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1. ABSTRACT

This dissertation focuses on the study of different signaling mechanisms regulating
thyroid carcinogenesis, with the aim of identifying new genes involved in thyroid
tumors, thus potential targets for new anti-cancer therapeutics. Appended
manuscripts II and III focus on the analysis of the role exerted by SOD3
(Superoxide dismutase 3) and components of the Sonic/Hedgehog signaling pathway
in thyroid carcinomas. The main body of this dissertion (manuscript I), instead,
describes a knock-down screening performed in the TPC1 thyroid cancer cell line
with a library of siRNA targeting the entire complement of human protein kinases
(kinome) and kinase-related proteins. Thyroid cancer is primarily associated to the
oncogenic conversion of protein kinases (BRAF, RET, NTRK1, AKT). Thus, the
aim of this screen was to identify novel protein kinases required to sustain viability
of thyroid carcinoma cells and therefore involved in thyroid carcinogenesis. Through
this screening, we identified 21 “down hits”, e.g. kinases whose knock-down reduced
by 30% or more TPC1 cell viability. Most of these kinases were essential not only
for the viability of TPC1 but also other thyroid cancer cell lines with different
genetic backgrounds (RAS or BRAF mutations) but not normal thyroid cells. These
kinases included components of several signaling pathways. In particular, we
identified members of the EPH (ephrin receptors) family, namely EPHA2, EPHA4
and EPHB2, as overexpressed and functionally active in various thyroid cancer cell

lines.



These three EPH were also upregulated in human thyroid tumor specimens. Finally,
functional assays proved that the expression of EPHA2, EPHA4 and EPHB?2 is
essential not only for thyroid cancer cell growth but also motility and invasiveness.
In conclusion, our study strongly suggests that EPHA2, EPHA4 and EPHB2
activation plays an important role in human cancers derived from thyroid follicular

epithelium.



2. BACKGROUND

2.1 Thyroid tumors.

In mammals, the thyroid gland is located on the anterior surface of the trachea
at the base of the neck. It is composed of two different lobes, each formed by two
cell types. Follicular cells are epithelial cells organized in follicles, spherical
structures serving as storage and controlling release of L-tri-iodothyronine (T3) and
L-thyroxine (T4) thyroid hormones, under the control of the hypothalamic-pituitary
axis. Parafollicular cells or C-cells, are scattered in the interfollicular space, mostly
in a parafollicular position; they originate from the neural crest and are responsible
for the production of the calcium-regulating hormone calcitonin. Thyroid neoplasms
can derive from follicular cells or C-cells. Follicular cell-derived lesions are broadly

subdivided in benign and malignant (Mazzaferri, 1993).

Benign thyroid lesions are typically solitary adenomas (Kondo et al., 2006).
They can be clinically silent or hyperfunctioning (referred to as a toxic thyroid
adenoma), thereby causing hyperthyroidism with increased levels of thyroid
hormones. Gain-of-function mutations of TSHR (~80%) and GNASI, encoding
GSa, (~25%) are the most common genetic lesion in functional thyroid adenomas,
whereas these genetic lesions did not occur in thyroid malignancies (Parma et al.,

1995).



Malignant thyroid lesions are the most common cancers of endocrine organs
and represent approximately 1% of newly diagnosed cancer cases (Hundahl er al.,
1998; Gimm, 2001), with an incidence rate stably increasing over the past few
decades (Jemal et al., 2010). Cancers deriving from follicular cells represent more
than 95% of thyroid cancers whereas only 3-5% of them arise from C-cells. On the
basis of histological and clinical parameters, malignant follicular-derived lesions are
classified into well differentiated carcinomas (WDC), poorly differentiated
carcinomas (PDC), and anaplastic carcinomas (ATC, 2%) (Tallini, 2002; DeLellis

and Williams, 2004; DeLellis, 2006; Kondo ef al., 2006).

At least in some cases, thyroid carcinogenesis may be explained by a multi-
step model (Fig. 1). According to this model, well-differentiated tumors (PTC and
FTC) occur after early initiating events such as RET/PTC rearrangements and BRAF
mutations or RAS mutations and PAX8-PPARY rearrangement (Fusco et al., 2002),
whereas adjunctive mutations of genes like p53, CTNNBI1 and PI3KCA lead to ATC
(Garcia-Rostan et al., 2001; Garcia-Rostan et al., 2003; Garcia-Rostéan et al., 2005).
Cyclin D1 overexpression or p27 downregulation are implicated particularly in

aggressive WDC subtypes (Tallini et al., 1999; Tallini, 2002; Kondo et al., 2006).
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Figure 1: Model of thyroid multi-step carcinogenesis.

Recently, Todaro et al., showed that in thyroid cancer, tumorigenic activity is
confined to a small subpopulation of stem-like cells, which are sustained by
constitutive activation of cMet and Akt. This stem cell population is increased in
ATC comparing to WDC. Moreover, a particular combination of genetic lesions, as
BRAF and p53 mutations, may expand this compartment and favour the formation of

more aggressive cancer types (Todaro ef al., 2010).



° WDC

Well-differentiated carcinomas represent more than 90% of thyroid cancer
cases and are divided in papillary (PTC, 85%) and follicular (FTC, 5-10%) thyroid
carcinoma (Pacini et al., 2006). PTC is characterized by a branching (papillary)
architecture and peculiar nuclear features, but several variants are known (DeLellis,
2000), as tall-cell variant that display more aggressive features (Sherman, 2003;
Leboulleux et al,, 2005; Adeniran et al., 2006; Elisei et al., 2008a; Romeli et al.,
2008). PTC is more frequent in women than men and affects patients 20-50 years
old. PTC can also occur in childhood as consequence of accidental or therapeutic
radiation exposure. PTC has an indolent behavior, tendency to form metastasis to
local lymph nodes and a survival rate greater than 90% (Schlumberger, 1998;
Sherman, 2003; DeLellis, 2006). Sometimes the disease may show an aggressive

behavior and lose the ability to concentrate radioiodine.

FTC is characterized by follicular cell differentiation in the absence of the
diagnostic nuclear features of PTC. It mostly affects 40-60 years old patients with a
female to male ratio of 3-4:1 (DeLellis, 2006). Despite a higher frequency of distant
haematogenous metastasis compared to PTC, most FTC patients can also be cured,
with good long-term survival rates (Schlumberger, 1998; Sherman, 2003; Durante et

al., 2006).
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e ATC

ATC is a tumor composed, entirely or partially, of undifferentiated cells
(DeLellis, 2006), thus usually with a poor prognosis. According to a multi-step
model discussed in figure 1, ATC may derive from a pre-existing well-differentiated
carcinoma. This is suggested by the coincidental detection of WDC tissue in more
than 25% of ATC patients (Pasieka, 2003; Ordonez ef al., 2004). ATC disseminates
both to regional lymph nodes and to distant sites (Pasieka, 2003; Ordonez et al.,

2004).

e PDC

PDC represents 5% of thyroid cancers and it is defined as neoplasm of
follicular origin that shows loss of structural and functional differentiation.
Characteristically, these lesions show widely infiltrative growth, necrosis, vascular
invasion and numerous mitotic figures (DeLellis, 2006; Pulcrano et al., 2007,

Volante ef al., 2007).

° MTC

Medullary thyroid carcinoma (MTC) is a rare malignant tumor that arises
from C-cells (Elisei et al., 2007; Elisei et al., 2008b; Schlumberger et al., 2008).
MTC comprises sporadic and autosomal dominantly inherited familial cases (Marx,

2005).

12



Familial MTC (FMTC) can present as isolated FMTC or associated to
pheochromocytoma, parathyroid adenoma and other tumors in the context of MEN2
(Multiple Endocrine Neoplasia type 2) syndromes A and B (MEN2A, MEN2B)

(Leboulleux et al., 2004; DeLellis, 2006).

2.1.1 Genetic lesions in thyroid tumors.

Familial occurrence of WDC has been described (Malchoff and Malchoff
2006; Sturgeon et al., 2005; Capezzone et al., 2008). Indeed, variants of TTF1
(NKX2-1) and TTF2 (FOXEI1) thyroid transcription factor genes have been
described in association with familial WDC (Gudmundsson et al., 2009). Moreover,
FNMTC (Familial non Medullary Thyroid Carcinoma) may occur in association with
hereditary cancer syndromes, such as FAP (Familial Adenomatous Polyposis),
Cowden disease, Carney complex and Werner syndrome. However, such familial
clustering (syndromic FNMTC) accounts only for a small fraction of WDC cases

(Malchoff and Malchoff 2006; Sturgeon et al., 2005; Capezzone et al., 2008).

Thyroid neoplasms are related to several risk factors, including reduced
iodine uptake, lymphocytic thyroiditis and hormonal factors (estrogens). Recently,
Antico-Arciuch and co-workers revealed a role for estrogens using a transgenic
model of thyroid carcinogenesis (Antico-Arciuch ef al., 2010). Radiation exposure is

an important exogenous risk factor able to cause thyroid carcinoma.

13



Indeed, after the Chernobyl nuclear disaster, PTC frequency markedly
increased in children exposed to radiations (Williams, 2002; Ciampi and Nikiforov,
2007). It is still unclear whether this particular occurrence in children was because
the thyroid is most susceptible to radiation-induced damage in childhood, because

children were exposed to contaminated milk or both. (Williams et al., 2002).

Ionizing-radiations associated PTCs have a high prevalence of RET/PTC
rearrangements (see also below) and recently this genetic lesion has been
mechanistically linked to radiation exposure. RET and H4 genes map in fragile
chromosomal (chr. 10) sites and therefore can undergo DNA double strand breaks
upon exposure to ionizing radiation. Moreover, in the interphase chromatin of
thyroid cells, H4 and RET genes frequently overlap. This spatial proximity facilitates
genetic recombination, giving rise to the H4-RET (RET/PTC1) oncoprotein
(Nikiforova et al., 2000). Propensity of thyrocytes to increase DNA end-joining
activity upon radiation-induced DNA damage may further allow RET/PTC
chromosomal rearrangements to occur (Yang ef al., 1997, Volpato et al., 2008;

Gandhi et al., 2010).

The genetic lesions associated to thyroid carcinomas can affect either proto-
oncogenes (gain-of-function mutations) or tumor suppressor genes (loss-of-function
mutations). These lesions are listed in Table 1 and described in the following

sections.

14



Table 1: Genetic defects in thyroid tumors.

) Genetic alterations in PTC

About 70% of PTC cases are associated to two types of genetic lesions: 1)
chromosomal rearrangements involving RET (RFEarranged during 7ransfection) and
NTRK1 (Neurotrophic Receptor-7yrosine Kinase 1) proto-oncogenes and ii) point
mutations in BRAF and RAS genes (Santoro et al., 1992; Garcia-Rostan et al., 2003;
Kimura et al., 2003; Soares et al., 2003; Nikiforova et al., 2003a; Nikiforova et al.,

2003b; Frattini ef al., 2004; Elisei et al., 2008a) (Table 1).
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The most common events are those affecting RET and BRAF. These genes
encode proteins that signal along the ERK (Extracellular signal-Regulated Kinase)
pathway and the genetic alterations targeting them result in constitutive ERK1/2
pathway activation. A schematic representation of ERK pathway is illustrated in

figure 2.

& Kinases
e.9. Src, PAK

&

receptor

membrane

Substrates in cytosol
and cytoskeleton

Substrates
innucleus SR A Gene transcription

SOOI
Figure 2: ERK signaling pathway.

After binding of a growth factor (GF) to its cognate TK receptor, a series of events
including activation of RAS, RAF and MEK culminate in the activation of ERK

kinases. Once in the nucleus, ERK activate several transcription factors.
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e RET

The RET proto-oncogene is located on chromosome 10q11.2 and encodes a
transmembrane receptor tyrosine kinase (RTK) with four cadherin-related motifs in
the extracellular domain (Santoro ef al., 2004). RET is normally expressed in the
developing central and peripheral nervous system and is an essential component of a
signaling pathway required for renal organogenesis and enteric neurogenesis. RET is
normally expressed at high levels in C-cells, but not in follicular cells (Santoro et al.,
2006). Glial cell line-derived neurotrophic factor (GDNF)-family ligands (Manié et
al., 2001; Ciampi and Nikiforov 2007) and GDNF-family receptor « (GFRa) bind
the extracellular domain of RET inducing its dimerization. This active form of RET
autophosphorylates specific tyrosine residues within its intracellular domain, which
function as binding sites for signaling molecules containing phosphotyrosine-binding
motifs (SH2 or PTB), thereby activating several signaling pathways (Santoro et al.,
2004; Santoro et al., 2006). Through phosphorylated Y1062, RET binds SHC and
FRS2, which recruit Grb2-SOS complexes leading to the activation of the RAS-
RAF-ERK cascade (Asai ef al., 1996; Melillo ef al., 2001). Through pY1062, RET is
also able to activate the phosphatidylinositol 3-kinase (PI3K)/AKT pathway

(Segouffin-Cariou and Billaud, 2000; Pelicci et al., 2002).

Gain-of-function mutations of RET are involved in sporadic MTC and
FMTC, including MEN2A and MEN2B. Conversely, PTCs are characterized by
chimeric oncoproteins, named RET/PTC, originating from the in-frame fusion of the
RET encoding tyrosine kinase domain and a 5’-terminal of different partner genes

(Tallini, 2002).

17



RET/PTC lacks RET signal peptide and transmembrane domains but retains
the kinase domain and most of the autophosphorylation sites, thereby allowing
downstream signaling (Ciampi and Nikiforov, 2007). By providing an active
transcriptional promoter, RET/PTC rearrangements enable thyroid expression of the

chimeric RET/PTC oncoproteins (Fusco et al., 1987; Grieco et al., 1990).

To date, more than 10 RET/PTC rearrangements have been described; the
most frequent are RET/PTC1, which involves RET and H4 genes (Fusco et al., 1987,
Grieco et al., 1990; Nikiforova et al., 2000) and RET/PTC3, between RET and RFG
(Ret-Fused Gene) (also named NCOA4, ELE1 or ARA70) (Santoro et al., 1994,
Borganzone ef al., 1994) (Fig. 3). These oncoproteins induce transformation and de-
differentiation of cultured thyroid cells (Santoro et al., 1993; De Vita et al., 1998),
and thyroid-targeted expression of RET/PTC1 or RET/PTC3 induces thyroid
neoplasms in mice (Santoro ef al., 1996). RET/PTC rearrangements are found in 20-
40% of PTC, with higher prevalence in classic form rather than in follicular variant
(Tallini, 2002). Their prevalence is significantly higher in young age patients and in

patients with a history of accidental or therapeutic radiation exposure.
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Figure 3: Most common RET/PTC rearrangements in papillary thyroid cancer.

Red arrow: breakpoint.

RET/PTC1 is more frequently associated with classic PTC and with the
diffuse sclerosing variant PTC; conversely, RET/PTC3 is more common in the solid
variant and in PTC associated to ionizing radiation exposure (Thomas et al., 1999).
Moreover, at a variance from BRAF (see below), RET/PTC it is not a negative
prognostic factor for PTC (Elisei et al., 2008a). The high frequency of RET/PTC
rearrangements in subclinical microcarcinomas is also consistent with the hypothesis
that RET/PTC rearrangements are early events in thyroid tumorigenesis (Fusco et al.,

2002).
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On the other hand, the low prevalence of expression of RET/PTC
oncoproteins in PDC and ATC suggests that they do not play a prominent role in
thyroid tumor progression (Santoro et al., 1992; Tallini et al., 2001). RET/PTC
signals along the ERK pathway (Knauf et al., 2003, Melillo et al., 2005, Mitsutake et
al., 2005), but other pathways, particularly the PI3K/AKT one, may contribute to its
biological effects as well (Pelicci ef al., 2002; Miyagi et al., 2004; Jung et al., 2005,

De Falco et al., 2005).

e NTRKI

Similar to RET, NTRK1, the high affinity receptor of NGF (Nerve Growth
Factor), undergoes oncogenic activation by chromosomal rearrangements in PTC
(Greco et al., 2004). At least three partner genes (TPR, TPM3 and TFG) are involved
in these rearrangements (Greco et al, 1993; Greco et al., 1995; Greco et al., 1997).
NTRKI rearrangements appear less prevalent than RET/PTC ones (Greco et al.,

2010) (Fig. 4).
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Figure 4: Most common TRK rearrangements in papillary thyroid cancer

(Image adapted from Greco ef al., 2010).

