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Seismic early warning systems: procedure for automated decision 

making 

      Veronica Francesca Grasso 
 

Chapter 1 

1. Introduction 

The high social and economical relevance of the seismic risk associated with the high vulnerability 

of urbanized areas has become evident in recent years due to severe losses as a consequence of 

catastrophic seismic events. A detailed analysis of structural damages and economic losses due to 

catastrophic events underlines the strong necessity of  social, political and scientific cooperation for 

disaster prevention. Historical lessons are of some help to point out the evidence that timely 

warning could mitigate the effects of natural disasters.  

In the recent Asian tsunami disaster occurring on 26 December 2004, thousands of lives could have 

been saved if a preventive alarm and prediction had been effective, in terms of warning time and 

reliability, to warn the people about the coming event. At the moment the earthquake occurred in 

Sumatra, alarm messages could have been sent to the endangered areas. By the time the tsunami 

arrived, many people might have been able to escape from the coastal areas, reaching higher 

locations. In addition, the availability of inundation and damage maps in the few minutes after the 

seismic event could have saved many other people by effective and immediate emergency aid, if an 

emergency response system was in place. 

Early warning technologies are a key component for an effective and efficient protection from 

catastrophic natural disasters, seconds before, during and after the event (Wieland, 2001). 

Early warning systems (EWS) have been recently developed as an innovative technology for natural 

risk mitigation that could be applied to all  natural disasters, altough the attention here is focused on 

seismic risk mitigation. Effective early warning technologies for earthquakes are much more 

challenging to develop because warning times range from only a few seconds to a minute or so 

(Allen and Kanamori, 2003). In areas close to faults, where seismic EWS  represent a mandatory 

necessity, only tens of seconds of warning are available. Such short warning time means that to be 

effective, a seismic EWS must depend on automated procedures, including those for decision 

making about whether to activate mitigation measures; the time is too short to require human 

intervention when the event is first detected. As a result of the automation, careful attention must be 
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paid to the design of the local seismic EWS for each critical facility; in particular, a means of 

controlling the trade-off between false alarms and missed alarms is desirable.  

Although early warning technologies have been developed to provide natural hazard mitigation for 

many types of hazards, attention here is focused on seismic risk mitigation because the technologies 

for this application are not yet fully developed. 

1.1. Considerations and Road Map 

The main goal of EWS is the reduction of loss of lives and mitigation of structural damage and 

economic loss. EWS impact or effectiveness is strictly dependent on the warning time available and 

the quality of the information provided that influences and constrains the utilization of the 

information. Timeliness and reliability are contradictory design requirements. 

Solving the trade-off between timeliness and reliability is often a problem with not a uniquely 

determined solution. As from the state-of-art analysis accuracy of estimates is of general interest 

and represents one of the main goals for existing EWS improvements (as Iglesias et al. 2005, 

Veneziano et al., 1998).  

The benefits of an EWS for earthquakes are often not fulfilled due to limitations that depend on the 

amount of warning time and accuracy of the prediction. These parameters strongly influence EWS 

impact and effectiveness on seismic risk reduction. Suppose that the EWS works by setting an 

alarm if a critical shaking intensity threshold is predicted to be exceeded at a site, where the choice 

of critical threshold depends on the vulnerability of the system to be protected at the site. Assuming 

that the warning time provided by the EWS is sufficient for activation of the mitigation measure, 

then based on the predictions from the first few seconds of P-wave observation, a decision has to be 

made of whether to activate the alarm or not. Since prediction is uncertain in making this decision 

we may committ two kinds of errors, false alarms and missed alarms. As a consequence a key 

element of an EWS is a better understanding of the parameters that play a fundamental role in this 

uncertainty. As a result performance-based approach to EWS design and decision models is a 

mandatory necessity. 

A frame-work for the uncertainty estimation in real-time is presented (Chapter 4), representing a 

fundamental information to be sent to the user. In addition is presented, in Chapter 3-6, a 

performance-based design approach to EWS for a rational warning threshold setting based on the 

evaluation of the consequances expressed in costs and benefits (that may be monetary or loss of 

lives). A decision model (Chapter 7) is then presented for making a decision in a real-time scenario 

based on the expected consequences and savings coming from the decision itself.  
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Chapter 2 

2. EWS: State-of-art 

In order to mitigate the seismic risk, different approaches are possible such as seismic design of 

structures or strenghtening of existing buildings. Quite recently a more innovative technology has 

been developed, based on “early warning systems” (EWS). 

To introduce the EWSs, consider that, dealing with seismic risk mitigation, different approaches can 

be considered related to the phases of an earthquake event (Wieland 2001): 

1. Prevention during the years before an earthquake. Related measures: seismic design and 

strengthening of buildings and installations; preparation of emergency plans, to conduct 

programs for earthquake preparedness of population, installation of earthquake early warning, 

seismic alarm and earthquake rapid response systems. Please notice that for financial reasons, 

not all the buildings can be strengthened and, therefore, a scale of priority is needed . 

2. Early Warning Systems are represented by the measures that can be carried out from the 

moment in which a seismic event is triggered, with sufficient reliability, in a given place. These 

measures, for prevention or emergency, can be classified considering the time of warning 

available: as examples, evacuation of buildings, shut-down of critical systems (nuclear and 

chemical reactors), stop of high-speed trains. 

 
 Wieland (2000) evidenced the benefits in different fields as a consequence of the implementation 

of EWS. A qualitative analysis shows that earthquake early warning, seismic alarm and earthquake 

rapid response systems can be effective for seismic risk mitigation, in every phase of the seismic 

event. Social preparedness associated with a sufficient warning time could prevent loss of lives, on 

the other hand few seconds of warning may give the possibility to put into a safer position critical 

facilities and transportation systems, and to improve rescue operations. Within seconds after an 

earthquake, the information provided by EWS could be used to produce damage and loss maps 

based on the ground shaking intensity and could be the basis for more efficient emergency response 

and rescue operations. More recently an interesting application of EWS is emerging for the 

protection of  strategic buildings (e.g. hospitals, public buildings, buildings of hystorical interest), 

by the activation of structural control systems.  

The first idea of an earthquake EWS has been developed by Cooper in 1868 for San Francisco, 

California. Cooper proposed to create a network of seismic detectors in the epicentral area. An 

electric signal, in case of an earthquake event, would be sent by telegraph to San Francisco, where 
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the ring of a bell, situated in the City Hall, would alert the population. Unfortunately, Cooper’s idea 

was never realized and only 100 years later the first early warning system has become effective. In 

1985, Heaton proposed a seismic alert network for South California. For the earthquake of Loma 

Prieta, in 1989, Bakun et al. implemented  a seismic EWS. 

The principle on which EWSs are based can be addressed to the characteristic of seismic waves that 

travel with a velocity that is less than electromagnetic signals transmitted by telephone or radio, 

used to transmitt the seismic informations about the incoming event (which travel at a velocity of 

about 300000 Km/s). In addition, seismic waves can be identified as compression waves (primary 

waves, P-waves) and shear waves (secondary waves, S-waves); in particular P-waves are 

characterized by a velocity that is almost two times the travel velocity of S-waves, that cause 

structural damage. The time interval from the arrival of P-waves and the S-waves may be utilized to 

activate security measures.The feasible warning time is evaluated by Eqs. 2.1, 2.2 :  

 w S rT T T= −  2.1 

 
 r d prT T T= +  2.2 

 
where Tr is the reporting time constituted by the time Td needed by the system to trigger and record 

a sufficient length of waveforms and the time Tpr to process the data, Ts is the S wave travel time 

and finally, Tw is the early warning time, as synthetized in Fig. 2.1.  

 
 

P

S

t (
se

c.
)

Tr

Epicentral Distance (Km.)
Td

TS

TW

Tpr

 
Figure 2.1: P and S-waves arrival time as a function of distance from an earthquake 

2.1. Early Warning Systems 

EWS is constituted by: a distributed network of seismometers and strong motion recording 

instruments; real-time data communications to a central data processing; central processing facility; 

warning information packet and area wide broadcasting system; warning information receivers. The 
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seismic network could be distributed in the epicentral area (i.e. Mexico City and Bucharest EWS), 

or localized around the area to protect (i.e. Ignalina power plant EWS, Wieland 2000), if the 

epicenter is unknown. In the case of uncertain source zone a virtual subnetwork approach is 

possible (Wu and Teng, 2002). 

The network is composed by remote sensing stations that transmit in real-time to the central 

processor that provides to calculate in real-time seismic parameters such as location, origin time, 

magnitude. If the threshold is exceeded, a warning signal is transmitted over an area-wide 

transmitter. The message contains informations of the incoming event. A dedicated receiver, part of 

the user’s system, collects and processes the data, in order to activate security measures (automatic 

or manual), when the user’s facility tolerances are exceeded. The central unit is dedicated to receive 

signals trasmitted by the stations and the central processor provides a real-time analysis. As the 

event evolves, more data are available in order to confirm and increase the accuracy of the 

informations processed starting from the incoming signals. The location of the epicenter, 

magnitude, maximum ground acceleration, spectrum response analysis, damage maps are the 

informations that can be provided by EWS, as from the state-of-art review.  

The data that will be later processed by the central unit, are limited to the first seconds of 

registration of a limited number of sensors (i.e. in (Allen and Kanamori, 2003) the number of 

sensors is 10, and 7 is the number proposed in (Wu and Teng, 2002)). The definition of the time of 

observation and the number of sensors of interest is obtained by minimizing the error of estimate 

and maximizing the warning time feasible. The data are processed and the estimate of the seismic 

parameters (as epicentral distance and magnitude) are defined by a predictive model. The 

parameters of structural interest, as peak ground acceleration (PGA) or spectral acceleration (Sa), 

are defined by an attenuation model, taking into account the distance from the structure and the 

epicenter and the geotechnical characteristics of the soils invested by the seismic waves. Reliability 

data associated to information relative to the seismic parameters of the incoming earthquake could 

be a fundamental tool to prevent false alarms; the decision is demandated, in this way, to the user 

itself, related to the level of reliability and to the effects of false alarms. Note that the parameter of 

interest for a facility could also be taken as some critical engineering demand parameter (EDP) as in 

Chapter 4, such as interstory drift in a building or floor acceleration at the location of vulnerable 

equipment or even economic loss (Chapter 8). 

2.2. Existing EWS applications 

Early warning refers to real-time seismology in which seismic data are collected and analysed in 

real-time for an early warning or post-event utilization of this information. 
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For early warning two approaches are possible (Kanamori 2004): 

• Regional warning 

• On-site (or site-specific) warning 

Traditional approaches refer to the regional method that consits in estimating ocation and 

magnitude of the event and predicting ground motion at other sites. The on-site approach is related 

to predicting the ground shaking at the site is not necessary to locate the event and predict the 

magnitude. While the first approach is more reliable the second is much faster. 

The second approach could provide useful early warning for sites close to the epicenter. 

This approach requires a deep understanding of earthquake rupture and physiscs in order to estimate 

the nature of the evolving rupture only from the first observation. 

The traditional approach (first one) has been already applied for Japan, Mexico City, Taiwan and 

Turkey (Erdik et al., 2003; Boese et al., 2004), while the second approach has been done by 

Kanamori (2004), Wu and Kanamori (2004). 

The most important and effective EWS application is in Japan developed in the 1960’s by the 

Japanese Railway to avoid trains derailment in case of heavy ground shaking (Nakamura, 1988). 

EWS has been applied to the high velocity Shinkansen railway line, based on the P-wave detection 

and the installation of the stations near the epicentral zone far from the railroad, providing time for 

an early warning. 

Ordinary alarm seismometers were installed along the coast line at the Tohoku area in 1984 to 

complete the early warning system and this system can control the train operation before the main 

shock reaches the railroad. An existing system is present along the Shinkansen line, composed by 

ordinary alarm seismometeres that had been installed in 1965 every 20-25 km. The system issues an 

alarm if the acceleration of the ground motion exceeds a limit level. In 1996, UrEDAS (Urgent 

Earthquake Detection and Alarm System) has been developed. At the moment there are 19 

UrEDAS stations covering about 1000 km along the Shinkansen line from Tokyo to Hakata. In the 

case of an earthquake, each station estimates the potential damage area within 3 seconds after 

detecting the P-wave, and issues an alarm to cut off the power supply for the Shinkansen trains if 

necessary. UrEDAS is a unique early warning system because it can determine seismic parameteres 

with P-wave data from only one station (single station approach), and can issue the alarm based on 

the ground motion excedance of a threshold defined on observed damages of previous earthquakes. 

Espinosa-Aranda et al (1995) in 1991 developed an EWS for the protection of Mexico city. The 

system has been implemented after the M=8.1 Michocoan earthquake. The system provides alerts to 

residents and authorities in order to evacuate large segments of population in case of damaging 

earthquakes in the Guerrero seismic gap, located at 300 Km from the city. The system started in 
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1991 in experimental mode for schools’ alert and stop the metropolitan subway system. Later in the 

1993 became a public service. After several months the system triggered the M=5.8 and M=6 

earthquakes originated from the Guerrero gap fault giving an alert of 60 seconds. Till now the 

system has triggered more than 1783 earthquakes of magnitude in the range of 2.5 and 7.3 (Note: 

events of magnitude greater than 5 are felt in Mexico City). The EWS sent 46 alerts for magnitude 

greater than 6 and 11 with magnitude less than 6. More recently in November 2003 the EWS for 

Oaxaca region started in experimental mode. The alert signals are sent to schools, residential 

constructions, radio and television companies, emergency and civil protection agencies. A study on 

Mexico City EWS performance (Iglesias et al., 2005) reveals a high failure rate of the system. 

Iglesias et al. (2005) suggest that the causes are related to an innacurate algorithm and limited areal 

coverage of the network. The possible actions may be threshold adjustment and 40 additional 

stations in three concentric rings around Mexico City, as suggested by the authors. The proposed 

scheme refers to an algorithm that relates to a relationship between the root-mean acceleration in 

the epicentral area and the expected maximum acceleration in a reference site in Mexico City. 

Based on the analysis of Michocoan earthquakes since 1985 to present, a warning threshold of 5 gal 

for the root-mean acceleration for unfiltered records in the near-source is suggested for performance 

improvement of Mexico City EWS.  

An EWS for Taiwan has been implemeted as part of the strong-motion instrumentation program 

(Wu et al., 1998). The “Taiwan Rapid Earthquake Information Release System-TREIRS” has been 

developed by Central Weather Bureau in 1995. This system has been refined and updated as a basis 

for the successive development of Taiwan EWS. The system TREIRS is composed by 97 digital 

telemetered strong-motion stations that continuosly trasmitt seismic data to the Taipei central 

station. At the central station the data are continuosly processed, in case a magnitude of 3.5 or 

greater event is recognized alert signals are sent trough fax, e-mail, pager and short message. The 

EWS for Taiwan is based on a virtual sub-network approach (Wu and Teng, 2002). The first 12 

triggered stations are contributing to information for location and magnitude estimates. The analysis 

is concentrated only on a small number of stations of the network in order to reduce the reporting 

time and the volume of data to transmitt resulting in a gain in the warning time available. 

The EWS works based on a sub-network approach able to issue an early alert to urbanized areas 

located more than 70 Km away from the epicenter. A window of 10 sec of waveforms from the 

stations is analysed and processed for the estimate of magnitude and location of the event. An 

empirical correction is applied to the magnitude estimate considering that S waves may not have 

arrived within the time window considered. A warning time of tens of seconds is available for the 

alert of areas located at 100 Km away from the epicenter, altough is not a public service considering 
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that doesn’t exist yet an education program for population. Is under development a program for 

instrumentation update, replacing the 16-bit digital accelerographs to 24-bit. A tsunami warning 

system is also under development.  

Allen and Kanamori (2003) developed ElarmS for early warning application in Southern California. 

The system may issue alert in case of damaging event with few to tens of seconds of warning time. 

The system within a second after the earthquake origin estimates predominant period and event 

location based on P-wave trigger times, predominant frequencies and amplitudes. By using 2 

seconds and 4 seconds of recorded data, respectively for low- magnitude earthquakes and for larger 

magnitude events, a good magnitude estimate is obtained. 

The magnitude is evaluated using the relation obtained from a regression analysis as a function of 

the predominant period. Based on the estimate of magnitude and location ground shaking map is 

released within a second from the earthquake origin. The shake map is updated as more data 

become available and its accuracy increases with time.  

Is under development an extension of ElarmS to Northern California. For the earthquakes 

representing a threat for the city of San Francisco a warning around 20 seconds may be available by 

ElarmS. 

More recently the Japan Metereological Agency developed a prototype warning system that alerts 

universities and private organizations, in case of seismic event. A national research project on EWS 

started in 2003 as a joint collaboration between Japan Metereological Agency and other national 

agencies. Within a few seconds from the first trigger based on the first seconds of observation 

considering a single-station approach, hypocenter and magnitude are defined (Hirouchi et al., 2004). 

JMA has developed the EWS called Now-Cast for practical experiments. The network used for 

Now-Cast is composed by 800 seismometers distributed all over Japan with a inter distance of 25 

Km, Hi-Net. 

The seismometers are bore-hole installed at 100 m or deeper to eliminate noise. The central 

processing stations are located at JMA Tokyo and Tsukuba Information Center of NIED. The time 

to transmit data is about 2 seconds. By Hirouchi method seismic parametrs are estimated. A new 

algorithm for more accurate estimates is under development that combines Hirouchi and JMA 

method. Through a dedicated line and wireless communication system the information is 

transmitted to users represented by co-investigators of the project. Receiving systems based on the 

early information calculate shaking intensity of JMA scale and arrival time of S wave. During the 

experimental period, February and March 2005, the system triggered 740 events of which 100 were 

felt. The magnitude estimates were affected by an error of the order of 1 magnitude units, while 
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hypocenters were in the 99% of the cases correctly estimated. Future directions are related to more 

accurate and earlier estimates. 

Under development is an EWS for the Lions Gate Bridge that is the main artery that connects the 

city of Vancouver to the North Shore municipalities of North Vancouver and West Vancouver. 

The equakealert system is a network of seismometers/transmitters/receivers distributed throughout 

British Columbia, Washington and Oregon. The stations are connected together and to several 

central information processing hubs via high-speed telecommunication networks. 

The equakealert stations measure the primary vertical ground movements and transmit the data at a 

continuous rate to the central processing hubs, which, if an earthquake is detected, pass the 

earthquake warning on to adjacent sensing units and beyond according to the intensity of the 

earthquake that is in progress. Since high-speed telecommunication systems can pass along the 

warning (data) much faster than the speed of earthquake seismic waves, a substantial warning (in 

range of tens of seconds to minutes is possible evaluated on the basis of a scenario analysis). 

The scenario analysis has estimated a maximum time of 90 seconds and a minimum of 34 seconds, 

sufficient to turn to red the traffic lights and avoid a big number of vehicles to board the bridge, 

from 300 to 35, depending on the alert time available. 

Another interesting case is the EWS for the nuclear power-plant, Ignalina, Lithuania (Wieland, 

2000) 

Seismic EWS can contribute significantly to the reduction of the seismic risk in nuclear power 

plants. This is particularly true for areas of high seismicity.  

An early warning system for power plants produces the following benefits: 

• It reduces the risk of release of radioactive material during a strong earthquake. 

• It reduces the consequential damage in heavy equipment (steam turbine generator, large 

circulation pumps, depressurization system of reactor pressure vessel, steam generator, 

etc.). 

• It reduces the seismic risk and thus the amount of insurance coverage. 

• An early warning system can be installed without interfering with power production 

• It is a short-term solution for reducing the seismic risk; in the long-term, improvements of 

the critical components have to be implemented. 

• Shutting the nuclear reaction or releasing control rods in various types of nuclear reactors 

requires only about three seconds of pre-warning time. 

