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Introduction

In recent decades there has been an enormous growth of interest in the notion

of social network and the methods of Social Network Analysis (SNA). Traditionally

social network theory has been based on the social relations in order to understand

the formation of social structures by the collection of simple rules operating on local

relations. Social network perspectives provide a natural approach for the study of social,

political and economic interaction structures and give formal definitions for answering

standard social and behavioral science research questions.

The methodology developed in the field of network analysis has been categorized

into descriptive methods and statistical methods. Descriptive techniques for network

analysis drew inspiration from mathematical graph theory, using tools from linear

algebra and focusing on issues of clustering and connectivity. This approach has

become the heart of the field, providing a wide range of summary measures (paths,

cycles, density, centrality, structural equivalence) to represent both the network position

occupied by specific nodes, and the overall network structure. These techniques serve

valuable purposes in describing and understanding network features that might bear

on particular research questions. Because of the lack of adequate computing and

statistical tools the statistical methods for estimation from samples, and quantifying the

uncertainty in the estimates have been addressed in a limited way in this descriptive

context.

Since applying descriptive or deterministic approaches do not require distributional

assumptions about particular structural properties, if we decide to understand the

uncertainty associated with observed outcomes, it is necessary to associate model-based
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statistical methods which complement analyses based on descriptive techniques. In

contrast to a descriptive approach, statistical techniques make the stochastic assumptions

about actor behaviour and assume the existence of some probabilistic mechanism that

describes the observed network. The statistical methods may be organized into two

parts; the first group consists of dyadic and triadic methods which represent statistical

models for subgraphs and the second group of statistical models for entire graphs and

digraphs.

There are two important aspects of the statistical modeling of social networks:

• (1) the first one focuses on the process that gives rise to the formation of network

ties among nodes in the population, and investigates the impact of local interactive

processes on the global network structure,

• (2) the second one deals with the question how to infer the underlying pro-

cess from the observed patterns and it requires statistical methods for sampling,

estimation and inference.

Robins et al. [84] presented some important reasons for applying statistical models

to analyze social networks. Stochastic models give the possibility to understand the

complexity of social behavior and to investigate questions on how the global features

observed in a network may be explained by a low number of local rules. The purpose of

statistical models is the quantitative examination of the stochastic properties of social

relations and the actors of a particular network. The assumption we made for the

use of statistical models for networks is that the network is a self-organizing system

of relational ties which means that dyadic relations are generated by the local social

processes which depend on the existing relations. Since in network analysis, indepen-

dence is not something one would want to assume and understanding the dependence

among observations is actually the primary task, we need an appropriate model to

enable us to describe the process and the dependencies in it. A well-specified model

captures the regularities in the processes giving rise to network ties and at the same time

recognizes the variability that we are unlikely to be able to model in detail. Since the

deterministic approaches for analyzing single binary networks are not often appropriate

for more complicated data, a properly formulated model is useful to obtain an efficient
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representation of the complex network data. It gives the possibility to understand the

significance of various kinds of local processes and then to reproduce the observed

network at the global level.

Statistical models also allow inferences about whether certain network substructures are

more commonly observed in the network than might be expected. Then, it is possible

to develop hypotheses about the social processes that might produce these structural

properties. Statistical modeling makes it possible to evaluate the differences in similar

qualitative predictions and to understand by which different social processes they are

made. Their utility is also recognized for examining more complex aspects such as

longitudinal network [94] or multiple network structures [76].

As mentioned above (in point 2) it is very important to have an adequate method of

estimation that works with dependent observations. Fortunately, the current theoretical

developments, advances in statistical computing, and innovations in data collection

give the possibility to make progress in model-based statistical methods for network

analysis. For instance, the statistical methods that rely on resampling (i.e. the bootstrap,

jackknife, and permutation tests) have been readily adopted by network analysits for

tests like quadratic assignment procedures for sociomatrix regression. Development of

Markov Chain Monte Carlo algorithms provided a very useful tool for solving complex

estimation problems. and gave the possibility for advancement in the model-based

framework for social network analysis.

In this work we pay attention to the Exponential Random Graph Models (ERGMs),

the statistical models which provide a general framework for modeling dependent data

where the dependence can be thought of as a neighborhood effect. The models can be

used to decompose overall network structural properties into the effects of localized

interaction rules: the traditional concern of the field of social network analysis. Here we

concentrate on the modeling of a single binary social network but this class of models

finds applications also in various more complex forms of relational data. Until recently,

inference for ERGMs has been almost exclusively based on an alternative local approx-

imation to the likelihood function referred to as the pseudo-likelihood [102] due to the

dependence of the normalizing constant on the unknown parameter. The computational
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tractability of the pseudo-likelihood function makes it an attractive alternative to the

full likelihood function. Since this approach assumes conditional independence of the

random variables representing the relational ties, it gives reasonable results only for

dyadic independence models. In this case the Maximum Pseudo-Likelihood (MPLE)

estimators correspond to the exact solution and the true maximum likelihood estimator

may be found via an MPLE computation. For dyadic dependence models statistical

properties for MPLE estimators are not well understood and in practice MPLE does

not provide a good performance [104]. Currently the favored methods for statistical

inference are stochastic procedures based on Markov Chain Monte Carlo (MCMC) such

as the Netwon-Raphosn algorithm [27], an MCMC implementation of the Robbins-

Monro algorithm [94], [95], an alternative steplength algorithm [53] was introduced

recently.

The development of Monte Carlo estimation methods for ERGMs has allowed us to un-

derstand better model behavior, especially model degeneracy and stability ( [33], [34]),

two properties of random graph models that have an important consequence on the use

of these models. Many of the model proposed in literature suffer from degeneracy but

the problem of degeneracy and poor fitting can be resolved by using recently developed

statistics which are able to capture high-order dependency structure in networks ( [99],

[56], [87]).

The present manuscript is based on two main motivations. Firstly, we are interested

to examine model diagnostics and check for degeneracy of ERGMs using different

methods and functions proposed in the literature and available in statnet for R, which is

an integrated set of software tools for the representation, visualization, simulation and

analysis of network data. Taking into account the stochastic nature of the estimation

algorithm Newton-Raphson, we would like to evaluate whether the results of degeneracy

diagnostics tools are also different for runs with different seed. Secondly, we aim to

evaluate and compare results obtained for networks of various sizes from three different

estimation procedures such as Newton-Raphson, Robbins-Monro and Stepping.
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The present work is divided into four chapters. In particular in Chapter 1, we

will start with the introduction of the fundamentals of how networks are represented,

measured, and characterized. Then we will present the history of statistical models for

social network and provide concepts and definitions that are the basis for the statistical

modeling language of network research.

Chapter 2 is devoted to define the Exponential Random Graph Model. It begins with

the concept of dependence graphs to underline their importance in defining different

classes of ERGMs, to be followed by the explanation of how the ERGMs can be viewed

as an autologistic regression model. It will conclude with a presentation of different

classes of ERGMs (Bernoulli model, p1 model, Markov model and more recent models)

and their importance in describing social phenomena.

Indeed, in Chapter 3, we focus the attention on the various concepts with regard

to the estimation and interpretation of model parameters. This chapter contains the

fundamental issues such as different estimation methods, simulation networks using

MCMC algorithms and problem of degeneracy. These concepts are important to the

issues addressed and discussed in the next chapter.

Finally, the goal of Chapter 4 is to illustrate the contributions of the research. In

particular, the first contribution is based on the definition of the strategy for evaluation

of the degeneracy diagnostic tools in the class of models ERGM. Considering the

stochastic nature of the Newton-Raphson algorithm we are interested in examining

whether for different runs of the same model the results of the diagnostic tools for

degeneracy are different and whether this depends on the size of the network.

The second contribution is based on the comparison of the accuracy and precision of

three approximation techniques, such as the Newton-Raphson, the Robbins-Monro, and

the Stepping procedure used in the estimation of parameters for networks of different

sizes.





CHAPTER 1

Elements of Theory of Social Network
Analysis

The purpose of this chapter is to present definitions and notations necessary for

applying statistical models for relational data discussed in the next chapters. Firstly,

we present a brief history of evolution of statistical modeling for social network. After

we will introduce some definitions and concepts fundamental for modeling approach.

Then we will conclude with a general framework for exponential random graph model

construction.

1.1 A brief history of statistical models for SNA

Statistical methods for social networks have been developed over a period of sev-

enty years. Beginning in the late 1930’s, the first generation of research dealt with the

distributions of various network statistics, under a variety of null models. The work

of Moreno and Jennings [68] presents one of the first statistical analysis of social net-

work. They obtained the first simulation of a random digraph distribution by randomly

assigning choices to individual actors. An important study about random directed graph

distribution was obtained by Katz and Powell [62] who also introduced an index for

mutuality [61].

The second generation, beginning in the 1970’s and continuing into the 1980’s



8 ELEMENTS OF THEORY OF SOCIAL NETWORK ANALYSIS

concerned models usually for probabilities of relational ties among very small subsets

of actors, in which various simple substantive tendencies were parameterized. During

that period Holland and Leinhardt presented empirical verification of probabilistic

versions of deterministic network structural theories, which use graph theory to make

predictions about network theory [43] [44]. In the mid 1970’s the interest grew in

the triadic analyses designed to study structural balance and transitivity theory. The re-

search of Holland, Leinhardt and Davis was the first social network methodology to use

sophisticated statistical models. These authors provided strong statistical evidence that

transitivity is a very important structural tendency in social network [45]. Davis [15]

showed that a basic feature of many social networks is the tendency toward transitivity

(“friends of my friends are my friends”). Holland and Leinhardt in [46], [50], [51]

and Johnsen in [59] [60]) showed that transitivity is one of many “null hypotheses”

that can be tested by examining triads and the triples that they contain.

Holland and Leinhardt [47], [48] proposed a class of stochastic process models that

could serve as the basis for extending a family of parametric probability models to

time series data, later developed by Wasserman [106], [107] and Galaskiewicz and

Wasserman [25]. Fienberg and Wasserman [19], [20] considered probability models

for covariates and multiple relational data. Warner et al. [105] and Kenny and Nasby

[63] used analysis of variance models to study networks with valued relations.

The third generation began with Exponential Random Graph Models (ERGMs),

commonly called the p* class of models, introduced by Frank and Strauss [23] who

viewed it as a generalization of model p1 introduced by Holland and Leinhardt [52] and

all its relatives; but first of all, they gave importance to the Markov model. Wasserman

and Pattison [109] and Pattison and Wasserman [76] further extended this class of

models, describing them as p* models. They showed how a Markov parametric assump-

tion provides just one of many possible sets of parameters. Most initial investigations

focused on undirected and directed single, dichotomous relations. Generalizations of

p* models to valued relations, and to more than one relation were proposed by Frank

and Strauss [23], Robins et al. [86], Wasserman and Pattison [76] and Koehly and

Pattison [64]. For this class of models Straus and Ikeda [102] developed an estimation
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technique based on a local approximation to the likelihood function referred to as the

pseudo-likelihood whose computational tractability makes it an attractive alternative to

the full likelihood function. Recently van Duijn et al. [104] demonstrated that for some

kinds of models statistical properties for MPLE estimators are not well understood and

in practice MPLE does not provide a good performance. Currently the favored methods

for statistical inference are Markov Chain Monte Carlo (MCMC) Maximum Likelihood

Estimate (MLE) [27] and an MCMC implementation of the stochastic approximation

Robbins-Monro algorithm [94] [95], both of which rely on the properties of the method

of moments for exponential family distributions. There has been proposed by Hummel

et al. [53] an alternative method, a partial stepping algorithm which give the possibility

to find an approximate MLE in many cases where this was previously not possible.

There has been proposed also an Bayesian approach for inference in ERGMs [9] which

is an alternative to the classical inferential methods and it allows uncertainty about

model parameters given the data to be explored through a posterior distribution. The

introduction of recently developed statistics [99] and the implementation of curved

exponential random graph models by Hunter and Handcock [56], [56] provide a

very effective solution at overcoming the problems of degeneracy. Hoff et al. [42],

assuming a unknown position for each node of the graph in a latent space and the

probability of the edges as functions of those positions and node covariates, proposed

the latent variable models. The further extension of these new modelling alternatives is

the latent position cluster model of Handcock et al. [38] takes account of clustering.

Nowicki and Snijders [73] proposed stochastic blockmodel methods involving block

model structures whereby nodes of the graph are partitioned into latent classes and

their relationship depends on block membership. More recently, Airoldi et al. [1] has

developed the mixed membership approach extending the assumption of a single block

membership.

A very important part of statistical modeling for social networks are statistical

methods for longitudinal network data. Statistical studies of network evolution are

especially important for obtaining insight into social networks but only just beginning

to be developed. A natural starting point for modeling longitudinal network data are
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continuous-time Markov chains proposed by Holland and Leinhardt [48]. They defined

on the space of all digraphs with a given node set, for modeling social network dynamics

even if the observations are made at a few discrete time points and not continuously. The

dyad-independent models were elaborated by Wasserman [106] [107] and Leenders

[67]. Their assupmtions that the ties between pairs of actors (dyads) develop according

to processes that are mutually independent between dyads is not realistic for social

processes, because dependence between the set of ties among three or more actors can

be very strong. Models which do allow such higher-order dependencies and represent

a variety of network effects are so-called actor-oriented models proposed by Snijders

and van Duijn [96] and Snijders [94]. This class of models is based on a model of

actors changing their outgoing ties as a consequence of stochastic optimization of an

objective function. The actor-oriented models are too complicated for the calculation of

likelihoods or estimators in closed form. The fact thet these models represent stochas-

tic processes which can be easily simulated was exploited by the estimation method

based on a Method of Moments (MoM) estimator implemented algorithmically by

stochastic approximation [80]. Recently it has been proposed an MCMC algorithm for

approximating the ML estimator for Social Network Dynamics [65] [98].

1.2 Representing Networks

Networks are a form of “relational data”, data whose properties cannot be reduced

to the attributes of the individuals (nodes) involved. The objects of analysis are the

relations. In typical applications, the nodes in a network represent individuals, and

the links (ties or edges) represent a specific relationship among individuals. Nodes

can represent larger social units (groups, families, organizations), objects (physical

resources, servers), abstract entities (concepts, texts, random variables). Relational

data finds applications in social networks (friendship networks, co-authorship networks

of scientists), the internet (the world-wide web) [8], transportation networks and

biological networks [58].

A social network consists of a set of n social actors which interact with each other in
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various ways. Social network analysis focuses on the pattern of r relationships between

the actors and is widely used in social sciences. A social network can also contain a

collection of attribute characteristics, measured on the actors. In the context of social

network analysis, Holland and Leinhardt [52] classified relational data as follows:

• Single relationship data: A single relationship observed on a set of nodes at a

single point in time.

• Time series data: There may be more than one point in time at which the relation

on the set of nodes is observed.

• Covariates: There may be information about nodal attributes in addition to the

relationship information.

• Valued relationship: Some types of relationship exist in warying degrees or

strengths rather than in an all-or-none fashion.

• Multiple relationships: There may be more than one type of relationship studied

on the same set of nodes

To understand the measurement of relations it is necessary to consider two important

properties: whether the relation is directional or undirectional, and whether it is dichoto-

mous or valued. In the directional relation, the relational tie between a pair of actors

has an origin and a destination (i.e. one country imports alimentary goods from another

country). In an undirectional relation the tie between a pair of actors does not have a

direction (i.e. there is a tie between two countries if they share a border). Dichotomous

relations are coded as either present or absent for each pair of actors (dichotomous: 1

or 0). Valued relations can take a range of values which indicate strength, frequency or

intensity of the tie between each pair of actors (i.e the frequency of interaction among

pairs of people).

In the following analysis we will use graphs and adjacency matrices to represent

social network data mathematically.

1.2.1 Graphs

We let G = (N ,L) denote a graph, which is described by the two sets N and L.

The set N = 1, 2, . . . , n is a collection of nodes of a graphs, N in the network theory
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defines a set of actors.

We consider an ordered pair of actors, i and j. If the relation under examination is a

dichotomous we are interested if actor i relates to actor j or does not and in a directional

one, the pair of actors i and j is distinct from the pair j and i. If a tie exists the ordered

pair is an element of L which is a set of all relational ties between pairs of actors. The

number of elements of L ranges from 0 (empty graph) to n(n− 1) (complete graph)

which is the total number of ordered pairs in L. We can represent the elements of L
graphically by drawing a line. If there is a tie present between actors i and j we will

write i→ j. In the literature such a graph is called a directed graph and directed lines

are referred to as arcs. In the case of undirectional relations we cannot distinguish

between the line from actor i to j and from j to i and the set L will contain at most

n(n− 1)/2 elements. The graph is called an undirected graph and the lines are called

edges.

When we deal with valued relations the appropriate graph theoretic representation are

valued graphs. A graph (or digraph ) is a valued graph or a valued digraph if each line

(or arc) carries a value from the set of real numbers. A valued graph GV = (N ,L,V =)

consists of three sets of information: a set of actors N , a set of lines L and a set

of values V = v1, v2, . . . , vL attached to the lines. There are several special valued

graphs: signed graphs in which positive lines have value +1 and negative lines have

the value −1 or Markov chains whose values are probabilities and their corresponding

sociometrix are referred to as transition matrices or stochastic matrices.

Figure 1.1 presents examples of directed and undirected graphs. The first data is

a data set originally gathered by Sampson [89] in a study of the social interactions

among 18 members of a monastery. Each node represents a monk and a directed edge

from one to another indicates that the first nominated the second as one of his three

best friends at any of the three time points when the survey was administered (18 nodes

and 56 arcs). The second data is a data set of Padgett [74], consisting of marriage

ties among leading Renaissance Florentines, it is a undirected network with 16 nodes

(families) and 20 edges (marital ties).
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Figure 1.1: Examples of a) directed graph and b) undirected graph

1.2.2 Matrices

A social relation can also be represented by an n× n sociomatrix (the analogue of

the adjacency matriax in graph theory), Y, which with its elements is assumed for the

following analysis as random variables. We denote by

Yij =

{
1 if (i, j) ∈ L
0 otherwise

(1.1)

a random variable where Yij = 1 if there is a network tie from actor i to actor j, and

where Yij = 0 if there is no tie (Figure 1.2 a). We specify yij as the observed value of

the variable Yij and we let Y be the matrix of all variables, with y the observed matrix

with elements yij . For most social relations, one does not have a relationship with

oneself, so that on the diagonal of the adjacency matrix there are structural zeros Yii =

0. In the case of non-directional relations, where Yij = Yji and the two variables are not

distinguished, the adjacency matrix will be a symmetric one (Figure 1.2 b).

For the following analysis the observed network y will refer to the network data collected

by the researcher and which modeling the researcher is interested in. The observed

network is seen as one particular pattern of ties out of a large set of possible patterns.

It is regarded as a realization from a set of possible networks with similar important

characteristics (at the very least, the same number of actors).
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Figure 1.2: Adjacency matrices for respectively a) directed graph and b) undirected graph presented in Figure 1.1

1.3 Notations in SNA

In this paragraph firstly we will present some principal definitions and notations

which have the fundamental role in social network analysis. Then we will introduce

dyadic and triadic theories which are essential for the methods discussed in the following

chapters. We will also present some classes of probability distributions which are

important in statistical modeling for relational data.

1.3.1 Local and global measures

One of the properties which have an important effect in the modeling of social

networks is the nodal degree. The degree of a node i ∈ N , denoted by d(i), can be

very informative in statistical modeling to study some tendencies toward higher-order

network properties such as reciprocity. The degree of a node i is defined as the number

of edges incident with i. A node of degree 0 is an isolated node. The nodal degrees are

equal to either the row sums or the column sums,

d(i) =
∑
j

yij =
∑
i

yij = yi+ = y+j. (1.2)
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In the case of a directed graph the nodes have both out-degrees and in-degrees. Out-

degree of the node i, dO(i), defined as the total of the row i of the adjacency matrix Y,

explains how many arcs originate with the actor i,

dO(i) =
∑
j

yij = yi+. (1.3)

The in-degree of the node i, dI(i), is defined by the total of the column i of the matrix

Y and explains how many arcs end with the actor i,

dI(i) =
∑
j

yji = y+i. (1.4)

Both the out-degree and in-degree take on integer values ranging 0 and n− 1 and sum

to L [108].

The degree distribution, denoted by (d0,d1,. . . ,dn−1), is a distribution of the counts of

nodes with different degree k where k = 1, . . . , n−1. It is a fundamental characteristic,

which makes it possible to compare networks and classify them according to their

properties.

While we consider an individual node in a network, nodal degree is the simplest

characteristic. In the case of considering a network as a whole, the simplest structural

characteristic is density which involves the number (and the proportion) of the edges in

the whole graph.

Let L be the number of edges present in a graph which can take on any integer value

from 0 to n(n−1). We define the density of a graph, ∆, as the proportion of the number

of edges present, L, to the maximum possible number of edges in a graph. It can be

calculated as:

∆ = L/n(n− 1)/2, (1.5)

The density of a network keeps track of the relative fraction of links that are present

in a network, and because the average degree equals 2L/n the density is simply the

average degree divided by (n− 1).

Much of the interest in network analysis deals with indirect relationships among
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nodes. To capture the indirect interactions in a network, it is important to model paths

through the network. In the case of an undirected network, a path from v ∈ N to

v ∈ N is an alternating sequence of vertices and edges, beginning with v and ending

with s, so that each edge connects its preceding node to its succeeding one. The length

of a path is the sum of the weights of its edges. A connected graph has paths between

all pairs of nodes. The geodesic, d(v, u), is the the shortest path from v to u, taken to

have infinite length if there is no path between the two nodes. The geodesic distribution

is defined by the number of actor pairs for which the shortest path between them is

of length k, for each value of k = 1, 2, . . .. Pairs of nodes that are not connected are

classified as k =∞.

1.3.2 Definition and importance of dyads and triads

In the social network analysis statistical methods are referred to as local methods

since the basic unit for statistical analysis are the subgraphs rather than the whole

network. In SNA a local structure is defined as the regularities in a social system of

actors and relations that can be studied at the level of subgraphs, rather than the entire

set of actors involved in the network. A subgraph is a subset of nodes taken from N
and all the arcs or edges (digraph and graph) between them. Dyads and triads, the

node-generated subgraphs, are two important structures which provide a local view of

the entire network. Since dyadic triadic methods operate at the analytic level of these

structures and rely on the isomorphism of them, it is necessary to introduce isomorphic

subgraphs.

Briefly, two subgraphs, Gs1 and Gs2 are isomorphic if there is a one-to-one mapping

from nodes of Gs1 to nodes of Gs2 that preserves the adjacency of nodes. Further, they

are identical, except for possibly different labeling of the nodes [108].