C: cystein-rich domain; L: leucine riche domain; Ig: immunoglobulin like domain;

TM: transmembrane domain; JM; juxtamembrane domain. Autophosphorylation (Y)

sites are also shown.

e BRAF

Together with ARAF and CRAF, the proto-oncogene BRAF (7q24) belongs

to the RAF serine-threonine kinase family that transduce regulatory signals through

intracellular effectors of the MAPK/ERK pathway (Fig. 2). Among the RAF family

members, BRAF has the highest basal kinase activity and is the most potent activator

of the MAPK pathway (Wellbrock et al., 2004). Activating point mutations within

the kinase domain of BRAF have been found in several tumor types, including

melanoma and colorectal cancer.
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The most common BRAF mutation in human cancer, including PTC (Xing et
al., 2007; Xing et al., 2010), is a transversion from a thymine to adenine at
nucleotide 1799 (T1799A), resulting in a substitution of glutamic acid for a valine at
residue 600 (V600OE) of the protein. Follicular variant PTC shows more often the
K601E mutation in BRAF. The in-frame VK600-1E deletion (BRAF V¥6*-1¢) hag
been identified in a solid variant of PTC (Xing, 2007). V600E and most other
mutations within the BRAF kinase domain target either the activation loop (V600) or
less frequently the ATP binding site (P loop). By disrupting the interactions between
the activation loop and the P loop, that hold the kinase in an inactive conformation,
these mutations cause BRAF constitutive activation (Wan et al., 2004). BRAF
mutation are found in 29-69% of early stage of PTC (Ugolini et al., 2007) but not in
FTC, and up to 13% of PDC and 35% of ATC (Nikiforova et al., 2003b). BRAF
mutations are highly prevalent in classic and tall-cell variant PTCs, but similar to
RET/PTC rearrangements, they are rarely found in the follicular variant PTC (Xing,
2007). Thyroid-specific BRAFV600E-transgenic mice develop tumors that quite
closely recapitulate the features of human PTC. These transgenic PTCs show
aggressive behavior and progress to PDC (Knauf et al., 2005). This suggests the
involvement of BRAF mutation not only in PTC initiation but also in progression to
PDC and ATC. Indeed, in human patients BRAF mutations correlate with aggressive
tumor behavior, tumor recurrence, decreased radioiodine concentration ability and
decreased survival (Namba et al., 2003; Kimura ef al., 2003; Xing et al., 2007,

Riesco-Eizaguirre ef al., 2006; Lupi ef al., 2007; Elisei et al., 2008a; Xing, 2010).
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For these reasons, BRAF and the downstream MEK kinase can be considered
as promising molecular targets for thyroid cancer treatment, in particular aggressive
PTC variants as well as ATC (Santoro et al., 2006; Schlumberger et al., 2009;

Sherman, 2009).

e RAS

RAS family members, namely HRAS, NRAS, KRAS, are small-GTPases
activating MAPK pathway (Fig. 2), frequently activated in human cancers. RAS
point mutations in codons 12, 13 and 61 are found in follicular variant PTC (Zhu et
al., 2003; De Lellis 2006, Kondo ef al., 2006) and in PDC and ATC cases (Table 1).
These evidences indicate that RAS play a role in tumor progression (Garcia-Rostan

et al., 2003; Volante et al., 2009).

e  Genetic alterations in FTC

FTC may develop through at least two different pathways, involving either
RAS or PPARG (Peroxisome Proliferator-Activated Receptor) genes (Table 1)
(Nikiforova et al., 2003b). PPARG is a member of the steroid nuclear-hormone-
receptor superfamily that forms heterodimers with retinoid X receptor. Almost 30%
of FTC cases present a PAX8-PPARy fusion protein (PPFP), due a balanced
translocation between thyroid-specific PAXS8 trnascription factor and the reading

frame of the PPARY gene (Eberhardt ez al., 2010) (Fig. 5).
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This event results in the fusion of the region encoding the DNA binding
domains of PAXS8 to the region encoding domains A-F of PPARy. The resulting
fusion oncoprotein acts as dominant-negative PPARy (Kroll ef al., 2000; Castro et
al., 2006). Recently Lui and co-workers have identified a new rearrangement
involving CREB3L2 and PPARY genes implicated in the pathogenesis of FTC (Lui et
al., 2008). Point mutations or gene amplification of PI3KCA have been reported in
few FTC cases as well (Garcia-Rostan et al., 2005; Liu et al., 2008). Moreover,
increased incidence of FTC has been observed in the context of Cowden disease,

caused by PTEN mutation (Liaw ef al., 1997).

PAX8

I
[T wmw | [o] [w8]

PAX8-PPARy (PPFP)

Variable PAX8 Carboxy Terminus4

AD1 || DBD | | LIGAND BINDING ‘ |ADZ|

PPARy
Figure 5: PPARG rearrangement in follicular thyroid cancer (Image modified
from Eberardt ez al., 2010).

DBD: DNA binding domain; OP: octapeptide motif; HD: homeobox domain; AD:

activation domain.
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e  Genetic alterations in PDC and ATC

PDC and ATC share genetic lesions with WDC, consistent with the
hypothesis of a multi-step model of thyroid carcinogenesis discussed below (Tallini,
2002; Nikiforov, 2004). They are charactherized by point mutations in RAS (Garcia-
Rostén et al., 2003; Volante et al., 2009), amplification or point mutation in PI3KCA
(Garcia-Rostén et al., 2005; Liu ef al., 2008). Moreover, approximately 70% of ATC
and a significant fraction of PDC show point mutations of TP53 (Nikiforov, 2004;
Kondo et al., 2006). Up-regulation of negative p53 regulators or of proteins fostering
p53 degradation can also negatively affect p53 function in ATC (Salvatore et al.,
2007). About 30% of ATC and PDC harbor the V60OE BRAF mutation, particularly
those samples with morphological evidence of pre-existing PTC (Nikiforova et al.,
2003; Soares et al., 2004; Begum et al., 2004). Another gene whose mutation has
been associated to ATC is B-catenin (CTNNB1) (Garcia-Rostan et al., 2001). This
cytoplasmic protein, encoded by the CTNNBI1 gene, plays an important role in E-
cadherin-mediated cell-cell adhesion and it is also an important intermediate in the
wingless (Wnt) signaling pathway. Point mutations in exon 3 of CTNNBI1 have been
reported in PDC and more frequently in ATC, but not in WDC (Garcia-Rostéan et al.,
2001; Miyake et al., 2001), suggesting that they might play a direct role in the

dedifferentiation and progression to ATC.
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e  Genetic alterations in MTC

As previously mentioned, MTC can occur either sporadically or as FMTC in
the context of autosomal dominant MEN 2 syndromes (MEN 2A, MEN 2B and
FMTC) (Manié et al., 2001; Marx, 2005; de Groot et al., 2006). RET point mutation
is so far the only genetic lesion consistenly associated to MTC (Fig. 6) (Elisei et al.,
2007; Elisei et al., 2008b; Schlumberger et al., 2008). In virtually all MEN2A cases,
mutations target extracellular cysteine residues in RET. In more than 90% of the
cases, MEN2B is caused by the Met918Thr intracellular substitution in the P+1 loop
of the kinase. FMTC is caused by mutations in the RET extracellular or kinase
domains. Sporadic MTC have somatic RET mutation, and up to 50% of the cases
harbor the Met918Thr in RET (Cote and Gagel 2003; Leboulleux et al., 2004; De
Groot et al., 2006) (Fig.6). Accordingly, RET kinase has emerged as a promising

molecular target for treatment of MTC (Santoro ef al., 2006).
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Figure 6: RET mutations in MTC (Image adapted From De Groot ef al., 2006).
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2.2 Loss-of-function genetic screening based on RNA interference.

RNA interference (iRNA) is a natural occurring mechanism controlling gene

expression at a post-trascriptional level first identified in C. elegans in 1998 (Fire et

al., 1998) (Fig. 7).
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Figure 7: Mechanism of RNA inteference (Image modified from Rutz and

Scheffold, 2004).

DsRNA: double-strand RNA; shRNA: short hairpin RNA; siRNA: small interfering
RNA. See text for details.



Short-hairpin RNAs (shRNAs) are duplexes of RNA, encoded by plasmids or
chemically synthesized and processed by the RNase IlI-like enzyme, DICER, into
siRNA, e.g. RNA duplexes of 21-25 nucleotides in length with dinucleotide 3'
overhangs. siRNAs are then incorporated into the RISC endoribonuclease (RNA-
induced silencing complex). A helicase within RISC unwinds duplex siRNA
allowing its antisense strand to bind a complementary mRNA. An RNase within
RISC degrades the target mRNA by cleavage, which results in silenced gene

expression and reduced protein production (Iorns et al., 2007) (Fig. 7).

In the last decade, RNAi has been developed as an efficient tool to obtain
gene expression silencing; several iRNA libraries covering the entire coding
transcriptome are available. iRNA libraries can be divided in two types: collections
of vector-based shRNA expression vectors and libraries of siRNAs. siRNA reagents
can be chemically syntesized or generated from cDNA by RNase III digestion (a
method konwn as “esiRNA”) (Yang et al., 2002; Kittler ef al., 2004). shRNA-based
libraries are used to obtain a stable gene silencing because shRNA vectors integrate
into genomic DNA; viceversa, libraries of siRNAs allow transient silencing of gene
expression because siRNAs do not integrate in the host genome. siRNA libraries are

currently used in two main formats, that are schematically described in figure 8.

In the arrayed screenings, cells are plated in multi-well plates already
containing siRNAs and each gene is targeted separately to determine the phenotype
of interest. Usually, the readout is cell viability (Fig. 8a). Alternatively, siRNAs
complexed with trasfection reagents are plated onto slides as iRNA cell-microarrays

and cells are trasfected directly on these arrays (Fig. 8b).
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A third approach is the use of pooled shRNA libraries with which to transfect
or infect cells, and then select for the phenotype of interest, such as resistance to a
drug. The target gene in surviving cells is reveled by PCR amplification and by
sequencing. A variant to this approach consists in the use of barcode screening: cells
are trasfected with a pooled shRNA library and then divided in two populations, one
treated with a selective agent (like a drug) and the other used as control. Each
shRNA vector and shRNA control carry a specific barcode labelled with different
fluorochromes; upon hybridization to a microarray containing a series of barcode-

specific probes, the sShRNA can be easily identified (Fig. 8c).

29



a Arrayed library screening

Synthetic siRNA e Plasmid Viral-
YAVAYAYA ( | expressing packaged
R N/ shRNA shRNA

l Transfect \ \Transfect Infect

S e s

Measure Luminescent Wound-healing Flucrescent Image cells
Phenotype = cell-viability assay reporter
in each well assay

b Cell microarray

gmpmpoosnaa N Plate cells o] @u (00 ﬁ@
30 0 B onto slides e o} LA AW
"':Egiil S56 E? = @ Qu F \Ifm‘\@
: . *s%a” - 2 N )
Image cells on array
1o detect phenotype
¢ Pooled library screening
Pools of shRNA plasmids PCR and sequence
— 1o identify shRNA
() A TTATCGT
-

I.«’ iy ‘ransfect /4

\ ) | ) N\ \

% Selection @
%

@ PCR and hybridize to
barcode microarray to

e ' ' ' ' identify shRMNA
{’} /Lfe-ct \ enrichment/depletion
$1e: B N
L

Figure 8: iRNA screening approachs (Image adapted from Iorns et al., 2007).

Pools of shRNA viruses



Transfection efficiency is generally quite high using siRNA libraries and
significant silencing of gene expression is observed after three or four days,
depending of experimental conditions; by contrast, the use shRNA-based libraries
requires time and is more expensive. Appropriate positive and negative controls are
necessary: negative controls should have no effect on gene silencing. For example,
using cell lines that express a fluorescent protein such as Green Fluorescent Protein
(GFP), together with a siRNA that targets GFP would provide an ideal negative
control for many screenings. The positive controls also provide an important
threshold to define the magnitude of change that is thought to have a meaningful

biological effect.

Thanks to the capability of the siRNA libraries to enable specific knock-down
of entire gene families, several high-throughput screenings have been performed to
identify new regulators of apoptosis and chemoresistance (MacKeigan et al., 2005),
cell motility (Collins et al., 2006), proteasome function (Paddison et al., 2004) and
mitotic progression (Moffat et al., 2006). RNAI screenings have been used to define
the role of protein kinases in different cancer types (Grueneberg et al., 2008;

Bommi-Reddy ef al., 2008; Baldwin et al., 2008).
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2.3 Therapeutic targeting of oncogenic receptor tyrosine kinases

2.3.1 Tyrosine kinases family.

The sequencing effort of the Human Genome Project revealed that up the
20% of the almost 32,000 annotated genes encode proteins involved in signal
transduction. Protein kinases of the human kinome are 518; approximately 90 are
tyrosine kinases; among them, 32 are non-receptor and 58 receptor tyrosine kinases
(RTKs), distributed in 20 subfamilies (Manning et al., 2002) (Fig. 9). Here we will

discuss about tyrosine kinases and particularly receptor tyrosine kinases.
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Figure 9: Receptor Tyrosine Kinase Families.

Some RTKSs are shown with their proteins domains. Some of the small molecule as

well as antibodies used to target these RTKSs in cancer are also shown.
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RTKSs have a prominent role in many cellular functions, from cell growth to
differentiation, migration, cytoskeleton rearrangement, apoptosis and cell cycle
progression. There are three many principles regulating RTKs functioning (Lemmon
et al., 2010). First, each cell type in the organisms expresses specific RTKs; second,
the activation of RTKs is closely dependent on specific ligand availability and
binding; third, signaling pathway involves intracellular target proteins activated

through tyrosine phosphorylation by a given RTK.

The overall structure of RTKs is evolutionarily conserved from nematode C.
elegans to humans. Each RTK is a transmembrane protein with three different

regions:

. NH;-terminal portion, containing a globular ligand-binding domain. This is
the distinctive feature in the RTKs and is composed of a various recognizable
sequence motifs; for example, Epidermal Growth Factor Receptor (EGFR) has two
cysteine-rich regions, while the Erythropoietin Producing-Hepatocellular carcinoma
cell receptor (EPH) subfamily has two fibronectin type III repeats, one cysteine-rich

region and Ig-like motif; RET has four cadherin-like domains (Fig. 9).

e short a helix membrane-spanning, consisting of a stretch of hydrophobic
residues that are followed by several basic residues that function as a stop-transfer

signal;

e a juxtamembrane region followed by a cytoplasmic catalytic domain. The
catalytic domain has a sequence of approximately 250 amino-acids highly conserved

both in tyrosine and in serine/threonine kinases.
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The catalytic domain is composed of two lobes: the N-terminal lobe contains
a B-sheet followed by an o-helix and is responsible for binding Mg** /ATP at the
motif GXGXXG. In the C-lobe, the sequence HRDLAARN forms the catalytic loop.

Between them, there is a cleft allowing Mg** /ATP binding.

Unlike normal cells, where RTKs activation is tightly regulated, tumor cells
often have a significant overexpression or mutation-dependent activation of RTKs.
For this reason RTKs and/or their downstream effectors could be key targets of new
specific anti-cancer drugs (Zhang et al., 2009). The first step in the signaling
activation pathway of RTKs is the ligand binding to the extracellular receptor

domain (Lemmon et al., 2010). Downstream events can be summarized as follows:

1. Receptor dimerization: even though early studies of RTKs have suggested as
simplest mechanism of receptor dimerization a “ligand-mediated” model, subsequent
studies provided important insights into additional mechanisms of receptor
dimerization. Apart the case of NTRK1 whose dimerization is realized in ligand-
mediated manner without any interaction between extracellular domains of each
receptor molecule, three other modes of dimerization are possible. Dimerization is
“receptor-mediated” when the ligand makes no direct contribution to the event. This
happens in EGFR family. A second possibility is ligand-mediated dimerization with
few receptor contacts, as for KIT receptor. Finally, a third possibility exemplified by
FGFR (Fibroblast Growth Factor Receptor), happens when receptor molecules
contact each other through the Ig-like domain D2 and the accessory molecules of

heparin and heparin-sulfate proteoglycans (HSPG) also interact with this domain.

34



2. Activation of Intracellular kinase domain: the activation of intracellular
catalytic domain is the crucial point of signaling transduction pathway. RTKSs
activation is regulated by an autoinhibition mechanism (Hubbard, 2004). Briefly, the
activation loop interacts directly with the active site of catalytic domain and blocks
access to protein substrates and ATP; thus, the tyrosine kinase domain is
autoinhibited by a cis-autoinhibitory interaction. After growth factor binding, a
specific tyrosine residue (“Y”) in the catalytic domain is phosphorylated by its
partner (“trans-phosphorylation”), eliminating cis-autoinhibition and allowing

tyrosine kinase domain to adopt the active state.

3. Activation of intracellular signaling pathway via target proteins recruitment.
Signaling by an activated RTK is mediated by phosphorylation or binding of
citoplasmic proteins that in turns activate downstream targets. There are three
mechanisms underlying activation of intracellular cascade mediated by RTKs. The
first involves enzymes directly phosphorylated by an activated RTK like PLCy,
RasGAP or Src kinases. The second involves proteins lacking an intrinsic catalytic
activity called “adaptors™ that serve as intermediates between activated RTK and
downstream molecules. These proteins contain Src somology 2 (SH2) or Protein
Tyrosine-Binding (PTB) domains that specifically bind to phosphotyrosine (Pawson,
2004). They can be recruited directly by receptor phosphotyrosines or indirectly by
binding to docking proteins phosphorylated by RTKs. Finally, some targets of RTKs
are structural proteins whose phosphorylation is responsible for the rapid membrane

and cytoskeletal rearrangement occurring after RTK activation.
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2.3.2 Receptor tyrosine kinases and cancer.

There are four main principles for oncogenic transformation of RTKSs

(Lemmon et al., 2010).

1. Retroviral transduction: in 1983, it was observed that the v-sis oncogene from
simian sarcoma virus originated by viral trasduction of the PDGF gene (Doolittle et
al., 1983; Waterfield ef al., 1983) and that its protein product (p285is) promoted cell

transformation by activating PDGFR in an autocrine loop.
2. Genomic rearrangement, as in the case of RET/PTC oncoproteins (Fig. 3).

3. Oncogenic mutations arising from point mutations, deletions or substitutions in

cytoplasmic or transmembrane tyrosine kinases. A good example is RET in MTC
(Fig. 6).

4. Gene amplification: an important example is the amplification of genes coding for

NewErbB2 and EGFR in breast and lung cancer, respectively.

2.3.3 Receptor tyrosine kinases as target for cancer therapy

The past two decades have wittnessed significant progress in understanding
cancer pathogenesis. Thus, actual efforts are focusing on development of anti-cancer
drugs that target proteins involved in carcinogenesis by which it will be possible to

kill tumor cells while sparing normal cells.
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Several drugs have been approved by the US Food and Drug Administration
(FDA) and European Authorities to treat cancers and other diseases caused by
activated RTKs (Fig. 9) (Zhang et al., 2009). These drugs fall in two groups: small-
molecules inhibitors targeting the ATP-binding site of the intracellular receptor
kinase domain (Shawver et al., 2002) and monoclonal antibodies that either interfere
with RTK activation or target RTK-expressing cells for destruction by the immune
system (Reichert and Valge-Archer, 2007). In most cases, tyrosine kinase inhibitors
target the ATP-binding site of protein kinases, thus inhibiting multiple kinases in
addition to their initially intended targeted (Zhang et al., 2009). Gleevec (Imatinib
mesylate) is the prototype of these compounds, acting as inhibitor of BCR-ABL
fusion protein in CML (Chronic Myeloid Leukemia), and of PDGF receptors o and 3
and c-KIT in GIST (Gastro-Intestinal Stromal 7umors). Gefitinib (Iressa) and
Erlotinib (Tarceva) are EGFR inhibitors used to treat non-small-cell lung cancer in
case of EGFR mutation, overexpression or both (Pao et al., 2004). Sunitinib (Sutent)
and Sorafenib block tyrosine kinase activity of several RTKs, such as KIT,
VEGFR2, PDGFR and RET and have been successfully applied to treat GIST and

renal cell carcinoma (Chow and Eckhardt, 2007).

Several compounds able to target the RET kinase including Sunitinib,
Sorafenib, Vandetanib and XI.-184 are in clinical studies in patients with thyroid

cancer (Santoro ef al., 2006; Schlumberger et al., 2009; Sherman, 2009) (Fig. 9).
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2.3.4 Acquired resistance to tyrosine kinase inhibitors.