An EWS has been installed at the 2x1500 MW Ignalina Nuclear Power Plant (INPP) in Lithuania 

(Wieland, 2000). The reactor building was designed for peak ground accelerations related to the 

seismicity of the Baltic states but the structure, by a latter analysis, do not comply with the modern 
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standards of safety. Since shutting down the reactors was not possible, for economical and political 

reasons, an alternative solution has been studied. An EWS will provide to shut down the reactor 

before a hazardous earthquake might occurr in the vicinity of INPP.  

The system consists of six seismic stations encircling INPP at a distance of 30 km and a seventh 

station at INPP. Each station is made up by three seismic substations each 500 m apart, as in 

Fig.2.1, the ground motion is recorded and the data are transmitted to the control centre via 

telemetry. 

 

 
 

Figure 2.1 Earthquake early warning system for Ignalina Nuclear Power Plant (YT: 
accelerometer, ST:seismometer) 
The seismic parameteres are evaluated and on the basis of this information the appropriate action is 

taken. By continous updates and by redundancy from several measurements at the same location, 

the problem of false allarms is reduced. For each seismic station, the cables are separated into three 

measurement channels up to the 2-out-of-3 voting logic located adiacent to the reactor control 

room, as in Fig. 2.2. 

In the case the epicenter of the seismic event is included in the radius of 30 km, the time alarm is 

very short. To solve the problem, a seismic system is installed in INPP in order to release  a seismic 

alarm. A time period of 2 seconds is required for the insertion of control rods (A rod, plate, or tube 

containing a material such as hafnium, boron, etc., used to control the power of a nuclear reactor. 

By absorbing neutrons, a control rod prevents the neutrons from causing further fissions) in the 

nuclear reactor, to prevent the meltdown in case of strong earthquake and to reduce substantially the 

nuclear thermal capacity. The existing seimic system has been improved to guarantee a warning 

time greater than 2 s. 
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The INPP Seismic Alarm System, described above, can provide 8.5 s of alarm, but considering the 

time required to transfer and to process the data, the time is reduced to 4 s. 

 The warning time available is sufficient for INPP EWS to release control rods in the reactor before 

the arrival of the seismic waves. 

 

 

 Figure 2.2 Seismic Alarm System (SAS): diagram of one of the six stations (YT: 
accelerometer, A/D: analog-digital converter, YS: seismic switch, RFDT: radio frequency 
data trasmission) 

 
Wenzel et al. (1999) in the past years have developed an EWS for the protection of Bucharest, 

Romania. Hystorical data demonstrate that the earthquakes that represent a serious threat for 

Bucharest are intermediate depth Vrancea events (Oncescu et al 1999). The epicentral area is 

located at 130 Km from the city. This allows a warning time of half a minute for Vrancea events 

representing a similar case to Mexico City having a known epicentral area at a significant distance 

from the urbanized area. The estimated warning time is about 25-30 seconds.  

Ground shaking prediction in Bucharest is done based on a scaling relationship between observed 

P-wave amplitude at the epicenter and S-wave amplitude at Bucharest. This consideration saves 

precious time, avoiding the need of an accurate estimate of magnitude and location for an accurate 

estimate of ground shaking at a site of interest. 

Scaling relations have beeen found for PGA, spectral acceleration and  expected intensities at 

Bucharest. The EWS for Bucharest is in operation officially since 2005.  

Campania Region represents an interesting application for EWS. Moderate to high intensity 

earthquakes represent the threat for a high densely populated area as Campania. The most recent 

event is the 1980 M=6.9 event with epicenter localized in the Irpinia at 80-100 Km from the city of 

Naples. Recently a project on the development of an EWS for Campania Region has been funded 

by Regional Department of Civil Protection (Zollo et al. 2005). The warning time available for 

activation of security measures before the shaking initiates varies between 14-20 sec, at 40-60 Km 

of epicentral distance, and 26-30 seconds at 80-100 Km. This time of warning enables the 

possibility of activating several security measures for the protection of strategic infrastructures 
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(hospitals, bridges, shools, etc.) from a seismic threat. The EWS is based on a sub-network 

approach to reduce time consuming, decision and processing is in this way distributed to the nodes 

of the network, located in the source zone. Local control centers receive information from the nodes 

and communicate with the central unit, in Naples. Each single node based on the first seconds of P-

waves is able to communicate to the closest local control center estimates of origin time, magnitude 

and location of the event. As more stations are triggered and as more data become available, the 

nodes refine their estimates. The local control center  receives in real-time the estimates from the 

nodes and compares the information coming from the nodes for the sake of accuracy. The 

information will only then be sent to the central unit in Naples. Location estimates are done by the 

use of Voronoi cells, defining the most likely locations based on the triggered stations. Magnitude 

prediction models will be based on P-wave ground motions observed at near-source. 

Virtual Seismologist (VS) (Cua and Heaton, 2004) method is a Bayesian framework based approach 

to early warning. Vs method uses prior knowledge as prior seismicity, Gutenberg-Richter law, 

Voronoi cells and real-time data from the stations during the seismic event. From acceleration, 

velocity and displacement observed in real-time the VS method estimates the most likely location 

and magnitude by maximizing the likelyhood function. Based on the initial 3 seconds of P-waves 

coming from the first station magnitude is estimated from the ratio of the acceleration to the 

displacement. Location is based on Voronoi cells that define the most likely locations. In the first 

phase of the event prior information becomes essential for solving the trade-off between magnitude 

and location. As more stations are triggered and as more data become available the estimate become 

more accurate. Recently the method accuracy is being tested for bigger events as Chi-Chi 

earthquake (Yamada and Heaton, 2005). 

2.3. Innovative EWS applications: Structural Control 

Possible interaction between EWS and Structural Control is a quite recent subject still to be fully 

investigated. A general description of the potentialities of an EWS applied to the structural control 

of buildings has been first discussed in (Kanda et al. 1994; Occhiuzzi et al. 2004). 

Performance of structural control systems can be improved by a preventive knowledge of the 

incoming seismic event. Relatively to passive Structural Control, according to the forecasting 

operations of the EWS, passive but property-adjustable devices could be fine-tuned in order to 

optimize the expected structural response based on the knowledge of the intensity and of the 

frequency content of the upcoming earthquake. The time needed to adjust the physical behavior of 

the devices would be about 10 s. In case of semi-active structural control system, according to the 

estimated properties of the upcoming earthquake, the most appropriate combination of control 
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algorithm and device properties could be selected and EWS could start the warm-up of the control 

system before the shaking initiates. As an example, consider a semi-active magnetorheological 

damper. By varying the intensity of the magnetic field inside the damper, it is possible to command 

to the device a fairly wide range of physical behaviours (Dyke et al.1996, Occhiuzzi et al. 2003, 

Yang et al. 2002). In this case, by an a priori knowdlege of intensity and frequency content of the 

upcoming earthquake, it is possible both to set up the initial value of the magnetic field and to select 

the most appropriate operation logic, i.e. the control algorithm among those numerically 

investigated in a multi-scenarios analysis. The time needed to update the semi-active control system 

would be of about 1 s. Finally, in the case of active structural control systems, an early warning 

system could make possible to start the autonomous production of electric energy or to activate 

some different form of energy storage in order to make the control system work during the time 

interval corresponding to higher values of the ground motion. Furthermore, the adoption of feed-

forward control loops, whose effectiveness in earthquake response reduction is largely unexplored 

(Mei et al. 2000), could be looked at from a different perspective if an estimate of the incoming 

disturbance were available. 

2.4. Prediction Methods: examples 

2.4.1. ElarmS 

Based on the consideration that P-waves represent an important information carrier on the size of 

the incoming event, Elarms has been designed for seismic risk mitigation in Southern California, 

issuing an alarm ahead of time, before a damaging seismic event occurs (Allen and Kanamori, 

2003). 

The ElarmS methodology is designed to provide the most rapid assessment of the hazard posed by 

an earthquake as possible.  A first hazard estimate is possible one second after the first P-wave 

trigger.  By using the information contained within the P-wave a warning may be issued before 

significant ground shaking occurs at the surface, i.e. before the S-wave at the epicenter.  The 

methodology is described by Allen and Kanamori (2003) and Allen (2004), here we briefly review 

the components of the ElarmS methodology that are important in the following error analysis. 

Event location is determined from the P-wave arrival times. When the first station is triggered the 

epicenter is located at that station with a typical depth for the region.  When the second station 

triggers the epicenter is located between the two stations, and then between the first three stations.  

When four stations have triggered the location is determined by a grid search to minimizing residual 

times.  Magnitude is estimated using scaling relations between the predominant period of the P-

wave within the first 4 seconds and event magnitude (Nakamura, 1988; Allen and Kanamori, 2003; 
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Lockman and Allen, in press; Olson and Allen, in press; Lockman and Allen, in review).  For 

southern California two scaling relations have been defined (Allen and Kanamori, 2003).  Initially, 

an event is assumed to be “low” magnitude (3.0 < M <5.0) and the predominant period of the P-

wave is determined from the vertical velocity waveform having low-passed the data (using a 

recursive real-time filter) at 10 Hz.  The magnitude is then estimated from the maximum observed 

predominant period, pTmax , using the relation: 

  

 ( )max6.3log 7.1PM T= +  2.3 

 
If the magnitude estimate for a given event becomes greater than M 4.5, then pTmax  is determined 

from a waveform that has been low-pass filtered at 3 Hz and the magnitude is estimated from the 

relation:  

 

 ( )max7.0 log 5.9PM T= +  2.4 

 

The first magnitude estimate is available one second after the first station has triggered.  As time 

progresses and more of the P-wave at the first station is available, the magnitude is updated if pTmax  

increases.  As additional stations trigger the event magnitude is defined as the average of individual 

station estimates.   

Given the event location and magnitude, the distribution of ground shaking is estimated using 

attenuation relations.  Most published attenuation relations focus on large magnitude events (e.g. 

Newmark and Hall, 1982; Abrahamson and Silva, 1997; Boore et al., 1997; Campbell, 1997; 

Sadigh et al., 1997; Somerville et al., 1997; Field, 2000; Boatwright et al., 2003).  ElarmS is 

intended to be operational for M > 3 earthquakes and therefore uses its own simplified attenuation 

relations.  The attenuation model used for southern California is defined as: 

 

 ( )10 10log 0.7179 2 log 3.2373PGA M N N R= + − −  2.5 

 
where PGA is the peak ground acceleration, M is the magnitude, R is the epicentral distance and N 

is a coefficient which is a function of the magnitude (Allen, 2004). 
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2.4.2. VS method 

The magnitude-estimation method, described in the virtual seismologist method (Cua and Heaton 

2004), consists in predicting magnitude and epicentral distance and updating the informations as 

more real-time data become available. The prediction of magnitude and epicentral distance, 

“posterior”, is based on a bayesian approach, accounting for an a-priori knowledge of the 

phenomenon, “prior”, and for the observations of the upcoming event, “likelihood”. The “prior” 

represents the knowledge related to the expected values of magnitude and location, before analyzing 

the observations. The real-time data are used to the define the “likelihood” that represents 

magnitude and location predictions based on the observations of the first seconds of P-waves; as the 

first station is triggered, the most probable values of magnitude and epicentral distance are defined 

from the observed ground motion amplitudes, considering the first seconds of real-time 

registrations. The most-likely magnitude and locations, related to the observed ground motion 

amplitudes, will be compared to a prediction of magnitude based on the following equation: 

 

 1.627 8.94adM Z= − × +  2.6 

where: 
 0.36log( ) 0.93log( )adZ PGA PGD= −  2.7 

 
and PGA and PGD are, respectively, the observed peak acceleration and displacement for the 

considered station and Zad is defined as ground motion ratio. Assembling the most likely values of 

magnitude and location from the amplitudes observations and the most-likely magnitude as a 

function of the ground motion ratio, it will result a consistent “likelihood” prediction of magnitude 

and epicentral distance.As more stations are triggered and as more data become available, the 

prediction will be updated. The predicted values of magnitude and epicentral distance, considering 

one of the described methods, are then used to predict the ground motion amplitudes. 

In the VS method (Cua and Heaton 2002) the amplitude is defined as: 

 

 
( )( )

( )( )
1

1

log( )

log

A aM b R C M

d R C M e ε

= − × + +

− + + +
 2.8 

 
where M is the magnitude; R1 depends on R which is the epicentral distance; C(M) is a correction 

factor depending on magnitude. The residual term ε is a zero mean error term representing the 

prediction uncertainty and e is a constant error which includes station corrections; the parameters a, 

b, d, e are defined by the model’s calibration by data fitting.  
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Chapter 3 

3. Seismic EWS from user’s perspective 

EWS design philosophy concepts may be found in the theory of ergonomics that is the discipline 

which focuses on the interaction among humans and other elements of a system, in order to 

optimize the overall system performance focusing on user’s requirements (Grasso et al. 2004 c). 

The design of an ergonomic system relies on user’s requirements, represented by human needs 

(Genaidy et al. 1999). In the case of EWS design the end user is represented by the system to 

protect, that may be a structure, an infrastructure, a bridge, an urbanized area, trasportation system, 

etc; Important lessons can be learned from ergonomics, as a fundamental guideline for the design 

philosophy of both the systems, EWS and control system for security measure activation in case of 

alarm. 

Based on the concept of a whole single system composed by EWS and control system, the design 

process for system optimization should be planned backward, focusing on the objectives 

(represented by user design requirements, in terms of time required for security measure activation, 

type of predictor required for the control system, quality level of the predictor, and tolerable level of 

probability of wrong decisions), going to the EWS design; on the other hand, the control system 

should be designed based on the “early” information, that could be available from an EWS.  

In order to work as a whole system, the design of the single components should rely on the 

requirements of other components. Based on these considerations, feasibility of the interaction of 

control system and EWS and global system’s reliability can be achieved focusing on the definition 

of the most appropriate precursor information, threshold calibration and uncertainty propagation for 

the evaluation of the consequences of taking action.  

The EWS design is based on the requirements: 

1. Warning time required for the security measure activation  

2. Type of predictor (required by the control system) 

3. Quality of the predictor (Error Analysis) 

4. Tolerable level of probability of making wrong decisions 

In this sense the design process will be based on the analysis of the EWS application to ralize, the 

evaluation of user requirements, definition of the most appropriate information (predictor) required 

ahead of time on which the decision (alarm activation or do nothing) will be based, uncertainty 

analysis to define the error associated to the predictor, reliability assessment based on the expected 

probabilities of making wrong decisions, evaluation of the tolerable levels of probability of wrong 

decisions and alarm threshold setting. 
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Each step of the process will be described in details in the following Chapters 4, 5, 6. Error analysis 

and type of predictors description will be addressed in Chapter 4. Assuming to have selected the 

most convenient predictor,  seismic EWS requirements may be sinthesized as timeliness and 

accuracy of predictions. The system has to guarantee a certain performance together with timeliness 

representing a fundamental aspect for user’s response before the strong motion is activated at the 

site. 

The conflicting requirements of timeliness and reliability are often an issue and, up-to-date, are not 

considered properly in the EWS design process. 

From a review of existing EWS applications emerges a mandatory need of including user 

perspectives in the design of the system. This chapter will introduce basic concepts in order to take 

into account user requirements in terms of the consequences of taking action as a fundamental step 

in the feasibility assessment of an existing EWS application and in the system design process of 

new applications.  

3.1. Time required for security measure activation 

The main goal of an EWS for earthquakes is the reduction or prevention of loss of life and 

mitigation of structural damage and economic loss. The benefits of EWS are due to the measures 

that can be carried out from the moment in which a seismic event is detected at a certain place until 

the moment in which the seismic waves arrive at a location of interest. These measures, for 

prevention or emergency response, can be categorized by considering the phases of the seismic 

event (Wieland, 2001).  

After event detection but before the earthquake arrives at a site, the warning provided by EWS with 

pre-arrival times of up to perhaps 90 seconds, could be used to evacuate buildings, shut-down 

critical systems (such as nuclear and chemical reactors), put vulnerable machines and industrial 

robots into a safe position, stop high-speed trains, activate structural control systems (Kanda et al. 

1994, Occhiuzzi et al. 2004), and so on.  

During an earthquake, the alarm generated by EWS could still enable such mitigation processes to 

be activated if there was insufficient time to do so prior to the arrival of the earthquake at the site. 

Within seconds after an earthquake, the information provided by EWS could be used to produce 

damage and loss maps based on the ground shaking intensity and could be the basis for more 

effective emergency response and rescue operations.  

Evacuation of at-risk buildings and facilities is only feasible if the warning time is around 1 minute 

before the arrival of the strong shaking, which is possible only in the case where the seismic source 

zone is sufficiently far away. This is the situation, for example, for the threat to Mexico City from 
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earthquakes occurring in the subduction zone along the Pacific Coast (e.g. Lee and Espinosa-

Aranda, 1998), where the time available is sufficient to alert large segments of the population by 

commercial radio and television, and for evacuation of strategic buildings, such as schools, crowded 

facilities, and so on.  

In the case of a few seconds warning time before the shaking, it is still possible to slow down trains 

(e.g. Saita and Nakamura, 1998), to switch traffic lights to red (as for the Lions Gate bridge EWS, 

Vancouver), to close valves in gas and oil pipelines, to release control rods in nuclear power plants 

(e.g. Wieland et al., 2000), activate structural control systems, and so on. In addition, secondary 

hazards can be mitigated that are triggered by earthquakes but which take more time to develop, 

such as landslides, tsunamis, fires, etc., by predicting the ground motion parameters for the 

incoming seismic waves. This could be used, for example, to initiate the evacuation of endangered 

areas. 

Given that an appropriate EWS is in place for a local area or critical facility, its impact or 

effectiveness is dependent on the warning time available and the quality and reliability of the 

information that is provided, since these influence and constrain the utilization of the information. 

In most EWS applications, the available warning time is likely to be no more than tens of seconds, 

enabling the possibility of activating mitigation measures but meaning that automated activation is 

essential to fully utilize the available warning time. 

3.2. Main aspects of consequences of prediction uncertainty 

Suppose that the EWS works by setting an alarm if a critical shaking intensity threshold is predicted 

to be exceeded at a site, where the choice of critical threshold depends on the vulnerability of the 

system to be protected at the site, then based on the predictions from the first few seconds of P-

waves observation, a decision has to be made of whether to activate the alarm or not. In making this 

decision, two kinds of errors may be committed (Wald, 1947) due to the uncertainty associated to 

the predictor on which the decision is based: 

• Type I error: the alarm is not activated when it should have been. 

• Type II error: the alarm is activated when it should not have been. 

The type I errors are missed alarms and type II errors are false alarms; the probability of each of 

these wrong decisions can be therefore expressed as: 

• Pma= probability of missed alarm, that is the probability of having threshold exceedance but 

no alarm activation. 

• Pfa = probability of false alarm, that is the probability of having no threshold exceedance 

but alarm activation. 
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The tolerance of a type I or II error is related to a trade-off between the benefits of a correct 

decision and the costs of a wrong decision and it could vary substantially, depending on the relative 

consequences of possible missed and false alarms. For example the automated opening of a fire 

station door has minimal impact if the door is opened for a false alarm. On the contrary, an 

automated shutdown of a power plant could cause problems over an entire city and involve 

expensive procedures to restore to full-operational status. In this latter case, the EWS must be 

designed to keep the frequency of false alarms very low. 

In general, the automated decision process has to be designed with attention focused on the 

probability of false and missed alarms along with a cost-benefit analysis. Some mitigation measures 

could be unacceptable to operate as a result of the false or missed alarm rate being too high. 

The probability of a wrong decision is due to having only partial knowledge of the phenomenon and 

so any prediction, as a consequence, is affected by uncertainty. A key element of an EWS is a better 

understanding of the parameters that play a fundamental role in the uncertainty, and hence the 

quality of the predictions on which decision making is based. Reliability and feasibility of EWS, 

will be analysed both for new applications and for feasibility assessment of existing EWS 

applications. 