- Dyads

Dyadic analysis provides some important methods to study the idea of reciprocity.

The interests of researchers in the strength of tendency for an actor to reciprocate

choices of other actors were evaluated from the 1930’s and plays very important role
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in social network analysis. A dyad (2-subgraph) is an unordered pair of actors and

the arcs between them. Since a 2-subgraph is the smallest possible social group it is

a fundamental element of connectivity and frequently the basic unit for the statistical

analysis of social network. For actors i and j where i 6= j and i < j there are four

possible dyads divided in three dyadic isomorphism classes.

• Dij=(Yij, Yij)=(1,1)- a mutual dyad;

• Dij=(Yij, Yij)=(0,0) - a null dyad;

• Dij=(Yij, Yij)=(1,0) - an asymmetric dyad;

• Dij=(Yij, Yij)=(0,1) - an asymmetric dyad.

The first class consists of mutual dyads, in which both actors in a pair relate to each

other. The second one is a class of asymmetric dyads in which the single choice is

not reciprocated, either i relates to j or j relates to i, but not both. The last class

consists of null dyads, in which neither actor has a tie to the other. We should underline

that, for local methods (dyadic and triadic methods), it is necessary to consider the

direction of the ties since the states of local structures depend on them dramatically. In

a graph an unordered pair of nodes can be in only one of two states: either two nodes

are adjacent or they are not adjacent. Thus, there are only two dyadic states for an

undirected relation represented as a graph; either the actors in the dyad have a tie or,

they do not. In a directed network there are n(n − 1) ordered pairs of actors but the

number of dyads is
(
n

2

)
= n(n− 1)/2 because every pair of actors is considered just

once. In an undirected network the number of dyads is equal to the number of edges.

Dyadic methods define the triple < MAN > as the dyad census, where M , A, N are

the numbers of mutual, asymmetric and null dyads. We obtain it by examining all dyads

in the digraph and categorizing each into its classes.

The frequencies M , A and N can be calculated both from the elements of Y or using

matrix operations on Y: M =
∑

i<j YijYji, A = L− 2M , N =

(
n

2

)
− A−M .

A statistical dyadic analysis is only possible if we consider each of the elements

of the matrix Y to be a random variable. This implies that
(
n

2

)
are also random

variables and also the counts of the dyad census to be random variables. There are
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many dyadic methods which allow us to examine different theoretical concepts. One

of these techniques is the index ρKP proposed by [61]. It provides an important

tool for measuring the tendency of actors in a network to reciprocate choices more

frequently than would happen simply by chance. To calculate the value of ρKP we

use the expectation of the number of mutual dyads, assuming that actors make choices

in some random way. Further, −∞ < ρKP ≤ 1, where the value less than 0 means

that there are tendencies away from mutual dyads, toward assymetrics and nulls. If

ρKP equals to 0 there is no tendency for reciprocity and, 1 indicates maximal tendency.

There two different estimates of ρKP dependent on the network data collection designs:

fix choice and free choice procedures (see more in chapter 13 of [108]).

- Triads

Triadic methods allow us to examine fundamental theoretical concepts such as structural

balance and transitivity. The first one was introduced by Heider [40] who examined

individuals’ viewpoints of social situations. Mathematical formalization and quantifica-

tion of his idea were made with help of graph theory by Hararay [39] and Cartwright

and Hararay [11]. The analysis of structural balance is based on measuring relations

for a set of actors considering ties with a sign or a valance. As Holland and Leinhardt

[43] [44] recognized, structural balance essentially involves the notion of transitivity in

graphs which has been shown to be a key structural property in network data.

A triad(a 3-subgraph), Tijk, is defined as a set of three actors i, j, k where i 6= j 6= k

and the relationships between them. We consider i < j < k since the order of the actors

is important. The number of triads derives from
(
n

3

)
which explains the number of

ways that we can take n actors, three at a time. In a graph, a triad may be in one of

four possible states, depending on whether, zero, one, two or three lines are present

among the three nodes in the triad (Figure 1.3). In a digraph there are 26=64 possible

values for a triad because each of three actors can relate to two other actors and each

of these six arcs can be present or absent. If we ignore the actor labels, then there are

sixteen possible isomorphism classes of triads (Figure 1.4). In the MAN labeling of

triads proposed by Holland and Leinhardt [43], each of these sixteen classes denoted:

003, 012, 102, 021D, 021U, 021C, 111D, 111U, 030T, 030C, 201, 120D, 120U, 102C,
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Figure 1.3: The four possible triadic states in a graph

210 and 300. Here, the numbers correspond to the number of mutual (M ), asymmetric

(A) and null (N ) dyads in the triad and the letters correspond to the orientation of the

asymmetric dyads: D for down, U for up, T for transitive and C for cyclic. The vector

T = (T003, T012, , T300)t , which contains the frequencies for each type of isomorphism

triad classes, is called the triad census, introduced by Davis and Leinhardt [16] [17].

It furnishes a complete classification of all triads in a directed graph and provides a

convenient way to reduce the entire adjacency matrix Y to a smaller set of summary

statistics.

As underlined previously, transitivity is one of the most important concepts studied by

triadic methods Holland and Leinhardt [45] [51] Johnsen [59] [59].

To represent transitivity in undirected graphs we will use the presence of triangles and

2-stars where a triangle is a subgraph of three nodes (a triad), each pair of which is

connected by an edge. A k-star is a subgraph of (k+1) nodes in which one central node

is connected by an edge to exactly k other nodes. A triad will be defined intransitive

if a 2-star is not part of a triangle. Since structural balance is the outcome of a local

process, it is not necessary to control the whole graph to determine whether a particular

triad of nodes is balanced or not. The proportion of transitive to intransitive triads in

the graph is an aggregate measure of the tendency toward transitivity and structural

balance, and hence that of clustering which refers to a tendency for pairs of nodes to

be connected to each other if they are connected to a common third node. The local

clustering coefficient Ci of a node i is the proportion of pairs of nodes to which node i

is connected, and those are connected to one other. Because any triangle contains three

2-stars, the clustering coefficient C can be defined as the proportion 3T/S2, where T

is the number of triangles and S2 the number of 2-stars in the graph as a whole [72].
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As will be seen in Section 2.2.3, the statistics T and S2 are also very important in a

particular class of ERGMs - Markov graphs.

In the case of directed graph a triad involving actors i, j and k is transitive if

whenever i relates to j (i→ j) and j relates to k (j → k) and so i relates to k (i→ k).

Intransitive triads are those which are not transitive, and triads which are neither tran-

sitive nor intransitive are called vacuously transitive. Considering the Figure 1.4 it

is worth noting that only four triads are transitive (030T, 120U, 120D, 300), five are

vacuously transitive (003, 012, 021U, 021D, 102) and seven are intransitive (021C,

111D, 111U, 030C, 201, 120C, 210). Some of the intransitive triads are more transitive

and some less transitive e. g. 210 is more transitive than 201. Statistical analysis of

the sixteen frequencies of the triad census can be used to test theories of structural

balance and transitivity. To examine the triad census we can use random directed graph

distributions, assuming that the census has been drawn from a random directed graph.

It is worth noting that the distribution of the triad census is complicated, except for

its mean and covariance matrix. Fortunately, it has been proven that the distribution

of triad census can be well-approximated by the multivariate normal distribution [43]

[46] [51].

1.3.3 Probability distributions

Statistical methods usually begin with an assumption that the data under investiga-

tion are the realizations or observations on a collection of random variables. Random

graph probability distributions make it possible to study subgraphs statistically. The

basic questions we want to answer is what kind of distribution the random variables

follow. Then these distributions allow researchers to test hypotheses about various

properties of a graph and a digraph. The fundamental family of probability distributions

for directed graphs is the class of uniform distributions. Those range from the simplest

possible distribution for a directed graph with n nodes to conditional distributions

which fix or condition on a number of graph characteristics. The statistical methods

for the dyad census focus on the number of arcs present in a digraph (inference using
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Figure 1.4: The triad isomorphism classes

the simple distributions) and the number of mutual dyads present in a digraph (which

require conditional uniform distributions).

Below we present definitions of the Uniform and Bernoulli distributions.

Let Gd(N ) be the set of all possible labeled directed graphs with n nodes. We

record labels of the nodes to be able to consider all possible digraphs with various

characteristics. Without labels assigned to the nodes we can only consider the number

of isomorphism classes. We assumed that we analyze a single dichotomous relation so

each element of adjacency matrix has two possibilities 0 or 1. As we stated above in

a digraph there are n(n− 1) arcs which provide 2(n(n−1)) different labeled adjacency

matrices. It is worth noting that the number of elements of Gd(N ) grows exponentially

with n.

- Uniform and Bernoulli distributions
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The simplest distribution on Gd(N ) is the uniform distribution denoted by U and Y ∼ U

means that an adjacency matrix representing a particular digraph is distributed as a

uniform random variable so every realization is equally likely. The sample space is

exactly Gd(N ) which contains 2(n(n−1)) labeled digraphs so the uniform probability

function is P (Y= y) = 1/2n(n−1). To describe the arcs of the digraph under the uniform

distribution it is possible to use statistically independent Bernoulli random variables

with all probabilities of the presence of arc being equal to 1/2 for

P (Yij = 1) =

{
1/2, i 6= j

0, i = j
(1.6)

All elements of adjacency matrix are independent of all other elements, and the proba-

bility distribution of any one of the elements is the simplest possible distribution, the

Bernoulli distribution with equal probabilities [22]. This distribution assumes that

all actors choose about one-half of the other actors, so that the expected degree is

(n− 1)/2 for all actors and the expected density is 0.5. The uniform distribution can be

generalized to a family of Bernoulli distributions by altering the probability that any

element of the random adjacency matrix is equal to 1. These models can also generate

parametric classes of distributions.

The general Bernoulli distribution is described by

P (Yij = 1) =

{
Pij, i 6= j

0, i = j
, (1.7)

where 0 < Pij < 1 and Pij may differ from element to element to let some actors

relate to other actors with different probabilities tendencies. Pij will denote P (Yij = 1)

the probability that a specific arc is present in the digraph. The Bernoulli distribution

assumes that the elements of Y are statistically independent. This distribution permits

some of arcs in a random digraph to have greater probabilities of being present than

other arcs. If a random digraph is distributed as Bernoulli with Pij=1/2 for all i 6= j

then the random digraph is uniformly distributed. In the case of all Pij being equal but

different from 1/2 the distribution is not uniform.
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An important concept is statistical conditioning which implies the restriction of

attention to only those random graphs with the particular properties that are conditioned

upon. It is based on taking a random variable and then we derive the conditional

distribution of that random variable conditioning on the specific graph properties.

Several families of uniform distributions on digraphs can be formed by considering

conditional uniform distributions. To obtain the sample space of a conditional uniform

distribution we can take all the possible digraphs with n nodes and from this set remove

all those digraphs that do not have the specific characteristics fixed before. Then we

obtain the revised sample space with digraphs which are equally likely to occur under a

conditional uniform distribution.

- Conditional Uniform Distributions

To form some families of uniform distributions on directed graphs we can use con-

ditional uniform distrubutions of which some examples will be presented below (for

more details and other examples see [108]. To obtain the sample space of a conditional

uniform distribution we can consider all the possible directed graphs with n nodes

and then restrict attention to digraphs with certain characteristic fixed before. Then

after removing all those digraphs without the specific characteristic we will obtain the

desired sample space in which all the remaining digraphs are equally likely to occur.

To study the randomness of choice made by each actor we can use a uniform dis-

tribution, conditional on the number of arcs, U |L = y++. It is the simlest conditional

uniform distribution which conditions the graph property L [62]. This distribution

gives equal probability to all digraps with L arcs, and zero probability to all digraphs

which do not have y++ arcs. Its sample space includes only those digraphs with L arcs.

This conditional uniform distribution has a probability mass function

P (Y = y) =

{
1/
(
n(n−1)

l

)
if y++ = 1

0, otherwise
, (1.8)

where
(
n(n−1)

l

)
is the number of ways to distribute l arcs to the n(n− 1) possible arc

locations.
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Since there are 2n(n−1) possible digraphs for a set with n nodes and there are
(
n(n−1)

l

)
digraphs in the sample space for U |L so the number of random digraphs that have

exactly l arcs is usually quite a bit smaller than the total number of all possible digraphs

with n nodes.

Katz and Powell [62] proposed a unifrom conditional distribution which gives

the possibility to control for the outdegrees of each node. U |Y(i+) is the uniform

distribution which conditions the fixed set of outdegrees of the nodes in the directed

graph. In this case every digraph which presents specified outdegrees, Y1+ = y1+,Y2+ =

y2+,. . . ,Yn+ = yn+ occurs with equal probability, and digraphs with outdegrees different

from the set of specified outdegrees are not in the sample space. To understand the

probability function for U |Y(i+) we have to know how many digraphs exist with a

specified collection of outdegrees which means understanding how a fixed number of

1’s can be allocated for the ith row of a sociomatrix. This fixed number of 1’s can be

placed in certain positions at random while each of the remaining entries in the row

equals 0. Since the rows themselves are independent with the row sums of a sociomatrix

fixed, each row can be treated separately to calculate the number of possibilities of

distributing a fixed number of 1’s to the n− 1 positions in each row. The probability

function for this distribution is defined

P (Y = y) =


n∏
i=1

1/
(
n−1
yi+

)
, if Yi+ = yi+ for all i

0, otherwise
, (1.9)

where
(
n−1
yi+

)
is the number of ways to place the correct number of 1’s in the ith row of

the sociomatrix. Thus the sample space has
n∏
i=1

(
n−1
yi+

)
elements and it depends on both

the number of nodes n and the outdegrees that the random directed graphs are forced to

have.

A very important distribution for statistical modeling for social network is the distri-

bution referred to as, U |Y(i+), Y(+j) which conditions both choices made by actors and

choices received. It means that it combines the conditioning of U |Y(i+) and U |Y(+j) and

all digraphs with the specified values of the outdegrees and the indegrees are equally
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likely. Digraphs that do not satisfy these constraints are absent from the sample space

and cannot occur. Although a lot of researche has been proposed regarding this distribu-

tion, unfortunately it is impossible to write down its probability mass function. Katz and

Powell [62] studied relation between this distribution and other the simpler conditional

uniform distributions. Snijders [92] presented how to enumerate all digraphs with fixed

indegrees and outdegrees which makes it possible to conduct permutation tests of graph

properties such as the number of mutual dyads. Another important distribution is the

distribution which controls the choices made, the choices received and the types of

dyads. It is the uniform distribution that conditions on the dyad census, the out-degrees

and the in-degrees, referred to as U |M,Y(i+), Y(+j).

In this chapter we have presented some standard terminology and notations for SNA.

In the next chapter we will discuss Exponential Random Graph Models, the class of

models extensively used to model global social network structure as a function of their

“local features”. We will deepen the concept of dependence assumptions and illustrate

particular classes of ERGMs implied by them. We will also explain the concept of

homogeneity and other constraints which make it possible to define a well-specified

model.





CHAPTER 2

Exponential Random Graph Models

In this chapter we will present logic and definition of the Exponential Random

Graph Models (p*) and two general ways of viewing this class of models. Then to

present the development of ERGMs we will focus on a range of different models,

from the simpler to more analytically complicated, and their utility in explaining social

processes.

2.1 Definition of Exponential Random Graph Models

The Exponential Random Graph Models for social networks are the stochastic mod-

els for graphs and which attempt to represent the stochastic mechanisms that produce

ties, and the complex dependencies that this induces. This class of models forms a

statistical exponential family and expresses each relational tie as a stochastic function

of actor or network structural properties. Using ERGMs the principal goal is to estimate

model parameters from an observed network and then evaluate how adequately the

model represents the data. In general, we do not know what stochastic process generated

the observed network, and our goal in formulating a model is to propose a plausible

and theoretically principled hypothesis for this process. One of the research questions

may be whether the structure of the observed network presents significantly more, or

less, characteristics of interest than expected by chance.

The Exponetial Random Graph Models, also known as the p* class of models, was first
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discussed in 1986 by Frank and Strauss [23] who viewed it as a generalization of model

p1 introduced by Holland and Leinhardt in 1981 [52]. Frank and Strauss presented

the general specification of p* but, first of all, they paid attention to the Markov model,

the special case of p* models. Further developments of the p* family of models has

been given by Wasserman and Pattison [109] and Pattison and Wasserman [76] who

showed how a Markov parametric assumption provides just one of many possible sets

of parameters. Most of the initial investigations focused on nondirected and directed

single, dichotomous relations. In the literature there are a lot of works which present

extensions of Exponential Random Graph models to valued [86] and multiple relations

[76] [64].

Because the p* model has an exponential term in the right hand side, such distributions

have been referred to as Exponential Random Graph Models (ERGMs) and this name

will be used in the following analysis.

There are two different approaches to arrive at the Exponential Random Graph

family class of models. On the one hand this class of models could be derived from

the Hammersley-Clifford theorem [5] as a natural consequence of dependence graphs

[23] [76]. On the other hand, it could be viewed as an autologistic regression model

[109] [3].

Robins et a. [84] proposed the five steps which are fundamental not only because they

make it possible to connect theoretical decisions to data analysis but also because they

help to locate certain earlier network models within the class of exponential random

graph models.

A general framework for exponential random graph model construction is:

• Step 1: each network tie is regarded as a random variable,

• Step 2: a dependence hypothesis is proposed, defining contingencies among the

network variables,

• Step 3: the dependence hypothesis implies a particular form to the model,

• Step 4: simplification of parameters through homogeneity or other constraints,

• Step 5: estimate and interpret model parameters.
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The first step provides an assumption that a tie is a random variable which implies that

there is a stochastic framework with a fixed node set and there is no a full knowledge

about relationship formation. It states that our model is not going to make perfect deter-

ministic predictions and as a result there is going to be some statistical “noise”, or lack

of regularity, that cannot be successfully explained. Below we introduce dependence

graphs and the importance of dependence assumptions in statistical modeling of social

network. Then we will explain how dependence assumptions and constraints such as

homogeneity influence the form of different models. Details about the final step which

is estimation will be presented in Chapter 3.

2.1.1 Dependence assumptions and dependence graph

An important aspect of any probabilistic model of a network is to consider the

statistical dependencies among the ties. Construction of a dependence graph gives the

possibility to do it. In the context of a social network a dependence graph indicates

which relational ties are conditionally independent. As suggested by Frank and Strauss

[23], it is fundamental to define dependence structures for the random variables Yij
because the entries of adjacency matrix Y cannot be assumed to be independent. The

dependence assumptions may be represented in a dependence graph, first introduced

into the network literature by Frank and Strauss, following the approach of nearest

neighbors described by Besag [5]. The dependence structure for random variables

Yij is determined by a dependence graph D of the random array Y, whose nodes, ND,

are all possible relational ties in the original relation and whose ties specify which

ties in the relation are conditionally dependent, giving the remaining relational ties.

Two ties are conditionally dependent if the conditional probability that the ties are

both present, given the other ties in the network, is not equal to the product of their

marginal conditional probabilities. The dependence graph has lines connecting all pairs

of conditionally dependent ties. Since there are a lot of ways of specifying conditional

dependence between a pair of ties it leads to a variety of distinct dependence graphs.

It is worth noting the importance of dependence assumptions in distinguishing among

a variety of different random graph types and in constraining types of configurations
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relevant to the different models [83]. The definition of dependence graph provides the

basis for the Hammersley-Clifford theorem [5], presented below, which establishes

that a random graph has a probability that depends only on the complete subgraphs, or

cliques of the dependence graph.

2.1.2 The Hammersley-Clifford Theorem

The theorem presented in this section, the Hammersley-Clifford theorem, provides

the important link between dependence structures and interactions. It establishes that a

probability model for Y depends only on the cliques of the dependence graph D. The

Hammersley-Clifford theorem demonstrates that suffiecient statistics for a loglinear

model for the random graph are of the form
∏

(i,j)∈A yij whereA is a complete subgraph

of the dependence graph D and the product is computed across a set of edges in the

original graph that are pairwise conditionally dependent, given the rest of the graph. A

subset A of the set of nodes ND, which represent relational ties in the original relation,

is complete if every pair of nodes in A is linked by an edge of D. A subset comprising

a single node is also regarded as complete.

According to the Hammersley-Clifford theorem, P (Y = y) may be characterized by an

exponential family of distributions:

P (Y = y) = exp
∑

A⊆ND
$AuA(y)/κ, (2.1)

where:

• κ =
∑

Y exp
∑
A⊆ND $AuA(y) is normalizing factor;

• D is the dependence graph for Y;

• uA(y) =
∏

(i,j)∈A yij is the sufficient statistic corresponding to the parameter

$A;

• $A=0 whenever the subgraph induced by the nodes in A is not a clique of D.

The set of nonzero parameters in this probability distribution for P (Y = y) depends on

the maximal cliques of the dependence graph. Any subgraph of a complete subgraph is
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also complete but not maximal, so if A is maximal clique of D, then the probability

distribution for the graph will contain nonzero parameters for A and all its subgraphs.

Using this theorem Frank and Strauss [23] proved how log-linear probability models

can describe random graphs with a general dependence structure. Examples of different

dependence assumptions and their associated models are given in Section 2.2.

2.1.3 Definition of ERGMs

The assumptions about dependencies among the random tie variables in a network

and the Hammersley-Clifford theorem determine the general form of the probability

distribution of Exponential Random Graph Model:

P (Y = y) =
exp {θ′u(y)}
κ (θ,Υ)

(2.2)

where Y is an adjacency matrix of a random network on n nodes, Υ is the support

of Y, the set of all possible networks with n nodes.

The vector θ, θ ∈ Ω ⊂ <q Ω = {θ ∈ <q : κ(θ,Υ) <∞} is a vector of parameters

which are the weights of the linear combination, and are usually unknown and must be

estimated.

The vector u(y) is a known q-vector of network statistics based on y. The goal in

defining the vector of statistics u(y) is to choose statistics that summarize the social

structure of the network (e.g. number of edges, number of triangles). These statistics

should match the purpose for which model parameters are being estimated and networks

are being simulated. The model itself depends on the hypothesized structural features

of the network because the vector of statistics is chosen a priori and this choice depends

on the questions of interests. It is worth noting that ERGM terms cannot be simply

taken and used in one field (i.e. social networks), to be then used to represent processes

in another field (i.e. biological networks). The effective choice of terms for an ERGM

depends on theory and context. Which network statistics appear in the model depends on

the structure of the hypothesized dependence graph, and on whether any homogeneity
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constraints have been proposed.

The denominator κ(θ,Υ) is the normalizing factor. It makes all the probabilities sum to

1 and guarantees that the distribution is proper.