There are two molecular mechanisms causing cancer resistance to TK drug
treatment. First, amplification or point mutation in the oncogenic protein Kinase.
Resistance to TK-targeted therapy was first identified in patients with advanced form
of CML resistant to Imatinib therapy and associated to several point mutations in
BCR-ABL (Zhang et al., 2009). Resistance to Gefitinib in patients with lung
adenocarcinoma is mediated by T790M mutation in EGFR (Bean et al., 2008;
Sharma et al., 2005). In this frame, “second-generation” inhibitors were developed to
overcome mutations that cause resistance to the first inhibitor. Second-generation
ABL kinase-inhibitors are successfully used in the treatment of CML cases bearing
BCR-ABL mutants resistant to Imatinib (Shah ef al., 2004). Similarly, in GIST with
acquired KIT mutations conferring resistance to Imatinib, Sutent (Sunitinib) has

shown significant activity (Demetri et al., 2009).

Alternatively, acquired resistance to an inhibitor may result from the
activation of alternative kinase(s) that rescue cancer cell proliferation; as an example
in breast cancer, resistance to ErbB2-targeted therapy can be mediated by
overexpression of MET receptor (Shattuck et al., 2008). In order to overtake this
mechanism of resistance, e.g. the kinase switch, it is necessary to identify the
compensating kinase(s) and to develop tools to inibit it(them); siRNA screen of the

kinome in cancer cells can be exploited to achieve this goal.
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2.4 EPH receptors and ephrins.

The largest group of RTK is made up of EPH family. In 1987 the first EPH
receptor was identified during a screening looking for new tyrosine kinases involved
in human cancer. The receptor was named EPH, after the Erythropoietin Producing
Hepatocellular carcinoma cell line from which its cDNA was cloned (Hirai et al.,
1987). Initially, all EPH were considered as orphan receptors because the absence of
ligands already known. The first ligand was identified in HUVEC cells (Human
Umbilical Vein Endothelial Cells) (Holzman et al., 1990) as a novel TNFa (7umor
Necrosis Factor-a)-inducible gene product and named ephrinAl; few years later it

was established ephrinA1l as a ligand of EphA2 (Bartley et al., 1994). To date, 16

EPH receptors are known in vertebrates, 14 of them in mammals (Gale et al., 1997).

Based on sequence homology of the extracellular domain and ability to
interact with a particular ephrin ligand, EPHs are classified in A and B types. The
ligands are named ephrins (Eph-receptor interacting proteins, shortly EFN) and
similarly are divided in two subclasses based on their structural features. Nine type-
A and five type-B receptors interact with ephrins-A and ephrins-B, respectively.
Binding between receptors and ligands of the same class is highly promiscuous
(Pasquale ef al., 2004); exceptions are EphA4 that binds ephrins-B, EphB2 that binds

ephrin-AS, and EphB4 that interact with ephrin-B2 only (Pasquale et al., 2004).

Type-A (ephrinAl to AS5) and type-B (ephrinB1 to B3) ephrins share a
conserved core sequence of approximately 125 amino acids, including four invariant
cysteine residues, probably corresponding to receptor binding domain. This core is
followed by a membrane anchor-domain, a GPI-anchor for A-ligands and a

transmembrane domain for B-ligands (Fig. 10).
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Similar to others RTK, EPHs have an extracellular portion with a ligand
binding domain, a cysteine rich-domain (that contains an EGF-like motif) and two
fibronectin-type III repeats. Cytoplasmic region has a typical juxtamembrane portion
with two invariant tyrosine residues (Y596 and Y602 of EphA4; Y604 and Y610 of
EphB2) that are embedded in highly conserved sequence motif of almost ten amino-
acids. These residues undergo autophosphorylation after receptor activation and are
crucial for activation of downstream interacting proteins. The tyrosine kinase domain
is followed by a COOH-terminal that includes a SAM (Sterile o Motif) and a PDZ

motif (PSD-95/-Disc large-Zona occludens tight junction protein) (Fig. 10).
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Figure 10: Structure of EPH receptors and their ligands with signaling
interactions.

Tyrosine (orange rings) or serine/threonine (yellow rings) phosphorylation and
downstream interactors with SH2, SAM and PDZ domains are shown. The MSP
(Major Sperm Protein) is another EPH ligand that can compete with ephrins for
binding. Ephrin-B also mediate a “reverse” signaling through interactors containing
SH2, SAM and PDZ domains. Phosphate groups are removed from tyrosines by

phosphatases that prevent continuous receptor activation (Pasquale, 2005).



EphA10 and EphB6 lack residues for catalytic activity, indicating that these
two receptors might not function as kinases and phosphorylate cytoplasmic target

proteins (Murai ef al., 2003).

Given that both EPH receptors and ephrins are membrane-bound, their
interaction occurs only at sites of cell-cell contact. In the absence of interaction, they
exist in loosely associated microdomains, which become more compact and well-
ordered when EPH-ephrin complexes assemble to generate clearly defined signaling
centers (Pasquale, 2005). Otherwise the majority of cell surface receptor-mediated
signal trasduction systems, EPHs and ephrins send information bidirectionally, that
is: activated EPH transduces a “forward” signal into the receptor-bearing cell,
whereas, at the same time, ephrin activates a “reverse” signal into the ephrin-

expressing cell (Gale et al., 1996).

EPHs are involved in a wide range of biological functions, both in developing
and mature structures and are strongly expressed in nervous system where they
provide paths for axon guidance (Canty et al., 2006; Coulthard et al., 2002; Dottori
et al., 1998), regional migration of neural crest cells (Krull et al., 1997), glioma cell
proliferation (Fukai et al., 2008) and development of neuromuscolar junctions (Lai et
al., 2001). Moreover, during synaptogenesis EPHs help establish (Dalva et al., 2000)
and modify the postsynaptic specialization (Ethell ef al., 2001) by trasmitting signals
to the actin cytoskeleton through the Rho-family of small GTPases (Irie and
Yamaguchi, 2002). EPHs and ephrins also play an important role in the organization
and function of non-neural tissue; as an example, both EphBs and EphAs and their
ligands are widely expressed in the arterial and venous endothelium and between

endothelial cells and the surrounding mesenchyme (Kuijper et al., 2007).
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2.4.1 Mechanisms of EPH-ephrin signaling.

The first step of EPH signaling is the monovalent interaction between a
receptor and a ligand on juxtaposed cells, inducing conformational rearrangement in
both of them. In addition to the high-affinity binding site, the receptor and the ligand
have also a low-affinity binding interface which can mediate the dimerization of two
EPHs-ephrins dimers, leading to a tetrameric structure formation. EPH-ephrins
complexes progressively aggregate into larger clusters the size of which depends of
their density on cell surface. After interaction, specific tyrosine residues in each EPH
kinase domain undergo trans-phosphorylation (Binns ef al., 2000; Huse and Kuriyan,
2002), promoting kinase activity by disrupting intramolecular inhibitory interactions
that occur between the juxtamembrane segment and kinase domain, converting it into

its active state.

2.4.2 Forward signaling.

EPH class-A receptors signal through Rho-family small GTPases (Rho, Rac
and Cdc42), regulating actin dynamics (Hiramoto-Yamaki er al., 2010) (Fig. 11,
left), whereas class-B receptors interact with Cdc42 through Intersectin (Irie and
Yamaguchi, 2002) and Kalirin (Penzes ef al., 2003) (Fig.11, right). Ras family
activity is negatively regulated by EPHs (Pratt and Kinch, 2002). EPHs can also
influence other signaling pathways, such as FAK (Focal 4dhesion Kinase) in the
case of EphAs (Miao et al., 2000), and LMW-PTP (Low-Molecular Weight

phosphotyrosine phosphatase) in the case of EphBs (Fig. 11).
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Figure 11: Forward and reverse signals downstream of the Eph-ephrin

complexes (Murai et al., 2003).

2.4.3 Reverse signaling.

The first study suggesting the existence of reverse signaling dates middle
1990s (Brambilla ef al., 1995). Ephrin-B transmit a reverse signal trough Grb4, Src
family kinases (Holland ef al., 1997; Palmer ef al., 2002) and PDZ-RGS3 (Lu et al.,
2001). Since ephrins-A are membrane-bound through GPI-anchor, they activate
reverse signaling recruiting Src family members like Fyn and a 120 KDa lipid raft
protein (Davy et al., 1999; Huai and Drescher, 2001) to the lipid rafts. EphrinA-
mediated reverse signaling is regulated by Adam10 metalloprotease (Janes et al.,
2005), which cleaves the ligand from cell surface. This cleavage has a dual function:
first, it allows the EPH-bearing cell to change its response to ligand and secondly it

allows to terminate both reverse and forward signaling.
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2.4.4 EPHs as potential therapeutic target.

In several human cancers, EPHs are overexpressed or functionally active.
EphA2 overexpression is associated to poor prognosis in many cancers (Ireton et al.,
2005; Landen ef al., 2005; Wyosky and Debinski, 2008). However, it should be also
mentioned that in other cases EPH seem to undergo loss-of-function. EphA2, EphA8
and EphB2 are clustered in 1p36, that frequently undergoes to LOH in neural crest
tumors (Sulman et al., 1997). EphAl and EphB2 are downregulated in advanced
colorectal cancer (Herath et al., 2010), EphA3 is downregulated in leukemias and
hematopoietic tumor cells (Dottori et al., 1999) and EphA7 in prostatic, gastric and
colorectal cancer (Guan ef al., 2009). However, since in most of the cases a gain of
EPH function has been found in cancer, several therapeutics possibilities have been
developed to inhibit EPH. EPH competitors, as XL67 (orally available EGFR and
VEGFR inhibitor targeting also EphB4), are being evaluated in clinical trials for lung
cancer. Antibodies, decoy receptors, oligonucleotides and siRNAs are used to induce
EphA2 and EphA4 mRNA or protein downregulation (Carles-Kinch et al., 2002,

Duxbury et al., 2004; Landen et al., 2005).

Recently, two 2,5-dimethylpyrrolyl benzoic acid derivatives have been
identified as selective inhibitors of EphA2 and EphA4 (Noberini et al., 2008). These
two compounds block receptor-efn binding and may be promising leads to treat

cancers caused by dysregulation of EphA2 and EphA4 function.
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3. AIM OF THE STUDY

The aim of this study was to identify new kinases regulating thyroid cancer cell

proliferation. The specific aims were as follows:

1)  To identify through a RNA interference-based screening new kinases whose

knock-down significantly affect thyroid cancer cell viability.
2)  To validate these hits by an independent set of siRNA.

3) To perform functional assays in order to clarify the role of the identified

kinases in controlling proliferation of thyroid cancer cells.

4)  To study the role exerted by members of EPH family in thyroid cancer cells.

45



4. MATERIALS AND METHODS

4.1 siRNA-based screening of the human kinome.

The primary screening was performed with the human kinome siRNA set v 2.0
(Qiagen) in a 384-well microtiter plate format. Each well contained a specific siRNA
targeting one of 646 distinct genes (518 protein kinases and 128 kinase-related
genes). Two siRNAs for each target were used. For high-throughput transfection, 5
pl of 2 micromolar siRNA (10 pmol) were transferred from the stock plate using a
robotic liquid handler (ThermoLabsystems). Transfection solution was prepared with
0.2 ul of HyPerfect® Transfection reagent (Qiagen) diluted in 10 pl of Optimem
medium (Invitrogen). Following 10 minutes of incubation, the transfection mix was
delivered to each well with a MultiDrop dispenser (ThermoLabsystems) and
incubated at room temperature for 1 hour. All wells were then seeded with 1,000
TPC1 cells/well in a volume of 100 pl taken from a single-cell suspension in DMEM
(Dulbecco’s modified Fagle’s medium) medium (Invitrogen) and 2.5% FBS (fetal

bovine serum) without antibiotics.

4.2 Cell Viability measurement.

Seventy-two hours after transfection, Cell Titer Blue reagent (CellTiter® Blue
Assay, Promega) diluted 1:1 in cell culture medium was added to each well. Plates
were incubated at 37 °C for 6 hours with 5% CO, and then transfered to room

temperature for overnight incubation, at dark.
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Cell viability was measured with an EnVision Multilabel plate reader (Perkin Elmer).
Transfection efficency was previously tested by using the GAPDH Alert kit

(Ambion) according to the manifacturer’s protocol.

4.3 Cell lines.

Human primary cultures of normal thyroid cells (P5) were obtained from F. Curcio
and cultured as previously described (Curcio et al., 1994). Human papillary (TPC1,
BCPAP, NIM) and anaplastic (BHT101, OCUT1, CAL62, 8505C, SW1736) thyroid
cancer cell lines have been described previously (Salerno et al., 2010). All the cells
were SNP genotyped to ensure correct identity. NTHY (Nthy-ori 3-1) are normal
human thyrocytes immortalized by the Large T of SV40 and were obtained from the
European Tissue Culture collection. NTHY and tumor cell lines were grown in the
DMEM medium supplemented with either 2.5% or 10% FBS, L-glutamine and

penicillin/streptomycin (all reagents were from Sigma, Munich, Germany).

4.4 Tissue Samples.

A small set of PTC, ATC and normal thyroid tissue samples snap-frozen in liquid
nitrogen and maintained at -80°C has been made available by F. Basolo (University
of Pisa, Italy). For all of them, formalin-fixed paraffin-embedded tissue slides were
reviewed by 2 pathologists (F. Basolo; C. Ugolini) to ensure diagnosis (Hedinger et
al., 1989). RNA was extracted with the RNeasy mini kit (Qiagen) according to the

manifacturer’s instructions.
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4.5 Quantitative RT-PCR.

For evaluation of mRNA expression levels, cell lines were grown to 70% confluency
in DMEM with 10% FBS, and then total RNA was extracted with RNeasy mini kit
(Qiagen) and subjected to on-column DNase digestion with the RNase-free DNase
set (Qiagen) according to the manufacturer’s instructions. Random-primed first
strand cDNA was synthesized in a 50 pl reaction volume starting from 2 pg RNA by
using the GeneAmp RNA PCR Core Kit (Applied Biosystems). PCR amplification
was performed using the GeneAmp RNA PCR Core Kit system starting from 2.5 pl
of RT product in a reaction volume of 25 pl according to the manufacturer’s
instructions. Primers were designed by using a software available at http:/www-

genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi and synthesized by the

CEINGE (Naples, Italy). Quantitative (real-time) reverse transcription polymerase
chain reactions (QRT-PCR) were performed by using the SYBR Green PCR Master
mix (Applied Biosystems) in the iCycler apparatus (Bio-Rad). Amplification
reactions (25ul final reaction volume) contained 200 nM of each primer, 3 mM
MgCly, 300 uM dNTPs, 1x SYBR Green PCR buffer, 0.1U/ul AmpliTaq Gold DNA
Polymerase, 0.01U/ul Amp Erase, RNase-free water, and 2 pl cDNA samples. To
verify the absence of non-specific products, 80 cycles of melting (55°C for 10 sec)
were performed. In all cases, the melting curve confirmed that a single product was
generated. Amplification was monitored by measuring the increase in fluorescence
caused by the SYBR-Green binding to double-stranded DNA. Fluorescent threshold
values were measured in triplicate and fold changes were calculated by the AACt
formula; 27ample 1 ACt - sample 2 AC) * whore ACt is the difference between the cycle
threshold (Ct) of the mRNA of interest and the Ct of the f-actin mRNA used as

housekeeping gene.
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4.6 Protein studies.

Harvested cells were lysed in lysis buffer (50 mM HEPES pH 7.5, 150 mM NaCl,
10% glycerol, 1% Triton X-100, 1 mM EGTA, 1.5 mM MgCI2, 10 mM NaF, 10 mM
sodium pyrophosphate, 1 mM sodium orthovanadate, 10 pg/ml aprotinin, 10 pg/ml
leupeptin) and clarified by centrifugation at 10,000Xg at 4°C. Protein concentration

was estimated with a moditied Bradford assay (Bio-Rad Laboratories).

4.7 Human Phospho-RTK arrays.

The relative levels of tyrosine phosphorylation of receptor tyrosine kinases (RTKs)
were evaluated with a Human Phospho-RTK array kit (R&D Systems, Inc.). Briefly,
harvested cells were lysed in NP-40 lysis buffer (1% NP-40, 20 mM Tris-HCI pH 8,
137 mM NacCl, 10% Glycerol, 2 mM EDTA, 1 mM Sodium Orthovanadate, 10
pg/ml Aprotinin, 10 pg/ml Leupeptin) and centrifuged at 14,000Xg for 5 minutes at
4°C. For each array, 500 pg of lysate were used. Each array contained 42 different
anti-RTK antibodies and six controls printed in duplicate. Non specific binding was
blocked for 1 hour at room temperature on a rocking platform shaker. The lysates
were diluted in Array Buffer 1 (provided with the kit) and added to each array for
overnight incubation at 4°C. Freshly diluted detection antibody was added to the
arrays for 2 hours of room temperature incubation. Phosphorylation levels were

detected by chemiluminescence (ECL; Amersham Biosciences).
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4.8 BrdU Assay.

BrdU (5-bromo-2-deoxyuridine) incorporation assay was performed by using the
Cell Proliferation ELISA-BrdU chemiluminescent Kit (Roche Applied Science).
Transfected cells were labeled with BrdU, then fixed and incubated with anti-BrdU-
Peroxidase solution. Finally, each sample was incubated with a buffered solution
containing luminol and BrdU incorporation was quantified by measuring light

emission with a microplate luminometer with photomultiplier technology.

4.9 Apoptosis Assay.

The Apo-ONE® Homogeneous Caspase-3 Assay (Promega) was performed in
thyroid cancer cell lines upon siRNA transfection. Blank, positive and negative
controls were performed as well. Apo-ONE® Homogeneous Caspase-3 Reagent was
added 1:1 to cell culture volume. The fluorescence values were measured with an
EnVision Multilabel plate reader (Perkin Elmer), proportionally to the amount of

caspase-3/7 cleavage activity in each sample.

4.10 Chemoinvasion Assay.

In vitro invasiveness through Matrigel was assayed using transwell cell culture
chambers. Briefly, confluent cell monolayers were harvested with trypsin/EDTA and

centrifuged at 800Xg for 10 minutes.
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The cell suspension (1X10° cells/well) was added to the upper chamber of transwells
on pre-hydrated polycarbonate membrane filter of 8 uM pore size (Costar) coated
with 35ug Matrigel (Collaborative Research Inc.). The lower chamber was filled
with complete medium. Cell dishes were incubated at 37 °C in 5% CO, and 95% air
for 24 hours. Non-migrating cells on the upper side of the filter were wiped off and
migrating cells on the reverse side of the filter were stained with 0.1% crystal violet

in 20% methanol for 15 minutes, counted and photographed.

