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1. General introduction
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1.1.Algae 

Algae, even if the group is unnatural, are very diverse photosynthetic plants that have 

neither  roots  nor  leafy  shoots  and  which  also  lack  vascular  tissues.  Different  size, 

morphology,  life cycle,  photosynthetic  pigments,  chemical  nature of the storage products 

and cell wall play an important part in the definition of the various algal groups.

In 1753 the algae were placed By Linneo in the Cryptogamia along with other non-

flowering plants  and since that time scientists  have been intrigued by this heterogeneous 

group of  photosynthetic  organisms  with an estimated  350,000 known species  (Brodie & 

Lewis, 2007). The number of algal groups has varied over the years, with as many as 16 

phyla (Van den Hoek et al., 1995). The latest classifications place algae into four of the five 

supergroups of eukaryotes (Keeling, 2004) (Figure 1).

1.1.1. Origin and Classification 

A debate is over the question of monophyly or poliphyly in the algae. Many scientists 

fall on the side of the algae being a heterogeneous group that are not monophyletic, but there 

are others who argue for monophyly of all photosynthetic organisms, based on the origins of 

the plastids.

Common  ancestor  of  eucaryotic  cells  was  a  phagotroph  (already  having  a 

endocellular membranous system) which established an endosymbiotic relationship with a 

bacterium that evolved in a mitochondrium (Figure 2). Another similar endosymbiotic event 

but with a cyanobacterium occurred for the ancestor of algae; in this case cyanobacterium 

evolved  in  plastid.  In  mitochondria  as  in  plastids  the  bacterian  wall  disappeared  during 

evolution.  Endosymbiotic bacteria had originally a double membrane,  one of them fused 

togheter  with  phagocytosis  vacuole  membrane;  for  this  reason  the  inner  membrane  of 

mitochondria and plastids has procaryotic origin, whereas the external membrane has mixed 

composition, although almost of procaryotic origin. After separation from the phagocytosis 

vacuole,  plastids  as  mitochondria  were  situated  in  the  cytoplasm.  Both  organelles  of 

eucaryotic cell  are of procaryotic origin and derive from a primary endosymbiotic event. 

Chlorophyta and Rhodophyta also originated from a primary endosymbiosis.  Rhodophyta 

hereditated  phycobilisomes  from  the  endosymbiotic  cyanobacterium  but  loose  flagella, 

whereas Chlorophyta loose phycobilisomes. On the contrary Heterokontophyta originated by 

a  secondary  endosymbiotic  event;  in  fact  it  has  been  hypothesized  that  a  flagellate 

phagotroph  captured  an  eucaryotic  alga  which  already  had  a  plastid  of  primary 

endosymbiotic origin and then the flagellate established an endosymbiotic relationship. For 
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that  endosymbiotic  algal  external  membrane (the phagocytosis  vacuole membrane)  fused 

with  the  endoplasmic  reticulum  of  the  phagotroph  while  its  cytoplasm  regressed  until 

disappear. As a result Heterokontophyta have four plastidial membrane: the most external is 

of  phagotroph  origin  while  the  one  immeditely  below  was  the  endosymbiotic  alga 

plasmalemma; finally the two inner membrane represent those of the primary plastid that 

was in the endosymbiotic alga.

Recently, Delwiche (2007) supported the monophyletic origin of algae focusing on 

the  plastid  and  how  endosymbiosis  events  unite  the  algae  and  the  land  plants  as  a 

monophyletic  group.  On  the  opposite,  according  to  Cavalier-Smith  (2007),  algae  are 

considered polyphyletic because the eukaryotic algae arose as chimeras of a bikont protozoa 

and a cyanobacterium and that there were at least four secondary symbiosis that generated 

the diversity of the meta-algae.
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Figure 1: Tree of eukaryotes and diversity of plastid-bearing eukaryotes. Top: an unrooted hypothetical 
phylogeny of eukaryotes based on a synthesis of many gene trees, protein insertions and deletions, and 
cellular  and  biochemical  characters.  In  this  tree,  eukaryotes  are  divided  into  five  large  groups,  of 
‘‘supergroups,’’  within  which  representatives  of  the  major  lineages  are  shown  with  their 
interrelationships as we know them. Dotted lines are plausible but more weakly supported parts of the 
tree. All groups in which plastids are known from at least a large number of species are indicated by 
white text on black. Bottom: a small taste of the diversity of plastid-bearing eukaryotes can be seen from 
one representative of each of the major ‘‘algal’’ lineages. (Keeling 2004)
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Figure  2:  Primary  and  secondary  endosymbiosis.  A–B.  Primary  endosymbiosis.  A  heterotrophic 
eukaryote eats a Gram-negative cyanobacterium (A), which is retained rather than being digested (B). 
The cyanobacterial endosymbiont is substantially reduced, and a large number of genes are transferred 
to the nuclear genome of the host. The protein products of these genes are targeted to the plastid by way 
of a transit peptide. The primary plastid is bounded by two membranes derived from the inner and outer 
membranes of the cyanobacterium. The presumed phagosomal membrane is lost, as is the peptidoglycan 
wall (except in glaucophyte algae). B–C. Secondary endosymbiosis. A primary alga (either a red or green 
alga) is eaten but not digested by a second eukaryote (C). This eukaryotic endosymbiont degenerates and 
genes  encoding  plastid-targeted  proteins  are  moved  from  its  nucleus  to  the  secondary  host  nuclear 
genome.  Some  genes  may  also  move  from the  plastid  genome  to  the  secondary  host  nucleus.  These 
plastids would originally be bounded by four membranes derived as indicated (Keeling, 2004)

Rhodophyta are  a  very  large  and  diverse  group  of  microscopic  algae  and 

macroscopic algae. Their  plastids contain chlorophyll  a, phycobilins, and phycobilisomes 

and  they  are  characterized  by  the  absence  of  any  flagellate  cells  (including  gametes). 

Because of the presence of phycobilisome thylacoids lie singly inside the cloroplast which is 

enveloped by a double unit membrane while one thylacoid run along the inner membrane. 

The  principal  reserve  compound  is  represented  by  floridean  starch,  an  a-1,4-glucan 

polysaccharide.  Grains  of  this  compound  are  located  in  the  cytoplasm.  Another  unique 

feature of this group is the presence of pit connections (open protoplasmic connections) that 

are junction between daughter cells closed by a proteinaceous stopper (the pit plug) (Van 

den Hoek et al., 1996).

Red algae are divided in two classes: Bangiophyceae and Floridophyceae. The first 

class, preserves  characters  found  in  ancestral  red  algae  and  comprises  also  unicellular 
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organisms. Macroalgae of this group are either filamentous or sheet-like thalli. The second 

class includes morphologically and functional more complex species.

For a review of red algae, see Saunders and Hommersand (2004).

Heterokontophyta are  an  extremely  diverse  group  of  photosynthetic  and 

nonphotosynthetic groups that were once classified separately as protozoa, algae, and fungi. 

Heterokont plastids, where they occur, are structurally similar to those of haptophytes and 

also  contain  chlorophyll  a  and  c.  Heterokont  algae  include  microscopic  forms  of  great 

ecological significance (e.g., diatoms) as well as macroalgae (e.g., kelps). 

Mostly  marine,   this  Division  is  characterized  by  the  presence  of  two  different 

flagella on one cell (unicellular organism or gametes); one is a mastigonemate, plum-like 

flagellum which points forward during swimming while the other is shorter, lying along the 

cell,  directed  backwards.  Heterokontophyta  have  both  chlorophyll  a and  c although 

carotenoids dominate on chlorophylls. The principal accessory pigments are b-carotene and 

fucoxanthin. Stacks of threee thylacoids are called  lamellae one of which runs along the 

periphery of the chloroplast, called  girdle lamella. The chloroplast are enclosed by double 

membrane  and externally  also  by endoplasmic  reticulum.  The main  storage  compund  is 

chrysolaminarin,  a  b-1,3-glucan,  stocked  inside  special  vacuoles  in  the  cytoplasm. 

Phaeophyceae  represent  the  Class  grouping  brown  macroalgae,  which  diversify  from 

branched filaments to more complex structures as kelps have. For a review of heterokont 

algae, see Andersen (2004).

Green Algae are  a large and diverse group roughly divided into Charophytes and 

Chlorophytes.  Charophytes are the ancestors of land plants, which share a great number of 

similarities to Charophytes and green algae as a whole. Chlorophyta is the most ubiquitous 

and heterogeneous group by a morphological point of view. It includes unicellular flagellates 

and multicellular thalli  arranged in different ways.  Flagella are isokont which means that 

they are morphologically similar but different in length.

Chlorophylls dominate on carotenoids and other accessory pigments as xantophylls; 

both chlorophyll  a and b are present also with b- and g-carotene. Chloroplast are enclosed 

by a double plasmatic membrane and contains stacked thylacoids forming grana. Pyrenoids 

are present within the chloroplast, embedded to thylakoids; these structures can be ovoidal or 

spherical but their function is still unknown (de Reviers, 2002). Starch represents the most 

important reserve compound and it is stored inside the chloroplast as a grain. 
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For a review of green algae, see Lewis and McCourt (2004) 

In  this  work  the  attention  will  be  focused  only  on  pluricellular  marine  algae, 

generally named macroalgae or seaweeds, distributed among three Divisions: Rhodophyta, 

Heterokontophyta (or Ochrophyta according to Cavalier-Smith (2007) which contain  the 

class of Phaeophyceae, and Chlorophyta (Van den Hoek et al., 1995).

1.1.2. Algal Morphological features

As they are multicellular organisms, macroalgae can have diverse thallus structure 

organizations, distinguished according to Barsanti & Gualtieri (2006) in:

Filamentous  algae.  Filaments  are  the  result  of  a  series  of  cellular  division 

perpendicular to the filament axis forming cell chains. Uniseriated filaments have only one 

layer  of  cells  whereas  multiseriated  filaments  consist  of  multiple  layers  of  cells.  Both 

uniseriated and multiseriated filaments can be simple or branched.

Siphonous  and  siphonocladous  algae.  Siphonous  algae  are  characterized  by 

ceonocytic  tubular  filaments.  These  algae  undergo  repeated  nuclear  divisions  without 

forming transversal cell walls; siphons generally have a filamentous (e.g.  Briopsis spp.) or 

vesicular  (e.g.  Derbesia spp.)  appearance  but,  differently  by unicellular  algae,  they have 

multinucleated cytoplasm envelopping a big centrale vacuole. Even if the term “siphonous” 

is wrongly it is widely accepted for some red algae to indicate multilayered filaments of 

multinucleated cells characteristic of the Polysiphonales Order.

Siphonocladous  algae  are  constitued  by  filaments  divided  in  a  series  of 

multinucleated  articles.  They can be also branched as it  occurrs in  Cladophora spp.  (de 

Reviers, 2002).

Parenchimatous  and  pseudoparenchimatous  algae.  This  kind  of  algal  structure 

derives  from  a  cell  division  in  three  dimensions.  Ulva  spp.  (Chlorophyta)  and  many 

phaeophycean  algae  (Heterokontophyta)  have  this  “tissue”  organization.  In 

pseudoparenchymatous algae filaments can be distinguished; they can be loosely or closely 

aggregated,  twined each others and branched,  held by mucilage,  especially in red algae. 

Vegetative  apparatus  can  reach  an  high  complexity  as  in  the genus  Sargassum where a 

medulla, the inner part of the thallus, and a cortex, the external part, can be distinguished. In 

this complex taxon, thallus is divided into a phylloid which have foliose branches bearing air 
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vesicles (bladders) and in a  cauloid which looks like a stipe with rhizoidal apparatus (de 

Revier, 2002).

1.1.3. Reproduction of macroalgae

Macroalgae and algae in general have different reproduction cycles according to the 

succession of generations: a) monogenetic haplontic life cycle (with a haploid generation 

only);  b)  diplontic  or  gametic  life  cycle,  with  a  diploid  generation  only;  and  3) 

diplohaplontic or sporic life cycle with two (digenetic) ot three generations (trigenetic).

According to Feldmann (1978): “A generation is a phase of the development of an 

organism which begins from a reproductive cell (spore or zygote) and then resulting in the 

production of other reproductive cells that can be different or not from those produced by the 

previous generation”. A haploid or a diploid status can dominate during an algal life cycle.

Along with these fundamental classification of life cycles there is obviously a large 

number of variants (de Reviers, 2002).

Monogenetic haplontic life cycle: example of Acetabularia acetabulum

Acetabularia acetabulum develops from the zygote into a single cell (gametophyte) 

in summer and produces 2 o 3 whorls of hairs. In winter only the stalk persists with a giant 

nucleus in the rhizoidal part. In the following spring the stalk continues to growth reaching 

winter season again just with its stalk. 

Figure 3: Life cycle Acetabularia acetabulum (Van den Hoeck et al., 1995)
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During  the  third  year  the  thallus  develops  the  reproductive  umbel, encrusted  of 

calcium carbonate and divided into radial secti. Each sectus of the umbel is a gametangium 

connected with the axis. When the umbel is formed, the nucleus undergoes to a cromosomic 

reduction (meiosis) followed by other numerous mitotic divisions leading to a large number 

of small haploid nuclei. They are then brought through citoplasmic currents to the whole 

algal axis comprising the umbrella. Finally they concentrate into the umbrella where they 

differentiate  into  ovoidal  gametangial  cystseach  containing  a  haploid  nucleus.  Cysts  are 

finally released through the thallus kink and spend the winter season within the sediment 

where  they become constituted  of  numerous  haploid  nuclei.  The  next  spring  nuclei  will 

differentiate in biflagellate gametes and released through the opening of an operculum once 

mature and will form a new mononuclear diploid zygote; only the zygote is diploid and  this 

cycle is interpreted as monogenetic haplontic cycle. (Figure 3).

Monogenetic diplontic life cycle: example of Sargassum sp. 

Sargassum  sp. exhibits  cavities  known  as  conceptacles which  contain  gametes; 

receptacles are groups of conceptacles; they origin from a meristodermic cell.  Sargassum 

species are monoecious: mature gametes, oospheres and spermatia, are released and they can 

fuse forming a  zygote which settles  down on the substrate  forming  rhizoid (a root-like 

filament of cells). So diploid thalli produce through meiotic events haploid gametes and then 

zygote germinates in a new thallus similar  to parents (Figure 4). Life cycle  seems to be 

monogenetic diplontic and thalli occurring in the field are gametophytes.

Figure 4: Life cycle of Sargassum sp. (from www.niobioinformatics.in)
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Isomorphic digenetic diplohaplontic life cycle: example of Dictyota 

Dictyota sp. gives an example of isomorphic digenetic diplohaplontic life cycle. In 

fact  gametophytes  bring  groups  of  oogonia  (female)  or  groups  of  spermatangia  (male). 

Spermatangia release the spermatia while each oogonium release only one oosphere. The 

zygote develops into a sporophyte, morphologically similar to the gametophyte but bringing 

unilocular sporangia where meiotic processes occur. Finally, haploid spores germinate into 

new haploid gametophytes (see Chapter 4).

Eteromorphic digenetic diplohaplontic life cycle: example of Laminaria 

Diploid sporophyte thalli  produce spores within sori,  groups of sporangia.  Mature 

sporangia  release,  through  an  apical  pore,   spores  with  two  heterokontic  flagella  called 

zoospores. Zoospores settle on the substrate loosing their flagella and germinate into small 

creeping  filaments.  Some  of  these  microscopic  thalli  produce  male  gametes  (spermatia) 

within spermatangia while some others generate female gametes (oospheres) in reproductive 

structure  called  oogonium or  oocysts.  Spermatia  are  released  whereas  oospheres  are  not 

bulging out from the oogonia and waiting for the male gamete. The zygote will growth in a 

new big sporophyte, generally found in the field. 

In conclusion Laminaria sp. presents a succession of two morphologically different 

generations: one macroscopic, the sporophyte, and the other microscopic, the gametophyte.

Eteromorphic trigenetic diplohaplontic life cycle: example of Polysiphonia

This life cycle characterizes the Floridophycean group to which Polysiphonia genus 

belongs (Figure 5). In Polysiphonia sp. there are generally male and female individuals and 

they  form  spermatangia  (which  bring  male  gamets  called  spermatia)  and  carpogonium 

(which contains the oosphere, female gamete). Aflagellate spermatia, passively transported 

by water movements, reach the carpogonium  and, through the trichogyne, fecondates the 

oosphere constituting the gonimoblast; it contains carposporangia that will release diploid 

carpospores. All the gonimoblastes represent the carposporophyte, a parasitic generation of 

the gametophye. Then carpospores develop into diploid individuals, the tetrasporophyte, that 

produce by meiotic divisions four haploid spores (tetraspores) Each spore develops into a 

gametophyte  completing  the  life  cycle.  In  conclusion,  there  is  a  succession  of  three 

generations: gametophytic, carposporophytic and tetrasporophytic generations. Gametophyte 

and tetrasporophyte are morphologically similar so they are difficult to distinguish into the 

field;  on the opposite,  the carposporophyte  is  microscopic and parasitic  of gametophyte. 
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Two types of morphologies occur and the cycle is called dimorphic. Natural populations of 

Polysiphonia has two types of distinct and indipendent gametophytes: carposporophyte and 

tetrasporophytes. For that reason these populations are diplobionts. This term is opposite to 

haplobiont which means that there is only one kind of individual. 

Other Florideophyceae  have  a   trimorphic  cycle  because  gametophyte, 

carposporophyte  and  tetrasporophyte  are  morphologically  different.  Asparagopsis-

Falkenbergia.  gives  an  example;  Asparagopsis is  the  macroscopic  erect  gametophyte, 

Falkenbergia is  the   microscopic  tetrasporophyte  of  the  same  species.  These  different 

morphologies explain the term trimorphic.

Figure 5: Life cycle of the genus Polysiphonia (from www.jochemnet.de)

1.1.4. Macroalgal communities 

According to Karl Möbius (1877) communities are species populations that coexist in 

a particular  time and geographical  area,  in which dominant  environmental  conditions are 

homogeneous.  According  to  a  phytosociological  approach  (Braun-Blanquet,  1915), 

community represents a predictable species association, that is “a stable species group, living 

in balance with an homogeneous environment, in which characteristic species reveal, with 

their presence, a determined ecological situation”.

Communities are characterized by:

- Composition: presence of species and their relative abundance;

- Nature  and  shape  of  the  relationships  among  these  species 

(community structure sensu strictu);

- Dynamics: fluxes in time and space (i.e. successions).

To study communities, three kind of factors should have to be analyzed:
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I. Habitat factors (called abiotic factors in the past);

II. Niche factors (e.g. competition, predation);

III. Population factors (e.g. natality and mortality rates).

Abiotic  factors  select  species  constituting  the  community  whereas  biotic  factors 

control community within itself.

In extreme environments, where physico-chemical parameters have strong variations, 

competition is reduced and only few species are dominant because they have to face up to a 

physiological stress (Begon et al., 1998). In these environmentally controlled communities, 

the structure is similar  to that  present during early stages of colonization,  where pioneer 

species  (r-species),  characterized  by high abundance,  high  turnover  and wide  dispersion 

capacity, are dominant. These kind of communities are present in marine ecosystems at low 

depths, in coastal zones, lagoons, intertidal zones, estuaries, where some variables such as 

temperature and salinity vary a lot (Sanders, 1968).

On  the  opposite,  biologically  controlled  communities  are  usually  present  where 

environmental conditions are more stable and constant. This kind of community is mainly 

controlled by “biological stress” drivers as competion for space, light and food (Littler et al., 

1975). Such communities are characterized by a high specific diversity with few dominant 

species  (named  K-competitive  dominant  species,  characterized  by  long  life  cycle,  low 

turnover and  low dispersion ability) and by several rare species with low covers. 

In  nature  a  combination  of  both  kind  of  communities  is  usually  present.  Each 

community does not present a fixed ratio in species occurrence and abundance (both in time 

and space), due to the continuity of the water marine environment and to the presence of 

transtional zones called  ecotones (Cognetti  et al., 1992). A single community can change 

according to variations in irradiance, pH and hydrodinamic state and others.

It  is  clear  that  community structure and functioning  may change through a stress 

gradient in presence of detrimental conditions derived by human activities, which can lead to 

a loss of preexistent species and replaced by new ones, more tolerant (Cognetti et al., 1992).

1.1.4.Macroalgal community stratification and vertical zonation

Marine macroalgae form stratified communities. The  upper layer, named canopy, is 

formed  by  erect  and  frondose  algae  covering  the  understorey  layer,  formed  by  the  turf 

compartment. Finally, crustose algae grow below the turf, directly on the substrate (Lüning, 

1990). Due to this stratification, many canopy species can directly and indirectly modify the 

local environment to create conditions that facilitate some species (e.g coralline algae) but 

12



exclude other (e.g. filamentous turf) taxa (Bruno et al., 2001). Negative effects of abrasion 

on articulated coralline algae and filamentous turf may augment effects of shade provided by 

canopies,  which appear primarily responsible for the maintenance of extensive covers of 

encrusting coralline algae beneath canopies. Moreover, negative effect oa abrasion may have 

indirect positive effects on the abundance of other taxa by excluding competitors for space 

(Irving & Connell, 2006)

Each species has its own range of tolerance and resilience to environmental changes 

to  which  its  ecological  and  physiological  optimum takes  place.  Besides,  more  than  one 

species could have similar tolerance degree and therefore interspecific competitions regulate 

their coexistence. In the same area, benthic marine vegetation can change in relation to three 

principal environmental factors: light, hydrodynamic regime and nature of substrate. It can 

be distinguished photophilic and sciaphilous vegetations in relation to irradiance regimes, 

calm  environments  and  exposed  environments  vegetations  in  relation  to  hydrodynamic 

forces, and hard and soft substratum vegetation in relation to the bottom nature (Cormaci et  

al., 2003).

In particular both light and water movement differ with depth, generating a vertical  

zonation of macroalgal communities. Vertical zonation is based on two model system, one 

based on irradiance, the other on hydrodynamism. 

The first one, devised by Pérès and Picard (1964), divides littoral system into five 

zones:

- Supralittoral zone, which is reached by spray water;

- Eulittoral  zone,  the  intertidal  zone,  which  is  periodically 

emersed and submersed;

- Sublittoral zone, which is always submersed and that can be 

subdivided in an upper zone, the infralittoral zone and a lower zone, the 

circalittoral zone. The infralittoral zone is characterized by the presence of 

photophilic  species  whereas  the  circalittoral  one  is  characterized  by 

sciaphilous  algae.

The second one (Riedl, 1971) distinguishes five critical depths according to changes 

in water movements:

- Splash zone between +0.3 m and -0.3 m depth with splashing 

waves and tide effects;

- Surf zone between 0.3 m and 1-4 m depth where particles move 

without a dominant direction and with high energy;
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- I  critical  depth,  or  oscillation-zone,  between  1-10  m  and 

maximum  4-20  m  depth.  This  zone  is  dominated  by  oscillating  and 

orbiting movements. The diameter of the orbits are equal to the height of 

the waves;

- II critical depth, or drift-zone, between a minimum of 10-20 m 

and  maximum  30-40  m.  Oscillations  decrease  and  finally  disappears. 

Mechanical stress is minimal and comes from one side;

- III  critical  depth where  flatten  water  movements  become 

dominant, characterizing the circalittoral zone.

Since  subtidal  rocky shore  vegetation  has  been  considered  in  this  work,  subtidal 

sciaphilus and photophilous communities of hard substrate will be described, according to 

Giaccone et al. (1994a).

Photophilous vegetation of hard substrata infralittoral zone

Marine vegetation is dominated by large brown algae such as  Sargassum spp. and 

Cystoseira spp. These form complex structured communities: an upper photophilic stratum, 

subdivided in a suprastratum composed by large brown algae, and a mesostratum, formed by 

medium size upright algae; an epiphyte stratum or epistratum, which is made up by several 

species directly living on other macroalgae; a  sciaphilous stratum, constituted by species 

shaded by those of the upper stratum. Marine vegetation of this zone is influenced both by 

the light intensity and hydrodinamism 

Associations succed on the batymetric profile from the top downward as follows:

a) Cystoseiretum strictae Molinier 1958 whose characteristic species are 

Cystoseira  amentacea (C.  Agardh)  Bory  and  its  varieties  as  amentacea,  spicata 

(Ercegovic) Giaccone and stricta Montagne, and Feldmannia paradoxa (Montagne) 

Hamel. This community is characteristic of exposed environments while in slightly 

shaded,  with  reduced  water  movements,  Cystoseiretum  strictae is  replaced  by 

Sargassetum  vulgaris Mayhoub  1976 characterized  by  Sargassum  vulgare C. 

Agardh and Sargassum trichocarpum J. Agardh (Mayhoub, 1976).

b) Cystoseiretum crinitae Molinier 1958 whose characteristic species are 

Cystoseira  crinita Duby,  Sphacelaria  cirrosa (Roth)  C.  Agardh,  Stypocaulon 

scoparium (Linnaeus)  Kützing,  Cladostephus  spongiosum (Hudson)  C.  Agardh  f. 

verticillatum (Lightfoot) Prud’Homme van Reine and Anadyomene stellata (Wulfen) 

C. Agardh. In particular ecological conditions,  this community has one or, rarely, 
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more  different  species,  called  differential  species,  forming  facies which  are 

considered by Giaccone et al. (1994a) and Marino et al. (1999) as sub-Associations:

- Alsidium  helminthochorton (Schwendimann)  Kützing,  where 

there is reduced water movements and high sedimentation;

- Cystoseira compressa (Esper) Gerloff et Nizamuddin, in calm 

and a little polluted biotopes;

- Stypocaulon  scoparium,  often  with  Padina  pavonica and 

Dictyota fasciola (Roth) J.W. Lamouroux in unstable enviroments due to their 

sedimentary nature;

- Halopithys  incurva (Hudson)  Batters  and  Dipterosiphonia 

rigens (C. Agardh) Falkenberg where water transparency is variable;

- Gelidium  spinosum (S.G.  Gmelin)  P.C.  Silva  v.  hystrix (J. 

Agardh) where intense grazing on subvertical substrata.

c) Cystosereitum sauvageauanae Giaccone 1994  in  which  Cystoseira 

sauvageauana  Hamel,  Cystoseira foeniculacea (Linnaeus)  Greville  f.  tenuiamosa 

(Ercegovic)  Gòmez  Garreta  et  al.,  Stilophora  tenella (Esper)  P.C.  Silva  are 

characteristic species living in the oscillating zone of Riedl 1971.

d) Cystoseiretum  spinosae  Giaccone  1973  where  Cystoseira  spinosa 

Sauvageau,  Cystoseira foeniculacea (Linnaeus)  Greville  f.  latiramosa (Ercegovic) 

Gomez Garreta  et al.,  Valonia macrophysa Kützing,  Halopteris filicina (Grateloup) 

Kützing,  Dictyota  linearis (C.  Agardh)  Greville  are  considered  as  characteristic 

species and it is established in monodirectional currents flowing zones.

Other plant Associations could be found in particular environmental conditions:

- Cystoseiretum   barbatae Pignatti  1962 in  reduced  light  and 

hydrodinamism environments with  Cystoseira barbata (Stackhouse) C. Agardh, 

C.  compressa,  Halymenia  floresia (Clemente)  C.  Agardh,  Gracilaria  bursa-

pastoris (S.G. Melin) P.C. Silva, Hypnea musciformis (Wulfen) J.W. Lamouroux, 

Nemastoma  dichotomum J.  Agardh,  Ceramium  siliquosum v.  siliquosum,  C. 

deslongchampsii Chauvin ex Duby,  C. siliquosum v.  lophophorum (Feldmann-

Mazoyer) Serio, Bonnemaisonia asparagoides (Woodward) C. Agardh.

- Herposiphonio-Corallinetum elongatae Ballesteros 1988 in slightly 

deep with high hydrodinamism biotopes with Herposiphonia tenella (C. Agardh) 

Ambronn and Corallina elongata J. Ellis et Solander
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- Pseudobryopsidetum myurae Mayhoub 1976 in high irradiance and 

low  hydrodinamism  biotopes  with  warm  affinity  (deep  cuvettes)  grouping 

Pseudobryopsis  myura (J.  Agardh)  Berthold,  Ganonema  farinosum (J.V. 

Lamouroux)  Fan  et Wang,  Hydroclathrus  clathratus (Bory ex C. Agardh) M. 

Howe.

Sciaphilous vegetation of hard substrata infralittoral zone

Sciaphilous vegetation is subdivided in  surface and  middle vegetation according to 

their distribution depth.

Surface sciaphilous vegetation

a) Schotteretum nicaeensis Berner 1931 with Schottera nicaeensis (J.V. 

Lamouroux ex Duby) Guiry et Hollenberg and Gymnogongrus crenulatus (Turner) J. 

Agardh which are at less than 1 meter depth with low light and high hydrodinamism.

b) Rhodymenietum ardissonei Pignatti 1962  present in holes and rock 

cracks  with  low  hydrodinamism  in  which  Chondracanthus  acicularis  (Roth) 

Fredericq  and  Rhodophyllis  divaricata  (Stackhouse)  Papenfuss  are  characteristic 

species whereas Rhodymenia ardissonei Feldmann is considered a dominant species.

c) Pterothamnion-Compsothamnietum  thuyodis Boudouresque, 

Belsher  et Marcot-Coqueugniot  1977 developing  on  artificial  substrata  in  little 

polluted harbours. Pterothamnion crispum (Ducluzeau) Nägeli and Compsothamnion 

thuyoides (J.E. Smith) Nägeli are characteristic species of this Associacion.

Middle sciaphilous vegetation

d) Flabellio-Peyssonnelietum  squamariae Molinier  1958 with 

Peyssonnelia  squamaria (S.G.  Gmelin)  Decaisne,  Flabellia  petiolata (Turra) 

Nizamuddin  and  Osmundaria  volubilis as  caracteristic  species  (Linnaeus)  R.E. 

Norris. This Association is characteristic of  Posidonia oceanica (Linnaeus) Delile 

rhizomes. In high sendimentation condition O. volubilis may develop as facies.

e) Halymenietum floresiae Giaccone  et Pignatti 1967 which develops 

in salty and eutrophic environments. Its characteristic species are Halymenia floresia 

(Clemente)  C.  Agardh,  Boergeseniella  fruticulosa (Wulfen)  Kylin,  Sebdenia 

dichotoma Berthold,  Cladophora  prolifera (Roth)  Kützing,  Scinaia  furcellata 

(Turner)  J.  Agardh,  Sphaerococcus  coronopifolius Stackhouse,  Chrysimenia 

ventricosa (J.V.  Lamouroux)  J.  Agardh,  Halarachnion  ligulatum (Woodward) 

Kützing, Thuretella schousboei (Thuret) F. Schmitz, Alsidium corallinum C. Agardh.
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f) Rhodymenio-Codietum vermilarae Ballesteros 1989 which develops 

in sheltered environments of the lower infralittoral zone with high concentration of 

nitrogenous compounds, especially in spring-summer time. Characteristic species are 

Codium vermilaria (Olivi)  Delle  Chiaje,  Aglaothamnion  tripinnatum (C.  Agardh) 

Feldmann-Mazoyer  and  Spermothamnion  flabellatum Bornet.  Different  from 

Ballesteros  (1989) Rhodymenia ardissonei Feldmann and Mesophyllum lichenoides 

(J. Ellis) Me. Lemoine are considered by Giaccone et al. (1994) as dominant species 

rather than characteristic species since they are widly distributed along the depth.

1.1.5.Importance  of  macroalgal  species  and  communities  as  

ecological indicators

Community’s  structure  and  function  can  change  in  relations  to  environmental 

variations. The presence of species with different pollutant tolerance can be used as indicator 

of  water  quality  (biological  indicators)  (Pergent,  1991).Eecological  indicators are 

assemblages  of  species  that  inform  on  the  ecological   status  of  the  system  through 

modification of its quantitative and/or qualitative features (Blandin, 1986) (Figure 6).

Figure 6: Different kind of biological indicators according to Blandin (1986).
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Bioindicators utilization in environmental monitoring studies allows to determine the 

presence in time of chemical pollutants even when physico-chemical analysis are not able to 

detect them in seawater (Cognetti et al., 1992; Della Croce et al., 1997).

Among marine  flora,  macroalgae  are  considered  good indicators  of  water  quality 

According to  several  authors  (littler  and Murray,  1975;  Levine,  1984;  Diez et  al  1999), 

benthic macroalgae, because of their sedentary condition, integrate the effectssof long-term 

exposure to nutrients or other pollutants resulting in a decrease or even disappearance of the 

most sensitive species and its replacement by higly resistant, thionitrophilic or opportunistic 

species. Cystoseira spp. (i.e. Cystoseira amentacea var. stricta) are considered very sensitive 

indicators. They form relevant ecological facies where many organisms find shelter, habitat 

and nursery and for that  they are considered habitat  formers.  Several  authors reported a 

decrease all over the Mediterranean basin of the presence of this genus in relation to the 

increasing  anthropogenic  impact  and  as  a  consequence  a  decrease  in  the  associated 

communities (Pergent, 1991; Rodriguez-Prieto et al., 1996; Diez et al., 1999; Cormaci and 

Furnari, 1999; Soltan  et al., 2001; Thibaut  et al., 2005; Mangialajo  et al., 2008). On the 

contrary, other macroalgae are used to indicate an increase in organic matter and nutrients 

such as Ulvaceae (Chlorophyta).

Community is the most utilized organization level to assess  ecological changes on 

long time series. Since natural communities develop on time in a way to reach a dynamic 

equilibrium, each disturbance shifts this equilibrium, modifying the whole structure.

Borowitzka  (1972)  showed  how  species  diversity  moves  unidirectionally  along 

neither a stress gradient or the environmental stability.  Decrease in severity of conditions 

and increase of stability from intertidal to subtidal habitats, leads to higher biodiversity. In 

contrast, communities in proximity of an increase in severity of pollutants decreased their 

biodiversity (Borowitzka, 1972; Panayotidis et al., 1999).

Dominant macroalgae living in natural sites have got lower productivity, indicative 

of a  quite  mature  community;  in  this  case species  diversity  and relative  abundances  are 

higher and species have more complex thalli and life cycles (K-species). Their populations 

are regulated by biological interactions as  competition for space and light (Littler  et al., 

1975).

Thanks to achieved knowledge,  some statements on algal assemblages in polluted 

areas have to taken into account:

- Original associations. Vegetative populations are both original 

and diversified in contrast to animal populations.
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- Eterogeneity. Algal population of polluted environments has to 

be considered in its diversity without looking for authentic characteristics in 

every cases as it happens for sciaphilus and photophilus biotopes, for inter- 

and subtidal assemblages, harbours and open waters, warm and cold sectors 

in Mediterranean (Belsher, 1974).

- Species decline. Decrease in species number is usual compared 

to homologous biotopes, even though it is not so evident as expected.

- Phaeophyceae  and  Bangiophyceae  dominance.  Qualitative 

dominance of Chlorophyceae is considered as absolute principle of pollution; 

however  it  does  not  always  occur  everywhere  and,  when  it  is  the  case, 

Chlorophyceae  do  not  became  dominant  whereas  Phaeophyceae  and 

Bangiophyceae they do in the harbours and open water respectively.  By a 

quantitative  point  of  view,  increase  in  nutrients  determines  an  increase  in 

dominance  of  Chlorophyceae,  principally  Ulva  spp.,  and  a  contemporary 

strong  decrease  of  Phaeophyceae  and  Rhodophyceae,  sensitive  to  high 

concentration of phosphate, limiting growth factor into the Mediterranean Sea 

(Basson et al., 1976; Belsher & Boudouresque, 1976).

Colonization  processes  carry  on  differently  in  polluted  and  not  polluted 

environments.  In  both  sites  in  the  first  stages  of  succession  Cianobacteria,  filamentous 

Ectocarpaceae  (Phaeophyceae),  colonial  diatoms  and  Ulva  spp.  occur.  In  polluted  area, 

colonization time is faster because of the efficiency of recruitment of pioneer species (also 

called opportunistic species) even in presence of high mortality (Murray  et al., 1978). In 

unpolluted  areas,  more  complex  development  patterns  have been evidenced leading to  a 

more structured community in time. Simpler temporary dominant species,  as Ralfsia sp. and 

Scytosiphon sp., are indeed substituted by more structural complex species with recruitment 

strategies  optimized  in  determined  seasons  as  it  happens  in  Fucales  Cystoseira  sp.  and 

Sargassum sp. When a subtidal mature community is submitted to not treated drainage for a 

long time, its restoration takes a lot because of different reasons. One of them may be due to 

gametes dispersal strategy; in fact female gametes of Fucales are quite big, adapted to sink 

rapidly with very low dispersal range, about 3 meters far from their parents. Even though 

this  distance  could  be  higher  in  presence  of  a  major  hydrodynamic  force,   Fucales 

recolonization  is strictly dependent by their parent neighbourhood (Soltan et al., 2001).
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For  their  ecological  importance  and   high  sensitivity,  macroalgae  have  been 

introduced as biological quality elements into the Water Framework Directive 2000/60/CE 

with the goal of maintaining and improving the aquatic environments. Up to now, different 

indices have been proposed  for this purpose (Orfanidis et al., 2001; Panayotidis et al., 2004; 

Ballesteros et al. 2007; Falace et al., 2009; Ivesa et al., 2009).
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1.2. Global Climate Change

Climate  system  is  a  complex  system  that  involves  atmosphere,  oceans,  emersed 

lands, cryosphere and biosphere. Climate is generally defined as “mean weather” on long-

term time scale  (decades)  or as Earth’s  energetic  balance response.  This balance can be 

modified with:

 Changes in solar radiation due to terrestrial  orbit  around the 

Sun;

 Changes in albedo that is the solar radiation reflected by snow 

cover, forests, deserts and aerosol particles;

 Changes in greenhouse effect.

Terrestrial climate is affected by these changes and by their feedback mechanisms 

(IPCC, 2007). Positive feedbacks (increase in water vapour and decrease of snow cover with 

consequently less albedo) (Soden  et al., 2002) enhance global warming, whereas  negative 

ones cause cooling. However everything begins from the Sun with its radiant activity on the 

Earth. About 30% of the solar energy, emitted as electromagnetic radiation, is scattered back 

to the space while 20% is absorbed within the atmosphere, and about 50% is absorbed by the 

Earth’s surface. Energy absorbed by the planet is re-emitted as long-wave radiation. Some of 

these long-wave radiations  are scattered  back to  the space while  an other  part  some are 

absorbed by the overlying atmosphere and re-emitted downwards as heat;  this  is the so-

called natural greenhouse effect. In fact atmosphere contains absorbers and emitters known 

as  greenhouse  gases (GHGs),  among  which  the  most  important  is  water  vapour  that 

contributes  50%.  Water  vapour,  in  comparison  to  carbon  dioxide  and  other  gases  (i.e. 

methane),  is not a well mixed gas within the atmosphere. Without the greenhouse effect life 

would not be possible on the planet; in fact if atmosphere was absent it would be a mean 

surface temperature of about -18 °C instead of +15 °C. The balance between absorption and 

emission  of  radiation  is  called  global  radiative  balance.  Some  factors  called  radiative 

forcings have the power to change this balance. Positive forcings and negative forcings can 

rise  or  fall  the  global  temperature,  respectively,  shifting  the  radiative  balance.  Carbon 

dioxide is the most important positive forcing while aerosol (sulphate, organic carbon, dust, 

black carbon and nitrate), associated with scattering and absorption of solar radiation in the 

atmosphere  can be classified as negative  forcing,  even if  its  magnitude is  still  uncertain 

(Serreze, 2010). 
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Net anthropogenic radiative forcings result positive (global warming effect) and they 

are more important than natural radiative forcings.

Anthropic activities (i.e. burning fossil fuel, agriculture) contribute to climate change 

with GHGs emissions and aerosol and with land use (i.e. deforestation causes decrease in 

CO2 uptake and changes in albedo). Increasing in GHGs began during the industrial time 

(1850) (Figure 7).

Figure 7: CO2 changes within the last 10000 years (from IPCC, 2007).

CO2 is the most important anthropogenic GHG (77% of the total GHGs). Its annual 

emission has grown during 1970-2006 by about 80% (from 280 ppm to 380 ppm) and its 

growth rate has been much higher during the period 1995-2006. Future perspectives, based 

on increased CO2 concentration into the atmosphere,  causes two fundamental  impacts on 

Earth’s system:

 Global warming 

 Ocean acidification
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These perspectives are based on different model scenarios that consider different CO2 

concentrations in the future, due to different urbanisation and technological progress levels.