3.3. Definitions 

Lets clarify the terms that will often be used in the following chapters, representing important 

aspects of EWS (Grasso et al., 2005 a,b). 

• Critical Threshold (a): defined by a parameter a that represents the value of the predictor 

related to the occurrence of heavy damage and/or economic losses. The critcal threshold is a 

known parameter of the design process. For structural applications of EWS the critical 

threshold may be represented by occurrence of structural damage or collapse, depending on 

the damage level of interest, the value of the threshold is defined by vulnerability 

assessment. For  industrial applications the critical threshold may be defined by risk 

analysis. 

• Warning (Alarm) Threshold ( c a⋅ ): The alarm threshold corresponds to the value of the 

predictor for which activate the alarm. To control the probability of wrong decisions, the 

warning threshold is chosen as the product of the critical threshold a and a parameter, c, to 

be specified during the design process. The warning threshold c a⋅  depends on the design 

process chosen to optimize the automated alarm activation system. The design parameter c 

provides a mechanism to control the incidence of false and missed alarms. The coefficient c 

is a parameter that will be defined in the design process, based on consequence based 
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approach. Two approaches are possible: time-invariant approach providing fixed alarm 

threshold (Fig. 3.1 and 3.2) and time-variant approach for the definition of a time-varying 

alarm threshold(Fig. 3.3 and 3.4). These concepts will be explained in detail in the 

following Chapters 6-7. The coefficient c will be greater than unit if we are more concerned 

about false alarms and less than unit  if we are more concerned about missed alarms. 

• Tolerable level of probability of wrong decision: based on a cost-benefit analysis is the 

level of probability of false alarm (β) or missed alarm (α) that can be accepted based on the 

consequences of false and misse alarm, expressed in monetary costs or loss of lives etc. For 

example a nuclear power-plant is characterized by a high cost of false alarm due to the 

expensive procedures to restore the full operational status of the plant, on the contrary for 

population alert, as for Mexico City EWS, the cost of a missed alarm is much higher 

compared to the cost of a false alert.  

• Pma= probability of missed alarm, that is probability of having critical threshold exceedance 

but no alarm activation,  

• Pfa = probability of false alarm, that is, probability of having no critical threshold 

exceedance but alarm activation. 
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Figure 3.1 False alarm in the time-invariant approach. In the figure is represented IM that 

is the actual value of the predictor, ˆIM is the predicted value as a function of time, in the red 
dashed line is represented the critical threshold and with the orange line the warning 
threshold. Note the warning threshold is time independent. False alarm is represented by the 
situation of alarm activation (warning threshold exceedance of the predictor) when we should 
have not (no critcal threshold exceedance of the actual value). 
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Figure 3.2 Missed alarm in the time-invariant approach. In the figure is represented IM 

that is the actual value of the predictor, ˆIM is the predicted value as a function of time, in the 
red dashed line is represented the critical threshold and with the orange line the warning 
threshold. Note the warning threshold is time independent. Missed alarm is represented by 
the situation of no alarm activation (no warning threshold exceedance of the predictor) when 
we should have (critical threshold exceedance of the actual value). 
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Figure 3.3 False alarm in the time-variant approach. In the figure is represented IM that is 

the actual value of the predictor, ˆIM is the predicted value as a function of time, in the red 
dashed line is represented the critical threshold and with the orange line the warning 
threshold. Note the warning threshold is time dependent. False alarm is represented by the 
situation of alarm activation (warning threshold exceedance of the predictor) when we should 
have not (no critcal threshold exceedance of the actual value). 
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Figure 3.4 Missed alarm in the time-variant approach. In the figure is represented IM that 

is the actual value of the predictor, ˆIM is the predicted value as a function of time, in the red 
dashed line is represented the critical threshold and with the orange line the warning 
threshold. Note the warning threshold is time dependent. Missed alarm is represented by the 
situation of no alarm activation (no warning threshold exceedance of the predictor) when we 
should have (critical threshold exceedance of the actual value). 
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Chapter 4 

4. Uncertainty Analysis 

A fundamental aspect of an EWS, for feasibility assessment or real-time decision making, is 

represented by a better understanding of the quality of the predictions on which decision making is 

based. A first review of EWS prediction process will help to underline the parameters that play a 

fundamental role in prediction uncertainty . A description of the probability models of the errors 

associated with each of these parameters follows. Finally prediction uncertainty is obtained by 

uncertainty propagation, two methodologies are proposed. The ElarmS methodology (Allen and 

Kanamori, 2003) is analysed as a case study in order to determine the total uncertainty associated 

with the ground shaking prediction at a site of interest. 

4.1. EWS prediction process and predictors 

The prediction model for the ground motion parameters can be represented as a sequential multi-

compartment model, composed of two sub-models, M1 and M2 (Grasso et al., 2005 c), in which 

outputs of M1 are inputs to M2 but inputs and outputs of M2 cannot be inputs to M1.  

 

M1I M2M, R IM
 

Figure 4.1 The multi-component model representing EWS, Bates et al. (2003). M1 is the 
earthquake predictive model; M2 is the attenuation model; I is the synthetic information 

estrapolated from the data from the stations; M is the magnitude; R is the epicentral distance; 
IM is the intensity measure representing the shaking intensity. 

M1 is the earthquake predictive model, which estimates earthquake parameters (magnitude, M; 

epicentral distance, R), based on parameters, I, from real-time measurements of the first seconds of 

P-waves, e.g., I is the predominant period in Allen and Kanamori (2003); I is the observed ground 

motion ratio for the Virtual Seismologist method in Cua and Heaton (2004).   

The ground motion attenuation model, M2, predicts a ground motion parameter (IM), based on the 

magnitude and epicentral distance predicted by M1. The parameter IM, which could be the final 

outcome of the EWS prediction process, represents the predicted ground motion intensity (PGA, 

PGV, Sa, etc) that will occur at the site where a strategic facility of interest is located and it is the 

predictor on which the decision to take some protective action is based.  The decision may be based 

on other parameters of interest (i.e. engineering demand parameters, expected losses, etc.), in this 

case the IM  represents an input parameter of another prediction model (M3). A modified model that 

can be used for the estimate of other predictors may be represented as a multi-compartment model. 
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The EWS model described previously is a two-compartment model (M1 and M2) whereas a single 

compartment model (M3) able to predict the relevant parameter can be adopted (Grasso et al. 2004 

c). 

 

 

M1I M2M,R IM M3 O3
 

Figure 4.2 The multi-component model representing EWS for engineering demand 
parameter prediction, Grasso et al. (2004). M1 is the earthquake predictive model; M2 is the 

attenuation model; I is the synthetic information estrapolated from the data from the stations; 
M2 is the predictive model of engineering demand parameters; M is the magnitude; R is the 

epicentral distance; IM is the intensity measure representing the shaking intensity; O3 
represents the predicted engineering demand parameter. 

 

For example for structural applications the decision might be based on engineering demand 

parameters. It is important to point out that the predictor intensity measure provided by an EWS, 

expressed in terms of ground motion amplitude (usually PGA, PGV), cannot represent a convenient 

tool for the prediction of the dynamic behaviour of the structure, that perform in a non-linear and 

multi-degree-of-freedom behaviour. For a better prediction of the structural behaviour, in order to 

optimize the decision making for the activation/design of the control systems a few seconds before 

the occurrence of the ground motion, a more representative parameter should be taken in account. 

For example, response parameters correlated with drift demand δ  are generally agreed to 

significantly represent the structural behaviour. A relationship between the drift and the intensity 

measure (represented by the model M3) could therefore represent an effective tool for the prediction 

of the structural behaviour. The structural behaviour should be foreseen on the basis of the predicted 

intensity measure, which is the output of the ground motion prediction process of an EWS. Barroso 

and Winterstein (2002) have proposed the relation between ground motion intensity measure, 

expressed in terms of spectral acceleration, Sa, and the structural parameter, δ̂ , representing the 

median drift demand: 

 ˆ b
aaSδ =  4.1 

 

where the coefficients a and b are obtained by fitting observed data, obtained by non-linear 

incremental dynamic analysis, (Vamvakistos and Cornell 2000). In this case, Barroso and 

Winterstein have considered a steel moment-resisting frame excited by synthetic ground motions 

obtained for different values of Sa. The drift demand is related to the median drift demand by:  
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 ˆ( )aSδ δ ε= ⋅  4.2 

 

The parameter ε defines the variability of the values of δ compared to the median value.  

For structural control application the predictor may be the expected behaviour of the controlled 

structure, that is expressed as (Barroso and Winterstein 2002): 

 ˆ cb
c c aa Sδ =  4.3 

 

where the index c is addressed to the controlled structure and the coefficients ac and bc are obtained 

from structural analyses on different structures in controlled configuration. 

Other predictor to take in account in the decision process may be probability of false and missed 

alarm, structural damage, economic or loss  of lives, that represent the consequences of the action of 

activating the alarm or not (see Chapter 8). 

4.2. Uncertainty Analysis 

Uncertainty analysis represents an important tool for feasibility assessment of EWS application, 

based on the uncertainty of the prediction. 

The estimate of the uncertainty associated with the prediction is a fundamemtal information in order 

to evaluate the expected consequences of a decision in real-time analysis. A method for uncertainty 

analysis is described in the following sections. Is presented a frame-work for evaluating the error 

associated with the prediction,  useful for comparing the performance of existing prediction models 

of real-time seismic parameters, isolating the single errors source of uncertainty in order to define 

the mitigation strategies to reduce the total error. 

A single station approach for ground motion parameter prediction is described and the error 

associated with the estimate is evaluated, underlining  the possibility of defining the effects and the 

advantages of waiting for additional information. 

The attention is focused on the uncertainty of the predictor on which the decision of raising the 

alarm or not is based.  

In this report, the predictor (quantity of interest) is taken to be a ground motion parameter that 

represents the shaking intensity at the site of the facility. The prediction is based on a partial 

knowledge of the event (first second of P-waves) and represent the output of predictive models, 

associated to an error as well. The total uncertainty associated to the predictor will be decomposed 

in single uncertainties, sources of uncertainty; each error will be analysed and modeled by the 

means of probability distribution function and the total uncertainty will be defined. 
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4.2.1. Sources of uncertainty 

Uncertainty in the predictor IM is a result of the uncertainties in the models M1 and M2, including 

the prediction errors related to the magnitude, the source location, and the attenuation model. 

The source of the uncertainties for each model is represented in the following figure, where εM, εR 

and εIM denote the uncertainties related to the magnitude and location prediction model and to the 

attenuation model, respectively.  

Uncertainties of each sub-model propagate through the output, so each uncertainty plays an 

important role in the definition of the final quality of the intensity measure, IM. 

 

M1I M2M, R IM

εM, εR εIM

 
 

Figure 4.3 The multi-component model for EWS uncertainty propagation. M1 is the 
earthquake prediction model and M2 is the ground motion attenuation model 

 

A Gaussian distribution model is choosen for  εM and εIM to model the magnitude and attenuation 

model uncertainties. The uncertainty of the predicted magnitude can be well modeled as a Gaussian 

distribution, as confirmed by Grasso and Allen (2005) and Cua and Heaton (2004), with a standard 

deviation dependent on the prediction model (e.g., the magnitude error has zero-mean and a 

standard deviation of 0.4 for the Heaton-Cua relation and it decreases with increasing number of 

data). According to the Allen-Kanamori method, the uncertainty of magnitude prediction, is related 

to the number of stations considered and to the elapsed time, and it assumes a value of 0.7 (in 

magnitude units) considering only one station, 0.6 for three stations, 0.45 for five stations, and it 

drops to 0.35 if ten stations are considered (Allen, 2004).  

Errors related to ground motion amplitude are modeled well by a lognormal distribution, i.e. if the 

intensity measure IM is the natural logarithm of the ground motion parameter, then IM can be 

assumed to be Gaussian. This hypothesis is confirmed by the analysis done by Grasso and Allen 

(2005) for the analysis of ElarmS uncertainty and by Cua and Heaton (2004) in which the errors, 

evaluated based on a large number of data and considering ground motions recorded by the seismic 

network in Southern California over 4 years, were analysed. 

Related to the uncertainty in epicentral distance prediction, in the case of large magnitude 

teleseismic events, the probability of a large prediction error based on the first few seconds of data 
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is likely. In fact, in this case the network could erroneously locate the epicenter inside the 

instrumented area (Kanamori and Heaton 2004, personal comunication). To avoid epicenter 

mislocation, in case of teleseismic events, is important to exclude the case in which the triggered 

stations are the perimetral ones and for which the amplitude of P waves is small, as confirmed by 

Kanamori (2004) 

Small Event;
Large and distant Small and near

Large event
Yes Yes

No No

P large? τ large?

CASE 1 CASE 2

CASE 3

  

Figure 4.4 The P wave amplitude is a key parameter in identifying immediatly the level of 
intensity of the incoming event, P waves are an important information carrier. If  the P wave 
amplitude is small we are in the case of small or teleseismic event, if the P wave amplitude is 
large we have to look at the predominant period, τ. If τ is small the event is small and near, if 
is lare the event is a large event. (Kanamori, 2004). 
For epicenter mislocation is important to exclude the stations triggered by events that are not 

seismic (noise) (Allen personal comunication). Excluding these cases the epicentral distance error 

can be modeled as a lognormal distribution, or equivalently as a Gaussian distribution considering 

the variable logR, instead of R.  

4.3. Uncertainty propagation 

Our trust in EWS depends on the expected levels of error committed in the prediction. It is 

necessary to estimate the error in order to quantify the performance of the EWS prediction process.  

Two different methods will be described for uncertainty propagation:  

1. uncertainty propagation method  

2. numerical Monte Carlo method. 

Uncertainty propagation method refers to an aproximation method based on first-order Taylor series 

expansion in order to evaluate the total error as a composition of the single errors, assuming 

independency of errors. 

In the cases in which the aproximation method is not applicable the Monte Carlo method is 

suggested, that is a simulation method for uncertainty propagation of the single errors through the 

output. The two methods are fully decribed and an application of Monte Carlo method is analysed 
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for the evaluation of ElarmS (Allen and Kanamori 2003) performance (Grasso and Allen, 2005). 

4.4. Aproximation method for uncertainty propagation 

The aproximation method for uncertainty propagation is a method based on a first-order Taylor 

series expansion in order to quntify the total error associated with the predition. The predictor that 

will be considered is the intensity measure. The predictor is a function of magnitude and epicentral 

distance (in log scale) that in the uncertainty propagation process will be affected by errors, as 

shown in Fig. 4.3, and which are modeled and described by Gaussian distribution. 

The prediction error is given by comparing the predicted intensity measure, ˆIM  , to the actual IM: 

 ˆ
tot IM IMε = −  4.4 

where: 

MI ˆ  is a function of the predicted values M, R and the uncertainties εM,  εR and εΙM: 

  

 ˆ ˆ ˆ( , ) ( , )IM M R IMIM f M R f M Rε ε ε ε= + = + + +  4.5 

 

where the function f  represents of the attenuation model, that in a general expression: 

 

 ( , ) logef M R M Rα β γ= + +  4.6 

 

MI ˆ represents the predicted value of intensity measure, dependent on M, R and the uncertanties εM,  

εR and εΙM, that has to be compared to the actual intensity measure, IM, that is represented by:  

 

 ( , )IM f M R=  4.7 

 

IM is a function of magnitude and location, M and R, where f is the ground motion attenuation 

model. 

Under previous assumptions about εM,  εR and εΙM, the total prediction error follows a Gaussian 

distribution with mean and standard deviation that is depends on the means and standard deviations 

of these contributing prediction errors. As the quality of the prediction increases with increasing 

data, the standard deviation decreases and the uncertainty decreases. 

The prediction error can be expressed as: 

 log
ˆ ( , log ) ( , log )tot M e R IM eIM IM f M R f M Rε ε ε ε= − = + + + −  4.8 
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Based on the assumption of using M and logeR as the basic Gaussian variables, the function may be 

expressed as a first-order Taylor series: 

 

 ( ) ( )log,log ,log

log

| |
logtot M R IMM R M R

M R IM

f f
M R

ε ε ε ε

βε γε ε

∂ ∂
= + +

∂ ∂
≈ + +

 4.9 

   

 

For given M and R the standard deviation is given by adding Gaussian variables which gives the 

variance of the sum equal to the sum of the individual variances under the assumption of 

independence of errors: 

 2 2 2 2 2
logtot M R IMσ β σ γ σ σ= + +  4.10 

where σtot is a function of time in relation with σM and σlogR that are time dependent. As time 

progresses the standard deviation are updated and the total error σtot is evaluated. Eq. 4.10 allows a 

simple evaluation of the total error associated to the EWS prediction asa a function of time. The 

mean of the total error is given by: 

  

 
logtot M R IMε ε εµ βµ γµ µ= + +  4.11 

 

in most of the cases may be assumed a zero-mean value for the total error distribution (Cua and 

Heaton 2004). If the empirically-derived models M1 and M2 (Fig. 4.3) are unbiased, then the mean 

0totµ = . In fact, totµ does have a value close to zero in the Virtual Seismologist method (Cua and 

Heaton 2004). If more complex attenuation models, or more complex probability models for εM, 

log Rε  and εΙM, are used, this analytical approach may be not applicable and then a Monte Carlo 

method is suggested to quantify the uncertainty in totε  (Grasso et al. 2005 a,b).  

4.5. Monte Carlo method for Uncertainty Analysis 

Monte Carlo method for uncertainty propagation follows the same steps decribed for indentifying 

the sources of uncertainty, defining the probabilistic models that describe the single errors and 

finally evaluating the total uncertainty associated with the predictor. 

While with the uncertainty propagation method the total error is defined by using a first-order 

Taylor series expansion Eq. 4.9  considering logR as basic variable, with the Monte Carlo method 

the total uncertainty is defined by a Monte Carlo simulation to propagate uncertainties through the 
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system. The method is described with an application to ElarmS. 

4.6. Monte Carlo method: quantifying ElarmS prediction error 

We use a dataset of 32 earthquakes from southern California to estimate the errors in ground 

shaking predictions (Grasso and Allen, 2005).  In order to assess the uncertainty if ElarmS was 

implemented in southern California, the event dataset consists of earthquakes recorded by the 

current dense seismic network close to the metropolitan areas, Fig. 4.5. 

  

 

Figure 4.5 Map of the stations and earthquakes used in this study. 
 

All the events occurred from 2000 to 2003 and have a local magnitude ranging from 3.0 to 5.4 

(Table 4.1).  The dataset does not include larger magnitude earthquakes as none have occurred 

beneath a dense seismic network as exists today.  The waveforms were recorded by the California 

Integrated Seismic Network (http://www.cisn.org) and were obtained from the Southern California 

Earthquake Data Center (http://www.data.scec.org).   

The ElarmS methodology can be represented as a multi-component model consisting of earthquake 

location, magnitude estimation and ground shaking prediction.  The total uncertainty in a ground 

motion prediction can be derived from the individual errors in location, magnitude estimates using 

the predominant period, and the attenuation relations.   
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Table 4.0 Earthquakes used in the analysis.  
 

4.6.1. ElarmS Magnitude uncertainty 

Error in ElarmS magnitude estimate has been evaluated as a function of time for the 32 events. 

The error is defined as the difference between the prediction (Eq. 2.6 and 2.7) and the true 

magnitude determined by the network. 

The time of the first trigger for each event is set to the zero time.  In making this choice we assume 

that the amount of information about an earthquake, i.e. the number of stations recording P-wave 

information, increases in a similar fashion with time for all earthquakes.  This assumption is 

reasonable for events occurring beneath the dense portion of the seismic network where the station 

spacing is approximately constant. 

At 15 seconds from the first trigger, the error stabilizes and additional data will produce neglegible 

effects in terms of error reduction. The magnitude error can be modeled as Gaussian distribution 
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with mean and standard deviation that varies as a function of time. 

