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Chapter 1

Introduction

1.1 Introduction

It is well known that light can carry mechanical properties. After the devel-
opment of the Maxwell wave theory of light, Poynting showed that an elec-
tromagnetic wave carries defined linear momentum and energy flux through
the plane, transverse to the propagation direction. From the classical point
of view the value H ×E is the linear momentum per unit volume and from
the quantum point of view each photon has a definite projection of the lin-
ear momentum on the propagation direction, equal to h̄k, where k is the
wave vector and h̄ is reduced Planck constant. Another degree of freedom
– angular momentum is also well recognized by now. The first theoretical
research, made by Poynting in 1909 [1] showed that a circularly polarized
light beam carries a flux of angular momentum equal to λ

2πu, where u and
λ are the average energy density and beam wavelength. Expanding this
result to the quantum mechanical framework, a circularly polarized beam
carries an angular momentum equal to h̄ per photon with sign depending
on the helicity of the polarization. The presence of the angular momentum
was later confirmed and measured experimentally in a series of the experi-
ments, performed by Beth [2, 3]. This “spin” angular momentum (SAM),
however, is not the only one; photons can carry an another type, called
orbital angular momentum (OAM), that may be present in a beam, which
is produced by the transverse components of the linear momentum. The
OAM was left outside general attention of scientists for a long time, remain-
ing more a mathematical formality than an actual property of light to be
exploited, since the contribution of these two types of angular momentum
are indistinguishable in general.

A significant breakthrough happened when, in 1992, Allen et al. [4]
showed that certain types of beams can carry a definite amount of OAM
per photon in the similar way as a circularly polarized beam carry a definite
value of SAM per photon. The main result of their work was that in the
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paraxial approximation the contribution of spin and OAM can be clearly
separated and that the beams having a phase factor of exp (i`ϕ), where ϕ
is the transverse angular coordinate and ` is an integer number, carry a
definite amount of OAM per photon, equal to `h̄, which is conserved under
propagation in homogeneous medium. This phase factor forms a contin-
uous spiraling phase profile of the beam known as “optical vortex”. The
work opened a new, infinite dimension degree of freedom similar to the spin,
but independent on the vectorial property of the light and associated to
the phase structure of the beam. Since 1992 the attention towards OAM
is increasing every year and the OAM-carrying beams have already found
their place in many fields of classical and quantum optics. One of the most

Figure 1.1: An example of the spiraling phase profile of the OAM carrying
optical vortex. (a) the order of the vortex is equal to ` = 1, (b) - the order
of the vortex is equal to ` = 2.

noted properties of OAM is how the OAM-carrying beam interact with the
absorbing matter. Is is well known, that if a circularly polarized beam is
absorbed by a particle a transfer of angular momentum happens that makes
the particle rotate around its axis. The picture is different in the case of
OAM where a micron-sized particle is rotated around the beam center in-
stead. An illustration of this different mechanical coupling can be seen in
Fig. 1.2, where the two types of optical traps are used to induce different
kinds of rotation. The last rotation is impossible to achieve with polarized
beam and the use of OAM has already found a wide number of applications
in the optical tweezers where manipulation of small particles is needed.

OAM has also found its place in communication and computation, both
classical and quantum. OAM eigenmodes, can be used as an alphabet for
free-space communication [6]. The multidimensionality of the OAM space
allows to expand the amount of the information, carried at the same time,
to the theoretically infinite value, while the polarization space is limited to a
single bit. A research, where more than one radio channel have been carried
in the same electromagnetic wave of radio frequencies, was performed with
excellent results, bringing the concept of OAM outside the optics field and
carrying it closer to the every-day applications [7]. In the quantum optics
field, classical bits are substituted by qubits, or higher-level systems, called
qudits. Since the first proof of quantum nature of the OAM [8] this degree
of freedom became one of the most promising candidates for the realization
of the qudits with photons. This opens a wide road to many quantum
information and quantum cryptography algorithms, that till now remained



CHAPTER 1. INTRODUCTION 3

Figure 1.2: video frames of a movie, demonstrating the angular momen-
tum transfer from the beam to a particle. In the line above the SAM is
transferred, resulting in the rotation (indicated by an arrow) of the particle
around its axis. In the lower line the OAM is transferred instead and the
particle is rotated around the beam center, marked by a dark dot [5].

under study. Another promising development is the use of both OAM and
SAM spaces, to encode information into a single photon, allowing to create
multi-entangled and hybrid-entangled photon pair states, as well as single-
photon entanglement, where two Hilbert spaces of the same particle are
found in a non-separable state. OAM concept is also expanding in other
fields of physics, like astronomy [9], diffraction-free optical microscopy [] or
condensed matter physics [10, 11]. For a historical review of the development
of this field the readers are referred to the book [12] where a collection of
checkpoint articles is reported and for more recent developments of the study,
reviews [13, 14, 15, 16, 17] may be also useful.

For now, the introduction of the OAM-based devices into the real world
is mostly limited by difficulties of the creation of the beams that carry
OAM. Some historical techniques,that require astigmatic lenses or complex
interferometric setups are cumbersome, instable or difficult to mount and to
align. The holographic technique, that uses computer generated holograms
to control the phase profile of the beam is extremely versatile when the nec-
essary hologram is generated by a spatial light modulator (SLM), however
high costs of the latter confines this method to the research laboratories
only.

In 2006 a novel liquid crystal device, called “q-plate”, was invented and
realized in the laboratory of the University of Naples by Marrucci et al. [18,
19]. The q-plate is a birefringent waveplate whose optical axis direction is
not uniform, but varying point per point. By transferring the topological
charge that is formed by the anisotropy pattern, into the impinging beam
the q-plate allows to generate OAM-carrying beams of the order defined by
the pattern of the optical axis. The q-plate, despite its simplicity, offers new
and highly efficient generation process that, in authors opinion, may change
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significantly the possibilities of the OAM application. While the structure
of the q-plate is not considerably more complex than a waveplate, q-plate
can generate OAM-carrying beams with theoretically 100% efficiency with
no specific requirements for the input light. The structure of the generated
beams depends on the input polarization, allowing fast switching rates, never
achieved with any known technique. The possibility to tune, or switch the q-
plate generation efficiency with temperature or electric field broadens further
the q-plate universality.

The objective of this thesis consisted mainly of the study of the q-plates,
their manufacturing techniques, properties, q-plate-based devices, and their
applications in classical and quantum optics. A number of novel results were
obtained during this study, namely:

• the LC q-plates with unit topological charge were manufactured using
the photoalignment technique for the first time;

• a photoalignment technique was used for manufacturing new LC q-
plates with different topological charges, including fractional charges
that were not realizable by previously used methods;

• electrical tunability of the q-plates was demonstrated for the first time,
along with the analysis of the structure of the beam outgoing from the
q-plate;

• the control of the generated beam OAM structure by polarization was
demonstrated and a global phase was transferred from spin space to
the OAM degree of freedom;

• a novel setup, based on the q-plate, for the high-alphabet optical com-
munication was proposed and demonstrated;

• a proposal for a novel universal unitary gate, able to manipulate SAM
and OAM degrees of freedom of the single photon at the same time
was done;

• the entanglement of the SAM and OAM spaces of single photon and
correlated photon pair was realized for the first time. The entangle-
ment was tested by violation of the Bell’s inequalities.

Apart the research of the q-plate and its applications, another device able to
control the OAM, was studied, the Polarizing Sagnac interferometer (PSI).
The PSI consists of a Sagnac interferometer with a tilted Dove prism inside.
This device not only allowed to broaden the possibilities for q-plate applica-
tion and was used for the analysis of the q-plate generating properties, but
by itself is able to perform a wide class of operations on the OAM-carrying
beams in both the SAM-OAM degrees of freedom, like sorting the different
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orders of the OAM, realizing unitary quantum gates in the single photon
spinorbit basis and generating specific entangled states.

The thesis is divided in five chapters according to the following structure:

Introduction. The current introduction chapter.

Angular momentum of light. A general introduction to the subject of
the angular momentum of light and OAM-carrying beams together
with the description of the most known devices used for OAM gener-
ation.

Q-plate. In this chapter the q-plate structure and functioning is introduced.
After that the q-plate manufacturing techniques are described and the
manufactured q-plates performance is studied.

Classical applications of the q-plate. In this chapter the applications
of the q-plate in classical optics are discussed. The polarization con-
trol of the generation process and the communication device based
on the q-plate are demonstrated. A more detailed description of the
polarizing Sagnac interferometer is given in this chapter too.

Quantum applications of the q-plate. Quantum optics and information
applications of the q-plate are shown in this chapter, namely the Uni-
versal Unitary Gate is proposed and the hybrid SAM-OAM entangle-
ment is demonstrated.

The structure does not follow any chronological scheme and doesn’t cover
all the research done on the q-plate during last four years; mainly the works
where the author was involved, directly related to this thesis were selected,
with explicit citation of the published papers.

1.2 Notation

Here I will introduce the notation that will be mostly used in all the thesis,
starting from the description of the polarization states of the photon, orbital
angular momentum of the photons and some basic assumptions and labels.

Polarization states

In this thesis the Dirac notation will be used mostly. A bi-dimensional
polarization space will be labeled by a ket-vector |S〉π, where capital letter S
will denote a certain polarization state and the suffix π labels the polarization
space. Among the basic ones, the linear horizontal and vertical polarizations
will be labeled as |H〉π and |V 〉π respectively. Other important polarization
states are the circular left |L〉π and the circular right|R〉π given by
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|L〉π =
1√
2

(|H〉π + i|V 〉π)

|R〉π =
1√
2

(|H〉π − i|V 〉π), (1.1)

with the inverse relations

|H〉π =
1√
2

(|L〉π + |R〉π)

|V 〉π =
1

i
√

2
(|L〉π − |R〉π). (1.2)

Circular polarization states are the eigenstates of the photon Spin An-
gular Momentum (SAM) operator Ŝz

Ŝz|L〉π = |L〉π
Ŝz|R〉π = −|R〉π, (1.3)

with eigenvalues equal to ±1 in units of h̄, respectively.
Another linear polarization basis is made by the antidiagonal and diag-

onal polarization stated |A〉π and |D〉π that correspond to the polarization
plane rotated through ±45◦ from the horizontal one:

|A〉π =
1√
2

(|H〉π + |V 〉π)

|D〉π =
1√
2

(|H〉π − |V 〉π). (1.4)

With these basis states, any elliptical polarization can be given as a
superposition of any two orthogonal states (|L〉π and |R〉π or |H〉π and |V 〉π
or |A〉π and |D〉π).

A common geometrical representation of the polarization state of a pho-
ton is the Poincaré sphere. It is a sphere of unit radius whose surface points
are associated to a certain polarization. The poles of the sphere are usually
mapped to basis states, for example |L〉π for the North pole and |R〉π for
the South one. Then, any other point on the surface can be associated to a
certain superposition of these two basis states. Linear polarizations in this
case will lie on the equator of the sphere while all other elliptical polariza-
tion states will be mapped with the other points on the hemispheres. The
Poincaré sphere is a graphical representation of the SU(2) space and defines
the polarization state up to a global phase only.
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OAM space

Unlike the polarization space which is bi-dimensional, the OAM space has
infinite dimensions. An eigenstate of this space will be denoted by the ket
|`〉o where ` defines the OAM order and suffix o labels the OAM space.
Selecting only the two states |`〉o and | − `〉o we can form a 2D subspace
inside the total OAM space that will be equivalent to the SAM. The equal-
weight superpositions of the basis states inside this subspace will be labeled
analogously to the polarization state as

|h`〉 =
1√
2

(|`〉o + | − `〉o)

|v`〉 =
1

i
√

2
(|`〉o − | − `〉o) (1.5)

and

|a`〉 =
1√
2

(|h`〉+ |v`〉)

|d`〉 =
1√
2

(|h`〉 − |v`〉). (1.6)

In the most literature a beam carrying definite value of OAM is described
by a Laguerre-Gaussian mode LGlp where ` and p are azimuthal and radial
quantum number respectively. This description is often inappropriate since
since most of the devices that generate optical vortices (holograms, phase
plates, q-plates, etc) usually do not produce pure LGlp modes but a super-
position of the modes with same ` number, but different p numbers [20, 21].
While the generated beam still carries a definite amount of OAM per pho-
ton which is invariant under free space propagation, the radial intensity
structure is more complex than in a normal LG beam and changes under
free propagation, in general. Whenever the radial profile has no relevance,
I will denote these, more general OAM eigenfunctions as LG`. Whenever
the OAM eigenstates |`〉 are associated to a LG` function then the equal
weight superpositions |h`〉, |v`〉, |a`〉 and |d`〉 are given by Hermite-Gaussian
functions that will be labeled as HG`, again without particular description
to the radial profile of the beam. An equivalent of the SAM Poincaré sphere
can also be introduced for the 2D subspaces of the OAM with fixed opposite
` [22, 23]. In this case the eigenstates |`〉o and | − `〉o are usually mapped to
the North and south pole of the sphere and similarly to the previous case
the linear HG` superpositions will be located at the equator of the sphere.
All other points of the surface will correspond to an arbitrary superposition
of |`〉o and | − `〉o, giving a more complex structured beam.

Spinorbit space

A complete description of the photon state is formed by a tensor product of
both SAM and OAM spaces, linear momentum space (which is also quan-
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tized) and radial profile function:

|PSI〉 = |S〉π ⊗ |`〉o ⊗ |k〉 ⊗ |u〉ρ, (1.7)

where ket |k〉 defines the direction of the propagation of the photon and
|u〉ρ describes the radial profile of the beam. Selecting the first two we can
obtain the spinorbit space that will be of particular attention in the thesis.
A state |Sπ, `o〉 = |S〉π|`〉o gives the complete description of the SAM and
OAM structure of the beam.

Since all the polarization kets will be labeled with uppercase letters,
while the OAM kets – with lowercase letters, the suffixes π and o will often
be omitted so to not overload the formalism.



Chapter 2

Angular momentum of light

2.1 Introduction

In the Maxwell’s wave theory of light, all the calculations basically start
from a system of four equations that describe the propagation of the elec-
tromagnetic waves. In the absence of the electric sources in vacuum these
Maxwell equations are written as

∇ ·E = 0 (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B =
1

c2
∂E

∂t
(2.4)

where E, B and c are the electric field vector, magnetic field vector and the
speed of light in vacuum, respectively. Its worth mentioning the relation
c = 1√

ε0µ0
that ties the speed of light c with the electric permittivity ε0 and

magnetic permeability µ0. According to the wave theory, the linear p and
angular j momentum densities are defined as

p = ε0E ×B
j = ε0r × (E ×B). (2.5)

The total linear and angular momentum values are obtained by integrating p
and j over the volume. In the case of the monochromatic waves of frequency
ω

E = (E(r)eiωt +E∗(r)e−iωt)/2 (2.6)

B = (B(r)eiωt +B∗(r)e−iωt)/2 (2.7)

the magnetic field B can be expressed as a function of the electric field

iωB = ∇×E. (2.8)

9
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Substituting Eq. (2.8) into (2.5) and integrating over the volume
∫
dr we

can get the total linear

P =
ε0

2iω

∫
dr

∑
j=x,y,z

E∗j∇Ej (2.9)

and angular

J =
ε0

2iω

∫
dr

∑
j=x,y,z

E∗j (r ×∇)Ej +
ε0

2iω

∫
drE∗ ×E (2.10)

momenta. The form of (2.10) suggests a separation of total angular mo-
mentum into two terms, one being independent from the coordinate r and
other, being an explicit function of the coordinates. The first one, is usually
called “spin” angular momentum and the second one, coordinate-dependent,
is interpreted as “orbital” angular momentum. Such superficial subdivision
is not always correct (since OAM can also be an intrinsic property of the
beam) and under deeper investigation in the general case a number of signif-
icant problems arise. The question of the OAM and SAM separation for an
arbitrary wave is still under theoretical discussion and will not be touched
in this thesis. In the paraxial approximation, however, this approach can be
developed without any loss of validity.

2.2 Wave equation and paraxial approximation

To describe the propagation of the light wave, the system of equations (2.1)
the electric and magnetic fields in vacuum and in the Lorentz gauge are
usually expressed through the vector potential A and scalar potential φ as

B = ∇×A (2.11)

E = −∇φ− ∂A

∂t
. (2.12)

A straightforward calculation shows that the vector potential A obeys the
wave equation (

∇2 − 1

c2
∂2

∂t2

)
A = 0. (2.13)

Separating the time variable as A(x, y, z, t) = A(x, y, z)eiωt we get the
Helmholtz equation of the vector potential

∇2A+ k2A = 0, (2.14)

where k2 = ω2/c2.
The paraxial approximation consists in the assumption that the trans-

verse dimensions of the beam are much smaller than the typical longitudinal
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sizes. In this framework we can search for a solution of Eq. 2.14 in the form
of a wave, propagating along the z axis:

A = xu(x, y, z) exp (−ikz). (2.15)

The wave is assumed to be a linearly polarized, for simplicity and x is the
unit vector in the direction of the x axis, defining the polarization plane
of the wave. Substituting (2.15) in into the Helmholtz equation we get the
following form

∇2u− 2ik
∂u

∂z
= 0. (2.16)

Since the laser beams represent one of the best physical realization of the
paraxial beams it is convenient to pass to the dimensionless variables, using
typical Gaussian beam parameters as the normalization values. Such param-
eters are the beam waist ω0 and the diffraction length l = kω2. Redefining
the variables as x = Xω0, y = Y ω0 and z = Zl we get

∂2u

∂X2
+
∂2u

∂Y 2
− 2i

∂u

∂Z
+
ω0

2

l2
∂2u

∂Z2
= 0. (2.17)

The relation ω0/l is considered small in the paraxial approximation, allowing

us to neglect the last term, containing ∂2u
∂Z2 . The paraxial wave equation

(PWE) is then given by

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0. (2.18)

Before passing to the specific solutions of the paraxial wave equation
let’s estimate first what conditions must be applied to the solution of the
form (2.15) so they can transport a definite amount of OAM per photon, as
it was done by [4]. The electric and magnetic fields, expressed through the
vector potential will be

E = −iω
[
A+

1

ω2ε0µ0
∇(∇ ·A)

]
= (2.19)

−iω
[(
u+

c2

ω2

∂2u

∂x2

)
x+

c2

ω2

∂2u

∂x∂y
y +

c2

ω2

(
∂2u

∂x∂z
+ ik

∂u

∂x

)
z

]
e−ikz

B = ∇×A = ik

[(
u+

1

ik

∂u

∂z

)
y +

i

k

∂u

∂x
y

]
e−ikz (2.20)

Defining the previously used small parameter ω0/l as s and expanding
Eqs. (2.19) and (2.20) in dimensionless variables we get

E = −iω
[(
u+ s2

∂2u

∂X2

)
x+ s2

∂2u

∂X∂Y
y +

(
s3

∂2u

∂X∂Z
+ s

∂u

∂X

)
z

]
e−ikz

(2.21)
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B = ik

[(
u− is2 ∂u

∂Z

)
y + is

∂u

∂Y
z

]
e−ikz (2.22)

If we neglect the terms of order higher than first, but conserve the ∂u/∂z
term in B, we can get a simple expression for the linear momentum density

p = <(ε0E ×B) =
1

2
iωε0(u

∗∇u− u∇u∗) + ωkε0|u|2z (2.23)

As we can see, the left part of the equation separates into two terms, the
transverse component of the linear momentum pϕ and the longitudinal one
pz. To get the expression of the angular momentum it is convenient to
pass to the cylindrical coordinates (ρ, ϕ, z) first and separate the angular
dependence in the following form

u(ρ, ϕ, z) = u(ρ, z)ei`ϕ, (2.24)

since the jz component of the angular momentum will depend on the trans-
verse part of the linear momentum pϕ. Substituting (2.24) into Eq. (2.23)
we get the form of the pϕ as

pϕ =
1

ρ
ωε0`|u|2 (2.25)

and jz as
jz = ωε0`|u|2. (2.26)

From the ratio between jz and pz

jz
pz

=
`λ

2π
(2.27)

and ratio between jz and energy density cp

jz
w

=
`

ω
(2.28)

we get the result similar to the one, found by Poynting for the angular
momentum, transported by a circularly polarized beam with the difference
that ` values are not limited to ±1, as in the case of the spin. Moreover,
since our relation describes a linearly polarized beam, no spin component
of the angular momentum is present and all the contribution is due to the
orbital angular momentum of light. To get the description of total angular
momentum, carried by a paraxial beam we must consider the light with
arbitrary elliptic polarization

A = (αx+ βy)u(ρ, z)ei`ϕe−ikz (2.29)
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with complex coefficients α and β related as |α|2 + |β|2 = 1. Repeating all
the calculations, that were done for the linearly polarized light, we get linear
momentum density as

p =
1

2
iωε0(u

∗∇u− u∇u∗) + ωkε0|u|2z +

+iω(αβ∗ − α∗β)

(
∂

∂y
x− ∂

∂x
y

)
|u|2. (2.30)

The new term is polarization dependent and the factor (αβ∗−α∗β) is related
to the phase shift of two, perpendicularly polarized, components of the beam,
or in other words – to the Stokes parameter σz that describes the projection
of the spin along the propagation direction z. We can now recover the total
angular momentum density along the propagation direction jz obtaining

jz = ωε0`|u|2 −
ε0
2
ωρσz

∂|u|2

∂ρ
. (2.31)

Evaluating the ratio between jz and energy density again we get

jz
w

=
`

ω
− σzρ

2ω|u|2
∂|u|2

∂ρ
. (2.32)

The relation of the total angular momentum along the propagation direction
and total energy of the beam that is obtained by integrating the jz and w
over the volume will give the following elegant, yet expected, result

Jz
W

=
`+ σz
ω

. (2.33)

In the absence of ` component this result again reduces to the Poynting
calculations [1] for the circularly polarized light. The additional term is,
however independent on the polarization of the beam and is in fact OAM.