κ(θ,Υ) depends on both θ and the support Υ and it is defined as:

κ(θ,Υ) =
∑
z∈Υ

exp {θ′u(z)} (2.3)

Specification of 2.3, including the number of nodes, n, is an important aspect of model

2.2. For a fixed n, Υ may contain up to 2n(n−1) networks, a very large number even for

moderated-size n. The dependence of κ(θ,Υ) on the unknown parameter vector carries

the primary barrier to inference when using this model.

The ERGMs can be used also to analyze models in which networks of relational

ties depend on the actor attributes which allow for additional covariate information

about the network. To incorporate attribute information into the ERGM we need to

replace u(y) with u(y,X) in 2.2 to allow X , which is a matrix of attributes of the

nodes in the network, to influence the probability distribution of Y. In this case we are

interested in the probability of the graph y given the observations of attributes x, that

is, P (Y = y|X = x). Important examples have been proposed where two different

processes relate attribute and network variables. The first one is social selection

processes [81] in which individual attributes may contribute to the formation or change

of network ties what means that individuals may change their relationships on the basis

of the attributes of other individuals. The second is the social influence processes [82]

where network structure can affect individual characteristics in that individuals may be

influenced by others with whom they have network ties.

- Structural parameters: interpretations and constraints

Applying ERGMs we expect that local statistics can capture the global structure in the

network. The structure of a typical graph in this distribution can be interpreted as the

result of a cumulation of these particular local configurations. The goal in defining the

vector of statistics u(y) is to choose statistics that summarize the social structure of the

network and match the purpose for which themodel parameters are being estimated.
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In the ERGMs the parameters are assumed to govern the probabilistic nature of the

social or/and behavioral process of interest and reflect structural concerns. Parameters

corresponding to the network statistics may be interpreted in terms of their contribution

to the “likelihood” of occurrence of network with the relevant feature of interests. For a

given observed network y, parameter estimates indicate the strength of effects in the

data. If the parameter is large and positive, we expect to observe the corresponding

configuration in graphs in distribution 2.2 more frequently than if the parameter were

zero (defined to be zero when configuration occurs by chance).

There are several ways in which constraints on the parameters of ERGMs may be

applied. As defined in the Section 2.1.3, Ω is the parameter space whose dimension, q,

is at most N − 1 for the saturated model. In order to define a model clearly, we need to

simplify it and reduce the number of parameters. Some parameters need to be set to

zero, equated or otherwise constrained by introducing hypothesized constraints on the

values of parameters associated with larger configurations [99].

According to Frank and Strauss [23], the reduction in the number of parameters is

often done by imposing standard isomorphic homogeneity constraint that all isomorphic

graphs G have the same probability P (G). In this case the parameters are equated if the

configurations are the same when we ignore the labels (a prori indistinguishable) on the

nodes (in which case the configurations are said to be isomorphic). We do not introduce

parameters specific to the different vertices. One of the examples of homogeneity

constraint is proposing a single tendency for reciprocity across the entire network, by

assuming that the reciprocity parameters for each possible reciprocated tie are all equal.

Another method of applying constraints may be obtained by equating parameters for

isomorphic configurations involving similar types of actors. For instance, in the case of

reciprocity we could allow the reciprocity effect to depend on node characteristics. In

school friendship networks, one reciprocity parameter for boy-boy configurations, one

for girlgirl and another for boy-girl configurations could be proposed.

During the process of choosing the vector of statistics u(y), it is important to ensure

that there are no linear dependencies among the specific terms. For instance, we should

avoid using both edges and density in the same model because they summarize the
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same structural property.

2.1.4 ERGMs as logit model

The formulation of log linear model closely relates the ERGMs to logistic re-

gression and makes it possible to view this class of models in a very standard re-

sponse/explanatory variables. In logistic regression the response variable is a logit

[the logit is a function defined as logit(p) = log(p)− log(1− p)], or log odds of the

probability that a relational tie is present, and the explanatory variables can be quite

general.

- Change statistics

In order to specify an alternative version of model 2.2 three new relations have been

proposed [109]:

Y +
ij , Y −ij , Y c

ij , where Y +
ij is a matrix formed from Y where the tie from i to j is forced to

be present:

(Y +
ij )mk =

{
Yij , if (m, k) 6= (i, j)

1, if (m, k) = (i, j).
(2.4)

Y −ij is defined as a matrix formed from Y where the tie from i to j is forced to be

absent:

(Y −ij )mk =

{
Yij , if (m, k) 6= (i, j)

0, if (m, k) = (i, j).
(2.5)

Note that Y +
ij and Y −ij differ at most from Y by the (i,j) the entry, which is forced to be

1 or 0 respectively. We define Y c
ij as a matrix for the complement of Yij:

(Y c
ij)mk =

{
Yij , if (m, k) 6= (i, j)

undefined, if (m, k) = (i, j)
(2.6)

Y c
ij represents the rest of the network other than the single variable Yij . Now we can

introduce the vector of change statistics which is a function of a particular choice u(·)
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of network statistics, an observed network y, and a particular pair of different nodes

(i,j). It is defined as:

δ(y)ij = u(y+
ij)− u(y−ij) (2.7)

where, following definitions presented above, y+
ij and y−ij represent the networks realized

by fixing yij=1 or yij=0, respectively, while keeping all the rest of the network exactly

as in y itself. In other words, δ(y)ij is the change in the value of the network statistic

u(y) that would occur if yij were changed from 0 to 1 while leaving all of the rest of y

fixed. When the network statistics involve covariates X in addition to y we may add X

to the notation and write δ(y,X)ij .

Holland and Leinhardt [52] were the first to develop a log-linear model for network

data. Using the dichotomous nature of the random variable Yij the model 2.2 can be

turned into a logit model not for the probability of the graph, but for the conditional

probabilities of the relational ties. The expression in an alternative way of the full

conditional distributions of Yij has the advantage of not depending on the normalizing

constant κ. Using the vector of change statistics, the probability that the tie from i to j

is present, conditional on the complement of Yij , is the following:

P (Yij = 1|Y c
ij) =

P (Y = y+
ij)

P (Y = y+
ij) + P (Y = y−ij)

=
exp(θ′u(y+

ij))

exp(θ′u(y+
ij)) + exp(θ′u(y−ij))

.

(2.8)

We next consider the odds ratio of the presence of a tie from actor i to actor j to its

absence, which simplifies model 2.8:

P (Yij = 1|Y c
ij)

P (Yij = 0|Y c
ij)

=
exp(θ′u(y+

ij))

exp(θ′u(y−ij))
= exp

{
θ′
[
u(y+

ij)− u(y−ij)
]}

(2.9)

Taking the natural log of both sides we will obtain the conditional log-odds of an edge:

log
P (Yij = 1|Y c

ij)

P (Yij = 0|Y c
ij)

= θ′
[
u(y+

ij)− u(y−ij)
]

= θ′δ(y)ij, (2.10)

where θ is a vector of effect parameters to be estimated and δ(y)ij = u(y+
ij) − u(y−ij)

is the change defined above. It is worth noting that logits are simple and well defined
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when the relation is dichotomous. In the case of valued relation one must be careful

which logits to model. It was discussed at length in [86].

2.2 Different types of ERGMs

As mentioned above dependence assumptions have the consequence of picking out

different types of configurations as relevant to the model. Below we present some types

of models which derive from different dependence assuptions.

2.2.1 Bernoulli random graph model

The first type is the Bernoulli random graph [18] [24], which represents the

simplest dependence assumption that all possible distinct ties are independent of one

another. This class of graphs derived from the assuptions of conditional independence

for all edges (Yij and Ykl are independent whenever i 6= k and j 6= l). A Bernoulli

graph assumes complete independence of relational ties and its dependence graph is

an empty graph which comprises a collection of isolates nodes, each corresponding

to an edge in the Bernoulli graph. According to the Hammersley-Clifford theorem,

the only configurations relevant to the model are those in which all possible ties in the

configuration are conditionally dependent on each other. When all possible ties are

independent, the only possible configurations relate to single edges Yij so the general

form of Bernoulli model is:

P (Y = y) =

exp
∑
i,j

θijyij

κ (θ,Υ)
, (2.11)

where

log κ (θ,Υ) =
∑
i,j

log(1 + exp(θij)). (2.12)

A parameter for each of these configurations is θij = logitP (Y = y) which is the

log-odds of a tie in the dyad Dij . For model 2.2, q is equal to n(n− 1)/2. The elements

of the vector of network statistic, u(y), are just yij and tell us whether that configuration
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is observed or not.

We obtain a special case of the Bernoulli random graph model if we impose a

homogeneity assumption which means that there is a fixed probability for all possible

edges across the graph. It implies that q = 1. The parameter θij = θ for all i and j is

called edge or density parameter and is related to the probability of a tie being observed.

In this spacial case the network statistic u(y) = L(y) =
∑
i,j

yij is the number of ties in

the graph y.

P (Y = y) =
exp(θL(y))

κ(θ,Υ)
(2.13)

This homogeneous Bernoulli model is also known as the Erdös-Rényi model [18] and

it has been extensively studied in [71] and [2].

The simplicity and homogeneity that make the Bernoulli model tractable also make

it less useful as a realistic model for social phenomenon. For instance, if friendship

networks could be reasonably described as Bernoulli graphs, we could claim that any

pair of humans has a given propensity to friendship, irrespective of whatever other

friendships may occur. In practice it is not possible because relations among friends are

much more complex.

2.2.2 p1 model (dyadic independence model)

When we deal with directed networks, more complicated assumption have to be

adopted. In this case dyads, rather than edges, are indepedent of one another. The dyadic

independence models are models in which, regardless of the nature of the relation, dyads

are assumed to be statistically independent, so that the joint probability distribution, and

hence the likelihood function, is simply a product of dyadic probabilities. Unfortunately,

this class of models, because of their simply independence assumption, present some

limitations in describing real social phenomena.

The dyadic independence models derive from the assumption of dyad independence in

which Yij is conditionally dependent only on Yji, given the rest of the graph. For undi-

rected networks, dyadic independence models are defined as those in which P (Yij = yij)
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is independent of P (Ykl = ykl) ∀(i, j) 6= (k, l) conditional on the actor attributes.

One of the examples of dyadic idependence models is the p1 model which expresses the

two elementary social tendencies of reciprocation and differential atraction (including

popularity and expansiveness effects) [47] [52]. Holland and Leinhard denoted the

probability P (Y = y) by p1 to emphesize this probability distribution as the first or

simplest family of distributions on digraphs that might have been considered for social

network data.

Let Υ be the set of all directed graphs with independent dyads. This model can

represent arbitrary nodal indegree and outdegree marginal distributions and strength of

reciprocity (mutuality) within dyads. It can be written as:

p1(y) = P (Y = y) = exp(ρm+ θy++ +
∑
i

αiyi+ +
∑
j

βjy+j)/κ(ρ, θ, αi, βj)

(2.14)

where m, y++, yi+ and y+j are the values of M , Y++, Yi+ and Y+j computed from y.

In this model ρ can be considered the mutuality effect; αi is the sender effect of the ith

node and βj represents the receiver effects of the jth node.The θ represents the overall

edge effect (like intercept in a linear regression).

One important question to consider is if p1 is a conditional uniform distribution for

random digraphs. The answer is yes. The p1 is an exponential family of distributions

with minimal sufficient statistics consisting of the indegrees, the outdegrees and the

number of mutual dyads. If we condition on specific values of Y(i+),Y(+j) and M , all

random digraph with these values have exactly the same probability of occurring. Thus

the p1 model is identical to the random digraph distribution U |M,Y(i+), Y(+j). Since

the basic modeling unit of p1 consists of the dyad, not of the individual tie or arc,

the p1 can thus be viewed as a Bernoulli dyad distribution rather than a Bernoulli arc

distribution, where all dyads, not ties or arcs, are assumed to be independent.

An extension of the p1 model is the p2 which assumes dyadic independence but

conditional on node-level attribute effects [66] [103]. The p2 model is more realistic. It

works well, especially, when attribute effects are expected to be strong and the structure

is expected to arise from the attributes.
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2.2.3 Markov model (dyadic dependence model)

The Markov random graphs of Frank and Strauss [23] are a particular class of

ERGMs which are more realistic than simple probabilistic models such as the Bernoulli

model and dyadic independence models. These models are generalizations of Markov

random fields designed for spatial interaction models [5] which are based on the Ising

models of rectangular arrays of binary variables or lattice. The simplest examples

represent observations as points on a lattice, and assume that only the nearest neighbors

have an influence on the status of a site.

Frank and Strauss [23] defined a graph G to be a Markov graph (or graph with Markov

dependence) if D contains no edge between disjoint sets i, j and k, m in L. Markov

dependence is one, in which a possible tie from i to j is assumed to be contingent

on any other possible tie involving i or j, even if the status of all the other ties in the

network is known. In this case, the two ties are said to be conditionally dependent,

given the values of all the other ties which means that if the value of one tie changes,

the probability of the other tie is affected, even if all the other ties in the network remain

the same. Markov dependence can be characterized as the assumption that two possible

network ties are conditionally dependent when they have a common actor. This implies

that non-incident edges in G are conditionally independent.

Figure 2.1presents a Markov graph G with 4 nodes and 6 edges and its dependence

graphD. It illustrates the correspondence between cliques ofD and sufficient subgraphs

of G (i.e. in Figure 2.1the clique (12, 13, 23) of the dependence graph D corresponds to

the triangle (1, 2, 3) in the graph G).

For general Markov graphs the cliques of D correspond to sets of edges so that any

pair of edges within the set must be incident. According to the Hammersley-Clifford

theorem, Frank and Strauss [23] proved that such sets are just triangles and stars,

defined respectively as:

T (y) =
1

6

n∑
i=1

n∑
j=1

n∑
k=1

yijyjkyki (2.15)
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Figure 2.1: A Markov graph G and its dependence graph D. Source: [23]

and

Sk(y) =
1

k!

∑
i0,...,ik

· · ·
∑

yi0i1 · · ·yi0ik , (2.16)

where k=1, ..., n− 1.

Therefore, there are
(
n
3

)
distinct triangles,

(
n
2

)
distinct 1-stars (edges) and n

(
n−1
k

)
distinct

k-stars for k=2, ..., n− 1.

The number of sufficient subgraphs are in total:(
n

3

)
+

(
n

2

)
+

n−1∑
k=2

n

(
n− 1

k

)
= n2n−1 +

(
n

3

)
−

(
n+ 1

2

)
(2.17)

When we deal with directed graph the cliques of D correspond to arcs, mutual arcs,

stars of order 3 or more and triangles of various kinds. A homogeneous Markov random

graph model for undirected network is defined as

P (Y = y) = exp
n−1∑
k=1

σkSk(y) + τT (y)/κ(σk, τ) (2.18)



2.2 Different types of ERGMs 41

where T (y) is a count of triangles and Sk(y) is the number of k-stars in y for 1 ≤ k ≤
n − 1. For a given observed network y, parameter estimates indicate the strength of

effects in the data. In the case of the Markov model, a large and positive estimate for

τ suggests that, given the observed number of edges and stars, networks with more

triangles are more likely, that is, there is a strong transitivity effect in the network.

Figure 2.2 illustrates configurations of the Markov model for directed and undirected

networks. Note that the terms in the Markov model are often related to each other, in

Figure 2.2: Configurations and parameters for Markov random graph models

the sense that some are higher-order of the others (i.e. a 3-star in a nondirected network

centered on node i is composed of three 2-stars (and three edges) also centered on

i.) This feature has its importance when we interpret the model for describing social
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phenomenon. In the case of a network with many 2-stars, some of them will form

triangles just by chance. But if there is a substantial triangle effect in a Markov random

graph model, it is over and above any 2-star effect. We can infer that triangulation did

not occur simply because of the chance overlapping of many 2-stars (or indeed of many

edges) but that it is an important process in this network, independent of other effects.

In practice, the model defined above has been simplified reducing the terms to edges,

2-stars and triangles appropriate for capturing, both, transitivity and clustering. This

special case is called triad model and is of the form:

P (Y = y) = exp(θL(y) + σ2S2(y) + τT (y))/κ(θ, σ2, τ) (2.19)

where S2(y), S2(y) are the numbers of 2-stars and T (y) is the number of triangles, in

the observed network y.

Unfortunately, the triad model presents some shortcomings in producing reasonable

networks and describing real social phenomenon. The reason is related to the problem

of degeneracy [34] which will be introduced and explained in chapter 3. Robins et al.

[85] suggested that to solve this problem it may be important to include also at least the

3-star and 4-star effects, that is, at least first three moments of the degree distribution.

An alternative but useful approach, proposed by Snijders et al. [99] Robins et al. [87],

assumes constraints on the relationship between all higher-order star parameters and

lower-order star parameters (see Section 2.2.4). Some developements of the Markov

random graph models have been proposed for multivariate networks [76], for valued

networks [86] and for affiliation networks [91] [78].

2.2.4 Higher order model specifications

In this section we focus on “higher order” statistics proposed by Snijders et al [99]

such as the alternating k-triangle, alternating k-two path and alternating k-star and their

reparametrized versions such as the geometrically weighted degree, the geometrically

weighted edgewise shared partner and the geometrically weighted dyadwise shared
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partner [56]. These terms demonstrate improvements over the homogeneous Markov

model and have been proven to be more robust and very effective in overcoming the

problems of degeneracy ( [99] [56], [87]). We refer to these parameters and their

associated models as “higher order” because they include configurations with more

than 3 nodes.

- Alternating k-stars, alternating k-triangles and alternating k-paths

One of the statistics proposed by Snijders, et al. [99] is an alternating k-star which

combines counts of all the Markov star parameters with geometrically decreasing

weights on the higher order star counts so that they did not come to dominate the

calculation. The alternating k-star assumption proposes that, rather than setting higher

order star parameters to equal 0, all star parameters be retained in the model but with a

linear constraint among parameter values such that, for all k ≥ 2, σk+1 = −σk/λ for

some λ greater than 1.

The alternating k-star statistic is defined as:

u =
n−1∑
k=2

(−1)k
Sk
λk−2

. (2.20)

The statistic 2.20 includes stars of all orders but, for λ greater than 1, the impact of

higher order stars is reduced for higher k and they have alternating signs. In that sense,

this assumption is rather more general than simply forcing higher order star parameters

to have value 0.

The combination of star parameters into the alternating k-star parameter attempts to

express a given functional form to the degree distribution. If the alternating k-star

parameter is positive, then highly probable networks are likely to contain some higher

degree nodes (“hubs”), whereas a negative parameter suggests that networks with high

degree nodes are improbable. This parameter helps with degeneracy because presence

of alternating signs addresses the balance of a model between positive and negative

star parameters to prevent the resulting graph distribution from being forced towards

containing largely complete or largely empty graphs.
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As new higher order structures of transitivity for nondirected graphs Snijders et

al. [99] proposed a k-triangle which is a combination of k separate triangles that all

share one edge, the common base of the k triangles (Fig. 2.3).

Figure 2.3: 2-, 3- and 4-triangles

Counts of the k-triangle configurations are combined into one statistic producing

the alternating k-triangle defined as:

v =
n−1∑
k=2

(−1)k
Tk
λk−2

(2.21)

where Tk is the number of k-triangles in the network. The corresponding k-triangle

parameter τ = τ1 corresponds to a ordinary triangle configuration, with the additional

constraint that τk+1 = −τk/λ, where τk is the parameter corresponding to a k-triangle.

The alternating k-triangle statistic does not simply represent triangulation in the net-

work but additionally is a measure of the extent to which triangles themselves group

together in larger higher order “clumps” in the network. The parameter associated with

the alternating k-triangle statistic models the triangulation in the network but permit

more heterogeneity. It is better than the Markov single triangle parameter in dealing

with clumps of triangles that form the denser regions of the network. A large positive

parameter value indicates that there is substantial transitivity effects in the network, and

that this is likely to be expressed in the formation of denser regions.

The alternating k-triangle assumption moves beyond the dependence assumptions un-

derlying Markov random graph models, utilizing instead the partial dependence concept
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[77]. The additional dependence assumption is presented by Snijders et al. [99] as

social circuit dependence, where the presence of two edges in the observed graph

creates dependence among two other possible edges, assuming the four edges constitute

a 4-cycle. One of the situations, where such social circuit dependence might occur, can

be in an organization. Suppose Tim usually worked with Katy and John with Mike.

Then if John and Tim commenced work on a new project, the chances of Katy and

Mike also working together might increase. In other words, the chances of Katy and

Mike working together are increased by John and Tim working together, but only when

John already works with Mike and Tim with Katy [87].

The third configuration introduced by Snijders [99] is a k-two-path which is a

lower order configuration for a k-triangle and it is identical to the k-triangle except

that the edge at the base of the k-triangle is not necessarily present (Figure 2.4). This

configuration quantifies multiple independent paths between pairs of nodes.

Figure 2.4: 2-, 3- and 4-paths

The motivation of creating the k-two-paths is to introduce a parameter that, when

used in conjunction with k-triangles, will make it possible to distinguish between ten-

dencies to form edges at the sides, or at the base of a k-triangle. It is worth noting that

the sides of a k-triangle in the absence of the base represent a type of edge clustering

that is only the precondition to transitivity, while the presence of the base edge reflects

transitive closure. A combination of k-two-paths are incorporated into one statistic
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which is defined by:

w = U1 −
2

λ
U2 +

n−2∑
k=3

(
−1

λ

)k−1

Uk (2.22)

where Uk is the number of k-two-paths equal
∑
i<j

(
L2ij

k

)
for k 6= 2 and for k = 2

1
2

∑
i<j

(
L2ij

2

)
. L2ij is the number of two-paths connecting nodes i and j.

It is worth noting that the choice of suitable values of λ depends on the data set but it

should be the same for the k-triangles and the alternating k-two-paths, but may differ

from the value used for the alternating k-stars.

- Geometrically weighted degree, geometrically weighted edgewise shared partner and

geometrically weighted dyadwise shared partner

The geometrically weighted edgewise shared partner, the geometrically weighted dyad-

wise shared partner and the geometrically weighted degree [56] are the reparameterized

higher order terms presented above. From a modeling perspective, these geometri-

cally weighted terms are useful because they are not merely counts of local network

configurations, like the degree of k-star statistics; instead, they are particular linear

combinations of an entire distribution of degree or shared partner statistics.

The geometrically weighted degree statistic which is a reparameterized version of the

alternating k-star statistic can be defined by:

u(y, φs) = eφs

n−1∑
i=1

{
1− (1− eφs)i

}
di(y) (2.23)

It is a scalar for a fixed network y and parameter φs, obtained by a linear combination of

the degree di(y) that depends on the tuning parameter φs [54]. This statistic models the

degree distribution but puts more weight on the numbers of nodes with lower degrees,

with weights decreasing geometrically as the degrees increase.