For each 1 sec of increment an error model is defined by fitting a Gaussian distribution to the errors 

to determine mean and standard deviation.  

The error, when the first station is triggered, can be modeled as Gaussian distribution with mean 

equal to –0.45 and standard deviation of 0.61, these values decrease to –0.25 and 0.41, for mean and 

standard eviation, respectively, at 5 seconds from the first trigger, at 10 seconds the mean and the 

standard deviation assume the values of –0.14 and 0.34, respectively, at 25 seconds the value of the 

mean goes to zero and the standard deviation assumes 0.26. 

t µ σ 

1 s -0.45 0.61 

2 s -0.3 0.47 

3 s -0.28 0.47 

4 s -0.28 0.46 

5 s -0.25 0.41 

6 s -0.2 0.39 

7 s -0.19 0.39 

8 s -0.18 0.37 

9 s -0.16 0.37 

10 s -0.14 0.34 

11 s -0.096 0.3 

12 s -0.08 0.26 

13 s -0.067 0.26 

14 s -0.06 0.26 

15 s -0.05 0.26 

20 s -0.045 0.26 

25 s -0.045 0.26 

Table 4.1 Magnitude error is characterized by mean, µ, and the standard deviation, 
σ, function of time. 
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Figure 4.6 Magnitude error distribution as a function of time, considering the zero time the 
instant when the first station is triggered. 

In the above analysis it has been assumed that the errors in M̂  from individual station observations, 

and in AGP ˆ  at specific sites are the same.  Improvements in the uncertainty of AGP ˆ  can be made 

by taking both the individual stations and site errors into account.  This is particularly important 

during the first few seconds of an earthquake sequence when data for a magnitude estimate is only 

available from a few stations.  A recent study by Lockman and Allen (in press) determined the 

variability in the uncertainty in magnitude estimates from 22 stations in southern California.  The 

average absolute magnitude error for the 22 stations varied from 0.13 to 1.02 magnitude units (see 

Lockman and Allen (in press) Figure 2), the corresponding range in the standard deviation was 0.18 

to 1.57 magnitude units.  A magnitude estimate based on observations from the best three stations 

in the Lockman and Allen study would have a standard deviation of 0.15 compared 0.41 when we 

treat the errors from all stations as being the same.  In the case when it is the worst three stations the 

standard deviation would be 0.83. 

The use of station-specific errors is perhaps most important in the real-time decision making 

process.  Consider a scenario in which a specific user of the warning information receives a 

message predicting ground shaking above the threshold at which they would take action.  When 

they first receive this warning the uncertainty may be large.  However, if they know that 2 sec later, 

additional data is likely to reduce the uncertainty significantly, they may decide to wait for that 

information before taking action.  Alternatively, if the uncertainty is unlikely to change, they will 

either initiate mitigating action immediately or not at all.  

Different scenarios have been simulated, in which different combinations of stations have been 

choosen to be triggered. The error associated with the triggered stations in a single station approach 
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has been defined and then compared to the error models defined previously based on all the data 

available. 

In the first scenario, three stations characterized by a little scatter of the period-magnitude 

relationship are considered, the magnitude error associated is defined by propagating the single-

station errors. 

The error is characterized by an uncertainty of 0.15 for the standard deviation, much less if 

compared to the 0.41 for the magnitude error for all the data. 

In the second scenario the magnitude error has a standard deviation of 0.83, for 3 triggered stations 

characterized by a big scatter. 

Finally the last scenario has been analysed in order to define the worth of waiting for more data, in 

the case the next station to be triggered is characterized by a high accuracy in the magnitude 

prediction. 

In tis scenario, if the first two stations to detect P-wave arrivals are those with the largest errors in 

Lockman and Allen’s study (in press), the magnitude uncertainty would be 1.09.  Based on the 

event location, the small subset of stations which will trigger next will be known along with their 

associated errors. If the third station to trigger is also a poor station the error will reduce to 0.83, but 

if it is a good station it will be reduced to 0.7 (Grasso and Allen, 2005). 

Note that in the analysis the error associated with the averaged magnitude prediction has been 

evaluated based on the following equation:  
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based on the consideration that the error of the average magnitude estimate is characterized by a 

variance that is equal to the sum of the variances of the errors associated with the single-station 

errors, assuming indepencency of the errors, where n  is the number of triggered stations. 

If the the error of each station has the same standard deviation, σ, Eq.4.12 assumes the well known 

expression: 

M n
σσ =               4.13 
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4.6.2. Location Uncertainty 

Location error is defined as the scalar distance between the estimated location and the true network 

epicentral location. As more stations are triggered, the location estimate is updated producing a 

decrease in the location error. 

The ElarmS tests on the 32 events pointed out that the location error stabilizes after 4 seconds.  

The location error is modeled as lognormal distribution that is commonly used for probability 

distribution function of positive quantities such as the location error. The location error at 1 second 

represents the distance between the first triggered station and the epicenter, as the second station is 

triggered the epicenter is located between the two stations and so on, this implies that the location 

accuracy is dependent on the station density in the epicentral area. 

At 3-4 seconds the error stabilizes, corresponding to 4 stations triggered. 

The location error as a function of time is represented in the following figure. 

The error in the epicentral distance estimate is related to the location error, the worst case has been 

considered that is represented by alignment of epicenter, predicted epicenter and target location. 

In this case the epicentral distance error is represented by the location error.  

Cases of epicenter mislocation have been observed and the main cause of large location error is 

noise. 

 

 

Figure 4.7 Location error (Km) distribution as a function of time, considering the zero time 
the instant when the first station is triggered. 
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T µ σ 

1 s 1.41 1.02 

2 s 0.83 0.88 

3 s 0.59 0.66 

4 s 0.37 0.75 

5 s 0.19 0.83 

6 s 0.15 0.82 

7 s 0.075 0.76 

8 s 0.06 0.76 

9 s 0.06 0.76 

10 s 0.07 0.76 

11 s 0.07 0.76 

12 s 0.07 0.76 

13 s 0.07 0.76 

14 s 0.09 0.79 

15 s 0.09 0.79 

20 s 0.09 0.79 

25 s 0.09 0.79 

 

Table 4.2 Epicentral distance error is characterized by mean, µ, and the standard 
deviation, σ, function of time. 

4.6.3. Attenuation model uncertainty 

The attenuation model error is the difference between the predicted peak ground acceleration 

(PGA), estimated with Eq. 4.14. 

 ( )10 10log 0.7179 2 log 3.2373PGA M N N R= + − −  4.14 

where M is the magnitude, R is the epicentral distance and N is a coefficient which is a function of 

the magnitude, defined by a look up table that relates N to M and the observed PGA recorded during 

the course of the earthquake. 

The error in the attenuation relationship represents the error in the PGA prediction given the correct 

magnitude and distance. The attenuation relationship error follows a Gaussian distribution. 

In the following figure is represented the model for the attenuation relationship error for the 32 

events.  The error distributions are similar for all the events, with means around zero, except for one 

which has a mean of 2.0.  This is a M 3.1 earthquake that occured 3/11/2000.  For this event all 
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stations that recorded detectable ground shaking were with 10 km.  The errors in the attenuation 

relations are greater at small epicentral distances and in this case predict a higher intensity of 

ground shaking than occured.  The errors for all events are combined to determine a single Gaussian 

error distribution for the attenuation relations.  It has a mean of 0.26 and standard deviation equal to 

0.9. 

 

 
 

Figure 4.8 Attenuation model uncertainty for the 32 events, with thin black line, and the 
attenuation model error, for all data, with the thick black line. 
A model for the attenuation relationship error is assumed considering all the events, represented by 

a Gaussian distribution with mean as 0.26 and standard deviation equal to 0.9. 

4.6.4. Total Error  

Error analysis represents a fundamental tool for estimating the error associated to the ground motion 

parameter, the single uncertainties are propagated through to the output, that is a function of the 

estimated magnitude, M̂ , and the estimated epicentral distance, R̂ : 

                                                            ˆ ˆ ˆ( , )PGA f M R=                                                         4.15 

where f represents ElarmS attenuation relationship Eq. 4.14 (Allen, 2004).  

The predicted magnitude and epicentral distance are defined from the true true magnitude M, the 

true epicentral distance R, using their time dependent errors εM, εR respectively: 

                                               

ˆ

ˆ

M

R

M M

R R

ε

ε

= +

= +                                                         4.16 
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 The error in the PGA prediction, PGAε , is determined by differencing the logarithm of the observed 

and the predicted PGA: 

                                                                              

( ) ( ) ( ) ( )ˆlog log log ( , ) logPGA M RPGA PGA f M R PGAε ε ε= − = + + −                                          4.17 

We use the difference in the logarithm of the PGA observation to account for the wide range of 

PGA values given the range of magnitudes for the dataset.  This is typical in studies of ground 

shaking attenuation. 

For every observation of magnitude and epicentral distance will be estimated the predicted 

magnitude and epicentral distance, M̂  and R̂ , according to  Eq. 4.16 

The Monte Carlo simulation consists in randomly choosing errors from their distributions to define 

the predicted magnitude and location, M̂  and R̂  from Eq. 4.16 and, based on these values the 

predicted ground motion parameter, ˆPGA  is defined from  Eq.4.14. 

 

,
ˆ

j i M jM M ε= +

jRij RR ,
ˆ ε+=

M1 R1

M2 R2

Mi Ri

Mn Rn

. . .  . . . .

. . .  . . . .
, , ,

ˆ ( ; )i j i M j i R jPGA f M Rε ε= + +

 

Figure 4.9 Monte Carlo simulation, prediction of ground motion parameter  represented 
by ˆPGA , where for j is indicated the Monte Carlo cycle  and for i the observation. 

The predicted ˆPGA  will be compared with the observed value of PGA and the error will be 

evaluated as the difference between prediction and observation, comparing 

( ) ( )ˆlog to loge ePGA PGA . 

The Monte Carlo simulation procedure is represented in the following figure.  

Uncertainty propagation analysis has been carried out for different instants of time from 1 second to 

25. For example for instant t  we have ( ) ( ) ( )( ), ,tot M R IMt f t tε ε ε ε=  that is obtained from Monte 

Carlo simulation adopting the error models for andM Rε ε  related to instant t . This procedure will 

be adopted to build the pdf of the total error related to each 1 sec increment. 

The uncertainty associated with the ground motion parameter prediction follows a Gaussian 

distribution with mean and standard deviation that vary with time. 

The mean goes from a value of –0.61 for 1 second to a value of -0.17 at 5 seconds, finally assuming 

a value of 0.16 for 20 seconds. 
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The standard deviation decreases with time going from 1.33 at 1 second to 1.1 at 5 seconds to 1.16 

at 20 seconds. 

Mi Ri
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 Figure 4.10 Monte Carlo simulation: for each observation i , Mi and Ri, and for each 
cycle j errors, εM and εR, are randomly choosen from their distributions to define the predicted 

, ,
ˆ ˆ,i j i jM R  and then ,

ˆ
i jPGA  to be compared to the observed PGA, in order to define the 

distribution of the total error. 

 

The values that characterize the error associated with the PGA prediction are described in the 

following table. 

 

t µ σ aad rms 

1 s -0.61 1.33 1.15 1.5 

5 s -0.17 1.1 0.86 1.1 

10 s 0.01 1.02 0.78 1.02 

20 s 0.16 0.95 0.73 0.95 

25 s 0.16 0.95 0.73 0.95 

Table 4.3 The total uncertainty of the prediction is characterized by the mean, µ, the 
standard deviation, σ, the average absolute deviation, aad, and root mean squared, rms.  
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Figure 4.11 PGA error distribution, result of the uncertainty propagation, as a function of 
time, where zero time is the instant when the first station is triggered. 
At this point in order to study the influence of the single error on the total error a sensitivity analysis 

has been carried out. 

4.6.5. Sensitivity analysis 

To determine the largest source of error in the PGA predictions we conduct a simple sensitivity 

analysis.  The total error in the PGA prediction can be espressed as: 

 ( ) ( )' log ( , ) log ( , )PGA M R Attf M R f M Rε ε ε ε= + + + −  4.18 

 

In order to consider the influence of the single errors, different cases have been considered, the 

following table synthesizes the cases. 

 

Case εM εR εATT.M. 

1 x x x 

2  x x 

3 x  x 

4 x x  

Table 4.4The cases considered are defined by different combinations of the errors. 
We consider four cases (Grasso and Allen, 2005).  In case 1 we include all three sources of error in 

equation 4.18.  The characteristics of '
PGAε  are shown in Table 4.9.  The errors are of course very 

similar to those in Table 4.4 where the total error was determined by differencing the prediction 

with the observed PGA.  In case 2 we set the error in the magnitude estimate, Mε , to zero thereby 
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assuming an exact magnitude is available for an event and Rε  and Attε  are the only sources of error 

in '
PGAε . 

The following cases, from 2 to 4, have been designed in order to isolate and quantify the 

contribution of the single errors on the total error. 

The Case 1, in which all the error are included, represents the reference point to which compare the 

results of the other cases. Comparing the results of the Case 1 obtained with synthetic data to the 

results obtained from the error defined as the difference between predictions and real data, is 

possible to confirm the perfect aggreement of the results. 

In Case 2 the magnitude error influence is evaluated, in the Case 3 the epicentral error is quantified 

and finally in  Case 4 the attenuation model error influence is weighted. 

The results related to Case 2 are synthesized in the following table. 

Case 2 

t µ σ aad rms 

1 s 0.076 0.93 0.74 0.93 

5 s 0.18 0.9 0.73 0.92 

10 s 0.19 0.9 0.73 0.92 

20 s 0.19 0.9 0.73 0.92 

25 s 0.19 0.9 0.73 0.92 

Table 4.5 The Case 2 is characterized reporting the parameters describing the total error 
associated with the considered errors, εR  and εATT.M.. 
Analysing the results of Case 2, we can notice that the magnitude error has some influence initially 

on the behaviour of the total error of Case 1. The magnitude has negative error, causing a negative 

value of the mean in Case 1, that does not happen in Case 2, in which the magnitude error equal to 

zero. Considering no magnitude uncertainty is possible to notice that the prediction is still 

characterized by an error that has a standard deviation equal to 0.9 for every instant of time 

considered, equal to the attenuation model error. 

The mean of the error is equal to 0.18 at 5 seconds  and 0.19 at 10, 20 and 25 seconds that is equal 

to the mean of the attenuation error. These considerations lead to the conclusion that with exact 

magnitude value the error is mainly due to the attenuation model error, except for the first second 

where location error is of some influence. 

Magnitude error has an influence of some importance in the first second, while after 5 seconds the 

effect might be neglected. 

Case 3, represents the case of correct epicenter location while magnitude and attenuation model are 

sources of errors, the results are reported in the following table. 
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Case 3 

t µ σ aad rms 

1 s -0.48 1.34 1.14 1.43 

5 s -0.15 1.125 0.9 1.13 

10 s 0.03 1.06 0.8 1.06 

20 s 0.2 0.99 0.8 1 

25 s 0.2 0.99 0.8 1 

Table 4.6 The Case 3 is characterized reporting the parameters describing the total error 
associated with the considered errors, εΜ  and εATT.M.. 
Observing the results of Case 3 is possible to confirm that the influence of the epicentral distance 

error on the total error is present only for the first second, while becomes not influent after 5 

seconds. As is possible to notice from the comparison of the results of Case 3 and Case 1 in 

correspondance of the first second, the effect of the location error is only on  the mean value, while 

the other parameters are not influenced. 

In the case of location error equal to zero (Case 3), when the magnitude error goes to values close to 

zero, the contribution to the prediction error comes only from the attenuation model error, in this 

way the error never yields to zero values.  

Finally Case 4 is considered in which the attenuation model error is equal to zero. 

Case 4 

t µ σ aad rms 

1 s -0.91 1.03 1.13 1.38 

5 s -0.48 0.68 0.67 0.83 

10 s -0.3 0.56 0.51 0.64 

20 s -0.14 0.43 0.36 0.45 

25 s -0.14 0.43 0.36 0.45 

Table 4.7 The Case 4 is characterized reporting the parameters describing the total error 
associated with the considered errors, εΜ  and εR. 
The most important contribution to prediction error is given by the attenaution model error as 

confirmed by the results of Case 4. 

Is interesting to notice that the mean value goes to a value of –0.14 and the standard deviation 

reaches a value of 0.43 less than the values observed in the other cases. The influence of the 

attenuation model error is either on mean and on standard deviation for every instant of time 

considered. 
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Figure 4.12 Error in PGA as a function of time for the four cases.  The mean is shown as a 

solid symbol joined by a solid line, plus and minus one standard deviation are shown with 
open symbols joined by a dashed line.  Case 1 (circles) includes all sources of error.  Case 2 
(squares) neglects error in the magnitude estimate, Mε , but includes epicentral distance 
error, Rε , and the attenuation relation error, Attε .  Case 3 (triangles) neglects Rε  but includes 

Mε  and Attε .  Case 4 (stars) neglects Attε  but includes Mε  and Rε . 
 

Case 1 Case 2 Case 3 Case 4 

µ σ aad rms µ σ aad rms µ σ aad rms µ σ aad rms 

s -0.66 1.37 1.2 1.52 0.076 0.93 0.74 0.93 -0.48 1.34 1.14 1.43 -0.91 1.03 1.13 1.38 

s -0.22 1.12 0.9 1.15 0.18 0.9 0.73 0.92 -0.15 1.125 0.9 1.13 -0.48 0.68 0.67 0.83 

0 s -0.04 1.06 0.85 1.06 0.19 0.9 0.73 0.92 0.03 1.06 0.8 1.06 -0.3 0.56 0.51 0.64 

5 s 0.12 0.99 0.8 1 0.19 0.9 0.73 0.92 0.2 0.99 0.8 1 -0.14 0.43 0.36 0.45 

0 s 0.12 0.99 0.8 1 0.19 0.9 0.73 0.92 0.2 0.99 0.8 1 -0.14 0.43 0.36 0.45 

5 s 0.12 0.99 0.8 1 0.19 0.9 0.73 0.92 0.2 0.99 0.8 1 -0.14 0.43 0.36 0.45 

  

Table 4.8 Distribution of errors in the predicted PGA using the ElarmS error model, '
PGAε .  

For each case the errors have a Gaussian distribution with mean, µ, the standard deviation, 
σ.  Τhe average absolute deviation, aad, and root mean squared, rms, of the errors are also 
shown.  Case 1 is the total error in PGA which includes errors in the magnitude, Mε , the 
epicentral distance, Rε , and the attenuation relations, Attε .  In Case 2  Mε  is set to zero and 
errors in Rε  and Attε  only are considered.  In Case 3 Rε  is set to zero, Mε  and Attε  only are 
considered. In Case 4 Attε  is set to zero, Mε  and Rε  only are considered. 

 
In summary, Rε  has a negligible contribution to uncertainty in PGA predictions, Mε  

contributes initially (the first 5-10 sec only), and Attε  is the most significant source of error, 
particularly at later times after several stations have recoded P-wave arrivals and contribute 
to the magnitude estimate (Grasso and Allen, 2005).  
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Chapter 5 

5. Aspects of Feasibility and Reliability of Seismic EWS 

Main aspetcs involved in feasibility and reliability of an EWS application are: 

• the amount of warning time  

• the probability of making wrong decisions (false alarms and missed alarms) 

that represent, respectively, timeliness and reliability, conflicting requirements of EWS. 

These parameters strongly influence EWS impact and effectiveness on seismic risk reduction. 

With respect to the first point, the time available to activate security measures is the time interval 

from the detection of P-waves in the epicenteral area, and the arrival of S-waves in the area where 

the structure or facility is located. This time interval, Tw, defined by Eqs. 2.1 and 2.2,  is a function 

of the reporting time, Tr, and the S-wave travel time, Ts. The warning time, to be considered 

adequate for the activation of a security measure, has to be greater than the time necessary for its 

activation. 

