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2. ABSTRACT 

Ataxia-Telangiectasia (A-T) is a recessive hereditary syndrome characterized 

by cerebellar degeneration, telangiectasia, precocious aging, 

immunodeficiency, cancer predisposition and insulin-resistant diabetes. A-T 

is caused by defects in Ataxia-Telagiectasia Mutated (Atm) gene. Atm 

encodes a ser/thr kinase (ATM) of the PI3 kinase family that plays a crucial 

role in the DNA damage response (DDR). Although some A-T features are 

easily explained by defects in DDR, others, like precocious aging, insulin-

resistant diabetes and the recently described whole chromosome instability, 

are not. We, thus, searched for possible DDR-independent roles of ATM. To 

this end, we analyzed human cells in which ATM was chemically or 

genetically downregulated in the absence of any DNA damaging insult. We 

observed that ATM downregulation induced abnormal mitotic figures. The 

phenotypes ranged from abnormal mitotic spindles that were displaced from 

the cell centre, indicating loss of cortical interaction of astral microtubules, to 

spindles with extra poles that slowly coalesced to form pseudo-bipolar 

spindles. Often the extra poles lacked the centrosome marker gamma-tubulin. 

These alterations resembled that of previously described mitotic phenotypes 

induced by genetic knock-down of the poly(ADP-ribosyl)-polymerase 

Tankyrase 1 (TNKS1). The mitotic phenotypes have been ascribed to reduced 

TNKS1-dependent poly(ADP-ribosyl)ation of the Nuclear and Mitotic 

Apparatus protein 1 (NuMA1). Indeed, we found that ATM down-regulation 

impaired mitotic poly(ADP-ribosyl)ation of NuMA1. We further observed 

that ATM physically interacted with TNKS1. ATM activity was required for 

TNKS1-dependent poly(ADP-ribosyl)ation of NuMa1, perhaps through 

ATM-dependent phosphorylation of NuMa1, but not for ATM-TNKS1 

interaction. Previous observations have shown that TNKS1 controls telomere 

length by (poly(ADP-ribosyl)ating TRF1 and glucose uptake by regulating 

insulin-dependent transport into the plasma-membrane of the glucose 

transporter Glut-4. We propose that the ATM-dependent control of TNKS1 

function, independently of DDR, could explain several A-T features and shed 

light on new therapeutic approaches for the A-T syndrome.  
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3. THESYS MAIN BODY 

 

3.1 BACKGROUND 

 

3.1.1 ATAXIA-TELANGIECTASIA (A-T) 

 

 

Ataxia-telangiectasia (A-T), first described by Boder and Sedgwick (1957), is 

an autosomal recessive human hereditary syndrome. It is a multisystem 

disease characterized by progressive cerebellar ataxia, oculocutaneous 

telangiectasia (dilated blood vessels) (Boder and Sedgwick 1957; Boder 

1985), radiosensitivity (Good et al. 1964), hypogonadism (Boder 1985), 

cancer predisposition, in particular lymphoid malignancies (Good 1972; 

Boder 1975) and breast cancer (Walsh and King 2007; Campeau et al. 2008), 

cellular and humoral immunodeficiency (Waldmann 1982;), insulin-resistant 

diabetes mellitus (Schalch et al. 1970) and precocious aging (Good 1972) 

(Fig. 1). 

Ataxia is the presenting feature of A-T syndrome and becomes manifested 

when child begins to walk. The main cause of ataxia in A-T patients is 

cerebellar degeneration involving Purkinje, granular cells and basket cells. 

Moreover, changes in the cerebrum are also found (Boder 1985). 

Dilated blood vessels (telangiectasia) and immunodeficiency become 

apparent after the onset of ataxia, between 2 and 8 years of age. However, 

telangiectasia and defects in immune system do not develop in all A-T 

patients with the same morbidity (Boder 1985; McFarlin et al. 1972).  

The immunodeficiency phenotype in A-T patients is variable. Patients with 

A-T may have defects in both T-lymphocyte (cellular arm) and B-lymphocyte 

(humoral arm) systems (Boder E. 1985; McFarlin et al. 1972). Abnormalities 

in the cellular-arm of the immune system are usually associated with a small 

or immature thymus gland. Thus, A-T patients also may have reduced 

numbers of circulating T-lymphocytes. However, the low number of T-

lymphocytes generally does not increase the patient’s susceptibility to 

infection (Nowak-Wegrzyn et al. 2004). The immunological deficiency 

concerning humoral-arm of immunity is frequent (60-70% of A-T patients) 

and consists in deficiency or absence of IgA, in frequent absence of IgE 

(Nowak-Wegrzyn et al. 2004; McKinnon 2004). A-T patients with defects in 

only one branch of immune system generally have infective respiratory 

diseases that are not life-threatening (McFarlin et al. 1972; Nowak-Wegrzyn 

et al. 2004).  

Finally, patients with A-T have an increased risk for developing cancer, 

particularly lymphoid malignancies, like lymphoma and leukemia (Good 

1972; Boder 1975), and susceptibility for breast cancer, found also in A-T 

carriers (Walsh and King 2007; Campeau et al. 2008).  
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The cause of death in A-T patients is ultimately linked to bronchopulmonary 

disease (pneumonia or chronic lung disease), cerebellar degeneration and 

cancers (Lavin and Shiloh, 1997; Lefton-Greif et al. 2000; Nowak-Wegrzyn 

et al. 2004; McKinnon 2004). 

 

 

 

 

 

 

 

 

Fig1. Schematic representation of the A-T syndrome features. From McKinnon, 2004. Ataxia-
Telangiectasia is a hereditary syndrome characterized by cerebellar neurodegeneration, ocular 
telangiectasia, immune system defects, radiosensitivity, cancer predisposition and gonadal atrophy. 
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3.1.2 ATM functions in the DNA Damage Response (DDR) 

 

 

The gene mutated in A-T syndrome, “Ataxia-Telangiectasia Mutated” (Atm) 

gene, was localized to chromosome 11q22-23 (Gatti et al. 1988) and cloned 

by positional cloning (Savitsky et al. 1995). Atm gene encodes for a large 

Ser/Thr protein kinase, approximately 350 kDa (ATM). Several types of 

mutations have been indentified in the Atm gene, most being truncating or 

splice-site mutations. Some Atm alleles lead to an unstable protein, other to a 

reduced amount of functional protein or normal amounts with dramatic 

reduction of enzymatic activity. The types of mutation may explain different 

severity of A-T syndrome, although neurodegeneration is always present 

(Stewart et al. 2001, McKinnon 2004). 