Models containing the alternating k-star or its reparameterized version geometrically

weighted degree distribution can capture degree distributions well in the right circum-

stances (i.e. [29]). They permit greater heterogeneity in the degree distribution, so that
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it is more capable of modeling high degree nodes than a small number of low order

Markov star parameters.

The configurations of k-triangles also introduce a new distribution of graph features:

the edgewise shared partner distribution [54]. The geometrically weighted edgewise

shared partner statistic is the weighted sum of number of edges in the network that have

exactly k shared partners, weighted by the geometric sequence, (1 − e−φ)k and it is

defined as:

v(y, φt) = eφt

n−2∑
i=1

{
1− (1− eφt)i

}
EPi(y) (2.24)

where EPi(y) is the number of edges in y between two nodes that share exactly i

neighbours in common-the number of edges that serves as the common base for exactly

i distinct triangles. It models the distribution of shared partners of tied actors, but with

weights decreasing geometrically as the number of shared partners increase.

The geometrically weighted dyadwise shared partner is the weighted sum of number

of pairs (i, j) such that i and j share exactly k neighbors in common, whether or not yij
=1; weighted by the geometric sequence, (1−e−φ)k, where φ is a decay parameter [56].

w(y, φp) = eφp

n−2∑
i=1

{
1− (1− eφp)i

}
DPi(y) (2.25)

where DPi(y), that is the number of pairs(i, j) such that i and j share exactly i

neighbours in common, whether or not yij = 1. The parameter associated with this

statistic models the distribution of shared partners of actors who may or may not be tied,

but with weights decreasing geometrically as the number of shared partners increase.

Both, the alternating statistics and the geometrically weighted statistics depend on

parameters, λ and φ, respectively. If these parameters are fixed and known, then these

statistics do not present any special difficulties because they can be easily included as

components of u(y). However, if values of λ or φ are considered uknown it would be

desirable to estimate an optimal value by maximum likelihood method. In this case,

the model resulting from including one or more of these terms in u(y) is not one of the

standard ERGMs but it forms a curved exponential family, which makes more difficult



48 EXPONENTIAL RANDOM GRAPH MODELS

the estimation procedure [56]. Hunter and Handcock in the work [56] present how to

extend estimation based on approximations derived from a Markov chain Monte Carlo

scheme to curved exponential family models.

In practice a lot of dyadic dependence models in the estimation produce serious

numerical problems for many networks of different size. For this reason it is impossible

to fit them well. The models with the new statistics seem to be more robust and adequate

also for large networks. Goodreau [29] fits the new specifications to a network of

over thousand nodes and demonstrates how to evaluate model fit. Hunter et al. [57]

managed to obtain realistic parameter estimates and appropriately fit models containing

these new statistics for network with more than two thousand nodes.



CHAPTER 3

Statistical inference for ERGMs

In this chapter we focus on topics important for statistical modeling for social

network such as different estimation methods, simulation networks using MCMC

algorithms and problem of degeneracy. These concepts are fundamental to the issues

addressed and discussed in the next chapter.

3.1 Estimation methods

The goal of applying a statistical model 2.2 for the network, regardeless if the model

is constructed from specific dependence assumptions or viewed as autologistic regres-

sion, is to be able to describe the global features by a low number of local structures.

To do it we need to estimate the unknown parameters θ of a set of configurations u(y)

and then interprete them. The criterion used for estimation is the maximum likelihood

criterion whose the basic idea is to obtain the best parameter estimates in such a way

that the observed network (which is a particular graph in the distribution) presents the

highest possible probability of being replicated by the given model when the model is

used to simulate a network.

Parameter estimates, as well as estimates of the uncertainty of estimation make pos-

sible to explore the range of network outcomes predicted by the model and to infer

whether any model parameter is significantly different from zero and so whether the

corresponding configuration is present in the observed graph.
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3.1.1 Likelihood inference for ERGMs

In the case of dyadic independence models the likelihood function is easy to write

down and the estimation of the model parameters is not very difficult. For dyadic

dependence models because of their complex dependence structures the estimation

becomes more complicated.

The likelihood function (which is the product of the probabilities for each dyad) for the

general form of ERGM (2.2) is:

L(θ) =
exp(θ′u(y))

κ(θ,Υ)
. (3.1)

Differentiating the loglikelihood function:

` (θ) = θtu(y)− log κ(θ,Υ) (3.2)

shows that the maximum likelihood estimate θ̂ satisfies

Eθ̂ [u(Y )] = u(yobs), (3.3)

where u(yobs) is the vector of observed network statsitics, Eθ is the expectation under P ,

so that it at least ensures that the probability mass of the ERGM is centered at u(yobs).

Although the likelihood function presents a simple expression, its dependence on the

normalizing constant κ(θ,Υ) which makes difficult to obtain the maximum likelihood

estimation for an exponential family random graph model. Table 3.1 presents the

number of elements in Υ (2n(n−1)/2 in the case of undirected network) as the number of

actors grows.

Number of actors n Number of elements in Υ

7 2097152
10 3.518437e+13
40 6.359114e+234

Table 3.1: Number of network in Υ for different number of actors n

It is worth noting that in the case of networks the number of nodes cannot be treated as a
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traditional sample size. So colled “effective sample size” for a graph of n nodes depend

on model specification. In the case of the Bernoulli model for undirected network

edges are independent and the true sample size is
(
n
2

)
. For more complex models two

networks with qualitatively similar features but with different size might have a tottaly

different MLE.

Handcock [33] presented condition for existence and uniqueness MLE for social

network models and he underlined that many properties of the MLE can be derived

from statistical exponential family theory [4].

The maximum likelihood estimator (MLE) for θ is:

θ̂ = argmaxθ∈ΩP (Y = yobs|u,Υ) (3.4)

Denote the relative interior of C by rint(C) and the relative boundary by rbd(C) =

cl(C)/rint(C) where C is the convex hull of {u(y) : y ∈ Υ} [33].

Result:

• The MLE exists if, and only if, u(yobs) ∈ rint(C)

• If it exists, it is unique. In addition, when it exists, it can be found as the unique

solution to 3.3 or, equivalently, as 3.4, the unique local minima of 3.2.

• A necessary and sufficient condition for the MLE not to exist is that u(yobs) ∈
rbd(C). This occurs with positive probability.

Handcock summarized that, for MLE, in practice attempting to numerically maximize

the likelihood leads to unbounded estimates when the observed graph has statistics

falling on the relatively boundary of C. This typically means the optimization algorithm

does not converge, or otherwise converges to a false maxima (for more details see [33].

Until recently, inference for ERG models has been almost exclusively based on

an alternative local approximation to the likelihood function referred to as the pseudo-

likelihood, proposed by Besag [6] and suggested by Strauss and Ikeda [102] for

parameter estimation in Markov random graph models. Currently the favored methods

for statistical inference are Markov Chain Monte Carlo (MCMC) Maximum Likelihood

Estimate (MLE) proposed by Geyer and Thompson [27] applied to ERGMs by Corander
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et al. [12], Crouch and Wasserman [14], Snijders [95], Handcock [34]. Therefore,

algorithms to compute the MPLE for ERGMs are typically deterministic while the

algorithms to compute their MLEs are typically stochastic. ERGMs have usually been

expressed in the natural θ-parameterization (called also canonical parameterization) but

there have been considered for the model 2.2 two alternative types of parameterization

[33].

- Mean parameterization

First one is the mean value parameterization (the µ-parameterization), in which the

natural parameter θ is replaced by parameter µ(θ), which corresponds to the expected

value of the sufficient statistic u(Y ) under the model with natural parameter θ [4]. The

µ-parameterization is defined by

µ(θ) = Eθ(u(Y )) (3.5)

where where µ : Ω→ rint(C) and C is the relative interior of the convex hull of the

sample space of u(Y ). The mapping is strictly increasing in the sense that

(θa − θb)t (µ (θa)− µ (θb)) ≥ 0 (3.6)

with equality only if Pθa(Y = y) = Pθb
(Y = y)∀y. The mapping is also injective in

the sense that

µ (θa) = µ (θb)→ Pθa(Y = y) = Pθb
(Y = y)∀y. (3.7)

Using 2.2, µ(θ) can be reexpressed as

µ (θ) =

[
∂ log [κ(θ)]

∂θ

]
(θ) (3.8)

and its gradient as

ν (θ) =

[
∂2 log [κ(θ)]

∂θt∂θ

]
(θ) . (3.9)
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For each natural parameter θ for the model 2.2 there is a unique µ-parameter corre-

sponding to that model (and vice versa). In practice the value µ(θ) can be obtained by

computing the average of u(Y ) for graphs Y simulated from the model with natural

parameter θ. One advantage of this parameterization is its interpretability. Since it

is defined on the scale of network statistics it gives superior performance than the

θ-parameterization. The parameter corresponding to each graph statistic is just its

expected value over the population of graphs and the MLE parameter estimates coin-

cide with the value of the observed network statistics: µ̂ = g(yobs). The capacity to

reproduce the observed network statistics and the population-average interpretation

make it possible to evaluate immediately a certain model specification and understand

better the degeneracy problem. However, this fact that µ̂ = g(yobs) is of little practical

value, since we cannot estimate standard errors or even simulate from the fitted model

without knowing the inverse image θ of µ. For more details and examples see [33] and

[104].

- Mixed parameterization

Second alternative type of parameterization is the mixed parameterization (the η-

parametization) that has similar properties to the mean value parameterization. It

may be considered in the case where a sub-set of the statistics are most directly in-

terpretable in terms of their mean values and others in their natural parameterization

(Handcock 2003a).

Let (u(1), u(2)) be a partition of u such that the first component is that of the statistics

interpretable in terms of their mean values. Consider similar partitions (θ(1), θ(2)) of

θ and (µ(1)(θ), µ(2)(θ)) of µ(θ). Let Ω(2) be the set of values of θ(2) for θ varying in Ω

and C(1) be the convex hull of
{
t(1)(y) : y ∈ Υ

}
.

The mapping η : Ω→ Ω(2)× rint(C(1)) defined by

η(θ) = (µ(1)(θ), θ(2)) (3.10)

For many random graph models the mixed parameterization presents better interpretabil-

ity and inferential properties than the natural or mean value parameterizations [33].
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Handcock underlined that mean value parameterization and mixed parameterization are

a natural way to represent ERGM. Although, they seem to suffer from more indirect

specification of the likelihood, their interpretability, ease of estimation and the stabil-

ity and functionality of their parameter space make them one of solutions to resolve

problem of lack of convergence when MCMC methods are used for estimation and

simulation networks.

3.1.2 Maximum Pseudolikelihood Estimation

Estimation based on the maximum pseudolikelihood technigue was first proposed

by Besag [6] for spatial models. Then this approach was adopted by Strauss [101] to

estimate different interactive models and Strauss and Ikeda [102] in order to estimate

the parameter of Markov models. The computational tractability of the pseudolikeli-

hood function makes it an attractive alternative to the full likelihood function and it has

made ERGMs computationally available.

Consider the conditional formulation 2.10 of the model 2.2, the pseudolikelihood for

the ERGM can be explained by

`P (θ) =
∏
i 6=j

P (Yij = 1|Y c
ij)

yijP (Yij = 0|Y c
ij)

1−yij (3.11)

and

`P (θ) = θ
∑
ij

δg(y)ijyij −
∑
ij

log[1 + exp {θ′δg(y)ij}], (3.12)

where the value of θ that maximizes 3.12 is a maximum pseudolieklihood estimator

(MPLE).

Maximizing the pseudolikelihood is equivalent to maximizing the likelihood func-

tion for the fit of logistic regression in which the response data consist of each unique

element of the adjacency matrix, yij (treated as an independent observation), and the

predictor vectors are given by the change statistics so the maximum pseudolikelihood
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estimates of the corresponding ERGM can be obtained using logistic regression com-

puting packages.

Although the maximum pseudlikelihood procedure looks like a logistic regression

(which assumes independent observations) but this is not because of the dependencies

within the relational data. Since the approach of maximum pseudolikelihood assumes

conditional independence of the random variables representing the relational ties, it

gives reasonable results only for dyadic independence models (i.e. Bernoulli model)

which unfortunately do not fit the data well. In this case the Maximum Pseudolikelihood

estimators (MPLE) correspond to the exact solution and the true maximum likelihood

estimator may be found via an MPLE computation.

Since the formation of edges in a network has the existing network structure as a

condition, it is necessary to construct more complex models that may fit the depen-

dencies among ties well. When the dependence among observations becomes stronger

(the dyadic dependence models), it is generally that the statistical properties for MPLE

estimators are not well understood and in practice MPLE does not provide a good

performance [104]. In this case the parameter estimates may be biased and it could

be risky to interprete standard errors from logistic regression output as though they

are reasonable estimates of the standard deviations of the pseudolikelihood estimators.

It is also difficult to apply usual tests of model fit, for example the pseudolikelihood

deviance is not asymptotically distributed as Chi-squared (which would be the case in

normal logistic regression). It is worth noting that even though the pseudolikelihood es-

timation has been used to data as a pragmatic convenience (its speed and determinism),

formal statistical inferences should not be made with MPLE technique because of its

shortcomings. This approach may be recommended as a first selection criterion for a

dyadic independence model but the preferred option is to use Monte Carlo estimation

procedures and any final model should be checked with MLE.

Van Duijn et al. [104] proposed an alternative pseudolikelihood estimator, the

penalized pseudolikelihood estimator (MBLE). This method was originally introduced

by Firth [21] as a general approach to reducing the asymptotic bias of maximum

likelihood estimates by penelizing the likelihood function. Then Heinze and Schemper
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[41] suggested a penalized likelihood approach in the context of logistic regression.

The penalized pseudo-likelihood for the model 2.2 is defined by

`BP (θ) = `P (θ) +
1

2
log |I(θ)| (3.13)

where I(θ) denotes the expected Fisher information matrix for the formal logistic

model underlying the pseudo-likelihood evaluated at θ. The estimator that maximizes

`BP (θ, yobs) is referred to as the maximum bias-corrected pseudo-likelihood estimator

(MBLE).

3.2 Markov Chain Monte Carlo Maximum Likelihood

Estimation

Only recently there have been developed methods for solving a problem of param-

eters estimation of ERGMs for social networks. The idea of Markov Chain Monte

Carlo Maximum Likelihood Estimation (MCMCMLE) consists of randomly sampling

networks Y1,. . . ,Ym from the distribution Pθ,Υ simulated using an MCMC procedure

and taking the empirical distribution of these networks as an approximation to the true

distribution. These methods use a stochastic approximation to built and maximize

the likelihood function and make possible to overcome a problem of calculating ap-

proximate maximum likelihood estimates of the ERGM parameters. They were first

suggested in Geyer and Thompson [27] and later developed for ERGMs by Snijders

[95], Robins and Pattison [83] and Hunter and Handcock [56].

An indirect alternative can arise if we arbitrarily choose parameter vector θ0 and rather

than maximize 3.2 directly, we consider instead the log-ratio of likelihood values

`(θ)− `(θ0) = (θ − θ0)Tg(yobs)− log

[
κ(θ,Υ)

κ(θ0,Υ)

]
, (3.14)
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where θ0 is arbitrarily chosen parameter vector.

The approximation of ratios of normalizing constant can be described by [27]:

κ(θ,Υ)

κ (θ0,Υ)
= Eθ0 exp

{
(θ − θ0)T g(Y )

}
(3.15)

where Eθ0 denotes the expectation assuming that Y has distribution given by Pθ,Υ.

Therefore, we may exploit the law of large numbers and approximate the logarithm of

the likelihood ratio r(θ, θ0) = `(θ)− `(θ0) by :

r̂m(θ, θ0) ≈ (θ − θ0)Tg(yobs)− log

[
1

m

m∑
i=1

exp
{

(θ − θ0)T g(Yi)
}]

, (3.16)

where Y1,. . . ,Ym is a sequence of graphs simulated from the model Pθ,Υ. The strong

convergence of r̂m(θ, θ0) to r(θ, θ0) asm→∞ is guaranteed by a Markov chain version

of the strong law of large numbers. Thus for a fixed sample size m, maximization

of r̂m(θ, θ0) as a function of θ gives an approximation to the maximum likelihood

estimator. Since 3.16 simply approximates a population mean by the sample mean it is

called “naive”’ approximation.

Handcock [33] [34] underlined that the existence and uniqueness of the MCMCMLE

can be understood in terms of the statistical exponential family with respect to counting

measure on u(Y1),. . . ,u(YM).

Result:

Let CO be the convex hull of sampled sufficient statistics. In practice, there are two

situations:

• u(yobs) ∈ rint(CO) the MCMCMLE exists and is unique. It is found as the

unique maximum of the MCMC likelihood.

• u(yobs) /∈ rint(CO) but is in rint(C) then the MCMCMLE does not exist, even

though MLE exists and is unique.

• u(yobs) /∈ rint(C) Neither the MCMCMLE nor the MLE exists.

Handcock explained that the MCMCMLE may not exist for at least two reasons.

First, when the MLE does not exist, neither the MCMCMLE will exist. Second,
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the MCMCMLE will not exist even in cases where the MLE does, when the model

used to simulate the graphs is not close enough to produce realizations that cover

the observed values of the network statistics. The stochastic estimation technique

described above requires one to select a parameter value θ0. While the approximation

of Equation 3.16 may in theory be made arbitrarily precise by choosing the MCMC

sample size m to be large enough [27]. In practice it is extremely difficult to use this

approximation technique unless the value θ0 is “close enough” to the true maximum

likelihood estimator θ. The method usually used to choose θ0 is pseudolikelihood

estimation method.

- Newton-Raphson algorithm

One of the methods for the approximation of maximum likelihood estimator used for

ERGMs is the Newton-Raphson method [27] [56]. The main idea of this algorithm

is to obtain a maximizer of the approximate log-likelihood ratio 3.16 while iterating

an approximate Fisher scoring method until convergence [56]. It applies MCMC

algorithms to generate a random sample from a particular probability distribution on

the sample space of all networks and then this sample is used to approximate the true

likelihood function. Finally, the approximated likelihood function is maximized, which

yields the parameter estimates.

The scheme of the algorithm is as follows:

1. Select an initial value of θ0.

2. Generate an MCMC sample u(Y1),. . . ,u(Ym) using the parameter θ0.

3. Iterate the approximate Fishing scoring method 3.17 until convergence, obtaining

a maximizer θ̃ of r̂m.

θ(k+1) = θ(k) +
{
Î(θ(k))

}−1

∇(θ)t

[
u(yobs)−

∑
i

uwi

]
, (3.17)

where w(k)
i =

exp
{
[θ(k)−θ(0)]

t
u(Yi)

}
∑n

j=1 exp
{
[θ(k)−θ(0)]

t
u(Yj)

} , uwi
= w

(k)
i u(Yi)

and
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Î(θ(k)) = ∇(θ(k))t

{
m∑
i=1

w
(k)
i u(Yi)u(Yi)

t −
(

m∑
i=1

uwi

)(
m∑
i=1

uwi

)t}
∇(θ(k)).

4. If V arMC r̂m of equation 3.18 is too large compared to ˆ̀(θ̃), then set θ0 equal to

θ̃ and return to step 2.

V arMC [r̂m] =
1

m2Ū2

K∑
k=−K

(m− |k|)γ̂k (3.18)

where Ū = 1
m

∑m
i=1 Ui = 1

m

∑m
i=1 exp {[θ − θ0]tu(Yi)} and γk denotes the sam-

ple lag-k autocovariance of the sequence U1, U2,. . . , which is assumed to be

stationary.

5. Take θ̃ to be the MCMCMLE.

After the algorithm has converged it is necessary to obtain errors in approximating the

true MLE, θ̂, by the MCMCMLE, θ̃ which are calculated using an estimated MCMC

covariance matrxi for θ. The usual error inherent in using the MLE to approximation

reality are obtained from the standard asymptotic results and the estimated Fisher

infromation matrix Î(θ(k)) used to compute an estimate [Î(θ(k))]−1 of the covariance

matrix.

More detailed description of this method and its application to fitting curved exponential

random graph models can be find in the work of Hunter and Handcock [56].

- Robbins-Monro algorithm

The Robbins-Monro algorithm is a stochastic iterative algorithm and can be used to

compute moment estimates, and therefore also maximum likelihood estimates in the

ERGM [95]. This method is a stochastic iterative algorithm intended to solve equations

of the form

E {Zθ} = 0, (3.19)

where Zθ is a random variable of which the probability distribution is governed by a

parameter θ and where realizations of Zθ can be observed for arbitrary values of θ. In

the case of maximum likelihood estimates in ERGM the aim is to solve 3.19 , where Zθ
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is given by Zθ = u(Y )− u0 where Y has probability distribution of form 2.2 and u0 is

the observed value of the network statistics.

The algorithm proposed by Snijders [95] distinguishes three phases. In phases 1 and 3 a

generation of networks is required by simulating random draws from the exponentail ran-

dom graph distribution with parameters that depend on the algorithm’s phase. In phase

1 generated networks are used to determine a diagonal matrix D0 = diag(covθ0(u(Y )))

to be used in the successive phase. Its diagonal elements are estimates of the derivatives

dkk = ∂Eθuk(Y )/∂θk, k = 1, 2, ..., p evaluated in the initial value θ0 of the estimation

algorithm. The number of steps in this phase is N1 = 7 + 3q. In phase 3 the estimate

covariance matrix Σ(θ) = cov(u(Y )) of u(Y ) is used to estimate the standard error of

the model parameters estimates. The number of steps in the third phase is ptoposed to

be N3 = 1000.

The phase 2 is the most important one which consists of several subphases. The main

goal of this phase is to determine iteratively the estimates parameter, according to the

updating step:

θ̂(t+1) = θ̂(t) − atD−1
0 Z(t), (3.20)

where at is the step size, D0 is the diagonal matrix computed in phase 1, and Z(t)

for t = 1, 2, ... are random variables so that the conditional distribution of Z(t) given

Z(1), ..., Z(t− 1) is the distribution of Zθ (a random variable with probability distri-

bution governed by parameter θ) obtained for θ = θ̂(t). The step size at is a sequence

of positive numbers converging to 0 and is constant within each subphase. The initial

value of at in phase 2 is 0.1 and the number of subphases is 4. The number of iteration

steps per subphase is determined by a stopping rule, but bounded for subphase k by a

minimum value N−2k = 24(k−1)/3(7 + q) and a maximum value N+
2k = N−2k + 200.

The use of this method was proposed also by Snijders [94] for parameter estimation in

an actor-oriented model for network evolution.

- Stepping algorithm

As stated above it is extremely difficult to use this approximation techniques unless

the value θ0 is “close enough” to the true maximum likelihood estimator θ. Since the
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quality of approximation 3.16 degrades quickly as θ moves away from θ0, Hummel et

al. [53] proposed a sistematic method for moving θ0 closer to θ̂ step by step.