There are many solutions of the paraxial wave equation, fitting the con-
ditions described above, that can carry OAM, the most well known being
Laguerre-Gaussian modes LG`p. These modes were also analyzed in the sem-
inal work of Allen and coworkers, together with the introduction of the idea
of the OAM in paraxial beams and till now they are the most widespread
description of the beams that carry orbital angular momentum.

2.3 Laguerre-Gaussian modes

The LG`p are the complete and orthogonal set of solutions of the paraxial
wave equation (2.18). Their analytical form in the cylindrical coordinates is
given by

u`,p =
C

(1 + z2/zR2)1/2

[
ρ
√

2

ω(z)

]
L`p

(
2ρ2

ω2(z)

)
exp

(
−ρ2

ω2z

)

exp

(
−ikρ2z

2(z2 + z2R)

)
exp

(
i(2p+ `+ 1) tan−1

z

zR

)
exp (i`ϕ) (2.34)
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where the parameters are normalization constant C, Rayleigh range zR,

exp
(
i(2p+ `+ 1) tan−1 z

zR

)
is the Guoy phase shift, beam radius ω(z) and

LG`p are the Laguerre associated polynomials. The beam waist is at z = 0.
The radial index p defines the number of the p + 1 radial nodes and the
azimuthal index ` defined the 2π` variation of the phase along the closed
loop around the center of the beam in the transverse plane. Such variation
is due to the exp (i`ϕ) factor and is also the source of the so called phase
singularity at the center of the beam. This phase singularity arises at the
points where the field is undefined and thus the amplitude of the beam must
take zero value. The 3D helical structure of the phase front, together with
the “doughnut” intensity of a LG1,0 beam are shown in Fig. 2.1. An example
of the cross section of the beam phase structure at fixed z and their radial
profiles are shown in the Figs. 2.2 and 2.3

Figure 2.1: The phase structure and the beam intensity of the LG1,0 mode
with ` = 1 and p = 0 [8].

Substituting the analytical form of the Laguerre-Gaussian modes into
Eqs. (2.23) will give us the following expression for the linear momentum
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Figure 2.2: Examples of the phase structure of the LG`,p modes for the first
three values of ` and p quantum number. The phase is increased from 0 to
2π with the color change from black to yellow respectively.

density of the LG`,p mode of linearly polarized light [4]

p =
1

c

(
ρz

(z2 + z2R)
|u|2ρ+

`

kρ
|u|2ϕ+ |u|2z

)
(2.35)

The term along the ϕ unit-vector gives rise to the orbital angular momen-
tum, while the ρ and z terms describe the beam expansion and the linear
momentum density along the propagation direction. Calculating the angular
momentum density j = ε0ρ× 〈E ×B〉 yields

j = − `
ω

z

r
|u|2ρ+

r

c

(
z2

(z2 + z2R)
− 1

)
|u|2ϕ+

`

ω
|u|2z. (2.36)
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Figure 2.3: Examples of the normalized intensity profiles of the LG`,p modes
for the first three values of ` and p quantum number. The intensity increases
from 0 to 1 with the color change from black to yellow respectively.

The ρ and ϕ terms are axially symmetric, leaving only the contribution
along the propagation direction into the total OAM, after the integration
over the volume.

A well-known relation between Laguerre and Hermite polynomials allows
us to express the LG`,p modes in terms of another complete family of PWE
solutions in cartesian coordinates – Hermite-Gaussian modes HGm,n

uHGm,n = CHGm,n(1/ω) exp (−ikx
2 + y2

2R
) exp (−x

2 + y2

ω2
)

exp (−i(n+m+ 1)ψ)Hm(x
√

2/ω)Hn(y
√

2/ω). (2.37)
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Figure 2.4: Examples of the normalized intensity profiles of the HGm,n
modes for the first four values of m and n quantum number. The intensity
increases from 0 to 1 with the color change from black to yellow respectively.

Rewriting them in the cylindrical coordinates yields

uLGm,n = CLGm,n(1/ω) exp (−ik ρ
2

2R
) exp (− ρ

2

ω2
) exp (−i(n+m+ 1)ψ)

exp (−i(m− n)ϕ)(−1)min(m,n)(ρ
√

2/ω)L
|m−n|
min(m,n)(2ρ

2/ω2), (2.38)

where the previously used indexes ` and p are now equal to ` = n−m and
p = min(m,n). An LG`,p mode can be expressed as a sum of finite number
of the corresponding HGm,n modes according to the following relation

uLGm,n =
N∑
k=0

ikb(m,n, k)uHGN−k,k (2.39)

where N = m+ n is the mode order and

b(m,n, k) =

(
(N − k)!k!

2Nn!m!

) 1
2 1

k!

dk

dtk
[(1− t)n(1 + t)m]|t=0. (2.40)
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The ik factor in (2.39) implies that there is a π/2 phase shift between every
consecutive summand. A similar relation can be written for the HGm,n
modes, rotated through 45◦ around the beam axis:

uHGm,n((x+ y)/2, (x− y)/2, z) =
N∑
k=0

b(m,n, k)uHGN−k,k(x, y, z) (2.41)

with the ik factor absent and the coefficients b(m,n, k) defined as in (2.40).

Figure 2.5: An example of the HG0,1 → LG1,0 transformation.

Given these relations, a following scheme may work as an example of
a HG→LG transformation: a HG0,1(x, y, z) mode is rotated through 45◦

becoming aHG0,1((x+y)/2, (x−y)/2, z) mode, that in turn can be expressed
as a sum of two modes

HG0,1(
x+ y

2
,
x− y

2
, z) = (HG1,0(x, y, z) +HG0,1(x, y, z))/

√
2. (2.42)

After that, by introducing a phase shift of π/2 this sum can be transformed
into a LG1,0 mode, as illustrated in Fig. 2.5. Such technique was one of
the first, used for the OAM-carrying beams generation, when a rectangular
cavity was used to generate a HG laser beam and a set of cylindrical lenses
was used to introduce the necessary phase shift between the separate com-
ponents of the superposition (2.42), by acting separately on the Guoy phase
of each component. Having a significant historical importance, this method
is rarely used nowadays, due to its complexity and poor versatility.

While the LG`,p modes represent an elegant and simple illustration of
the PWE solutions that carry a definite amount of OAM per photon, the
real, widely used generation methods are unable to create a pure Laguerre-
Gaussian mode. The actual beams, still possessing the desired exp (i`ϕ)
phase factor, have a much complex radial intensity structure. The question
of the beam intensity profile is usually neglected due to its complexity. Both
phase holograms and spiral phase plates, that act only on the phase struc-
ture, in fact, produce not the pure LG`,p mode but an infinite superposition
of the Laguerre-Gaussian modes with fixed `, but varying p number. A more
detailed study led to a discovery of a novel family of the PWE solutions,
called Hypergeometric-Gaussian modes [20, 21].
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2.4 OAM generation methods

A number of techniques and setups, that may be used to create beams that
carry orbital angular momentum were proposed during last two decades,
and some of them are now extensively used in the laboratories. In this sec-
tion I will overview two important OAM generation methods, namely the
holographic technique and spiral phase plate. The first one is the most versa-
tile and widespread way to manipulate and create any wanted phase profile
structure and the second is a fixed optical component, specially designed for
creation of optical vortices of the given order.

A hologram is in general a picture of the interference of the certain beam
(called “image”) with the reference wave. Once registered, if we illuminate
afterwards the hologram with the reference beam, it is possible to recover
the phase and intensity structure of the image beam. If the interference
picture, however is calculated analytically, or numerically, there is no need of
actual image beam to exist. Such calculated holograms are called Computer-
Generated Holograms (CGH). The calculated hologram can be registered on
a special sensitive material (like photographic film) or a computer-controlled
device, the Spatial Light Modulator (SLM).

The main hologram parameter is its efficiency, i.e. the ratio between
the intensity of the requested output state and the total impinging beam
intensity. Holograms can be of two types: amplitude and phase hologram.
The first one is created by modulating the transparency of the medium, so
the image beam is reconstructed when the hologram absorbs the light of the
reference beam in one zones and makes it pass in others. The second one
has uniform transparency, but the interference pattern is recorded into the
optical retardation of the medium. After passing such structure, the beam
recovers the previously recorded phase structure. The amplitude holograms
are easier constructed, but have a limited efficiency, compared with the phase
ones. Both types can be realized by a spatial light modulator. SLM is essen-
tially a small pixellized screen with the transparency, or optical retardation
of every pixel controlled by a PC. Comparing to the standard holograms that
can be usually written only once, the SLM allows relatively fast switching
(up to kHz) of the holograms. The main disadvantage of such devices, is
however their high cost, fragility and pixellization, that limits the efficiency
of the generated holograms much below the theoretical estimations.

An idea of the holographic generation of the optical vortices was pro-
posed in 1990 [24], even before the discovery that the beams with the
spiraling phase profile carry OAM. The hologram used to generate such
beams was made by simulating the interference between a tilted plane wave
up = u0e

i(kxx+kzz) and an optical vortex u` = u0e
i(kzz+`ϕ) of the same am-

plitude at the z = 0 plane and angle θ = arcsin kx
k . The interference will be

given then by
I = 2|u0|2(1 + cos (kxx− `ϕ)). (2.43)
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In the case of the two plane waves the pattern will be a normal diffractive
grating with the sequence of the black and white lines of equal width and
distance between them. In the case of the interference with the helical
beam, a splitting of the lines occurs where the phase singularity is situated,
as shown in Fig. 2.6. The ` value can be recovered from difference between
the number of the lines above the singularity and the one below, giving, for
example, a splitting of the one line into three in the case of ` = 2. Such
holograms were called “fork”-holograms (or “pitchfork”-) for their fork-like
pattern. If a plane wave is incident on such a hologram (taking an amplitude

Figure 2.6: Interference patterns of the tilted plane wave and a helical beam
of various order.

hologram for simplicity), the transmitted wave state will be given by

ut = T (x, y)u0, (2.44)

with the hologram transmission function T , equal to

T (x, y) =
1

2
(1 + cos (kxx− `ϕ)). (2.45)

Expanding Eq. 2.44 will give us the following sum:

ut =
u0
2

(
1 +

1

2
ei(kxx−`ϕ) +

1

2
e−i(kxx−`ϕ)

)
. (2.46)

As we can see, apart from the fraction of the beam that passes unchanged,
in the first diffractive order the wave has acquired a helical phase profile
of order ` for the positive order and −` for the negative one. In simple
words, such hologram leaves the beam untouched in the zeroth order, adds
the exp (i`ϕ) factor in the first order and adds the exp (−i`ϕ) factor in the
negative first order. Same is applied, when the impinging beam is not a
plane wave, but an optical vortex. This can be used for the OAM detection
purposes, when for example a beam with OAM order ` = −1 is sent through
the hologram with ` = 1. In this case the beam in the first order will have
not a doughnut profile, but a bell-shaped one with no OAM, allowing to
filter it with an optical fiber, placed where the singularity of the beam is
expected to be.
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Phase holograms do not absorb the light and the modulation is induced in
the phase of the beam. The transmission function for the previous example
will be given by

t(x, y) = eia
1
2
(1+cos (kxx−`ϕ)) = eia

1
2

+∞∑
n=−∞

inJn(a)ein(kxx−`ϕ), (2.47)

where a is the phase depth of the hologram and Jn is the Bessel function of
order n. Phase holograms usually give higher efficiency, due to the lack of
absorbtion.

The sinusoidal (whose fringe shape is given by a cos or sin) amplitude
hologram theoretically gives only the first positive and negative orders of
diffraction (together with the zero order). The phase holograms spread
the input power into several diffraction orders. There are other kinds of
holograms with different shape of the fringes that provide other power dis-
tribution among diffraction orders. We will enumerate the four most noted
ones:

1. Sinusoidal grating

g(x, y) =
1

2
[1 + cos (kxx− `ϕ)] (2.48)

2. Blazed grating

g(x, y) =
1

2π
Mod(kxx− `ϕ, 2π) (2.49)

3. Binary grating

g(x, y) =
1

2
[1 + Sign(cos (kxx− `ϕ))] (2.50)

4. Triangle grating

g(x, y) =
1

π
Sign(kxx− `ϕ)[π −Mod(kxx− `ϕ), 2π] (2.51)

where Mod(m,n) is the remainder of the division of m by n and Sign(m) is
the sign function m/|m|. The examples of these hologram types are shown
in Fig. 2.7 and their efficiencies and generated order numbers are listed in
the Table. 2.1.

Certain types of holograms, like blazed phase holograms, can give a very
high nominal efficiencies, reaching 100% with only one diffraction order. In
practice, however the real efficiency value is limited by the manufacturing
and recording processes in the case of static holograms, or by the presence
of pixels, in the case of the holograms generated by a SLM. Such imperfec-
tions may change number of orders generated and the intensity distribution
between them. The typical hologram efficiencies thus rarely exceed 40%.
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Figure 2.7: Four different types of the same ` = 1 hologram. From left to
right the fringes shape is given by a sinusoidal, blazed (saw-tooth), binary
and triangular functions.

Table 2.1: Maximum nominal efficiencies calculated as the ratio of the
intensity in the first diffraction order over the total input intensity for the
different types of gratings and different types of holograms.

Grating type Amplitude hologram Phase hologram
Orders Efficiency Orders Efficiency

Sinusoidal zero and ±first 6.25% all 33.85%
Blazed all 2.53% first 100%
Binary odd 10.13% odd 40.52%

Triangular odd 4.10% all 29.81%

The holographic technique allows to generate an arbitrary beam and
is extremely versatile, allowing dynamic computer-guided switching. The
main drawbacks are, however relatively poor efficiency, diffractive nature of
the generating process and elevate costs of the spatial light modulators.

Another object, used to create beams with the helical phase profile is
called Spiral Phase Plate (SPP) and it was developed in 1994, specially
for the optical vortex generation [25]. The SPP is a solid, transparent,
dielectric plate with one plane and one spiraling side, as shown in Fig. 2.8.
Due to the varying thickness of this plate the impinging beam will gain an
additional, coordinate-dependent phase shift. If the dimension of the step
of the spiraling side is equal to d then the phase variation will be given by

δ =
(n1 − n2)d

λ
ϕ, (2.52)

where n1 and n2 are the refractive indices of the SPP and surrounding
medium respectively. The condition, necessary to generate an optical vortex
is that the total phase change around the center of the plate must be an
integer multiple of 2π, meaning that the spiral step must be equal to

d =
`λ

(n1 − n2)
ϕ. (2.53)

The manufacturing of a SPP requires a high level of mechanical precision
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Figure 2.8: A spiral phase plate.

to realize the condition (2.53) and provide the correct shape of the spiraling
side, with continuous and correct increase of the thickness of the SPP. The
spiraling side of the SPP, however, is usually made by an approximation
with the number of plane tilted sectors. Such approach is realized easier at
the expense of the quality of the generated beam.

The spiral phase plate is much less universal, compared to the holograms,
since it can generate only one fixed OAM order and it works only at the
wavelength for which it was fabricated.



Chapter 3

Q-plate

3.1 Introduction

All the previously mentioned OAM generating techniques have a number
of serious drawbacks and limitations. The interferometric setups and astig-
matic lens converters are unstable and require particular input state that
is not easy to generate, SSPs are difficult to manufacture, and holograms
have poor generation efficiency. The most promising tool which is spatial
light modulator, can be used to generate any phase structure of the beam
and can be controlled by PC, however their high cost limits the adoption of
SLM outside the laboratory. The pixel structure of the SLM working area
also limits the generation efficiency much below the theoretical one (with a
typical value of 40%). The working speed of an SLM is also limited by kHz
in the best cases.

Recently, a novel device called “q-plate”, able to manipulate the OAM
was introduced by Marrucci et al. [18, 19]. The q-plate is essentially a bire-
fringent plate, whose optical axis is continuously varying point per point in
the transverse plane. Such inhomogeneous orientation of the optical axis
induces an additional phase, that varies in the transverse plane, into the
impinging beam. The q-plate belongs to a class of optical components that
is called Pancharatnam-Berry optical elements (PBOE) and their action is
based on the concept of geometrical phase introduced by S. Pancharatnam in
1956 [26] and later rediscovered by M.V. Berry in 1984 [27] with subsequent
development and generalization. A simple description of the geometrical
phase is as follows: if the state of a particle is adiabatically changed so that
the final state is equal to the initial – an additional phase factor appears.
Such phase factor depends only from the path on the projective-Hilbert
space that describes the state change. In the case of the photon polariza-
tion, such path is a closed trajectory on the surface of the Poincaré sphere
and the phase factor that appears is equal to half of the solid angle of the
area, encompassed by the trajectory [28]. A typical demonstration of the

24
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geometrical phase can be seen when a photon is made pass through a set
of wave-plates that change its polarization state and the phase difference
can be observed between the input and output states 1, or when a light
beam is made pass through a single rotating wave plate, where an addi-
tional phase factor can be observer between same initial and final state of
the light beam. In all these cases a uniformly polarized, in the transverse
plane, beam undergoes a time-variant state change. During last decade, a
different view on the geometrical phase was developed and demonstrated,
where the polarization state manipulation is space-variant. In other words,
the light beam undergoes a polarization change that is different in every
point in the transverse plane [29]. As is was demonstrated both theoreti-
cally and experimentally, such polarization manipulation is accompanied by
an additional space-variant phase change that is explained in terms of geo-
metrical phases. Some of the devices, working on this principle were realized
with the use of patterned sub-wavelength metallic gratings were carried out,
namely diffraction gratings [30], helical mode generators [31], lenses [32] etc.

Let us see more in details how the light state is changed by the q-plate
that is essentially a birefringent uniaxial wave plate with inhomogeneous
orientation of the optical axis in the transverse plane. In the case of the
angular dependence only, the local axis orientation α can be described by

α(ϕ) = qϕ+ α0 (3.1)

where ϕ is the azimuthal angle coordinate, q is the topological charge (from
which the name “q-plate” appeared) and α0 is a real value. The overall pat-
tern of the optical axis distribution is defined by the topological charge, while
the overall inclination of the axis is given by α0. In the case of semi-integer
q value the axis distribution will change smoothly and without disclinations
in the axis orientation. Some of the patterns that correspond to the different
topological charges are illustrated in Fig. 3.1.

The action on an impinging light beam can be easily described using
the Jones matrices. The matrix, corresponding to the q-plate action in the
linear polarization basis is given by

Û(q, δ) = R(α)

(
ei
δ
2 0

0 e−i
δ
2

)
R(−α) (3.2)

where R(α) is the rotation matrix that corresponds to a rotation around
angle α in the transverse plane. Straightforward calculations show that,
taking in account Eq. (3.1), in the circular polarization basis, Eq. (3.2) can
be reduced to

Û(q, δ) = cos
δ

2

(
1 0
0 1

)
+ i sin

δ

2

(
0 ei2qϕ

e−i2qϕ 0

)
. (3.3)

1of course, after proper compensation of the dynamic, frequency-dependent phase
change
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Figure 3.1: LC patterns that correspond to different topological charges: (a)
– q = −1, (b) – q = 0.5, (c)-(d) – q = 1, (e) – q = 1.5, (f) – q = 3

As we can see, depending on the phase retardation, a portion of the im-
pinging beam passes unchanged through the q-plate, while another has it’s
polarization helicity switched and gains an additional helical phase factor
of exp (±i2qϕ) that corresponds to the change 2q of the OAM order of the
beam. Rewriting Eq. (3.3) in the Dirac notation the action of the q-plate
on the circularly polarized beam with arbitrary OAM order ` is given by

Q̂P |L, `〉 = cos
δ

2
|L, `〉+ i sin

δ

2
|R, (`+ 2q)〉

Q̂P |R, `〉 = cos
δ

2
|R, `〉+ i sin

δ

2
|L, (`− 2q)〉. (3.4)

This way, a portion of the circularly left polarized beam is transformed into
the circularly right polarized beam with an increase of the OAM order of
2q, while the circularly right polarized beam is converted into the left po-
larized with a decrement of the OAM order by the same 2q. A particularly
interesting case is the q-plate with q = 1. Such structure, being circularly
symmetric, cannot change the total angular momentum of the light beam
and, indeed, the variation of the OAM is equal to ±2, while the SAM state is
changed from ±1 to the ∓1 giving the same amount of the angular momen-
tum variation and leaving the total SAM+OAM unchanged. Such process
was called Spin-To-OAM Conversion (STOC)[33]. This is not applicable
to the q-plates with topological charge that is different from q = 1, re-
sulting into the transfer of angular momentum to the q-plate and not only
SAM-OAM conversion onside the beam. However, for the sake of brevity
the conversion process for all the q-plates will be indicated as STOC later
on. The phase retardation δ of the q-plate can be changed externally, by
varying the temperature of the LC cell [33], by applying electric field to the
LC layer and other. When δ = π, that is equivalent to the half-wave phase
retardation, the q-plate performs complete state conversion leaving no pho-
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tons unchanged. Such q-plate will be called “tuned” thereafter. A q-plate
can generate OAM carrying beams starting from the normal gaussian laser
mode. The generation efficiency can, in theory, reach 100% and is tunable
to arbitrary value and for arbitrary input wavelength. The q-plate, being
a thin LC cell is easy to align and manipulate and is highly transparent
thus allowing to use more than one q-plate in cascade. Another significant
advantage is that the output OAM state is polarization dependent, allowing
fast switching of the output modes with rates much higher than the SLM
can provide. This point will be discussed later in the chapter 4.1. While
the general picture of the q-plate action can be described by Jones matri-
ces, a detailed study of the light propagation inside the q-plate with precise
description of the radial modes structure was done elsewhere [21]. In the
following sections I will describe the manufacturing processes of different
types of the q-plates and their characterization in terms of efficiency and
tunability.