The ATM protein belongs to phosphatidylinositol-3OH- kinase related 

protein kinase (PIKK) family (Savitsky et al. 1995). All members of the 

PIKK family are large Ser/Thr protein kinases involved in signaling 

following cellular stress. The ATM consensus phosphorylation motif is 

Ser/Thr followed by Glutamine (Kim et al. 1999). PIKK family includes ATR 

(ATM and Rad3 related protein kinase), DNA-PKcs (DNA dependent protein 

kinase catalytic subunit), mTOR (mammalian target of rapamycin) and 

hSMG1. All PIKK members share common domain including N-terminal 

HEAT domain repeats, a FAT domain, a kinase domain and a C-Terminal 

FAT-C domain (Lovejoy and Cortez 2009). (Fig2) 

 

 

 

 

 
 

 

 

 

 

 

 

Fig2. PIKK family members. From Lovejoy and Cortez 2009. The PIKK family members have a C-
Terminal protein kinase domain flanked on either side by an N-Terminal FAT domain and a C-Terminal 
FAT-C domain. N-Termini are composed of HEAT repeats. 
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ATM has a central role in DNA Damage Response (DDR), being ATM in 

particular activated by DNA double strand breaks (DSBs). ATM is recruited 

to DSBs indirectly through binding Mre11-Rad50-Nbs1 (MRN) complex 

(Lavin 2007). Also DNA-PKcs is activated by DSBs and it is recruited to 

DSBs by interacting with the end binding heterodimer Ku70/80 (Smith and 

Jackson 1999). Binding of Ku70/80 to DNA ends provides a scaffold for the 

association of DNA-PKcs and other proteins involved Non-Homologous-

End-Joining (NHER), whereas ATM is involved in DDR resolution mediated 

by Homologous Recombination (Lovejoy and Cortez 2009; Derheimer and 

Kastan 2010). ATR is, instead, recruited to single-strand DNA (ssDNA) 

through its binding partner ATRIP, which indirectly recognizes ssDNA 

through an interaction with the ssDNA binding protein replication protein A 

(RPA) (Cimprich and Cortez 2008; Lovejoy and Cortez 2009). ATM protein 

kinase can be activated by DSBs caused by exposure to ionizing radiations, 

by DSBs as a consequence of T-Cell and B-Cell receptor gene rearrangement 

or by DSBs caused by inhibition of Topoisomerase.  

Whether ATM must be recruited to DSBs to be activated is less clear.  

DSBs induce ATM autophosphorylation on Ser1981 and monomer formation 

(Bakkenist and Kastan 2003). Autophosphorylation at ser1981 is considered a 

sign of ATM activation, including localization to DSBs and activation of 

ATM kinase activity. However, in vitro studies using recombinant proteins 

showed that ATM S1981A mutant binds DNA ends and has kinase activity 

(Lee and Paull 2005). By contrast, in vivo studies have shown that ATM 

localization and stabilization to DSBs in human requires autophosphorylation 

(So et al.; 2007), but ATM knock-out mice complemented with a non-

phosphorylatable ATM version at S1987 (mouse homologue of human ATM 

serine 1981) had normal ATM-dependent phosphorylation of ATM substrates 

after DNA damage and localization of ATM to DSBs (Pellegrini et al 2006). 

This data may suggest that ATM autophosphorylation could be necessary for 

localization to DSBs but could be not essential for other putative DDR-

independent functions that require ATM kinase activity. Recently, it has been 

demonstrated by Guo et al. that ATM was activated by oxidative stress, ATM 

was phosphorylated in S1981 following challenge with H2O2. However 

autophosphorylation of ATM appeared not to be essential for H2O2-mediated 

activation of ATM, because full activity was observed with the Ser
1981

 → 

Ala
1981

 (S1981A) autophosphorylation site mutant, indicating that oxidative 

environment may induce conformational changes in ATM structure able to 

activate ATM in absence of DNA DSBs. (Guo et al., 2010). 

Following DSBs-dependent activation, ATM is also required to stop cell 

cycle progression. For instance, ATM efficiently stabilizes the tumor 

suppressor p53, thus playing a critical role in the G1/S checkpoint (Kastan et 

al 1991). ATM is able to phosphorylate not only p53 but also MDM2 and 

Chk2, proteins that interact with p53. The ATM-dependent induction of p53 

allows the transcription of p53-target genes, in particular the cyclin-

dependent kinase (CDK) inhibitor p21. Induction of p21 gene transcription 

results in a cell cycle arrest in G1/S phase (Kastan and Lim 2000).  
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In contrast, the intra S-phase arrest after IR exposure requires ATM, but not 

p53. The first ATM target in the radiation-induced intra S-phase checkpoint is 

p95/NBS1 (Lim et al. 2000). ATM mediated S-phase arrest is also BRCA1 

(Breast Cancer Associated 1)-dependent. ATM is able to phosphorylate 

BRCA1 on multiple sites, and these different phosphorylation events elicit 

different effects on cell cycle progression. Phosphorylation on ser1387-

BRCA1 is necessary for S-phase arrest following ionizing radiation (Xu et al 

2002), while phosphorylation on ser1423-BRCA1 is necessary for the ATM-

dependent G2/M arrest (Xu et al 2001). ATM- mediated phosphorylation of 

SMC1 and FANCD2 are also shown to be important for IR induced S-phase 

arrest (Taniguchi et al. 2002; Kitagawa et al. 2004). Finally, ATM 

phosphorylates and activates Chk2 kinase on Thr68 leading to Chk2-

dependent phosphorylation and inhibition of Cdc25A. Cdc25A is the 

phosphatase able to activate CycE/Cdk2 complex. Chk2-dependent inhibition 

of Cdc25A results in arrest in S-phase. The Chk2- mediated inhibition of 

Cdc25 family of phosphatases is also important for the activation of G2/M 

arrest, inhibiting CycA-CycB/Cdk1 complex (Lavin 2008). (Fig3) 
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Fig3. DNA damage-dependent functions of ATM. From Lavin 2008. ATM protein has a central role 
in DNA damage repair. DNA DSBs are recognized by the MRN complex. The MRN complex recruits 
and activates ATM. Monomeric and autophosphorylated ATM provides to stop the cell cycle in a p53 -
dependent (G1/S checkpoint) or –independent manner (intra S checkpoint and G2/M checkpoint). 
Moreover, DNA damage activated ATM  activates and regulates the Homologous Recombination 
Repair (HRR) pathway. 
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ATM does not only block the cell cycle in presence of DDR but it is also 

directly involved in the mechanisms of DNA damage repair. It has in fact 

been shown that localization and activation of ATM on the DBSs is MRN 

(Mre11-Rad50-Nbs1)-dependent. MRN complex is the sensor of DNA 

damage. MRN complex is rapidly recruited to the DNA DSBs sites in ATM-

independent manner (Lavin 2007). It was also reported that Mre11 generates 

small DNA fragments that can stimulate ATM kinase activation (Jazayeri et 

al. 2008). 

Following MRN activation, ATM is recruited to the DSBs sites via 

interaction with Nbs1 (Falck J. et al 2005). Moreover, in order to promote a 

positive loop, MRN complex is a substrate for ATM (Kitagawa et al. 2004; 

Lee and Paull 2007). These findings show that MRN complex is necessary for 

full ATM activation and localization. 