Information collected by climate indictors (tree rings, ice cores, marine sediments) 

confirm that  CO2 concentration in 2006 exceeds values range (180-300 ppm) of the last 

650.000 years  within  glacial  and  interglacial  periods  (IPCC,  2007).  During  the  last  two 

centuries, data showed that CO2 concentration have increased very fast (about 100 ppm); 

differently increases of 80 ppm at the end of glacial period in the Quaternary have occurred 

in thousands of years.

1.2.1. Global warming

CO2 effects will continue for more than a millennium, due to the time scale required 

for the removal of this gas from the atmosphere. In fact even if the concentrations of all 

GHGs had been kept constant at year 2000 level, a further warming of about 0.1 °C per 

decade would be expected (IPCC, 2007).

Global temperature has increased of 0.74 °C during last century and temperatures 

have been the warmest during 1996-2006 and a temperature increase of 0.5 °C would still be 

expected  by  2200.  Temperature  increase  causes  a  decrease  of  the  glaciers  cover  with 

consequent sea-level rise. Satellites and mareographs have registered  an increase of 1.8 mm 

of the global sea-level per year during 1961-2003 and it would be expected a further rise of 

0.3  to  0.8  m by 2300.  Oceanographic  observations  have  evidenced  oceans  temperatures 

increase until 3000m depth (IPCC, 2007).

Among the effects of global warming we can remind:

 Alteration in atmospheric circulation with increase of extreme 

weather events (inland flash floods);

 Coastal erosion and floods due to climate change and sea-level 

rise;

 Glacier retreat with extinction of species and winter tourism

 Reduced  water  availability  with  increased  health  risk  and 

frequency of wildfires

 Increased invasion by non-native species, particularly on mid- 

and high latitude.

The  resilience  of  many  ecosystems  is  likely  to  be  exceeded  this  century  by  a 

combination  of  unprecedented  human  disturbances  (climate  change,  ocean  acidification, 
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pollution).  It  has  been  calculated  that  about  20-30% of  species  are  at  increased  risk  of 

extinction.  Moreover global change will  likely cause changes in ecosystem structure and 

function,  species’  ecological  interaction  and  shifts  in  species’  geographical  range  with 

negative consequences for biodiversity.
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1.2.1. Ocean acidification

Ocean plays a fundamental role in the exchange of CO2 with the atmosphere. Over 

the  past  200 years,  since  pre-industrial  times,  the  ocean  has  absorbed about  half  of  the 

carbon  dioxide  produced  from  burning  fossil  fuels  and  cement  manufacture.  This 

demonstrates the integral role that oceans play within the natural processes of cycling carbon 

at global scale. In the oceans CO2 dissolved in seawater exists in three main inorganic forms 

collectively  known  as  dissolved  inorganic  carbon  (DIC).  These  are:  (i)  aqueous  CO2 

including carbonic acid (H2CO3) (about 1% of the total), and two electrically charged forms, 

(ii) bicarbonate (HCO3
-, about 91%) and (iii) carbonate ions (CO3

2-, about 8%) (Figure 8).

Figure  8:  Relative proportions of the three inorganic forms of CO2 dissolved in seawater.  The green 
arrows at the top indicate the narrow range of pH (7.5–8.5) that is likely to be found in the oceans now 
and in the  future.  Note  the  ordinate  scale  (vertical  axis)  is  plotted  logarithmically (from The Royal 
Society, 2005).

Thus under current ocean conditions, bicarbonate is the most abundant form of CO2 

dissolved  (Royal  Society  report,  2005).  In  fact  CO2 present  in  the  atmosphere,  when in 

contact with superficial water (up to 100 m depth), produces this reaction:

[CO2] + [H2O] → [H2CO3] 1.The carbonic acid is formed

[H2CO3] → [H+] + [HCO3
-] 2.The  carbonic  acid  splits  up  into  its  constituents;  the  pH 

decreases

[HCO3
-] → [H+] + [CO3

2-]  3.The  bicarbonate  ions  react  releasing  carbonate  ions  and 

Hydrogen ions.
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Because of the dissolution of CO2 decreases concentration of carbonate ions (CO3
-) 

which  reacts  with  hydrogen  ions  (H+);  this  reaction  moves  to  the  right  precluding  the 

formation of carbonates minerals following the reaction:

 mineral formation

CaCO3 → [Ca2+] + [CO3
2-]

dissolution 

The carbonate buffer acts to diminish pH changes through two principal processes: 

the uptake of CO2 from the atmosphere, and the interaction of seawater with deep oceanic 

sediments rich in CaCO3. 

As CO2 obeys to Hanry’s law, its concentration in seawater is proportional to partial 

pressure in the atmosphere. So the large increase in atmospheric CO2 is leading to move the 

carbonate system toward the formation of H+. Because CaCO3 is abundant in deep sediments 

the pH cannot change over timescales of 10000 years. As CO2 is absorbed at the sea surface, 

it is the surface ocean which is the most affected.

Thanks to its carbonatic system, the ocean has got a buffering power which maintains 

an almost  constant  pH around 8.2 but it  can vary of ±0.3 units  depending on local  and 

seasonal factors. Temperature and up-welling of deep waters rich of CO2 regulate spatial 

distribution of ocean pH. Higher temperature decreases CO2 uptake by seawater promoting 

its release. CO2 produced by biological decomposition sinks into the deep oceans increasing 

there  its  concentration.  Moreover,  seasonal  temperature  variation  and  daily  biological 

activity (i.e. photosynthesis and respiration) are the major factors driving pH fluctuations in 

seawater (Gonzales-Davila, 2003). In particular coastal water is more affected by wider pH 

variation compared to open ocean, due to the terrestrial system influences (e.g. run off from 

rivers) (Hinga, 2002).

Nevertheless continuous increasing in carbon dioxide into the atmosphere defies the 

oceanic buffer. Excessive CO2 absorption by ocean system causes a decrease in pH; in fact 

since 1750 absorption of CO2 by oceans had already produced a decrease of 0.1 units of pH 

and a further decrease up to 0.5 units of pH is foreseen by 2100 on the global ocean surface 

(Caldeira & Wickett, 2005).
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1.2.2. Impact of acidification on marine organisms

Ocean acidification may have important effects on marine organisms because of the 

abundance of both CO2 and H+ interfering with normal physiological processes.

Many  studies  have  been  done  on  different  groups  of  marine  organisms:  corals, 

pteropods, foraminifera, coccolithophorids, molluscs (for a review see Fabry et al., 2008).

All the three forms of dissolved CO2 are important for the biological processes of 

marine organisms. These include photosynthesis and calcification, providing structures such 

as CaCO3 shells.

Impact on photosynthesis

Also changes in carbonate chemistry and pH due to absorption of CO2 by ocean will 

happen firstly  in  superficial  layers  of the ocean,  namely into the photic  zone where are 

dominant autotrophic organisms. Many studies on photosynthetic organisms take in count 

just phytoplankton and very little has been done for macroalgae. However photosynthetic 

response  result  different  in  accordance  with  different  species  considered.  It  has  been 

demonstrated that doubled present today concentration of dissolved CO2, the photosynthetic 

rates of phytoplanktonic communities increase up to 10% because of carbon concentration 

mechanisms  (Royal  Society  report,  2005).  Different  results  have  been  showed  for 

macroalgae; Giordano  et al. (2005) found a significant increase in photosynthetic activity 

whit  increasing  of  CO2 concentration.  More  studies  have  been  carried  out  to  study 

photosynthesis at increased pH values and they outlined how only few species increase their 

photosynthetic  rate  with  increased  pH value,  as  they  can  convert  bicarbonate  (the  most 

abundant inorganic carbon at higher pH value) into CO2. Other species have not developed 

this conversion mechanism and photosynthesis is not saturated; rather more species increase 

their photosynthetic rate at lower pH (Beer et al., 1996; Johnston et al., 1992; Raven, 2003; 

Menéndez  et  al.,  2001).  Middelboe  et  al.  (2007)  have  remarked,  at  compared  carbon 

concentration,  a decreased of photosynthetic rates at higher pH as a consequence of  the 

membrane transport mechanism or with cellular pH homeostasis.

Impact on calcareous organisms

Calcification is a well controlled process and it generally requires a biological input 

even thought seawater can be considered CaCO3 saturated today. Cacification mechanism is 

still  nowadays bad known. It is either intracellular or extracellular.   In the first case, the 

precipitation  is  realised  into  specific  cellular  compartments,  whereas  in  the  second  one 
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calcium carbonate precipitates onto external cellular surfaces. Calcareous species differ one 

another both for the structure and for chemical  composition of mineral  crystals.  Benthic 

macroalgae offer an example of that: either high Mg-calcite or aragonite can precipitate.

Supersaturated  water  of  Ca2+ and  CO3
- ions  is  needed  to  set  up  and  maintain 

calcareous  structures.  Low  pH  values  reduce  carbonate  saturation  and  therefore  the 

calcification process too, weaking the organisms’ resilience. 

During  calcification  processes,  water  alkalinity  decreases  and  organisms  actively 

increase pH in the medium that determine an increase in carbonate ions. If environmental pH 

is already low, calcification mechanism will require more energy which is normally used in 

metabolic processes with consequent fall of both growth and fitness (Royal Society report, 

2005).

Calcium carbonate exists in two mineral structures: calcite and aragonite, the former 

less  soluble  than  the  second.  However  different  intermediate  states  are  present  into  the 

calcareous  organisms.  Macroalgae  precipitate  mostly  aragonite  or  calcite  with  high 

abundance of Magnesium (high Mg-calcite  is with >4% MgCO3) (Stanley  et al.,  2002). 

They deposit calcareous structures outside the cell  even though background studies have 

demonstrated in Corallinaceae a strong relationship between calcification and their cell wall 

(Wray,  1977) In fact  calcification begins from the external  side of the cell  wall  through 

vesicles  derived from Golgi  apparatus;  then  it  extends  toward inside  leaving  just  a  not-

calcified  layer  around  the  protoplast  (Wray,  1977).  Although  calcification  is  a  quite 

widespread  mechanism  in  biological  systems,  its  function  is  not  clear  yet  (protective, 

metabolic, adaptive, etc…) and its lost may have long-term consequences on physiological 

and ecological fitness still unknown.

A helpful  parameter  to  determine  the  critical  concentration  of  carbonate  ions  for 

biological  systems  in  seawater  is  the  omega  factor (Ω)  that  increases  decreasing  the 

temperature and increasing the pressure:

Ω = [Ca2+]  [CO3
2-] Ksp

(when the mineral is at equilibrium (Ksp), that is, when the mineral is neither forming 

nor dissolving) (Atkinson & Cuet, 2008). When Ω is < 1 CaCO3 dissolves.

Published  data  on corals,  coccoltiphorids  and foraminifera  suggest  a  reduction  in 

calcification  of  5-25%  with  doubling  CO2 atmospheric  concentration  compared  to  pre-

industrial  values  (Feely  et  al.,  2004)  and that  occurs  even when omega is  over  1.  This 
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response is valid both for intra- and extra-cellular calcification and concerns both aragonitic 

and calcitic organisms. However it should be outlined that these studies are carried out on 

short term periods and on species only. For the same reason it is very difficult to predict and 

to study community responses to ocean acidification (Royal Society report, 2005).

Because the CaCO3 mineral calcite is less soluble than the form aragonite, saturation 

horizon (the depth at which CaCO3 begin to dissolve) is shallower.

Macroalgae has both high Mg-calcite and aragonite. Any changes in calcification will 

have also important feedbacks both on biodiversity and on the global carbon cycle.
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1.3.General aim

Global changes will lead biological systems to face up to new environmental scenario 

both in the terrestrial  and aquatic environments;  for this reason serious interest  has been 

addressed to study acidification effects on marine organisms. 

Particular attention has to be focused on aquatic primary producers, as macroalgae, 

because trophic webs are strictly dependent on them. Macroalgae are a crucial component of 

coastal  ecosystems:  they  provide  both  habitat  and  nursery  areas  for  numerous  species 

including  those  belonging  to  microbial  loop,  fundamental  for  the  nutrients  recycling. 

Moreover,  macroalgal  communities  are  sensitive  to  pollution  derived  from  coastal 

anthropogenic activities and for that they are used as biological indicators. 

Even though more and more studies have been carried out during last years on the 

responses  of  calcareous  marine  organism to  acidification  (see  Fabry  et  al.,  2008  for  a 

review), little have been achieved on non-calcareous macroalgal species and more less on 

changes  in  macroalgal  communities  structure  and  functioning.  Physiological  approaches 

have been performed on the effects of higher pH values (Beer et al., 1996; Johnston et al., 

1992; Raven, 2003; Menéndez et al., 2001) but very few in relation to an increase in water 

acidification (Barott et al., 2009; Hurd et al., 2009)).

It needs to extend ecological studies from individual organism to communities  and 

systems in order to predict future coastal marine scenario. Although temperature is known to 

have  ubiquitous  effects  on  rate  of  physiological  processes  and  the  integrity  of 

macromolecular  structures,  water chemistry is  changing rapidly and greatly affecting the 

physiology of marine organisms, calcareous and not. In order to assess the capacity for a 

given genotype to produce different genotypes in response to different environment, it needs 

to  integrate  comparative  physiology and evolutionary biology.  For this  reason,  this  PhD 

project,  focused on the effects  of water acidification on shallow benthic  algae,  has been 

carried  out  with  an  integrated  approach  by  using  taxonomic,  ecologic,  physiologic  and 

molecular tools.

The thesis is therefore subdivided in the following chapters:

Chapter 2: Changes in the algal community structure along natural pH gradients.

The  study  of  the  community  composition  is  fundamental  to  understand  how 

organisms  walk  the  tightrope  between  stability  (normal  pH)   and  change  (water 

acidification). Moreover, changes in the colonizing pattern along a natural pH gradient has 
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been invistigated. Alterations in the settlement of species succession can contribute to the 

final structure and functioning of the community

Chapter 3: Different responses in ecophysiological traits in target species along a pH 

gradient.

The functional diversity of organisms is responsible of their ability to compete and 

overcome the water acidification. 

Chapter 4: Changes in genetic diversity along a natural pH gradient.

Molecular diversity can represent the window to look at the genome variability in 

stressed environments.
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2. Changes in the algal  community structure along natural  pH 

gradients
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2.1. Introduction

The oceans currently absorb over 25 million tons of anthropogenically produced CO2 

every day causing unprecedented changes to ocean chemistry (IPCC, 2007). Observations 

and models indicate that the average pH of the surface ocean has declined from 8.2 by 0.1 

units since pre-industrial times due to CO2 emissions and is projected to be around mean pH 

7.8 by the end of the century (The Royal Society, 2005). As well as lowering pH, increasing 

CO2 levels are lowering calcium carbonate saturation states but increasing the amounts of 

bicarbonate  ions  (HCO3
-).  Laboratory  and mesocosm experiments  have  shown that  these 

changes in carbonate chemistry can significantly affect carbon fixation by photoautotrophs 

which may cause global ecological disturbances over the coming decades (Kroeker  et al., 

2010) although there are still too few data to confirm that (Hendricks & Duarte, 2010).

Benthic  photoautotrophs  exhibit  mixed responses to ocean acidification,  indicating 

that  there  will  be changes  in  their  settlement,  competition  and dominance  that  will  have 

knock-on  effects  on  coastal  ecosystems  (Connell  &  Russell,  2010).  However,  it  is  very 

difficult to scale-up the observations undertaken to date to predict the effects of increasing 

CO2 emissions at the ecosystem level since most studies have been short-term (<1 year) on 

single or small groups of species.  Some cyanobacteria grow well with CO2
 enrichment and 

their increased N2 fixation may alter ocean biogeochemistry (Fu  et al., 2008; Kranz  et al., 

2009).  Some marine algae also benefit from higher CO2 levels, enhancing their growth (Gao 

et al., 1999, Kübler et al., 1999; Riebesell et al., 2007) and calcification (Iglesias-Rodriguez 

et al., 2008), although the effects can vary between closely related species and even between 

strains of the same species (Langer  et al., 2009). In general, seagrasses seem able to thrive 

under  high  CO2 conditions  (Palacios  &  Zimmerman,  2007;  Hall-Spencer  et  al.,  2008), 

although  the  associated  epiphytic  algal  cover  falls  as  CO2 levels  increase  (Martin  et  al., 

2008). Coralline algae appear to be amongst the most sensitive photoautotrophs as they have 

a skeletal mineralogy that dissolves easily at predicted levels of calcium carbonate saturation 

(Gao et al., 1993; Martin & Gattuso, 2008) and this is a particular concern as these algae are 

of  fundamental  ecological  importance  in  a  range  of  coastal  habitats  worldwide  (Nelson, 

2009).

Macroalgal communities perform a range of ecosystem services in shallow coastal 

systems such as providing food, forming substrata for settlement, offering protection from 

predators  and  shelter  from  disturbances,  other  than  breeding  and  feeding  for  many 

commercially important species (Choi et al., 2002). Macroalgal communities are sensitive to 
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anthropogenic disturbances and so are used to assess the status of coastal ecosystems, for 

example under the European Water Framework Directive (Orfanidis et al., 2001; Ballesteros 

et al., 2007). The sensitivity of Mediterranean macroalgal communities is well documented: 

Ulvales can become dominant  in nutrient  enriched areas (Pergent,  1991);  habitat-forming 

Cystoseira spp. are lost from large stretches of polluted coastlines (Rodriguez-Prieto  et al., 

1996; Thibaut et al., 2005; Mangialajo et al., 2008); ecosystems have been degraded by the 

invasive behaviour of introduced species such as Caulerpa spp. (Balata et al., 2004). 

In addition to species analysis, a morpho-functional approach has been also applied. 

The first analysis was carried out to assess which taxonomic units can survive in acidified 

seawater and therefore how communitiies change their structure. However, a taxonomic unit 

may be composed by species possessing very different structural and functional properties. 

To  overcome  these  problems,  ecologists  have  tried  to  group  organisms  with  similar 

structural and functional characteristics with the aim to obtain a better understanding, and 

possibly generalization, of the functioning of the ecosystems. The functional groups may be 

defined utilising elements  that  bear  a  certain  set  of common structural  and/or  functional 

features.  These  include  quality  criteria  (i.e.  size/form,  physiological  and  life  strategy 

characteristics),  temporal  appearance  and  distributional  characteristics,  whereas,  at  the 

species  level,  the  functional  groups  may  include  taxonomic  units  as  well  (Salmaso  & 

Padisak,  2007)  Functional  groups  were  used  in  different  fields  of  ecological  research, 

including vegetation studies (Leishman & Westoby, 1992), prediction of effects of global 

climate change (Gitay  et al., 1999), conservation biology (Pressey  et al., 1993), studies of 

microorganisms  (Meyer,  1993),  fungi  (Oberwinkler,  1993),  macrophytes  (Shipley  et  al., 

1989) and macroinvertebrates (Usseglio-Polatera  et al., 2000). In this work classifications 

based on the morphological and functional characteristics of benthic macroalgae were used 

to  evaluate  the  effect  of  water  acidification  on  the  functional  richness  of  the  shallow 

communities.

Algal morpho-functional groups were used by Steneck and Watling (1982) to study 

susceptibility of some thallus structures to grazing pressure by molluscs. Later, there have 

been  made  many  attempts  to  use  algal  group  classification  in  community  analysis  and 

prediction according to diverse environmental and ecological factors (Littler & Littler, 1982; 

Phillips  et  al.,  1997;  Lavery  & Vanderklift,  2002;  Guidetti,  2006;  Bulleri  & Benedetti-

Cecchi, 2008).

Physical  and  chemical  parameters  interfer  with  the  development  process  of 

macroalgal species which may lead to significative changes in their community structure 
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(Falace & Bressan, 1994; Branco  et al., 2005) and consequently the loss of services they 

offer.

Also,  differences  in  susceptibility  of  macroalgae  to  ocean  acidification  may 

completely alter  coastal  ecosystems  as  changes  in  algal  communities  lead to  changes  in 

herbivore diversity and abundance (Benedetti-Cecchi et al., 2001; Darcy-Hall & Hall, 2008). 

Such changes in species distributions and abundances are expected to propagate up through 

the trophic levels of marine food webs (Guinotte & Fabry, 2008; Fabry et al., 2009) but little 

research has been carried out on the effects of ocean acidification at the ecosystem level 

(Wootten et al., 2008).

To  improve  knowledge  regarding  responses  of  marine  ecosystems  to  ocean 

acidification we assess macroalgal  community changes at the Castello Aragonese (Ischia) 

site, already described by Hall-Spencer  et al. (2008), where increasing CO2 levels cause a 

natural  pH  gradient  at  ambient  temperature  and  salinity.  Changes  in  seaweed  species 

diversity  and  abundance  along  a  pH gradient  have  been  examined  and  also  changes  in 

morphological groups to help link changes in community structure to ecosystem functioning 

(Micheli & Halpern, 2005).

Finally,  early colonization stages and processes have been investigated in order to 

assess  which  could  be  the  effects  of  water  acidification  on  macroalgal  community 

development when new substrata, derived both by natural and anthropogenic perturbation, 

are available.
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2.2. Material and Methods

2.2.1. pH monitoring

pH was continuously monitored at Castello by means of a prototype pH-meter created by 

SCRIPPS, Institution of Oceanography, University of California (Figure 9). It is constituted 

by  an  automated  data-logger  which  records  every  hour.  They  were  moved  periodically 

between the Southern and the Northern side.

Figure 9: pH-meter

2.2.2. Macroalgal community: natural substrate

In  order  to  characterize  Macroalgal  community  sampling  was  carried  out  during 

autumn 2007 and autumn 2008. Samples were collected from 0.70-1.0 m below mean sea 

level along the pH gradient removing all organisms from the bedrock using a hammer and 

chisel  from 20*20 quadrats, according to sampling techniques already developed for this 

Mediterranean rocky shore habitat (Ballesteros, 1986). In 2007 a hierarchical experimental 

design was used on the Southern side of Castello: three 30 m wide sectors where chosen at 

least 50 m apart one another: sector S1 was at normal pH (8.1); S2 had mean pH 7.83 and S3 

had mean pH 6.72. In each sector three 5 m wide zones were chosen at least 6 m apart (A-I, 

Figure 10).

31 2
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Figure 10: Experimental sampling design in 2007.

In each zone, three randomly placed quadrats were sampled. Sector was a fixed factor 

with three levels, each zone (A-I) was a fixed factor with three levels nested in each Sector 

whereas quadrats were random replicates (Figure 10). In order to investigate the combined 

effect  of  water  acidification  with  coastal  exposition,  a  new sampling  was  performed  in 

autumn 2008, adding the Northern side of the Castello and a new control site Sant’Anna 

(C3) having the same exposition of S3 but normal pH (8.1). Four replicates were randomly 

chosen in S1, S2, S3 on the South, in N1, N2, N3 on the North, and in C3 (Control) (Figure

11).
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Figure 11: Experimental sampling design in 2008.

Samples were preserved in 4% formalin:seawater.  Algae were identified to species 

level and their coverage was quantified as percentage of horizontal surface measured after 

spreading the algal thalli in a laboratory tray (Ballesteros, 1986). Coverage of 0.01% was 

assigned to  species  with negligible  abundance.  Light  microscopy was used to  detect  the 

presence of reproductive structures: their occurrence was compared only in those species 

recorded at the three pH conditions. A taxonomic list was compiled.  Later, species were 

grouped into three morphological categories, namely ‘crustose’, ‘turf’ and ‘erect’ according 

to the thallus size and form. Algal turfs consist mostly of tiny filaments with canopy height 

of less than 10 mm; erect algae are larger (>10mm in height), canopy-former and can be 

either fleshy or calcareous; crustose algae are prostrate forms, calcareous and non-calcareous 

(Diaz-Pulido & McCook, 2008).

Another  classification  was achieved according  to  structural  and functional  thallus 

complexity (Table 1).

Table 1: Classification and description of each Agal Group (AG) with respect to the thallus structure
ALGAL GROUP

(AG) DESCRIPTION

1 Uniseriate filamentous algae
2 Thinly corticated and polysiphonous algae
3 uni- or multilayered foliose algae
4 Globular algae
5 Non-calcareous encrusting algae
6 Corticated Laminar algae
7 Corticated terete algae
8 Leathery Macrophytes
9 Semi-calcareous laminar algae
10 Uni-layered Calcareous algae
11 Calcareous crustose algae
12 Articulated calcareous algae
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Each  identified  species  has  been  assigned  to  one  of  these  Algal  Groups  (AG). 

Quantitative dominance has been calculated for each Algal group as DR%, that is:

DR% = SRi/Rt x 100

where Ri is the species cover and Rt is the total cover in a the quadrat.

Multivariate analysis (nMDS) using Primer-E software (Clarke & Warwick, 2001) 

were performed to examine community structure, at both species and algal groups levels. 

Finally, differences in species and group composition among sectors have been evaluated by 

means of similarity analysis (ANOSIM, Clarke & Warwick, 2001).

2.2.3. Macroalgal  community:  artificial  substrata  early  colonization 

experiment

In order to determine the effect of acidification on early algal colonization, 15*15 

lavic stone tiles were used. The tile material was chosen according to the volcanic origin of 

the rocky substrate at the Castello area.  They were fixed on the rock by means of screws in 

their center.

Nine tiles were set up in each sector (S, N, and C). Algal colonization was followed 

from April to July 2008. Apart the first month, three replicates were removed in each sector 

after two, three, and four months (May, June and July, respectively).

Once removed, the tiles were preserved in 4% formalin:seawater for 1-2 days and 

then mantained in ethanol 70° until laboratory observations.

By using a grid net (2.5 cm), three sub-quadrats randomly selected were observed 

under the stereomicroscopy (Figure 12). Sub-quadrats of the edge and the inner part were not 

included in the analysis.

38



Figure 12: Highlighted red area on the tile from which sub-qudrats were randomly chosen.

2.2.4. Community data analyses

For natural communities, differences among sectors were determined by calculating 

species number,  percent cover of each species, species diversity (estimated as loge based 

Shannon-Weaver diversity Index, H’), percent cover of the crustose, turf, erect categories 

and Algal Groups. K-dominance curves of species coverage data were plotted and Principal 

Component Analysis (PCA) was performed using Syn-tax software (Podani, 2001).  Species 

with <0.03 percentage cover were excluded from this analysis.

ANOVA and the  Post hoc Tukey’s test (GraphPad Prism package) were applied to 

test any differences among the three sectors. Homogeneity of variances was always tested; 

when not met, data were log-transformed.

Differences in species, algal groups, and abundances among sectors of both natural 

communities and early colonization were evaluated by means of non- Multi Dimensional 

Scaling  (n-MDS),  similarity  analysis  (ANOSIM),  and  SIMPER  analysis.  K-Dominance, 

ANOSIM,  SIMPER  and  nMDS  analyses  were  performed  with  PRIMER  5  (Clarke  & 

Warwick, 2001).
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2.3. Results

2.3.1. pH monitoring

Figure 13: Variability in seawater pH on the Southern side of Castello (Kroeker et al., in prep.)

Daily changes in pH seawater were clear on the South side and on the North side (Figure 13 

and  Figure 14 respectively).  Sector were well characterized by different mean pH values. 

Higher pH variability were reported in more acidified seawater.
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Figure 14: Variability in seawater pH on the Northern side of Castello (Kroeker et al., in prep.).

2.3.2. Macroalgal community: natural substrata

In  2007  a  total  of  101  macroalgal  taxa  were  recorded  in  27  quadrats,  including  71 

Rhodophyta, 16 Ochrophyta and 15 Chlorophyta (Table 2).

Table 2: Total number of Rhodophyta, Ochrophyta and Chlorophyta species and total number of erect, 
crustose and turf species collected in 2007.

 S1 S2 S3
 pH=8.1 pH=7.8 pH=6.7

Rhodophyta 50 48 10
Ochrophyta 12 11 6
Chlorophyta 12 11 3

Erect 17 14 7
Crustose 19 20 2
Turf 38 36 10

Total 74 70 19

The highest species richness (Table 2) was sampled at S1 (pH=8.1); 5% fewer species 

were sampled at S2 (pH=7.8) and 72% fewer species were sampled at S3 (pH=6.7). ANOVA 

and a  post-hoc Tukey test showed highly significant reductions in species diversity (H’) as 
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CO2 levels  increased  (  H’S1=2.29  ±  0.07;  H’S2 =1.88  ±  0.07  and  H’S3,  =1.18  ±  0.05, 

respectively) (F=25.62; p<0.0001, S1=S2>S3) in 2007.

In the 2008’s sampling a total of 113 macroalgal taxa were identified in 26 quadrats, 

including 80 Rhodophyta, 19 Ochrophyta and 14 Chlorophyta (Table 3). As regard as species 

diversity, the same pattern was observed in 2008, compared to 2007 in both Southern and 

Northern side (F=9.68; p<0.0001): H’S1  =2.68 ± 0.06; H’S2 =2.31 ± 0.16 and  H’S3 =1.36 ± 

0.12, whereas H’N1  =1.69 ± 0.48; H’N2  =1.52 ± 0.30 and  H’N3  =1.66 ± 0.22, revealing the 

higher  diversity  for  the  Southern  side  compared  to  the  Northern.  However,  the  highest 

diversity  was  observed in  C3 (H’C3 =2.44  ±  0.21)  even though there  were  no  statistical 

differences with S1 (p>0.05).

Table 3: Total number of Rhodophyta, Ochrophyta and Chlorophyta species and total number of erect, 
crustose and turf species collected in 2008

 C3 S1 S2 S3 N1 N2 N3
 pH=8.1 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.9 pH=7.09
 

Rhodophyta 33 48 44 14 32 29 24
Ochrophyta 11 11 11 6 6 9 9
Chlorophyta 9 11 11 4 7 6 6

Erect 13 13 17 10 9 12 11
Crustose 13 17 14 2 17 15 6
Turf 27 40 35 12 20 17 22

Total 53 70 66 24 45 44 39

Clear  shifts  were evident  in  species  distribution  along the  CO2 gradient.  The  kite 

graph (Figure 15) shows the distribution of the most abundant species along the different 

zones (A-I) identified in the 2007 sampling. The same pattern has been recorded one year 

later, on both side of Castello (Figura 16).
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Sphacelaria tribuloides (O)

Amphiroa rigida (R)

Stypocaulon scoparium (O)

Valonia utricularis (C)

Jania rubens (R)

Padina pavonica (O)

Lithophyllum sp. (R)

Cystoseira amentacea var. stricta (O)

Corallina elongata (R)

Phymatolithon cfr lenormandii (R)

Peyssonnelia polymorpha (R)

Neogoniolithon brassica-florida (R)

Mesophyllum sp. (R)

Peyssonnelia rosa-marina (R)

Lobophora variegata (O)

Lithophyllum incrustans (R)

Hydrolithon cruciatum (R)

Flabellia petiolata (C)

Peyssonnelia squamaria (R)

Chondracanthus acicularis (R)

Osmundea truncata (R)

Hildenbrandia rubra (R)

Dictyota dichotoma (O)

Sargassum vulgare (O)

Cladostephus spongiosus (O)
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Figure 15: Kite diagram showing distribution of the most abundant macroalgal species (>3% coverage) 
in  27 20*20 cm quadrats  along a pH gradient from S1 (pH=8.1),  S2 (pH =7.8)  and S3 (pH =6.7)  in 
Autumn 2007. R = Rhodophyta, O = Ochrophyta, C = Chlorophyta.

Errore. Non si possono creare oggetti dalla modifica di codici di campo.
Figura 16: Kite diagram showing distribution of the most abundant macroalgal species in 26 20*20 cm 
quadrats along a pH gradient on South (S), North (N), and Control (C ) sites (S1: pH=8.1; S2: pH=7.8; 
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S3: pH=6.7; N1: pH=8.14; N2: pH=7.87; N3: pH=7.09; C3: pH= 8.1). R = Rhodophyta, O = Ochrophyta, 
C = Chlorophyta.

In 2007, fourteen species of calcareous algae were sampled at normal pH, but only 7 

at mean pH 7.8 and none at mean pH 6.7, where both calcite and aragonite saturation states 

were <1 (Figure 17A and Figure 17B). The same trend was observed in 2008 (Figure 17C 

and Figure 17D). In this year no calcareous species were recorded in the most acidified site 

on the South side (S3) while they were present (only four species) on the North side (N3).

Figure  17: Calcitic (A) aragonitic (B) macroalgal species number (black bars, n=9) in 2008 along the 
Southern side pH gradient (from pH=8.1, to pH=7.8 and pH=6.7) and along the Northern side gradient 
(from pH =8.14, to pH=7.87 and pH=7.09. Calcitic (C) aragonitic (D) macroalgal species number (black 
bars, n=4) in 2008 along both the Southern and the Northern side pH gradient. Corresponding  values 
(white bars) are reported. (Mean ± s.e.).

ANOVA results  (Table 4) show a significant decrease in calcitic species number at 

mean pH 7.8 where the overall cover of calcareous algae was much lower than at mean pH 

8.1.  Most calcitic (e.g. Jania rubens, Amphiroa rigida, Phymatolithon cf. lenormandii) and 

aragonitic species (e.g. Peyssonnelia spp., Padina pavonica and Halimeda tuna) were more 

abundant  at  mean  pH  8.1  (both  in  2007  and  2008),  although  the  thin  calcitic  crust 

Hydrolithon  cruciatum and  the  lightly  calcified  aragonitic  crust  Peyssonnelia  squamaria 

were more abundant at mean pH 7.8 (S2).
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Table 4: ANOVA results for carbonate saturation states (calcite and aragonite) and the species richness of 
aragonitic and calcitic  calcareous species  in 2007 and 2008. Both  calcite and  aragonite values had to be 
transformed to Log10 before the ANOVA analysis.
 2007 South d.f. F P Tukey's test
Calcitic species 2 130.5 <0.0001 S1>S2>S3
Ω calcite 2 92.95 <0.0001 S1=S2>S3
Aragonitic species 2 38.65 <0.0001 S1=S2>S3
Ω aragonite 2 93.31 <0.0001 S1=S2>S3
 2008 South
Calcitic species 2 19.24 <0.001 S1=S2>S3
Ω calcite 2 92.95 <0.001 S1=S2>S3
Aragonitic species 2 13.46 <0.05 S1=S2>S3
Ω aragonite 2 93.31 <0.001 S1=S2>S3
 2008 North
Calcitic species 2 8.46 <0.05 N1=N2>N3
Ω calcite 2 51.42 <0.0001 N1=N2>N3
Aragonitic species 2 2.79 0.11 N1=N2=N3
Ω aragonite 2 51.27 <0.0001 N1=N2>N3

No differences were recorded among similar pH sectors (e.g. S1 of 2007, S1 of 2008, 

N1 and C3) between the two years for both calcite and aragonite species number.
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Figura 18: K-Dominance curves for macroalgal coverage along the pH gradients in the Southern sites in 
2007 (A), and in the Southern, Northern and Control sites in 2008 (B).
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The  diversity  and  abundance  of  non-calcareous  algae  also  shifted  along  the  CO2 

gradient.  For  example,  the  Ochryophyte  Dictyota dichotoma and  the  Rhodophyte 

Hildenbrandia rubra were present along the whole pH gradient with their highest percentage 

cover  at  mean  pH  6.7  (S3).  In  contrast,  Sargassum  vulgare,  Cladostephus  spongiosus, 

Osmundaea truncata and  Chondracanthus  acicularis were confined to the most acidified 

zone  in  2007 samplings  while  in  2008 the  presence of  S.  vulgare specimens  were  also 

recorded at different pH values but with neglectful covers (Figure 15 and Figura 16).

These  differences  in  species  richness  and abundance  affected  the  structure  of  the 

community, as shown in  Figura 18A (for the year 2007), where the cumulative percentage 

dominance  of  species  is  ranked  on  a  logarithmic  scale.  The  highest  algal  community 

complexity was evident at S1, whereas at S2 there was a shift towards greater dominance by 

fewer species and at S3 the simplified community was dominated by very few species. The 

same pattern was recorded the year later on both sides but with a less richness in species on 

the Northern side (Figura 18B). 

Figure  19: Principal component analysis (PCA) ordination for macroalgal cover data collected along a 
pH gradient in 2007. Triangles represent sampling locations, labelled with letters corresponding to Fig. 1. 
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Dots represent individual species (calcified species circled) and numbered correspond to species listed in 
Appendix I.

The PCA biplot (only performed for 2007 data set) (Figure 19) displays both sample 

(triangles)  and  species  (numbers  with  vectors)  distribution  between  the  two  principal 

components. The first component explains 26.8% of the species distribution with the second 

component it reaches 38.8%. The biplot displays a typical horseshoe shape because of non-

linear relationships among species, for example due to competition for space and light.

Samples A-C group together on the right side of the diagram and were from mean pH 

8.1 (S1) with many calcified species  present (circled),  samples  D-F (from mean pH 7.8) 

group in the centre with fewer calcifiers and samples G-I from the most acidified area (S3) 

show  a  sharp  discontinuity  from  the  others.  This  differentiation  is  due  both  to  species 

composition and their abundance differences among the three sites. Statistical differences in 

community composition among sectors are highlited by ANOSIM results (Table 5). SIMPER 

analysis  of  percentage  species  cover  (Table  6 and  Table  7)  shows that  averaged species 

abundances allow discrimination one sector from another.

Table 5: ANOSIM Global Test for species in 2007. Sample statistic (Global R): 0.886. Significance level of 
sample statistic: 0.1%. Number of permutations: 999 (Random sample from a large number). Number of 
permuted statistics greater than or equal to Global R: 0.

Groups
R Significance Possible Actual Number 

Statistic Level % Permutations Permutations Observed
S3 - S2 1 0.1 24310 999 0
S3 -  S1 1 0.1 24310 999 0
S2 -  S1 0.559 0.2 24310 999 1

This differentiation is quantified by dissimilarity percentage. SIMPER attributed the 

highest average similarity among quadrats of sector S3 dominated by Dictyota dichotoma and 

the highest dissimilarity (>89%) among S3 and the other two sectors (Table 6).

Table 6: SIMPER similarity analysis of macroalgal species coverage within sectors along the pH gradient 
in 2007.

Species

Average 

Abundance

Average 

Similitude

Similitude/ 

SD

Contribution 

%

Cumulative 

%
Sector S1
Average similarity: 57.02

Jania rubens 69.22 11.1 3.04 19.46 19.46
Valonia utricularis 28.5 6.69 6.3 11.73 31.19
Amphiroa rigida 10.28 4.53 2.96 7.95 39.14
Flabellia petiolata 20.33 2.67 0.7 4.68 43.82
Dictyota dichotoma 6.09 2.48 1.92 4.35 48.17
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Sector S2
Average similarity: 49.58

Flabellia petiolata 66.22 12.73 1.54 25.68 25.68
Hydrolithon cruciatum 18.53 5.69 1.19 11.48 37.15
Jania rubens 10.09 3.83 1.16 7.73 44.89
Hildenbrandia rubra 4.44 3.78 2.42 7.63 52.52
Lobophora variegata 8.39 2.8 0.8 5.64 58.17
Sector S3
Average similarity: 64.35

Dictyota dichotoma 44.17 25.12 3.12 39.03 39.03
Hildenbrandia rubra 26.28 21.07 6.37 32.75 71.78
Osmundea truncata 4.7 5.11 1.8 7.94 79.71
Chondracanthus acicularis 4.96 4.05 0.83 6.29 86.01
Sargassum vulgare 22.17 3.85 0.54 5.99 91.99

The  highest  percentage  contributions  to  the  dissimilarities  were  due  to  the  erect 

calcareous Rhodophyta  Jania rubens, which was dominant at mean pH 8.1 (S1), the erect 

Chlorophyta  Flabellia petiolata, which was dominant at mean pH 7.8 (S2), and the erect 

Ochrophyta  Dictyota dichotoma, which was dominant  at  mean pH 6.7 (S3).   Of the turf 

forming  species,  the  loss  of  Valonia  utricularis and  replacement  by  Osmundea  truncata 

drove much of the community shift as pH decreased (Table 7).

Table 7: SIMPER dissimilarity analysis of macroalgal species coverage between pairs of sectors in 2007.