3.2 Q-plate fabrication

3.2.1 Rubbing

Patterned orientation of the optical axis is achievable with soft materials like
liquid crystals, liquid crystal polymers, photosensitive polymers and other.
Liquid crystal (LC) can be structured to have desired pattern by a surface
induced alignment, when the topological charge is first imprinted into a thin
substrate of polymer or similar surfactant inducing the alignment onto the
LC. The surface anisotropy can be created by rubbing the aligning layer
with velvet fabric [34]. The LC, when put in contact with the layer will
then align along (or perpendicular, depending on the surfactant and LC
type) the rubbing direction.

Rubbing was the original technique used in our laboratory for q-plates
fabrication [18, 33]. Rubbing allows to create q-plates with unit topological
charge (Fig. 3.1 (b)). The process is the following: two fused silica glasses,
previously cleaned, were coated with a thin layer of DuPont PI2555 poly-
imide (a polymer of imide monomers) using spin-coater. Such polyimide
(PI), when put in contact with the LC, creates planar (i.e. parallel to the
surface) orientation of the molecules of LC. After the coating, glasses were
soft-baked to vaporize the solvent and cured in the oven at 220◦C for two
hours. The polymerized coating was then circularly rubbed by a rotating
velvet cloth so to induce a circular pattern on the coated surfaces. At the
center of the rotation where no anisotropy is created, a defect is formed.
After that, the glasses, separated by mylar spacers of 7µm, were put to-
gether and a nematic LC (E7 or E63 from Merck) was injected between
them. The glasses were precisely aligned so to have the two topological de-
fects superimposed and the inner sides of the glasses parallel to each other.
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During construction, the glasses parallelism was controlled constantly using
reflections of He-Ne laser beam from the sample inner sides, and the LC
alignment and singularities position was checked by a polarizing microscope
with crossed polarizers. After the LC relaxation, the molecules were ori-
ented along the rubbing directions so the surface pattern was induced into
the LC. The glasses were glued by epoxy glue afterwards. Both azimuthal
and radial transverse patterns that corresponds to the q = 1 topological
charge are achievable by such technique. The second one (Fig. 3.1(c)) can
be realized by choosing specific materials with which the LC will be oriented
perpendicular to the rubbing directions. The polarizing microscope image
of the center of the q-plate, made by the rubbing technique is shown in
Fig. 3.2(a). The photo was taken with crossed polarizers and the dark arms
correspond to the zones, where the alignment of the LC was parallel to one
of the polarizers, so no light passes, since no change in polarization state
was induced by the QP in those zones. Another variation of the rubbing
method is to induce anisotropy only on one substrate,while providing de-
generate planar [19] or homeotropic (perpendicular to the glass substrate)
alignment of the LC by choosing proper surfactant and substrate treatment.
These approaches simplify the alignment process of the glass substrates since
there is no need of superimposing the two central defects. In the case of de-
generate planar alignment, however, a disclination line is formed along the
diameter [19].

3.2.2 Photoalignment

A more recent and promising technique of LC alignment is photoalignment.
In this case the desired orientation of the LC is achieved by illuminating the
material (bulk dye-doped LC or thin film surfactant) with linearly polarized
light of appropriate wavelength, usually UV. The first studies of surface in-
duced photoalignment were performed with dye-doped polymer and pure
dye layers [35], photopolymers [36, 37], polyimides (PI) [38], and others. In
all these cases the anisotropy is induced into the surface material by the
polarized light that in turn reorients the adjacent LC molecules, usually
perpendicular to the polarization direction. Even if the process is similar,
the physical mechanisms involved may differ drastically. Comparing to the
rubbing, the photoalignment, is a clean and non-contact technique, do not
introduce surface defects or damage and electrostatic charges, allows to con-
trol the pretilt angle and the anchoring energy of the LC cells. The research
area of photoalignment is vast and rapidly developing, so only few techniques
of surface induced photoalignment that were used for the q-plate fabrication
will be discussed. A more detailed description of different photoalignment
methods and their applications in modern science and industry can be found
in [39]. For the specific case of q-plate manufacturing, photoalignment has
some additional advantages. Between them, the most important ones are:
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• Aligning by the light beam allows to align two layers of the surfac-
tant simultaneously. This way, the q-plate may be assembled before
the pattern is induced. Such possibility simplifies a lot the proce-
dure of alignment of the glass substrates, since there is no need of
precise superimposing of the two central defects (that are automati-
cally superimposed when created) and the substrate parallelism may
be achieved and controlled by the standard techniques, used in the LC
cell assembly.

• Dependence of the alignment from the light polarization widens the
range of possible patterns that can be imprinted into the LC cell,
allowing to induce any topological charge into the LC, while the cir-
cular rubbing allows to create only circularly symmetric patterns with
charge q = 1 shown in Figs. 3.1 (c) and (d).

Figure 3.2: q = 1 q-plate polarizing microscope images with orthogonal
polarizers. (a) – a QP made with rubbing technique, (b) – a QP made with
UV photoalignment

3.2.3 Polyimide photoaligned q-plates

[40] The process involved in the photoalignment with the thin polyimide
film as a surfactant is called photodegradation (or depolymerization). A
coated and cured thin film of PI usually has it’s polymer chains oriented
randomly. Under exposure to linearly polarized UV light, the probability of
absorbing of the photons by the PI is higher for the chains that have their
absorbtion oscillators oriented parallel to the polarization plane, meaning
that these chains are most likely to be destroyed by the incident illumination,
while the others remain unbroken. This way, the direction of the unbroken
chains, which is perpendicular to the incident polarization, will define the
alignment of the LC. Since the photodegradation consists in destruction of
the chemical bonds, an overexposure of the aligning surface will destroy
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previously induced anisotropy [38, 41, 39]. Such irreversible photochemical
processes make difficult to control the alignment process and layer purity,
that can be contaminated by the products of the photodegradation. PI
materials, however posses high thermal stability and are usually not sensitive
to the visible region of the light.

The PI photoalignment was used by the author to create high quality
q-plates with q = 1 topological charge. A New Wave “Tempest 20” Nd:YAG
pulsed laser2, operating at 355nm wavelength, 20Hz repetition rate and pulse
FWHM of 4ns, was used as a polarized light source for this purpose. The
vertically polarized laser beam illuminated a previously coated by PI from
Nissan Chemicals and assembled sample through an angular mask, made
from two razor blades, so to illuminate only one sector of around 20◦ of the
sample. The sample, attached to a precision rotation mount (GM-1RA from
Newport) was placed so to superimpose the rotation center of the support
with the vertex of the angular mask and then rotated by an electric motor.
After the exposure, the cell was filled with LC. The illuminated surfaces
induced an alignment to the LC layer orienting the molecules perpendicular
to the incident vertical polarization direction. The best results were obtained
with the exposure time of 1h 20m and pulse energy of 35 mJ/cm2. By
changing the incident polarization it is possible to realize any q = 1 pattern
with arbitrary value of α0. A polarizing microscope picture of a QP made
by this technique is shown in Fig. 3.2(b). The optical properties of these
q-plates will be discussed in chapter 3.3.

Operating with the materials that are sensitive to UV light allows to cre-
ate q-plates with very stable patterns that can be used with any wavelength
of visible and infrared region of light. However such technique requires par-
ticular light sources and optical components (lenses, polarizers, etc.) made
with SiO2, or other UV-transparent material, that usually have higher cost
as compared to the standard ones.

3.2.4 Azo-dye photoaligned q-plates [42]

I also manufactured q-plates with a different photoalignment technique,
where a thin layer of azo-dye molecules was used as a surfactant. Azo-dyes
are chemical compounds with general formula in form of R −N = N − R′,
where R and R′ are aryl functional groups. Under the illumination by
the linearly polarized light, such azo-dye molecules reorient themselves per-
pendicular to the polarization direction. More detailed descriptions of the
mechanisms involved can be found elsewhere [39].

The material used as a surfactant was sulphonic azo-dye SD1 from

2access to this laser and necessary equipment were kindly provided by Prof. Giancarlo
Abbate and Dr. Vladimir Tkachenko from the laboratory of “Electro-Optical Devices
Made with Liquid Crystals and Polymers”, Dipartimento di Scienze Fisiche, Università
degli Studi di Napoli “Federico II”, Naples, ITALY
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Figure 3.3: Absorbtion spectra before UV irradiation and the chemical struc-
ture of the sulfonic azo-dye SD1 [39], that was used as photoaligning surfac-
tant for the q-plates with topological charges, different from q = 1.

Dainippon Ink and Chemicals. It’s chemical structure and absorbtion spec-
tra are shown in Fig. 3.3. Such material can be photoaligned not only with
the UV light, but with the 400-450 nm blue-violet region of the visible ra-
diation. A good source of such light is a blue high-power LED that can
be bought commercially. The use of visible light photoalignment allows
to exclude the use of high-cost polarizers and optical components that are
necessary for the UV. Another feature of the SD1 is the so called optical
rewritability, i.e. the possibility to rewrite previously induced alignment by
another one. This is possible due to the particular mechanism of the pho-
toalignment of this dye that doesn’t involve any photochemical reactions,
cis-trans isomerization, or photodegradation of the material and consists
in pure rotation of the molecules [39]. The photoalignment that involves
this mechanism provides the best anchoring energy, comparable with the
PI rubbing and is less sensitive to the non-uniformity of the aligning radia-
tion, since the overexposure will not destroy the alignment, but instead will
increase the stability of the pattern.

The setup, used to manufacture the q-plates is similar to the one used for
the fabrication of the UV photoaligned q-plates. The sample and polarizer,
however were attached to the rotating mounts (GM-1RA from Newport)
that were controlled by a PC software through two stepping motors. An
additional SiO2 cylinder (made of two hemicylinder lenses from Harrick
Scientific Corporation) was placed after the angular mask so to eliminate
the diffraction and focus the triangular spot onto the sample. An OmniCure
“Series 1000” mercury lamp of 180mW/cm2 light power was used as the
collimated light source and all the components were put on an optical rail
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to ensure the alignment of the rotation center of the sample with the vertex
of the angular mask.

The glasses for the cell were spincoated with a 1% solution of SD1 in
dimethylformamide (DMF) at 3000 rpm for 30 seconds and soft baked at
100◦C for 5 min. The substrates were assembled together and 6µm dielectric
spacers were used to define the cell gap. After the exposure, the cells were
filled with MLC 6080 liquid crystal mixture from Merck.

With the precise control of the rotation steps of the two mounts it was
possible to create q-plates with different topological charges. The topological
charge induced is given by q = 1±ωp

ωs
, where ωp and ωs are the angular speeds

of the polarizer and sample and + and − signs correspond to the opposite
and same rotation direction of the two mounts, respectively. This way, for
example, the q = 1 charge is realized by fixing the polarizer (ωp = 0) and
the charge q = 1/2 is achieved if the sample is rotated twice faster than the
polarizer, in the same direction. The parameter α0 was controlled by the
initial orientation of the polarizer. Using this setup, q-plates with charges
−1, 0.5, 1, 1.5, 3, and others were fabricated. Some of the pictures of the
samples, placed between crossed polarizers are shown in Fig. 3.4.

Figure 3.4: Photos of the q-plates with different topological charges placed
between crossed polarizers: (a) – q = −1, (b) – q = 0.5, (c) – q = 1.5, (d) –
q = 3

This work was performed by the author in the framework of joint col-
laboration between research groups of Prof. Enrico Santamato and Prof.
Vladmir Chigrinov from Hong Kong University of Science and Technology,
Kowloon, Hong Kong, at the facilities of the Center for Display Research in
Hong Kong University.

Q-plates with use of liquid crystal polymers were realized elsewhere [43].

3.3 Q-plate electric field tunability [40, 42]

As it was previously shown in Eq. (3.4), the power fraction of the light that
is converted by the q-plate depends on the phase retardation of the cell, and
the maximum conversion, with theoretical efficiency of 100%, is achievable
when the q-plate retardation is half-wave, i.e. δ = π. Fabrication of the
q-plates with defined and uniform phase retardation requires high precision
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manufacturing methods and precise control of the birefringent layer, if the
q-plate is made by polymer material, such as liquid crystal polymer [43]. In
the case of LC, however, the optical retardation can be tuned externally,
changing the temperature of the q-plate, or applying an electric field to the
LC layer. The ability to control the STOC process by temperature was
already shown and the efficiencies of more than 95% were achievable with
temperature-tuned q-plates [33]. In this section I will discuss the electrical
tunability of the q-plates.

It is well known, that LC molecules reorient themselves if an electric
field is applied. Such effect is called Frederiks transition [44]. Due to the
anisotropy of dielectric and diamagnetic permittivity of the LC, if an exter-
nal electric or magnetic field is applied to the bulk LC a certain molecules
orientation will correspond to the minimum of the free energy. In the case of
positive birefringence, the director of the LC is preferably oriented along the
field and in the case of negative birefringence the molecules are likely to stay
perpendicular. When the LC orientation do not correspond to the minimum
free energy condition, a strong enough external field (so to overcome the elas-
ticity of the LC) may induce reorientation of the molecules. The voltage,
required for reorientation and reorientation speed depends on the properties
of the LC and surfactant material, anchoring energy, alignment and other
parameters. If the LC film has planar alignment at both borders, then the
Frederiks transition will have a threshold value of the applied field, below
which no changes in the cell will occur. Threshold value has a complex de-
pendence on the surfactant and LC type, method used to induce alignment,
anchoring energy and other. The threshold value vanishes when at least one
of the borders has vertical (homeotropic) alignment of the LC. To prepare
an electrically tunable LC cell, glass substrates with conductive and trans-
parent coating are used. The most known material with such properties is
indium tin oxide (ITO). ITO is a solid solution of In2O3 (90%) doped with
SnO2 (10%). It has a good conductivity together with the transparency in
the visible and UV region of light. Since the ITO coated glass is commer-
cially available and no additional coating is needed, the total cell assembling
procedure is the same as in the case of normal q-plate manufacturing. At
the same time there are more strict requirements for the cleanness of the
glass, since the hydrophobic behavior of the ITO differs from the one of the
bare glass substrate, and efficient cleaning from organic contamination is
necessary to guarantee the uniform distribution of the surfactant material
during spincoating. Electrically tunable q-plates were made with all the
methods, discussed in section 3.2: PI rubbing, PI photoalignment and SD1
photoalignment. The transmittance of all the samples was around 87± 1%.
The main contribution to the losses was the lack of antireflection coating
on the glass substrates and no significant difference was found between the
samples, prepared by different techniques. These losses are easily compen-
sated by a corresponding coating so all our results were normalized with
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respect to the transmittance of the q-plates. The characterization of the
q-plates efficiency and tunability is basically divided in two parts:

• an analysis of the STOC dependence from the electric field and of the
maximum and minimum conversion efficiencies of the q-plate;

• a test of the mode purity of the converted part of the beam.

Since in the case of circular input polarization, the outcoming converted
and non-converted parts of the beam are put into orthogonal polarizations,
an easy method to analyze the STOC efficiency exists. The experimental
setup, used for such measurement is shown in Fig. 3.5. A linearly polar-
ized laser beam is converted into circularly polarized by the quarterwave
plate QWP1 and to made pass through a q-plate. The output light state
is a superposition of the converted and non-converted photons that have
orthogonal circular polarization state, according to (3.4). This superposi-
tion is subsequently converted into linear vertical and horizontal polarization
state by another quarter-wave plate QWP2 and then separated by a polar-
izing beam-splitter (PBS). This way, if the incident polarization state is |V 〉
and the optical axes of QWP1 and QWP2 are rotated through an angle of
−π/4 then the non-STOC part of the beam, that will have |H, 0〉 will be
transmitted by the PBS, while the STOC part, in the state |V, `〉 will be
reflected by the PBS. The two exit gates of the PBS can be swapped by
rotating the QWP2 through an angle of π/2. The q-plate, placed between
the QWPs was connected to an AC power supply, so to control the elec-
tric field, applied to the LC film. The alternating current is usually used
instead of a constant voltage so to eliminate the possible charge accumu-
lation on the borders of the LC layer. Such accumulation may happen in
the case of the DC voltage due to the presence of ionic impurities inside
the nematic LC and may interfere with the functioning of the sample and
even damage it. All the electrically tunable q-plates were analyzed this way.
Some images of the outcoming beam profiles are shown in Fig. 3.6. These
pictures were taken by sending a circularly polarized beam into q-plates
with different topological charges. The applied voltages were corresponding
to the maximum conversion efficiency or an intermediate value where only
a portion of the beam was converted. In the case of maximum STOC a
typical “doughnut” shape is observed, with the radius of the dark region,
proportional to the OAM order. If the STOC efficiency is not at maximum
the singularity decays into a set of smaller dark spots, with their number
equal to the ` value. The parameter, chosen to characterize the q-plate
tunability was the contrast ratio between the converted part intensoty Pc
and non-converted Pu, defined as ρ = (Pu−Pc)/(Pu +Pc). The plots of the
contrast ratios as a function of the applied voltage for the samples, prepared
with rubbing and PI photoalignment are shown in Fig. 3.7. Both plots show
a clear presence of the threshold - voltage value under which no reaction
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Figure 3.5: The setup used for the q-plate tuning characterization, based on
the polarization separation of the converted and non-converted parts of the
beam. The Q-plate (QP) is sandwiched between the two quarterwave plates
QWP1 and QWP2, rotated though an angle of ±45◦. The orthogonally
polarized portions of the beam are then separated by a PBS and STOC and
non-STOC components are sent into the detectors.

of the LC happens, a typical effect in the LC cells with planar alignment.
Once the threshold is surpassed a reorientation of the LC happens, changing
the birefringence ∆n of the cell. This change is accompanied by the phase
retardation change and is visible as the oscillations of the converted (and
non converted on the other side) power fraction of the beam. The phase
retardation is given by ∆φ = 2π∆nd/λ, where d is the thickness of the cell
and λ is the wavelength of the impinging light. The q-plates prepared with
the rubbing had mylar spacers and during the assembling no strong pressure
was applied to the cell. In contrast, the q-plates made with PI photoalign-
ment had different assembling process. This resulted in big difference in the
actual cell gap (thickness of the LC layer) of the q-plates, influencing the
total phase retardation change and thus the period of the oscillations. As
we can see from Fig. 3.7, the rubbed q-plate had very high number of the
oscillations immediately after the threshold value, while the photoaligned
q-plate has only one maximum in all the region of the applied voltages,
meaning that the real cell gap of the rubbed q-plate had much higher value
that 6µm. The maximum conversion efficiency (normalized with respect to
the transmittance) was 94± 1% for the rubbed q-plate and 99± 1% for the
PI photoaligned q-plate. It is worth noting, that even taking into account
the absence of the antireflection coating, that gives around 82% of the to-
tal conversion efficiency, the q-plates overcome by far the most used up to
now holographic technique with typical maximum efficiencies of 40% and
presents a very good alternative for the OAM generation.

Same characterization was done for the q-plates made with SD1 pho-
toalignment. Since all the SD1 samples were prepared with the same proce-
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Figure 3.6: Beam profiles after passing the q-plate. (a) – the q-plate is
tuned to δ = 0, performing no STOC; (b)-(d) – the q-plates with q = 1.5, 3
and 0.5 are tuned to the maximum STOC, generating ` = 3, 6 and 1 beams
respectively; (e)-(f) – the q-plates with charges 1.5 and 3 are detuned to an
intermediate phase retardation, resulting in a superposition of TEM00 and
OAM beams; (g)-(i) – corresponding Hermite-Gaussian HG` modes with
` = 1, 3 and 6.

dure and same materials, the qualitative and quantitative results were simi-
lar, so only q = 0.5 q-plate characterization curve is reported in Fig. 3.8. The
measurements, however, were taken for two different wavelengths, 534.5 nm
and 633 nm, of the input laser beam. The maximum conversion efficiency
for the analyzed sample was found to be 99.8±0.1%. The threshold value of
1.5 V is also in correspondence with the typical values for the liquid crystal
MLC 6080 mixture, photoaligned by the SD1 surfactant.