After localization to sites of DNA damage, ATM phosphorylates on Ser139 

the histone variant H2AX to produce H2AX (Burma et al 2001). A second 

substrate of ATM, MDC1, is recruited by H2AX via its BRCT domain 

(Breast Cancer Susceptibility protein 1 C-terminal) and has a central role in 

the recognition and repair of DNA DSBs (Stucki and Jackson 2004). The 

adaptor protein MDC1 is, in turn, phosphorylated by ATM (Stucki and 

Jackson 2004). The formation of H2AX and the recruitment of MDC1 on 

DNA damage foci provide a docking station for many components of the 

DNA damage repair, such as the ubiquitin ligases RNF8 and RNF168, 

P53BP, BRCA1, both of which are also phosphorylated by ATM, and the 

recombinase RAD51 (Lavin 2008) for the homologous recombination. (Fig. 

4) 

 

 

Fig4. ATM-dependent DNA damage repair cascade. From Lavin 2008. Monomeric and 
autophosphorylated ATM is recruited on DNA damage foci by the MRN complex. ATM-phosphorylated p53, 
arrests the cell cycle at the G1/S checkpoint. In order to localize and maintain DNA damage repair proteins 

on DNA damage foci, ATM phosphorylates H2AX and MDC1. The formation of H2AX and the recruitment 
of MDC1 on DNA damage foci provide a docking station for ubiquitin ligases RNF8 and RNF168, P53BP, 
BRCA1 and the recombinase RAD51. 
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3.1.3 Known ATM functions do not explain all the A-T 

features 

 

 

A-T syndrome is characterized by a variegated phenotype composed by 

cerebellar atrophy, oculomotor apraxia, telangiectasia, immunodeficiency, 

radiosensitivity, chromosomal instability, cancer predisposition, infertility, 

precocious aging and insulin resistance diabetes. Some of these features are 

easily explained by the known function of ATM protein kinase in DNA 

damage response. In fact, the immunodeficiency can be explained by the 

deficiency in homologous recombination repair system in A-T lymphocytes 

and in generation of non-functional T- or B- cell receptors.  ATM is naturally 

activated by the physiological DNA breaks during the B and T cells 

maturation and differentiation as demonstrated in Atm-deficient mice 

(Lumsden et al. 2004) and in human derived lymphocytes (Bredemeyer et al. 

2006). The ATM function in the safeguard of genome maintenance during 

lymphocytes maturation explains the lymphopenia and the increased 

predisposition to lymphoid malignancies with chromosomal translocation 

involving lymphocyte antigen receptor loci in Ataxia-telangiectasia 

(Bredemeyer et al. 2006).  

DNA damage-dependent functions of ATM can also explain the 

radiosensitivity, the qualitative chromosomal instability (CIN) and the 

presence of chromosomal end-to-end fusions (Pandita et al 1995) found in A-

T patients.  

However, it is not clear how ATM can normally take part in cerebellar 

trophism, in the regulation of ocular veins size (Boder and Sedgwick 1957; 

Boder 1985), in the glucose response (Schalch et al. 1970), in the not-

damaged telomeres maintenance (Wong et al. 2003). 
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3.1.4 Mitosis, Telomeres length control and Glucose 

response: How is ATM involved in these processes? 

 

 

Thus, while immunodeficiency, radiosensitivity and cancer predisposition can 

be easily explained by the difficulty of A-T cells to repair DNA DSBs with 

homologous recombination, it is indeed difficult to understand how 

deficiency in the homologous recombination pathway may affect the insulin-

response, the telomeres shortening and the neuronal viability.  

In Drosophila, ATM homologue is essential for normal development of the 

nervous system. Atm-deficient mutants show extensive apoptosis in neuronal 

tissues and it was associated with frequent mitotic defects and chromosomal 

abnormalities (Silva et al. 2004). Atm-deficient mice display neurobehavioral 

deficits consistent with abnormal cerebellar function and, moreover, a 

dramatic increase of aneuploidy neurons in the frontal cortex (McConnell et 

al. 2004). These observations suggest that ATM loss of function is associated 

with neural genome instability, including aneuploidy, and contribute to 

neurodegeneration not only in Atm
-/- 

mice but also in the human A-T brain. 

Recently, increased aneuploidization of the human cerebellum in A-T has 

been showed (Iourov et al. 2009). Therefore, the global aneuploidization of 

the brain is a newly uncovered genetic phenomenon in A-T syndrome. 

Moreover, evidence shows that ATM deficiency causes aneuplody both in 

vivo and in vitro, affecting tumorigenesis (Shen et al. 2005; Li et al. 2010).  

Thus, ATM loss does not only lead genomic structural alterations such 

translocation, but also to numerical changes in whole chromosomes 

(aneuploidy). Aneuploidy is found in a large majority of tumors (Mertens et 

al. 1994), and this observation prompted Boveri to propose that cancer was 

caused by aneuploidy (Boveri 2008). It is well known that aneuploidy is 

caused by defects in chromosomes segregation during mitosis (Compton 

2010). Aneuploidy arising through chromosome mis-segregation during 

meiosis is also a major cause of infertility and inherited defects (Hassold and 

Hunt 2001). 

How ATM could affect chromosomes segregation is still largely unknown.  

Another A-T feature not yet well understood is precocious aging. A major 

cause of ageing is the telomere erosion and loss of the stem cell 

compartments in the adult. Telomeres are a complex structure involving 

DNA, RNA, and proteins (shelterin complex) that protect the free end of 

chromosome form being recognized by DNA damage repair machinery as 

DSBs. The shelterin complex is composed by several proteins (TIN2, TRF1, 

TRF2, TPP1, POT1 and RAP) and it binds to the telomeric sequence and 

forms a t-loop structure, now know to be essential in the protection of 

telomeres and for their ability to elude the DNA damage sensing machinery 

(de Lange 2005; Palm and de Lange 2008). Among Shelterin components, 

TRF1 mediates telomere replication and TRF2 mediates the telomere 

protection (Broccoli et al. 1997; van Steensel and de Lange, 1997, van 

Steensel et al 1998). TRF1 is a negative regulator of telomere length by 

telomerase. TRF1 has to leave telomeres to allow telomerase to elongate them 



 19 

after each round of chromosome replication. In order to dissociate form 

telomeres, TRF1 has to be Poly(ADP-ribosyl)ated by the PARP enzyme 

Tankyrase1 (Smith et al. 1998). 

The most common observed defects affecting telomeres in humans are 

telomere end-to-end fusions and telomeres shortening, together these 

phenomena impairing cellular and whole organism viability (Metcalfe et al. 

1996; Wong et al. 2003).  

