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Chapter 1 
 

General Introduction 
 
 
 

“Quelli che s’innamoran di pratica sanza 
scienza son come il nocchiere, ch’entra in 

navilio sanza timone o bussola, che mai ha 
certezza di dove si vada.”  

Leonardo 
 

 

his chapter is aimed at providing a general discussion on the 
relevance of the scattering problem in random layered structures, 

emphasizing both the pertinent applications contest and the modeling 
issue. The role of the perturbation theory approach to the scattering 
problem is also addressed in a conceptual perspective. 
 
1.1 Scattering Models and Application Context 

 
The electromagnetic wave interaction with layered structures 

constitutes a crucial topic of current interest in theoretical and 
experimental research. Indeed, the analysis of layered structures poses 
challenging questions from the electromagnetic theoretical 
investigation point of view and certainly is of enormous interest in the 
applications perspective. Accordingly, the scattering problem from 
layered structures is of a paramount interest in many scientific and 
engineering areas. Generally speaking, several modelling and design 
problems, encountered, for instance, in SAR (Synthetic Aperture 
Radar) application, GPR (Ground Penetrating Radar) sensing, radar 
altimeter for planetary exploration, microstrip antennas and MMICs 
(Monolithic Microwave Integrated Circuits), radio-propagation in 

T 



2                                                                                             Chapter 1 

urban environment for wireless communications, through-the-wall 
detection technologies, optics, biomedical diagnostic of layered 
biological tissues, geophysical and seismic exploration, lead to the 
analysis of the electromagnetic wave interaction with multilayered 
structure, whose boundaries can exhibit some amount of roughness. 

Furthermore, the evaluation of the wave propagation through 
layered media with rough boundaries (eventually with spatially 
inhomogeneous dielectric properties) is crucial in several research 
fields such as radar, remote sensing, wireless communication and 
detection technologies, geophysics and optics.  

In particular, from the remote sensing applications point of view, 
scattering from layered media with rough interfaces has been subject 
of ongoing research and is becoming of increasing importance. In this 
field the proliferation of the proposed methods for the simulation of 
wave propagation in a natural stratified medium and the continuous 
interest in this topic are indicative of the need of appropriate 
modelling and interpretation of the complex physical phenomena that 
take place in realistic environment structures. 

Properly, each region of the Earth’s crust can be morphologically 
modelled as a suitable multi-layered structure, in which some amount 
of roughness is presented by every interface, especially when the 
remote sensing applications scenario is concerned. Stratified soil, sand 
cover of arid regions, forest canopies, urban buildings, snow blanket, 
snow cover ice, sea ice and glaciers, oil flood on sea surface, 
constitute typical natural scenarios, of interest for remote sensing, for 
which a layered representation is adequate for studying the problem of 
the electromagnetic (EM) interaction with radar signals. Furthermore, 
a layered model is usually employed in extraterrestrial scenario, when 
the revealing of the content under a Planet’s surface illuminated by a 
sensor is concerned. Indeed, in order to properly model the 
electromagnetic interaction between the radar signal and natural 
layered structures, the layered media can be modelled most likely as 
discrete (piecewise-constant) systems, rather than continuous, with 
some amount of roughness presented by every interface. 

On the other hand, in order to exploit efficiently the information 
contained in the high-resolution backscattering map produced by the 
nowadays remote sensing airborne or space-borne imaging radar 
platforms, realistic and comprehensive scattering model for natural 
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solid Earth’s cover, as well as for surface and subsurface layers of 
extraterrestrial scene, are required and cannot rely entirely on heuristic 
approach. Moreover, explicit analytical forms are advisable for the 
effective design of processing algorithms and simulation of Synthetic 
Aperture Radar signals. 

In this regard, it is worth noting that the amount of data acquired 
by microwave sensors is continuously increasing; however, the 
prediction capability of the available electromagnetic (EM) models 
certainly not always turns out to be satisfactory: major reason for that 
resides in the intrinsic complexity of modeling the wave interaction 
with a broad class of inherent natural and man-made structures. In the 
perspective of overcoming this challenging difficulty, the developing 
of new and reliable electromagnetic models, possibly leading to closed 
form solutions, gains new stimulus, because of its crucial role in 
concretely achieving an accurate understanding and a reliable 
interpretation of the wide assortment of obtained experimental data.  

Therefore, appropriate electromagnetic modeling is fundamental 
for the exploitation of this dataset. Therefore, the availability of 
accurate, sound physical and manageable models turns out still to be a 
strong necessity, in perspective of their application in retrieving add-
valued information from the data acquired by microwave sensors.   

 
1.2 Electromagnetic Modelling 

 
It is well known that a comprehensive scattering theory to 

(exactly) solve the Maxwell’s equations (with generic boundary 
conditions) does not exist; many treatments have been developed to 
obtain (approximate) solutions to those equations for specific classes 
of problems, in particular for scattering from random media. Main 
problem in deriving these solutions is ascribable to the intrinsic 
mathematical difficulties involved in treating electromagnetic 
interaction with random structures, whose description can turn out to 
be extremely complex. It is worth recalling that electromagnetic 
scattering problems involving general distributions for the 
inhomogeneities and boundaries shapes are analytical intractable and 
require intensive, or prohibitive, numerical evaluations.  

Thus, in the last decades, only structures with extremely idealized 
assumptions, i.e., with boundaries coincident to canonical coordinate 
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surfaces, were considered: even for these highly idealized situations 
cumbersome analytical formulation with formidable mathematical 
difficulties and many restrictive assumptions have been presented as 
tractable solutions to the scattering problem.  

Electromagnetic propagation in layered media has been considered 
since the beginning of the 20’th century and several approaches have 
been developed with application in several branches, such as remote 
sensing, geophysics, optics and plasma physics.  

Broadly speaking, at microwave frequency the scattering from this 
kind of structures is essentially governed by the scattering properties 
of corrugated interfaces, the dielectric permittivity vertical profile, and 
the volume inhomogenity. 

Unfortunately, the extremely complicated nature of the physical 
processes involved, associated with the interactions between volume 
inhomogeneity and rough interfaces scattering, poses strong 
limitations to the development of comprehensive models. As a matter 
of fact, no analytical solution exists that takes into account, in 
conjunction and in rigorous manner, electromagnetic interaction 
between the volume scattering and the rough boundary interfaces 
scattering that take place in a real stratification. For instance, several 
authors suggest to evaluate total scattering as the heuristic incoherent 
addition of surface scattering contribution and volume scattering 
contribution, evaluated separately. Moreover, although the evidence of 
subsurface scattering has been assessed, the unavailability of adequate 
theoretical model is tangible. In fact, in several work, the evaluation of 
the scattering from heterogeneous stratification is treated neglecting 
the roughness of the interface, whereas some other authors use some 
empirical extension starting from classical rough surface scattering 
model. In particular, the effect of stratification on the surface 
scattering is taken into account in some cases by introducing an 
empirical beam divergence factor.  

Therefore, approximate models are still a necessity due to the 
insurmountable complexity of real scattering problems.  To deal with 
the problem of scattering by rough multilayer, the available methods 
differ in the type of approximation made, in how the layered medium 
is characterized, and in the applicability to different frequency 
regimes.  
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When random stratified media are concerned, the possible 
approaches to cope with the EM scattering problem fall within three 
main categories.  

First, the numerical approaches require a proper specification of 
the layer structure and rely purely on computational power. Although 
a plethora of numerical techniques have been developed to give 
possible solutions to the scattering problem, general conclusions on 
the general functional dependence of the scattering response on the 
layered structure’s material parameters cannot be easily reached only 
on the basis of numerical simulations. In addition, they do not permit 
to attain a comprehensive understanding of physics of the problem , as 
well as do not allow capturing the physics of the involved scattering 
mechanisms. In addition, the numerical approach turns out to be 
feasible for non-fully 3D geometry or configurations in which a only a 
very limited number of rough interfaces is accounted for. Therefore, 
we underline that, even if such an approach is in principle viable in 
analyzing an arbitrary complex structure, in practice the associated 
computational load precludes the general application of the existing 
numerical methods to arbitrary layered structures. 

On the other hand, layered structures with rough interfaces have 
been also treated resorting to Radiative Transfer theory (RT). RT 
approaches preclude the consideration of the coherent effects, since 
they neglect the absolute phase information. As a result, coherent 
effects, which are not properly accounted for in RT theory, could not 
be contemplated without employing full wave analysis, which 
preserves phase information.  

Another approach relies on the full-wave methods. We here focus 
our attention on the wave theory approach, because it simultaneously 
considers multiple interferential interaction with layer boundaries and 
preserves phase information, so that it is possible to properly model 
the well-known backscattering enhancement phenomenon. In addition, 
only within the wave theory approach the phase is considered and a 
full application to coherent remote sensing instruments is allowed. 
Therefore, in the following we do not consider the RT approach.  

Full-wave analytical approaches have been conducted relying on 
different suitable approximations, leading to different domain of 
applicability. Although several analytical formulation have been 
conducted in last decades, involving some idealized cases and suitable 
approximations, to deal with the electromagnetic propagation and 
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scattering in complex random layered media, the relevant solutions are 
usually too complicated to be generally useful in the remote sensing 
scenario, even if simplified geometries are accounted for.  

However, while there are many analytical techniques dealing with 
the surface scattering problem which apply to different scattering 
regimes, unfortunately, for rough interfaces layered media knowledge 
of the relation between radar response patterns and stratification 
structure is less advanced. 

On the other hand, the proliferation of the proposed methods for 
the simulation of wave propagation and scattering in stratified media 
and the continuous interest in this topic are indicative of the need of 
appropriate modelling and interpretation of the complex physical 
phenomena that take place especially in layered structures.  

Another approach relays on perturbation-based methods, which 
have been extensively applied in many areas, to attain. 

 
1.3 Scattering and Perturbation Methods 

 
As previously discussed, an exact analytical solution of Maxwell 

equations can be found only for a few idealized problems; 
subsequently, appropriate approximation methods are needed.  

Within this framework, the approaches typical of the perturbation 
theory can be sometimes conveniently employed. Perturbation theory 
is introduced to deal with systems that can be regarded as obtained 
from a solvable system by the addition of a small effect (perturbation).  

This approach offers a powerful and valuable theoretical technique 
and allows us attaining approximate solutions of the actual system by 
suitably adopting some exact solutions relevant to approximate 
version of the system: this is to say that conveniently approximate 
solution for perturbed systems can be attained by suitably 
transforming exact solution of the approximate system, which are 
known in closed form. The perturbative solution can capture as many 
features of the analyzed system as many terms of the perturbative 
development are accounted for.  

A variety of perturbation methods has been widely adopted in 
several research areas, such as Acoustics, Celestial Mechanics, 
Quantum Mechanics, Optics, Atomic Physics, and Quantum 
Chemistry. More specifically, in applied electromagnetics the 
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Perturbation Theory formulation of Maxwell’s equations has been 
conveniently applied in several contexts.  

Generally speaking, scattering theory can be regarded as a form of 
perturbation analysis. Its goal is to predict the perturbation 
experienced by an electromagnetic wave that interacts with a medium 
whose properties, with respect to the ones of the original unperturbed 
medium, are changed. The scattered field is then the difference 
between the actual and the unperturbed EM wave. The problem is 
mathematically susceptible also of a formulation in terms of 
perturbation of linear operators.  

Some general considerations are now in order. Rigorously 
speaking, scattering field itself has no legitimacy from a physical 
standpoint; only the overall EM field has an objective legitimacy 
instead. As a matter of fact, the scattering concept intrinsically implies 
a perturbative description, i. e. it concerns purely a representation 
matter: This is to say that conceptually scattering itself is a 
perturbative concept and the overall scattering theory is a form of 
perturbative analysis and. Therefore, when both surface and volume 
scattering, respectively ascribable to different kind of 
inhomogeneities, are concerned, the distinction between these two 
kinds of phenomena in random media is somehow arbitrary and the 
adoption of a certain structural description for the scattering medium 
is only a matter of convenience.  

As a practical counterpart, surface and volume scattering 
contributions turn out difficult to separate if experimental data are 
concerned. It should be noted that this possibility is essentially denied 
by the lacking of comprehensive mathematical models, instead of the 
ability to devise an appropriate data processing algorithm. This 
appears extremely problematic when extraction of value added 
information from scattering data, concerning random structures of the 
inherent natural scenario, is addressed. 

Conversely, the coexistence of interfacial roughness and 
volumetric fluctuations in actual structures should be taken into 
account methodologically and an inclusive scattering analysis, even 
though approximate, should be fulfilled, in order to clear understand 
the distinguishing characteristics of these two different scattering 
mechanisms.  

First of all, some considerations on electromagnetic wave 
scattering from a rough surface, which is a classical problem in 
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physics and engineering, are in order. Although several perturbation 
strategies have been proposed (such as Small Perturbation Method 
(SPM), phase perturbation method  , self-energy perturbation method, 
etc.) to cope with EM scattering, SPM remains the one widely 
adopted.  

The pertinent scattering problem becomes analytically tractable 
just under suitable approximations, and the only effective approaches 
reside definitely in Kirchoff Approach and Small Perturbation Method 
(SPM). As a matter of fact, concerning a gently rough surface between 
two half-spaces, closed form SPM scattering solution has been used 
extensively in applications and constitutes a well consolidated result 
in the current literature. Concerning surface scattering, SPM solution 
to an arbitrary order can be derived by using the Rayleigh method 
(also referred to as Rayleigh-Rice or Rayleigh-Fano procedure), which 
relies on the Rayleigh hypothesis for expanding the  scattered field in 
power series of the surface-profile function. The same solution can be 
alternatively obtained by means of the extended boundary conditions, 
which does not require this a priori assumption, but is formally more 
involved (note there was some controversy on the legitimacy of the 
Rayleigh hypothesis).  

When layered structure are concerned, the scattering problem has 
been analytically treated, in the perturbative framework, in remote 
sensing and antennas and microwave engineering communities; in 
addition, the problem has been studied independently in the optics 
community, to deal with properties of optical thin films, and in the 
theoretical physics community. Specifically, in the analysis is limited 
to a specific layered configuration with one or, in, two rough 
interfaces. On the other hand, the relevant works in optics, concerning 
the scattering through stratifications, have not been taken into 
consideration by remote sensing and  microwave communities, most 
likely because they are not in a direct closed form and are, at best, of 
difficult use in practice. Therefore, the existing approaches for the 
evaluation of the wave scattering through layered structures with 
rough interfaces are still lacking under the viewpoints of the usability 
in the applications and of the theoretical investigation clearness, or 
else of the generality of the structures geometry; and this, despite the 
problem is encountered in several practical applications. 
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Moreover, due to the analytical difficulties, commonly the 
problem of wave scattering by random stratifications has been 
investigated by separately treating surface roughness and volume 
scattering effects.  

This is particularly true when the scattering phenomena occur in 
actual media, whose volume structure can be involved and eventually 
stratified  is concerned, the scattering contributions arising from both 
interfacial roughness and volume inhomogeneities must be taken into 
account because, the electromagnetic waves significantly penetrate 
inhomogeneous media as roughly predicted by the values of the 
penetration depth. To the best of our knowledge, hitherto there is no 
comprehensive model that is able to rigorously take into account both 
these wave scattering mechanisms. Moreover, each of the involved 
scattering mechanisms is generally presented in isolate form in current 
literature.  

We finally underline that, even though the fundamentals of 
perturbation theory is very simple, however there are not general 
guidelines for the analytical derivation of a perturbed solution, and 
very often a significant amount of tedious algebraic manipulation can 
be required. In this thesis, it is considered as a fundamental guideline 
in proposed perturbation development the use of a sound physical 
justification in the pertinent mathematical developments. 

Conversely, when mechanically applied without physical 
justifications, the perturbative techniques can lead to final solutions 
that are unnecessarily involved and obscure.  

In this regard, a final note is in order. Generally speaking, 
electromagnetic fields are generally regarded as unobservable: they 
can only be indirectly measured through their interactions with 
observable quantities. To emphasize the neat physical significance of 
the methodological approach developed in this thesis, a remarkable 
interpretation of the scattering solutions, obtained within the 
innovative theoretical construct presented in this thesis, in terms of the 
(observable) Rumsey’s reaction concept is also provided. 
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1.5 Scope and Contributions of the Thesis 
 

The problem of electromagnetic wave scattering in 3-D random 
layered structures, is analytical treated by relying on original results of 
the Boundary Perturbation Theory (BPT) and Volumetric-
Perturbative Reciprocal Theory (VPRT), whose structured 
presentation of the pertinent theoretical body of innovative results is 
proposed and developed in this thesis.  

The systematic formulation of Boundary Perturbation Theory 
(BPT) is here introduced to deal with the analysis of a layered 
structure with an arbitrary number of gently rough interfaces: in this 
case the proposed theoretical construct is based on a suitable 
perturbation pertinent to the geometry of the problem and the 
scattering problem is treated by adopting a proper perturbation of 
boundary conditions. Specifically, it is demonstrated that, in the first-
order approximation, BPT leads to fully polarimetric, formally 
symmetric and physical revealing closed form solution: the relevant 
innovative scattering models obtained in this perturbation framework 
permit to deal with bistatic scattering, from and through three-
dimensional layered structures with an arbitrary number of gently 
rough interfaces.  

Furthermore, Volumetric-Perturbative Reciprocal Theory (VPRT) 
is also formulated in this thesis. VPRT methodologically adopts a 
different approach, which is based on two key elements: the use of the 
Reciprocity Theorem and an appropriate description of the scattering 
structure in terms of space-variant volumetric perturbation of the 
dielectric constant distribution. The VPRT construct also provides 
meaningful reaction-based expressions for the scattering field, which 
are straightforward and rich in descriptive power. 