4.11 Wound Healing Assay.

A wound was induced on the confluent monolayer cells by scraping a gap using a
micropipette tip. Photograps were taken at 100X magnification using phase-contrast

microscopy immediately after wound incision and 12 hours later.

4.12 Statistical analysis.

The raw data of the siRNA screen were normalized and analyzed with the

R/Bioconductor software (Gentleman et al. 2004).
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S. RESULTS

5.1 High-throughput identification of human kinases required for

TPC1 cells viability.

We designed a functional RNAi-based screening using the human papillary
carcinoma cell line, TPC1, harboring the RET/PTC1 rearrangement (Schweppe et
al., 2008). A commercial siRNA library containing 646 synthetic siRNAs targeting
all human protein kinases (518) and some kinases-related and associated proteins
was used. To reduce the off-target activity of siRNAs, the library has been designed
to contain multiple (at least 2) independent duplexes targeting the same transcript. To
monitor transfection efficiency, each plate contained also siRNAs targeting genes
that are common positive regulators of proliferation of every mammalian cell type
(e.g. polo like kinase 1, PLK1). Negative control siRNAs, targeting glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), green fluorescent proteine (GFP) and

scrambled non targeting sequences, were also used (Fig. 12).
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Figure 12: Kinome screen plate map.

Positions of controls and test wells used for primary screen assay are shown.

5.2 Identification of primary hits.

Initially, transfection conditions for TPC1 cells were set up by using the GAPDH
Alert kit (Ambion). Subsequently, the screening was performed in duplicate.
Seventy-two hours after transfection, a CellTiter blu assay was performed to stain
viable TPCI1 cells in order to identify genes (coding for kinases and related proteins,

hereafter referred to as “hits”) whose silencing affected TPC1 cell viability.
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Primary hits were defined as genes that, when silenced, reduced cell viability
by at least 30%. Hits that did not confirm in both duplicates were excluded from
further analysis. Down-regulation of approximately 6% of the kinome library (41
hits) resulted in reduced TPC1 cell viability. A secondary validation screen was then
performed with an independent set of two additional different siRNAs targeting a
distinct mRNA region of the highest ranked 41 hits. Twenty-one hits were confirmed
(e.g. caused at least 30% reduction of cell viability) and were further studied. Figure

13 shows the flow-chart of the screening.

646 screened genes

A 4
41 down hits

A 4
validation with two independent

siRNAs in TPC1 cells
b

\ 4

confirmation of 21 genes validated in
other cells lines

Figure 13: Flow chart of the kinome siRNA screening in TPC1 cells.

Table 2 summarizes the list of the 21 hits. They included expected candidates, like
cell cycle kinases (STK33) and signaling kinases (FYN and AKT2), together with
some new kinases that have not previously associated to thyroid carcinogenesis

(Table 2).
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Symbol Full name Subgrup GenbankID siRNA1 | siRNA2

AKAP9 A kinase (PRKA) anchor protein 9 KAP NM_005751

AKT2 v-akt murine thymoma viral oncogene homolog 2 AGC NM_001626

EPHA2 EPH receptor A2 TK NM_004431

EPHA4 EPH receptor A4 TK NM_004438

EPHAS EPH receptor A5 TK NM_004439

EPHA7 EPH receptor A7 TK NM_004440

EPHB2 EPH receptor B2 TK NM_017449

EPHB6 EPH receptor B6 TK NM_004445

FYN FYN oncogene related to SRC, FGR, YES TK NM_002037

GRK4 G protein-coupled receptor kinase 4 other NM_182982

HCK hemopoietic cell kinase TK NM_002110

LIMK1 LIM domain kinase 1 TKL NM_002314

MAP3K6 mitogen-activated protein kinase kinase kinase 6 STE NM_004672

MAP3K7IP1 mitogen-activated protein kinase kinase kinase 7 interacting protein 1 KAP NM_006116

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1 STE NM_007181

MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 STE NM_004759

PKN1 protein kinase N1 AGC NM_002741

PRKD2 protein kinase D2 CAMK NM_016457

RPS6KA6 ribosomal protein S6 kinase, 90kDa, polypeptide 6 AGC NM_014496

SMG1 PI-3-kinase-related kinase SMG-1 atypical NM_001896

STK33 serine/threonine kinase 33 CAMK NM_030906

Table 2: Genes whose silencing reduces TPC1 cell viability.

A color scale is reported to show the intensity of the effects.

The down-regulation efficiency of the target transcript, by the two additional
siRNA used for the validation screen, was determined by quantitative RT-PCR. A
scrambled control and non-transfected cells were used as reference. As shown in
Figure 14, in TPC1 cells all 21 hits were significantly depleted by their cognate

siRNAs, with the exception of only few poorly efficient siRNAs.
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Figure 14: siRNA-mediated silencing of the 21 hits.

TPC1 were transiently transfected with the two different siRNA against the 21
identified hits. After 72 hours, RNA was extracted and mRNA expression levels
were measured by Q-RT-PCR. Results are reported as fold reduction in comparison

to the scrambled control.
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5.3 Confirmation screen.

We asked whether the 21 identified hits were involved in the viability of
thyroid cancer cell lines other than TPCI1. To assess this point, we performed a
confirmation screen by transfecting the two siRNA of the library in three additional
thyroid cancer cell lines (BCPAP, 8505C, Cal62) (Schweppe et al., 2008). Table 3
summarizes the genetic features of the thyroid cell lines used in this and in next

experiments.

Name Type Oncogene P53 Other mutations

NIM PTC BRAF V600E (heteroz) — —
TPC1 PTC RET/PTCI — —
BCPAP PTC BRAF V600E (heteroz) D259Y

CAL62 ATC KRAS GI12R Al161D Del157p14ARF
BHT101 ATC BRAF V600E (heteroz) 1251T

8505C ATC BRAF V600E (homoz) R248G Del1-150 p14ARF
SW ATC BRAF V600E (heteroz) Low expression —

1736

OCUT-1 ATC BRAF V600E (heteroz) — —

Table 3: Genetic characteristics of thyroid cancer cell lines used in the study.

BCPAP is a PTC cell line harboring the BRAF V600E mutation; 8505C and Cal62
are ATC cell lines harboring the BRAF V600E and the KRAS GI12R mutations,
respectively (Schweppe et al., 2008). Of note, BCPAP, Cal62 and 8505C harbor also
P53 mutations (Schweppe ef al., 2008). Importantly, in our laboratory all these cell

lines were SNP genotyped to ensure their identity (Salerno ef al., 2010).
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We also asked whether the 21 hits were necessary for the viability of normal
thyroid cells. To this aim, we used two normal thyroid cell lines (NTHY and P5). P5
is a primary culture of normal human thyrocytes (Curcio et al., 1994), while NTHY

(Nthy-ori 3-1) are normal human thyrocytes immortalized by the Large T of SV40.

A siRNA transfection experiment was performed on these additional 5 cell lines and
results are listed in Table 4. Virtually, all the siRNAs reduced the viability of at least
one of the thyroid cancer cell lines, while they had no effect on normal cells. The

only notable exception was STK33 kinase that reduced the viability of normal cells,

as well.
TPC1 BCPAP 8505C CAL62 NTHY P5
AKAP9 + + + + - =
AKT2 ++ + ++ + - -
EPHA2 ++ + + + ) )
EPHA4 + + + + - )
EPHAS + + ) : : -
EPHA7 + + + + - -
EPHB2 + + + + - )
EPHB6 ++ + ++ + - -
FYN + + + + - =
GRK4 ++ + ++ + - -
HCK ++ ++ - - - -
LIMK1 + - = . .
MAP3K6 + = = . = =
MAP3K7IP1 |+ ++ - - - .
MAP4K1 ++ + + + = .
MAPAPK?2 + + + + - )
PKN1 ++ + . = = =
PRKD2 + + . 5 . -
RPSG6KAG + + + + . )
SMG1 ++ + ++ + - -
STK33 ++ ++ + + + +

Table 4: siRNA that reduce viability of the various thyroid cell lines.

++: >50% cell viability inhibition; +: 30-50 % cell viability inhibition; -: < 30%
inhibithion.
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In particular, we could identify some hits (LIMK1 and MAP3K6) that were
important for cell viability of TPCI1 cells only, suggesting their effect might be
probably linked to the presence of RET/PTC1. Moreover, other hits, namely EPHAS,
HCK, MAP3K7IP1, PKN1 and PRKD2 were required for the viability only of PTC

cells (TPC1 and BCPAP), but not ATC cells (8505 and CAL62).

5.4 Biological effects of the 21 hits knock-down in thyroid cells.

To better characterize the biological effect of the knock-down of the 21 hits
in thyroid cells, we performed cell count and DNA synthesis measurement (BrdU
assay) for cell proliferation as well as caspase-3 cleavage assay for cell apoptosis
detection upon siRNA transfection. We used TPC1, BCPAP and NTHY cells.
Transfection of siRNAs against all of the 21 hits decreased number of TPC1 cells on
average by 40-50% (Fig. 15). Moreover, all of the 21 siRNAs decreased BrdU
incorporation on average by 30-40% in the TPC1 and by 20-30% in BCPAP but not
in normal cell lines. Only STK33 resulted essential for both cancer and normal cells
(Figs. 16-17). No significant cytotoxic effect (measured as caspase 3 cleavage) was
observed, with the notable exception of STK33 siRNA that had cytostatic and

cytotoxic effects in all the cells (cancer and normal) (data not shown).
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Figure 15: Cell Count of TPC1 cells upon siRNA transfection.
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The two different siRNAs against the 21 hits were transiently transfected in triplicate

in TPC1 cells. Cells were counted after 72 hours; untransfected and scrambled

siRNA transfected cells were used as controls.
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Figure 16: BrdU incorporation measurement upon siRNA transfection.

Cells were transiently transfected with the two siRNAs targeting the 21 hits. After 72
hours, cells incorporating BrdU were counted in triplicate by indirect
immunofluorescence. Data are reported as percentage of decrease in BrdU

incorporation in comparison to scrambled control.
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Figure 17: BrdU incorporation measurement upon siRNA transfection.

NTHY cells were transiently transfected with the two siRNAs targeting the 21 hits.
After 72 hours, cells incorporating BrdU were counted in triplicate by indirect

immunofluorescence. Data are reported as percentage of decrease in BrdU

incorporation in comparison to scrambled control.
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5.5 Identification of EPH receptor tyrosine kinases as essential

mediators of thyroid cancer cell viability.

Among the identified hits, we focused our attention on ephrin receptors
(EPH). Six EPH belonging to the A (EPHA2, EPHA4, EPHAS, EPHA7) and B
(EPHB2 and EPHB6) families, were among the most prominent hits in our primary
screening. EPH receptors bind to either transmembrane (ephrins B for EPHB) or
GPI-linked (ephrins A for EPHA) ligands and mediate signaling in a paracrine and
autocrine manner (Pasquale, 2010). Recent evidences suggest strong involvement of
EPH/EFN in tumorigenesis and correlate their expression levels to invasiveness,

metastatization and reduced patient survival rate (Pasquale, 2010).

We initially tested by quantitative RT-PCR whether EPH were differently
expressed in cancer comparing to normal thyroid cells. By using a large panel of
thyroid cancer cell lines of different histotype and genotype (Table 3), we
demonstrated that four (EPHA2, EPHA4, EPHA7 and EPHB2) of the six EPH
identified as hits, although with some variability, were over-expressed in most the

neoplastic cells comparing to normal P5 cells (Fig. 18).
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Figure 18: mRNA expression levels of EPH identified as hits in thyroid cancer

versus normal cells.

Because EPH are tyrosine kinases, we evaluated their phosphorylation levels
in cancer cells as compared to normal cells. To this aim, we used a commercial
phospho-tyrosine kinase receptors antibody array that allows to monitor
simultaneously the phosphorylation levels of all human RTK. As shown in figure
19, in TPC1, but not in normal NTHY cells, EPHA2, EPHA4 and EPHB2 were

among the most prominently phosphorylated spots.
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Figure 19: Phosphoantibody array probed with TPC1 and NTHY cell lysates.
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5.6 EPHA2, EPHA4 and EPHB2 mediate motile and invasive

phenotype of thyroid cancer cells.

We examined EPHA2, EPHA4 and EPHB2 role in cell migration by a wound
healing assay. This was done by monitoring cell migration into a “wound” that is
created in the cell monolayer in the culture dish. As shown in figure 20, upon
silencing of EPHA2, EPHA4 or EPHB2, TPC1 cells showed a greatly impaired

ability to close the wound at 12 hours.
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Figure 20: Impaired wound closure in TPC1 cells upon EPH silencing.

Scrambled siRNA and EPH siRNA transfected TPC1 cells were grown in
monolayer. A wound was created and cell migration was monitored after 12 hours.

The dotted lines define the area lacking cells.
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We also examined in vitro cell invasion through a Matrigel reconstituted matrix. As
shown in figure 21, EPHA2, EPHA4 and EPHB2 siRNAs strongly inhibited TPC1

cell migration into Matrigel.

si scrambled si EPHA2

Figure 21: Matrigel invasion of scrambled siRNA and EPH siRNA transfected
TPC1 cells.
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5.7 EPH expression in human thyroid tumors.

Finally, we investigated by Q-RT-PCR mRNA expression levels of EPH in a
small set of thyroid carcinomas of different histotypes. As shown in figure 22,
EPHA2, EPHA4 and EPHB2 were over-expressed in PTC and ATC samples with
respect to normal thyroid tissues. EPHA2 was the most prominently overexpressed,

while EPHA4 and EPHB2 were overexpressed in the majority albeit not all tumor

samples.
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Figure 22: Expression of EPHA2, EPHA4 and EPHB2 in thyroid tumor

samples.

RNA was extracted from 6 normal thyroids, 6 PTC and 6 ATC samples and
subjected to a Q-RT-PCR in triplicate to check the expression of the indicated EPH.
Results are reported as fold change with respect to the average expression levels of

the normal tissues.
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6. DISCUSSION

6.1 Results of the screening.

Elucidation of the complex signaling pathways governing cancer cell growth
and survival has allowed the rational design of targeted inhibitors. Still, a major
challenge is that of determining which target to inhibit in each cancer type. Most of
the genetic lesions causing the various types of thyroid cancer are known. PTC is
associated to RET and BRAF gain, FTC to RAS, MTC to RET and PDC and ATC to
RAS, BRAF, CTNNBI1 and PI3K (Kondo et al., 2006). All these lesions are
susceptible of pharmacological intervention and this makes thyroid cancer a good
model whereby to exploit molecularly targeted cancer treatments (Santoro et al.,
2006; Sherman, 2009). However, while RET and BRAF inhibitors are in advanced
clinical experimentation (Wells et al., 2009; Pratilas et al., 2010) and many
PI3K/AKT inhibitors are progressing rapidly into the clinics (Engelman et al., 2007),
targeting other oncoproteins like RAS proved to be a very difficult task (Bommi-

Reddy et al., 2010).

Cancer cells can be addicted to the genetic lesions that have initiated the
transformation process (“oncogene addiction™) (Luo et al., 2009). Examples are
BCR-ABL in CML (Sawyers, 2010), EGFR in NSCLC (non-small-cell /ung cancer)
(Ciardiello et al., 2008), KIT in GIST (Antonescu, 2010) and BRAF in melanoma
(Vultur et al., 2010). However, cancer cells can also be addicted to proteins that,

though non mutated per se, still are crucial for cancer (but not normal) cell viability.
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This phenomenon has been called “non-oncogene addiction” (Luo et al.,
2009). Thus, as an example, RAS mutated cancer cells can in principle be eradicated
by identifying proteins (other than RAS) to which they are addicted to. The
identification of such Achilles’ heels remains a formidable challenge. Moreover, also
in those cases in which cancer-causing oncoprotein can be effectively targeted (for
example BCR-ABL in CML), resistance may develop. In some cases, the resistance
is mediated by secondary mutations in the oncoprotein that impair drug binding; in
other cases, resistance is caused by the activation of alternative pathways with which

cancer cells escape the treatment (Gramza ef al., 2009; Milojkovic ef al., 2009).

RNAI technology has provided a powerful approach to tackle these tasks,
because it allows to search for proteins to which cancer cells are addicted to or that
mediate cancer cell resistance (Luo et al., 2009). In this Dissertation, we applied a
RNAi-based screen to identify protein kinases to which thyroid cancer cells are
addicted to. We focused on protein kinases (and associated proteins) because of their
frequent involvement in human cancer (in thyroid cancer in particular) and because
of their “druggability”. Initially, we conducted the screening in the TPC1 cell line,
expressing the RET/PTCI1 rearrangement. Then, we extended the study to other
thyroid cancer cell lines bearing BRAF or RAS oncogenes. At the end, we have
identified a set of 21 genes that, when silenced, impaired the viability of the various
thyroid cancer cells. Importantly, sensitivity to knock-down of these 21 genes was
not cell line-specific and, therefore, not oncogene-specific (RET/PTC, BRAF, RAS).
Indeed, on average, all the 4 cancer cell lines were equally susceptible to their
blockade. Exceptions were LIMK1 and MAP3K, that were important for TPC1 cells
only, and EPHAS, HCK, MAP3K7IP1, PKN1 and PRKD2 that were required for the

PTC (TPC1 and BCPAP) cells only.
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These findings anticipate that BRAF mutant thyroid cancers may be
susceptible to the inhibition of most of our 21 hits, an important concept because
BRAF mutations are recognized as risk factors for thyroid cancer to progress to
radioiodine refractory disease (Xing, 2007). Moreover, inhibition of most of our 21
genes may exert efficacy also in RAS mutant thyroid cancers; this is also important
because, as mentioned above, RAS oncoproteins have been difficult to be targeted
direclty. Three out of the 4 cancer cell lines used bear p53 mutations. Therefore,
efficacy of our siRNAs was not negatively affected by pS3 mutations; this is another
important point given the role that p53 mutation exterts on cancer cell resistance to
pharmacological therapy (Wiman, 2010). Finally, the two non tumorigenic thyroid
cell types were in general refractory to the effects of the identified siRNAs, a fact
that warrants a good therapeutic window for approaches aimed at inhibiting them in
thyroid cancer. Blockade of the 21 hits quite homogenously affected cell
proliferation but not cell survival (STK33 silencing caused also apoptosis). This
suggests that they are primarily involved in sustaining proliferation. However, this
does not exclude that specific hits may also exert additional functions. In fact, EPH

receptors, for instance, were important also for cancer cell migration and invasion.

72



6.2 Signaling pathways and networks involved in thyroid cancer

cells proliferation.