Species

Average 

Abundance

Average 

Abundance 

Average 

Dissimilarity Contribution %
Sectors S1 & S2 
Average dissimilarity: 58.22

Sector S1 Sector S2
Jania rubens 69.22 10.09 5.39 9.25
Flabellia petiolata 20.33 66.22 5.05 8.67
Valonia utricularis 28.5 2.57 3.61 6.2
Hydrolithon cruciatum 2.53 18.53 2.85 4.9
Peyssonnelia squamaria 3.87 8.86 1.95 3.34
Sectors S1 & S3 
Average dissimilarity: 89.61

Sector S1 Sector S3
Jania rubens 69.22 0 9.97 11.12
Valonia utricularis 28.5 0.12 5.97 6.66
Dictyota dichotoma 6.09 44.17 5.36 5.98
Hildenbrandia rubra 3.18 26.28 4.44 4.95
Flabellia petiolata 20.33 0 4.14 4.62
Sectors S2 & S3 
Average dissimilarity: 89.37

Sector S2 Sector S3
Flabellia petiolata 66.22 0 11.74 13.13
Dictyota dichotoma 1.34 44.17 8.94 10.01
Hydrolithon cruciatum 18.53 0 5.96 6.67
Hildenbrandia rubra 4.44 26.28 4.9 5.48
Sargassum vulgare 0 22.17 4.63 5.18
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Significative  differences  among  communities  sampled  in  2008  are  highlighted  by 

ANOSIM (Table 8).

Table 8: ANOSIM Global Test for species in 2008. Sample statistic (Global R): 0.765; significance level of 
sample statistic: 0.1%; Number of permutations: 999 (Random sample from a large number); Number of 
permuted statistics greater than or equal to Global R: 0

Groups
R Significance Possible Actual Number 

Statistic Level % Permutations Permutations Observed
S1 - C3 0.893 6.7 15 15 1

S1 - S2 0.333 8.6 35 35 3

S1 - S3 1. 2.9 35 35 1

S1 - N1 0.938 2.9 35 35 1

S2 - S3 0.958 2.9 35 35 1

S2 - N2 0.646 5.7 35 35 2

S2 - N3 0.458 2.9 35 35 1

S3 - N3 0.74 2.9 35 35 1

N1 - N2 0.188 17.1 35 35 6

N1 - N3 0.74 2.9 35 35 1

N2 - N3 0.427 8.6 35 35 3

SIMPER analysis for 2008 data set showed the highest similarity among quadrats for 

S3 again, where D. dichotoma v. intricata was dominant (Table 9). 

The highest dissimilarity was recorded between S3 and both S1 and S2 (>72%) where 

D. dichotoma v.  intricata,  Sargassum vulgare and  Cladophora prolifera had  the  highest 

abundances in S3 whereas Jania rubens characterized S1.

Table 9: SIMPER similarity analysis of macroalgal species coverage within sectors along a pH gradient in 
2008.

Species

Average 

Abundance

Average 

Similitude Contribution % Cumulative %
Sector C3
Average similarity: 56.49

Peyssonnelia squamaria 11.50 4.11 7.28 7.28
Titanoderma pustulatum 3.90 3.35 5.93 13.21
Dasya hutchinsiae 3.50 3.27 5.79 19.00
Peyssonnelia polymorpha 21.90 3.21 5.69 24.69
Titanoderma corallinae 2.75 3.13 5.53 30.22
Sector S1
Average similarity: 55.40

Jania rubens 19.38 4.86 8.78 8.78
Lobophora variegata 15.63 4.58 8.27 17.04
Valonia utricularis 7.75 3.41 6.15 23.19
Hildenbrandia crouaniorum 7.63 3.20 5.78 28.97
Amphiroa rigida 9.20 2.87 5.17 34.14
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Sector S2
Average similarity: 47.43

Hildenbrandia crouaniorum 28.25 5.95 12.55 12.55
Dictyota dichotoma v. intricata 8.13 4.19 8.84 21.40
Peyssonnelia squamaria 2.95 2.93 6.17 27.57
Valonia utricularis 2.38 2.64 5.56 33.13
Flabellia petiolata 11.00 2.47 5.22 38.35
Sector S3
Average similarity: 61.02

Hildenbrandia crouaniorum 63.20 11.01 18.04 18.04
Dictyota dichotoma v. intricata 89.00 7.85 12.87 30.91
Sargassum vulgare 44.38 6.25 10.25 41.16
Dictyota dichotoma 8.80 6.24 10.22 51.38
Cladophora prolifera 62.03 5.46 8.95 60.33
Sector N1
Average similarity: 47.02

Flabellia petiolata 42.25 8.29 17.63 17.63
Peyssonnelia squamaria 5.08 4.88 10.38 28.01
Bryopsis plumosa 4.00 4.62 9.82 37.83
Hydrolithon cruciatum 1.93 3.93 8.35 46.18
Hildenbrandia crouaniorum 1.03 3.42 7.27 53.45
Sector N2
Average similarity: 45.00

Flabellia petiolata 33.50 8.83 19.62 19.62
Corallina elongata 51.25 6.66 14.80 34.43
Hildenbrandia crouaniorum 5.50 6.18 13.74 48.17
Falkenbergia sp. 0.98 3.65 8.10 56.28
Peyssonnelia rosa-marina 0.85 3.58 7.96 64.23
Sector N3
Average similarity: 44.04

Hildenbrandia crouaniorum 31.63 9.55 21.68 21.68
Cutleria multifida 29.38 5.62 12.77 34.45
Peyssonnelia squamaria 2.75 4.83 10.96 45.41
Sphacelaria tribuloides 0.18 2.61 5.92 51.33
Chaetomorpha linum 0.30 2.61 5.92 57.25

Table 10: SIMPER dissimilarity analysis of macroalgal species coverage between pairs of sectors in 2008.

Species

Average 

Abundance

Average 

Abundance 

Average 

Dissimilarity

Contribution 

%
Sectors S1 & S2 
Average dissimilarity: 55.02

Sector S1 Sector S2
Jania rubens 19.38 6.25 2.16 3.92
Flabellia petiolata 7.75 11.00 1.74 3.16
Dictyota dichotoma v. intricata 1.25 8.13 1.71 3.11
Lobophora variegata 15.63 0.60 1.67 3.03
Amphiroa rigida 9.20 10.25 1.47 2.68
Sectors S1 & S3 
Average dissimilarity: 82.24

Sector S1 Sector S3
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Dictyota dichotoma v. intricata 1.25 89.00 3.75 4.56
Jania rubens 19.38 0.00 3.36 4.08
Lobophora variegata 15.63 0.00 3.19 3.88
Cladophora prolifera 0.00 62.03 3.14 3.82
Sargassum vulgare 0.05 44.38 3.01 3.66
Sectors S2 & S3 
Average dissimilarity: 72.35

Sector S2 Sector S3
Dictyota dichotoma v. intricata 8.13 89.00 2.95 4.08
Dictyota dichotoma 0.00 8.80 2.87 3.96
Sargassum vulgare 1.25 44.38 2.85 3.94
Cladophora prolifera 2.00 62.03 2.60 3.59
Flabellia petiolata 11.00 0.00 2.60 3.59
Sectors N1 & N2 
Average dissimilarity: 56.57

Sector N1 Sector N2
Corallina elongata 0.78 51.25 3.60 6.37
Hydrolithon cruciatum 1.93 0.63 2.09 3.70
Titanoderma pustulatum 1.35 0.00 1.95 3.45
Lithophyllum incrustans 1.45 2.00 1.80 3.18
Peyssonnelia squamaria 5.08 8.13 1.66 2.93
Sectors N1 & N3 
Average dissimilarity: 72.80

Sector N1 Sector N3
Cutleria multifida 0.13 29.38 3.97 5.46
Flabellia petiolata 42.25 11.50 3.76 5.16
Hildenbrandia crouaniorum 1.03 31.63 3.15 4.32
Spermothamnion repens 0.00 16.50 2.99 4.11
Antithamnion cruciatum 0.00 15.25 2.87 3.95
Sectors N2 & N3 
Average dissimilarity: 67.53

Sector N2 Sector N3
Corallina elongata 51.25 1.75 4.43 6.56
Flabellia petiolata 33.50 11.50 3.53 5.23
Cutleria multifida 1.75 29.38 3.31 4.90
Spermothamnion repens 0.00 16.50 3.02 4.46
Antithamnion cruciatum 0.00 15.25 2.90 4.29
Sectors S1 & C3 
Average dissimilarity: 61.54

Sector S1 Sector C3
Peyssonnelia bornetii 0.13 24.75 2.15 3.49
Peyssonnelia polymorpha 0.05 21.90 2.12 3.44
Lobophora variegata 15.63 0.15 2.03 3.30
Amphiroa rigida 9.20 0.00 1.92 3.12
Lithophyllum incrustans 1.38 7.25 1.56 2.54
Sectors S1 & N1 
Average dissimilarity: 72.07

Sector S1 Sector N1
Jania rubens 19.38 0.00 3.32 4.60
Flabellia petiolata 7.75 42.25 3.06 4.25
Lobophora variegata 15.63 0.25 2.78 3.85
Amphiroa rigida 9.20 0.05 2.22 3.07
Valonia utricularis 7.75 0.23 1.91 2.65
Sectors S2 & N2 
Average dissimilarity: 66.85

Sector S2 Sector N2
Corallina elongata 3.25 51.25 3.38 5.06
Dictyota dichotoma v. intricata 8.13 1.75 2.31 3.45
Flabellia petiolata 11.00 33.50 1.72 2.57
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Amphiroa rigida 10.25 0.38 1.71 2.56
Caulerpa prolifera 9.00 0.00 1.60 2.40
Sectors S2 & N3 
Average dissimilarity: 65.16

Sector S2 Sector N3
Cutleria multifida 0.00 29.38 3.36 5.16
Dictyota dichotoma v. intricata 8.13 0.50 2.40 3.69
Spermothamnion repens 0.00 16.50 2.25 3.45
Flabellia petiolata 11.00 11.50 2.09 3.21
Antithamnion cruciatum 0.88 15.25 2.04 3.13
Sectors S3 & N3 
Average dissimilarity: 69.50

Sector S3 Sector N3
Dictyota dichotoma v. intricata 89.00 0.50 5.57 8.01
Sargassum vulgare 44.38 0.00 4.75 6.83
Cutleria multifida 0.00 29.38 4.48 6.45
Cladophora prolifera 62.03 0.13 4.04 5.82
Phyllophora crispa 35.90 4.00 3.39 4.87

In  the  Northern  side N3 was  significantly  different  from the  others  two sectors. 

Dissimilarities  were  attributed  to  the  highest  abundans  of  Corallina  elongata in  N2,  to 

Cutleria multifida in N3, and Flabellia petiolata in N1 and N2 (Table 10).

Of the 101 macroalgal  species  recorded in 2007, 51% were turf-forming species, 

25% crustose and 24% were erect forms. There was little change in the numbers of species 

in each category from pH 8.1 to pH 7.8 although whereas it was higher at pH 6.7 (Table 2).

The little change in the cover of erect category along the pH gradient is highlighted in 

the nMDS graph (Figure 20).
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Figure 20: nMDS of coverage of E) erect, C) crustose, and T) turf macroalgal categories along the pH 
gradient from S1 (pH =8.1), S2 (pH =7.8) and S3 (pH =6.7) in 2007. Dot size corresponds to % coverage.

Crustose algae  remained  abundant  at  mean  pH  7.8  (S2)  but  were  reduced  in 

abundance in the area with highest CO2 levels (S3). SIMPER analysis shows that turf algae 

face had a reduction and shift in species composition and area covered at mean pH 7.8 and 

they were particularly scarce in the most acidified sector as also shown by the high values of 

average dissimilarity between this sector and S2 and S1 (Table 11).
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Table 11: SIMPER dissimilarity analysis of TURF algal group between pairs of sectors in 2007.

Species

Average 

Abundance

Average 

Abundance 

Average 

Dissimilarity

Contribution 

%
Sectors S1 & S2 
Average dissimilarity: 49.34

Sector S1 Sector S2
Valonia utricularis 17.5 2.57 3.11 6.3
Laurencia obtusa 1.74 0 3.04 6.15
Sphacelaria tribuloides 3.67 0.9 2.69 5.45
Herposiphonia tenella 0.6 0.06 1.93 3.91
Polysiphonia scopulorum 0.96 0.52 1.9 3.85
Sectors S1 & S3 
Average dissimilarity: 93.17

Sector S1 Sector S3
Valonia utricularis 17.5 0.17 8.21 8.82
Sphacelaria tribuloides 3.67 0 5.79 6.21
Bryopsis plumosa 2.33 0 5.67 6.09
Osmundea truncata 0.22 2.7 5 5.37
Pseudochlorodesmis furcellata 1.01 0 4.44 4.76
Sectors S2 & S3 
Average dissimilarity: 91.76

Sector S2 Sector S3
Osmundea truncata 0.12 2.7 6.25 6.81
Valonia utricularis 2.57 0.17 5.59 6.09
Griffithsia phyllamphora 1.23 0 5.07 5.52
Dasya corymbifera 0.054 0 5.05 5.51
Pseudochlorodesmis furcellata 1.14 0 4.66 5.07

In 2008 62 turf-forming species (T), 26 crustose-forming species (C) and 24 erect-

forming species (E) were recorded (Table 3). As for 2007’s data, in 2008 a similar number of 

species for each category was recorded into S1 and S2 while a drop was reported in S3. On 

the  Northern  side  no  differences  were  observed  apart  from the  crustose  category  which 

number decreased in N3. Figura 21 shows a bubble plot of percent cover for each category.

Only on the South side, erect algae were more abundant at the lowest pH sector (S3); 

crustose  forms  had  a  similar  distribution  along  the  gradient  on  both  sides.  The  highest 

differences were recorded by the turf category with an opposite trend on the two sides: lowest 

and  highest  in  S3  and  N3,  respectively.  SIMPER  analysis  (Table  12)  confirmed  these 

differences with high dissimilarity values and revealed shifts in species composition both 

between sides (exposition) and within sectors of the same side (pH gradient).
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Figura 21: nMDS of coverage of E) erect, C) crustose and T) turf macroalgal categories on the North (N) 
and South  (S)  side of  the  Castello  and in the  Control  site  (C3)  in  2008.  Dot  size  corresponds  to  % 
coverage.

Table 12: SIMPER dissimilarity analysis of TURF algal group between pairs of sectors in 2008.

Species

Average 

Abundance

Average 

Abundance 

Average 

Dissimilarity

Contribution 

%
Sectors S1 & S2 
Average dissimilarity: 67.74

Sector S1 Sector S2
Valonia-utricularis 7.75 2.38 14.03 20.71
Bryopsis-plumosa 3.63 0.78 6.45 9.52
Sphacelaria-tribuloides 2.15 1.50 4.57 6.74
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Lophosiphonia-cristata 1.25 1.70 4.12 6.08
Herposiphonia-secunda 0.00 1.48 3.82 5.64
Sectors S1 & S3 
Average dissimilarity: 86.32

Sector S1 Sector S3
Valonia-utricularis 7.75 4.00 18.78 21.76
Bryopsis-plumosa 3.63 0.00 7.88 9.13
Antithamnion-cruciatum 0.03 1.73 5.60 6.49
Sphacelaria-tribuloides 2.15 0.00 5.29 6.13
Osmundea-truncata 0.10 2.00 4.72 5.47
Sectors S2 & S3 
Average dissimilarity: 85.26

Sector S2 Sector S3
Valonia-utricularis 2.38 4.00 15.52 18.20
Antithamnion-cruciatum 0.88 1.73 7.49 8.78
Herposiphonia-secunda 1.48 0.00 6.68 7.83
Osmundea-truncata 0.10 2.00 6.33 7.43
Sphacelaria-tribuloides 1.50 0.00 5.10 5.98
Sectors N1 & N2 
Average dissimilarity: 77.59

Sector N1 Sector N2
Bryopsis-plumosa 4.00 0.95 25.72 33.15
Pseudochlorodesmis-furcellata 1.55 0.13 9.60 12.37
Falkenbergia-sp. 0.28 0.98 8.67 11.18
Valonia-utricularis 0.23 0.60 5.82 7.50
Pterocladiella-capillacea 0.90 0.00 5.80 7.48
Sectors N1 & N3 
Average dissimilarity: 90.10

Sector N1 Sector N3
Spermothamnion-repens 0.00 16.50 22.17 24.60
Antithamnion-cruciatum 0.00 15.25 18.72 20.77
Valonia-utricularis 0.23 3.58 11.17 12.40
Bryopsis-plumosa 4.00 0.98 9.93 11.02
Falkenbergia-sp. 0.28 1.60 6.15 6.83
Sectors N2 & N3 
Average dissimilarity: 87.06

Sector N2 Sector N3
Spermothamnion-repens 0.00 16.50 24.15 27.74
Antithamnion-cruciatum 0.00 15.25 20.24 23.24
Valonia-utricularis 0.60 3.58 13.20 15.16
Falkenbergia-sp. 0.98 1.60 6.30 7.24
Bryopsis-plumosa 0.95 0.98 4.81 5.53
Sectors S1 & C3 
Average dissimilarity: 76.98

Sector S1 Sector C3
Valonia-utricularis 7.75 3.10 13.11 17.04
Dasya-hutchinsiae 0.03 3.50 8.23 10.69
Bryopsis-plumosa 3.63 3.00 6.97 9.06
Cladophora-coelothrix 0.65 3.75 6.25 8.12
Sphacelaria-cirrosa 0.63 2.50 4.62 6.01
Sectors S1 & N1 
Average dissimilarity: 83.86

Sector S1 Sector N1
Valonia-utricularis 7.75 0.23 20.54 24.49
Bryopsis-plumosa 3.63 4.00 10.94 13.05
Sphacelaria-tribuloides 2.15 0.00 5.50 6.56
Pseudochlorodesmis-furcellata 1.25 1.55 4.56 5.44
Dasya-corymbifera 1.40 0.00 4.52 5.39
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Sectors S2 & N2 
Average dissimilarity: 83.30

Sector S2 Sector N2
Valonia-utricularis 2.38 0.60 9.52 11.43
Herposiphonia-secunda 1.48 0.00 8.71 10.46
Sphacelaria-tribuloides 1.50 0.00 6.42 7.70
Antithamnion-cruciatum 0.88 0.00 5.84 7.01
Lophosiphonia-cristata 1.70 0.00 5.71 6.85
Sectors S2 & N3 
Average dissimilarity: 86.32

Sector S2 Sector N3
Spermothamnion-repens 0.00 16.50 19.56 22.66
Antithamnion-cruciatum 0.88 15.25 17.82 20.65
Valonia-utricularis 2.38 3.58 11.20 12.98
Falkenbergia-sp. 0.60 1.60 4.12 4.77
Herposiphonia-secunda 1.48 0.00 4.06 4.70
Sectors S3 & N3 
Average dissimilarity: 87.12

Sector S3 Sector N3
Antithamnion-cruciatum 1.73 15.25 21.82 25.04
Spermothamnion-repens 0.00 16.50 21.61 24.80
Valonia-utricularis 4.00 3.58 15.27 17.53
Falkenbergia-sp. 0.00 1.60 6.06 6.96
Osmundea-truncata 2.00 0.08 4.95 5.68

The effect of water acidification on the algal reproductive pattern has been analyzed 

only on 2007’s data. Only seven genera were contemporaneously found with reproductive 

structures at different pH values (Figura 22) in 2007; among them, Polysiphonia scopulorum, 

Osmundea truncata  and  Dictyota dichotoma were able to reproduce at very high levels of 

CO2. There was even an increase in reproductive frequency recorded in the high CO2 areas 

for D. dichotoma and O. truncata, whereas reproduction in calcareous species appeared to be 

negatively affected (Figura 22).

Padina
Neogoniolithon
M esophyllum
Jania
Polysiphonia
Osm undea
Dictyota

Figura 22: Occurrence (black bars) and absence (white bars) of reproductive structures in species present 
in at least two sectors with different pH (S1: pH= 8.1; S2: pH=7.8; S3: pH= 6.7).

All the algal species identified during the two sampling periods are listed in Table12. 

Each of them was assigned to a morpho-functional group (see Table 1).
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Results  for  2007  community  analysis  both  at  taxonomic  and  morpho-functional 

group levels  are  showed in  Figura 23. n-MDS analysis  gives  back the same differences 

among  sectors   by using distinct approaches: sector with the lowest pH  has a significant 

different algal composition in comparison with the other two sectors.

Sp ecies ( autum n 2007 )

S 1

S 2

S 3

Stres s: 0.01

Algal  group s (aut umn 2 007)

S3

S2

S1

Stres s: 0.0 6

Figura 23: n-MDS of taxonomic species (A) and Algal Groups (B) in 2007.

ANOSIM confirmed the difference among sectors (Table 14).

Table 14: Global Test for Algal Groups in 2007. Sample statistic (Global R): 0.808. Significance level of 
sample statistic: 0.1%. Number of permutations: 999 (Random sample from a large number). Number of 
permuted statistics greater than or equal to Global R: 0.

Groups
R Significance Possible Actual Number 

Statistic Level % Permutations Permutations Observed
S3 - S2 0.99 0.1 24310 999 0
S3 -  S1 1. 0.1 24310 999 0
S2 -  S1 0.409 0.2 24310 999 1

The relative dominances (% DR) along the pH gradient of the ten different Algal 

Groups are showed in Figure 12, Normal (S1) and medium (S2) pH sites are characterized 

by diverse calcareous species (AG9, AG11, AG12,) (i.e. Flabellia petiolata, Phymatolithon  

lenormandii,  and  Iania  rubens,  respectively)  and  by  uniseriate  and  polisiphonous 

filamentous species (AG1 and AG2). These groups disappear in the lowest pH sector (S3), 

where more structural complex species, corticated, laminar and terete algae (AG6 and AG7) 

(i.e Dictyota dichotoma, Chondracanthus acicularis, respectively), leathery algae (AG8)(i.e 

Sargassum vulgare) and non-calcareous encrusting algae (AG5) (i.e Hildebrandia rubra) ), 

replace them and are dominant.
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Figura 24: Percentage of Relative Dominance of Algal Groups along the pH gradient in 2007. A: from 
AG1 to AG4; B: from AG5 to AG8; C: from AG9 to AG 12 (for AG legend, see Table 1)

The same nMDS analysis,  performed on 2008’s data,  underlines the relevance of 

different  hydrodynamic  regimes  with  different  water  chemistry  in  structuring  the  algal 

communities.  In  fact,  differences  among  exposition  are  responsible  of  a  less  evident 

distinction in algal occurrence between sectors with different pH values (Figure 25A and B); 

however normal and medium pH sites are always different from the lowest pH site, for both 

taxa and morpho-functional groups. 
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Figure 25: n-MDS of both species (A) and Algal Group (B) in 2008.

ANOSIM  analysis  for  2008’s  data  set  according  to  AG  classification  confirm  a 

significant difference among pH and the geographic exposition (Table 13).

Table 13: Global Test for Algal Groups in 2008. Sample statistic (Global R): 0.616; significance level of 
sample statistic: 0.1%; number of permutations: 999 (Random sample from a large number); number of 
permuted statistics greater than or equal to Global R: 0

Groups
R Significance Possible Actual Number 

Statistic Level % Permutations Permutations Observed
S1 - C3 0.786 6.7 15 15 1
S1 - S2 0.333 5.7 35 35 2
S1 - S3 1. 2.9 35 35 1
S1 - N1 0.781 2.9 35 35 1
S2 - S3 0.979 2.9 35 35 1
S2 - N2 0.563 2.9 35 35 1
S2 - N3 0.438 5.7 35 35 2
S3 - N3 0.729 2.9 35 35 1
N1 - N2 0.188 14.3 35 35 5
N1 - N3 0.813 2.9 35 35 1
N2 - N3 0.708 2.9 35 35 1

Figura  26 shows  the  Algal  Groups  composition  along  the  pH  gradient  on  both 

Southern  and  Northern  side.  The  simplest  AGs  (fromAG2  to  AG4)  showed  a  higher 

dominance  at  higher  pH,  except  for  AG1 which  was  prevalent  in  the  acidified  area.  In 

particular Antithamnion cruciatum and Spermothamnion repens were dominant in N3 while 

Cladophora prolifera in S3.

More complex  thalli  (from AG6 to AG8),  once again,  recorded a  higher  relative 

dominance at lowest pH sites: Hildenbrandia crouaniorum and Cutleria multifida were the 

dominant species in the Northern side, while  Dictyota dichotoma v.  intricata,  Sargassum 

vulgare and Hildenbrandia crouaniorum in the South.
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Figura  26: DR% of the Algal Groups along the pH gradient in 2008 on both Suothern (A, C, E) and 
Northern (B, D, F). A-B: from AG1 to AG4; C-D: from AG5 to AG8; E-F: from AG9 to AG 12.

On the opposite, calcareous AGs (from AG9 to AG11) showed a drop moving to 

more  acidified  areas  in  both  Southern  and  Northern  side,  except  for  the  occurrence  of 

Peyssonnelia squamaria (AG9) in N3. 

Algal communities on artificial substrata

A total of 49 macroalgal species, in different sectors and at different time intervals, 

were  recorded.  Among  them,  18  Rhodophyta,  23  Ochrophyta  and  8  Chlorophyta  were 

identified (Appendix III).

Two  mon ths

C3S1
S2

S3

N1
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S1S 2

S 3
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N3
Str ess: 0 .01
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C 3

S1
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N1N 2

N3
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Figure 27: nMDS for communities among sectors after two (A), threee (B) and four (C). months
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Figure  27 shows nMDS graphs  for  macroalgal  communities’  composition  during 

time  among  different  sectors.  Significant  separation  (Stress  value   0.04)  was  observed 

among sectors  along pH gradient  and exposition.  In particular,  the “acidification  effect” 

(horizontal axis) was already evident after two months (Figure 27A) and it went on more and 

more in the time, separating the most acidified site from the others (Figure 27C). The effect 

of different hydrodynamic regimes (vertical axis) between the two sides was always evident.

Changes  in  community  structure  at  different  time  intervals  among  sectors  with 

different pH and exposition are represented in Figure 28.

col onizatio n in tim e
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N2-j une

N3 -june

C3-jul y
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S3-j uly
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N3-july

Str ess: 0. 14

Figure 28: nMDS plot for communities in different sectors during different times. Samples are evidenced 
according to pH (Normal, Mid and Low pH).

An increase in the community complexity at different time scale, both in the Southern (Fig. 

29A) and Northern (Fig. 29B) sides of the Castello was evident. This pattern was confirmed 

by the high similarity inside each sector at the same time interval obtained by the SIMPER 

analysis  (Appendix  IV).  The  highest  differences  between  the  two  different  expositions 

occured during the initial  phase of the colonizing process (two months - May),  when the 

south communities are very poorly structured. The Mirionema sp. and Feldmannia sp. high 

covers are responsible of these differences.

The  K-dominance  curves  according  to  different  pH values  (Fig.  30)  showed  the 

effect  of  water  acidification  in  the  colonizing  the  artificial  substrates.  After  4  months, 

differences  among sectors  with different  water  acidification were due to the presence of 

calcareous  species at  normal  pH, such as  Titanoderma mediterraneum (S1 and N1),  and 

Hidrolithon farinosum (C3) whereas Chaetomorpha linum and Feldmannia sp dominated the 

sites at the lowest pH (S3 and N3, respectively) (Appendix IV).
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Figura 29: K-Dominance curves for all months in the Southern (A) and the Northern side (B).
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Figura  30: K-Dominance curves for all sectors during May (A), June (B), July (C). Normal pH (C3), 
Normal pH South (S1), Mid pH South (S2), Low pH South (S3), Normal pH North (N1), Mid pH North 
(N2), Low pH North (N3).
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3.  Different responses in ecophysiological traits in target species 

along a pH gradient
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3.1.  Introduction

At present, the phenomenon of ocean acidification excites more interest because of 

its effects on marine organisms.

Coastal  system  is  one  of  the  most  vulnerable  ecosystems  because  of  anthropic 

perturbation  (Airoldi  et  al.,  2007).  In  this  environment  macroalgae  play  an  important 

structural  and functional  role and every change in their  abundance and composition may 

cause reliable modifications not only to the associated communities but also to the entire 

food web.

Photosynthesis  represents  a  key  process  for  macroalgae  as  well  as  for  all  plant 

species. This process responds quickly to changes of environmental factors in the habitat and 

for this reason can be considered a good indicator in monitoring the health status of vegetal 

organisms and the occurring of stress conditions. 

At the moment, a few number of studies have been focused on the mid and long term 

effects of pH changes on macroalgal community in their natural environment. The most part 

of experiments have been performed in laboratory, on a reduced number of species, in order 

to assess only short term responses (Kübler et al., 1999; Beer et al., 1996; Menéndez et al., 

2001; Israel & Hophy, 2002; Semesi et al., 2009).

Some macroalgal  species  have shown a significant  rise in photosynthetic  rates in 

response to CO2 increase (Giordano  et al., 2005). Photosynthetic activity has been studied 

almost at higher pH compared to present. 

Only some species may increase their photosynthetic rate at higher pH value likely 

due to their capacity to convert bicarbonate (the most abundant form of inorganic carbon at 

higher pH) in CO2 (Beer et al., 1996; Johnston et al., 1992; Raven, 2003; Menéndez et al., 

2001). Different studies suggest that many species will be greatly benefited by the air CO2 

enrichment.  Langdon    et  al  .  (2003)   reported  that  "laboratory  studies  have  found that  the 

photosynthesis  of  many  macroalgae  is  limited  by  inorganic  carbon  supply  in  natural 

seawater," citing also the studies of Borowitzka and Larkum (1976), Borowitzka (1981), Gao 

et al. (1993), Beer & Koch (1996).

On the other hand, Middelboe  et al., (2007) have been observed that at higher pH 

values  photosynthetic  rates  decreased  with  comparable  inorganic  carbon  availability, 

suggesting the direct role of pH effect through physiological mechanisms such as membrane 

transport or internal pH regulation.
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Natural CO2 vents at Castello Aragonese, in Ischia, have been created a natural pH 

gradient likely for million of years (Hall-Spencer et al., 2008, see Chapter 2) which make it 

suitable to study long term responses of macroalgae to different pH variation. 

In this chapter pH effect on photosynthetic efficiency of some macroalgae living at 

Castello at different pH values, has been investigated both in laboratory and in situ studies.

The principal goal of this research was to assess through transplanting experiments, 

the adaptation capability of some macroalgae species to live in low pH environment as well 

as  the  possibility  that  the  species  present  in  not-acidified  environment  could  activate 

acclimation  mechanisms  in  their  photosynthetic  apparatus  to  overcome  pH  changes.  In 

addition,  molecular  analysis  was  carried  out  to  investigate  cellular  stress  induction  by 

acidification by using a marker of DNA damage. The marker was the enzyme poly-ADPR-

polymerase (PARP) that is involved in the regulation of several cellular functions related to 

the maintenance of cellular integrity.

3.1.1. Photosynthesis in aquatic systems and its plasticity

Photosynthesis is the biological conversion of light energy into chemical bond energy 

that  is  stored  in  the  form  of  organic  carbon  compounds.  Approximately  40%  of  the 

photosynthesis on Earth occurs in aquatic environments each year (Falkowski, 1994).

A  multitude  of  evolutionary  adaptations  and  physiological  acclimation  of  the 

photosynthetic  apparatus  have  occurred  in  aquatic  organisms.  In  nature  photosynthetic 

processes  are  constantly  modified.  There  are  a  great  number  of  temporal  variations  in 

photosynthetic response that occur in both short and long time scales. The “short time scale” 

regards the physical,  biochemical  and physiological  responses within the life  span of an 

organism. These responses are collectively called  acclimation. On the contrary,  the “long 

time scale” regards the ecological and evolutionary  adaptation processes through selection 

of phenotypic traits (Falkowski, 1994).

To  better  understand  the  photosynthetic  process  in  aquatic  environments,  it  is 

important to consider the underwater light distribution in terms of quantity and quality. In 

the water the scattering leads to spectral bias toward the blue, absorption by water itself is 

superimposed on the scattering process. Water absorbs strongly in the red and infrared. The 

net effect of both scattering and absorption enriches the penetrating down welling spectrum 

in the blue and blue-green wavelengths, progressively prevailing in deep waters.

Photosynthesis responds quickly to the irradiance daily variation. Circadian rhythms 

in photosynthetic response are not simply due to changes in stechiometry of reaction centres 
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or component of the Calvin-Benson cycle; they may arise from time-dependent changes in 

the activity of specific components of the photosynthetic apparatus (Falkowski, 1994).

Pigment  content  in  macroalgae  depends on irradiance  values  and is  governed by 

diurnal rhythm. A different pigment complement is present in sun and shade adapted algae. 

The shade adapted algae have usually a higher content of photosynthetic pigments. The daily 

pattern  represents  for  algae  an  indication  of  pigments  rapid  turnover  in  the  natural 

environment (Hader et al., 2002).

All photosynthetic pigments harvest light that is the driving force for photosynthesis. 

The  photosynthetic-irradiance  curve  (P-E)  describes  the  light  utilization  capacity  by 

photosynthetic organisms and can be typically divided into three distinct regions: the light 

limited region, the light saturated region,  and the photoinhibition region.  In the darkness 

there is a net consumption of O2 and evolution of CO2 due to respiratory activity. At low 

irradiances photosynthetic rate are linearly proportional to irradiance; a doubling of intensity 

produces  almost  a  doubling  of  photosynthetic  rate.  The  light  intensity  at  which 

photosynthesis balances respiration is called the compensation light intensity (Ec). The initial 

slope of the photosynthesis irradiances curve is proportional to the maximum quantum yield 

of photosynthesis (Kok, 1984). In the literature related to the acquatic organisms, the initial 

slope of the P  vs E curve is often indicated by the   symbol. As the irradiance increases, 

photosynthetic  rate  rises  to  a  saturation  level,  Pmax.  At  light  saturation  level,  the  rate  of 

photon absorbed exceeds the rate of steady-state electron transport from water to CO2. The 

intersection of  and Pmax, is often called the light-saturating parameter, and is indicated by 

Ek (Figure 31).

Figure 31: A photosynthetic light-response curve in aquatic environment
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Further  increases  in  irradiance  beyond  light  saturation  can lead  to  a  reduction  in 

photosynthetic rate (Baker & Bowyer, 1994). This reduction, which is dependent on both 

light intensity and the exposure duration, is often called photoinhibition. This phenomenon 

leads  to  a  reduction  in  the  photochemical  efficiency  of  photosystems.  The  reduction  in 

photochemistry may be due to photodamages at photochemical apparatus or to establishment 

of photoprotective mechanisms (Hader & Figueroa, 1997).

Because of the strong relationship between photosynthetic rates and irradiances, PvsE 

curves constantly change. The optimum position for a photoautotroph organism with respect 

to photosynthesis-irradiances curve is at the saturating irradiance Ek.

The benthic organisms cannot control the irradiance field, but are able to maintain 

photosynthetic  rate at  or near Ek by the adjustment  of size and composition of the light 

harvesting system.

Most of the short-term adjustments are achieved via changes in the light harvesting 

system.  These  modificatons  include  alterations  in  non-photochemical  quenching  of 

excitation  energy  and  photoacclimation  via  changes  in  the  rates  of  synthesis  of  light 

harvesting complexes.  Additional adjustments in the number of functional photosynthetic 

reaction  centres  and in  the  maximum electron  transport  rates  arise  as  a  consequence  of 

metabolic feedback from the Calvin-Benson cycle into the photosynthetic electron transport 

chain. 

Also temperature affects photosynthetic activity. It is well known that photoinhibition 

occurs  when  the  light  energy  absorption  by  reaction  centres  exceeds  the  rate  of 

photochemistry (Powels, 1984). However photoinhibition can occur also at moderate light 

intensity when carbon metabolism is limited by low temperature. Because of the relationship 

between  irradiance  and  temperature  on  the  maximum  rate  of  photosynthetic  electron 

transport and cells ability to repair photodamage, the effect of temperature on the maximum 

rate does not follow a simple Arrhenius function, but a more complex relationship may be 

found (Falkowski & Raven, 1997).

3.1.2. Photosynthetic performance measurements: chlorophyll 

fluorescence

Light energy that is absorbed by chlorophyll in a leaf can undergo three fates: a) it 

can be used to drive photosynthesis (photochemistry), b) it can be dissipated as heat or c) it 

can be re-emitted as fluorescence. 
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These three processes occur in the plant cell  simultaneously.  Any increase in the 

efficiency of  one  process  will  result  in  a  decrease  in  the  yield  of  the  other  two.  Thus, 

measuring the yield of chlorophyll fluorescence we can obtain information about changes in 

the efficiency of photochemistry and heat dissipation.  As heat dissipation of energy is low 

and remains constant in an order of time of few seconds, it follows that the fluorescence 

emission  decreases  proportionally  with  increasing  of  photochemical  efficiency.  This 

phenomenon is known as “quenching” of fluorescence by photosynthetic electron transfer 

through the photosystems and can be assessed by mean of fluorescence measurements. The 

total amount of chlorophyll fluorescence is very small (only 1-2% of total light absorbed) 

and the spectrum of fluorescence is different from that of absorbed light. The fluorescence 

yield can be quantified by exposing photosynthetic tissues to light of defined wavelengths 

and  by  measuring  the  amount  of  light  re-emitted  at  longer  wavelenghts  (Maxwell  & 

Johnson, 2000).

Changes in the yield of chlorophyll fluorescence were observed for the first time by 

Kautsky  et al. in the 1960. They found an increase in the chlorophyll fluorescence over a 

period of around 1s when photosynthetic material  was transferred from the dark into the 

light. Once PSII absorbs light and the plastoquinone QA has accepted one electron, it is not 

able to accept another until it has passed the first onto the subsequent electron carrier (QB). 

During this period, the reaction centres becomes “closed”. So when a leaf is transferred from 

darkness into the light, PSII reaction centres are progressively closed and, as a consequence 

of reduction electron acceptors in the photosynthetic pathway, an increase in the yield of 

chlorophyll fluorescence occurs. However, the fluorescence level typically starts to fall again 

over a time-scale of a few minutes. In fact there is an increase in the rate at which electrons 

are transported away from PSII as a consequence of light-induced activation of enzymes 

involved  in  carbon  metabolism;  such  quenching  is  referred  to  as  “photochemical 

quenching”. At the same time, an increase occurs in the efficiency with which energy is 

converted to heat (non-photochemical quenching). Generally, changes in these two processes 

will be complete within about 15-20 min, depending on plant species (Johnson et al., 1990).

In order to obtain useful information by measurements of chlorophyll a fluorescence, 

it is necessary to distinguish between the photochemical and non-photochemical quenching.

At present the most utilized instruments for fluorescence investigations are a new 

class of fluorometers called PAM (pulse amplitude modulated fluorometers). In particular in 

this PhD thesis we have used a particular kind of PAM fluorometer: the diving PAM (Walz, 

Germany) able to measure the fluorescence indexes underwater.
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By means of PAM fluorometers is possible to distinguish between photochemical and 

non-photochemical  processes  using  the  saturation  pulse method  (Schreiber  et  al.,  1986, 

1994). The “light doubling” technique allows to transiently reduce to zero the photochemical 

quenching (Bradbury & Baker,  1981;  Quick & Horton,  1984).  In  this  approach,  a short 

duration, high intensity flash of light is given so that PSII reaction centres are transiently 

closed. The saturating flash is emitted by halogen bulb at >2000 µmol photons m-2s-1. During 

the  flash,  the  chlorophyll  fluorescence  reaches  the  highest  value  and the  photochemical 

quenching  is  zero.  In  this  moment  all  absorbed energy has  to  be  re-emitted  as  thermal 

dissipation (unchanged) and by fluorescence.  This maximum fluorescence is indicated as 

Fm’, if measured for light adapted plants. Comparison of this maximum value with the steady 

state  yield  of  fluorescence  in  the  light  (F’)  gives  information  about  the  efficiency  of 

photochemical quenching and PSII performance.

As well as changes occurring in the efficiency of photochemistry, the efficiency of 

heat  dissipation  (i.e.  non-photochemical  quenching)  can  change  depending  on  various 

internal and external factors. Such changes are reflected as changes in the level of maximum 

fluorescence. Unlike photochemistry, it is not possible to inhibit heat dissipation totally, so it 

is  not  possible  to  measure  the  yield  of  chlorophyll  fluorescence  in  the  absence  of  non-

photochemical quenching. Hence, all estimation of non-photochemical quenching are strictly 

relative to some dark-adapted point (termed Fm). For this reason, it is necessary to determine 

this  reference  point  by  measuring  Fm and  F0 on  dark-adapted  plants.  F0 is  the  lowest 

fluorescence value because it is measured when all reaction centres are open (dark-adapted 

status) and in the absence of an actinic (photosynthetic) light. From Fm and F0 the quantum 

yield of electron transfer in PSII (Y) is derived:

Y= (Fm-F0)/Fm= Fv/Fm

This maximum or potential quantum yield is measured in dark-adapted plants where 

all reaction centres are open. The Fv/Fm measurement has to be performed after at least 10-15 

min of leaf dark adaptation in order to allow the complete relaxing of photosystems. The Fv/

Fm value for terrestrial plants in healthy status is about 0.83 (Bjorkman and Demming, 1987), 

whereas for seagrasses as Halophila ovalis it is about 0.73-0.75 (Ralph and Burchett, 1995; 

Ralph, 1999). A decrease from these values indicates the occurring of stress and the presence 

of a quenching mechanism.
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A decline  in  Fv/Fm can  be  interpreted  as  photoinibition  or  photodamage  or  both; 

generally  the  former  is  dependent  on  processes  which  are  easily  reversible  (e.g. 

photoprotective non-photochemical quenching), whereas the latter depends on very slowly 

reversible non-photochemical quenching processes (Cavender-Bares & Bazzaz, 2004).