It is important to emphasize that VPRT, which is methodologically 
conceived to consistently treat both interfacial and volumetric random 
inhomogeneities (so providing a unified mathematical formulation and 
conceptual understanding of two inherent scattering mechanisms), is 
also fully consistent with the results of BPT. Accordingly, within 
VPRT framework, both rough-interface and volume scattering are 
take into account methodologically. 
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Furthermore, within this new theoretical framework, a new look at 
the classical SPM solution for rough surface is also offered: even such 
a specific solution (whose derivation hitherto obtained via 
unnecessary, involved and obscure algebraic manipulations) is derived 
a surprisingly simple way, clarifying all the same the lacking inherent 
physical meaning. 

Beyond a certain compactness of the pertinent closed-form 
solutions, the fundamental scattering interactions can be revealed, 
gaining a coherent explanation and a neat picture of the physical 
meaning of the proposed theoretical constructs. In fact, it is important 
to note that a deep comprehension of the physical phenomena 
involved in the electromagnetic wave scattering interaction with such 
kind of complex structures would have been a rather hopeless task 
before the introduction of these theories. 

Finally, it is noteworthy that this theoretical body of results 
enables a new way to systematically construct meaningful and general 
expressions for the scattering field pertinent to wide class of scattering 
configurations, involving complex structures that can be arranged in a 
perturbation framework, and it is successful in that it exhibit: 
conceptual clearness, descriptive power and general applicability to 
random layered structures.  
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Chapter 2 
 

Stochastic Characterization for 3-D 
Layered Structures  

 
“Tutti sanno che una cosa è impossibile da 

realizzare, finché arriva uno sprovveduto 
che non lo sa e la inventa.” 

Albert Einstein 
  

"Se un uomo non è disposto a correre 
qualche rischio per le proprie idee, 

 o le sue idee non valgono nulla  
o è lui che non vale nulla." 

Ezra Pound 
 

ome features, which can be observed, of natural objects can be 
described in terms of randomness inherent to a certain spatial 

irregularity. The source of randomness is intimately related to the lack 
of detailed knowledge about the processes involved. 

Therefore, it is necessary and instructive to introduce herein some 
basic mathematical notions regarding the representation theory for 
random processes, with particular emphasis to layered structures 
whose properties exhibit random spatial fluctuations. Specifically, the 
focus of this Chapter is on spectral representation for random 
properties of relevant layered structures, and the notion of wide-sense 
stationary process is also detailed.  

 
2.1 Spectral Representation of the Interfacial 

Roughness Stochastic Description 
 

First of all, when the description of a rough interface (see Fig. 1) 
by means of deterministic function )(rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  

S 
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)()2()(~ 2 rrk rk
m

j
m ed ,  (2.1) 

)(~)( kkr rk
m

j
m ed .  (2.2) 

Let us assume now that )(rm , which describes the generic (m-
th) rough interface, is a 2-D stochastic process satisfying the 
conditions 

   0)(rm ,    (2.3) 

  )()()( rr
m

Bmm ,  (2.4) 

where the angular bracket denotes statistical ensemble averaging, and 
where )(

m
B  is the interface autocorrelation function, which 

quantifies the similarity of the spatial fluctuations with a displacement 
. Equations (2)-(3) constitute the basic assumptions defining a wide 

 
 

Fig. 1. Layered medium structure. 
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sense stationary (WSS) stochastic process (statistical homogeneities): 
the statistical properties of the process under consideration are 
invariant to a spatial shift.  

Similarly, concerning two mutually correlated random rough 
interfaces m and n , we also assume that they are jointly WSS, i.e. 

  )()()( rr
nm

Bnm ,  (2.5) 

where )(
nm

B is the corresponding cross-correlation function of the 
two random processes. It can be readily derived that 

 )()(
mnnm

BB .   (2.6) 

The integral in (1) is a Riemann integral representation for )(rm , 
and it exists if )(rm  is piecewise continuous and absolutely 
integrable. On the other hand, when the spectral analysis of a 
stationary random process is concerned, the integral (1) does not in 
general exist in the framework of theory of the ordinary functions. 
Indeed, a WSS process describing an interface )(rm of infinite lateral 
extension, for its proper nature, is not absolutely integrable, so the 
conditions for the existence of the Fourier Transform are not satisfied.  

In order to obtain a spectral representation for a WSS random 
process, this difficulty can be circumvented by resorting to the more 
general Fourier-Stieltjes integral [1]; otherwise one can define space-
truncated functions. When a finite patch of the rough interface with 
area A is concerned, the space-truncated version of (1) can be 
introduced as 

)()2();(~ 2 rrk rk
m

j

A
m edA ,  (2.7) 

subsequently, );(~lim)(~ AmAm kk
 

is not an ordinary function. 
Nevertheless, here we use again the (1)-(2), regarding them as 
symbolic formulas, which hold a rigorous mathematical meaning 
beyond the ordinary function theory (generalized Fourier Transform). 
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We underline that by virtue of the condition (3) directly follows also 
that 0)(~ km .  

Let us consider  

)(~)(~)()( *)(* kkkkrr rkrk
nm

j
nm edd

 (2.8) 

where the asterisk denotes the complex conjugated, and where the 
operations of average and integration have been interchanged.  

When jointly WSS processes m  and n are concerned, accordingly 
to (29), the LHS of (8) must be a function of  the displacement 

rr only; therefore, it is required that  

)()()(~)(~ * kkkkk mnnm W , (2.9) 

where ( Dirac delta function, and where )(mnW  is called the 
(spatial) cross power spectral density of two interfaces m  and n , for 
the spatial frequencies of the roughness.  

Equation (9) states that the different spectral components of the 
two considered interfaces must be uncorrelated.  

Indeed, by using (9) into (8), we obtain 

)()()( )( kkrr rrk
mn

j
nm Wed , (2.10) 

where the RHS of (10) involves an (ordinary) 2D Fourier Transform. 
Note also that as a direct consequence of the fact that )(rn  is real we 
have the relation )(~)(~ * kk nn . Therefore, setting rr in 
(10), we have  

)()( mn
j WedB

nm
.  (2.11) 

The cross-correlation function )(
nm

B  of two interfaces m  and n  is 
then given by the (inverse) 2-D Fourier Transform of their (spatial) 
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cross power spectral density, and Equation (11) together with its 
Fourier inverse 

  ,)()2()( 2
nm

BedW j
mn  (2.12) 

may be regarded as the (generalized) Wiener-Khinchin theorem. In 
particular, when n = m, (9) reduces to  

  ),()()(~)(~ * kkkkk mmm W  (2.13) 

where )(mW is called the (spatial) power spectral density of nth 
corrugated interface m and can be expressed as the (ordinary) 2-D 
Fourier transform of n-corrugated interface autocorrelation function, 
i.e., satisfying the transform pair: 

  )()2()( 2
m

BedW j
m , (2.14) 

  )()( m
j WedB

m
,  (2.15) 

which is the statement of the classical Wiener-Khinchin theorem.  
We emphasize the physical meaning of yxyxmm dd,WdW )()(

: it represents the power of the spectral components of the mth rough 
interface having spatial wave number between x and x +d x and y 
and y +d y,  respectively, in x and y direction.  

Furthermore, from (6) and (12) it follows that  

   )()( *
nmmn WW .   (2.16) 

This is to say that, unlike the power spectral density, the cross power 
spectral density is, in general, neither real nor necessarily positive.  

Furthermore, it should be noted that the Dirac’s delta function can 
be defined by the integral representation 

   );(lim)2()( 2 Aed
A

j .  (2.17) 
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By using the relation 2)2/();0( AA  in (13) and (9) we have, 
respectively, that the (spatial) power spectral density of n-th 
corrugated interface can be also expressed as  

  
2

2 );(~1)2()( A
A

limW mAm ,  

 (2.18) 

and the (spatial) cross power spectral density of two interfaces m  
and n  is given by  

 );(~);(~1)2()( *2 AA
A

limW nmAmn .  (2.19) 

It should be noted that the domain of a rough interface is 
physically limited by the illumination beamwidth.  

Note also that the different definitions of the Fourier transform are 
available and used in the literature: the sign of the complex 
exponential function are sometimes exchanged and a multiplicative 
constant 2)2( may appear in front of either integral or its square root 
in front of each expression (1)-(2).  

Finally, we recall that the theory of random process predicts only 
the averages over many realizations. 
 
3.2 Spectral Representation of 3-D 

Homogeneous Complex Random Function 
 

Let us consider a three-dimensional (3-D) complex random 
function ),( zr , the corresponding 3-D Fourier Transform pair, 

),()2(),(~ 3 zeedzd zjj
z

z rrk rk ,  (2.20) 

,),(~),( z
zjj

z
zeeddz kkr rk  (2.21) 

and 2-D Fourier Transform pair with respect to transverse coordinates 
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),()2(),(~ 2 zedz j rrk rk ,  (2.22) 

.),(~),( zedz j kkr rk    (2.23) 

can be introduced, which have to be regarded in a generalized sense as 
discussed in previous Section. Accordingly, 

),(~)2(),(~ 1 zedz zj
z

z kk .  (2.24) 

Hence, also here, for the sake of simplicity, the Fourier-Stieltjes 
integral formalism is understood. Similarly as discussed in previous 
Section, let us assume now that ),()( zrr  is a 3-D stochastic 
process describing volumetric inhomogeneity that satisfies the 
conditions 

   0)(r ,     (2.25) 

  )()()( * rr B ,   (2.26) 

where )(B  is the autocorrelation function of the volumetric 
fluctuations.  

Let us consider  

.),(~),(~
)()(

*

*

zz
zjzj

jj
zz

zz ee

eedddd

kk

kkrr rkrk

 

 
(2.27) 

It is then evident that, in order to have homogeneous spatial statistics, 
we must have: 

),()(),(),(~),(~ *
zzzzz W kkkkk

 
    

(2.28) 
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where ),(W  is (spatial) power spectral density of the volumetric 
fluctuation. Therefore, by substituting (28) into (27), the 
corresponding expression of the Wiener-Khinchin theorem is 
obtained:  

),,()()( z
jj

z WeeddBB zz kkrr k  (2.29) 

),,()2(),( 3
z

jj
z BeedzdW zzk k  (2.30) 

where we have set rr so that, rr  and zzz .  
In addition, a suitable 2-D spectral representation for the process 

),()( zrr  can be also introduced. Hence, the following two 
conditions have to be satisfied: 

 0),(~ zk ,    (2.31) 

).(),(~),(~),(~ * kkkkk zzBzz  (2.32) 

where the dependence of B~  on the difference variable zzz

reflects the aforementioned assumption of statistical homogeneities.  
From (23), we get 

),(~),(~
),(),(

*

*

zzeedd

zz

jj kkkk

rr

rkrk  

  
(2.33) 

By using (32) in (33), it can be obtained the following relationships: 

,),(~),(),( z
j

z BedBzzB kkrr k  

 (2.34) 

),,()2(),(~),(~ 2
z

j
z BedBzzB kk k

 
 (2.35) 
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In addition, from (24), considering that 

),,(~),(~
z

zj
z

zedz kk  

we get 

),(~),(~
),(~),(~

*

*

zz
zjzj

zz
zz eedd

zz

kk

kk

.  
(2.36) 

By using (28) and (32), the corresponding expression of the Wiener-
Khinchin theorem is obtained:  

),,(),(~
z

j
zz WedB zz

  
 (2.37) 

,),(~)2(),( 1
z

j
z BedzW zz

  
 (2.38) 

which provide the relations between W  and B~ .  
Furthermore, it should be noted that the Dirac’s delta function can 

be defined by the integral representation (see also (17)): 

   ).;(lim)2()( 1 zjedz    (2.39) 

By using the relations 2)2/();0( AA  and )2/();0(  in 
(28), we have that the power spectral density ),(W of the 
volumetric fluctuation can be also expressed as  

23 ),;,(~11)2(),( Alim
A

limW
A

.  (2.40) 

In addition, taking into account (17) and 2)2/();0( AA  in (32),
),(~

zB  can be also expressed as 
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),(~),(~1lim)2(),(~ *2 zz
A

zzB
A . 

 (2.41) 
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Chapter 3 
 

Electromagnetic Propagation in 3-D 
Arbitrary Multi-Layer Structure with 

Flat Boundaries 
 
 

"Le convinzioni, più delle bugie, sono 
nemiche pericolose della verità." 

Friedrich Wilhelm Nietzsche 
 

"Quando si ricerca la verità, può darsi che 
il criterio migliore sia quello di cominciare 

col criticare le nostre credenze più care." 
Karl Raimund Popper 

 

he goal of this chapter is to establish fundamental mathematical 
properties of electromagnetic waves in a multilayer. Therefore, it 

will shown that the problem of propagation of a planar wave 
impinging on the flat boundary layered media is a generalization of 
the problem of reflection/transmission on the flat interface between 
two half-spaces.  

Accordingly, a proper formalism for electromagnetic propagation 
in three-dimensional layered media is defined, and a general closed-
form solution for the unperturbed vectorial field in the overall 
structure in terms of the generalized reflection/transmission 
coefficients is provided.  

The formalism introduced here is methodologically employed the 
rest of this thesis. Indeed, this chapter constitutes a conceptual basis in 
the perspective of the analytical treatment of electromagnetic 
scattering in layered random structures.  

 
 

T 
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3.1  Introduction and Motivation 

 
Planar multilayer structures with flat boundaries are useful for 

modelling physical phenomena such as electromagnetic propagation 
in media that are best modelled as discrete (piecewise-constant), rather 
than continuous, systems. Layered structures have been the subject of 
intensive investigation for their application in a number of important 
research areas: such as the remote sensing, geophysics, ocean 
engineering, the design of optical instrument as well plasma physics.  

There now exist a number of excellent texts in which this subject 
is discussed  [1][2][3]: some of them resort to the transfer matrix 
operator, others differently adopt some definitions for generalized 
reflection and transmission coefficients. However, these existing 
formalisms are here revised in a comprehensive perspective, in order 
to establish a power formalism that methodologically enables the 
evaluation of the vectorial field general expressions directly.  

In this perspective, the inherent limitations of well-known 
approach involving the transmission line formalism, which is usually 
adopted, are overcome: The adopted formalism has the advantage of 
illustrating clearly the meaning of the general vectorial equations, 
which are essential for the study of more complex 3-D cases.  
 
3.2  Preliminary notation and definitions 

 
In this Section, the employed notation is briefly defined. 
The flat boundaries layered medium (Fig.1) is defined as a stack of 

parallel slabs, sandwiched in between two half-spaces, whose 
structure is shift invariant in the direction of x and y (infinite lateral 
extent in x–y directions). Each layer is assumed to be homogeneous 
and characterized by arbitrary and deterministic parameters: the 
dielectric relative permittivity m, the magnetic relative permeability 

m and the thickness m = dm–dm-1. The parameters pertaining to layer 
m with boundaries –dm-1 and –dm are distinguished by a subscript m. 
With reference to Fig.1, it has been assumed that in particular, d0=0. 
In the following, the symbol  denotes the projection of the 
corresponding vector on the plane z=0. Here z,rr , so we 
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distinguish the transverse spatial coordinates yx,r  and the 
longitudinal coordinate z. 
 
3.2.1 Reflection and Transmission coefficients 

 
This section is devoted preliminary to introduce the basic 

formalism used in the following of this chapter.  
It is important firstly to recall that the plane of incidence is a plane 

that contains the incidence direction i
0k  and the normal ẑ  to flat 

boundary. 
When the incident electric field is completely perpendicular to the 

plane of incidence we have TE condition; this is also known as being 
perpendicularly or horizontally polarized. The TM incident wave is 
linearly polarized with the electric vector lying in the plane of 
incidence; this is also known as parallel polarization or vertical 
polarized.  

 

 
Fig. 1.  Geometry for a flat boundaries layered medium. 
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Accordingly, the incident field can be decomposed into TE and 
TM components, so that the corresponding reflected and transmission 
components can be related to the incident field components through 
the reflection/transmission coefficients. At the m-th plane interface 
(z= –dm), which  separates the m and m+1 homogeneous media, the 
components of the propagating electromagnetic wave encounter 
impedance mismatches, and a portion of the incident wave is 
reflected, while the remainder is transmitted, according to the 
ordinary (Fresnel) Reflection and Transmission Coefficients, 
respectively indicated with the notations p

mmT 1 and p
mmR 1 , and given 

by:  

   ,
)1(1

)1(1
1

mzmzmm

mzmzmmh
mm kk

kk
R    (3.1) 

   ,
)1(1

)1(1
1

mzmzmm

mzmzmmv
mm kk

kk
R    (3.2) 

   ,2

)1(1

1
1

mzmzmm

zmmh
mm kk

kT    (3.3) 

   ,2

)1(1

1
1

mzmzmm

zmmv
mm kk

kT    (3.4) 

where the superscripts p  {v, h} denote the polarization state for the 
incident wave and may stand for horizontal (h) or vertical (v) 
polarization, /2/000 ck , mmm kk 0  is the wave 
number for the electromagnetic medium in the m-th layer, and 

   ,cos22
mmmzm kkk k    (3.5) 

where ykxk yx ˆˆk  is the two-dimensional projection of vector wave-
number on the plane z=0.  
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It is important to emphasize that the coefficients for the v 
polarization can be obtained from the ones for the h polarization for 
duality (interchanging mm ), and vice versa. 

Moreover, if we consider stratified media which are isotropic in 
the planes z = const, the coefficients (3)-(6) depend only on the 
amplitude of the vector k , regardless of the direction. 

