, according to the "Ingenuity System Database".

The genes  up-regulated  in  samples  from HCV-related  HCC were classified  in 

metabolic pathways, and the most represented are the Aryl Hydrocarbon receptor 

signaling  (AHR)  and,  protein  Ubiquitination  pathways,  which  have  been 

previously  reported  to  be  involved  in  cancer,  and  in  particular  in  HCC, 

progression.
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The Aryl Hydrocarbon receptor signal transduction Pathway (AHR) is involved in 

the activation of the cytosolic aryl hydrocarbon receptor by structurally diverse 

xenobiotic  ligands  (including  dioxin,  and  polycyclic  or  halogenated  aromatic 

hydrocarbons) and mediating their toxic and carcinogenic effects (Safe S et al  

2001, Okey  AB 2007).  More  recently  AHR  pathway  has  been  shown  to  be 

involved  in  apoptosis,  cell  cycle  regulation,  mitogen-activated  protein  kinase 

cascades  (Puga A et al  2009).  In particular, studies on liver tumour promotion 

have  shown that  dioxin-induced AHR activation  mediates  clonal  expansion of 

initiated cells by inhibiting apoptosis and bypassing AHR-dependent cell cycle 

arrest (Bock KW et  al  2005).  Furthermore,  it  has been shown that changes in 

mRNA expression of specific genes in the AHR pathway are linked to progression 

of  HCV-associated  hepatocellular  carcinoma (Tsunedomi  R et  al  2005).  

Moreover, the HCV-induced AHR signal transduction pathway, could be directly 

involved  in  the  increased  severity  of  hepatic  lesions  in  patients  with  chronic 

hepatitis C induced by smoking (Pessione F et al 2001, Hezode C et al 2003). The 

ubiquitin  and  ubiquitin-related  proteins  of  the  ubiquitination  pathway  play 

instrumental roles in cell-cycle regulation (Jentsch S, et al 2000)  as well as cell 

death/apoptosis (Jesenberger  V et  al  2002)  through  modification  of  target 

proteins. In particular,  ubiquitin-like proteins, i.e. FAT10, has been reported to 

bind non-covalently to the human spindle assembly checkpoint protein, MAD2 

(Liu YC, et al 1999), which is responsible for maintaining spindle integrity during 

mitosis (Shah JV et al 2000)  and whose inhibited function has been associated 

with  chromosomal  instability (Wang  X et  al  2000,  Gemma  A et  al  2001).  

Moreover,  FAT10 overexpression has been previously shown in hepatocellular 

carcinoma (Lee CG et al 2003).

The  genes  up-regulated  in  samples  from  HCV-related  non-HCC  tissue  were 

classified  in  several  pathways  prevalently  associated  to  inflammation  and 

native/adaptive  immunity and most  of  the  over  expressed genes  belong to the 

Antigen Presentation pathway. 

The analysis of second batch of samples was performed with the same statistical 

analysis under the same condition to confirm the first data. To elucidate the genes 

and molecular pathways involved in the HCV-related HCC a class comparisons 
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analysis were performed on new samples set. This analysis allowed us to identify 

the unique probe sets characterizing the pathological status, in fact as expected, 

the gene expression patterns were found to vary significantly among the HCC and 

normal  control  liver  samples.  Genes  associated  with  cell  death,  cell  to  cell 

signaling  and  interaction,  were  found  to  have  increased  expression  in  HCC 

samples. The molecular events linked to the development and progression of HCC 

is not well  known. Malignant  hepatocytes  are  the result  of sequential  changes 

accumulated  in  mature  hepatocytes  or  can  derive  from  stem  cells.  The  most 

accepted  hypotheses  (Buendia  MA  et  al 2000,  Thorgeirsson  SS  et  al  2002) 

describes  a  step-by-step  process  in  which  external  stimuli  induce  genetic 

alterations in mature hepatocytes leading to cell death, cellular proliferation, and 

the production of monoclonal  populations.  These populations harbor dysplastic 

hepatocytes that evolve to dysplastic nodules. (Theise ND et al 2002) 

Canonical  pathways  prevalently  associated  with  HCV-related  HCC  included 

protein  ubiquitination,  antigen  presentation  and  Aryl  Hydrocarbon  receptor 

signaling pathway, confirming the first data.

Cellular  growth  and  proliferation  and  antigen  presentation  were  the  more 

important cellular and molecular functions when HCV-related non HCC samples 

were  compared  with  normal  control  liver  tissue.  These  data  agree  with  the 

numerous  regulatory  roles  reported  for  the  HCV  core,  that  affect  signal 

transduction, expression of viral and cellular genes, cell growth and proliferation 

(Lohmann V et al 2006, Blight KJ et al 1998).

Several viruses target specific components of the MHC class I pathway, leading to 

diminished cell surface expression of MHC class I molecules. Other viruses block 

the transport of MHC class I molecules through the endoplasmic reticulum (ER), 

inhibit  TAP-mediated  translocation  of  cytoplasmic  peptides  into  the  ER,  or 

interfere with proteasomal degradation of their own proteins (Rosenberg W 1999). 