ATM has been shown to play a role in mammalian telomere length 

regulation. Intriguingly, the yeast homolog of Atm, Tel1, that plays only a 

minor role in the DNA damage response, is a key regulator of telomere 

function, controlling the recruitment of telomerase to the telomere. In fact, 

Tel1 mutant strains show telomere hyper-recombination, telomere fusion, 

chromosome loss and progressive telomere shortening (Greenwell et al. 1995; 

DuBois et al. 2002). In mammalians, whereas it is well know the role of ATM 

when telomere shorten (Palm and de Lange 2008), it is still unclear how 

mammalian ATM plays any role in telomerase length maintenance.  Atm
-/- 

mice crossed with mTR
+/-

 or mTR
-/-

 mice (mouse telomerase RNA) show that 

mouse ATM plays an important role in telomere capping but it is dispensable 

for elongation of short telomeres by telomerase (Feldser et al.2006). Data 

obtained in mouse model do not exclude a role for ATM in human telomere 

length control.  In fact, human and mouse telomeres show some differences in 

the control of access of the telomerase to the telomere, for example in the 

Tankyrase1-mediated Poly(ADP-rybosil)ation of the Shelterin subunit TRF1, 

necessary event for access of human telomerase to the telomeres. (Sbodio and 

Chi 2002) 

Another intriguing feature of A-T is the predisposition to insulin resistance 

diabetes (Schlach et al. 1978). Bar et al. 1978 and Yang and Kastan 2000 

shown that ATM was stimulated by insulin signaling and in some cell types 

ATM loss was led an adverse effect on insulin dependent signaling. 

Metabolic syndrome can be caused in part by insulin resistance, contributing 

to the development of atherosclerosis and obesity. The role of ATM in insulin 

signaling suggests the possibility that its dysfunction could contribute to the 

development of metabolic syndrome. In fact, loss of one or both alleles of 

Atm enhances the features of metabolic syndrome in Apo E
-/- 

mice fed on a 

high-fat diet (Schneider et al. 2006). Chloroquine treatment decreases 

atherosclerosis and blood pressure and improved glucose tolerance in an 

ATM-dependent manner in Apo E
-/- 

mice. 

These data suggest a cytoplasmic role for ATM in this process. Indeed, ATM 

is localized not only in the nucleus but also in the cytoplasm, and in both 

peroxisomes and endosomes (Lim et al. 1998; Watters et al. 1999).  
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3.2 AIMS OF THE STUDY 

 

 

Not all A-T features can easily be explained by loss of ATM functions in 

DNA damage repair. Our major research goal is to understand how ATM is 

able to influence cellular processes like chromosome segregation, precocious 

aging, telomeres attrition and insulin-dependent glucose transport. The aim of 

the present study is to contribute to a better understanding of the A-T 

syndrome pathogenesis. 

Thus, the aims of this study are to: 

1- Study the effects of ATM gene expression down-regulation and of 

ATM kinase activity inhibition in mammalian cells. 

2- Analyze novel molecular pathways in which ATM may be involved. 

3- Identify putative new ATM interacting proteins that may explain 

potential DDR-independent ATM functions. 
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3.3 MATERIALS AND METHODS 

 

3.3.1 Cell culture methods  

 

 

HeLa cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) 

with 1000 mg glucose/L, NaHCO3 and pyridoxine-HCl. Human colon cancer 

Hct116 were grown in high glucose DMEM supplemented with Hygromycin 

B 100 g/ml (Sigma Aldrich). Retinal Pigment Epithelium (RPE) hTERT-

immortalized cells were a gift of Dr. Musacchio and were grown in 

DMEM/F12 (Sigma Aldrich). AHH1 human lymphoblastic EBV-transformed 

cells and GM03189 A-T human lymphoblastic EBV-transformed cells were a 

gift of Dr. Soddu and were grown in RPMI (Sigma Aldrich). All medium 

were supplemented with 10% Fetal Bovine Serum (Thermo Scientific 

HyClone), L-Glutamine and 1% Penicillin 10.000U/mL-Streptomycin 

10mg/mL (Sigma Aldrich). 

To induce mitotic arrest, cells were treated with Tymidine (Sigma Aldrich) 4 

mM for 18 h, released by rinsing thoroughly with PBS and incubated in fresh 

medium. After 6 h incubation, cells were blocked again with Tymidine 4 mM 

for 14 h. Cells were washed thoroughly and incubated in fresh medium 

supplemented with Nocodazole (Calbiochem; 100 ng/mL for HeLa, Hct-116 

and RPE; 1μg/, AHH1 and GM03189) for 13 h prior to harvest. For 

Nocodazole release, cells that detached form substrate were recovered by 

shake-off and washed once with phosphate-buffered saline (PBS) and once 

with fresh medium before incubation into fresh medium. For Immuno-

fluorescence experiments, growing cells were plated onto cover-glasses and 

treated with the Cdk1-inhibitor RO-3306 10M (Calbiochem). Short-term 

treatment for up to 20 hrs results in fully reversible G2/M cell cycle arrest. 

Upon RO-3306 wash-out, cells were treated with MG-132 (Calbiochem) for 

2-3 h, cover-glasses were harvested at different time point and processed for 

immuno-fluorescence. For the methaphase-arrest of AHH1 and GM03189, 

cells were first treated with thymidine for 10 hours and then Nocodazole-

arrested. After 12 hours, cells were washed once with phosphate-buffered 

saline (PBS) and once with fresh medium before incubation into fresh 

medium containing MG-132 (Calbiochem) for 2-3 h and were spun onto 

microscope-slides at 1000 rpm for 3 min by cytospin centrifuge (Shandon). 

MG-132 was used at 40 M and, when indicated, Ku55933 (Calbiochem) at 

10 M.  
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3.3.2 Immuno-Fluorescence 

 

 

Cells grown on cover-glass and cells spun onto microscope-slides were fixed 

with 3.7% formaldehyde for 15 min at 4°C and permeabilized with 0.2% 

Triton-X-100 in PBS for 10 min. For -tubulin staining, cells were treated 

with ice-cold 100% methyl-alcohol at -20°C for 20 min. After blocking with 

3% BSA in PBS for 1 hour, samples were incubated with primary antibodies 

in PBS + 1% BSA overnight at 4°C. After 3 PBS washes, samples were 

incubated with secondary antibodies (Jackson Immuno Research 

Laboratories) in PBS + 1% BSA for 1 hour at room temperature. DNA was 

stained by incubation for 10 min with 10 g/mL Hoechst 33258 in PBS. 

Samples were observed using an Axiovert 200M inverted microscope 

equipped with the Apotome slider module (Zeiss) with a 68X objective.  

 

 

3.3.3 Cell-extract 

 

 

Cells were harvested and lysed in PBS 0.2% Nonidet P-40 50% v/v EB buffer 

(b-glycerolphoshate 80 mM, 15 mM MgCl2, 20 mM EGTA pH 7.7), + NaF 

10 mM (Sigma Aldrich), NaPP 2 mM (Sigma Aldrich), 5 μM of the PAR 

glycohydrolase inhibitor ADP-HPD (Calbiochem) and complete protease 

inhibitor cocktail tablet (Roche).  

Lysates were incubated 30 min on ice and then spun two times for 20 min at 

13,000 rpm in a refrigerated microfuge. 

Laemmli sample buffer was added to aliquots of 25 μg (determined by Bio-

Rad protein assay) of supernatant proteins. The samples were boiled for 10 

min and fractionated by 6% (for proteins kDa > 100) SDS/PAGE and 

analysed by immunoblotting. 