In addition, it should be also noted that: 

    p
ji

p
ji

p
ij

p
ji

RT

RR

1
 i=j±1   (3.6) 

 
3.2.2 Field Representation 
 

In this section, the solution for the flat-boundaries structure is 
addressed. An arbitrary polarized monochromatic plane wave is 
considered to be incident on the layered medium at an angle i

0  
relative to the ẑ  direction from the upper half-space, as schematically 
shown in Fig.1, 

 ,)](ˆ)(ˆ[)( )(
00000

0 zkjiiviihi i
z

ievEhE rkkkrE   (3.7) 

where in the field expression a time factor exp(-j t) is understood, 
and, using a spherical frame representation, the incident vector wave 
direction is individuated by ii

00 , : 

 )cosˆsinsinˆcossinˆ(ˆˆ
0000000000
iiiiii

z
iii zyxkkzkk kk

 (3.8) 

with 

 yx
zk
zkh ii

i

i
i ˆcosˆsin

ˆˆ
ˆˆ

)(ˆ
00

0

0
0 k     (3.9) 

 iiiiiii zyxkhv 0000000 sinˆcos)sinˆcosˆ(ˆ)(ˆ)(ˆ kk  (3.10) 
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where ykxk i
y

i
x

i ˆˆk  is the two dimensional projection of incident 
wave-number on the plane z=0. 

When the electromagnetic properties of an isotropic medium are 
varying only in one direction, e.g., the z direction, the vector wave 
equation can be reduced to two scalar equations that are decoupled 
from each other, so the electromagnetic propagation can be expressed 
in terms of the propagation, reflection and transmission of two up- and 
down-going decoupled polarized modes (transverse electric TE and 
transverse magnetic TM) in each piecewise constant region. Hence, a 
unique solution is found by matching boundary condition across the 
discontinuities at the interfaces.  

The fact that the vector wave equation can be reduced to two 
scalar equations that are decoupled from each other derives directly 
from the mutually independence of the condition of continuity, on the 
generic boundary, of the TE and TM component, respectively. 
Therefore, in accordance with the duality of electromagnetic theory, 
we can limit ourselves to consider the TE case.  

Within the m-th layer (see Fig.1) the field solutions can be 
expressed in the form: 

   )0()0()0(
mmm     (3.11) 

   )0()0()0(
mmm HHH     (3.12) 

where )0(
m and 

)0(
m represent  the  electric-field waves propagating  

up- and down-going directions,  respectively: 

 zjkip
m

i
m

j

vhp
m

i
zm

i ekSpe )()(ˆ)( )0(

,

)0( kr rk   (3.13) 

 )0()0( )(ˆ1)( m
i

m
m

m kZ EkrH     (3.14) 

where a parenthesized superscript indicates the order of perturbation: 
the superscript (0) refers to the unperturbed field associated with the 
flat boundaries stratification, )( i

zm
i
zm kk k , Zm is the intrinsic 

impedance of the m-th layer medium, )0(p
mS are respectively the zero-
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order complex amplitudes of the up-going (+) and down-going (–) 
field components in the m-th layer in p polarization, p {v,h} denotes 
the polarization, and the wave-vectors in the m-th layer are given by 

   zmm kẑ)( kkk ,     (3.15) 

and 

   ,ˆˆ/ˆˆ)(ˆ zkzkh mmm k    (3.16) 

   .ˆˆ)(ˆ mmm khv k     (3.17) 

It should be observed that 

   ,ˆˆˆ)(ˆ hzkhm k     (3.18) 

   z
k
kk

k
kv

mm

zm
m ˆˆ)(ˆ k    (3.19) 

is a basis for the horizontal/vertical polarization vectors. 
The solution (11)-(14) is also named zero-order or unperturbed 

solution. It should be noted that, in the case of a plane-wave incident 
upon an infinite surface, the angular distribution of the specular 
component of the scattering intensity can be regarded as a delta 
function centered at a specular direction. 

 
 
3.2.3 Boundary Conditions 
 

The continuity of the electric and magnetic tangent components on 
the boundary derives directly from the Maxwell equation’s boundary 
conditions: 

0ˆ )0(

mdz
mz E     (3.20)  

0ˆ )0(

mdz
mz H     (3.21) 
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where )0()0(
1

)0()0()0(
1

)0( , mmmmmm HHHEEE  
Therefore, a unique solution is found by matching boundary 

condition across the discontinuities at the interfaces. It should be 
noted that for the phase matching condition the projection of the 
vector wave k must be invariant in the stratification.   

 Here in after we focus on the TE case only, since the TM solution 
can be directly obtained straightforwardly for duality. Accordingly, 
without loss of generality, we consider primarily the following unitary 
amplitude )1( 0

ihE horizontal polarized (TE) electric incident field:  

)(
00

0)(ˆ zkjii i
z

ieh rkk    (3.22)  

Noting that 
)0()0( ˆ1

mm
m

m k
Z

EH     (3.23) 

 
)0()( ˆ1

mm
m

m k
Z

EH     (3.24) 

we have 

]ˆˆ[1 )0(
11

)0(
11

1

)0(
1 mmmm

m
m kk

Z
EEH    (3.25)  

]ˆˆ[1 )0()0()0(
mmmm

m
m kk

Z
EEH    (3.26) 

Utilizing Eqs. (23)-(26), Eqs. (20)-(21) can be rewritten as follows: 

mm dzmmdzmm zz ][ˆ][ˆ )0()0()0(
1

)0(
1 EEEE    (3.27)   

m

m

dzmmmm
m

m

dzmmmm

kzkz
Z

Z

kzkz

]ˆˆˆˆ[

]ˆˆˆˆ[

)0()0(1

)0(
11

)0(
11

EE

EE
      (3.28)  

Taking into account the following relation: 
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)ˆˆ()ˆ(ˆˆˆ )0()0()0( zkzkkz mmmmmm EEE ,       (3.29)  

 
and pre-multiplying across two sides of eq. (28) by ẑ , we get: 
 

mm dzmm
mzm

mmz
dzmm z

k
k

z ][ˆ][ˆ )0(
1

)0(
1

1

)1()0()0( EEEE
 

(3.30) 

  
Adding and subtracting eq. (30) to and from eq. (27), respectively, we 
get on the plane z = –dm: 

)]ˆ()ˆ([1ˆ

)]ˆ()ˆ[(1ˆ

)0(
1

)0(
11

1

)0(

)0(
11

)0(
1

1

)0(

mm
h

mmh
mm

m

m
h

mmmh
mm

m

zzR
T

z

zRz
T

z

EEE

EEE
 (3.31) 

Therefore, Eqs. (31) has been obtained by enforcing the continuity 
of the tangential fields across the discontinuity of the interfaces, for 
TE case, on the plane z = –dm. 
 
3.3  Transfer Matrix formalism 
 

The transition of the wave through each layer can be completely 
described by a matrix, called transfer matrix, with elements depending 
on the character of the wave and on the properties of the layer and its 
thickness.  

In each layer up-going and down-going field components are 
present: their complex amplitudes can be arranged in a single vector 

)0(p
mS according to the following notation: 

  
mzm

mzm

djkp
m

djkp
m

m
p
m ekS

ekS
dk

)(
)(

),(
)0(

)0(
)0(S    (3.32) 

This notation is convenient to discuss up-going end down-going 
components by means of single equation instead of using two 
equations as done in Eq. (31). In fact, by using Eq. (13) into Eqs. (31) 
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the system of recurrent equations (31) may then be resolved in the 
form: 

  ),()(),( )0(
11

)0(
m

ih
m

ih
mmm

ih
m dkkdk SS   (3.33) 

where the fundamental transfer matrix operator p
mm 1

is given by:  

 
1

11)(
1

1

1
1 p

mm

p
mm

p
mm

p
mm R

R
T

k   (3.34) 

with the superscripts p  {v, h} denoting the polarization.  
It is clear the physical meaning of this matrix that relates the 

amplitude of the waves propagating in the (m+1)-layer, up going and 
down going respectively, to the corresponding waves in the m-layer.   

It should be emphasized that eqs. (33) states in a simpler form the 
problem originally set by eqs. (31): as matter of fact, solving Eq. (33) 

m implies dealing with the determination of unknown scalar 
amplitudes )()0( kp

mS instead of working with the corresponding 
vector unknowns )0()0( , mm HE . Accordingly, when the structure with flat 
interfaces is considered, the enforcement of the boundary conditions 
through the stratification (m= 0,...,N-1) can be addressed by writing 
down a linear system of equations with the aid of the matrix 
formalism (33) with m=0,..,N-1.   

Therefore, as it will discussed in Section 3.6, the adoption of  the 
matrix re-formulation of the boundary conditions (31), which 
essentially works recursively to match boundary conditions at each 
successive interface, implies that the problem in each m-th layer is 
reduced to the algebraic calculation of the unknown expansion 
coefficients vector (32). Letting  

   
mzm

mzm

jk

jk

m e
e

k
0

0
)(    (3.35) 

which accounts for the propagation in the m-th layer, with 
1mmm dd  the thickness of the m-th layer, allows writing: 
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 ).,()()(),( 1
)0(
111

)0(
m
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i
m

ih
mmm

ih
m dkkkdk SS  (3.36) 

We emphasize that the matrixes h
mm 1 and 1m are dependent on the 

medium proprieties and on the projection of the wave-number vector 
on the plane z=0. By using (34) by (35), it turns out that: 
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1
1 mzmmzm

mzmmzm

jkjkp
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It is also useful to consider that 
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so that 
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Accordingly, the condition (36) can be rewritten in the form:  

).,()]()[(),( 1
)1(
1

1
1

1)1(
k

h
k

h
kkkk

h
k dkkkdk SS  (3.41) 

This matrix formalism provides an elegant technique not only for 
the calculation of the field in flat-boundaries stratification, but also for 
the evaluation of the perturbative field as clarified in the next chapters. 
In fact, the transfer operators include an intrinsic characterization of 
the layered structure, and as such they can be successfully exploited 
even in the derivation of the approximation of the scattered field. 
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3.4  Generalized reflection formalism 
 

 This section is devoted to introduce the formalism used in the 
following of this thesis. The generalized reflection coefficients p

mm 1 , 
for the p-polarization (TE or TM), at the interface between the regions 
(m-1) and m are defined as the ratio of the amplitudes of upward- and 
downward-propagating  waves  immediately above the interface, 
respectively. They can be expressed by recursive relations as:  

  ,
1 2
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p
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p
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  (3.42) 

where the denominator mzmkjp
mm

p
mm eR 2

111  takes into account the 
multiple reflection in the m-th layer. Likewise, at the interface 
between the regions (m+1) and m, p

mm 1 is given by: 
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1 mzm
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p
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p
mmp

mm eR
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   (3.43) 

Furthermore, the following notations are introduced:  

mzmkjp
mm

p
mm

p
m eRkM 2

111)(  ,  (3.44) 

mzmkjp
mm

p
mm

p
m eRkM 2

111)( ,  (3.45) 

mzmkjp
mm

p
mm

p
m ekM 2

111)( ,     (3.46) 

It should be noted that the inverse of (44)-(46) take into account 
the multiple reflections in the m-th layer.  

It can be easily shown that the following identity holds: 

   .11
p

m
p

m
p

m
p

m MMMM    (3.47) 
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In order to provide the proof of the identity (47),  by considering the 
definitions (44)-(46), it can be rewritten in the form: 

].1][1[
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p
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p
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p
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eeR

  

 

 (3.48) 

By substituting the definition 
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in the left-hand-side of (48), we obtain: 
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In the same way, by substituting (42) in the right-hand-side of 
(48), an expression identical to (50) is obtained. Therefore, the 
identity (47) is proved. In addition, using definitions (42)-(46) and 
equations (6), after suitable algebraic manipulations, it can be verified 
that: 

],1[]][1[1 1)1(2
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1
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mmzkjp
mm

p
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p
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p
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p
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p
mm eMR   (3.52) 

 
3.5  Generalized transmission formalism 
 

The generalized transmission coefficients in downward direction
p

m0 can, which are defines as 100 )0()0(
00

mzmz djkp
m

djkpp
m eSeS , can be 

written as: 
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p
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p
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n
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p
m MTkjk   (3.53) 

where p  {v, h}.  
Here the notion of layered slab is introduced, which refers to a 

layered structure sandwiched between two half-spaces. The 
generalized transmission coefficients in downward direction for the 
layered slab between two half-spaces (0, m), )(

0
slabp

m , can be then 
defined as 

11

1
1

1

0

1

1

)(
0 exp)( p

n

m

n

p
nn

m

n

m

n
nzn

slabp
m MTkjk .  (3.54) 

Note also that coefficients p
m0  are distinct from the coefficients 

)(
0

slabp
m , because in the evaluation of p

m0  the effect of all the layers 

under the layer m is taken into account, whereas )(
0

slabp
m  are evaluated 

referring to a different configuration in which the intermediate layers 
1...m are bounded by the half-spaces 0 and m.  

Accordingly, the generalized transmission coefficients in 
downward direction for a layered slab between two half-spaces (0, N), 

)(
0

slabp
N , which are defined as 100 )0()0(

0
)(

0
NzNz djkh

N
djkhslabh

N eSeS , can be 
written: 
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n
nzn

slabp
N MTkjk .  (3.55) 

It should be noted that the parenthesized superscript slab indicates that 
both the media 0 and N are half-space.  

Similarly, the generalized transmission coefficients in downward 
direction for the layered slab between two half-spaces (m+1, N), 

)(
1
slabp

Nm , which are defined as 11)1( )0()0(
1

)(
1

NzNmmz djkh
N

djkh
m

slabh
Nm eSeS , can be 

written as: 
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It should be also noted that  

)(
1

1
11 ][ slabp
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p

m
p

Nm M .   (3.57) 

Moreover, we consider the generalized transmission coefficients in 
upward direction for the layered slab between two half-spaces (m, 0), 

)(
0
slabp

m , which are defined as  
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Moreover, the generalized transmission coefficients in upward 
direction p

m 0
 are then given by 

)()]([)( )(
0

1
0 kkMk slabp

m
p

m
p
m .   (3.59) 

We stress that generalized reflection and transmission coefficients 
do not depend on the direction of k . In the following, we shown how 
the employing the generalized reflection/transmission coefficient 
notions not only is crucial in obtaining a compact closed-form 
solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the 
role played by the equivalent reflecting interfaces and by the 
equivalent slabs. 

Finally, it should be noted that results similar to those presented in 
this Section are given in[3], however the formalism is not fully 
equivalent to the one provided here.  
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3.5.1 Reciprocal Character of Generalized Coefficients 
 

In this Section, a formal verification for the reciprocity of the 
generalized transmission coefficients for an arbitrary flat-boundaries 
layered structure is provided. By applying recursively the identity 
(47), it is quite straightforward to show that the following equality 
holds: 

][][ 12211221
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m
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m
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m
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m
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m
pp MMMMMMMMMM    (3.60) 

Note also that in last recursion we have taken in account that 
pp MM 11 , since the region 0 is a half-space. Furthermore, from the 

definition of transmission coefficients, we have: 
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  (3.61) 

   
0

0

1

)1(
1

01

1
1

0 zm

zm

nzn

nzn
m

n
v
nn

v
nn

m

n k
k

k
k

T
T    (3.62) 

In conclusion, considering (60)-(62) and the definition (53), it 
follows that: 
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Similarly, applying recursively the identity (47), we get: 

p
N

p
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p
m

p
m

p
N

p
N

p
m

p
m MMMMMMMM 12211221 ][][  (3.64) 

where in the last recursion we have taken in account that 
p
N

p
N MM 11 , since the region N is a half-space. Similarly, we have: 
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Therefore from (64)-(66) and the definition (56)-(57), as a counterpart 
of (63), the following relations is obtained: 
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As a result, equations (63) and (67) formally express the 
reciprocity of the generalized transmission coefficients for an arbitrary 
flat-boundaries layered structure [6].  
 
3.6  Derivation of the Field Coefficients 
 

In this section, jointly employing the recursive matrix approach 
(Sect. 3.3) and generalized coefficients formalism (Sect. 3.4-5), we 
calculate the unknown coefficients of the field in an arbitrary 
multilayered structure.  

By multiplying the relevant matrices together, the matrix relation 
across the entire structure can be determined. Indeed, in order to 
calculate equivalent reflection and transmission response from a flat 
boundaries layered slab, the matrix multiplication of all propagator 
elements involved can be used, so that the generalized 
reflection/transmission coefficients can be derived from a recursive 
calculation trough the stack (Fig. 2).  

Therefore, the equations system obtained enforcing the condition 
(33) (for p=h) on each flat interface z = –dm of the layered structure 
can be solved recursively. Therefore, using recursively (36) for every 
interface working from top to bottom, we get: 
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Similarly, from (41) solving recursively, we get: 
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Assuming that an incident field from only one side of the 
structure, i.e., 0)0(p

NS , we from (68) obtain: 
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p
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R
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Fig. 2.  Propagation in the layered structure: Scheme for propagator elements. 
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By using (37),(42) and (44), we get: 
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Taking into account (70) and substituting recursively (71) (for 
p=h) into (68), the recursions initialized at the N-th interface lead us 
to the following recursive expression: 
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where the generalized transmission coefficients in downward direction 
for the layered slab, between two half-spaces (m,N), )(slabp

Nm  are 
defined as in (56), so that 1)0()0()( NzNmzm djkh

N
djkh

m
slabh
Nm eSeS . Similarly, 

we obtain: 
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so that 100 )0()0(
0

)(
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djkhslabh
N eSeS . From (72)-(73) we have: 
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Since )(
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1)(
0 ][ slabh

N
slabh
Nm

jkh
m

mzme , the final solution for the field 
expansion coefficients closed-form solution is finally obtained: 
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where the generalized transmission coefficients in downward direction 
are defined by (53), so that 100 )0()0(

00
mzmz djkp

m
djkpp

m eSeS .  
Therefore by employing a recursive approach we have obtained 

the following result: the unperturbed solution, with regard to the 



42                                                                                             Chapter 3  

impinging wave (22), can be expressed in closed form within each m-
th layer by (11)-(14), with  zero-order expansion coefficients vectors 
given by (75). Indeed, starting from the solution for a horizontally 
polarized wave (11)-(14), (75) and applying duality (E  H, H  E 
and    ), we obtain the solution for the vertically polarized case. 
Then, the coefficients )0(v

mS  can be obtained from )0(h
mS applying 

duality. 
 