The measurement of quantum yield performed on light adapted plants, gives another 

parameter, termed effective quantum yield of PSII (Y or PSII). The fluorescence variables Ft 

and Fm’ measured in the light correspond to F0 and Fm measured in the dark:

PSII = (Fm’-F’)/Fm’

The  effective  quantum yield  of  PSII  is  calculated  following  Genty  et  al.,  (1989).  This 

parameter  has  been  often  used  as  stress  indicator  for  photosynthetic  apparatus 

exposed to low temperature (Cavender-Bare & Bazzaz, 2004).

The effective quantum yield of PSII multiplied by the number of photons absorbed by PSII, 

represents a measure of the linear electron transport rate through photosystem II. 

The electron transport rate (ETR) can be calculated as:

ETR= PSII *PAR*0.5*ETR factor

Where  PAR  (Photosynthetically  Active  Radiation)  is  the  incident  irradiance  as 

measured  with  a  light  sensor  at  the  leaf  surface;  0.5  is  the  result  of  an  assumed  equal 

distribution  of  photons  absorbed  by  the  two  photosystems;  ETR  factor  describes  the 

proportion of incident photons absorbed by photosynthetic pigments;  for a wide range of 

terrestrial leaves it is 0.84 but underwater as the reflection of thallus is negligible, the ETR 

factor can be approximate to 1 and can be ignored in the previous equation. This is called 

relative ETR (rETR) and is calculated as:

rETR= PSII *PAR*0.5

In addition to measuring ETR in situ, the fluorometer used for our investigations, the 

diving PAM, can provide a range of artificial  irradiances  (by the internal  halogen lamp) 

useful to investigate the response of photosynthetic apparatus at different light intensities. If 

the time of exposure to different step of light are short (10s each), no significant change on 

photochemistry will be obtained. These measurements generate a so-called rapid light curve 
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(RLC) (Beer  et al., 2001); a RLC provides information on the capacity of photosynthetic 

apparatus to utilize the light (Longstaff  et al.,  2002; Ralph & Gademann, 2005) and can 

provide information on stress-inducing events (Runcie & Riddle, 2004). Some authors have 

found linear correlations between ETRs curves and oxygen evolution (photosynthetic rate) at 

lower irradiances (Longstaff et al., 2002; Carr & Bjork, 2003) in particular when PSII > 0.1 

(Beer & Axelsson, 2004). A RLC is similar to P-E curve; but, differently from P-E curves, a 

RLC does not reach the steady state during each light step; for this reason  PSII and rETR 

indicate the actual state of photosynthesis, not the optimal state. As described for P-E curves, 

RLC have three distinct regions: the light-limited, the light-saturated and the photoinibition 

region. At low irradiance, photosynthesis is limited by light. The rise of the curve in the 

light-limiting  region ()  is  proportional  to efficiency of light  capture (effective  quantum 

yield). Minimum saturating irradiance (Ek) is determined by the interception of   with the 

maximum  photosynthetic  rate.  Ek is  related  to  quenching;  photochemical  quenching 

dominates the region below Ek, non photochemical quenching the region above Ek.

Under  moderate  irradiance,  the  capacity  of  the  electron  transport  chain  limits 

photosynthesis  and  the  curve  reach  a  plateau,  where  maximum  photosynthetic  capacity 

occurs  (rETRmax).  At  higher  irradiance  values  (supra-saturating)  the curve often leans  to 

decline.  In  a  traditional  P-E  curve,  the  decline  is  usually  associated  to  photoinibition 

processess;  on  the  contrary,  in  RLCs  the  decline  could  be  linked  to  a  dynamic  down-

regulation of PSII, because time is not insufficient for the induction of photodamage (Ralph 

& Gademann, 2005).

To find a good relationship between photosynthetic rate and ETR (Beer & Bjork, 

2000), the fluorescence data must be corrected for the approximate proportion of incident 

quanta absorbed by the pigments of PSII. Thus, the previous formula must be adjusted by the 

absorption factor (AF):

ETR= PSII *PAR*0.5*AF

AF can be approximated by placing the leaf sample between the actinic light source 

and quantum light sensor and measuring the light transmitted through the leaf according to:

AF = (incident PAR – transmitted PAR)/incident PAR
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AF (absorbance  factor)  is  determined  according  to  Beer  et  al. (2000).  The  ETR 

describes the capacity of photosystems to use the incident light and can be used to compare 

the photosynthetic efficiency of different portions of the same individual, of different species 

or of the same species in different conditions (Beer et al., 2001).

In absence of stomatal limitation, ETR is well correlated with the CO2 assimilation 

rate, although it includes also all electron transport to alternative CO2 sinks such as electron 

flow to oxygen and detoxification of oxygen radicals  as well as nitrogen assimilation.  A 

decrease  in  electron  transport  rate  indicates  a  reduction  in  CO2 fixation  and  may  be 

associated, among different stress factors, to low temperatures (Cavender-Bares & Bazzaz, 

2004).

Other parameters can be derived by fluorescence measurements; the first one is the 

photochemical  quenching,  qP,  it  reflects  the  PSII  efficiency  and  is  due  by  energy 

transformation at PSII reaction centres. Photochemical quenching give information on the 

oxidation status of PSII acceptors: if the acceptor pool is completely reduced (closed), qP=0; 

if is entirely oxidized (open), qP=1.  qP is calculated as follows:

qP = (Fm’- F’)/(Fm’- F0’)

The  second  parameter  is  represented  by  non-photochemical  quenching,  qN.  and 

depend on pH gradient (Horton & Ruban, 1994, Demmig-Adams, 1990, Krause & Weis, 

1991).  It  represents  non-radiative  pathways  of  energy  de-excitation,  occurring  mainly 

through  heat  and  redistribution  of  excitation  energy  from  PSII  to  PSI;  qN  involves 

photoprotective mechanisms such as the xanthophylls cycle and is calculated as:

qN = 1-(Fm’-F0’)/(Fm-F0)

Another coefficient for non-photochemical quenching is the Stern-Volmer quencing 

(NPQ) calculates as:

NPQ = (Fm-F’m)/F’m

NPQ is more sensitive to energy dissipation within the antennae matrix (Schreiber, 

2004).
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During photoinibition, photosynthetic quantum yield and the photochemical quencing 

(qP) decrease while the non-photochemical quenching rises (Hader & Figueroa, 1997; Hader 

et al., 1998). Although photoinibition mechanisms are still unclear, they can be interpreted 

as active regulatory processes able to protect the photosynthetic apparatus from excessive 

radiation. In fact during intensive solar radiation, active oxygen species can be produced by 

transfer of excessive excitation energy from excited chlorophyll molecules to ground state 

(triplet)  oxygen  molecules.  The  reactive  oxygen  species  (ROS)  damage  the  structure  of 

photosynthetic  apparatus.  In  particular,  one of  main  target  of  ROS is  the D1 protein  of 

reaction centre of PSII that plays a key role in energy transfer (Sundby et al., 1993). Any 

modification in D1 limits the linear photosynthetic electron flow. Algae growing in surface 

water are well adapted to high solar radiation and less predisposed to photoinhibition than 

those growing in deeper habitat (Hader et al., 1998)

The qN is generally defined as the decrease of fluorescence not due to photochemical 

process. It is induced by the built-up of a pH-gradient across the thylacoid membrane, by 

state transition (Raven & Geider, 2003), and by photoinhibition (Karukstis 1991; Krause & 

Weis,  1991;  Buschmann,  1999;  Hader  et  al.,  2001).  Also  F  and  Fm’  curves  provide 

information on the development of the trans-thylacoid proton gradient and on thermal energy 

dissipation  (Ralph  &  Gademann,  2005)  in  particular  a  value  of  qP  <0.4  indicating  an 

energization  of  thylacoid  membrane  (Schreiber,  2004).  When the  fluorescence  yield  (F) 

increases  rapidly,  it  means  that  a  greater  proportion  of  PSII  reaction  centres  become 

inactivated.  An high fluorescence yield is normally linked with the build up of a proton 

gradient  across  the  thylacoid  membrane  (pH).  The  pH  is  driving  force  for  ATP 

production, while Calvin cycle activity is the main sink for ATP. When F increases and 

remains elevated, there is a limitation of CO2 fixation (Ralph & Gademann, 2005).

Moreover  the  photosynthetic  apparatus  is  protected  by  down-regulation  of  the 

electron  transport  chain  (ETR) and involvement  of  the  violaxanthin  cycle  (Hader  et  al., 

2001).

However the differences between high-light adaptation and low-light adaptation are 

clear:  algae  grown  at  high-light  intensities  have  lower  chorophyll  content,  high 

photosynthetic  capacity  and  active  photoprotective  mechanisms;  on  the  contrary,  algae 

grown in low-light environments show the opposite characteristics (Demming-Adams et al., 

1999;  Ralph  &  Gademann,  2005).  These  features  can  influence  photosynthetic  activity 

according to the prevailing light conditions, as well as the seasonal light regime. Pigment 

content usually takes several days to weeks for acclimation, while the xanthophyll cycle can 
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be  regulated  in  minutes,  and  effective  quantum yield  can  change  in  seconds  (Raven  & 

Geider, 2003; Ralph & Gademann, 2005).

3.1.3. Chlorophyll fluorescence for measuring stress and stress tolerance

Fluorescence measurements may provide an useful tool to assess plant photosynthetic 

performance. In particular, fluorescence can give information about the ability of plant to 

tolerate the environmental stresses and the occurring of damages at photosystems level.

Since Fv/Fm is very sensitive to plant stress, this parameter has been used as index to 

monitor the impact of environmental and anthropogenic stressors. Measurements made over 

a diurnal course can indicate the status of electron transport rate, the quantum PSII efficiency 

and the extent of photoinibition in response to light, temperature, pH and other factor (Bilger 

et al., 1995). Generally the increase in basal fluorescence, F0, may indicate the occurrence of 

photoinibitory  damage  in  response  to  high  temperature  (Gamon  &  Pearcy,  1989),  low 

temperature (Groom & Backer, 1992), excess of light (Ogren & Sjostrom, 1990) and water 

stress (Epron et al., 1992). At present, changes in Fv/Fm and F0 are widely used as reliable 

diagnostic indicators of photoinibition (He et al., 1996; Valladares & Pearcy, 1997). 

Up to now in marine environments  the PAM fluorimetry was mainly used in the 

analysis  of  photosynthetic  performance  of  seagrasses  in  order  to  investigate  the 

photoinibitory damage risks (Ralph & Burchett, 1995; Dawson & Dennison, 1996; Longstaff 

et  al.,  1999;  Ralph,  1999),  temperature  changes  (Ralph,  1998),  osmotic  stress  and 

desiccation (Ralph, 1998; Bjork et al., 2000), as well the contamination by heavy metals and 

petrochemicals (Ralph & Burchett, 1998) and herbicides (Ralph, 2000).

3.1.4.  PARP as marker of cellular stress induction

Poly-ADPribosylation is a reversible post-translational modification of proteins catalyzed by 

the  nuclear  enzyme  poly-ADPR  polymerase  (PARP)  that  uses  NAD+ as  a  substrate  to 

synthesize polymers  of adenosine diphosphoribose (poly-ADPR) (D’Amours  et al.,  1999; 

Chiarugi,  2002).  Poly-ADPribosylation  is  involved  in  the  regulation  of  several  cellular 

functions related to the maintenance of genomic integrity (DNA repair, gene amplification, 

apoptosis)  and  to  the  expression  and  propagation  of  the  genetic  information  (DNA 

transcription and replication, differentiation, neoplastic transformation) (Smith  et al., 1998; 

Amé  et al., 1999;  Kickhoefer et al., 1999). The synthesis of poly-ADPR is an immediate 

response to DNA damage and is the first step in a cascade of events leading to either DNA 
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repair or apoptosis (Althaus et al., 1987; Jacobson et al., 1999, Chiarugi, 2002). The natural 

occurrence of a family of proteins with poly-ADPribosylating activity (PARP 1, PARP 2, V-

PARP, tankyrase)  underlines  the  important  role  of  this  modification  in  the  regulation  of 

various cellular functions (D’Amours et al., 1999; Jacobson et al., 1999; Smith et al., 1998; 

Amé et al., 1999; Kickhoefer et al., 1999; Chiarugi, 2002). 

In plants, both PARP-1 and PARP-2 homologues were found with a very similar 

structure to animal polymerases (Babiychuk et al., 1998).

Both enzymes are localized in the nucleus and are equally induced by DNA breaks, 

while stresses such as cold, dehydration and heavy metals mainly induce PARP-2 (Doucet-

Chabeaud et al., 2001).

When the stress causes too much ATP consumption,  the plant suffers severe and 

permanent  damages  that  lead  to  the  cell  death (Ying  et  al.,  2005;  Huang  et  al.,  2009). 

Because in plants PARPs are major consumers of energy, several studies showed that both 

pharmacological and genetic PARPs inhibition reduce stress-induced energy consumption, 

protect plants against stress and prevent cell necrosis (Amor  et al.,  1998;  De Block  et al., 

2005). Recently, many researchers provided evidences for a role of plant PARP in energy 

homeostasis and stress tolerance (De Block et al., 2005). Strong stresses induce poly(ADP-

ribosyl)ation-activity,  causing  NAD+ breakdown enhancing  mitochondrial  respiration.  By 

reducing  stress-induced  poly(ADP-ribosyl)ation-activity  NAD+ breakdown  is  inhibited 

preventing high energy consumption (Vanderauwera et al., 2007). Under these conditions, 

plants  preserve their  energy homeostasis  without  an over-activation of the mitochondrial 

respiration, thus avoiding the production of reactive oxygen species (Amor et al., 1998).

A decrease of poly(ADP)ribosylation alleviates the NAD+ and ATP, promoting an 

enhanced tolerance to drought, heat and high-light stresses.

76



3.2. Material and methods

3.2.1. Study site and target species

The Southern side of Castello Aragonese (40° 043.84’ N; 13° 57.08’ E), located at 

Island of Ischia (see Study Area),  has been the sampling site during the summer season 

(July-August 2009) at about 1m depth. 

In particular, two environments at different pH values have been considered to asses 

the effects of pH variation on physiology of some macroalgae.

S1 characterized  by 8.1  units  of  pH was  considered  as  “Normal  pH” sector,  S3 

characterized by 6.78 units of pH was considered as “Low pH” sector.

For the eco-physiological analyses, three target species were selected according to 

their abundance and distribution along the pH gradient. The chosen species are: Sargassum 

vulgare (Phaeophyceae)  present  into  the  acidified  environment;  Jania  rubens 

(Corallinaceae),  mostly  abundant  at  pH  higher  than  8  and  completely  absent  into  the 

acidified zone and Dictyota dichotoma v. intricata (Phaeophyceae) able to live all along the 

pH gradient even tough it is present with different abundances (see Chapter 2).

The measurements in situ and the sampling of thalli were performed always around 

noon (local time) in order to avoid possible effects related to the daily variation in the algal 

photoresponse.

Thalli  collected  for  pigment  analysis  were  free  from epiphytes  and  immediately 

stored at -20°C.

3.2.2. Photosynthetic performance measurements: Photochemical 

parameters

In situ on intact thalli of the three target species (Sargassum vulgare,  Jania rubens 

and Dictyota dichotoma v. intricata) were performed Rapid Light Curves (RLCs) in relation 

to the: effective PSII quantum yield (PSII), relative maximum PSII electron transport rate 

(rETRmax), photochemical (qP) and non-photochemical quenching (qN) by means of diving 

pulse amplitude modulated (PAM) fluorometer (Walz, Effeltrich, Germany).  In situ on 10 

min dark-adapted thalli, the maximum quantum yield of PSII (Fv/Fm) was also monitored.

RLC were derived through measurements  of  fluorescence  (Ft)  at  8 different  light 

intensities (from 30 to 800 µmol photons m-2 s-1). For each irradiance level, a saturating light 

pulse  was  applied  and  the  maximal  fluorescence  (Fm’)  was  determined.  The  difference 
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between Fm’ and Ft is assumed to be the result of electron transport and, therefore, (Fm’-Ft)/

Fm’ (F/Fm) can be used as an estimate quantum yield of PSII (PSII). Since J. rubens has not 

a laminar thallus did not determine the absorbance factor (AF) (Saroussi & Beer, 2007). For 

this reason relative ETR (rETR) were calculated for this species according to (Beer  et al., 

2001) as:

rETR =Y*PAR*0.5

The same parameter was calculated also for D. dichotoma and S. vulgare. Maximum 

photosynthetic rate (ETRmax), alpha () and saturating light intensity (Ek =rETR/) (Ralph 

et al., 2002) of ETR vs light curves were estimated by the SigmaPlot software (SPSS Inc.) 

using the exponential function of Webb et al. (1974). When at the PPFDs used was observed 

an appreciable  downturn in the curve, an additional term was introduced in the equation 

according to Platt  et al. (1980). The photosynthetic parameters   and ETRmax  vs Ek ratio 

were  determined.   is  the  initial  slope  of  the  curve  that  represents  the  rate  of  photon 

conversion under low irradiances (Runcie & Riddle, 2004).

For the maximum quantum yield determination, thalli were darkened for 10 minutes 

to  determine  the  ground  basal,  initial  fluorescence  (F0)  and  then  exposed  to  a  single 

saturating flash in order to derive the maximum fluorescence (Fm). qP and qN were calculated 

according to van Kooten & Snel (1990).

3.2.3. Experimental design 

For each target species 10 thalli of natural populations were considered to asses their 

photochemical performance. In situ measurements were carried out on:  S. vulgare in Low 

PH sector,  J. rubens in Normal pH sector;  D. dichotoma v.  intricata in both Normal and 

Low pH environments. Thalli of natural populations were called wild. 

In  order  to  evaluate  a  possible  stress  induced  by  acidification  on  target  species, 

transplanting  experiments  have  been  performed  by  moving  algae  from  their  native 

environment to other sites at pH different from the native one. In addition to assess the effect 

of transplanting practice, some thalli were transplanted also in their native environment.

In details,  S. vulgare was transplanted from Low pH (S3) (i.e. native condition) to 

Normal pH environment (S1) and to S3. J. rubens was initially transplanted from Normal pH 

(S1) to to both Low pH (S3) and native Normal pH environment (S1). After only one week, 

78



thalli transplanted in S3 were lost. For this reason S2 zone (pH = 7.68) characterized by pH 

values higher than S3, was used as. Low pH environment for the transplant of J. rubens.

D. dichotoma v. intricata was transplanted also from Normal pH to both Low pH and 

native  Normal  pH  environment;  vice-versa was  made  for  thalli  living  in  Low  pH 

environment. Unfortunately all transplanted thalli of D. dichotoma v. intricata native of Low 

pH  were  lost  and  cannot  be  considered  in  the  results.  Transplanted  thalli  were  called 

transplant followed by the name of the environment in which they were transplanted (e.g. 

transplant_low is  a  thallus  transplanted  in  the  low  pH  environment).  A  scheme  of  the 

experimental design is reported in Table 14.

Table 14: Species transplanted are showed. New indicate the non-native environment for the relative 
species.

Species and

native environment

Transplanting environment

Low pH (S2 or S3) Normal pH (S1)
S. vulgare Low pH (S3) X (S3) X (S1) new
J. rubens Normal pH (S1) X (S2) new X (S1)

D. dichotoma Low pH (S3) - -

D. dichotoma Normal pH (S1) X (S3) new X (S1)

Transplants were set up using plastic nets of 20*20 cm fixed to the rocky substrate by 

means of screws. On each net, 10 thalli of two target species were fixed on their meshes 

repeated for 3 times to prevent loss of thalli, for a total of 30 transplanted thalli for each 

species (Figure 32).

Figure 32: Transplanting nets with target species.

Transplanted thalli were let to acclimatize for three weeks, after this time a new set of 

fluorescence  measurements  was  performed  in  situ.  In  order  to  assess  possible  seasonal 

changes during the transplanting period, fluorescence measurements were repeated also on 

natural  populations  simultaneously to  transplanted  thalli.  Thalli  of  natural  population  on 
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which  photochemical  measurements  were  repeated  after  three  weeks  (as  in  transplanted 

thalli) were called wild a.

3.2.4. Laboratory experiments 

In order to set the Diving-PAM fluorometer, first photochemical assessments were 

carried  out  in  laboratory  adjusting  some  parameter  such  as:  intensity  and  time  of  the 

saturating pulse,  the range of irradiance used for each species,  the distance between the 

sample and the optical sensor and the assessment of the absorbing factor (AF).

In  addition  to  the  three  target  species,  also  the  algae  Corallina  elongata and 

Amphiroa rigida (Corallinaceae) have been considered. 

In  all  these  species  was  analyzed  the  photochemical  activity  depending  on  the 

irradiance (Photosynthetic Photon Flux Density, PPFD, µmol photons m-2 s-1). In particular 

the photochemical indexes: quantum yield of the linear electronic transport (PSII), electron 

transport activity (ETR), photochemical quenching (qP) and non-photochemical quenching 

(qN) were measured in response to increasing doses of PPFD ranging from 0 to 900  mol 

photons m-2s-1.  PSII was calculated according to Genty  et al. (1989), ETR was measured 

according to Beer  et al. (2001), qP and qN were determined following van Kooten & Snel 

(1990). 

Maximum photochemical efficiency (Fv/Fm ratio) was measured on all 10 minutes 

dark adapted thalli.

3.2.5. Pigment analysis

Pigments  were determined on  wild a and  transplant thalli  of  Sargassum vulgare, 

Jania rubens and Dictyota dichotoma v.  intricata. Chlorophylls and carotenoids content of 

thalli were determined spectrophotometrically in 100% acetone according to  Lichtenthaler 

(1987).

Pigments from 0.100 g of frozen tissue were extracted with a mortar in 100% acetone 

and centrifugated at 3000 rpm for 7’. Before centrifugation, samples were balanced and final 

volume was taken for each sample. 

Total carotenoids (x+c), chlorophyll a and chlorophyll b were determined at 470 nm, 

645 nm and 662 nm respectively. Then mg/g of fresh weigh of pigments was derived. In 

addition  the  ratios  chl  a/b  and  total  chlorophyll/total  carotenoids  (a+b/x+c)  were  also 

determined.
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3.2.6. PARP investigation

Isolation of nuclei

The isolation of nuclei was performed according to the method modified of Green et  

al.  (1999).  All  operations  were  performed  on  ice  or  at  4°C.  All  algas  were  cut  and 

resuspended in buffer A containing 10 mM TrisHCl pH 7.0, 1 mM EDTA, 1 mM EGTA, 1 

mM PhMeSO2F, 10 mM MgCl2, 5 mM 2-mercaptoethanol,  and 0.5% Triton X-100 (1:4, 

w/v) and homogenized for 15-30 s at low speed using an Ultra Turrax T8 (IKAWERKE). 

The homogenates were filtered through three layers of cheesecloth,  and the filtrates were 

centrifuged at 1500 x g for 30 minutes at 4°C. The pellets containing nuclei were suspended 

in buffer A and were centrifuged as above. This procedure was repeated four times to extract 

chloroplasts. Finally, the pellets were washed with buffer A without Triton X-100 (buffer B) 

and suspended in a small volume of buffer B containing 2% glycerol.

Assay of poly(ADPribose) polymerase

The enzymatic activity was routinely assayed  in a  reaction mixture (final volume 50 µL) 

containing 0.5 M Tris-HCl pH 8.0, 50 mM MgCl2, 10mM DTT, 0.4 mM [32P]NAD+ (10000 

cpm/nmole) and a defined amount (20 µg protein) of whole nuclear fractions from algas. 

After incubation for 15 minutes at 25°C, the reaction was stopped by transfer onto ice and 

addition of 20% ((w/v) trichloroacetic acid (final concentration). The mixture was filtered 

through Millipore filters (HAWPP0001, 0.45 µm) and washed with 10% trichloroacetic acid. 

The activity was measured as acid-insoluble radioactivity by liquid scintillation in a Beckman 

counter (model LS 1701).

SDS-PAGE and Western Blot

Nuclear fractions from  algae were electrophoresed onto 12% polyacrilammide mini-gel in 

0.1%  sodium  dodecyl  sulphate  (SDS).  Western  Blot  analysis  was  performed  by 

electrotransferring proteins to a PVDF membrane using the Biorad apparatus at 200 mA for 

2h at 4°C. Filter was incubated first with anti-poly(ADP-ribose)polymerase (H-250, Santa 

Cruz,  CA,  USA  and  after  with  the  horseradish  peroxidase-conjugated  goat  antirabbit 

secondary  antibody  (Pierce).  Immunodetection  by  Enhanced  Chemiluminescence  was 

measured with a Quantity One Program in a Chemidoc apparatus (Bio-Rad).
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3.2.7. Statistical analysis

The statistical analysis of data has been performed by analysis of variance (one way-

ANOVA)  with  Tukey’s  post  hoc test,  for  laboratory  and  in  situ measurements  for 

fluorescence parameters Fv/Fm, ETRmax, Ek, and  alpha. Differences among curves of wild 

and transplanted thalli were analyzed by using two-way ANOVA (irradiances vs treatment) 

and Bonferroni  post hoc test, for each photochemical parameter (PSII, qP and qN) and for 

each species.

Differences among chlorophylls and carotenoids content and their derived parameters 

(e.g a+b vs c+x ratio) were also analyzed through ANOVA and Tukey’s  post hoc test. All 

statistical analysis was performed by using statistical software package Prism 4 (GraphPad 

software Inc., 2005).
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3.3. Results

3.3.1. Photochemical performance of target species

Results for effective PSII quantum yield (PSII), ETR, qP and qN are showed in Figura

33 for all considered species in laboratory measurements.

Highest  values of (PSII),  ETR and qP were observed among different  species,  for 

Dictyota  dichotoma and  Sargassum vulgare.  As  regards  thermal  dissipation,  the  highest 

values of qN were reported for  C. elongata and  J. rubens whereas  S. vulgare showed the 

lowest ones.

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0

1 0

2 0

3 0

4 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

D ictyota dichotom a v. intricata Sargassum  vulgare

Corallina elongata Am phyroa rigida

Jania rubens
qN

ET
R

P PFD PP FD


PS

II
qP

Figura 33: Quantum yield (PSII), electron transport rate (ETR), photochemical quencing (qP) and non-
photochemical quencing (qN) in D. dichotoma, S. vulgare, J. rubens, C. elongata e A. rigida, to irradiance 
(PPFD, µmol of photons m-2 s-1), measured in laboratory (means± standard error, n=4)
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Figure 34: Maximum photochemical efficiency of PSII (Fv/Fm), measured in laboratory (pH>8) in D.  
dichotoma,  S. vulgare, J. rubens, C. elongata e A. rigida (means ± standard error, n=4).

In   is  reported  the  maximum  PSII  photochemical  efficiency  for  all  species.  D. 

dichotoma and  S. vulgare showed higher values of Fv/Fm,  compared to Corallinaceae.  In 

particular, J. rubens showed the lowest value (P<0.01).

The same photochemical parameters measured in laboratory, were monitored also in  

situ (). The  quantum  yield  of  PSII  electron  transport  (PSII)  did  not  show  significant 

differences among species at high irradiance. On the contrary in the range of 0-200  mol 

photons  m-2s-1,  slightly  difference  was  observed  among  D.  dichotoma of  lower  pH 

environment (pH 6.72) and the other species. 

The highest values of qP and qN were found in J. rubens whereas the lowest ones in 

D. dichotoma of both pH environments.
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Figura  35: Quantum yield (PSII), electron transport rate (ETR), photochemical quencing (qP) and non-
photochemical  quencing (qN), to  irradiance  (PPFD,  µmol  of  photons m-2 s-1),  measured  in  situ  in  D. 
dichotoma in both acidified (6.72) and normal (8.1) pH, S. vulgare in acidified environment and J. rubens 
in normal pH (means± standard error, n=9)
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Figure 36: rETRmax, alpha and Ek for each target species (means± standard error, n=9).
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 shows the rETRmax, the alpha factor and Ek values measured  in situ for the four 

target  species.  As  regards  rETRmax  significant  differences  were  observed  between  D. 

dichotoma of Normal pH, that presents the highest rETRmax, and D. dichotoma of Low pH 

(p < 0.05 according to Tukey’s post hoc test) and between D. dichotoma of Normal pH and 

S. vulgare (p < 0.01) that exhibits the minimum value.

Among species,  D. dichotoma of  Low pH and  J.  rubens showed an alpha value 

significant lower (p > 0.05) compared to other algae. D. dichotoma from Normal pH showed 

the highest value for alpha. The highest Ek was observed for J. rubens while no difference 

was reported for D. dichotoma from both pH conditions and S. vulgare.

In  Table  15 ANOVA  results  for  rETRmax,  alpha  and  Ek  for  each  species  are 

summarized.

Table 15: ANOVA results.

Figure 37 displays the PSII maximum photochemical efficiency for target species. 

No difference was observed among D. dichotoma of both pH environments and S. vulgare 

while the lowest Fv/Fm value was reported for J. rubens (p< 0.0001, Kruskal-Wallis test).

0 . 0 0 0 .2 0 0 . 4 0 0 .6 0 0 . 8 0
F v /F m

J. rubens pH  8 .1

D. d ichotoma p H  8.1
D. d ichotom a p H 6.78

S. vulgare p H  6.78

Figure 37: Maximum photochemical efficiency of PSII (Fv/Fm) in situ on target species (means± standard 
error, n=9).
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Dictyota_Normal Dictyota_Low Sargassum_Low Jania_Normal F P
rETRmax 47.1±2.89 39.8±2.13 36.9±2.43 44.3±2.33 6.06 <0.01
alpha 0.4±0.013 0.3±0.013 0.4±0.015 0.3±0.012 24.88 <0.01
Ek 89.9±6.30 124.9±6.90 99.6±8.52 157.5±8.05 15.59 <0.05



3.3.2. Ecophysiological response to pH variation

Sargassum vulgare

Photochemical  PSII  efficiency  (PSII),  photochemical  (qP)  and  non-photochemical 

quenching (qN), have been reported for Sargassum vulgare (Figure 38).
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Figure  38: Photochemical PSII efficiency (PSII), photochemical (qP) and non-photochemical quenching 
(qN) in both transplanted and wild thalli of S.vulgare (means± standard error, n>9)

As regard transplanting experiment, there is no difference for the  PSII among wild 

and transplanted thalli. Lowest values of photochemical quenching (qP) were observed for 

thalli  transplanted in native area (p<0.001),  i.e.  low pH condition,  while little  difference 

(p>0.05) was observed between wild and transplanted thalli in higher pH conditions. The last 

ones are very similar to wild a thalli in which measures were carried out simultaneously to 

transplanted thalli. On the other hand, highest values of qN (p<0.01) were observed in thalli 

transplanted in higher pH conditions while similar values were recorded for both wild and 

wild a thalli and transplanted thalli in native conditions.
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Figure 39: rETRmax, alpha, Ek and Fv/Fm for S.vulgare in transplanted and wild thalli (means± standard 
error, n>9).

In  Figure 39 are reported the rETRmax, the alpha factor, the Ek and the maximum 

PSII photochemical efficiency (Fv/Fm) for the species Sargassum vulgare. rETRmax evidences 

no  significant  differences  among  wild,  wild  a thalli  and  transplanted  thalli  in  both  pH 

environments (F = 1.94, p = 0.3315);  alpha values did not present any differences among 

treatments (F = 1.12, p = 0.0867) whereas Ek decreases significantly in thalli transplanted in 

both higher pH and native environment compared to wild thalli (p<0.05). The highest value 

of Ek was found in wild thalli (p<0.001).

As regards the maximum PSII photochemical efficiency, the highest values of Fv/Fm 

were  observed  in  low  pH  conditions  while  a  significant  decrease  was  detected  in 

transplanted thalli in higher pH (F= 4.77, p <0.01). No difference was recorded in wild thalli 

and transplanted thalli in native area

In  Table 16 ANOVA results for rETRmax,  alpha and Ek in  Sargassum vulgare are 

summarized.
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Table 16: ANOVA results for S. vulgare.

Jania rubens

In Figure 40 are reported the photochemical indexes PSII, ETR, qP and qN for Jania 

rubens.
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Figure  40: Photochemical PSII efficiency (PSII), photochemical (qP) and non-photochemical quenching 
(qN) in both transplanted and wild thalli of J. rubens (means± standard error, n>9).

The quantum yield  of  PSII  electron  transport  (PSII)  did  not  show any difference 

among wild and transplanted  thalli  at  higher pH. In thalli  transplanted  at  lower  pH  PSII 

strong decrease showing the lowest values. A similar trend was observed for wild a thalli.

Higher values of qP were observed for transplanted thalli in higher pH sector. No 

differences (p>0.05) among transplanted thalli in lower pH, wild thalli and wild a thalli were 

89

Wild_Low Trans_Normal Trans_Low Wild a_Low F P
rETRmax 36.9±2.43 26±2.22 31.2±1.67 30.4±3.16 1.94 >0.05
alpha 0.4±0.015 0.4±0.026 0.4±0.01 0.3±0.021 1.12 >0.05
Ek 100.2±8.52 68±11.78 78.9±4.53 91.4±10.34 45.48 <0.05



found. As regard qN, the highest values were reported for transplanted thalli in lower pH 

condition principally at lower irradiances (p<0.01). Similar (p>0.05) values were observed 

for both transplanted and wild thalli at higher pH.

In Table 17 are summarized the ANOVA results for rETRmax, alpha and Ek in Jania 

rubens. 

Table 17: ANOVA results for J. rubens.

Figure  41 shows  rETRmax,  the  alpha  factor,  the  Ek and  the  maximum  PSII 

photochemical  efficiency  (Fv/Fm)  for  the  species  Jania  rubens.  As  concerns  rETRmax, 

significant differences were detected between wild thalli and transplanted thalli in lower pH 

environment (p < 0.01). Statistical significant differences (p < 0.01) were also evidenced 

between  transplanted  thalli  in  the  different  pH  conditions,  with  lowest  value  for  thalli 

transplanted  in  low  pH  sector,  and  between  wild  a  and  transplanted  thalli  in  native 

environment (p< 0.05). 

The  minimum  value  of  alpha was  observed  for  transplanted  thalli  in  low  pH 

environment (p < 0.05) whereas no differences were reported for wild thalli and transplanted 

thalli in native condition. No difference was observed among wild thalli and transplanted 

thalli as regard as Ek values.

The highest Fv/Fm ratio was observed at higher pH conditions for both transplanted 

and wild thalli.  Maximum photochemical efficiency decreases significantly (p < 0.01) in 

thalli transplanted in lower pH conditions.

90

Wild_Normal Trans_Normal Trans_Low Wild a_Low F P
rETRmax 44.3±2.3 48.3±1.8 32.5±2.6 35.6±4 7.09 <0.01
alpha 0.3±0.012 0.3±0.017 0.2±0.013 0.3±0.0075 3.59 <0.05
Ek 157.5±8.05 185.8±17.08 145.3±14.9 122±13.8 2.48 >0.05
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Figure 41: rETRmax, alpha, Ek and Fv/Fm for J. rubens in transplanted and wild thalli (means± standard 
error, n>9).

Dictyota dichotoma

D. dichotoma showed lower values of quantum yield of PSII electron transport (PSII) 

in transplanted thalli in low pH, compared to transplanted thalli in native area (normal pH) 

(p < 0.01). The highest values were observed for wild thalli in higher pH area principally at 

lower irradiances (p > 0.01) (Figure 42).

The highest values of qP (Figure 42) were observed for transplanted thalli in native 

pH environment (normal pH), whereas the lowest were observed for  wild a thalli of lower 

pH environment.  However at  lower irradiances (< 100 PPFD) qP values are very similar 

among different treatments and control thalli.

Highest values of qN (Figure 42) have been showed by  wild a thalli of higher pH 

environment.  Wild a thalli from lower pH environment together with wild thalli from both 

lower and higher pH showed lowest values of qN being similar  among them (p > 0.05). 

Transplanted thalli of higher pH,  lower pH and native environment showed differences at 

higher irradiances for qN (p < 0.01).
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Figure  42: Photochemical PSII efficiency (PSII), photochemical (qP) and non-photochemical quenching 
(qN) in both transplanted and wild thalli of D. dichotoma (means± standard error, n>9).

Figure 43 showed rETRmax mean values with SE for Dictyota dichotoma. Significant 

differences  were  observed  between  wild  thalli  from  Normal  pH  environment  and 

transplanted thalli in Low pH (p < 0.001) and between wild and wild a thalli from Normal 

pH (p <  0.001).  Significant  differences  were observed for  alpha between wild  thalli  of 

different  pH  condition  (p  <  0.01).  alpha decreases  in  thalli  transplanted  in  both  pH 

environments (p < 0.01) and in wild a thalli from Normal pH environment (p < 0.05).

As  regards  Ek,  higher  values  were  observed  in  transplanted  thalli  in  native 

environment,  compared  to  wild  thalli  of  Normal  pH  (p  <0.001,  according  to  post  hoc 

Tukey’s  test).  No  difference  was  observed  in  transplanted  thalli  of  both  pH conditions 

neither in wild and wild a thalli of Normal pH. The maximum PSII photochemical efficiency 

(Fv/Fm) showed no statistical difference among wild and wild a thalli of both pH conditions. 

Lowest values (p < 0.01) of Fv/Fm were recorded for transplanted thalli in both higher and 

lower pH environment. In Table 18 are summararized the ANOVA results for rETRmax, alpha 

and Ek in D. dichotoma.
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Figure  43:  rETRmax,  alpha,  Ek and Fv/Fm for  D.  dichotoma in  transplanted  and wild  thalli  (means± 
standard error, n>9).

Table 18: ANOVA results for D. dichotoma.
Wild 

Normal

Wild Low Trans 

Normal

Trans Low Wild a 

Normal

Wild a 

Low

F P

rETRmax 47.1±2.89 39.8±2.13 41.1±3.42 32.1±3.69 29.7±1.64 27.4±1.90 11.73 <0.001
alpha 0.4±0.013 0.3±0.013 0.3±0.033 0.3±0.013 0.4±0.017 0.3±0.014 10.02 <0.001
Ek 89.9±6.30 124.9±6.90 140±11.59 112.4±13.22 86.5±5.79 76.4±4.57 8.38 <0.001

3.3.3. Pigments analysis

Pigments content and derived parameters (e.g. Chl a/b, a+b/x+c) have been analysed 

for each target species. All species show a similar pigments ratio even among treatments 

(Figure 44).
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Figure 44: Pigment ratios in transplanted and wild thalli of target species.

Sargassum vulgare

In Figure 45 is showed the Chlorophyll  a and b content, the total chlorophyll (a+b) 

and  the  total  carotenoid  (x+c)  content,  ratio  of  chlorophyll  a/b  and  the  ratio  of  total 

chlorophyll/total  carotenoid  (a+b)/(x+c)  at  different  pH  for  the  species  S.  vulgare.  The 

maximum value of Chl a (Figure 45) was found in thalli of S. vulgare transplanted in native 

environment (P < 0.001), i.e. at lower pH conditions; on the contrary, wild and transplanted 

thalli in normal pH showed  comparable content of chlorophyll a (P> 0.05). 

Chlorophyll  b (Figure  45)  showed  no  statistical  difference  in  wild  a thalli  and 

transplanted  thalli  in  both  high  and  low pH environments  (P>  0.05).  Total  Chlorophyll 

content  (a+b)  showed  the  same  pattern  of  Chlorophyll  a,  as  it  was  expected,  with  a 

maximum value for thalli transplanted in native environment (Figure 45).

Total  carotenoid  content  (x+c)  was  the  highest  in  thalli  transplanted  in  native 

condition, on the contrary, thalli transplanted in normal pH conditions exhibited comparable 

content (Figure 45).

