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Abstract

This dissertation is the result of a research focused on the study, with

the help of finite element analysis , of an aircraft windshield-surround

structure with an innovative configuration, that satisfies the bird-strike

requirement according to the EASA Certification Specifications 25.631

on the ”Bird-strike Damage” [CS25.631 (2003)].

The first step was the numerical analysis of a simplified, but realistic,

square flat windshield model subjected to impact by a 1.8 kg bird model

at 155m/s with an impact angle of 90◦. The FE-SPH coupled approach

was used to simulate the birdstrike by using the explicit finite element

solver code LS-Dyna.

The second step was the execution of a parametric analysis on the square

model to estimate the influence of the target geometry, the impact an-

gle, and the plate curvature on the impact response of the windshield

structure. The goal of these numerical simulations was the evaluation of

the windshield capability to absorb the impact energy, involving during

a birdstrike event, in a safe and efficient way without any damage.

Finally it was developed a numerical simulation of birdstrike event on a

full-scale aircraft windshield-surround model. This FE numerical analy-

sis showed the capability of the real innovative windshield to withstand

to the impact force transferred by the bird during the impact and per-

mitted the definition of some guidelines to execute a certification test

simulation and to give an impact test article proposal, needed for a de-

sign of an airplane windshield structure able to resist to a birdstrike

event in according with the conditions stated in the CS 25 standard

requirements.



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Aim of Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outlines of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Birdstrike Theory 9

2.1 Physics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Initial impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Impact pressure decay . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Steady flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Flow termination . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Momentum Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Impact Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Average Impact Force . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Impact Modeling Methodology 18

3.1 Basics of Non-linear Analysis . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Geometric Nonlinearity . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Material Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Force and Displacement BC Nonlinearity . . . . . . . . . . . . 20

3.2 Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Eulerian Formulation . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 ALE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 SPH Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



CONTENTS

4 Bird and Target Description 28

4.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Mechanical Behaviour of Materials . . . . . . . . . . . . . . . . . . . 32

4.2.1 Windshield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1.1 Glass . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1.2 Plastic Interlayer . . . . . . . . . . . . . . . . . . . . 34

4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Explicit Non-linear FE Analysis 38

5.1 Simulation of Birdstrike Event . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Pre-processing Software Tools . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Windshield FE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Bird Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Contact Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Results and Discussion 50

6.1 Birdstrike vs the Square Windshield Model . . . . . . . . . . . . . . . 50

6.2 Parametric Study of the Impact Response . . . . . . . . . . . . . . . 63

6.2.1 Effect of the Curvature . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 Effect of the Impact Angle . . . . . . . . . . . . . . . . . . . . 68

6.2.3 Effect of the Thickness Lay-up Configuration . . . . . . . . . . 69

6.3 Birdstrike vs the Full-scale Windshield Model . . . . . . . . . . . . . 71

7 Conclusions 78

References 83

v



List of Figures

1.1 Number of reported strikes to civil aircraft, USA, 1990-2005 . . . . . 2

2.1 Initial impact phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Initial impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Impact pressure decay phase . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Steady flow phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Flow termination phase . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Momentum transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Oblique impact effective bird length . . . . . . . . . . . . . . . . . . . 16

3.1 FEM discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Description of motion for Lagrangian formulation . . . . . . . . . . . 21

3.3 Description of motion for Eulerian formulation . . . . . . . . . . . . . 23

3.4 Description of motion for ALE formulation . . . . . . . . . . . . . . . 24

3.5 Formulations comparison . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Discretization of volume: a) FEM b) SPH . . . . . . . . . . . . . . . 26

3.7 Domain of the sphere in the SPH method . . . . . . . . . . . . . . . . 27

4.1 Typical windshield-surround structures of business jet airplanes . . . 28

4.2 Innovative configuration of windshield structure . . . . . . . . . . . . 29

4.3 Configuration of left windshield-surround structure . . . . . . . . . . 30

4.4 Simplified windshield model . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Simplified windshield model . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Glass laminated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Windshield lay-up configuration . . . . . . . . . . . . . . . . . . . . . 33

4.8 Glass σ − ϵ curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 PVB shear modulus function . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Windshield-surround structure . . . . . . . . . . . . . . . . . . . . . . 35

4.11 Windshield-surround installation . . . . . . . . . . . . . . . . . . . . 36

4.12 Section of windshield-surround installation . . . . . . . . . . . . . . . 37

vi



LIST OF FIGURES

5.1 LS-PrePost software . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Square plate FE model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Full-scale left windshield FE model . . . . . . . . . . . . . . . . . . . 41

5.4 Bird SPH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Windshield-surround installation for the simplified model . . . . . . . 43

5.6 Full-scale surround structure . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Geometry of the cockpit structures . . . . . . . . . . . . . . . . . . . 45

5.8 FE model of the cockpit structures . . . . . . . . . . . . . . . . . . . 45

5.9 Simplified square plate vs Bird - FE model . . . . . . . . . . . . . . . 46

5.10 Full-scale windshield vs Bird - FE model . . . . . . . . . . . . . . . . 46

5.11 Contact penetration search . . . . . . . . . . . . . . . . . . . . . . . . 47

5.12 Contact automatic nodes to surface . . . . . . . . . . . . . . . . . . . 47

5.13 Contact tied surface to surface . . . . . . . . . . . . . . . . . . . . . . 48

5.14 Contact automatic surface to surface . . . . . . . . . . . . . . . . . . 48

6.1 Birdstrike vs Simplified square windshield . . . . . . . . . . . . . . . 50

6.2 Thickness lay-up configuration . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Sequence of plate deformation between 0-0.0020 sec . . . . . . . . . . 52

6.4 Sequence of plate deformation berween 0.0030-0.0050sec . . . . . . . 53

6.5 Failure propagation of the Outer and Middle Glass . . . . . . . . . . 54

6.6 Failure propagation of the Inner Glass and Outer PVB . . . . . . . . 55

6.7 von Mises Stress e Plastic Strain . . . . . . . . . . . . . . . . . . . . 56

6.8 Central element displacement . . . . . . . . . . . . . . . . . . . . . . 57

6.9 Resultant contact force . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.10 Hourglass modes of under-integrated solid elements . . . . . . . . . . 59

6.11 Total internal energy for each layer . . . . . . . . . . . . . . . . . . . 60

6.12 Total internal energy for glass laminate . . . . . . . . . . . . . . . . . 60

6.13 Total internal energy for surround . . . . . . . . . . . . . . . . . . . . 61

6.14 Total internal energy for bird . . . . . . . . . . . . . . . . . . . . . . 61

6.15 Total hourglass energy . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.16 Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.17 Curvature changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.18 Impact angle changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.19 Cases studied as changes of curvature and impact angle . . . . . . . . 64

6.20 Thichness lay-up configurations . . . . . . . . . . . . . . . . . . . . . 65

6.21 Maximum energy as the curvature changes for α =90◦ . . . . . . . . . 67

6.22 Maximum energy as the curvature changes for α =60◦ . . . . . . . . . 67

6.23 Maximum energy as the curvature changes for α =30◦ . . . . . . . . . 67

vii



LIST OF FIGURES

6.24 Maximum energy as the impact angle changes for r = ∞ . . . . . . . 68

6.25 Maximum energy as the impact angle changes for r = 1.273 . . . . . 68

6.26 Maximum energy as the impact angle changes for r = 0.636 . . . . . 69

6.27 Maximum energy as the curvature changes for α =90◦ . . . . . . . . . 69

6.28 Maximum energy as the curvature changes for α =60◦ . . . . . . . . . 70

6.29 Maximum energy as the curvature changes for α =30◦ . . . . . . . . . 70

6.30 Real and Simplified windshield models . . . . . . . . . . . . . . . . . 71

6.31 Comparison between Real and Simplified windshield models . . . . . 72

6.32 Sequence of the birdstrike vs Full-scale windshield . . . . . . . . . . . 73

6.33 Sequence of the plate deformation . . . . . . . . . . . . . . . . . . . . 74

6.34 Displacement of the impacted zone of the right panel . . . . . . . . . 75

6.35 Resultant contact force . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.36 Internal energy for each layer of right panel . . . . . . . . . . . . . . . 76

6.37 Internal energy for each layer of left panel . . . . . . . . . . . . . . . 76

6.38 Birdstrike against the center beam of the surround structure . . . . . 77

6.39 von Mises stress plot for birdstrike vs the center beam . . . . . . . . . 77

6.40 Kinetic energy of the bird . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Birdstrike test article proposal . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Tables

1.1 FAR - Birdstrike Test Requirements . . . . . . . . . . . . . . . . . . . 2

3.1 Attributes of the Lagrangian formulation . . . . . . . . . . . . . . . . 22

3.2 Attributes of the Eulerian formulation . . . . . . . . . . . . . . . . . 23

3.3 Attributes of the ALE Formulation . . . . . . . . . . . . . . . . . . . 25

4.1 Windshield properties . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Glass properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 PVB-interlayer properties . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Thickness distribution of the full-scale model . . . . . . . . . . . . . . 41

5.2 Tabulated equation of state . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Numerical simulations matrix . . . . . . . . . . . . . . . . . . . . . . 66

ix



Chapter 1

Introduction

1.1 Overview

During its life cycle an aircraft flies on the risk of impacting foreign objects. Ac-

cording to the aeronautical specifications, with the term ”birdstrike” we mean the

collision between a bird and an aircraft front facing component, which includes

windshield, nacelles, wing leading edge and compressor blade.

The probability of an accident is higher in the airport area during the take-off

and landing phases, and especially in the early morning and late afternoon. In

recent years the severity and importance of the birdstrike has grown because of the

remarkable increase of the air traffic and airplane performances in term of velocity,

followed by an increment of energy density and impulsive loads during the impact.

The birdstrike is not only relative to the flight safety, but also to not negligible

maintenance costs, which the companies must meet to repair possible damages in

case of an accident. In order to better understand the nature of birdstrike and also

prevent the hazard of an accident, they have been formed international committees,

such as the Birdstrike Committee USA. Only in the United States more than 60000

wildlife strikes to civil aircraft have been reported between 1990 and 2005 (Figure

1.1). The annual cost of the wildlife strikes to the USA civil aviation industry is

estimated to be in excess of 530000 hours of aircraft downtime and $614 million in

monetary losses ($470 million per year in direct costs and $144 million per year in

associated costs) [Cleary et al. (2003)].

Therefore more and more companies and government authorities have initiated

advanced research and development programs to ensure that every structural part

of an aircraft is able to withstand the loads due to a high velocity impact and at

least guarantee the safe landing of the airplane, in according to the International

Certification Standards.

1
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Figure 1.1: Number of reported strikes to civil aircraft, USA, 1990-2005

Both Federal Aviation Administration (FAA) and European Aviation Safety

Agency (EASA) list regulations for the aircraft certification process to ensure that

the front facing aircraft components should be capable of withstanding birdstrikes

at critical flight speed to a certain degree (Table 1.1).

Aircraft Component Bird Weight FAR Section

Windshields and Frames 4 lb 25.775 (b), 25.775 (c)
Wing Leading Edges 4 lb 25.571(e)(l)

Empennage Leading Edges 8 lb 25.631, 25.571(e)(l)
Engine - Inlet Lip 4 lb 25.571(e)(I)

Engine - Fan Integrity 4 lb 33.77, 25.571(e)(l)
Engine - Continued Operation Up to 8 of 1.5 lb birds 33.77,25.571(e)(I)

Table 1.1: FAR - Birdstrike Test Requirements

For instance, the EASA birdstrike airworthiness requirements relevant to the

large airplane windshield are specified under the Certification Specifications (CS) 25

Section 775, which states that:

• Internal panes must be made of non splintering material.

• Windshield panes directly in front of the pilots in the normal conduct of their

duties, and the supporting structures for these panes, must withstand, without

penetration, the bird impact conditions specified in CS 25.631.

• Unless it can be shown by analysis or tests that the probability of occurrence of

a critical windshield fragmentation condition is of a low order, the aeroplane

2



1.1 Overview

must have a means to minimise the danger to the pilots from flying windshield

fragments due to bird impact. This must be shown for each transparent pane

in the cockpit.

• The windshield panes in front of the pilots must be arranged so that, assuming

the loss of vision through any one panel, one or more panels remain available

for use by a pilot seated at a pilot station to permit continued safe flight and

landing.

Where the bird strike conditions are specified under the Section CS 25.631 (Bird-

strike damage): ”The aeroplane must be designed to assure capability of continued

safe flight and landing of the aeroplane after impact with a 4 lb bird when the velocity

of the aeroplane (relative to the bird along the aeroplane’s flight path) is equal to VC

at sea-level or 0.85 VC at 2438 m (8000 ft), whichever is the more critical. Compli-

ance may be shown by analysis only when based on tests carried out on sufficiently

representative structures of similar design.”