Table 5 summarizes the most important signaling features of the 21 hits. They
included: 2 cytosolic tyrosine kinases; 6 receptor tyrosine kinases (all belonging to
the EPH family); 11 serine/threonine kinases; 2 kinase-interacting proteins. None of
them has been previously direclty involved in thyroid cancer; exceptions were
AKAPO that was found rearranged with BRAF in radiation-associated PTC (Ciampi
et al., 2005) and GRK4 that was found overexpressed in thyroid nodules (Voigt et
al., 2004). Most of our 21 hits are involved in cell cycle control. Some of them are
also involved in promoting metastasis (AKT2, LIMKI1, MAP3K7IP1), tumor
angiogenesis (MAP3K6, PRKD2), mediating resistance to tyrosine-kinase inhibitors

(FYN, HCK) (see Table 5 and references herein).

Table 5: Features of the 21 hits identified

(ser/thr kinases are highlighted in yellow; kinase-interacting proteins are in green; receptor and non receptor tyrosine kinases

are in blue or gray, respectively )

Gene Function Features Cancer correlations
1 AKAPY A kinase (PRKA) anchor Belongs to a group of structurally diverse * Variants associated to breast cancer risk
protein 9: Kinase- proteins which have the common function of (Frank 2008)
interacting protein binding to the regulatory subunit of protein *Rearranged with BRAF in radiation-

kinase A (PKA) and confining the holoenzyme associated PTC (Ciampi 2005)
to discrete locations within the cell.

2 AKT2 Serine/threonine kinase One of the 3 Akts: Aktl, Akt2, and Akt3 (Fig. ¢ Amplified in ovarian and pacreatic

00 carcinomas (Chen 1992, 1996)

*Involved in breast and colorectal cancer
metastasis (Wickenden 2010; Rychahou,
2008)

8 EPHA2 RTK

4 EPHA4 RTK

5 EPHAS RTK See text for details

6 EPHA7 RTK

7 EPHAB2 RTK

8 EPHB6 RTK

9 FYN Tyrosine kinase SRC-like tyrosine kinase *Involved in EGFR and BCR-ABL mediated

transformation (Lu, 2009; Ban, 2008)
¢ Involved in CML drug resistance (Grosso,
2009)




11 | HCK Tyrosine kinase Src family tyrosine kinases ¢ Involved in BCR-ABL signaling (Meyn,
2006)
* Mediates CML resistance to ABL inhibitors
(Pene-Dumitrescu, 2010)
12 | LIMK1 LIM domain containing regulator of actin cytoskeleton remodeling ¢ Required for path generation by tumor cells
ser/thr kinase during collective tumor cell invasion;
mediates matrix protein degradation and
invadopodia formation (Scott, 2010)
¢ [nvolved in metastasis (Vlecken, 2009)
* Activated by GDNFRa (Yoong, 2009)
13 | MAP3K6 mitogen-activated protein Ser/thr kinase and activator of c-Jun kinase * Sustains tumor cell proliferation and VEGF
kinase kinase kinase 6. (MAPK7/INK) and p38 MAPK secretion (Eto, 2009)
Also named ASK2
14 | MAP3KT7IP1 | TGF-beta activated kinase | Regulator of the MAP kinase kinase kinase *Its interactor TAK1, is involved in pro-
1/MAP3K7 binding protein | MAP3K7/TAK1, which mediates TGF beta, metastatic activity of TGFb in breast cancer
1 interleukin 1, and WNT-1 pathways. This (Neil, 2008)
protein can also activate the mitogen-activated
protein kinase 14 (MAPK14/p38alpha) (Fig.
23)
15 | MAPKAPK?2 | Ser/Thr protein kinase. This kinase is regulated through direct e Involved in cell cycle checkpoint in p53
Also named MK?2 phosphorylation by p38 MAP kinase. defective cells (Rheinardt, 2010)
16 | MAP4KI1 mitogen-activated protein | Involved in NFkB and JNK activation * Suppressed in pancreatic carcinoma (Wang,
kinase kinase kinase kinase 2009)
1 * Sustains tumor growth in colon cancer (Yang,
2006)
17 | PKN1 protease-activated ser/thr Activated by Rho family of small G proteins * Overexpressed in ovarian carcinomas
kinase 1 and by PDK1. Subject to proteolytic activation (Galgano, 2009)
by caspase-3 * Activates AR in prostate cancer (Metzger,
2003)
18 | PRKD2 ser/thr-protein kinase D2 Activated by phorbol esters. It can bind to *Involved in VEGF secretion by pancreatic and
diacylglycerol in the trans-Golgi network gastric cancers (Azoitei, 2010)
(TGN) and regulate basolateral membrane
protein exit from TGN.
19 | RPS6KA6 ribosomal protein S6 Substrate of ERK, promotes cell survival * RSK family members are upregulated in many
ser/thr kinase (RSK4) though the inactivation of several apoptotic cancer types (Carriere, 2008)
effectors, and mediates cell growth and * RSK4 however is often downregulated and
proliferation (Fig.23) favours cell senescence (Lopez-Vicente 2009;
Thakur, 2008)
20 | SMG1 SMG1 homolog, involved in nonsense-mediated mRNA decay * Negatively regulates HIF (Chen, 2009)
phosphatidylinositol 3- (NMD) as part of the mRNA surveillance * Mediates response to genotoxic stress
kinase-related ser/thr complex. (Brumbaugh, 2004)
kinase * Has anti-apoptotic activity (Oliveira, 2008)
21 | STK33 ser/thr kinase 33 Involved in positive regulation of S6K * STK33 is required in K-RAS—mutant cells to
downstream substrate of mTOR, the target of probably a normal cellular protein, the
rapamycin (Fig. 22) function of which K-RAS-mutant cells rely
on. This phenomenon has recently been
termed “non—oncogene addiction”
(Downward, 2009; Scholl, 2009)

Table 5: Features of the 21 hits identified.

Ser/thr kinases are highlighted in yellow; kinase-interacting proteins are in green;

receptor and non-receptor tyrosine Kinases are in blue and gray, respectively.




Although our hits are involved in several pathways and cellular functions, the
list was enriched for: i) EPH (discussed below); ii) SRC family kinases (FYN,
HCK); iii) proteins involved in the p38 MAPK pathway (MAP3K6, MAP3K7IP1,
MAPKAPK?2) or other MAPK cascades (RPS6KAG6 in the ERK; MAP3K6 in the
JNK); iv) proteins involved in the PI3K/mTOR signaling (AKT2, STK33) (Table 5).

The PI3K/mTOR and MAPK pathways are depicted in figures 23 and 24.

Involvement of these cascades in thyroid cancer is well established.
Moreover, both PI3K and ERK are key effectors of RET-derived oncogenes (Melillo
et al.,2005; Lodyga et al., 2009). Also SRC family kinases were previously involved
in RET/PTC signal transduction (Melillo ef al., 1999) and as targets for kinase
inhibitors in thyroid cancer (Schweppe et al., 2009). Finally, JNK and p38MAPK
were activated by RET/PTC (Chiariello et al., 1998) and p38 targeting was effective

in reducing proliferation of TPC1 cells (Mariggio et al., 2007).

The function of STK33 serine/threonine kinase is still quite obscure;
probably, it is involved in S6K activation downstream mTOR (Fig. 23). Noteworthy,
STK33 was identified as one of the proteins to which RAS-transformed cells are
addicted and, therefore, proposed as a potential drug target to combat RAS positive
human cancers (Downward, 2009; Scholl er al., 2009). Although in our screen
STK33 silencing affected both normal and tumoral thyroid cells, its effects in terms
of cell viability were greater in TPC1 and BCPAP cells. Thus, the possibility that
also in the case of thyroid cancer, tumor cells might be more susceptible to STK33

inhibition than normal cells should be investigated in greater details.
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6.3 EPH in thyroid cancer.

RTK receptors of the EPH family were the largest group (6/21, 28%) among
the hits identified. Indeed, four members of the A family (EPHA2, EPHA4, EPHAS,
EPHAY7) and two of the B family (EPHB2 and EPHB6), were included among them.
All of them (but not EPHAS, that was required for TPC1 and BCPAP only) were
required for the viability of all thyroid cancer cells. Four of them (EPHA2, EPHAA4,
EPHA7 and EPHB2) were over-expressed in most the neoplastic cell lines as
compared to normal P5 cells; three of them (EPHA2, EPHA4 and EPHB2) were
constitutively phosphorylated in TPC1 but not in NTHY cells. Knock-down of
EPHA2, EPHA4 and EPHB2 not only reduced proliferation but also cell motility and
invasiveness. Finally, EPHA2, and to a lower extent EPHA4 and EPHB2, were over-
expressed in PTC and ATC comparing to normal thyroid specimens. Possibly,
EPHAS and EPHB6, that were required for TPC1 viability but were not over-
expressed in TPC1, are involved in TPC1 with different mechanisms either than
upregulation. Both of them, however, were upregulated at least in one thyroid cancer
cell line other than TPC1 (Fig. 18). EPHA7, that was essential for TPC1 cell
viability, was upregulated in all thyroid cancer cell lines, but not in TPCI1; it is
probably for this reason that EPHA7 was not detected in our TPC1 phosphoarray
immunoblot (Fig. 19). In this study we focused on EPHA2, EPHA4 and EPHB2
because they fullfilled all criteria (viability requirement, overexpression, constitutive

phosphorylation), but all the other identified EPH will require further investigation.
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Mechanism of overexpression and activation of EPH in thyroid cancer cells
remain to be addressed. Intriguingly, EPH expression is stimulated by the RAS-
RAF-ERK axis (Macrai et al., 2005); being virtually always activated in thyroid
cancer (through RET, RAS or BRAF), this pathway may explain EPH

overexpression in thyroid cancer cells.

EPHB receptors bind promiscuously to the 3 transmembrane ephrins B (EFN-
B), while EPHA receptors bind promiscuously to the 5 GPI-linked ephrins A (EFN-
A). EPHA4 can also bind EFN-B and EPHB2 can also bind EFN-AS5. A major ligand
for EPHA2 is EFNA1 (Pasquale, 2010). EFNs are typically expressed in
microenviroment (endothelial cells and pericytes) but can also be expressed in tumor
epithelial cells. Since in TPC1 cells EPHA2, EPHA4 and EPHB2 were constitutively
phosphorylated, it can be anticipated that some EFNAs and EFNBs are expressed in
TPC1 cells. Possibilities include EFNA1 for EPHA2, any EFNB for EPHB2 and
EFNAS for EPHB2. The search for the specific EFNs involved in thyroid cancer will
require further investigation. It will be also important to study the expression of
EPH-EFN interaction in thyroid tumor vessels endothelial cells, because EPH are

able to promote tumor angiogenesis (Pasquale, 2010).

EPH-EFN complexes emanate bidirectional signaling: forward signals that
depend on EPH tyrosine-kinase activity, and reverse signals depending on SRC
family kinases associated to the cytosolic side of EFN (Pasquale, 2010). Forward
signaling controls many functions including cell migration, invasion, proliferation ad

survival.
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Among them, perhaps, the most typical EPH-mediated effect is the
generation of a “repulsive” inter-cellular force that leads to cell-cell detachment and
scattering (Pasquale, 2005). Importantly, such a migration-promoting role was

exerted by EPHA2, EPHA4 and EPHB2 in thyroid cancer cells (Figs. 20, 21).

EPHA1 was initially isolated as an oncogene able to transform NIH3T3
fibroblasts (Hirai et al., 1987; Maru et al., 1990). EPH (mainly EPHA2 and EPHB4)
and EFN over-expression was correlated with cancer progression and metastatic
spread in breast and prostate carcinomas (Wykosky et al., 2008; Zhuang et al., 2010;
Kumar et al, 2009; Huang et al., 2007). These findings are in line with our data
suggesting an oncogenic role of EPH in thyroid cancer. However, EPH function is
characterized by puzzling dichotomies and many findings claiming a tumor
suppressor rather than oncogenic role of EPH have been reported. Indeed, EPHA1
and EPHB are down-regulated in advanced colorectal carcinomas (Alazzouzi et al.,
2005; Herath et al., 2009), EPHB6 is down-regulated in metastatic lung cancer (Yu
et al., 2010), some EPH receptors map in chromosomal regions that are often deleted
in human cancer (1p36), and, finally, EPH mutations found in prostate, gastric, lung
and colorectal tumors can impair kinase function (Ding ef al., 2008) (see also Table
6). To support this putative tumor suppressor role, forward EPH signaling has been
shown to suppress oncogenic signaling, blocking PI3K and RAS pathways
(Pasquale, 2010). For instance, EPH signaling may activate pl120GAP (thus blocking
RAS), SHP2 phosphatase (thus blocking AKT) and TSC complex (thus blocking
mTOR) (Pasquale, 2010). In this way, the physiological function of EPH might be
that of preserving epithelial cell fate and promote contact-mediated inhibition

(Pasquale, 2005).
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One possibility for cancer cells to overcome this tumor suppressor role is to prevent
EPH forward signaling by lowering EFN expression (Batlle et al., 2005; Macrae et
al., 2005). Moreover, recent observations suggest that the “tumor-suppressor” roles
attributed to EPH can be subverted to an “oncogenic” one in cancer cells. In some
cell contexts, EPH forward signaling activates oncogenic, like AKT, ABL, RHO and
RAC pathways, rather than tumor suppressor ones (Pasquale, 2010). Finally, in some
cases, EPH signaling is subverted from a suppressor to an oncogenic role because of
the simultaneous activation of other pathways in cancer cells. For instance,
association to ErbB2 or phosphorylation mediated by AKT enable EPHA2 to
activate rather than inhibit RAS-ERK (Brantley-Sieders ef al., 2008; Miao ef al.,
2009). In thyroid cells, EPHA2, EPHA4 and EPHB2 are overexpressed and
constitutively phosphorylated; moreover, their knock-down impair cell proliferation
and inhibits migration and invasiveness. Therefore, these EPHs behave as bona fide
oncogenes. However, whether these effects are opposite to those that EPH may
mediate in normal thyrocytes and the biochemical mechanism for such a subversion

need to be further investigated.
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6.4 Possible mutations of the 21 hits.

Recent systematic genome sequencing efforts have searched for novel oncogenic
mutations in cancer samples (Sjoblom et al. 2006; Weir et al. 2007; Wood et al.,
2007; Jones et al., 2008; Ding et al. 2008; Kan et al, 2010). Some of these mutations

are catalogued in COSMIC (catalogue of somatic mutations in cancer database)

(Tab. 6).

Gene N° of N° Mutations N° Mutations N° Mutations
Mutations in in Wood in Kan (2010) | in COSMIC
Ding (2008) (2007)
1 AKAP9 0 3 10 7
2 AKT2 0 0 1 0
3 EPHA2 1 0 0 4
4 EPHA4 1 1 2 8
5 EPHAS 7 0 5 13
6 EPHA7 5 1 2 13
7 EPHB2 0 0 0 1
8 EPHB6 5 4 1 12
9 FYN 2 0 1 5
10 GRK4 0 0 0 1
11 HCK 4 0 0 6
12 LIMK 1 0 0 0 1
13 MAP3K6 2 1 0 7
14 MAP3K7IP1 0 0 1 0
15 MAP4K1 3 0 1 5
16 MAPKAPK?2 0 0 0 0
17 PKN1 0 1 0 4
18 PRKD2 0 0 0 5
19 RPS6KA6 2 0 0 4
20 SMG1 3 0 0 10
21 STK33 0 0 0 3

Table 6: List of down hits and mutations found in previous studies.
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By comparing our 21 hits to cancer genome-sequencing papers, we found that
virtually all of them had been identified as bearing somatic mutations in tumor
tissues or tumor-derived cell lines (Tab. 6). Though the functional meaning of these
mutations is still unknown in the majority of the cases, this reinforces the concept
that our hits may play a role in thyroid cancer and paves the way to studies aimed at

searching for their mutations in thyroid cancer samples.

6.5 Future perspectives.

With this study we have searched for novel kinases involved in thyroid
cancer. The screening highlighted some specific pathways (PI3K, ERK, JNK, p38)
and showed that EPH may play a particularly important role in thyroid cancer.

Several points remain to be addressed, including:

e mechanism with which EPH gain can contribute to thyroid cell

transformation (e.g. role of the EFN ligands);

e mechanism with which (e.g. overexpression or increased activity) the non-

EPH hits could be involved in regulating thyroid tumorigenesis;
e presence of somatic mutations in any of the 21 hits;
e Invivo role of the identified hits (e.g. in animal models);

e possibility of pharmacological targeting alone and/or in combination with

RET, BRAF, PI3K inhibitors.

Nothwithstanding these limitations, we can conclude that with study we could
identify a set of novel genes that play a key role in thyroid cancer cells viability and

that EPH, in particular, are novel RTK involved in thyroid cancer.
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ABSTRACT

Dysregulation of Sonic Hedgehog (Shh) signaling pathway has been implicated in many
familial and sporadic cancers. In this study, normal and neoplastic thyroid samples and thyroid cell
lines have been examined for the expression of the Shh signaling pathway components. Expression
of the Shh ligand (Sonic), its receptors Patched (Ptch) and Smoothened (Smo), and the Shh final
effector, the trascription factor Glil, was higher in benign and malignant thyroid tumors than in
normal cells. Moreover, Glil-Luciferase reporter was active in thyroid cancer cells and
cyclopamine, an inhibitor of Smo, blunted thyroid cancer cell viability. In conclusion, Shh is a

novel pathway and a potential therapeutic target in thyroid cancer.



INTRODUCTION

Thyroid cancer accounts for 2.6% of all new cancers, when epithelial skin cancers are
excluded (6). The molecular basis of thyroid carcinogenesis has been widely investigated, and
oncogenes such as BRAF, RAS and RET have been identified as major players in tumor
development and aggressiveness (2). This dependence on specific genetic lesions has highlighted
thyroid cancer as an ideal target for molecularly targeted new therapeutics (15). Identification of
new mediators of thyroid carcinogenesis will be crucial to tackle the development of new
therapeutics for thyroid cancer, particularly to treat those patients that are negative for the known
mutations and those that become resistant to molecular inhibitors.

The vertebrate Hedgehog family is represented by three members: Desert (Dhh), Indian
(Ihh) and Sonic (Shh) Hedgehog. Sonic (Shh) is the best-characterized family member and it is
involved in a wide variety of developmental events. In humans, Shh gene is located on chromosome
7 (7936) and its heterozygous mutation results in holoprosencephaly (13). Shh acts both as a short-
range and a long-range diffusible morphogen and regulates epithelial-mesenchymal interactions in
many organs. Shh signals are transduced, at the cell surface, by two transmembrane proteins,
Patched (Ptc) and Smoothened (Smo). Smo is a 7-transmembrane domain receptor required to
transduce the Shh signal. Ptc is a 12-pass membrane protein that binds directly to Shh ligands and
inhibits Smo. Shh binding suppresses Ptc inhibitory activity; thus, Shh binding to Ptc phenocopies
the genetic loss of Ptc. In the absence of Ptc, Smo constitutively activates a still poorly known
molecular events that result in the accumulation and nuclear translocation of Gli transcription

factors, resulting in the activation of Gli targetd genes (3, 9).