3.6.1 Equivalent Layered Slab Response in upward 

direction 
 

Assuming that 0(1)
0

pS , i.e.,  no downward scattered field in the 
upper half-space is supposed, we obtain: 
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It is crucial to note that, from (40), (43) and (45), we obtain 
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Taking into account (76) and substituting recursively (77) into (69), 
we have: 
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where )(
0
slabp

m are the generalized transmission coefficients in upward 
direction for the layered slab between two half-spaces (m,0), defined 
as in (58). 
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3.7  General closed-form Zero-th Order Solution 
 

Therefore, for an arbitrary polarized incident wave (7), we express 
the unperturbed field solution, which is the total (vectorial) field in the 
three-dimensional multilayer flat-boundaries structure (Fig.1) in 
concise general close form. 

By employing above notations, the unperturbed field )()0( rEm  
within the generic m-th layer can be conveniently expressed in the 
following closed-form: 
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where the orthonormal right-handed basis }ˆ,ˆ,ˆ{ zkh ii  has been 
used and the following notation has been adopted:  
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m ekekzk ,  (3.80) 

where the symbol ± in the superscript on LHS represents a given 
choice linked to the symbol ± in RHS expression. 

In particular, owing to rotational symmetry of the structure, 
without loss of generality we could assume, for instance, that the x 
axis is included in the incidence plane, so that the Cartesian 
representation of the solution within each m-region is: 
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This general solution, which is given in vectorial form, can be also 
named unperturbed solution, i. e., the zeroth-order field, since it refers 
to an idealized structure with (piecewise) homogeneous properties flat 
boundaries (see also next Chapters). 

These results allow us to evaluate effectively in compact closed-
form the field jumps on the interfaces, as discussed in next section. 
 
3.8  Field jumps on the interfaces 
 

As it will be clear in next Chapters, for the calculation of first-
order fields’ perturbation, it is necessary to know the value at the 
interfaces of the unperturbed fields and of their derivatives.  

Specifically, we are interested in deriving closed form expressions 
for field jumps on the generic m-th interface: )0()0(
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In the following we refer implicitly to the incident direction. With 

regard to the h-polarized case, substituting (75) in (11), (13) we have: 
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Taking into account (51), from (82)-(83) we obtain (93). 
Moreover, we get: 
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Substituting (52) into (84), and considering (18), (95) is obtained. 
Similarly, substituting (75) in (12)-(14) we have: 
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From (85)-(86) using the (19), we get:  
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From (89)-(90), using again (52) we obtain the final expression 
(94). On the other hand, from (87)-(88) it can be verified that: 
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In conclusion, from (92), (96) is obtained. As a result, by using 
(75) in (11)-(14) with p=h, we have therefore obtained: 
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with rk i
m

i
zm jjkih

m eekC )(0
and where Z0 is the intrinsic impedance of 

the vacuum. Applying the duality principle, we have for the vertical 
incident polarization (p=v): 
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m eekC )(0  . 
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Chapter 4 
 

Scattering from One Rough Interface: 
A Unified formulation of Existing 
Perturbative Solutions  
 

 
"Vi sono alcuni che avvertono l’urgenza di 

risolvere un problema e per loro questo 
diventa qualcosa di reale, come un 
elemento di disordine che debbono 

eliminare dal loro sistema." 
Karl Raimund Popper 

 

n this chapter we investigate analytically the connection 
between the existing first-order SPM solutions for the scattering 

from specific layered structure with one rough interface. First of all, 
by using effectively the concept of generalized reflection coefficients, 
we cast the existing models in a unified, more compact formulation, 
and point out the connection between the different analytical 
solutions.  

The obtained reformulations of the available analytical solutions 
allow us to subsequently prove the consistency of the considered 
models. The obtained unified formulation also opens the way toward a 
general closed form solution for the problem of scattering by a layered 
structure with an arbitrary number of corrugated interfaces. 

 
4.1 Introduction and Motivation 

 
Scattering from layered media with rough interfaces has been 

subject of ongoing research in several branches such as remote 
sensing, geophysics, optics and plasma physics and is becoming of 
increasing importance. From the remote sensing applications point of 

I 
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view, multi-layer dielectric structures with rough boundaries are 
useful for modelling electromagnetic propagation in stratified soil [1], 
sand cover of arid regions [2-4], forest canopies, urban buildings, 
snow blanket, snow cover ice [5], sea ice [6] and glaciers, oil flood on 
sea surface, and other natural scenes.  

To deal with the scattering problem by rough interfaces of a 
multilayer, the available methods differ in the type of the employed 
approximation, in the characterisation of the layered medium, and in 
the applicability to different frequency regimes. On the other hand, 
from the applications viewpoint (e.g., radar applications and more 
specifically  Synthetic Aperture Radar (SAR) processing and signals 
simulation), it is highly desirable to deal with scattering solutions that 
are amenable to be analytically derived in explicit closed-form: as a 
matter of fact, the complex nature of the scattering phenomena cannot 
be completely captured by only relying on numerical scattering 
methods, which do not  provide general information on the functional 
dependence between the scattered electromagnetic field and the 
electromagnetic and geometric parameters of the layered structure 
(and have obviously a much larger computational load). 

However, while many analytical techniques dealing with the 
surface scattering problem are available and apply to different 
scattering regimes [7-12], knowledge of the relation between radar 
response patterns and stratification structure is less advanced for 
layered media with rough interfaces. Basically, two main approaches 
have been adopted to find a convenient solution to this problem: the 
first one is based on the wave theory, the second one relies on the 
radiative transfer theory (RT).  

The wave theory approach simultaneously considers multiple 
interferential interactions with layer boundaries and preserves phase 
information, so that it is possible to properly model the well-known 
backscattering enhancement phenomenon [10]; then,  a full 
application to coherent remote sensing instruments is allowed.  

Conversely, the heuristic RT theory, derived from equation 
governing the propagation of energy through the scattering medium, 
neglects the coherent nature of the field, and therefore does not take 
into account coherent effects associated to parallel layers, although in 
some way it includes multiple scattering effects [8,10].  
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Therefore, in the following we do not consider the RT approach 
and we focus our attention on the wave theory approach.  

The small perturbation method (SPM) is the oldest and the most 
broadly used formalism to predict the radar scattering from rough 
surfaces with small rms height and slope. Detailed analysis on the 
limit of validity of the SPM method, as well as the other analytical 
methods, are available [7-12]. 

Presently, some extensions of the SPM method to the layered 
media with one rough interface have been proposed. The resulting 
expressions, derived via different techniques, are given for different 
simplified geometries with a limited number of layers only [13-16]. In 
addition, all the considered methods are valid in the limit of first order 
SPM. In [15], Fuks analyzes a structure consisting of a flat layered 
medium with one rough interface on the top, and uses an equivalent 
current method [7]. Sarabandi et al. [14] consider three layers with a 
rough lower interface and a smooth upper interface, and use the 
classical perturbation series expansion. Finally, the third method, 
presented by Yarovoy et al. [13] investigates the case of four layers 
with a rough interface between the middle layers, and employs a 
Green’s function approach.  

These methods are very interesting, since they provide analytical 
expressions of the scattered power density as a function of the 
geometric and electromagnetic parameters describing the stratified 
structure. However, although it is evident that the structures 
considered in [14] and [15] can be somehow recognised as particular 
cases of the one considered in [13], it is not clear if and how the 
proposed SPM solutions for the different configurations are 
compatible. Moreover, a complete understanding of the physical 
meaning of the SPM existing expressions is not available.  

As a matter of fact those expressions can be conveniently used to 
compute the field scattered by a stratified medium with one rough 
interface, but it is difficult from those solution to provide general 
information on the physical mechanisms involved in the scattering 
phenomenon. In addition, a full analytical comparison among those 
solutions is not available, and only a numerical comparison of 
obtained results in prescribed conditions can be obtained. 

Therefore, the objective of this Chapter is to investigate 
analytically the connection among the existing first order SPM 
solutions for the scattering from a layered structure with one rough 
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interface. To meet this goal, in this Chapter we reformulate the 
available solutions.  

First of all, by using effectively the concept of generalized 
reflection coefficients of equivalent reflecting boundaries, we cast the 
solutions relevant to the existing models in a unified formalism and 
point out the connection between the different geometries and 
analytical solutions. The obtained reformulations of the correspondent 
analytical solutions permit us to subsequently prove, on an analytical 
playground, the consistency of the three methods, so that all the 
analyzed models can be revisited and fully compared, with the help of 
a unified formalism, in a common analytical framework. We also 
underline that the reformulation we here obtain of the Yarovoy 
solution is much more manageable than its original form presented in 
[13].   

This chapter is organized as follows.  
Section 4.2 reviews analytical SPM models available in literature 

[13, 14, 15], and focuses on the study of electromagnetic wave 
scattering from specific geometries of a layered medium with a single 
rough interface.  

In Section 4.3 the existing solutions are reformulated in terms of 
generalized Fresnel coefficients, and the proof of the consistency of 
the three methods is provided. 

 
4.2 Existing Small Perturbation Approaches 

 
In this Section, we begin by providing an overview of the state of 

the art of extensions of the SPM method to the layered media with one 
rough interface.  In previous works different simplified geometry with 
a limited number of layers only have been analyzed [13, 14, 15].  

The resulting analytical solutions, derived with different 
techniques, are valid in the limit of first-order SPM.  

For the sake of unitary formalism, throughout this Chapter we use 
the following formalism for the scattering coefficients relevant to the 
contribution of the n-th corrugated interface:  

 )(),(~ 21,4
0

0
,

i
n

inn
qpnqp Wk kkkk  , ,p q h v    (4.1) 
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where the (equivalent) coefficients mm
qp

,1~ refer to a rough interface 
between two layers of permittivity 1m and m , whereas mm

qp
,1  are the 

classical SPM coefficients relative to the rough interface between two 
half-spaces of permittivity 1m and m , respectively. Moreover, p and q 
denote the incident and the scattered polarization states respectively, 
and may stand for h (horizontal polarisation) or v (vertical 
polarisation); )(nW is the spatial power spectrum of n-th corrugated 
interface (see Chapter 2), i.e., the Fourier transform of n-th corrugated 
interface autocorrelation function )()()( rr nnn

B .  
Nonetheless, it should be noted that different definitions of the 

Fourier transform are available in the literature.  
We stress that in backscattering case, in the limit of the first order 

SPM, backscattering cross-polarized coefficient vanishes in the plane 
of incidence. Full bi-static classical expression of 0

qp  for a rough 
surface between two different half-space media can be found in 
literature e.g. [10,11]. 
 
4.2.1 Fuks Model  
 

In [15] Fuks has proposed a model to calculate scattering from a 
rough surface on top of a stratified medium. This model refers to the 
geometry of Fig.1. By using the plane wave expansion of scattered 

Fig.1. Geometry for the Fuks model. 
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EM fields and an equivalent current method [7], without using to the 
Green’s function method, in [15] expressions for scattering bi-static 
cross section were obtained. Employing the formalism consistent with 
the one adopted in this Chapter, the Fuck’s solution leads to the 
following expressions of the scattering coefficients: 

 )(),(~
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isis
qpqp Wk kkkk  , ,p q h v  (4.2) 

with 
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hh kkkk   (4.3) 
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An incomplete physical interpretation is proposed in [18]. 

 
4.2.2 Sarabandi Model 
 

The Sarabandi model [14] refers to the geometry of Fig.2, i.e., to a 
slightly rough interface boundary covered with a homogeneous 
dielectric layer. Starting from a perturbation series expansion, 

Fig.2. Geometry for the Sarabandi model. 
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Sarabandi et al. develop a small perturbation solution to predict the 
first order bi-static scattering coefficients [14, eq.8-11]. The solution 
can be written in the form: 
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wherein  

2

01210121

2
10

2

01210121

2
10

22

12
22,1

))(())((

))(())((

ˆˆ256~

1111

1111

s
z

s
z

s
z

s
z

jks
z

s
z

s
z

s
z

jk

s
z

s
z

i
z

i
z

i
z

i
z

jki
z

i
z

i
z

i
z

jk

i
z

i
z

si
hh

kkkkekkkke

kk

kkkkekkkke

kk

kk

s
z

s
z

i
z

i
z

  (4.6) 

Similar expressions for other polarization combinations are provided 
in [14]. No physical interpretation is provided. 
 
4.2.3 Yarovoy Model 
 

With reference to the geometry represented schematically in Fig.3, 
in [13] the scattering problem for a single rough interface in a layered 
media is solved by means of the small perturbation method combined 
with the Green’s function approach. It is shown that, in the Born 
approximation, the scattering from a 2-layer media can be expressed, 
in the first-order SPM, exclusively in terms of the spectral density of 
the roughness and the parameters referring to the flat boundary 
stratification.  

This approach leads to some analytical expressions for 
backscattering coefficients [13, eqs.10-12].  It should be noted that in 
[13] the solution is expressed in term of pp , whereas the more usual 
radar backscattering cross section pppp 40  is here used. 
Therefore, the solution can be rewritten, coherently with the 
formalism adopted in this Chapter, as follows:  
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and where 

1
1

0 1 0
v vZ Z  and 

Fig.3. Geometry of the Yarovoy model 
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with )sin(),cos( 222222 zz kskc . However, the proposed solution 
appears very involved and difficult to manage. A physical explanation 
is outlined in [13], but no detailed interpretation is provided.  

 
4.3 Connection Between Existing Functional 

Forms 
 

In this Section, we discuss the relation between the three different 
models analyzed in Section 4.2 and establish their consistency from an 
analytical point of view.  

The relevant question one might ask now is whether there are any 
possible connections between these considered models. First of all, it 
is important to note that the geometry analyzed by Yarovoy [13] is 
more general than the others [14, 15], because it includes the presence 
of a flat boundary stratification above and under the corrugated 
interface. On the other hand, the solution in [13] is given only in the 
backscattering case, whereas the other two models [14, 15] refer to a 
more general bi-static configuration. However, although it is evident 
that the structures considered in [15] and [14] are particular cases of 
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the one considered in [13], it is not clear if and how the SPM solutions 
proposed by the three authors for the different configurations are 
compatible.  

The connections between the three considered solutions are not 
trivial and appear at the moment difficult to establish. A way to 
overcome this point, in order to obtain a more transparent relation 
between the models, is to refer to some equivalent forms for the 
proposed solutions. In particular, we stress that Fuks’ solution is 
already in the proper shape for the comparison. The final results will 
be surprisingly simple and recognizable. Nonetheless, building bridge 
across models could also be seen as a criterion of cross-validation of 
the corresponding functional forms. 
 
4.3.1 Equivalent form of Sarabandi Model 
 

In this Section, we want to considerer a more suitable expression 
for the model discussed in Section 4.2.2. In order to clarify the 
connections with the other models, we rearrange the expression of the 
scattering coefficient (5)-(6). Dividing nominator and denominator of 
(6) by  
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and making use of the definitions of Chapter 3 (see (3.1)-(3.6)), we 
obtain the following more compact form, in terms of reflection and 
transmission coefficients of the boundaries: 
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Similarly, equivalent expressions can be derived for other 
polarization combinations. 
 
4.3.1 Equivalent form of the Yarovoy model 
 

A not trivial equivalent expressions of the Yarovoy’s 
backscattering coefficients (7)-(11) is presented in this Section.  

We recognize that the use of generalized reflection coefficients, 
after some manipulations (see Appendix for the details), leads to the 
following less cumbersome expressions of the final solution:  
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where, the generalized Fresnel coefficients are given in Section 3.4, 
and where all the (generalized) reflection and transmission 
coefficients at the interfaces are evaluated at the incidence angle ( ik ).  
 
4.3.2 Consistency of Methods 
 

The purpose of the obtained reformulations is evident in the 
framework of the following considerations. The new analytical forms 
(12)-(13) and (14)-(16), obtained with no extra simplifying 
assumptions with reference to their original formulations, exhibit 
some important advantages with respect to the original ones. They are 
more suitable for practical use, and allow us to obtain compact 
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expressions for the first-order SPM scattering coefficients that depend 
explicitly on the (generalized) reflection coefficients of the structure.  

Furthermore, the equivalent forms allow us quite straightforwardly 
to find a satisfactory explanation of the relations between the 
correspondent solutions of the three consider models. In fact, we 
demonstrate that the corresponding functional forms are consistent, 
showing that the reformulation of the Yarovoy solution (14)-(16) 
reduces to the ones of others two examined models under special 
conditions. 

To this purpose, it is easy to verify that, when the stratification 
above the corrugate interface disappears ( 0= 1=1) so that the 
geometry of Fig.3 reduces to the one of Fig.1, we have 010

pR , 110
pT , 

pp RR 2021 , ii
01 coscos . In such a case, eqs. (14)-(16) are reduced 

to: 
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which are formally identical to eqs.(2)-(4) evaluated in the 
backscattering case ( is kk ) when indexes 0,2,3 are replaced by 
0,1,2.  
This provides a formal proof that Yarovoy and Fuks models are 
consistent.  

On the other hand, when the stratification under the corrugate 
interface disappears ( 2= 3) so that the geometry of Fig.3 reduces to 
the one of Fig.2, we have 032

pR , pp R 2121  and eq.(14)-(16) reduces 
to: 
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Equation (19) is formally identical to eq. (13) evaluated in the 
backscattering case ( is kk ). Finally, this shows that Yarovoy and 
Sarabandi models are consistent. In this manner, all the analyzed 
models can be considered in a common framework. 

It should be noted that such considerations also prove that the 
approaches of the different SPM models, make they use or not of the 
Green’s functions formalism, lead after all to the same results, 
according to expectations. 

In conclusion, the solutions of the analyzed models, which we 
have organized in a coherent framework with the help of a unitary 
formalism, have been also simplified in compact expressions and their 
consistency has been established analytically.   
 
