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Preface  

The present work is a part of a wider research project which aims at the 

investigation of strategies for in situ Tissue Engineering approaches. In particular 

the attention has been focused on the study of signals involved in stem cells 

recruitment and selection. 

The first part of the thesis reviews recent studies concerning the ability of 

Mesenchymal Stem Cells to migrate to site of damage and what signals are 

responsible for chemotaxis of stem cells. The second part of this thesis is 

articulate in three chapters describing the experimental campaign designed in 

order to gather information about the effects of these signals on the Mesenchymal 

Stem Cells. In particular my efforts have been devoted to establish the effect of 

some cytokines and peptides on migratory behavior of Mesenchymal Stam Cells, 

in terms of molecular and migratory parameters effects. 

Two of three chapter, following the introduction, are relative to one scientific 

article about the experiment carried out to realize innovative device able to recruit 

and select Mesenchymal Stem Cells both in three dimensional matrix and twoo- 

dimensional platforms. Chapter 3 includes the article ―Sustained Stromal Derived 

Factor-1 gradient in three-dimensional matrix as guidance for stem cells‖ 

submitted for publication to European Journal of Cell and Material and presently 

under revision. In chapter 5 is reported the article ―Peptide activated materials to 

recruit circulating stem cells‖ to be submitted for publication. 

This work carried out within the PhD program has benefited from the expert 

collaboration of engineers and chemists of the IIT@CRIB (Interdisciplinary 

Research Center on Biomaterials) as well as from the thorough and bright 

supervision of Professor P.A. Netti. 
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1.1 TISSUE ENGINEERING  

Prospects, limits and future challenges  

Regenerative medicine and tissue engineering (TE) hold the promise to solve 

several problems related to tissue and organ replacements. TE is based on 

the sapient combination of cells, material scaffolds and in vitro culturing 

conditions which aims at generating a hybrid biological/synthetic device that 

has to replace  the functions of an injured or diseased tissue or organ.  

Biomaterials play central roles in modern strategies in regenerative medicine 

and TE as designable biophysical and biochemical milieus that direct cellular 

behaviour and function (Peppas and Langer 1994; Hubbel 1995; Langer and 

Tirrel 2004). The guidance provided by biomaterials may facilitate restoration 

of structure and function of damaged or dysfunctional tissues, both in cell-

based therapies and in acellular therapies. Such materials should provide a 

provisional three-dimensional support to interact biomolecularly with cells to 

control their function, guiding the spatially and temporally complex 

multicellular processes of tissue formation and regeneration.  

Despite the early positive results, tissue engineered devices rarely have found 

a massive and successful clinical implementation. The commercialization, 

that is a major prerequisite for fitting within a wider healthcare system, of 

tissue engineered constructs has had alternate fortunes so far. Although 

tissue engineered devices could be technically implemented in clinics, it 

should be borne in mind that, cellular therapies are used mostly where an 

alternative conservative treatment cannot be pursued. Several causes may 

limit this. Local regulatory bodies can pose severe limitations on the use of 

exogenous/xenogenous cells and off-the-shelf availability is not 
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straightforward. In fact, the isolation of cells from patients, their 

amplification and subsequent in vitro culture are the most critical steps of 

the whole process, being highly costly and time consuming. Nevertheless, a 

large body of research is constantly focused on finding alternative and safer 

strategies which might eventually lead to a successful clinical 

implementation of TE. 

The TE paradigm is to isolate specific cells through a small biopsy from a 

patient, to grow them on a three-dimensional biomimetic scaffold under 

precisely controlled culture conditions, to deliver the construct to the desired 

site in the patient‘s body, and to direct new tissue formation into the scaffold 

that can be degraded over time (Lee and Mooney 2001). TE also offers unique 

opportunities to investigate aspects of the structure-function relationship 

associated with new tissue formation in the laboratory and to predict the 

clinical outcome of the specific medical treatment. In order to achieve 

successful regeneration of damaged organs or tissues based on the TE 

concept, several critical elements should be considered including biomaterial 

scaffolds that serve as a mechanical support for cell growth, progenitor cells 

that can be differentiated into specific cell types, and inductive growth factors 

that can modulate cellular activities (Putman and Mooney 1996; Heath 

2000). 

The biomaterial plays an important role in most TE strategies (Hubbel 1995). 

For example, biomaterials can serve as a substrate on which cell populations 

can attach and migrate, be implanted with a combination of specific cell 

types as a cell delivery vehicle, and be utilized as a drug carrier to activate 
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specific cellular function in the localized region (Marler et al. 1998; Murphy 

and Mooney 1999). 

Thus a mayor goal is to develop new culture-based approaches, using 

advanced biomaterials, that more closely mimic what the body already does 

so well and promote differentiation of pluripotent cells or propagation of 

specialized adult stem cells without loss of ―stemness‖ (Lutolf et al. 2009). An 

increasing emphasis on design principles drawn from basic mechanism of 

cell- matrix interactions and cell signalling has now set the stage for the 

successful application of biomaterials to stem-cell biology. This strategy has 

the potential to revolutionize our understanding of extrinsic regulators of cell 

fate, as matrices can be made using technologies that are sufficiently 

versatile to allow recapitulation of features of stem-cell microenvironments, 

or niches, down almost to the molecular detail (Lutolf and Hubbel 2005).  

In the body, adult stem cells reside within instructive, tissue-specific niches 

that physically localize them and maintain their stem-cell fate (Scadden 

2006; Morrison and Spradling 2008). To shed light on the mechanisms that 

regulate stem cells, approaches that allow the study of stem-cell function in 

response to isolated components of a complex system — that is, models that 

simplify it — are crucial. Biomaterials approaches, in combination with other 

technologies such as microfabrication and microfluidics, are well suited to 

assist studies of stem-cell biology through the creation of evolving systems 

that allow key variables to be systematically altered and their influence on 

stem-cell fate analysed. Thus, biomaterials technologies provide the exciting 

possibility of deconstructing and then reconstructing niches, allowing 
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quantitative analysis of stem-cell behaviour in a manner not previously 

possible.  

Biomaterials can be designed to act as carriers for the local delivery of stem 

cells, support cells or molecular niche cues. The biomaterials may markedly 

improve the impact of transplanted stem-cell populations. Many of the 

concepts described for in vitro use above could find useful application in vivo. 

For example, materials could be designed as multifunctional stem-cell 

microenvironments that affect tissue regeneration on multiple levels, 

including the following: delivering stem cells in a protective material and 

enhancing viability; delivering support cells to increase the numbers and 

stimulate the function of endogenous stem cells; delivering diffusible 

cytokines to promote the mobilization of endogenous cells involved in repair, 

such as those that form blood vessels; displaying regulatory proteins to 

enhance survival and to stimulate self-renewal and expansion of the 

transplanted cells; and displaying regulatory proteins to stimulate tissue-

specific differentiation for the purpose of large-scale tissue regeneration. 

Probably the spatial and temporal control of these features would enhance 

their utility in tissue regeneration, improving tissue function and overcoming 

the adverse effects of disease or ageing (Lutolf et al. 2003; Wang et al. 1999). 

The inhibitory or stimulatory molecules or drugs that might increase stem-

cell numbers or function when delivered to the niche. This could be achieved 

by forming a scaffold that leads to timed drug (small chemical) or biomolecule 

delivery near a stem-cell niche or by targeted delivery of soluble 

microparticles or nanoparticles as carriers of such bioactive niche 

components (Zhang et al. 2008). Biofunctional polymer particles can now be 
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engineered to be efficient in such applications. Specifically, they can be 

functionalized so that they bind to specific molecules on cells, are responsive 

to environmental signals such as proteases secreted by cells, or are delivered 

encapsulated in a manner that leads to temporally controlled release or 

cellular uptake (Rothenfluh et al. 2008; Gu et al. 2008). The most 

challenging, but perhaps the ultimate, biomaterials goal is to create multi-

component, injectable materials designed to act as de novo niches in vivo. 

Artificial niches would need to incorporate appropriate ‗homing‘ signals that 

could attract endogenous stem cells and localize them by means of known 

cell–cell or cell–matrix adhesive interactions. Then, once localized to these 

artificial niches, the cells would need to be exposed to tethered signals that 

control stem-cell function, in particular expansion by self-renewal division. 

Neighbouring vascular cells and neural cells would need access. Upon injury, 

the up-regulation and release of proteases would enable the newly formed 

stem cells to escape the niche and contribute to differentiation and tissue 

regeneration. 

The aim of this thesis is also to understand how the cells perceive the 

information provided from the scaffold, and how the information should be 

presented. 

The ideal scaffold should be ―the mirror‖ that replicates as Nature provides 

the cells with multiple signals and orchestrates their spatial arrangement 

and temporal evolution. In fact, stem cell fate is not simply governed by the 

presence or absence of these signals, but also on the way they are presented 

to the surroundings. Instructing a cell to perform a specific task requires to 

establish a communication between the synthetic device and the cell itself. 
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Therefore the knowledge of the cellular language (the set of signals, as well as 

the way they are presented) and the logic (i.e. cascade of intracellular 

signalling pathways, leading to changes in gene expression and affecting 

most aspects of cell behaviour) that govern the response to exogenous stimuli 

become of crucial importance. Therefore novel processing and manipulation 

technologies will be developed and optimized in order to encode bioactive 

cues with predetermined spatial placement and timing. The selection of 

signals has to be motivated on 1) the signalling pathway we intend to 

stimulate and 2) the possibility of effective encoding of the signals, i.e. 

preserving their biostability. To this aim, short peptidic sequences, protein 

domains or even synthetic drugs, which are known to exert the desired 

effects on cellular activity, should be preferentially selected as biochemical 

cues. 

 

1.1.1 In situ  Tissue Engineering 

In situ tissue engineering could be a promising approach useful to bypass 

several limitations represented by some basic steps involved in the traditional 

concept of TE.  In situ Tissue Engineering offers the possibility  to recruit 

adult stem cells and progenitor cells that reside at the site of scaffold 

transplantation and then providing them the adequate stimuli in order to 

induce differentiation and tissue regeneration, therefore bypassing the 

delicate procedures of cell isolation and in vitro culture. 

This strategy could solve ethical and regulatory issues related to cell source. 

As matter of fact, in the traditional TE strategies, cells may be isolated from 

autologous, allogenic, or xenogenic sources. Thus, autologous cells would 
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seem to be the best choice, but cell isolation from patients in need of 

treatment can cause additional normal tissue morbidity. In order to obtain 

sufficient numbers for transplantation, in vitro proliferation is essential, 

which may cause undesirable phenotype change (Zhang and Lodish 2005). 

The pluripotency of stem cells may decrease during in vitro culture. In 

addition, the cost of in vitro expansion of stem cells is very high, since a 

battery of growth factors is needed for the propagation procedures. The 

economic and multi-week expansion period present important challenges to 

these clinical procedures. Finally, while adult stem cells attract much 

attention because of their pluripotency, this characteristic decreases during 

in vitro culture using conventional two-dimensional (2D) culture 

conditions(Banfi et al. 2000; Muraglia and Quarto2000). An alternative cell 

source could be endogenous stem cells. Indeed, a regenerative medicine 

approach for tissue repair focused on the direct manipulation of endogenous 

adult stem cells is very appealing. There are several advantages to the use of 

endogenous stem cells for tissue repair. First, using endogenous stem cells 

avoids the immunocompatibility issues that attend the use of allogenic and 

xenogenic cells. Second, it is easier, safer, and more efficient to use 

endogenous stem cells for tissue repair to expand and re-implant autologous 

cells. Third, only a single surgical intervention is required, rather than two 

surgeries several weeks apart. Finally, the process of recruiting endogenous 

stem cells offers both regulatory and economic advantages relative to ex vivo 

approaches. The utilization of endogenous stem cells may be enhanced in 

two ways. One strategy is to mobilize the endogenous stem cells into the 

circulation. For example, it is reported that granulocyte colony-stimulating 
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factor (G-CSF) mobilizes stem and progenitor cells from the bone marrow into 

the peripheral blood, from which they can ‗home‘ into the lesion site in the 

brain and have a protective or restorative effect (Borlongan and Hess 

2006).Also, the mobilized endogenous stem cells are showing promising 

outcomes for cardiac repair (Orlic et al. 2001). A second strategy is to 

enhance the recruitment of endogenous stem cells into the lesion site for 

tissue regeneration. Several factors, such as growth factors and cytokines 

have shown chemotaxic effects on stem cells.  

Concerning in situ tissue engineering, recent works focused on the 

incorporation/delivery of Stromal derived factor-1 (SDF-1) within/from 

scaffolds in order to recruit stem cells in vivo. In particular, Schantz et al. 

(2007) sequentially delivered Vascular Endothelial Growth Factor (VEGF), 

SDF-1 and Bone Morphogenetic Protein-6 (BMP-6) in a Polycaprolacton 

scaffold implanted in a rat model, demonstrating stem cell infiltration with 

evidences of angiogenesis and tissue precursor formation. Bladergroen et al. 

(2009) created an heparinized collagen scaffold loaded with SDF-1and than 

implanted in a mouse model. They demonstrated that the release of SDF-1 

was effective in recruiting hematopoietic stem cell. Thevenot et al. (2010) 

developed a system to constantly deliver SDF-1 within a PLGA scaffold 

implanted in a mouse model. Following this approach, they reported a 

significant recruitment of stem cells, with evidences on increased healing and 

angiogenesis and concomitant reductions in inflammation and scaffold 

encapsulation. These works demonstrated the effectiveness of the use of 

SDF-1 within a TE scheme. However, the influence of SDF-1 on the dynamics 

of stem cell migration is not fully achieved.  
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Other researcher reported the possibility to in vivo recruit MSC by a PCL 

scaffold loaded with transforming growth factor 1 (TGF) for potential 

application of in situ chondrogenesis (Huang et al 2002). Zhao and 

colleagues (2008) created an injectable, in situ crosslinkable semisynthetic 

ECM-like hydrogel for (Hepatocyte growth factor) HGF delivery and MSC 

recruitment. However also in these studies there are not information about 

how MSC perceive these signals and how these signals influence cell 

migratory behaviour. 

 

1.2 STEM CELLS 

Stem cells, responsible for maintenance of homeostasis and repair of tissues, 

are increasingly being considered as an important source in cell—based 

therapeutic strategies for regeneration of various tissue owing to their 

characteristic of self-renewal and multipotency. Because of their unique 

capacity to regenerate functional tissues, stem cells are an attractive ―raw 

material‖ for multiple application in TE field. Recent findings have shown 

that stem cells exist in most tissues and that stem cells tissue specificity may 

be more flexible than originally thought. Although the potential for producing 

novel cell-based products from stem cells is large, currently there are no 

effective technologically relevant methodologies for culturing stem cells 

outside the body, or for reproducibly stimulating them to differentiate into 

functional cells. Understanding what parameters are important in the control 

of stem cells self-renewal, migration and lineage commitment is thus 

necessary to guide the development of bioprocesses for the ex vivo culture of 

stem cells and their derivates. 
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While embryonic stem cells generate diverse tissues, adult stem cells are 

specialized and essential for tissue maintenance and repair throughout life 

(Lanza et al 2006). In adulthood, tissue homeostasis and regeneration are 

critically dependent on both the self-renewal and the differentiation capacity 

of stem cells. However, to fully exploit this clinical potential, we must 

increase our knowledge of the regulatory mechanisms that govern stem cell 

behavior. To date only a few adult stem cell types are approved for clinical 

use. Bone marrow transplants that harbor hematopoietic stem cells (HSCs) 

have saved the lives of numerous leukemia and lymphoma patients and skin 

transplants have significantly alleviated disfigurement and increased the 

function of burn victims. To overcome the hurdles inherent in enlisting adult 

stem cells therapeutically, stem cell biologists are addressing fundamental 

questions regarding the precise cell-intrinsic and cell-extrinsic regulation of 

key stem cell. It is of paramount importance to understand how a multitude 

of diverse biochemical and biophysical cues present in spatial vicinity of cells 

should affect cellular behaviour.  

The key function of stem cell niches is to maintain a constant number of 

slowly dividing stem cells during homeostasis by balancing the proportions of 

quiescent and activated cells. On insult (that is, injury, disease or damage), 

stem cells exit the niche and proliferate extensively, self-renew and 

differentiate to regenerate the tissue. Within the niche, stem cells are thought 

to be exposed to complex, spatially and temporally controlled biochemical 

mixtures of soluble chemokines, cytokines and growth factors, as well as 

insoluble transmembrane receptor ligands and extracellular matrix (ECM) 

molecules In addition to understanding this biochemical signalling regulatory 
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network, it is key to appreciate the biophysical properties of the niche, 

including matrix mechanical properties and architecture (topographical 

cues), to elucidate the role of niche elements (Discher et al. 2009; Guilak et 

al. 2009). 