As a function of the epicentral distance, the area of interest may be decomposed in homogeneous 

zones characterized by equal amount of  warning time available. This analysis has been carried out 

for the San Francisco Bay area (Working Group ‘02) by Allen et al. 

Altough for a territorial feasibility assessment for each area has to be evaluated an estimate of 

expected annual probability of false alarm and missed alarm in order to have an overview of 

possible EWS applications. 

Assuming that the warning time provided by the EWS is sufficient for security measure activation, 

EWS effectiveness is influenced by system reliability in terms of probability of making wrong 

decisions, fundamental aspect in a pre-installation feasibility assessment and for decision making 

during the course of the earthquake. 

5.1. Probability of wrong decisions in a pre-installation scenario 

When examining the feasibility of installing an EWS for a facility, it is important to have a 

mechanism to control the probabilities of false and missed alarms. Since the decision to activate the 

alarm is based on a predictor, ˆ ,IM  false alarms can be caused by the predictor exceeding the 

warning threshold even though the actual intensity measure, IM, that occurs at the site does not 

reach the critical value. Similarly, missed alarms can be caused by the predictor not exceeding the 

warning threshold even though the actual intensity measure reaches its critical value. 

For a given facility, the critical threshold, a, of IM may be chosen by the user as the value of IM for 

which damage (or high economic losses) is expected to occur with a high probability. However, to 
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control the probability of wrong decisions, the warning threshold is chosen as the product of the 

critical threshold a and a parameter, c, to be specified during the design process. The critical 

threshold depends on the facility, structure or equipment to be protected, but the warning threshold 

c a⋅  depends on the design process chosen to optimize the warning system. The parameter c 

provides a mechanism to control the incidence of false and missed alarms. Note that it is not 

possible to simultaneously reduce both but c may be used to control the trade-off between them. A 

false alarm occurs when the EWS predicts a value, ˆIM , that exceeds the warning threshold, ac ⋅ , 

while the actual value, IM, of the intensity measure at the site turns out to be less than the value of 

the critical threshold, a. 

In a pre-installation scenario, the probability of false alarm is therefore given by: 

 

 ˆP[ | ]faP IM a IM c a= ≤ > ⋅  5.1 

 

Similarly the probability of missed alarm is: 

 

 ˆP[ | ]maP IM a IM c a= > ≤ ⋅  5.2 

 
The values of the probabilities of false and missed alarms, Pfa and Pma, are an important tool for the 

decision-making process during pre-installation design and during operation in a seismic event.  

During design, the anticipated rate of missed and false alarms represents a guideline for 

EWS feasibility. The realization of EWS could be feasible or not, depending on whether the 

requirements in terms of warning time available and the probability of wrong decisions can be met. 

A useful tool to evaluate an EWS may be constructed by using a seismic hazard map to provide the 

probability of exceedance of ground shaking intensity, given a site and time interval of interest, to 

produce a map of probability of wrong decisions. Such a map would help when performing a 

territorial feasibility assessment of EWS applications.  

During a seismic event, the (automated) decision to activate protective measures may be done either 

by comparing the requirements in terms of warning time needed and the tolerable level of faP  

(or maP ) based on the information made available by the EWS, or by monitoring a time-varying 

threshold ( )c t a⋅ . This case is examined later in Chapter 7. 
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5.2. Procedure for estimating Pfa and Pma in a pre-installation  scenario 

The main reasons for evaluating the probability of wrong decisions in a pre-installation scenario are 

to design the warning threshold, following the considerations presented before and, then to define 

the probabilities of false and missed alarms and their expected annual frequency that are tolerable to 

the owner or manager of the facility to be protected. 

The probability of false or missed alarm, in a pre-installation scenario, can be evaluated as a time-

independent variable, based on the seismicity of the area of interest. Time dependence could be 

neglected as a first approximation, assuming that the prediction uncertainty stabilizes after a certain 

time following the first trigger.  

This simplified approach could be applied to special cases as Mexico City where the location of the 

fault area, the configuration of the seismic stations enable the possibility of assuming that the 

uncertainty of the prediction stabilizes after the first seconds. The time-invariant approach will be 

based on the consideration of error as a time independent parameter and we will consider a certain 

pdf for the total error related to a certain instant of time. 

By estimating the probability of false alarm, before the earthquake, we are primarily trying to 

answer to the question: How would an EWS perform during earthquakes that might occur in the 

area of interest, in terms of a false (or missed) alarm rate? 

Prior information can be expressed by using the hazard (rate) function (Kramer, 1996) that defines 

the mean rate per year of events with intensity measure exceeding a certain critical value, given a 

site of interest. 

The hazard (rate) function provides the information related to the expected intensity measures, IM, 

for a given site and period of interest that represents the known parameter in Fig. 5.1; on the other 

hand the unknown quantity is represented by the predicted intensity measure, ˆIM , that is evaluated 

by adding prediction error, εtot, to the actual IM. The prediction error εtot is defined taking in account 

the errors related to the prediction of magnitude, M, epicentral distance, R, and the error of the 

ground motion attenuation model. In Fig. 5.1 is represented the relation between the IM and ˆIM  

that are related by the εtot, that includes εM, εR and εIM. 

The simulated EWS prediction process of ground motion parameters goes backward from the 

known intensity measure value, IM, to the predicted value, ˆIM . 

The aim is to describe the EWS behaviour for a given seismic event, represented by the 

correspondent value of intensity measure, given by the hazard function, and to define the 

probability of having false and missed alerts; considering all the possible events, the probability of 

wrong decisions is defined, given an area of interest and a period of time of interest (one year), for 
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all the expected events. The key to forecast the behaviour of the EWS and the predicted value, 

given the real value from the hazard function, is the prior knowledge of the errors that we committ 

predicting the intensity measure of interest, as a result of the uncertainty propagation of the errors. 

The uncertainty propagation, is based on the assumptions of time indepence of the errors of the 

earthquake parameters prediction and of the uncertainty related to the attenuation model. 

 

Attenuation 
Model

M

IM

R

Attenuation 
Model

M̂

MI ˆ

R̂
εR

εM

εIM

εtot
 

Figure 5.1 Simulation of the EWS process of prediction in a pre-installation analysis. 

5.3. Prior information: Hazard function 

The hazard (rate) function (Kramer, 1996) gives the mean annual rate of events with intensity 

measure exceeding a certain critical value, given a site of interest. From the mean rate, the 

probabilty of exceedance of a critical value, given that an earthquake of interest has occurred, can 

be defined by considering the rate of exceedance rescaled by the rate corresponding to the minimum 

intensity measure of interest (cut-off value), called IM0, assuming a Poisson process for 

earthquakes: 

 

 0 0( ) ( ) [ | ]c cIM IM P IM IM IM IMλ λ= ⋅ > >  5.3 

 
An exponential model is assumed for the hazard function for a site (but recall that the choice of IM 

used in the examples is loge PGA so this corresponds to a power law on PGA): 

 

 1
0( ) 10 k IMIM kλ −=  5.4 

where k0 and k1 can be obtained by fitting the hazard function from a PSHA for the site. This model 

implies from Eq. 5.3 that (Grasso et al., 2005 a): 
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 [ ] 1 0( )

0| 10 ck IM IM
cP IM IM IM IM − −> > =  5.5 

 
The cumulative distribution function is then: 

  

 [ ] 1 0( )
0| 1 10 ck IM IM

cP IM IM IM IM − −≤ > = −  5.6 

 
and the expression for the PDF (probability density function) is derived by differentiating this 

cumulative distribution function: 

 

 ( ) 1 0 1( )
0 1| log 10 10 10k IM IM k IM

ep IM IM IM k c− − −> = ⋅ ⋅ = ⋅        5.7 

where  1 0
1 log 10 10k IM

ec k= ⋅ ⋅ .  

In this work, the parameter k1 is estimated from a hazard function for the site of interest by using a 

minimum entropy criterion in which the relative entropy E is minimized with respect to k1: 

 

 log i
i

i i

pE p
q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑             5.8 

where pi represents the discrete probability distribution function derived from ( )0|p IM IM IM>  

and qi is the discrete probability distribution function derived from the given hazard function 

( )IMλ  using Eq. 12, so qi is obtained by numerically differentiating the cumulative distribution 

function in the same way as ( )0|p IM IM IM>  was derived above. Therefore, pi is a function of 

the parameter k1 but qi is not. By minimizing the relative entropy, we determine the parameter k1 so 

that the model PDF is the best fit in an information-theoretic sense to the PDF implied by the 

hazard function for the site. 

 

5.4. Probability of false alarm in a pre-installation  scenario 

The probability of false alarm, as defined in Eq.5.1, for Bayes rule can be expressed as: 

  

0

0

0

ˆ| ,

ˆ |
     

ˆ |

faP P IM a IM c a IM IM

P IM a IM c a IM IM

P IM c a IM IM

⎡ ⎤= ≤ > ⋅ >⎣ ⎦
⎡ ⎤≤ ∩ > ⋅ >⎣ ⎦=

⎡ ⎤> ⋅ >⎣ ⎦

        5.9 
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where it is assumed that an earthquake of interest, i.e. 0IM IM> , has occurred and that 0a IM> . 

The numerator, let us call it Pfa,1, is evaluated as: 

 

0

,1 0

0

ˆ |

ˆ ˆ      ( , | )

fa

a

ca IM

P P IM a IM c a IM IM

p IM IM IM IM dIMdIM
∞

⎡ ⎤= ≤ ∩ > ⋅ >⎣ ⎦

= >∫ ∫
        5.10 

 

which can be written, using Bayes rule, as: 

 

0

,1 0
ˆ ˆ( | ) ( | )

a

fa
IM ca

P p IM IM p IM IM IM dIMdIM
∞

= ⋅ >∫ ∫       5.11 

 

where ( )0|p IM IM IM>  is given by Eq. 5.7 and )|ˆ( IMMIp  is a Gaussian distribution with IM 

representing the mean value (if εtot has zero mean) and standard deviation σtot given by uncertainty 

propagation (Chapter 4). In the case that the prediction, ˆ ,IM  is affected by a significant bias error 

(i.e. mean µtot of εtot is not close to zero), then the mean of the Gaussian distribution )|ˆ( IMMIp  is 

(IM ±  µtot) (from the dfinition of the prediction error as difference between prediction and 

observation). Substituting in Eq. 5.11: 

 

1

0

,1

2
ˆ1

2
1 ˆexp 10

2

a
k IM

fa
IM ca tot

IM IM
tot

P c dIMdIMσσ π

∞
⎛ ⎞ −⎜ ⎟
⎜ ⎟
⎝ ⎠

−−
⎡ ⎤

= ⋅ ⋅⎢ ⎥
⎣ ⎦

∫ ∫       5.12 

 
The integral of the Gaussian distribution over ˆIM  can be expressed in terms of the standard 

Gaussian cumulative distribution function Φ: 

 
2

ˆ1
2

1 ˆexp
2ca tot

ca IMIM IM
tot tot

dIMσ σσ π

∞
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−−− −
⎡ ⎤ ⎛ ⎞

= Φ⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

∫        5.13 

 
so Eq. 5.11 can be cast in a simpler form:  

 

1

0

,1 10
a

k IM
fa

IM

ca IM

tot
P c dIM

σ

−−
−

⎛ ⎞
= Φ ⋅ ⋅⎜ ⎟

⎝ ⎠
∫         5.14 
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The denominator of Pfa in Eq. 5.9 is expressed as: 

 

,2 0
ˆ ˆ( | )fa

ca

P p IM IM IM dIM
∞

= >∫          5.15 

 

which can be written, using the theorem of total probability, as: 

 

0

,2 0
ˆ ˆ( | ) ( | )fa

IM ca

P p IM IM p IM IM IM dIMdIM
∞ ∞

= ⋅ >∫ ∫      5.16 

 
 

This can be expressed in terms of the standard Gaussian cumulative distribution function Φ as: 
 
 

1

0

,2 10 k IM
fa

IM

ca IM

tot
P c dIM

σ

∞
−−

−
⎛ ⎞

= Φ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫                   5.17 

 
 

Summarizing, the probability of false alarm in a pre-installation analysis is given by (Grasso et al. 
2005 a): 
 
 

1

0

1

0

10

10

a
k IM

IM
fa

k IM

IM

ca IM

tot

ca IM

tot

dIM
P

dIM

σ

σ

−

∞
−

−
−

−
−

⎛ ⎞
Φ ⋅⎜ ⎟

⎝ ⎠=
⎛ ⎞

Φ ⋅⎜ ⎟
⎝ ⎠

∫

∫
         5.18 

 
 
The integrals in the denominator and numerator here can be evaluated numerically for different 

values of c, given the value of a; then curves of Pfa versus c can be plotted for different critical 

thresholds a. Examples are given later in Chapter 6. 

 

5.5. Probability of missed alarm in a pre-installation scenario 

The probability of missed alarms, as defined in Eq.5.2, can be written using Bayes rule as: 
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0

0

0

ˆ| ,

ˆ |
ˆ |

maP P IM a IM c a IM IM

P IM a IM c a IM IM

P IM c a IM IM

⎡ ⎤= > ≤ ⋅ >⎣ ⎦
⎡ ⎤> ∩ ≤ ⋅ >⎣ ⎦=

⎡ ⎤≤ ⋅ >⎣ ⎦

        5.19 

 
where once again it is assumed that an earthquake of interest has occurred and that 0a IM> . The 

numerator can be expressed as: 
 
 

,1 0

0

ˆ |

ˆ ˆ       ( , | )

ma

ca

a

P P IM a IM c a IM IM

p IM IM IM IM dIMdIM
∞

−∞

⎡ ⎤= > ∩ ≤ ⋅ >⎣ ⎦

= >∫ ∫
       5.20 

 
 
which can be written, using Bayes rule, as:  
 
 

,1 0
ˆ ˆ( | ) ( | )

ca

ma
a

P p IM IM p IM IM IM dIMdIM
∞

−∞

= ⋅ >∫ ∫       5.21 

 
where ( )0|p IM IM IM>  is given by Eq. 5.7 and )|ˆ( IMMIp  is a Gaussian distribution as before 

(see after Eq. 5.11). Substituting in Eq. 5.21: 

 

1
,1

2
ˆ1

2
1 ˆexp 10

2

ca
k IM

ma
a tot

IM IM
tot

P c dIMdIMσσ π

∞
⎛ ⎞ −⎜ ⎟
⎜ ⎟
⎝ ⎠−∞

−−
⎡ ⎤

= ⋅ ⋅⎢ ⎥
⎣ ⎦

∫ ∫      5.22 

 
The integral of the Gaussian distribution over MI ˆ  can be expressed in terms of the standard 

Gaussian cumulative distribution function Φ:  

 
2

ˆ1
2

1 ˆexp  
2

ca

tot

ca IMIM IM
tot tot

dIMσ σσ π
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠−∞

−−−
⎡ ⎤ ⎛ ⎞

= Φ⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

∫       5.23 

 
 

so Eq. 5.22 can be cast in a simpler form: 

 

1
,1 10 k IM

ma
a

ca IM

tot
P c dIM

σ

∞
−−⎛ ⎞

= Φ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫         5.24 

 
The denominator of Pma in Eq. 5.19 is: 
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,2 0
ˆ ˆ( | )

ca

maP p IM IM IM dIM
−∞

= >∫          5.25 

 
which can be expressed, using the theorem of total probability, as: 
 
 

0

,2 0
ˆ ˆ( | ) ( | )

ca

ma
IM

P p IM IM p IM IM IM dIMdIM
∞

−∞

= ⋅ >∫ ∫      5.26 

 
This can be expressed in terms of the standard Gaussian cumulative distribution function:  
 
 

1

0

,2 10 k IM
ma

IM

ca IM

tot
P c dIM

σ

∞
−−⎛ ⎞

= Φ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫         5.27 

 
The probability of missed alarms in a pre-installation analysis is therefore given by (Grasso et al. 

2005 a):  
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Chapter 6 

6. Warning threshold design and Feasibility assessment 

6.1. Designing the test procedure: warning threshold setting 

The warning threshold is the EWS parameter that most influences the onsequences impact of a 

decision this is the reason why accuracy and attention is needed for threshold design procedure. 

Two performance-based methods are described  for warning threshold design. The first method is 

based on the operating characteristic (OC) function and the second one on cost-benefit 

considerations. 

A test procedure leading to the acceptance\rejection of a hypothesis is simply a rule specifying 

whenever the hypothesis should be accepted or rejected based on the observed data. In our case 

accepting/rejecting the hypothesis means raising the alarm or doing nothing. 

Designing a test procedure, can be defined by subdividing the sample space of all possible values 

that the predictor can assume, in two exclusive regions (Wald, 1947). 

The space of all the possible samples is divided in: 

• Region 1, for which acceptance of the hypothesis is prefered  

• Region 2, is the critical region, for which rejection of the hypothesis is prefered  

Considering the hypothesis of threshold exceedance, the  critical region (2) is represented by all the 

values of intensity measure for which the alarm has to be activated and region 1 where the alarm 

has not to be activated.  

The critical region is defined by the critical threshold, that is a given design parameter, provided by 

the user, representing the occurrence of structural damage or heavy economic losses. 

The warning threshold corresponds to raising the alarm. 

The warning threshold is defined by a decision criteria, based on user’s requirements, that could be 

based on tolerable level of probability of wrong decion or on cost-benefit considerations. 

The process of warning threshold design is described for both the situations, in which the 

constraints are related to tolerable level of wrong decision rate, in the first case, and to cost-benefit 

analysis, in the other case. 

The test is designed defining the critical regions, by assignig the alarm threshold ca that satisfyies 

the user’s requirements. 
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6.2. Threshold setting based on OC function 

In the case that the user’s requirements are given as the tolerable values of probabilities of false and 

missed alarms, the test procedure can be designed as follows. 

The goal is to design a test that satisfies the conditions imposed on Pfa (or Pma) by controlling the 

alarm threshold c·a on ˆIM . If the probability of false alarms is lowered, then the probability of 

missed alarms is increased. To design the alarm threshold for IM, the trade-off between Pfa and Pma 

must be studied. Because of this trade-off, there is a limit as to how much the probabilities of wrong 

decisions can be reduced. This limit can be studied by using Stein’s lemma, which states:   

If a large number N of observations is available, then as Pma → 0, [ ]0 1exp  ( , )faP N K p p→ −  

where K is the relative entropy (Kullback-Leibler distance): 

 1
0 1 1

0

( , ) loge
pK p p p dIM
p

= ∫  6.1 

where p0 is the PDF of IM conditioned on ˆIM c a≤ ⋅  (null hypothesis) and p1 is the PDF of IM 

conditioned on ˆIM c a> ⋅ . 

Based on the user’s specifications of tolerable Pma, the corresponding Pfa is given by Stein’s 

Lemma. By means of the operating characteristic (OC) function, the warning threshold can be 

defined. The OC function represents the probability of acceptance of the null hypothesis which 

corresponds to the probability of no alarm activation. 

The ideal test corresponds to the ideal OC function shown in Figure 6.1, which gives a probability 

of acceptance of 1 for IM a≤  when ˆIM c a≤ ⋅  (in acceptance zone) and probability of acceptance 

of zero for IM a≤  when ˆIM c a> ⋅  (in the rejection zone). Note that the probability of acceptance 

conditioned on the predictor, ˆIM , may be written as ˆ|P IM a IM⎡ ⎤≤⎣ ⎦ , that corresponds to Pfa in the 

rejection (critical) zone and (1- Pma) in the acceptance zone. 
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ˆ|P IM a IM⎡ ⎤≤⎣ ⎦

 
Figure 6.1 The ideal OC function 

 
Based on uncertainties in the prediction of IM by ˆIM , which is based on the first seconds of 

observation of the seismic data, we cannot obtain an ideal OC function and we have to accept errors 

of type I and II (missed and false alarms). If the tolerable probability of a missed alarm in the 

acceptance zone is α and the tolerable probability of false alarm is β in the rejection zone, then the 

OC function will be characterized as in Figure 6.2 where β  (or α) is the design requirement 

specified by the user and  α (or β), respectively, is given by Stein’s Lemma. The test is better 

designed if the OC function corresponding to the test is closer to the optimal OC function 

represented in Figure 5. 