The ratio a/b showed no difference in thalli transplanted in non-native environment, 

i.e.  in  normal  pH condition  (Figure  45).  At  low pH,  (a+b/x+c)  ratio  decrease  in  thalli 

transplanted compared to thalli  wild a. No significant difference was fount between wild a 

thalli and thalli transplanted in normal pH (Figure 45).
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Figure 45: Pigment analyses in S. vulgare for wild a and transplanted thalli (means± standard error, n=4).

Jania rubens

In Figure 46 is showed the Chlorophyll  a and b content, the total chlorophyll (a+b) 

and  the  total  carotenoid  (x+c)  content,  ratio  of  chlorophyll  a/b  and  the  ratio  of  total 

chlorophyll/total  carotenoid  (a+b)/(x+c)  at  different  pH  for  the  species  J.  rubens. 

Chlorophyll  a, chlorophyll  b, total chlorophyll and total carotenoids showed lower value in 

thalli transplanted in low pH environments compared to thalli  wild a in normal pH (Figure
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46). The ratios  a/b and (a+b/x+c) exhibited comparable  value between  wild a thalli  and 

thalli transplanted in lower pH environment without statistical differences (P> 0.05) (Figure

46).
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Figure 46: Pigment analyses in J. rubens for wild a and transplanted thalli (means± standard error, n=4)..

Dictyota dichotoma
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In Figure 47 is showed the Chlorophyll  a and b content, the total chlorophyll (a+b) 

and  the  total  carotenoid  (x+c)  content,  ratio  of  chlorophyll  a/b  and  the  ratio  of  total 

chlorophyll/total carotenoid (a+b)/(x+c) at different pH for the species D. dichotoma.

Chlorophyll  a showed comparable values in both wild a and transplanted thalli (P> 

0.05).  Wild  a thalli  of  lower  pH environment  showed the  highest  (P<  0.01)  content  of 

Chlorophyll a (Figure 47).
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Figure 47: Pigment analyses in D. dichotoma for wild a and transplanted thalli (means± SE, n=4).
Chlorophyll b of transplanted thalli was lower (P< 0.05) than wild a thalli at both pH 

conditions. Total chlorophylls  content mirrored the same pattern of chlorophyll  a  (Figure
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47). Total carotenoid showed the highest amount in wild thalli of lower pH environment (P< 

0.05),  whereas  thalli  transplanted  from  higher  pH  to  lower  pH  environment  showed  a 

comparable carotenoid content (P> 0.05) (Figure 47). The highest a/b ratio was found at low 

pH in wild a thalli compared to transplanted ones (P< 0.05). At normal pH the situation is 

reversed:  transplanted  thalli  shoed  higher  a/b  ratio  than  wild  a ones  (P<  0.001).  Total 

chlorophyll  vs total carotenoids ratio showed a higher value in  wild a thalli of normal pH 

compared to thalli low pH, no difference between transplanted thalli in both pH conditions 

was found.

3.3.4.  PARP activity

The nuclear fractions obtained from all  transplanted and wild population thalli  of 

Sargassum vulgare,  Jania rubens and  Dictyota dichotoma v.  intricata,  were assayed  for 

ADP-ribosylating activity at 25°C and pH 8.0 (Figure 48).
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Figure 48: PARP activity in 1= Wild thalli of S. vulgare (S3); 2=Transplanted thalli of S. vulgare in S3; 3= 
Transplanted thalli of S. vulgare in S1; 4= Wild thalli of J. rubens (S1); 5=Transplanted thalli of J. rubens 
in S1; 6=Transplanted thalli of J. rubens in S2; 7= Wild thalli of D. dichotoma (S3); 8= Wild thalli of D. 
dichotoma (S1); 9= Transplanted thalli  of  D. dichotoma from S1 to S1; 10= Transplanted thalli  of  D. 
dichotoma from S1 to S3.

In S. vulgare samples, higher levels of activity were found in the transplanted thalli in 

S1 (pH 8.1) compared to wild population and transplanted thalli in S3 (pH 6.57), in which a 

comparable activity was measured. As regard D. dichotoma, the lowest activity was found in 

transplanted thalli in S3 (pH 6.57) and in wild thalli in S3. Transplanted thalli in S1 (pH 8.1) 

showed about  50% of  poly(ADPribosyl)ating  activity  measured  in  wild S1 pH 8.1.  The 

PARP  activity  in  J.  rubens samples  seemed  to  confirm  the  previous  hypothesis:  a 

comparable  (ADPribosyl)ation  was  found  in  all  Jania samples  growth  in  similar  pH 

conditions.
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Immunochemical analyses 

Nuclear fractions from all examined algae thalli were subjected to Western Blot with 

anti-PARP1  polyclonal  primary  antibodies,  to  confirm  the  presence  of  an  endogenous 

poly(ADPribosyl)ating enzyme. In all samples a band at lower molecular weight (about 70 

kDa) and a second signal of about 140 kDa were observed (Figure 49).
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Figure 49: Western blot for 1= Transplanted thalli of D. dichotoma from S1 to S1;; 2= Transplanted thalli 
of D. dichotoma from S1 to S3; 3= Wild thalli of D. dichotoma (S1); 4= Wild thalli of D. dichotoma (S3); 5= 
Wild thalli of J. rubens (S1); 6= Transplanted thalli of J. rubens in S2; 7= Transplanted thalli of J. rubens 
in S1; 8= Transplanted thalli of S. vulgare in S1; 9= Wild thalli of S. vulgare (S3); 10= Transplanted thalli 
of S. vulgare in S3.
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4.  Changes in genetic diversity along a natural pH gradient
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4.1. Introduction

4.1.1. The species problem

Species are considered the essential level of biological organization, and as such they 

are  fundamental  to  several  fields  of  investigation  as  well  as  to  practical  applications  of 

evolutionary and biology. There is great controversy among biologists about the definition of 

species, to the extent that nobody has ever not heard anything about the issue known as “the 

species problem”.

Recently,  two of the major  journals  of evolutionary biology have devoted  several 

papers in  special  issues to  the question of:  “what  are  species?” (Journal  of Evolutionary 

Biology, volume 14, 2001, pp. 889 ff.;  and Trends in Ecology and Evolution volume 16, 

2002,  pp.  326  ff.),  there  have  been  several  books  (Otte  and  Endler,  1989;  Hey,  2001; 

Claridge, Dawah and Wilson, 1997; Howard and Berlocher, 1998) and of course numerous 

articles. 

In  research  manuscripts,  where  the  species  is  involved  (species  descriptions, 

taxonomic  revisions,  phylogeographic  hypothesis,  etc.),  it  is  very  rarely  evident  which 

species concept the researcher adheres to.

Mayden  (2002)  reviews  the  reasons  for  the  disagreement  surrounding the  species 

issue. Besides the main one (the failure of scientists in appreciating the nature of species as 

individuals),  he highlights some epistemological reasons for the disagreement surrounding 

the species issue.  First,  the perception of reality and judgements  of different  scientists  is 

reflective  of  their  academic  background.  “If  one  is  a  morphological  taxonomist  or 

systematist, then there will likely be more emphasis placed on these types of traits validating 

the  existence  of  a  species,  even  in  the  face  of  dramatic  genetic  differences  between 

morphologically  similar  forms”.  Furthermore,  the  potential  of  resolving  issues  regarding 

biological diversity using molecular tools is currently particularly advertised. “Although the 

methods being employed in molecular studies can be more informative in some cases, it is 

equally likely that they will either not provide information in other cases or the information 

generated is of questionable validity to ask evolutionary and biodiversity questions because 

of questions of homology (Stauffer and McKaye, 2001).
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4.1.2. Speciation and sister, cryptic and sibling marine species

The  knowledge  of  what  species  are,  how  they  originate  and  how  they  can  be 

distinguished is  of  paramount  importance  in  order  to  understand taxonomic  relationships 

existing among them. This topic has practical applications to several fields, as biodiversity 

conservation, public health and human diet. Papers dealing with it are published at increasing 

rate and, today, terms as “sister”, “sibling” and “cryptic” species dominate their titles and 

abstracts. Even removing the misunderstanding coming from the fact that camouflaged or 

secretive species are referred to as “cryptic” by some authors, there seems not to be a general 

agreement on the real definition of these terms. Most authors consider cryptic species to be 

synonymous with sibling species (Saez and Lozano, 2005), others regard sibling species as 

“cryptic sister species” (Knowlton, 1986).

Before  continuing,  it  is  essential  to  make  clear  this  point.  Sister  species  are  two 

species derived from the same immediate common ancestor;  cryptic  species two or more 

distinct species that are erroneously classified as a single nominal species because they are, at 

least superficially, morphologically indistinguishable. Sibling species are the closest relative 

of each other and have not been distinguished from one another taxonomically. Finally, a pair 

or a group of cryptic (or sibling) species are considered as a species complex. Bickford et al. 

(2007) provide the most recent survey on literature on cryptic and sibling species. Their work 

confirms the extreme actuality of the issue (over 3500 published papers in the last 50 years), 

often occurring as a byproduct of investigation on other biological issues and rather biased 

towards animal taxonomy. Despite the increased present-day attention on it, the problem of 

identifying cryptic species is not exactly a novelty and has probably appeared immediately 

after  the origin of the idea of species.  Obviously,  this  problem has been affected by the 

debate on species concepts and researchers have based the recognition of cryptic on their 

favourite species concept. For the reasons reported above, an attempt to deal with the issue of 

cryptic species identification will be made in this thesis, remembering the differences among 

species definition, speciation processes and species delimitation, thus disentangling this issue 

from the above discussed “species problem”. Until now, most taxonomists described species 

observing the dictates of morphological (or “typological”) species concept. Each description 

corresponds to a “lot” of type specimens,  known as “type series” housed in museums or 

private  collections.  After  its  formulation,  Biological  Species  Concept  became  the  most 

popular species concept, and tests for interbreeding were commonly accepted as method to 

identify cryptic species. Indeed, as referred before, speciation is not always accompanied by 

morphological  change;  the true number  of  biological  species  is  likely to  be greater  than 
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species described on the basis of purely morphological grounds. Unfortunately, mechanisms 

of reproductive isolation differ among taxa and this method has soon been proven not being 

universally appropriate. Today, the production and the analysis of molecular data require no 

specialized  knowledge  of  the  anatomy,  ecology,  behaviour  or  biogeography  of  the  taxa 

involved. For this reason, DNA sequencing is becoming the most largely employed method 

in taxonomical research on cryptic species at the extent that it has been suggested it “should 

be incorporated in the research of alpha taxonomists (i.e. biologists that discover, describe, 

and name new species) as a matter of routine and/or that genetic material should be preserved 

so that subsequent molecular analysis is possible” (Bickford et al., 2007). Methods based on 

neutral molecular markers make up a new powerful tool to obtain information on hierarchical 

relatedness and relatives rates of evolution (i.e. molecular clocks). They are in agreement 

with all Phylogenetic Species Concepts and succeed in overcoming the constraints imposed 

by the strict application of reproductive isolation tests.

Starting from the awareness that  the multidisciplinary approach is  the unique tool 

making possible the most realistic “vision” of the taxonomic status of a species, before to 

focus on the single cases analysed in this thesis, we’ll make a rapid excursus on the problems 

met  by the  researchers,  to  explain  the  mechanisms  leading  to  speciation  and to  forming 

sibling species, ubiquitous and so common in the sea (Knowlton, 1993).

These difficulties are also linked to the distinction made among sympatric, parapatric 

and allopatric species. Their peculiarities are not even so clear (Futuyma and Meyer, 1980), 

and  become  more  complicated  in  the  sea,  where  it  is  really  hard  both  to  delineate  the 

characteristics of larvae and/or adults marine individuals,  and to document their  dispersal 

power (Burton, 1983). Besides, the hypothesis  on speciation have been made considering 

principally divergence in terrestrial or freshwater animals, grouped in small populations and 

capable of low spreading, making so impossible to deal with populations characterised by 

high dispersal ability and high fecundity like the major part of marine organisms (Otte & 

Endler, 1989). Referring to the biogeographic characteristics of species, to the sympatric ones 

belong groups who, even if do not share the same habitat (for example differences in depth, 

salinity),  come  in  contact,  even  for  a  brief  time,  during  their  larval  or  adult  stages;  the 

parapatric species are identifiable with taxa who do not overlap their distributions along a 

continuous coastline; the allopatric species correspond to groups able to disperse across and 

among  the  oceans  (Knowlton,  1993).  The  latters,  thanks  to  planktonic  larvae  and  free-

swimming adults, are able to move for thousands of kilometres, leading to believe that the 

rapid  gene  flow  slows  the  speciation  process.  These  groups,  instead,  can  provide  the 
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exception to the rule “slow species divergence in allopatry” (Palumbi, 1992). What are the 

mechanisms  thanks  to  which  allopatric  populations  in  the  sea can show at  least  a  slight 

genetic  structure?  The  sea  heated  differently  at  the  poles  and  at  the  equator,  provides 

complex circulations and makes gene flow neither continuous nor random (Schopf, 1979). 

Looking at large geographical scale, gyres surely constrain larval dispersion in the ocean; 

focusing on smaller  geographical  features,  instead,  near-shore currents,  steep temperature 

gradient (Schopf, 1979) and processes as “plate effects” can represent valid barriers to gene 

flow (Scheltema & Williams, 1983, Kay, 1983). Also the isolation by distance (considered 

principally for large geographical scales) (Palumbi, 1994) and the capacity of some species to 

control their dispersal power (Burton & Fieldman, 1982), have been catalogued as possible 

explanations  to  the  presence  of  genetic  structure  in  allopatric  populations.  Much 

consideration is also given to the recent history of the species analysed: the changes of the 

sea level of the tropical Pacific Ocean, during the Pleistocene (Paulay, 1990) or the rise of the 

Isthmus of Panama (Knowlton et al.,  1993) help to explain the genetic structure found in 

populations with high dispersal power. Particularly, Pleistocene may have been a period of 

rapid  speciation  (Palumbi,  1994).  However,  reproductive  isolation  is  always  an  essential 

request for the speciation process (Mayr, 1942, Coyne, 1992, Knowlton, 1993): obstacles to 

the  reproduction,  studied  principally  in  sympatric  species  and mainly  due  to  pre-zygotic 

barriers, are consequences of mate preference or habitat specialization choose by different 

taxa  of  marine  invertebrates  (Snell  &  Hawkinson,  1983,  Grassle  &  Maciolek,  1992, 

Knowlton et al., 1993). What, still today, appears really difficult to establish is what are the 

genetic mechanisms controlling the reproductive isolation (Palumbi, 1992, Palumbi, 1994).

Much problematic is to analyse groups living in habitat like deep sea (Gage & Tyler, 

1991),  or  extremely  simple  taxa  like  sponges,  where  it  results  hard  to  find  diagnostic 

characters capable to distinguish sibling species (Boury-Esnault et al., 1992, Solè-Cava et al., 

1992).

Knowlton  (1993)  provided  an  extensive  review  on  marine  species  taxa  “whose 

distinctiveness has been the source of substantial taxonomic debate or whose discovery was 

based  on  non morphological  characters  is  included  under  the  rubric  of  sibling  species”. 

Clearly,  under  this  criterion,  the  examples  provide  range  “from species  that  are  readily 

distinguished morphologically once the appropriate characters are considered ("pseudosibling 

species")  to  species  that  are  only  imperfectly  isolated  from each  other  ("semispecies")”. 

Despite  that  her work constitutes  the first  review of literature  on marine cryptic  species, 

(even if she referred to them as “sibling”). 
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Among brown algae,  three  species  of  the  genus  Macrocystis:  M. angustifolia,  M. 

integrifolia and  M. pyrifera,  are  biologically  compatible.  However  these  entities  are  still 

conserved as “morphologic species” since it is possible differentiate them at first sight (de 

Reviers, 2006). On the other hand, cases of hybridization are well known in the same genus 

(i.e. Fucus) and between different genera of Laminariales (Nereocystis and Macrocystis) as 

well as undistinguishable species cannot interbreed. In general it is very difficult to apply the 

biological species concept and for this reason today's systematists generally make extensive 

use of molecular biology to avoid to describe individuals as new species based on a different 

morphology (de Reviers, 2006).

4.1.3. The genus Dictyota: life cycle, distribution and ecology

Genus Dictyota belong to the class Phaeophyceae (brown algae), order of Dictyotales, 

family  Dictyotaceae, is very common in intertidal and subtidal habitats along rocky coasts 

worldwide (Guiry & Guiry, 2010)

Species of the genus  Dictyota have thallus flattened, ribbon-like, erect or prostrate, 

with smooth, dentate, crenulate or ciliate margins; attachment by basal rhizoids or marginal 

rhizoidal  processes  scattered  along  the  edges  of  the  thallus  or  restricted  to  the  base, 

stoloniferous holdfasts present or absent; branching dichotomous, anisotomous or alternate, 

rarely falcate; apices obtuse, rounded, apiculate or acute; phaeophycean hairs and superficial 

proliferations present or absent (Guiry & Guiry, 2010); each dichotomy originate from the 

division of the lenticular apical cell (Figure 50, c).

Cross  sectioning  in  whatever  position  shows  two  kind  of  cells  forming  the 

parenchymatous thalli of the genus: the inner one is constituted by colourless medullary big 

cells  with a  single  nucleus,  the cortical  ones  by much  more  smaller  cells,  with  a  single 

nucleus  and numerous  discoid cromatophores.  The  relative  number  of  medullar  layers  is 

variable while the cortical layer is generally one.

Reproductive structures, identified in tetrasporanges, antherids and oogones, develop 

on  three  different  kinds  of  individuals  (sporophytes,  male  gametophyte  and  female 

gametophyte, respectively) but they are always dependent on the swelling of some cortical 

cells which split up in two cells by means a division which is always parallel to the surface 

thallus. The lower cell remains small and sterile, forming the stalk cell, whereas the top one 

develops in a reproductive structure.

Tetrasporanges can develop alone or togheter forming small  groups. They develop 

through the condensation of their content, becoming spherical and splitting up in four spores.
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Oogonia differ from tetrasporangia because they are grouped in elongated sores of 20-

40  adjacent  cells,  much  smaller  than  sporanges,  closed  and  deformed  by  their  mutual 

pressure.

Antherids are also grouped in elongated sores. After the division from the basal sterile 

cell, the mother cell develops topwards and the content become lighter. During antheridial 

development, many divisions occur both crosswise and lengthwise. Once mature, the antherid 

is  composed  by  very  numerous  greyish  cubical  niches;  each  of  them  develops  in  an 

antherozoid,  a  male  gamete,  which  has  just  one  flagellum,  different  from  other 

Phaeophyceae;  the second flagellum is  reduced to the basilar  corpuscule.  Although some 

cells  have  developed  towards  as  antherid,  remain  sterile  surrounding  the  sore  which  is 

retained even after antherozoids release giving a particular appearance to empty sores.

Tufts  of  hairs  are  very  frequent  in  younger  parts  of  the  thallus;  they  are  rapidly 

transient and once lost they leave scairs, often confused with those of the antherids (Hamel, 

1939).

Figure 50: a. Female thallus; b. Male thallus; c. lenticular apical cells; d. Oogone; e. Antherid; f. 
Oosphere; g. Antherozoid; h. zygote; i. Sporophyte; j. Sporangia with phaeophycean hairs; k. spores.

The  life  cycle  (Figure  50)  is  a  digenetic  isomorphic  haplodiplontic  one,  i.e. 

gametophytes  (a  and  b)  and  sporophytes  (two  generation  =  digenetic),  similar 

morphologically (isomophic), alternate (haplodiplontic) during the cycle.

Every  oogone  (d)  releases  one  oosphere  (f),  the  female  gamete,  whereas  each 

antherids (e) releases many antherozoids (g). When one antherozoid fertilizes an oosphere, 

the zygote (h) grows in a diploid sporophyte (i). Once mature the sporophyte will develop 

106



unilocular sporanges (j) in which meiosis originates four unflagellated haploid spores (k). 

Each spore germinates in a haploid gametophyte (de Reviers, 2002).

Dictyota is constituted by annual species which disappear in less favourable period 

but surviving as microscopic resting stages (microthalli). Natural populations are a mix of 

both sporophytes  and gamametophytes  even though the  sporophytes  results  always  more 

abundant all the year (van den Hoek, 1984; Tronholm et al., 2008).

Genus Dictyota is composed by 75 species, currently accepted taxonomically and it is 

considered as a cosmopolitan genus (Guiry & Guiry, 2010).

Until now five species and two varieties are accepted along the Italian coasts (Furnari 

et al., 2010); they are listed below with their phytogeographic element, according to Cormaci 

et al., 1982:

-  Dictyota  dichotoma (Hudson)  J.V.  Lamouroux  is  the  type  species  of  the  genus 

(Cosmopolitan),

- Dictyota dichotoma v. intricata (C. Agardh) Greville (Sub-cosmopolitan),

- Dictyota fasciola (Roth) J.V. Lamouroux (Sub-cosmopolitan),

- Dictyota fasciola v. repens (J. Agardh) Ardissone (Indo-Atlantic),

- Dictyota linearis (C. Agardh) Greville (Sub-cosmopolitan),

- Dictyota mediterranea (Schiffner) G. Furnari (Mediterranean),

- Dictyota spiralis Montagne (Atlantic).

In particular D. mediterranea was never recorded along the Campania’s coast (South 

Italy, Thyrrenian Sea) (Furnari et al., 1999; Serio et al., 2006).

4.1.4. Aim 

In  order  to  understand  if  long  term  acidification  may  or  not  favour  any  local 

adaptation, the genus  Dictyota has been chosen as model; in fact it can live all along the 

natural pH gradient present at Castello, Ischia (Gulf of Naples) (see Study Area).

Moreover,  it  could  be  interesting  which  are  the  physiological  mechanisms  which 

allow these species to cope with acidification compared to the other species, analyzing the 

expression of functional genes. However I had to begin identifying species by a genetic point 

of view for two reason: the first one was the lack of genomic information on most of brown 

algal species.

The  second  reason  is  that  the  genus  Dictyota has  recently  been  the  target  of  a 

molecular  taxonomical  study  (Tronholm  et  al.,  2010).  In  fact  a  combination  of  high 

morphological variability (Scnetter et al., 1987; Hwang et al., 2005; both in Tronholm et al., 
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2008) and a lack of distinctive characters makes an accurate description difficult and have 

driven a high number of species description or wider geographical range as in D. dichotoma 

(De Clerck, 2003).

In this chapter the attention has been focused on molecular taxonomy of the genus 

Dictyota along  the  pH  gradient  and  the  assessment  of  a  genetic  adaptation  to  the 

acidification.
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4.2.  Material and Methods

4.2.1. Plant material

Three target species of the genus Dictyota have been chosen along the pH gradient. 

Five thalli of them have been sampled in the Southern side of Castello Aragonese, both in S1 

(pH = 8.1) and S3 (pH = 6.57) at 0.5- 1 meter depth, in September 2010 (Appendix VI).

The first  one has been identified  as  D. dichotoma.  Morphology indicates  that  the 

thallus is completely erect, attached by basal rhizoid forming a discoid holdfast. The width of 

the axes is homogeneous throughout the thallus, apices rounded; branching is dichotomous. 

This  species  is  considered  distributed  worldwide  (Guiry  &  Guiry,  2010)  inhabiting  the 

shallow vertical shaded rocky shores until 2m depth (Cabioc’h et al., 2006).

The second one was a variety, identified as D. dichotoma v. intricata, very similar to 

D. dichotoma but differentiated by narrow axes especially in the distal portion of the thallus 

with  acute  apices,  with  branching  angle  of  50°  (Afonso  Carillo  &  Sanson,  2000)  and 

distributed  worldwide  (Guiry  &  Guiry,  2010).  D.  dichotoma v.  intricata live  in  both 

photophilous and shaded biotopes on shallow rocky shores until 10m depth (Cabioc’h et al., 

2006).

Both of them have been identified along the vertical subtidal rock of Castello during 

the community characterization (see Chapter 2).

The last one was not identified on the vertical rock but living with high abundance on 

the bottom of the most acidified zone. It was in earlier times identified in the field, during the 

frequent  activities  in the site,  as  D. linearis showing a narrow morphology all  along the 

thallus and forming larger balls. But taking some sample to confirm their identity with  D. 

linearis they  have  been  finally  identified  as  Dictyota  pulchella Hörnig  &  Schnetter, 

morphologically  similar  to  D.  dichotoma v.  intricata,  since  constituted  by  narrow  axes 

especially in the apical part of the thallus but branching angle of 90° or more and acute apices 

(Afonso  Carillo  &  Sanson,  2000).  They  commonly  occur  as  an  entangled  turf  or  as 

unattached benthic drift (tumbleweeds) (Beach et al., 2003) in shallow areas with calm water 

down to the lower limit of the infralittoral (Littler  et al., 2000, Bernecker, 2008; Samper-

Villareal  et  al.,  2008).  This  species  was  segregated  from the  D. dichotoma complex  by 

Hörnig & Schnetter (1988). It resulted reproductively isolated from D. dichotoma v. intricata 

despite  the  same  chromosome  number  (De  Clerck,  2003).  It  was  never  recorded  in  the 
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Mediterranean Sea, living mostly in the Caribbean Sea, the central Western Atlantic Ocean 

and in Canary Island (Guiry & Guiry, 2010).

Dictyota dichotoma

Dictyota dichotoma v. intricata

Dictyota pulchella
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Thallus size has been observed, although no quantitative data are available, for the 

different species in the two different pH environments. D. dichotoma did not vary in the size 

along the gradient whereas both  D. dichotoma v.  intricata and  D. pulchella become much 

smaller in the normal pH environment.
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4.2.2. Molecular phylogeny

Molecular phylogeny, also known as molecular systematics, is the use of the sequence 

of molecules to gain information on an organism’s evolutionary relationships. The result of a 

molecular phylogenetic analysis is graphically represented in a so-called phylogenetic tree.

The methodological steps are summarised below:

• choice of the molecular marker

• genomic DNA extraction

• DNA target amplification by PCR

• PCR products separation and purification

• PCR products sequencing

• sequence alignment

• phylogenetic reconstruction and analysis of data

Choice of molecular markers
According to Avise  et al. (1987) organelles DNA is an ideal molecular system for 

phylogenetic analysis because it is distinctive but enormously distributed to a wide range of 

organisms;  it  can  be  easily  isolated  and  analysed  and  it  has  a  genetic  structure  not 

complicated  by  repeating  DNA,  pseudogenes,  transposable  elements  and  introns. 

Furthermore,  it  is  linearly  transferred,  without  recombination  or  other  genetic 

rearrangements; it generates qualitative information which can be phylogenetically compared 

and, finally,  its evolutionary rate makes it appropriate to investigations at a species level. 

Mitochondrial genome (mtDNA) in most taxa consists in a relatively small circular molecule 

with a length ranging from 15 to 20 kb. It contains the information for 13 mRNA (codifying 

for proteins involved in electron transport chain and phosphorylative oxidation), two rRNA 

(12S for the small ribosomal subunit and 16S for the big one) and 22 tRNA, plus a so-called 

“D-loop” region which is the most variable and it is involved in replication and transcription. 

MtDNA shows a fast evolutionary change whose rate can be even ten times that observed for 

nuclear  DNA (Birky,  1995).  Although insertions  and deletions  are  not  rare,  most  of  the 

modifications  consist  in  single-base  mutations  with  a  clear  predominance  of  transitions. 

Variability  increases  proceeding  from  more  conserved  tRNA  and  rRNA  genes,  through 

mitochondrial protein genes (averagely conserved), to the control region or D-loop, the less 

conserved region, on which mtDNA length depends.
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However, plastidial genome (cpDNA) is mostly used in algae compared to mtDNA 

for phylogenetic purposes (De Clerck  et al., 2006; Tronholm et al., 2010). An explanation 

could be the higher information derived from cpDNA. This is likely due to the presence of 

more then one symbiotic event for some algal groups with subsequent indipendent lost and/or 

replacing in several eukaryote lineages, compared to mitochondria which were interested by 

just one symbiotic event with a single kind of ancestor. However heterokont (brown algae) 

plastids are demonstrated to be monophyletic (Le Corguillé  et al., 2009). cpDNA also is a 

circular molecule of 130 kb in brown algae containing 140 genes encoding essential plastid 

proteins,  involved  in  transcription,  protein  synthesis  and  transport,  and  photosynthetic 

metabolism,  such  as  component  of  ATP  synthase,  cytochrome,  photosystem  I  and  II 

complexes, 30 tRNA genes and 2 ribosomal operons encoding 16S, 23S and 5S rRNA (Le 

Corguillé et al., 2009).

The  high  rate  of  substitution  of  mtDNA  and  cpDNA  sequences  seems  to  be 

attributable to a high mutational frequency as a consequence of a low efficiency in DNA 

repair systems and to the lack of DNA polymerase proofreading.

The other fundamental difference between organelles DNA and nuclear DNA is the 

modality  of  hereditary  transfer.  Genetic  material  of  mitochondria  and  chloroplasts  is 

transferred  by  extranuclear  non-mendelian  heredity,  because  it  is  passed  clonally  and 

independently  to  the offspring through the citoplasm being also  uniparental  inherited  for 

some oogamous algal groups, as it is the case of  Dictyota (Tronholm  et al., 2010a). In a 

phylogenetic  perspective,  the  entire  mtDNA  molecule  represents  a  non-recombining 

genealogic unit with an enormous number of alleles (Avise, 1994). Studies on mitochondrial 

sequences  demonstrated  that  transversions  accumulate  progressively  and 

transitions/transversion rate can be very informative for population genetics and systematics 

(Moritz et al., 1987).

For the reasons reported above, plastidial DNA has been considered appropriate for 

this  investigation  and  two  chloroplast  genes,  rbcL  and  psbA  have  been  chosen  for  the 

molecular approach. The rbcL gene codes for the large subunit of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (McIntosh et al., 1980). On the other hand psbA gene codes for the 

D1 protein photosystem II (PSII) reaction centre; it is fundamental for the electrons crossing 

from the  PSII  to  the  electron  transport  chain.  Because  rbcL  and  psbA are  both  coding 

regions, molecular evolution of this marker is relatively constrained or ‘slow’, and it has been 

used in several studies focusing on species level (De Clerck  et al., 2006; Tronholm et al., 

2010a, 2010b; Sattarian, 2006).
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Genomic DNA extraction 

An optimal extraction should allow to isolate high molecular weight DNA molecules, 

that  is  entire  molecules  as  less  deteriorated  as  possible;  to  eliminate  every  chance  of 

contamination  from  genetic  material  coming  from  different  organisms  than  those  under 

study;  and  remove  from DNA most  of  cellular  components.  Researchers  employ several 

methodologies and techniques and protocols vary according to the kind of tissue chosen as a 

DNA source.

In order to clean individuals from the presence of microscopic epiphytes as well as 

possible, thalli were washed shaking them in 45 µm filtered seawater before being weighted. 

Extraction genomic DNA is reported in Appendix VII.

Every tool  used in the described operation has been accurately washed with 90% 

ethanol and sterilized by flame before a new use on another specimen. Using of sterile and 

disposable  tools  combined  with  cleaning  and  sterilizing  devices  used  on  more  than  one 

specimen, are of basic importance to prevent contamination among different samples. DNA 

extraction (see protocol in the Appendix VII) begins with physical degradation of cells by 

means of tissue homogenization, performed with mortar and pestle, combined with the action 

of lytic enzymes (Proteinase K). This causes the dissolution of cellular contain in a buffer 

which role is to limit DNA degradation. The isolation from other fractions (RNA, proteins, 

carbohydrates,  pigments,  etc.)  released  by  the  cells  in  the  solution  occurs  by  mean  of 

chemical  isolation  and  repeated  extraction  and  washing  steps  in  microcentrifuges  (see 

Palumbi, 1996). In the case of algae, the extraction of sufficiently pure DNA is particularly 

difficult for the marked presence of complex polysaccharides and pigments in their tissues. 

These compounds,  indeed,  tend to  be purified and isolated together  with DNA and may 

inhibit  the  activity  of  several  enzymes  as  ligase,  polymerase  and  restriction  enzymes 

(Winnepenninckx et al., 1993; Rumpho et al., 1994; Palumbi, 1996; Sokolov, 2000), which 

are essential in most of the commonly employed analysis. Several method have been devised 

in order to remove polysaccharides and other tainting compounds and, probably, the most 

employed one includes the CTAB detergent (Cetyltrimethylammonium bromide) (Doyle & 

Doyle,  1987;  Levitan  &  Grosberg,  1993),  which  creates  complexes  with  carbohydrates 

molecules and can be subsequently extracted in phenol. In this work, this method has been 

optimised for the genus Dictyota and employed in the extraction.
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DNA target amplification 
The  method  of  polymerase  chain  reaction,  universally  known  as  PCR,  allow  to 

replicate a specific DNA sequence in a very large number of copies in a few hours starting 

from a solution containing even a very small quantity of DNA (Mullis and Faloona, 1987) 

PsbA  -  The  primers  for  psbA  are  constructed  on  the  basis  of  genbank 

sequences: PsbA 20F and PsbA 20R (forward: 5’-ATGACTGCTACTTTAGAAAGACG-3’) 

(reverse: 5’- GCTAAATCTARWGGGAAGTTGTG -3’). They amplify a 900 bp region. For 

the amplification of this region in this study the PCR was set at the following conditions: 

94°C for 3 min, 30 cycles of 94°C for 1 min, 52°C for 40 sec and 72°C for 1 min and a final 

elongation step of 10 min at 72°C.

RbcL - Universal  primers  for  rbcL (Fig.  51) are  known as  RbcL 68F (5’-

TGCCWAAATGGGRWAYTGGGATGC-3’)  combined  with  RbcL  1380R  (5’-

TATCTTWCCATAAATCTAAHGC-3’)  and  RbcL  496F  (5’-

AGATTAGAYAHATTTGGWCGT-3’)  combined  with  S3r  (5’-

AAACATCCTTGTGTAACTCTC-3’) (Draisma et al., 2001; De Clerck et al., 2006):

Figura 51: rbcL primers

For the amplification of this region in this study the PCR was set at the following 

conditions: 94°C for 3 min, 28 cycles of 94°C for 1 min, 46°C for 1 min and 72°C for 2 min 

and a final elongation step of 10 min at 72°C.
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PCR products separation and purification
In this work, the separation of PCR products was carried out by gel electrophoresis. 

This technique is based on differential  migration of molecules,  according to their  charge, 

conformation or molecular weight, through a gel matrix to which is applied an electric field. 

The gel can be made of starch, polyacrylamide, agarose or cellulose acetate. This method has 

been largely employed, from the 60s, to study genetic variability of natural population at the 

level of proteins. If two individuals have sufficiently different genotypes at one locus which 

codify for a protein, they will produce two slightly different molecular forms of that protein 

which will  be identifiable  and separable  by mean of electrophoresis  (Russel,  1998).  This 

technique have been applied mainly to population genetics, but also to phylogenetic analysis: 

isozymes have been used as diagnostic markers for a priori species identification, even also 

there  have  been  cases  in  which  they  have  failed  in  discriminating  genetically  taxa 

morphologically distinct (Murphy et al., 1996) and these cases can be considered a limitation 

in the application of proteins in molecular systematics. The causes of this failure could be 

explained  by the fact  that  a considerable  portion of genetic  variability  does  not  generate 

differences in the mobility of proteins in a gel (Bullini, 1983; Murphy et al., 1996). In this 

work purified BioRad ® agarose has been used in order to separate DNA molecules produced 

by PCR, but also to verify the efficiency of DNA extractions and to test the result of DNA 

purification  from gel  (see  below).  A  system for  horizontal  electrophoresis  consists  in  a 

Plexiglas tray containing a buffer and equipped with two electrodes (platinum threads placed 

at  the extremity  of  anodic  and cathodic  chambers)  connected  to  a  power generator.  The 

samples are loaded in wells obtained in a thin gel layer which is placed inside the tray. The 

agarose, extracted and purified from marine algae, is a linear polymer with a low melting 

point  which,  changing  into  gel  at  room  temperature  creates  a  colloidal  grid  in  which 

submicroscopic holes are formed. The dimensions of this matrix, which affect the migration 

of samples, depend on agarose concentration: the higher is the concentration, the narrower 

will be the molecular net and the slower will run the DNA molecules.The linear relationship 

between the electrophoretic mobility of DNA (μ) and gel concentration (τ):

log μ = log μ0 – Kr τ

where μ0 is  the electrophoretic  mobility of free DNA and Kr the coefficient  of slowing, 

depending on gel  properties  and on the  size  and the  conformation  of  migrant  molecules 

(Sambrook et al., 1989). In order to separate DNA fragments differing in length by 100 or 

more  base  pairs  it  is  necessary  to  use  a  concentration  of  agarose  of  1.5  –  2.0  % 

(weight/volume)  (Sambrook  et  al.,  1989).  In  this  study  a  solution  of  agarose  at  a 
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concentration  of  1% has  been  used  to  check  genomic  DNA  extraction  whereas  for  the 

amplification products a solution of agarose at 1.5 % has been shown sufficiently high to 

separate the bands of interest and low enough to not giving problems in the purification step.

To allow the visualization of bands, to photograph or to excise, the agarose solution 

has  been  marked with the  fluorescent  dye  ethidium bromide  (Et-Br)  (5  μl  in  100 ml  of 

solution). Et-Br is an interposing substance which inserts between DNA bases; fragment so 

marked, if placed on a UV transilluminator, becomes fluorescent and can be easily identified. 

Because of the gel transparency, in order to load the DNA sample in the wells, it is necessary 

to stain  the sample with the so called Blue dye  (6x loading dye),  which contains  0.09% 

bromophenol blue, 0.09% xilene cyanide FF, 60mM EDTA and 60% glycerol. The role of 

glycerol is to make the solution more viscosity and making it to deposit in the wells bottom. 

The two dyes give good information about DNA migration, with no need too remove the gel 

from the tray, in that they differ in colour and in migration speed. In order to purify desired 

PCR products obtained, the bands corresponding to them in the gel have been excited on a 

UV transilluminator with a sterile scalpel, trying to take as little agarose exceeding the band 

as  possible.  The  small  gel  portions  obtained  have  been  treated  with  gel  extraction  kits 

QIAquick ® (Qiagen, GmbH, Hilden, Germany). The kit consists of a silica-gel membrane, 

placed  in  removable  columns  on  2ml  tubes,  which  has  the  property  to  adsorb  DNA 

molecules. Nucleic acids can bound to silica-gel only at high concentrations of caotropic salts 

and the adsorption has an efficiency of 95% at pH ≤ 7.5 and decreases abruptly at higher pH 

values. Polysaccharids and proteins, conversely, have a low o null affinity for the silica-gel 

matrix  at  these  concentations.  This  allows  to  remove,  by  repeated  washing  cycles  in 

centrifuge,  the  residues  of  proteins,  salts,  non  incorporated  nucleotides,  primers  and  all 

contaminants  as  ethidium  bromide,  agarose,  low  molecular  weight  DNA  and  RNA 

molecules,  recovering  more  than  90% of  high  molecular  weigth  DNA (see  Hillis  et  al., 

1996). By lowering the concentration of salts, using for example bidistilled water or a buffer, 

DNA is eluted from silica-gel matrix and passes into solution.
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PCR products sequencing
DNA has been sequenced directly from PCR product by an automatic sequencer with 

the“Dye terminator” method of Beckman Instruments ® (Molecular biology service, Stazione 

Zoologica “A. Dohrn”, Napoli). The solution for the sequencing reaction (20 μl) has been 

prepared in an eppendorf ® tube mixing 4.5 μl of one of the two primers used during the 

fragment amplification and 15.5 μl of non diluted purified PCR product. For each amplified 

fragment, two mixes have been prepared, one with “forward” primer and the other with the 

“reverse”  primer,  in  order  to  obtain  a  “double  strand”  reading  of  two  obtained 

chromatograms.  The  chromatogram  files  (Fig.  52)  obtained  were  opened  and  read  with 

Chromas Lite v. 2.01 software (© 2005 Technelysium Pty Ltd.).

Figura 52: Image of the chromatogram files.