As described in several excellent reviews (Fuchs et al. 2004, Scadden 2006, 

Moore and Lemischka 2006, Li and Xie 2005) mammalian niches have been 

identified and characterized in multiple tissues including the skin (in the 

bulge region of the hair follicle), intestine (in the epithelium), brain (in the 

hippocampus), bone marrow (on the endosteal surface and near blood 

vessels), and muscle (beneath the muscle fibre basal lamina). Stem cells are 

in intimate physical contact with support cells which provide short-range 

signals via soluble factors as well as via membrane-bound proteins. Stem 

cells are also surrounded by an extracellular matrix (ECM), a protein- and 

sugar-rich crosslinked gel network that provides structure and organization 

as well as biochemical and mechanical signals (Fig. 1). Blood vessels are 

often found near niches (or are believed to constitute niches themselves, e.g., 

in the central nervous system (Palmer et al. 2000) or bone marrow ( Heissing 

et al. 2002 Kiel and Morrison 2006), presumably serving to transport long-

range signals and as a conduit for recruitment of circulating cells into the 

niche.  
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Figure 1. Architecture and composition of a stem cell niche. Adult stem cells are located 

within instructive microenvironments comprised of complex mixtures of extracellular cues 

delivered by support cells in close proximity (a). The main components of a niche are support 

cells and their secreted transmembrane cell–cell adhesion proteins, soluble factors, and the 

surrounding ECM (b). 

 

1.3.1 Characteristics and therapeutic potential of Mesenchymal Stem 

Cells 

Mesenchymal stem cells (MSCs) are a subset of nonhematopoietic stem cells, 

characterized by their ability of self-renewal and differentiation into multiple 

cell types, including osteoblasts, adipocytes and chondrocytes. MSCs were 

first described by Friedenstein in 1970s as fibroblast-like, plastic-adherent 

cells that can be expanded in vitro (Friedenstein et al. 1974). MSCs are easy 

to isolate, with low immunogenicity, multidifferentiation potentials, and lack 

of ethical controversy. 



19 
 

 

 

Pluripotent capacity of MSC to differentiate into mesodermal and non-mesodermal cell 

lineages, including osteocytes, adipocytes, chondrocytes, myocytes, fibroblasts, epithelial 

cells, and neurons 

 

 

Several works have shown that mesenchymal progenitors are also present, 

although at low frequencies, in adult peripheral blood (Zvaifler et al. 2002) 

and in term cord blood (Erices et al. 2000); besides a population of MSCs has 

been isolated from fetal blood, liver, and bone marrow in the first-trimester of 

pregnancy (Campagnoli et al. 2001). Again Kuznestov and colleagues (2001) 

demonstrate the presence of stem cells of extravascular mesodermal tissues 

in the circulating peripheral blood, capable to generate at least three 

phenotypes of the so called stromal system. However the origin of these cells, 

the manner by which they gain the access to the blood stream and they 

physiological role remain to be properly addressed. Recent studies assume 

that tissue-specific stem cells circulate under steady-state conditions in the 
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peripheral blood and maintain a pool of stem cells, and their number 

increases during stress/tissue injury (Kucia et al.2004). 

It has been demonstrated that MSCs in the circulation could migrate to the 

site of tissue damage, such as bone or cartilage fracture (Murphy et al. 2003), 

myocardial infarction (Barbash et 2003, Shake et al. 2002), and ischemic 

cerebral injury (Wang et al 2002). Therapeutic values of MSCs have been 

demonstrated in animal models of acute lung injury (Ortiz et al. 2007), liver 

injury (Liang et al 2009), myocardial infarction (Zohlnhofer et al. 2008), 

diabetes (Urban et al. 2008), stroke (Shyu et al. 2004), limb ischemia (Iwase 

et al.2005), acute renal injury (Patschan et al. 2006) and sepsis (Nemeth et al 

2009). In order to participate in repair and regeneration, MSCs have to be 

mobilized and then migrate to the target sites and integrate with the local 

tissues. Many studies have been focusing on the mechanisms for MSCs to 

migrate to injured tissues. Those research have identified some important 

molecular mechanisms, including chemoattractants, paracrine factors, 

membrane receptors, and intracellular signaling molecules.  

Recent studies revealed some key molecules and signalling pathways, which 

could be potential targets for modulation of MSC migration in wound healing, 

damage repair and regeneration.  

Studies showed contrasting results and discrepant conclusion. Different 

types of MSCs and heterogeneity of MSCs used may account for the 

discrepancy (Karp et al. 2009). Different signalling mechanisms may underlie 

migration of different types of stem cells (Li et al. 2009). In addition, 

confluency and passage number of cultured MSCs have been shown to 

influence migration of MSCs (Karp et al. 2009; De Becker et al 2007; 
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Rombouts et al. 2003). Heterogeneity between different sources or different 

passages of MSCs could have significant impact on MSC migration. Migration 

of MSCs is controlled by complicated signal networks. Understanding the 

molecular mechanisms of MSC migration will benefit optimization of stem 

cell therapies. Regulation of the signalling pathways and extracellular matrix 

will help to develop strategies to facilitate targeting of transplanted MSCs as 

well as endogenous MSCs to injured tissues (Mannello et al. 2006; Zhu et al. 

2006). 

 

Chemotactic factors and membrane receptors 

Several growth factors and their receptors may be involved in MSC migration. 

Hepatocyte growth factor (HGF) was up-regulated at sites of liver damage 

(Kollet et al. 2003; Jankowski et al. 2003). Following myocardial ischemia 

and reperfusion in a rat model, HGF and its high-affinity receptor c-met were 

unregulated (Ono et al 1997). In an animal model of myocardium infarction, 

increased HGF expression was found in the injured heart (Kucia et al. 2004). 

Human bone marrow- and circulating blood-derived MSCs expressed 

functional c-met receptors, and could be strongly attracted by HGF 

gradients. This chemotactic response could be significantly inhibited using 

the specific c-met blocking agent K-252a, suggesting that HGF-c-met 

signaling regulates migration of MSCs (Son et al. 2006). Up-regulation of 

HGF expression in multiple injured tissues may induce MSCs to migrate to 

the HGF-rich environment of lesions. Other growth factors, including 

platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), 

epidermal growth factor (EGF) and angiopoietin- 1(Ang-1), were also reported 
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to be chemotactic to MSCs (Ponte et al. 2007; Forte et al. 2006; Fiedler et al 

2002; Fiedler et al 2006; Tamama et al. 2006). MSCs express receptors for 

those growth factors at a moderate to high level, including platelet-derived 

growth factor receptor (PDGF-R), insulin-like growth factor 1 receptor (IGF1-

R), epidermal growth factor receptor (EGF-R) and Ang-1 receptor (Ponte et al. 

2007). Thus, multiple growth factor-receptor axes may mediate MSC 

migration. 

Tumor necrosis factor-α (TNF-α) is an important inflammatory cytokine 

presented at most injury sites with inflammation. TNF-α induces and directs 

migration of rat bone marrow MSCs in vitro (Fu et al. 2009). Extracellular 

high mobility group box 1 (HMGB1) is a cytokine that plays a role in the 

processes of inflammation, tissue injury and regeneration. Meng et al (Meng 

et al. 2008) showed that HMGB1 could act as a chemoattractant for MSCs in 

a dose-dependent manner. Monocyte chemotactic protein-1 (MCP-1), a 

chemokine involved in recruitment and activation of macrophages during 

inflammation, stimulates MSC migration to ischemia in the rat brain (Wang 

et al. 2002), as well as to tumor (Dweyer et al. 2007). 

SDF-1–CXCR4 Axis: 

Stromal-derived factor 1(SDF-1), or CXC ligand 12, is a member of a large 

family of related chemotactic cytokines, called ―chemokines‖, which was first 

identified as a lymphocyte and monocyte specific chemo-attractant under 

both normal and inflammatory conditions (Moser et al. 2004). Subsequently 

it has been demonstrated that MSCs express CXCR4, the receptor for SDF-1, 

and therefore SDF-1/CXCR4 axis has been implicated in the migration of 

MSC in a series of studies (Li et al. 2007; Bhakta et al. 2006; Wynn et al. 
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2004). Those studies suggest that SDF-1/CXCR4 axis was required for 

migration of human bone marrow MSCs and cord blood MSCs. CXCR4 

antagonist AMD3100 significantly inhibited chemotaxis of MSCs toward SDF-

1( Wynn et al. 2004; Son et al. 2006). Rat bone marrow MSCs were shown to 

migrate towards SDF- 1 gradient in a dose-dependent manner (Li et al. 2007; 

Ji et al. 2004). In a rat model, SDF-1-CXCR4 was shown to mediate homing 

of transplanted MSCs to injured sites in the brain (Ji et al. 2004).  

CX3CL1-CX3CR1 Axis: 

CX3C ligand 1 (CX3CL1, also called fractalkine) and CX3C receptor 

1(CX3CR1) were reported to mediate MSC migration response. Using an in 

vitro micromultiwell chemotaxis chamber assay, human bone marrow MSCs 

were found to migrate towards fractalkine gradients, and such response was 

abrogated using anti- CX3CL1 mAb (Sordi et al. 2005). In a rat model of left 

hypoglossal nerve injury, interaction of fractalkine-CX3CR1 plays an 

important role in directed migration of transplanted rat MSCs to impaired 

sites in the brain (Ji et al. 2004). It should be noted that other chemokines 

and chemokine receptors, including CXCL16-CXCR6, CCL3-CCR1 and 

CCL19- CCR7, were also reported to participate in MSC migration (Sordi et 

al. 2005). 

Intracellular signaling pathways 

Extracellular signals through membrane receptors induce varieties of 

intracellular signaling pathways, which result in changes in cell motility and 

migration direction. 
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PI-3K/AKT signaling pathway: 

Phosphoinositide 3-kinase (PI-3k)/ Akt signaling pathway is involved in SDF-

1-mediated cell migration of hematopoietic progenitor cells and primary 

marrow CD34+ cells (Wang et al. 2009). Genetically modified BMSC that 

over-express Snail showed more migration advantages, and disruption of the 

PI-3k-dependent pathway using specific PI-3k inhibitor, wortmannin, 

reduced Snailmediated BMSC migration (Zha et al. 2007). SDF-1α or bFGF-

induced MSCs migration was attenuated by PI3k/Akt inhibitor LY294002 or 

wortmannin (Li et al. 2007; Schmidt et al. 2006). 

MAPK/ERK1/2 signaling pathway: 

Mitogen-activated protein/ extracellular signal-regulated kinase 1/2 

(MAPK/ERK1/2) signal pathway is involved in the expression of a wide 

variety of genes controlling migration. ERK1/2 may mediate SDF-1-induced 

cell mobilization (Liao et al. 2005; Zhang et al. 2006). Several studies have 

shown that MAPK/ERK1/2 was involved in MSC migration. Yun et al. (2009)  

demonstrated that stable thromboxane A2 (TxA2) mimetic U46619 strongly 

stimulated migration of human adipose tissue-derived MSCs (hADSCs) 

through activation of ERK and p38 MAPK. U46619- induced MSC migration 

was abrogated if the cells were pretreated with the MAPK/ERK kinase (MEK) 

inhibitor U0126 or the p38 MAPK inhibitor SB202190.  

Wnt3a signaling pathway: 

Wnt signaling is involved in the metastasis of many kinds of cancer cells  

(Pinto et al. 2005; Qiang et al. 2005). Wnt3a promoted the migration capacity 

of rat MSCs in transwell migration and wound healing assays through β-
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catenin nuclear translocation (Shang et al. 2007). Wnt3a antibodies 

significantly reduced migration of MSCs. 

Jak/STAT signaling: 

PDGF-induced migration of hADSCs was completely blocked by a 

pretreatment with c-Jun N-terminal kinase (JNK) inhibitor SP600125, but 

not with MEK inhibitor U0126 and p38 MAPK inhibitor SB202190 (Kang et 

al. 2005). Janus kinase (Jak)/ signal transducer and activator of 

transcription (STAT) signaling was originally shown to be downstream 

signaling of interferons during the inflammatory response (Aaronson et al. 

2002; Platanias et al. 2005). Jak/STAT pathway activation is required for cell 

migration in Drosophila (Silver et al. 2005). MSC migration in response to 

SDF-1 stimulation resulted in Jak2/STAT3 pathway activation, and 

inhibition of the pathway using WP1006, a Jak2/ STAT3 pathway inhibitor, 

significantly inhibited MSC migration (Gao et al. 2009). Activation of 

Jak2/STAT3 pathway led to focal adhesion kinase (FAK) and paxillin 

activation which resulted in reorganization of actin filament and 

cytoskeleton, thus promoting MSC migration. 

 

1.4 CELL MIGRATION AND CHEMOTAXIS  

Cell migration orchestrates morphogenesis throughout embryonic 

development (Gilbert et al. 2003). During gastrulation, for example, large 

groups of cells migrate collectively as sheets to form the resulting three-layer 

embryo. Subsequently, cells migrate from various epithelial layers to target 

locations, where they then differentiate to form the specialized cells that 

make up different tissues and organs. Analogous migrations occur in the 
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adult. In the renewal of skin and intestine, fresh epithelial cells migrate up 

from the basal layer and the crypts, respectively. Migration is also a 

prominent component of tissue repair and immune surveillance, in which 

leukocytes from the circulation migrate into the surrounding tissue to 

destroy invading microorganisms and infected cells and to clear debris.  

Migration contributes to several important pathological processes, including 

vascular disease, osteoporosis, chronic inflammatory diseases such as 

rheumatoid arthritis. In general cell migration can be usefully conceptualized 

as a cyclic process (Lauffemburger and Horwitz 2006). The initial response of 

a cell to a migration-promoting agent is to polarize and extend protrusions in 

the direction of migration. These protrusions can be large, broad lamellipodia 

or spike-like filopodia, are usually driven by actin polymerization, and are 

stabilized by adhering to the extracellular matrix (ECM) or adjacent cells via 

transmembrane receptors linked to the actin cytoskeleton. These adhesions 

serve as traction sites for migration as the cell moves forward over them, and 

they are disassembled at the cell rear, allowing it to detach. Interestingly, the 

movement of cell sheets shows some features of single-cell migration; 

however, the polarization extends across the sheet. Although many aspects of 

this picture are shared among different cell types, the details can differ 

greatly. For example, these steps are observed most distinctly in slow-moving 

cells such as fibroblasts, but are not as obvious in fast-moving cells such as 

neutrophils, which seem to glide over the substratum. In addition, a cell‘s 

migratory behavior depends on its environment. Somatic cells migrating in 

vivo, for example, show large single protrusions and highly directed 

migration, in contrast to the multiple small protrusions they display on 
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planar substrates; and cancer cells can modify their morphology and nature 

of migration in response to environmental changes (Knight 200; Friedl 2003).  

Orchestrated movement of cells in a particular direction to a specific location 

is a central process for tissue development, maintenance, and repair. Cell 

movement is controlled by extracellular matrix substrates and by secreted 

molecules such as growth factors and cytokines. The understanding of cell 

migration and chemotactic mechanisms may lead to the novel therapeutic 

strategies for tissue repair or regeneration.  

During adult life, cell movement plays an important role in tissue repair, 

wound healing and the functioning of the immune system. In these 

processes, the spatiotemporal patterns of cell movement are under the 

control of extracellular guidance cues produced by surrounding cells and 

tissues. These cues may be present in gradients of diffusible and/or matrix-

bound signaling molecules and direct cell movement toward or away from 

their sources. 

In vivo tissue regeneration depends on migration of stem cells into injured 

areas and their differentiation into specific cell types that are necessary to set 

up new tissue. In the same way, also in TE strategies application, in order to 

induce a functional and stable integration between host tissue and scaffold, 

is necessary the migration of stem/precursor cells. 

Several techniques have been developed to characterize the movement of 

both individual cells and whole populations. The wound assay, (Majack et al. 

1994) the Teflon fence assay (Pratt et al. 1984) and the phagokinetic track 

assay (Lewis et al. 1987) all measure cell movement on uniform substrates 

using information from only the beginning and end of the experiment. Cells 
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migrate from known positions defined by the system geometry and are fixed 

for viewing at the end of the experiment to determine the net distance 

traveled during the experiment. Videomicroscopy techniques have provided 

the ability to continuously monitor cell behavior during migration and 

introduced the possibility of tracking discrete cell motion (Dow 1987). To 

date, little work has been done to characterize cell motion in response to 

gradients of surface-bound molecules. Boyden et al. (1962) studied cell 

response to gradient stimuli; however, the lack of specific information about 

the gradient generated in the porous mesh and the inability to observe cell 

motion during experiments have limited the utility of the Boyden 

chamber.(Boyden et al. 1962) Movement of anchorage-dependent cell types 

can be attributed to random motility, chemotaxis, haptotaxis, or the sum of 

their effects. Random motility is the persistent random movement of a cell 

that over a short time period, called the persistence time, tends to persist in 

one direction, but over a long period of time will result in no directional 

displacement. Random motility can be altered by both soluble factors and 

adhesion molecules on the surface (Boyden 1962) but remains inherently 

nondirectional. Chemotaxis is a biased and persistent movement of cells in 

response to a gradient of soluble stimuli in conjunction with random motility, 

which can be either attractive or repulsive. Haptotaxis is essentially the same 

phenomenon as chemotaxis, except in response to a surface-bound gradient. 

The modeling of cell movement in response to chemotactic and haptotactic 

gradients is critical for differentiating random and directed components of 

cell motion. 
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1.4.1 Homing ability of MSC 

The ability of injured adult tissue to regenerate implies the existence of cells 

capable of proliferating, differentiating and/or functionally contributing to 

the reparative process.  