For the final certification both FAA and EASA require full-scale tests to demon-

strate the efficiency of every bird-proof structures, like a windshield. Because of the

excessive costs necessary to the execution of the test, the manufacturers perform

many numerical analysis of the birdstrike event with explicit nonlinear finite ele-

ment (FE) codes in order to decrease the number of destructive tests required and

to avoid any delay during the certification.

Explicit FE analysis is a numerical technique used in case of highly non linear

behaviour of materials with inelastic strains, high strain rates and large deforma-

tions, such as it occurs during a birdstrike. For a birdstrike phenomenon, to obtain

a good prediction of the impact loads and damage of an aircraft structure under

impact loading, it is essential to adopt a realistic material model for a bird and its

associated material and geometrical parameters. To achieve an accurate bird model

an explicit code, like LSTC/LS-Dyna [Hallquist (2006)], offers different approaches

to modeling:

1. the Lagrangian approach.

2. the Arbitrary Lagrangian Eulerian (ALE) approach.

3. the Smoothed Particle Hydrodynamics (SPH) approach.

The first and the third methods are based on the Lagrangian finite element formu-

lation, with the difference that in case of SPH approach the bird is modeled with

3



1.2 Literature Review

a meshless technique, in which the elements are a set of discrete and mutually in-

teracting nodes. Instead in the ALE method the bird material flows relative to an

Eulerian mesh and the impacting loads are transferred to the Lagrangian mesh (the

impacted structure) through an ALE coupling algorithm. Each method presents

both advantages and disadvantages, so the choice of the more appropriate approach

for the modeling is often connected to the experience of the user, as well as the

nature of crash phenomenon.

1.2 Literature Review

The birdstrike is a well-know phenomenon, some impacts were recorded since the

first decades of the 1900’s [Thorpe (2003)].

In the past various scientists studied the birdstrike with several empirical design

methods, in order to define the characteristics (thickness, material, etc...) of the

aircraft components able to resist at birdstrike events.

In the 1970’s, the validation of the bird-proof components was solely dependent on

experiments, because of the absence of numerical tools.

A birdstrike event can be account as a collision between a structural element and

a soft body (the bird). Barber et al. (1975) were the first to analyse this kind of

problem with this approach by performing an experimental campaign of bird impacts

against a rigid circular plate. They focused on the peaks pressure generated during

the impact and found these are independent by the bird dimensions but proportional

to the square of the impact velocity. Furthermore they found that a pressure time-

history is composed by four different phases: a) an initial shock (Hugoniot pressure),

b) an impact shock decay, c) a steady state phase and d) a final decay of the pressure,

in the following chapter these will be treated deeply.

Barber & Peterson (1976) and later Barber et al. (1977) performed a series of

birdstrike tests on rigid plate and turbo-machinery too. They concluded that the

behaviour of the bird can be assimilated to a fluid one, and so showed that bird-

loading model treats the bird model as a fluid dynamic process.

Shortly thereafter, Wilbeck (1977) showed that, in case of high velocity impact,

the response of the bird is similar to that of the water for which the strength of the

material is extremely small compared with the impact loads.

Later Cassenti (1979) studied analytically the experiment carried out by Barber

et al. (1977) during the 1970’s and developed the governing equations for a soft body

4
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impact on a rigid plate. By relating the conservation equation with the constitu-

tive equation of the material he achieved the analytical expression of the Hugoniot

pressure generated in the beginning of the event.

Because of the difficult to conduct test with real bird, many scientists studied

the possibility to use different dummy bird substitute. Allock & Collin (1969) were

the first to determine prime constituents of substitute bird model by studying wax,

foam, emulsions, and gelatin as substitute materials for birds. Wilbeck & Rand

(1981) found that the gelatin, with the specific gravity of water, produces a loading

profile similar to real birds and the response depends on material density and not

on material strength.

Since 1980’s the exponential growth in the speed of computers and the even

greater decline in the cost of computational resources were the major contributions

to obtaining of good results with crash analysis software. Explicit nonlinear finite

element (FE) codes, which are available in several high-end commercial FE solvers,

used for this kind of problem, can show a considerable amount of useful information

to the designer with regard to the mechanisms involved in a birdstrike event, that

could potentially improve the offered level of crashworthiness, prior to conducting

expensive experimental tests.

Niering (1990) studied the birdstrike problem numerically and modeled the bird

using a Lagrangian approach. His research provided different methods of computer

simulation for the birdstrike event, but presented the need for an improvement due to

large distortions experienced by the bird in the Lagrangian model. For this reason

Airoldi & Cacchione (2006) evaluated and improved the accuracy of bird impact

numerical analyses performed with the finite element explicit code PAM-CRASH

(2008), focusing on the modeling of the spatial and temporal pressure distributions

exerted on the target by the impacting body. A Lagrangian approach is adopted,

interfacing the FE solver code with an automatic trial-and-error procedure for the

elimination of the excessively distorted elements. One of the most recent study using

a Lagrangian approach is the work of Guan et al. (2008), who modeled bird impact

against fan rotor blades.

Some authors provided various recommendations for the modeling bird behaviour

using alternative approaches, like Arbitrary Lagrangian Eulerian (ALE). Benson

(1992) published a detailed review of the general methods for Lagrangian and Eule-

rian hydrocodes, that are currently used to solve transient large deformation prob-

lems in solid mechanics. He provided the first public light on the basis for the meth-

ods used in commercial codes for impact analyses. Another extensive description of

the ALE method was presented by Stroker (1997), who studied applications of the
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ALE method in the forming processes. To explain the ALE method, Stoker included

a section with fundamentals of continuum mechanics, followed by a derivation of the

ALE motion description, and a mathematical formulation used for calculations.

Later Langrand et al. (2001) modeled the bird impact against rigid targets using

both the Lagrangian and ALE formulations in Radioss (2008), whereas Shultz &

Peters (2002) presented ALE models for bird impacting the inlet fan blades of a jet

engine using LS-DYNA [Hallquist (2006)] and Ansys (2006) software. Linder (2003)

and Donea et al. (2004) produced a detailed description of the ALE formulation, that

combines the advantages of the Lagrangian and Eulerian methods without the dis-

advantages associated to each method. Souli et al. (2004) studied the problem of the

birdstrike by LS-Dyna [Hallquist (2006)] using a multi-material ALE formulation,

they obtained an acceptable bird deformation and small energy loss.

Between the end of the 1990’s and the beginning of the 2000’s many authors

analysed problems of fluid-structure interaction, like birdstrike, with the Smoothed

Particle Hydrodynamics (SPH) approach. Hut et al. (1997) discussed various imple-

mentations of SPH method. The main findings of the work consisted of a clarifica-

tion of the computational requirements for the SPH method and estimation of the

cost/performance to boost the efficiency of the high-end general purpose computers.

Birnbaum et al. (1997) analysed bird impact simulation problem by using all model-

ing techniques (Lagrangian, Eulerian, ALE and SPH) to simulate the fluid-structure

interaction. Lacome (2000) gave an important contribution for the description of the

conventions used for the selection of the smoothing length and provided important

informations regarding the SPH process of the neighbour search in the interpolation

and for the SPH approximations for the equations of energy and mass conservation.

Other authors used SPH approach to model the birdstrike phenomenon, in par-

ticular Ubels et al. (2003) and McCarthy et al. (2004) investigated the bird impact on

an aircraft wing leading edge structure using PAM-CRASH software. They showed

that the SPH methodology was able to capture the breakup of the bird into de-

bris particle after the collision. Guida et al. (2011) found that the Lagrangian-SPH

combination provided the best results in terms of impact visualization and a good

prediction of the deceleration of the projectile, compared to the test results .

The birdstrike as well as involving several front facing components of the air-

craft, can concern different kind of materials too. In the recent years many authors

analysed and simulated the birdstrike event against a specific part of the airplane.

Georgiadis et al. (2008) provided a validated simulation methodology to support the

birdstrike certification of the carbon fibre epoxy composite moveable trailing edge
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of the Boeing 787 Dreamliner. Anghileri et al. (2004) performed numerical simu-

lation of the bird impact against the intake of turbofan engine and discussed the

advantages and disadvantages about using of different bird modelling techniques.

Hanssen et al. (2006) investigated bird impact against aluminium foam-based sand-

wich panel using the ALE approach. Guida (2008) developed a finite element model

for simulating the birdstrike test on the tailplane leading edge structure. He stud-

ied the impact on a composite component made of aluminium skin and flexcore as

interior sandwich structure, and found good correlation between the numerical and

experimental results.

The windshield structure plays a key role relating to the birdstrike problem,

because of its exposure in front of the airplane. So many authors developed study

in order to design bird-proof windshield for protecting the safety of aircraft. Yang

et al. (2003) elaborated an experimental and FEM of windshield subjected to high

speed bird impact. Liu et al. (2008) focused on the analysis of an effective numerical

method to simulate bird impact aircraft windshield events, using the SPH approach

and the explicit finite element program PAM-CRASH. Recently Salehi et al. (2010)

investigated the effect of the birdstrike on different aircraft windows both numerically

and experimentally. He studied structures made up of different geometries and

materials by using various modeling approach (ALE and SPH).

1.3 Aim of Present Work

The aim of this research work was to define a scientific and methodological approach

to the study of the birdstrike problem. It was developed a particular application

focused on the verification and design of a bird-proof windshield of a business jet air-

plane in according with international aeronautical specifications and requirements.

It was studied an innovative concept of aircraft windshield, composed by just two

windshield panels, unlike most part of the commercial airplane windshield configu-

rations made up of four or more panels.

Firstly it was studied a simplified square panel model subject to the birdstrike

event, and generated a FE model performed adopting SPH modeling approach using

LSTC/LS-Dyna explicit solver code. A parametric analysis was executed to evaluate

the effects on the structural response of a windshield of: 1) the target geometry, 2)

the impact angle and 3) the plate curvature. The target is to evaluate the capability

of windshield to absorb the impact energy, involving during a birdstrike event, in a

safe and efficient way without any damage. The second part of the work was focused

on the development of an effective numerical method to simulate the birdstrike on
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a real aircraft windshield model. The collection of results and experiences achieved

by the previous simplified realistic model was applied to perform a certification

test simulation and define possible guidelines for structural design of an airplane

windshield including the bird impact requirements.

1.4 Outlines of the Thesis

Chapter 2 provides an extensive description of the theoretical aspect of the birdstrike

phenomenon. Chapter 3 presents a description of the basic theory of nonlinear anal-

ysis and a brief review for the following finite element modeling approaches: a)

pure Lagrangian, b) Arbitrary Lagrangian Eulerian (ALE), and c) Smoothed Par-

ticle Hydrodynamics (SPH). Chapter 4 presents an explanation of the projectile

(bird) and target structure (square plate and real windshield) properties, focusing

on the geometry, boundary conditions, and mechanical behaviour of the materials.

Chapter 5 specifies the methodology of simulation of the windshield birdstrike event

by the LS-Dyna explicit nonlinear FE solver, both for the simplified square model

and real windshield, in terms of materials, boundary conditions and contact model-

ing. Furthermore it is presented a brief overview of the capabilities of the pre and

post-processing software tools used for the simulation. Chapter 6 describes the nu-

merical results of the simulation and the parametric study of the impact response of

the structure as changing of the bird impact angle, curvature and lay-up thickness

configurations of the plate. Finally Chapter 7 presents the conclusions of the re-

search work and a guidelines assessment regard to the design of a bird-proof aircraft

windshield structure.
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Chapter 2

Birdstrike Theory

2.1 Physics Overview

There are three categories of impact events:

• Elastic impact,

• Plastic impact,

• Hydrodynamic impact.

The elastic impacts are typically low speed events, and the stresses generated

because of the collision are lower then the material yield stress. So the nature and

duration of the impact depend on the elastic modulus and the elastic wave velocities

of the material.

In case of higher impact speeds the produced stresses cause a plastic deformation

of the material target and this kind of collision constitute the plastic impact category.

For those events, the material strength is still a dominating factor.

Finally, for higher impact velocities again the stresses generated by deceleration

of the projectile greatly exceed the yield stress. This is a hydrodynamic regime, for

which the projectile can be treated as fluids, and it is the material density which

dominates the behaviour of the parts instead of material strength.

The birdstrike fall into this category of impact, where the bird do not bounce and

impact response is determined by the length of the bird and by the initial impact

velocity but not by the material strength.

9



2.1 Physics Overview

A hydrodynamic event like this one is a non-steady fluid dynamic process that

has four distinct phases:

1. Initial impact

2. Impact pressure decay

3. Steady flow

4. Flow termination

2.1.1 Initial impact

When the bird impacts the target plate, a fragmentation of the projectile particles

appears and a shock propagates into the bird, the Figure 2.1 shows a sketch of this

phase on the left and a frame of a real experimental test on the right. As the shock

wave propagates into the bird it brings the bird material behind the shock to rest.