 

 

3.3.4  Antibodies and Immuno-precipitation 

 

 

Aliquots of 1 - 1.5 mg of pre-cleared supernatant proteins were incubated 

with anti-pADPr (2 μg/mL; clone 10H, mouse monoclonal antibody, Tulip 

Biolabs), rabbit anti NuMa 1 (2 μg /mL; Novus Biological), rabbit anti-

Tankyrase 1/2 [(H-350); 2 μg/mL; Santa Cruz Biotechnology], mouse anti-

Flag 1 μg/mL (Sigma Aldrich) O.N. at 4°C. Antigen–antibody complexes 

were then bound to Protein G–Sepharose (Santa Cruz Biotechnology) at 4 °C 

with rocking for 1.5 h. Immunoprecipitation of ATM was performed with 

goat anti ATM agarose immobilized (2 μg/mL; Novus Biologicals) with 

rocking at 4°C O.N.. 

Immunoblots were incubated with following primary antibodies: rabbit anti-

Tankyrase 1/2 [(H-350) 1:350; Santa Cruz Biotechnology], rabbit anti NuMA 
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1  [(H-300) 1:350; Santa Cruz Biotechnology], rabbit anti NuMa 1 (1:1500; 

Novus Biologicals), mouse anti ATM (1:1000; Novus Biologicals), rabbit anti 

PAR [poly(ADP-ribose)] (1:2000; BD Bioscience), pS(T)Q ATM/ATR 

substrates ( 1:1000; Cell Signaling), mouse anti Flag (1:1000; Sigma 

Anldrich), Rabbit anti TRF1 (1:1000, Santa Cruz Biotechnology) followed  

by horseradish peroxidase-conjugated donkey anti-rabbit or anti-mouse IgG 

(Amersham; 1:2500). Bound antibody was detected using ECL lumi-light 

Western Blotting Substrate (Roche). 

 

 

 

3.3.5 DNA and siRNA transfection 

 

 

Flag-ATM plasmid was a generous gift of V. Costanzo. Tankyrase cDNA 

was dissected and cloned in M12 N-3XFlag by Genecopoeia. TRF1 ORF 

(Invitrogen) was cloned in Flag pCR 3.1. 

Transfection was performed with FuGENE 6 Transfection Reagent (Roche) 

for 72 h.  

HeLa cells were transfected without (mock) or with siRNA oligonucleotides 

pool (Dharmacon Research Inc.) directed against ATM using Dharmacon 

transfection reagent for 72 h, as described by the manufacturer. 
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3.4 RESULTS AND DISCUSSION 

 

To gain further information on potential DDR-independent functions of 

ATM, we analysed mammalian cells that were either treated with an ATM 

kinase inhibitor (Ku-55933) or with small interfering RNAs (siRNA) to 

knock-down (KD) Atm gene expression in the absence of DNA damage 

stimuli. For ATM kinase inhibitor treatment, HeLa cells were grown on 

cover-slide and then incubated for 24-hours in the presence of 10 M Ku-

55933, a selective and commercially available ATM kinase inhibitor, or 

vehicle (DMSO). After, cells were analyzed by immunofluorescence (IF). 

Cells were, then, stained for the microtubule’s subunit -tubulin, the spindle 

pole marker NuMA1 and DNA. Relatively to the control cells, Ku-55933-

treated cells showed peculiar mitotic abnormalities, like defects in 

chromosome alignment, chromosome scattering, supplementary spindle poles 

and spindle displacement from cell centre (Fig. 5). Indeed, Ku-55933-treated 

cells showed 45% of chromosome alignment defects and 25% of abnormal 

spindle microtubular structures, compared to 8% and 5% of chromosome 

alignment defects and spindle abnormalities, in control cells (Fig. 6A, 6B). 

Similar results (Fig. 7) were obtained by synchronizing cells at the G2 phase 

with the cdk1-inhibitor RO-3306, post DNA replication. After 20-hours of 

RO-3306 treatment, cells were washed and then treated with 40 M of MG-

132, a proteosome inhibitor, a treatment that allows cells to assemble mitotic 

spindles but arrests them in metaphase as cells cannot degrade mitotic cyclin 

B and inactivate the major cyclin-dependent kinase (cdk), cdk 1. Where 

indicated, cells were also treated with Ku-55933 or vehicle. After 2-hours 

treatment, cells were stained for -tubulin, NuMA1 and DNA and analyzed 

by IF. The data (Fig. 7) demonstrated that similar mitotic abnormalities were 

obtained under these conditions, indicating that the mitotic alterations 

induced by ATM inhibition were not due to prior errors in DNA replication 

that might have occurred in the absence of ATM kinase activity. 
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Fig5.  ATM chemical inhibition results in defective chromosome alignment and mitotic spindle 

assembly. HeLa cells grown on cover-slide were treated with DMSO or 10 M Ku-55933 and were stained 

after 24h for NuMA1, -tubulin, and DNA. In the merge, NuMA1 staining is in red, -tubulin in green and the 
DNA in blue. ATM inhibition led to assembly of extra NuMA1 positive spindle poles, indicating that spindle 
poles may be splitting or that new spindle poles may be assembling adjacent to existing ones. 

 

Fig 6.  Quantification of the mitotic defects caused by ATM chemical inhibition. A Growing HeLa cells 

were treated with DMSO or 10 M Ku-55933 for 24h. ATM chemical inhibiton led to 45 % of deranged 
mitosis with respect of 15% of control cells. B Ku-55933 treatment resulted in peculiar mitotic abnormalities, 
like defects in chromosome alignment, chromosome scattering, and spindle displacement from cell centre 
of mitosis in 45% of the mitosis. In the 15% of the abnormal mitosis were observed supplementary spindle 
poles. 
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To confirm with a different methodological approach that the phenotype 

obtained by Ku-55933 treatment was indeed caused by ATM down-

regulation, we knocked-down ATM expression using a specific pool of four 

ATM gene targeting siRNAs. ATM siRNA eliminated 80-90 % of ATM 

protein at day 3 (Fig. 15B). ATM siRNAs-treated HeLa cells were grown 

onto cover-slides and analyzed by IF at day 3 after transfection, staining for 

-tubulin, NuMA1 and DNA (Fig 8). ATM interfered cells showed 38% of 

deranged mitosis with 14% multipolar spindles. By contrast, control siRNAs-

treated cells showed only 10% and 7% of chromosome alignment defects and 

aberrant mitotic figures, respectively (Fig9).  