A prior definition of a possible set of thresholds, c a⋅ , can be defined and for each value of a the 

optimal OC function is defined. The discrete OC function representing the test may be evaluated at 

a finite number of points representative of the values of probabilities of wrong decisions for a range 

of values of c a⋅  of interest. A best fitting curve can be constructed based on these points and the 

corresponding value of  c a⋅  will be the optimal warning threshold. 
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Figure 6.2 The optimal OC function 

6.3. Threshold setting based on cost-benefit considerations 

Specifying tolerable probabilities of wrong decisions, representing the design requirements for 

threshold setting, is often out of reach. In the collective immaginary and in most of the applications 

controlling the effects is more natural. The design constraint may be more easly linked to the cost of 

the effects that could derive from the decision taken, raising the alarm or doing nothing, instead of 

specifying tolerable probabilities of making wrong decisions. 

Instead of applying an abstract decision criteria, often is more reliable a decision based on simple 

considerations coming from cost-benefit analysis over the two possible actions of raising the alarm 

or doing nothing. 

The decision rule may be taken to be the minimization of the expected consequences. 

A cost benefit analysis is described in detail in the table 6.1. 
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Action Case: IM<a Case: IM>a 

Raise Alarm False alarm:  

Cfa 

Good Alarm:  

Cga 

No Alarm Good Missed Alarm:  

Cgm 

Missed Alarm:  

Cma 

Table 6.1 Cost benefit analysis for threshold design 
 

 
Where: 

 0

1

1

ga eq save

ma eq
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ga fa

gm ma

C C C

C C

C

P P

P P

= −

=

= −

= −

 6.2 

 
 
Where Ceq represents the expected costs due to the earthquake, Csave the expected savings as a 

consequence of the security measure activation, Cfa is the cost of a false alarm and Cma is the cost of 

a missed alarm. 

In the case we decide to raise the alarm, the expected cost is represented by: 

 

 
[ ]

( ) ( )
cos |

1
fa fa ga ga

fa fa eq save fa

E t alarm C P C P

C P C C P

= ⋅ + ⋅

= ⋅ + − ⋅ −
 6.3 

 
 
In the case we decide not to raise the alarm, the expected cost is defined by: 

 

 
[ ]cos | gm gm ma ma

ma ma

E t no alarm C P C P

C P

− = ⋅ + ⋅

= ⋅
 6.4 

 
The decision criteria for deciding between the options, raising the alarm or not, is represented by the 

minimum cost rule: 

Raise the alarm if and only if: 

 [ ] [ ]cos | cos |E t no alarm E t alarm− ≥  6.5 
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( ) (1 )

            ( ) ( )
eq ma fa fa eq save fa

save fa eq fa eq save

C P C P C C P

C C C P C C

⋅ ≥ ⋅ + − ⋅ −

= + − ⋅ + −
 6.6 

 
Eq. 6.6 can be taken as an equality used to select an appropriate value of c, solving the equation for 

Pfa (or Pma). The tolerable value of Pma (Pfa) may then be determined from Eq. 5.33 (or Eq. 5.21) for 

this value of c. 

 

The tolerable value of Pfa (or Pma) may be used for: 

− evaluate the warning threshold, when the time-invariant approach is applicable 

− alarm activation during the event while monitoring the Pfa (or Pma), when the time invariant 

approach is not applicable 

In order to evaluate the warning threshold assuming that the time invariant approach is applicable, 

(σtot in Eq. 5.18 and 5.28 is time invariant) the first step is to calculate the Pfa (or Pma) given by Eq. 

5.21 and  5.33 for a range of interest of values of warning threshold, given the value of critical 

threshold, a, that is a design data given from the user. 

Then defined a curve that represents the Pfa (or Pma) as a function of c a⋅  we can evaluate the value 

of  c a⋅  that corresponds to Pfa (or Pma) equal to the tolerable level β (α) evaluated in Eq. 6.6.  

During a seismic event, however, more and more information becomes available to the EWS and so 

σtot will decrease with time. A refined analysis using a time-dependent warning threshold, c(t)a, 

would then be more appropriate. Alternatively, the probability of false and missed alarms could be 

monitored as a function of time and then the alarm would be raised when the tolerable level of 

probability of Pfa(t) or Pma(t) is exceeded.  

In the next chapter, we consider a refined decision-making procedure that is appropriate during a 

seismic event and which takes into account that the quality of the IM prediction improves as more 

and more information is obtained by the EWS. It is shown in Chapter 7 that in this case: Pfa(t) + 

Pma(t) =1, so Eq. 6.6  implies that the probability of a false alarm is tolerable if and only if: 

 

 ( ) save
fa

fa save

CP t
C C

β≤ =
+

         6.7 

 
Similarly, since the alarm is not raised if and only if: 

 

( ) ( )eq ma save fa eq fa eq saveC P C C C P C C⋅ < + − ⋅ + −       6.8 

 

it follows that the probability of a missed alarm is tolerable if and only if: 



Charter 6- Warning threshold design and Feasibility assessment  59

 ( ) fa
ma

fa save

C
P t

C C
α< =

+
         6.9 

 
It is clear from Eq. 6.7 and 6.9 that in this case, where the decision criterion is based on a cost-

benefit analysis, 1α β+ = , which directly exhibits the trade-off between the threshold probabilities 

that are tolerable for false and missed alarms. If the threshold β is reduced to make false alarms less 

likely, then the threshold α for missed alarms becomes correspondingly larger.  

 

6.4. Threshold design and Feasibility assessment: an example for Southern 

California 

In the hypothesis of a future realization of an EWS for the protection of Southern California, in this 

section will be addressed a feasibility assessment of the application of interest of the potential end-

user of the EWS (Grasso et al. 2005 a). 

In particular we will be answering to the question: How would an EWS perform during earthquakes 

that might occurr in the area of interest, in terms of false and missed alarm rate? 

We might quantify the effectiveness of the EWS application, by providing to the end-user of the 

EWS the probabilities of wrong decisions to see whether they are acceptable or not and on the other 

hand we will be able to set the warning threshold in order to match the user’s requirements. 

In case of existing EWS application we might be interested in assessing the reliability of the system 

in terms of probabilities of making wrong decisions. The values of critical and warning thershold 

for an existing application are known parameters.  For the given facility we can build the curves 

representing Pfa and Pma as a function of the warning threshold ca (Eq. 5.18 and 5.28). We will be 

able to define the probabilities of wrong decisions related to the critical threshold and warning 

threshold that define the existing application. We could discover that the tolerable levels of 

incidence of false or missed alarms are not met. Based on the tolerable level of probability of wrong 

decisions we will be able to adjust the warning threshold, if time-invariant approach is applicable. 

Assuming to be interested in Southern California, based on the Hazard function provided for the 

area of Los Angeles, we will evaluate  the probabilities of wrong decision as a function of the 

warning coeffient, c. Assuming to know the critical threshold, a, provided by the user, the warning 

threshold will be set based on the design requirements in case of new EWS application (if time-

invariant approach is applicable). 

In case of existing application, given the value of the critical threshold, a, and the warning 

threshold, ca, the performance and feasibility assessment of the EWS application will be carried out 

by evaluating the corresponding expected annual probabilities of wrong decisions (Eq. 5.18 and 
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5.28). If the annual probabilities of wrong decision result not acceptable the warning threshold will 

be set in order to match the tolerable levels ( assuming that the time-invariant approach is 

applicable). 

Cua and Heaton prediction method is choosen as the earthquake predictive model (M1 in the 

Fig.4.3) of interest, the attenuation model used (M2 in Fig.4.3) is the Cua and Heaton relation and 

the intensity measure parameter of interest provided in output is the peak ground acceleration in 

log10 scale (Eq. 2.11).  

The parameters a, b, d, e, in Eq. 2.11 are defined by Cua and Heaton (2004) for different soil types. 

Rock type has been considered, where: 
30.779; 2.55 10 ;a b −= = ⋅  1.352; 0.645; (0,0.243)d e Gaussianε= = − = .  

The intensity measure IM is the peak ground acceleration (PGA) on a log10 scale. The chosen 

hazard function for the Los Angeles area is shown in the following figure and it represents the mean 

rate of exceedance versus PGA in g units. The hazard function is fitted, as described previously, by 

using a minimum relative entropy criterion in order to define the coefficient k1 to describe the 

probability distribution function of IM. Minimizing the relative entropy, a value of k1=1.06 is 

obtained. 
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Figure 6.3 Hazard function for Los Angeles representing the annual probability of 

exceedance of PGA. 
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Figure 6.4 Fitting the Hazard function for Los Angeles with power-law 

 
In order to simulate the behaviour of the EWS, in the prediction process we need to know the total 

error associated to the process, defined in the uncertainty propagation analysis. 

In uncertainty propagation based on the assumption of time independency of the errors, will be 

chosen: 

• εM : Gaussian (0, 0.5) 

• εR : ignored at this stage 

• εIM : Gaussian (0, 0.243) 

correspondent to the error pdf of magnitude at 4 sec (Cua and Heaton, 2004) and for the attenuation 

model error, respectively, neglecting at this stage the epicentral distance error. 

The total error associated to the predicted ˆIM , is defined as described in Chapter 4 (uncertainty 

propagation): 

• εtot : Gaussian (0, 0.44) 

Modeling the total error associated with the predicition is fundamental step for evaluating the 

consequences of a making wrong decison. 

The probabilities of false and missed alarm are evaluated based on the Eq.5.18 and 5.28 as a 

function of the warning threshold factor, c, for different values of the critical threshold, a. Notice 

that for Pfa in the approximate range of 0.05 to 0.4, the choice of c is insensitive to a. 
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Figure 6.5 Probability of false alarm as a function of warning threshold factor c for                          

different critical thresholds, a, expressed in g’s. 
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Figure 6.6 Probability of missed alarm as a function of warning threshold factor c for                           

different critical thresholds, a, expressed in g’s. 
 
if it is false alarms that the the user is most concerned about, the warning threshold will be set so 

that the tolerable level of false alarm will not be  exceeded. 

If the tolerable level of probability of false alarm is equal to 0.4, given the critical threshold equal to 

2 cm/s/s, the warning thereshold will be set equal to 2.22 (Fig. 6.7). 
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From Fig. 6.8 assuming the warning threshold equal to 2.22 and given the critical threshold equal to 

2 cm/s/s, we will obtain a Pma of 0.045, that has to be accepted . 

If this value of Pma is not acceptable (tolerable level is exceeded) the warning threhold value has to 

be redesigned iteratively till the requirements are matched. 

The graphs of Pfa (or Pma) vs. the warning threshold factor, c, are useful, in the case of existing 

application, for performance and feasibility assessment of the EWS application. For example in the 

case of 2 / /a ca cm s s= =  the corresponding Pfa is 0.8 and Pma is 0.025 (from Fig. 6.7 and 6.8). 

assuming that the user is concerned on false alerts and from the cost-benefit analysi comes out that 

the tolerable level of Pfa is equal to 0.4, the threshold settings result inadequate. Is important to point 

out that Pfa and Pma are parameters that can be controlled. 

We will use again the graphs in Fig. 6.7 and 6.8 assuming 0.4faP β= = . Based on this requirement 

we will be able to redesign the warning threshold in order to match the requirements, assuming 

time-invariant approach is applicable. 

The warning threshold corresponding to the condition 0.4faP β= =  is equal to 2.2 cm/s/s. Due to 

the trade-off between false and missed alerts the Pma  value increased from a value of 0.025 to a 

value of 0.42. Can we accept this value of Pma? If the answer is positive the process ends accepting 

the “new” warning threshold. If  not we have to iterate the process several times until the conditions 

on Pfa and Pma are met. Fig. 6.9 visualizes the trade-off between Pfa and Pma.. 
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 Figure 6.7 The curve represents the probability of false alarm for a given critical 

threshold a’ equal to 2 cm/s/s, as a function of the warning threshold. Defined the tolerable 
value of probabilità of false alarm, as described above, is possibile to define the correspondent 
warning threshold. 
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Figure 6.8 The curve represents the probability of missed alarm for a given critical 

threshold a’ equal to 2 cm/s/s, as a function of the warning threshold. Defined the tolerable 
value of warning threshold as described above, is possibile to define the correspondent 
probability of missed alarm to be accepted. 
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Figure 6.9 The curve represent the probability of false (blue line) and missed alarm (red 
line) as a function of the warning threshold. This graph visualizes the trade-off  between 
probability of false and missed alarm, decreasing the tolerable level of probability of false 
alarm we will have as a consequence an increase of probability of missed alarm that we will 
have to accept. 
On the other hand the curves represented in Fig. 6.5 and 6.6 will give a sense of the feasible 

applications representing the probabilities of false and missed alarm for a given area of interest. In 

this way is possible to map and decompose the areas surrounding the epicentral one in 

homogeneous areas that will be characterized by a certain amount of warning time and an expected 
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probability of wrong decision. Based on this information for each area of interest it will be possible 

to assess the feasible EWS applications.  
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Chapter 7 

7. Operational aspects of EWS: Decision making  

7.1. Sequential test 

During the seismic event we have to decide between the two options: raise the alarm, do nothing. 

This decision is based on a parameter, the so called predictor. The decision problem may be 

approached by the theory of hypothesis testing (Wald 1947) . The sequential method of testing an 

hypothesis may be described as follows. A rule is given for making one of the following three 

decisions during the course of the seismic event:  

• Accept the hypothesis 

• Reject the hypothesis 

• Continue and make an additional observation. 

Such a test is carried out sequentially. On the basis of the first observation a decision is made. In the 

case the first option is choosen (accept) the process is ended, if the second or third decision (reject 

or continue) is made a second observation is made. Again on the basis of the first two observations 

a decision is made. If the second or third decision is made a third trial is made and so on. The 

process is carried out till one of the first decisions is made. The number of observations is a random 

number depending on the outcome of the observations. 

In our case the decision is made based on the observation of the predictor that represents the 

outcome of the prediction process of the EWS. A rule for making one of the three decisions consists 

in defining the critical region. For each observation the hypothesis will be accepted or rejected if the 

observation lies in the critical region or not. At every trial the observation will be drawn and 

compared with the critical region. Lets consider an example of sequential test. The case is of a lot of 

manifactured products that has to be accepted or rejected depending on the outcome of the 

inspection. Each product may be considered defective or non-defective and the lot will be accepted 

if the probability of defectives in the lot is less or equal than a given value p’, that corresponds to a 

number no of defectives. The lot will be rejected if the portion of defectives is greater than this 

value. In this case the hypothesis that we are testing is that 'p p≤ . Given the value of no, if the first 

no units inspected will be non-defective, the lot will be accepted. If in the first  om n≤ there is a unit 

that is defective, the lot will be rejected. The critical region is the key aspect of a sequential test. 

The principles of a proper choice of the critical region are based on the study of the consequences of 

any decision. 

The critical region has been defined in the previous sections in the case the tolerable level of wrong 
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decision is known or based on cost-benefit considerations. Given the critical region we might want 

to investigate the degree of acceptance and rejection of the null hypothesis. 

In the case there is only one unknown parameter φ in the process (i.e. the value of the predictor)  the 

null hypothesis consists in oφ φ≤ . The hypothesis will be accepted if the parameter is less or equal 

than the critical one and rejected if is greater. Lets now analyse the degree for acceptance and 

rejection. For example the rejection of the hypothesis is not considered a serious error if  oφ φ≤  but 

near the boundary. Similarly the acceptance of the hypothesis will not be a serious error if the 

parameter is greater than the critical value but near the boundary of the critical area. If the point is 

right on the boundary the hypothesis may be accepted or rejected. The parameter space may be 

subdivided in three areas, the first one in which the acceptance is strongly preferred, the second one 

in which the rejection is strongly preferred and the last one in which there is no preference of 

acceptance or rejection. The subdivision of the space in the three areas gives an idea of the degree 

of preference for acceptance or rejection that will be better described by two functions of the 

parameter φ : fο that expresses the importance of the consequence of accepting the hypothesis when 

we should have not and f1 the importance of rejecting the hypothesis when we should have not. For 

example in the zone of preference for rejection fο has a high positive value that represents the cost 

of acceptance, in this situation the f1 will have a loss that will be very low. The dependence of 

preference for one action or another is related to the subdivision of the area of the samples in three 

areas, quantified by the functions fο and f1. 

The functions fο and f1 represent a guideline for decision making representing the degree of 

preference of one action or the other. The process consists not only in observing the parameter of 

interest but monitoring the functions fο and f1. Τhese functions represent the consequences of taking 

action, i.e. false and missed alarm, loss caused by making a wrong decisions, etc. 

In the following sections the decision process will be explained, based on sequential testing, during 

a seismic event, by monitoring the predictor and the functions representing the consequences of 

taking action. 

The analysis has been first approached by choosing the probability of false and missed alarm as 

coincident to the fο and f1 and then the analysis has been extended to the observation of other 

consequences as economic loss, structural damage etc (Chapter 8). 

7.2. Operational aspects of EWS 

During a seismic event, the probability of false and missed alarms will be updated with time as 

more stations are triggered by the seismic waves and more data comes in from those that have 

already been triggered. This increase in data available will produce a decrease with time in the 
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uncertainty in the predicted earthquake location and magnitude. Therefore, the prediction of the 

intensity measure can be updated with time and the characterization of its uncertainty, εtot (t), will 

vary with time. As a consequence, it is important to update the probability of false and missed 

alarms as the seismic event evolves. 

The necessity of a time-dependent method for the evaluation of the probability of false becomes 

essential. As more stations are triggered, the predictions (magnitude and epicentral distance) will be 

updated and their uncertainty as well, as a consequence the prediction of the intensity measure will 

be updated with time and its uncertainty, εtot (t), function of time. 

The IM that will be observed is unknown, the higher is the quality of the prediction the closer the 

value of the observed intensity measure will be to the prediction, that is a known parameter at each 

instant of time, when the predictions of magnitude and location and their uncertainties are available. 
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Figure 7.1 Simulation of the EWS prediction process, during the seismic event. 
In a real-time analysis, during the seismic event, the information that results known is the prediction 

provided by the EWS prediction process, while in a off-line analysis the known parameter is the 

observation. 

Given the prediction the value of the predictor that will be observed will be a value close or not to 

the prediction depending on the accuracy of the prediction process, represented by total error 

defined by the error analysis in the previous chapters. 

The IM that will be observed may be assumed as a random variable of Gaussian distribution with 

mean equal to the prediction  MI ˆ  and pdf given by the Bayesian approach (Virtual Seismologist 

Method, Cua and Heaton 2004) or by uncertainty propagation of the error. 

The more the prediction process is accurate the more the distribution is peaked around the 

prediction. The assumption of IM normally distributed around the prediction is confirmed by the 

error analysis for ElarmS performance assessment, where from the results of the error analysis the 
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total error resulted well modeled by a Gaussain distribution. 

In the real-time analysis the values of predicted magnitude, epicentral distance, provided by the 

EWS, will be used to estimate the predicted intensity measure MI ˆ , by the means of the attenuation 

model. 

 ( ) ( ) ( )ˆ
totIM t IM t tε= +  7.1 

 

Fundametal informations to be provided are the uncertainties of the predictions of M, R, εM, εR that 

as more data become available will be updated with time and will be ued to define the total error 

related to the prediction, εtot (t), characterized by a Gaussian distribution with zero mean and 

standard deviation given by uncertainty analysis (Chapter 4). 

The total error represents the quality of the information provided by the EWS and is a basic 

information for consequences evaluation, representing the main source of wrong decisions.  