MSCs reside in specialized niches within various tissues, and it has been 

shown that bone marrow, bone and spleen are all sites of engraftment (18-

21) It has also recently been reported that a very small number of MSCs  

consistently circulate in peripheral blood under stationary conditions, and 

that this circulating pool is greatly increased under injury conditions. 

MSC appear to be reservoir of reparative cells that lack tissue-specific 

characteristics and can potentially be mobilized and differentiate into cells of 

a connective tissue lineage under different signals, such as damage from 

trauma, fracture, inflammation, necrosis and tumors (Pountos et al. 2006). 

Recent studies (Mansilla et al. 2006; Wang et al. 2006) suggest that 

injury/trauma might initiate the mobilization of MSC into peripheral blood. 

These circulating stem cells are believed to home to the damaged or 

pathological tissues in a mechanism similar to leukocyte recruitment to sites 

of inflammation that involves adhesion molecules such as selectins, 

chemokine receptors and integrins. The migration of MSC from the 

circulation into injured or unhealthy tissues and the resulting therapeutic 

response have been documented (Granero-Moltò et al. 2009; Ortiz et al 2003; 

Chen et al. 2001; Wu et al. 2003). Increasingly, studies tend to conclude that 

the beneficial effects of MSC can be due to two possible mechanisms of 

reparative action (Fox et al. 2007): not only the in situ differentiation of MSC 

to become normal constituents of the host cytoarchitecture and supporting 
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stroma after recruitment to the injury site (Lee et al. 2009), but also to act via 

a paracrine mechanism. The latter is an emerging concept whereby MSC are 

believed to possess the capacity to home to the site of injury, and 

subsequently secrete a broad spectrum of paracrine factors that are both 

immunoregulatory and function to structure the regenerative 

microenvironment (Caplan et al 2007). 

 

Injury in the periphery releases stimulatory factors that cause mobilization of MSCs from 

bone marrow into the circulation. At the site of injury, certain molecules expressed on the 

endothelium causes recruitment of MSCs, where they transmigrate from blood vessels and 

undergo in situ maturation and integrate into the injured tissue to bring about healing. 

 

 

Homing is essentially the process by which cells migrate to and engraft in the 

tissue in which they will exert functional and protective effects. This homing 

feature of MSCs means that the presumed complications associated with 

intramuscular or site-specific injection of stem cells, such as ossifications, is 

avoided, and systemic intravenous delivery with the potential for multiple 

dosages is possible.  
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However, only a small number of studies addressed factors and mechanisms 

that mediate mesenchymal stem cells migration and information on the 

activity and relative potency of various potential chemotactic factors is 

limited. Directing MSC migration toward injury sites is a potential strategy 

for tissue regeneration, understanding characteristics of MSC migratory 

behaviour is necessary for TE. Although some chemotactic factors for MSC 

have been identified, additional candidates may be more effective. A number 

of important biological phenomena involve the interplay between cellular 

traction and directed migration. Chief among them are mesenchymal 

morphogenetic processes such as tumor stroma formation (Dvorak et al.), 

embryogenesis (Stopak et al.), teratoma formation (Grabel et al.), and wound 

contraction (Greiling et al.) in which directed migration both affects and is 

affected by tractional restructuring of the extracellular matrix (ECM) through 

a complex feedback mechanism (Oster et al.). Cell migration may be directed 

by spatial gradients of soluble factors (i.e., chemotaxis) and/or fibril 

alignment within the ECM (i.e., contact guidance).  

During inflammation, the recruitment of inflammatory cells requires a 

coordinated sequence of multistep adhesive and signaling events, including 

selectin-mediated rolling, cell activation by chemokines and cytokines, 

activation of integrins, integrin-mediated firm adhesion on endothelium, 

transendothelial migration, and finally the migration/invasion in the 

extracellular matrix involving integrin-dependent interactions and matrix-

degrading proteases (Imhof et al. 2004, Luster et al. 2005). It is well known 

that migratory direction follows a chemokine density gradient. The increase 

in inflammatory chemokine concentration at the site of inflammation is a key 
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mediator of trafficking of MSC to the site of injury. Chemokines are released 

after tissue damage and MSC express several receptors for chemokines 

(Spring et al. 2005). Activation by such chemokines is also an important step 

during trafficking of MSCs to the site of injury. 

           

Proposed mechanisms involved in the homing and trafficking of mesenchymal stromal cells 
to sites of tissue injury after infusion. Abbreviations: ICAM, intercellular adhesion molecule; 

JAMs, junctional adhesion molecules; MSCs, mesenchymal stromal cells; PECAM, platelet- 

endothelial cell-adhesion molecule; PGE, prostaglandin E2; VCAM, vascular cell-adhesion 

molecule; VLA, very late antigen. (Lusein et al. STEM CELLS 2010;28:585–596 

 

The homing efficiency of MSCs has been reported to be greatly influenced by 

the variation in protocols currently used to isolate and culture expand 

populations to significant numbers required for in vivo use. It has been 

suggested that subculturing of MSCs may potentially lead to changes in their 

phenotype that effects MSC homing (Kemp et al. 2005) and progressive 

subculturing has been associated with a decrease in expression of adhesion 

molecules, the loss of chemokine receptors, including CXCR4, and a 

subsequent lack of chemotactic response (Son et al. 2006, Honczarenko  et 

al. 2006). The initial homing events involve the processes of rolling and 
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tethering upon the endothelium between E- and P-selectin (considered as 

critical molecules for the rolling process) (Kansas et al. 1996). These are 

constitutively expressed by bone marrow endothelial cells and on 

endothelium in inflamed tissue (Schweitzer et al. 1996). Physiologic selectin 

receptors constitutively express sialylated residues such as PSGL-1 and 

CD44 (Lowe et al. 2002). CD44 is known to be highly expressed by MSCs. 

Rolling is subsequently followed by arrest and firm adhesion, with 

chemokines receptors expressed on the surface of endothelium ligating to 

respective chemokines and activating integrins, such as very late antigen- 4 

(VLA-4) (also known as a4b1-integrin) (Peled et al. 2000), which in turn bind 

to their ligands mediating firm adhesion. Ruster et al. (2006) also reported 

that MSCs bind to endothelial cells in a P-selectin dependent manner and 

that rolling MSCs engage VLA-4 and vascular cell-adhesion molecule one 

(VCAM-1) to mediate firm adhesion to the endothelium. Firm adhesion is 

followed by transendothelial migration between endothelial cells via the 

action of junctional adhesion molecules (JAMs), cadherins, and platelet-

endothelial cell adhesion molecule-1 (PECAM-1/CD31), mediating 

translocation to the extracellular matrix where they adhere to the 

extracellular matrix through molecules such as collagen, fibronectin via a1 

integrins, hyaluronic acid, and CD44. 
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Multistep process of progenitor cell homing and engraftment. Recruitment and incorporation 

of progenitor cells into ischemic or injured tissue requires a coordinated multistep process 

including adhesion to the endothelium, transendothelial migration, chemotaxis, matrix 

degradation and invasion and in situ differentiation. The factors which are proposed to 

regulate the distinct steps are indicated. 

 

 

Chemokine-mediated MSC activation and their role in MSC biology 

The role that chemokines and their receptors play in the targeting of 

leucocytes to areas of inflammation, infection or injury is well characterised 

(Miyasaka & Tanaka, 2004). As chemokine receptors are expressed on the 

cell surface of MSC, and their stimulation has been shown to induce cell 

migration, it seems likely that they play a similar role in directing MSC. MSC 

have been shown to express a variety of chemokine receptors, and to date 

CCR1, CCR4, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR5,CXCR6, CX3CR1 

have been detected on human MSC (Wynn et al, 2004; von Luttichau et al, 

2005; Sordi et al, 2005; Honczarenko et al, 2006; Ruster et al, 2006) with 

CCR2, CCR5, CXCR4, CX3CR1 being present on their rat counterparts (Ji et 
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al, 2004). It is not clear why the reported chemokine receptor repertoire of 

MSC has been inconsistent as the isolation and culture conditions are largely 

similar. It may be that the heterogenic nature of a typical MSC population 

obscures the detection of a distinct receptor repertoire. Alternatively, because 

the level of expression can be relatively low, the antibodies used may not 

have been sensitive enough to detect receptor expression. Nevertheless, the 

functionality of the various chemokine receptors has been demonstrated 

using conventional in vitro assays of chemokine-mediated MSC migration 

and chemokine-mediated increases in the intracellular concentration of 

calcium using an appropriate ligand (Kortesidis et al, 2005). As such, it will 

be important to define the molecular events governing chemokine receptor 

expression. Chemokine-mediated MSC migration has also been demonstrated 

in vivo. After MI, levels of CXCL12 protein have been observed to rise 

significantly in the left ventricle of mice. Its expression was restricted to 

cardiomyocytes and blood vessels in the infarct zone but not in remote areas 

of the myocardium (Abbott et al, 2004). Abbott et al (2004) administered BM-

derived MSC intravenously into mice 48 h after inducing a MI by suture of 

the left anterior descending coronary artery or, as a control, in sham 

operated animals. They observed MSC migration within 72 h to the left 

ventricle only in animals that developed infarcted tissue. The importance of 

CXCL12 and its receptor, CXCR4, in this migration was confirmed via the 

administration of a specific CXCR4 receptor antagonist, AMD3100, which 

significantly inhibited MSC migration to the infarct site. Furthermore, when 

the myocardium was transduced with an adenoviral vector containing 

CXCL12, which led to a 2Æ5-fold increase in CXCL12 expression, MSC 
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detection in the heart was significantly increased. These data suggest that 

CXCL12 interacting with CXCR4 was critical in the migration of MSC to the 

infracted heart but was not sufficient to induce homing in the absence of 

injury (Abbott et al, 2004). In support of these findings, CXCL12 levels in 

humans have also been observed to rise in patients after MI. In these 

patients, circulating levels of MSC fluctuated and it is interesting to 

speculate that the fluctuations were caused by CXCL12-induced recruitment 

of MSC to the damaged myocardium as part of the body‘s response to injury 

(Wang et al, 2006). An important role for chemokine involvement in 

mediating MSC migration to the brain is also evident. After ischaemic brain 

injury, the level of CCL2 was observed to increase significantly in ischaemic 

brain tissue extract (Wang et al, 2002a). The brain tissue extract was 

chemotactic for MSC in vitro and this migration was significantly diminished 

in the presence of a neutralising CCL2 antibody and is thus likely to be 

mediated by its receptor CCR2, which was found to be expressed on MSC in 

this study (Wang et al, 2002a). CCL3 and CXCL8 may also be important 

agents that mediate MSC migration to damaged cerebral tissue (Wang et al, 

2002b). In addition to their role in mediating cell migration, chemokines may 

also play important autocrine and paracrine roles. CXCL12 promotes the 

growth, survival and development of MSC (Kortesidis et al, 2005). MSC are 

known to be able to synthesise this chemokine, which may thus act in an 

autocrine manner via CXCR4 (Kortesidis et al, 2005). Similarly, the anti-

proliferative effects of MSC on T lymphocytes may be via chemokines, such 

as CCL1, acting in a paracrine manner either on the T lymphocytes or via the 

recruitment of regulatory T-lymphocytes that subsequently induce T-cell 
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anergy (Batten et al, 2006). Chemokines are also recognized as primary 

inducers of integrin upregulation following their interaction with their cell 

surface receptors and various downstream signalling events. Integrins are 

known to mediate the firm adhesion of leucocytes to endothelial cells and 

play an important role in their transendothelial migration. It is likely they 

play a similar role for MSC.  

 

1.5 GROWTH FACTORS AND CYTOKINES 

Tissue development is regulated through the interplay of a variety of signals, 

including soluble signaling molecules, insoluble ligands, mechanical cues 

and cell-cell interactions. Numerous peptides and proteins involved in this 

signaling possess a biological activity that marks them as potential 

therapeutics. Soluble growth factors and immobilized ligands can regulate 

the adhesion, migration, proliferation and differentiation of various cell types.  

Materials play a fundamental role in all tissues engineering approaches. 

Materials create and maintain a space for tissue formation, provide 

mechanical support to the forming tissue, deliver inductive molecules or cells 

to the site of interest and provide cues controlling the structure and function 

of the newly created tissue (Putnam and Mooney 1996). To effect this latter 

function, materials are frequently designed to cue cells via the presentation 

of peptides or proteins that bind to cell surface receptors and trigger a 

desired cell response. One approach to direct the process of tissue formation 

is the incorporation of bioactive components, including growth factors and 

peptides mimicking the function of extracellular matrix (ECM) molecules, into 

biomaterials (Hubbel 1999). Advances in material engineering have led to 



38 
 

new modes of presenting these molecules to control the cell response and 

new tissue development. A large number of amino acid sequences have been 

identified in ECM molecules that specifically bind to cell receptors and 

mediate the adhesion, proliferation, differentiation and migration of the cells. 

In addition, a number of proteins have been identified that are secreted by 

cells into the surrounding fluids, and subsequently bind to the same or other 

cell populations, via cell surface receptors, to affect similar ranges of cellular 

processes. The identification of these various peptides and proteins has 

created the possibility of utilizing synthetic peptides, proteins purified from a 

natural source, and recombinantly manufactured proteins to regulate tissue 

regeneration. The peptide/protein may either be presented in an immobilized 

form from the surface of a material to interacting cells or be released from a 

material to interact with the cell in a soluble form. 

 

1.5.1 Growth factor delivery 

The development of appropriate delivery vehicles for growth factors will be 

crucial for their clinical utility. Growth factors, owing to their control of many 

biological processes, are finding wide-spread use in the regeneration of many 

tissue types. Typically, recombinant versions of the desired proteins are 

manufactured and delivered in solution form, either systemically or via direct 

injection into the tissue site of interest. However, growth factors typically 

have a short half-life once they are introduced into the body and are rapidly 

eliminated (Edelman et al.1993). This is problematic, as the target cell 

population must often be exposed to factors throughout the entire course of 

repair, or at least for an extended period. To address this challenge, 
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controlled delivery systems that incorporate the growth factors into polymeric 

biomaterials have been developed to prolong the tissue exposure time and to 

maintain growth factor stability. In addition to the duration of tissue 

exposure, the amount and timing can be crucial to the biological response. 

The release rate of growth factors from polymers is typically controlled by the 

diffusion of the factor or polymer degradation Langer 1990). Among the most 

commonly used materials are synthetic polymers such as poly(L-lactide) 

(PLA), poly(glycolide) (PGA) and their copolymers poly(lactide-co-glycolide) 

(PLGA), in the physical forms of microspheres or sponges (Richardson et al. 

2001). Hydrogel-forming materials, including collagen (Ishikawa et al 2003), 

alginate (Lee et al. 2001), polyethylene glycol (PEG) (Burdick et al. 2002) and 

PLAPEG (Saito et al. 2003), are also frequently used. To address the 

instability of proteins immobilized within polymers, a variety of stabilization 

techniques have been developed (Zhu et al. 2001, Sohier et al. 2003). 

Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, 

as it is a potent mitogen for endothelial cells (ECs) and induces EC migration 

and sprouting by upregulation of several endothelial integrin receptors 

(Ferrara et al. 2003). 

Various polymeric materials have been used for the controlled release of 

VEGF, including PGA, alginate and fibrin (Wong et al. 2003). It has recently 

been noted that the VEGF release rate from polymers can be responsive to 

the local mechanical environment (lee et al. 2001), and this may be crucial in 

applications involving a mechanically dynamic environment (e.g. heart 

tissue).  Fibroblast growth factor 2 (FGF-2), another well-studied angiogenic 

factor, elicits diverse biological effects on numerous cell types, including ECs, 
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and has been used in clinical trials to induce angiogenesis (Khurana and 

Simons 2003). FGF-2 has been incorporated into various polymers, such as 

gelatin (Iwakura et al. 2003), collagen (Pieper et al. 2002), chitosan (Ishihara 

et al. 2003) and PLA (Lee et al. 2002). FGF-2 reversibly binds to heparin-like 

molecules and heparin sulfate proteoglycans. The dominant growth factor 

delivery approach in angiogenesis utilizes single growth factors, but this may 

not be the ideal approach to replicate this complex process. Angiogenesis 

results from a complicated series of interactions involving different cytokines, 

growth factors, cells and proteases, acting in a consecutive, concerted or 

synergistic manner (Ennett and Mooney 2002). Recent advances in polymeric 

delivery systems allow one to locally and controllably deliver multiple growth 

factors with controlled doses 

and rates of delivery. Delivery of VEGF and platelet-derived growth factor 

(PDGF) at distinct rates and doses results in a dramatic increase in the 

maturity of engineered vessel networks (Richardson 2001). Similarly, delivery 

of FGF– PDGF combinations synergistically induces stable vascular 

networks, whereas single growth factors are unable to maintain these newly 

formed vessels (Cao et al. 2003).  

The transforming growth factor (TGF) family of proteins have an essential role 

in bone formation through the regulation of osteoprogenitor and osteoblast 

proliferation and differentiation (Lu et al. 2001). A variety of materials have 

been used for TGF-b1 delivery, including PLGA-PEG and coral (Dermes et al. 