The idea of this method is to take partial steps toward µ̂ in mean value parameter space

by pretending that the MLE µ̂ is not u(yobs) but rather some point in between u(yobs)

and the estimate of µ(θ0). This makes it possible to restrict the search for a maximizer of

the approximate log-likelihood ratio to a region where this approximation is reasonably

accurate. Conceptually, there is an iterative jump from canonical parameter space to

mean value parameter space (by taking means of MCMC samples) and vice versa (by

maximizing approximate log-likelihood functions) until a value of θ0 is obtained close

enough to θ to allow one final MCMC-based maximization step. The procedure begins

with an initial θ0, such as θ0 = 0 or θ0 = MPLE. Then the vector µ1 is defined by

µ̂1 = γstepµ̂+ (1− γstep)µ̄0, (3.21)

where γstep = [0, 1], µ̄0 the sample mean of the vectors u(Y1),. . . ,u(Ym), where

Y1,. . . ,Ym is an MCMC sample from the model defined by θ0. The idea is to treat

µ̂1 as the MLE in this maximization step because the former µ̂1 is closer to µ̄0 than

the latter, which means that the approximation to the log-likelihood ratio should be

better. The maximizer of the resulting approximation will be called θ1. Since θ1 is thus

“closer” to the MLE than θ0, in the sense that its corresponding mean-value parameter is

closer, then the process is repeated, with θ1 taking the place of θ0. The maximiser can

be treated as the final MLE when µ̂ is in the convex hull. For more details and example

of application see [53].

There are currently three programs available for Monte Carlo maximum likelihood

estimation for Exponential Random Graph Models such as “statnet”, “pnet” or “SIENA

version 3”. The “SIENA version 3” in the “StOCNET” suit of programs and the “pnet”

program implement the same stochastic approximation algorithm Robbins-Monro de-

scribed in Snijders [95]. Additional information about these two programs is available

from the SIENA website (http://stat.gamma.rug.nl/siena.html) and the Melnet website

(http://www.sna.unimelb.edu.au/). The third program is the “statnet” package for R
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[35], an integrated set of software tools for the representation, visualization, simulation

and analysis of network data. The “ergm”, one of the “statnet” packages, allows maxi-

mum likelihood estimates of ERGMs to be calculated using Markov Chain Monte Carlo.

The “statnet” package provides not only parameter estimates but also various tools for

plotting and simulating networks, assessing model goodness of fit and monitoring graph-

ically and numerically the performance of the MCMC algorithms. All computational

procedures are sophisticated, incorporating recent advances in MetropolisHastings

algorithms and are intended to optimize computational efficiency which means that

the program is able to fit many kinds of models for large graphs in a reasonably short

time frame. The “ergm” package give the possibility to use three estimation procedures

described above the Newton-Raphson, the Robbins-Monro and the Stepping procedures.

3.3 Simulating exponential random graphs

using MCMC

Markov Chain Monte Carlo (MCMC) algorithms provide a natural way to simulate

social networks [28]. These methods [27] effectively simulate the network over the

space of possible graphs in order to maximize the likelihood and was first utilized in

this field by Strauss [101]. The MCMC algorithm can be used not only for simulation

of the network given the parameters but also to estimate the network model from data

and then use the same model, with the empirically based parameter estimates, to drive a

simulation of the network. These methods gives the possibility to control the network

structures in a simulation and to test how well the estimated models capture the network

structure.

One of the convenient ways to generate random graphs is by Gibbs sampling (called

also “heat bath”) applied to the elements of the adjacency matrix. An initial matrix Y (1)

is chosen, and the elements of this matrix are stochastically updated. This updating

mechanism circles through the whole matrix again and again, thus defining a stochastic

process Y (t) which is a Markov chain; the distribution of Y (t) tends asymptotically

to the desired random graph distribution. This procedure implies that the matrices
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Y (t) and Y (t+1) differ at most in only one element. At each iteration t, for some

choice of (i, j), Yij is set to zero or one according to the conditional probabilities

Pθ0,Υ(Yij = 1|Y c
ij = ycij) and Pθ0,Υ(Yij = 0|Y c

ij = ycij) implied by Equation 2.10. This

algorithm chooses the pairs (i, j) uniformly at random, sequentially, or using some

mixture of the two. Each update requires the change statistics δ(y)ij of Equation 2.10

to be determined. A general theorem [26] implies that the distribution of the graphs

Y (t) converges for t→∞ to the exponential random graph distribution.

A simple alternative to Gibbs sampling is a pure Metropolis algorithm in which the

proposal is always to change the value of yij . This proposal is accepted with probability

defined by

min

{
1,
Pθ0,Υ(Yij = 1− yij|Y c

ij = ycij)

Pθ0,Υ(Yij = ycij|Y c
ij = ycij)

}
(3.22)

The Metropolis scheme is usually preferred over the Gibbs scheme because it results

in a greater probability of changing the value of yij , a property thought to produce

better-mixing chains.

The third methods are Metropolis-Hastings algorithms which choose the candidate

graph yprop from an auxiliary distribution dependent on the current graph ycurr and are

aimed at either focusing the transitions or spreading them more broadly throughout Υ.

Thus, if q(y1, y2) denotes the probability that Yprop = y1 given that Ycurr = y2 under

this auxiliary distribution, then the proposal is accepted with probability defined by

min

{
1,
Pθ0,Υ(Y = yprop)q(ycurr, yprop)

Pθ0,Υ(Y = ycurr)q(yprop, ycurr)

}
, (3.23)

where
Pθ0,Υ(Y = yprop)

Pθ0,Υ(Y = ycurr)
= exp {θ0 [u(yprop)− u(ycurr)]} . (3.24)

The Metropolis algorithm of Equation 3.22 may be viewed as a special case in which

the auxiliary distribution is symmetric in the sense that q(y1, y2) = q(y2, y1). If yprop
differs from ycurr by exactly a single edge toggle, replacing yij by 1 − yij , then

u(yprop)−u(ycurr) is just±δ(y)ij . On the other hand, if yprop differs substantially from

ycurr for a particular type of Metropolis-Hastings proposal, then the ratio of Equation
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3.24 can be calculated by considering a sequence of networks, each with one dyad

different from the last, starting from the current network and ending at the proposed

network. At each step, the ratio is a simple function of the change statistic vector [55].

Metropolis-Hastings algorithms can converge more efficiently than Gibbs sampling

to the target distribution when the proposal density q(·; ·) is well-chosen. The behavior

of MCMC algorithms is also very dependent on the choice of statistics u(y). Although

it can be proven that in principle the Metropolis algorithm yields convergence to the

desired probability distribution, in practice convergence may take an exceptionally large

number of steps. For example if y is a high-probability graph, and its neighboring

graphs much less probable, then the algorithm may retain y for a very large number

of steps. When this happens, we refer to y as a frozen structure, and to the Markov

chain as showing poor mixing [28]. These circumstances are discussed further below

in Section 3.4.

3.4 Problem of degeneracy

Development of Monte Carlo estimation methods for ERGMs has allowed to un-

derstand better model behavior, especially the model degeneracy and model stability.

Handcock [33] [34] conducted a very wide study on degeneracy for ERGMs exten-

sively investigating degenerate parameter regions for two-star models for very small

networks. As the basic property Handcock considered that the useful stochastic models

should place a significant proportion of their probability mass on graphs that have high

probability of being produced by the underlying social process.

A random graph model is defined to be degenerate if it places almost all its probabil-

ity mass on a small number of graph configurations in Y. Hence degeneracy of a graph

model occurs when the model places disproportionate probability mass on only a few of

the possible graph configurations [34]. A common case is where the distribution places

almost all its mass on the empty graph (i.e., Yij = 0 ∀i, j), and/or the complete graph

(i.e., Yij = 1 ∀i, j ), which are not interesting in practical point of view. Basing on the

geometry of the mean value parameterization the near degeneracy [33] occurs when



3.4 Problem of degeneracy 65

the expected sufficient statistics are close to a boundary of the hull and the model place

much probabilities mass on the graphs in the deg(Υ); the set of graph on the boundary

of the convex hull deg(Υ) = {y ∈ Υ : u(y) ∈ rbd(C)}.
For any estimation procedure, it is very important that the model is nondegenerate

one, otherwise it is difficult to obtain satisfactory convergence of parameter estimates.

Unfortunately, if degeneracy model is used for simulation and MCMC likelihood infer-

ence, the approximations to the true model will be very poor. Further, algorithms used

for inferential purposes are often inadvertently based on degenerate forms resulting

in inferential degeneracy. Thus, for most applications, we should look for (Y, u, θ)

which are far from degenerate and we should seek to limit our space of viable models

accordingly. Since the effective parameter space of ERGMs is a small, bounded subset

of the theoretical parameter space, Handcock [33] indicated the utility of the Bayesian

framework as a very promissing approach for network modeling.

Another property mentioned above which have an important consequence on the

use of these models in practice is the stability. A random graph model is stable if small

changes in the parameter values result in small changes in the probabilistic structure of

the model. If this is not the case, then very similar parameter values can describe very

different graph structures. Unstable models often have bad statistical properties and

do not represent realistic graphs. Conditions for the stability of a model are related to

those for degeneracy. The stability of model within the mean value parameterization is

geometrically simpler than that of the natural parameterization.

For the ERG class of models, the issue of model degeneracy for certain parame-

ter values was first discussed by Strauss [101]. Strauss was the first who used the

Metropolis-Hastings algorithm to simulate random distributions. He observed that

it is possible asymptotically that there may be no finite normalizing constant for a

distribution with certain parameters version. For these regions of the parameter space,

simulations are thus not adequate in producing a stationary distribution.

By model degeneracy, Strauss meant situations where the energy H(x) of a graph y,

defined as H(y) = −
∑

A λAu(y), tended in probability to a minimum as the number

of nodes became large. This notion of degeneracy relates to the second limit problem
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introduced by Grenander [31] which reffered to the behavior of the probability distri-

bution as the order of the graph (and hence the number of random edges in the model)

tends to infinity.

Consider the energy H(y) of a graph y and the minimum energy mH as the mini-

mum value of H(x) over all graphs in the state space. If K denotes the set of graphs

with minimum energy mH and 1/γ (γ > 0) is a scaling constant for parameters, then a

scaling of the parameters of model 2.1 yields the model given by

P (Y = y) = (1/κ) exp

{∑
A⊆ND

(
λA
γ

)uA(y)

}
. (3.25)

This model can be rewritten in the form:

P (Y = y) = exp {− (H(y)−mH) /γ} /
[
|K|+

∑
y/∈K
{−(H(y)−mH)/γ}

]
,

(3.26)

from which it is clear that as γ becomes smaller (and the model parameters become

larger), the probability of graphs in the minimum energy set K approaches 1/|K| and

the probability of all other graphs approaches zero. It means that for some choices

of parameter values the simulation may reach a particular high-probability graph that

remains as the current graph for a large number of steps in the simulation. Such be-

havior is common as the size of the parameters increases. Grenander [31] described

such behavior as freezing and stated the first limit problem about the behavior of the

probability distribution while the interactions among variables are made stronger. When

γ increases in magnitude, the parameters of the model become very small and the

graph distribution approximates the Bernoulli distribution. Conversely, scaling the

parameters by an increasingly large constant positive value 1/γ (small values of γ)

inevitably leads to freezing. In practice, as the parameters become larger, the probability

density becomes concentrated uniformly on a subset of structures which are often very

regular in form and are referred to as frozen patterns. Frozen patterns often occur in

“degenerate” regions of the parameter space.

Following Grenander [31], Robins et al. [85] demonstrated that increasing all parame-
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ters values by the same factor results in movement toward degenerate regions. Although

most human social structures are stochastic, because of the presence of tendencies such

as transitivity and structural balance, it is possible that stochastic social systems may be

“enough close” to determinism. Robins et al. [85] interpreted degenerate regions as

areas where “stochasticism ” breaks down and deterministic structures emerge. Simu-

lating Markov random graph models with a judicious choice of parameters Robins et al.

examined how “close” an observed graph is to this phase transition from stochasticism

to determinism and dimonstrated that this subclass of models can produce the properties

of a small world. Contrary to Handcock [34] who argued that degenerate regions imply

uninteresting models which are not good at representing the social network data, Robins

et al. [85] proved that some degenerate models can be typical of complex systems

with phase transitions and result in graphs of theoretical importance (for instance: the

caveman graphs of Watts [111] or complete bipartite graphs).

In practice, many of the models proposed in the literature and used for representing

real social network data suffer from degeneracy in the sens defined by Handcock [34],

especially Markov graph models tend to these phenomena. The problem of degeneracy

and poor fitting can be resolved with using of the social circuit models based on recently

developed statistics (Section 2.2.4) which have been proven to be more robust and very

effective in representing real network data. These statistics seem to capture high-order

dependency structure in networks and to contain a lot of significant information about

network [99] [56] [87].

Goodreau et al. in [30] warned against assuming model degeneracy too quickly.

The problems with convergence can in some cases arise not because the model is a

degenerate one, but simply because the Markov chain has not been allowed to run long

enough to cover the sample space sufficiently. This is especially true if the starting

values θ0for the estimation are very far from the true MLE. There have been proposed

some options that one may explore before going on with the diagnosis of degeneracy.

One approach is to increase the size of MCMC sample, or interval, or both. Another

option is to decrease the length of steps, increase the maximum iterations through the
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simulation-estimation cycle, or both. A final choice is to introduce some constraints

on the estimation process, for instance to fix the number of edges in Monte Carlo

estimation procedures. In such models there are no density parameters and edges have

minor effects on other parameter estimates. Although fixing the number of edges can

be helpful to decrease the risk of degeneracy problems but the decision should be based

on a theoretical belief that this constraint appropriately captures the stochastic process

behind the network, if not, it may simply mask degeneracy rather than overcoming it.

3.5 Identifying model degeneracy and goodness of fit

It is quite complex to say which models are useful for a social network. Next

step, after we have fitted the model, is drawing graphs at random from the parameter

estimates. It makes it possible to compare the sampled graphs to the observed one and

decide if the fitted model is a good one for the data. A good statistical model should

capture the significance of various kinds of local processes and still be able to reproduce

the observed network at the global level. If our model can generate a distribution of

networks that have consistent network measures we may say it is a good model.

An observed graph which had a high likelihood of being replicated by a given set of

ERGM parameters is said to be a “good fit”. If it happens we may even hypothesize that

the global features of the network may be explained by the modeled structural effects.

It allows us to study the properties of the sampled networks in order to understand the

nature of networks that are likely to emerge from these effects.

Goodreau et al. [30] and Hunter et al. [55] presented some tools for diagnosis

of degeneracy in the model estimation implemented in the “statnet” package for R.

Apart from the tools such as check.degeneracy function, mcmc.diagnostics function

and graphical goodness of fit presented below, the authors suggested to analyze the

initial and final value of coefficients and the improvements in the log-likelihood values,

that should be relatively low numbers (e.g., less than 1 and generally decreasing). If a

number approaches 20.0, it indicates problems with convergence.

- Function check.degeneracy
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The check.degeneracy function is the control function of “ergm” estimation function

[55]. This function gives as the output the degeneracy.value calculated to assess the

degree of degeneracy in the model. If this value is equal to or larger than 1 indicates

high instabilities and suggests that the model is degenerate. If degeneracy.value is equal

to Inf (Infinity) diagnostics indicate that the model is very unstable and degenerate, and

that the numerical summaries are suspected. The value smaller than 1 means the model

is a good one.

- Function mcmc.diagnostic

Another function proposed in “statnet” package is the mcmc.diagnostics function, which

examines the diagnostics for the MCMC model fitting process. This function creates

simple diagnostic plots for the MCMC sampled statistics produced from a fit. The

plots illustrate what is happening to the model statistics during the last iteration of the

MCMC estimation procedure.

Figure 3.1 illustrates how chain behaves during the last iteration in the model which

Figure 3.1: The plots created by the mcmc.diagnostics function

fit data well (Figure 3.1 b) and in the degenerate model (Figure 3.1 a). On the left of

the diagnsotic plots the chain is represented as a time series for each model statistic,

while the right-hand side summarizes this chain in a histogram. Both are normalized to

the observed data, represented by 0. In a converged model, these statistics should vary

stochastically around the mean, but will not trend steadily away from the mean. For

each variable within each chain this function also prints the Raftery-Lewis diagnostics,
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which is a run length control diagnostic based on a criterion of accuracy of estimation

of the quantile q. It indicates about the number of iterations required to estimate the

quantile q to within an accuracy of +/- r with probability p. It also indicates if runs are

sufficient long and suggests which run length is required.

- Simulations and graphical goodness of fit

Another method for diagnosis of degeneracy is to evaluate if the model class is capable

to produce networks that resemble the observed network. It can happen that although a

maximum likelighood estimator θ̂, while providing in some sense the best model from

the particular class of models for a particular choice of u(y), does not necessarily result

in a partocularly good model in a practical sense [55]. The method proposed by Hunter

et al. [55] and Goodreau et al. [30] consists of simulating many networks (at least

100) from the final coefficient estimates and compare features of the observed network

with the same features of a set of simulated networks 3.2. If the original network is

inconsistent with the networks generated from the model, this suggests that the structure

of the network differs from those predicted by the model, and the model is not fitted

well. Figure 3.3 presents a way for comparing the observed network with generated

Figure 3.2: Principal idea of goodness of fit in ERGMs. Source: [54].

networks by plotting the full distribution of the statistic of interest represented by a

histogram and the value of this statistic in the observed network represented by an arrow.

Figure 3.3 a illustrates a model which is capable to generate networks with the number

of edges comparable to that of the original network. The right-hand plot (Figure 3.3
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b) illustrates a situation when the model is not able to riconstruct networks with the

number of triangles of the observed network. For methods based on simulations we

Figure 3.3: The number of edges (a) and the number of triangles (b) across 100 simulations compared to these statistics of the
observed network (arrow)

have to be sure that we use sufficiently large interval between our samples, in order

to minimize the autocorrelation between consecutive samples. It is important to state

burnin (the number of steps in the simulation chain before the simulated network is

drawn) at large number because it lets a chain moves from the starting network so

that the output is approximately independent of initial conditions; otherwise we may

obtain a plot that suggest that the model was well fitting, but in fact simply did not have

enough time to move away from the original network.

Since the method presented above provides some limitations because it gives possi-

bility to compare only a single outcome (i.e. number of edges) from the simulations,

Hunter et al. [57] proposed graphical tests of goodness of fit (the gof function).

Idea of this method is based on comparison of certain observed network statistics

difficult to be repressented with a single outcome (i.e. degree distribution) with the

values of these statistics for a large number of networks (the default number is 100)

simulated according to the fitted ERGM. The choice of the statistics determines which

structural aspects of the networks are important in assessing fit. In practice there are

considered three sets of statistics: the edgewise shared partner distribution, the geodesic

distance distribution and the degree distribution.

The graphical goodness of fit depicts the boxplots with results across 100 networks
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simulated from the fitted model. The vertical axes in plot can be explained as the relative

frequency or its logit. The solid line represents the statistics for the observed network.

The boxplots include the median and interquartile range. The light gray lines represent

the range in which 95 percent of simulated observation fall. The gof function prints

also the actual values with associated p-values. Figure 3.4 illustrates three different

Figure 3.4: Goodness of fit diagnostics

situation; plot a) shows how well simulated network resamble the edgewise shared

partner distribution of observed network; in the case b) simulated networks overestimate

low degrees and underestimate high degrees of degree distribution of observed network.

The plot c) presents that the network simulated according fitted model are not able to

represent the geodesic distance distribution observed in the network.

Hunter et al. [57], using the graphical tool for goodness of fit, distinguished two sit-

uations for identifying if the model fits well the original network. First, if the observed

network is not typical of the simulated network for a particular statistic included in the

ERGM vectoru(y,X), then the model is either degenerate. Second, if it happens for

the statistics not included in u(y,X) the model is poorly-fitting.

With regard to the values of the approximate log-likelihood for the MLE and AIC

it is worth noting that as the models become increasingly complex and include more

dyadic dependence terms, the approximations for the likelihood become increasingly

less precise [29]. Hunter et al.(2006) underlined that there are numerous problems

with AIC index because it is based on the approximate loglikelihood values and the

assumptions that justify the use of AIC for assessing goodness of fit are not appropriate
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in the case of social networks because the observations are not an independent and

identically distributed sample. If we consider a situation when we have to choose from

two different models a better one, we will choose the model with maximized values

of the log-likelihood function (or smaller value of AIC because lower AIC implying

a significant increase in model fit). In the work of Hunter et al. [57], the authors

compared their graphical methods for assessing goodness of fit with more traditional

methods such as AIC or BIC. In this case the model selection via AIC and BIC is

approximate at best and the goodness of fit plots provide a richer picture than AIC alone.

The graphical goodness of fit procedures are confirmed in the sense that models that

produce large reductions in (roughly approximate) AIC also seem to yield considerably

better fits in the graphical plots. The graphical goodness of fit is more informative than

the AIC results because the plots show which structural features are fit well and which

are not.





CHAPTER 4

Evaluation of degeneracy diagnostic
tools and parameter estimation

methods

As it has already emerged from the previous chapters, estimation and interpretation

are two critical points of research applications of statistical models in social networks

analysis. After obtained parameter estimates, as well as estimates of the uncertainty of

estimation, we may then take full advantage of having a statistical model for the network

that is constructed from specific dependence assumptions and that is estimated from

observed network data. According to the meaning of model parameters in describing

relational phenomena in social networks, the obtained estimates should be useful for

further investigation.

It is worth noting that the estimation step becomes complicated if the dependence

structure is complex, as it probably needs to be for any realistic model. As discussed

in detail in Section 3.1, only in the case of ERGMs with dyadic independent terms

the estimation can be based on the standard logistic regression method which means

that each run of these models exploits the same exact maximum likelihood calculation.

In the case of dyadic dependence models we need to use stochastic algorithms based

on Markov Chain Monte Carlo (MCMC) which provide the approximate maximum

likelihood estimates and require random number generation. [55].
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Apart from estimation, an important research goal is to evaluate whether the fitted model

is useful for describing the structure of the network under examination or whether it is a

degenerate model (3.4). It is quite complex to say which models are useful for a social

network. A good statistical model should capture the significance of various kinds of

local processes and still be able to reproduce the observed network at the global level. It

allows us to study the global properties of the sampled networks in order to understand

the nature of networks that are likely to emerge from the local effects. In the literature

there have been proposed some degeneracy and model diagnostic tools which help to

choose the model which fits the data well (see Section 3.5).