The pressure in the shock compressed region is initially very high and uniform across

the impact area.
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Figure 4.1  

When the bird impacts the target plate, the particles at the front surface of the projectile (bird) are 
instantaneously brought to rest relative to the target face and a shock propagates into the bird 
(Figure 4.1). As the shock wave propagates into the bird it brings the bird material behind the 
shock to rest. The pressure in the shock compressed region is initially very high and is uniform 
across the impact area. 

For the normal impact of a cylinder on a rigid plate, the flow across a shock can be considered 
one-dimensional, adiabatic, and irreversible. The pressure behind the shock (Hugoniot pressure) 
may then be derived from the shock relation as: 

                                                                 ( 4.1 ) 

Where,  P = Pressure behind the shock 

Figure 2.1: Initial impact phase

For the normal impact of a cylinder on a rigid plate, the flow across a shock can

be considered one-dimensional, adiabatic, and irreversible. The pressure behind the

shock (Hugoniot pressure) may then be derived from the shock relation as:

p = ρvsv (2.1)

where

p is the pressure behind the shock,

ρ is the density of the bird,
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vs is the shock velocity,

v is the impact velocity.

Generally, the bird material hydrodynamic response can be characterised by a

polynomial interpolation of the curve relating the pressure to the density, given by

equation 2.2 [Wilbeck & Rand (1981)]:

p = ρpuspu0


ρtust

ρpusp + ρtust


(2.2)

where

ρp is the density of the projectile,

ρt is the density of the target,

usp is the projectile shock wave velocity,

ust is the target shock wave velocity,

u0 is the projectile’s initial velocity.

In equation 2.2 the initial peak pressure depends only on densities and velocities

and not on the length or cross-sectional area of the projectile.

The edge of the projectile is a free surface and the material near the edge is

subjected to a very high stress gradient. This stress gradient causes the material to

accelerate radially outward and a release wave is formed. The arrival of this release

wave at the center of the bird marks the end of the initial impact and the beginning

of the decay process.

2.1.2 Impact pressure decay

At initial impact a shock begins to propagate into the projectile and radial release

waves propagate in towards the center from the free surface edges of the projectile

(Figure 2.2). The problem can no longer be considered to be one-dimensional in

nature. For the normal impact of a cylinder, the problem is two-dimensional and

axisymmetric.

The radial pressure distribution is given by equation 2.3:

pr = pe−
kr

R(t) (2.3)
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Figure 4.3 shows when the release waves have converged at point B, the center of impact. The 
pressure on the target at the center of impact now begins to decay. After the release waves have 
converged at the center of the shock (point c), and a region of fully shocked material no longer 
exists. The curvature of the shock is due to the release process, which has weakened the shock 
more at the edges than at the center. 

For a projectile of sufficient length, steady flow should be set up after several reflections of the 
radial release waves. A projectile with a length somewhat greater than Lc (critical length) should 

Figure 2.2: Initial impact

where

pc is obtained from equation 2.2,

K is a constant,

r is the radial distance from the center of the impact region,

R(t) is the maximum contact radius at time t.

The duration of this high pressure event is on the order of tens of milliseconds.

Figure 2.3 shows when the release waves have converged at point B, the center of

impact. The pressure on the target at the center of impact now begins to decay.

After the release waves have converged at the center of the shock (point c) a region

of fully shocked material no longer exists. The curvature of the shock is due to the

release process, which has weakened the shock more at the edges than at the center.
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Figure 2.3: Impact pressure decay phase

For a projectile of sufficient length, steady flow should be set up after several

reflections of the radial release waves. A projectile with a length somewhat greater

than Lc (critical length) should undergo complete shock decay to steady flow. A

longer steady flow regime is expected at low velocities than at high velocities.
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The details of pressure variation with time during the decay process are extremely

difficult to predict. In addition to the geometrical complexities, complete shock

release material properties for the bird must be known. This is something we may

be able to understand through simulation.

2.1.3 Steady flow

As the radial pressures decrease during the shock pressure decay, shear stresses

develop in the projectile material. If the shear strength of the material is sufficient

to withstand these shear stresses, the radial motion of the projectile will be restricted.

If, however, the shear stresses in the projectile are greater than the shear strength

of the material, the material will ”flow”(Figure 2.4).

The shear strength of birds is low enough that the pressures generated are usually

sufficient to cause flow. The bird can be considered to behave as a fluid. After several

reflections of the release waves, a condition of steady flow is established and steady

pressure and velocity fields are established.
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As the radial pressures decrease during the shock pressure decay, shear stresses develop in the 
projectile material. If the shear strength of the material is sufficient to withstand these shear 
stresses, the radial motion of the projectile will be restricted. If, however, the shear stresses in the 
projectile are greater than the shear strength of the material, the material will "flow". The shear 
strength of birds is low enough that the pressures generated are usually sufficient to cause flow. 
The bird can be considered to behave as a fluid. After several reflections of the release waves, a 
condition of steady flow is established and steady pressure and velocity fields are established. 

Using potential flow theory, Wilbeck calculated the steady flow pressure for a supersonic bird 
impact at normal incidence. He found that the pressure at the center of impact (the stagnation 
pressure) could be approximately given by the expression below: 

                                                      ( 4.2 ) 

Where, !o is the density of the material with zero porosity.  

This implies that the steady flow pressure at the center of impact is almost independent of 
porosity. The decrease in density due to porosity is apparently offset by the increase in 
compressibility. 

Figure 2.4: Steady flow phase

Using potential flow theory, [Wilbeck & Rand (1981)] calculated the steady flow

pressure for a supersonic bird impact at normal incidence. He found that the pressure

at the center of impact (the stagnation pressure) could be approximately given by

the expression below:

ps =
1

2
ρ0v

2 (2.4)

where ρ0 is the density of the material with zero porosity and v the impact velocity.

This implies that the steady flow pressure at the center of impact is almost

independent of porosity. The decrease in density due to porosity is apparently offset

by the increase in compressibility.
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2.2 Momentum Transfer

2.1.4 Flow termination
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During impact, bird material is "turned" near the target surface. As the fluid nears the target 
surface the velocity decreases and the local pressure increases. During steady flow a pressure 
field is set up in the fluid. As the end of the projectile enters this pressure field, the field is 
disrupted due to the intrusion of a free surface (the end of the bird). 

Steady flow no longer exists and the pressures at the impact surface decrease. The pressure 
decrease continues until the end of the projectile reaches the surface of the plate. At this time the 
impact event is ended [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Flow termination phase

During impact, bird material is ”turned” near the target surface. As the fluid

nears the target surface the velocity decreases and the local pressure increases. In

the time of the steady flow a pressure field is set up in the fluid. As the end of the

projectile enters this pressure field, the field is disrupted due to the intrusion of a

free surface (the end of the bird).

Steady flow no longer exists and the pressures at the impact surface decrease

(Figure 2.5). The pressure decrease continues until the end of the projectile reaches

the surface of the plate. At this time the impact event is ended.

2.2 Momentum Transfer

Figure 2.6 shows the behaviour of the bird before and after the impact.

2.1 Theoretical Consideration 17

Figure 2.1: Motion of a bird before and after impact.

momentum normal to the impact surface is transferred to the target durtng

the impact. Therefore, the momentum transfer, or impulse, I, is given by:

I = mvsinθ (2.6)

where θ is the angle between trajectory and the surface of the target. The

equation (2.6) is the momentum transfer or impulse imposed onto a target

during impact if the bird were a fluid body and the target were completely

rigid.

2.1.3 Impact Duration

If the bird is assumed to be a fluid body, the impact begins when the leading

edge of the bird first touches the target. The impact continues until the

trailing edge reaches the target and there is no further bird material flowing

onto the target. If the bird does not decelerate during impact, then this

squash-up time, TS, is given by:

TS =
l

vS

(2.7)

where l is the length of the bird.

Figure 2.6: Momentum transfer
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2.3 Impact Duration

The initial momentum of the bird along trajectory is simply mv, where m is the

mass of the bird and v is the initial impact velocity of the bird. Since the bird has

only radial velocity then the momentum of the bird along trajectory after impact

is zero. Therefore, the momentum transferred to the target during the impact is

simply equal to mv. It is interesting to notice that, extending this concept to

oblique impacts, only the component of momentum normal to the impact surface is

transferred to the target and the momentum transfer is given by:

I = mv sin θ (2.5)

where θ is the angle between trajectory and the surface of the target. The equation

2.5 describes the impulse imposed onto a rigid target during impact when the bird

is assumed to be a fluid body.

2.3 Impact Duration

The impact duration is the time elapsed from the moment when the bird touches

the target until there is no further bird material flowing onto the target. It is define

as squash-up time Ts and is given by:

Ts =
l

v
(2.6)

where

l is the length of the bird,

v is the initial impact velocity.

The situation is different in case of oblique impact (Figure 2.7), because the

effective length of the bird, leff , is:

leff = l + d tanϑ (2.7)

where d is the diameter of the bird and ϑ is the angle of impact.

2.4 Average Impact Force

A main effect of a birdstrike is the energy transfer to the airplane structure impacted,

it can be estimated by approximately simple calculations. After the impact the
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2.4 Average Impact Force

Chapter 2. Impact Analysis 18

In an oblique impact, figure (2.2), the situation is different, the effective

length of the bird, leff is now:

leff = l + dtgϑ (2.8)

where d is the diameter of the bird. A real bird is more nearly an spheroid,

in which case the effective length is less than that given by equation (2.8).

However, when the straight length is replaced by the effective length in

equation (2.7), a reasonable estimate of the pulse duration for an oblique

impact is obtained.

Figure 2.2: Oblique impact effective bird length

2.2 Bird Modeling

The non homogeneity of the bird is the main limitation to obtain the repeata-

bility of tests. To idealize a bird impacting a rigid surface as a homogenous

soft material is not real because its internal stresses greatly exceed its ma-

terial ultimate strength, but are well below the target material ultimate

strength. For these reasons, the bird impact process has been successfully

modelled by the hydrodynamic theory, (17), where the bird do not bounce

Figure 2.7: Oblique impact effective bird length

change in a bird’s kinetic energy can be defined by the equation 2.8:

∆KE = W = Fd =
1

2
mv2 (2.8)

where

W is the work,

F is the impact force,

d is the distance over which the force is delivered,

m is the mass of the bird,

v is the velocity of the aircraft.

Whereas the force that the airplane felt is given by equation 2.9:

F =
∆KE

d
=

mv2

2d
(2.9)

If we further assume that the bird can be represented as a sphere then:

F =
mv2

2r
(2.10)

where r is the sphere radius, and then the bird’s size depends on its mass m:

m = ρV =
4

3
πr3ρ (2.11)

where ρ is the bird density and V is the sphere’s volume.
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2.4 Average Impact Force

The combination of the equations 2.10 and 2.11 gives:

F =
2πr2ρv2

3
(2.12)

that is to say the impact force is proportional to bird mass and the square of impact

speed.

In case of deformable flat target, the force transferred from a bird is highly de-

pendent upon the form and extent of the deformation. Concerning the fluid cylinder

model the initial impact will create a concave deformation which will probably delay

the formation of release waves. The shape also tends to turn the flow resulting in a

greater momentum (and thus greater) force transfer.

F =
 ∆m∆v

∆t
(2.13)

where ∆v = v0 − v1.

For a rigid flat target v1 = 0

For a deformable flat target v1 < 0

Although there is a potentially greater transferral of force, a considerable amount

of the energy will be used in further deforming the target. Thus the force at the

target ends (or reaction points) may be less than in the rigid case.
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Chapter 3

Impact Modeling Methodology

3.1 Basics of Non-linear Analysis

This section reviews nonlinear structural problems by looking at the event and phys-

ical sources of nonlinear behavior.

The finite element method (FEM), or finite element analysis (FEA), is based

on the idea of building a complicated object with simple blocks, or, dividing a

complicated object into small and manageable pieces (elements and nodes). In the

Figure 3.1 is shown a plate with hole subjected to a compression load and its FEM

discretization.

plots, although selected results are often output on monitors. This information is then used in the
engineering design process.

The same basic approach is used in other types of problems. In stress analysis, the field variables are the
displacements; in chemical systems, the field variables are material concentrations; and in electromag-
netics, the potential field. The same type of mesh is used to represent the geometry of the structure or
component and to develop the finite element equations, and for a linear system, the nodal values are
obtained by solving large systems (from 103 to 106 equations are common today, and in special applica-
tions, 109) of linear algebraic equations.