7.3. Probability of wrong decisions in a real-time analysis 

In this section we examine the decision-rule criterion chosen for decision making during the seismic 

event, that will represent the guideline to decide between raising the alarm and doing nothing. 

The decision between an action or the other will be guided by the observation of the predictor and 

the degree of preference between the options. 

The degree of preference may be considered as a measurable parameter. Degree of preference is 

considered to be connected to the concept of utility (Von Neumann and Morgenstern, 1945). 

A numerical approach to utility is dependent on the possibility of comparing differences in utility. 

As an example for giving the sense of the measurable characteristic of utility as degree of 

preference of an event may be given by the very natural attitude of individuals to have a clear 

intuition of preferences of two objects or events. For any two alternatives the individual will 

associate probabilities. Associating a probability to an event or a combination of events he will 

intuitively prefer the one to the other. At same way the use of probabilities of errors will guide the 

user and define a rule for quantifying the preference for the possible actions, in our case raising the 

alarm or doing nothing. 

A decision rule may be based on the probability of error criterion (Melsa and Cohn, 1978) related to 

the analysis of the probabilities of error. In our case the possible errors of interest are, as defined 

before, false and missed alarm. The total probability of error is defined as: 

 

 e eI eIIP P P= +  7.2 
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being the two conditions mutually exclusive. 

The probabilities andeI eIIP P  represent respectively the probability of a missed and of a false alert. 

During the seismic event andeI eIIP P  represent potential probabilities of wrong decision that will 

become probabilities of wrong decision when a decision is made. 

In particular, the (potential) probability of false alarm is estimated as the probability of IM being 

less than the critical threshold, a, (if the alarm is raised becomes an probability of false alarm): 

 ˆ( ) P[ | ]faP t IM a IM= ≤  7.3 

 

Considering that the IM has a normal distribution with mean equal to the predicted MI ˆ  (if there is a 

known bias in the prediction totµ  it should be added to this mean) and standard deviation totσ  

evaluated as a function of the updated uncertainties (uncertainty propagation methods, Chapter 4): 
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where Φ  is the standard Gaussian cumulative distribution function (Grasso et al., 2005 a).  

The (potential) probabilty of missed alarm is equal to the probability of IM being greater than the 

critical threshold (if the alarm is not raised is the probability of missed alarm): 

  

 ˆ( ) P[ | ]maP t IM a IM= >  7.5 
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Since the two conditions ( andIM a IM a≤ > ) are mutually exclusive and exhaustive, the 

probabilities Pfa(t) and Pma(t) always sum to one. 

Probabilities of wrong decision are fundametal tools for decision making, representing our 

preference in one action instead of the other. 

 

7.4. How EWS works during the event 

In the operational situation the seismic EWS will provide information related to the estimates of 
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seismic parameters, magnitude and location of the event. Each end user of the EWS will receive in 

real-time these informations related to theincoming event. 

How to use these informations? Before answering to this fundamental aspect, is important to point 

out the importance of sending informations on the quality of the predictions provided by the EWS. 

The importance and the impact of uncertainty related to the predictor is fundamental at this point for 

decision making. Every end-user has to be provided not only by the estimates of the seismic 

parameters but also by the uncertainties related to it. The error probability distributions of 

magnitude and location will be provided by the EWS in the case of Bayesian update approach to the 

prediction process (as the Virtual Seismologist) or on the contrary in the case of traditional 

approaches to early warning it will be possible to use the results of the error analysis (as done for 

ElarmS in Chapter 4). In this case based on the statistical analysis based on off-line simulations 

associated to each instant of interest we will have error model of magnitude and of location. 

At each second the EWS will provide the estimate of magnitude, location and related error models. 

At this point the estimates will be sent to user’s central processing unit that will use the location of 

the event to estimate the epicentral distance. Magnitude and epicentral distance will be then used to 

evaluate the predictor of interest. 

To the predictor has to be associated an uncertainty as well. The probability distribution function of 

the error of the predictor will be evaluated based on the considerations done for uncertainty 

propagation (Chapter 4). In the case the aproximation method is applicable (for uncertainty 

propagation in Chapter 4), an estimate of εtot will be available in real-time. On the contrary a Monte 

Carlo simulation has to be done off-line and the results will be available in the real-time. For 

example a table has to be created, that associates the magnitude and the epicentral distance error 

models to the error model of the predictor of interest. In this way (aproximation method or Monte-

Carlo method) the error model of the predictor defining the quality of the information will be 

available in real-time. The estimate of the predictor and its unceratinty will be updated every instant 

of time. The availability of these informations, ( ) ( )ˆ and totIM t tε  enable the possibility of 

evaluating the consequences of taking action, representing our preference in an action or the other 

(alarm or doing nothing). Based on ( ) ( )ˆ and totIM t tε  a real-time estimate the potential 

probabilities of wrong decisions will be available (Eq. 7.4 and 7.6). 
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Figure 7.2 How EWS decision process works during a seismic event. The event is detected, 
the stations trigger the event and the registered data are collected and processed. The 
synthetic parameters are evaluated I1 used to predict magnitude and location, O1 
(representing M and location) this information is then used to estimate the epicentral distance 
and the gorund motion parameter (O2).  In the case of other predictors of interest the O2 will 
be used to estimate O3 (as engineering demand parameter etc.). In a parallel process the 
quality of the predictor is estimated and used to evaluate Pfa(t) and Pma(t). The decision 
models based on this information will be a guideline for choosing to raise the alarm or do 
nothing. 

7.5. Decision making during the event 

Probabilities of wrong decisions represent a fundamental guideline for the user’s decision making 

during the seismic event, that will represent a quantification of our belief  in the information 

provided by the EWS. 

In fact a decision based on pre-fixed threshold (adequate only for “special” cases as Mexico City 

and Bucharest, for which time-invariant approach is applicable) exceedance of the intensity 

measure predicted as a function of time during the event, could cause a false alarm, and the user 

will take a decision accepting a probability of wrong decision, without being aware of it. 

A more rational decision can be based on real-time monitoring of the probability of wrong 

decisions, choosing the situation (false alarm or missed alarm) the user is more concerned about, 

that will be demonstrated that is equivalent to monitoring the predicted intensity measure 

exceedance of a time variant warning threshold, c(t)a. 
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The value of the probability (Pfa or Pma) of interest, evaluated during the course of the event, is 

compared to the tolerable value (β or α), based on cost-benefit considerations (or provided by the 

user). 

Monitoring the value of the probability of wrong decision of interest, during the event, the alarm 

will be raised when the value reaches the tolerable value. 

This assumes that the time available is sufficient for activation of the protective measures. If the 

time available reaches the minimum time necessary for activation of the protective measure, the 

alarm will be raised only if the probability of a wrong decision, evaluated at that time, can be 

accepted. 

 

MI ˆ

α>maP β<faP
alarm

maP faP

Yes YesNo No

No alarm  
 

Figure 7.3 Decision making process based on probability of wrong decisions. 
 

In the case the missed alarm is the situation of concern, in real-time the Pma(t) will be evaluated and 

compared to the tolerable level, from this condition the time-varying expression for the warning 

threshold can be derived: 

 

 

( )
( )

( )

ˆ( ) P[ | ]
ˆ-

=1-

ma

tot

P t IM a IM t

a IM t
tσ

= >

⎛ ⎞
Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

 7.7 

 

 ( ) ( ) ( ) ( )
1 1ˆ( ) 1- tot

ma ma

t
P t IM t a c t a

a
σ α

α
−⎡ ⎤Φ −

> ⇔ > = ⋅⎢ ⎥
⎣ ⎦

 7.8 

Therefore, the setting of the alarm based on the probability of a missed alarm becoming 

unacceptable occurs if ˆ ( ) ( )maIM t c t a> ⋅  where: 
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The alarm is also set if the probability of a false alarm falls below the tolerable level β : 
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that is, the alarm is set if ˆ ( ) ( )faIM t c t a> ⋅  where: 
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= −  7.12 

If β<1-α, then ( ) ( )ma fac t c t<  and so the concern about missing an alarm will control the setting of 

the alarm; on the other hand, if β>1-α, then concern about causing a false alarm will control the 

setting of the alarm. Of course, making an alarm decision based on the exceedance of the predictor 

above the time-varying warning threshold is equivalent to monitoring the probability of Pfa(t) and 

Pma(t) and raising the alarm based on exceedance of the tolerable level β and α, respectively.  

It was pointed out in Chapter 6 that when the tolerable probabilities β and α to use during 

operation are based on cost-benefit considerations, they are related by: 1β α= − . Therefore, since 

the alarm probabilities and the tolerable probabilities sum up to one, the alarm probabilities will 

reach their critical thresholds at the same time, so one can choose to monitor either Pfa(t) and Pma(t). 

Similarly, if the predictor ˆ ( )IM t  is monitored, the critical thresholds ( )  and ( )ma fac t a c t a  are equal 

and so are reached at the same time (Grasso et al. 2005 a,b). 

 

7.6. Decision making during a seismic event: simulation of the decision 

procedure during California Earthquakes 

7.6.1. Yorba Linda M=4.75 

The 3 September 2002, Yorba Linda earthquake occurred in California, in Orange County, with 

magnitude 4.75. The epicenter has been located at 33.91730 N and –117.77580 W with a depth of 
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12.92 Km. The main shock was anticipated by two foreshocks of magnitude 2.66 and 1.6, occurred 

24 hours before the main shock. 

The area of the main shock is densely instrumented and the first station triggering the event is the 

Serrano (SRN) station at 9.9 Km from the epicenter. The prediction of the seismic parameter during 

the evolution of the event used for the decision model simulation of the real-time analysis is carried 

out by the Virtual Seismologist method (Cua and Heaton 2004). 

 

After the first 3-second after the P-wave detection the first estimate of magnitude and location is 

done by the Virtual Seismologist method. Due to the high density of stations in the epicentral area 

the location is uniquely determined. This is a special case and the most favorable for the method 

testing. Cua and Heaton (2004) have defined as a function of time the most likely estimates of 

magnitude and location at 5, 8, 13, 38, and 78 seconds after the initial P arrival. 

The first staion to be triggered SRN defines the Voronoi cell that constrains the location of the 

event. The event is located within the Voronoi cell. Using data only from the first station the 

method defines magnitude and epicentral distance or magnitude and location coordinates. 

The discriminant function that is a function of maximum vertical acceleration, velocity and 

displacement and the corresponding envelope amplitudes for the root mean square of the maximum 

amplitudes of the horizontal channels. The discriminant function is evaluated in real-time and 

defines the P and S arrivals. The function is evaluated at station SRN, the zero crossing of the 

function, after P arrival, defines the S arrival. For values greater than zero it coresponds to P wave 

for values of the function less than zero value is related to S wave. 

The accuracy is of 15%. The magnitude estimate is related to the evaluation of the ground motion 

ratio that is a function of the logarithm of the acceleration amplitude and the logarithm of the 

displacement amplitude (peak vertical ground motions). The values of the ratio are compared to 

decision boundaries in order to define the range of corresponding magnitude. The ground motion 

ratios estimated for SRN station indicate a magnitude between 5 and 6. 

At this point the likelihood function ( | , )p data M R  which combines the magnitude estimates from 

the vertical acceleration and displacement ground motion ratio, along with the peak available 

vertical velocity, and rms horizontal acceleration, velocity, and displacement amplitudes, is 

estimated.  

Maximizing the likelihood function an estimate of magnitude and location will be obtained. The 

most probable values of M and R are included in the high probability area, unfortunately the trade-

off between M and R cannot be solved using only the first 3 sec of  data from only one station. 

Considering the 3 sec of P wave coming from SRN station an estimated magnitude of 5.5 and 
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location of 33 Km from SRN station is estimated from the Virtual Seismologist method. 

Different prior informations ( ),p M R can be considered in the process in order to solve the trade-

off, as Gutenberg-Richter law for magnitude distribution, Voronoi cells to constrain the locations, 

and finally previously observed seismicity, so to take in account foreshocks occurred in the area of 

interest. The Voronoi cell of SRN may be used to construct the pdf of locations and the Gutenberg-

Richter law defines the most probable magnitudes, smaller events are more probable than bigger 

magnitude events.  

The most likely predictions of magnitude and location are those that maximize the posterior given 

by: 

 ( ), | ( | , ) ( , )p M R data p data M R p M R∝ ⋅  7.13 

 
where ( )| ,p data M R represents the likelihood and ( ),p M R the prior. 

Cua (2004) assumes that the prior is given by the product of the prior of magnitude and the prior of 

epicentral distance assuming magnitude and location information to be independent.  

Considering the Gutenberg-Richter law and the first 3 sec of P wave from the first station, a 

magnitude of 4.4 and location of 8 Km from SRN is predicted. 

Multiple station update is also considered for magntiude and location estimate. In this case is 

included prior seismicity considering foreshocks occurred 24 hours before the main shock and the 

station geometry prior related to the Voronoi cell of station SRN that first triggers the event. During 

the first 3 seconds already 7 stations are triggered. Again Gutenberg-Richter law is used to create 

the magnitude prior. The Bayesian prior is then evaluated as the product of the prior of magnitude 

and of location. The error of location is 0.89 Km and the magnitude, without including the 

Gutenberg-Richter prior, is 4.8. 

Prior information becomes fundamental for solving the trade-off between magnitude and location 

but becomes unnecessary when there is enough data available to find a uniquely determined 

solution as in this case due to a high station density. 

Gutenberg-Richter prior for magnitude and multiple station approach has been considered. 

In this case the location error is within 4 Km of the reported epicenter and the error stabilizes at 4 

seconds. While the magnitude estimate varies as described in the Fig. 7.4. 

At this stage the epicentral distance prediction is considered time invariant, assuming, Kanamori 

personal comunication, that the error associated with magnitude is more influent in the IM 

prediction process as confirmed in the error analysis for ElarmS sensitivity analysis (Chapter 4). 

Magnitude uncertainty is assumed to decrease as 1/ N where N is the number of station 

contributing information to the Virtual Seismologist method (Fig. 7.5). 
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Based on these assumptions: 

• εM : Gaussian (0, σM) where 1/M Nσ =  

• εR : ignored at this stage 

• εIM : Gaussian (0, 0.243) 

The total error associated to the predicted ˆIM , is defined as in Chapter 4: 

• εtot : Gaussian (0, σtot) 

In the Virtual Seismologist method the amplitude is defined as: 

 
( )( )

( )( )
1

1

log( )

log

A aM b R C M

d R C M e ε

= − × + +

− + + +
 7.14 

where M is the magnitude; R1 depends on R which is the epicentral distance; C(M) is a correction 

factor depending on magnitude. The residual term ε is a zero mean error term representing the 

prediction uncertainty (the so called εIM) and e is a constant error which includes station corrections; 

the parameters a, b, d, e are defined by the model’s calibration by data fitting, in this case rock soil 

has been considered.  

The epicentral distance is assumed to be 10 Km. 
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 Figure 7.4 Yorba Linda M=4.75. The Virtual Seismologist Magnitude estimate as a 

function of time evaluated by Bayesian update considering multiple station data and 
Gutenberg-Richter magnitude prior. Note that the observed magnitude is equal to 4.75. 
Magnitude is underestimated due to the influence of the Gutenberg-Richter prior that tells 
that smaller events are more probable than bigger ones. 
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Figure 7.5 Yorba Linda M=4.75. Magnitude uncertainty as a function of the number of 

stations contributing observations to the Virtual Seismologist  estimate. 
At each prediction update the probabilities of wrong decisions are evaluated, as a fundamental tool 

for decision making. 

In Fig. 7.6 are represented, as a function of time, the intensity measure prediction, the standard 

deviation of the prediction error and, the probabilities of wrong decions are evaluated, assuming the 

critical threshold a=1.4 (in log10 scale in cm\s\s) following Eq. 7.4 and 7.6. 

The probabilities of wrong decisions are used to make a decision during the event, raise the alarm or 

not, based on threshold exceedance of the tolerable values of Pfa or Pma, evaluated based on cost-

benefit considerations. 

As demonstrated before decision making approach is equivalent the case of monitoring ˆIM , Pfa or 

Pma so in this case Pfa is chosen. 

In Fig. 7.7 is represented the Pfa as a function of time and when the tolerable value (β is 0.4) is 

reached the alarm is raised, if the minimum warning time for security measure activation is not 

reached before. Note that when Pfa reaches β, the predictor ˆIM reaches the warning threshold, c(t)a, 

demonstrating that a decision can be made either monitoring Pfa (or Pma) either the predcitor, ˆIM . 

If the warning time reaches the minimum time necessary for security measure activation before Pfa 

reaches the tolerable level a decision has to be made. Based on the value assumed by Pfa at the time 

of minimum time required for alarm activation the alarm will be raised if this value is acceptable. 
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 Figure 7.6 Yorba Linda 2002: Evolution of the prediction of IM, the standard deviation 
of magnitude prediction and the probabilities of wrong decisions (false and missed alarms) 

with time. 
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Figure 7.7 Yorba Linda M=4.75. Decision making based on cost-benefit considerations. 
 

7.6.2. San Simeon M=6.5 

22 of December 2003 San Simeon earthquake occurred in central coast of California, with 

magnitude 6.5. 

ˆIM

MI ˆ  
( )fac t a  
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The mainshock has been located in 35.7020 N and 121.080 W with a depth of 7 Km causing two 

causalities in the town of Paso Robles. 

The closest station to the epicenter is Parkfield that first triggered the event, located at a distance of 

57 Km (Cua 2004). 

Unfortunately the area is not densely instrumeneted, the data available were not as many as for 

Yorba Linda event, described before. The event occurred at the boundary between the Southern 

California Seismic Network and the Berkeley Digital Seismic Network. 

In this case the San Simeon event is interesting to test the Virtual Seismologist method and the 

decision models for larger events at the boundary of the network. 

From Virtual Seismologist method (Cua and Heaton 2004) the predictions for magnitude and 

location are available at 3, 5.5, 8, 31 and 71 seconds after the first station triggered the event. 

The Virtual Seismologist method for estimates updating considers the previous seismicity, 

Gutenberg-Richter law, the San Andreas fault as the Bayes prior for magnitude and location. Two 

earthquakes occurred in the 24 hours before the mainshock that have been located at the San 

Andreas fault and at 8.5 Km from the epicenter, respectively. 

The first triggering station, Parkfield station, defines the Voronoi cell that constraints the epicenter 

location. The cell defines the area of the most likely locations that occurrs to be fairly sparse due to 

the low density  of the stations in the area. 

The second station, Park Hill, is triggered almost at the same time of the first one. As a consequence 

the Voronoi cell defining the possible locations shares an edge with the Voronoi cell of Parkfield 

station. Looking at the first 3 seconds of P waves considering only the first triggered station, the 

Virtual Seismologist method cannot solve the trade-off between magnitude and location due to 

inadequate volume of data. Altough maximizing the likelihood function a value of 6.7 of magnitude 

and a location at 158 Km away from Parkfield, is estimated (San Simeon had M=6.5 located 57 Km 

away from Parkfiled). 

Taking into account further station’s information helps to solve the trade-off and obtain more 

accurate estimates. 
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 Figure 7.8 San Simeon M=6.5. The Virtual Seismologist Magnitude estimate as a 
function of time evaluated by Bayesian update considering multiple station data and 
Gutenberg-Richter magnitude prior. Note that the observed magnitude is equal to 6.5. 
Magnitude is underestimated due to the influence of the Gutenberg-Richter prior that tells 
that smaller events are more probable than bigger ones. 
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Figure 7.9 San Simeon M=6.5. Magnitude uncertainty as a function of the number of 
stations contributing observations to the Virtual Seismologist  estimate. 
 

The magnitude estimate varies as in the Fig. 7.8. 