Since there are usually more than one maximum of the conversion ef-
ficiency a question about the working voltage region selection arises. For
the LC-based electro-optical devices a region between last minimum and
maximum (or last two maximums) is usually selected. Despite the light
nonlinearity in the STOC dependence from the voltage applied (that can be
seen as the change of the oscillations period for the high voltages), there are



CHAPTER 3. Q-PLATE 37

Figure 3.7: Normalized power of the converted part of the input beam as a
function of the voltage, applied to two different q-plates. (a) – q-plate made
with rubbing, (b) – polyimide photoaligned q-plate. The measurements were
taken at the cells temperature 30◦C.

Figure 3.8: Normalized power of the converted part of the input beam as a
function of the voltage, applied to the LC cell made by SD1 photoalignment.
Red line - 633 nm input beam wavelength, green line - 534.5 nm input beam
wavelength. The converted power values were normalized with respect to
the total light power output from the q-plate. The measurements were taken
at the cells temperature 25◦C. Data refer to the q = 0.5 q-plate.

some significant advantages for this choice. First of all the behavior of the
cell is much more stable when the voltages are far from the threshold, so the
power source has no strict requirements for stability and step resolution of
the voltage generated. Second, the temperature stability is also higher far
from the threshold, so the occasional temperature change will not influence
the STOC efficiency when the high voltage is applied. Another important
point is the speed of the LC reorientation that depends on the voltage ap-
plied. While the reorientation process is slow for the voltages close to the
threshold, its speed increases significantly with the increase of the electric
field applied. The switching times of the PI and SD1 photoaligned q-plates
were also tested by sending two successive voltages pulses corresponding to
the minimum and maximum conversion efficiency. The outcoming converted
power fraction was analyzed by an oscilloscope and the time dependence of
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the conversion efficiency is shown in Fig. 3.9 for the PI photoaligned q-plate
and Fig. 3.10 for the SD1 photoaligned q-plate. The switching time of the

Figure 3.9: Q-plate time behavior upon sending two consecutive electric
pulses that correspond to the minimum and maximum conversion voltages.
Data refer to the q = 1 q-plate, prepared by PI photoalignment.

Figure 3.10: Q-plate time behavior upon sending two consecutive electric
pulses that correspond to the minimum and maximum conversion voltages.
The insets show the switching of the optical vortex beam of ` = 1 order.
Data refer to the q = 0.5 q-plate.

nematic LC, of course, cannot compete with the frequencies of the electro-
optical devices and the electric functioning of the q-plate by itself is limited
to the same working speeds as SLM (that is also an LC based device). High
working speed, however may be useful to compensate the occasional insta-
bility of the power supply or temperature change.

The next step of the q-plate analysis is the measurement of the purity of
the generated mode. Such measurement must be based not on the polariza-
tion separation of the converted and non-converted part of the beam, but
on the study of the phase structure of the converted part of the beam only.
A qualitative estimation can be done by seeing the interference pattern of
the OAM-carrying beam and a plane or spherical wave (see Fig. 3.11). The
interference picture must give typical fork-like or spiral-like pattern where
from the number of line dislocations (in the case of plane wave interference)
or from the number of spirals (in the case of spherical one) the OAM or-
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der of the beam can be recovered. This measurement, however gives little
information about the possible residual TEM00 beam fraction or other “im-
purities” of the phase profile and can only give a confirmation of the q-plate
functioning, but not the details of its efficiency. Moreover the counting of
fringes or spirals can become difficult for the higher orders of the OAM.

Figure 3.11: Interference patterns of the optical vortex modes of order (a)
– ` = 1, (b) – ` = 3, (c) – ` = 6 and a plane wave. The mode order `
is equal to the difference between the fringes number below and above the
singularity.

Another method that allows to reconstruct the beam OAM structure
is to project the beam onto a fork hologram of corresponding order. In
this case, depending on the purity of the OAM mode, a portion of the
beam will be converted onto the TEM00 mode that can be selected with a
pinhole or a single-mode optical fiber. After the normalization with respect
to the hologram efficiency a percentage of the OAM content can be recovered
from this measurement. This technique was used to test the temperature
tunable q-plates [33]. A tomography of the OAM content can also be done by
holograms [45]. In this case, the process is identical to the Stokes parameters
measurements of the polarization state, where instead of the projection by
polarizer onto different polarization basis states, different holograms are used
to project the incoming OAM state onto |`〉, | − `〉, |h`〉, |v`〉, |a`〉 and |d`〉.
This method allows to reconstruct the density matrix of the OAM state even
when the actual OAM space used has higher number of dimensions than 2D.

A technique different from the holograms to test the cleanness of the
mode may involve interferometric sorting setups [46, 47]. These interferom-
eters allow to spatially sort the beam according to the order of the OAM
it carries with theoretical 100% efficiency. Such sorting can, for example,
separate the TEM00 part of the beam from the optical vortex part. Similar
setup was used to test the electrically tunable q-plate made with the rub-
bing technique. The setup and its functioning will be described briefly in
this section, while a more detailed study of the interferometer and its appli-
cations will be given in section 4.2. The device, used to test the q-plate is
Polarizing Sagnac interferometer (PSI). The Sagnac interferometer is made
up of a polarizing beam splitter (PBS) and three mirrors (M), as shown in
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Figure 3.12: The setup used for the q-plate mode purity analysis, based on
the Polarization Sagnac interferometer

Fig. 3.12 and a Dove prism is inserted in one arm of the interferometer. The
|H〉- and |V 〉-polarized components of the beam emerging from the q-plate
are initially separated by the PBS and travel through the interferometer
in opposite directions until they are recombined on exit by the same PBS.
Equal optical paths of the counterpropagating beams render this interferom-
eter particularly noise insensitive, thus removing the need for active control
of the interferometer length [48]. The Dove prism is a special type of prism,
widely used in image processing. The Dove prism is shaped as a isosceles
triangle whose single angle is cut parallel to the base. Such prism produces
a mirror reflection of the impinging beam without changing it’s propagation
direction and if two Dove prisms, rotated through a relative angle of α are
put in cascade, the outcoming beam is rotated through the angle 2α with re-
spect to the incident one. A plane wave propagates through the Dove prism
with no changes at all. In the case of optical vortices that have cylindrical
symmetry no image (intensity) rotation happens, but the spiral phase plane
is rotated only. This way the reflection in the Dove prism tilted at angle θ
adds a phase factor exp (2i`θ) to the OAM eigenstate |`〉 and changes |`〉 into
| − `〉. In our case, moreover, because of the counterpropagation, the |H〉-
polarized beam sees the Dove prism tilted at angle θ and the |V 〉-polarized
beam sees the Dove prism tilted at angle −θ. For the ` = 2, if the Dove
prism is rotated through the 22.5◦ the relative phase change between |H〉
and |V 〉 components of the beam is equal to exp (2i2π/8) = exp (iπ/2). If
the initial polarization state is, for example, |A, `〉 = 1√

2
(|H〉 + |V 〉)|`〉 it is

converted into |D, `〉 = 1√
2
(|H〉 − |V 〉)|`〉 by the PSI. The plane wave (` = 0

mode), instead, remains in the same polarization state, unaffected by the
Dove prism. This way the converted and non-converted portion of the beam
are separated in polarization and then in the propagation direction (by a
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PBS) even if the initial polarization state was the same for both compo-
nents. This type of sorting is no more based on the polarization, but on the
beam phase structure only, even if the result of the sorting consists in the
polarization separation of the two different components of the beam.

To test our q-plates, the outcoming beam was antidiagonally polarized by
a polarizer (loosing 50% of intensity) and sent through the PSI. After the PSI
the |A〉 and |D〉 components were converted into |H〉 and |V 〉 polarizations
by a halfwave plate and separated by the PBS. An additional quarterwave
plate was placed after the PSI so to compensate polarization and phase
changes, induced by the Dove prism and mirrors. The measurements of
the contrast ratio between the two exits of the PBS were taken and are
shown in Fig. 3.13. The correlation of the contrast ratio, measured by the
setup, shown in Fig. 3.5 and the measurements done by the PSI was found
to be 99.6%. The q = 0.5 q-plate made by the SD1 photoalignment was

Figure 3.13: Contrast ratio ρu,c vs voltage for unconverted-converted com-
ponents of the output sorted with respect to polarization (dots). Contrast
ratio ρ0,|2| vs voltage for OAM ` = 0 and ` = |2| components of the output
beam measured with Dove-Sagnac sorter (circles). Data refer to q-plate,
prepared by the UV-photoalignment technique.

Figure 3.14: Examples of the six CGHs, used for the quantum state tomog-
raphy. The holograms correspond to the projection operators on the basis
states |1〉o, | − 1〉o, |h1〉o, |v1〉o, |a1〉o and |d1〉o respectively.

also tested in terms of mode purity. For doing this a quantum tomography
technique was adopted. A set of six holograms (see Fig. 3.14) project the
OAM state into the six basis states |1〉, | − 1〉, 1√

2
(|1〉 + (| − 1〉), 1√

2
(|1〉 −

(| − 1〉), 1√
2
(|1〉 + i(| − 1〉) and 1√

2
(|1〉 − i(| − 1〉). The difference between
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intensities measures is then used to reconstruct the density matrix of the
state in the same way as the Stokes parameters are used to reconstruct the
polarization matrix. The measurements were done for the circularly right
and left polarization inputs, that correspond to the |1〉 and |−1〉 OAM states
generated (in the case of maximum conversion tuning of the q-plate) and
the linearly polarized input light that, together with the polarizer can be
used to generate and equalweight superposition of the |1〉 and | − 1〉 states
(this technique will be discussed more in details in the chapter 4). The
corresponding density matrices are reported in Figs. 3.15 (a)-(c) for all three
states measured and the fidelities of the states generated were 97.5± 0.5%,
99.4 ± 0.5% and 98.9 ± 0.5% of the ` = 1, ` = −1 and superposition states
respectively. An additional test was done on the q-plate with q = 0.5, aimed

Figure 3.15: Real parts of the density matrices of the OAM states (a) – |1〉,
(b) – | − 1〉 and (c) – 1√

2
(|1〉 − i(| − 1〉), generated by a q = 0.5 q-plate,

reconstructed via quantum state tomography.

to show experimentally the strong correlation between the polarization and
OAM states of the output light from the q-plate. For doing that, the q-
plates was illuminated with an elliptically polarized TEM00 beam, and the
generated beam was analyzed in three different ways:

• the polarization state was analyzed with the circular polarizer, so to
detect the fraction of the intensity that was in |R〉 polarization state
and then the OAM state of the whole output beam was analyzed with
a fork hologram, so to detect the fraction of the intensity that carried
the |1〉 OAM state

• the polarization state was analyzed with the circular polarizer, so to
detect the fraction of the intensity that was in |R〉 polarization state
and then the analyzed fraction of the beam was tested with the holo-
gram, so to detect the fraction of the selected beam that was in the
|1〉 OAM state

• the OAM state was analyzed with the fork hologram, so to detect
the fraction of the intensity that was in |1〉 OAM state and then this
analyzed fraction of the beam was tested with the polarizer, so to
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detect the fraction of the selected beam that was in the |R〉 polarization
state

Figure 3.16: Correlations between each two signals for the three different
types of measurements.

The first test allowed to find out how the total number of the |R〉 state
correlates with the total number of the photons in the |1〉 state, without a
precise information if the |R〉 photons are in the |1〉 OAM state or not. The
latter two measurements allow to find the conditioned probabilities P (R/1)
and P (1/R) that correspond to the probability of |R〉- polarized photon to be
in the |1〉 state and viceversa. According to the theory, both the correlation
between the number of the |R〉 polarized photons and |1〉 OAM photons and
the two conditioned probabilities should give unit value, meaning that every
photon in the |R〉 state must carry OAM order ` = 1 and every |1〉 photon in
turn must have circular right polarization. The experimental results showed
that the standard deviation from the unit value is equal 0.015, 0.01 and
0.023 for the three corresponding relations.
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Classical Optics applications

4.1 Polarization controlled OAM eigenmodes gen-
eration and associated geometrical phase [49]

The q-plate action on the impinging laser beam is not limited to the gen-
eration of the pure OAM eigenmodes of fixed ` = 2q order. While for
the circularly polarized input TEM00 beam the operation, performed by
the q-plate is described by Eqs. (3.4), in the case of the arbitrary elliptical
polarization the outgoing state will be not a pure mode, but a complex su-
perposition of different OAM modes of opposite sign in different polarization
states. The aim of the work, described below, was to demonstrate an easy
and efficient control of the OAM state of a light beam that can be achieved
by the STOC process. Arbitrary and continuously controllable linear com-
binations of LG2 modes have been generated in a very simple way and with
efficiency exceeding 90% by manipulating the input beam polarization only,
creating a one-to-one equivalence between a certain polarization states and
2D OAM states that covers all the Poincaré sphere. Our method provides a
highly efficient tool that, for example, can be advantageously used to create
photonic qudits involving both SAM and OAM degrees of freedom, thus
enlarging the amount of information carried by single photons.

The required mapping of the SAM and OAM spaces can be described as

(α|L〉+ β|R〉)|0〉 ↔ (α|2〉+ β| − 2〉)|D〉, (4.1)

where α and β are complex coefficients, satisfying the normalization condi-
tion |α|2 + |β|2 = 1.

The experimental setup is shown in Fig. 4.1. The polarization of the light
beam entering the q-plate is controlled by the QHQH waveplate sequence
QW(90◦)HW(−γ/4)QW(0◦)HW(90◦+δ/4), where the orientation angles of
each plate counted from the horizontal plane are in parentheses. As can be
easily shown, this sequence of waveplates applies to the input polarization
state first an SU(2) transformation consisting of a rotation of angle γ around

44
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Figure 4.1: Experimental setup for generating polarization-controlled linear
combinations of LG2 beams. Legend: HQHQ - set of waveplates to control
the beam polarization; PR - polarization rotator; PBS - polarizing beam-
splitter; DP - Dove prism; M - mirror.

the y axis of the SAM Poincaré sphere and then a rotation of an angle δ
around the z axis. After this QHQH set, we inserted a tuned q-plate (QP),
a polarization rotator (PR) of 45◦ and a Polarizing Sangac interferometer
(PSI), already described in the chaper 3. In the PSI, the Dove prism was
rotated by 11.25◦ from the horizontal plane. The QP, PR, and PSI are
the heart of our apparatus, because they realize the required mapping (4.1).
From Eqs. (3.4), the action of the q-plate on an elliptically polarized TEM00

beam is given by

Q̂P (α|L〉+ β|R〉)|0〉 = α|R, 2〉+ β|L,−2〉 =

=
1√
2

[|H〉(α|2〉+ β| − 2〉)− i|V 〉(α|2〉 − β| − 2〉)] (4.2)

where the charge of the q-plate is taken as q = 1 for simplicity. From
Eq. (4.2) we see that insertion of a linear polarizer after the QP would
already select the desired linear combination of |2〉 and | − 2〉 states. Such
method is very simple, but this would also reduce the maximum conversion
efficiency to 50% [50]. The PSI scheme shown in Fig. 4.1 allows one to
increase the theoretical efficiency to 100%. In order to calculate the overall
effect of the PSI we must add to the action of the Dove prism the action of
the three mirrors and BPS that add an odd number of reflections to both
the counterpropagating beams, so the final value ` of the OAM after the
interferometer is the same as in the input beam. With the substitutions
|H, `〉 → e2i`θ|H, `〉, |V, `〉 → e−2i`θ|V, `〉 and setting θ = π/16 in Eq. (3.4)
we obtain, up to the phase factor, the state after the PSI as

Ψout = (α|2〉 − iβ| − 2〉)|D〉. (4.3)

The resulting beam is fully polarized and the OAM state is a linear combi-
nation of |±2〉 modes with the coefficients uniquely related to α and β. The
phase difference of π/2 between the two terms on the right can be eliminated
by means of the PR, located before the PSI, which introduces a retardation
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of π/2 between the circular polarization components of the input beam.
With such compensation, the correct SAM-OAM Poincaré spheres mapping
(4.1) was achieved.

To show the flexibility of our apparatus in manipulating the light OAM,
we performed a set of measurements in which we slowly modulated the po-
larization of the input TEM00 beam in order to drive the state of the output
beam along a predetermined trajectory on the OAM Poincaré sphere. In
this way, arbitrary states in the |`| = 2 subspace were easily and continu-
ously generated starting from a TEM00 laser beam. The power conversion
efficiency from TEM00 |H〉 polarization to |`| = 2 modes was found to exceed
90% for all the modes. This efficiency is larger than the typically obtainable
('40%) with blazed holograms. In our experiments, we measured the OAM
content of the output beam in several points on the Poincaré sphere by
recording the intensity profile and the pattern obtained by interference with
a |D〉-polarized TEM00 mode as reference beam. For the sake of brevity,
the interferometric apparatus adopted to record such interference patterns
has not been reported in Fig. 4.1. The results are shown in Figs. 4.2-4.4.
In the measurements we used a 532-nm TEM00 |H〉-polarized laser beam

Figure 4.2: Trajectory along the equator of the Poincaré sphere. H is the
starting and ending point of the closed path. (a) Intensity profiles of gen-
erated beams corresponding to differently rotated HG2 modes. (b) Corre-
sponding interference patterns with a |D〉-polarized TEM00 reference beam.
As the state travels along the equator both the intensity and interferogram
patterns rotate through an angle between 0◦ and 90◦.

and thermally tuned q-plate [33]. Fig. 4.2 shows the intensity profiles and
interferograms of the HG2 modes represented by the points located on the
equator of the OAM Poincaré sphere. The modes shown in Fig. 4.2 were
generated by fixing the axis of the first halfwave plate in the QHQH se-
quence to 0◦ and rotating the axis of the second halfwave plate from 90◦ to
180◦. The input polarization state circulates along the equator of the SAM
Poincaré sphere starting from |H〉, i.e. γ = 0 and 0 ≤ δ ≤ 2π, denoted by the
point H on the sphere. The rest of the apparatus mapped the equator of the
SAM sphere into the equator of OAM sphere, which represents a continuous
sequence of HG2 modes whose transverse intensity and phase distributions
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Figure 4.3: Trajectory along a meridian of the Poincaré sphere.(a) Intensity
profiles of generated beams corresponding to different linear combinations
of LG±2 modes. (b) Corresponding interference patterns with a TEM00

|D〉-polarized reference beam.

Figure 4.4: A possible closed path over the OAM-Poincaré sphere. The
path L→ H→ A→ L starts and ends at the North pole, which is associated
to |+ 2〉. H is the point associated to the |h〉 and A is the point associated
to |a〉. (a) Intensity profiles of the generated beam at different points of the
path. (b) Corresponding interference patterns with a TEM00 |D〉-polarized
reference beam.

rotate counterclockwise from 0◦ to 90◦ with the global phase being π shifted
over the closed path, as shown in Fig. 4.5(a). Such a phase shift over the cy-
cle was inferred comparing the intensity profiles of the fringe patterns along
the transverse direction of both the initial and the final states, represented
in Fig. 4.5(a) by a dashed and a continuous line, respectively. Of course,
when the initial state of the input beam is represented by a point located
outside the equator, i.e., γ 6= 0 on the Poincaré sphere, the rotation of the
axis of the second halfwave plate in the device QHQH from 90◦ to 180◦ will
yield into a variation of δ from 0 to 2π. This will drive the OAM state along
a parallel on the Poincaré sphere.

Analogously, the modes represented by the points located along a merid-
ian trajectory on the OAM Poincaré sphere were produced fixing δ = 0 and
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Figure 4.5: FIG. 5. Interference patterns for two different closed trajectories
on the Poincaré sphere. (a) Circular path along the equator, as shown in
Fig. 4.2. In this case, there is a π change in the phase when the path is
closed. (b) Path shown in Fig. 4.4. In this case there is a π/4 change in
the phase when the path is closed. Dashed and continuous lines show the
fringes of the initial and final states, respectively.

driving γ from −π/2 to +π/2 in the QHQH device, i.e., rotating the axis of
the first halfwave plate in the QHQH device from +22.5◦ to −22.5◦. Figure
4.3 shows the continuous passage from the LG2 mode, i.e., doughnut inten-
sity and down-fork interferogram, to the HG2 mode rotated by 45◦, crossing
the equator, up to the LG−2 mode, i.e., doughnut intensity again and up-
fork interferogram. The field distributions of the modes corresponding to
points located along a meridian at intermediate positions between the poles
and the equator are also shown.