Considering the stochastic nature of the estimation procedures and the importance of the

diagnostic tools in the phase of evaluation of the fitted model, two research questions

have emerged that we would like to analyze:

• Results of diagnostic tools: Since the estimation algorithms do not provide

exactly the same results each time the algorithm is run, we are interested in

evaluating the information provided by degeneracy diagnostic tools implemented

in “statnet” for different runs of the same model. We assess if for different runs

the results of diagnostic tools are different and if it depends on network size.

• Results of estimation procedures: We compare the results from three estimation

procedures such as Newton-Raphson, Robbins-Monro and Stepping for networks

of different sizes to evaluate which of these methods exhibits the best accuracy

and gives the best approximation.

4.1 Study design

As stated above there are two important issues under examination which divide the

study into two parts which in some way are closely related to each other. The first one

deals with the assessment of the degeneracy diagnostic tools and the second one focuses

on comparison of three estimation methods based on MCMC technique which provide

the approximation of MLE. To our aims we focus on the “ergm” package which is one

of the “statnet” packages implemented in R [33] [36].
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- Network data

The study is performed using both, simulated and realistic networks. We use three

real network data such as the FLOMARRIAGE network, the ECOLI2 network and the

FAUX.MAGNOLIA.HIGH network. These networks are available in “ergm” package

(Figure 4.1). Table 4.1 illustrates principal statistics observed in the networks chosen

for the analysis.

To simulate networks we will use one of the examples presented in the work of Robins

et al. [85] where the authors clearly illustrate how Markov graph distributions based

on a locally specified social process can be used to produce small world graphs through

a judicious choice of parameter values.

Figure 4.1: Networks used for the analysis a) FLOMARRIAGE, b) ECOLI2 and c) FAUX.MAGNOLIA.HIGH

FLOMARRIAGE ECOLI2 FAUX.MAGNOLIA.HIGH

nodes 16 418 1461
edges 20 519 974

density 0.167 0.06 0.0009
2 stars 47 5290 1821

triangles 3 42 169
clust. coeff. 0.2784 0.0238 0.0306

Table 4.1: Graph statistics for real network data

• The data FLOMARRIAGE represents a data set analyzed by Padgett [74], con-

sisting of weddings among leading Renaissance Florentine families. It is an

undirected network with 16 nodes (families) and 20 edges (marital ties).
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• The data ECOLI2 is the undirected version of a biological network in which the

nodes are operons in Escherichia Coli and an edge from one node to another

indicates a regulating relationship between them. The data set is based on the

RegulonDB network [88] and was modified by Shen-Orr et al. [90]. It is a

network with 418 nodes, 519 edges.

• The network FAUX.MAGNOLIA.HIGH represents simulations of an in-school

friendship network with 1461 nodes (students), 974 undirected edges (mutual

friendship) [79]. There are three different attributes associated with the nodes in

this network Race, Sex and Grade.

• As simulated networks, we consider four networks of different sizes: Network 1

with 100 nodes, Network 2 with 300, Network 3 with 500 and Network4 with

1000 nodes. All of them are generated from the Markov random graph distribution

based on the vector of parameter values (-4.0, 0.1, -0.05, 1.0), where the values

are for the number of edges, the number of 2-stars, the number of 3-stars, and

the number of triangles, respectively. Table 4.2 presents principal characteristics

from simulated networks. We observe that densities and clustering coefficients

decrease with the increase the number of nodes for the Markov random graph

with these specific parameter values. It is worth noting how slowly the number of

triangles increases in comparison to the increase of number of 2-stars and 3-stars

in respective networks.

Network1 Network2 Network3 Network4
nodes 100 300 500 1000

density 0.0285 0.0174 0.0125 0.0075
2 stars 411 3822 9008 25825
3 stars 409 5751 15914 53769

triangles 11 39 77 158
clust. coeff. 0.0803 0.0306 0.0256 0.0184

Table 4.2: Graph statistics from simulated networks
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- Technical considerations

The main aim of the first part of the analysis is to evaluate practical methods for

diagnosis of degeneracy. We focus on the four degeneracy diagnostic tools in R such

as the check.degeneracy function, the mcmc.diagnostics function, simulations method,

graphical goodness of fit (the gof function) (3.5). We propose to evaluate information

provided for different runs of the same model. More details and results are presented in

Section 4.2.

The general strategy is as follows:
For FLOMARRIAGE and FAUX.MAGNOLA.HIGH networks we obtain 500 MLE esti-

mates based on the Newton-Raphson algorithm a large number of times. We analyze

the distribution of values provided by the check.degeneracy function and on the basis of

these values we choose seven sets of estimates obtained from different runs which will

be used for further evaluation. Then for each of the chosen configurations of estimates,

we evaluate the information provided by the other diagnostic tools to assess whether for

different runs of the model the results of diagnostic tools for degeneracy are different

and whether they depend on network size.

The main interest of the second analysis is to compare the performance of the maxi-

mumlikelihood (MLE) approximation techniques such as Newton-Raphson, Robbins-

Monro, Stepping.

We propose the following strategy:
We obtain 1000 the MLE estimates basing on the procedures under comparison to

obtain the distribution of estimates for each parameter. The first step is to investigate

the simple Bernoulli model for both, simulated and real networks. In this case we

evaluate the accuracy of the estimation procedures in approximating the true value of

MLE which is equal to the MPLE.

The next step is to examine for simulated networks the performance of the procedures in

fitting the model used for network simulation. In this case the values used for network

simulation are treated as the true values of parameters. In the case when the true value

of parameter is known, we evaluate accuracy and precision by computing: (1) the

bias of the estimates from the true values of parameters, (2) the sample variance of
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the estimates and (3) the mean squared errors (MSE) of the estimates. In the case of

complex models for real networks neither the true value of MLE nor the process which

creates the network is known. In this case we examine the variability of estimates

provided by the procedures under comparison and then we try to assess the capacity of

estimates in producing networks which resemble the observed networks. To do it we

use the expected values of estimate distributions as arguments for simulating a graph

distribution. We compare the generated networks to the observed graphs and decide if

the fitted model is a good one for the data.

Details about particular models, values of MCMC arguments and, finally, the results

are presented in Section 4.3.

One of the important aspects of analysis is to notice of some fundamental consider-

ations such as estimation procedures, values of θ0, MCMC arguments.

• For each network we investigate different model because as stated in Section

2.1.3 the effective choice of terms for an ERGM depends on the context and on

the structure of the observed network.

• For the goal of this analysis we consider three estimation procedures. The

primary method is a simple Newton-Raphson algorithm of maximum likelihood

estimation. Alternative methods are a stochastic approximation Robbins-Monro

and a partial Stepping algorithm. All three procedures have been described in

Section 3.2.

• As stated in Section 3.2 the stochastic estimation techniques requires one to

select an initial parameter value θ0. In practice, to obtain the convergence of the

algorithm the value θ0 has to be “close enough” to the true maximum likelihood

estimator. For goals of this analysis we chose the MPLE values obtained through

logistic regression - the usual method for fixing θ0 - as initial values of estimation

procedures.

• For each model the estimation procedure is repeated a large number of times. For

each run we change only the value of seed by fixing the random number generator
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to obtain exact reproducibility of estimates and to be sure that the same run will

not be repeated.

• The MCMC-based estimation methods require one to control initialization values

of a chain arguments such as a burnin (denoted burnin), an MCMC sample

size (denoted MCMCsamplesize), a number of iterations (denoted maxit), an

interval (denoted interval) and a length of steps (denoted steplength).

They determine:

- burnin: the number of initial samples discarded to avoid any possible bias

of the original network,

- MCMCsamplesize: the total number of samples taken,

- maxit: the number of times the parameter for the MCMC should be up-

dated by maximizing the MCMC likelihood,

- interval: the number of Markov Chain steps between successive sam-

ples in order to minimize the autocorrelation between consecutive samples,

- steplength: the argument which modifies the NewtonRaphson opti-

mization of the Monte Carlo approximation to the loglikelihood to account

for the uncertainty in the approximation to the actual log-likelihood.

The values of MCMC arguments will vary from application to application to

obtain the chains sufficiently long for models fitted for the networks.

• For purposes of this analysis for each run we control estimates, standard errors,

estimates of the error attributable to the MCMC algorithm (MCMC standard

errors), the value of maximum likelihood, the value of check.degeneracy function

and the value of AIC.

The R code of the function used for this analysis is given in Appendix A.
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4.2 Contribution to analysis of degeneracy diagnostic

tools

For this analysis we choose two real networks, a small one FLOMARRIAGE and

a large one FAUX.MAGNOLIA.HIGH. We focus on the four degeneracy diagnostic

tools in R such as the check.degeneracy function, the mcmc.diagnostics function,

simulations method, graphical goodness of fit (the gof function), which make it possible

to understand what is happening in the chains during estimation procedure and provide

good information about which structural features are fitted well and which are not.

The main interest is to analyze whether for different runs of the model the results of

diagnostic tools for degeneracy are different and whether they depend on network size

[100].

To avoid the problem of degeneracy we decided to consider recently developed

statistics described in Section 2.2.4. For the network FLOMARRIAGE we focus on a

model with statistics such as:

- the number of edges (denoted “edges”),

- the geometrically weighted dyadwise shared partner with value of φ equal 0.5

(denoted “gwdsp(0.5,fixed=TRUE)”),

- the geometrically weighted degree distribution with value of φ equal 1 (denoted

“gwdegree (1,fixed=TRUE)”).

For the network FAUX.MAGNOLIA.HIGH we focus on the model with the seven struc-

tural parameters, related to network statistics such as:

- the number of edges (denoted “edges”),

- the geometrically weighted edgwise shared partner with value of φ equal 0.1

(denoted “gwesp(0.1,fixed=TRUE)”),

- the geometrically weighted dyadwise shared partner with value of φ equal 0.1

(denoted “gwdsp(0.1,fixed=TRUE)”),

- the geometrically weighted degree distribution with value of φ equal 0.1 (denoted

“gwdegree (0.1,fixed=TRUE)”).
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To represent the nodal attribute effect, we use uniform homophily terms such as ”node-

match” which adds one network statistic to the model, which counts the number of

edges (i, j) for which nodes i and j has the same attribute name [69]:

- “nodematch(“Grade”, diff=FALSE)”,

- “nodematch(“Race”, diff=FALSE)”,

- “nodematch(“Sex”, diff=FALSE)”).

This analysis is carried out on the version 2.2-4 of the ergm package (22 April 2010).

For each network we repeat 500 times the estimation procedure for two models with

the same terms but different values of MCMC arguments such as number of iterations

(maxit), burnin, MCMCsamplesize and steplength (Table 4.3). To monitor

the statistical properties of the MCMC algorithm, we use the function mcmc.diagnostics

which gives the possibility to control the performance of the MCMC algorithms graphi-

cally and numerically and provides both, plots and some numerical diagnostics which

indicate if the chain is sufficiently long to converge (see Section 3.5).

Model 1.1 Model 1.2 Model 2.1 Model 2.2
Burnin 1e+4 1e+5 1e+4 1e+5

MCMCsample 1e+4 1e+5 1e+4 1e+5
Steplength 0.5 0.25 0.5 0.25

Interval 100 100 100 100
maxit 3 10 3 15

Table 4.3: Values of MCMC procedure arguments

In models 1.1 and 2.1 we focus on default argument values proposed in the “ergm” esti-

mation function. Since for MCMC-based estimation methods it is important to obtain a

chain sufficiently long [30] we decide to change values of some MCMC arguments. In

the models 1.2 and 2.2 we increase the number of iterations from 3 to 10 for model for

FLOMARRIAGE, network and from 3 to 15 for model for FAUX.MAGNOLIA.HIGH. We

also increase the value of burnin from 1e+4 to 1e+5 which means that we discard

more initial samples to avoid any possible bias of the original network. We also increase

MCMCsamplesize from 1e+4 to 1e+5 to obtain bigger sample size. We decrease the

value of steplength from 0.5 to 0.25 to make fitting more stable. In the models 1.1
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and 2.1 chains have 1.01 million steps (10,000 + 10,000100 ) and in the models 1.2

and 2.2 their length is of 10.1 million steps (100,000 + 100,000100). While analyzing

outputs of control diagnostic we notice that both, the chain in the model 1.1 and the

chain in the model 1.2, are sufficiently long to obtain estimates, but since the second

one is longer and should ensure more precision we choose this one for further analysis.

For models 2.1 and 2.2 the second one demonstrates the more adequate length so this

one is chosen for further analysis.

It is worth noting that for with the FLOMARRIAGE network for different runs the

estimates obtained from the Newton-Raphson procedure presented values very dif-

ferent from one another (more than two standard errors). Indeed, for the results for

FAUX.MAGNOLIA.HIGH we notice better stability.

Table 4.4 and Table 4.5 present same principal statistics such as Minimum and Maxi-

mum values, 1st and 3rd Quartiles, Median and Mean for distributions of estimates and

degeneracy.value obtained for 500 runs of estimating procedures for the model 1.2 and

the model 2.2, respectively.

Min. 1st Qu. Median Mean 3rd Qu. Max
edges -6.482 -4.134 -3.768 -3.788 -3.440 -1.690
gwdsp -0.2806 0.2889 0.3588 0.3664 0.4410 1.0990

gwdegree 1.062 1.378 1.473 1.470 1.556 1.778
deg.val 0.9297 2.6490 4.0640 5.3150 6.6760 Inf

Table 4.4: Principal statistics for distributions of estimates and degeneracy.value. Model 1.2.

Min. 1st Qu. Median Mean 3rd Qu. Max
edges -8.791 -8.428 -8.339 -8.335 -8.247 -7.950

nodematch.Grade 2.476 2.752 2.831 2.827 2.897 3.153
nodematch.Race 0.7113 0.9312 0.9938 0.9928 1.0590 1.2530
nodematch.Sex” 0.5378 0.7399 0.7995 0.7986 0.8577 1.0480

gwesp 1.523 1.647 1.694 1.693 1.734 1.903
gwdsp -0.3473 -0.3367 -0.3343 -0.3343 -0.3320 -0.3232

gwdegree -0.9821 -0.9362 -0.9280 -0.9284 -0.9200 -0.8964
deg.val 0.9323 4.5910 6.9400 7.5680 9.8310 Inf

Table 4.5: Principal statistics for distributions of estimates and degeneracy.value. Model 2.2.

Below we present the detailed analysis for seven runs chosen from 500 runs of the
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model 1.2 and the model 2.2. We try to answer the question whether the diagnostic tools

provide diverse results for different runs. We try to examine if the use of diagnostic

tools may help to choose the run with estimates that fit the data well in the case when

estimates differ from each other for different runs of the model.

Seed Seed Seed Seed Seed Seed Seed
274 324 76 140 433 143 402

deg.val Inf 17 6.3 3.2 2.3 1.4 0.92
edges -2.007 -4.88 -4.7954 -3.477 -3.698 -3.93 -3.87

(0.49) (0.46) (0.75) (0.52) (0.45) (0.51) (0.5)
gwdsp 0.279 0.794 0.6596 0.3288 0.3562 0.3489 0.3922

(0.07) (0.1) (0.19) (0.12) (0.09) (0.012) (0.11)
gwdegree 1.393 1.472 1.369 1.4456 1.4145 1.3442 1.4303

(0.15) (0.13) (0.15) (0.13) (0.18) (0.12) (0.13)
mle.lik -34.45 -40.5 -49.93 -51.35 -50.53 -52.01 -51.68

AIC 74.9 87 105.86 108.7 107.06 110.03 109.36
Table 4.6: Results for fits chosen from 500 runs of model 1.2

The first function which we use is the check.degeneracy function. For model 1.2

11.4% of runs present degeneracy.value equal Inf which means the model is very un-

stable and degenerate. Only about 1% of degeneracy.values are smaller than 1. For

model 2.2 2% of runs presented degeneracy.value equal to Inf which means the model

is very unstable and degenerate. Only 0.4% of runs presented degeneracy.value smaller

than1. Figure 4.2 illustrates the distributions of degeneracy.value without values equal

Inf which resulted for fits of model 1.2 and model 2.2. In the case of the model 1.2 the

distribution dimonstrates a pronounced right skew, the mean is equal to 5.31 and 50%

of runs result with degeneracy.value higher than 2.65 and smaller than 6.68. For the

model 2.2 we notice the mean equal to 7.56 and 50% of runs with degeneracy.value

higher than 4.59 and smaller than 9.83. For the FLOMARRIAGE network, analyzing

diagnostic plots obtained from the mcmc.diagnostic function and presented in Figure

4.3, we notice that chains of runs with small degeneracy.value (seed=143, seed=402)

move stochastically around 0 which represents the value of the statistic in the observed

network. Runs with higher degeneracy.value (seed=274, seed=324, seed=65) illustrate
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Figure 4.2: Boxplot of the degeneracy.value distribution for runs of model 1.2 and model 2.2.

that the process is very unstable and networks generated during the last iteration of the

MCMC estimation procedure overestimate or underestimate statistics included in the

model 1.2 in comparison to the observed network. Figure 4.4 and Figure 4.5 illustrate

the number of edges and the number of triangles, respectively, across 100 simulations

from model 1.2 compared to the number of edges and the number of triangles of the

observed network (red arrow and green arrow, respectively). It is worth noting that

for the examples chosen for analysis the runs with degeneracy.value equal to 3.2 or

smaller are able to generate large number of networks that reproduce the number of

triangles of the observed network. With regard to the number of edges we observe that

the runs with degeneracy.value 1.4 and 0.92, in comparison to the other fits, generate

more networks which resemble the number of edges of the observed network. The run

with degeneracy.value equal to Inf is not able to reproduce either number of edges or

the number of triangles of the observed network.

Figure 4.6 and Figure 4.7 illustrate the goodness of fit for distribution of edgewise

shared partners and minimum geodesic distance distribution, respectively. We note that

fits with Inf or high values of degeneracy.value are not able to reproduce the edgewise

shared partner distribution and the geodesic distance distribution in an appropriate way.

Runs with degeneracy.value equal to 3.2 or smaller are able to generate networks which
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Figure 4.3: Diagnostic plots for the MCMC sampled statistics produced from fits with different seed and different degener-
acy.value. Model 1.2

present the edgewise shared partner distribution and the geodesic distance distribution

similar to the observed networks. In the case of FLOMARRIAGE dataset the runs with

high degeneracy.value present larger values of approximate log-likelihood (or smaller

values of AIC) in comparison to the runs with small values of degeneracy.value. We

notice that run with degeneracy.value equal to Inf presents the most improved value of

loglikelihood equal to -34.46 which, in comparison to -52.01 and -51.68 from the fit

with degeneracy.value equal 1.4 and 0.92, respectively, shows an important difference.

It might be a sign of the situation that estimates of fit with degeneracy.value equal

Inf maximize loglikelihood function but the observed network may not be particularly

likely relative to other networks.

In the case of the large network FAUX.MAGNOLIA.HIGH, we notice that for fits
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Figure 4.4: The number of edges across 100 simulations from different runs of model 1.2 compared to the number of edges in
the observed network (red arrow).

Figure 4.5: The number of triangles across 100 simulations from different runs of model 1.2 compared to the number of triangles
in the observed network (green arrow).

with different seeds for two models (model 2.1 and model 2.2) estimates do not differ

so strongly as in the case of the FLOMARRIAGE network. (Table 4.5 and Table 4.7 )
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Figure 4.6: Graphical goodness of fit for distribution of edgewise shared partners for fits with different degeneracy.value (model
1.2)

Figure 4.7: Graphical goodness of fit for minimum geodesic distance distribution for fits with different degeneracy.value (model
1.2)

With regard to the mcmc.diagnostics plots for FAUX.MAGNOLIA.HIGH network (Figure

4.8) we notice that only chains of fits with very small degeneracy.value (seed=403,



90 EVALUATION OF DEGENERACY DIAGNOSTIC TOOLS AND PARAMETER ESTIMATION METHODS

Seed Seed Seed Seed Seed Seed Seed
429 21 249 53 49 403 7

deg.val Inf 18 5.9 3.5 2.8 1.8 0.7
edges -8.137 -8.288 -8.124 -8.595 -8.256 -8.315 -8.35

(0.1) (0.103) (0.096) (0.108) (0.102) (0.11) (0.107)
nodemG 2.782 2.69 2.739 2.904 2.748 2.748 2.849

(0.086) (0.086) (0.076) (0.089) (0.085) (0.089) (0.092)
nodemR 0.745 1.078 0.903 1.178 0.883 1.049 1.04

(0.072) (0.072) (0.07) (0.078) (0.069) (0.076) (0.066)
nodemS 0.826 0.725 0.723 0.789 0.854 0.829 0.799

(0.06) (0.061) (0.061) (0.065) (0.064) (0.0.69) (0.072)
gwesp 1.66 1.744 1.743 1.75 1.779 1.739 1.675

(0.051) (0.045) (0.0047) (0.046) (0.043) (0.054) (0.044)
gwdsp -0.337 -0.338 -0.333 -0.337 -0.336 -0.336 -0.332

(0.004) (0.003) (0.004) (0.004) (0.004) (0.005) (0.005)
gwdegree -0.916 -0.93 -0.928 -0.93 -0.917 -0.916 -0.933

(0.019) (0.019) (0.02) (0.018) (0.019) (0.02) (0.018)
mle.lik -5438.5 -5442.7 -5456.1 -5457.1 -5458.2 -5459.7 -5460.4

AIC 10891 10899 10926 10928 10930 10933 10935
Table 4.7: Results for fits chosen from 500 runs of model 2.2

seed=7) move stochastically around the mean (observed network). For the remaining

fits we observe that networks generated during the last iteration of the MCMC estima-

tion procedure in comparison to the observed network (represented by 0) overestimate

statistics included in the model 2.2. With regard to the results of simulations and

graphical goodness of fit we notice that although fits have different degeneracy.value

they manage to reproduce distributions of respective statistics equally well. For the

FAUX.MAGNOLIA.HIGH network we notice that all runs are able to produce well net-

works with the number of edges similar to the observed network (Figure 4.9). None of

the chosen runs is able to generate networks with the number of triangles of the observed

network, generally the generated networks underestimated this network feature. With

regard to the graphical goodness of fit we notice that the runs chosen for this analysis

reproduced distributions of respective statistics in the same way. As an example, we

present Figure 4.10 which illustrates the degree distribution. We can observe that the

chosen runs with different degeneracy.value produce networks which equally overesti-
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Figure 4.8: Diagnostic plots for the MCMC sampled statistics produced from fits with different seed and different degener-
acy.value. Model 2.2

mate low degrees and underestimate high degrees of the original network.

Generally, while analyzing results for the small network we observe that runs with

small degeneracy.value, with regard to all diagnostic tools, show ability to reproduce

the observed networks. Runs with large values of degeneracy.value are not able to

reproduce the observed network. Since in this case the fits with different seed provide

estimates which are quite different one from each other, the use of all diagnostic tools

may be very helpful to choose good parameter estimates and the check.degeneracy

function may be recommended as a first selection criterion.