At this stage the epicentral distance prediction is considered time invariant, assuming, Kanamori 

personal comunication, that the error associated with magnitude is more influent in the IM 

prediction process as confirmed in the error analysis for ElarmS sensitivity analysis. The epicentral 
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distance is assumed to be equal to 57 Km. 

Magnitude uncertainty is assumed to decrease as 1/ N where N is the number of station 

contributing information to the Virtual Seismologist method (Fig. 7.9). 

Based on these assumptions: 

• εM : Gaussian (0, σM) where 1/M Nσ =  

• εR : ignored at this stage 

• εIM : Gaussian (0, 0.243) 

The total error associated to the predicted ˆIM , is defined as in Chapter 4: 

• εtot : Gaussian (0, σtot) 

In the Virtual Seismologist method the amplitude is defined as from Eq. 7.14. The ground motion 

parameter estimate (PGA in log10 scale in cm\s\s) is described in Fig. 7.10. 

At each instant of time, as the estimates of magnitude and location are updated by the Virtual 

Seismologist, the ground motion parameter is updated. 

The probabilities of wrong decisions are evaluated (based on Eq. 7.4 and 7.6) and used as a tool for 

decision making during the event, assuming a=1.4 (in log10 scale in cm\s\s) (Fig. 7.10-7.11). 

The probabilities of wrong decisions are used in the decision model in order to make a decision 

during the event, raise the alarm or do nothing, based on threshold exceedance of the tolerable 

values of Pfa or Pma, evaluated from a cost-benefit analysis. 

As demonstrated before is equivalent the case of monitoring ˆIM , Pfa or Pma so in this case Pfa is 

chosen for making the decision of raising the alarm or doing nothing. 

In Fig. 7.11 is represented the Pfa as a function of time and when the tolerable value is reached the 

alarm is raised, if the minimum warning time for security measure activation is not reached before. 

If the warning time reaches the minimum time necessary for security measure activation before Pfa 

reaches the tolerable level a decision has to be made. Based on the value assumed by Pfa at the time 

of minimum time required for alarm activation the alarm will be raised if this value is included in a 

tolerance zone. 
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Figure7.10 San Simeon M=6.5. Evolution of the prediction of IM, of the standard deviation 
of prediction error, of probabilities of wrong decions (false and missed alarm) as a function of 
time. 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9t(s)

Pfa

 

 Figure 7.11 San Simeon M=6.5.  Decision making based on cost-benefits considerations. 
 

7.7. Extension to other predictors than IM 

Decision making could be based on other decision variables than probability of wrong decisions, 

that represent the expected consequences in terms of structural behaviour, damage or economic 

ˆIM
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( )fac t a
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losses. 

The theory that has been layed out in the previous paragraphs could be readily extended to other 

predictors of interest by the PBEE framework (Chapter 8), as engineering demand parameters, as 

drift, spectral acceleration, expected damage or losses, in terms of loss of lives or economic losses, 

due to the incoming seismic event (Grasso et al., 2005 a,b). 

The real-time analysis will be based on monitoring probabilities based on engineering parameters of 

interest or expected consequences, instead of the intensity measure. 

The analysis will be an extension of the previous expressions, using the theory of the total 

probability, e.g. extending the probability of missed alarm based on IM to an engineering demand 

parameter (EDP): 
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Where e is the threshold value of the EDP. 

The probability can be extended to the estimate of the probability of damage or loss: 
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Where DM is the decision variable, e.g. expected damage or loss, and d is the threshold. 
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Chapter 8 

8. Performance-Based Earthquake Early Warning-PBEEW 

8.1. PBEEW for performance assessment and design: Background 

PBEEW may be interpreted as an extension of Performance-based earthquake engineering (PBEE) 

method for the quantification of structural performance, fatalities, repair costs, and repair duration 

of a builing subject to a seismic event.  

Before introducing PBEEW is fundametal to describe PBEE methodology. In the PBEE frame-

work as in Fig. 8.1 (Beck et al. 1999, 2002) more level of seismicity are considered, the expected 

structural analysis is perfomed via dynamic analysis, the damage is calculated based on the 

structural performance, finally damage is used to evaluate loss (Beck et al. 2004). 
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Figure 8.1 PBEE frame-work (Porter et al. 2004). 
From a structural design perspective PBEE represents an innovative design approach opposed to 

load-and-resistance-factor  design (LRFD). The goal of LRFD is to assure the performance in terms 

of failure probability of single components, on the contrary PBEE looks at the performance at a 

system level, in terms of risk of collapse, repair cost, downtime (Porter, 2003). 

PBEE works in four stages: hazard analysis, structural analysis, damage analysis and loss analysis. 

Hazard analysis consists in defining the seismic hazard at the facility site characterized by Hazard 

function.  

In Hazard analysis sample time-histories are choosen as representative of various levels of intensity 

IM for various hazard levels (i.e. 10%, 5%, and 2% exceedance probability in 50 years). Procedures 

for time-history selection is described in Somerville and Collins (2002). 

Structural analysis is pursed to calculate the structural response correspondent to various intensity 
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measures of the ground motion. Various non-linear structural analysis are carried out in order to 

evaluate structural response in terms of drifts, accelerations, or other EDP.  The uncertain structural 

response is defined by the probability distribution function of EDP conditioned to seismic 

excitation, IM. PEER analysis includes mass, damping, and force-deformation uncertainty 

treatment. 

In damage analysis the EDPs are used to evaluate the parameter state of damage DM by the means 

of fragility functions of the single components. The decision variable DV, that may be repair costs, 

operability and others, is evaluated based on DM. The probability of various damage levels DM is 

conditioned on structural EDP.  The final stage is represented by the evaluation of the perfomance 

expressed in terms of probability of various levels of DV conditioned on damage DM.  

The output of the method is the performance in terms of probabilistic estimates of repair costs, 

casualities, loss. For a given facility at a given location the performance may be evaluated for a 

certain period of interest as the probability of exceeding various levels of interest, of a certain 

decision variable of interest.  Frequency and probability distribution functions of a decision variable 

of interest are evaluated to be used eventually to evaluate single values (i.e. the expected value) of 

interest for facility stakeholders.  

PBEE method is a probabilistic approach for performance estimation taking into account 

uncertainty associated with each of the four phases of the process. In the Hazard analysis is 

considered as uncertain the level of intensity measure of the earthquake that will occurr. The 

structural model is uncertain itself, its mass, damping and force-deformation behaviour. Damage 

and loss analysis are affected by uncertainties as well.  

The impat of each source of uncertainty has been estimated for the Van-Nuys PEER testbed. The 

test-bed consists in applying PEER methodology to a specific facility, in this case Van-Nuys hotel 

located in San Fernando valley in California. A simple deterministic study (Porter, 2003) has been 

conducted evaluating the change in output considering uncertain input once at the lower bound and 

once at the upper bound. The uncertain parameters which has the most significant impact on the 

uncertainty of the expected loss are the component fragility, maximum spectral acceleration that the 

facility will experience and ground motion details. Uncertain unit repair cost, force-deformation 

behaviour, damping do not contribute significantly on loss uncertainty. 

8.2. PBEEW for performance assessment and design 

Performance based earthquake early warning is a method for perfomance assessment at the system 

level in terms of collapse, fatalities, repair cost and post-earthquake loss. The system in analysis is 

composed by the EWS and the control system that provides the activation of security measures, in 
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case of the decision variable of interest exceeds the threshold for a given facility and given location. 

The output of the procedure is a probabilistic representation of the system’s performance, expected 

under the uncertain ground motion that the facility will experience.  

Opposed to PBEE method the system in PBEEW is represented by the target facility and the EWS. 

PBEEW is a probabilistic method that takes into account  the uncertainty associated with Hazard 

analysis, structural analysis, damage analysis and loss analysis, in addition uncertainty associated to 

EWS prediction is considered. The system performance is affected by the uncertainty of EWS 

prediction. The prediction error is propagated through the output for performance evaluation. From 

Hazard analysis sample time-hystories are choosen characterized by various levels of IM, then to 

take into account the EWS uncertainty, the value of IM is affected by a prediction error. Assuming a 

Gaussian distribution for the prediction error, the distribution of the prediction will be characterized 

by a mean of 
tot

IM µ± and standard deviation of 
tot

σ given by error analysis (Chapter 4). For a 

certain IM level, lets indicate it as 'IM , several values of IM will be choosen from the distribution 

characterized by a mean of '
tot

IM µ±  and standard deviation of 
tot

σ , for each value the structural 

performance will be estimated. Structural analysis are performed in order to estimate the structural 

behaviour in termes of EDP. Structural performance will be evaluated as the probability of EDP 

conditioned on IM. Damage analysis estimates the probability distribution of DM conditioned on 

EDP. Finally system performance is estimated by evaluating the probability distribution of DV 

conditioned on DM. PBEEW differs from PBEE in taking into account the EWS prediction 

uncertainty, obtaining the system performance, considering theorem of total probability: 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ| | | |p DV p DV DM p DM EDP p EDP IM p IM IM p IM=  8.1 

where ( )p IM may be derived from the Hazard function as in section 5.2 and ( )ˆ |p IM IM  is a 

Gaussian distribution with mean  
tot

IM µ±  and standard deviation 
tot

σ  given by error analysis, 

Chapter 4. 

From Eq. 8.1 useful information for facility stakeholders may be  derived, as probability of 

exceedance of a threshold level of concern, d: 

 [ ] ( ) ( ) ( ) ( ) ( )ˆ ˆ| | | |P DV d P DV d DM p DM EDP p EDP IM p IM IM p IM dIM dEDPdDM> = >∫∫ ∫ 8.2 

8.3. PBEEW for Real-Time Loss estimation: Background  

Based on PBEE methods, availability in real-time of seismic data, advances in structural 

identification and damage detection, Porter et al. 2004 propose a method for (near) real-time loss 

estimation for instrumented buildings after the  cessation of ground shaking. The goal of the method 
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is the development of a near-.real-tiume method for the evaluation of probabilistic damage, repair 

cost, safety and operability for an instrumented building where have been located accelerometers at 

the base, any additional instrumentation are used to reduce structural model uncertainty. The  

advantage of the method is represented by availability of safety and operability information for 

emergency managment, safety assessment and prioritizing operations for safety inspections, damage 

assessment reduces costs of business interruption and building evacuation, funding procedures may 

be simplified and speed up. 

8.3.1. An overview 

An instrumented facility is considered by Porter et al. 2004, defined by structural and architectural 

design. The structural model, accounting the uncertainty of the structural parameters, is a stochastic 

model defined by probability distributions to describe the uncertain structural parameters.  
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Figure 8.2 Near-real-time loss estimation based on PBEE frame-work (Porter et al. 2004). 
 

Different structural parameters are treated as uncertain: damping, initial and post-yield stiffness, and 

structural strength. Randomly sampling from these distributions, N realizations of the structural 

model are created. When an earthquake occurs, the accelerations are registered by the sensors at 

different locations of the structure. The real-time registrations are used for performing structural 

analysis. For each structural realization a non-linear time-history structural analysis is performed. 

From each structural analysis the sample engineering demand parameter (EDP) is evaluated. A 

bayesian updating process is used to evaluate weighting factor wi, by comparing calculated and 

observed accelerations, to apply to each simulation, details may be found in Porter et al. 2004.  

Each sample EDP is used to define physical damage of each damageable assembly. A vector of N 

damage measures DM is obtained. Then for each DM the decision variable DV (i.e. repair cost, life-

safety, etc.) is estimated based on the loss model. The output of the analysis is a vector of N 
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elements (wi, DVi) that is used to build the probability distribution of a DV : 

 ( ) [ ] ( )
1

0

N

DV i i
i

F dv P DV dv w H dv DV
−

=

= ≤ = −∑  8.3 

where H(x)=1 if 0x ≥ and H(x)=0 in the other case, H is the Heaviside function (Porter et al., 2004). 

 

8.4. PBEEW for Real-Time Loss estimation 

Performance based earthquake early warning (PBEEW) is a proposed methodology based on PBEE. 

In particular PBEEW is an extension of PBEE to early warning. PBEEW goal is to enable the 

possibility of providing performance assessment, expected loss, expected operability, and safety 

before the strong shaking occurs at the “target” location, representing an important decision 

variables for decision making. 

The interest in PBEEW raises related to the posibility of performing automated loss analysis that 

provides expected loss estimates before the strong shaking occurs at the “target” facility. In early 

time information on repair cost, losses, safety and operability will be available. Expected physical 

damage of the structure will be available, useful data for effective emergency managment strategies. 

The proposed PBEEW method is based on Porter et al. (2004) near-real-time loss estimation for 

instrumented buildings. In particular in PBEEW is proposed as an interaction between PBEE and 

EWS.  

Another interesting option for real-time loss analysis may be the possibility of interfacing maps of 

shaking intensity, Shake Map, proiduced by TriNet, available in real-time by an EWS, with HAZUS 

(FEMA,1999) providing loss maps (Porter et al., 2004). Altough HAZUS provides loss maps that 

may be considered reliable for a large scale assessment while in small scale HAZUS loss map is 

only approximate. On the contrary PBEEW real-time performance estimate is more accurate. 

For PBEEW the fundamental data are represented by the characteristics required to describe the 

“target” structure for loss estimation (as in Porter et al. 2004) represented by location, structural and 

architectural drawings, geotechnical reports and occupancy during the daytime and night. These 

information are useful to define the damageable assemblies and to model the structure for non-

linear time-history structural analysis. In PBEEW case an instrumented building is not necessary, 

the information on EDP comes from EW early estimates. The EWS provides in real-time location 

and magnitude estimates and based on these values an IM prediction is based. Based on IM a 

prediction of EDP may be available based on structural response from off-line non linear structural 

analysis. 

The frame-work of PBEEW is represented in the following figure. 
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Figure 8.3 PBEEW frame-work 
The data D coming from the seismic network are registered by the stations and processed in real-

time. The data D are processed by the central processing unit (or by the single nodes) by the use of 

prediction models M1 and M2 represented under the EWS tag. The prediction process has been 

described in chapter 4. The output of the EWS is the prediction of the ground shaking intensity 

expected at the “target” site facility. Error analysis is necessary to evaluate the uncertainty 

associated with the prediction by the means of the aproximation method or Monte Carlo method 

described in Chapter 4. The expected intensity measure, IM, and its uncertainty are then used to 

estimate ( )ˆp |IM IM equivalent to ( )p |IM D  that has a Gaussian distribution with mean equal to 

( )ˆ
tot

IM tµ± and standard deviation ( )tot tσ  from uncertainty analysis (section 2.3). The mean and 

standard deviation of the distribution ( )ˆp |IM IM are updated with time, as more data become 

available. The structural response for time saving may be evaluated on the basis of off-line 

structural analysis that provides ( )p |EDP IM . A large number of structural realizations may be 

created to consider the structural parameter uncertainties and for each model a non-linear structural 

analysis is performed. The goal is to obtain the relation between the IM and the EDP of interest. A 

functional relationship may found between the IM and the EDP of interest and the uncertainty to it 

associated (as in Barroso and Winterstein (2002) where a power relationship is suggested 

considering the spectral acceleration as IM and drift as EDP of interest).  

Damage response is estimated on the basis of damage model. In the damage analysis the damage is 

evaluated for each damageable assembly based on fragility functions. Fragility function provides 

the probability that the assembly would reach or exceed a damage state when subject to a certain 

EDP. Porter et al. 2004 suggest to consider the fragility functions as cumulative lognormal 

distribution functions, where if xm is the median value of the distribution and βs the standard 

deviation:    
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 ( ) ( )
,

ln / m
R dm

s

x x
F x

β
⎛ ⎞

= Φ⎜ ⎟
⎝ ⎠

 8.4 

 
where Rdm is the threshold level EDP to cause a damage level dm of the assembly. For each 

assembly and dm associated we have a mean xm and standard deviation βs to define the fragility 

curve determined by testing or analytical evaluation (Porter et al 2004).  

At this point is necessary to calculate the probability distribution function of DM conditioned to 

EDP that is given by the cumulative distribution function: 

 

 
( ) [ ]

( )
|

1

|

1
DM EDP

Rdm

F dm P DM dm EDP x

F x+

= ≤ =

= −
 8.5 

 

based on DM the decision variable DV has to be evaluated. 

The interest is focused on repair cost as decision varaible of interest. Repair cost is evaluated by 

cost-estimation analysis. 

The uncertain cost Cjdm to restore an assembly from damage level dm is defined by a cumulative 

distribution function as suggested by Porter et al (2004) FCjdm  lognormally distributed characterized 

by mean xm and logarithmic standard deviation βs specified for each assembly type and damage 

state. The cost of the contractor Cc is considered to be 15% or 20% of the total cost. 

The repair cost  is defined by (Porter et al 2004): 

 

 ( ) , ,
1 1

1
j DMN N

c j dm j dm
j dm

RC C N C
= =

= + ∑∑  8.6 

where j is the type of assembly, Nj,dm is the number of damaged assemblies in damage level dm. 

The cumulative distribution function of the decision variable is calculated by (Porter et al 2004): 

 

 ( ) [ ] ( )0

N
DV i ii

F dv P DV dv w H dv RC
=

= ≤ = −∑  8.7 

where H is the Heaviside function and wi is the weight assigned to each simulation (Porter et al. 

2004 for the details). 

The final output of the method is a probability distribution of a DV, in this case the repair cost is the 

decision variable of interest: 

                                 

                                      ( ) ( ) ( ) ( ) ( )( )ˆp =p | p | p | p |DV DV DM DM EDP EDP IM IM IM t     8.8 
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where ( )ˆp |IM IM comes from ˆIM  based on EW estimates and error analysis, is a Gaussian 

distribution with mean  ˆ
tot

IM µ±  and standard deviation 
totεσ  given by error analysis, Chapter 4; 

( )p |EDP IM  is the output of structural analysis, ( )p |DM EDP comes from damage analysis and 

finally ( )p |DV DM  (Eq. 8.7) is the outcome of loss analysis, in the case of repair cost as decision 

variable of interest. 

From Eq. 8.8 an important information may be estrapolated, as the probability of exceedance of a 

decision threshold: 

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆP[ | ]= | p | p | p |DV d IM t P DV d DM DM EDP EDP IM IM IM t dIM dEDPdDM> >∫ ∫ ∫ 8.9 
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Chapter 9 

9. Conclusions and Future Directions 

From a review of existing EWS applications in Japan, Mexico, Taiwan and Turkey (Espinosa 

Aranda et al., 1995; Wu et al., 1998; Wu and Teng, 2002, Erdik et al., 2003; Boese et al., 2004; 

Horiuchi et al., 2005) emerges a mandatory need of approaching EWS from user’s perspectives, 

both in analysis and design. 

In this sense theory of ergonomics comes of some help for system optimization based on user’s 

requirements. 

This thesis presents the development of a performance-based methodology for EWS analysis and 

design. 

The methodology seeks to provide a probabilistic description of the system performance (in terms 

of probability of making wrong decisions, expected losses, damage, etc.) in a pre-installation 

scenario for feasibility assessment of new and existing EWS applications. An example is shown for 

Southern California . 

In addition is also explored the real-time case, the methodology presented in Chapter 7-8 develops a 

decision making strategy for deciding whether raising the alarm or not, based on EWS performance 

evaluated during the course of the seismic event (in terms of probability of making wrong decisions, 

expected losses, damage, etc.). The methodology has been applied to Yorba Linda and San Simeon 

seismic events.  

Many theoretical and practical issues has to be solved. Which are the best indicators of EWS 

performance? What is required to demonstrate that EWS offers new value to owners and facility 

stakeholders? Which information decision makers would like to know in a pre-installation phase in 

order to evaluate the benefits of applying EWS for seismic risk protection? 

The methodology has to be explored for real case facilities and it might produce the most value 

when applied to strategic facilities as hospitals, schools, industrial plants, etc. 

On the other hand it would be interesting the comparison of existing prediction method and 

exploring possible prediction uncertainty mitigation strategies. 
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