Other  viruses,  like  human cytomegalovirus,  escape CD8_T-cell  recognition  by 

down  regulating  cellular  MHC  class  I  molecules  (Falk  CS,  et  al 2002)  and 

simultaneously  inducing  the  expression  of  virus-encoded  MHC  class  I 

homologues capable of engaging inhibitory receptors that give a negative signal 

blocking NK cell function. Flaviviruses can upregulate MHC class I cell surface 
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expression  by  increased  peptide  supply  to  the  ER  (Momburg  F  et  al 2001, 

Mullbacher  A  et  al 1995).  Viruses  may  use  these  strategies  to  evade  and 

counteract a potential NK cell attack. Some studies demonstrated that HCV core 

protein induced the up regulation of antigen presentation and immune response 

mechanisms (Herzer K et al 2003).

Canonical  pathways  mainly  associated  with  HCV-related  non-HCC  tissue 

included Interferon Signaling,  SAPK/JNK Signaling  and NF-kB Activation  by 

viruses pathway.  These pathways  are prevalently associated with inflammation 

and native/adaptive immunity.

A traditional HCC diagnosis has relied on the use of a single biomarker approach 

(e.g., AFP). The use of multiple markers in combination to improve the accuracy 

of  identifying  HCC cases  has been proposed. Among the three different  class 

comparison analysis (HCV-related HCC, HCV-related non HCC and Metastatic 

liver tissue vs normal control) a gene-set that distinguish the different cases of 

liver disease has been found, in particular with time course analysis the genes that 

should  be  candidate  as  a  possible  progression  markers  (e.g.,  OCM,  PTK6, 

FAM38B,  FBLN1,  STEAP1,  MOXD1,  MALAT1,  GPC3, CCL20,  SPINK1, 

GLUL,THSD7A,  RARRES1,  ALPK2,  DEFB1,  SERPINA7,  UBD,  GSTA1, 

TM4SF1, DPT, SAA2, SCD, MAL2, OS9, DPYS, TMED9, COL4A2, COL4A1) 

has  been  identified. All  these  data  altogether  suggested  developing  a  specific 

gene-chip along with  genes showing the highest fold up-regulation in common 

with the first batch of samples representing the different stage of disease.

The identification of the lesions and the evaluation of their neoplastic progression 

will be based on the gene pattern expression on the gene-chip.
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In conclusion in this study:

1. Informative data  on the global  gene  expression  pattern  in  HCV-related 

HCC as well as HCV-related non-HCC counterpart  and metastatic liver 

tissues have been obtained compared to normal controls.

Research Article 1
“Gene  profiling,  biomarkers  and  pathways  characterizing  HCV-related 
hepatocellular  carcinoma”  Valeria  De  Giorgi,  Alessandro  Monaco,  Andrea 
Worchech, Maria Lina Tornesello, Francesco Izzo, Luigi Buonaguro, Francesco 
M  Marincola,  Ena  Wang,  Franco  M  Buonaguro  Journal  of  Translational  
Medicine 2009, 7:85 

2. Gene signatures that distinguish the different pathological stage of liver 

disease  and  potential  molecular  progression  markers  for  early  HCC 

diagnosis in HCV positive patients were identified.

Research Article 2
“Molecular  Signature  Associated  To  Human  Liver  Cancer”  V.  De  Giorgi,  L. 
Buonaguro, A. Worschech, M.L. Tornesello, F. Izzo, F.M. Marincola, E. Wang 
and F.M. Buonaguro (Submitted)

Patent
“Method for biomolecular detection of human liver diseases composition and kits 
used in said methods”. De Giorgi V.et al PCT/EP2009/062716

Analysis  of  the  same  samples  in  relation  to  new  contexts  (miRNA,  aCGH, 

proteomic)  to  develop increasingly  sophisticated  gene  expression  indicators  of 

specific types or stages of liver disease has been planned.
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ABBREVIATIONS 

2DE 2D electrophoresis

AFB1 Aflatoxin B1

AFP Alpha-fetoprotein

AHR Aryl Hydrocarbon receptor

ANOVA Analysis of Variance

aRNA Amplified RNA

cDNA Complementary DNA

CGH Comparative genomic hybridization

CTR Normal control liver samples

DAVID Database for Annotation, Visualization and Integrated Discovery

DNAs Synthetic complementary DNA

dsDNA Double strand DNA

FDR False Discovery Rate

HBsAg Hepatitis B surface Antigen

HBV Hepatitis B virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HCV-Ab Hepatitis C Virus antibodies

IPA Ingenuity Pathways Analysis

MHC Major Histocompatibility Complex

mRNA Messenger RNA

MS Mass Spectrometry

PC Prostate Cancer

PCA Principal Component Analysis

PT Permutation Test

SOM Self-Organizing Maps

SVD Singular Value Decomposition
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