Once the sequences were obtained, they were subject to identification by comparison 

with biosequences online databases.  The numerous  projects  and researches  aiming to the 

identification of nucleotidic sequences of complete genomes or specific regions of several 

organisms have produced (and continue to produce exponentially) an enormous amount of 

sequences,  whose  biological  function  is,  at  the  beginning,  often  unknown  (anonymous 

sequences). The realization of database in which sequences already known and characterised 

are deposited, provide a precious support to researchers which can compare newly obtained 

sequences  with  those  of  the  database  gaining  information  on their  functional  features  or 

simply verifying if they belong to a precise genome region or a particular taxon. This search 

provides  the evidence that  the fragment  amplified  and sequenced is  the correct  one and, 

indirectly, to exclude the presence of contamination by exogenous DNA. Among the most 

useful  tools  of  this  huge  “biosequences  library”  there  is  a  powerful  search  engine 

(http://www.ncbi.nlm.nih.gov/ BLAST/Blast.cgi), which is based on MegaBLAST algorithm, 

derived from BLAST (Basic Local Alignment  Search Tool).  These algorithms have been 

implemented  to  make a  very quick comparison  between an aminoacidic  or  a  nucleotidic 
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query sequence with other sequences already present in the database, optimising velocity, 

sensibility  and  process  selectivity  (Fig.  53).  BLAST  algorithm  employs  the  method 

implemented by Altschul et al. (1990) for searching regions of local similarity between the 

query  sequence  and  the  sequences  of  database  collection  and  offers,  with  respect  to 

analogous algorithms, as, for example, FASTA, higher speed for the same level of sensibility 

and  not  only.  The  application  of  BLAST  is  lead  by  statistical  properties  of  the  query 

sequence  and  those  of  database  sequences,  providing  a  significance  value  which  allows 

evaluating,  on  statistical  grounds,  the  reliability  of  homology relations  among  sequences 

(Attimonelli et al., 1997).

Figura 53: BLAST output using Megablast (highly similar sequences). Distribution of blast hits on the 
query sequence.
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4.2.3. Data analysis

Sequences alignment 
In bioinformatics, a sequence alignment is a way of arranging the primary sequences 

of DNA, RNA, or protein to identify regions of similarity that may be a consequence of 

functional,  structural,  or  evolutionary  relationships  between  the  sequences.  Aligned 

sequences of nucleotide or aminoacid residues are typically represented as rows within a 

matrix.  Gaps are  inserted between the  residues  so that  residues  with  identical  or  similar 

characters are aligned in successive columns. The process of alignment is basic for a correct 

phylogenetic  interpretation and, in general,  also for an attempt to minimise incoherencies 

among  different  sequences  by  mean  of  gap  insertion.  A  gap  should  not  correspond 

necessarily to a real insertion o deletion in the DNA, but is exclusively aimed to place all the 

bases  which  have the  same relative  position,  with respect  to  adjacent  bases  of  the same 

sequence,  in the same absolute  position,  with respect  to  all  analysed sequences.  In other 

words, the goal is to position each base in the correct column of a matrix, constituted by the 

array of aligned sequences, on which molecular alignment will be performed (Caputo, 1998).

The process is executed by the existing algorithms with a twofold approach: a first 

alignment  step  (pair-wise  alignment),  which  pairs  the  most  similar  sequences  among  all 

possible  pairs,  and  a  second step  (multiple  alignment)  in  which  a  multiple  alignment  is 

evaluated comparing and assembling the pairs obtained during the first step. In each step 

some  gaps  are  inserted  to  maximise  the  similarity  among  sequences,  according  to  user 

settings. The results of computer elaborations must be analysed and evaluated “manually” in 

a phyletic perspective and weighing the added gaps (which do not represent real biological 

entities) in terms of number and efficiency. With this process are identified the homologies 

among sequences, which are those similarities due to heredity of the same character from a 

common  ancestor.  Estimating  homologies  among  nucleotidic  sequences  is  a  basic 

requirement of phylogenetic analysis, but it should be taken into account that the “character 

nucleotide” does not have a real ontogenesis (but only in terms of biosynthesis) and can only 

exist in 4 states (A, G, C, T) identical for all the characters!

The homology has been often used as synonym of similarity. When two sequences are 

said homologous by a certain percentage it means that they have the same percentage of 

equal nucleotides at the same position: the mistake comes from the fact that homology is a 

non quantifiable qualitative property, (Moritz & Hillis, 1996). A similarity in base position 

does not necessarily depend on the origin from a common ancestor; it is necessary, indeed, to 
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distinguish among orthology (origin from a speciation process from a common ancestor), 

paralogy (which depends on a gene duplication event), xenology (in which horizontal gene 

transfer is implied), paraxenology (a combination of paralogy and xenology) and plerology 

(due to genetic conversion) (Patterson, 1988).

In  this  study,  multiple  alignments  have  been  obtained  by means  of  several  steps, 

starting from CodonCode Aligner software v. 1.5.1 (CodonCode Corp., 2006) which allows 

to verify the reading of multiple sequences automatically generated from chromatograms and 

to obtain groups of aligned and contiguous sequences.  This has been performed with the 

assembling tool, carried out leaving unchanged the default settings (70% of minimum percent 

identity and 25 bp of minimum overlap length). Sequences groups thus generated have been 

then  manually  edited  with  Bioedit  v.  5.0.6  (Hall,  1997; 

http://www.mbio.ncsu.edu/BioEdit/BioEdit.html)  in  order  to  remove  useless  sequences 

extremities and to fix a uniform length. The last step has been performed with ClustalX v. 1.7 

(Thompson,  1997;  ftp://ftp.ebi.ac.uk/pub/software/clustalw2),  which  has  generated  the 

definitive multiple  alignment  (see Alignments  Figure 57 and 58) on which the following 

analysis have been executed.

Mean Evolutionary Diversity for the entire population was estimated for psbA and 

rbcL.  Evolutionary  analyses  were  conducted  in  MEGA  v5b  (Tamura  et  al.,  2007).  All 

ambiguous positions were removed for each sequence pair. The number of base substitutions 

per site from mean diversity calculations within the entire Population is shown (see eq. 12.73 

in Nei & Kumar, 2000). Standard error estimate (SE) was obtained by a bootstrap procedure 

(1000 replicates). Analyses were conducted using the Kimura 2-parameter model (Kimura, 

1980).

Phylogenetic reconstruction
The goal of this  step is  to assemble a phylogenetic  tree representing a hypothesis 

about the evolutionary ancestry of a set of genes, species, or other taxa. The topics discussed 

in this introduction are treated in detail  in Felsenstein (2003). The phylogenetic  trees are 

constructed by computational software by means of algorithms. Just because they represent 

hypotheses,  these  trees  are  unlikely  to  perfectly  reproduce  the  evolutionary  tree  that 

represents the historical relationships between the species being analyzed. For example, the 

real historical tree representing the evolution of some species may differ from the historical 

tree of a single homologous gene shared by those species. Phylogenetic trees generated by 

computational phylogenetics can be either rooted or unrooted depending on the input data 
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and the algorithm used. A rooted tree is a directed diagram that explicitly displays a most 

recent common ancestor, usually a hypothetical sequence that is not represented in the input. 

On the contrary, unrooted trees plot the distances and relationships between input sequences 

without  making  assumptions  regarding  their  descent.  An  unrooted  tree  can  always  be 

produced from a rooted tree, but a root cannot usually be placed on an unrooted tree without 

additional  data  on  divergence  rates,  such  as  the  assumption  of  the  molecular  clock 

hypothesis. Independent information about the relationship between sequences or groups can 

be used to simplify the tree search range and to provide a root for unrooted trees. For this 

purpose,  tree generating methods involve the inclusion of at  least one outgroup sequence 

known to be only distantly related to the sequences of interest in the query set. This usage can 

be seen as a type of experimental control. If the outgroup choice has been appropriate, the 

outgroup will have a much greater genetic distance and thus a longer branch length than any 

other sequence, and it will appear near the root of a rooted tree. Choosing an appropriate 

outgroup requires the selection of a sequence that is moderately related to the sequences of 

interest;  too close a relationship defeats the purpose of the outgroup and too distant adds 

noise to the analysis. Care should also be taken to avoid situations in which the species from 

which the sequences were taken are distantly related, but the gene encoded by the sequences 

is highly conserved across lineages. Horizontal gene transfer, especially between otherwise 

divergent bacteria, can also confound outgroup usage.

In this research, three sequences from GenBank (D. dichotoma, D. pulchella and D. 

fasciola) were used as outgroups in the analysis of psbA sequences and three sequence (D. 

dichotoma, D. pulchella and D. dichotoma v. linearis) in that of rbcL. 

The  techniques  used  to  obtain  phylogenetic  trees  can  be  classified  into  the  wide 

categories of distance based and character based methods. Only those used in phylogenetic 

analysis  of  this  study  will  be  here  described.  Distance  based  methods  of  phylogenetic 

analysis  explicitly  rely  on  a  measure  of  genetic  distance  between  the  sequences  being 

classified, and therefore they require a multiple sequence alignment as an input. Distance is 

often defined as the fraction of mismatches at aligned positions, with gaps either ignored or 

counted as mismatches. Distance methods attempt to construct an all-to-all matrix from the 

sequence  query  set  describing  the  distance  between  each  sequence  pair.  From  this  is 

constructed a phylogenetic tree that places closely related sequences under the same interior 

node and whose branch lengths closely reproduce the observed distances between sequences. 

Distance  matrix  methods  may produce either  rooted or unrooted trees,  depending on the 

algorithm used to calculate them. They are frequently used as the basis for progressive and 
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iterative types  of multiple  sequence alignment.  The main disadvantage of distance-matrix 

methods is their inability to efficiently use information about local high-variation regions that 

appear across multiple subtrees. Among distance based techniques several other methods can 

be distinguished. Neighbor-joining (NJ) methods apply general data clustering techniques to 

sequence analysis using genetic distance as a clustering metric. The simple neighbor-joining 

method produces unrooted trees, but it does not assume a constant rate of evolution (i.e., a 

molecular clock) across lineages.

The  most  widely  used  techniques  among  characters  based  methods  are  probably 

parsimony and maximum likelihood methods. Parsimony (P) is a method of identifying the 

potential phylogenetic tree that requires the smallest total number of evolutionary events to 

explain  the  observed  sequence  data.  Some  ways  of  scoring  trees  also  include  a  "cost" 

associated with particular types of evolutionary events and attempt to locate the tree with the 

smallest total cost. This is a useful approach in cases where not every possible type of event 

is equally likely - for example, when particular nucleotides or amino acids are known to be 

more mutable than others. The most naive way of identifying the most parsimonious tree is 

simple enumeration, considering each possible tree in succession and searching for the tree 

with the smallest  score.  However,  this  is  only possible  for  a  relatively  small  number  of 

sequences  or  species  and,  consequently,  a  number  of  heuristic  search  methods  for 

optimization  have  been  developed  to  locate  a  highly  parsimonious  tree,  if  not  the  most 

optimal  in  the  set.  Most  such  methods  involve  a  steepest  descent-style  minimization 

mechanism operating on a tree rearrangement criterion.

The  maximum  likelihood  (ML)  method  uses  standard  statistical  techniques  for 

inferring probability distributions to assign probabilities to particular possible phylogenetic 

trees.  The  method  requires  a  substitution  model  to  assess  the  probability  of  particular 

mutations;  roughly,  a  tree  that  requires  more  mutations  at  interior  nodes  to  explain  the 

observed phylogeny will be assessed as having a lower probability. This is broadly similar to 

the  maximum-parsimony  method,  but  maximum  likelihood  allows  additional  statistical 

flexibility by permitting varying rates of evolution across both lineages and sites. In fact, the 

method  requires  that  evolution  at  different  sites  and  along  different  lineages  must  be 

statistically independent. Maximum likelihood is thus well suited to the analysis of distantly 

related sequences, but because it formally requires search of all possible combinations of tree 

topology and branch length, it is computationally expensive to perform on more than a few 

sequences.
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The bootstrap (Felsenstein, 1985) is a simulation methodology created to evaluate the 

significance of measurements obtained with all the different methods of studying molecular 

evolution.  It  corresponds  to  performing  a  certain  number  of  resamplings  in  the 

multialignment. If for each simulated multialignment, the corresponding phylogenetic tree is 

constructed, the percentage of simulated trees, which supports the topology behind each node 

of the tree, can be calculated. At the end a consensus tree can be build, reporting the most 

representative  topology,  among  those  generated  by  simulation,  in  which  a  significance 

coefficient  is  attributed  to  each  node,  corresponding  to  the  percentage  of  supporting 

simulations.  In  general,  only  nodes  with  a  bootstrap  percentage  higher  than  50%  are 

considered significant (see Attimonelli et al., 1997).

For  the  sequences  of  psbA  and  rbcL  genes  of  the  target  species  of  this  study, 

Neighbor Joining distance tree (with Kimura 2-parameter model) and Maximum parsimony 

tree  were  computed  using  Phylip  v.3.6  package  (Felsenstein,  1989; 

http://evolution.genetics.washington.edu/phylip.html)  and  Maximum likelihood  tree  (HKY 

model) was obtained using PAUP* v. 4.04 (Swofford, 2003; http://paup.csit.fsu.edu/). The 

program  Modeltest  version  3.06  (Posada  &  Crandall,  1998; 

http://darwin.uvigo.es/software/modeltest.html) was employed to selected TVM+I model in 

Maximum Likelihood. In computing trees, the option of 10000 bootstrap replicates has been 

selected.  The resulting multitude of plausible trees is best expressed by a network which 

displays alternative potential evolutionary paths in the form of cycles.

In this work it is also used a method (called median joining, MJ; Bandelt et al. 1999) 

for constructing networks from recombination-free population data that combines features of 

Kruskal’s  (1956)  algorithm  for  finding  minimum  spanning  trees  by  favouring  short 

connections,  and  Farris’s  (1970)  maximum-parsimony  (MP)  heuristic  algorithm,  which 

sequentially adds new vertices called ‘‘median vectors’’,  except that MJ method does not 

resolve ties. In this study, two MJ networks were produced with the program Network v. 4.5 

(http://www.fluxustechnology.com/NETW4500.exe): one with all obtained psbA sequences 

and another with all obtained rbcL gene sequences.
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4.3. Results
Once checked genomic DNA extraction (Fig. 54), PCR products for psbA marker 

were loaded on agarose minigel which yielded a fragment of 932 bp (Fig 55A). 

Figure 54: Genomic DNA.

Each  pair  of  primers  for  rbcL  (Fig.  55B  and  55C)  yielded  a  fragment  of  1200; 

combining both pairs of primers a 1494 bp fragment was obtained.

    
Figure 55: A) PCR fragments for psbA; B) PCR fragments for rbcL with primers pair 68F and 80R; C) 
PCR fragments for rbcL with primers pair 96F and S3r.
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Statistics of both markers are showed in Table 19. RbcL was twice longer than psbA; 

also a double number of sequences and identical sites for rbcL were analyzed compared to 

psbA. However the ratio of A and T frequencies were three time higher in rbcL than psbA, 

suggesting a stronger DNA structure in the first marker.

Table 19: Statistics for psbA and rbcL fragments
psbA rbcL

Length 932 1,494

Sequences 15 28

Identical Sites 822 (88.2%) 1,279 (85.6%)

Bases Frequencies:  

A  3,527 13,595

C  2,478 6,111 

G  2,799 8,296 

T 5,149 13,473

? 27 3     

The DNA polymorphism is showed in Fig. 56 and Table 20 for both psbA and rbcL. 

psbA showed a higher polymorphism compared to rbcL (Fig. 56) almost in the first part of 

the fragment, while rbcL was more conserved. This is clear also in Fig. 57 were alignments 

for psbA are characterized by a high number of different nucleotide variation whereas in rbcL 

(Fig. 58) variation is much lower.
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Figure 56: DNA polymorphism for both psbA and rbcL.

Table 20: DNA Polymorphism over fragment length for psbA and rbcL
psbA rbcL

Number of sequences 15 28

Number of sites 932 1494

Number of polymorphic (segregating) sites (S) 107 184

Total number of mutations (Eta) 112 193

Number of Haplotypes (h) 12 5

Nucleotide diversity (Pi) 0,02744 0,01203

Mean Evolutionary Diversity (D) for the entire population in psbA was 0.024 with a 

SE = 0.003.

The  analysis  involved  12  nucleotide  sequences.  All  ambiguous  positions  were 

removed for each sequence pair. There were a total of 932 positions in the final dataset for 

psbA.
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In rbcL, D was 0.013 with SE = 0.001; the analysis involved 28 nucleotide sequences. 

There were a total of 1494 positions in the final dataset.
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Figure 57: Alignment for psbA fragments plotted over a consensus sequence. The Identity green bar show the single base variability along the fragment length.
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Figure 58: Alignment for rbcL fragments over a consensus sequence. The Identity green bar show the single base variability along the fragment length.
.
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Median Joining Network revealed four haplotypes for psbA (Fig. 59A); three of them 

constituted a principal haplogroup (H1). Two haplotypes were present in both acidified and 

not-acidified  environment,  while  one  just  in  not-acidified  environment.  However  no 

difference in distribution of morphotypes was reported in both environments.

Moreover  a  strong  genetic  identity  of  the  haplogroup  with  D.  pulchella (sensu 

Tronholm et al., 2010a) is clear.
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Figure 59: Median Joining Network drawn on the basis of psbA sequences (A) and rbcL (B). Circles radius 
proportional to haplotype frequency. In green, haplotypes of the acidified area; in black, haplotypes from 
the non-acidified area.



Four haplotypes were detected with the analysis of rbcL fragments (Fig. 59B). They 

were different distributed between the two pH environments. Two haplotypes were reported 

in the acidified environment while three haplotype were recorded at normal pH (8.1). Two 

haplotypes were exclusive of the normal pH environment whereas just one was reported in 

the acidified zone.

No difference was recorded with both markers between the genotype and the three 

identified morphotypes.
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Figure  60: Neighbor-joining (Kimura-2 parameter as a nucleotide substitution model),  Parsimony (P) 
and Maximum Likelihood (ML) tree after the analysis of psbA sequences of D. dichotoma morphotypes. 
Significative bootstrap values (10000 replicates) are given at the node of each branch (numbers in italic 
are from P, numbers in bold are from ML.

In Figure 60 is showed a tree grouping three different phylogenetic analyses for psbA: 

Neighbour-joining, Parsimony and Maximum Likelihood. Very similar results were obtained 

with all three analyses with the Median-Joining Networks supporting the results of the latter. 
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Figure  61: Neighbor-joining (Kimura-2 parameter as a nucleotide substitution model),  Parsimony (P) 
and Maximum Likelihood (ML) tree after the analysis of rbcL sequences of D. dichotoma morphotypes. 
Significative bootstrap values (10000 replicates) are given at the node of each branch (numbers in italic 
are from P, numbers in bold are from ML.

Phylogenetic  analyses  for  rbcL  (Fig.  61)  (Neighbour-joining,  Parsimony  and 

Maximum Likelihood) gave a similar pattern to the Median-Joining Network also, supporting 

the results of the latter.
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5.  General discussion and conclusions
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5.1.Macroalgal community changes 

5.1.1. Natural substrate community

Research into the effects of ocean acidification on benthic marine habitats has been 

largely  restricted  to  tropical  reefs  (Hoegh-Guldberg  et  al..  2007;  Anthony  et  al.,  2008; 

Kuffner et al. 2008; Manzello  et al., 2008; De’ath  et al., 2009) while in temperate benthic 

systems research focus has centred on individual species or small species groups (e.g. Dupont 

et al., 2008; Parker et al., 2009; Thomsen et al. 2010). The present study is the first to detail 

how the changes in marine carbonate chemistry that result from increasing CO2 levels can 

result  in  complex  effects  in  macroalgal  habitats,  affecting  the  structure  of  rocky  shore 

communities.  Naturally  acidified  areas  are  useful  as  they encompass  the life  histories  of 

interacting organisms and include the feedbacks and indirect effects that occur within natural 

marine systems but which are difficult to replicate in mesocosm and laboratory conditions 

(Thomsen  et  al.  2010).   This  work adds  to  similar  field  studies  on the  effects  of  ocean 

acidification  on  seagrass  algal  epiphytes  (Martin  et  al.,  2008),  foraminiferan  community 

structure (Dias  et al.,  2010) invertebrate  settlement  (Cigliano  et al.,  2010), and bryozoan 

calcification (Rodolfo-Metalpa  et al., 2010) all of which indicate major ecological shifts as 

CO2 levels rise.

Our macroalgal data offer some cause for relief as they show that many seaweeds can 

clearly continue to photosynthesise even at extremely high CO2 levels. Various Rhodophyta 

(e.g.  Chondracanthus  acicularis),  Ochrophyta  (e.g.  Sargassum vulgare)  and  Chlorophyta 

(Chaetomorpha linum) are able to grow at CO2 levels that far exceed those predicted due to 

human emissions. A cautionary note is needed when interpreting these results, as one of the 

problems with using CO2 vents to predict the effects of ocean acidification is that they only 

affect localised areas.  It is possible that some of the species present at the vents are not able 

to complete their life history in high CO2 conditions but recruit into the acidified areas from 

populations  outside.  The filamentous  Rhodophyta  Polysiphonia  scopulorum,  for example, 

decreased in reproductive capacity as CO2 levels increased, even though it was present in the 

most acidified area. Surprisingly,  we found that some of the Ochrophyta and Rhodophyta 

(i.e. Dictyota dichotoma and Osmundea truncata) appeared to grow and reproduce best at the 

highest CO2 levels found within the vents. The resilience of a diverse range of Ochrophyta to 

high CO2 conditions  offers hope that  kelp forests  of  the world may survive the ongoing 

acidification of the coming decades.  However, preliminary experimental work suggests that 
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increased CO2 levels may be detrimental to kelp forest habitats as they encourage the growth 

of algal competitors (Connell & Russel 2010).  

Examination  of  macroalgal  communities  living  near  CO2 vents  at  mean  pH  7.8 

provides us with insights as to what to expect as the global oceans acidify due to human CO2 

emissions.   Fortunately,  95% of the macroalgal species present in our study were able to 

tolerate mean pH 7.8, even though diel fluctuations in pH at these volcanic vents was greater 

and more rapid than would be expected due to ocean acidification (Hall-Spencer et al., 2008; 

Riebesell, 2008). 

However,  our  in  situ observations  give  support  to  concerns that,  when  water 

acidifcation is combined with a high wave exposure, the effects on the community structure 

are  not  so  strike.  In  fact,  a  slightly  but  not  significant  decrease  in  species  richness  was 

recorded  along  the  pH  gradient  on  the  North  side,  characterized  by  higher  levels  of 

hydrodynamic energy than the southern side.

Given the widespread concerns over the fate of calcified algae in the coming decades 

(Kuffner  et  al.,  2008;  Nelson,  2009)  it  is  noteworthy that  several  calcitic  and  aragonitic 

species of algae were able to settle and grow at the high CO2 levels found near the vents. 

Peyssonnelia squamaria and Hydrolithon cruciatum increased in abundance at mean pH 7.8, 

replacing other calcified species that were lost from the system. The fact that algae with high 

Mg-calcite skeletons, the most soluble form, can survive high CO2  conditions near the vents 

offers hope that this vulnerable group will not disappear, as some predict, but that calcareous 

species which are more tolerant of high CO2 levels will replace those species that are lost, at 

least until carbonate saturation will be above 1. However, there are caveats; the mean pH 7.8 

data show a 25% loss in biodiversity of calcareous algae and a major reduction in cover of all 

the  erect  articulated  genera  (the  calcitic  Jania  rubens,  Corallina  officinalis,  Corallina 

elongata, Amphiroa rigida, Amphiroa criptarthrodia and the aragonitic Halimeda tuna). Low 

abundances and bleached  Corallina elongata have also been recorded at acidified volcanic 

vents  in  the  Azores  (Couto  et  al.,  2010).  Erect  calcareous  algae  are  often  important  for 

calcareous sediment production and typically host a high biodiversity of associated fauna and 

flora (Nelson, 2009). Erect calcareous species may be more sensitive to corrosive short-term 

drops in pH caused by spikes in CO2 levels at the vents than the crustose calcareous forms 

which may benefit from chemical buffering in the benthic boundary layer. As a group, the 

calcareous algae exhibited a decrease in abundance and a decrease in reproductive capacity 

from normal pH conditions to mean pH 7.8. Our data on the selective effects of high CO2 

levels on seaweed reproduction are preliminary and worthy of further investigation given that 
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some parts  of  an organism’s  life-history can  be more  vulnerable  to  the effects  of  ocean 

acidification than others (e.g. Ellis et al. 2009).

Whilst our observations show that the vast majority of algal species can tolerate the 

levels CO2 predicted to occur this century, and that even calcified species continue to grow, 

we recorded a simplification of the macroalgal community and increased dominance by a 

few species at mean pH 7.8. Both erect and crustose calcified species were largely replaced 

by  non-calcified  algae  (e.g.  Hildenbrandia  rubra,  Dictyota  dichotoma and  Osmundea 

truncata) that are presumably better adapted to the changes in carbonate chemistry that result 

from  elevated  CO2 levels.  Ochrophyta  remained  the  dominant,  high-biomass,  canopy-

forming  species  throughout  the  CO2 gradient  but  Cystoseira amentacea var.  stricta was 

absent below 7.8 pH whereas Sargassum vulgare was confined to the most acidified sector. 

These two genera often dominate Mediterranean phytobenthic assemblages but have steadily 

declined in abundance since the 1940s (Thibaut et al. 2005). In the Gulf of Naples, where 

our  study took place,  the  loss  of  canopy-forming  brown algae  has  been  correlated  with 

increased pollution levels, increased water turbidity, and increased temperature (Buia et al. 

2007). The quite unique occurrence of Sargassum vulgare in the most acidified zone (Buia, 

unpublished  data),  might  relate  to  a  lack  of  grazing  by  sea  urchins  which  are  highly 

susceptible to ocean acidification (Miles et al., 2007) and completely absent from the Ischia 

CO2 vents (Hall-Spencer et al., 2008).

An analysis of shifts in algal categories along the pH gradient revealed that of the 

crustose, erect and turf-forming algae, it was the turfs that declined most in diversity and 

abundance along the pH gradient, at least in the Southern side, despite the fact that these are 

usually  considered  to  be  opportunistic  species  that  are  resilient  to  ocean  acidification 

(Kleypas  et al., 2006). Connel and Russel (2010) demonstrated in mesocosm experiments 

that  increased CO2 levels  (550 ppm) had no effect  on the cover of turf  algae at  ambient 

temperature  (17°C) but that  turf  cover  increased considerably when increased CO2 levels 

were combined with elevated temperatures. Our data suggest that in autumn, on a shallow 

Mediterranean rocky shore at mean temperature of 21-22°C and about 1000 ppm CO2 (S2) 

causes  a  significant  fall  in  the  richness  and  cover  of  turf  species  that  are  present  at 

background CO2 levels. The nature of CO2 induced shifts in macroalgal community structure 

are likely to vary with biogeographic region, but the fact  that  CO2 enrichment can cause 

significant shifts in the abundance of whole morphological groups indicates that rising CO2 

levels will alter local ecosystems, including food web dynamics and the cycling of carbon 

and nutrients.
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The morpho-functional approach (Littler & Littler, 1980) was applied in order to understand 

which were the relationships between seaweed forms and physiological processes and their 

responses to pH pressure.

Our  results  support  the  hypothesis  that  water  acidification  affects  the  richness  of  the 

communities, both in terms of species and morpho-functional groups. However, we cannot 

confirm that the algal response to water acidification moves to face towards a reduction in the 

thallus  complexity.  Infact,  apart  from   all  calcareous  species  (from  semi-calcareous  to 

articulated calcareous groups) totally laking in the most acidified sectors, the algal groups 

formed by those more structured and complex thalli are most abundant and/or dominant in 

the most acidified sectors. The leathery Sargassum vulgare, the corticated laminar Dictyota 

dichotoma and the terete Osmundea truncata are dominant species in the South side while the 

non-calcareous  Hildebrandia  crouaniorum  is  dominant  in  the  North  side.  Despite  their 

complexity,  their  forms  are  different:  the  first  two  species  are  erect  while  the  third  is 

incrusting. Being the North side more exposed than the South, the temporal variations in the 

chemical composition of the water is more relevant; as a consequence, the primary factor in 

determining the community structure on this side seems to be the water movement than  the 

pH values  and  other  morphological  traits  (e.g.  size) could be more  relevant  in terms of 

response  to  wave  action  (Carpenter  &  Williams,  1993).  The  high  cover  in  N3  of  the 

incrusting  Hildebrandia crouaniorum and  of  two  very  small  filamentous  species 

(Antithamnion  cruciatum and  Spermothamnion  repens)   belonging  to  the  simplest  group 

(AG1) seems to  confirm that species with similar  sizes  might  respond similarly  to wave 

forces and pH independently of the structural complexity of their thallus.

The occurrence of more complex thallus in the most acidified South sector could be related to 

their  better  regulation  of  cellular  homeostasis in  a  calmer  hydrodynamic  regime.  As  no 

studies were carried out to find out which are the effects of seawater acidification on cellular 

and physiological mechanisms, further studies are needed to understand how acidification is 

effective  on  physiological  mechanisms  (e.g.  nutrients  uptake,  membrane  transport  or 

intracellular pH regulation) to confirm this hypothesis.
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5.1.2. Artificial substrate communities

Many laboratory  studies  have  shown that  the  early  life  history  stages  of  several 

animal  organisms  are  negatively  impacted  by  acidifed  seawater,  including  work  on 

echinoderms, crustaceans and molluscs (Kurihara & Shirayama, 2004; Kurihara et al., 2004, 

2007; Dupont  et al., 2008; Kurihara & Ishimatsu, 2008; Ellis  et al., 2009; Findlay  et al., 

2009). The potential shifts in benthic recruitment that may result from water acidification on 

early life history changes has been recently studied by Cigliano et al (2010) in the same site 

around the Castello Aragonese where CO2 vents occur. These authors found a reduction in 

the overall biodiversity of the invertebrates along with the reduction in pH, consistent with 

data on epiphytes of P. oceanica leaves (Martin et al., 2008) and on my PhD thesis results 

on algal communities.  On the opposite,  are very few the studies on the impact  of water 

acidification on the algal recruitment (Aegian, 1995; Mackenzie & Agegian, 1989). These 

earlier studies each have one or more experimental limitations such as use of closed systems, 

small water volumes, artificial or low irradiance, lack of treatment replication, and/or very 

short  incubation  times.  Studies  on  outdoor  flow-through  mesocosms  have  been  then 

conducted by Kuffner et al. (2008) that observed a severe inhibition in the recruitment and 

growth of coralline algae, and by Jockiel et al. (2008) on the settlement of crustose rhodolith 

spores and communities development.   An 86% relative reduction in acidified mesocosms 

was recorded.

As  there  are  no  studies  under  natural  pH  variations,  my  data  represent  the  first 

contribute on the impact of water acidification on the early stage of macroalgal succession in  

situ. It is a very preliminary report in which the cover of the single species has been taken 

into account. 

Bar  tiles  represented  a  situation of resources  availability  that  can be exploited  by 

organisms. According to facilitation model, pioneer species are the first species to establish, 

modifying  the  environment  that  will  be  later  colonized  by  late-successiona  species 

eliminating the pioneer ones.

According  to  Connell  and  Slatyer  (1977),  mechanisms  of  succession  could  be 

incorporated  into  three  alternative  models:  facilitation,  inhibition,  and  tolerance.  The 

classical explanation of the ecological mechanism of community change during succession is 

the so-called facilitation model. This theory suggests that the recently disturbed situation is 

first exploited by certain pioneer species that are most capable of reaching and establishing 

on the site. These initial species modify the site, making it more suitable for invasion by 

other species, for example,  by carrying out the earliest  stages of soil development.  Once 
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established, the later-successional species eliminate the pioneers through competition. This 

ecological dynamic proceeds through a progression of stages in which earlier species are 

eliminated by later species, until the climax stage is reached, and there is no longer any net 

change in the community.

Another  proposed  mechanism of  succession  is  the  tolerance  model.  This  concept 

suggests that all species in the succession are capable of establishing on a newly disturbed 

site, although with varying successes in terms of the rapid attainment of a large population 

size and biomass. In contrast with predictions of the facilitation model, the early occupants of 

the site do not change environmental conditions in ways that favor the subsequent invasion of 

later-successional species. Rather, with increasing time, the various species sort themselves 

out through their differing tolerances of the successionally increasing intensity of biological 

stresses associated with competition. In the tolerance model, competition-intolerant species 

are relatively successful early in succession when site conditions are characterized by a free 

availability of resources. However, these species are eliminated later on because they are not 

as competitive as later species, which eventually develop a climax community.

A  third  suggested  mechanism of  succession  is  the  inhibition  model.  As  with  the 

tolerance model, both earlyand later-successional species can establish populations soon after 

disturbance. However, some early species make the site less suitable for the development of 

other species. For example, some plants are known to secrete toxic biochemicals into soil 

(these  are  called  allelochemicals),  which  inhibit  the  establishment  and  growth  of  other 

species. Eventually, however, the inhibitory species die, and this creates opportunities that 

later-successional  species  can  exploit.  These  gradual  changes  eventually  culminate  in 

development of the climax community.

The very short time of this study did not allow detecting the climax phase of the 

different communities. As usual in nature, multiple environmental controls can affect species 

performance and interactions in ways not predictable because of nonadditive (synergistic or 

antagonistic) effects (Lotze & Worm, 2002).

Our data indicate that the settlemt of early colonizing species was mainly drived by 

both  pH  gradient  and  wave  exposition.  A  succession  of  encrusting,  filamentous,  and 

corticated forms has been recorded. After two months, encrusting species were the dominant 

group: calcareous forms at normal pH conditions whilst soft forms occurred at acidified sites. 

Among the second forms it is to worth to note the presence of the brown Myrionema sp., a 

characteristic epiphytic species of Posidonia oceanica (Mazzella  et al., 1989), which occurs 

all  around  the  castello  Aragonese  (Buia  et  al,  2000).  This  species  represents  an  early 
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colonizing  species  of  the  posidonia  blades,  together  with  diatoms  and  coralline  crustose 

species,  mainly  during  the  early-spring  time,  when  the  epiphytic  cover  is  scarse.  The 

presence of this species has to be related to its temporal abundance in the surrounding habitat. 

Another  soft  crustose species  appears eliminating the brown alga but only at  normal  pH 

conditions,  whereas  the  thin,  filamentous  Chaetomorpha became  dominant  in  the  most 

acidified zone, without bias for the site exposition. At the end of the experiment, the presence 

of the corticate Dyctiota is developped only at normal and medium ph conditions, even if this 

species is widespread on natural substrata.

The high differentiation in species composition along the pH gradient, affected highly 

the early community structure during the short experiment period. Even though relatively 

more structured community was observed in the Northern side compared to the South after 2 

months, then a turning over was observed on the community complexity of the two sides in 

the following months. This could be explained by the higher hydrodinamism in the North 

which may initially favour the presence of more germling stage on the substrate but later only 

fewer species may growth in higher water movements. In the Southern side a community 

complexity level  along the pH gradient  was maintained during the 4 months  experiment, 

where a poorer diversity and structure was observed at low pH which increased with higher 

pH mean values.

Although climacic  community was not reached after  4 months  a clear  complexity 

increasing along time was generally observed.

Encrusting  calcareous  species  were  the  discriminant  group along  the  acidification 

gradient. Coralline algae are generally the dominant group on bottom layer of the community 

which competes for the primary space with non-calcareous encrusting and thiny filamentous 

brown algae; on the other hand they favour the colonization of the top layers by other erect 

species (Littler & Littler, 1985). The higher abundance of thiny brown and green algae in the 

acidified environment may cause by a combination of two principal factors. The first one was 

the pH which interferes with the development of calcareous encrusting species which they 

compete  with;  on  the  other  hand  the  much  reduced  precence  of  grazers  in  low  pH 

environment, constituted principally by small gastropods and sea urchins, allowed the non-

calcified species’ overgrowth (Worm & Lotze, 2006).

Changes  in  the  early  stages  of  colonization  will  likely  interfere  with  final  community 

structure leading to variation in the community functions for the entire food web. Further 

studies are need to understand later mechanisms which lead to the final community stage.
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5.2. Different responses in ecophysiological traits in target algal 

species along a natural pH gradient

The analysis  of  photochemistry  by means  of  fluorescence  parameters  has  been  a 

powerful mean to assess in situ the light transformation efficiency and the absorbed light use 

in both photochemical and non-photochemical processes of the target species S. vulgare, J.  

rubens and  D.  dichotoma v.  intricata.  Results  obtained  in  laboratory  studies  showed 

significant higher values of PSII, ETR and qP for Phaeophyceae, compared to Corallinaceae. 

The higher photochemical activity of Pheaophyceae could be related for these species to a 

better  efficiency  of  light  absorption  and  utilization.  The  higher  values  of  qN index  for 

Corallinaceae, compared to other algae family, indicate that the calcareous species are able 

to dissipate safely the absorbed light excess through non-radiative processes.

Different intrinsic features between Phaeophyceae and Corallinaceae were evidenced 

also by comparison of the PSII maximum photochemical efficiency (Fv/Fm). In particular, 

Phaeophyceae  showed  significant  higher  values  compared  to  Corallinaceae,  indicating  a 

higher potentiality of light conversion at the reaction centres.

Unfortunately,  laboratory data, even if were useful to point out important intrinsic 

features of the different investigated species, did not allow a correlation with pH. In order to 

obtain a more complete outline, field studies have been carried out in order to assess the 

effects of the acidification on photosynthetic apparatus.

The  values  of  photochemical  indexes  PSII,  qP  and  qN  measured  in  situ for  D. 

dichotoma both at normal pH (8.1) and low pH did not show any difference, suggesting no 

influence of pH. A similar pattern was found in  S. vulgare (living at low pH) proving a 

comparable capability to convert light energy during photosynthetic process.

The  species  J.  rubens showed  the  highest  values  of  qP  and  qN  compared  to 

Phaeophyceae  for  all  PPFD  range  examined,  differently  from  the  laboratory  results.  A 

possible reason could be related to the habitat where this species lives. The site of J. rubens 

is located in a longer irradiated area compared to those where S. vulgare and D. dichotoma 

grow.  Thus  photosynthetic  apparatus  is  likely  adapted  to  higher  irradiances  with  the 

consequence of a higher photochemical activity and higher capacity to dissipate thermally 

the excess of light energy.

This hypothesis is confirmed by the comparison of RLC; in fact higher rETRmax value 

was detected for D. dichotoma of Normal pH environment (other than J. rubens) compared 

to D. dichotoma of Low pH and S. vulgare.
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Higher rETRmax values might indicate a higher rate of enzymatic reactions (Gèvaert 

et al., 2003) and/or a higher number of reaction centres (RCs) (Lobban et al., 1985).

From a physiological point of view, alpha is related to a) light harvesting efficiency 

and to b) RCs number and enzymatic reaction rate (Lobban et al., 1985).

Alpha was higher for D. dichotoma grows in normal pH while showed lower values 

in J. rubens and D. dichotoma var. intricata grows at low pH.

The highest value of Ek (saturating irradiance) was observed for J. rubens confirming 

that  J.  rubens is  adapted to live at  higher irradiances  compared to  D. dichotoma and  S. 

vulgare.

Both D. dichotoma from different pH environments and S. vulgare showed a similar 

maximum photochemical efficiency demonstrating that population living at low pH did not 

show a stressful status of phosynthetic apparatus in response to acidified environment. On 

the contrary, J. rubens exhibited a lower efficiency in light conversion according to findings 

by other authors for Rhodophyta (Hanelt et al., 1993; Saroussi & Beer, 2007).

Transplanting  experiments  allowed us  to  assess  the  potentiality  of  acclimation  or 

adaptation level of D. dichotoma and S. vulgare which live in the acidified environment and 

J. rubens forced to a lower pH environment. Moreover, the activity assay of the enzyme 

PARP  allowed  a  further  investigation  on  cellular  damage  due  to  pH  variation.  The 

immunopositive  signal  of  140kDa could  represent  the  dimeric  form of  the  protein.  The 

molecular  weight (about 80kDa) of  alga  PARP seems be very similar  to homologues of 

animal PARP-2 in Arabdopsis and maize (Babiychuk et al., 1998).

The photochemical behavior of the species Sargassum vulgare was not influenced by 

growth in  different  pH environments  as demonstrated by comparable  values of quantum 

yield  of  PSII  electron  transport  and  photochemical  quenching.  Moreover,  S.  vulgare at 

different  pH  values  maintained  a  higher  non-photochemical  quenching  indicating 

independently from pH, a good capacity to dissipate thermally the excess of light energy at 

photosystems.

This  result  is  supported  by  rETRmax and  alpha  values  which  did  not  change  in 

different pH conditions. However a decrease of Ek was reported in transplanted thalli in both 

pH conditions compared to wild thalli. This change is maybe related to an early reaching of 

the light saturation point.