4.4 Conclusions 
 

In this chapter three different perturbative solutions, available in 
literature,  have been considered for the scattering from a stratified 
medium with one rough interface. As matter of fact, all these models, 
which refer to different simplified geometry, employ different 
perturbative procedures and different notations in the relative 
analytical derivation, so that the resulting solutions turn out of 
difficult mutual comparison. Besides, the finding of the connections 
between these existing functional forms is not a trivial task. 

Therefore, these models have been here organized in a coherent 
framework with the help of a unitary formalism, and we have also 
simplified them in compact expressions. This has allowed us to 
demonstrated the equivalence of the relevant analytical procedures 
and establish the consistency of the respective solutions.  

However, the obtained closed form solutions for the scattering 
from layered media with a rough interface refer to specific simplified 
geometries only. In [20] the Sarabandi approach was extended to the 
case of two rough interfaces; unfortunately, extending the proposed 
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formulation to more layers becomes intrinsically not analytically 
tractable and no general closed form has been established. Other 
approaches have also been proposed, which are not based on the SPM, 
see e.g. [21], but they cannot be directly compared to the methods 
considered here, and their practical applicability is questionable. 

Therefore, a general closed form solution for the problem of 
scattering by a layered structure with an arbitrary number of 
corrugated interfaces is not available in the literature yet, and it would 
be highly desirable, also in view of future advanced SAR missions 
(see, e.g., [22]).  

The unitary formulation presented in this Chapter suggests a way 
to achieve this goal. In fact, the general compact closed form solution 
can be derived, and this is discussed in the next chapters.  

 
 

4.5 Appendix: Derivation of the Equivalent 
form of Yarovoy Model  

 
In this Appendix we provide the missing details of Section 4.3.1 

that lead to explicit calculation of the expressions (14)-(16). We start 
from the analytic expression (7)-(11). Primarily, it is instructive to 
take into account that the following relations hold: 
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Furthermore, we have to consider the complex functions: 
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Substituting (A.1)-(A.2) in (7)-(11) and taking into account (A.3), 
eqs. (7)-(11) can be expressed as follows:  
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where 
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Using (A.6) and (A.7), (A.4) and (A.5) can be more usefully 
rewritten as: 

 
4

01

4

2

120
44

0
22,1

)()(

cos16~

11111111 zzzz jkhjkh
zz

jkhjkh

hh

i
hh

eFeEkkeEeF

FE

k

 (A.12) 

4
1001

2

22
11

22

2

2
01

2

1

12
0

422,1

)()(

)()(sin)(

cos16~

11111111 zzzz jkvjkv
z

jkvjkv
z

vv
z

vv
i

i
vv

eEeFkeEeFk

EFkFEk   (A.13) 

Making use of the definition (3.1)-(3.2) and (3.3)-(3.4) in (A.12) 
and (A.13), after straightforward manipulation we obtain: 
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It can be recognized, see eq.(3.42), that:  
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In conclusion, substituting (A.16) in (A.14)-(A.15) we derive the 
final expressions (14)-(16).  
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4.6 Appendix: Radar Cross Section 
 

In this section the important concepts of radar cross section and 
scattering coefficient are introduced. 

As active remote sensing in the microwave region of the 
electromagnetic spectrum is concerned, it is fundamental to describe 
the interaction of an electromagnetic wave with a certain object 
(target). As a consequence of this interaction, part of the energy 
carried by the incident wave is absorbed by the target itself, whereas 
the rest is reradiated as a new electromagnetic wave. Generally 
speaking, an object exposed to an electromagnetic wave disperses 
incident energy in all directions. This spatial distribution of energy is 
called scattering, and the object itself is often called a scatterer. 

The Radar Cross Section , for which the abbreviation RCS has 
been generally recognized, provides a quantitative characterization of 
the electromagnetic energy intercepted and re-radiated by an object 
(or target), which is the energy available for detection.  

Let the Poynting power density of the incident wave at the 
scattering target be Si [W/m2], the amount of power intercepted by the 
target is then related to its RCS , so that the intercepted power is 

iS [W]. This intercepted power is then either reradiated as the 
scattered power or absorbed (as heat). Assuming that  it is reradiated 
as scattered power uniformly in all 4  [sr] of space, the Poynting 
power density of the scattered wave is given by 24/ rSS is

[W/m2], where r is the distance from the scatterer (target) to the 
observation point. 

Accordingly, as the target is considered to be in the far-field 
region, the radar cross section of an object (or target) is defined as 
an equivalent area intercepting that amount of power which, when 
scattered isotropically, produces at the radar receiver a power density 
which is equal to that scattered by the real object (or target):  

i

s

r S
Srlim 24 ,    (B.21)  



66                                                                                             Chapter 4 

which, therefore, is essentially the limit of the ratio of scattered power 
density at the receiver to incident power density at the target, as the 
distance r approaches infinity. This is to say that the radar cross 
section of an object is defined as the cross section of an equivalent 
idealized isotropic scatterer that generates the same scattered power 
density as the object in the observed direction.  

It should be noted that the limiting process in Eq. (10) is not 
always an absolute requirement. However, in both measurement and 
analysis, the radar receiver and transmitter are usually taken to be in 
the far field of the target, and at that distance the scattered field decays 
inversely with the distance r.  

The units for RSC are square meters. Although generally the larger 
physical size of the object the larger the inherent RSC, the RSC is not 
necessarily related to the physical size of a target. 

A general notation for the polarization dependent bistatic RCS is 

)ˆ,ˆ( is
qp kk     (B.22) 

where q  {v, h} and p  {v, h} denote, respectively, the polarization 
of scattered field and the polarization of incident field; ik̂

 
and

 
sk̂

denoting the incident and the observation directions, respectively. It is 
important to note that the symbol  has been widely accepted as the 
designation for the radar cross section.  

The RCS of a target is a function of several parameters, some of 
them related to the radar system (wave frequency, wave polarization, 
configuration, etc), other ones are related to the intrinsic (geometric 
and electromagnetic) properties of the target.  

Accordingly, the term bistatic cross section refers to a 
configuration in which transmitter and receiver are at different 
locations, whereas the term monostatic (backscattering) cross section 
is used when transmitter and receiver are collocated.  

The formal definition of polarization dependent radar cross section
qp  is 
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where i
pS is the Poynting power density of the p-polarized incident 

wave at the scattering target, s
qS  is the Poynting power density of the 

q-polarized scattered wave, i in the relevant electric field of the 
incident wave impinging on the target and s is the electric field of the 
scattered wave by the target at the observation point, and r is the 
distance from the scatterer (target) to the observation point as the 
target is considered to be in the far-field region; p is the polarization 
of the incident field and q is the polarization of the scattered field.  

Equivalently, RCS is defined as 4  times the ratio of the power per 
unit solid angle of the polarization q scattered in direction ik̂ to the 
power per unit area of a p-polarized plane wave incident on the 
scatterer from direction sk̂ .  

When the target of interest is smaller than the footprint of the radar 
system, that is, a point target, we consider the target as an isolated 
scatterer and from the point of view of power exchange, this target is 
characterized by the so-called radar cross section. Accordingly, the 
RCS is usually employed for discrete targets.  

Conversely, for targets presenting a larger extent than the radar 
footprint, we need a different model to represent the target. In these 
situations, a target is represented as an infinite collection of 
statistically identical point targets. Hence, when the target of interest 
is significantly  larger than the footprint of the radar system, it is more 
convenient to characterize the target independently of its extent. 
Indeed, since the cross section a of a patch of the extended target 
varies with the illuminated area and this is determined by the 
geometric radar parameters (pulse width, beamwidth, etc.), it is 
convenient to introduce a coefficient independent of these parameters. 
Therefore, in these situations, the target is described by the so-called 
polarization dependent bistatic scattering coefficients for the reflected 
intensity: 
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where the angular brackets denotes statistical ensemble averaging, A is 
the illuminated area, s is the electric field of the scattered wave, 
resulting from the coherent addition of the scattered waves from every 
one of the independent targets which model the extended scatterer.  

Therefore, radar return is described by 0
qp , which is the averaged 

radar cross section per unit area, also called the scattering coefficient 
or ‘‘sigma-naught’’ and represents the ratio of the statistically 
averaged scattered power density to the average incident power 
density over the surface of the sphere of radius r . The scattering 
coefficient 0

qp is a dimensionless parameter. 
It is important to note that some authors use a scattering cross 

section per unit projected area iAcos (which is the illuminated area 
projected onto the plane normal to the incident direction i ) rather 
than per unit ground area A, so that i

qpqp cos0 . Since, in the 
literature, both qp  and 0

qp  are called scattering coefficients, readers 
must be especially careful to determine which is being used by a 
particular author. 

Similarly, it can be defined the polarization dependent bistatic 
scattering coefficients for the transmitted intensity: 
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where 0 and 1 are, respectively, the dielectric relative permittivities 
of the two media separated by the pertinent surface, t

qS  is the 
Poynting power density of the q-polarized transmitted (scattered 
through) wave, t is the relevant electric field of the transmitted wave, 
resulting from the coherent addition of the scattered waves from every 
one of the independent targets which model the extended scatterer.  
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Chapter 5 
 

Boundary Perturbation Theory  
 
 
 

“Io non so come mi giudica il mondo; a me 
sembra d’essere un bambino che giuoca sulla 

spiaggia del mare e si rallegra se di quando 
in quando trova un ciottolo più liscio degli 
altri o una conchiglia più bella delle altre, 

mentre il grande oceano della verità sta 
inesplorato dinanzi a lui.”   

Isaac Newton 
 

 

his chapter is aimed primarily at providing a comprehensive 
analytical treatment of electromagnetic wave propagation and 

scattering in three-dimensional multilayered structures with rough 
interfaces. A general methodology is developed to analytically treat 
EM bistatic scattering from the class of layered structures that can be 
described by small changes with respect to an idealized (unperturbed) 
structure, whose associated problem is exactly solvable.  

The emphasis is placed on the general formulation of the 
scattering problem in the analytic framework of the Boundary 
Perturbation Theory (BPT) whose structured presentation is proposed 
and developed in this chapter. 

A thorough analysis of the results of this theoretical investigation 
(BPT), which is based on perturbation of the boundary condition, is 
presented methodologically emphasizing the development of the 
several inherent aspects. 

 

T 
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 A systematic perturbative expansion of the fields in the layered 
structure, based on the gently rough interfaces assumption, enables the 
transferring of the geometry randomness into a non-uniform boundary 
conditions formulation. Subsequently, the fields’ expansion can be 
analytically evaluated by using a recursive matrix formalism approach 
encompassing a proper scattered field representation in each layer and 
a matrix reformulation of non-uniform boundary conditions. A key-
point in the development resides in the appropriate exploitation of the 
generalized reflection/transmission notion, which has strong 
implications in order to make the mathematical treatment manageable 
and to effectively capture the physics of the problem.  

Two relevant compact closed-form solutions, derived in the first-
order limit of the perturbative development, are presented. They refer 
to two complementary bi-static configurations for the scattering, 
respectively, from and through layered structures with arbitrary 
number of rough interfaces. The employed formalism is fully-
polarimetric and suitable for applications. In addition, it is 
demonstrated how the symmetrical character of the BPT formalism 
reflects the inherent conformity with the reciprocity theorem of the 
electromagnetic theory.  
 
5.1  Introduction and Motivation 

 
The small perturbation method (SPM) is the oldest and the most 

broadly used formalism to predict the radar scattering from rough 
surfaces with small rms height and slope. Detailed analysis on the 
limit of validity of the SPM methods, as well as the other analytical 
method, are available in literature [24][25][29]. The state of the art 
shows that extensions of the SPM method to the layered media with 
one rough interface have been proposed. The resulting expressions, 
derived with different techniques, are given for different simplified 
geometry with a limited number of layers only [1]-[7] . All the 
considered models are valid in the limit of first-order SPM and 
consider only a single rough interface. 

An overview of the state of the art of extensions of the SPM 
method to the specific layered configurations with one rough 
interface, clarifying connections between the existent models [1]-[9], 
is provided in Chapter 4, where the considered three different 
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perturbative solutions have been organized in a coherent framework 
with the help of a unitary formalism,  have been also simplified in 
compact expressions and the proof of the consistence of the three 
methods has been established analytically. Methodologically, we 
underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from 
simplified geometry, imply an inherent analytical complexity, which 
precludes the treatment to structures with more than one or two [9] 
rough interfaces. In [9] the Sarabandi approach was extended to the 
case of two rough interfaces; however, no general closed form has 
been established. This approach does not make use of the generalized 
reflection/transmission concepts. As matter of fact, extending this 
formulation to more layers intrinsically becomes analytically not 
tractable. In conclusion, to the best of the existing knowledge, a 
general closed form solution for scattering problem by an arbitrary 
layered structure with corrugated interface is not available in the 
literature yet, despite its crucial value. A few solutions are available in 
literature [30],[31], but they are not completely in closed form and are, 
at best, of difficult use in practice.  

Nonetheless, it is important also to note that results obtained in 
Chapter 4 suggest that a key point in order to obtain a compact general 
closed form solution is the effectively exploiting of the generalized 
reflection coefficients of equivalent reflecting boundaries and the 
generalized transmission coefficients of equivalent slabs. 

Therefore, the objective of this Chapter is to investigate 
analytically, in the perturbation framework, the fully polarimetric 
electromagnetic wave scattering from and through three-dimensional 
(3-D) layered structures with N-rough interfaces. 

We first introduce the general perturbative expansion on which the 
BPT formulation is based: we perform a perturbative expansion of the 
fields in the rough-interfaces layered structure, assuming that 
deviations and slopes, with respect to the reference mean plane, 
exhibited by rough interfaces are small enough. In this manner, in the 
first-order approximation, the geometry randomness of the corrugated 
interfaces is translated in random current sheets imposed on 
unperturbed (flat) interfaces and radiating in unperturbed (flat 
boundaries) layered media. These uncoupled current sheets are 
related, in the first-order approximation, to the respective roughness 
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and, along with the Born approximation, to the field components of 
the unperturbed solution on the respective interface of the unperturbed 
structure. In order to perform the evaluation of perturbative 
development, the scattered field is then represented as the sum of up-
going and down-going waves and a systematic approach that involves 
the use of matrix formalism is employed.  

One main factor distinguishing BPT is the formulation of non-
uniform boundary conditions in matrix notation in terms of the 
expansion coefficients vector, the transfer matrix operators and the 
source vectors. This systematic matrix reformulation, which enables 
the formal evaluation of pertinent scattered field solutions, permits us 
to avoid the necessity of the cumbersome Green functions formalism. 
Consequently, we primarily consider the field scattered by a generic 
rough interface embedded in the layered medium, so that, by using 
effectively the concept of generalized reflection/transmission 
coefficients, the unknown expansion coefficients of scattered wave 
propagating upward in the upper half-space and downward in the 
lower half-space are derived via a recursive method. Subsequently, the 
formulation is extended straightforwardly to the N-rough interface 
case. 

A relevant point is related to the reciprocal character of the 
developed scattering formalism. To this purpose, we furnish the 
general demonstration that the proposed first-order BPT solutions for 
the scattering from and through a layered structure with N-rough 
interfaces satisfy reciprocity.  

 BPT formulation leads to derive compact and easy to use close 
form solutions in terms of the polarimetric bi-static scattering 
coefficients of the three-dimensional layered structure, which are valid 
for an arbitrary layered media with an arbitrary number of gently 
rough interfaces and that allow us to easily deal with random surfaces 
parametrically including geometric and dielectric layer characteristics. 
In other words, the proposed model explains how the relative 
contribution of each corrugated boundary, on the observed scattered 
signal, is influenced by the layered structure. Furthermore, we discuss 
the formal consistency with the previous works, in the perspective of 
providing a unifying insight for the perturbative formulations: the 
demonstration of the consistency of the BPT solutions is analytically 
provided showing that the BPT solutions reduce to the corresponding 
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existing ones when the stratification geometry reduces to the 
simplified ones considered by the other authors. In conclusion, all the 
existing perturbative scattering models can be regarded as particular 
case of the proposed general solution when the geometry 
configuration reduces to some simplified ones. 

This chapter is organized as follows.  
In section 5.2, we briefly define the problem we intend to deal 

with. In section 5.3, to overcome the limitations exhibited by the 
current models, the general formulation of the BPT is proposed. 
Sections 5.4 and 5.5 are devoted to the matrix reformulation of the 
non-uniform boundary conditions and the evaluation of the expansion 
coefficients, respectively. By using the new BPT formulation, general 
closed-form polarimetric solutions for the scattering from a through a 
layered structure with an arbitrary number of gently rough interfaces 
are  then systematically carried out in Section 5.6. The proof of 
reciprocity for the perturbative solutions is addressed in Section 5.7.  
In Section 5.8, pertinent bistatic scattering cross sections are provided. 
Analytical validation of BPT models is discussed in Section 5.9. 
Resulting expressions are numerically computed in Section 5.10. 
Section 5.11 concludes the Chapter with a summary. 
 
5.2  Statement of the problem   
 

The general problem we intend to deal with here refers to the 
analytical evaluation of the electromagnetic scattering from and 
through layered structure with an arbitrary number of rough interfaces 
(Fig.1).  

The parameters pertaining to layer m with boundaries –dm-1 and     
–dm are distinguished by a subscript m. Each layer is assumed to be 
homogeneous and characterized by arbitrary and deterministic 
parameters: the dielectric relative permittivity m, the magnetic 
relative permeability m and the thickness m=dm–dm-1. With reference 
to Fig.1, it has been assumed that in particular, d0=0. In the following, 
the symbol  denotes the projection of the corresponding vector on 
the plan z=0. Here z,rr , so we distinguish the transverse spatial 
coordinates yx,r  and the longitudinal coordinate z.  
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In addition, each m-th rough interface is assumed to be 
characterized by a zero-mean two-dimensional stochastic process 

)(rmm  with normal vector mn̂ . In addition, no constraints are 
imposed on the degree to which the rough interfaces are correlated.  