On the grounds of the previous two experiments, it is clearly possible
to move between two arbitrary OAM states passing through a continuous
series of states represented by the points of suitable arcs of parallels and
meridians. Furthermore, in principle, any path connecting two arbitrary
points on the Poincaré sphere could be realized by rotating simultaneously
both the halfwave plates in the QHQH device in order to approximate as best
as possible the path by a polygonal chain consisting of small arcs of parallel
and meridians. Finally, we exploited this general feature in a simple case to
drive the OAM state along a closed path L → H → A → L on the Poincaré
sphere (see Fig. 4.4), hinged on the North pole L. Therefore, starting from
the state |2〉 (point L in the figure), we rotated the first halfwave plate
from +22.5◦ to 0◦, the second halfwave plate being fixed at 90◦. After this
operation, the OAM state turns to be |h〉 (point H in the figure). Then, the
first halfwave plate being fixed at 0◦, the second halfwave plate was rotated
from 90◦ to 112.5◦, producing the OAM state |a〉 = (|h〉+|v〉)/

√
2 (point A in

the figure), which is the HG2 mode corresponding to the linear polarization
state |A〉. Finally, the path was closed, maintaining the second halfwave
plate fixed at 112.5◦ and rotating the first one from 0◦ to +22.5◦. Fig. 4.4
shows some intensity profiles and interferograms corresponding to the closed
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path considered. As inferred from the interferograms corresponding to the
North pole in the initial and final states, closing the path results in the
multiplication by a Pancharatnam geometric phase. The observed fringe
shift due to Pancharatnam geometric phase over a cycle is shown in Fig.
4.5(b). The intensity profiles of the fringe patterns along the transverse
direction are shown for both the initial and the final states simultaneously,
maintaining the same origin for the transverse coordinate in both patterns
for comparison. Dashed and continuous lines show the fringes related to the
initial and final states, respectively.

Figure 4.5 shows both the phase shift related to the circulation along the
equator (Fig. 4.5(a)) and that related to the circulation along the triangular
path (Fig. 4.5(b)). As expected, in both cases a phase shift equal to half
the solid angle subtended by the path on the OAM Poincaré sphere was
found [28]. The geometrical phase acquired by a light beam when the OAM
state is moved along a closed path on Poincaré sphere was observed some
time ago [51]. However, in the last experiment the light OAM content was
changed discontinuously by having the beam pass through a sequence of
fixed Dove prisms and cylindrical lens converters. In the present case, the
beam OAM was changed adiabatically and the phase continuously monitored
along the path. Note that the Pancharatnam geometric phase is already
present when we close the state path on the SAM Poincaré sphere of the
input beam. One of the issues of our experiment is therefore to demonstrate
that the STOC process is able to coherently transfer global phase shifts,
such as geometric phase shifts, from the SAM to OAM degree of freedom.
The one-to-one SAM mapping into the OAM Poincaré sphere allows phase
measurements with constant fringe visibility along any path, in particular
along a closed path, which is impossible in experiments on the Pancharatnam
phase based on polarization only [28].

This works clearly showed the versatility of the q-plate as fast and ef-
ficient OAM generation device. Thanks to the q-plate it was possible to
achieve easy and continuous control on the transverse modes of a laser beam.
A particular Dove prism-based Sagnac polarizing interferometric configura-
tion allowed us to generate with efficiency higher than 90% arbitrary combi-
nations of LG2 modes in the |`| = 2 subspace, by changing the polarization of
the input TEM00 laser beam. When closed paths are described on the SAM
Poincaré sphere, identical closed path are described on the OAM Poincaré
sphere and the resulting Pancharatnam geometric phase is transferred with
no change from the SAM to the OAM degree of freedom. Our apparatus
can work even in the single-photon regime, so it could be useful in many
classical and quantum optics applications where easy, fast, and continuous
manipulation of OAM is necessary.

Despite the q-plate being the core of the setup, Polarizing Sagnac inter-
ferometer is another promising tool for OAM manipulation that was also
studied separately in greater detail.
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4.2 Dove-prism Polarizing Sagnac Interferometer [52]

While sorting photons according to their different polarization states is very
easily accomplished by polarizing beamsplitters and birefringent waveplates,
sorting photons according to their different OAM modes is a more complex
problem. Till now few techniques were proposed for this aim [24, 46, 47, 53].
The most used is a combination of a specific computer generated hologram
with a pinhole or a single-mode fiber [24]. Such method, despite its uni-
versality (thanks to SLMs) suffers from the the low overall transmission
efficiency of the hologram and optical fiber (or pinhole) system. Rarely the
overall efficiency of such systems can exceed 40%. A number of setups, in-
volving Mach-Zehnder interferometer and two Dove prisms [46, 47] or two
confocal cylindrical lenses acting as OAM mode converters [53] was also pro-
posed. These techniques have a theoretical efficiency of 100% and may be
used in the single photon regime, but require high mechanical stability, care-
ful path matching of the arms of the interferometer and careful positioning
and alignment of the cylindrical lenses. The combination of the q-plate and
a pinhole, or single-mode fiber can also work as a mode sorter [33] or as a
device that transfers the OAM information into the SAM space that is easily
analyzable by common methods [45]. Other detection methods proposed are
usually not applicable in the single-photon regime.

The PSI setup, proposed in [45] and exploited in [49, 40] in fact is a
variation of the previously proposed interferometric techniques. This setup
allows to reach 100% sorting efficiency, works with single photons, and has
a good stability because of the self compensation of the optical paths inside
the interferometer. Moreover, the use of single Dove prism further simplifies
the setup. In the following, I will further discuss and demonstrate exper-
imentally the ability of the PSI to sort photons carrying different OAM
values, and will present some additional applications of the same setup in
the spinorbit processing, such as the realization of c-NOT gate, efficient
photon spinorbit Bells states measurement and entanglement control of the
spinorbit Schmidt state - a two-component non-maximally entangled state
in the spinorbit Hilbert space.

Let us first generalize the approach to the PSI sorting. As it was previ-
ously mentioned, the Dove prism, inserted inside the interferometer, induces
a phase shift that has different sign for the two counterpropagating compo-
nents. Inserting in the Dove prism, rotated through an angle α with respect
to the interferometer plane is equivalent to insert two Dove prisms in the
two arms of the Leach interferometer [46], rotated with respect of each other
through an angle 2α. After having passed through the interferometer, the
two counterpropagating orthogonal polarizations |H〉 and |V 〉 will gain a rel-
ative phase of 4`α, where ` is the OAM mode order. In this way, our setup
is able to induce an ` dependent change of the polarization state of the inci-
dent beam. The OAM sign remains unchanged, however, because the total
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number of reflections from mirrors, PBS and Dove prism is even for both
polarizations. Neglecting scattering and absorption losses, the theoretical
transparency of the PSI device is 100%. As shown in the next section, the
PSI can simulate the Leach interferometer for OAM photon sorting beyond
the ` = 0 and ` = 2 sorting, performed in Sec. 3.3. But it should be noticed
that the PSI handles polarization too, so it can perform a wider set of oper-
ations in the OAM and also in the full photon spinorbit space. For example,
when qubits formed by opposite OAM eigenstates | ± `〉 are considered, the
PSI may simulate a π/2 cylindrical lens converter, changing LG` modes into
HG` modes [49].

The `-dependent relative phase shift, induced by the PSI can be exploited
for the sorting input photons sharing the same polarization state according
to their different OAM values into orthogonal polarization states of the exit
beam. The further separation over different path is then easily and efficiently
accomplished by suitable waveplates and PBS. Let us assume the impinging
photon having a definite value ` of OAM and definite polarization state
|ψ〉 = a|H〉 + b|V 〉. The action of the PSI with DP at angle α on such a
photon state is given by

|ψ, `〉 P̂ SIα−→ ae2i`α|H, `〉+ be−2i`α|V, `〉 = −i cos 2`α|ψ, `〉+ sin 2`α|ψ′, `〉)
(4.4)

where |ψ′〉 = a|H〉−b|V 〉. We see that for input states with equally weighted
|H〉 and |V 〉 polarizations (i.e. states with |a|2 = |b|2 = 1/2), the states |ψ′〉
and |ψ〉 are orthogonal, so that they can be easily separated. In this work
we assume always an equally weighted input polarization states 1. Then,
from Eq. (4.4) we see that if 2`α = kπ (integer k) the polarization state
remains unchanged (up to a global phase factor), while if 2`α = π/2 + kπ
the polarization state becomes orthogonal to the incident one. Setting, for
example, the angle of the DP to α = π/4 the PSI changes the polarization
of the photons that carry odd values of OAM into the orthogonal state |ψ′〉,
while the photons that carry even values of OAM remain in their |ψ〉 polar-
ization state. Using a halfwave plate, with optical axis rotated through and
angle of π/8, and a PBS located beyond the PSI the even and odd values
of OAM are spatially separated for detection purposes. One or more cas-
caded PSIs may work as an OAM eigenstates sorter in the same way as the
Leach interferometer [46, 47]. As the Leach interferometer, the PSI works
in the single-photon regime and has nominal 100% transmission efficiency.
The main advantages of the PSI are the use of a single Dove prism and the
self-compensation of the optical paths so that no adjustments are required
to obtain destructive interference. Unlike the Leach interferometer, how-
ever, the PSI handles the OAM content of the two orthogonal polarizations
in a different way. This peculiar feature can be exploited for applications

1Examples are the diagonal, antidiagonal, left-circular, right-circular polarizations.
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different from the OAM photon sorting. A few examples are outlined below.

OAM qubit measurement. In most applications of photon OAM to quan-
tum information and computing, qubit are considered formed by the
superposition of only two OAM states. Unlike in the photon spin,
case, however, where the two states have opposite eigenvalues, in the
case of photon OAM we may form qubits with any two eigenvalues `1
and `2. Qubit measurement requires that the two states are sent into
different detectors. In the case of the photon SAM this task is accom-
plished by PBS. In the case of the photon OAM, suitable hologram
can be exploited, but the overall efficiency is quite low, usually around
40% or less. Our PSI can be configured so to discriminate any pair of
given OAM eigenstates |`1〉 and |`2〉 in a common initial polarization
state by addressing them into orthogonal polarizations. In fact, eval-
uating Eq. (4.4) for ` = `1 and ` = `2 and imposing that the output
polarization states are orthogonal, we find the condition

cos 2(`2 − `1)α = 0 ⇒ α =
(2k + 1)π

4(`2 − `1)
(4.5)

with integer k. In most practical cases, opposite values of ` are used.
To discriminate such states |+ `〉 and | − `〉, the Dove prism must set
at α = π/8`. The two orthogonal polarizations at the PSI output are
then sent into different paths by conventional PBS. When configured
in this way, the PSI behaves in as an OAM beam splitter. The contrast
ratio and overall transmission are limited only by constructive defects,
so they may be very large as shown in the experimental section.

TEM00 cleaning. As said above, in many quantum applications qubits
are formed combining the |+ `〉 and | − `〉 OAM eigenstates. In these
cases, may be of some importance to clean up all other OAM com-
ponents. Because the OAM eigenstates are usually originated from
TEM00 laser beams, it is of particular interest to clean up the beam
from any residual ` = 0 OAM component. The PSI can be used to
this purpose by simply setting the angle of the DP at α = π/(4`)
and polarizing the input photon along the antidiagonal direction. In
fact, when Eq. (4.4) with α = π/(4`) is applied to the qutrit |ψin〉 =
a|A, 0〉+ b|A,−`〉+ c|A, `〉 we obtain the output state |ψout〉 as

|ψout〉 = −ia|A, 0〉+ b|D,−`〉 − c|D, `〉, (4.6)

so that the input ` = 0 component is left in its initial antidiagonal po-
larization state and the two ±` components are put into the orthogonal
diagonal polarization state. The ` = 0 component can be then easily
separated from the ` and −` by a PBS placed at the output port of
the device. Such ` = 0 filtering is useful since most holograms, spiral
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phase plates, q-plates etc., commonly used to generate OAM eigenval-
ues from TEM00 beam, do not produce OAM eigenstates with 100%
purity due to misalignment and inaccuracies of fabrication. This sort-
ing approach was exploited in the Sec. 3.3, to detect the purity of the
eigenmodes, generated by an electrically tunable q-plate. It is worth
noting that the ` = 0 component of the input beam is not lost, but
sent into one output port of the final PBS. We may then use the same
device to filter out the the not zero OAM components leaving a very
pure output TEM00 mode. This can be useful, for example, to face the
serious problem to combine high power (' 100 W or more) with excel-
lent beam quality in lasers systems [54] and Faraday isolators [55, 56]
for gravitational wave detection.

Another class of the applications of the PSI is spinorbit quantum compu-
tation. Entangled nonseparable photon spinorbit states are the core of many
quantum information applications. Such states do not show the most noted
property of photon pair – non-locality – nevertheless they exhibit paradox-
ical quantum features related to the quantum contextuality that renders
these single-photon entangled states very interesting for quantum computa-
tion purposes. In fact, operations like universal unitary gates, deterministic
complete Bell measurement, etc., which are impossible in the two-photon
case, can be realized in the case of single-photon with entangled degrees of
freedom. Our PSI acts on the photon SAM and OAM simultaneously, so
that it can realize some of the most important gates in the photon spinorbit
space, such as the c-NOT gate, the unitary gate for Bell’s states measure-
ment or a gate to generate spinorbit states with controllable entanglement.

c-NOT gate. The controlled-NOT (c-NOT) gate is the key gate for most
of the quantum algorithms based on two qubits. In fact, using c-NOT
gates and global phase retarders it is possible to realize any unitary
gate in the 4D two-qubit Hilbert space. The c-NOT gate flips the
state of one of the qubits depending on the state of the other qubit. If
the logical basis of the two-qubit state is given by the four kets |0, 0〉,
|0, 1〉, |1, 0〉 and |1, 1〉 and the first qubit is the control one, then the
c-NOT gate action performs the following logical operation

|0, 0〉 ̂cNOT−→ |0, 0〉, |0, 1〉 ̂cNOT−→ |0, 1〉

|1, 0〉 ̂cNOT−→ |1, 1〉, |1, 1〉 ̂cNOT−→ |1, 0〉. (4.7)

If the spinorbit space logical basis is given by |R,−`〉, |R, `〉, |L,−`〉
and |L, `〉, the PSI with the DP angle set to π/8` performs an OAM
c-NOT operation, changing the polarization state of the photons with
OAM +` into the orthogonal one and leaving the polarization of the
photons with −` unchanged. The exit polarization is transformed as
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|R〉−→|A〉, |L〉−→|D〉 for the negative OAM value and |R〉−→|D〉,
|L〉−→|A〉 for the positive OAM value. To come back into the circular
basis an additional quarter-wave plate with its optical axis oriented at
90◦ is needed beyond the PSI so that the overall operation is given by

|L, `〉
̂cNOT+QWP−→ |L, `〉; |L,−`〉

̂cNOT+QWP−→ |R,−`〉

|R, `〉
̂cNOT+QWP−→ |R, `〉; |R,−`〉

̂cNOT+QWP−→ |L,−`〉 (4.8)

The PSI behaves as a c-NOT gate with the polarization as control
qubit, if we take as logical basis the states |H,h`〉, |H, v`〉, |V, h`〉 and
|V, v`〉, where |h`〉 = (|`〉+ | − `〉)/

√
2 and |v`〉 = (|`〉 − | − `〉)/i

√
2 are

the superpositions of OAM states, equivalent to the horizontal and
vertical polarization states. In this case the OAM state of the |H〉 and
|V 〉 component will be rotated through an angle of ±π/4` respectively
and the state of the outgoing photon is given by

|V, v`〉
̂cNOT−→ |V, d`〉

D̂P−→ |V, v`〉; |V, h`〉
̂cNOT−→ |V, a`〉

D̂P−→ |V, h`〉

|H, v`〉
̂cNOT−→ |H, a`〉

D̂P−→ |H,h`〉; |H,h`〉
̂cNOT−→ |H, d`〉

D̂P−→ |H, v`〉,(4.9)

where |a`〉 and |d`〉 are the OAM states equivalent to the antidiagonal
and diagonal polarization states. The final transformation |d`〉→|v`〉
and |a`〉→|h`〉 to return back into the initial basis is done by a second
DP rotated at angle π/8`, placed beyond the PSI. The use of the PSI
as a polarization c-NOT gate in the photon polarization-path space
was already reported [48].

Bell’s states measurements. A well known theorem forbids determinis-
tic and 100% efficient detection of all the four Bell’s states of a photon
pair with a process that involves just linear optics. Up to now, the ex-
perimental realization of the Bell’s states detection involves additional
degrees of freedom, higher order entanglement, or give probabilistic
result with non-unit fidelity. The situation is different in the case of
single-particle entanglement, where such measurement is possible. The
PSI with a DP oriented at angle π/8` realizes an unitary optical gate
which transforms each one of the four Bell states

|B1〉 = (|H,h`〉+ |V, v`〉)/
√

2

|B2〉 = (|H,h`〉 − |V, v`〉)/
√

2

|B3〉 = (|H, v`〉+ |V, h`〉)/
√

2 (4.10)

|B4〉 = (|H, v`〉 − |V, h`〉)/
√

2

into the not entangled spinorbit basis |H,h`〉, |V, v`〉, |V, h`〉 and |H, v`〉.
The last states can be analyzed with standard techniques to measure
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the photon SAM and the OAM separately. The Bell state analysis gate
can be realized by mounting the PSI as a polarization c-NOT gate, as
described in the previous section, to obtain |B1〉 → |A, v`〉, |B2〉 →
|D, v`〉, |B3〉 → |A, h`〉, |B4〉 → |D,h`〉. Finally, an half wave plate
at 22.5◦ can be used to rotate the photon polarization back into the
horizontal plane.

Schmidt state generation. It is well known that any two-qubit state, as
the photon spinorbit state, can be put into the general Schmidt form

|ΨS〉 = cos(θ)|H,h`〉 − sin(θ)|V, v`〉 (4.11)

by means of unitary transformations acting on each degree of freedom
separately. Conversely, given the state (4.11), any spinorbit state can
be obtained by applying separate unitary transformations to the SAM
and OAM degrees of freedom. The degree of entanglement of the state
(4.11) is parametrized by the angle θ. The non-maximally entangled
state (4.11) could be used, for example, to demonstrate the Hardy
paradox [57] – a test of the quantum nature of the entanglement and
a proof of contextuality (or in the case of two-particles – non-locality)
of quantum mechanics.

To test our PSI we performed an experimental demonstration, realiz-
ing some of the applications proposed above. Since quantum optics ex-
periments that involve single-photon entanglement can be simulated using
coherent CW laser source, to test experimentally our PSI scheme we used
a c.w. vertically polarized 532-nm TEM00 single frequency laser beam. To
generate beams carrying non-zero OAM, we used a q-plate with unit topo-
logical charge. In our experiments the optical retardation δ of the q-plate
was changed by thermal tuning. As it was shown in Sec. 4.1, a combina-
tion of a tuned q-plate and a linear polarizer, can generate any qubit in
the ` = ±2 OAM Hilbert subspace starting from an elliptically polarized
TEM00, according to

α|L, 0〉+ β|R, 0〉−→ 1√
2
|H〉(α|2〉+ β| − 2〉) (4.12)

where a polarizer after the q-plate was used to select the H polarization.
The insertion of the polarizer reduces the conversion efficiency upper limit
to 50% of the incident photons. The STOC process is reversible and allows
the transfer back any OAM qubit into a corresponding polarization qubit
according to [45]

α|H, 2〉+ β|H,−2〉−→ 1√
2

(α|L, 0〉+ β|R, 0〉). (4.13)

The inverse STOC process is very useful in the detection stage, because
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Figure 4.6: The experimental setup. (a) a QP with a set of optical com-
ponents eventually placed or removed for creating the input states for each
experimental demonstration, (b) the Polarizing Sagnac interferometer with
a Dove prism, (c) detection system used to analyze the polarization and
OAM state of the outgoing beam.

the information encoded in the OAM degree of freedom is transferred back
in the light polarization, which is very easy to be analyzed. Our experi-
mental setup is shown in Fig. 4.6 and is made of three stages. In the first
stage, the OAM states are generated by a QP, placed after a set of quarter-
wave plate Q1, half-wave plates H1 and H2 and polarizer P1, as shown in
Fig. 4.6(a). Some of the optical components were removed or inserted back,
depending on the desired photon state. The second stage was the PSI with
the Dove prism inside, as shown in Fig. 4.6(b). A set of waveplates (WP1)
was inserted at the PSI exit to compensate for eventual phase shifts and
polarization changes introduced by the DP and mirrors as also to change
the output polarization basis, when needed, to |H〉, |V 〉. The third stage
was for polarization and OAM analysis and is shown in Fig. 4.6(c). The
photon state coming form the PSI was first analyzed in polarization by the
waveplates WP2 and PBS P2 and then a second QP was used to transfer
the OAM state into the corresponding polarization state of TEM00 mode
(Eq. (4.13)), which was subsequently analyzed by waveplate WP3 and po-
larizer P3. The TEM00 mode in the output beam was selected by a spatial
filter made by microscope objective and pinhole (not shown in the figure).
The average transmittance of the PSI was 80%, mostly because of scattering
and reflection losses from the optical components (no antireflection coating
was used). In evaluating the efficiencies of the PSI processing in the spinor-
bit space, we corrected for these losses. We performed several experiments
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to test the different operations of the PSI.