This text is limited to linear finite element analysis (FEA).The preponderance offinite element analyses
in engineering design is today still linear FEM. In heat conduction, linearity requires that the conductance
be independent of temperature. In stress analysis, linear FEM is applicable only if thematerial behavior is
linear elastic and the displacements are small. These assumptions are discussed in more depth later in the
book. In stress analysis, for most analyses of operational loads, linear analysis is adequate as it is usually
undesirable to have operational loads that can lead to nonlinear material behavior or large displacements.
For the simulation of extreme loads, such as crash loads and drop tests of electronic components, nonlinear
analysis is required.

TheFEMwasdeveloped in the 1950s in the aerospace industry.Themajor playerswereBoeing andBell
Aerospace (long vanished) in theUnitedStates andRollsRoyce in theUnitedKingdom.M.J. Turner, R.W.
Clough, H.C. Martin and L.J. Topp published one of the first papers that laid out the major ideas in 1956
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Figure 1.1 Geometry, loads and finite element meshes.
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Clough, H.C. Martin and L.J. Topp published one of the first papers that laid out the major ideas in 1956

Plate with a Hole 

Triangular Finite 

Element 

Refined Finite Element ModelFinite Element Model 

Figure 1.1 Geometry, loads and finite element meshes.

2 INTRODUCTION

(b) Finite Element Model

Figure 3.1: FEM discretization

The finite element method (FEM) consists of the following five steps:

1. Preprocessing: subdividing the problem domain into finite elements.
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3.1 Basics of Non-linear Analysis

2. Element formulation: development of equations for elements.

3. Assembly: obtaining the equations of the entire system from the equations

of individual elements.

4. Solving the equations.

5. Postprocessing: determining quantities of interest, such as stresses and

strains, and obtaining visualizations of the response.

The fundamental FEA equation is:

Kue = F (3.1)

where K is the stiffness matrix, ue the element displacements and F the applied

loads.

The solution of the equation is usually ”straightforward” and can be reached in

a single step by applying of F , inverting of K. Furthermore it is possible to go back

and determine the stress σ and the strain ϵ.

Nonlinear structural analysis is the prediction of the response of nonlinear struc-

tures by model-based simulations, like Finite Element Analysis and the relative

equations are usually solved by incremental methods, such as the implicit or explicit

methods.

Nonlinearities can rise for many reasons. For structural analysis there are four

sources of nonlinear behavior and the corresponding nonlinear effects are identified

by the terms material, geometric, force B.C. and displacement B.C., in which B.C.

means ”Boundary Conditions”

In the following subsections these sources of nonlinearities are correlated to the

physics in more detail.

3.1.1 Geometric Nonlinearity

The physical source of the geometric nonlinearity is related to a not negligible change

in geometry as the structure deforms, and it is taken into account in setting up the

strain-displacement and equilibrium equations. In this case a structure shows large

deformations and there is a nonlinear relationship between the strain ϵ and the

displacement u:

ϵ =
1

2
(
∂u

∂x
+

∂uT

∂x
+

∂u

∂x

∂uT

∂x
) = B(ue)ue (3.2)

Engineering applications of geometric nonlinear structural analysis can be:
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3.2 Modeling Approaches

• Slender structures in aerospace, civil and mechanical engineering.

• Tensile structures such as cables and inflatable membranes.

• Metal and plastic forming.

• Stability analysis of all types.

3.1.2 Material Nonlinearity

The material behavior depends on current deformation state and possibly past his-

tory of the deformation and other constitutive variables, like prestress, temperature

and time, may be involved.

In case of material nonlinearity rises a nonlinear constitutive law of the material

and a nonlinear relationship σ − ϵ. An application of this type of nonlinearity can

be found for structures that undergo nonlinear elasticity, plasticity, viscoelasticity,

creep, or inelastic rate effects.

3.1.3 Force and Displacement BC Nonlinearity

If a structure is subjected to forces or displacements dependent on deformation, it

can rise a BC (Boundary Condition) nonlinearity.

The most important engineering application for the force BC nonlinearity con-

cerns pressure loads of fluids. These include aerodynamic and hydrodynamic loads

caused by the motion of aeriform and hydroform fluids, like wind loads, wave loads

and drag forces. Whereas the displacement BC nonlinearity may be involved in case

of structural contact problem.

Non-structural applications of this problem pertain to the more general class of

free boundary problems, for example: ice melting, phase changes and flow in porous

media. The determination of the essential boundary conditions is a key part of the

solution process.

3.2 Modeling Approaches

There is no a unique ”best” numerical method to analyse the impact phenomenon,

and in particular the fluid-structure interaction problems. During a single impact

analysis it could be often useful to couple different numerical solvers in order to

treat each domain of the problem more appropriately. For each methodology it can
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3.2 Modeling Approaches

be described both strengths and weaknesses, for that many times the right choice of

more suitable modeling approach is function of the user expertise.

The four main modeling methods that are currently available are: the Lagrangian

mesh, the Eulerian mesh, the Arbitrary Lagrangian-Eulerian (ALE) mesh, and the

Smooth Particle Hydrodynamic (SPH) method.

3.2.1 Lagrangian Formulation

The Lagrangian modeling method divides a volume into a large number of small

geometries called elements, and it is generally well suited for the description of solid

materials impact problems, for which the numerical mesh moves and distorts as

shown in Figure 3.2.
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Figure 3.2: Description of motion for Lagrangian formulation

The main difference between the various formulations is the choice of the ref-

erence coordinates for the description of the motion. The Lagrangian method uses

material coordinates as the reference. The nodes of the Lagrangian mesh are associ-

ated to particles in the material under examination; therefore each node of the mesh

follows an individual particle in motion. The history dependent material properties

are also well described in Lagrangian approach because of the ability to easily track

history dependent materials.

Furthermore free surfaces and material interfaces are located at cell boundaries

and as such are well maintained throughout the calculation, this implies that the

imposition of boundary condition is simplified too.

While Lagrangian approach is particularly well suited for the description of solid

behaviour, its main drawback is that, due the nature of the formulation for severe

deformations, the numerical mesh may become overly distorted with a resulting
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3.2 Modeling Approaches

small time-step and possible loss of accuracy. In that case the numerical solution

can only be carried out to a certain point before the Lagrangian mesh distortions

cause the analysis to be stopped due to a very small time-step. Also, since in this

method the material moves with the mesh, if the material suffers large deformations,

the mesh will also suffer equal deformation and this leads to results inaccuracy and

numerical instabilities (mesh tangling and/or negative volume).

However, programs may include additional features, like rezoning and erosion,

that may be applied to a Lagrangian solution to extend the analysis. For element

erosion, the distorted elements are deleted from the mesh by imposing a plastic

strain limit. Deleting elements that exceed a pre-imposed plastic strain threshold

value resolves both negative volumes and time step decrement issues. On the other

hand deleting these elements also removes mass and strain energy from the struc-

ture, thus violating both conservation of mass and conservation of energy principles.

Instead the rezoning procedure involves a step-by-step re-meshing of the distorted

Lagrangian mesh, and it could carry out an increase of solution time and numerical

errors associated with the approximations. For these reasons the technique works

best for cases that need few re-meshing steps.

Advantages Disadvantages Enhancements

Efficiency, fewer com-
putations per time-
step relative to other
solver

Element distortion ca
lead to small timestep

Rezoninig and erosion

Clear definition of ma-
terial interfaces and
boundaries

Cell distortion can
lead to grid tangling
and inaccuracies

Rezoninig and erosion

Good time history in-
formation

Thin section need
small time-steps

Use structural solvers

Good for strength
modeling

Complex logic for slid-
ing interfaces

Simpler code

Table 3.1: Attributes of the Lagrangian formulation

3.2.2 Eulerian Formulation

In the Eulerian technique the mesh is basically treated as a control volume, i.e. the

mesh remains fixed and the material under study flows through the mesh, as shown

in Figure 3.3.

22



3.2 Modeling Approaches
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Figure 3.3: Description of motion for Eulerian formulation

Since the mesh does not move, there is no possibility of mesh deformation, which

is a major disadvantage of the Lagrangian method. In addition, an Eulerian tech-

nique completely avoids the difficulties associated with the time step reduction re-

quired by the type of highly deformed domains encountered by the Lagrangian tech-

nique, when used in explicit time integration solutions.

This method is applied mostly to the simulation of fluid behaviour, such as

water/fuel sloshing, although it has been applied to solid simulation too.

The major disadvantage of this method is the difficulty to keep track of the

material behaviour history, for which it is necessary the use of more sophisticated

techniques. This required more computations than in the Lagrangian methods,

which leads to longer simulation time for the same level of accuracy when compared

to the Lagrangian technique.

Advantages Disadvantages Enhancements

No grid distortion More computations
per cycle than La-
grangian

Simplified Euler for-
mulation without
strength

Large deformations
handled

Diffusion of material
boundaries

Sophisticated in-
terface tracking
implementations

Allow mixing of differ-
ent materials within
cells

Need finer zoning for
similar accuracy com-
pared to Lagrangian
and iterative equation
of state solvers for
multiple material cell

Use of higher order
techniques

Table 3.2: Attributes of the Eulerian formulation
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3.2.3 ALE Formulation

The third modeling method is the Arbitrary Lagrangian-Eulerian (ALE) method.

It can be considered like a combination of the Lagrangian and Eulerian formulation

in which it is possible the advantages of both methods while also minimising the

disadvantages. Unlike the Eulerian method, for which the material moves through

a fixed mesh, in the ALE modeling, the material flows in the mesh, but this last can

move and stretch if needed, in order to follow the boundary motion and prevent the

mesh tangling, as shown in the Figure 3.4.
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Figure 3.4: Description of motion for ALE formulation

Due to a good set of the background mesh motion from the user, it is possible to

minimize the mesh distortions and obtain the best results. In this way a large number

of elements can be eliminated and calculating time reduced, thereby providing a

computational time saving. In particular at each time step, it can evaluate the

position of the material with respect to the nodes figure, and the coupling with the

solid structure is done by tracking the relative displacements between the coupled

Lagrangian nodes and the fluid.

To better understand the ALE mechanism it can consider a 2D example, shown

in the Figure 3.5.

By the Lagrangian modeling (case 1) the nodes of the mesh (red) are attached to

the imaginary material ”points”. These nodes move and deform with the material.

By the Eulerian modeling (case 2) it can consider two overlapping meshes, one

is a background mesh which is fixed in space (cyan), and the other is attached

to the material (red) which flows through the former fixed mesh. This may be

visualized in two steps: first the material is deformed in a Lagrangian step, just like

the Lagrangian formulation, and then the element state variables in the Lagrangian
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29 

Fluid-Structure Interaction Modeling with LS-DYNA 

Livermore Software Technology Corporation 

ELEMENT FORMULATIONS REVIEW 
Element Formulations and Applications: 

Let us consider a 2D example, a solid piece of metal is moved and then 
deformed as shown below.  Three formulations may be used: (1) 
Lagrangian, (2) Eulerian, (3) ALE (Arbitraty-Lagrangian-Eulerian). 

ALE mesh translation 

Lagrangian mesh translation 

Material deformation 

! (Case 1) 

! (Case 2) 

! (Case 3) 

Void or air Solid material 

Eulerian mesh 
(fixed in  space) 

ALE mesh 
(moving) 

t- t+ dt 

Figure 3.5: Formulations comparison

elements (red) are mapped onto the fixed (background) reference Eulerian mesh

(cyan).

Finally by the ALE modeling (case 3) it can consider two overlapping meshes,

one is a background mesh which can moves arbitrarily in space (green), and the other

is attached to the material (red) which flows through the former moving mesh. This

may be visualized in two steps again: first, the material is deformed in a Lagrangian

step, just like the Lagrangian formulation, and then the Lagrangian elements (red)

are remapped onto the moving (background) reference ALE mesh (green).

Advantages Disadvantages Enhancements

Wide range of appli-
cability with arbitrary
mesh motions (auto-
matic rezoning)

Need to specify mesh
motion constrains

Clear definition of ma-
terial interfaces and
boundaries

Cell distortions can
lead to grid tangling
and inaccuracies

Rezoning and erosion

Good time history in-
formation

Thin sections need
small time-steps

Table 3.3: Attributes of the ALE Formulation

3.2.4 SPH Formulation

The Smooth Particle Hydrodynamics is a Lagrangian meshless technique and was

developed by Monaghan (1992) in the late 1970’s for astrophysics problems with

application to hypervelocity impacts (∼10 km/s) where the material shatters upon
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impact. It is both effective and accurate at modeling material deformation as well

as adaptable in terms of specific material models and besides to solve computational

fluid dynamic problems, it can be also applied for continuum mechanics problems

with large deformations, as crash simulations.

The main difference between the classical FE method and SPH is the methodol-

ogy of discretization of the model, as shown in the Figure 3.6.