 

 

 

Fig 7.  Quantification of the mitotic defects obtained by ATM chemical inhibition in RO-3306 

synchronized cells. A and B HeLa cells were synchronized in G2/M with 9 M RO-3306 and then treated 

with DMSO or 10 M Ku-55933 in fresh medium containing 40 M MG-132. ATM-inhibition led to 45% of 
abnormal mitosis. In 15% of abnormal mitosis were observed multipolar spindles. 
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Fig 8.  ATM is required for bipolar spindle assembly and chromosome alignment on metaphase 
plate. HeLa cells transfected with control small interfering RNA (siRNA) or ATM siRNA were grown on 

cover slides. At day 2 after transfection, cell were treated with 9 M RO-3306 for 24-hours. At day 3, cells 

were released from RO-3306 and treated with 40 M MG-132. Cells were then stained for NuMA1, -

tubulin and DNA. In the merge, NuMA1 staining is shown in red, -tubulin in green and DNA in blue. ATM 
knock-down resulted in multipolar spindle assembly or caused evident defects in chromosome alignment.  

 

 

 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.  siRNA-induced ATM down-regulation increases the frequency of mitotic defects. A  and B 

HeLa cells were synchronized in G2/M with 9 M RO-3306 and then treated with DMSO or 10 M Ku-

55933 in fresh medium containing 40 M MG-132.  
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ATM-depleted cells often contained extra spindle poles. In order to probe the 

structure of these poles, we stained Ku-55933-treated and ATM-silenced 

cells, and the respective controls, for the spindle pole protein NuMA1 and for 

the microtubule-nucleating protein -tubulin, which is localized at 

centrosomes. Spindles in DMSO and in control siRNA-treated cells were in 

-tubulin at each pole and both 

poles being positive for NuMA1. 90% of multipolar spindles found in control 

cells showed multiple centrosomes, only 10% of the multipolar spindles had 

-tubulin (Fig. 10-11-12). By 

contrast, ATM down-regulation by Ku-55933 or ATM siRNA resulted in 

five-fold increase of multipolar spindles in which the extra poles were 

-tubulin. 

These data indicate that ATM down-regulation also favours centrosome-

independent spindle pole assembly.  

 

 

 

 

 

 

 

 

 

Fig 10.  ATM chemical inhibition results in centrosome-independent spindle-pole assembly. HeLa 

cells grown on cover-slide were synchronized in G2/M with 9 M RO-3306. After 20 hours, cells were 

released in the fresh medium containing 40 M MG-132 in presence of DMSO or 10 M Ku-55933. After 2 

hours, cells were stained for the centrosome marker tubulin, for the spindle-pole protein NuMA1 and the 

DNA. In the merge, NuMA staining is shown in red, tubulin in green and the DNA in blue. ATM inhibition 
resulted in assembly of exogenous spindle poles, positive for the NuMA1 staining but negative for the 

centrosomal protein tubulin. 
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Fig 11.  ATM knock-down results in centrosome-independent spindle pole assembly. Control siRNA 

and ATM siRNA HeLa cells grown on cover-slide were synchronized in 9 M RO-3306. After RO-3306 

wash out, cells were arrested for 2-hours in metaphase with 40 M MG-132 and processed for IF. Staining 

for tubulin (red), NuMA1 (green) and DNA (blue) showed that ATM knock-down by siRNA increased the 

frequency of tubulin negative, NuMA1-positive multipolar spindles. 
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Nevertheless, upon longer incubation in MG-132, most of the ATM down-

regulated cells finally reached a bipolar configuration. Indeed, we observed 

-NuMA1 positive poles clustered with the 

-NuMA1 positive poles forming a pseudo-bipolar spindle. 

The clustering of multipolar spindles into pseudo-bipolar spindles has been 

shown to increase the frequency in merotelic attachment and ultimately led to 

an increase in lagging chromosome in anaphase (Ganem et al, 2009). Indeed, 

we found that anaphases in Ku-55933- and ATM siRNA-treated cells showed 

higher frequency of lagging chromosomes compared to the control cells, 26% 

vs. 5%, respectively. (Fig13).  

 

 

Fig. 12.  ATM knock-down increases the frequency of tubulin-negative extra-poles. DMSO or Ku 

55933-treated (A) and control or ATM siRNA (B) HeLa cells were synchronized in 9 M RO-3306. After RO-

3306 wash out, cells were arrested for 2-hours in metaphase with 40 M MG-132 and stained for -tubulin 
and NuMA1. 60-80 cells for each cell population were scored. In control cells, 90% of the spindles were 

bipolar; only 10% were multipolar. Among the multipolar 95% were positive for -tubulin, suggesting 
centrosome amplification or splitting. By contrast the Ku-55933-treated cells and the ATM knocked down 

cells showed not only an increase in tubulin-positive multiple spindle poles but also a dramatic increase in 

the percentage of NuMA1-positive, -tubulin-negative ones. 
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We performed same experiment in the non-transformed, chromosomally-

stable, human cell line derived from retinal pigment epithelial cells 

immortalized with telomerase (hTERT-RPE1). Cells were grown on cover-

slide and treated, after RO-3306 synchronization, with or without Ku-55933 

in presence of MG-132. Ku-55933 treatment of hTERT-RPE cells led to a 

15% of chromosomal alignment defects and to a 50% of spindles that were 

displaced from the cell centre (in 93% of deranged mitosis), indicating 

defects in the regulation of astral-microtubules attachment to the cell cortex, a 

fundamental interaction in the control of spindle orientation (Fig. 14; 

Radulescu et al. 2010). 

 

 

Fig. 13.  ATM down-regulation induces assembly of pseudo-bipolar spindles by acentrosomal 
spindle-pole coalescence and increased frequency of lagging chromosomes in anaphase. A HeLa 

cells were synchronized with 9 M RO-3309. After 20-hours of treatment, cells were released from RO-

3306 and incubated with MG-132 in presence or absence of 10 M Ku-55933 for 4-hours. Cells were 

stained for NuMA1, -tubulin and DNA. In the merge, NuMA1 is shown in red, -tubulin in green and the 

DNA in blue. B Cells were treated as in A and stained for -tubulin and DNA. In the merge, -tubulin is 
shown in green and the DNA in blue. C, Quantification of anaphases characterized by lagging chromosome 
visualized in 60-80 cells treated and stained as in B. 
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These data suggest that ATM may be involved in several processes that 

control spindle assembly: 1. regulation of spindle poles focusing at 

centrosomes; 2. maintenance of clustered extra-centrosomes at one pole in 

cells with extra centrosomes (Ganem et al, 2009); 3. interaction of astral 

microtubules with the plasma-membrane at the cell cortex. All these cellular 

processes have been described to involve the protein NuMA1 (Quintyne et al. 

2005; Radulescu and Cleveland, 2010).  