As schematically shown in Fig.1, an arbitrary polarized 
monochromatic plane-wave 

  )(
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0)](ˆ)(ˆ[)( zkjiiviihi i
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ievEhE rkkkrE   (5.1) 

is considered to be incident on the layered medium at an angle i
0  

relative to the ẑ  direction from the upper half-space, where in the 
field expression a time factor exp(–j t) is understood, and where, 
using a spherical frame representation, the incident vector wave 
direction is individuated by ii

00 , : 
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 (5.2) 

Fig. 1. Geometry for an N-rough boundaries layered medium. 
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where ykxk i
y

i
x

i ˆˆk  is the two-dimensional projection of incident 
wave-number vector on the plane z=0.  
 
5.3 General Perturbative Formulation  

   
In this section, a new approach for the derivation the first-order 

perturbative solution to the problem of the scattering from gently 
rough interfaces of an arbitrarily three-dimensional layered structure is 
presented. 
 In order to obtain a solution valid in each region of the structure, 
whose geometry is depicted in Fig.1, we have to enforce the 
continuity of the tangential fields: 

0]ˆ[ )( mm dzmmn rE ,   (5.5) 

   0]ˆ[ )( mm dzmmn rH ,   (5.6) 

where mmm EEE 1 , mmm HHH 1 , and the surface normal vector 
is given by: 
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with the slope vector m : 

  mmm y
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ˆˆ ,   (5.8) 
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where is the nabla operator in the x-y plane. In order to study the 
fields mE  and mH  within the generic m-th layer of the structure, we 
assume then that, for each m-th rough interface, the deviations and 
slopes of the interface, with respect to the reference mean plane           
z = –dm, are small enough in the sense of [24][25], so that the fields 
can be expanded about the reference mean plane. Assume that the 
fields can be expanded about the reference mean plane z = –dm as: 

2
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where the dependence on r  is understood. Then (9), (10) are the 
fields expansions in perturbative orders of the fields and their 
derivatives at the interfaces of the structure; next, they can be injected 
into the boundary conditions (5)-(6). Retaining only up to the first-
order terms with respect to m and m, we obtain:  

m
mm

dz

m
mdzmmdzm z

zz EEE ˆˆ ,  (5.11) 
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zz HHH ˆˆ
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 (5.12) 

The field solutions can then be represented formally as 

  ...),( )2()1()0(
mmmm z EEErE ,   (5.13)  

...),( )2()1()0(
mmmm z HHHrH  .   (5.14) 

where the parenthesized superscript  refers to the perturbation field of  
order n: )0()0( , mm HE  is the unperturbed solution and )1()1( , mm HE is correction to 
the first-order of m and m. It should be noted that the unperturbed 
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solution represents the field existing in flat boundaries stratification 
and satisfying: 

0ˆ )0(
mdzmz E ,    (5.15) 

0ˆ )0(
mdzmz H .    (5.16) 

The fields expansion (13)-(14) can be then injected into the 
boundary conditions (11)-(12), so that, retaining only up to the first-
order terms, the following non-uniform boundary conditions can be 
obtained: 

m
mm

dz
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mdzmmdzm z
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)0()1( ˆˆ EEE , 

 (5.17) 

m
mm

dz
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mdzmmdzm z

zz
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)0()1( ˆˆ HHH . 

 (5.18) 

Therefore, the boundary conditions from each m-th rough interface 
can be transferred to the associated equivalent flat interface.  In 
addition, the right-hand sides of Eqs. (17) and (18) can be interpreted 
as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current 

densities, respectively, with p denoting the incident polarization; so 
that we can identify the first-order fluctuation fields as being excited 
by these effective surface current densities imposed on the 
unperturbed interfaces.  

Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each 
reference mean plane (z = –dm), which radiate in an unperturbed (flat 
boundaries) layered medium.  

Therefore, in order to derive in the overall layered media the first-
order field scattered contribution by the m-th corrugated interface 
embedded in the stratification, we can equivalently calculate the field 
radiated by an effective source distribution imposed on the flat 
interface z = –dm. Subsequently, within each generic n-th layer of the 
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stratification, the overall first term )1()1( , nn HE can be obtained by the 
superposition of the field components radiated by each effective 
current distribution at z = –dm.  

Note also that the effective current sheets on the different 
reference flat interfaces are decoupled and each component is linear 
functional of the first-order of m and m. It should be noted that, in a 
certain sense, our first-order perturbative approach is consistent with 
the classical Born approximation, since the derived scattered field 
depends on the unperturbed fields on the interfaces. As matter of fact, 
the Born approximation is based on the assumption that the scattering 
is weak, so that the scattered field is small and does not distort 
significantly the original field in absence of the roughness. 

As a result, within the first-order approximation, the field can be 
than represented as the sum of an unperturbed part )0()0( , nn HE  and a 
random part, so that ,),( )1()0(

nnn z EErE  )1()0(),( nnn z HHrH . The first 
is the primary field, which exists in absence of surface boundaries 
roughness (flat-boundaries stratification), detailed in Chapter 3; 
whereas )1()1( , nn HE  can be interpreted as the superposition of single-
scatter fields from each rough interface.  

In order to perform the evaluation of perturbative development, 
the scattered field in each region of the layered structure is then 
represented as the sum of up- and down-going waves, and the first-
order scattered field in each region of the layered structure can be then 
characterized by adopting the following field spectral representation 
in terms of the unknown coefficients )()1( kq

mS : 

)1()1()1(
mmm ,    (5.19) 

)1()1()1(
mmm HHH ,    (5.20) 
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where q  {v, h} denotes the polarization of scattered field, Zm is the 
intrinsic impedance of the medium m, and   

   hzkhm
ˆˆˆ)(ˆ k     (5.23) 
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is a basis for the horizontal/vertical polarization vectors. 
Therefore, a solution valid in each region of the layered structure 

can be obtained from (19)-(22) taking into account the non-uniform 
boundary conditions (17)-(18).  

It should be also noted that Eqs. (19)-(22) are the first-order 
counterpart of Eqs. (3.11)-(3.14), which have been primarily 
introduced to describe the zero-order fields in Chapter 3.  
 
5.4 Matrix Reformulation of the Non-Uniform 

Boundary Conditions 
  
 In this section, the non-uniform boundary conditions (17)-(18) are 
reformulated, reducing the scattering problem to the formal solution of 
a linear system of equations; the unknowns are the scalar (complex) 
amplitudes, )()1( kq

mS , of the scattered fields.  
 Equations (17) and (18) can be rewritten by using their spectral 
representation: 

 ),(~ˆ )1()1( ip
Hm

j

dzm edz
m

kkJkE rk ,  (5.25) 

 ),(~ˆ )1()1( ip
Em

j

dzm edz
m

kkJkH rk , (5.26) 
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where the spectral densities )1(~ p
EmJ  and )1(~ p

HmJ  are the two-dimensional 
(generalized) Fourier transform (2D-FT), with respect to k , of the 
right-hand sides of (17) and (18), respectively, so that: 

m
mdz

dz

m
m

ii
m

ip
Hm z

zj
)0(

)0()1(
~

ˆ~)()(~),(~ EEkkkkkkJ , 

 (5.27) 

m
mdz

dz

m
m

ii
m

ip
Em z

zj
)0(

)0()1(
~

ˆ~)()(~),(~ HHkkkkkkJ , 

 (5.28) 

where )(~ km  is the spectral representation (2D-FT) of the 
corrugation )(rm , and where )0()0(~

m
j

m
ie EE rk , )0()0(~

m
j

m
ie HH rk , 

p {v,h} is associated with the incident field polarization, and where 
we have taken into account that the 2D-FT of )(rm  is 

)(~ kk mj , and that the 2D-FT of rkr ij
m e)(  is )(~ i

m kk . 
In order to solve the scattering problem in terms of the unknown 

expansion coefficients )()1( kq
mS , their amplitudes are arranged in a 

single vector according to the notation: 

  
mzm

mzm

djkq
m

djkq
m

m
q
m eS

eS
d

)(
)(

),(
)1(

)1(
(1)

k
k

kS .   (5.29) 

In addition, we use (19)-(22) to evaluate the left-hand-side of eqs. 
(25), (26) and obtain (as shown in Appendix), that the non-uniform 
boundary conditions (17)-(18), for the (q=h) horizontal polarized 
scattered wave, can be reformulated by employing the following 
matrix notation: 

 ),()(),(),( (1)
11

(1)
m

h
m

h
mm

ip
mm

h
m dkd kSkkkS , (5.30) 

where 
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is the term associated with the effective source distribution, involving 
appropriate electric and magnetic currents imposed on the m-th 
unperturbed interface (z = dm), replacing the surface irregularities, 
and Z0 is the intrinsic impedance of the vacuum. The fundamental 
transfer matrix operator h

mm 1  is defined by (3.34); the spectral 

expressions of the effective currents, )1(~ p
EmJ and )1(~ p

HmJ , imposed on the 
(flat) unperturbed boundary for an incident polarization p  {v, h} are 
given by (27)-(28). 

As a matter of fact, Eq. (30) states in a simpler form the problem 
originally set by Eqs. (17)-(18): indeed, solving Eq. (30) m implies 
dealing with the determination of unknown scalar amplitudes 

)()1( kq
mS instead of working with the corresponding vector unknowns 

)1()1( , mm HE .  
As a result, when a structure with rough interfaces is considered, 

the enforcement of the non-uniform boundary conditions (17)-(18) 
through the stratification (m=0,...,N-1) can be addressed by writing 
down a linear system of equations with the aid of the matrix 
formalism (30) with m=0,..,N-1. Therefore, the scattering problem in 
each m-th layer is reduced to the algebraic calculation of the unknown 
expansion scattering coefficients vector (29). Moreover, it should be 
noted that on a (k-th) flat interface Eq. (30) reduces to the uniform 
boundary conditions, thus getting: 

).,()(),( (1)
11

(1)
k

h
k

h
kkk

h
k dkd kSkS             (5.32) 

Note also that crossing flat boundaries the first-order expansion 
coefficients vectors (1)q

mS are transformed (see (32)) in the same way as 
the zero-order ones )0(q

mS (see Eq. (3.33)).  
It is important to observe that resulting effective currents on 

different reference mean planes are decoupled each others, i.e., )1(~ p
EkJ  
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and )1(~ p
HkJ  are decoupled by )1(~ p

EjJ and 
)1(~ p

HjJ  k . Hence, the field 
radiated by the effective currents system, constituted by the set of 
effective currents imposed on the several reference mean planes, can 
be obtained by superposing the fields radiated by each current system

)1()1( ~,~ p
Hm

p
Em JJ , evaluated separately. 

Therefore, in the first-order limit, the general problem of the 
scattering from a structure with all rough interfaces can be addressed 
by superimposing the solutions obtained considering different 
configurations, evaluated separately. Each one of these configurations 
results to be constituted by a layered structure in which a different 
embedded interface (m-th) is rough, whereas all other interfaces (k 
m) are flat.  

Accordingly, we first focus our attention on the calculation of the 
scattering contribution from a single generic (m-th) rough interface 
embedded in an isotropic, piecewise-homogeneous and arbitrary flat-
boundaries layered medium. This corresponds to solve the system of 
equations formed by Eq. (30) and by Eq. (32)  k once the 
unperturbed field solution is calculated and the appropriate effective 
currents are evaluated.  

It should be noted that, for the considered configuration, the 
relevant scattering coefficients )()1( kq

NS and )()1(
0 kqS are obviously 

supposed to be zero. In other words, no scattered field directed inward 
from the infinite, for each half-space of the structure, is assumed. 
Consequently, by leveraging on this, it is then possible to derive 
recursively all the unknown expansion coefficients. 

As a result, the formulation of non-uniform boundary conditions in 
matrix notation (29)-(30) enables a systematic method, which involves 
the effective use the matrix formalism introduced in Chapter 3, for 
solving the scattering problem: specifically, for the N-layer 
stratification of Fig.1, we have to find 2N unknown expansion 
coefficients, using N vectorial equations (30), i.e., 2N scalar equations.  

The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. 

Obtaining the solution at this point seems unproblematic; however, 
we highlight that a key-point, to resolve formally the system for a 
given arbitrary N, is to resort to a recursive method based on the 
effective use of the concept of generalized reflection/transmission 
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coefficients (see also Chapter 3). Only after that this is recognized, the 
system of equations (30), (32) is susceptible of a straightforward 
closed-form solution, so that the first-order perturbation fields, which 
arise from each m-th rough interface, can be formally found anywhere 
in the structure (and, in particular, in the upper or the lower half-
space).  

In conclusion, the derivation of scattering field contribution, due to 
each rough interface can be then accomplished by completely 
avoiding the use of the cumbersome Green functions formalism. 
 
5.5 Determination of expansion coefficients  
 

In this section, we firstly focus our attention on the calculation of 
the scattering contribution from a generic m-th rough interface 
embedded in an isotropic, piecewise-homogeneous and arbitrary flat-
boundaries layered medium. The straightforward extension to more 
general N-rough interfaces case will be addressed in next Section 5.6.  

We now demonstrate how, by making use of a recursive approach 
involving the concept of generalized transmission/reflection, the 
system of equations (30)-(32) is susceptible of a straightforward close 
form solution, so that the first-order perturbation fields that arise from 
the m-th rough interface is formally found.  

We also emphasize that here we are interested in the scattering 
from and through the stratification; therefore, the determination of the 
pertinent unknown expansion coefficients )()1(

0 kqS  and )()1( sq
NS k of 

the scattered wave, respectively, into the upper and the lower half-
space, is primary required. Full expressions for these coefficients are 
derived in  next sections.  

 
5.5.1 Wave Scattered upward in the upper half-space  
 

This subsection is devoted to the formal evaluation in closed-form 
of the unknown scattering coefficients (1)

0
qS of the perturbative 

expansion by exploiting the matrix formulation of the non-uniform 
boundary conditions.  

Accordingly, the system of equations (30)-(32) is firstly resolved 
in terms of the unknown expansion coefficient (1)

0
hS of the horizontal 
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polarized (q=h)  scattered wave propagating upward in the upper half-
space. This is done by using a recursive approach involving the 
concept of generalized transmission/reflection coefficients. 

By enforcing the condition (32) on all the interfaces for which j  
m+1, the associated equations system resolved recursively with 

0)1(q
NS  lead to (see (3.72)): 

 
.)(][

1
),( 1)1(1)(

1
21

1
)1(
1

NzN djkq
N

slabq
Nm

q
mm

m
q
m eSd kkS  (5.33) 

This is equivalent to consider the (equivalent) response, as seen 
from the (m+1)-th layer, of the slab constituted by the layers 
m+2,m+3,.., N-1.  

On the other hand, by enforcing the condition (32) on all the j-th 
interfaces for which 0  j < m, the associated equations system 
resolved recursively with 0)1(

0
qS lead to (see (3.78)): 
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),( (1)
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1)(
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1
1

)1( kkS qslabq
mq

mm
m

q
m Sd  (5.34) 

where the generalized transmission coefficients )(
0
slabq

m
 for the layered 

slab in upward direction are defined as in (3.58). Equation (30) can be 
equivalently rewritten: 
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p
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h
mm dkkd kSkS

  
(5.35) 

where the propagation in the m-th layer is accounted for by )(km  
(see (3.35)). By substituting (33) and (34) with q=h in (35), and using 
relation (3.36), we can formally write: 
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 (5.36) 
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In order to solve the system (36), we pre-multiply both sides by 
the vector )](1[ 1 kh

mmg : 

),,()()]([)( (1)
0

1)(
0

ip
m

hslabh
m

jkh
m SkekM mzm kkgk   

 (5.37) 

where p
mM is defined by (3.46). Therefore, taking into account (31), 

Eq. (37) can be solved in terms of the unknown expansion coefficient 
(1)

0
hS  of the (q=h) horizontal polarized scattered wave propagating 

upward: 
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 (5.38) 

where the relation (3.59) has been used. 
The symmetry exhibited by the Maxwell's equations (Duality 

Principle) implies that, given a solution with p
H

p
E JJHE ,,, , another 

solution can be obtained by the following replacements: 

.p
E

p
H

p
H

p
E JJJJEHHE  

We stress that interchanging    the (generalized) reflection/ 
transmission coefficients corresponds to consider the dual coefficients 
for vertical polarized wave instead of horizontally polarized ones 
(changing all the superscript h v).  

Looking at the dual problem, i.e. the vertical polarized (q=v) 
scattered wave propagating upward, from (38) we have: 
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   (5.39) 

Thus far, in order to exploit the symmetry of the Maxwell 
equations we have considered expressions that explicitly take into 
account the dependence from both magnetic permeability and electric 
permittivity. From here we focus our attention on media whose 
relative magnetic permeability is unitary (i.e. nonmagnetic media). 
This assumption is reasonable in the majority of cases of interest.  

At this point, substitution of the unperturbed field jumps (see 
Section 3.8) in the equivalent current expression (27)-(28), and their 
use in (38)-(39) provide the final expressions of the upward-scattered-
field expansion coefficients.  

In particular, for horizontally polarized incident field (p=h), 
substituting (3.93)-(3.96) in (27)-(28), we get: 

,0~ )1(h
HmJ        (5.40)  
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For vertically polarized incident field (p=v) substituting (3.97)-
(3.100) in (27)-(28), we get: 
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Therefore, taking into account that 
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  (5.44) 

and using the equivalent current density expressions (40)-(41), the 
expansion coefficient of q-polarized scattered wave propagating 
upward (38)-(39) can be rewritten as follows: 
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(5.46) 

Similarly, substituting eqs. (42)-(43) in (38)-(39), we get: 
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5.5.2 Wave scattered downward in the lower half-space  
 

This subsection is devoted to the formal evaluation in closed-form 
of the unknown scattering coefficients (1)q

NS of the perturbative 
expansion by exploiting the matrix formulation of the non uniform 
boundary conditions.  