In the first experiment, we used the PSI to clean up the TEM00 mode
from the input beam. The input light was circularly polarized and sent
into a QP. The optical retardation δ of the QP was changed so to obtain a
mixture of ` = 0 and ` = 2 OAM eigenstates, according to Eq. (3.4). The
polarizer P1 ensured antidiagonal polarization at the PSI input and the DP
was rotated at α = π/8. Figure 4.7 shows the data for the case ` = 2. The
` = 2 and ` = 0 modes, shown in the figure, exit from the opposite ports
of PBS P2 in Fig. 4.6(c). The measured contrast ratio of our cleaner was
about 3.5:100.

Figure 4.7: Filtering the TEM00 mode from the OAM carrying beam.
Dots (` = 2) and squares (` = 0) represent the normalized intensities of the
two exits of the final PBS P2 in Fig. 4.6(c), as functions of the QP optical
retardation δ. The solid curve is the fit with sin2 δ/2 and cos2 δ/2 behavior
expected from Eq. (3.4). The experiment was repeated for ` = −2 with
similar results.

In the second experiment, we used the PSI to separate opposite OAM
eigenstates. The input state was created by sending the H-polarized laser
light into a HWP at angle θ/2, a QWP at 45◦ and finally into a QP tuned for
optimal STOC, so to obtain beyond the polarizer P1 of Fig. 4.6 the OAM
qubit |Φ〉 = cos 2θ|+ 2〉 − sin 2θ| − 2〉) with antidiagonal polarization. After
the QP tuning, the residual ` = 0 component was negligible (less 1%). The
OAM qubit superposition was changed by rotating the half-wave plate. The
DP in the PSI was set at α = π/16. The experimental results are shown
in Fig. 4.8. The contrast ratio was 4.2:100 and the transmission efficiency
larger than 90%, much larger than what can be obtained by holograms and
spatial filter combination.
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Figure 4.8: Sorting of the OAM eigenstates |±2〉. Dots (` = 2) and squares
(` = −2) represent normalized intensities of the two exits of the final PBS in
Fig. 4.6(c), as functions of the angle θ of the half-wave plate, that controls
the state of the input beam. The solid line is given by sin2(θ − π/4) and
cos2(θ − π/4), according to theory.

In the third experiment, we implemented Bell’s states detection with
the PSI. The states (4.10) can be generated with a QP with 100% efficiency.
The states |B1〉 and |B4〉 are generated directly by sending in in the QP a
H and V -polarized TEM00 beam, respectively. The states |B3〉 and |B2〉
require an additional HWP at 45◦ beyond the QP, so to exchange the po-
larization states. The states (4.10) were disentangled by the PSI c-NOT
operation described above with DP rotated at α = π/16. The output base
states |H,h2〉, |H, v2〉, |V, h2〉 and |V, v2〉 were analyzed in polarization and
OAM separately by sending them into the four output channels of a setup
formed by PBS and QPs for inverse STOC. The average contrast ratio in
separating the |h2〉 and |v2〉 OAM state by the inverse STOC was 1.4:100.
The intensities of the signals at each one of the four exit gates of our analysis
setup are shown in Fig. 4.9. At least 94% of the intensity was concentrated
in one exit gate at once, showing very good disentanglement by the c-NOT
PSI operation.

In our final experiment, we used the PSI to create the photon spinorbit
Schmidt state (4.11). Although some photon spinorbit states of the Schmidt
form can be generated by simply sending through a QP an elliptically polar-
ized TEM00 beam, this is not true for the state (4.11). This is because some
unitary operations, as π/2-conversion, for example, are difficult to be im-
plemented in the OAM subspace and require cylindrical lens converters (the
Dove prism performs a π-conversion). Our PSI can do the OAM state π/2-
conversion [49] and, hence, it can be exploited to create states as (4.11). In
our experiment, we first turned the laser beam polarization into diagonal and
then sent it through the QP and PBS to obtain with 50% nominal efficiency
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Figure 4.9: Bell’s state detection. The photons coming from the PSI were
first sorted by a PBS into their H and V polarizations and then sorted again
by a QPs in each channel so to send the OAM h and v states into orthogonal
polarizations by inverse STOC.

the state |H, d`〉, with ` = 2, in our case. The state |H, d`〉 was then made
to pass through a HWP at angle θ and sent directly into the PSI with Dove
prism at α = π/8` = π/16. A straightforward calculations shows that the
photon spinorbit state at the PSI exit is precisely the Schmidt state (4.11)
with θ replaced by 2θ. The degree of entanglement of this spinorbit state
is controlled by rotating the HWP. We measured the intensity the |H,h2〉
and |V, v2〉 components of the Schmidt state generated by the PSI with the
same apparatus used for the SAM and OAM analysis in the previous exper-
iment on Bell states. The results are reported in Fig. 4.10. For the sake of
completeness we measured by full spinorbit tomography the density matrix
of one of the states with maximal spinorbit entanglement. The tomographic
technique is commonly used in single photon quantum optics to measure
qubits [58] and can be used also to characterize OAM photon states or even
spinorbit photon states [22, 49, 59]. The main advantage of tomography
is that both the amplitude and phase of the optical field can be retrieved
without having recourse to interferometers. The basic idea is to measure
the Stokes parameters si(i = 1, ..., 3) by intensity differences in the horizon-
tal/vertical basis and in the antidiagonal/digonal basis for the polarization
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Figure 4.10: Normalized intensities, corresponding to the |H,h2〉 (dots)
and |V, v2〉 (squares) component of the state (4.11) as functions of the angle
θ of the HWP. Solid lines correspond to cos2(2θ).

Figure 4.11: Density matrix of the near-maximally entangles Schmidt state,
reconstructed via full spinorbit tomography

qubit and in similar bases for the OAM qubit [58]. In our measurements the
tomography was carried out by using PBS and QPs with pinhole for inverse
STOC as in the previous experiments. The results are shown in Fig. 4.11
and are in excellent agreement with theory. The measured average fidelity
defined as the squared scalar product of the observed spinorbit state and
the expected state (4.11) was 92%.
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4.3 Generation and control of different order or-
bital angular momentum states by single q-
plate [60]

A proposal for the use of OAM as the alphabet for the free space communica-
tion was already made in 2004 by Gibson et al. [6]. OAM, comparing to the
polarization has a number of advantages, it is more stable under propaga-
tion and insensitive to the anisotropy of the medium, it is more secure since
it is difficult to intercept the information carried by the OAM unnoticed.
One of the main advantages is the multidimensionality of the OAM degree
of freedom that allows to encode much more information into single photon.
In the quantum regime, such high-order qubits, and their use for quantum
information purposes has been shown to have several possible advantages.
Photonic qudits have been so far mainly implemented using multi-photon
systems or multi-path encoding and the alternative of using OAM encod-
ing has been investigated only very recently. Up to now, single-photon
OAM qudits with dimension d = 3 (“qutrits”) and d = 4 (“ququarts”) have
been generated and employed, e.g., in quantum communication, quantum
bit commitment, and quantum key distribution [61, 62, 63, 64]. Combined
SAM-OAM ququarts have been also recently demonstrated [65]. However,
the difficulty and low efficiency of OAM manipulation has so far represented
a serious limitation. In particular, current sources of optical OAM are either
very rigid (only one OAM value is generated, with no switching or modu-
lation capability) or very inefficient (typically less than 40% of the input
photons is converted into the desired OAM modes) and fairly expensive;
electro-optical fast manipulation of OAM is virtually non-existent, while
the OAM control flexibility currently provided by spatial light modulators
(SLM) comes at the expense of a slow response (∼ 1 kHz) and a high cost.

In this work, a fast, reliable, and inexpensive q-plate-based device to en-
code classical (or quantum) information into different OAM states of a light
beam was proposed. The polarization controlled mechanism of the q-plate
allows to realize OAM switching by electro-optical devices, thus ensuring
very fast commutation rates (up to ∼ GHz rates). The beam polarization
state is not affected and can be further manipulated to store more informa-
tion. If also the SAM is considered, our device may encode three classical
(or quantum qu-) bits of information into a single photon. In our device,
the q-plate is inserted into a triangular optical loop, as shown in Fig. 4.12.
A polarizing beam-splitter (PBS) is used as the input and output gate, so
that only the horizontally polarized light can enter and exit from the loop,
the vertically polarized light being directly reflected by the PBS. The tuned
q-plate was sandwiched between two quarter wave plates (QWPs) and in-
serted in the loop, as shown in Fig. 4.12. As it will be shown below, our
loop device can
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Figure 4.12: The q-plate sandwiched between two QWPs (Q1 and Q2)
inserted in the triangular optical loop. The beam trajectory inside the loop
device for the case of (45◦, 45◦), (−45◦,−45◦) where the beam passes once
(inset a), and (−45◦, 45◦) and (45◦,−45◦) where the beam passes twice in-
side the cavity (inset b). The solid green and red lines show the first and
second trip, respectively. Legend: M-mirror, PBS-polarizing beam splitter,
Q-quarter wave plate, QP-q-plate.

1. generate the four OAM eigenstates | ± 2〉, | ± 4〉; the switch among
these four states is made acting on the light polarization so that very
fast commutation rate can be achieved;

2. generate qubits formed by any pair sorted from the four OAM eigen-
states above; the relative amplitudes of the two states forming the
qubit is controlled by acting on the light polarization only;

3. generate a state made of the superposition of all OAM eigenstates with
even `; the power spectrum of the superposition is controlled by acting
on the light polarization only.

Let us consider a TEM00 laser beam with OAM ` = 0 entering in the optical
loop. The output beam is a pure state of order |`| = 2, 4 when the QWPs
in the loop are set at ±45◦. Let us consider, for example, the case where
the two QWPs were set at 45◦. The first QWP changes the polarization
of the beam circulating in the loop from the horizontal (|H〉) to the left
circular (|L〉). The q-plate coherently transfers Spin-to-OAM, switches the
polarization into the right circular (|R〉) and provides the beam with an
OAM value ` = +2. The second QWP switches back the right-circular
polarization into the horizontal one (|H〉), so that the light was led out from
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the loop. Because of the even number of reflections by mirrors, the OAM
of the output beam is left to ` = +2. The full sequence of changes of the
photon state is

|H, 0〉
Q@45◦

1−→ |L, 0〉 QP−→ |R, 2〉
Q@45◦

2−→ |H, 2〉 (4.14)

The same process occurs with the two QWPs set at −45◦. In this case,
however, the output beam is left with ` = −2. The full sequence is

|H, 0〉
Q@−45◦

1−→ |R, 0〉 QP−→ |L,−2〉
Q@−45◦

2−→ |H,−2〉 (4.15)

Figure 4.12-(a) shows the ray trajectory inside the optical loop for these two
cases.

When the two QWPs are set at opposite angles (45◦,−45◦) or (−45◦, 45◦),
the output beam is left with ` = ±4, respectively. Let us consider, for ex-
ample, the case where the first QWP is set at +45◦ and the second at −45◦,
respectively. The horizontal polarized beam circulating in the optical loop
is changed into the left-circular polarization by the first QWP. The q-plate,
then, coherently transfers the spin into OAM and the state changes into
|R, 2〉. The second QWP switches back the polarization into the vertical po-
larization state, so that the beam is reflected back into the loop by the PBS.
However, the sign of the OAM changes due to the odd number of reflections
by mirrors and PBS. In the second trip, the first QWP changes the vertical
polarization into the right-circular polarization and the q-plate transfers the
polarization state into the left-circular polarization and subtracts 2 to the
the beam OAM leading to ` = −4. After that, the second QWP changes
back the left-circular polarization into the horizontal polarization so that the
beam with ` = −4 can leave the loop after an even number of reflections by
mirrors and PBS. For the (−45◦, 45◦) configuration the same process takes
place, but the sign of the output OAM is reversed. Inset (b) in Fig. 4.12-(b)
shows the ray trajectory inside the optical loop for the last two cases. The
full sequences of changes of the photon states are (M represents here the
two mirrors)

|H, 0〉
Q@45◦

1−→ |L, 0〉 QP−→ |R, 2〉
Q@−45◦

2−→ |V, 2〉 M+PBS−→

|V,−2〉
Q@45◦

1−→ |R,−2〉 QP−→ |L,−4〉
Q@−45◦

2−→ |H,−4〉

|H, 0〉
Q@−45◦

1−→ |R, 0〉 QP−→ |L,−2〉
Q@−45◦

2−→ |V,−2〉 M+PBS−→

|V, 2〉
Q@45◦

1−→ |L, 2〉 QP−→ |R, 4〉
Q@−45◦

2−→ |H, 4〉 (4.16)

Therefore, the loop device is able to generate −4,−2,+2,+4 values of
OAM by choosing the proper angles for the two QWPs. Table (4.1) shows



CHAPTER 4. CLASSICAL OPTICS APPLICATIONS 64

the four possible combinations of QWP angles and the corresponding OAM
values of the output beam 2. One may replace the QWP with electro-

Table 4.1: Four possible combinations of QWP angles and their corre-
sponding beam’s OAM values.

Logical bit Q1 Q2 OAM

00 +45◦ +45◦ +2
01 −45◦ −45◦ −2
10 +45◦ −45◦ −4
11 −45◦ +45◦ +4

optical devices so to encode the information in the light beam with rate
of the order of several megahertz. The optical loop setup proposed in this
work can be used for classical communications in 8D SAM-OAM space. As
we it was already mentioned, an additional classical bit can be encoded in
the SAM of the output beam by inserting a further QWP at the exit of the
optical loop. So, Alice can transmit to Bob the eight spinorbit photon states
(|L〉, |R〉)⊗(|−4〉, |−2〉, |+2〉, |+4〉), corresponding to three bit of information
per photon. Bob can use, for example, a QWP at 45◦ followed by a PBS
to select the SAM state of the received photons and the holograms shown
in Fig. (4.13) to discriminate the photon OAM [6]. The communication
transmitter and receiver scheme shown in Fig. (4.13) can be fully realized
by the available technology. Its main advantage is that three bits are encoded
in each photon manipulating only the polarization degree of freedom, which
can be achieved by very fast and efficient electro-optical switching. Because
of the presence of the hologram in the detection stage the overall efficiency
is low. However, it can be significantly increased by using a siutable fish-
eye device as recently proposed [66]. Our apparatus has been intended for
classical telecommunication, but it can be applied for single photon quantum
communication too, since the q-plate can act as a quantum device (see
chapter 5).

When the orientation angles of the QWPs are set to values different from
those reported in Table (4.1), a superposition of OAM states is generated,
in general. In this case, the light is trapped inside the cavity making infinite
number of loops. The output state is then given by a superposition of dif-
ferent OAM eigenstates made by the portions of horizontally polarized light
exiting the cavity at each loop. In the quantum regime, the superposition
is among the probability amplitudes αN that the photon exits the optical
loop after N round trips. When the angle of one of the QWPs inside the

2Because we were only interested to the OAM value of the beam, we have neglected
the phase delay between the first and second trip inside the optical loop. Indeed, the
beam with OAM value |`| = 4 has a trip delay with respect to the beam with OAM value
|`| = 2.
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Figure 4.13: Alice apparatus is similar to what has already shown in
figure (4.12). In order to encode another information bit, a third QWP
(Q3) is located at the exit face of the optical loop. Alice is able to gen-
erate (|L,−4〉, |L,−2〉, |L,+2〉, |L,+4〉, |R,−4〉, |R,−2〉, |R,+2〉 and |R,+4〉)
by setting her QWPs at ±45◦. Bob measures the photon SAM state by
suitable QWP and a PBS and measures the photon OAM state by suitable
holograms, as shown.

cavity is fixed at 45◦ (or −45◦), four different qubits are produced made of
any two of the four OAM states | ± 2〉, | ± 4〉.
More precisely, if the first (second) QWP is fixed at angle 45◦ the generated
output state up to a global phase factor is given by

|ψ1〉 = C1(θ, ψ)[2(cos(2θ + ψ)− sinψ)|2〉 − i(1− sin 2θ)| ∓ 4〉] (4.17)

where C1(θ, ψ) is a normalization factor depending on the round trip phase
delay δ and on the orientation angle θ of the free QWP.
If the first (second) QWP is fixed at −45◦, instead, the output state is given
by

|ψ2〉 = C2(θ, ψ)[2(cos(2θ − ψ)− sinψ)| − 2〉 − i(1 + sin 2θ)| ± 4〉] (4.18)

where C2(θ, ψ) is a new normalization factor. It is worth noting that the
relative phase of the two OAM eigenstates forming the qubit is fixed to be
±90◦, so that only the relative amplitude can be changed by the control
parameters θ and ψ. The possibility of exploiting the photon polarization
to control qubits formed by two OAM eigenstates with different m may be
useful for quantum computing or other quantum applications.

When both the angles of the QWPs are different from ±45◦, a complex
superposition of even OAM eigenstates is generated, having the general form
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∑+∞
n=−∞ c2n|2n〉, where c2n depend on the angles θ1 and θ2 of the two QWPs

and on the loop delay ψ. Figure 4.14 shows some examples of infinite OAM
state superposition obtained for different orientations θ1 and θ2 of the two
QWPs and for ψ = 0. Notice how the symmetry of the OAM power spec-
trum of the output beam is strongly affected by θ1 and θ2. The odd OAM
components are missing because a q = 1 q-plate was used. A full OAM
spectrum can be generated by using a q = 1/2 q-plate. The possibility of
exploiting the light polarization to control full spectra of OAM eigenstates
may be useful for future, yet not identified, applications. In our first exper-

Figure 4.14: Calculated OAM power spectrum In = |c2n|2 of the beam
emerging form the loop device for different angles θ1 and θ2 of the two
QWPs for loop delay ψ = 0. The power spectrum can be either symmetric
(a) or not symmetric (b,c,d) and the fundamental ` = 0 component can be
suppressed (b,d).

iment, we used a c.w. TEM00 laser source at λ = 532 nm and measured the
output beam phase-front by making an interference with a plane-like phase-
front of same frequency. We used an azimuthally oriented liquid crystal
q-plate. The optical retardation of the q-plate was tuned by temperature
controller [33] in such a way that it acted as a half-wave plate (δ = π).
Figure (4.15) shows the recorded interference pattern of the beam exiting
the optical loop for different angles of the QWPs. The absolute value of the
OAM is deduced from the number of prongs of the interference fork and the
sign from the prongs up or down direction. In our second experiment, we
fixed the first QWP at 45◦ and rotated the second one so to generate the
qubit formed by the OAM eigenstates 2 and −4 as described before. The
alignment of the loop were adjusted by moving the two mirrors so to obtain
a good symmetric interference pattern 3. For each angle θ of the second
QWP, we measured the power flow associated to the ` = 2 and ` = −4 com-

3This pattern has the characteristic form of six-petal flower.
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Figure 4.15: The interference of the output beam from the loop device and
TEM00 beam for the four QWP angles shown in Table (4.1).

ponents of the beam exiting the loop device by suitable computer generated
fork holograms displayed onto a Spatial Light Modulator (SLM). Beyond
the hologram, the ` = 0 component was selected by a pinhole posed in the
focal plane of a convergent lens. Finally, the measured power flows were
normalized so that their summation returned one. The result is shown in
Fig. 4.16. The full curve is from Eq. (4.18). To fit the data we used the loop
retardation ψ as best fit parameter.

Figure 4.16: The normalized powers of the ` = 2 (blue) and m = −4 (red)
components of the loop output beam as functions of the orientation angle θ
of the second QWP. The first QWP was held fixed at 45◦. The continuous
curve is the fit to Eq. (4.17). The optical retardation ψ of the loop was used
as fitting parameter. In the case of the figure above we found a best fit value
ψ = 0.



Chapter 5

Quantum Optics applications

5.1 Introduction

One of the most promising fields where the OAM can be applied is quantum
optics. Since the first demonstration of the quantum nature of the OAM [8],
a particular attention was drawn towards OAM degree of freedom. Photons
by themselves showed to be good candidate for the realization of quantum
information algorithms and up to now the photon polarization (SAM) de-
gree of freedom is widely used as an implementation of the qubit - a basic
information unit, thanks to easy methods of manipulation of the polariza-
tion of a photon and relatively easy methods of generation of single photons
and photon pairs. OAM degree of freedom provides a different approach to
quantum information. First of all, OAM is an additional Hilbert space that
can be used parallel to the spin space. This allows to increase the amount
of information carried by a single photon, by using two different space at
the same time with a qubit, encoded into each degree of freedom or create
entangled states, where one degree of freedom is entangled with the other,
of the same particle. The multidimensionality of the OAM space, on the
other side, allows to create information units called “qudits” – quantum
systems with dimensions higher than two. Particular examples of qudits are
tree-level “qutrits” or four-level “ququarts”. This allows to encode more
quantum information into a single degree of freedom, or to create photon
pairs where qudits are entangled.

It was already demonstrated, that a q-plate can act in the photon count
regime, where not a classical coherent beam is used as input, but single
photons. A series of experiments were performed in collaboration with the
group of Francesco De Martini, from the University of Rome “La Sapienza”,
where the q-plate was tested for the first time in the quantum optics and
then exploited to realize some novel experiments that were never done in
the OAM degree of freedom of the photons, or in the entangled spinorbit
space of single photons.