2002), and combined TGF-b1 and insulin-like growth factor (IGF) release 

from PLA carriers accelerates osteotomy healing (Kandziora et al. 2002) 

However, the optimal conditions for TGF-b1 release during bone regeneration 
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have yet to be defined. Bone morphogenetic proteins (BMP), members of the 

TGF superfamily, appear to act as differentiation factors, causing 

mesenchymal cells to differentiate into bone-forming cells. Recombinant 

human BMP-2 and BMP-7 are currently in clinical use as osteoinductive 

agents (Wozney 2002). Several carriers for BMP have been developed, 

including collagen (Akamaru etal 2003), PLGA (Bessho et al 2002) PLA–p-

dioxanone– PEG block copolymers (Saito et al 2002), PLA-PEG (Saito et al. 

2003) and PEG hydrogels. These systems allow control over the BMP release 

rate and promote pre-osteoblast differentiation and mineralization in vitro 

and ectopic bone formation in vivo [11]. The therapeutic potential of several 

growth factors in wound healing has long been recognized. PDGF is the first 

mediator to appear at the wound site and is active in all stages of the healing 

process. Delivery of PDGF by a carboxymethylcellulose-based gel (Regranex1) 

is employed for the treatment of diabetic foot ulcers and was the first growth 

factor system for TE to be approved by the Food and Drug Administration 

(FDA) (Nagai et al. 2002) 

 

1.5.2 Signalling immobilization 

Insoluble ECM molecules clearly regulate local cellular activity, and many 

functions of the ECM can be mimicked by small peptide fragments of the 

entire molecules (Lutolf et al.2003 A, Lutolf et al.2003 B) These fragments 

can be produced synthetically and covalently coupled to synthetic polymers 

so as to present them in a solid-state form, upon which their activity often 

depends, and to infer biological activity to the synthetic materials. Cellular 

attachment to ECM molecules is crucial for the survival, growth and 
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determination of a differentiated phenotype for anchorage-dependent cells. 

Many of these processes are mediated through ECM–integrin receptor 

binding. The integrin binding capability of ECM molecules has been mapped 

to specific oligopeptide sequences within ECM proteins, and these sequences 

include RGD, IKVAV and YIGSR (Pierschbacher et al. 1984, Graf et al. 1987). 

Advantages of employing short peptides containing these signaling motifs to 

modulate cell function, rather than utilizing whole adhesive proteins (e.g. 

fibronectin), include the ease and reproducibility of synthesizing peptides, as 

compared with isolating ECM molecules from a natural source. Utilization of 

only a small fragment of an ECM molecule may also allow one to target an 

interaction with a specific cell population (Hubbel et al. 1999). A limitation to 

this approach, however, is that the biological activity of short peptide 

sequences is often substantially lower than that of the complete protein, 

owing at least partially to the absence of complementary domains that are 

involved in integrin binding (Yang et al. 2001). Utilizing larger ECM molecule 

fragments, produced recombinantly, may represent a robust approach to 

increase activity, while still offering advantages over using the entire 

molecule (e.g. reduced antigenicity) (Culter and Garcia 2003). A key feature of 

natural ECM molecules is their susceptibility to cell triggered proteolysis, 

which permits cell invasion and subsequent remodelling of the matrix. 

Invasion and remodeling depend on the action of cell-secreted proteases that 

target specific sequences of the ECM molecules (Sternlicht 2001). Recent 

developments indicate that it is possible to synthesize cell-remodelable 

synthetic materials by utilizing these sequences as cross-linking agents 

(Lutolf et al. 2003 A). 
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Cell adhesion to synthetic surfaces is mediated by proteins, either adsorbed 

from the fluids placed in contact with the material, secreted by the cells, or 

placed at the surface. These ligands mediate the physical interaction between 

the material and receptors in the cell membrane. Polymer surfaces are 

frequently pretreated with a solution containing a purified protein or 

bioactive peptide to allow physical adsorption of the molecule and a specific 

cell-ligand interaction. This classical approach is the simplest technique for 

presenting proteins and peptides. 

 
1.5.3 State of art of tested signals for stem cells recruitment  

The exact mechanism by which MSC are mobilized into the circulation, 

undergo recruitment and transmigrate across the endothelium is not yet fully 

elucidated. However, it is probable that injured tissue expresses specific 

receptors or ligands to facilitate trafficking, adhesion and infiltration of MSC 

to the site of injury, similar to the recruitment of leukocytes to sites of 

inflammation (Sordi et al. 2009). Cytokines and chemokines are important 

factors in regulating mobilization, trafficking and homing of stem/progenitor 

cells (Liu et al. 2009). 

Several studies aimed at investigating the different chemokine receptor 

profiles of human MSC and the chemotactic effect of particular cytokines on 

these cells have documented. Honczarenko et al. (2006) examined human 

bone marrow MSC for chemokine receptor and function and showed that the 

cells expressed a distinct set of chemokine receptors, namely: CCR1, CCR7, 

CCR9, CXCR4, CXCR5 and CXCR6. It was also demonstrated that 

chemokines corresponding to these surface receptors induced cellular 

responses e specific chemotaxis as well as b-actin filament reorganization 
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(CXCL12). Honczarenko et al. (2006) highlighted that these findings support 

the belief that certain chemokines, CXCL12 in particular, are important in 

bone marrowMSC homing and localization within the bone marrow, as has 

been determined for haematopoietic cells. In another study that was aimed at 

elucidating chemokine receptor expression on human bone marrow MSC and 

their role in mediating migration to tissues, Sordi et al. (2005) found that a 

small percentage of cells (2-25%) expressed a restricted set of chemokine 

receptors as well. However, though CXCR4, CXCR6, CCR1 and CCR7 were 

found to be expressed as well (consistent with the findings of Honczarenko et 

al.), receptors CCR9 and CXCR5 were not detected. Furthermore, cells were 

found to express CX3CR1 but thiswas not the case for the study by 

Honczarenko et al. Sordi et al. also showed that bone marrow MSC were 

capable of undergoing appreciable chemotactic migration in response to a 

restricted set of chemokines in vitro and that the attraction of these cells to 

an in vitro model of peripheral tissue was principally mediated by CX3CL1 

and CXCL12.  

Specifically, the CXC chemokine stromal derived factor-1 (SDF-1, also named 

CXCL12) has been associated with the migration, proliferation, differentiation 

and survival of several cell types such as human and murine haematopoietic 

stem and progenitor cells. CXCR4, the seven transmembrane G-protein 

coupled receptor of SDF-1, has been found to be exhibited by cell types 

including haematopoietic, endothelial, stromal and neuronal cells (Lapidot et 

al. 2002). Taken together, SDF-1 and CXCR4 have been found to have an 

important role in migration as indicated by studies on engraftment of bone 

haematopoietic stem/progenitor cells (Peled et al. 1999) as well as tumor 
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metastasis (Muller et al. 2001). The SD 1/CXCR4 axis also appears to 

regulate the migration of MSC. Using a transwell assay to investigate the 

response of the CXCR4 receptor to the ligand SDF-1,Wynn et al. (2004) 

observed the dose-dependent migration of human MSC to SDF-1 and 

concluded that the receptor contributes to MSC migration. To understand 

the growth factors/cytokines which can affect migration of MSC to injured 

tissues, Ozaki et al. (2007) compared the effects of 26 growth 

factors/cytokines on the migration activity of rabbit and human MSC using a 

microchemotaxis chamber. It was observed that the following consistently 

enhanced the migration of MSC at appropriate concentrations eplatelet-

derived growth factor (PDGF)-BB, PDGF-AB, epidermal growth factor (EGF), 

HB-EGF, transforming growth factor (TGF-a), insulin growth factor (IGF-I), 

hepatocyte growth factor (HGF), fibroblast growth factor (FGF-2) and 

thrombin. In addition, as various combinations of these factors further 

enhanced the migration of MSC, it was suggested that combinations of 

growth factors may be important in eliciting the maximal chemotactic effect. 

In other studies, factors which have been shown to enhance the migratory 

capacity of MSC include IGF-1 (Li et al. 2007), matrix metalloproteinase 2 

(MMP-2), membrane type 1 MMP (MT1-MMP) and tissue inhibitor of 

metalloproteinase 1 (TIMP-1) (Ries et al. 2007), galanin (Louridas et al. 2009), 

monocyte chemotactic protein-1 (MCP-1) (Dwyer et al. 2007, Wang et al. 

2002.and monocyte chemotactic protein-3 (MCP-3) (Schenk et al. 2007). 

Recently, it has been investigated the role of platelet-derived growth factor-B 

(PDGF-B)-activated fibroblasts in regulating recruitment, migration and 

differentiation of murine bone marrow MSCs in an in vitro wound healing 
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assay and a novel three-dimensional (3D) model, since local resting resident 

fibroblasts are activated after injury and play a critical role in recruiting 

MSCs. PDGF-B-activated fibroblasts caused significant increases in MSC 

migration speed compared to control as demonstrated by time-lapse 

photography in wound healing assay. Consistently, invasion/migration of 

MSCs into 3D collagen gels was enhanced in the presence of PDGF-B-

activated fibroblasts. In addition, PDGF-B-aFBs induced differentiation of 

MSCs into myofibroblast. The regulatory effects of PDGF-Bactivated 

fibroblasts are likely to be mediated by basic fibroblast growth factor (bFGF) 

and epithelial neutrophil activating peptide-78 (ENA-78 or CXCL5) as protein 

array analysis indicated elevated levels of these two soluble factors in culture 

supernatant of PDGF-B activated fibroblasts. Blocking antibodies against 

bFGF and CXCL5 were able to inhibit both trafficking and differentiation of 

MSCs into 3D collagen gels while supplement of exogenous bFGF and/or 

CXCL5 promoted invasion/migration of MSCs into 3D collagen gels [Nedeau 

et al., 2008]. Our results reveal that PDGF-B-activated fibroblasts play a key 

role in the recruitment/migration and differentiation of MSCs and implicate a 

bFGF- and CXCL5- dependent mechanism in mediating these effects. 

Activation by chemokines is an important step during recruitment of a 

reasonable number of progenitor cells to the damage tissues. 

Recent studies determined the involvement of additional other chemokines. 

CXC-chemokines IL-8/Gro-α and its cellular receptors CXCR2 and CXCR1 

contribute to homing of intravenous infused CD34+ progenitor cells to the 

ischemic myocardium (Kocher 2006). IL-8 is an inflammatory chemokine, 

which is able to stimulate angiogenesis (Muller et al.2002). Myocardial 
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infarction induces an increase of the expression of cardiac IL-8/Gro-α mRNA 

and increased serum concentrations of IL-8/Gro-α were associated with the 

number of CD133+ cells (Schomig et al. 2006). CD34+/CD117bright 

progenitor cells demonstrated a chemotactic response to IL-8 in vitro (Kocher 

2006). Moreover, local injection of IL- 8 in the non-ischemic myocardium 

increased the recruitment of CD34+ cells (Kocher 2006) Neutralizing anti-IL-

8/Gro-α-antibodies or antibodies against the IL-8 receptors, CXCR1 or 

CXCR2, reduced CD34+ cell-mediated improvement of neovascularization, 

establishing a role for CXC-chemokines (IL-8/Gro-α) for homing and 

neovascularization improvement by CD34+ cells. 

In addition, blocking CXCR2 inhibited the incorporation of human EPCs 

expressing CXCR2 at sites of arterial injury (Grunewald 2007). 

Furthermore, ischemia-induced VEGF acts as a chemoattractant to EPC 

(Kalka et al. 2000). Interestingly, VEGF is sufficient to induce the organ 

recruitment of bone-marrow-derived circulating myeloid cells and their 

perivascular localization via induction of SDF-1 expression by perivascular 

myofibroblasts, suggesting that different cytokines may cooperate during 

homing of bone marrow cells (Grunewald et al. 2006). In addition, invaded 

immune competent cells within the ischemic tissue may release further 

chemokines, such as MCP-1 or interleukins that can attract circulating 

progenitor cells (Fujiyama et al. 2003). Beside stimulating migration, MCP-1 

and VEGF are capable of inducing the transendothelial migration of human 

ex vivo expanded myeloid EPC derived from peripheral blood in a β2-integrin-

dependent manner in vitro (Chavakis et al. 2005). In accordance with these 

data, Spring et al. recently demonstrated the expression of the chemokine 
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receptors CCR2 and CCR5 in EPC and the expression of C–C chemokines in 

tumor vessels. In the same study, the inhibition of chemokine receptor 

signaling by PTX significantly reduced the incorporation of EPC in tumor 

vessels (Spring et al. 2005) supporting the involvement of Gprotein- coupled 

chemokine receptors in the homing process. 

In conclusion, these data suggest that chemokines like IL-8, SDF-1 and 

probably others are involved in the trafficking of circulating pro-angiogenic 

cells and EPC from the bloodstream to ischemic tissues. Beside classical 

chemokines, other factors, which could be present in the ischemic 

myocardium, may also influence the recruitment of EPC. E.g., high mobility 

group box-1 (HMGB-1) is a nuclear protein, which is released extracellularly 

upon activation of cells by inflammatory cytokines and during cell necrosis 

and acts as a chemoattractant for inflammatory cells, stem cells and EPC in 

vitro and in vivo (Palumbo et al. 2004, Chavakis et al.2007). Since necrosis 

and inflammation are hallmarks of 

ischemic and tumor tissues, it is conceivable, that HMGB-1 may be involved 

in the homing of EPC. 
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CHAPTER 2 

Mesenchymal Stem Cell migration in a 3Dcollagen                                               

model under the effects of growth 

factors/cytokines gradient 
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2.1 INTRODUCTION 

Despite the enthusiasm, Tissue Engineered (TE) approaches have rarely 

found a massive and successful clinical implementation. In particular, 

cellular therapies are used mostly where an alternative conservative 

treatment cannot be pursued, thus slowing the transfer of TE products to 

healthcare systems and reducing their therapeutic impact. Additionally, 

international and local regulatory bodies can pose severe limitations on the 

use of exogenous/xenogenous cells and off-the-shelf availability is not at all 

straightforward. Indeed, the isolation of cells from patients, their 

amplification and subsequent in vitro culture are the most critical steps of 

the whole process, being highly costly and time consuming. For these reason, 

a large body of research is constantly focused on finding alternative and safer 

strategies which might eventually lead to a successful clinical 

implementation of TE products. One of the most promising strategy is the in 

situ tissue regeneration (Huang et al. 2002, Shantz et al. 2007, Zhao et al. 

2008, Kimura et al. 2010). It basically aims at recapitulating those events 

occurring during the physiological processes of tissue repair and 

regeneration. In particular, in situ TE endeavours to recruit adult stem and 

progenitor cells that reside at the site of scaffold transplantation, providing 

the adequate stimuli to induce their differentiation and the consequent tissue 

regeneration, therefore bypassing the delicate procedures of cell isolation and 

in vitro culture. Whatever set of stimuli is chosen, cell recruitment is key 

central. The ideal scaffold should be ―programmed‖ to broadcost specific 

biological signals with a predefined space and time distribution to selectively 

recruit target cells. Target cells do not necessarily reside far away from the 
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injured tissue: several works showed that mesenchymal progenitors are also 

circulating, although at low concentrations, in adult peripheral blood 

(Zvaifler et al. 2002). Moreover, Kuznetsov and colleagues (2001) 

demonstrated the presence of stem cells of extravascular mesodermal tissues 

in the circulating peripheral blood, capable to generate at least three 

phenotypes of the stromal system, namely osteoblasts, adipocytes, and 

reticular cells. The concentration of circulating stem cells significantly 

increases in stress/tissue injury conditions as demonstrated by Kucia et al. 

(2004). In fact, MSC have the ability to migrate from their niche to the site of 

tissue damage (Lu et al. 2001, Chen et al. 2001, Khaldoyanidi et al. 2008). 

However, the signals and their time and space presentation, required for 

stem cell homing and recruitment to injured sites are not thoroughly known. 

A variety of soluble factors  like chemokines (Sordi et al. 2005, Honczarenko 

et al. 2006) and growth factors (Fiedler et al. 2002, Neuss et al.2004, Forte et 

al. 2006) are usually involved in the homing process. In particular, the CXC 

chemokine stromal cell–derived factor 1 (SDF-1 or CXCL12) is secreted by 

stromal cells from different tissues, such as bone marrow, lung, and liver 

(Bleul et al. 1996). Its chemotactic effect is mediated by the interaction with 

the chemokine receptor 4 (CXCR4) (Ma et al. 1998, Mason et al. 2001). 

Several studies reported different chemokine receptor profiles of human MSC 

and various chemotactic effects of SDF-1 on these cells (Stich et al. 2009, 

Son et al. 2006, Wynn et al. 2004, Abbott et al. 2004, Unzek 2007, Ringe et 

al. 2007).  Among these, Sordi et al. (2005) showed that MSCs expressing the 

CXCR4 receptor are strongly chemoattracted by SDF-1 in a dose-dependent 

manner. Ryu et al. (2010) reported that SDF-1 participates in the activation 
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of those signal transduction pathways in MSCs that are involved in the 

regulation of directional cell migration. Concerning in situ tissue engineering, 

recent works focused on the incorporation/delivery of SDF-1 within/from 

scaffolds in order to recruit stem cells in vivo. In particular, Schantz et al. 