The phenotype obtained by ATM expression silencing and by ATM kinase 

chemical inhibition resembled the phenotypes described by Tankyrase-1 gene 

silencing (Chang et al., 2005). Tankyrase-1 is a poly(ADP-ribose) polymerase 

(PARP), also called PARP-5, able to use NAD
+
 as substrate to generate ADP-

ribose polymers onto glutamic acid residues of protein acceptors. The result is 

a post-translational modification that can drastically alter the properties of the 

acceptor proteins. Indeed, Tankyrase-1 has been shown to be able to interact 

with and poly(ADP-ribose)ylate NuMA1, and also TRF1 and IRAP (Insulin-

Responsive Aminopeptidase) (Sbodio and Chi, 2002). In addition, Tankyrase-

1 co-immunoprecipitates with NuMA1 (Nuclear Mitotic Apparatus Protein-1) 

and regulates the PARylation of major mitotically PARylated proteins (Chang 

W. et al., 2005). NuMA1 is a large nuclear protein component of the nuclear 

Fig 14.  ATM down-regulation results in defective chromosome alignment and in displacement from 
the cell center in RPE-hTERT cell line. RPE-hTERT cells were plated on cover-slide 24-hours before RO-

3306 treatment. After 20 –hours treatment with 9 M RO-3306, cells were released in a fresh medium 

containing 40 M MG-132 in presence or in absence of 10 M Ku-55933. After 2-hours treatment, cells 

were stained for NuMA1, -tubulin and the DNA and were analysed by IF. In the merge, NuMA1 staining is 

shown in red, -tubulin in green and the DNA in blue). ATM down-regulation caused defective chromosome 
alignment on the metaphase plate and spindle displacement from the cell centre but not significant increase 
in multipolar spindles.     
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matrix in interphase, that moves to the spindle pole, after the nuclear 

envelope breaks down, in mitosis via its ability to interact with dynein and 

microtubules. In mitosis, NuMA1 is responsible for tethering microtubule 

minus-ends at the spindle pole via its microtubule-binding sites. NuMA1 has 

also a central role in asymmetric cell division, a relevant mechanism to the 

determination of cell fate during development and to the specification of stem 

cell self-renewal versus differentiation. Indeed, a subset of NuMA1 molecules 

is preferentially recruited to one part of the cell cortex where it mediates 

Fuchs, 2005; Radulescu and Cleveland, 2010). Moreover, it has been showed 

that NuMA1 hyper-expression, observed in many tumour cells, led to 

abnormal mitosis and centrosome amplification. A role for NuMA1 has also 

been suggested in the clustering of extra-centrosome to form pseudo-bipolar 

spindles (Quintyne et al. 2005). 

In order to meet its mitotic functions, NuMA1 has to be PARylated in a 

tankyrase-1-dependent manner. Indeed, tankyrase-1 gene silencing resulted in 

pre-anaphase arrest, chromosome misalignment, centrosome-independent 

spindle pole assembly and displacement of the spindle from the cell centre 

(Chang P. et al. 2005).  

In order to determine whether the phenotype caused by ATM down-

regulation were due to impaired poly(ADP-rybosil)ation of NuMA1, 

PARylated proteins were immunoprecipitated from nocodazole arrested HeLa 

cells that were further incubated for 1-hour treatment in the absence or 

presence of the ATM inhibitor Ku-55933 (Fig. 15A).  Western blot showed 

that NuMA1 co-immunoprecipitated with PAR proteins in nocodazole 

arrested cells, however, ATM kinase inhibition dramatically reduced the 

NuMA1 PARylation. Moreover, Tankyrase-1 was auto-PARylated in 

nocodazole-treated HeLa cells while ATM inhibition led to a reduced gel 

mobility of Tankyrase-1 and a small reduction in PARylated Tankyrase-1. 

NuMA1 PARylation was also drastically reduced in ATM interfered HeLa 

cells with respect to the control interfered cells (Fig15C). Tankyrase-1 auto-

PARylation was also only slightly reduced ATM siRNA transfected cells 

(Fig15C).  
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To understand how ATM could affect the PARylation of NuMA1, we asked 

whether ATM and Tankyrase-1 physically interacted with each other. We 

probed ATM immunoprecipitates with an anti-tankyrase-1 antibody and 

viceversa from asynchronous and nocodazole-arrested cells. Immunoblots 

demonstrated that the Tankyrase-1 signal was readily detectable in ATM 

immunoprecipitates and viceversa both in interphase and in mitosis (Fig 

16A). The interaction was also confirmed in HCT-116 and in RPE-hTERT 

(Fig16 B, C, D).  

 

 

 

Fig 15. ATM down-regulation results a dramatic reduction of NuMA1 PARylation. A Nocodazole 

arrested HeLa cells were treated or not for 1-hour with 10  -55933. Cells were harvested and PAR 
proteins were immunoprecipitated. NuMA1 and Tankyrase-1 were detected by western blot. B The 
efficiency of ATM knock-down. Control siRNA and ATM siRNA transfected HeLa cells were arrested in 
Nocodazole and harvested at day 3 after transfection. Western blot for ATM was performed C Mock-
transfected cells and ATM depleted cells were synchronized with Nocodazole. At day 3 after transfection, 
cells were harvested and lysed. PAR proteins were immunopreciptated. Total extracts and 
Immunoprecipitation’s samples were analysed by western blot for NuMA1 and Tankyrase-1 
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Both ATM and Tankyrase-1 have been described to interact with TRF1 in 

human cells (Kishi et al. 2001; Sbodio and Chi, 2002). By contrast mouse 

TRF1 lacks the Tankyrase-1 binding domain and is not able to interact with 

Tankyrase-1 (Sbodio and Chi, 2002). To investigate if the interaction between 

ATM and tankyrase-1 was mediated by TRF, ATM was immunoprecipitated 

from mouse NIH-3T3 cells, western blot demonstrated that the interaction 

between ATM and Tankyrase-1 was conserved in mouse, demonstrating that 

the interaction was TRF1-independent (Fig17).  

 

 

 

 

Fig 16. ATM interacts with Tankyrase-1 in different human cell lines. A ATM and Tankyrase-1 were 
immunoprecipitated from Nocodazole arrested and from asynchronous HeLa cells. B At day 3 after 
transfection, ATM was immunoprecipitated from control cells and from ATM-depleted cells. Western blot for 
ATM and Tankyrase-1 confirmed the specificity of the antibody. C and D ATM was immunoprecipitated 
from Nocodazole arrested and from asynchronous RPE-hTERT (C) and from HCT-116 cells (D). Western 
blot for Tankyrase-1 confirmed the interaction between ATM and Tankyrase-1. 
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To better analyze the physical interaction between ATM and tankyrase-1, 

tankyrase-1 deletion constructs, fused to the 3XFlag epitope, were generated 

and transfected in HeLa cells. The first construct encodes a Tankyrase-1 

version (3F-T1) that lacks the N-terminal HPS (Homopolymeric region 

domain reach in Histidine, Proline and Serine), the second encodes a 

tankyrase-1 version (3F-T2) that lacks the C-terminal SAM domain and 

PARP catalytic domain; both 3F-T1 and 3F-T2 conserved the Ankyrin 

domain. 3F-T1 and 3F-T2 expressed differentially in transfected HeLa cells 

(Fig18A). Co-immunoprecipitation experiments demonstrated that ATM was 

able to interact with both 3F-T1 and 3F-T2 according to the different genes 

expression levels (Fig. 18 B, C). Since the common part of the two versions is 

the central repetitions of ankyrin domain, we conclude that ATM interacts 

with tankyrase-1 via the tankyrase-1 ankyrin domains. 