In normal tissues, Shh pathway plays a key role in embryogenesis as well as in the
maintenance of stem cell compartments during adulthood. Shh has recently been described also as a
regulator of thyroid development (6), because it governs symmetric bilobation of the thyroid gland
and represses inappropriate thyroid differentiation in embryonic tissues outside the thyroglossal
duct. Genetic deletion of Shh caused hemiagenesis and ectopic development of the thyroid gland in
a mouse model (6). Abnormal activation of the Shh pathway, because of gene mutations or
overexpression, has been reported in many cancers, including basal cell carcinoma,
medulloblastoma, pancreatic, breast, lung, prostate and ovarian cancers (20).

Here, we have investigated the presence of the Shh pathway components in a panel of
thyroid cancer cells and human tumor samples. Our results show an increased expression of Shh,
Ptc, Smo and Glil in thyroid tumors as compared to normal control. In cell lines, the expression
correlated with an increased transcriptional activity of Glil that was blunted by cyclopamine, an
inhibitor of Smo. Finally, cyclopamine treatment impaired proliferation and survival of thyroid

cancer cells.



RESULTS

Shh pathway components are expressed in thyroid tumors.

Tumors of the thyroid gland include benign adenomas, differentiated -papillary (PTC) and
follicular (FTC)- and undifferentiated (anaplastic: ATC) thyroid carcinomas. We analyzed the
expression of Glil by immunohistochemistry in a panel of 40 thyroid tumors of different histotypes
(10 for each group). Normal thyroids (n.10) were negative, while tumors were constantly positive,
with a proportion of positive cells higher in PTC and ATC than in adenomas and FTC (Table 1, and
Figure 1). Among PTC, PTC-TCV (tall-cell variant) positivity was particularly high and PTC-FV
(follicular variant) was particularly low. No correlation with tumor size or age of the patients was
noted; the percentage of Glil positive cells was higher in males than females (63% vs 48%).

We performed quantitative RT-PCR to measure mRNA expression levels of Shh, Glil and
Ptc in normal, PTC and ATC tissues. As shown in figure 2, all the components of the Shh pathway,
though with significant variability among the samples, were expressed in tumors at higher levels

than in normal controls; ATC showed the highest expression values of the Shh ligand (Fig. 2).

Shh pathway is active in thyroid cancer cell lines.

We studied the expression of components of the Shh pathway in thyroid cancer cell lines. As
shown in figure 3A, Shh ligand expression levels were significantly higher in 3 out of the 6 cancer
cell lines with respect to non tumoral NTHY cells. Smo levels were slightly higher in cancer with
respect to NTHY cells. Finally, no significant difference between most cancer and normal cells was
detected for Ptc and Glil (Fig. 3A). These findings supported an autocrine (increased levels of
expression of the ligand) mode of activation of the Shh pathway in the majority of thyroid cancer
cell lines. An alternative mode of activation might be present in BCPAP cells that lost the

expression of the Ptc receptor (Fig. 3A).



Activity of the Glil transcription factor is a reliable marker of Shh pathway activity. Thus,
we transfected the various cell lines with Gli-Luc promoter. Figure 3B demonstrates that PTC
(TPC1 and BCPAP) and ATC (8505C and HTH74) cells had higher levels of luciferase activity
driven by Glil reporter than non tumoral NTHY cells. This activity was only slightly stimulated by
exogenous constitutively active Glil transfection. NTHY cells had low levels of luciferase activity
that were however strongly increased when exogenous Glil was transfected (Fig. 3B).

Cyclopamine is a lipophilic compound extracted from the Lily Veratrum Californicum. It
antagonizes Smo activity by binding to its heptahelical bundle. Thus, it blocks Shh pathway
activation either resulting from Smo or Ptc mutations or from Shh ligand over-expression.
Cyclopamine is currently being investigated as a treatment for basal cell carcinoma,
medulloblastoma, rhabdomyosarcoma and many other cancer types (11). In thyroid cancer cell
lines, Gli reporter activation was Smo-dependent, because cyclopamine treatment completely
abolished the luciferase activity (Fig. 3B).

Finally, the increased transcriptional activity of the Gli-Luc reporter was paralled by an
increased nuclear accumulation of Glil in TPCI1 cells as seen by indirect immunofluorescence (Fig.
3C). Cyclopamine treatment reduced both the total signal as well as the nuclear accumulation of

Glil (Fig. 3C).



Cyclopamine treatment impairs proliferation and survival of thyroid cancer cells.

The various cell lines were exposed to 10 or 20 M cyclopamine to test their viability and
proliferation. As shown in Figure 4A, drug treatment at 10 and 20 xM reduced number of viable
cancer cells, while it had only a minor effect on non tumoral cells at 20 uM (Fig. 4A). The reduced
viability was paralleled by a modest reduction of proliferative ability of the cells, as shown by
reduction of BrdU incorporation in Figure 4B. Importantly, cyclopamine (10 xM) had a strong
cytotoxic effect in cancer but not NTHY cells (Fig. 4C). In NTHY a modest cytotoxic effect was

detected only at 20 uM dose.



DISCUSSION

Inappropriate activation of Shh pathway leads to malignancy. Several studies have shown
that components of the Shh pathway are expressed at high levels in cancer, particularly in
aggressive and undifferentiated cancer types (4). Here we have investigated expression and activity
of this pathway in thyroid cancer. Our data show an activation of the pathway in thyroid tumors,
and particularly in aggressive PTC variants (PTC-TCV) and ATC. Although the mechanism of Shh
pathway activation in thyroid tumors will require further studies, our data support a model whereby
Sonic ligand upregulation sustains Smo activity thereby causing Glil accumulation and nuclear
translocation. Pathways leading to increased Sonic transcription remain to be elucidated. Moreover,
in samples like the BCPAP cell line, knock-down of Ptc, the receptor that suppresses the pathway,
may contribute to pathway activation. Again, wether this occurs at a transcriptional level or is
caused by gene deletion remains to be clarified.

Several reports have indicated a cooperative role of Shh pathway with other oncogenic
mediators, such as RAS-MAPK and AKT (10, 17). In RAS-induced pancreatic cancer, autocrine
(cancer cells) and paracrine (stromal cells) signaling mechanisms have been described (10). In
thyroid cancer, both RAS-MAPK and AKT pathway play a major role and it will be interesting to
explore their interaction with the Shh one.

Whatever the exact mechanism, our findings suggest that pharmacological blockade of the
Shh pathway exerts growth suppressing and cytotocxic activities in thyroid cancer cells more
potently than in non tumoral thyroid cells. Importantly, these effects were not oncogene-dependent,
being observed in cancer cells harboring RET/PTC1 (TPC1), BRAF V600E (BCPAP, BHTI101,

8505C) or neither BRAF or RET/PTC1 (HTH74) (16).



Importantly, three of these cancer cell lines (BCPAP, BHTI101, 8505C) had also
documented p53 mutation, showing that cyclopamine effects do not require functional p53 and may
be exerted also in aggressive thyroid cancers that lack p53 function (1). As a specific inhibitor of
Smo, cyclopamine has been shown to slow down the growth of a variety of cancers, by affecting at
the same time cancer cells and cancer stem cells. Moreover, the lack of obvious secondary effects
of cyclopamine treated adult mice (4), suggests that such treatment may spare normal quiescent
stem cells in their niches, likely allowing regeneration of normal tissues after cessation of treatment.
Other small molecules can interfere with Shh pathway at multiple levels. Besides cyclopamine,
other Shh signaling antagonists that bind to Smo include SANT1 and Cur-61414. Instead, GANT68
and GANT61 are small molecules that inhibit Shh signaling downstream of Smo (11). We propose
that inhibition of the Shh pathway might be a potential therapeutic strategy in thyroid cancer,
particularly those refractory to conventional therapy.

Finally, Shh has been demonstrated to be important in controlling stemness in diefferent
tissues and tumors (e.g. glioma, pancreas, colorectal, endometrial) (4, 8, 12, 19). Many recent
reports, suggest that Shh signaling regulates the expression of stemness genes and self renewal of
cancer stem cells. Nanog has been identified as a Shh mediator of stemness. Our preliminary data
indicate that Nanog is upregulated in thyroid cancer and particulalry in ATC. A recent study has
reported the identification of tumor-initiating cells with stem properties in thyroid cancer and
particularly in ATC, (18). It will be interesting to investigate whether Shh through Nanog is

involved in maintenance of this population of thyroid cancer stem cells.



MATERIALS AND METHODS

Tissue samples

Archival thyroid samples were retrieved from the files of the Department of Oncology of University
of Pisa (Pisa, Italy). Informed consent was obtained from the patients, and the study was approved
by the institutional review board committee. Tumor size, extrathyroid invasion, node metastasis,
associated thyroid lesions, and metastatic deposits were recorded. After surgical resection, tissues
were fixed in 10% neutral buffered formalin and embedded in paraffin blocks. Sections (4 microns

thick) were stained with hematoxylin and eosin for histological examination.

Immunohistochemistry

Formalin-fixed and paraffin-embedded 4- to 5-microns-thick tumor sections were deparaffinized,
placed in a solution of absolute methanol and 0.3% hydrogen peroxide for 30 min, and treated with
blocking serum for 20 min. The slides were incubated overnight with anti-Glil monoclonal
antibody (Vectostain ABC Kkits, Vector Laboratories, Inc., Burlingame, CA). As a negative control,
tissue slides were incubated with isotype-matched IgGl control antibodies. The Glil
immunostaining was mostly localized in the cytoplasm; the percentage of positive cells for Glil

staining was evaluated.

Cell culture

Human primary cultures of normal thyroid cells (P5) were obtained from F. Curcio and cultured as
previously described (5). Human papillary (TPC1, BCPAP, NIM) and anaplastic (BHT101,
HTH74, 8505C) thyroid cancer cell lines have been described previously (14). All the cells were

SNP genotyped to ensure correct identity.



NTHY (Nthy-ori 3-1) are normal human thyrocytes immortalized by the Large T of SV40 and were
obtained from the European Tissue Culture collection. NTHY and tumor cell lines were grown in
the DMEM medium supplemented with either 2.5% or 10% FBS, L-glutamine and
penicillin/streptomycin (all reagents were from Sigma, Munich, Germany). Cyclopamine was
purchased from Calbiochem and it was used for 48h at 10 and 20 uM concentration for luciferase

and biological assays.

DNA constructs
pGL3-Gli-Luc was obtained by PCR-cloning eight copies of the Gli binding element into the pGL3
enhancer vector purchased from Promega. pCEFL Glil were obtained by cloning the full length

PCR products of Glil into the PCEFL vector with the Gateway technology (Invitrogen).

Cell viability measurement

Seventy-two hours after transfection, Cell Titer Blue reagent (CellTiter® Blue Assay, Promega)
diluted 1:1 in cell culture medium was added to each well. Plates were incubated at 37 °C for 6
hours with 5% CO, and then transfered to room temperature for overnight incubation, at dark. Cell
viability was measured with an EnVision Multilabel plate reader (Perkin Elmer). Transfection
efficency was previously tested by using the GAPDH Alert kit (Ambion) according to the

manifacturer’s protocol.

BrdU assay

BrdU (5-bromo-2-deoxyuridine) incorporation assay was performed by using the Cell Proliferation
ELISA-BrdU chemiluminescent Kit (Roche Applied Science). Transfected cells were labeled with
BrdU, then fixed and incubated with anti-BrdU-Peroxidase solution. Finally, each sample was
incubated with a buffered solution containing luminol and BrdU incorporation was quantified by

measuring light emission with a microplate luminometer with photomultiplier technology.



Apoptosis assay

The Apo-ONE® Homogeneous Caspase-3 Assay (Promega) was performed in thyroid cancer cell
lines. Blank, positive and negative controls were performed as well. Apo-ONE® Homogeneous
Caspase-3 Reagent was added 1:1 to cell culture volume. The fluorescence values were measured
with an EnVision Multilabel plate reader (Perkin Elmer), proportionally to the amount of caspase-

3/7 cleavage activity in each sample.

Immunofluorescence microscopy

For indirect immunofluorescence, TPC1 cells were serum starved for 16—20 hours and treated with
cyclopamine (10 xM) for 24 hours. After three washings with PBS, coverslips were placed in a
humidified chamber for one hour at room temperature with a 1:100 dilution of Gli-1 and
subsequently a FITC-conjugated donkey rabbit secondary antibody (Jackson Immunoresearch).
Coverslips were then inverted and mounted onto glass slides with Vectashield containing 4',6-
diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA) and viewed with fluorescence
microscopy. Images were taken using a SPOT digital camera attached to a Zeiss Axiophot

microscope with an 100X objective (Carl Zeiss, Thornwood, NY).

Reporter assays

Luciferase activities present in cellular lysates were assayed using the Dual-Luciferase Reporter
System (Promega). In all cases, the total amount of plasmid DNA was adjusted with pCDNAIII-{3-
gal (a plasmid expressing 3-galactosidase). Light emission was quantitated using a Monolight 2010
luminometer (Analytical Luminescence Laboratory). Data were represented as luciferase activity
present in each sample, and the values plotted were the average + SEM of triplicate samples from

typical experiments, which were repeated at least 3—5 times with nearly identical results.



Real time PCR

The expression of Shh, Ptch, Smo and Glil was studied by real-time PCR. Briefly, total RNA was
extracted from tissues and cell lines, using the Rneasy Kit (Qiagen, Valencia, CA) following the
manufacturer’s instructions. 1 pug of total RNA was used as starting material, to which 1 ul oligo-dT
was added, as well as DEPC-treated water to total volume of 25 ul. The RNA mix were heated at
65°C for 5 min and then chilled on ice. The other components were added to each RNA mix as
follows: 10 ul of 5X first-strand buffer, 5 ul of 0.1 M DTT, 1 ul of 25 mM dNTPs, 1 ul of
ribonuclease inhibitor and 6 ul of DEPC-treated water. The samples were incubated at 42°C for 2
min, followed by the addition of 1 ul of Superscript II (40 U/I, Invitrogen) and incubated at 42°C
for 50 min. The reaction was inactivated at 70°C for 5 min, followed by the addition of 1 ul (2 U/I)
of Rnase H and incubation at 37°C for 20 min. Real-time PCR was performed using the Biorad-
iCycler 1Q detector system and Biorad-iCycler IQ SYBR Green mix (Biorad), primarily following
the manufacturer's protocol. In brief, the reaction mixture (25 ul total volume) contained 500 ng of
cDNA, gene-specific forward and reverse primers for each gene at 1 M final concentration and 12.5
ul of 2X SYBR Green mix. The real-time cycler conditions were as follows: PCR initial activation
step at 95°C for 10 min, 40 cycles each of melting at 95°C for 15 sec and annealing/extension at
60°C for 1 min. A negative control without template was included in parallel to assess the overall
specificity of the reaction. The experiments were repeated in triplicates as suggested by the

manufacturer’s.

Statistical analysis

The raw data of the siRNA screen were normalized and analyzed with the R/Bioconductor software

.
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FIGURE LEGENDS

Figure 1: Immunohistochemical detection of Glil in thyroid samples.

Representative tissue samples from normal thyroid, PTC and ATC were incubated with a mouse
monoclonal anti-Glil antibody. ATC samples showed intense immunoreactivity for Glil, while
PTC tissues were stained less intensely and normal tissues were completely negative. Negative

controls were performed in all cases using isotype-matching control antibodies.

Figure 2: Expression of Shh components in thyroid tumors.
Q-RT-PCR was used to calculate Shh, Ptc and Glil mRNA expression in six independent PTC and
ATC tumor samples with respect to a pool of four normal thyroids. The results are the average of

three independent experiments.

Figure 3: Up-regulation of Shh pathway in cultured thyroid cancer cells.

A, Semiquantitative RT-PCR (25 cycles) was performed to evaluate mRNA levels of Shh, Ptc, Smo
and Glil in the indicated cell lines. Actin mRNA detection was used for normalization. This figure
is representative of three independent experiments. B, Activation of Glil transcription factor was
tested by Luciferase assay. Thyroid cancer cells, but not normal NTHY cells, activated Gli-Luc
reporter when compared to empty pGL3 vector. This signal was abolished by treatment with
cyclopamine. Glil transfection was used as positive control of reporter activation. C, Glil is
localized in the nucleus of TPC1 cells and cyclopamine is able to reduce both, the total amount and
the nuclear fraction of Glil, as shown by immunofluorescence. Three independent determinations

were performed in triplicate. SD are reported.



Figure 4: Cyclopamine treatment effects on thyroid cancer cells.
TPC1, BCPAP, 8505C, HTH74 and NTHY cells were treated with cyclopamine at 10 and 20uM.
Measurement of viability by cell titre blu (A), proliferation by BrdU incorporation (B), and

apoptosis by caspase 3 cleavage (C) was performed.



Table 1

Hystology % Gli1 positive cells
Normal thyroid 0
Adenomas 38
FTCs 28
PTCs 60

follicular variant 45

classical variant 80

tall cell variant 90

ATCs 65

Thyroid samples of different hystotypes (10 samples for each group) were stained for Glil
expression. The percentage of Glil-positive cells was estimated. The number of positive cells
correlated with stain intensity. Average positive cells in the various tissue samples catagories was
calculated. Samples were considered positive when containing at least 10% positive cells.
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Abstract

Reactive oxygen species, specifically hydrogen peroxide (H-O,), have a significant role in
hormone production in thyroid tissue. Although recent studies have demonstrated that dual
oxidases are responsible for the H,O, synthesis needed in thyroid hormone production, our data
suggest a pivotal role for superoxide dismutase 3 (SOD3) as a major H,O5-producing enzyme.
According to our results, Sod3 is highly expressed in normal thyroid, and becomes even
more abundant in rat goiter models. We showed TSH-stimulated expression of Sod3 via
phospholipase C—Ca®" and cAMP—protein kinase A, a pathway that might be disrupted in thyroid
cancer. In line with this finding, we demonstrated an oncogene-dependent decrease in Sod3
mRNA expression synthesis in thyroid cancer cell models that corresponded to a similar decrease
in clinical patient samples, suggesting that SOD3 could be used as a differentiation marker in
thyroid cancer. Finally, the functional analysis in thyroid models indicated a moderate role for
SOD3 in regulating normal thyroid cell proliferation being in line with our previous observations.