Figure 3.6: Discretization of volume: a) FEM b) SPH

In the SPH formulation the fluid is represented as a set of moving particles, each

one representing an interpolation point, where all the fluid properties are known.

The estimation of the field variables at any point is allowed by an interpolation

formula, called kernel function.

In the definition of the methodology a very important role is played from the

neighbour search procedure, i.e. the evaluation step-by-step of which particle will

interact with the others. This influence of each particle is established inside of a

sphere of radius of 2h, called support domain Ωh, where h is the smoothing length,

as shown in the Figure 3.7. The smoothing length of every particle changes with

the time. When particles separate the smoothing length increases, while when they

come close to each other, the smoothing length decreases accordingly. It is necessary

to keep enough particles in the neighbourhood to validate the approximation of

continuum variables.

Because of the gridless nature of the methodology, the SPH does not suffer from

the usual disadvantage relative to mesh tangling in large deformation problems, like a

pure Lagrangian formulation, and uses fewer elements than the ALE method, avoids

the material interface problems associated with it. Again it allows the modeling of

fragmentation and fracture phenomena, and, as well as the Lagrangian formulation,

the SPH method allows a good tracking of the material deformation and history
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Figure 3.7: Domain of the sphere in the SPH method

Nevertheless it remains some disadvantages about the stability and consistency

of the methodology. One disadvantage is the computationally demanding of the

method, both in memory and in CPU time. This can be overcome using a parallel

analysis with more than one CPU. Furthermore another disadvantage can be the

difficulty of establishing the boundary conditions with a loss of smoothness and

accuracy.
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Chapter 4

Bird and Target Description

4.1 Geometry

In this section a geometry description of the target structure onto which the projec-

tile (bird) impacts is reported. The application studied in this work is relative to a

birdstrike event against a windshield structure of a business jet airplane.

Generally a windshield-surround structure of a general aviation airplane, and in

particular of a business jet, is made up of at least four panels, as shown in the Figure

4.1.

(a) Hawker 400XP (b) Learjet 60

(c) Citation Sovereign (d) Gulfstream G150

Figure 4.1: Typical windshield-surround structures of business jet airplanes
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4.1 Geometry

In this work, instead, it has been studied an innovative configuration of a wind-

shield structure composed of just two panels, as shown in the sketch of Figure 4.2.

Figure 4.2: Innovative configuration of windshield structure

The International Certification Standards prescribe a windshield structure must,

not only, withstand to the birdstrike event without penetration, but also avoid a

complete fragmentation of all transparencies, so that to ensure a sufficient vision

through at least one panel to permit continued safe flight and landing. This speci-

fication could be critical in the case of the windshield studied in this work because

an impact on a transparent could cause a damage on the other panel too, or again

an impact on the center beam, which divides the two panels, could create a frag-

mentation of both transparencies at the same time with following loss of visibility.

In the Table 4.1 are shown the main characteristics of each windshield panel:

Configuration Surface Thickness Weight
Double curvature A = 1.3m2 th = 20mm W = 60Kg

Table 4.1: Windshield properties

Whereas a schematic plot of the left windshield transparent model is shown in

Figure 4.3.
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4.1 Geometry

Figure 4.3: Configuration of left windshield-surround structure

Before studying a full-scale model of the real windshield structure, it has been

carried out a preliminary parametric analysis of the birdstrike phenomenon through

a series of numerical simulations on a simplified but representative structure, shown

in Figure 4.4. This simplified model is a square flat plate made up of the same

materials and lay-up configuration of the full-scale structure.

Figure 4.4: Simplified windshield model
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4.1 Geometry

This parametric analysis was useful to identify the most important parameters

that affect the impact response of the target structure in case of bird impact and

to give the chance for the definition of some best guidelines for the design and

optimization process of bird-proof windshield structure.

About the projectile configuration, in according with the Certification Require-

ments, the weight of the bird is W = 1.8kg, the density is ρ = 950kg/m3, and the

geometric model is approximated as a right circular cylinder, as shown in the Figure

4.5:

D L 

Figure 4.5: Simplified windshield model

where

D = 3


2W

πρ
= 0.106m (4.1)

and

L = 2D = 0.212m (4.2)
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4.2 Mechanical Behaviour of Materials

4.2 Mechanical Behaviour of Materials

4.2.1 Windshield

In order to comply with fail-safe requirements an aircraft windshield is built by

laminated glass.

Laminated glass is a type of safety glass used in different fields of the indus-

trial applications, e.g. in automotive structures [Timmel et al. (2007)], as well as

aerospace, and permits to avoid serious injuries of the passengers in case of an impact

event

The basic construction of a laminated glass involves two panels of glass joined

to a polyvinyl butyral (PVB) interlayer, as shown in the Figure 4.6. In the case of

an impact, such as the birdstrike, the splinters, caused by the glass failure, remain

connected to the PVB-interlayer.

Figure 4.6: Glass laminated

In a short-time dynamics event the glass and PVB layers work in a different way.

For small deformations the glass determines the elastic behaviour of the composite,

while for large deformations it is not able to withstand load any more; in this case

the PVB-interlayer plays a key role, because still has a load-carrying capacity left

The glass laminate studied in this work consists of three plies of tempered glass

and two plies of a polyvinyl butyral (PVB) interlayer.

In this research they have been investigated different thickness lay-up configura-

tion, in order to obtain some design guidelines for the optimization of the thickness

structure lay-up. For instance in the Figure 4.7 it is shown a configuration for which

the thickness of each glass layer is equal to PVB-interlayer one.
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4.2 Mechanical Behaviour of Materials

Figure 4.7: Windshield lay-up configuration

4.2.1.1 Glass

The glass is an amorphous, transparent and isotropic material, with characteristics

of high brittleness if subjected to both dynamic and static loads. The most preva-

lent type of glass is soda-lime glass, mainly made up of silica and several minor

components. The Table 4.3 shows the glass mechanical properties.

Density Poisson ratio Young modulus Failure strain
ρ = 2500kg/m3 ν = 0.22 E = 6.895 · 1010N/m2 ϵf = 0.35%

Table 4.2: Glass properties

In order to model the glass we considered it to be an elastic-plastic material with

an infinitely small plastic part of the σ− ϵ curve so that we could treat it like brittle

material. Figure 4.8 shows the stress strain curve, the ultimate tensile stress is equal

to rupture stress and yield stress at the same time because of the brittleness of the

material.

Figure 4.8: Glass σ − ϵ curve
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4.2 Mechanical Behaviour of Materials

4.2.1.2 Plastic Interlayer

The plastic material is the PVB (Polyvinil butyral) and it is interposed between two

layers of glass. It has typical characteristics of a viscoelastic interlayer. This type of

material shows good characteristics of strength and transparency, besides allowing

a high deformation before the failure and a good tearing strength. The Table 4.3

shows standard literature characteristics of the PVB material.

Density ρ = 1076kg/m3

Short-time shear modulus G0 = 0.33 · 109N/m2

Long-time shear modulus G∞ = 0.69 · 106N/m2

Bulk modulus K = 2.0 · 106N/m2

Decay coefficient β = 12.6s−1

Failure strain 175%

Table 4.3: PVB-interlayer properties

The interlayer gives a special impact strength to the glass, which can absorb

a part of the impact energy thanks to its deformation. Furthermore it avoids the

fragmentation of glass by its adhesive property, which could be very dangerous for

the occupants of the aircraft. The interlayer is modelled as a linear viscoelastic

material, and we can write the shear relaxation behavior (Equation 4.3) [Hermann

& Peterson (1968)]:

G(t) = G∞ + (G0 +G∞)e−βt (4.3)

The plot of this function is shown in Figure 4.9:

Figure 4.9: PVB shear modulus function
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4.3 Boundary Conditions

Figure 4.10: Windshield-surround structure

The Young modulus of the interlayer [Ep] and the Poisson coefficient [νp] are

defined by equations 4.4 and 4.5:

Ep =
9KG0

3K +G0

(4.4)

νp =
3K − 2G0

6K + 2G0

(4.5)

Known K and G0 it is possible to obtain the properties of the material. About

the PVB used for the windshield installation, since the impact duration is in the

range of milliseconds, the stress relaxation modulus G(t) of PVB changes very little

during impact, so in this short time, PVB behaves like a solid glassy material with

G(t) = G0.

4.3 Boundary Conditions

In the Figure 4.10 is shown an exploded view drawing of the windshield surround

structure.

The left and right windshield surrounds are composed of aluminum center and

lateral beams surrounding the windshield transparencies and are connected to the
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4.3 Boundary Conditions

surrounding cockpit structure of the aircraft. The Figures 4.11 show the left windshield-

surround installation and the sections of the center and lateral beams.

(a) Left Windshield-Surround Structure

(b) Center Beam (c) Lateral Beam

Figure 4.11: Windshield-surround installation

It is clear that a key role is played by the joint technique used to stick together

the layers of the glass laminate. In fact the choice of a method, like the glue, rather

than the bolts, can appreciably affect the performances of the structure in case of

both static and dynamic load application. In the figure 4.12 is shown the section

of a typical windshield-surround installation by a bolted solution. For instance in

this case the presence of bolts could produce a considerable concentration of stress

in the holes, with following initial failure and crack propagation of the glass layers

subjected to the dynamic load, as well as the birdstrike.

36



4.3 Boundary Conditions

GLASS 

GLASS 

GLASS 

INTERLAYER 

INTERLAYER 

BOLT ALUMINUM 

ALUMINUM 

Figure 4.12: Section of windshield-surround installation
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Chapter 5

Explicit Non-linear FE Analysis

5.1 Simulation of Birdstrike Event

The explicit Finite Element analysis is a numerical method used to analyse struc-

ture made up of materials with behaviour highly non-linear. This is the case that

occurs during a crash or impact situations, for which the materials show large de-

formations, inelastic strains and high strain rates. The method is specifically well

suited to the birdstrike phenomenon for which there is an interaction between ma-

terials, and generally the geometry changes significantly during the event. In this

work the commercial explicit FE software LS-Dyna [Hallquist (2006)] was used for

all numerical simulations.

The solver algorithm is based on the choice of the appropriate time-step used in

the solution. It is necessary that it is smaller than the time taken for the propa-

gation of a shock wave through the smallest element in the model. The time-step

in LS-Dyna is generally limited by stability. Usually, the time step falls during an

analysis as elements become deformed, but it is also possible for the time-step to rise.

LS-Dyna automatically calculates the largest time-step which can be used without

triggering numerical instability; it is not possible to force the code to use a time-step

larger than this. It is, however, possible to force the code to use a time-step smaller

than the calculated value, either by defining a multiplying factor.

Instability (shown by rapidly rising energy and ”floating overflow” error) will

occur if the period of any mode of deformation in the model is less than π times the

time step.

LS-Dyna checks all elements when calculating the required time-step. For solid,

shell and beam the time-step can be estimated roughly using the formula 5.1:

∆t = 0.9
l

c
(5.1)
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5.2 Pre-processing Software Tools

where l is the smallest element dimension and c the speed of sound in the material

(Equation 5.2). Shell thickness and beam section dimensions are ignored when

finding l. Rigid elements are not included.

c =


E

ρ
(5.2)

Typically a resulting time step is of the order of a microsecond or less and

it means that to complete a simulation they are required thousands of structural

analysis. For example, for the birdstrike phenomenon presented herein spanned

approximately 10ms, requiring up to 12 hours of CPU analysis.

5.2 Pre-processing Software Tools

All input and output to the LS-Dyna solver is in the form of text files. There are

many pre- and postprocessors software designed to build a finite element model and

analyse the results. In this work it has been used the LS-PrePost program [Hallquist

(2005)], shown in the Figure 5.1. It is an advanced pre and postprocessor that is

delivered free with LS-DYNA. The user interface is designed to be both efficient and

intuitive and it runs on different operative systems.
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Figure 5.1: LS-PrePost software

This software tool includes functionality to import and simplify CAD geometry,

mesh with finite elements, and apply loads and constraints. The tool allows the user

to submit an analysis to LS-Dyna, to import the results and show them graphically

(animation, fringe plotting and curve plotting).
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5.3 Windshield FE Analysis

In the present work before to perform the numerical simulation of the full-scale

windshield model, it was carried out a preliminary parametric numerical analysis of

a simplified, but realistic, structure subjected to the birdstrike phenomenon. This

simplified model is a 1m× 1m square flat plate made up of the same materials and

lay-up configuration of the full-scale structure.

Both the square plate and the full-scale windshield are glass laminate, composed

of 3 layers of glass and 2 layers of PVB-interlayer. In the Figure 5.2 is shown an

exploded view of the FE target square model. The numerical model consists of

5 plies and each of these was modeled by default 3D eight-nodes brick elements.