Accordingly, the system of equations (30)-(32) is resolved in 
terms of the unknown expansion coefficient (1)q

NS of the horizontal 
polarized (q=h)  scattered wave propagating downward into the lower 
half-space (N-th layer). This is done by using a recursive approach 
involving the concept of generalized transmission/reflection 
coefficients. 

Similarly as done in Section 5.5.1, by enforcing the condition (32) 
on all the interfaces for which j  m+1, the associated equations 
system resolved recursively with 0)1(q

NS  leads to (see (3.72)): 

,][
1

),( 1)1(1)(
1

21
1

)1(
1

NzN djkq
N

slabq
Nm

q
mm
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m eSdkS  (5.49) 

where the generalized transmission coefficients )()(
1 kslabq

Nm in 
downward direction for the layered slab between two half-spaces 
(m+1,N) are defined by (3.56).  

On the other hand, enforcing the condition (32) on all the  j-th 
interfaces, with 0  j < m, the associated equation system resolved 
recursively with 0)1(

0
qS  leads to (see (3.78)): 
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where the generalized transmission coefficients )()(
0 kslabq

m in upward 
direction for the layered slab between two half-spaces (m,0) are 
defined by (3.58). It is now useful to note that Eq.(30) can be 
equivalently rewritten as: 
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  (5.51) 

where the propagation in the m-th layer is accounted for by )(km  
(see (3.35)). By substituting (49) and (50) with q=h in (51), we can 
formally write  
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where the relation (3.71) has been also taken into account. 
In order to solve the system (52), we pre-multiply both sides by 

the vector ]1;[ 2
1

mzmkjh
mm eg , obtaining: 
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By substituting Eq. (31) into (53) and applying the identity (3.47), 
Eq. (53) can be solved in terms of the unknown expansion coefficient 

)0(h
NS of the (q=h) horizontal polarized scattered wave propagating 

into the N-th medium: 
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(5.54) 

By exploit the definition (3.57), using the equation (3.51), Eq. (54) 
can be rewritten as: 
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The symmetry exhibited by the Maxwell's equations (Duality 
Principle) implies that given a solution with p

H
p
E JJHE ,,,  another 

solution can be obtained by the following replacements: 

.p
E

p
H

p
H

p
E JJJJEHHE  

It is important to stress that interchanging    in the 
(generalized) reflection/transmission coefficients corresponds to 
consider the dual coefficients for vertical polarized wave instead of 
horizontally polarized ones (changing all the superscript h  v). 
Looking at the dual problem, i.e., the vertical polarized (q=v) 
scattered wave propagating upward, from (55) we have: 
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 (5.56) 

Thus far, in order to exploit the symmetry of the Maxwell 
equations we have considered expressions that explicitly take into 
account the dependence from both magnetic permeability and electric 
permittivity. From here we focus our attention on media whose 
relative magnetic permeability is unitary (i.e. nonmagnetic media). 
This assumption is reasonable in the majority of cases of interest.  

At this point, substituting equivalent currents expressions into Eqs. 
(55)-(60), the final expression of the scattered field expansion 
coefficients can be obtained. For horizontally polarized incident field 
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(p=h), substituting the effective currents expression )1()1( ~,~ p
Hm

p
Em JJ  (see 

(40)-(41)) with p =h in (55)-(56), we get: 

)],(1)[(

)](1[)(

)(~)ˆˆ()(
2

)(

10

11

1
)1(

2
0)1(

1)1(

1

ih
mm

ih
m

jk

h
mm

h
Nm

jk

i
m

i
mm

mz

djkh
N

kke

kke

kk
k
jkeS

m
i
zm

mmz

NzN kkk

 (5.57) 

)].(1)[(

)](1[)(

)(~)ˆˆ(ˆ)(
2

)(

10

11

1
0)1(

1)1(

1

ih
mm

ih
m

jk

v
mm

v
Nm

jk

i
m

i
mm

N

djkv
N

kke

kke

kkzjkeS

m
i
zm

mmz

NzN kkk

 (5.58) 

Similarly, regarding the vertically polarized incident field (p=v), 
substituting the effective currents expression )1()1( ~,~ p

Hm
p
Em JJ  with p = v (see 

(42)-(43)) in the (55)-(56), we respectively get: 
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 (5.60) 

It should be noted that the identities (44) have been exploited in 
the derivation of (57)-(60). 
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5.6 BPT closed-form solutions 
 

The aim of this section is to present the relevant BPT solutions for 
the scattering from and through the 3-D layered rough structure 
pictured schematically in Fig.1. We underline that the corresponding 
first-order solutions refer to two complementary bistatic 
configuration: in the first case, both the transmitter and the receiver 
are into the same half-space, whereas, in the second case, each one is 
located in a different half-space. 

 
5.6.1 Scattering from layered structure with an 

arbitrary number of rough interfaces  
 

First, we consider the case of one rough interface embedded in the 
layered structure. The field scattered upward in the upper half-space in 
the first-order limit can be written in the form (see (19)-(21)):  

 zjkqj
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zeSqed 0)()(ˆ)( )1(
00

,
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0 kkkr rk .  (5.61) 

By employing the method of stationary phase [36], we evaluate 
the integral (61) in the far field zone, obtaining: 
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with q  {v, h} is the polarization of the scattered field. Taking into 
account the expressions for the unknowns expansion coefficients 
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0

sqS k  given by (45)-(48), we get 
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wherein 
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where )( i
zm

i
zm kkk , )( s

zm
s
zm kkk ; p

m0 and p
m 0 are, respectively, the 

generalized transmission coefficients in downward direction (3.53) 
and the generalized transmission coefficients in upward direction 
(3.59), and p

mm 1 are the generalized reflection coefficients defined 
by (3.42).  

The coefficients 1,~ mm
qp are relative to the p-polarized incident 

wave impinging on the structure from upper half space 0 and to the q-
polarized scattering contribution from structure into the upper half 
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space, originated from the rough interface between the layers m and 
m+1.  

Finally, we emphasize that the total scattering from the N-rough 
interfaces layered structure can be straightforwardly obtained, in the 
first-order approximation, by superposition of the different 
contributions pertaining each rough interface: 
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00
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5.6.2 Transmission Through layered structure with an 

arbitrary number of rough interfaces 
 

Similarly, when one rough interface embedded in the layered 
structure is concerned, the field scattered into the last half-space, 
through the 3-D layered structure, in the first-order limit can be then 
written in the form:  
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In order to evaluate the integral (69) in far field zone, we firstly 
consider a suitable change of variable ),( zrr , with 1Ndzz : 
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then we use the method of stationary phase and obtain: 
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with q  {v, h}. Taking into account the expressions for the unknowns 
expansion coefficients )()1( sq

NS k  (see (57)-(60)), we get 
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where )( i
zm

i
zm kkk , )( s

zm
s
zm kkk ; p

m0 and p
Nm 1 are, respectively, 

the generalized transmission coefficients in downward direction and 
the generalized transmission coefficients in downward direction given, 
respectively, by (3.53) and (3.57), and p

mm 1are the generalized 
reflection coefficients (see (3.42)).  

The coefficients 1,0 ~ mm
qpN  are relative to the p-polarized incident 

wave impinging on the structure from half-space 0 and to q-polarized 
scattering contribution, originated from the rough interface between 
the layers m and m+1, through the structure into last half-space N.  

Finally, we emphasize that the total scattering through the N-rough 
interfaces layered structure can be straightforwardly obtained, in the 
first-order approximation, by superposition of the different 
contributions pertaining each rough interface: 
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As a result, the relevant final solutions (68) and (77) turn out 
formally identical, provided that the coefficients 1,~ mm

qp are replaced 

with the complementary ones 1,0 ~ mm
qpN . 

Finally, it is important to better emphasize the analogy between 
the corresponding roles and final solutions of two scattering 
perturbative problems concerning the structure pictured schematically 
in Fig.1: the one discussed in Section 5.6.1 refers to the scattering 
from, while the other one, which is considered in this Section, 
concerns the scattering through the same structure. In this regard, we 
underline that, although the respective configurations are different and 
the associated final closed-form solutions are complementary, both the 
models share the same methodological background (BPT). It should 
be also noted that in first case, both the transmitter and the receiver are 
into the same half-space, whereas, in the other case, each one is 
located in a different half-space.   

Specifically, the first-order perturbative solution (77), to the 
problem of the scattering into lower half-space through rough 
interfaces of an arbitrarily three-dimensional layered structure, can be 
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regarded as the counterpart of solution (68), to the problem of the 
scattering into the upper half-space from rough interfaces of an 
arbitrarily three-dimensional layered structure: the corresponding final 
solution turn out to be formally identical provided that the coefficients 

1,~ nn
qp are replaced with the complementary ones 1,0 ~ mm

qpN .  
 
5.7 Reciprocal character of the BPT solutions 
 

In this section, the emphasis is placed on the reciprocal character 
of the final BPT scattering solutions, which evidently constitutes a 
crucial point in the formal framework of the BPT.  

Generally speaking, the reciprocity principle is a statement that 
expresses some form of symmetry in the laws governing a physical 
system. Analytically speaking, both the BPT final solutions (68) and 
(77), respectively, from and through the layered structure with N-
rough interfaces can be expressed in a common formal frame 
exhibiting a symmetric nature: 

),(~),(~ 1,1, simm
pq

ismm
qp kkkk ,  (5.78) 

),(~),(~ ,1
0

1,0 simm
pq

Nismm
qpN kkkk .  (5.79) 

These formal relations are not only a mere matter of aesthetic; in 
fact their symmetry inherently reflects the conformity with the 
reciprocity principle of the electromagnetic theory. We emphasize that 
the relations (78) and (79) imply that the wave amplitude for the 
scattering process si kk equals that of reciprocal scattering process 

is kk .  
Therefore, (78) and (79) are also reciprocity relationships for the 

scattering, respectively, from and through a layered structure with an 
(m-th) embedded rough interface.  

This is to say that for the presented scattering solutions the role of 
the source and the receiver can be exchanged (see Fig.2), in 
conformity with the reciprocity principle of the electromagnetic 
theory.  
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It should be noted that when the N-rough interfaces structure is 
concerned the properties (78)-(79) are satisfied as well, since the 
solutions in first-order limit are obtainable by superposition of the 
contribution of each (m-th) rough interface.  

In order to provide general demonstration of these fundamental 
relationships, we found a more compact expression for (64)-(67) and 
(73)-(76), respectively. First, we introduce the following suitable 
notation: 

)](1[)()( 100 kekk p
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m

p
m

mzm ,   (5.80) 

)](1[)()( 111
1)1( kekk p

mm
jkp

mN
p

mN
mmz .  (5.81) 

Next, when the solution for the scattering from the layered structure 
with an embedded rough interface is concerned, substituting relations 
(3.63) into (64)-(67), we obtain the alternative and more compact 
expressions for the relevant solution: 

 

 
Fig. 2. Reciprocity for scattering from and through a layered structure with rough 

interfaces. 
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Then, by direct inspection of (82)-(85) we ultimately find Eq. (78).  
On the other hand, when the solution for the scattering through the 

layered structure with an embedded rough interface is concerned, we 
proceed similarly as done previously. Substituting relations (3.67) into 
(73)-(76), we obtain the alternative and more compact expressions for 
the relevant solution: 
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Then, by direct inspection of (86)-(89) we ultimately find Eq. (79). 
This is to say that BPT formalism satisfies reciprocity.  
 
5.8 Bi-static scattering cross sections  
 

In this section, we calculate the bi-static scattering cross sections 
of the layered structure arising from the BPT solutions, which have 
been derived in the first-order approximation in the previous sections. 
The estimate of the mean power density can be obtained by averaging 
over an ensemble of statistically identical interfaces. 
 
5.8.1 Scattering Cross Section of an arbitrary 

layered structure with an embedded rough 
interface  
 

We focus on the scattering property of a single rough interface 
embedded in the layered structure. According to as discussed in 
Section 4.6, the bi-static scattering cross section of a generic (n-th) 
rough interface embedded in the layered structure can be then defined 
as 

  
2

0
)1(

0

2
0

, )(ˆ)(4~ s
Arnqp q

A
rlimlim kr ,  (5.90) 

where < > denotes ensemble averaging, where q  {v, h} and p  {v, 
h} denote, respectively, the polarization of scattered field and the 
polarization of incident field, and where A is the illuminated surface 
area.  

Therefore, by substituting (63) into (90) and considering that the 
(spatial) power spectral density )(nW of nth corrugated interface is 
defined as in (2.18), the scattering cross section relative to the 
contribution of the nth corrugated interface, according to the 
formalism used in this thesis, can be expressed as 
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n

isnn
qpnqp Wk kkkk ,  (5.91) 
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with p, q  {v, h} denoting, respectively, the incident and the 
scattered polarization states, which may stand for horizontal 
polarization (h) or vertical polarization (v); ik and sk denote the 
projection on horizontal plane, respectively, of the incident and 
scattered vector wave-number Furthermore, we stress when the 
backscattering case ( 0ˆˆ is kk ) is concerned, cross-polarized 
scattering coefficients (64)-(67) evaluated in the plane of incidence 
vanish, in full accordance with the classical first-order SPM method 
for a rough surface between two different media[24][25]. 
 
5.8.2 Scattering Cross Section into last half-space 

of an Arbitrary Layered Structure with an 
Embedded Rough Interface  
 

As counterparts of the configuration considered in the last 
subsection, we now refer to the complementary one in which the 
scattering through the structure is concerned. According to as 
discussed in Section 4.6, the bi-static scattering cross section into last 
half-space of the structure with one embedded (n-th) rough interface 
can be defined as 

0
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NNArnqp q
A
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where < > denotes ensemble averaging, where the index q  {v, h}  
index p  {v, h} and denote, respectively, the polarization of scattered 
field and the polarization of incident field, A is the surface area, and 
where we have considered the Poynthing power density of the 
transmitted wave in N-th region normalized to the power density of 
the incident wave. Therefore, by substituting (72) into (92) and 
considering that the (spatial) power spectral density )(nW of n-th 
corrugated interface is defined as in (2.18), as final result, we obtain: 

0

2
1,04

0
0

, Re)(),(~~ Nis
n

isnn
qpNnqp Wk kkkk .  (5.93) 
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5.8.3 Scattering Cross Section of a Layered 

Structure with N-rough interfaces  
 

We now show that the solutions, given by the expressions (91) and 
(93) respectively, are susceptible of a straightforward generalization to 
the case of arbitrary stratification with N-rough boundaries. Taking 
into account the contribution of each n-th corrugated interface (see 
(68)), the global bi-static scattering cross section of the N-rough 
interface layered media can be expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, 
where 1,~ ii

qp are given by (82)-(85), and where the cross power spectral 
density ijW , between the interfaces i and j, for the spatial frequencies 
of the roughness is given by (2.19).  

Likewise, the solution given by the expression (93), is susceptible 
of a straightforward generalization to the case of arbitrary 
stratification with N-rough boundaries. Taking into account the 
contribution of each nth corrugated interface (see (77)), the global bi-
static scattering cross section into last half-space of the N-rough 
interface layered media can be expressed as: 
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 (5.95) 

where p, q  {v, h}, where the asterisk denotes the complex 
conjugated, 1,0 ~ ii

qpN are given by (86)-(89), and where the cross power 
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spectral density ijW , between the interfaces i and j, for the spatial 
frequencies of the roughness is given by (2.19).  
 

Some final considerations are now in order.  
As a matter of fact, the presented closed-form solutions permit the 

full-polarimetric evaluation of the scattering for a bi-static 
configuration, from or through the layered rough structure, once the 
three-dimensional layered structure’s parameters (shape of the 
roughness spectra, layers thickness and complex permittivities), the 
incident field parameters (frequency, polarization and direction) and 
the observation direction are been specified.  

As a result, elegant closed form solutions are established, which 
take into account parametrically the dependence of scattering 
properties on structure (geometric and electromagnetic) parameters.  

Therefore, BPT formulation leads to solutions which exhibit a 
direct functional dependence (no integral evaluation is required) and, 
subsequently, permit to show that the scattered field can be 
parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e. intrinsically 
the physical parameters of the smooth boundary structure, and others 
which are determined exclusively by (random) deviations of the 
corrugated boundaries from their reference position. Note also that the 
coefficients 1,~ mm

qp  and 1,0 ~ ii
qpN  depend parametrically on the 

unperturbed structure parameters only and exhibit a direct functional 
dependence by the generalized transmission/reflection coefficients.  

Procedurally, once the generalized reflection/transmission 
coefficients are recursively evaluated, the coefficients 1,~ ii

qp and/or 
1,0 ~ ii

qpN  can be than directly computed, so that the scattering cross 
sections (94) and/or (95) for the pertinent structure with rough 
interfaces can be finally predicted. 

 Furthermore, the scattering from or through the rough layered 
media is sensitive to the correlation between rough profiles of 
different interfaces. In fact, a real layered structure will have 
interfaces cross-correlation somewhere between two limiting 
situations: perfectly correlated and uncorrelated roughness. 
Consequently, the degree of correlation affects the phase relation 
between the fields scattered by each rough interface. Obviously, when 



106                                                                                           Chapter 5 

the interfaces are supposed to be uncorrelated, the second terms 
respectively in (94) and (95) vanish and accordingly, in the first-order 
approximation, the total scattering from or through the structure arises 
from the incoherent superposition of radiation scattered from each 
interface. We emphasize that the effects of the interaction between the 
rough interfaces can limited be treated, in the first-order 
approximation, only when the rough interfaces exhibit some 
correlation.  

In addition, as it will be demonstrated in the next Chapter, the 
proposed global solution turns out to be completely interpretable with 
basic physical concepts, clearly discerning the physics of the involved 
scattering mechanisms.  

Finally, it should be noted that the method to be applied needs 
only the classical gently-roughness assumption, without any further 
approximation (see also Chapter 8).  
 
5.9 Analytical Validation of the Models  
 

In this section, we give an analytical demonstration of the 
consistency of the proposed BPT model showing that the solution 
(82)-(85) agrees perfectly with the existing analytical solutions 
[1][2][4] when the stratification geometry reduces to those simplified 
ones considered by the different authors.  