Endocrine-Related Cancer (2010) 17 785-796

Introduction

The G protein-coupled receptor (GPCR) activating G
and Go, proteins, such as TSH receptor (TSH-R),
mediate the cellular responses to various extracellular
stimuli via two main signal transduction pathways: the
cAMP pathway and the phosphatidylinositol pathway
thatis involved in calcium signaling (Pierce et al. 2002).
In thyroid, the TSH-R cAMP pathway is responsible
for the thyroid cell proliferation, differentiation, and
secretion, whereas the TSH-R phosphatidylinositol
cascade controls thyroid hormone tri-iodothyronine
(T3) and thyroxine (T,4) synthesis. The TSH is crucially

Endocrine-Related Cancer (2010) 17 785796
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important for normal thyroid function, and therefore,
deregulation caused by, e.g. TSH-R mutations or
external factors, affecting TSH signaling interferes
with the cellular homeostasis in thyroid (Ludgate &
Vassart 1995). A low iodide uptake leads to reduced
thyroid hormone T; and T, production (hypothy-
roidism), which is compensated by increased TSH
synthesis and subsequent activation of downstream
signaling leading to cell proliferation and benign
thyroid enlargement known as goiter (Dumont et al.
1989). Similarly, activating mutations of the TSH-R
cause autonomous hyperfunctioning thyroid adenomas
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and nonautoimmune toxic thyroid hyperplasia (Duprez
etal. 1994).

TSH signaling has been shown to increase the
synthesis of hydrogen peroxide (H,0O,), which is used
as an extracellular substrate by thyroperoxidase in
thyroglobulin iodination and thyroid hormone
synthesis (Corvilain et al. 1991). On the other hand,
intracellular H,O, contributes to mitogen signaling and
consequent cellular proliferation in in vitro and in vivo
models (Rao & Berk 1992, Guyton et al. 1996, Kuroki
et al. 1996) by regulating the activation of protein
tyrosine phosphatases and tyrosine kinase receptors
(Rao 1997, Wang et al. 2000, Saito et al. 2002, Aslan
& Ozben 2003, Konishi et al. 2004, Mehdi ez al. 2005).
We have previously demonstrated the ability of
extracellular superoxide dismutase (SOD3), which is
one of the main H,O,-producing enzymes (Marklund
1984, Karlsson & Marklund 1987), to promote cell
proliferation in vivo by activating Ras—Erk mitogen
signaling, transcription factor upregulation and growth
factor expression suggesting growth stimulatory role
in tissues (Laurila ez al. 2009).

In the current study, we investigated the signal
transduction pathways and synthesis of Sod3 in
different experimental models to determine the
function of SOD3-derived H,O, in thyroid. We
identified a novel TSH-R-mediated signaling pathway
activating Sod3 synthesis and decreased SOD3
expression in thyroid malignancies.

Materials and methods
Animals

Male 4-5 weeks old Sprague-Dawley rats (University
of Turku, Turku, Finland) were given 0.25% pro-
pylthiouracil (PTU; Sigma) ad libitum in drinking
water for 2 weeks, killed, and tissues were collected for
expression analysis. As controls for histological
staining, we used nontreated rat thyroids, and for
quantitative reverse transcription (QRT)-PCR analysis,
a thyroid total RNA pool from four animals.
Experimental procedures were done according to the
European Union and the University of Turku guide-
lines (permission 2009/2502).

Histological analysis

Thyroid tissues were embedded in optimal cutting
temperature compound, OCT (Tissue-Tek, Torrance,
CA, USA). Ten-micrometer sections were stained
with hematoxylin/eosin (Sigma) according to the
standard protocols.
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Cell lines and reagents

Rat PC CI3 cells were grown in Ham’s F-12 medium,
Coon’s modified (Sigma) supplemented with 5% calf
serum (Life Technologies, Inc.) and 10 nM TSH,
10 nM hydrocortisone, 100 nM insulin, 5 pg/ml trans-
ferrin, 5 nM somatostatin, and 20 pg/ml glycyl-
histidyl-lysine. PC RET/PTC1 and PC EIA stable cell
lines, kindly provided by Prof. Alfredo Fusco, were
grown in F-12 medium supplemented with 5% calf serum
without hormones (Fusco et al. 1987, Santoro et al.
1993). PC-inducible RET/PTCI1 cells were grown in the
same medium as PC CI3 cell administered with 1 pg/ml
doxycyclin (Sigma). COS-7 cells were grown in
DMEM (Sigma) supplemented with 10% fetal bovine
serum (Life Technologies, Inc). Transfections (1 pg of
plasmid) were done with Fugene6 (Roche Applied
Science) for PC C13 cells, and with Polyfect (Sigma) for
COS-7 cells. Human SOD3 cDNA, kindly provided by
Prof. Stefan L Marklund from the University of Umea,
Sweden, was cloned to pcDNA3 vector (Life Tech-
nologies). The plasmids pCEF-Ga, and pCEF-Gay,
encoding constitutive active form (QL) of Ga, and Gayg
and pCEF-protein kinase A (PKA), encoding the active
catalytic subunit of PKA, were kindly provided by
Dr Silvio Gutkind from NIH, MD, USA. PC CI3 cells were
incubated with 10 nM TSH (Sigma), 40 uM forskolin
(Sigma), 1 uM N(Q2-((p-bromocinnamyl)amino)ethyl)-5-
isoquinolinesulfonamide (H89; Calbiochem, San Diego,
CA, USA), or 100nM thapsigargin (Research
Biochemicals International, Natick, MA, USA).
SOD1 protein was purchased from Sigma.

PCRs

Total RNA was isolated from tissues pooled from four
animals or cells using Tri-reagent (Sigma). The first-
strand synthesis was done with QuantiTect RT
(Qiagen) and qPCR with SYBR Green PCR master
mix (Applied Biosystems, Foster City, CA, USA).
Primers were rat Sodl-for GTC GTC TCC TTG CTT
TTT GC and rat Sodl-rev TGC TCG CCT TCA GTT
AAT CC; rat Sod2-for AAG GAG CAA GGT CGC
TTA CA and rat Sod2-rev TGG CTA ACA TTC TCC
CAG TTG,; rat Sod3-for GAC CTG GAG ATC TGG
ATG GA and rat Sod3-rev GTG GTT GGA GGT GTT
CTG CT; human SOD3-for CTT CGC CTC TGC TGA
AGT CT and human SOD3-rev GGG TGT TTC GGT
ACA AAT GG; human BACTIN-for TGC GTG ACA
TTA AGG AGA AG and human BACTIN-rev GCT
CGT AGC TCT TCT CCA,; rat BActin-for TCG TGC
GTG ACT TAA GGA G and rat BActin-rev GTC AGG
CAG CTC GTA GCT CT. Reactions were done in
60 °C annealing temperature.

www.endocrinology-journals.org



Real-time PCR tissue samples

The qRT-PCR expression analyses from human tissues
were done to normal thyroid (n=7), papilloma thyroid
cancer (PTC, n=9), and anaplastic thyroid cancer
(ATC, n=06) patient samples. The PTC patient samples
had 30% genetic variation (six wild-type Braf, one
Braf V600E, and two RET/PTCI rearrangements).
Five ATC patient samples had Braf V600OE mutation
and one had wild-type Braf. The analysis of mRNA
expression was done from pooled samples.

DNA array tissue samples

The diagnoses of the hyperthyroidic patients were
based on the long-standing hyperthyroidism, absence of
thyroid-stimulating antibodies in the serum and in some
cases, family history and confirmed by DNA sequen-
cing of the TSH-R. The details of the patient material
were described earlier (Hebrant et al. 2009). Shortly,
thyroid samples were obtained from five familial
nonautoimmune hyperthyroidism (FNAH) French
patients (from Nancy (FNAHI1 and FNAH4), Reims
(FNAH2), Lyon (FNAH3), and Angers (FNAHS)),
autonomous adenoma (AA) samples were obtained and
pooled from four different patients as published
previously (Hebrant et al. 2009).

In order to compare FNAH and AA, we used the
reference pool of 23 normal thyroid tissues adjacent
to different pathologies. The human HEEBO (human
exonic evidence-based oligonucleotide) 70-mer oligo-
nucleotide microarrays, containing ~48 500 probes
(representing exonic sequences, alternatively spliced
exons, expressed sequence tags (ESTs), and controls)
were used for the array analysis. All hybridizations were
performed in duplicates with dye swap. For the PTC and
ATC microarray, 20 PTCs and 9 ATCs were hybridized
on Affymetrix slides (HGU133 plus 2.0), according to
Affymetrix protocol. The ethics committees of the
institutions have approved protocols according to
Declaration of Helsinki.

Calcium uptake assay

Intracellular Ca®>" concentrations were measured in
PC CI3 cells. Briefly, cells were detached from tissue
culture plates with PBS containing 0.5 mmol/l EDTA,
washed once with HEPES-buffered medium (HBM;
137 mmol/l NaCl, 5 mmol/l KCI, 1 mmol/l CaCl,,
0.44 mmol/l KH,POy,, 4.2 mmol/l NaHCOs5, 10 mmol/l
glucose, 20 mmol/l HEPES, and 1.2 mmol/l MgCl,,
pH 7.4), and then loaded with 2 umol/l fura-2
acetoxymethyl ester for 20 min at 37 °C. After loading,
the cells were diluted with HBM without CaCl, to a

www.endocrinology-journals.org
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final concentration of 0.3 mmol/l CaCl, and stored at
room temperature until use. For fluorescence record-
ings, an appropriate volume of the cell suspension was
spun down, washed once in HBM, resuspended in
HBM, and placed in a thermostated (37 °C) cuvette
with magnetic stirring in a Hitachi F-2000 fluorescence
spectrophotometer. The fluorescence was monitored at
340 nm (excitation) and 505 nm (emission). Experi-
ments were calibrated with 60 pg digitonin/ml (Fpax)
and 10 mmol/l EGTA (Fy,;,). The intracellular [Ca2+]
was calculated from the fluorescence (F) using the
equation [Ca?" 1= (F — Fypin)/(Fmax — F) X 224 nmol/l
(K4 for fura-2), in which the extracellular fura-2
fluorescence was subtracted from F' values.

RNA interference

Short interfering Sod3 or Gapdh OnTargetplus SMART
pool oligos (Dharmacon, Lafayette, CO, USA) were
transfected into PC Cl3 cells according to the
manufacturer’s protocol. Shortly, 20 pmol/l of
siSOD3 or siGAPDH control oligo were resuspended
to total volume 100 pl transfection buffer, mixed with
equal volume of Optimem (Life Technologies), and
incubated 5 min at room temperature. The optimation of
small interference RNA (siRNA) quantity used in the
study was based on the siGAPDH silencing effect using
KDalert GAPDH assay kit (Ambion, Austin, TX, USA).
To prepare the transfection solution, 5 pl Dharmafect 4
reagent was added to 190 pul of Optimem and incubated
5 min at room temperature. Oligo suspension and
transfection reagent were combined, incubated 20 min
at room temperature, and added to the cells for 48 h.

Bromodeoxyuridine analysis

Cells were serum starved for 16 h and TSH stimulated
for 6 h before the addition of 10 mM bromodeoxy-
uridine (BrdU; Roche) for 2 h. Subsequently, cells were
fixed in 3% paraformaldehyde (Sigma) and permeabi-
lized with 0.2% Triton X-100 (Sigma). BrdU-positive
cells were revealed with FITC-conjugated secondary
antibodies (Jackson ImmunoResearch Laboratories,
Inc., West Grove, PA, USA). Cell nuclei were identified
by Hoechst (Sigma) staining.

Chemiluminescence assay for O, detection

Extracellular O, release was detected by chemi-
luminescence using the SOD-inhibitable Diogenes
reagent (National Diagnostics, Atlanta, GA, USA) on
cells resuspended in Hanks’ Balanced Salt Solution
(HBSS)/10 mmol/1 glucose. One pmol/l ionomycin was
added to the cells to stimulate the dual oxidase (DUOX)
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activity. Measurements were taken with 22 s intervals
for 10 min in 96-well white plates (1.5 X 10° cells/250-pul
well) at 37 °C using a Microplate Luminometer. Chemi-
luminescence curves were analyzed, and peak values of
the curves were presented in Relative Light Units/s.

Fluorimetric assay for H,O, detection

The H,O, release was quantified 48 h after cell
transfection by the homovanillic acid-based
fluorimetric assay (Benard & Brault 1971) and by
5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein
diacetate (H,DCFDA; Invitrogen). For homovanillic
assay, the cells were incubated in Krebs—Ringer—HEPES
medium pH 7.4 containing 0.1 pg/ml HRP type II,
440 pmol/l homovanillic acid, and 1 pmol/l ionomycin
during 2 h 30 min at 37 °C. Fluorescence intensity of
oxidized homovanillic acid was measured at 425 nm
after excitation at 315 nm. Results are reported as ng of
H,0,/well representing the quantity of H,O, accumu-
lated during 2 h 30 min in each well (six-well plates).
For the H,DCFDA assay, the cells were grown in
96-well dishes, the reagent (1 mg/ml) was added to the
cells for 15 min, and the fluorescence was measured
with Azgy/Ayzs.

Statistical analysis

Statistical analysis was done using z-test for means +s.D.

Results

SOD3 is abundantly expressed in rat thyroid
tissue and stimulated by TSH

SOD3 is an extracellular H,O,-producing enzyme
expressed in various tissues (Marklund 1984, Laukkanen
et al. 2000) protecting cell surface structures against
deleterious effects of superoxide. The local adminis-
tration of Sod3, causing twofold increased total SOD
activity in tissues, or i.v. infusion of the native C-form of
the isolated recombinant enzyme with affinity to cell
surface structures results in significant attenuation of
tissue damages and markedly increased tissue recovery
(Hatori et al. 1992, Sjoquist & Marklund 1992,
Laukkanen et al. 2002), suggesting that even minor
changes in tissue SOD3 concentration have a significant
impact on the redox balance.

Comparison of SOD isoenzyme mRNA expressions
from normal rat tissues (Fig. 1A) demonstrated thyroid
as one of the major expression sites for Sod3.
Accordingly, mRNA extraction from normal rat tissues
showed 2.5-fold higher expression levels in thyroid as
compared with heart, corresponding to a previously
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reported threefold and fivefold differences in thyroid
versus heart protein level in rabbit and human
respectively (Marklund 1984). The expression in the
rat thyroid approached the levels detected in the aorta,
which is one of the main expression sites for SOD3
(Laukkanen er al. 2002), indicating participation to
ROS balance and signal transduction in thyroid tissue.
The expression of Sodl and Sod2 was in line with
previously reported enzyme activities in the rat tissues
(Marklund 1984).

Because SOD3 activation increases H>O, synthesis
that has been shown to be up-regulated in response to
TSH, we used a rat in vivo model to investigate the
expression status of SOD3 in benign thyroid enlarge-
ment caused by increased TSH secretion and to
compare the animal data to human clinical samples.
PTU treatment is known to cause decreased T;
production with subsequent increase in TSH, thyroid
enlargement, and activated thyroid function (Levey
1963, al-Alawi et al. 1995, Laezza et al. 2006); we
therefore treated four rats with PTU ad libitum and
killed the animals after 2 weeks to isolate the thyroids.
As shown in Fig. 1, PTU-treated thyroids had on
average fourfold increase in wet-weight (animals 4-7)
as compared with normal untreated animals (rat 1-3;
Fig. 1B), suggesting a typical goiter formation, which
was further supported by hematoxylin—eosin staining
demonstrating increased cellular division and loss of
follicular lumen (Fig. 1C and D). The variation seen in
thyroid growth is in line with previous reports (Levey
1963) due to ad libitum administration of PTU. To
study the expression of Sod3 mRNA, we pooled in two
separate groups the normal and the treated rats, and
showed tenfold increased (P <0.01) mRNA synthesis
in PTU-treated animals (Fig. 1E), thereby suggesting
that the enzyme production is activated by TSH
signaling. However, the DNA array analysis of
human AA and FNAH samples failed to demonstrate
significant differences between patient groups
(Fig. 1F), suggesting that the human phenotype is
milder than the phenotype of PTU-treated rats.

We then extended our analysis to clinical thyroid
patient samples by comparing the SOD isoenzyme
expression in normal human thyroid (Fig. 1G) and
found that in humans, SODI showed highest degree of
expression differently from the rat thyroid samples
(Fig. 1A). Finally, in order to confirm the significance of
SOD3 in thyroid cell physiology, we compared the
expression of Sod!, Sod2, and Sod3 in a normal thyroid
rat cell line (PC C13). According to qRT-PCR data, Sod3
expression was significantly higher as compared with
Sodl (P<0.01) and Sod2 (P <0.01; Fig. 1H) validating
the in vivo observations in the rat model (Fig. 1A).
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Figure 1 Superoxide dismutase expression in rat and human tissues. (A) Quantitative RT-PCR analysis for Sod1, Sod2, and Sod3
mRNA expression from normal untreated rat tissues. The analysis suggested high expression level for Sod1 in liver, kidney, aorta,
and in heart; for Sod2 in kidney; and for Sod3in kidney, thyroid, and aorta. (B) Thyroid weight measurement from three normal and
four PTU-treated rats. Rats 1-3: normal controls, rats 4—7: PTU-treated animals. The analysis showed approximately fourfold
increase in wet weight of the PTU-treated tissues indicating goitrogenous development. The use of PTU ad libitum for 14 days in
drinking water caused variation seen in thyroid weight development. (C and D) Hematoxylin—eosin staining for control rats (C) and for
PTU-treated rats (D) showed hyperplasia and altered thyroid structure caused by the treatment. (E) Sod3 mRNA expression upon
PTU treatment. The Sod3 levels in rat thyroid were significantly (P<0.01) increased by PTU treatment. (F) Human DNA array
analysis from normal thyroid, autonomous adenoma (AA), and from familial nonautoimmune hyperthyroidism (FNAH) showed
insignificant differences for SOD3 mRNA expression. (G) Real-time RT-PCR analysis for SOD mRNA expression from normal
human thyroid samples. In human thyroid tissue, SOD1 represents the major isoenzyme differently from rat thyroid tissue shown in
panel 1A. (H) Comparison of Sod1, Sod2, and Sod3 expression in rat thyroid PC CI3 cells by real-time RT-PCR analysis suggested
Sod3as a majorisoenzyme in the cell line being in line with normal rat thyroid expression analysis shown in panel 1A. Sod3 synthesis

was significantly (P<0.01) higher than Sod7 and Sod2 mRNA production.