The element size was approximately 5mm and the mesh is uniform throughout the

thickness.

Figure 5.2: Square plate FE model

As well as the simplified square plate model, it was applied the same procedure for

the FE discretization process of the full-scale windshield structure. Numerically each

layer of the laminate was modeled by solid elements, but because of the curvature

of the windshield it was modeled by both eight-nodes and six-nodes elements. In

the Figure 5.3 is shown the FE model of the left windshield panel.

In the Table 5.1 is reported the thickness of each layer of the real glass laminate.

It must take into account that the averaged thickness of a glass ply is twice as much

as the interlayer one.

About the material modeling the glass ply was modeled by a bilinear elastic-

plastic material law with negligible plastic region using the LS-Dyna MAT-PLASTIC-
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5.4 Bird Model

Figure 5.3: Full-scale left windshield FE model

Outer Glass Outer PVB Middle Glass Inner PVB Inner Glass
3.0mm 3.0mm 6.5mm 2.5mm 5.0mm

Table 5.1: Thickness distribution of the full-scale model

KINEMATIC Card, this model is suited to model isotropic and kinematic hardening

plasticity with the option of including rate effects.

Whereas the PVB-interlayer ply was modeled by a viscoelastic material law using

the LS-Dyna MAT-VISCOELASTIC Card.

5.4 Bird Model

The SPH approach, implemented in the explicit finite element code LS-Dyna, was

used for the modeling of the bird. The numerical model consists of 28620 SPH nodes

with an average distance between two nodes of 5mm, as shown in the Figure 5.4.

In this work in according to the International Certification Standards every sim-

ulation is performed with a bird impact velocity equal to 155m/s.

The appropriate substitute bird has a density of 950kg/m3 and a porosity of

10%, i.e. it is composed of 90% of water and 10% of air.

Regardless of the modeling method chosen, a fluid dynamic material model was

used for the bird modeling. In particular it was defined a material constitutive model

to relate ∆σ to ∆ϵ and an equation of state to relate ∆p to ∆V , where

∆σ is the variation of the stress

∆ϵ is the variation of the strain
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5.5 Boundary Conditions

Figure 5.4: Bird SPH Model

∆p is the variation of the pressure

∆V is the variation of the pressure

The MAT-NULL Card calculates the pressure p from a specified tabulated equa-

tion of state 5.3, defined by the LS-Dyna EOS-TABULATED Card.

p = C(ϵv) (5.3)

where ϵv is the volumetric strain given by the natural logarithm of the relative

volume V.

The values of the equation of state parameters are shown in the Table 5.2.

1 2 3 4 5 6 7 8 9 10
ϵV 0.000 −0.105 −0.118 −0.128 −0.137 −0.154 −0.169 −0.183 −0.195 −0.217

C[Pa] 0.000 2.37 · 108 4.25 · 108 5.86 · 108 7.27 · 108 9.72 · 108 1.18 · 109 1.37 · 109 1.54 · 109 1.84 · 109

Table 5.2: Tabulated equation of state

5.5 Boundary Conditions

An important part of this analysis is the modeling of the surround structures and

the definition of its interaction with the windshield.
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5.5 Boundary Conditions

The Figures 5.5(a) and 5.5(b) show the FE model of the C-beam that surrounding

the square flat plate model and its section, whereas the Figure 5.5(c) shows the

section of a typical windshield-surround installation.

(a) Surround Structure

(b) C-Beam Section

Outer Glass 
Outer PVB 
Middle Glass 
Inner PVB 
Inner Glass 

(c) Windshield-Surround Interaction

Figure 5.5: Windshield-surround installation for the simplified model

As well as for the laminate layers the surround structure was modeled by eight-

nodes brick elements. In this phase about the interaction between surround and

laminate it has not been considered the presence of the bolts, but a simple plug

approach. In the next section it will be a deeper description of the contacts definition

between the windshield and the surround. On the first approximations the boundary

conditions are defined fixing every translational and rotational degree of freedom of

the surround contour.

It was used the same FE procedure for the modeling of full-scale surround struc-

ture, taking into account the curvature of the beams again. The Figure 5.6(a) shows

the FE model of the surround structure, whereas in the Figure 5.6(b) is shown its

exploded view, from which is possible to see the groove of the lower part of the

surround where the laminate is plugged.
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5.5 Boundary Conditions

(a) FE Model

(b) Exploded View

Figure 5.6: Full-scale surround structure

The Figure 5.7 shows the main structural components about which the cockpit

structure is composed, in detail there is a main frame, 20 surround frames, a center

beam and a bulk head. It was used a different modeling approach for each com-

ponent, taking into account its particular structural function and the expectable

impact response. As shown in the Figure 5.8, the main frame was modeled by 1D

beam element fixing only the two bottom nodes. The center beam was modeled by

1D beam element too, and it is connected to the main frame, the surround frames

and the surround structure. Both the surround frames and the bulk head are mod-

eled by avoiding the translational degree of freedom along the y- and z-directions,

perpendicular to the bird impact direction x, by the BOUNDARY-SPC-SET Card.

Furthermore the connection between the main frame and the rear part of the sur-

round structure was simulated by the CONSTRAINED-INTERPOLATION Card.

With this constrain type, the motion of a single dependent node is interpolated from

the motion of a set of independent nodes. It is useful for the load redistribution of a

load, which can be either a translational force or moment, applied to the dependent

node to the surrounding independent nodes.
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Main Frame 

Surround Frames 

Bulk Head 

Center Beam 

Figure 5.7: Geometry of the cockpit structures

PhD 3rd review, November 4th 2010 

FE Beam 

Boundary  
Conditions 

Boundary 
Conditions 

FE Beam 

Constrains 
Interpolation 

Two Fixed 
Nodes 

Figure 5.8: FE model of the cockpit structures
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5.6 Contact Modelling

The Figures 5.9 and 5.10 show the whole FE models for both birdstrike cases anal-

ysed, the simplified square plate model and the full-scale windshield structures. In

order to obtain an adequate simulation of the transfer load, the interaction between

the bird SPH nodes and the structure finite elements was modeling by a contact

algorithm. Furthermore it was also defined a contact for each couple of side layers of

the laminate, and a contact between the whole laminate and the surround structure.

(a) Iso view (b) Lateral View

Figure 5.9: Simplified square plate vs Bird - FE model

(a) Iso view (b) Lateral View

Figure 5.10: Full-scale windshield vs Bird - FE model

Contact treatment forms an integral part of many large deformation problems.

Accurate modeling of contact interfaces between bodies is crucial to the prediction
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5.6 Contact Modelling

capability of the finite element simulations. LS-DYNA offers a large number of

contact types.

A contact is defined by identifying (via parts, part sets, segment sets, and/or node

sets) what locations are to be checked for potential penetration of a ”slave” node

through a ”master” segment, as shown in the Figure 5.11. A search for penetrations

is made every time-step.

In this work it was used the penalty-based contact, for which when a penetration

is found a force proportional to the penetration depth is applied to resist, and

ultimately eliminate the penetration. All contacts defined are based on the one-way

treatment. The ”one-way” term in one way contact is used to indicate that only the

user-specified slave nodes are checked for penetration of the master segments.
LS-DYNA Theory Manual Contact-Impact Algorithm 

26.15 

 

 
 

Figure 26.14. Undetected interpenetration.  Such interpenetrations are frequently due to the 
use of coarse meshes. 

 
 To avoid problems with initial interpenetrations, the following recommendations should 
be considered: 

• Adequately offset adjacent surfaces to account for part thickness during the 
mesh generation phase. 

• Use consistently refined meshes on adjacent parts which have significant 
curvatures. 

• Be very careful when defining thickness on shell and beam section definitions 
--especially for rigid bodies. 

• Scale back part thickness if necessary.  Scaling a 1.5mm thickness to .75mm 
should not cause problems but scaling to .075mm might.  Alternatively, define 
a smaller contact thickness by part ID.  Warning: if the part is too thin contact 
failure will probably occur 

• Use spot welds instead of merged nodes to allow the shell mid surfaces to be 
offset. 

 

 
 

Figure 26.15.  Undetected interpenetration due to rounding the edge of the shell element. 
 
 
 

Figure 5.11: Contact penetration search

Contact surfaces are defined using sets, which can contain ”segments” (3- or

4-node element faces), nodes, shell elements, or parts. If the set contains parts, all

the elements made of those parts are included in the contact. Generally, two sets

are defined, the slave and the master. Any entity in the slave set can contact any

entity in the master set and vice versa.

In order to model the transfer load between the bird and the target structure, it

was used a CONTACT-AUTOMATIC-NODES-TO-SURFACE Card (Figure 5.12),

for which each slave node is checked for penetration through a master segment.

6.8 CHAPTER 6. CONTACT SURFACES
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Figure 5.12: Contact automatic nodes to surface
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Instead a CONTACT-TIED-SURFACE-TO-SURFACE Card (Figure 5.13) was

used to model the interaction between two side laminate plies. In tied contact types,

the slave nodes are constrained to move with the master surface, i.e. the tied contact

surfaces ”glue” the slaves to the masters. The slave and master segments should

initially be coplanar.

6.2 Types of Contact Surface 6.7
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At the beginning of the simulation, the nearest master segment for each slave

node is located based on an orthogonal projection of the slave node to the master

segment. If the slave node is deemed ”close” to the master segment based on estab-

lished criteria, the slave node is moved to the master surface. Of the two surfaces in

contact, the coarser one should be defined as the master. Only translational degrees

of freedom are affected from this type of contact and the slave nodes are effectively

”pinned” to the master surface.
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Figure 5.14: Contact automatic surface to surface
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5.6 Contact Modelling

Finally the contact between the whole laminate and the surround structure it was

modeled by the CONTACT-AUTOMATIC-SURFACE-TO-SURFACE Card (Figure

5.14), defining the entire glass laminate as the slave entity and the surround as the

master one.

About the contact output, there are numerous output files pertaining to contact

which can be written by LS-Dyna, and the LS-PrePost can read these output files

and plot the results. The most common contact-related output file, RCFORC, is pro-

duced by including a DATABASE-RCFORC Card in the input deck file. RCFORC

is an ASCII file containing resultant contact forces for the slave and master sides of

each contact interface. The forces are written in the global coordinate system. By

including a DATABASE-SLEOUT Card, contact interface energies are written to

the ASCII output file SLEOUT.
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Chapter 6

Results and Discussion

6.1 Birdstrike vs the Square Windshield Model

This section presents the numerical results of the bird impact on the simplified square

plate windshield, as shown in the Figure 6.1. As mentioned in the previous sections,

a cylinder with length-to-diameter ratio of 2 was predefined for the current 1.8kg

(4lb) bird model, with a diameter of 0.106m. This soft projectile traveling with an

incident velocity of 155m/s striking the 1m× 1m flat target with and impact angle

of 90◦ respect to the horizontal x-axis. In the Figure 6.2 it is shown the lay-up

configuration of the windshield. The thickness of each ply is equal to 4mm for a

total thickness of 20mm

(a) Iso view (b) Lateral view

Figure 6.1: Birdstrike vs Simplified square windshield

Every analysis was performed on a 8-processor HP Workstation machine with a

WIN64 version of LS-Dyna3D (V971), taking approximately 12 h of wall clock time
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6.1 Birdstrike vs the Square Windshield Model

Figure 6.2: Thickness lay-up configuration

to complete the numerical analysis. It was set the output interval at 50µs for a total

event time of 0.005 s, with producing of an output database of more than 4GB size.

To better understand the behavior of the plate during the impact, in the following

pages is presented a series of plots about the evolution of the phenomenon and its

main physical characteristics.

The Figures 6.3 and 6.4 show a sequence plots about the deformation behaviour

of the impacted panels, from the moment of the impact until the bird is completely

squashed into the panel. During the first 2 milliseconds it is happens the transfer

of the almost 90% of the bird load to the plate, with a consistent deformation of

the center of the model, correspondent to the bird impacted zone. Instead during

the following 3 milliseconds it can see an expansion of the plate deformation from

the center zone to the plate edges, because of the presence of the PVB-interlayer.

Furthermore it is clearly visible the deformation of the bird during the impact, and

its squashing into the windshield is adequately simulated by the SPH modeling

approach.

In the Figures 6.5 and 6.6 are reported the failure propagations of the each layer

of the glass laminate. About the glass plies it can already see a crack initiation after

just 1 millisecond, and a propagation of this from the center to the angles of the

plate. As it was expected, the failure of the glass layers is more noticeable for the

inner glass layer, because of its more intensive bending. It must take into account

that in this work it was not investigated the influence of the mesh on the failure

propagation. As shown, the outer PVB-interlayer ply does not present any failure,

as well as the inner one.