(2007) sequentially delivered VEGF, SDF-1 and BMP-6 in a PCL scaffold 

implanted in a rat model, demonstrating stem cell infiltration with evidences 

of angiogenesis and tissue precursor formation. Bladergroen et al. (2009) 

created an heparinized collagen scaffold loaded with SDF-1, subsequently 

implanted in a mouse model. They demonstrated that the release of SDF-1 

was effective in recruiting hematopoietic stem cells. Thevenot et al. (2010) 

developed a system to constantly deliver SDF-1 within a PLGA scaffold 

implanted in a mouse model. Following this approach, they reported a 

significant recruitment of stem cells, with evidences on increased healing and 

angiogenesis and concomitant reductions of inflammation and scaffold 

encapsulation. As a whole, these works demonstrated the effectiveness of 

SDF-1 within a in situ TE scheme. However, the influence of SDF-1 gradient 

on the dynamics and regulation of stem cell migration within 3D scaffold, 

necessary for the design of cell-recruiting scaffold, is still missing. Therefore, 

in this work, we present a biomimetic experimental model to quantitatively 

analyze the effects of the SDF-1 gradients on the migratory parameters of 

MSC, in 3D  collagen matrix. The setup may be simply reproduced and 

allows to study cell migration in a three dimensional environment. 
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2.2 Materials and methods 

2.2.1 Cell cultures 

Although MSCs attract much attention because of their pluripotency, this 

characteristic decreases during in vitro culture (Banfi et al.,Muraglia et al.,) 

using conventional two-dimensional (2D) culture conditions; MSC 

characteristics might be changed during culture and their therapeutic 

potential may be reduced. Previous studies have shown that during culture 

expansion MSC undergo an aging process in which their early progenitor 

properties, proliferation and homing capability are gradually lost (Banfi et al.; 

Digirolamo et al.; Prockop et al.).For these reason for the development of our 

experiment, as first step we used MG63 cells, an osteosarcoma lines, as 

―positive control‖. Indeed recent studies show the involvement of SDF-

1/CXCR-4 system during osteosarcoma tumor progression (Perissinotto et 

al.) . 

The MG63 osteosarcoma cell line (Franceschi et al.1985) was cultured in 

Dulbecco‘s modified Eagle medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) (Biowittaker, Walkersville, MD, USA), 2mM L-glutamine, 

100 U/ml penicillin, and 0,1 mg/ml streptomycin (Sigma, St. Louis, MO, 

USA).  

Human mesenchymal stem cells (hMSC) were purchased from Lonza Inc. 

(Walkersville, MD, USA). Three hMSC aliquots were pooled to reduce bias 

from samples derived from single donors, rinsed twice with PBS and plated at 

a final density of 2-5x106 cells/100 mm dish in Coon‘s modified Ham‘s F12 

medium (Biochrom AG, Berlin, Germany), supplemented with 10% FBS and 
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1 ng/ml FGF-2 (LiStarFish, Milan, Italy) (1, 2). Cells were maintained in 

culture and used within their 3rd passaging (P1-P3).  

For chemoinvasion assays hMSC were cultured in alpha Modified Eagle‘s 

medium (MEM, Bio-Wittaker, Belgium) containing 10% (v/v) fetal bovine 

serum (FBS, HyClone, USA), 100 U/ml penicillin, 0,1 mg/ml streptomycin 

and 2mM L-glutamine (Sigma). All cultures were kept in a humidified 

atmosphere at 37°C and 5% of CO2; the medium was replaced every 3 days. 

Whenever needed cells were trypsinized by standard protocols, washed in 

PBS and resuspended to the desired concentration for further use. 

For cultures in 3D collagen lattices, hMSC were cultivated in reconstituted 

bovine collagen gel (APCOLL DEVRO) that was prepared following 

manufacturer‘s procedure. Briefly, 1 ml of 10X DMEM (Gibco, Life 

Technologies) was added to 8 ml collagen (stock solution: 3 mg/ml). Next, 1 

ml of 0.1 M NaOH was added and pH 7.2 was reached by adding 0.1 M HCl. 

The resulting collagen solution (2.4 mg/ml), was gently mixed with the cells 

and allowed to gelify for approximately 40 minutes at 37°C, 5% CO2.  

 

2.2.2 Immunofluorescence analysis of cell surface antigen expression on 

hMSC or MG-63 cells. 

The hMSC phenotype was assessed on P1 cells by immunofluorescence. Flow 

cytometric analysis was performed by staining 1x105 cells/sample of each cell 

type at 4°C, for 30 minutes with the following monoclonal antibodies (moAb): 

fluoresceine isothyocyanate (FITC)-labeled anti-CD34, -CD45, (Miltenyi 

Biotech, Bergish-Gladbach, Germany), -CD105 (Acris Antibodies, Milan, 
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Italy), or R-phycoerithrin (PE)-labeled anti-CD63 (BD Biosciences, San Jose, 

CA, USA), -CD90 (BioSource Europe S.A., Nivelles, Belgium). FITC- and PE-

labeled isotype-matched immunoglobulins (DakoCytomation, Glostrup,  

Denmark) were used as negative controls. Positivity for CD49a, CD117 and 

CXCR-4 was analyzed by indirect immunofluorescence; briefly 1x105 cells of 

each sample were stained with the anti-CD49a or -CD117 monoclonal 

antibody (LiStarFish) or anti-CXCR4 (R&D System, Minneapolis, MN, USA) 

and incubated at 4° C for 30 min in the dark. Cells were rinsed twice with 

cold phosphate buffered saline (PBS) with 2% FBS, and were further stained 

with a secondary goat anti-mouse IgG-FITC moAb (Jackson ImmunoResearch 

Lab. Inc., West Grove, PA, USA) and incubated for 30 min more at dark. 

Sample were rinsed twice with cold PBS+2% FBS, then cells were 

resuspended and analyzed by flow cytometry (FACScan, BD Biosciences, San 

Jose, CA). Some cell samples were permeabilized by exposure to a solution 

containing 0,1% Na-citrate and 0,1% Triton on ice for 5 minutes prior to 

immunostaining to evaluate the citoplasmic positivity. The effects of the 

three-dimensional environment on the expression of CXCR-4 in hMSC were 

evaluated by culturing the cells in collagen gels as described in the previous 

section. After 24 or 48h, collagen matrices were rinsed twice with PBS and 

digested by collagenase type A (2.5mg/ml in PBS for 40 minutes at 37C°; 

Roche Italia, Milan, Italy) to release cells from the matrix. The enzymatic 

digestion was neutralized with FBS and the cell population was collected by 

centrifugation for further processing. 
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2.2.3 mRNA extraction and Real Time RT-PCR 

Cells aliquots, either from monolayer cultures on plastic dishes or from 

collagen matrices, at different passages and/or timings, were used for mRNA 

extraction, using the PerfectPure RNA Cultured Cell Extraction Kit (5-Prime 

GmbH, Hamburg, Germany),according to the manufacturer‘s instructions. 

Reverse transcriptions were performed by using the SuperScriptTM III RT-PCR 

kit (Invitrogen, Milan, Italy).  Aliquots of each cDNA sample were then 

processed for quantitative real time RT-PCR, using the RealMasterMix SYBR 

2,5 (5-Prime) in an Eppendorf Mastercycler Realplex2 apparatus; assessed 

genes were the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

CXCR-4; primer couples were either derived from published literature 

(Giannoni et al. 2010) or purposely designed (see Supplemental Table 1). A 

denaturing step was performed at 95°C for 2 minutes; cycling conditions 

were set at 94°C for 30 sec, at 60°C for 30 sec and at 72°C for 30 sec, for 35 

cycles. Real time PCR runs were performed in quadruplicate and the 

specificity of the reaction was  counterchecked by the analysis of the melting 

curve of the amplified products. 

The effects of the three-dimensional environment on the mRNA of CXCR-4 

production in hMSC were evaluated by culturing and subsequent extraction 

of cells from collagen gels in analogous manner as described in the previous 

section. mRNA was then extracted in the same manner as the conventional 

2D culture. 
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2.2.4 Chemoinvasion assay 

Boyden Chambers (Neuro Probe Inc., Gaithersburg, MD USA) were used for 

the chemoinvasion assay to verify chemotactic effect of SDF-1 on MG63 and 

hMSC cells. MG63 and hMSC were cultured as previously described. Briefly, 

the upper and lower compartments of the chamber were separated by 8 m 

pore-size polyvinylpyrrolidone-free polycarbonate filter (13-mm diameter 

Millipore). The lower compartment of chamber was loaded with  serum 

free supplemented with 0.5% of bovine serum albumin (BSA; Sigma-Aldrich) 

only (control) or with SDF-1 at two different concentrations, i.e. 100 and 200 

ng/ml. To determine whether cell invasion was effectively driven by SDF-1, 

the specific blocking agent for CXCR4, AMD3100 (Sigma-Aldrich) was loaded 

into the lower compartment of the chamber at the concentration 100 g/ml, 

alongside SDF-1. 

50 l of Matrigel (BD Bioscience) was poured onto the membrane filters, in 

order to provide an adherent surface for the hMSC prior to their penetration 

toward chemotactic gradient. Then 5x104 cells per chamber were 

preincubated in IMDM-0.5% BSA for 30 minutes and seeded onto the upper 

compartments and finally incubated at 37°C, 5% CO2 for 4 hours. The lower 

surface of the filter was then fixed with para-formaldehyde and then stained 

with 1% crystal violet (Sigma). Digital images of the stained cells were 

collected under optical microscope at ×4 magnification. The fraction of the 

filter surface colonized by cells was determined using the National Institute of 

Health Image J free software (release 1,38X; http://rsb.info.nih.gov/ij/). 
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2.2.5 Chemotaxis experiment in three dimensional collagen gel 

The analysis of cell movement under the effect of SDF-1 gradient was 

performed in a similar way to that presented by Knapp et al. (1999). Briefly, 

two rectangular shaped wells (270 and 540 l volume) were punched in a 3 

mm thick Polydimethylsiloxane (PDMS) cylinder (figure.1). The two wells were 

separated by a 2 mm large wall with a 2 mm channel in the middle. The 

chamber was attached on a glass coverslide using a silicone glue and 

autoclaved prior cell seeding.  

 

   

        

 

                               

 

 

Figure 1. Schematic of the chamber used for chemotaxis experiments. The dashed lines in 

the enlargement on the right hand side mark off the regions that were observed during the 

experiment. 

 

The chemotaxis experiment were carried out by injecting a cell-seeded 

collagen solution (15x103 MG63 or hMSC in a 2.4 mg/ml collagen solution) 

in the larger well. The gel was incubated at 37°C, 5% CO2. After 24 h, a 2.4 
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containing well 

Cell 

containing well 

Connecting 

channel 
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mg/ml collagen solution, either doped with 0, 30 or 60 ng of SDF-1, was 

injected in the small well. The same solution was carefully injected within the 

channel that connects the two wells in order to allow the diffusion of the 

factor. The solution was allowed to gelify for approximately 1 h in a mini-

incubator mounted on the automated stage of an inverted optical microscope. 

According to the concentration of SDF-1 used, the experiment will be referred 

as ‗control‘, ‗ -1-1 mmmlng 12  ‘ or ‗ -1-1 mmmlng 25  ‘, respectively. Videos of 

migrating cells were obtained by acquiring images (1.6 × 1.2 mm) on selected 

regions of the cell populated collagen gel (the regions under investigation are 

highlighted in figure 1), every 10 minutes for 24 hours using an Olympus IX 

50 optical microscope (Olympus Co., Tokio, Japan) equipped with a mini –

incubator mounted on an automated stage (PRIOR, Rockland, MA) and a 

CoolSnap Camera (Photometrics, Tucson, AZ). The images were focused on 

three different planes: approximately 0.5 mm above the bottom of the 

channel, middle plane of the channel and approximately 0.5 mm above the 

middle plane, thus resulting in 12 time lapse videos. In each experiment 20 – 

35 cells were focused. 

 

2.2.6 Simulation of the temporal evolution of the SDF-1 concentration 

gradient 

A finite element method (FEM) based approach was used to predict SDF-1 

diffusion through the collagen gel. Diffusion was assumed to be governed by 

the diffusion equation , where, c denotes the concentration of 

SDF-1 and D the diffusion coefficient of the factor in 2.4 mg/ml collagen gel 
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and ∇ is the standard nabla operator. The model was specified by using a 

SDF-1 concentration of 111 ng/ml or 222 ng/ml to simulate the LG or HG 

conditions respectively. The diffusion coefficient was assumed to be 10-6 

cm2/s. Such a value was taken from literature data, reporting the diffusion 

coefficient of model molecules, similar in dimensions as SDF-1, diffusing in 

analogous media to the one we used (Saadi et al. 2007;  Nauman et al. 2007). 

The model was implemented in COMSOL Multiphysics 3.5 (Comsol Inc., 

Burlington, MA) and solved as time dependent problem. Factor diffusion was 

evaluated on the middle plane of the chemotaxis chamber, as reported in 

figure 1a. The 2D domain was discretized using predefined triangular mesh. 

Computations were done with the UMFPACK direct solver as linear system 

solver on a PC with an Intel Quad Core 2.4 GHz CPU (Intel Co., Santa Clara, 

CA) running Windows (Microsoft, Redmond, WA). 

 

2.2.7 Evaluation of the cell tracking parameters 

Cell trajectories, i.e. the sequence of cell centroids coordinates, were 

reconstructed from time lapse video using Meramorph software. Bias speed 

of the cell population along the gradient, SBias, and root mean squared speed, 

SRandom, were chosen as the representative parameters for describing cell 

migration. SBias is estimated by plotting the average position of the cell 

population along the gradient direction, i.e. x axis, against time. A linear drift 

is observed in the case of anisotropic environments, therefore SBias is 

evaluated by fitting the average position of the cell population with a straight 

line. The average position in the direction orthogonal to the gradient remains 
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unchanged. SRandom, which provides information on the random component of 

speed, is evaluated by fitting the cell‘s mean squared displacement with a 

persistent random walk model. In more details, mean squared displacement 

was evaluated using overlapping time intervals (Dickinson and Tranquillo 

(1993). In the case of non-zero SBias, linear drift was subtracted from cell 

displacement, in order to take into account the random displacements only. 

The persistent random walk chosen for the data fitting was the one presented 

by Kipper et al. (2007).  

Chemotaxis index, CI, is defined as the ratio of the trajectory contour length 

with the head-to-tail vector length. Statistical significance among SBias values 

was assessed by ANOVA test performed in Matlab. Statistical significance 

among SRandom or CI values was assessed by performing a non-parametric 

Kruskal-Wallis test in Matlab. p values < 0.05 were considered significant. 

 

2.3 RESULTS 

2.3.1 Characteristics of hMSC derived from bone marrow 

Human MSC were expanded in monolayer cultures and phenotyped by FACS 

analysis, upon detachment from plasticware and immediately prior to use in 

collagen matrices. Cells displayed a standard fibroblastic morphology; their 

phenotypic profile comprised positivity to CD49a, CD63, CD90 and CD105 

for more than 90% of the assessed cells. At the same time less than 2% of the 

total cell population resulted positive for classical hematopoietic markers, 

such as CD34, CD45 or CD117. Interestingly, upon culturing, over than half 

of the total cell number scored positive for the expression of CD146, a 
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relevant marker for the identification of osteogenic precursors able to 

regenerate also a complete and functional marrow  (Sacchetti et al. 2007). 

Surface expression of the SDF-1 receptor, CXCR4, instead, was established 

for 16% of the assessed cells, although single-staining procedures did not 

allow us to establish the percentage of cells contemporarily positive for 

CXCR4 and CD146. Nonetheless, as a whole, the available cells displayed a 

classical phenotypic signature of mesenchymal precursors; they were thus 

retained representative of the population of stromal stem progenitor cells, 

either residing within or able to migrate to lesion sites, and involved in the 

regeneration of damaged mesenchymal tissues.  

 

2.3.2 Expression of CXCR4 receptor in MG63 and hMSC 

Real Time PCR analysis showed that transcripts for CXCR4 are highly 

expressed in MG63 cells; human MSC express the receptor mRNA as well, 

although at lower levels, as reported in figure 2.   

                    

Figure 2. Relative expression levels for CXCR-4 mRNA in MG63 and BMSC cells, as assessed 

by Real time RT PCR. 
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Transcript data was paralleled by detailed cytofluorimetric analysis, to 

discriminate surface receptor expression from intracellular availability of the 

protein. In more details, MG63 showed high levels of intracellular expression 

of the receptor (~ 64% of the cell population resulted positive at FACS 

analysis), while its surface expression was detected in approximately 43% of 

the assessed cells. On the other hand, 93% of hMSC were positive for 

intracellular expression of the receptor, whereas only 16% of the stem cells 

displayed the receptor on the membrane surface, as already indicated (Table 

1).  

  INTRACELLULAR 

CELL 

MEMBRANE 

MG63 63.9% 42.9% 

MSC 93.0% 15.9% 

 

Table 1 Flow cytometric analysis of CXCR-4 expression in MG63 and BMSC cells. The 

percentage of positive cells for the expression of receptor was evaluated both intracellulary 

and on cell membrane. 

Relevantly, in hMSC, CXCR4 mRNA levels are strongly affected by cell 

passaging, as shown in Table 2. Surface expression of CXCR4 is affected by 

stem cell passage as well, i.e. a fourfold decrease in expression is observed 

from passage 2 to passage 4 (Table 2). 

 

 

 

 

  RT PCR FACS 

P2 1.000 ± 0.035 15.9% 

P4 0.016 ± 0.001 4.0% 
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Table 2 Expression of CXCR-4 in BMSC at different passages. Results show that stem cells 

passage affects both mRNA production and the expression on cell membrane of CXCR-4 

receptor. 