In the case of the FAUX.MAGNOLIA.HIGH network, we notice that estimates do not

differ for runs with different seeds so strongly as in the case of the FLOMARRIAGE net-

work. In this case we observe that the importance of the check.degeneracy in choosing

good parameter estimates is not so big as in the case of the small network. Outputs

of the mcmc.diagnostics show that fits with higher degeneracy.value present higher
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Figure 4.9: The number of edges across 100 simulations from different runs of model 2.2 compared to the number of edges in
the observed network (red arrow).

Figure 4.10: Graphical goodness of fit for degree distribution for fits with different degeneracy.value (model 2.2)

instability of chains. With regard to the results of simulations and graphical goodness

of fit we noticed that although fits have different degeneracy.value they manage to



4.3 Comparison of Newton-Raphson, Robbins-Monro, Stepping estimation procedures 93

reproduce distributions of respective statistics equally well. We attribute this to the fact

that for different runs estimates do not differ so much one from the other.

Results of this analysis show that although we use new specification statistics which

help to avoid problem of degeneracy it is important to evaluate information from differ-

ent degeneracy diagnostic tools and to control degeneracy and instability not only of

different models but also of different runs of the same model. The tools analyzed above

give the possibility to understand what is happening in the chains during estimation

procedure and provide good information about which structural features are fit well and

which are not.

4.3 Comparison of Newton-Raphson, Robbins-Monro,

Stepping estimation procedures

The main interest of this part of the analysis is the comparison of the three different

algorithms for approximation of the maximum likelihood estimator available in ergm

package for R, such as the Newton-Raphson, the Robbins-Monro, the Stepping pro-

cedures. A simple Newton-Raphson algorithm is used as default by “ergm” function

which fits exponential-family random graph models. Alternative methods of maximum

likelihood estimation is a form of stochastic approximation called Robbins-Monro,

chosen with the control.ergm (style = “Robbins-Monro”) option and a partial stepping

algorithm, chosen with the control.ergm (style = “Stepping”) option. In this analysis

we will focus on the version of the ergm package (the version 2.2-5 from 24 July 2010).

Networks chosen for analysis are four networks generated from the Markov random

graph distribution based on the vector of parameter values (-4.0, 0.1, -0.05, 1.0) and

three real networks such as: the FLOMARRIAGE network, the ECOLI2 network and the

FAUX.MAGNOLIA.HIGH network (see Section 4.1).

Firstly we consider a simple independent dyadic model with one term, the number

of edges (denoted “edges”) for four simulated networks. Model fittings for all the
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networks are based on default MCMC argument values proposed in “ergm” function

such as burnin equal to 1e+4, MCMCsamplesize equal to 1e+4 and interval

equal to 100.

Since in the case of the Bernoulli model the value of maximum likelihood estimator is

equal to the MPLE and can be found using the standard logistic regression, to obtain

approximations we force all the three methods to use MCMC maximum likelihood.

Because as stated before we use θ0 equal the value of MPLE as initial parameter value,

in this situation we are sure that θ0 is “really close” to the true value of the maximum

likelihood estimator and we are able to evaluate which algorithm provide more precise

approximations.

Figure 4.11 depicts boxplots of distributions of the maximum likelihood estimates of the

“edges” terms for 1000 runs with different seeds. Each boxplot is labeled according to

the estimation procedure: Newton-Raphson, Robbins-Monro, Stepping. Each subfigure

corresponds to the results of the network of different sizes: a) 100 nodes, b) 300 nodes,

c) 500 nodes and d) 1000 nodes. The horizontal line through each section represents

the true parameter value. The boxplots give the quartiles and tails of each distribution,

the dots correspond to the means of those distributions. The bias of each expected

value of the estimates from the true value of parameter and the mean squared error of

the estimates is presented in Table 4.8. It is worth noting that for all three algorithms

the absolute values of bias are smaller than 0.008. We notice that the bias for the

Newton-Raphson for all four networks exhibits a negative sign and for the Stepping

procedure it has a positive sign. Since all the procedures demonstrate the bias very

close to 0 so MSE is equal to the variance of estimates.

Network 1 Network 2 Network 3 Network 4
Newton-Raphson (1) -0.00114 (1) -0.00056 (1) -0.00017 (1) -0.00009

(2) 0.00065 (2) 0.00015 (2) 8.28e-05 (2) 4.89e-05
Robbins-Monro (1) 0.00008 (1) -0.00182 (1) -0.0077 (1) -0.00027

(2) 2.704e-05 (2) 0.00039 (2) 0.00179 (2) 0.00028
Stepping (1) 0.00025 (1) 0.00035 (1) 0.00044 (1) 0.0005

(2) 3.24e-06 (2) 4.41e-06 (2) 7.84e-06 (2) 1.156e-05
Table 4.8: The bias of the expected value of the estimates from the true value of parameter (1) and the mean squared errors of
the estimates (2). The Bernoulli model for simulated networks.
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For the networks with 300, 500 and 1000 nodes the approximations of MLE obtained

from the Robbins-Monro algorithm present the biggest values of MSE so also variability.

The Stepping algorithm presents the smallest variability from all the three procedures.

For the Robbins-Monro procedure we notice that the distributions of estimates present

the increase of the number of outlayers with increasing number of nodes. After this

preliminary examination we consider the Stepping procedure the most accurate. The

Figure 4.11: Boxplot of distribution of the approximations of MLE of the “edges” term for 1000 runs (with different seeds)
of three different estimation procedures for networks simulated from Markov graph distribution with parameters (-4,0.1,-0.05,1).
Line illustrates the true value of the parameter. The dots correspond to the means of the distributions.

next step is to examine results provided by the estimation procedures for a more com-

plex model for simulated networks. In this case we fit the Markov model with the

terms used for network generation so the true value of parameters are also known. As

stated before (Section 2.2.3), the Markov model is considered not to be very useful in

describing real social phenomenon because of the problem of degeneracy. However

since the simulated networks have been generated from this model we can expect that it
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will be able to describe the structure of them and the problem of degeneracy will not

occur. The Markov model is more complex and requires different values of MCMC

argument for networks of different sizes (Table 4.9).

MCMCsamplesize Burnin Interval
Network 1 2e+4 1e+4 1000
Network 2 2e+4 1e+4 1000
Network 3 2e+4 3e+4 1000
Network 4 2e+4 1e+5 1000

Table 4.9: Values of MCMC arguments for fits from Markov model for simulated networks

Figures 4.12, 4.13, 4.14 and 4.15 depict boxplots of distributions of the approximations

of the MLE for parameters of the number of edges, the number of 2-stars, the number

of 3-stars, and the number of triangles terms, respectively.

Figure 4.12: Boxplot of distribution of the approximations of the MLE of the “edges” term of Markov model for 1000 runs
(with different seeds) of three different estimation procedures. The dots correspond to the means of the distributions. The true
value of the parameter is equal to -4.
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Network 1 Network 2 Network 3 Network 4
Newton-Raphson (1) 0.33147 (1) -0.61511 (1) -0.356 (1) -0.656

(2) 6.4e-06 (2) 1.85e-07 (2) 2.25e-08 (2) 9.76e-09
(3) 0.10988 (3) 0.37836 (3) 0.12644 (3) 0.43014

Robbins-Monro (1) 0.33037 (1) -0.611 (1) -0.356 (1) -0.652
(2) 5.71e-06 (2) 5.48e-06 (2) 3.39e-06 (2) 6.1e-06
(3) 0.10915 (3) 0.37333 (3) 0.12651 (3) 0.42547

Stepping (1) 0.32855 (1) -0.568 (1) -0.303 (1) -0.401
(2) 1.79e-05 (2) 1.78e-05 (2) 3.86e-05 (2) 0.00011
(3) 0.10799 (3) 0.32326 (3) 0.09183 (3) 0.16118

Table 4.10: The bias of the expected value of the estimates from the true value of parameter (1), the sample variance of the
estimates (2) and the mean squared errors of the estimates (3). “Edges” term of the Markov model for simulated networks.

The approximations of MLE for “edges” term obtained from the Stepping algorithm

exhibit the highest variability but it is worth noting that in comparison to the estimates

provided by other two methods, these results demonstrate the smallest bias from the

true value of parameter. It exhibits also the smallest values of MSE. The results of

Newton-Raphson present the smallest variability for networks with 300, 500 and 1000

nodes and with the increasing number of nodes they present less outlayers and become

less variation. The Newton-Raphson and the Robbins-Monro demonstrate very similar

values of mean squared errors.

Network 1 Network 2 Network 3 Network 4
Newton-Raphson (1) -0.08798 (1) 0.11576 (1) 0.0427 (1) 0.1034

(2) 7.83e-05 (2) 3.8e-06 (2) 9.98e-07 (2) 5.63e-07
(3) 0.00782 (3) 0.0134 (3) 0.00182 (3) 0.0107

Robbins-Monro (1) -0.09167 (1) 0.11561 (1) 0.0426 (1) 0.1034
(2) 4e-08 (2) 1.44e-08 (2) 3.2e-09 (2) 5.76e-09
(3) 0.0084 (3) 0.01337 (3) 0.00181 (3) 0.0107

Stepping (1) -0.090648 (1) 0.1087 (1) 0.0331 (1) 0.069
(2) 1.64e-06 (2) 7.23e-07 (2) 1.04e-06 (2) 2.04e-06
(3) 0.00823 (3) 0.01184 (3) 0.0011 (3) 0.00476

Table 4.11: The bias of the expected value of the estimates from the true value of parameter (1), the sample variance of the
estimates (2) and the mean squared errors of the estimates (3). “2-star” term of the Markov model for simulated networks.

In the case of “2-star” and “3-star” terms, it is necessary to underline that for network

generation the values of this terms have been chosen very small, 0.1 and -0.05, respec-
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Figure 4.13: Boxplot of distribution of the approximations of the MLE of the “2-star” term of Markov model for 1000 runs
(with different seeds) of three different estimation procedures. The dots correspond to the means of the distributions. The true
value of the parameter is equal to 0.1.

tively.

Network 1 Network 2 Network 3 Network 4
Newton-Raphson (1) 0.04748 (1) -0.02082 (1) -0.0047 (1) -0.01888

(2) 0.00015 (2) 2.07e-06 (2) 4.796e-06 (2) 5.041e-07
(3) 0.00241 (3) 0.00044 (3) 2.69e-05 (3) 0.00036

Robbins-Monro (1) 0.04269 (1) -0.02093 (1) -0.00491 (1) -0.01896
(2) 1.296e-07 (2) 9.24e-09 (2) 1.21e-08 (2) 3.058e-09
(3) 0.00182 (3) 0.00044 (3) 2.41e-05 (3) 0.00036

Stepping (1) 0.04193 (1) -0.01985 (1) -0.00307 (1) -0.01378
(2) 1.68e-07 (2) 4e-08 (2) 3.61e-08 (2) 4.84e-08
(3) 0.00176 (3) 0.00039 (3) 9.42e-06 (3) 0.00019

Table 4.12: The bias of the expected value of the estimates from the true value of parameter (1), the sample variance of the
estimates (2) and the mean squared errors of the estimates (3). ”3-star” term of the Markov model for simulated networks.

Parameters indicate the strength of the effects in the data. If we want the particular



4.3 Comparison of Newton-Raphson, Robbins-Monro, Stepping estimation procedures 99

configuration to occur more frequently than by chance (the parameter equal zero) we

have to define the corresponding parameter to be large and positive. In this case the

values are very close to zero so we can expect that the effect of ”2-star” and ”3-star” in

simulated networks is very weak. For the network with 100 nodes parameter estimates

are insignificant for almost all runs.

Network 1 Network 2 Network 3 Network 4
Newton-Raphson (1) 0.05074 (1) -0.28895 (1) -0.0878 (1) 0.102

(2) 8.46e-07 (2) 2.89e-08 (2) 2.56e-08 (2) 6.76e-08
(3) 0.00258 (3) 0.08349 (3) 0.00771 (3) 0.01039

Robbins-Monro (1) 0.08152 (1) -0.2805 (1) -0.0915 (1) 0.099
(2) 8.724e-05 (2) 5.155e-05 (2) 4.858e-05 (2) 4.57e-05
(3) 0.00673 (3) 0.07873 (3) 0.00842 (3) 0.00984

Stepping (1) 0.09485 (1) -0.2775 (1) -0.0915 (1) 0.099
(2) 8.468e-06 (2) 2.69e-06 (2) 3.063e-06 (2) 4.752e-06
(3) 0.00903 (3) 0.07707 (3) 0.00838 (3) 0.0098

Table 4.13: The bias of the expected value of the estimates from the true value of parameter (1), the sample variance of the
estimates (2) and the mean squared errors of the estimates (3). “Triangle” term of the Markov model for simulated networks.

For the networks with 300, 500 and 1000 nodes we notice that demonstrate that the

Stepping procedure provides smaller bias from the true value of the parameter than

the estimates obtained from the other two procedures (Table 4.11, Figure 4.13 (b), (c),

(d)). In this case we notice also the smallest values of MSE. For “3 star” estimates we

observe the same situation but for all four networks (Table 4.12). In the case of “2-star”

and “3-star” statistics the Robbins-Monro exhibits the smallest variation. With regard to

the “3-star” statistic the Newton-Raphson exhibits the biggest variability from all three

methods. The Newton-Raphson and the Robbins-Monro demonstrate similar values of

bias and MSE.

Figure 4.15 demonstrates results obtained for “triangle” statistic. For all four networks

the Newton-Raphson procedure exhibits the smallest variation and the Robbins-Monro

the highest one. For the networks of 100 and 500 nodes the Newton-Raphson demon-

strates estimates which provide the smallest bias from the true value of the parameter

and the smallest values of MSE (Table 4.13, Figure 4.15 (a), (c)). For networks with

500 and 1000 nodes the Robbins-Monro and the Stepping demonstrate equal bias but
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Figure 4.14: Boxplot of distributions of the approximations of MLE of the “3-star” term of Markov model for 1000 runs (with
different seeds) of three different estimation procedures. The dots correspond to the means of the distributions. The true value of
the parameter is equal to -0.05.

the Stepping exhibits smaller variability.

After analysis based on the simulated networks we consider the Stepping procedure

to be more precise in approximation of MLE. It demonstrates the smallest variability

for approximation of the true value MLE in the dyadic independence model. For

more complex models even though it exhibits higher variation than other techniques it

demonstrates results which are the closest to the values of parameters.

The next step of the analysis is to evaluate results obtained for real network data.

As real data we consider three networks such as the FLOMARRIAGE, the ECOLI2, and

the FAUX.MAGNOLIA.HIGH network data. As in the case of simulated networks, firstly

we evaluate the results of fitting the dyadic independence model. Table 4.14 illustrates

the bias of the expected value of estimates from the true value of the parameter. In

the case of real network data the procedures exhibit negligible bias, there is no bias
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Figure 4.15: Boxplot of distribution of the approximations of MLE of the “triangle” term of Markov model for 1000 runs (with
different seeds) of three different estimation procedures. The dots correspond to the means of the distributions. The true value of
the parameter is equal to 1.

with an absolute value bigger than 0.00074. For all the three networks the highest bias

was demonstrated by the Newton-Raphson procedure, indeed the smallest one by the

Robbins-Monro.

FLOMARRIAGE ECOLI2 FAUX.MAGNOLIA.HIGH

Newton-Raphson (1) 0.00072 (1) -0.00057 (1) -0.00074
(2) 0.00368 (2) 0.0002 (2) 0.00013

Robbins-Monro (1) 0.00004 (1) 0.00002 (1) -0.00033
(2) 5.5431e-05 (2) 1.32456e-05 (2) 1.110617e-05

Stepping (1) 0.00016 (1) 0.00044 (1) 0.00048
(2) 4.93719e-06 (2) 4.61455e-06 (2) 5.405132e-06

Table 4.14: The bias of the expected value of the estimates from the true value of parameter (1), the mean squared errors of the
estimates (2). The Bernoulli model for real network data.

While analyzing results obtained for estimation of simple dyadic independence model

for real networks, we can observe that all the three procedures show similar behaviors as
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in the case of the simulated networks. The Newton-Raphson demonstrates the highest

variability while the Stepping the smallest one. To analyze the accuracy of the proce-

Figure 4.16: Boxplot of distribution of the approximations of MLE of the “edges” statistic for 1000 runs (with different seeds)
of three different estimation procedures for real network data (a) FLOMARRIAGE, (b) ECOLI2, (c) FAUX.MAGNOLIA.HIGH. Line
illustrates the true value of the parameter and the dots correspond to the means of the distributions.

dures for more complex models we consider models based on the recent developed

statistics. In the case of real network data we do not consider the Markov graph model

because of its inadequacy in describing real social phenomena. For each network we

explore different models because as stated in Section 2.1.3 the effective choice of terms

for an ERGM depends on the context and on the structure of the observed network.

For each model we also use different values of MCMC arguments to obtain chains

sufficiently long.

For the FLOMARRIAGE network we use the model with terms such as the number

of edges (denoted “edges”), the geometrically weighted dyadwise shared partner

with value of φ equal to 0.5 (denoted “gwdsp(0.5,fixed=TRUE)”) and the geomet-

rically weighted degree distribution with value of φ equal to 1 (denoted “gwdegree

(1,fixed=TRUE)”). The value of arguments of MCMC are as follows: burnin equal

to 1e+4, MCMCsamplesize equal to 1e+4 and interval equal to 100. Figure

4.17 demonstrates boxplot of the distribution of estimates obtained from different algo-

rithms; each subfigure relates to different term used in the model. We notice that the

Robbins-Monro exhibits the smallest variations (Table 4.14). For ”edges” and ”gwde-
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gree” parameters the Stepping algorithm demonstrates the highest variation. There is a

pronounced left skew to the edges parameter estimates for the Stepping procedure and

the right skew to the gwdegree parameter estimates for the Newton-Raphson and the

Robbins-Monro procedures.

It is worth noting that in this version of “ergm” package, the estimates obtained from

Figure 4.17: Boxplot of distribution of the approximations of MLE for model parameters for real network data FLOMARRIAGE,
terms: (a) edges, (b) gwdsp(0.5,fixed=TRUE) and (c) gwdegree(1,fixed=TRUE) of three different estimation procedures. The
dots correspond to means of the distributions.

the algorithm Newton-Raphson for small networks do not present such great instability

as those obtained from the version 2.2-4 (22 April 2010) and previous versions. Unfor-

tunately there is no documentation of the changes to ergm from version 2.2-4 to 2.2-5

and we are not able to highlight the source of the improvements.

After analysis of the variability of the estimates we decide to evaluate the capacity of

estimates provided by the procedures under comparison in simulating networks which

resemble the original network. For further analysis we use configurations of parameters

based on the expected values of estimates obtained from each estimation procedure

(Table 4.15).

We randomly generate a series of 100 networks from and compare how well simu-

lated networks resemble the observed network. Figure 4.18 illustrates histograms of the

number of edges and the number of triangles across 100 networks simulated from the

expected values of estimates obtained from three estimation procedures, compared to
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edges gwdsp gwdegree
Newton-Raphson (1) -4.132 (1) 0.3867 (1) 1.402

(2) 0.0007 (2) 0.0083 (2) 0.0079
Robbins-Monro (1) -4.121 (1) 0.3547 (1) 1.382

(2) 0.0001 (2) 7.69e-05 (2) 0.0039
Stepping (1) -3.973 (1) 0.3329 (1) 1.355

(2) 0.0353 (2) 0.0004 (2) 0.0163
Table 4.15: Expected values (1) and sample variances (2) of the estimates. Model for the FLOMARRIAGE network.

the number of edges (red arrow) and number of triangles (green arrow) of the original

network. It is evident that all three parameter sets generate networks which capture well

the edges and the triangles counts of the observed network. Figure 4.19 demonstrates

Figure 4.18: The number of edges (a) and the number of triangles (b) across 100 networks simulated using the expected values
of estimates obtained from three estimation procedures compared to the number of edges and the number of triangles in the
observed network (red arrow and green arrow). Model for the FLOMARRIAGE network.

plots provided by the geometrically goodness of fit and gives the possibility to evaluate

how simulated networks resemble the degree distribution, the minimum geodesic dis-

tance distribution and the edgewise shared partner distribution of the FLOMARRIAGE

network. We notice that all the three parameter sets generate networks which over-

estimate the number of nodes with degree 2 and underestimate the number of nodes
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with degree 3 (Figure 4.19 a). The value from the observed network is smaller than all

the 1st quartiles of distributions of the number of nodes with degree 2 and higher that

all the 3rd quartiles of distributions of the number of nodes with degree 3. The best

capturing of the minimum geodesic distance distributions of the observed network is

provided by networks simulated from the parameter set based on the Stepping algorithm

estimates. These distributions exhibit the smallest variability in comparison to those of

networks generated from the parameters obtained from the Newton-Raphson and the

Robbins-Monro procedures (Figure 4.19 b). The edgewise shared partner distribution of

the observed network is captured well by all the networks simulated from the parameter

sets obtained from the estimation procedures under comparison.

Comparing these three estimation procedures, we are also interested in evaluating their

execution times. To examine the computational times of fits provided from the methods

under comparison, we sample 100 runs for each procedure and we calculate the mean

time of a single run. In our simulations using a 64-bit 2.26GHz Intel Core 2 Duo,

the mean time of a single run for the Newton-Raphson take 21.67 seconds (s) versus

12.89 s for the Robbins-Monro and 10.82 s for the Stepping. For the small network the

Stepping procedure is the fastest one, its single run is two times faster than a run of the

Newton-Raphson method.

For the network ECOLI2 we focus on the model with the six structural parameters

such as the number of edges (denoted “edges”), the number of nodes of degree 2

(denoted “degree(2)”), the number of nodes of degree 3 (denoted “degree(3)”), the

number of nodes of degree 4 (denoted “degree(4)”), the number of nodes of degree 5

(denoted “degree(5)”) and the geometrically weighted degree distribution with value of

φ equal to 0.25 (denoted “gwdegree (0.25,fixed=TRUE)”) [53]. The value of burnin

is equal to 1e+5, MCMcsamplesize equal to 2e+4 and interval equal to 1000.