TSH signal transduction increases Sod3 mRNA
expression

The upregulation of SOD3 in rat hyperfunctioning
thyroids suggests that SOD3 could be under the control
of TSH, and therefore, we investigated the effect of the
different mediators of TSH signaling on regulating
Sod3 production in rat PC Cl13 cell line. As shown in
Fig. 2A, the SOD3 mRNA synthesis was significantly
induced by TSH stimulation (threefold increase,
P<0.01). Because TSH-R is coupled to both G
proteins: to Goa,, which causes accumulation of
cAMP and activates PKA, and to Gag, which increases
the intracellular Ca® *level and activates protein kinase
C (PKC), we studied the contribution of Ga,-mediated
pathway on Sod3 mRNA production by transiently
transfecting constitutively active Go, (pCEF-Goy) and
PKA (pCEF-PKA) into PC CI3 cells that resulted in
5.5-fold (P <0.01) and sixfold increase (P <0.001) in
SOD3 mRNA synthesis respectively. Similarly,
accumulation of cAMP after the activation of adenylyl
cyclase with forskolin promoted Sod3 mRNA tran-
scription of sixfold (P <0.05), supporting the involve-
ment of TSH-cAMP pathway in the production of

www.endocrinology-journals.org

SOD3. To further demonstrate the specificity of Sod3
activation, we inhibited the PKA function in TSH-
stimulated PC CI3 cells by using a selective PKA
inhibitor, H89. Interestingly, even though TSH-H89
incubation significantly decreased (P <0.05) Sod3
production, it was not able to completely abolish the
mRNA induction, suggesting the contribution of other
signaling routes in SOD3 regulation (Fig. 2A). Because
in thyroid cells TSH-derived signaling is also mediated
via Gocq—PLC—Ca2+ signal transduction pathway
(Song et al. 2007), we transfected PC CI3 cells with
an active form of Gag (pPCEF-Gay) or incubated the
cells with thapsigargin, which increases calcium influx.
Transfection of pCEF-Gay as well as treatment with
thapsigargin increased relative mRNA production by
threefold (P <0.01 and P <0.05 respectively; Fig. 2B
and C), suggesting that both Goy/cAMP/PKA and
Gocq/PKCy/Ca2+ signal transduction pathways are
involved in SOD3 regulation in PC CI3 cells. The
effect of thapsigargin on promoting the Ca>™ levels in
PC CI3 cells was determined by measuring the
intracellular Ca®% concentrations at different time
points, upon treatment with the compound (Fig. 2C).
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Figure 2 TSH activation increased Sod3 mRNA production in
PC CI3 cells. (A) TSH-R cAMP pathway increased Sod3
production. The expression was analyzed by gRT-PCR in cells
treated with TSH and forskolin or transfected with PKA or Gas,
which all induced the mRNA synthesis significantly (P<0.01,
P<0.05, P<0.001, and P<0.01 respectively). Treatment with
PKA inhibitor H89 reduced significantly (P<0.05) the effect of
TSH but was not able to completely inhibit the expression.

(B) The effect of TSH-R phophatidylinositol cascade on Sod3
synthesis was studied by Gaq subunit transient transfection and
by calcium uptake analysis using thapsigargin that blocks the
calcium pumps in endoplasmic reticulum increasing the
cytosolic calcium concentration. Both treatments, transfection
and thapsigargin administration, increased the mRNA synthesis
significantly (P<0.01 and P<0.05 respectively). (C) The
intracellular calcium levels upon thapsigargin treatment were
measured by fluorescent calcium uptake assay. The levels went
promptly up after 100 nmol/l thapsigargin administration and
stayed above the baseline values over the follow-up period.

SOD3 has a mitogenic effect in thyroid cells

We then aimed to investigate the physiological
consequences of TSH-stimulated Sod3 production in
thyroid cells. In addition to antioxidative charac-
teristics, we have recently shown that exogenously
administered Sod3 is able to stimulate Ras GTP loading
in vitro and in vivo leading to the activation of mitogen
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signaling pathway and consequent growth factor
expression and cell proliferation (Laurila et al. 2009).
This is further supported by numerous reports showing
that physiological concentrations of H,O, can activate
cell membrane receptors and downstream signaling
leading to cell proliferation in vitro and in vivo (Rao
1997, Wang et al. 2000, Saito et al. 2002, Aslan &
Ozben 2003, Konishi et al. 2004, Mehdi et al. 2005).

Since Sod3 is highly expressed in PC CI3 cells
(Fig. 1H), the overexpression of SOD3 did not have
any detectable effect on cell proliferation (data not
shown). We therefore investigated the effect of RNAi
on normal rat thyroid cell proliferation. The efficiency
of Sod3 siRNA transfection was checked by qRT-PCR
analysis, showing 95% interference effect (P <0.001)
in Sod3 mRNA production at 48-h time point (Fig. 3A).
Importantly, by transfecting siRNA for Sod3 (siSOD3)
into TSH-stimulated PC CI3 cells, we formally proved
that SOD3 has a role in regulating the mitogenic
effect of TSH on thyroid cells, as the transfection of
siSOD3 significantly (P <0.05) reduced the in vitro
BrdU incorporation from 33 to 15% (Fig. 3B). This
mitogenic effect of SOD3 is in line with our earlier
observations (Laurila et al. 2009).

Because previous studies have shown that the
production of H,O, in thyroid cells correlates with the
stimulation of T; and T4 production (Corvilain ef al.
1994), we determined the dismutase activity of SOD3 in
Cos-7 heterologous system to predict the participation
of SOD3 in hormone synthesis. For this, we used control
cells expressing DUOX2 (D2) and the activator of
DUOX1 (DUOXALI or A1), which together produce O,
rather than H,O, (Zamproni et al. 2008, Morand et al.
2009). Transiently transfected SOD3 showed significant
(P <0.001) reduction in extracellular O, concentration
indicating functionality of SOD3 in our cellular model
(Fig. 3C). Finally, because DUOXes have been
indicated as the main sources for H,O, production in
thyroid, we compared H,O, levels produced by DUOX
and SOD3 (Fig. 3D), and found that indeed, the SOD3-
derived H,O, production was 28-fold lower than by
DUOX2-DUOXA2 pair (P<0.05), suggesting a role
for SOD3-mediated H>O, production in controlling
TSH-dependent thyroid growth and differentiation
rather than in hormone production.

SOD3 is down-regulated in thyroid cancer

In line with the observation that SOD3 could be
involved in the TSH-dependent proliferation/
dedifferentiation process, we decided to investigate
the expression of Sod3 in malignant thyroid prolif-
erative disorders, firstly by determining the mRNA
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levels from three rat PC ClI3 derived models of
oncogene-dependent dedifferentiation, PC Braf, PC
RET/PTC1, and PC ElA stable cell lines, which
showed decreased Sod3 synthesis in correlation with
oncogene-mediated transformation and dedifferentia-
tion as compared with normal PC CI3 cells (Fig. 4A).
PC Braf cells showed twofold decreased (P <0.05)
mRNA synthesis, PC RET/PTC1 cells showed
threefold decreased (P <0.01) Sod3 mRNA amount
where as PC E1A cell model lacked almost completely
the expression (P<0.001) as compared with control
PC CI3 cells.

To further study the effect of oncogene induced
inhibition of SOD3 expression, we took advantage of
an inducible oncogenic cellular model, doxycyclin
RET/PTCI-inducible PC cells. As shown in Fig. 4B and
C, the increased expression of the RET/PTC1 oncogene
upon doxycyclin treatment correlated with a significant
reduction in Sod3 expression at 24- and 72-h time points
(P<0.05 at 24 h and P <0.001 at 72 h), indicating that
the different levels of Sod3 mRNA downregulation
observed in Fig. 4A could also be due to the different
expression levels of the specific oncogenes.

Since H,O, represents the main product of Sod3
activation, we confirmed the decreased Sod3 expression
in PC RET/PTC1 and PC E1A cells by measuring the
H,0, levels, which were significantly (P <0.001 and
P <0.01 respectively) decreased in transformed cells as
compared with wild-type cells (Fig. 4D).

To finally move our observation to human models,
we then compared DNA array data obtained from
normal human thyroid, PTC, and ATC tissues, and
showed significantly (P<0.01) decreased SOD3
synthesis in papillary thyroid tumors and ATC tissue
(P<0.01) in line with in vitro cell models (Fig. 4A).
These data were further confirmed by qRT-PCR
analysis, which gave similar results (Fig. 4F).

Figure 3 Functional role of SOD3 in thyroid models. (A) RNAI
knockdown of Sod3in PC CI3 cells. Quantitative RT-PCR
showed significant (P<0.001) Sod3 downregulation caused by
siSOD3 interfering oligos. (B) BrdU incorporation analysis
suggested significantly (P<0.05) attenuated cell proliferation
caused by siSOD3 in TSH-stimulated PC CI3 cells. The
TSH-stimulated proliferation was decreased by 44% in siSOD3-
transfected cells as compared with siGAPDH-transfected cells.
(C) The functionality of SOD3 to dismutase DUOX2/DUOXA1
(D2+ A1) derived superoxide was tested in Cos-7 heterologous
system. The data showed that SOD3 was able to dismutase the
DUOX2/DUOXA1 produced superoxide significantly
(P<0.001) indicating functionality of the enzyme in this cell
model. (D) SOD3-derived hydrogen peroxide production was
tested in Cos-7 heterologous system. Properly folded DUOXA2
produced significantly (P<0.05) higher concentration of H,O,
than SOD3. Transfection of SOD3 resulted in only minor
increase in H,O, synthesis suggesting that DUOX enzyme
complex has the major role H O, synthesis in thyroid.
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The expression of other isoenzymes, SOD/ and SOD2,
were more variable in patient samples; SODI
expression was mildly affected by tumorigenesis,
whereas SOD2 was decreased in PTC patients
(P<0.01/P<0.05, DNA array/qRT-PCR) and signi-
ficantly increased in ATC thyroid tumors (P<<0.01/
P<0.05, DNA array/qQRT-PCR). The in vitro and
in vivo data therefore showed that SOD3 is expressed
in normal thyroid tissue, induced by TSH together
with thyroid differentiation markers (Dumont ez al.
1992, Kondo er al. 2006), and reduced in in vitro
transformation models and thyroid cancer samples.

Discussion

Thyroid tissue physiology requires continuous high
concentration of H,O, for thyroid hormone T3 and T4
synthesis which is, according to recent publications,
produced mainly by DUOX (Dupuy ef al. 1991, 2000,
De Deken et al. 2002, Rigutto et al. 2007). Inactivating
mutations of DUOX2 completely abolish H,0,
generation and thyroid hormone synthesis in human
thyroids, and constitute a major cause of congenital
hypothyroidism (Moreno et al. 2002). SODs are H,0,-
producing isoenzymes that are responsible for balan-
cing the reduction—oxidation reactions in different
cellular compartments. In thyroid tissue, H,O, is
utilized in thyroid hormone production by trans-
membrane glycoprotein thyroperoxidase that both

Figure 4 SOD3 expression decreases upon thyroid cell
transformation. (A) Quantitative RT-PCR analysis for Sod3
mRNA from wild-type rat PC CI3 cells and PC CI3 cells
transformed with different oncogenes indicated decreased
mRNA production correlating to the oncogene used for cell
transformation. The Sod3 synthesis decreased 50% (P<0.05)
in PC Braf cells, 60% (P<0.01) in PC RET/PTC1 cell model,
and was almost completely abrogated (P<0.001) in PC E1A
cells. (B and C) PC-inducible RET/PTC1 (PCindPTC1) cell
model showed that the decreased Sod3 mRNA synthesis
depends on the level of oncogene expression. The doxycyclin-
induced RET/PTC1 oncogene expression (B) correlates to the
decreased Sod3 production (C). (D) Determination of H>O,
production. The fluorimetric measurement of H,O, synthesis
showed decreased H,O, production in PC RET/PTC1
(P<0.001) and PC E1A (P<0.01) cells as compared with

PC CI3 controls being in line with the reduced expression of the
Sod3 enzyme. (E) Analysis of DNA array data from normal
thyroid samples derived from papillary thyroid (PTC) and
anaplastic thyroid (ATC) cancers showed reduced SOD3
expression in transformed tissues (P<0.01). The differences of
SOD1 expression were statistically insignificant, whereas the
expression of SOD2 was significantly (P<0.05) decreased in
PTC samples and significantly (P<0.01) increased in ATC
patients. (F) Real-time RT-PCR analysis supported the array
data, showing that only SOD3 but not the other isoenzymes
could be considered as a differentiation marker in cancer
development. Both analyses, DNA array and qRT-PCR,
showed that the expression of SOD1 and especially SOD2 was
more variable.
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oxidizes and incorporates iodine to thyroglobulin,
which is then further metabolized to thyroid hormones
T; and T4 In the present study, we therefore
investigated the expression and role of SODs, more
specifically extracellularly expressed SOD3, in thyroid
cells in vitro models and further compared the results
to patient samples data.

The expression analysis of different rat tissues
suggested thyroid as a major expression site for the
enzyme (Fig. 1). According to our previous studies,
relatively low concentration of SOD3 in vitro or in vivo
is able to induce a physiological response in the cells
and in the surrounding extracellular tissue environment
(Laukkanen et al. 2000, 2001b, 2002, Laurila et al.
2009), suggesting that even minor differences in the
enzyme concentration can have an impact on cellular
signaling and consequent biological effects.

We studied the SOD3 expression in benign thyroid
enlargement models to determine the expression of the
enzyme in the proliferative environment. Even though
previous clinical analysis has demonstrated decreased
total SOD activity in the plasma of Graves’ disease
patients (Wilson et al. 1989, Abalovich et al. 2003,
Rybus-Kalinowska et al. 2008), a recent paper
suggested increased Sod3 mRNA production in thyroid
caused by long-term iodine deprivation in murine
models (Maier et al. 2007). Since both the synthesis of
autoantibodies against TSH-R in Graves’ disease and
the diet iodine deprivation lead to increased TSH-R
signaling and consequent thyroid activation, we
investigated the Sod3 expression in experimental
in vivo rat goiter model (Fig. 1). Increased Sod3
production in rat goiter model was in line with previous
murine models (Maier et al. 2007), suggesting the
participation of TSH in its expression in mouse and rat
thyroid cells. However, analysis of patient samples did
not show significant increase in SOD3 levels, which
could be due to the existence of wide phenotypic
variations in humans, ranging from mild to severe toxic
hyperfunction of the gland. It is also noteworthy that
unlike in rat normal thyroid and in rat PC CI3 thyroid
cells, in normal human thyroid tissue, SOD[ expression
was fivefold higher than SOD3 mRNA production again
indicating species-related differences (Fig. 1).

Because the TSH signaling is the main mediator of
thyroid hyperfunction, we studied the effects of the
different molecules of this pathway on Sod3 mRNA
synthesis. TSH signals to TSH-R, a GPCR that
activates Go,; and Gog heterotrimeric G-proteins in
human and rodents (Laugwitz et al. 1996). Activation
of Gay leads to the stimulation of cAMP, a positive
modulator of thyroid cell proliferation and the
expression of differentiation markers such as sodium
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iodide symporter and thyroperoxidase (Kogai et al.
1997, Pierce et al. 2002, van Staveren et al. 2006). The
Ga, protein stimulation in thyroid activates DUOX-
derived H,O, production, which is the limiting factor
in thyroglobulin iodination and in thyroid hormone Tj
and T, synthesis (Corvilain et al. 1994). To determine
the role of Sod3 in thyroid in vitro model, we utilized
the PC CI3 cell line that according to our present data
contains higher concentration of SOD3 than other
isoenzymes and is therefore responding to SOD3-
mediated redox changes (Fig. 1H). By studying the
effect of TSH signaling in these cells, we identified
a novel GPCR-mediated induction of Sod3 through
both, a cAMP and phosphatidylinositol-mediated way,
suggesting a role for the enzyme in thyroid physiology
(Fig. 2). Since GPCR-mediated signal transduction
plays a significant role also in other tissues, the current
data could potentially further explain previous obser-
vations of SOD3-mediated effects in injury models
(Laukkanen et al. 2002, Brasen et al. 2007).

In order to investigate the functional effect of
the enzyme in thyroid environment, we used siRNA
and overexpression of SOD3 in heterologous Cos-7
model to study the proliferation and level of H,O,
production respectively (Fig. 3). According to the
present data, knockdown of Sod3 is able to attenuate
TSH-stimulated proliferation proving a role for the

TSH

|

-

cAMP PLC
PKA CaZ*

| |

Cancer —— SOD3 expression

|

Normal thyrocyte proliferation

Figure 5 Scheme for activation of Sod3 transcription in thyroid
cells. TSH stimulation leads to signal transduction via
cAMP—PKA and PLC—Ca®" routes that both increase Sod3
mRNA synthesis. In normal thyroid, the increased Sod3
production has a role in thyrocyte proliferation where as in
thyroid cancer the signal transduction route leading to
increased Sod3 levels is silenced, as a result of the loss of
differentiation markers.
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enzyme in normal thyroid proliferation. In heterologous
Cos-7 model, the transfected SOD3 reduced extracellu-
lar superoxide generation by mismatched DUOX1 and
DUOXA?2, but the SOD3 derived H,O, was signi-
ficantly lower than the H,O, produced by matched
DUOX?2 and DUOXA?2 at equal levels of expression,
suggesting that, differently from DUOXes, SOD3 is not
directly regulating thyroid hormone synthesis.

Finally, because the TSH signaling, as a differen-
tiation marker, is down-regulated in cancer, we
analyzed different PC Cl3 derived cancer cellular
models and showed reduced expression of the Sod3
mRNA, depending on both the specific oncogene used
to transform the cells and the level of the oncogene
expression (Fig. 4A-C).

To further analyze the SOD expression in thyroid
tumorigenesis, we determined the mRNA expressions
from human patient samples. Similarly to in vitro
models, in both, papillary and anaplastic cancer tissue
samples, we observed a reduced SOD3 expression,
suggesting that this gene behaves as a thyroid
differentiation marker reduced in malignant transfor-
mation (Fig. 4E and F).

In conclusions, we have shown a novel TSH
stimulation-dependent GPCR-mediated signal trans-
duction pathway activating Sod3 mRNA production
in rat thyroid PC CI3 cell line. We have further
demonstrated differentiation-dependent SOD3 express-
ion both in vitro and in vivo in patient samples. The
finding suggests that SOD3 is involved in TSH mitogen
effect in normal thyrocytes, a pathway that is disrupted
in thyroid cancer (Fig. 5).
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