In the Figure 6.7 some step-by-step contour plots of the von Mises stress and

plastic strain are shown. Again in this case it can see that in the beginning of the

impact only the center zone plate is involved in the phenomenon with a maximum

value of the von Mises stress around 2.8 · 108Pa. In addition after 1.5 millisecond

when there is an evident failure of the plate that propagates to the bottom right

corner, only the intact zone of the plate still has a load-carrying capacity left.
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6.1 Birdstrike vs the Square Windshield Model

(a) t=0.0000 sec - Lateral View (b) t=0.0000 sec - Front View

(c) t=0.0005 sec - Lateral View (d) t=0.0005 sec - Front View

(e) t=0.0010 sec - Lateral View (f) t=0.0010 sec - Front View

(g) t=0.0015 sec - Lateral View (h) t=0.0015 sec - Front View

(i) t=0.0020 sec - Lateral View (j) t=0.0020 sec - Front View

Figure 6.3: Sequence of plate deformation between 0-0.0020 sec
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6.1 Birdstrike vs the Square Windshield Model

(a) t=0.0030 sec - Lateral View (b) t=0.0030 sec - Front View

(c) t=0.0035 sec - Lateral View (d) t=0.0035 sec - Front View

(e) t=0.0040 sec - Lateral View (f) t=0.0040 sec - Front View

(g) t=0.0045 sec - Lateral View (h) t=0.0045 sec - Front View

(i) t=0.0050 sec - Lateral View (j) t=0.0050 sec - Front View

Figure 6.4: Sequence of plate deformation berween 0.0030-0.0050sec
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6.1 Birdstrike vs the Square Windshield Model

(a) t=0.0010 sec - Outer Glass (b) t=0.0010 sec - Middle Glass

(c) t=0.0020 sec - Outer Glass (d) t=0.0020 sec - Middle Glass

(e) t=0.0030 sec - Outer Glass (f) t=0.0030 sec - Middle Glass

(g) t=0.0040 sec - Outer Glass (h) t=0.0040 sec - Middle Glass

(i) t=0.0050 sec - Outer Glass (j) t=0.0050 sec - Middle Glass

Figure 6.5: Failure propagation of the Outer and Middle Glass
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6.1 Birdstrike vs the Square Windshield Model

(a) t=0.0010 sec - Inner Glass (b) t=0.0010 sec - Outer PVB

(c) t=0.0020 sec - Inner Glass (d) t=0.0020 sec - Outer PVB

(e) t=0.0030 sec - Inner Glass (f) t=0.0030 sec - Outer PVB

(g) t=0.0040 sec - Inner Glass (h) t=0.0040 sec - Outer PVB

(i) t=0.0050 sec - Inner Glass (j) t=0.0050 sec - Outer PVB

Figure 6.6: Failure propagation of the Inner Glass and Outer PVB
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6.1 Birdstrike vs the Square Windshield Model

(a) t=0.0004 sec - Von Mises Stress (b) t=0.0004 sec - Plastic Strain

(c) t=0.0010 sec - Von Mises Stress (d) t=0.0010 sec - Plastic Strain

(e) t=0.0015 sec - Von Mises Stress (f) t=0.0015 sec - Plastic Strain

(g) t=0.0025 sec - Von Mises Stress (h) t=0.0025 sec - Plastic Strain

(i) t=0.0050 sec - Von Mises Stress (j) t=0.0050 sec - Plastic Strain

Figure 6.7: von Mises Stress e Plastic Strain
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6.1 Birdstrike vs the Square Windshield Model

In the Figure 6.8 the resultant displacement for the central element (the element

of the impact) of the plate is reported. At the end of the simulation it presents a

maximum value of ≃ 6.7mm.
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Figure 6.8: Central element displacement

The reaction forces are calculated normally to the section plane along the x-axis

(the impact direction) for each model at the top of the plate. The Figure 6.9 depicts

the time-history of the interfacial resultant contact force between the bird and the

external face of the target plate, and it presents a maximum value of ≃ 1.41 · 106N .
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Figure 6.9: Resultant contact force
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6.1 Birdstrike vs the Square Windshield Model

In order to perform a check on the analysis it can be useful to carry out a balance

of the energy data. The following Equation 6.1 should hold at all times during an

analysis:

Ekin + Eint + Ehg + Esi + Erw + Edamp = Ekin0 + Eint0 +Wext (6.1)

where

Ekin0 : Initial Kinetic Energy

Eint0 : Initial Internal Energy

Wext : External Work

Ekin : Kinetic Energy

Eint : Internal Energy

Ehg : Hourglass Energy

Esi : Sliding Interface Energy

Erw : Rigid Wall Energy

Edamp : Damping Energy

In this birdstrike analysis there is not rigid wall and damping energy, the sliding

energy is negligible and the initial energy is only represented by kinetic energy of

the bird, given by

Ekin0 =
1

2
mv2 = 21622.5Joule (6.2)

In order to define the hourglass energy, it is necessary focusing on the difficult

to control the zero energy modes associated to the deformation of the one-point in-

tegration elements. Undesirable hourglass modes (Figure 6.10) tend to have periods

that are typically much shorter than the periods of the structural response, and they

are often observed to be oscillatory. However, hourglass modes that have periods

that are comparable to the structural response periods may be a stable kinematic

component of the global deformation modes and must be admissible. One way of

resisting undesirable hourglassing is with a viscous damping or small elastic stiffness

capable of stopping the formation of the anomalous modes but having a negligible

affect on the stable global modes.

58



6.1 Birdstrike vs the Square Windshield Model
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Figure 6.10: Hourglass modes of under-integrated solid elements

Since the hourglass deformation modes are orthogonal to the strain calculations,

work done by the hourglass resistance is neglected in the energy equation. This may

lead to a slight loss of energy; however hourglass control is always recommended for

the under integrated solid elements.

LS-DYNA has various algorithms for inhibiting hourglass modes. The default

algorithm (type 1) is generally not the most effective algorithm. In this work it was

used the hourglass option ♯6, based on elastic constants and an assumed strain field,

it produces accurate coarse mesh bending results for elastic material (like glass) when

is set to 1.0. In absence of contact friction, like in our case, an amount of hourglass

energy equal to 10% of peak internal energy might be considered acceptable for the

simulation.

The time-history of the internal energy for each layers of the laminated glass is

reported in the Figure 6.11. The outer glass, on which the bird impacts directly, is

the ply that absorbs the bigger amount of the bird impact energy, but contrarily to

what you might think, after that the two PVB layers turn out to be very efficient

about the energy absorbing, because of their plastic behavior.

In the following figures 6.12, 6.13 and 6.14 are shown the time-histories of the

internal energy associated, respectively, to the whole glass laminate, to the surround

structure and to the bird. As it can see that the total internal energy of the whole

glass laminate is just the sum of the energy associated to each layer, the internal

energy correspondent with deformation of the surround structure is negligible, while

the most consistent amount of internal energy is just related to the ”deformation”

of the bird, or to be more exact associated with its squashing onto the panel.

The time-history of the hourglass energy in function of time is reported in the

Figure 6.15, it is equal to 10% of peak of the total internal energy and therefore it

may be considered acceptable for the analysis.

The check on the total energy, shown in the Figure 6.16, ensures the accuracy of

the results obtained by the birdstrike numerical analysis performed.
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6.1 Birdstrike vs the Square Windshield Model

Figure 6.11: Total internal energy for each layer
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Figure 6.12: Total internal energy for glass laminate
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6.1 Birdstrike vs the Square Windshield Model

Surround  
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Figure 6.13: Total internal energy for surround
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Figure 6.14: Total internal energy for bird
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6.1 Birdstrike vs the Square Windshield Model
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Figure 6.15: Total hourglass energy
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Figure 6.16: Energy balance
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6.2 Parametric Study of the Impact Response

6.2 Parametric Study of the Impact Response

Before studying the case of the birdstrike against a full-scale windshield structure, a

parametric analysis was carried out to investigate the influence of various geometric

parameters on the impact response of the windshield, and in particular respect to

the capability to absorb the impact energy in a safe way without any failure.

For the parametric study it was studied the influence of these three parameters:

1)Windshield Curvature, 2)Impact Angle and 3)Glass-PVB Thickness Ratio.

The first parameter investigated was the curvature of the windshield. In addition

to the case of a square flat plate, analysed in previous section, the birdstrike analysis

was also performed onto two further types of windshield with a radius of curvature

of 1.273m and 0.636m, as shown in the Figure 6.17.

(a) r = ∞ (b) r = 1.273 (c) r = 0.636

Figure 6.17: Curvature changes

The second parameter analysed was the impact angle of the bird respect to the

horizontal x-axis. The simulation was performed for three impact angles: α =90◦,

α =60◦, and α =30◦, as it was reported in the Figure 6.18.

(a) α =90◦ (b) α =60◦ (c) α =30◦

Figure 6.18: Impact angle changes
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6.2 Parametric Study of the Impact Response

Combining this two parameters it was obtained the matrix of 9 analysis pre-

sented in Figure 6.19, i.e. for each curvature they were performed three simulations

correspondent to the three impact angles.

(a) r = ∞ - α =90◦ (b) r = ∞ - α =60◦ (c) r = ∞ - α =30◦

(d) r = 1.273 - α =90◦ (e) r = 1.273 - α =60◦ (f) r = 1.273 - α =30◦

(g) r = 0.636 - α =90◦ (h) r = 0.636 - α =60◦ (i) r = 0.636 - α =30◦

Figure 6.19: Cases studied as changes of curvature and impact angle

The third parameter analysed was the thickness ratio between the glass and PVB

layers, with a constant total thickness equal to 20mm. In detail they were studied

three type of lay-up configurations for which: a) glass and PVB layers have the

same thickness b) the thickness of the glass is twice as much as the PVB one, c) the

thickness of the glass is 3 times the PVB one, as shown in the Figure 6.20.
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6.2 Parametric Study of the Impact Response

(a) tglass = tPV B

(b) tglass = 2× tPV B

(c) tglass = 3× tPV B

Figure 6.20: Thichness lay-up configurations
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6.2 Parametric Study of the Impact Response

Each of these 3 thickness lay-up configurations was applied to the 9 previous

cases obtained from the combination of curvature and impact angle, and finally it

was defined a number of 27 different impact scenarios in order to identify the best

case scenario and to get a deep insight into the behaviour of the windshield in term

of energy absorbing and failure. The complete simulation matrix is shown in the

Table 6.1

Text n◦ Curvature [m] Impact Angle [◦] Thickness Ratio File Name Failure
1 r = ∞ α =90◦ tglass = tPV B Test-curv0-90d-t100% Failure
2 r = ∞ α =90◦ tglass = 2× tPV B Test-curv0-90d-t50% Failure
3 r = ∞ α =90◦ tglass = 3× tPV B Test-curv0-90d-t33% Failure
4 r = ∞ α =60◦ tglass = tPV B Test-curv0-60d-t100% Failure
5 r = ∞ α =60◦ tglass = 2× tPV B Test-curv0-60d-t50% Failure
6 r = ∞ α =60◦ tglass = 3× tPV B Test-curv0-60d-t33% Failure
7 r = ∞ α =30◦ tglass = tPV B Test-curv0-30d-t100% No Failure
8 r = ∞ α =30◦ tglass = 2× tPV B Test-curv0-30d-t50% No Failure
9 r = ∞ α =30◦ tglass = 3× tPV B Test-curv0-30d-t33% No Failure
10 r = 1.273 α =90◦ tglass = tPV B Test-curv0-90d-t100% Failure
11 r = 1.273 α =90◦ tglass = 2× tPV B Test-curv0-90d-t50% Failure
12 r = 1.273 α =90◦ tglass = 3× tPV B Test-curv0-90d-t33% Failure
13 r = 1.273 α =60◦ tglass = tPV B Test-curv0-60d-t100% Failure
14 r = 1.273 α =60◦ tglass = 2× tPV B Test-curv0-60d-t50% Failure
15 r = 1.273 α =60◦ tglass = 3× tPV B Test-curv0-60d-t33% Failure
16 r = 1.273 α =30◦ tglass = tPV B Test-curv0-30d-t100% No Failure
17 r = 1.273 α =30◦ tglass = 2× tPV B Test-curv0-30d-t50% No Failure
18 r = 1.273 α =30◦ tglass = 3× tPV B Test-curv0-30d-t33% No Failure
19 r = 0.636 α =90◦ tglass = tPV B Test-curv0-90d-t100% Failure
20 r = 0.636 α =90◦ tglass = 2× tPV B Test-curv0-90d-t50% Failure
21 r = 0.636 α =90◦ tglass = 3× tPV B Test-curv0-90d-t33% Failure
22 r = 0.636 α =60◦ tglass = tPV B Test-curv0-60d-t100% Failure
23 r = 0.636 α =60◦ tglass = 2× tPV B Test-curv0-60d-t50% Failure
24 r = 0.636 α =60◦ tglass = 3× tPV B Test-curv0-60d-t33% Failure
25 r = 0.636 α =30◦ tglass = tPV B Test-curv0-30d-t100% No Failure
26 r = 0.636 α =30◦ tglass = 2× tPV B Test-curv0-30d-t50% No Failure
27 r = 0.636 α =30◦ tglass = 3× tPV B Test-curv0-30d-t33% No Failure

Table 6.1: Numerical simulations matrix

6.2.1 Effect of the Curvature

In this section is described the variation of the impact energy absorbed from wind-

shield as the curvature changes. In detail the Figure 6.21 shows the maximum values

of the energy transferred from bird to windshield during the impact as curvature

changes for an impact angle of 90◦ and for each thickness lay-up configuration. It

can see that the amount of the energy of impact remains almost constant going from

a flat plate (blue bar) through a curvature radius of r = 1.273 (red bar), while it

decreases by 10% going from a curvature radius of r = 1.273 (red bar) through a

curvature radius of r = 0.636 (green bar).
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6.2 Parametric Study of the Impact Response

It can also see similar trends of the energy as curvature changes in the case of

impact with an impact angle of 60◦ (Figure 6.22) and 30◦ (Figure 6.23), with the

difference that only for the impact angle of 30◦ there is no failure of any glass layer.