68
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The action of the q-plate on a single photon is basically the same as
in the classical regime, however in the quantum mechanics framework this
process must be observed from the different point of view. For example,
when a horizontally polarized photon interacts with the q-plate, the final
state is

Q̂P |H〉 → 1√
2

(|R, 2q〉+ |L,−2q〉) (5.1)

which is a non-separable single photon state with entangled SAM and OAM
degrees of freedom. While this significant result was achieved by simply
putting a q-plate on the way of a beam, further applications of the q-plates
are numerous. The polarization control of the OAM generation process (see
section 4.1) was also demonstrated in the single-photon regime [45] and was
exploited to transfer the information encoded in a qubit of one Hilbert space
into the other. With a q-plate of topological charge q = 1 this transfer was
done as from SAM to OAM subspace of |`| = 2 and vice versa, and, by
cascading the q-plates, to the subspaces of order |`| = 4 [50]. Exploiting the
q-plate it was possible to demonstrate of the Hong-Ou-Mandel effect in the
OAM, a milestone quantum optics experiment, made in 1987 for the polar-
ization degree of freedom which describes the basic photon-photon interac-
tion inside a beamsplitter. If two photons enter the symmetric 50% − 50%
beamslpitter they tend to exit from the same side, when they are indistin-
guishable. Two labeled (either by a time delay, or by any other method)
photons will have equal and independent probability of exiting from any
side. A straightforward consequence is that if the two photons are indis-
tinguishable, they will never exit the two sides separately. Afterwards, a
cloning of the OAM photon state was done for the first time [67]. While
the cloning of a quantum state with the preservation of the original one
is forbidden by a no-cloning theorem, an imperfect cloning is still allowed.
The “imperfection” consists in a less than one fidelity of the cloned state,
or in other words, a less than unit probability of the successful creation of
the exact copy. The cloning with the maximum allowed fidelity is called
“optimal”. Using the symmetrization technique that is based on the Hong-
Ou-Mandel effect, such optimal cloning of the 2D OAM states was realized
experimentally. From the spinorbit side, a thorough study of the q-plate
ability to generate 4D ququart states of the single photon was also demon-
strated [59]. After that, an optimal cloning of these 4D states was done. As
in the case of the OAM 2D states the symmetrization technique was used for
this purpose [65], however, the q-plates were the core devices, that allowed
to generate the necessary states, realize the cloning procedure and detect
the results.

In this chapter, I present some other approaches to the q-plate applica-
tion to quantum optics. The first one is a proposal of an adjustable device,
called Universal Unitary Gate, that can realize any unitary operation in the
4D spinorbit space of a single photon. Being a device mainly based on the
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q-plates it does not require any interferometric setups and allows to manip-
ulate the state of a photon without changing its propagation direction, with
all the state changes done along one beam.

Another section of the chapter deals with a more fundamental aspects
of quantum mechanics, not strictly related to computation and cryptog-
raphy and devoted to demonstrate the non-local and contextual nature of
quantum mechanics by Bell’s inequalities violation. In these experiments
we used entangled SAM + OAM states, prepared in three different ways: a
single photon entanglement of the two Hilbert spaces of the same particle,
a “hybrid” entanglement, where the OAM degree of freedom of one photon
is entangled with the SAM degree of freedom of the other and a classical
analog of the single photon entanglement, performed not with single pho-
tons, but with a continuous coherent laser beam. This work was performed
in a joint collaboration with the research group from University of Glasgow,
Glasgow, Scotland, United Kingdom, lead by Prof. Miles Padgett.

5.2 Universal unitary gate [68]

A proposal for a q-plate, as device able not only to generate, but also manip-
ulate the states in 4D spinorbit space was also made. An advantage of the
entanglement, where two Hilbert spaces of the same particle are entangled,
compared to the standard two-photon entanglement is a possibility of real-
ization of unitary gates – a quantum devices that perform a certain unitary
operation on the state. A universal unitary gate (UUG) in the polarization
space, i.e. an adjustable gate that can realize any unitary operation on the
polarization state of the photon is easily realizable by a set of wave plates.
For example a cascade of quarter-wave plate, half-wave plate and another
quarter-wave plate can perform any operation in the SU(2) space. Adding
an isotropic phase retarder,as shown in the inset of Fig. 5.1, for controlling
the global phase will expand the action into the U(2) space.

Changing the retardation δ of the isotropic plate and the optical axis
angles α, β, γ of the three birefringent wave plates allows one to realize
any unitary transformation V̂π(α, β, γ, δ) ∈ U(2) in the photon polariza-
tion space [69]. For example, Pauli’s operator, σ̂x, σ̂y, and σ̂z, in the
circular polarization basis of the spin space, may be realized by setting
(α, β, γ, δ) = (0, π, π/2, π/2) → σ̂x, (α, β, γ, δ) = (0, π/4, 0, π/2) → σ̂y,
(α, β, γ, δ) = (0,−π/4, π/2, π/2) → σ̂z (this choice is by no means unique).
The action of the SAM-UUG is defined by its action on the circular polar-
ization basis states according to

(|1π, `o〉, | − 1π, `o〉)
V̂π→ (|1π, `o〉, | − 1π, `o〉)Vπ (5.2)

where Vπ is a 2× 2 unitary matrix.
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Figure 5.1: The scheme of the Q-box. The structure of the birefringent
plate is shown in the inset. QWP, HWP, RP are the quarter-wave plate,
half-wave plate and retardation plate respectively. α, β, γ indicate rotation
of the QWP, HWP, QWP and δ is the retardation of the isotropic plate. The
birefringent plate realizes a SAM-UUG affecting the OAM ` = 0 part of the
beam only and it is placed in the common focal plane of the two lenses (L).
The topological charge of both q-plates is unit and the optical retardation
is λ/2.

Some manipulations of the photon OAM can be made by using Dove
prisms [70], transverse mode sorters [71], and cylindrical lens mode convert-
ers [72], but no UUG has been proposed for the photon OAM till now. How-
ever, even if such OAM-UUG were available, its use together with a SAM-
UUG would still not reach the goal of a full manipulation of the ququart
state encoded in the photon, because these two UUGs would act on the spin
and OAM degrees of freedom separately and would not be able to handle
two-qubit entangling. Entangled pairs of qubits, i.e., nonseparable ququarts,
are central in most schemes that have been proposed for quantum commu-
nications, quantum information processing and secure key distribution. The
SAM-OAM entangling ability of the q-plate allows us to introduce a UUG
for spinorbit 4D Hilbert space, spanned by 2D SAM space and a 2D OAM
space with |2o〉 and | − 2o〉 basis states (all our results are easily generalized
to an arbitrary |`|).

The basic element of our SO-UUG is the device, here named q-box (QB),
that is shown in Fig. 5.1. The QB is made by cascading two QPs, the first
for splitting the OAM ` = ±2 components of the input beam into ` = 0
and ` = ±4 components, and the second to return them back into ` = ±2
components. Between the two QPs, a SAM-UUG is inserted which performs
an arbitrary unitary transformation V̂π(α, β, γ, δ) on the photon spin only,
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and which acts selectively on the OAM ` = 0 component of the beam,
leaving the ` = ±4 components unaffected. This is made possible, because
the ` = 0 and ` = ±4 components of the beam, initially superimposed at
the exit plane of the first QP, will spatially separate in their radial pattern
by free propagation. In fact, the ` = 0 part will become concentrated in a
spot at the beam center, and the ` = ±4 part will become distributed over
a surrounding ring with zero intensity at center (“doughnut” beam shape).

An important issue that must be taken into account at this point is the
transverse mode non-stationarity under free propagation, due to the beam
radial profile arising at the output of devices like q-plates, fork holograms
and other. In fact, we should have properly described our photon states by
|sπ, `〉|ϕ`〉, where |ϕ`〉 is the radial state, whose evolution during propagation
depends on the OAM eigenvalue `. The transverse beam profile associated
to the radial state |ϕ`〉 is given by the radial function ϕ`(r) = 〈r|ϕ`〉, where
|r〉 denotes the state of a photon localized at radial distance r from the
optical axis. In general, the profile ϕ`(r) is a linear combination of infinite
Laguerre-Gauss (LG) radial profiles LGp`(r) with given ` and different ra-
dial numbers p. During free propagation, the Gouy phases of the different
LG-mode components change relative to each other, so that the total ra-
dial profile ϕ`(r) resulting from the superposition is not stationary. In most
quantum computation experiments, where OAM is not involved, the trans-
verse profiles are ignored, since they are the same for every state and can be
factorized out. As we shall see in a specific example, such factorization is
not possible in our case and the profile change under free propagation will
give rise to some transverse “cross-talk” between different `-components of
the beam reducing the fidelity of our SO-UUG.

Having a good separation between the ` = 0 and the ` = ±4 OAM com-
ponents is crucial for obtaining an efficient SO-UUG. This can be obtained
in several ways. In our work we considered a very simple sorting method,
based on a semibirefringent circular mask posed at the back focal plane of
the first lens shown in Fig. 5.1. The central part of the mask is a birefrin-
gent disk of radius R, while the surrounding corona is an isotropic medium.
The central disk performs the required unitary transformation V̂π on the
photon spin of the ` = 0 component. The radius R of the active part of the
semibirefringent plate can be adjusted to minimize the crosstalk among the
transverse radial modes. The best spatial separation among radial modes
occurs in the far field or, equivalently, at the back focal plane of the first
lens in Fig. 5.1, where the Fourier transform of the field is collected. The
second lens in Fig. 5.1 performs the inverse Fourier transform thus restoring
the input beam transverse profile in the final output. To study the behavior
of the QB in more detail, it is convenient to use the following logical states
in the SO Hilbert space with OAM value ` = ±2:

|00〉 = |1π, 2o〉, |01〉 = | − 1π,−2o〉
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|10〉 = | − 1π, 2o〉, |11〉 = |1π,−2o〉. (5.3)

The action of any linear operator V̂ in the spinorbit space is given by its
action on the basis states, according to

(|00〉, |01〉, |10〉, |11〉) V̂→ (|00〉, |01〉, |10〉, |11〉)V (5.4)

where V is a 4× 4 matrix. In particular, operators as V̂π acting only on the
photon spin are mapped in spinorbit matrices having the general form

Vπ =


v11 0 v12 0
0 v22 0 v21
v21 0 v22 0
0 v12 0 v11

 (5.5)

where vij are the entries of the 2×2 matrix Vπ ∈ U(2) in Eq. (5.2). Similarly,
operators Û acting in the OAM subspace only are mapped in spinorbit
matrices having the general form

U =


u11 0 0 u12
0 u22 u21 0
0 u12 u11 0
u21 0 0 u22

 (5.6)

where uij are the entries of the 2 × 2 matrix U ∈ U(2). Assuming the first
QP located in the front focal plane of the first lens of the QB, in the back
focal plane we have the 2D-Fourier transform of the field exiting from the
QP. The 2D-Fourier transform can be described by an operator Ĵ|`| acting

only on the radial part of the state: viz. Ĵ|`||sπ, `o, ϕ`〉 = |sπ, `o〉Ĵ|`||ϕ`〉.
In the basis of the localized states |r〉 in the Fourier plane (lens back focal
plane) the matrix elements of the operator Ĵ|`| are given by

〈r′|Ĵ|`||r〉 =
1

λf
J|`|

(
r′r

λf

)
(5.7)

where J|`|(x) are the Bessel functions of integer order |`|, λ is the wavelength

and f is the lens focal length. The operators Ĵ|`| are hermitian and unitary,

so that Ĵ2
|`| = 1. The action of a semi-birefringent plate (SBP) with the

birefringent disk of radius R with corresponding unitary spin operator V̂π is
given by

|sπ,mo, ϕ`〉
ŜBP→

V̂π|sπ,mo〉Û(R)|ϕ`〉+ |sπ,mo〉(Î − Û(R))|ϕ`〉 (5.8)

Where Û(R) is hermitian and idempotent operator that acts only on the
radial profile state, selecting the portion of the beam at distance r ≤ R
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and Î is the identity operator. In the basis of the localized states |r〉 the
operator Û(R) is represented by the Heaviside unit step function Θ(R − r)
with diagonal matrix elements

〈r′|Û(R)|r〉 = Θ(R− r)δ(r − r′). (5.9)

The action of the QB on the logical basis states (5.3) can now be easily
calculated

(|00〉, |01〉, |10〉, |11〉)|ϕ2〉
Q̂b→ (|00〉, |01〉, |10〉, |11〉)Qb|ϕ2〉+

((v11 − 1)|01〉+ (v22 − 1)|00〉+ v12|1π,−6o〉+ v21| − 1π, 6o〉)Ĵ4Û(R)Ĵ4|ϕ2〉+

(|10〉, |11〉)(I − Vπ)Ĵ0(Î − Û(R))Ĵ0|ϕ`〉 (5.10)

where vij are the entries of the 2× 2 matrix Vπ of the birefringent disk, I is
the 2D-identity matrix and the Qb is a 4× 4 matrix given by

Qb(Vπ) =


1 0 0 0
0 1 0 0
0 0 v11 v12
0 0 v21 v22

 (5.11)

The last two terms in the left side of Eq. (5.10) are the crosstalk terms that
appear due to the small overlap of ` = 0 and ` = ±4 modes in the Fourier
plane. The effects related to mode cross-talk will be discussed below in a
specific example. For the moment, we define the ideal QB a QB where the
transverse mode cross-talk is negligible. The action of an ideal QB is then
given by

(|00〉, |01〉, |10〉, |11〉) Q̂b→ (|00〉, |01〉, |10〉, |11〉)Qb (5.12)

The matrix Qb in Eq. (5.11) has not the form of the matrices in Eqs. (5.5)
and (5.6), showing that the QB acts on both the spin and OAM degree
of freedom of the photon simultaneously, producing entangling. Because
the matrix Vπ of the semi-birefringent plate is unitary, it is evident from
Eq. (5.11) that also Qb is unitary and so is the action of the ideal QB. The
main property of the QB is that although the first QP takes photons out of
our initial SO logical space (5.3), the operator of the full ideal QB is well
defined in this space, as shown by Eq. (5.12).

In this section, we show that the ideal QB defined by Eq. (5.12) can
be used to make the required UUG in our SO space. The QB itself does
not provide the most general unitary transformation of U(4). We can see
this just by considering that Qb(Vπ) (as Vπ itself) depends on four real
parameters only, while the most general unitary operator Uso ∈ U(4) has 16
free parameters. The UUG in the spinorbit space is therefore a device more
complex than the QB. It is then remarkable that the sequence of

• an ideal QB Qb(V2)
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• a quarter-wave plate at angle 0

• an ideal QB Qb(VR)

• a half-wave plate at angle 0

• an ideal QB Qb(VL)

• a quarter-wave plate at angle 0

• an ideal QB Qb(V1)

provides the required UUG in the SO Hilbert space. Here V1,VR,VL,V2
are the 2 × 2 unitary matrices characterizing the semi-birefringent plates
inserted in each QB. We It is worth noting that all elements of the QB are
transparent so that many of them can be cascaded along the beam direction
maintaining optical losses at reasonable level. The SO-UUG described above
has the proper number of free parameters and it is unitary. However, we
should also demonstrate that it is universal, i.e. that any unitary matrix of
Uso ∈ U(4) can be realized by the sequence above. The proof is based on the
results by Englert et al. [73]. In fact, a straightforward calculation shows
that the matrix Uso associated to our UUG has the block form

Uso =

(
SLL SLR
SRL SRR

)
(5.13)

where the 2× 2 blocks are given by

SRR =
1

2
V2(VR + VL)V1

SLL =
1

2
(VR + VL)

SRL = − i
2
V2(VR − VL)

SLR =
i

2
(VR − VL)V1. (5.14)

Equations (5.13) and (5.14) are identical to Eqs. (17) and (18) of Ref. [73],
where it is also shown that for any given unitary matrix Uso ∈ U(4) one can
find four unitary matrices V1,VR,VL, ,V2 ∈ U(2) such that Uso has the form
(5.13) with (5.14). It is worth noting that all manipulations in our SO-UUG
are made on the photon spin degree of freedom, and that QPs are used to
transfer the required operations to the OAM degree of freedom, as in Ref.
[50].

One SO-UUG can perform any U(4) transformation in the SO space with
` = ±2. However, many nontrivial operations can be realized with simpler
devices. For example, a straightforward calculation shows that one QB with
a half-wave plate inside is enough to implement the c-NOT operator on our
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logical state (|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉). A more
common set of logical states in the photon spinorbit space is the set where
the first bit corresponds to the photon spin and the second bit to the photon
OAM:

|0, 0〉 = |1π, 2o〉, |0, 1〉 = |1π,−2o〉
|1, 0〉 = | − 1π, 2o〉, |1, 1〉 = | − 1π,−2o〉. (5.15)

In this “natural” set of basis states, the action of our SO-UUG is different.
For example, the matrix Qn associated to a single QB in the “natural” states
basis assumes the form

Qn(Vπ) =


1 0 0 0
0 v11 v12 0
0 v21 v22 0
0 0 0 1

 (5.16)

in place of Eq. (5.11). This way, the single QB which realizes the c-NOT
operation in the logical states basis (5.3), on the states (5.15) performs
the swapping operation (|00〉 → |00〉, |01〉 → |10〉, |10〉 → |01〉, |11〉 → |11〉).
Since the choice (5.15) of states is the most used in the literature, we will use
this “natural” basis hereafter. The swapping gate is very useful, because it
allows one to transfer any unitary action made on the spin qubit to the OAM
qubit. For example, a gate mapping basis states into equal-weight maximally
entangled orthogonal superpositions (called Hadamard gate), for the single-
qubit in the spin degree of freedom, is simply realized by a QWP oriented at
45◦. Insertion of the swapping gate after the QWP yields a Hadamard gate
acting onto the OAM qubit, leaving the spin qubit unchanged for future
manipulation. A Hadamard gate for general ququarts can be realized with
three QBs by setting V1 = σy,V2 = iσz,VL = σx,VR = 1.

Another useful gate is the c-NOT gate. The c-NOT gate, realized by
UUG, can be either a spin-controlled or a OAM-controlled NOT gate. The
difference between them is whether the control bit is encoded in the SAM
qubit or in the OAM qubit, respectively. These two gates are given by
Eqs. (5.13) and (5.14) with V1 = −iσx,V2 = iσx,VL = σz,VR = 1 for the
spin c-NOT and V1 = −i,V2 = i,VL = σz,VR = 1 for the OAM c-NOT,
respectively. These gates are very useful in most quantum optics applications
because of their universality.

A measurement of Bell states can be performed with a gate, which trans-
forms Bell state basis in the natural one, where each state can be sepa-
rated by common devices. The Bell’s state measurement gate is provided
by V1 = 1,V2 = iσy,VL = VR = 1/

√
2(1− iσy). This gate unties the entan-

glement between the photon SAM and OAM allowing to measure the two
degrees of freedom separately.

Here we have listed just few of most useful gates indicating how they can
be implemented. It is worth noting, however, that the implementation of
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a gate is not unique, and the gates presented here can be realized, in some
cases, in simpler ways.

A final issue to be addressed to is the “crosstalk” among radial modes
taking place in our device. This effect lowers, in general, the overall quality
of the QB (and hence of the SO-UUG) and must be maintained at tolerable
levels. As it can be seen from Eq. (5.10), when some overlap of ` = 0 and
` = ±4 modes is present, crosstalk terms appear in the QB.

We made an evaluation of the effects due to the radial cross-talk in the
case of the swapping gate (one QB with half-wave semibirefringent plate),
using the radial Laguerre-Gauss mode LG02 profile as input [20]. The radial
field profiles of the ` = 0 and ` = ±4 OAM components of the beam in
the back focal plane of the first lens are shown in Fig. 5.2. We notice that,
although the main part of the power of the ` = 0 component is concentrated
at the beam center, where the ` = ±4 component vanishes, a small crosstalk
is present due to the Airy secondary maxima of the ` = 0 mode. As indi-
cation of the quality of the QB as an element of the unitary gate we used
the “fidelity” of the photon state |ψreal〉 produced by the swapping QB with
respect to the state |ψideal〉 that an ideal QB would have produced. The
fidelity F is here defined by F = |〈ψreal|ψideal〉|. The input photon state
and the expected state from an ideal swapping gate are given by

|ψin〉 = (a|0, 0〉+ b|0, 1〉+ c|1, 0〉+ d|1, 1〉)|LG02〉 (5.17)

and
|ψideal〉 = (a|0, 0〉+ c|0, 1〉+ b|1, 0〉+ d|1, 1〉)|LG02〉 (5.18)

respectively. The ideal QB given by Eq. (5.16) with Vπ = σx has 100%
fidelity with respect to the output state ψideal. However, the action of a real
swapping gate on the input state (5.17) is described by

(a|0, 0〉+ b|0, 1〉+ c|1, 0〉+ d|1, 1〉)|LG02〉
Swap→

(a|0, 0〉+ c|0, 1〉+ b|1, 0〉+ d|1, 1〉)|LG02〉 −
[(c− b)(|1, 0〉+ |0, 1〉)Ĵ0(Î − Û(R))Ĵ0 − (5.19)

(a(|0, 0〉 − | − 1π, 6o〉) +

d(|1, 1〉 − |1π,−6o〉))Ĵ4Û(R)Ĵ4]|LG02〉

Assuming b and c to be real-valued, we can pose (x2 = 1− a2 − d2)

b = x cos θ, c = x sin θ. (5.20)

The swapping gate fidelity function is then given by

F = |1− x2(1− sin 2θ)(1− γ0(R))− (1− x2)γ4(R)| (5.21)

where γ`(R) = 〈LG02|Ĵ`Û(R)Ĵ`|LG02〉 account for the radial mode cross-
talk. The parameters γ`(R) depend on the radius R of the active disk of the
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Figure 5.2: The transverse intensity profiles produced by an incident LG02

beam at the back focal plane of the first lens in Fig. 5.1, where the semi-
birefringent plate is inserted. The two curves have been normalized to unit
area, for better showing the mode crosstalk.