Figure 4.20 demonstrates boxplots for distributions of parameter estimates for terms

used in the model for the ECOLI2 network. All the estimates distributions demonstrate

very low variability with the exception of the estimates obtained from the Newton-

Raphson procedure for “edges” term and from the Robbins-Monro for the “degree(5)”

and “gwdegree” terms. The smallest dispersions are exhibited by the results of the
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Figure 4.19: Graphical goodness of fit for (a) the degree distribution , (b) the minimum geodesic distance distribution and (c)
the the edgewise shared partner distribution. Model for the FLOMARRIAGE network

Stepping procedure. For distributions provided by the Newton-Raphson method we

notice the most outlayers. In the case of this model it is worth noting that all the three

procedures demonstrate results which are very different to each other. The biggest

difference is noted for “gwdegree” term. Because of such different estimates among

the method under comparison it is very important to evaluate how simulated networks

manage to resemble the observed graph. Configurations of parameters used for further

analysis are formed by the expected values of estimates and are presented in Table 4.16.
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Figure 4.20: Boxplot of distribution of the approximations of MLE for model parameters for real network data ECOLI2, terms:
(a) edges, (b) degree(2), (c) degree(3), (d) degree(4), (e) degree(5) and
(f) gwdegree(0.25, fixed = TRUE) of three different estimation procedures. The dots correspond to means of the distributions.

We observe that only the parameter sets obtained from the expected values of es-

timates produced by the Robbins-Monro and the Stepping generate graphs with the

number of nodes which is equal to or very close to the number of nodes of the observed

network. Estimates produced by the Newton-Raphson method simulate networks with

disproportionate number of nodes (Figure 4.21 a). We observed that none of simulated

networks manages to resemble the number of triangles in the network under analysis

(Figure 4.21 b). While observing Figure 4.22 b, we can deduce that the Robbins-Monro

and the Stepping provide similar graph distributions which underestimate the number

of dyads with the minimum geodesic distance equal to 2 and overestimate the number

of dyads with the minimum geodesic distance equal 7, even though the latter procedure

exhibits slightly better results than the Robbins-Monro. The Newton-Raphson produces

networks which are not able to resemble the minimum geodesic distance of the observed
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edges degree2 degree3
Newton-Raphson (1) -5.471 (1) -2.564 (1) -3.056

(2) 0.0022 (2) 0.0004 (2) 0.0003
Robbins-Monro (1) -5.389 (1) -1.982 (1) -2.795

(2) 0.0005 (2) 0.0003 (2) 0.0005
Stepping (1) -5.066 (1) -1.459 (1) -2.35

(2) 2.2e-06 (2) 1.9e-06 (2) 4.63e-06
degree4 degree5 gwdegree

Newton-Raphson (1) -2.395 (1) -1.85 (1) 8.122
(2) 0.0009 (2) 0.0008 (2) 3.38e-05

Robbins-Monro (1) -2.554 (1) -2.54 (1) 4.397
(2) 0.0003 (2) 0.0092 (2) 0.0079

Stepping (1) -2.292 (1) -2.92 (1) 1.812
(2) 7.53e-06 (2) 1.27e-05 (2) 1.06e-05

Table 4.16: Expected values (1) and sample variances (2) of the estimates. Model for the ECOLI2 network.

Figure 4.21: The number of edges (a) and the number of triangles (b) across 100 networks simulated using the expected values
of estimates obtained from three estimation procedures compared to the number of edges and the number of triangles in the
observed network (red arrow and green arrow). Model for the ECOLI2 network.

graph. It manages to resemble only the number of dyads with the minimum geodesic

distance equal to 2 (Figure 4.22 b). The Stepping and the Robbins-Monro produce net-

works which well reconstruct the number of nodes with degrees from 0 to 5. However,



4.3 Comparison of Newton-Raphson, Robbins-Monro, Stepping estimation procedures 109

for the number of nodes with degrees higher than 8 we notice that generated networks

overestimate these statistics. The networks generated from the parameters obtained

form the Newton-Raphson are not able to reconstruct well the number of nodes with

degree higher tha 3 (Figure 4.22 a). Since the degree terms has been included in the

model we suppose that these parameter values may produce degenerate networks. With

regard to the edgewise shared partner distribution (Figure 4.22 c), none of the simulated

graph distributions is able to resemble the observed data and because this statistic has

not been included in the model we can say that the models are poor fitting for this

network feature. It is worth noting that both, configuration of parameters produced

by the Robbins-Monro and that produced by the Stepping method generate networks

which reconstruct the observed network in the same way even if parameters exhibit

values diffrent from one another. Comparing the execution times of three estimation

procedures we notice that for the ECOLI2 network the Robbins-Monro method turned

out the fastest one with a mean time for a run equal to 114.25 s which is two times

faster than the mean time of a single run produced by the Stepping 230.48 s. A mean

time for a single run of the Newton-Raphson is 193.83 s.

For the network FAUX.MAGNOLIA.HIGH we focus on the model with the seven

structural parameters, related to network statistics such as the number of edges (de-

noted “edges”), the geometricaly weighted edgwise shared partner with value of φ

equal to 0.1 (denoted “gwesp(0.1,fixed=TRUE)”), the geometrically weighted dyad-

wise shared partner with value of φ equal to 0.1 (denoted “gwdsp(0.1,fixed=TRUE)”),

the geometrically weighted degree distribution with value of φ equal to 0.1 (denoted

“gwdegree (0.1,fixed=TRUE)”) and with uniform homophily nodal attribute effect such

as “nodematch(“Grade”, diff=FALSE)”, “nodematch(“Race”, diff=FALSE)”, “node-

match(“Sex”, diff=FALSE)”. The value of burnin is equal to 1e+5, MCMcsamplesize

equal to 1e+5, the number of iterations (maxit) equal to 5 and interval equal to

100. For this network we notice that the estimates provided by the Newton-Raphson

show the smallest variability. The highest one is demonstrated by the results of the

Robbins-Monro procedure. For all distributions we observe noticeable skews, in the

case of parameter for “edges” term it is a right skew and for other parameters left
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Figure 4.22: Graphical goodness of fit for (a) the degree distribution , (b) the minimum geodesic distance distribution and (c)
the the edgewise shared partner distribution. Model for the ECOLI2 network.

skews are dimonstrated. We notice that only in the case of “nodemtach.Race” term the

expected values are very close to each other for all the three methods. In the case of

the estimates for the geometricaly weighted edgewise shared partner the procedures

give different results. The distribution of estimates provided by the Netwon-Raphson

has the smallest variance and its expected value is 1.663. The estimates resulted for

the Robbins-Monro exhibit the highest variability, the pronounced left skew and its

expected value is equal to 2.04. For the Stepping procedure we notice the slight right
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Figure 4.23: Boxplot of distribution of the approximations of MLE for model parameters for real network data
FAUX.MAGNOLIA.HIGH, terms: (a) edges, (b) nodematch(“Grade”, diff=FALSE), (c) nodematch(“Race”, diff=FALSE), (d) node-
match(“Sex”, diff=FALSE), (e) gwesp(0.1,fixed=TRUE), (f) gwdsp(0.1,fixed=TRUE),(g) gwdegree (0.1, fixed = TRUE) of three
different estimation procedures. The dots correspond to means of the distributions.

skew and the expected value equal to 1.837 (Figure 4.23). The expected values of

estimates form configurations of arguments used for further analysis and are illustrated

in Table 4.17.

Figure 4.24 illustrates how well the simulated networks resemble the number of

nodes of the observed graph. All three distributions contain networks with the number

of edges equal to the count of edges in the observed network. However, in the distribu-
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Figure 4.24: The number of edges (a) and the number of triangles (b) across 100 networks simulated using the expected values
of estimates obtained from three estimation procedures compared to the number of edges and the number of triangles in the
observed network (red arrow and green arrow). Model for the FAUX.MAGNOLIA.HIGH network.

edges nodematch.G nodematch.R nodematch.S
Newton-Raphson (1) -8.342 (1) 2.850 (1) 1 (1) 0.8059

(2) 2.66e-05 (2) 3.87e-05 (2) 3.74e-05 (2) 3.8e-05
Robbins-Monro (1) -8.192 (1) 2.845 (1) 0.9988 (1) 0.7879

(2) 0.0347 (2) 0.0006 (2) 0.0004 (2) 0.0003
Stepping (1) -8.458 (1) 2.783 (1) 0.9908 (1) 0.7738

(2) 0.0038 (2) 0.0003 (2) 0.0006 (2) 0.0005
gwesp gwdsp gwdegree

Newton-Raphson (1) 1.667 (1) -0.3286 (1) -0.9369
(2) 0.0001 (2) 4.49e-05 (2) 4.84e-05

Robbins-Monro (1) 2.05 (1) -0.3851 (1) -1.067
(2) 0.0065 (2) 0.0009 (2) 0.0095

Stepping (1) 1.837 (1) -0.3037 (1) -0.8562
(2) 0.001 (2) 0.0001 (2) 0.0008

Table 4.17: Expected values (1) and sample variances (2) of the estimates. Model for the FAUX.MAGNOLIA.HIGH network.

tion of networks based on the parameters obtained from the Robbins-Monro, there are

only a few of networks with this value of the number of edges and the most frequent are

networks with number of edges higher than 1100 and smaller than 1200 (Figure4.24 a).



4.4 Summary of results 113

With regard to the number of triangles we notice that only the configuration of pa-

rameters obtained from the Robbins-Monro produce some graphs with the number of

triangles similar to that of the observed graph, however the most frequent are networks

with higher number of triangles (Figure 4.24 b ). Configurations of parameters provided

by the other two procedures generate networks with the number of triangles smaller

than the presented by the observed graph.

The plots provided by the goodness of fit function (Figure 4.25) demonstrate that net-

works based on the results obtained from all three methods gives simular results. With

regard to the degree distributions we notice that simulated networks slightly overesti-

mate the number of nodes with degrees 2, 3 and underestimate the number of nodes

with degrees from 4 to 8; however the networks generated from the Robbins-Monro

parameters set give slightly worse results (Figure 4.25 a). With regard to the minimum

geodesic distance distribution we notice that the original network exibits the numbers

of dyads with the geodesic distances from 7 to 23 lower than in the simulated networks

(Figure 4.25 b ). However, we observe that the generated networks reflect well the

number of dyads with higher values of the minimum geodesi distance. Analyzing the

edgewise shared partner distributions, we observe that none of the generated network

distributions is able to reflect well the edgewise shared partner distribution of the ob-

served network.

Comparison of the execution times of three estimation procedure reveals that for

the FAUX.MAGNOLIA.HIGH network the Robbins-Monro method turned out to be the

fastest one with a mean time for a run equal to 446.49 s. The Newton-Raphson demon-

strates the longest mean time for a single run equal to 602.18 s. The mean time of a

single run produced by the Stepping is 500.39 s.

4.4 Summary of results

Summarizing the main findings of the analysis, we can make some important obser-

vations.

Firstly, in the Bernoulli model for both, simulated and real networks, all the three
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Figure 4.25: Graphical goodness of fit for (a) the degree distribution,(b) the minimum geodesic distance distribution and (c) the
the edgewise shared
partner distribution. Model for the FAUX.MAGNOLIA.HIGH network.

methods demonstrated a very small bias from the true value of parameters but the

Stepping procedure exhibited the smallest variability of the estimates. For the Markov

model for simulated networks, the Stepping procedure provided estimates which ex-

hibited the smallest bias from the true value of parameters. With regard to the ECOLI2

network it produced the combination of parameters which provided a very good model

fit whereas the Newton-Raphson method failed.

Secondly, in the version 2.2-4 of the “ergm” package the Newton-Raphson pro-



4.4 Summary of results 115

cedure dimonstrated high instability for estimation of model parameters for a small

network which has been got over in the version 2.2-5. This method exhibited the highest

variability of the estimates for the “edges” term in the Bernoulli model for both simu-

lated and real networks. It is worth noting that for the ECOLI2 network this algorithm

failed in approximation of the MLE and provided estimates which were not able to

reproduce networks similar to the original one. For this model the Robbins-Monro and

the Stepping procedure gave better results. The Newton-Raphson method demonstrated

some shortcomings in the estimation process, especially in the presence of the value

of θ0 which is far from the true value of MLE. In estimating the parameters of the

model for FAUX.MAGNOLIA.HIGH network it dimonstrated the smallest variability of

estimates and a “good model” for the original network.

Thirdly, the Robbins-Monro procedure demonstrates the smallest variability of

estimates for the model for FLOMARRIAGE network. In the case of the Bernoulli model

for simulated networks, it exhibited an increase of the number of outlayers with an

increase of the number of nodes. With regard to the Markov model for simulated

networks, it provided results similar to those of the Netwon-Raphson but more variable,

especially for the “triangle” term. It is worth noting that for the ECOLI2 although the

Robbins-Monro provided estimates different than those produced by the Stepping pro-

cedure, both parameter configurations managed to generate networks which resembled

the observed network equally well.

Considering the results produced by the Stepping procedure and its ability for

estimation in the case of the value of θ0, potentially quite far from the true MLE, we

reccomend this algorithm as that which provides the best results from the procedures

under comparison.

With regard to the value of the approximated maximum likelihood and the value

of AIC we noticed that the Robbins-Monro procedure provides values different from

those produced by the other two methods. For instance, in the case of the model for

the FLOMARRIAGE network, the value of AIC runs of the Robbins-Monro algorithm

was about 172, and for the other two methods it was about 110. Differences were

noticeable also for models for the other two networks. It is worth noting that the value
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of approximated log likelihood and AIC cannot be used to compare models fitted by

different procedures.

Analyzing the outputs of the check.degeneracy function and the mcmc.diagnostic

function, we noticed that a high degeneracy.value indicates a high instability in the last

iteration in the chain, and vice versa, the small value of degeneracy.value means a good

stability in the last iteration. The check.degeneracy function, which can be used only

with the Newton-Raphson and the Stepping procedure, may be recommended as a first

selection criterion, especially in the situation when results for different runs of the same

model are quite different. All diagnostic tools analyzed in this work are very useful

in identifying model degeneracy and in assessing goodness of fit and provide a rich

picture of the various asspects of estimation process in ERGMs.



Conclusions

In this work we have paid attention to the statistical models for social networks,

especially to the Exponential Random Graph Models (ERGMs), the statistical models

which provide a general framework for modeling overall network structural properties

by the effects of localized interaction rules. This class of models forms a statistical

exponential family, it attempts to represent the stochastic mechanisms that produce ties,

and the complex dependencies that this induces. Using ERGMs the principal goal is to

estimate model parameters from an observed network and then evaluate how adequately

the model reproduces the observed data. The development of Monte Carlo estimation

methods for ERGMs has given the possibility to understand better model behavior,

especially the model degeneracy - the property of random graph models that have an

important consequence on the use of ERGMs.

Apart from the review of developments of the ERGMs from the beginning until nowa-

days, the present manuscript offers two contributions. The first one deals with an

evaluation of model diagnostic tools and check for degeneracy of ERGMs using differ-

ent methods and functions proposed in the literature and available in “statnet” package

for R. Taking into account the stochastic nature of the Newton-Raphson estimation

algorithm, we examined information provided by degeneracy diagnostics tools for

different runs of the same model. The first contribution illustrates degeneracy and

instability which appear in different runs of the same model. Results of this analysis

show that it may be worth controling degeneracy and instability not only of different

models but also of different runs of the same model.

The second contribution provides a comparison of three different procedures such as the
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Newton-Raphson, the Robbins-Monro and the Stepping. We analyzed the accuracy and

precision of these three methods in approximating the maximum likelihood estimator

for networks of various size. Until recently, estimation for ERGMs has been almost

exclusively based on the two first methods. Considering the results produced by the

Stepping procedure in this analysis and the costruction of this algorithm, we reccomend

this method as that which provides the best results and from the procedures under

comparison we indicate this one for estimation in this class of models.

As the estimation and the assessment in ERGMs are very important asspects of

research applications we are interested in obtaining further developments of the analysis.

Further research could be applied to evaluate the stability of the three methods with

regard to changes in the values of such MCMC arguments as burnin and interval. We

hope that, together with the analysis presented in this work, it would be possible to form

a complex picture of estimation procedures which could help to classify these methods

in terms of their usefulness for estimation of networks of different sizes and topologies.

Since ERGMs are used extensively in statistical modeling of social, economic and biol-

gical networks, the analysis presented in this manuscript and its further developments

could provide, from the practical points of view, very useful information for everybody

who is interested in estimating parameters in this class of models.
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Appendix

Below we present R code of functions used to obtain results of simulation study.

The R packages necessary to be loaded are: ”statnet”, ”slam” and ”coda”. To know

all the networks available in ergm package, use the code: data(package = ”ergm”). In

the function presented below we use three important function proposed in the package

”erg”, such as ergm which fits exponential-family random graph models; simulate which

is used to simulate random networks using an ERGM and gof which evaluates the

goodness of fit of an ERGM to the data. To obtain more information and details about

features of the package ”ergm”, see [36].

The function ”evaluationERGM” give possibility to make multiple runs of the MLE

model fit for given networks, in this case, one of three real network data or networks

simulated from a particular distribution. It produces a txt file where information about

network, summary for each run of the model fit, numeric information of goodness

of fit and mcmc.diagnostics are printed. It provides also a pdf file with depicts of

boxplots of distributions of estimates for model parameters, boxplots of distributions of

their standard errors and graphical outcomes of goodness of fit and mcmc.diagnostics

function.

#Description of parameters:

#name_net: Name of network for analysis,

#It is one of the vectors: c("florentine"),

#c("ecoli"),c("faux.magnolia.high"),c("simulated")
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#To analyze a simulated network it is necessary

#to indicate c("simulated") and the parameters:

#param_sim: Vector of statistics for network simulation

#for network generation [i.e. c("edges","kstar(2)")]

#num_nodes: Number of nodes in a simulated network

#theta_sim: Vector of parameters for statistics used

#for network simulation

#burnin_sim: Value of burnin used for network simulation

#inter_sim: Value of interval used for network simulation

#seed_sim: Value of seed for graph simulation

#param: Vector of terms for the model

[i.e. c("edges","kstar(2)")]

#alg: Vector which indicates the name of procedures

#used for estimation: c("Newton-Raphson")

#or c("Robbins-Monro") or ("Stepping")

#n_sim: Number of times the model is run

#burnin_est: Value of burnin used for estimation

#inter_est: Value of interval used for estimation

#MCMCsample_est: Value of MCMCsamplesize used for

#parameter estimation

#it_est: Value of maxit for parameter estimation

#burnin_gof: Value of burnin used for goodness of fit

#inter_gof: Value of interval used for goodness of fit

#seed_gof: Value of seed used for goodness of fit

evaluationERGM<-function(name_net,param_sim,num_nodes,

theta_sim,burnin_sim,inter_sim,seed_sim,param_est,alg,

n_sim,burnin_est,inter_est,MCMCsample_est,it_est,

burnin_gof,inter_gof,seed_gof)

{sink("RESULTS.txt")
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#########################################

### Selection of network for analysis ###

#########################################

if (name_net=="simulated")

{form_sim<-as.formula(paste("network(num_nodes,

directed=FALSE)˜",paste(param_sim,collapse="+")))

net<-simulate(form_sim,burnin=burnin_sim,

interval=inter_sim,nsim=1,theta0=theta_sim,

verbose=FALSE,seed_sim)

}

else

{

if (name_net=="florentine")

{ data("florentine")

net <- flomarriage }

if (name_net=="ecoli")

{ data("ecoli")

net <- ecoli2 }

if (name_net=="faux.magnolia.high")

{ data("faux.magnolia.high")

net <- faux.magnolia.high }

}

print(net)

print("Network density")

print(network.density(net))

form_est<-as.formula(paste("net˜",

paste(param_est,collapse="+")))

est<-matrix(0,ncol=length(param),nrow=n_sim)

se<-matrix(0,ncol=length(param),nrow=n_sim)

edges<-NULL
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star2<-NULL

star3<-NULL

triang<-NULL

maxlik<-NULL

degen<-NULL

mcmc_se<-NULL

for(i in 1:n_sim)

{

cat("\n")

cat(paste("RESULTS FROM SIMULATION NUMBER "))

cat(i,"\n")

cat("\n")

##########################

###Parameter estimation###

##########################

model<-ergm(form_est,burnin=burnin_est,interval=inter_est,

maxit=it_est,MCMCsample_est,verbose=FALSE,seed=i,

control=control.ergm(check.degeneracy=TRUE,style=alg))

if(network.edgecount(model$newnetwork)>50000)

{model$degeneracy.value=100}

print("SUMMARY MODEL")

print(summary(model))

edges[i]<-network.edgecount(model$newnetwork)

triang[i]<-as.numeric(summary(model$newnetwork˜triangle))

star2[i]<-as.numeric(summary(model$newnetwork˜kstar(2)))

star3[i]<-as.numeric(summary(model$newnetwork˜kstar(3)))

degen[i]<-model$degeneracy.value

est[i,]<-model$coef

maxlik[i]<-model$mle.lik

mcmc_se[i]<-model$mc.se
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mcmc.diagnostics(model)

for(j in 1:length(param))

{

se[i,j]<-sqrt(model$covar[j,j])

}

}

cat("\n")

cat(paste("RESULTS"))

cat("\n")

#################################################

### Evaluation of results and goodness of fit ###

#################################################

x<-list(estimates=est,standard_errors=se,edges=edges,

star2=star2,star3=star3,triangles=triang,mle.lik=maxlik,

degeneracy=degen,MCMC_se=mcmc_se)

theta_mean<-apply(est,2,mean)

sample_var<-apply(est,2,var)

print("vectors of results")

print(x)

("sample mean of estimates")

print(theta_mean)

sim<-simulate(form_est,theta0=theta_mean,burnin=burnin_gof,

interval=inter_gof,nsim=100,verbose=FALSE,seed=seed_gof)

gof.model<-gof(form_est,theta0=theta_mean,

GOF=˜degree+distance+espartners,verbose=FALSE,

burnin=burnin_gof,interval=inter_gof,seed=seed_gof)

model.edgedist<-sapply(sim$networks,

function(x)summary(x˜edges))

net.edge<-summary(net˜edges)

model.tridist<-sapply(sim$networks,
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function(x)summary(x˜triangle))

net.tri<-summary(net˜triangle)

print("GOODNESS OF FIT")

print(gof.model)

pdf(file="RESULTS.pdf")

for(j in 1:length(param))

{

boxplot(est[,j])

title("Boxplot of parameter estimates")

boxplot(se[,j])

title("Boxplot of standard error")

}

boxplot(edges,names="edges")

title("Boxplot edges")

boxplot(star2,names="star2")

title("Boxplot star2")

boxplot(triang,names="triangle")

title("Boxplot triangle")

boxplot(degen,names="degeneracy.value")

title("Boxplot degeneracy.value")

hist(model.edgedist)

arrows(net.edge,20,net.edge,5,col="red",lwd=3)

hist(model.tridist)

arrows(net.tri,20,net.tri,5,col="green",lwd=3)

plot(gof.model,logodds=TRUE)

plot(sim$networks[[1]])

dev.off()

sink()

}
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