 

Surprisingly, short-term (24-48 h) culture in tridimensional collagen matrix 

resulted in up-regulation of cell surface expression of CXCR4 (figure 3), 

calling for the existence of a mechanism of either transcriptional regulation 

and/or CXCR4 receptor presentation quite sensitive to the cell 2D-versus-3D 

microenvironment status, possibly depending on tensegrity (Ingber 2008; 

RayChaudhury et al. 2001). 

 

                         

Figure 3. Time-dependent variations in the percentage of CXCR4-positive BMSC, as assessed 

by cytofluorimetric analysis, upon seeding and culturing cells in 3D collagen gels. 

 

 

2.3.3 Chemoinvasion assay 

Results of the Boyden Chamber experiments are reported in terms of the 

fraction of the filter area occupied by cells. MG63 extensively migrate through 
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the filter, irrespective of the concentration of the gradient that is loaded 

(figure 4). In both cases, either 100 ng/ml or 200 ng/ml, more than 75% of 

the filter is colonized by the cells. Invasion is halted in presence of the 

receptor blocking agent AMD3100, being similar to the control experiment. 

Conversely, hMSC respond in a less effective manner. In particular, just 8% 

of the filter is occupied by the cells when the chamber is loaded with 200 

ng/ml of SDF-1 (figure 4). Also for hMSC, in the presence of the AMD3100 

the infiltration of cells does not differ from the control experiment (figure 4). 

                       

Figure 4. Chemoinvasion Assay of SDF-1 on MG63 (light grey) and hMSC cells (dark grey). 

Different concentrations of SDF-1 (0, 100 and 200 ng/ml) were tested. Percentage of the 

filter surface occupied by MG63 or hMSC is reported on the left or right axis, respectively. 

 

2.3.4 SDF-1 concentration gradient profile 

The SDF-1 distribution obtained along the gradient axis of the two-

dimensional middle plane is shown in figure 5. In particular, the figure 

highlights the concentration profile in the region interested in cell tracking, 

i.e. in the region spanning  approximately 2 mm from the opening that 

connects the two wells of the chemotaxis chamber. The gradient is 

established in the first hours of the experiment and is present during the 
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whole cell tracking experiment, in particular it is reasonably stable from hour 

12 to 24, i.e. assuming that the gradient is linear, a 12% change is observed 

in gradient slope, in the 12 – 24 h interval. The concentration of SDF-1 the 

cells are exposed to is not different to the values that have previously 

reported in literature which are known to elicit a chemotactic response 

(Schantz et al. 2007, Son et al. 2009). 

                      

                       

Figure 5. Simulated SDF-1 concentration profiles. The profiles were calculated at three time 

points namely 3h (triangles), 12 h (circles) and 24 h (squares). Hollow symbols refer to 

-1-1 mmmlng 12   conditions, solid symbols refer to 
-1-1 mmmlng 25   conditions. 

 

 

2.3.5 Cell migration in 3D isotropic and anisotropic collagen gel 

Windrose plots of the MG63 trajectories are reported in figure 6. In the 

absence of SDF-1, cells move randomly (figure 6A), whereas in presence of 

the SDF-1 gradient MG63 predominantly migrate toward the 

chemoattractant source (figure 6B and 6C). Most of the cell tracks are co-

aligned with the horizontal axis, i.e. the direction of SDF-1 gradient, 
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particularly in the -1-1 mmmlng 25   conditions. Moreover, the SDF-1 gradient 

affects cells directional persistence. In fact, MG63 tracks are highly scattered 

in the control, whereas they are smoother when the gradient is present.  

 

   

Figure 6. Windrose plots of MG63 trajectories recorded in the 24 h cell tracking experiment. 

A. Control experiment; B. 
-1-1 mmmlng 12   condition experiment; C. 

-1-1 mmmlng 25   

condition experiment. SDF-1 factor diffuse from the left to the right 

 

 

The CI value of the control experiment is significantly lower than the CI of 

both -1-1 mmmlng 12   and -1-1 mmmlng 25  , however, no significant difference 

is observed between the latter (figure 7A). The effects of SDF-1 gradient on 

the migration speed values are indicated in figure 7B and  7C for the values 

of Srandom and Sbias respectively. Although the average value of Srandom  

increases with the concentration gradient slope, no significant differences are 

observed among Srandom values. On the other hand, a significant difference of  

Sbias  is observed among the three experimental setups. 

 

 

up gradient 

A B C 

up gradient 
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Figure 7. Box and whiskers plots of the migration parameters, evaluated for MG63 cells in 

the control, 
-1-1 mmmlng 12   and 

-1-1 mmmlng 25   experimental conditions. A. 

Chemotaxis Index; B. RMS speed; C. Drift speed. + symbols represent outliers. Significant 

differences are marked with asterisks 

 

Human MSCs migrate randomly within SDF-1 free collagen matrices, as 

depicted in figure 8A, whereas they migrate mostly toward the SDF-1 source 

in the -1-1 mmmlng 12   (figure 8B)  and -1-1 mmmlng 25   experiments (figure 

8C). Moreover time lapse videos of hMSC in the absence of factor, showed 

that the cells moved predominantly in a ―back-and-forth‖ fashion. In 

presence of a chemoattractant source, however, hMSC moved more 

persistently.  

    

Figure 8. Windrose plots of hMSC trajectories recorded in the 24 h cell tracking experiment. 

A. Control experiment; B. 
-1-1 mmmlng 12   condition experiment; C. 

-1-1 mmmlng 25  condition experiment. SDF-1 factor diffuse from the left to the right 
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* 
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C 
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This evidence is shown in figure 9A in which the CI of the three experimental 

setups are reported. In particular, the CI value of control experiment is 

significantly lower than the CI of both -1-1 mmmlng 12   and -1-1 mmmlng 25  . 

However, the concentration of SDF-1 factor does not induce differences 

between the CI of the two experiments. In this case however, SDF-1 

significantly affects random speed, as depicted in figure 9B. Srandom values of 

both -1-1 mmmlng 12    and -1-1 mmmlng 25   conditions are significantly 

higher with respect to the control however, no difference was observed 

between them. Bias speed values are also dramatically affected by the 

chemotactic source. In particular Sbias of  both -1-1 mmmlng 12   and 

-1-1 mmmlng 25   are significantly higher than the control, but the values do 

not differ from each other (figure 9C). 

 

Figure 9. Box and whiskers plots of the migration parameters, evaluated for hMSC cells in 

the control, 
-1-1 mmmlng 12   and 

-1-1 mmmlng 25   experimental conditions. A. 

Chemotaxis Index; B. RMS speed; C. Drift speed. + symbols represent outliers. Significant 

differences are marked with asterisks. 

 

 

A 

* 

* B 

* 

* C 

* 

* 



82 
 

2.4 DISCUSSION 

 Regenerative medicine and TE hold the promise to solve several problems 

related to tissue and organ replacements. They are based on the sapient 

combination of cells, material scaffolds and in vitro culturing conditions, all 

of which aim at generating a hybrid biological/synthetic device to substitute 

the functions of an injured or diseased tissue or organ. MSCs are 

increasingly gain attention as cell source for TE applications, due to their 

characteristics of self-renewal and multipotency. In fact, several works 

reported the possibility to induce hMSC differentiation under specific 

microenvironmental conditions, giving rise to muscle, brain, liver, cartilage, 

bone, fat and blood vessels (Jiang et al. 2002., Pittenger et al. 2004).  

However, Yet, a considerable number of MSC characteristics have to be 

studied in order to develop effective therapeutic strategies for their use in TE. 

A cascade of signals orchestrates homing and recruitment processes of stem 

cells in vivo. However, the migratory behavior of MSC under the effects of 

such signals is not fully explored. In this work we developed an experimental 

model that allows to gain a better insight into the dynamics of cell migration 

in a three dimensional biomimetic environment. In particular, we used a 3D 

collagen lattice in which a gradient of SDF-1 is established. In order to 

optimize the experimental setup in terms of chamber dimension, SDF-1 

concentration and experiment time length, we have used the MG63 

osteosarcoma cell line. These cells share certain similarities with MSCs 

(Perissinnotto et al. 2005), but their behaviour under the effect of SDF-1 is 

not affected by cell passage or donor source. In contrast, since MSC are 

primary cells, one invariably deals with a relevant heterogeneity in terms of 
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cell behavior, in particular migratory behaviour. Such an heterogeneity also 

depends on cell passage, which brings in another source of variability. In 

order to evaluate SDF-1 recruiting ability and to assess possible dose 

dependencies, we performed a conventional Boyden Chamber experiment 

with MG63. The results depicted in figure 4 show that SDF-1 has 

chemotactic activity on MG63. Although the average values of the invading 

cells increases as the SDF-1 concentration increases, a significant difference 

between the two values is not evident. Human MSC exhibit a similar behavior 

in the same experimental conditions, although only small number of stem 

cells migrate toward the factor, compared to the MG63  (figure 4). This result 

is consistent with real-time RT PCR expression and cytofluorimetric data: 

higher levels of the CXCR4 receptor, either intracellular or available on the 

cell surface, are expressed by the osteosarcoma line, with respect to hMSC. 

Consequently MG63 cells display a wider reactivity to the ligand-induced 

chemotactic stimulus.  Clearly, boyden chamber experiments provide only 

basic information  on the chemotactic effect of specific factors. To gain a 

better insight into the dynamics of cell migration under the effect of SDF-1, 

we performed a time lapse video microscopy of cells moving within 3D 

lattices. In particular, the experiments were performed in reconstituted 

collagen gels since they mimic more closely the in vivo environment rather 

than the 2D Boyden Chambers. Moreover, it has been already reported that it 

is possible to easily sustain spatial gradients of bioactive molecules within 

these sort of gels (Knapp et al. 1999). The chemotaxis experiments on MG63 

show that SDF-1 mainly affects the directional persistence of the cells rather 

than the random component of their speed. This is evident from figure 7A 
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and figure 7C: the average position of the cell population along the gradient 

axis has a non zero linear drift in both -1-1 mmmlng 12   and -1-1 mmmlng 25   

experiments and such drift speed significantly increases with the gradient 

slope. Accordingly, CI also reflects the effects of the SDF-1 factor. In fact, in 

the case of an isotropic environment as the control, CI is 0.1 which 

approximates a pure random movement, whereas in the presence of SDF-1, 

either in -1-1 mmmlng 12   or -1-1 mmmlng 25   conditions, CI is close to 0.3 

implying a more persistent motion. Random root mean squares values do not 

change significantly in the three experimental conditions suggesting that the 

presence of the factor does not affect the random motility of the cell. 

Presumably not affecting the frequency with which the cytoskeleton 

machinery exerts its function. 

The migratory behaviour of hMSC is dramatically affected by the presence of 

the chemotactic factor, as evidenced by the shape of the trajectories and the 

increase of both drift speed and CI. The reactivity of hMSC to SDF-1 might be 

apparently in contrast with the results of the Boyden Chamber experiments 

and FACS data, where a low expression of CXCR4 was evidenced. However 

these data refer to stem cells cultured in a two dimensional environment: 

culture in collagen lattice is sufficient per se in stimulating more cells to 

express the receptor at the membrane level (figure 3), which consequently 

sustains an increased cells‘ responsiveness to the factor compared to a 2D 

case. Although a non zero drift speed toward the factor was assessed in both 

-1-1 mmmlng 12   or -1-1 mmmlng 25   condition, the trajectories of the hMSC 

are more scattered around the gradient direction compared to those of the 

MG63. Of course hMSC are primary cells, therefore possessing  an intrinsic 
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biologic variability in terms of motility. Moreover, the hMSC that were used 

for the chemotactic experiments were pooled from three different donors, 

which brings in another source of variability. Nevertheless, the directional 

motion is evident and statistically significant variations in the migration 

parameters were assessed. Differently from the MG63 case though, SDF-1 

affects the random component of the MSC speed, i.e. Srandom increases of a 

factor 2.3 when SDF-1 is present (figure 9B). Ryu et al. (2010) demonstrated 

that SDF-1 participates in the activation of transduction pathways which are 

known to regulate actin machinery and directional motion. Our data seem to 

confirm this evidence as demonstrated by an enhanced migratory behaviour 

of hMSC under the effects of SDF-1. 

Taken together these data demonstrate that SDF-1 explicates a strong 

chemotactic effect within three dimensional collagen lattices. The event is 

particularly enhanced for hMSC, affecting different aspects of cellular 

motility, namely the shape of the paths, the biased component and the 

random component of the speed. Few issues might be arisen on the 

experimental procedure that has been presented. The spatial concentration 

gradient of the factor was not characterized, along with its evolution with 

time. This involves an uncertainty associated with the SDF-1 concentration 

the cells are exposed to. However the FEM simulations show that the 

gradient in the two experimental conditions is sufficiently stable during the 

24 hours of the migration experiment. Moreover, hMSC are known to 

produce SDF-1 when they are exposed to the same factor (Stich et al. 2009). 

This, of course, induces local fluctuations of SDF-1 concentration which, 

macroscopically might alter the concentration gradients profile. This 
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occurrence might be difficult to quantify along with the migration 

experiment. Nevertheless, both MG63 and hMSC unequivocally perceive the 

presence of the chemotactic factor, as demonstrated by the cell trajectories 

and the drift speed. The uncertainty that is associated to the cell position 

with respect to the concentration gradient is reflected in the large standard 

deviations that we have observed when evaluating the migration parameters. 

Nevertheless, statistically significant differences were found in the drift 

speed, CI and random speed. In conclusion, the present work represent a 

first step toward the characterization of the migratory behavior of hMSC 

exposed to SDF-1. In conclusion, this work quantifies relevant migration 

parameters of hMSC subjected to a SDF-1 gradient. The results may provide 

useful cues for the design and production of smart scaffold that are able to 

recruit in vivo stem cell. 
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CHAPETER 3 

Effect of SDF-1 pre-stimulation on  

MSC migratory behaviour 
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3.1 Introduction 

Critical to the implementation of Mesenchymal Stem Cells (MSCs) in TE 

strategies is a thorough understanding of which external signals in the stem 

cell microenvironment provide cues to control their fate decision in terms of 

proliferation, migration or differentiation into a desired, specific phenotype. 

The precise spatial and temporal presentation of factors directing stem cell 

behaviour is extremely important during development and natural healing 

events, and it is possible that this level of control will be vital to the success 

of many regenerative therapies.  

The efficiency of therapies to augment recovery from damaged tissues 

depends on not only sufficient amount of MSCs, but also efficient delivery of 

these cells to the desired target tissue. Recruitment of bone-marrow derived 

MSC to repair damaged tissues and regeneration of the tissue is a complex 

multi-step process. It involves sensing the signal from the remote injured 

tissue that calls for the release of MSCs from their storage niche into 

circulation, homing of circulating MSCs to the target tissues, and in situ 

proliferation and differentation of MSCs into matured functional cells. The 

release of MSCs from their niche in the bone marrow into circulation is 

known as mobilization. The molecular mechanisms for mobilization of MSCs 

are poorly understood. Knowledge about the nature of signals released from 

the injured tissue to mobilize MSCs in the bone marrow is also very limited. 

One hypothesis is that cytokines that are up-regulated under injured 

conditions are released into circulation from remote tissues, stimulating MSC 

to down-regulate the adhesion molecules that hold them at their niche. 

(Zhang et al. 2008). 
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Cytokines and chemokines play critical roles in regulating mobilization, 

trafficking and homing of stem/progenitor cells (Wang et al. 2002). 

In the previous chapter we demonstrated the influence of SDF-1 gradient on 

the dynamics of hMSC migration in 3D collagen matrix. We showed that 

hMSC, cultured in 3D collagen matrix are strongly chemoattracted by SDF-1 

gradient.   

The critical role of SDF-1/CXCR-4 axis in modulating mobilization of MSCs is 

demonstrated by several studies. Zhang and colleagues (2008) showed that 

over-expression of CXCR-4 on MSCs surface augments myoangiogenesis in 

the infracted myocardium.  

Tissue regeneration requires transfer of a vast amount of information 

between different cell populations and organ systems, and growth factors 

play an important role in this communication and information transfer 

between cells and their microenvironment and between organ systems. 

Growth factors and chemokines transmit signals regulating development and 

normal growth control, including the stimulation or inhibition of cellular 

proliferation, differentiation, migration, adhesion, and gene expression 

(Alberts 2008). Growth factors and chemokines initiate their action by 

binding to specific receptors on the surface of target cells, and the level of 

expression of these receptors, in part, determines cell responsiveness. The 

chemical identity, concentration, duration, and context (e.g., presence and 

sequence of multiple factors) of these molecules contain information that 

dictates cell fate. 
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Gradients of chemokines play key role in both tissue regeneration and 

developmental biology, as they provide a mechanism by which cells can 

obtain spatial and directional cues.  

 

3.2 Materials and methods 

3.2.1 Cell cultures 

Human mesenchymal stem cells (hMSC) were purchased from Lonza Inc. 