SBP inserted in the QB. In the case of the ideal QB, we have γ0(R) → 1,
γ4(R) → 0, and F → 1. We notice that the fidelity F given by Eq. (5.21)
depends on the input state of the photon. The knowledge of the state to be
swapped allows us to select the radius R of the birefringent disk so as to have
maximum fidelity (that can vary from 83% to almost 100%, in some cases).
A good compromise, however, can be obtained choosing R = 2.928 (in units
of beam waist at the back focal plane), which gives us a flat minimum
fidelity of 83.7% for any input state. Among the other ways to increase the
fidelity of QB, one could, for example, put a non-transparent belt around
the birefringent disk in order to absorb the photons in the mode-overlapping
region. This method can increase the fidelity of the QB up to 100% at the
price of decreasing transmission efficiency of the device. Another method
could be to adjust the input beam profile or improving the design of the
q-plate so as to minimize crosstalk of ` = 0 and ` = ±4 modes. The use
of higher-order OAM modes could also help. We finally note that the full
spinorbit UUG has many reflecting surfaces (about 70) so that high quality
multireflection coating of all surfaces is highly desirable,since with the 1%
reflection at each surface the total transmittance of the UUG is reduced to
about 50%. With 0.1% reflection, the transmittance can be still larger than
90%.

5.3 Hybrid entanglement and Bell’s inequalities [74]

Quantum entanglement became one of the most intriguing quantum mechan-
ics paradoxes that immediately after its discovery by Einstein, Podolsky and
Rosen [75] and with time they became a central point of discussion of the
nature and interpretation of the quantum mechanics and becaabe essential



CHAPTER 5. QUANTUM OPTICS APPLICATIONS 79

for many proposed quantum information and cryptography algorithms and
experiments, from the wide-known, like the quantum teleportation [76] and
superdence coding, to less popular, but nevertheless exciting, like Vaidman–
Aharonov–Albert puzzle [77]. Entangled quantum states are also the basis
of Bell’s inequality violations, which ruled out classical hidden-variable the-
ories in favor of quantum mechanics [78]. Bell’s inequalities were originally
derived for two particles, as a consequence of locality and realism. In al-
most all experimental demonstrations of these inequalities to date, the same
degree of freedom of two particles has been used, e.g. the spin of a pho-
ton. Very recently, however, the case of so-called “hybrid entanglement”,
occurring when the involved degrees of freedom of the two particles are
not the same, has attracted a certain interest, and the first experimental
demonstrations with spin and spatial-mode degrees of freedom have been
reported [79, 80]. Using different degrees of freedom also opens up another
opportunity, i.e. that of realizing entanglement between different degrees of
freedom of a single particle. In this case, no role is played by non-locality,
but Bell-type inequalities can still be formulated by assuming realism and
the so-called “non-contextuality” of the two involved observables, i.e. the
assumption that the result of a particular measurement of one observable
is determined independently of any simultaneous measurement of the other
one [81, 82].Non-contextual hidden variable models have been excluded by
recent experiments where the violation of suitable inequalities was observed
using neutrons [83], ions [84], and single photons prepared in entangled
spin-path states [85]. Finally, single-particle entanglement, in the case of
bosons such as photons, has a “classical analog” that is obtained by replac-
ing single-photon states with multi-photon coherent states realized within
the same field mode [86]. Such a classical analog helps visualizing the nature
of the single-particle entanglement.

SAM and OAM spaces provide a particularly convenient framework in
which these concepts can be explored. In our work, we studied three con-
ceptually re- lated experimental situations. Firstly, heralded single photons
are prepared in a state where SAM and OAM are entangled, and are then
used for testing the contextuality of different degrees of freedom of the same
particle. Secondly, correlated photon pairs, where the SAM of one photon
is entangled with the OAM of the other, i.e. photon pairs exhibiting SAM-
OAM hybrid entanglement, are generated and used for testing the contex-
tuality and non-locality of these degrees of freedom when they are spatially
separated. Finally, optical coherent states involving many photons, are used
to demonstrate a classical analog of SAM-OAM hybrid entanglement. The
experimental layout we used in the quantum regime (the first two experi-
ments) is presented in Fig 5.3. Our down-conversion source generates photon
pairs that are entangled in the OAMdegree of freedom [88, 87], each photon
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being horizontally polarized, as described by

|ψ〉 =
∞∑

`=−∞
c|`||`〉A| − ell〉B|H〉A|H〉B. (5.22)

Here A and B denote the signal and idler photons travel- ing along the two
corresponding arms of the setup shown in Fig. 5.3.

a. Single-photon experiment. In this case we used photon B to herald a
single photon A which we convert into an OAM-SAM maximally entangled
state. Starting from state |ψ〉 given in Eq. (5.22), we post-selected photon
pairs having ` = 0 , i.e. in state |ψ〉 = |0〉A|0〉B|H〉A|H〉B, by coupling
photon B into a single-mode optical fiber. Photon A is thus also projected
into ` = 0. Spatial light modulator SLM B in this case is patterned as a
uniform grating, deflecting the beam but not affecting its transverse spatial
mode (see upper-right inset of Fig. 5.3). Photon A is sent first through a
q-plate so as to generate the maximally entangled SAM-OAM state [50]

|Φ+〉A =
1√
2

(
|R〉A|+ 2〉A + |L〉A| − 2〉A

)
. (5.23)

The polarization state of A photons emerging from the q-plate is then mea-
sured by a half-wave plate (HWP) oriented at a variable angle θ/2 and a fixed
linear polarizer, restoring the horizontal polarization. This HWP-polarizer
combination filters incoming photons having linear polarization at angle θ
with respect to the horizontal direction. In the circular polarization basis,

the state of the filtered photons is written as |θ〉π = 1√
2

(
eiθ|L〉+ e−iθ|R〉

)
.

The SAM measurement does not affect the OAM degree of freedom. Non-
contextuality can be assumed between the z-component of photon SAM
and OAM, because, in the paraxial approximation, the SAM operator Ŝz
commutes with the OAM operator L̂z. After SAM filtering, the photon
OAM is also measured by a suitable computer-generated hologram, dis-
played on SLM A, followed by coupling into a single-mode fiber. The holo-
gram pattern is defined by the four-sector alternated π-shift phase structure
shown in the upper-right inset of Fig. 5.3, with the four sectors rotated at
a variable angle χ (the grating fringes are not rotated). On diffraction, this
hologram transforms the photons arriving in the OAM superposition state
|χ〉 = 1√

2

(
e2iχ|+ 2〉+ e−2iχ| − 2〉

)
back into the ` = 0 state, which is then

filtered by coupling in fiber. The OAM superposition state |χ`〉 is the spatial
mode analog of the linear polarization, and we may refer to its angle χ as
to its “orientation” 1. The overall effect of our apparatus is therefore to
perform a joint measurement of the polarization and spatial mode orienta-
tions of A photons at angles θ and χ, respectively. When a A photon is in

1As was already mentioned, this spatial state corresponds to a hypergeometric-
gaussian mode [20] having the same azimuthal profile as a Hermite-Gauss mode (1,1)
rotated at angle χ with respect to the horizontal plane.
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the entangled Bell state described by Eq. (5.23), we expect that the final
probability to detect it (in coincidence with the B trigger photon) is given
by

P (θ, χ) = |A〈Φ+| · |θ〉A|χ〉A|2 ∝ cos2 (θ − 2χ). (5.24)

To test entanglement we have adopted the Clauser-Horne-Shimony-Holt
(CHSH) inequality, given by

S = |E(θ, χ)− E(θ, χ′) + E(θ′, χ) + E(θ′, χ′)| ≤ 2, (5.25)

where E(θ, χ) is calculated from the A-B photon coincidence counts C(θ, χ)
according to

E(θ, χ) =
C(θ, χ) + C(θ + π

2 , χ+ π
4 )− C(θ + π

2 , χ)− C(θ, χ+ π
4 )

C(θ, χ) + C(θ + π
2 , χ+ π

4 ) + C(θ + π
2 , χ) + C(θ, χ+ π

4 )
.(5.26)

Whilst the CHSH inequality is commonly applied to non-local measurements
on two spatially separated entangled photons, testing for hidden variable
theories, here we apply it to single-photon entanglement to test for non-
contextuality. In Fig. 5.4 (a) the coincidence counts are shown as a function
of spatial mode orientation χ for different values of polarization angles θ.
The occurrence of high-visibility fringes indicates the (single-particle) entan-
glement in the SAM-OAM spaces. The CHSH S value calculated from this
data is shown in Fig. 5.5 (green dots). A violation of the CHSH inequality
is clearly obtained, in good agreement with quantum theory predictions,
confirming the entanglement and providing a demonstration of quantum
SAM-OAM contextuality for single photons.

b. Two-photon experiment. In this case, we generated and verified en-
tanglement between the SAM of one photon and the OAM of the other, i.e.
we demonstrate non-local hybrid entanglement in these two degrees of free-
dom. To this purpose, the four-sector and uniform holograms of arms A and
B were swapped, as displayed in the top-right inset of Fig. 5.3. The q-plate
in arm A and the sector hologram in arm B of the apparatus, together with
subsequent coupling into the single-mode fiber before detection, act so as
to post-select the photons with ` = ±2 in Eq. (5.22), i.e. the post-selected

initial two-photon state is |ψ〉 = 1√
2

(
|2〉A| − 2〉B + | − 2〉A|2〉B

)
|H〉A|H〉B.

The A photons pass through the q-plate, acting in this case as a OAM-to-
SAM transferrer [50], so that the OAM eigenstates ` = ±2 are mapped into
L and R polarized photons with ` = 0, respectively. After this process, the
photon pair is projected into the nonlocal state

|φ〉nl =
1√
2

(
|L〉A|+ 2〉B + |R〉A| − 2〉B

)
|0〉A|H〉B (5.27)

where the SAM of one photon is maximally entangled with the OAM of the
other. Next, the polarization of the A photon is measured by the HWP
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rotated at angle θ/2 followed by the polarizer, and the spatial mode of the
B photon by the sector hologram rotated at angle χ followed by coupling in
fiber. Well-defined coincidence fringes with visibility up to 90% are obtained,
as shown in Fig. 5.4 (b). Repeating the measurements for different angles
θ and χ, the quantity S was evaluated from Eqs. (5.25) and (5.26) and the
violation of the CHSH inequality was verified, as shown in Fig. 5.5 (blue
dots). This violation provides a demonstration of SAM-OAM entanglement
and non-locality, for separated photon pairs.

c. Classical light experiment. In our final experiment, we move to a
classical regime of non-separable optical modes occupied by many photons,
corresponding to coherent quantum states. A 100 mW frequency-doubled
linearly-polarized continuous wave Nd:YVO4 laser beam is sent in a optical
line equal to arm A of our quantum apparatus, so as to obtain, after the q-
plate, a coherent state in the SAM-OAM non-separable mode |Φ+〉 given by
Eq. (5.23) 2. The calculated structure of this mode is shown in Fig. 5.4(d),
for a given input polarization. The mode non-separability is evident, as the
polarization is spatially non-uniform [89]. The beam polarization was then
filtered by the combination of the HWP at angle θ and polarizer and its spa-
tial mode by the sector hologram rotated at angle χ, as in the single-photon
experiment (a). In this case, no trigger is used and the count rates C(θ, χ)
in Eq. (5.26) are replaced by average power measurements, corresponding
to photon fluxes. When the angles θ and χ are changed, high contrast si-
nusoidal fringes proportional to cos2(θ − 2χ) were observed in the overall
transmitted power fraction, as shown in Fig. 5.4c. This data can be also
used to calculate a classical-equivalent to the S value with Eq. (5.25), that
again violates the CHSH inequality, as shown in Fig. 5.5 (red dots). We note
that the classical experiment is essentially identical to the single photon ex-
periment, except for the random number and timing of the photons. If the
existence of photons and the correspondence between optical intensity and
photon flux is assumed “a priori”, then this last experiment can be given the
same interpretation as for the first (case a). However, the same experiment
can be of course also interpreted without assuming the existence of photons.
In this case, SAM and OAM measurements can be understood just as wave
filtering procedures, and no conclusion can be drawn about discrepancies
between classical-realistic and quantum behavior. Nevertheless, providing
a classical analog of single-particle entanglement is interesting in itself and
may offer the basis for some entirely classical implementations of quantum
computational tasks [90].

2We note that, when the classical states are described as coherent quantum states, the
state of the non-separable mode |αΦ+〉 is found to be decomposable in the direct product
of the coherent states of the two SAM-OAM eigenmodes | 1√

2
α(R,2)〉 and | 1√

2
α(L,−2)〉, so

that no SAM-OAM photon entanglement is actually present in the beam [89].
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Figure 5.3: Setup used for the two quantum-regime experiments. A
Nd:YAG laser with average power of 150 mW at 355 nm pumps a non-
linear crystal of β-barium borate crystal (BBO) cut for degenerate type-I
non-collinear phase matching which emits OAM-entangled H-polarized pho-
ton pairs at 710 nm (see Ref. [87] for details). The photons of each pair are
split in arms A and B, respectively. Legend of the main components (see
also graphic symbol legend in the upper-left inset): f1, f2 - lenses for beam
control; QP - q-plate; HWP - half-wave plate; PBS - polarizer; M - mirror;
SLM A and SLM B - spatial light modulators; IF - interference filter for
bandwidth definition; 100X - microscope objectives for fiber coupling; DA,
DB - photon detectors. In the classical-regime experiment, the optical line is
the same as arm A. Top-right inset: computer-generated hologram patterns
displayed on the two SLMs in the three experiments.
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Figure 5.4: The experimental coincidence counts as a function of orienta-
tion of the sector hologram for different values of polarization direction, for
heralded single photons (a), photon pairs (b) and coherent-states (c): blue
dots - θ = 0, red dots - θ = π/4, green dots - θ = 2π/4, gray dots - θ = 3π/4.
The solid lines are the best theoretical fit over the experimental data. The
fringe contrast is about 90%, which is much larger than 70.7%, as required
for Bell’s inequality verification. (d) Simulated intensity and polarization
distribution patterns of the optical field for the beam emerging from the
q-plate in the case of horizontal polarization input beam.

Figure 5.5: The CHSH S value in a region where it is larger than the
classical limit 2. The choice of the variables appearing in Eq. (5.25) is the
following: θ = 0, θ′ = π/4, χ is the plot abscissa, χ′ = χ + π/8. The
green, blue, and red dots correspond to the experimental data in the case of
single-photon, photon-pairs, and classical-wave SAM-OAM entanglement,
respectively. The dashed line is the quantum mechanics ideal prediction. In
the three cases, at χ = π/16, the CHSH inequality is violated respectively
by 17, 10, and 52 standard deviations.



Conclusions

Orbital angular momentum of light, being thoroughly studied during last
two decades, still must overcome some obstacles. While numerous proposed
applications based on the light OAM have significant advantages, compared
with the polarization degree of photons, or are even not realizable by other
means, the main problem for now is the lack of efficient, cheap and versatile
devices to generate and manipulate this degree of freedom. A good candi-
date for this role is the q-plate and q-plate-based devices. This thesis had
two main aims: first – to develop further the q-plate technology by intro-
ducing new materials and techniques for q-plate manufacturing, second –
to demonstrate the versatility of this device in generating and manipulating
the OAM of light.

An important step was to exploit the photoalignment technique for the q-
plate fabrication in place of the previous rubbing methods. Photoalignment
does not require any mechanical contact with the glass substrates during the
manufacturing process, providing thus a higher quality of the liquid crystal
alignment and allows to induce the topological charge once the sample is
assembled, eliminating the need of precise superimposing of the singularities,
imprinted in the two glass substrates. This lead to a better defined pattern
of the optical axis distribution and decreases the central defect of the q-plate.
While these advantages resulted in an increased quality of the q-plates, the
main advantage of the photoalignment was the possibility to induce any
topological charge to the cell, while rubbing is limited only to the circularly
symmetric q = 1 charge. Between the different topological charges that were
manufactured in this thesis work the q = 0.5 sample is of the particular
interest, since it generates the lowest OAM mode |`| = 1.

The further possibility of tuning the optical phase retardation with elec-
tric field was demonstrated too. Compared with the previously introduced
thermal tuning, the electric tuning not only increases the handiness of the
q-plate efficiency manipulation, but allows to perform new tasks where real-
time handling of OAM |0〉o and | ± `〉o eigenstates superpositions is needed.
With the electric tuning, it was possible to achieve conversion efficiencies up
to 99% for any desired wavelength and real-time switching of the q-plates
at speeds up to tens of milliseconds. Thanks to the STOC process, q-plates
act as an interface between polarization and OAM degrees of freedom. Per-
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forming all the necessary operations on the polarization state of photons
and then transferring them into the OAM degree of freedom allows to adopt
all devices for polarization manipulation into the orbital angular momentum
space. To demonstrate the versatility of this idea a number of q-plate-based
devices was proposed and demonstrated.

STOC process was also exploited to achieve an easy, fast, and continuous
control on the transverse modes of a laser beam. A particular Dove prism-
based Sagnac polarizing interferometric configuration allowed us to generate
with efficiency higher than 90% arbitrary combinations of LG2 modes, by
changing the polarization of the input TEM00 linearly polarized laser beam.
When closed paths are described on the SAM Poincaré sphere, identical
closed path are described on the OAM Poincaré sphere and the resulting
Pancharatnam geometric phase is transferred with no change from the SAM
to the OAM degree of freedom.

Another device proposed in this thesis is a q-plate-based optical loop,
that allowed to generate and encode two bits of classical information into
the OAM of a single photon. Furthermore, the optical loop can be easily
modified to encode three bits of information in a single photon by adding an
additional polarization bit. The same setup allows also to generate qubits
made of two different OAM orders or qudits with infinite number of OAM
eigenstates. The generation process of single OAM eigenstates, OAM qubits
and OAM qudits with d =∞ is deterministic, has nominal 100% efficiency,
and the output OAM state can be controlled (even if not completely) by
very fast electro-optical devices. The encoding process, based once more
on the STOC process is very efficient (nominal efficiency is 100%) and very
fast. The information encoded in the light beam can be read with a com-
puter generated hologram properly designed to detect all four OAM states
simultaneously or by a second q-plate based device.

Both the Sagnac interferometer and the q-plate loop device work both
in the classical and quantum regimes of light. In both cases the process is
fully controlled by polarization only and can be driven by fast electro-optical
devices which provide operation frequencies never achievable by SLM (that
operates at the rates no more than a few KHz).

The Polarizing Sagnac Interferometer was studied separately as a device
able to enhance the performance of the q-plate and to perform not trivial
manipulations in the spinorbit space such as OAM modes sorting or realize
quantum unitary gates such as OAM C-NOT gate, full Bell’s states detection
gate, a gate to generate Schmidt’s photon states with controllable spinorbit
entanglement and others. The PSI is more stable than Mach-Zehnder inter-
ferometers because of the self-compensated optical paths and it is easier to
use because it requires only one Dove prism.

Another q-plate based device, the Universal Unitary Gate for 4D spinor-
bit space of photons was also proposed. This adjustable gate is able to
perform any unitary operation in single photon spinorbit space. UUG is
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highly transparent, which guarantees a high photon transmission efficiency,
and can be inserted along the beam path in as much the same way as other
optical components are inserted without changing the beam direction. This
allows us to perform nontrivial two-qubit handling with optical assemblies
having much less overall size and much more stability against environmental
noise than interferometers. Although the proposed UUG is not beyond the
technological possibilities nowadays available, its practical manufacturing
presents many difficulties, so it was postponed to future work. Nevertheless,
the UUG could have an impact in all fields where a complete manipulation
of the light OAM and polarization is needed such as, for instance, in op-
tical tweezers and traps, optical communications, optical computing, and
fundamental quantum optics.

Finally, q-plates were used to create hybrid entanglement of the spin and
the orbital angular momentum of light in three different regimes: single pho-
tons, entangled photon pairs, and classical many-photon modes. Although
the experimental results appear very similar in the three analyzed regimes
they provide different and complementary insight into the contextual and
non-local quantum nature of light.
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