The Fv/Fm was one of the most important indexes to assess suddently the level of 

acclimation capability of the target species in different pH environments.
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Results suggest that Sargassum vulgare at low pH, did not suffer the transplanting as 

showed by comparable results of Fv/Fm values between wild thalli and transplanted thalli in 

native environment. However this species exhibited stress signals at normal pH condition 

(8.1).  The  significant  Fv/Fm decrease  is often  associated  to  a  photoinibition  dynamic  or 

cronical, evidenced by a decrease of the effective quantum yield of PSII and an increase in 

non-photochemical quenching (Hader & Figueroa, 1997; Hader et al., 2001). In this study, 

the acidification could have induced an awarness of photochemical apparatus increasing its 

susceptibility  to  photoinhibitory  damage  risks.  In  this  framework,  as  no decrease  in  the 

quantum yield of PSII was found, but an increase in qN was observed, the reduction of 

maximal photochemical efficiency could be ascribed to a dynamic photoinhibition maybe 

induced by a built up of a pH-gradient across the thylacoid membrane which could be caused 

by an alteration of the ATP-ase functioning.

In addition to photoinibition, several others mechanisms may be proposed including 

scattering  of  excessive  solar  energy  from  excited  chlorophylls  via  carotenoids,  causing 

inactivation of PSII reaction centers (Hader & Figueroa, 1997). As regards pigment content, 

transplanted thalli of S. vulgare at normal pH condition did not show any variation in total 

chlorophyll and carotenoids content compared to wild thalli of low pH. This indicates that 

photosynthetic apparatus in terms of light harvesting complexes maintains its stability even 

under pH values different from that of origin.

These results suggest that S. vulgare appears well adapted to low pH environment but 

its photosynthetic apparatus is not able to acclimatize at different pH. This species probably 

needs more time than the two weeks established for the experiment, to reach the acclimation.

J. rubens is a species totally absent in the area at lowest pH, because of its sensitivity 

to acidification. After just one week thalli dissolved their calcium carbonate in S3, where pH 

is less than 7. Transplanting in low pH environment (S2 = 6.78) caused a stressful status in 

J. rubens’ photochemical apparatus, confirmed by the strong decrease of Fv/Fm values. This 

physiological response was associated with morphological change since transplanted thalli 

became weaker to touch after three weeks; this suggests that even in the intermediate zone, 

this species could not well overcome the carbonate dissolution. However, since J. rubens is 

also  present  with  natural  populations  in  S2  with  more  calcified  thalli,  it  could  be  very 

interesting to compare photosynthetic performance and the physiological differences into the 

calcification mechanism between normal and mid pH populations. It is to be pointed out that 

this species was not threatened by transplanting since no stressful signal (see Fv/Fm results) 

was detected in transplanted thalli of native environment compared to wild thalli.
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Photoinibition may be the response of  J. rubens to acidification; consistently with 

this  observation,  in  this  species  has  been  observed  a  decline  in  PSII  photochemical 

efficiency (PSII) and a rise of qN. In thalli at lower pH, rETRmax and alpha also decreased but 

not Ek suggesting the occurrence of a decrease in the electron transport rate and/or a loss of 

the RC. Most probably the loss of calcium carbonate from thallus has rendered this species 

more exposed to irradiance and UV with a consequent photodamage of PSII reaction centers 

and subsequent proteolysis of the D1 protein (Hader & Figueroa, 1997). The decrease of 

total  chlorophyll  and carotenoid contents  found in transplanted  thalli  of  low pH may be 

consistent  with  the  occurrence  of  photodamages  to  reaction  centres.  On the  other  hand, 

similar  results  reported  for  PARP  activity  suggest  that  the  presence  of  carbonate  in  J.  

rubens’ thalli serves as buffering power to avoid cellular damage induced by acidification.

Unfortunately  the  loss  of  the  transplanted  thalli  of  D. dichotoma from lower pH 

environment made us unable to define the response of this species to acidification. However, 

since  natural  populations  of  both  pH origins  have  the  same  physiological  behaviour  as 

demonstred by laboratory fluorescence measurements, it may be supposed that D. dichotoma 

transplanting from normal pH to low pH may reflects the same acclimation capability of D. 

dichotoma from low pH.

Transplanted thalli in lower pH condition decreased their electron transport rate and 

the yield or, maybe, their RC number. Moreover also light harvesting efficiency decreased 

even  though  it  was  already  observed  higher  efficiency  of  wild  thalli  from  normal  pH 

compared to those from lower pH.

Comparable  results  for  the  photochemical  indexes  Fv/Fm,  qP  and  qN  between 

transplanted thalli in both pH environments, indicated Dictyota dichotoma’s ability to adapt 

its  photosynthetic  apparatus  to  different  pH. This  result  is  supported also by the similar 

PARP activity in different treatments of D. dichotoma. However the significant decrease of 

Fv/Fm in transplanted thalli compared to wild thalli suggests that D. dichotoma appears very 

sensitive to transplanting which likely causes a mechanical stress, due to lower thickness of 

the thallus compared to S. vulgare and J. rubens.
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5.3. Genetic Diversity along a ph gradient

Molecular  data  evidenced  how  psbA  and  rbcL  had  a  different  meaning  into  the 

differentiation of the haplotypes. In fact, psbA has a strong value in discriminating different 

morphotypes as reported in literature (Tronholm et al., 2010a) and it is used for molecular 

taxonomy.

Analyzing psbA, haplogroup H1 may be a variety of D. pulchella, while the haplotype 

h2 may be a variety of D. dichotoma e/o D. fasciola.

On the contrary, rbcL showed a distinct separation among the identified haplotypes in 

different pH environments; the lower number of haplotypes present in the acidified area may 

represent an environmental selection, giving to this marker a possible importance to highlight 

adaptation to acidification.

Results of molecular data showed missed association among different morphotypes 

and genetic variability in Dictyota complex.

Generally a stressed environment, e.g. submitted to acidification, favours a selective 

pressure on a population characterized by a high phenotypical plasticity.

The supposed presence of a species with Atlantic-tropical and sub-tropical origins (D. 

pulchella), may derive by a past Mediterranean colonization after post-glaciation events and 

then acidified  environment  may have  supported  a  bottleneck  effect  through the  selection 

among the most suitable genes to the stressed environment.

Molecular data evidenced how the genus Dictyota, characterized by a morphological 

and genetic plasticity, was a great model to study the response to the selective pressure of 

acidification in marine organisms, setting the basis to study the adaptation to acidification by 

using  a  classical  morphological  approach  integrated  with  a  comparative  analysis  of  the 

environmental  factors  associated  to  the  intrinsic  genome  capability  to  adapt  in  different 

environments.

Recently Tronholm et al. (2010a) revised the taxonomy of the genus Dictyota along 

the European coasts. They concluded that only six clades represented by D. dichotoma,  D. 

fasciola,  D.  spiralis,  D.  implexa,  D.  mediterranea and  the  new  described  species  D. 

cyanoloma.  To distinguish them,  they used psbA marker  combined with a  morphometric 

approach. D. dichotoma showed the highest morphological variability ranging from broad to 

nearly filamentous thalli. D. implexa groups in this classification all the species with narrow 

axes (D. pusilla,  D. divaricata and  D. dichotoma v.  intricata).  The strong morphological 

variation of these two latter species will requires a genetical confirmation on the less typical 

forms. It should be underlined that also a specimen recognized as D. pulchella (coming from 
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Bermuda)  is contained in  D. implexa.  So at  this  point  the status of  D. pulchella remains 

uncertain now because of the amphi-Atlantic distribution of the D. implexa which had not to 

be possible to confirm since no specimens of  D. pulchella from the type locality has been 

included in the analysis (Tronholm et al., 2010a). The correspondence of sequences between 

the species studied in this work and the D. pulchella has to be confirmed in the future. Now it 

is possible to state that the different morphological forms identified as different taxa, are just 

a single species.

Yñiguez  et  al.  (2010)  studied  the  environmental  effects  on  the  morphology  of 

Dictyota as an organism composed of modules (dichotomies) capable to adjust size, shape 

and  resource  allocation  to  their  local  environment.  So,  species  can  create  a  continuum 

between two forms: the “phalanx” or consolidating compact strategy, usually adapted in high 

light environment and the “guerilla” (i.e. elongated) or explorer spreading strategy, usually 

living in low light environment (Lovett- Doust, 1981). However not only the light, although 

very important, plays a driving factors to lead in changing morphology, but also temperature 

for growth and reproduction, water movement to allow an optimal uptaking of nutrients and 

to  avoid  structural  damage  at  the  same  time,  grazing  pressure  and  epiphytes  growth. 

Especially in Dictyota they did not found any morphological change to light variation due to 

the large range of optimum light  condition of the genus;  rather  species  respond more to 

disturbance (in this case herbivores and high water motion) which causes damage and as 

consequence, growth of adventitious branches. In fact, they found smaller and hemispherical 

thalli  in  low  environment  and  high  disturbance;  vice  versa  in  high  nutrient  and  low 

disturbance the thalli were larger but hemispherical (Yñiguez et al., 2010).

According to these results, it can be argued that high morphology variability found at 

Castello along the pH gradient may be a result of just a morphological adaptation of one 

species.

The morphotype identified as  D. pulchella, very abundant and with the larger size 

compared to the other two species seems to be the form that better adapt to the lower pH 

condition. In the future it would be interesting to investigate the expression pattern which 

allows such growth, compared to other forms, in this peculiar environment.
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5.4. Conclusions

To conclude, our field observations show that a diverse range of macroalgal species 

are resilient to even greater changes in seawater carbonate chemistry than those predicted to 

occur  due  to  anthropogenic  CO2 emissions  over  the  coming  century.   However,  our 

observations show that we need to plan for shifts in community structure and the loss of 

biodiversity because some algal species are intolerant of increased CO2 levels whilst others 

thrive.  Many macroalgal species have reduced abundance at mean pH 7.8 and further work 

is  required  to  determine  the  mechanisms  that  cause  this.  Changes  in  inorganic  carbon 

chemistry  may  disrupt  a  range  of  processes  (e.g.  calcification,  reproduction,  membrane 

transport  and  cellular  physiology)  putting  some  species  at  a  competitive  disadvantage. 

Research  effort  has  been  a  worry  with  the  detrimental  effects  of  ocean  acidification  on 

marine  organisms  but  we  also  need  to  better  understand  which  marine  organisms  will 

proliferate as CO2 levels increase. Volcanic vents show that some invasive macroalgae can 

tolerate persistent high CO2 levels and they show what ecological shifts can be expected in 

vegetated marine ecosystems (Hall-Spencer et al. 2008).

Results in the present work support the important idea to adopt an integrated approach 

to assess the deterioration in structure and function of vegetated communities in response to 

acidification.

Acidification  may  strongly  affect  both  the  distribution  and  the  abundances  of 

macroalgal  forms.  Absence  of  calcareous  algae  likely  has  a  key  role  to  the  decrease  in 

diversity and complexity of new-born communities into acidified environment.

However, calcareous macroalgae will not be the only vulnerable species. In fact, what 

is  emerged  by  photochemical  analysis  is  that  photosynthesis  is  highly  affected  by  pH 

variation  and  most  of  the  species,  which  live  now  in  the  sea,  may  not  have  such  a 

physiological plasticity in photochemical processes to overcome so fast changes in marine 

pH.

Genetic  plasticity  of  genus  Dictyota may explain  the physiological  adaptability  to 

acidified environment as demonstrated by fluorescence analysis. This result contributes to 

confirm that genetic species diversity is the strength in evolutionary processes in response to 

global change.

Molecular results open new perspectives to study involved genes in the evolution of 

the genus Dictyota as well as functional genes involved into the adaptive response to ocean 

acidification.
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APPENDIX I
LIST OF SPECIES BY THEIR MEAN PERCENTAGE IN THREE SECTORS ALONG A ROCKY SHORE PH GRADIENT IN THE 

SOUTHERN SIDE, RECORDED IN SCRAPINGS IN 2007 (nc= negligible cover; numbers correspond to the analysis shown in Fig. 19).

 S1 S2 S3 see  S1 S2 S3 see
Species pH=8.1 pH=7.8 pH=6.7 Fig. 19 Species pH=8.1 pH=7.8 pH=6.7 Fig. 19 

Jania rubens 69.22 10.09 - 18 Spermothamnion strictum 0.04 0.01 - nc
Valonia utricularis 28.5 2.57 0.12 45 Corallinaceae 0.04 0.14 - nc
Flabellia petiolata 20.33 66.22 - 42 Polysiphonia denudata 0.04 - - nc
Amphiroa rigida 10.28 3.56 - 2 Ceramium codii 0.03 0.01 - 4
Phymatolithon cfr lenormandii 7.79 2.94 - 26 Crouania attenuata 0.03 - - nc
Dictyota dichotoma 6.09 1.34 44.17 31 Gelidium minusculum 0.03 0 - nc
Laurencia obtusa 5.69 - - nc Cladophora dalmatica 0.03 0.02 - 39
Peyssonnelia polymorpha 4.22 1.5 - 23 Cladophora sericea 0.03 - - nc
Peyssonnelia squamaria 3.87 8.86 - 24 Dasya baillouviana 0.03 - - nc
Sphacelaria tribuloides 3.67 0.9 - 35 Anotrichium tenue 0.02 0.05 - nc
Lobophora variegata 3.6 8.39 - nc Ceramium diaphanum 0.02 - 0.02 nc
Stypocaulon scoparium 3.56 1 0.14 36 Monosporus pedicellatus 0.02 - - nc
Hildenbrandia rubra 3.18 4.44 26.28 15 Meredithia microphylla 0.02 - - nc
Phyllophora crispa 3.07 - - 25 Halopteris filicina 0.02 - - nc
Neogoniolithon brassica-florida 2.9 0.22 - nc Chaetomorpha linum 0.02 0.01 0.3 38
Lithophyllum sp. 2.69 - - 19 Cladophora flexuosa 0.02 - - nc
Hydrolithon cruciatum 2.53 18.53 - 17 Titanoderma pustulatum 0.02 0.16 - nc
Bryopsis plumosa 2.33 0.37 - 37 Cladostephus spongiosus 0.02 - 2.57 30
Dictyota spiralis 2.31 1.67 - 32 Sphacelaria cirrosa 0.02 0.18 0.09 nc
Corallina elongata 1.87 0.44 - 7 Antithamnion cruciatum 0.01 0.02 0.42 3
Mesophyllum sp. 1.83 4.61 - 20 Centroceras clavulatum 0.01 - - nc
Padina pavonica 1.67 0.92 - 33 Cladophora socialis 0.01 - - nc
Cystoseira amentacea var. stricta 1.61 - - nc Acrothamnion preissii - - 0.01 nc
Griffithsia phyllamphora 1.11 1.27 - nc Aglaothamnion bipinnatum - 0.03 - 1
Pseudochlorodesmis furcellata 1.01 1.14 - 44 Aglaothamnion diaphanum - 0.03 - nc
Polysiphonia scopulorum 0.91 0.42 0.03 28 Antithamnion sp. - 0.02 - nc
Gelidiella pannosa 0.7 0.31 - 11 Ptilothamnion sphaericum - 0.01 - nc
Herposiphonia secunda f. tenella 0.6 0.06 - 13 Spermothamnion repens - - 0.01 nc
Lophosiphonia cristata 0.59 0.57 - nc Amphiroa criptarthrodia - 0.33 - nc
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Heterosiphonia crispella 0.57 0.14 - 14 Pterocladiella capillacea - - 0.5 29
Corallina officinalis 0.56 - - nc Chondracanthus acicularis - - 4.96 6
Nitophyllum punctatum 0.48 0.16 - 21 Peyssonnelia armorica - - 0.17 nc
Cladophora rupestris 0.44 - - 41 Peyssonnelia bornetii - 0.33 - nc
Herposiphonia secunda 0.42 - - nc Peyssonnelia cfr rubra - 0.02 - nc
Halimeda tuna 0.38 0.19 - nc Phyllophora sicula - 0.01 - nc
Gelidium bipectinatum 0.29 0.18 - 12 Contarinia squamariae - 0.03 - nc
Ceramium flaccidum 0.28 0.1 - 5 Herposiphonia sp. - 0.01 - nc
Ceramium circinatum 0.26 - - nc Cladophora laetevirens - 0.01 - nc
Cladophora prolifera 0.24 0.64 - nc Cladophora pellucida - 0.12 0.37 40
Osmundea truncata 0.22 0.07 4.7 22 Choreonema thuretii - 0.01 - nc
Champia parvula 0.2 0.21 - nc Lithophyllum incrustans - 1.22 - nc
Peyssonnelia dubyi 0.2 - - nc Phymatolithon lenormandii - 0.36 - nc
Pneophyllum fragile 0.18 0.06 - 27 Dasya hutchinsiae - 0.01 - nc
Falkenbergia sp. 0.16 0.04 - 10 Polysiphonia fibrata - 0.02 - nc
Parvocaulis parvulum 0.12 0.06 - 43 Feldmannia irregularis - 0.01 - nc
Dasya rigidula 0.12 - - 9 Dictyopteris polypodioides - 0.01 - nc
Hydrolithon boreale 0.11 0.04 - 16 Dictyota dichotoma var. intricata - - 0.26 nc
Chondrophycus papillosus 0.07 - - nc Sargassum vulgare - - 22.17 34
Hydrolithon farinosum 0.06 0.03 - nc Sphacelaria rigidula - 0.01 - nc
Titanoderma sp. 0.06 0.11 - nc Sphacelaria sp. - 0.01 - nc
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APPENDIX II
LIST  OF  SPECIES  AND  THEIR  MEAN  PERCENTAGE  IN  SECTORS  OF  BOTH 

SOUTHERN, NORTHERN SIDE AND THE SECOND CONTROL C3 RECORDED IN 

SCRAPINGS IN 2008.

S1 S2 S3 N1 N2 N3 C3
Jania rubens 19.375 6.25 0 0 0.05 0 8.5
Lobophora variegata 15.625 0.6 0 0.25 0.05 0.025 0.15
Amphiroa rigida 9.2 10.25 0 0.05 0.375 0 0
Phymatolithon lenormandii 8.375 5.375 0 2.25 3.375 0 3
Valonia utricularis 7.75 2.375 4 0.225 0.6 3.575 3.1
Flabellia petiolata 7.75 11 0 42.25 33.5 11.5 2
Hildenbrandia crouaniorum 7.625 28.25 63.2 1.025 5.5 31.625 2
Phymatolithon cfr. lenormandii 4 0 0 0 0 0 0
Bryopsis plumosa 3.625 0.775 0 4 0.95 0.975 3
Dictyota fasciola 2.875 2 0 0 2.5 7 0
Dictyota dichotoma 2.375 0 8.8 1.075 0.575 1.375 3.35
Padina pavonica 2.375 0.625 0 0 0 0 0.35
Sphacelaria tribuloides 2.15 1.5 0 0 0 0.175 0.25
Hydrolithon farinosum 2.125 0 0 0.075 0.425 0 0.1
Stypocaulon scoparium 1.75 1.9 0.75 0 0.875 13.4 0.75
Griffithsia phyllamphora 1.55 0 0 0 0.125 0 0
Hydrolithon cruciatum 1.5 0.1 0 1.925 0.625 0 0.1
Peyssonnelia squamaria 1.425 2.95 0 5.075 8.125 2.75 11.5
Dasya corymbifera 1.4 1.1 0 0 0.025 0.225 0
Lithophyllum incrustans 1.375 0.125 0 1.45 2 0 7.25
Dictyota dichotoma var. intricata 1.25 8.125 89 0 1.75 0.5 0
Caulerpa prolifera 1.25 9 5 0 0 0 4.25
Lophosiphonia cristata 1.25 1.7 0 0 0 0 0
Pseudochlorodesmis furcellata 1.25 0.625 0 1.55 0.125 0 0.65
Polysiphonia scopulorum 1.15 0.075 0 0.125 0 0 0.1
Peyssonnelia armorica 1 0.075 0 0 0.05 0 0
Titanoderma corallinae 1 0 0 0.275 0.35 0 2.75
Griffithsia opuntioides 0.875 0.325 0.075 0.125 0 0 0
Herposiphonia tenella 0.675 0.1 0 0 0 0.25 0.05
Cladophora coelothrix 0.65 0.625 0 0.25 0.1 0 3.75
Sphacelaria cirrosa 0.625 0.875 0 0 0 0 2.5
Gelidiella pannosa 0.6 0.9 0.175 0.35 0.075 0.05 0
Phyllophora crispa 0.575 0.575 35.9 0.4 1.4 4 0.6
Peyssonnelia rosa-marina 0.575 1.25 0 1.25 0.85 0 0
Laurencia tenera 0.525 0.075 0 0 0 0 0
Hydrolithon sp. 0.5 0.05 0 0.125 0 0 0
Bryopsis cupressoides 0.45 0 0 0 0 0 0
Champia parvula 0.425 0.275 0 0 0.025 0 0.25
Titanoderma pustulatum 0.425 0.05 0 1.35 0 0 3.9
Ceramium flaccidum 0.375 0.2 0 0 0 0.025 0
Zonaria tournefortii 0.375 0 0 0 0 0 0.05
Ceramium codii 0.325 0.075 0 0.05 0 0 0.1
Nitophyllum punctatum 0.275 0.3 0 0.05 0.025 0.025 0.55
Falkenbergia sp. 0.275 0.6 0 0.275 0.975 1.6 0.15
Cyanophyta 0.25 0.375 0 0.025 0.05 0.3 0
Heterosiphonia crispella 0.225 0.05 0 0.275 0.025 0.175 0.1
Parvocaulis parvulum 0.2 0.025 0 0 0 0 0
Pterocladiella capillacea 0.15 0.175 1 0.9 0 1.25 0.25
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S1 S2 S3 N1 N2 N3 C3
Chaetomorpha linum 0.125 0.125 1.075 0.05 0.025 0.3 0.05
Cladophora laetevirens 0.125 0.05 0 0 0 0.05 0
Titanoderma cfr. pustulatum 0.125 0.075 0 0 0.325 0 0
Dasya rigidula 0.125 0 0 0 0 0 0
Peyssonnelia bornetii 0.125 0 0 2.125 0 0.125 24.75
Osmundea truncata 0.1 0.1 2 0 0 0.075 0
Lomentaria clavaeformis 0.1 0 0 0.1 0 0 0
Cladophora pellucida 0.1 0 0 0 0 0 0
Gelidium spinosum 0.075 0.675 0 0 0 0 0
Sargassum vulgare 0.05 1.25 44.375 0 0 0 0
Peyssonnelia polymorpha 0.05 0.45 0 0.375 0 0 21.9
Pneophyllum fragile 0.05 0.05 0 0 0 0 0.1
Antithamnion cruciatum 0.025 0.875 1.725 0 0 15.25 0.05
Ceramium diaphanum 0.025 0.05 0.025 0 0 0.075 0.05
Ceramium circinatum 0.025 0.025 0 0 0 0 0
Aglaothamnion diaphanum 0.025 0 0 0 0 0 0.1
Spermothamnion strictum 0.025 0 0 0 0 0 0
Monosporus pedicellatus 0.025 0 0 0 0 0 0
Chondrophycus papillosus 0.025 0 0 0 0 0 0
Dasya hutchinsiae 0.025 0 0 0 0 0.025 3.5
Spermothamnion repens 0.025 0 0 0 0 16.5 0
Pleonosporium borreri 0.025 0 0 0 0.025 0 0
Nemacystus flexuosus var. gyraudi 0.025 0 0 0 0 0 0
Cladostephus spongiosum 0 0.1 3.575 0 0 0.775 0
Cladophora prolifera 0 2 62.025 0.15 0 0.125 3.5
Peyssonnelia dubyi 0 0 0.1 0.825 1.1 0 0
Gelidium pusillum 0 0 0.15 0 0 0 0
Chondracanthus acicularis 0 0 1.6 0 0 0.175 0
Phyllophora sicula 0 0 0.125 0 0 0 0
Sphacelaria sp. 0 0.275 0.025 0.025 0 0 0.15
Gymnogongrus griffithsiae 0 0.05 0.05 0 0 0.125 0
Polysiphonia elongata 0 0 0.025 0 0 0 0
Herposiphonia secunda 0 1.475 0 0 0 0 0.1
Corallina officinalis 0 0.5 0 0 0 0 0
Dasya baillouviana 0 0.025 0 0 0 0 0.5
Dasya ocellata 0 0.05 0 0 0 0 0
Corallina elongata 0 3.25 0 0.775 51.25 1.75 0.2
Phyllophora pseudoceranoides 0 2.125 0 0 0 0 0
Dictyopteris polypodyoides 0 0.05 0 0.05 0.025 0 0
Halimeda tuna 0 0.025 0 0 0 0 2.75
Halydictyon mirabile 0 0.025 0 0 0 0 0
Callithamnion corymbosum 0 0.025 0 0 0 0 0
Spongites fruticulosus 0 0.875 0 0 0 0 0
Codium bursa 0 0 0 0 0 0 0
Cutleria multifida 0 0 0 0.125 1.75 29.375 0
Acrochetium daviesii 0 0 0 0 0 0.025 0
Titanoderma sp. 0 0 0 0 0 0.025 0
Halopteris filicina 0 0 0 0.3 0.225 3.5 0.05
Aglaothamnion cordatum 0 0 0 0 0 0.025 0
Aglaothamnion sp. 0 0 0 0 0 0.025 0
Titanoderma cistoseirae 0 0 0 0 0.025 0 0
Ralfsia verrucosa 0 0 0 0 2 0 0
Aglaothamnion tenuissimum v.  
tenuissimum 0 0 0 0.025 0.15 0 0

Amphiroa beauvoisii 0 0 0 0.025 0.375 0 2
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Rhodophyllis divaricata 0 0 0 0 0.025 0 0
S1 S2 S3 N1 N2 N3 C3

Pterocladiella melanoidea 0 0 0 0 0.15 0 0
Acrosorium venulosum 0 0 0 0.025 0.25 0 0
Griffithsia sp. 0 0 0 0.125 0 0 1.15
Hydrolithon farinosum v. calychodyctium 0 0 0 0.025 0 0 0
Contarinia squamariae 0 0 0 0.025 0 0 0
Aglaothamnion bipinnatum 0 0 0 0.275 0 0 0.2
Challithamniella tingitana 0 0 0 0.125 0 0 0
Asparagopsis sp. 0 0 0 0 0 0 0.05
Gelidium bipectinatum 0 0 0 0 0 0 1
Colpomenia sinuosa 0 0 0 0 0 0 0.05
Sphacelaria rigidula 0 0 0 0 0 0 0.05
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APPENDIX III
LIST OF SPECIES AND THEIR MEAN PERCENTAGE IN SECTORS OF BOTH SOUTHERN, NORTHERN SIDE AND THE SECOND 

CONTROL C3 RECORDED IN MAY, JUNE AND JULY 2008 DURING COLONIZATION EXPERIMENT.

 after 2months   after 3 months   after 4 months   
 C3 S1 S2 S3 N1 N2 N3 C3 S1 S2 S3 N1 N2 N3 C3 S1 S2 S3 N1 N2 N3
Antithamnion cruciatum    +
Blastophysa rhizophus    +  
Callythamnion corymbosum    +  
Ceramium diaphanum     
Ceramium flaccidum    + +  
Chaetomorpha linum  + + + + + + + + + + + + + +
Champia parvula    +  
Chondracanthus acicularis     
Cianobatteri + + + + + + + + + + + +
Cladophora coelothrix   +  
Cladophora socialis  + + + + + + + + + + + +
Cladosiphon sp.  +    
Cladostephus spongiosus   + +  + +
Corallina sp.  + + + + +  + + + +  
Cruoria cruoriaeformis    +  
Cutleria multifida gametophyte + + + +    
Cutleria multifida sporophyte  + + +  + + +  +
Dasya rigidula    + +  
Diatomee + + + + + + + + + + + + + + + +
Dictyota dichotoma   + + + +  + + + + +
Dictyota fasciola   +   
Dictyota sp.    + + +
Dinoflagellate   + + + + + + + + + + +
Enteromorpha sp.  +  +  +
Falkenbergia sp.    + +  
Feldmannia sp. + + + + + + + + + + +  + + + + +

 after 2months   after 3 months   after 4 months   
 C3 S1 S2 S3 N1 N2 N3 C3 S1  C3 S1 S2 S3 N1 N2 N3 C3 S1  C3
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Griffithsia sp.    +  
Gyraudia sphacelarioides + + + + + + + + +  + +
Hincksia sp.   +  +  
Hydrolithon farinosum + + + + + + + + + + + + + +  
Lobophora variegata    + + +
Lophosiphonia cristata    + +  
Microspongium tenuissimum  + + + + + + +   
Myrionema sp. + + + + + + + + + + +  + + + +  
Nemacystus flexuosus   +   
Nemacystus sp.  +  +   
Osmundea truncata   + +  + + +  
Padina pavonica   +  
Palmophyllum?  + + + + + + + +  + + + +  
Peyssonnelia dubyi    +  
Pneophyllum fragile  +   
Polysiphonia scopulorum    +  
Pseudolithoderma adriaticum  + + + + +  
Ralfsia verrucosa    + + +
Spatoglossum solieri     
Sphacelaria cirrosa  +  + + + + + + + +  
Sphacelaria rigidula +   +
Sphacelaria sp. + + + + + + + + + + + + + + +
Sphacelaria tribuloides  + + + + +
Stilophora sp.    + +  
Titanoderma mediterraneum + + +  +   + + +  + +  + + +  + +  
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APPENDIX IV
LIST OF SPECIES RECORDED IN 2007 AND 2008 AT CASTELLO WITH CATEGORIES AND ALGAL GROUPS.

  2007   2008       
 S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

1 Acrothamnion preissii T 1   *
2 Acrochetium daviesii T 1  *
3 Acrosorium venulosum T 1  * *
4 Aglaothamnion bipinnatum T 1  *  * *
5 Aglaothamnion cordatum T 1  *
6 Aglaothamnion diaphanum T 1  *  * *
7 Aglaothamnion sp. T 1  *

8
Aglaothamnion tenuissimum var.  
tenuissimum

T 1
 * *

9 Amphiroa beauvoisii E 12  * * *
10 Amphiroa criptarthrodia E 12  *  
11 Amphiroa rigida E 12 * *  * * * *
12 Anotrichium tenue T 1 * *  
13 Antithamnion cruciatum T 1 * * * * * * * *
14 Antithamnion sp. T 1  *  
15 Asparagopsis sp. E 2  *
16 Bryopsis cupressoides T 1  *
17 Bryopsis plumosa T 1 * *  * * * * * *
18 Callithamnion corymbosum T 1  *
19 Caulerpa prolifera E 4  * * * *
20 Centroceras clavulatum T 1 *   
21 Ceramium circinatum T 1 *   * *
22 Ceramium codii T 1 * *  * * * *
23 Ceramium diaphanum T 1 *  * * * * * *
24 Ceramium flaccidum T 1 * *  * * *
25 Chaetomorpha linum T 1 * * * * * * * * * *
26 Challithamniella tingitana T 1  *
27 Champia parvula T 4 * *  * * * *
28 Chondracanthus acicularis E 7   * * *
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29 Chondrophycus papillosus E 7 *   *
30 Choreonema thuretii C 10  *  

continued   2007   2008       
   S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

31 Cladophora coelothrix T 1  * * * * *
32 Cladophora dalmatica T 1 * *  
33 Cladophora flexuosa T 1 *   
34 Cladophora laetevirens T 1  *  * * *
35 Cladophora pellucida E 1  * * *
36 Cladophora prolifera E 1 * *  * * * * *
37 Cladophora rupestris E 1 *   
38 Cladophora sericea T 1 *   
39 Cladophora socialis T 1 *   

40
Cladostephus spongiosus  E 7 *  * * * *

42 Colpomenia sinuosa C 6  *
43 Contarinia squamariae C 6  *  *
44 Corallina elongata E 12 * *  * * * * *
45 Corallina officinalis E 12 *   *
46 Corallinaceae ind. C 11 * *  
47 Crouania attenuata C 1 *   
48 Cutleria multifida C 5  * * *
49 Cyanophyta T 1  * * * * *
50 Cystoseira amentacea var. stricta E 8 *   
51 Dasya baillouviana T 2 *   * *
52 Dasya corymbifera T 2  * * * *
53 Dasya hutchinsiae T 2  *  * * *
54 Dasya ocellata T 2  *
55 Dasya rigidula T 2 *   *
56 Dictyopteris polypodioides E 6  *  * * *
57 Dictyota dichotoma E 6 * * * * * * * * *
58 Dictyota dichotoma var. intricata E 6   * * * * * *
59 Dictyota fasciola E 6  * * * *
60 Dictyota spiralis E 6 * *  
61 Falkenbergia sp. T 1 * *  * * * * * *
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62 Feldmannia irregularis T 1  *  

continued   2007   2008       
   S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

63 Flabellia petiolata E 9 * *  * * * * * *
64 Gelidiella pannosa T 7 * *  * * * * * *
65 Gelidium bipectinatum T 7 * *  *
66 Gelidium minusculum T 7 *  
67 Gelidium pusillum T 7  *
68 Gelidium spinosum T 7  * *
69 Griffithsia opuntioides T 1  * * * *
70 Griffithsia phyllamphora T 1 * *  * *
71 Griffithsia sp. T 1  * *
72 Gymnogongrus griffithsiae T 7  * * *
73 Halimeda tuna E 9 * *  * *
74 Halopteris filicina E 7 *   * * * *
75 Halydictyon mirabile T 1  *
76 Herposiphonia secunda T 2 *   * *
77 Herposiphonia secunda f. tenella T 2 * *  * * * *
78 Herposiphonia sp. T 2  *  
79 Heterosiphonia crispella T 2 * *  * * * * * *
80 Hildenbrandia crouaniorum C 5  * * * * * * *
81 Hildenbrandia rubra C 5 * * *
82 Hydrolithon boreale C 10 * *  
83 Hydrolithon cruciatum C 10 * *  * * * * *
84 Hydrolithon farinosum C 10 * *  * * * *

85
Hydrolithon farinosum var.  
calychodyctium

C 10
 *

86 Hydrolithon sp. C 10  * * *
87 Jania rubens E 12 * *  * * * *
88 Laurencia obtusa T 7 *   
89 Laurencia tenera T 7  * *
90 Lithophyllum incrustans C 11  *  * * * * *
91 Lithophyllum sp. C 11 *   
92 Lobophora variegata C 6 * *  * * * * * *
93 Lomentaria clavaeformis T 4  * *

183



94 Lophosiphonia cristata T 2 * *  * *

continued   2007   2008       
   S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

95 Meredithia microphylla C 6 *   
96 Mesophyllum sp. C 11 * *  
97 Monosporus pedicellatus T 1 *   *
98 Nemacystus flexuosus var. gyraudi T 1  *
99 Neogoniolithon brassica-florida C 11 * *  
100 Nitophyllum punctatum T 3 * *  * * * * * *
101 Osmundea truncata T 7 * * * * * * *
102 Padina pavonica E 9 * *  * * *
103 Parvocaulis parvulum T 4 * *  * *
104 Peyssonnelia armorica C 5   * * * *
105 Peyssonnelia bornetii C 9  *  * * * *
106 Peyssonnelia dubyi C 9 *   * * *
107 Peyssonnelia polymorpha C 11 * *  * * * *
108 Peyssonnelia rosa-marina C 11  * * * *
109 Peyssonnelia cfr rubra C 9  *  
110 Peyssonnelia squamaria C 9 * *  * * * * * *
111 Phyllophora crispa E 6 *   * * * * * * *
112 Phyllophora pseudoceranoides E 6  *
113 Phyllophora sicula E 6  *  *
114 Phymatolithon cfr lenormandii C 11 * *  *
115 Phymatolithon lenormandii C 11  *  * * * * *
116 Pleonosporium borreri C 1  * *
117 Pneophyllum fragile C 10 * *  * * *
118 Polysiphonia denudata T 2 *   
119 Polysiphonia elongata T 2  *
120 Polysiphonia fibrata T 2  *  
121 Polysiphonia scopulorum T 2 * * * * * * *
122 Pseudochlorodesmis furcellata T 1 * *  * * * * *
123 Pterocladiella capillacea T 7   * * * * * * *
124 Pterocladiella melanoidea T 7  *
125 Ptilothamnion sphaericum T 1  *  
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continued   2007   2008       
   S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

126 Ralfsia verrucosa C 5  *
127 Rhodophyllis divaricata T 6  *
128 Sargassum vulgare E 8   * * * *
129 Spermothamnion repens T 1   * * *
130 Spermothamnion strictum T 1 * *  *
131 Sphacelaria cirrosa T 2 * * * * * *
132 Sphacelaria rigidula T 2  *  *
133 Sphacelaria sp. T 2  *  * * * *
134 Sphacelaria tribuloides T 2 * *  * * * *
135 Spongites fruticulosus C 11  *
136 Stypocaulon scoparium E 7 * * * * * * * * *
137 Titanoderma pustulatum C 11 * *  
138 Titanoderma cfr. pustulatum C 11  * * *
139 Titanoderma cistoseirae C 11  *

continued   2007   2008       
   S1 S2 S3 S1 S2 S3 N1 N2 N3 C3
Species CG AG pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=6.7 pH=8.1 pH=7.8 pH=7.0 pH=8.1

142 Titanoderma sp. C 11 * *  *
143 Valonia utricularis T 4 * * * * * * * * * *
144 Zonaria tournefortii E 6    *      *
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APPENDIX V
SIMPER  ANALYSIS  BETWEEN  SECTORS  SECTORS  AT  THE  SAME  TIME  ON 

COLONIZATION DATA

Group C3-may

Average similarity: 60.72

Species                Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Myrionema sp.             63.89   38.43    4.46     63.29  63.29
Hydrolithon farinosum      0.94   12.61    4.36     20.78  84.07
Feldmannia sp.            14.78    6.90    0.58     11.36  95.42

Group S1-may

Average similarity: 70.03

Species                    Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Myrionema sp.                 50.56   50.75   13.49     72.48  72.48
Titanoderma mediterraneum      0.39   13.51   10.33     19.29  91.76

Group S2-may

Average similarity: 76.99

Species                    Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Myrionema sp.                 40.56   45.47   15.82     59.06  59.06
Sphacelaria cirrosa            0.61   13.71    3.50     17.81  76.87
Titanoderma mediterraneum      0.56   13.51    5.74     17.54  94.42

Group S3-may

Average similarity: 77.06

Species                 Av.Abund  Av.Sim  Sim/SD  Contrib%   Cum.%
Feldmannia sp.             61.11   48.49    3.85     62.93   62.93
Myrionema sp.              10.33   28.56    7.87     37.07  100.00

Group N1-may

Average similarity: 57.41

Species                        Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Myrionema sp.                     20.78   18.37    4.65     32.00  32.00
Cutleria multifida sporophyte      1.39    9.54    4.86     16.62  48.61
Palmophyllum?                     25.56    7.83    0.58     13.65  62.26
Titanoderma mediterraneum          0.17    6.50    7.69     11.32  73.58
Hydrolithon farinosum              0.44    6.50    7.69     11.32  84.89
Group N2-may
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Average similarity: 88.12

Species                         Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Feldmannia sp.                     70.56   23.83    8.64     27.05  27.05
Myrionema sp.                      38.89   20.42   19.52     23.18  50.22
Palmophyllum?                      13.33   12.44    3.07     14.11  64.33
Gyraudia sphacelarioides            2.11    9.29   10.73     10.54  74.87

Group N3-may

Average similarity: 61.22

Species                     Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Feldmannia sp.                 75.56   33.53    6.80     54.77  54.77
Cianobatteri                   26.67   16.99    4.90     27.76  82.52
Myrionema sp.                   4.11    6.31    0.58     10.30  92.82

Group C3-june

Average similarity: 64.01

Species                      Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Microspongium tenuissimum       28.11   15.13    4.01     23.64  23.64
Myrionema sp.                   10.11   12.08   10.45     18.88  42.52
Titanoderma mediterraneum        8.00   10.71    5.23     16.74  59.25
Hydrolithon farinosum            3.50    9.04    5.07     14.13  73.38
Diatomee                         1.28    7.41    8.81     11.57  84.96

Group S1-june

Average similarity: 64.68

Species                    Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Palmophyllum?                 10.22   18.02    6.22     27.86  27.86
Hydrolithon farinosum          4.00   13.84    3.20     21.41  49.27
Titanoderma mediterraneum      2.22   12.97    6.87     20.05  69.32
Sphacelaria sp.                0.50    9.43    5.32     14.58  83.90
Microspongium tenuissimum     10.00    4.78    0.58      7.39  91.30