(Walkersville, MD, USA). Three hMSC aliquots were pooled to reduce bias 

from samples derived from single donors, rinsed twice with PBS and plated at 

a final density of 2-5x106 cells/100 mm dish in Coon‘s modified Ham‘s F12 

medium (Biochrom AG, Berlin, Germany), supplemented with 10% FBS and 

1 ng/ml FGF-2 (LiStarFish, Milan, Italy) (1, 2).  

For migration assays hMSC were cultured in alpha Modified Eagle‘s medium 

(MEM, Bio-Wittaker, Belgium) containing 10% (v/v) fetal bovine serum 

(FBS, HyClone, USA), 100 U/ml penicillin, 0,1 mg/ml streptomycin and 2mM 

L-glutamine (Sigma). All cultures were kept in a humidified atmosphere at 

37°C and 5% of CO2; the medium was replaced every 3 days. Whenever 

needed cells were trypsinized by standard protocols, washed in PBS and 

resuspended to the desired concentration for further use. 

For cultures in 3D collagen lattices, hMSC were cultivated in reconstituted 

bovine collagen gel (APCOLL DEVRO) that was prepared following 

manufacturer‘s procedure. Briefly, 1 ml of 10X DMEM (Gibco, Life 

Technologies) was added to 8 ml collagen (stock solution: 3 mg/ml). Next, 1 

ml of 0.1 M NaOH was added and pH 7.2 was reached by adding 0.1 M HCl. 
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The resulting collagen solution (2.4 mg/ml), was gently mixed with the cells 

and allowed to gelify for approximately 40 minutes at 37°C, 5% CO2.  

 

3.2.2 Immunofluorescence analysis of cell surface antigen expression on 

hMSC. 

The hMSC phenotype was assessed on P1 cells by immunofluorescence. Flow 

cytometric analysis was performed by staining 1x105 cells/sample of each cell 

type at 4°C, for 30 minutes with the following monoclonal antibodies (moAb): 

fluoresceine isothyocyanate (FITC)-labeled anti-CD34, -CD45, (Miltenyi 

Biotech, Bergish-Gladbach, Germany), -CD105 (Acris Antibodies, Milan, 

Italy), or R-phycoerithrin (PE)-labeled anti-CD63 (BD Biosciences, San Jose, 

CA, USA), -CD90 (BioSource Europe S.A., Nivelles, Belgium). FITC- and PE-

labeled isotype-matched immunoglobulins (DakoCytomation, Glostrup,  

Denmark) were used as negative controls. Positivity for CD49a, CD117 and 

CXCR-4 was analyzed by indirect immunofluorescence; briefly 1x105 cells of 

each sample were stained with the anti-CD49a or -CD117 monoclonal 

antibody (LiStarFish) or anti-CXCR4 (R&D System, Minneapolis, MN, USA) 

and incubated at 4° C for 30 min in the dark. Cells were rinsed twice with 

cold phosphate buffered saline (PBS) with 2% FBS, and were further stained 

with a secondary goat anti-mouse IgG-FITC moAb (Jackson ImmunoResearch 

Lab. Inc., West Grove, PA, USA) and incubated for 30 min more at dark. 

Sample were rinsed twice with cold PBS+2% FBS, then cells were 

resuspended and analyzed by flow cytometry (FACScan, BD Biosciences, San 

Jose, CA). Some cell samples were permeabilized by exposure to a solution 

containing 0,1% Na-citrate and 0,1% Triton on ice for 5 minutes prior to 
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immunostaining to evaluate the citoplasmic positivity. The effects of the SDF-

1 prestimulation on the expression of CXCR-4 in hMSC were evaluated by 

culturing the cells in collagen gels as described in the previous section. After 

24, collagen matrices were rinsed twice with PBS and digested by collagenase 

type A (2.5mg/ml in PBS for 40 minutes at 37C°; Roche Italia, Milan, Italy) to 

release cells from the matrix. The enzymatic digestion was neutralized with 

FBS and the cell population was collected by centrifugation for further 

processing. 

 

3.2.3 mRNA extraction and Real Time RT-PCR 

Cells aliquots, either from monolayer cultures on plastic dishes or from 

collagen matrices, at different passages and/or timings, were used for mRNA 

extraction, using the PerfectPure RNA Cultured Cell Extraction Kit (5-Prime 

GmbH, Hamburg, Germany),according to the manufacturer‘s instructions. 

Reverse transcriptions were performed by using the SuperScriptTM III RT-PCR 

kit (Invitrogen, Milan, Italy).  Aliquots of each cDNA sample were then 

processed for quantitative real time RT-PCR, using the RealMasterMix SYBR 

2,5 (5-Prime) in an Eppendorf Mastercycler Realplex2 apparatus; assessed 

genes were the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

CXCR-4; primer couples were either derived from published literature 

(Giannoni et al. 2010) or purposely designed. A denaturing step was 

performed at 95°C for 2 minutes; cycling conditions were set at 94°C for 30 

sec, at 60°C for 30 sec and at 72°C for 30 sec, for 35 cycles. Real time PCR 

runs were performed in quadruplicate and the specificity of the reaction was  
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counterchecked by the analysis of the melting curve of the amplified 

products. 

The effects of the prestimulation with SDF-1  on the mRNA of CXCR-4 

production in hMSC were evaluated by culturing and subsequent extraction 

of cells from collagen gels in analogous manner as described in the previous 

section. mRNA was then extracted in the same manner as the conventional 

2D culture. 

 

3.2.4 Chemotaxis experiment in three dimensional collagen gel 

The analysis of cell movement under the effect of SDF-1 gradient was 

performed in a similar way to that presented by Knapp et al. (1999). Briefly, 

two rectangular shaped wells (270 and 540 l volume) were punched in a 3 

mm thick Polydimethylsiloxane (PDMS) cylinder (same device described in 

the previous chapter). The two wells were separated by a 2 mm large wall 

with a 2 mm channel in the middle. The chamber was attached on a glass 

coverslide using a silicone glue and autoclaved prior cell seeding.  

The chemotaxis experiment were carried out by injecting a cell-seeded 

collagen solution (15x103 hMSC in a 2.4 mg/ml collagen solution),doped with 

SDF-1 at two different concentration (100 or 200 ng/ml) in the larger well. 

The gel was incubated at 37°C, 5% CO2. After 24 h, a 2.4 mg/ml collagen 

solution, either doped with 0, 30 or 60 ng of SDF-1, was injected in the small 

well. The same solution was carefully injected within the channel that 

connects the two wells in order to allow the diffusion of the factor. The 

solution was allowed to gelify for approximately 1 h in a mini-incubator 

mounted on the automated stage of an inverted optical microscope. Videos of 
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migrating cells were obtained by acquiring images (1.6 × 1.2 mm) on selected 

regions of the cell populated collagen gel (the regions under investigation are 

highlighted in figure 1), every 10 minutes for 24 hours using an Olympus IX 

50 optical microscope (Olympus Co., Tokio, Japan) equipped with a mini –

incubator mounted on an automated stage (PRIOR, Rockland, MA) and a 

CoolSnap Camera (Photometrics, Tucson, AZ). The images were focused on 

three different planes: approximately 0.5 mm above the bottom of the 

channel, middle plane of the channel and approximately 0.5 mm above the 

middle plane, thus resulting in 12 time lapse videos. In each experiment 20 – 

35 cells were focused. 

 

3.3 RESULTS 

3.3.1 Characteristics of hMSC derived from bone marrow 

Human MSC were expanded in monolayer cultures and phenotyped by FACS 

analysis, upon detachment from plasticware and immediately prior to use in 

collagen matrices. Cells displayed a standard fibroblastic morphology; their 

phenotypic profile comprised positivity to CD49a, CD63, CD90 and CD105 

for more than 90% of the assessed cells. At the same time less than 2% of the 

total cell population resulted positive for classical hematopoietic markers, 

such as CD34, CD45 or CD117. Surface expression of the SDF-1 receptor, 

CXCR4, instead, was established for 16% of the assessed cells. Nonetheless, 

as a whole, the available cells displayed a classical phenotypic signature of 

mesenchymal precursors; they were thus retained representative of the 

population of stromal stem progenitor cells, either residing within or able to 
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migrate to lesion sites, and involved in the regeneration of damaged 

mesenchymal tissues.  

 

3.3.2 Effects of SDF-1 prestimulation on CXCR4 receptor expression 

Real Time PCR analysis showed up-regulation of transcript for CXCR4 

receptor after exposure of hMSC, in 3D matrices, to a higher SDF-1 factor 

concentration  (figure 1 A). 

Transcript data was paralleled by detailed cytofluorimetric analysis, that 

showed higher level of intracellular expression of thee receptor respect to the 

hMSC not affected by a prestimulation with 200ng/ml of SDF-1 (figure 1 B). 

 

 

    
  A                                                           B 

 

Figure 1. Expression of CXCR-4 in BMSC after SDF-1 stimulation. Results show that 

exposure of stem cell to SDF-1 affects both mRNA production and the intracellular 

expression of CXCR-4 receptor. 

 

 

3.3.3 Effect of SDF-1 stimulation on expression of  motility relative    

       genes 

 

Since SDF-1 caused a chemtactic response of hMSC, our main aim was to 

identify molecules that were related to hMSCs movement. Real Time PCR 



100 
 

analysis  highlighted that 3D culture systems strongly restore the expression 

of specific genes related to stem cells migration, but stimulation with SDF-1 

do not affect levels of transcript (figure 2).  

 
Figure 2 Real time analysis for genes with increased expression after 3D culture. 

 

Real Time PCR analysis showed slight up-regulation of transcript for 

Podocalyxin-like protein and CD49F (6 integrin) genes, in hMSC seeded on 

plastic and stimulated with SDF-1 respect to the same cells cultured and 

stimulated into collagen matrix (figure 3 A). 

Conversely when hMSC  are seeded into collagen lattices the stimulation with 

SDF-1 was translated with up-regulation of CD-11A and LAMA-3 transcript 

(figure 3A). Stimulation with SF-1 (200ng/ml), of hMSC, seeded on plastic, 

strongly affect the mRNA production of several genes correlated with 

adhesion and motility phenomena (figure 3B)  
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Figure 3 Effect of stimulation with SDF-1 on mRNA production of genes relative to adhesion 

and migration. Panel A: Relative increase of transcript for Podocalyxin-like protein; CD49-F; 

CD11; LAMA3 in hMSC cultured on plastic or in collagen matrix. 

Panel B: Effect of SDF-1 stimulation on mRNA production for: Adservin (ADSV); Podocalyxin-

like protein; Kindlerin (KINDL), Myosin-I- (MYO); CD49-D; CD49F; CD11A; LAMA3; N-CAM-

1 

 

3.3.4 Effect of SDF-1 prestimulation on migratory parameters 

According to the concentration of SDF-1 used, the experiment will be referred 

as ―control‖ (without SDF-1 gradient), ―100 h‖ (100ng/ml isotropic condition), 

―200 h‖ (200ng/ml isotropic condition), ―100 no prest‖ (100ng/ml anisotropic 

A 

B 
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condition, without prestimulation with SDF-1), ―200 no prest‖ (200ng/ml 

anisotropic condition, without prestimulation with SDF-1), ―100+100‖ 

(100ng/ml anisotropic condition, with prestimulation with SDF-1 at 

100ng/ml), ―100+200‖ (200ng/ml anisotropic condition, with prestimulation 

with SDF-1 at 100ng/ml), ―200+100‖ (100ng/ml anisotropic condition, with 

prestimulation with SDF-1 at 200ng/ml), ―200+200‖ (200ng/ml anisotropic 

condition, with prestimulation with SDF-1 at 200ng/ml). 

Windrose plots of the hMSC trajectories are reported in figure 4. In the 

absence of SDF-1, or in isotropic conditions cells move randomly (figure 4 A-

B-C), whereas in presence of the SDF-1 gradient hMSC predominantly 

migrate toward the chemoattractant source (figure 4 D-E-F-G-H-I ). Most of 

the cell tracks are co-aligned with the horizontal axis, i.e. the direction of 

SDF-1 gradient, particularly in the 100+100 conditions. Moreover, the SDF-1 

gradient affects cells directional persistence. In fact, hMSC tracks are highly 

scattered in the control, whereas they are smoother when the gradient is 

present.  

The effects of SDF-1 gradient on the migration speed values are indicated in 

figure 5 A and B for the values of Srandom and Sbias respectively. Although the 

average value of Srandom  increases with the concentration gradient slope, no 

significant differences are observed among Srandom values. On the other hand, 

a significant difference of  Sbias  is observed among the experimental setups. 
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Figure 4 Windrose plots of hMSC trajectories recorded in the 24 h cell tracking experiment. 

A: control, B: 100h; C:200h, D: 100 no prest, E: 200 no prest, F:100+100, G:100+200, H: 

200+100, I: 200+200.  

 

 

 

A 

I H G 

F E D 

C B 
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 Figure 5 Box and whiskers plots of the migration parameters, evaluated for hMSC                   

                  cells in the 9 different conditions. 

 

 

A 

B 
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Discussion 

 

Crucial for the improvement of stem cells based therapies is to gain further 

insight into processes involving migration, homing and engraftment of MSC, 

all of which are fundamental for in situ tissue engineering strategies. 

Our previous study highlighted the chemotactic effect of SDF-1 gradient on 

hMSC in three-dimensional collagen matrices. 

Our results showed that the CXCR4 transcript is strongly expressed by 

hMSC, however, the surface expression of the CXCR4 antigen was quite low, 

confirming the findings of others (Kortesidis et al. 2005, Wynn et al 2004) 

and suggesting that this protein can be expressed intracellularly rather than 

on the surface. The majority of CXCR4 (98%) is localized in endosomal 

compartments and cycles continuously to and from the cell surface via 

endocytosis involving clathrin-coated pits (Zhang et al. 2004), and we can 

assume that CXCR4 sequestered intracellularly in MSCs is mobilized to the 

cell surface, during cytokine stimulation.  

Here we showed that in addition to its role in mediating cell migration, SDF-1 

may also play important autocrine roles. We demonstrated that hMSC are 

able to synthesis this chemokine, which may act in an autocrine manner via 

CXCR-4 (figure 1). The up-regulation of CXCR-4, after SDF-1 stimulation is 

reflected in a different migratory behavior of hMSC in response to a SDF-1 

gradient.  

Interestingly the exposure of hMSC, seeded in collagen lattices, to SDF-1 

induces the down-regulation of CD11A and LAMA3, respect to the same cells 

cultured on plastic, in which we can observe an up-regulation of the 

transcript for the same genes . This observation seems to recapitulate the in 
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vivo phenomena in which cytokines that are up-regulated under injured 

conditions are released into circulation from remote tissues, stimulating MSC 

to down-regulate the adhesion molecules that hold them at their niche. 

Phenomenon that is impossible to realize when the cell adhere to the plastic, 

a situation too far away from the in vivo conditions (figure 3 A). 

The stimulation with SDF-1 in 3D environment appears to disadvantages the 

up-regulation of same genes involved in the proliferation activity, that is, 

instead, advantage in culture conditions on plastic (figure 3A). Moreover 

when cell are cultured on plastic the exposure to SDF-1 (200ng/ml) give rise 

to up-regulation of  Adservin, Podocalyxin-like protein, Kindlerin, Myosin-I-, 

CD49-D, CD49F, CD11A, LAMA3, N-CAM-1, genes involved in adhesion and 

migration of stem cells (figure 3B). 

Curiously the short-term (24 h) culture in tridimensional collagen matrix 

resulted in up-regulation of several genes involved in cell migration (figure 2). 

Bone morphogenetic protein-6; known to regulate migration of vascular 

smooth muscle cells and of immature neurons. 

Prostaglandin endoperoxide synthase -type 2; inducible isoenzyme, known to  

be up-regulated after CXCL8 –, or progesterone-, or BMP6 administration. 

TIMP3: Tissue inhibitor of Matrix metalloprotease 3;in vitro culture 

confluence reduces migration:reactivation of proliferation/motility depends 

upon matrix degradation, thus upon impairement of TIMP3 expression. 

Uprisal in TIMP3 mRNA correlates with differentiation. 

CCL26 (eotaxin-3):Known to regulate chemotaxis of basophil and eosinophils. 

The microenvironment has to be regarded as an informative milieu in which 

cultured cells should find proper clues to drive their functions and/or 
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differentiation pathways, ultimately improving  their outcomes in cell-based 

tissue regeneration attempts. 

Our results underlined two different roles of SDF-1. This chemokines is able 

to strongly chemoattract hMSCs in tridimensional collagen matrix. The event 

is particularly enhanced for MSC, affecting different aspects of cellular 

motility namely the shape of the paths, the bias component and the random 

component of the speed. However,  SDF-1 displays  autocrine effects via 

CXCR-4; indeed the stimulation of hMSC  with SDF-1 results in the up-

regulation both of CXCR-4 receptor transcript production and intracellular 

expression. This evidence is translate in a alteration of migratory parameters 

of MSC in response to SDF-1 gradient.   
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CHAPETER 4 

Peptide activated materials to recruit 

circulating stem cells 
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4.1 Introduction 

In order to achieve successful regeneration of damaged tissue or organs, the 

development of biomaterials for TE applications has recently focused on the 

design of biomimetic materials that are able to interact with the cell by 

biomolecular recognition. 