Figure 6.21: Maximum energy as the curvature changes for α =90◦

Figure 6.22: Maximum energy as the curvature changes for α =60◦

Figure 6.23: Maximum energy as the curvature changes for α =30◦
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6.2 Parametric Study of the Impact Response

6.2.2 Effect of the Impact Angle

In this section is presented the variation of the energy as the impact angle changes.

The Figure 6.24 shows the maximum values of the energy for a flat plate and for

each thickness lay-up configuration. It can see that the amount of the energy of

impact decreases by ∼40-50% going from an impact angle of 90◦ (blue bar) through

60◦ (red bar), and again decreases even by ∼70-80% going from an impact angle of

60◦ (red bar) through 30◦ (green bar).

The Figures 6.25 and 6.26 report similar trends of the energy as curvature changes

in the case of impact against a windshield with a curvature r = 1.273 and r = 0.636,

the only difference is a light decrease of the absolute values with increase of the

curvature. Again in this case only the impacts with an angle of 30◦ do not present

any failure in the glass layers.

Figure 6.24: Maximum energy as the impact angle changes for r = ∞

Figure 6.25: Maximum energy as the impact angle changes for r = 1.273
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6.2 Parametric Study of the Impact Response

Figure 6.26: Maximum energy as the impact angle changes for r = 0.636

6.2.3 Effect of the Thickness Lay-up Configuration

In this section is presented the variation of the energy as the glass-PVB thickness

ratio changes. The Figure 6.27 shows the maximum values of the energy for a flat

plate and for each impact angle. It can see that the amount of the energy of impact

decreases by ∼20-30% going from ratio of 1 to 1 (blue bar) through to a ratio of 1

to 2, while it remain constant going from ratio of 1 to 2 (red bar) through to a ratio

of 1 to 3 (green bar).

The Figures 6.28 and 6.29 report similar trends of the energy as curvature changes

in the case of impact against a windshield with a curvature r = 1.273 and r = 0.636.

Again in this case only the impacts with an angle of 30◦ do not present any failure

in the glass layers.

Figure 6.27: Maximum energy as the curvature changes for α =90◦
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6.2 Parametric Study of the Impact Response

Figure 6.28: Maximum energy as the curvature changes for α =60◦

Figure 6.29: Maximum energy as the curvature changes for α =30◦
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6.3 Birdstrike vs the Full-scale Windshield Model

To summarize the results showed it can say that the energy transferred to the

windshield during the impact is strongly dependent of the impact angle. It must

taking into account that in according with the CS 25, it is necessary, not only,

to design a structure capable to absorb the energy of impact involved during the

birdstrike, but also to ensure that it occurs without any catastrophic failure of the

glass laminate. And, as described in Table 6.1 it happens only when the bird hits

the windshield with an angle of 30◦.

It is clear that the choice of this angle can not to be only function of birdstrike

requirements, because further factors, like for example optical problems, come into

play in the design of a windshield structure.

6.3 Birdstrike vs the Full-scale Windshield Model

As well as for the simplified square plate model, the numerical results of the birdstrike

analysis against the full-scale windshield structure are reported in this section.

Before presenting the results, it is necessary to provide a deeper description about

configuration of the real windshield structure, comparing it with the cases studied

in previous parametric analysis carried out on the simplified model.

(a)

(b)

Figure 6.30: Real and Simplified windshield models
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6.3 Birdstrike vs the Full-scale Windshield Model

In the Figure 6.30 is presented two lateral views of the full-scale windshield model

and of the simplified one with a radius of curvature equal to 1.273 and an impact

angle α =30◦.

The overlapping of the two models reported in the Figures 6.31a and 6.31b shows

that the simplified model simulates rather well the real model, without taking into

account the difference of surface.

Furthermore, recalling that for the full-scale model the averaged thickness of the

glass ply is twice as much as the interlayer one (5.1), it may say that between the

27 simulations performed in the parametric analysis there is one that comes close to

the real case and results to be the most realistic simulation.

(a) Lateral View

(b) Iso View

Figure 6.31: Comparison between Real and Simplified windshield models

The Figure 6.32 shows a sequence plots of the birdstrike against the real wind-

shield model, from the moment of the impact until the bird is completely squashed

into the panel. It is clearly visible the deformation of the bird during the impact

and its squashing into the windshield.

Furthermore in the Figure 6.33 is reported the step-by-step contour plots of the

von Mises stress of the windshield impacted by the bird. As it was expected, the

impacted zone of the windshield reaches the maximum stress during the first 1.5

milliseconds, but it does not arrive to values for which the glass fails. In fact in the

Figure 6.33(j), that depicts the last plot of the simulation, there is no failure of any

glass layer.
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6.3 Birdstrike vs the Full-scale Windshield Model

(a) t=0.0005 s (b) t=0.0010 s

(c) t=0.0015 s (d) t=0.0020 s

(e) t=0.0025 s (f) t=0.0030 s

(g) t=0.0035 s (h) t=0.0040 s

(i) t=0.0045 s (j) t=0.0050 s

Figure 6.32: Sequence of the birdstrike vs Full-scale windshield
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6.3 Birdstrike vs the Full-scale Windshield Model

(a) t=0.0005 s (b) t=0.0010 s

(c) t=0.0015 s (d) t=0.0020 s

(e) t=0.0025 s (f) t=0.0030 s

(g) t=0.0035 s (h) t=0.0040 s

(i) t=0.0045 s (j) t=0.0050 s

Figure 6.33: Sequence of the plate deformation
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6.3 Birdstrike vs the Full-scale Windshield Model

In the Figure 6.34 the resultant displacement for the impacted zone of the right

windshield panel is reported. It presents a maximum value of 3.7mm after 17 mil-

liseconds, behind which the panel tends to return to the initial configuration, reach-

ing a final value of 2.6mm at the end of the simulation.

Figure 6.34: Displacement of the impacted zone of the right panel

The Figure 6.35 depicts the time-history of the interfacial resultant contact force

between the bird and the external face of the left windshield panel, and it presents

a maximum value of 81163 N. The trend of the time-history is different from that

obtained in case of birdstrike with an impact angle of 90◦, shown in the Figure 6.9,

because of the sliding of the bird windshield caused by the impact angle of 30◦.

Figure 6.35: Resultant contact force

In the Figures 6.36 and 6.37 are shown the time-histories of the internal energy

for each layers of the right and left panel of the windshield, taking into account that

in this simulation only the right panel is subjected to the impact. First of all it

can see that the amount of the energy transferred is very little, and this permits to

avoid any failure of the layers. Furthermore it results very interesting to note that

the peaks of the time-histories related to internal energy absorbed by the layers of
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6.3 Birdstrike vs the Full-scale Windshield Model

the left panel, not subjected to the impact directly, have an offset in time, because

the panel ”feels” the birdstrike lately, and as consequence presents a later impact

response.

Figure 6.36: Internal energy for each layer of right panel

Figure 6.37: Internal energy for each layer of left panel

In addition to the numerical analysis just described, it was performed a consid-

erable number simulation choosing different zone of the windshield impacted by the

bird. Between these It is interesting to analyse the case shown in the Figure 6.38,

for which the bird hits the center beam of the surround, that divides the two panels

of the windshield. It could seems very critical, because, at least in theory, it might

cause a failure of both panels at the same time, with a propagation of the crack in

both directions and a consequent loss of visibility for both panels.

But the numerical simulation provided very good results, because at the end of

the analysis there are no failures and the stresses reached from the structure were

even less then the stresses obtained in the previous case (Figure 6.39).
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6.3 Birdstrike vs the Full-scale Windshield Model

Figure 6.38: Birdstrike against the center beam of the surround structure

Figure 6.39: von Mises stress plot for birdstrike vs the center beam

The last time-history, shown in the Figure 6.40, represents a key aspect of this

birdstrike against the full scale windshield, in fact it shows that the kinetic energy of

the bird is still equal to 19600Joule at the end of the simulation. This implies that

only the 9% of the impact energy of the bird is transferred to the windshield, and

most part of this is dissipated in other forms of energy, such as heat, elastic, sliding

energy and so on. This is mainly consequence of the impact angle of the bird, and

of the double curvature of the windshield, that result design parameters favourable

to avoid any problem caused by a birdstrike in terms of penetration of the bird, and

complete fragmentation of the glass.

Figure 6.40: Kinetic energy of the bird
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Chapter 7

Conclusions

The goal of this research work was the development a scientific and methodological

approach to the study of the birdstrike problem for the design, verification, and

optimization of a bird-proof windshield of a business jet airplane. It was studied an

innovative concept of aircraft windshield, composed by just two windshield panels,

unlike most part of the commercial airplane windshield configurations made up of

four or more panels.

Before getting to the heart of the analysis, it was given an overview regarding

the theoretical aspect of the birdstrike phenomenon, the basics of the non-linear

analysis and the most used finite element modeling approaches: a) pure Lagrangian,

b) Arbitrary Lagrangian Eulerian (ALE), and c) Smoothed Particle Hydrodynamics

(SPH). The advantages and disadvantages of these various formulations were briefly

discussed in this work and it was defined, also thanks to a deep bibliographic re-

search, that the SPH approach is the most suitable and feasible methodology to

simulate the dynamics of an high speed impact phenomenon, like the birdstrike

against an aircraft component.

Both bird SPH and target FE model were prepared by the LS-PrePost preproces-

sor software, while every numerical simulation was performed by using LSTC/LS-

Dyna explicit solver.

A preliminary validation of the birdstrike methodology was achieved through a

simulation on a simplified, but representative, windshield structure. It was studied a

simplified flat square windshield model impacted by a 1.8 kg bird model at 155m/sec

with an impact angle of 90◦. Numerical results for this pane showed that it would

not withstand the bird impact under the conditions stated in the CS 25 Standard.

Secondly a parametric analysis was executed on the previous square model to

evaluate the effects on its structural response of: 1) the target geometry, 2) the

impact angle, and 3) the plate curvature. The aim of this analysis was to evaluate the
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capability of windshield to absorb the impact energy, involving during a birdstrike

event, in a safe and efficient way without any damage.

The results of the parametric analysis reveal that: 1) the energy transferred to

the windshield during impact is strongly dependent of the impact angle, 2) in order

to design a structure capable to absorb safely the energy of impact involved during

the birdstrike, it is preferable to have a windshield structure with an impact angle

smaller than 30◦.

It is also clear that the choice of this angle can not to be only function of birdstrike

requirements, because further factors, like for example optical problems, come into

play in the design of a windshield structure.

The second part of the work was focused on the development of a numerical

simulation of birdstrike on a full-scale aircraft windshield-surround model. The

numerical analysis on this finite element model showed that the windshield is capable

to withstand to the impact force transferred by the bird during the impact, thanks

to its smaller impact angle respect to the x-axis (path of the bird) and also for its

double curvature, that permits the bird to slides on the windshield and continue its

path keeping the most part of the kinetic energy.

The main achievement of this research was the collection of results and expe-

riences, obtained by both simplified realistic and full-scale FE model analysis, to

define a design ”rule of thumb” assessment with regard to the Birdstrike problem.

It has permitted to trace the guidelines to perform a certification test simulation

and provide a birdstrike test article proposal (Figure 7.1), necessary for a design of

an airplane windshield structure able to withstand to a birdstrike event in according

with the conditions stated in the CS 25 standard requirements.

Figure 7.1: Birdstrike test article proposal
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