 

Fig 17. The interaction between ATM and Tankyrase-1 is TRF1-independent. ATM was 
immunoprecipitated from asynchronous and from Nocodazole arrested NIH3T3 cells. ATM was 
immunoprecipitated and then fractionated by SDS-PAGE. Tankyrase-1 detection by western-blot confirmed 
the interaction between ATM and Tankyrase-1 in mouse and indicated that the interaction was TRF1-
independent. 
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We asked whether ATM inhibition affected Tankyrase-1-dependent 

PARylation of NuMA1 by interfering with the ATM-tankyrase complex 

formation. However, ATM chemical inhibition did not appear to impair the 

binding between ATM and Tankyrase-1 (Fig. 19A). Moreover, we found that 

ATM was able also to interact with NuMA1 (Fig. 19A).  

NuMA1 was, nevertheless, dispensable for the interaction between ATM and 

Tankyrase-1 (Fig. 20B). Indeed ATM-tankyrase-1 binding was detected both 

in interphase and in mitosis, while NuMA1, a tightly nuclear protein during 

interphase that becomes cytosolic soluble after nuclear envelope breakdown, 

was not well recovered in our cytosolic lysates from interphase cells (Fig. 

19B).  

Nevertheless, we found that NuMA was phosphorylated at S(T)/Q sites in 

nocodazole-arrested cells while, moreover, ATM down-regulation led to a 

significant reduction in NuMA1 phosphorylation at S(T)/Q sites. Thus, 

NuMA1 was phosphorylated in mitosis in ATM-dependent manner (Fig. 

19C). Our findings may suggest that tankyrase-dependent NuMA PARylation 

may require ATM-dependent phosphorylation of NuMA.  

Fig 18. The Tankyrase-1 ANK domain is essential for the interaction between ATM and Tankyrase-1. 
A two constructs of Tankyrase-1 were generated, both fused with FLAG. B Western blot for FLAG showed 
that the two constructs expressed differently in HeLa cells. C ATM was immunoprecipitated from 3F-T1, 
from 3F-T2 and from mock transfected HeLa cells. Tankyrase-1 western blot demonstrated that ATM 
interacted with endogenous Tankyrase-1 and both exogenous Tankyrase-1, according with expression 
level.  
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Finally, our findings were confirmed by experiments performed in lymphoid 

cells derived from an A-T patient (GM03189 cell line). PAR proteins were 

immunoprecipitated from mitotic GM03189 lymphoid cells and control 

AHH1 lymphoid cells. While NuMA1 was readily detectable in PARylated 

protein immunoprecipitates from control mitotic cells, it could not be detected 

in immunoprecipitates from mitotic A-T GM03189 cells (Fig. 20). These data 

demonstrate that Tankyrase-1 dependent Poly(ADP-ribosyl)ation of NuMA1 

protein is significantly depressed in cells of A-T patients.  

Fig 19. ATM kinase is not required for complex maintenance but it is required for NuMA1 
phosphorylation. A ATM was immunoprecipitated from Nocodazole arrested cells treated 1-hour with or 

without 10 M Ku-55933. Western blots for Tankyrase-1, NuMA1 and ATM were performed. B ATM-
immunoprecipitation was performed from Asynchronous and Nocodazole arrested HeLa cells. Western blot 
for NuMA1 and Tankyrase-1 showed the mitotic interaction between NuMA, Tankyrase-1 and ATM C 
NuMA1 was immunoprecipitated from Nocodazole arrested HeLa cells, treated or not 1-hour with Ku-
55933. Western blot for P-ATM/ATR substrates showed that NuMA was phosphorylated in mitosis in ATM-
dependent manner.  
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Fig 20.  NuMA1 is not PARylated in lymphoblastic A-T cells. Control AHH1 and GM03189 A-T cells 
were first synchronized for 20-hours with 3 mM thymidine and then treated with 80 ng/mL Nocodazole for 
11-hours. After Nocodazole treatment, cells were harvested and IP PAR was performed from lysates 
obtained from mitotic AHH1 and GM03189. Short and Long exposures of western blot for NuMA 
demonstrated that NuMA was not PARylated in GM03189 A-T cells. 
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3.5 CONCLUSIONS 

 

Collectively, our data support a model in which ATM is not only required for 

DDR but also it is involved in other cellular processes impaired in A-T cells. 

We focused our studies on the causes of whole chromosome aneuploidy 

found in A-T cells and tissues (Shen et al. 2005; Iourov et al. 2009; Li et al. 

2010). We found that ATM inhibition by chemical inhibition and siRNA led 

to the delayed and abnormal mitosis in human cancer cell lines and in human 

non-tumoral cell lines. Indeed, we found that ATM down-regulation resulted 

in increased defects in chromosome alignment, multipolar spindles and 

spindle displacement form cells center. The increase in multipolar spindles 

was found principally in tumor cells. In particular, ATM down-regulation led 

to an increase in centrosome-independent spindle pole assembly. Moreover, 

splitting of clustered-centrosomes was also found. In non-tumoral cells, ATM 

down-regulation resulted in defects in chromosome alignment and, 

principally, spindle displacement form cell center. This data suggest that 

ATM may be also involved in regulation of spindle orientation. All features 

obtained by ATM down-regulation resembled the phenotype obtained by 

Tankyrase-1 gene knock-down (Chang P. et al. 2005). Indeed, we found that 

ATM interacted with the PARP Tankyrase-1 in TRF1-indepenent manner and 

that ATM down-regulation impaired significantly the Poly(ADP-rybosil)ation 

of NuMA1, the principal mitotic substrate of Tankyrase-1. We showed that 

ATM interacted with Tankyrase-1 during every phase of cell-cycle; however, 

during mitosis ATM interacted also with NuMA1 and regulated the 

Tankyrase-1-dependent PARylation, perhaps through ATM-dependent 

phosphorylation of NuMa1.  

Tankyrase-1 has been shown to be required for insulin-stimulated 

translocation of the glucore transporter Glut-4 into the plasmamembrane (Yeh 

et al., 2007). It has also been shown that tankyrase-1 interacts with the 

Telomere Repeat binding Factor-1 (TRF1) and the Tankyrase-1-dependent 

poly(ADP-ribosyl)ation (PARylation) of TRF1 is required to promote 

Shelterin complex disassembly to allow telomerase-dependent telomere 

elongation in human cells (Smith S. and de Lange, 2000). 

Our data suggest that ATM may be involved in key cellular processes like 

regulation of mitotic spindle assembly, telomere-length regulation and 

insulin-response via its interaction with tankyrase-1 and regulation of 

tankyrase-1-dependent protein PARylation. These findings provide a 

mechanistic explanation for several A-T syndrome features. ATM is also a 

gene mutated in many human cancers, and Atm heterozygous carries show an 

increased susceptibility to develop breast cancer (Walsh and King 2007; 

Campeau et al. 2008). We believe that our findings may help to uncover new 

biochemical markers to identify Atm carriers with increased cancer 

susceptibility and shed light on new therapeutic approaches for the A-T 

syndrome. 
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