Group S2-june

Average similarity: 64.84

Species                     Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Sphacelaria cirrosa             5.11   17.62    7.36     27.17  27.17
Microspongium tenuissimum      11.83   16.85    6.83     25.99  53.16
Hydrolithon farinosum           0.44    8.28    6.97     12.77  65.93
Corallina sp.                   0.17    7.80    7.36     12.03  77.96

Group S3-june

Average similarity: 86.70

187



Species                     Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Feldmannia sp.                 61.67   21.51   14.03     24.81  24.81
Chaetomorpha linum             17.28   15.57   18.14     17.96  42.77
Microspongium tenuissimum       8.06   12.47   11.10     14.38  57.15
Myrionema sp.                   7.78   11.28   15.36     13.01  70.16
Sphacelaria sp.                 0.83    6.34   27.38      7.31  77.47

Group N1-june

Average similarity: 76.82

Species                        Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Palmophyllum?                     55.00   19.20    7.12     24.99  24.99
Cutleria multifida sporophyte      4.11   10.79    7.42     14.05  39.04
Microspongium tenuissimum          6.83    9.96   11.17     12.96  52.00
Hydrolithon farinosum              2.67    9.43    7.86     12.27  64.27
Titanoderma mediterraneum          1.72    8.79    8.11     11.44  75.71

Group N2-june

Average similarity: 71.72

Species                        Av.Abund  Av.Sim   Sim/SD  Contrib%  Cum.%
Palmophyllum?                     29.11   16.66     9.18     23.22  23.22
Microspongium tenuissimum          9.56   11.83  2429.71     16.49  39.72
Gyraudia sphacelarioides           5.33   10.10     7.44     14.08  53.79
Cutleria multifida sporophyte      6.06    8.96     2.21     12.50  66.29
Chaetomorpha linum                 1.50    7.75    15.70     10.81  77.10

Group N3-june

Average similarity: 81.39

Species                     Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Feldmannia sp.                 82.78   19.65   22.09     24.14  24.14
Microspongium tenuissimum       6.22    9.59   10.80     11.78  35.92
Gyraudia sphacelarioides        5.89    9.54   11.59     11.73  47.64
Chaetomorpha linum              5.39    7.44    3.73      9.14  56.78
Cianobatteri                    1.78    7.41   23.64      9.11  65.89

Group C3-july

Average similarity: 70.69

Species                      Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Titanoderma mediterraneum       66.67   19.13    7.81     27.07  27.07
Pseudolithoderma adriaticum     32.22   15.09    3.25     21.35  48.41
Hydrolithon farinosum           26.67   14.95    6.95     21.14  69.56
Dinoflagellate                  21.94    9.46    9.91     13.38  82.94
Diatomee                         3.11    8.45    7.86     11.95  94.89

Group S1-july
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Average similarity: 62.31

Species                      Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Titanoderma mediterraneum       32.78   11.31    6.64     18.15  18.15
Hydrolithon farinosum           11.56   10.53   20.65     16.91  35.05
Cladophora socialis             15.44    9.62   12.72     15.45  50.50
Sphacelaria cirrosa              3.89    7.09   21.10     11.38  61.88
Pseudolithoderma adriaticum      4.56    6.21    5.00      9.96  71.85

Group S2-july

Average similarity: 55.43

Species                      Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Titanoderma mediterraneum       20.78   11.79    5.14     21.26  21.26
Hydrolithon farinosum            6.00    7.89    5.33     14.24  35.50
Cianobatteri                     1.50    6.45    2.80     11.64  47.14
Chaetomorpha linum               3.94    5.70    2.56     10.29  57.43
Palmophyllum?                   26.11    4.64    0.58      8.37  65.80

Group S3-july

Average similarity: 57.03

Species                      Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Chaetomorpha linum              23.33   10.08    6.56     17.68  17.68
Diatomee                         4.83    7.63    4.68     13.37  31.05
Dinoflagellate                   4.50    7.50    3.74     13.15  44.20
Feldmannia sp.                  48.33    7.33    0.58     12.85  57.05
Cianobatteri                     2.33    6.58    8.74     11.54  68.59

Group N1-july

Average similarity: 67.77

Species                     Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Palmophyllum?                  83.89   15.92   19.14     23.49  23.49
Titanoderma mediterraneum       6.89    7.04    4.71     10.39  33.89
Chaetomorpha linum              5.67    6.54    4.51      9.65  43.53
Diatomee                        3.83    6.18   10.49      9.11  52.65
Sphacelaria sp.                 2.78    5.46    4.71      8.06  60.71

Group N2-july

Average similarity: 70.67

Species                    Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
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Palmophyllum?                 45.56   13.53    9.96     19.15  19.15
Dictyota dichotoma            28.89   11.00    9.41     15.56  34.71
Sphacelaria cirrosa            5.67    7.96   23.37     11.26  45.97
Lobophora variegata            6.44    6.81    3.96      9.64  55.61
Chaetomorpha linum             4.00    6.07    3.91      8.60  64.21

Group N3-july

Average similarity: 63.27

Species                   Av.Abund  Av.Sim  Sim/SD  Contrib%  Cum.%
Feldmannia sp.               60.56   12.35    3.37     19.52  19.52
Chaetomorpha linum           34.44   11.78    7.88     18.61  38.14
Dinoflagellate                4.33    6.57   34.08     10.38  48.52
Diatomee                      2.61    6.47   18.74     10.23  58.75
Cianobatteri                  1.22    5.52   34.08      8.73  67.48

MAY

Groups C3-may  &  S1-may

Average dissimilarity = 33.41

                               Group C3-may   Group S1-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      14.78          0.11    10.04     1.46     30.05  30.05
Cutleria multifida gametophyte       0.44          0.11     3.39     0.93     10.15  40.20
Hydrolithon farinosum                0.94          0.44     3.38     0.76     10.12  50.33
Titanoderma mediterraneum            0.33          0.39     3.37     0.87     10.10  60.43
Diatomee                             0.44          0.11     3.25     0.93      9.71  70.14

Groups S1-may  &  S2-may

Average dissimilarity = 29.87

                                Group S1-may  Group S2-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Sphacelaria cirrosa                  0.00          0.61     8.28     4.02     27.71  27.71
Hydrolithon farinosum                0.44          0.22     4.19     1.17     14.03  41.74
Cladophora socialis                  0.11          0.22     3.54     0.89     11.86  53.60
Palmophyllum?                        0.00          0.56     3.38     0.67     11.32  64.92
Cutleria multifida gametophyte       0.11          0.00     2.53     0.67      8.47  73.39

Groups C3-may  &  S3-may

Average dissimilarity = 51.52

                                Group C3-may  Group S3-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
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Feldmannia sp.                      14.78         61.11    12.94     0.96     25.11  25.11
Myrionema sp.                       63.89         10.33     9.12     2.19     17.70  42.81
Hydrolithon farinosum                0.94          0.00     8.16     2.69     15.85  58.66
Chaetomorpha linum                   0.00          5.56     4.71     0.65      9.14  67.79
Titanoderma mediterraneum            0.33          0.00     3.91     1.25      7.59  75.39

Groups S1-may  &  S3-may

Average dissimilarity = 61.60

                                Group S1-may  Group S3-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                       0.11         61.11    24.53     3.95     39.82  39.82
Myrionema sp.                       50.56         10.33     9.08     2.35     14.74  54.55
Titanoderma mediterraneum            0.39          0.00     7.38     6.12     11.98  66.53
Hydrolithon farinosum                0.44          0.00     5.74     1.30      9.31  75.85
Chaetomorpha linum                   0.00          5.56     5.43     0.67      8.81  84.66

Groups S2-may  &  S3-may

Average dissimilarity = 67.72

                           Group S2-may  Group S3-may                                   
Species                        Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                     0.00         61.11    26.18     4.86     38.66  38.66
Sphacelaria cirrosa                0.61          0.00     8.02     3.68     11.84  50.50
Titanoderma mediterraneum          0.56          0.00     7.75     5.18     11.45  61.95
Myrionema sp.                     40.56         10.33     7.44     2.24     10.99  72.94
Chaetomorpha linum                 0.00          5.56     5.28     0.67      7.80  80.74

Groups S1-may  &  N1-may

Average dissimilarity = 50.35

                                Group S1-may  Group N1-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                        0.00         25.56    11.47     1.24     22.78  22.78
Feldmannia sp.                       0.11         25.67     7.68     0.93     15.25  38.04
Cutleria multifida sporophyte        0.00          1.39     7.19     4.51     14.28  52.32
Myrionema sp.                       50.56         20.78     3.96     1.55      7.86  60.18
Gyraudia sphacelarioides             0.00          0.22     3.14     1.32      6.24  66.42

Groups S2-may  &  N1-may (similar pH)

Average dissimilarity = 53.43

                                Group S2-may  Group N1-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                        0.56         25.56    10.38     1.32     19.43  19.43
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Feldmannia sp.                       0.00         25.67     7.88     0.89     14.74  34.17
Cutleria multifida sporophyte        0.00          1.39     7.03     4.59     13.15  47.32
Sphacelaria cirrosa                  0.61          0.00     5.69     3.67     10.64  57.97

Groups S2-may  &  N2-may

Average dissimilarity = 67.00

                                Group S2-may  Group N2-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                       0.00         70.56    17.23     7.96     25.72  25.72
Palmophyllum?                        0.56         13.33     8.33     1.87     12.42  38.15
Gyraudia sphacelarioides             0.00          2.11     7.01     9.80     10.47  48.61
Cutleria multifida sporophyte        0.00          1.22     6.23     6.46      9.29  57.91
Cladosiphon sp.                      0.00          1.11     5.49     4.52      8.20  66.10

Groups N1-may  &  N2-may

Average dissimilarity = 41.83

                                Group N1-may  Group N2-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      25.67         70.56     8.33     1.29     19.92  19.92
Palmophyllum?                       25.56         13.33     5.08     1.47     12.14  32.06
Cladosiphon sp.                      0.00          1.11     4.36     3.96     10.43  42.49
Hydrolithon farinosum                0.44          0.00     3.52     6.50      8.43  50.92
Gyraudia sphacelarioides             0.22          2.11     3.31     1.45      7.92  58.84

Groups S2-may  &  N3-may (similar pH)

Average dissimilarity = 84.29

                               Group S2-may  Group N3-may                                
Species                         Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00         75.56    21.98     7.23     26.08  26.08
Cianobatteri                        0.00         26.67    14.74     2.22     17.48  43.56
Myrionema sp.                      40.56          4.11    11.46     1.70     13.60  57.16
Sphacelaria cirrosa                 0.61          0.00     6.56     4.05      7.78  64.94
Titanoderma mediterraneum           0.56          0.00     6.36     5.75      7.54  72.48

Groups S3-may  &  N3-may

Average dissimilarity = 44.44

                               Group S3-may  Group N3-may                                
Species                         Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cianobatteri                        0.00         26.67    14.72     2.17     33.13  33.13
Myrionema sp.                      10.33          4.11     5.88     0.96     13.23  46.37
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Cutleria multifida sporophyte       0.00          1.11     5.60     1.31     12.61  58.97
Enteromorpha sp.                    0.00          3.33     4.79     0.66     10.79  69.76
Chaetomorpha linum                  5.56          0.00     4.46     0.66     10.04  79.80

Groups N1-may  &  N3-may

Average dissimilarity = 64.16

                               Group N1-may  Group N3-may                                
Species                         Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cianobatteri                        0.00         26.67    11.02     2.18     17.18  17.18
Feldmannia sp.                     25.67         75.56    10.44     1.37     16.28  33.45
Palmophyllum?                      25.56          0.00     9.63     1.25     15.01  48.46
Myrionema sp.                      20.78          4.11     6.01     1.10      9.37  57.83
Hydrolithon farinosum               0.44          0.00     4.27     6.72      6.65  64.48

Groups N2-may  &  N3-may

Average dissimilarity = 51.50

                                Group N2-may  Group N3-may                                
Species                          Av.Abund      Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cianobatteri                         0.00         26.67    10.03     2.29     19.47  19.47
Palmophyllum?                       13.33          0.00     9.19     3.95     17.85  37.32
Myrionema sp.                       38.89          4.11     7.54     1.68     14.64  51.95
Gyraudia sphacelarioides             2.11          0.11     4.93     2.16      9.57  61.52
Cladosiphon sp.                      1.11          0.00     4.82     4.29      9.36  70.89

JUNE

Groups C3-june  &  S1-june

Average dissimilarity = 51.01

                             Group C3-june  Group S1-june                                
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     10.11           0.17     6.23     2.68     12.21  12.21
Microspongium tenuissimum         28.11          10.00     6.02     1.26     11.81  24.02
Palmophyllum?                      2.56          10.22     5.94     1.58     11.65  35.67
Pseudolithoderma adriaticum        4.78           0.00     4.78     1.28      9.36  45.03
Cianobatteri                       0.50           0.00     3.00     1.27      5.87  50.91

Groups S1-june  &  S2-june

Average dissimilarity = 48.47

                           Group S1-june  Group S2-june                                   
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Sphacelaria cirrosa                 0.06           5.11     8.06     4.00     16.64  16.64
Microspongium tenuissimum          10.00          11.83     6.14     1.32     12.67  29.31
Palmophyllum?                      10.22           2.17     5.74     1.10     11.84  41.15
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Titanoderma mediterraneum           2.22           4.56     4.52     1.36      9.33  50.48
Corallina sp.                       0.00           0.17     4.05     8.03      8.36  58.84

Groups C3-june  &  S3-june

Average dissimilarity = 54.95

                             Group C3-june  Group S3-june                                
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                     0.39          61.67     8.95     3.75     16.29  16.29
Titanoderma mediterraneum          8.00           0.00     6.36     5.75     11.57  27.86
Chaetomorpha linum                 0.50          17.28     5.86     2.55     10.66  38.53
Hydrolithon farinosum              3.50           0.00     5.23     5.91      9.52  48.05
Pseudolithoderma adriaticum        4.78           0.00     3.90     1.27      7.09  55.14

Groups S1-june  &  S3-june

Average dissimilarity = 72.12

                           Group S1-june  Group S3-june                                   
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00          61.67    13.90    13.15     19.27  19.27
Chaetomorpha linum                  0.00          17.28    10.11    10.67     14.02  33.30
Palmophyllum?                      10.22           0.00     8.38     4.27     11.63  44.92
Hydrolithon farinosum               4.00           0.00     6.59     3.48      9.14  54.06
Titanoderma mediterraneum           2.22           0.00     5.80     6.02      8.04  62.10

Groups S2-june  &  S3-june

Average dissimilarity = 71.73

                           Group S2-june  Group S3-june                                   
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00          61.67    13.58     9.08     18.94  18.94
Myrionema sp.                       0.00           7.78     7.78     6.02     10.85  29.78
Chaetomorpha linum                  0.17          17.28     7.64     3.63     10.66  40.44
Sphacelaria cirrosa                 5.11           0.00     7.27    16.53     10.13  50.57
Titanoderma mediterraneum           4.56           0.00     4.93     1.27      6.87  57.44

Groups S1-june  &  N1-june

Average dissimilarity = 45.31

                               Group S1-june  Group N1-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cutleria multifida sporophyte       0.00           4.11     6.98     6.65     15.41  15.41
Chaetomorpha linum                  0.00           3.50     5.82     5.28     12.84  28.25
Palmophyllum?                      10.22          55.00     5.04     1.83     11.11  39.37
Microspongium tenuissimum          10.00           6.83     4.37     1.52      9.64  49.01
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Hincksia                            0.00           1.67     3.75     1.33      8.27  57.28

Groups S2-june  &  N1-june (similar pH)

Average dissimilarity = 50.97

                               Group S2-june  Group N1-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                       2.17          55.00     8.98     1.90     17.62  17.62
Cutleria multifida sporophyte       0.00           4.11     6.82     5.90     13.39  31.01
Sphacelaria cirrosa                 5.11           0.22     5.75     2.32     11.28  42.29
Hincksia                            0.00           1.67     3.67     1.32      7.20  49.49
Chaetomorpha linum                  0.17           3.50     3.49     1.60      6.85  56.33

Groups S2-june  &  N2-june

Average dissimilarity = 56.01

                               Group S2-june  Group N2-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Gyraudia sphacelarioides            0.00           5.33     7.04     6.29     12.58  12.58
Palmophyllum?                       2.17          29.11     7.02     1.71     12.53  25.11
Cutleria multifida sporophyte       0.00           6.06     6.96     2.94     12.42  37.53
Sphacelaria cirrosa                 5.11           0.33     5.67     2.21     10.12  47.65
Feldmannia sp.                      0.00           2.33     4.19     1.30      7.47  55.13

Groups N1-june  &  N2-june

Average dissimilarity = 32.38

                               Group N1-june  Group N2-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Gyraudia sphacelarioides            0.44           5.33     3.58     1.48     11.07  11.07
Hydrolithon farinosum               2.67           0.17     3.15     2.31      9.72  20.79
Myrionema sp.                       0.00           1.22     3.11     1.31      9.59  30.38
Feldmannia sp.                      1.11           2.33     3.09     1.13      9.54  39.92
Hincksia                            1.67           0.00     3.08     1.33      9.51  49.44

Groups S2-june  &  N3-june

Average dissimilarity = 76.28

                               Group S2-june  Group N3-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00          82.78    12.86    10.91     16.86  16.86
Gyraudia sphacelarioides            0.00           5.89     6.58     9.15      8.63  25.48
Sphacelaria cirrosa                 5.11           0.00     6.36    17.25      8.34  33.82
Cianobatteri                        0.00           1.78     4.91    12.29      6.44  40.26
Titanoderma mediterraneum           4.56           0.00     4.34     1.27      5.68  45.95
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Groups S3-june  &  N3-june

Average dissimilarity = 34.65

                               Group S3-june  Group N3-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                       7.78           0.00     5.77     6.51     16.66  16.66
Cladophora socialis                 0.00           1.22     3.64     5.08     10.49  27.15
Cutleria multifida sporophyte       0.00           3.22     3.48     1.33     10.06  37.21
Cianobatteri                        0.06           1.78     3.39     2.94      9.78  46.99
Nemacystus sp.                      0.00           0.56     3.07    13.33      8.85  55.84

Groups N1-june  &  N3-june

Average dissimilarity = 64.64

                               Group N1-june  Group N3-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                      55.00           0.00     9.61     5.31     14.87  14.87
Feldmannia sp.                      1.11          82.78     9.30     2.99     14.38  29.25
Hydrolithon farinosum               2.67           0.00     4.52     9.38      6.99  36.24
Cianobatteri                        0.00           1.78     4.10     9.76      6.34  42.59
Titanoderma mediterraneum           1.72           0.00     4.07     9.36      6.30  48.89

Groups N2-june  &  N3-june

Average dissimilarity = 58.13

                               Group N2-june  Group N3-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                      29.11           0.00     8.21     8.18     14.12  14.12
Feldmannia sp.                      2.33          82.78     7.71     2.73     13.26  27.38
Cianobatteri                        0.00           1.78     4.14    24.12      7.13  34.51
Cladophora socialis                 0.00           1.22     3.62     5.04      6.23  40.74
Diatomee                            0.00           0.89     3.46     8.61      5.95  46.68

JULY

Groups C3-july  &  S1-july

Average dissimilarity = 44.38

                             Group C3-july  Group S1-july                                
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cladophora socialis                0.17          15.44     5.22     2.49     11.76  11.76
Myrionema sp.                      0.00          17.22     4.89     1.30     11.02  22.78
Sphacelaria cirrosa                3.89           3.89     3.55     2.05      8.00  30.78
Pseudolithoderma adriaticum       32.22           4.56     3.30     1.76      7.44  38.22
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Sphacelaria sp.                    2.22           3.89     2.97     1.12      6.69  44.90

Groups S1-july  &  S2-july

Average dissimilarity = 45.59

                             Group S1-july  Group S2-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cladophora socialis                15.44           0.11     5.31     2.37     11.65  11.65
Palmophyllum?                       8.33          26.11     4.41     1.10      9.66  21.31
Myrionema sp.                      17.22           0.67     4.17     1.58      9.14  30.45
Chaetomorpha linum                  0.00           3.94     3.84     2.47      8.42  38.87
Sphacelaria cirrosa                 3.89           3.44     3.24     2.13      7.11  45.98

Groups C3-july  &  S3-july

Average dissimilarity = 63.02

                             Group C3-july  Group S3-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Titanoderma mediterraneum          66.67           0.00     9.86     7.98     15.65  15.65
Hydrolithon farinosum              26.67           0.00     7.90     4.79     12.53  28.18
Feldmannia sp.                      0.00          48.33     7.21     1.31     11.44  39.62
Chaetomorpha linum                  0.78          23.33     4.55     1.63      7.21  46.84
Pseudolithoderma adriaticum        32.22          14.44     3.73     0.91      5.92  52.76

Groups S1-july  &  S3-july

Average dissimilarity = 70.69

                             Group S1-july  Group S3-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Titanoderma mediterraneum          32.78           0.00     7.16     5.62     10.13  10.13
Feldmannia sp.                      0.06          48.33     6.27     1.40      8.86  18.99
Chaetomorpha linum                  0.00          23.33     6.06     4.29      8.57  27.57
Hydrolithon farinosum              11.56           0.00     5.82    10.19      8.24  35.80
Myrionema sp.                      17.22           0.00     4.82     1.30      6.81  42.62

Groups S2-july  &  S3-july

Average dissimilarity = 67.85

                             Group S2-july  Group S3-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00          48.33     7.03     1.31     10.35  10.35
Titanoderma mediterraneum          20.78           0.00     6.90     5.00     10.17  20.53
Palmophyllum?                      26.11           0.00     5.47     1.24      8.06  28.58
Hydrolithon farinosum               6.00           0.00     4.97     3.36      7.33  35.91
Pseudolithoderma adriaticum         6.56          14.44     3.69     1.18      5.43  41.34

Groups S1-july  &  N1-july
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Average dissimilarity = 54.88

                             Group S1-july  Group N1-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                       8.33          83.89     6.43     1.98     11.71  11.71
Cladophora socialis                15.44           0.11     4.62     2.74      8.42  20.13
Chaetomorpha linum                  0.00           5.67     4.09     4.85      7.46  27.58
Sphacelaria cirrosa                 3.89           0.00     3.80     7.61      6.93  34.52
Pseudolithoderma adriaticum         4.56           0.00     3.73     4.01      6.80  41.31

Groups S2-july  &  N1-july (similar pH)

Average dissimilarity = 43.81

                             Group S2-july  Group N1-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                      26.11          83.89     4.20     1.04      9.59   9.59
Pseudolithoderma adriaticum         6.56           0.00     3.13     1.31      7.15  16.74
Dictyota dichotoma                  1.22           8.89     3.06     1.53      6.98  23.72
Sphacelaria sp.                     8.33           2.78     2.55     1.87      5.83  29.55
Diatomee                            0.22           3.83     2.54     1.80      5.80  35.35

Groups S2-july  &  N2-july

Average dissimilarity = 48.08

                             Group S2-july  Group N2-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Dictyota dichotoma                  1.22          28.89     4.62     2.00      9.60   9.60
Lobophora variegata                 0.00           6.44     4.60     3.21      9.57  19.17
Sphacelaria sp.                     8.33           0.56     3.36     1.41      6.99  26.16
Sphacelaria cirrosa                 3.44           5.67     3.30     1.75      6.87  33.03
Palmophyllum?                      26.11          45.56     3.23     0.83      6.72  39.75

Groups N1-july  &  N2-july

Average dissimilarity = 33.94

                           Group N1-july  Group N2-july                                   
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Sphacelaria cirrosa                 0.00           5.67     4.16    16.55     12.24  12.24
Dictyota dichotoma                  8.89          28.89     2.75     1.05      8.10  20.35
Sphacelaria sp.                     2.78           0.56     2.43     1.67      7.15  27.49
Lobophora variegata                 0.67           6.44     2.33     1.25      6.85  34.34
Myrionema sp.                       0.56           2.00     1.77     1.37      5.21  39.56

Groups S2-july  &  N3-july (similar pH)
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Average dissimilarity = 72.11

                               Group S2-july  Group N3-july                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                      0.00          60.56     8.07     3.73     11.19  11.19
Titanoderma mediterraneum          20.78           0.00     6.20     5.61      8.60  19.78
Palmophyllum?                      26.11           0.00     4.92     1.26      6.82  26.61
Hydrolithon farinosum               6.00           0.00     4.46     3.59      6.19  32.80
Chaetomorpha linum                  3.94          34.44     3.44     1.84      4.78  37.57

Groups S3-july  &  N3-july

Average dissimilarity = 50.17

                               Group S3-july  Group N3-july                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Pseudolithoderma adriaticum        14.44           0.00     4.25     1.29      8.47   8.47
Dictyota dichotoma                  0.00           2.11     3.57     3.82      7.11  15.58
Feldmannia sp.                     48.33          60.56     3.36     1.03      6.70  22.28
Lobophora variegata                 0.00           7.22     3.28     1.22      6.54  28.83
Antithamnion cruciatum              0.00           1.33     3.16     4.22      6.31  35.14

Groups N1-july  &  N3-july

Average dissimilarity = 60.35

                               Group N1-july  Group N3-july                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                      83.89           0.00     8.24    13.58     13.66  13.66
Feldmannia sp.                      0.44          60.56     5.69     2.63      9.44  23.09
Titanoderma mediterraneum           6.89           0.00     4.19     5.62      6.94  30.04
Gyraudia sphacelarioides            0.00           5.00     3.02     1.31      5.00  35.03
Hydrolithon farinosum               1.56           0.00     2.94     5.62      4.88  39.91

Groups N2-july  &  N3-july

Average dissimilarity = 61.87

                               Group N2-july  Group N3-july                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Palmophyllum?                      45.56           0.00     7.19     9.99     11.62  11.62
Feldmannia sp.                      0.56          60.56     6.32     2.66     10.22  21.84
Sphacelaria cirrosa                 5.67           0.00     4.25    16.09      6.88  28.72
Titanoderma mediterraneum           5.00           0.00     3.69     2.63      5.97  34.69
Gyraudia sphacelarioides            0.00           5.00     3.10     1.31      5.01  39.70
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APPENDIX V (continued)
SIMPER ANALYSIS AMONG SECTORS DURING TIME ON COLONIZATION DATA

Groups C3-may  &  C3-june

Average dissimilarity = 58.91

                             Group C3-may  Group C3-june                                 
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum          0.00          28.11    11.30     3.49     19.19  19.19
Feldmannia sp.                    14.78           0.39     5.96     1.64     10.13  29.31
Titanoderma mediterraneum          0.33           8.00     5.52     1.66      9.37  38.68
Myrionema sp.                     63.89          10.11     5.46     3.26      9.27  47.95
Pseudolithoderma adriaticum        0.00           4.78     4.92     1.25      8.36  56.31

Groups C3-may  &  C3-july

Average dissimilarity = 80.93
                             Group C3-may  Group C3-july                                 
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     63.89           0.00    13.42     4.59     16.58  16.58
Pseudolithoderma adriaticum        0.00          32.22    11.23     3.34     13.88  30.46
Titanoderma mediterraneum          0.33          66.67    11.01     2.90     13.60  44.06
Dinoflagellate                     0.00          21.94     8.78     2.45     10.85  54.92
Feldmannia sp.                    14.78           0.00     6.21     1.24      7.67  62.58

Groups C3-june  &  C3-july

Average dissimilarity = 55.75

                             Group C3-june  Group C3-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum          28.11           0.00     8.31     3.98     14.90  14.90
Dinoflagellate                      0.00          21.94     6.87     2.62     12.32  27.22
Myrionema sp.                      10.11           0.00     6.43     5.09     11.54  38.76
Pseudolithoderma adriaticum         4.78          32.22     5.08     1.44      9.11  47.87
Titanoderma mediterraneum           8.00          66.67     4.53     3.61      8.12  55.99

Groups S1-may  &  S1-june

Average dissimilarity = 69.24

                                Group S1-may  Group S1-june                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                      50.56           0.17    17.41     4.35     25.14  25.14
Palmophyllum?                       0.00          10.22    13.27     4.15     19.16  44.31
Microspongium tenuissimum           0.00          10.00     8.72     1.19     12.59  56.90
Sphacelaria sp.                     0.00           0.50     6.42     6.17      9.26  66.17
Hydrolithon farinosum               0.44           4.00     5.79     1.22      8.36  74.53

Groups S1-may  &  S1-july
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Average dissimilarity = 69.37

                             Group S1-may  Group S1-july                                 
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cladophora socialis                0.11          15.44     7.63     2.49     10.99  10.99
Titanoderma mediterraneum          0.39          32.78     6.77     3.85      9.77  20.76
Sphacelaria cirrosa                0.00           3.89     6.18     8.66      8.91  29.67
Pseudolithoderma adriaticum        0.00           4.56     6.05     4.35      8.72  38.39
Hydrolithon farinosum              0.44          11.56     5.65     2.60      8.15  46.54

Groups S1-june  &  S1-july

Average dissimilarity = 61.29

                             Group S1-june  Group S1-july                                 
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Cladophora socialis                 0.00          15.44     7.77     3.67     12.68  12.68
Myrionema sp.                       0.17          17.22     5.55     1.68      9.05  21.74
Pseudolithoderma adriaticum         0.00           4.56     5.40     4.26      8.81  30.54
Palmophyllum?                      10.22           8.33     5.36     1.85      8.74  39.28
Sphacelaria cirrosa                 0.06           3.89     4.63     3.26      7.56  46.85

Groups S2-may  &  S2-june

Average dissimilarity = 69.27

                           Group S2-may  Group S2-june                                   
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     40.56           0.00    18.76     6.89     27.09  27.09
Microspongium tenuissimum          0.00          11.83    12.71     4.23     18.34  45.43
Titanoderma mediterraneum          0.56           4.56     5.91     2.73      8.53  53.96
Palmophyllum?                      0.56           2.17     5.40     1.17      7.79  61.75
Corallina sp.                      0.00           0.17     4.76     7.08      6.88  68.63

Groups S2-may  &  S2-july

Average dissimilarity = 75.21
                             Group S2-may  Group S2-july                                 
Species                        Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     40.56           0.67     9.85     2.64     13.09  13.09
Palmophyllum?                      0.56          26.11     7.46     1.33      9.92  23.02
Chaetomorpha linum                 0.00           3.94     6.06     2.37      8.05  31.07
Titanoderma mediterraneum          0.56          20.78     5.96     2.99      7.92  38.99
Sphacelaria sp.                    0.00           8.33     5.92     1.25      7.88  46.87

Groups S2-june  &  S2-july

Average dissimilarity = 61.98
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                           Group S2-june  Group S2-july                                   
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum         11.83           0.00     7.49     3.64     12.09   12.09
Palmophyllum?                      2.17          26.11     5.97     1.50      9.63   21.72
Sphacelaria sp.                    0.11           8.33     4.90     1.48      7.91   29.63
Cianobatteri                       0.00           1.50     4.78     3.38      7.71   37.34
Titanoderma mediterraneum          4.56          20.78     4.67     1.18      7.53   44.88

Groups S3-may  &  S3-june

Average dissimilarity = 46.22

                           Group S3-may  Group S3-june                                    
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum          0.00           8.06     9.33     9.66     20.19   20.19
Chaetomorpha linum                 5.56          17.28     8.19     1.42     17.72   37.90
Sphacelaria sp.                    0.00           0.83     5.13     4.85     11.10   49.00
Gyraudia sphacelarioides           0.00           1.00     5.12     4.42     11.07   60.07
Diatomee                           0.00           0.44     4.45     6.59      9.63   69.71

Groups S3-may  &  S3-july

Average dissimilarity = 74.74

                            Group S3-may  Group S3-july                                   
Species                       Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                   10.33           0.00     8.71     6.04     11.66    11.66
Chaetomorpha linum               5.56          23.33     7.42     1.82      9.92    21.58
Diatomee                         0.00           4.83     6.81     5.39      9.12    30.70
Pseudolithoderma adriaticum      0.00          14.44     6.81     1.26      9.11    39.81
Dinoflagellate                   0.00           4.50     6.72     4.12      8.99    48.80

Groups S3-june  &  S3-july

Average dissimilarity = 49.63

                             Group S3-june  Group S3-july                                 
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum          8.06           0.00     6.15     7.58     12.40   12.40
Myrionema sp.                      7.78           0.00     5.93     5.48     11.94   24.34
Pseudolithoderma adriaticum        0.00          14.44     5.09     1.28     10.27   34.60
Osmundea truncata                  0.00           1.50     3.52     4.16      7.08   41.69
Cianobatteri                       0.06           2.33     3.51     2.11      7.08   48.76

Groups N1-may  &  N1-june

Average dissimilarity = 54.60

                                Group N1-may  Group N1-june                               
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Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     20.78           0.00     9.21     3.83     16.87   16.87
Microspongium tenuissimum          0.00           6.83     6.70     7.86     12.27   29.14
Feldmannia sp.                    25.67           1.11     5.35     1.00      9.80   38.93
Palmophyllum?                     25.56          55.00     4.87     0.88      8.93   47.86
Chaetomorpha linum                 0.33           3.50     4.02     1.54      7.36   55.22

Groups N1-may  &  N1-july

Average dissimilarity = 63.89

                                Group N1-may  Group N1-july                               
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Myrionema sp.                     20.78           0.56     5.05     2.51      7.90    7.90
Palmophyllum?                     25.56          83.89     4.78     1.09      7.48   15.38
Dictyota dichotoma                 0.00           8.89     4.45     1.32      6.96   22.35
Sphacelaria sp.                    0.00           2.78     4.31     3.88      6.74   29.09
Chaetomorpha linum                 0.33           5.67     4.05     1.84      6.34   35.43

Groups N1-june  &  N1-july

Average dissimilarity = 52.92

                               Group N1-june  Group N1-july                               
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum           6.83           0.00     4.80     7.84      9.07   9.07
Cutleria multifida sporophyte       4.11           0.00     4.50     9.02      8.51  17.57
Diatomee                            0.00           3.83     4.23     6.53      7.99  25.57
Dictyota dichotoma                  0.56           8.89     3.66     1.33      6.91  32.48
Dinoflagellate                      0.00           1.44     3.41     6.13      6.45  38.92

Groups N2-may  &  N2-june

Average dissimilarity = 53.87

                                Group N2-may  Group N2-june                               
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Feldmannia sp.                    70.56           2.33     8.43     2.41     15.65   15.65
Myrionema sp.                     38.89           1.22     7.06     3.03     13.10   28.74
Microspongium tenuissimum          0.00           9.56     7.04     6.73     13.08   41.82
Chaetomorpha linum                 0.00           1.50     4.50     7.55      8.35   50.17
Cladosiphon sp.                    1.11           0.00     3.86     4.17      7.17   57.34

Groups N2-may  &  N2-july

Average dissimilarity = 79.02

                                Group N2-may  Group N2-july                               
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%

203



Feldmannia sp.                    70.56           0.56     8.55     3.97     10.82   10.82
Dictyota dichotoma                 0.00          28.89     7.63     8.91      9.66   20.48
Myrionema sp.                     38.89           2.00     5.63     2.15      7.13   27.61
Sphacelaria cirrosa                0.00           5.67     5.20    23.24      6.58   34.19
Lobophora variegata                0.00           6.44     5.15     3.35      6.52   40.71

Groups N2-june  &  N2-july

Average dissimilarity = 61.08

                               Group N2-june  Group N2-july                               
Species                        Av.Abund       Av.Abund   Av.Diss  Diss/SD  Contrib%  Cum.%
Dictyota dichotoma                 0.06          28.89     6.67     4.61     10.92   10.92
Microspongium tenuissimum          9.56           0.00     5.57     6.26      9.11   20.03
Lobophora variegata                0.00           6.44     4.96     3.37      8.12   28.16
Gyraudia sphacelarioides           5.33           0.00     4.81     6.33      7.88   36.03
Cutleria multifida sporophyte      6.06           0.00     4.73     3.07      7.75   43.78

Groups N3-may  &  N3-june

Average dissimilarity = 56.28

                               Group N3-may  Group N3-june                                
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum          0.00           6.22     6.79    10.00     12.06   12.06
Chaetomorpha linum                 0.00           5.39     6.15     3.70     10.93   23.00
Gyraudia sphacelarioides           0.11           5.89     5.68     2.92     10.09   33.09
Myrionema sp.                      4.11           0.00     4.49     1.32      7.98   41.07
Cladophora socialis                0.00           1.22     4.37     4.93      7.77   48.84

Groups N3-may  &  N3-july

Average dissimilarity = 65.09

                               Group N3-may  Group N3-july                                
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Chaetomorpha linum                  0.00          34.44     9.15     9.49     14.05  14.05
Dinoflagellate                      0.00           4.33     5.35     5.47      8.22  22.27
Dictyota dichotoma                  0.00           2.11     4.54     3.81      6.98  29.25
Lobophora variegata                 0.00           7.22     4.16     1.24      6.39  35.64
Myrionema sp.                       4.11           0.00     4.04     1.32      6.21  41.84

Groups N3-june  &  N3-july

Average dissimilarity = 40.28

                               Group N3-june  Group N3-july                               
Species                         Av.Abund       Av.Abund  Av.Diss  Diss/SD  Contrib%  Cum.%
Microspongium tenuissimum           6.22           0.00     4.70    10.20     11.67  11.67

204



Lobophora variegata                 0.00           7.22     3.22     1.22      7.99  19.66
Cutleria multifida sporophyte       3.22           8.11     3.19     1.40      7.93  27.59
Antithamnion cruciatum              0.00           1.33     3.10     4.55      7.70  35.28
Chaetomorpha linum                  5.39          34.44     2.80     1.92      6.96  42.25
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APPENDIX VI
LIST  OF  SAMPLES  WITH  REFERENCE  NUMBER,  USED  FOR  MOLECULAR 

ANALYSES AND THEIR NATIVE ENVIRONMENT (a: acidified; -A: not acidified).

Reference number Morphotype Environment
61 D. dichotoma a
62 D. dichotoma a
63 D. dichotoma a
64 D. dichotoma a
65 D. pulchella a
66 D. pulchella a
67 D. pulchella a
68 D. pulchella a
69 D. pulchella a
70 D.  dichotoma v. 

intricata

a

71 D.  dichotoma v. 

intricata

a

72 D.  dichotoma v. 

intricata

a

73 D.  dichotoma v. 

intricata

a

74 D.  dichotoma v. 

intricata

a

75 D.  dichotoma v. 

intricata

a

76 D.  dichotoma v. 

intricata

a

77 D. pulchella -A
78 D. pulchella -A
79 D. pulchella -A
80 D. pulchella -A
81 D.  dichotoma v. 

intricata

-A

82 D.  dichotoma v. 

intricata

-A

83 D.  dichotoma v. 

intricata

-A

84 D.  dichotoma v. 

intricata

-A

85 D. dichotoma -A
86 D. dichotoma -A
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87 D. dichotoma -A
88 D. dichotoma -A
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APPENDIX VII

DICTYOTA DNA EXTRACTION PROCEDURE

 Heat the water bath to 60°C

 Prepare 300 µl CTAB isolation buffer for each sample and heat in the bath

 Set up 1,5 mL tubes with tissue and grind after putting in liquid nitrogen and 200 µL 

not heated CTAB

 Transfer the omogenate in a 1,5 mL tube

 Add 300 µL di CTAB caldo (from the water bath at 60°) and 10 µL di Proteinasi-K 

(PK 20 mg/mL)

 Vortex

 Incubate at 60° for 1h (inverse after 30’)

 Add 30 µL RNAase (10 µg/µL) and vortex

 Incubate at 37° for 30’

 Add 500 uL of 24:1 Chloroform:isoamyl alcohol and mix to emulsify (CI)

 Centrifuge at 14000rpm for 2’

 Transfer aqueous (upper) layer to a clean tube

 Add an higher volume of cold Isopropanol (500 µL) than the transferred volume and 

mix

 Centrifuge 14000rpm for 35’ at 14 °C

 Remove the upper layer (Isopropanol) and add 500µL cold Absolute Ethanol

 Centrifuge14000rpm for 5’ at 14 °C

 Remove the Ethanol and leave the pellet to dry for 1h on blotting paper

 Dissolve the pellet in 10 µL ddH2O

 Mix gently and leave at mean temperature

CTAB isolation buffer (100 ml):

   * 2,0 g CTAB

   * 28 mL of 5M NaCl

   * 4 mL of 0,5M EDTA

   * 10 mL Tris-HCl
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