The design of biomimetic materials is an attempt to make the materials such 

that they are capable of eliciting specific cellular responses mediated by 

specific interactions, which can be manipulated by altering design 

parameters. Biomolecular recognition of materials by cells can be achieved by  

several design strategy. One of these involves incorporation of cell-binding 

peptides on biomaterials surface. The immobilization of signaling peptides 

gives, for example, the surface of biomaterials adhesive for a specific cell 

population. Indeed the ability to identify and isolate specific stem cells from 

heterogeneous populations is of fundamental importance in order to develop 

novel stetegy for TE and regenerative medicine applications. As matter of fact 

in order to effectively allow clinical implemetation of several experimental 

procedure is necessary to target specific cells that are effectively able to 

regenerate tissue/organ defects. 

In particular, the development of single-cell tools would allow the detection of 

MSC cells in blood for in situ Tissue Engineering applications. Moreover, a 

deeper understanding of what signals can trigger specific actions will be 

necessary in order to create novel stem cells based therapies, which rely 

upon the selection and characterization of stem cell populations identified in 

numerous adult tissues.  
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The first step in creating a biomimetic surface, useful for TE applications, is 

the development of suitable surface coatings allowing efficient coupling of 

biologically active molecules on the device. Such coatings can be obtained 

through self-assembly of alkanethiol monolayers (SAMs)  (Ostuni et al. 1999, 

Zhang et al. 2003, Palyvoda et al. 2008).  

Self-assembled monolayers (SAMs) of alkanethiols on gold are common model 

systems for biological and biotechnological applications because of their 

unique set of attributes (Yamauchi et al. 2004; Wegner et al. 2004). SAMs 

can be designed to be ―bioinert‖, and therefore resistant to nonspecific 

protein adsorption. They can also be terminated with a wide variety of 

functional groups, which enables variation in their surface reactivity, charge 

density, hydrophilicity (Harder et al. 1998; Li et al. 2005; Boozer et al. 2006). 

Finally, the molecular structure of SAMs results in a well-defined density of 

functional groups on the surface (Houseman et al 2003; Shwartz et al. 2001; 

Lee et al. 2007), without compromising their structure or activity (Du et al. 

2005). This is particularly important in mechanistic studies of intermolecular 

interactions, such as receptor-ligand interaction. On the basis of these 

attributes, alkanethiol monolayers formed on gold-coated glass substrates 

have been used as model systems for exploring several biological phenomena, 

including cell adhesion (Houseman et al. 2004; Roberts et al. 1998) cell 

migration (Liu et al. 2007), and the analysis of intermolecular interactions 

(eg., protein-protein and DNA-DNA interactions) (Wegner et al. 2005; 

Hokahata et al. 1998, Gong et al. 2006). 

SAMs have been formed on a variety of surfaces, including glass (Banga et al. 

2005), silicon (Wasserman 1989), gold (Pale-Grosdemange et al. 1991), 
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diamond (Lasseter et al. 2004), and amorphous carbon (Sun 2006). SAMs 

formed via coordination of alkanethiolates onto gold-coated substrates are of 

particular interest in biochemical applications, as they are formed easily and 

rapidly (Bain et al. 1989), are stable in polar solvents (Flynn et al.2003).  

The latest approaches in tissue-engineered repair of bone suggest to 

potentiate the self-healing properties displayed by tissues and progenitor 

cells within the host. In this light, materials able to selectively recruit 

mesenchymal stem cells, the ones deputed to bone repair could potentiate 

the self-healing capacities of a patient directly within the lesion sites. Our 

research aims at creating an innovative device that will isolate Mesenchymal 

Stem Cells from different sources. 

Literature studies shown that synthetic peptide derived from the second 

cysteine rich domain (184-204 aa)  of the canonical Wnt inhibitor Dickkopf-1 

(DKK-1) has utility in controlling the growth and recovery of hMSCs from 

bone marrow stroma. DKK-1 binds LPR6 receptor via its carboxyl-terminal 

cystein rich domain. 

Monocyte chemotactic Protein-1 (MCP-1) is a member of CC  chemokine 

family. Peptide (11-38 aa) derived from its aminoacidic sequence, binds CCR2 

receptor. It has been hypothesized that MCP-1 levels increase after ischemic 

brain providing signals required to promote adhesion and migration of 

monocytes and lymphocytes, but also promotes migration of MSCs into the 

lesion. 

In this study we present a call for hightroughput signals presentation assay 

that allow the possibility of rapid, specific and detailed analysis of cell 

population. 
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4.2 Materials and methods 

4.2.1 Cell culture 

Human mesenchymal stem cells (hMSC) were purchased from Lonza Inc. 

(Walkersville, MD, USA). Three hMSC aliquots were pooled to reduce bias 

from samples derived from single donors, rinsed twice with PBS and plated at 

a final density of 2-5x106 cells/100 mm dish in Coon‘s modified Ham‘s F12 

medium (Biochrom AG, Berlin, Germany), supplemented with 10% FBS and 

1 ng/ml FGF-2 (LiStarFish, Milan, Italy) (1, 2). Cells were maintained in 

culture and used within their 3rd passaging (P1-P3). All cultures were kept in 

a humidified atmosphere at 37°C and 5% of CO2; the medium was replaced 

every 3 days. Whenever needed cells were trypsinized by standard protocols, 

washed in PBS and resuspended to the desired concentration for further use. 

 

4.2.2 Aminoacidic sequences of synthetic peptides 

MCP-1: CCYNFTNRKISVQRLASYRRITSSKCPK 

DKK-1: LSSKMYHTKGQEGSVCLRSS 

 

4.2.3 Peptides binding assay  

To assess the affinity of the synthetic peptides (MCP-1 and DKK-1), hMSCs 

were cultured onto chamber slides and incubated at 37 °C and 5%CO2.  After 

24h of incubation cell were fixed with 4% paraformaldeyde, for 15 min at RT, 

rinsed twice with PBS buffer and incubated with PBS-BSA 0.5% to block 

unspecific binding. Monolayers were then incubated with peptides FITC 

conjugated (40 g/ml), prepared in a solution of PBS-BSA 0.5% for 1h. 



114 
 

Finally, samples were rinsed 3 times with PBS and observed by confocal 

microscopy, using a 10X objective.  

Affinity analyses were performed by means of a confocal microscope Zeiss 

LSM 510, equipped with an argon laser, at a wavelength of 488 nm and a 

He–Ne laser at a wavelength of 543 nm and objectives 10X. Images were 

acquired with a resolution of 512X512 or 1024X1024 pixel. The emitted 

fluorescence was detected using filters LP 505, BP 560–600 and HFT 

488/543 for FITC. 

 

4.2.4 Preparation of a Monolayer on Gold Substrate  

Gold substrates (purchased from Arrandee Company) were sonicated in 

ethanol for three minutes and washed with isopropanol to remove all organic 

contaminants. The gold substrates were dried under a stream of nitrogen 

prior to monolayer formation. Monolayers were formed by incubating cleaned 

gold substrates in inert atmosphere in an N-methylpyrrolidone anhydrous 

solution containing mixture of NHS ester monothiolalkane(C11)PEG6-NHS 

((EG)6NHS) and (11-mercaptoundecyl) triethyleneglycol, (EG)3OH at various 

molar rations (2 mM total thiol concentration) overnight (figure 1). In 

particular were prepared mixed alkanethiol solutions containing: 

1. 0 % (EG)3 OH  and 100 % (EG)6NHS  

2. 100 % (EG)3 OH   and  0 % (EG)6NHS 

3. 99% (EG)3 OH  and 1 % (EG)6NHS 

4. 98% (EG)3 OH  and 2 % (EG)6NHS 

5. 95% (EG)3 OH  and 5% (EG)6NHS 
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Figure 1. Mixed SAMs using solution that contain both: (EG)6NHS and (EG)3OH terminated 

alkanethiolates 

 

Next day the slides were washed once with isopropanol anhydrous, once 

quickly with ethanol (to condition the slides), then rinsed again with 

isopropanol and they were blow dried with argon.  After SAM deposition on 

SAM 95% (EG)3 OH  and 5% (EG)6NHS, each peptide was immediately 

covalently attached onto SAM surfaces  incubating the activated SAM with 1 

mg/mL of peptides in PBS solution (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 Figure 2 Chemical immobilization of  peptides on mixed SAMs 

(EG)3OH 
(EG)6NHS NHS 

OH 

DKK-1 

LSSKMYHTKGQEGSVCLRSS 

NHS NHS NHS NHS 

MCP-1 

CCYNFTNRKISVQRLASYR

RITSSKCPK 

 

NHS NHS NHS NHS 
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Furthermore to avoid the nonspecific binding of cellular receptors to the non 

reacted NHS function, the SAM surface monolayer was treated with 

hydroxylamine solution (NH2CH2CH2OH). The negative control used were: 

1. SAM 100 % (EG)3 OH   and  0 % % (EG)6NHS 

2. SAM 0 % (EG)3 OH   and  100 % % (EG)6NHS treated with  NH2CH2CH2OH    

    (excess) 

3. 95% (EG)3 OH   and 5% % (EG)6NHS treated with  NH2CH2CH2OH (excess) 

XPS studies on the SAMs 

1. 0 % (EG)3 OH  and 100 % (EG)6NHS  

2. 100 % (EG)3 OH  and  0 % (EG) 6NHS 

3. 99% (EG) 3 OH  and 1 % (EG) 6NHS 

4. 98% (EG) 3 OH  and 2 % (EG) 6NHS 

5. 95% (EG) 3 OH  and 5% (EG) 6NHS 

Detected composition of the carbon, oxygen and sulfur on the surface close 

to the theoretical values of these constituents in the SAM (data not shown). 

Moreover the surface properties were verified and the values obtained are in 

agreement with those reported in literature (Bain, C. D.; Whitesides, G. M. 

Langmuir 1989, 5, 1370-1378). Variable-angle XPS was used to obtain 

information on SAM composition and assembled alkanethiol orientation. 

Values obtained are in agreement with theoretical calculations, within the 

sensitivity of the instrument. Comparing atomic percentages at multiple 

depths of analysis indicated that SAMs: 

1. 0 % (EG)3 OH  and 100 % (EG)6NHS  
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2. 100 % (EG)3 OH  and  0 % (EG) 6NHS 

3. 98% (EG) 3 OH  and 2 % (EG) 6NHS 

4. 95% (EG) 3 OH  and 5% (EG) 6NHS 

were oriented correctly, with the sulphur atom at the greatest depth from the 

surface an the functional tail groups being closest to the surface.  

 

 

4.2.5 Cell sorting assay 

In order to demonstrate that DKK-1 and MCP-1 synthetic peptides, are able 

to recovery hMSCs, 2x106 cells were injected in a purposely designed close-

system bioreactor (Figure3), providing chambers to hold the functionalized 

slides. A steady flux (80rpm) of serum-free culture medium through all 

chambers was maintained  for 45 minutes by the use of a multichannel 

Watson-Marlow 323 peristaltic pump. The functionalized slides were then 

washed in PBS and cells were fixed in 4% PFA.  

Standard immunofluorescence staining, using monoclonal anti-human CD44 

(Acris Antibodies, Herford, Germany), anti-human Actin, anti CD-146 (BD 

Biosciences, San jose, CA, USA) were revealed respectively by goat-anti 

mouse PE- or FITC-conjugated IgG (Jackson Immunoresearch Lab. Inc., West 

Groove, PA, USA); DAPI was used as nuclear staining.  

Blockade of unspecific sites was performed incubating slides with goat serum 

diluted in PBS (1:10). Five images (20x enlargements) for each surface were 

acquired on a BX51 Olympus microscope; cell number and 
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nucleus/cytoplasm area ratios were calculated analyzing acquired images 

with ImageJ free software (version 1.38; http://rsb.info.nih.gov/ij/). 

 

 

                       

                     Figure 3. Close -system bioreactor 

 

 

4.3 Results 

4.3.1 Peptide binding assay 

In order to evaluate the affinity of hMSCs by MCP-1 and DKK-1 synthetic 

peptides, we incubated cell monolayers with peptides. On inspection of the 

stained monolayers with confocal microscope, binding of hMSCs by MCP-1 

and DKK-1 was evident (Figure 4 A-B; C-D). The control was carried out in 

the absence of peptides and no fluorescence is detectable (Figure 4 E-F). 

 

 

http://rsb.info.nih.gov/ij/
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                 FLUOR.                      PHASE 

           

          

                    

 

Figure 4. Representation of peptide binding assay. Fluorescent signal is presented on the left 

and phase images on the right. The binding was visualized by fluorescence, for synthetic 

peptide derived from MCP-1 (A-B) and DKK-1 (C-D). The control was carried out in the 

absence of peptides (E-F). 
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4.3.2 Cell sorting assay 

In order to evaluate the cell recovery properties, each functionalized surface 

were exposed to a constant flux of human bone marrow stromal cells in a 

bioreactor, for 45 minutes.  

We observed that peptides immobilization is required to obtain cell 

attachment on the SAM-functionalized gold substrates. In the absence of 

MCP-1 or DKK-1 peptides cell failed to attach on surfaces. To establish the 

efficiency of trapping on functionalized surfaces, we stained and counted the 

nuclei on each acquired images. Interestingly the largest amount was found 

onto MCP-1-treated materials (mean±S.D. per visual field: 176±10; n = 5; 

p<0,001), (Figure 5). 

             

                    

Figure 5. Average cell number per visual field of MSC attached on surface functionalized with 

DKK-1 or MCP-1 

 

The morphology of the attached cells, for MCP-1- treated surfaces varied from 

that of the cells attached onto DKK-1 functionalised materials, as 

demonstrated by the different ratio of the nucleus/cytoplasm area. The cells 

attached on surface functionalized with MCP-1 synthetic peptide showed  a 

smaller ratio between area nucleus/citoplasm, demonstrated a bigger 
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dimension of these cell respect to the cells attached on surfaces 

functionalized with DKK-1 peptide (Figure 6). Different dimensions are 

evident also in fiugure 7 (A-B).  

 

 

Figure 6. Nucleus/cytoplasm surface ratio of MSC on treated surfaces with MCP-1 or DKK-1, 

after 45 min under flux *p<0,05; n>100 

 

 

 

Figure 7. Merged fluorescence images (anti-CD44 in green and nucleus in blu) of hMSCs on 

surfaces functionalized with DKK-1 (A) or MCP-1 (B). In D the red arrows evidence the 

presence of clusters of CD44 receptor on hMSCs surfaces, the asterisk indicate the position 

of nucleus. 
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Interestingly immunofluorescence assay showed that cell adherent to both 

MCP-1 and DKK-1 functionalized surfaces are positive for the expression of 

CD146, a relevant marker for the identification of osteogenic precursors able 

to regenerate also a complete and functional marrow  (Sacchetti et al. 2007) 

(figure 8 and 9).  

 

 

Figure 8. Merged fluorescence images (anti CD-44 FITC and antiCD-146-PE) of hMSC 

adherent to functionalized slides with MCP-1 (panel A) or with DKK-1 (panel B) 

 

 

 

Figure 9 Immunofluorescence images of hMSC adherent to functionalized slides with MCP-1 

or with DKK-1. 

 

 

The staining of cytoskeleton of hMSCs linked on functionalized surfaces with 

MCP-1 or DKK-1 peptides showed that the area of cells is effectively crossed 

by a network of actin fibers (green arrows) that unfolds over the edge of 
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overlapping colors anti-actina/anti-CD44 (areas and arrows Merged images 

in orange) (figure 10). 

                              

 

Figure 10. Staining of hMSC adherent to functionalized slides with MCP-1. Nucleus in blu 

(A), cytoskeleton in green (B), anti-CD44 in red. In D there is a merged of three stainig, actin 

fibers (green arrows) unfolds over the edge of overlapping colors anti-actina/anti-CD44 

(areas and arrows Merged images in orange). 

 

 

4.4 Discussion 

The use of sequences derived from DKK-1 and MCP-1 seems to drive the 

selection of specific cell types, proving the possibility to trap progenitor cells 

of mesenchymal tissues onto the treated surfaces. Thus these surface 

modifications may be foreseen as possible implementation of the materials 

used for prosthetic-based approaches in bone repair, provided that studies 

under way allow the determination of the phenotype and the differentiation 

potential of the trapped cells.  

In particular, the number of cells sequestered by the surfaces functionalized 

with MCP-1 synthetic peptides is higher than number of cells attached on 

DKK-1 functionalized slides.   

Furthermore cells spread on the MCP-1 activated surfaces in a more effective 

way respect to the cells that interact with DKK-1probably due to a better 

adhesion of cells. 

A B C D 
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Interestingly immunofluorescence assay showed that cell adherent to both 

MCP-1 and DKK-1 functionalized surfaces are positive for the expression of 

CD146, a relevant marker for the identification of osteogenic precursors able 

to regenerate also a complete and functional marrow  (Sacchetti et al. 2007) 

(figure 8 and 9). This is of fundamental importance to improve the selection 

of a specific cells population that are able to effectively differentiate and 

regenerate tissue damage. 

Our results represent a first step for the realization a more complex device 

able to select and trap Mesenchymal Stem from heterogeneous population. 

For therapy development, this kind of biomimetic scaffold could represents a 

fast and efficient clinical platform technology for purifying and further 

characterising heterogeneous populations. The ability to target cell-surface 

markers expressed selectively by distinct cell types is particularly useful for 

the enrichment of stem cells. The isolation of ―rare cells‖ is, of course, 

entirely dependent on their identification.  
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