The aim is to reconsider the state of art in an organized 
mathematical framework, analytically demonstrating the formal 
consistency of BPT general scattering solution, which permits to deal 
with layered media with an arbitrary number of rough interfaces, with 
the previous existing perturbative models, whose relevant first-order 
solutions have been widely discussed in Chapter 4. We underline that 
these existing models were introduced to cope with simplified layered 
geometry with only one (or two) rough interface, whose derivation 
methods belong to the class of perturbative methods.  

This also permits to set the presented general BPT model in an 
organized formal framework, highlighting the connections with all the 
previously existing simplified perturbative models. Accordingly, we 
discuss on the formal consistency with the previous works, in the 
perspective of providing both an analytical validation of the BPT 
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general solution and a unifying insight for all the existing perturbative 
formulations. 

First of all, it is merits to be underlined that none of the pertinent 
configurations of these simplified models previously considered is 
directly applicable, for instance, to an actual remote sensing scenario. 
In fact, the natural stratified media are definitely constituted by 
corrugated interfaces, each one exhibiting a certain amount of 
roughness, whereas the flatness is an idealization which does not 
occur in natural media. More specifically, it can occur that, for a given 
roughness, one might consider an operational EM wavelength for 
which the roughness itself can be reasonably neglected. However, in 
principle, there is no defensible motivation, beyond the relevant 
limitation of the involved analytical difficulties, for considering the 
effect of only one interfacial roughness, neglecting the other relevant 
ones. This poses not only a conceptual limitation. In fact, in the 
applications perspective of retrieving geo-physical parameters by 
scattering measurements, whether there is a dominant interfacial 
roughness, and, in case, which the dominant one is, should be 
established after the remote sensing data are analyzed and, conversely, 
they cannot constitute a priori assumptions. Conversely, the inherent 
distinctive features make the general BPT model suitable to be applied 
in remote sensing applications scenario. 

Now we focus our attention on the demonstration that when the 
general geometry reduces to each simplified one, the consistency of 
the relevant solutions formally holds. First of all, we observe that 
when the stratification above and under a rough interface vanishes 
BPT solution (82)-(85) reduces to the classical SPM solution for the 
scattering from a rough surface between two-half-spaces. Moreover, it 
is important to note that emphasize that no depolarization effect is 
expected in backscattering case, according with the first-order 
classical SPM theory [24][25].  

In addition, it can be straightforward verified that, when the 
stratification above the roughness vanishes, i.e. when the (82)-(85) are 
specialized for the case of Fig.1 of Chapter 4 (Fuks model), the factors 

mzmjkp
m ek )(0  turn out to be unitary and the general BPT solution 

(82)-(85) formally reduces the one discussed in Section 4.2.1.  
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On the other hand, to perform a direct comparison with the models 
discussed in Section 4.2.2 and in Section 4.2.3, we specialize the BPT 
solution to the simplified geometry depicted in Fig.3 of Chapter 4.  

Considering that ppp RR 100101 , and 

12
21101010 ])()(1)[()( 11zkjpppp ekkRkTk , 

from (82)-(85) we obtain: 
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Therefore, it is simple to verify (see Chapter 4) that BPT solution 
specialized to the geometry of Fig. 3 of Chapter 4, i.e. (97)-(101), 
when evaluated in backscattering ( 0is kk ), formally reduces to 
the equivalent Yarovoy solution (see Section (4.3.2)).  

Similarly, when in addition the stratification below the roughness 
vanishes ( 032

pR , pp R 2121 ), the solution (97)-(100) formally 

reduces to the Sarabandi solution (see Section (4.3.1)).  
Moreover, it can be also proved the full consistency of BPT 

solution (77) with one existing simplified model presented in [4], 
which concerns the scattering through a specific configuration with a 
rough surface on top of a stratified medium: this can be easily verified 
analytically by particularizing the expression of the general BPT 
solution (77) to the simplified case considered there. 

 As a result, the demonstration of the full consistency of the 
presented solutions has been provided analytically, showing that the 
BPT solutions reduce to each of the existing ones when the 
stratification geometry reduces to each of the corresponding simplified 
ones considered by the other authors. 
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Therefore, the solutions of the all existing first-order perturbative 
models [1], [2] and [4], which refers to a specific simplified geometry 
with one rough interface, can be rigorously regarded as particular 
cases of BPT general solution.  

Analytically speaking, BPT results can be also regarded as a 
generalization of the classical SPM for rough surface to layered media 
with rough interfaces.  

In conclusion, the presented analysis, which has been carried out 
on an analytical playground, allows us to obtain, in a unitary formal 
framework, a comprehensive insight into the first-order perturbation 
solutions formalism for scattering from stratified structure with rough 
interfaces, coherently highlighting the formal connections with all the 
previously existing simplified perturbative models. 
 
5.10 Scattering patterns computation 

 
In this section, we present some examples aimed at studying the 

bi-static scattering coefficients (94)-(95).  
In order to point out the capability of the proposed BPT model, we 
refer to a canonical layered media with two intermediate layers and 
three corrugated interfaces only. This special is of interest in several 
applications; in addition, the evaluation of the scattering through such 
a structure has not been considered by other authors yet.  

 
 

Figure 3. Three rough interfaces layered media. 
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In common with classical theoretical studies of the scattering of 
waves from random surfaces, we assume that the interfaces constitute 
Gaussian 2D random processes with Gaussian correlations, whose 
spectral representation is given by  

  )4/exp()4/()( 2222
nnnn llW   (5.101) 

where, with regard to the n-th interface, n and ln are the surface 
height standard deviation and correlation length, respectively. 

In the following four different cases study are considered. 
 

5.10.1 Case Study 1 
 

With reference to the structure depicted in Fig 3, we study the 
scattering patterns relevant to the bistatic scattering coefficient (94). 
Accordingly, we plot in Fig. 4 the bi-static scattering coefficient, for 
the four polarization combinations, as a function of the scattering 
angle s

0  distinguishing the three contributions 0
,

~
nqp  from the 

 
Fig.4. Bi-static scattering coefficients for three-rough-interfaces layered media: 

0~
qp  (solid line), 0

0,
~

qp  (long-dashed), 0
1,

~
qp (short-dashed line), 0

2,
~

qp (dotted-
dashed line), 0

0,qp  (dot-dot-dashed line). 
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correspondent considered rough interfaces (n=0,1,2). The overall 
scattering coefficient 0~

qp  of the layered structure with three rough 
interfaces is also shown; we also show for comparison the 
contribution 0

0,qp  that we would have if the structure under the upper 

rough interface were neglected. We assume i
0 =45 , f=1.0 GHz and 

azimuthal scattering angle s
0 =40 . To perform a consistent 

comparison we refer to interfaces with the same roughness. To be 
more specific, we consider classical Gaussian surface height model 
with Gaussian correlations (101): we assume k0ln=1.5, k0 n=0.15 for 
n=0,1,2. In addition, the considered vertical profile is characterized by 
the following parameters: 0=1, 1=2.8+j0.001, 2=5.0+j0.05, 

3=10.0+j1.0, 1/ =7.0 2/ =5.0.  
Therefore, this simple instance demonstrates the significance of 

taking into account the effects of the different interfaces when 
analyzing the response of a natural stratified structure.  
 
5.10.2 Case Study 2 

 
In this section, we present some numerical examples aimed at 

studying scattering coefficients (94).  To this purpose, we consider the 
layered structured schematized in Fig.3, which is representative of 
several situations of interest, which has been parametric characterized 
as follows. The considered vertical profile is characterized by the 
following parameters: 0=1, 1=3.0+j0.0, 2=5.5+j0.00055, 

3=10.5+j1.55 1/ =1.50 2/ =2.80. 
 

i
0  45  k0 0 0.15 

1/  1.50 k0 1 0.15 

2/  2.80 k0 2 0.15 
f 1.0 GHz k0l0 1.5 

1 3.0 k0l1 1.5 

2 5.5+j 0.00055 k0l2 1.5 

3 10.5+j 1.55   

 
Table 1. A parametric characterization for the layered media of Fig.3 
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 In order to perform a consistent comparison, we refer to interfaces 
with the same roughness: we assume k0ln=1.5, k0 n=0.15 for n= 0, 1, 
2. In addition, we suppose no correlation between the interfaces. Once 
this reference structure has been characterized (see Table 1), we study 
the scattering cross section of the structure as a function of the 
scattering direction in the upper half-space, assuming fixed the 
incident direction. 

 

a)       b) 

 

c)       d) 

Fig.5. Bi-static scattering coefficients hh for a three rough interfaces layered 
media: 0  contribution (a), 1  contribution (b), 2 contribution (c), total 

contribution (d) (note that scattering coefficients values less than -40 dB are 
represented by the axes origin). 
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It should be noted that, also considering a limited number of 
layers, the number of parameters involved by the model makes 
difficult the jointly visualization of the multi-variables dependency. 
As matter of fact, once the structure has been parametrically defined 
and incident direction has been fixed, it is possible to visualize the 
scattering cross section of the structure as a function of the scattering 
direction in the upper half-space. Therefore, to characterize the re-
irradiation pattern of the structure in three-dimensional space, 
scattering cross-section distributions are represented (Fig.5) as 
function of zenithal and azimuthal angles and are treated as three-
dimensional surfaces. To save space, only the case hh is considered. In 
addition, we assume fixed the incidence angle i

0 = 45  ( xk i ˆˆ ).  
Therefore, to evaluate the effect on the global response of each 

rough interface, the several single contributions are shown in Fig.5a, 
Fig.5b, and Fig.5c, respectively. In addition, the total contribution is 
also pictured (Fig.5.d). It should be noted that to visualize the patterns 
an offset of +40dB has been considered for the radial amplitude, so 
that scattering coefficients less than -40dB are represented by the axes 
origin.  

 
5.10.3 Case Study 3 
 

In this section, we present some numerical examples aimed at 
studying scattering coefficients (94) with reference to a specific 
context. To this purpose, we consider the canonical layered media 
with three rough interfaces pictured in Fig.3, which is representative 
in particular of the characteristic case of snow-covered sea ice [40].  

In addition, we consider the operational frequency f=c/ =4.0 GHz 
and analyze the layered medium with three rough interfaces 
schematized in Fig.3, which can be parametric characterized as 
follows. The vertical profile, which is used for the calculation, is 
characterized by the following parameters: 0=1.0, 1=1.51+j9.81 10-3 

(snow), 2=4.67+j4.38 10-2(sea ice), 3= 63.4+j39.1 (sea water); 
1/ =2.65 2/ =3.80. 
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We assume that the interfaces constitute Gaussian 2D random 
processes with Gaussian correlations, where, with regard to the nth 
interface (n = 0, 1, 2), n and ln are the surface height standard 
deviation and correlation length, respectively. In addition, we suppose 
no correlation between the interfaces, so the cross products (second 
summation) in Eq. (94) do not contribute.  

Once this reference structure has been characterized, we study the 
scattering cross section of the structure as a function of the  scattering 

  a) 

      b) 
        

Fig. 6. Bi-static scattering coefficients hh for a three rough interfaces layered 
media: 0 contribution (dashed line), 1 contribution (dot dashed line), 2 

contribution (dotted line), and overall contribution (solid line): a) 
2=4.67+j4.38*10-2, b) 2=4.67+j4.38*10-1 
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direction in the upper half-space, assuming fixed the incident 
direction.  

As matter of fact, once the structure has been parametrically 
defined and incident direction has been fixed, it is possible to visualize 
the scattering cross section of the structure as a function of the 
scattering direction in the upper half-space. To proceed with a 
consistent comparison between different scattering contributions, we 
also conveniently assume the same value for the corresponding 
interfacial parameters: k0l0=k0l1=k0l2=1.6, k0 0=k0 1=k0 2 =0.17. To 
save space, only the case hh is considered. In addition, we assume 
fixed the incidence angle i

0 = 45  ( xk i ˆˆ ).  
Therefore, to evaluate the effect on the global response of each 

rough interface, the several single contributions are shown in Fig.6a: 
each plot then refers to a different (n = 0, 1, 2) term of the first 
summation in Eq. (94), so representing the bistatic scattering 
coefficient of the same canonical layered media (Fig. 3) in which only 
one (with n= 0,1,2) interface is rough (while the other ones are 
considered flat). In Fig. 6a, the overall contribution (for which all 
interfaces are considered rough) is also pictured. It should be noted 
that to visualize the patterns an offset of +40dB has been considered 
for the radial amplitude, so that scattering coefficients less than -40dB 
are represented by the axes origin. In order to evaluate the effect of the 
model parameters on the scattering pattern, for instance, a different 
value for the losses in the sea ice permittivity ( 2=4.67+j4.38*10-1) is 
considered in Fig. 6.b: in this case it is evident that the contribution of 
the last interface becomes negligible.  
 
5.10.4 Case Study 4 
 

In this section, we present and discuss some examples aimed at 
studying the bi-static scattering coefficients (95).  
Accordingly, we plot in Fig. 7 the bi-static scattering coefficient at 1 
GHz, for the four polarization combinations, as a function of the 
scattering angle s distinguishing the three contributions 0

,
~

nqp  from 
the correspondent considered rough interfaces (n=0,1,2). The overall 
scattering coefficient 0~

qp  of the layered structure with three rough 
interfaces is also shown. We assume i

0 =45 .  
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To perform a consistent comparison we refer to interfaces with the 
same roughness. To be more specific, we consider classical Gaussian 
surface height model with Gaussian correlations: we let k0ln=1.5, 
k0 n=0.15 for n=0,1,2.  
No interface cross-correlation is assumed. In addition, the considered 
structure (Fig. 3) is characterized by the following parameters: 

1=8.5+j0.02, 2=4.5+j0.001, 3=1.0; 1/ =1.150 2/ =2.80. 
Note also that, by using spherical coordinates systems, the 

directions of the incident and scattered waves, are individuated by 
),( 00

ii  and ),( s
N

s
N , respectively: assuming both half-spaces are 

vacuum, we get  

)].cos(sinsin2sin[sin 00
2

0
22

0
2 is

N
s
N

is
N

iis kkk   
 (5.81)  

 
Fig.7. Bi-static scattering coefficients for three rough interfaces layered media, 
with 1=8.5+j0.02, 2=4.5+j0.01, 0= 3=1; 1/ =1.150 2/ =2.80; k0l0= k0l1= 
k0l2=1.5, k0 0=k0 1= k0 2=0.15,  f=1.0 GHz, i

0 = 45 , i
0 = 0 , s

N  = 20 , 0~
qp  

(solid line), 0
0,

~
qp  (long-dashed), 0

1,
~

qp (short-dashed line), 0
2,

~
qp (dotted-dashed 

line). 
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From Fig.7 the different effect of the several corrugated interface 
on the bi-static scattering coefficients can be observed. We observe 
that the interfaces with a greater associated dielectric contrast exhibit a 
more significant contribution, whereas the oscillatory behavior of the 
distinct contributions is more attenuated as the losses increase. The 
remarkable point is the importance of taking into consideration, in the 
evaluation of the overall bi-static scattering through the layered 
structure, the peculiar electromagnetic and geometric parameters of 
real rough interface stratifications. Therefore, this simple instance 
demonstrates the significance to discern the effects of the different 
interfaces when analyzing the response of a realistic stratified 
structure. We do not show further examples only to save space, since 
their results are qualitatively similar to the presented ones. 
 
5.11 Conclusion 
 

A quantitative mathematical analysis of wave propagation in 
three-dimensional layered rough media is fundamental in 
understanding intriguing scattering phenomena in such structures, 
especially for remote sensing applications. The problem of 
electromagnetic scattering in 3D layered rough structures can be 
analytical treated by relying on effective results of the Boundary 
Perturbation Theory (BPT). A structured presentation of the pertinent 
theoretical body of results has been provided in this Chapter. 

In this context, the results of the Boundary Perturbation Theory 
(BPT), lead to compact, formally symmetric and fully polarimetric 
closed-form solutions that are amenable of direct and parametric 
numerical evaluation and, therefore, can be effectively applied to 
several practical situations of interest. The first-order scattering 
models obtained in the framework of the BPT allow us to 
polarimetrically deal with the (bi-static) scattering, from and through 
three-dimensional layered structures with an arbitrary number of 
gently rough interfaces. Analytically speaking, two relevant closed-
form solutions, obtained for two different configurations, respectively, 
for the scattering from and through the structure, are presented in a 
common formal frame. As a matter of fact, beyond a certain economy 
and mathematical elegance in the final analytical solutions, their 
inherent symmetry is intimately related to the reciprocity. 
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BPT solutions allows us to show that the scattered field can be 
parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e., the physical 
parameters of the smooth boundary structure, and the others are 
determined exclusively by (random) deviations of the corrugated 
boundaries from their reference position. To be specific, the proposed 
solution allows the polarimetric evaluation of the scattering, once the 
three-dimensional layered structure’s parameters (shape of the 
roughness spectra, layers thickness and complex permittivities), the 
incident field parameters (frequency, polarization and direction) and 
the observation direction are been specified. Therefore, our 
formulation leads to a direct functional dependence (no integral 
evaluation is required). Procedurally, once the generalized 
reflection/transmission coefficients are recursively evaluated, the 
scattering coefficients of a structure with rough interfaces can be 
finally predicted. 

 It should be noted that the method to be applied only needs the 
classical SPM gentle-roughness assumption, without any further 
approximation. We underline that it can be also demonstrated that all 
the previous existing perturbative scattering models, introduced by 
other authors to deal with simplified layered structures can be all 
rigorously regarded as a special cases of the general BPT solutions. 
This analytical consistency also provides a unifying perspective on the 
perturbative approaches. Finally, the body of the BPT theoretical 
results can be also regarded as a generalization to the case of layered 
media with rough interfaces of the classical SPM for rough surface.  

As a result, the proposed solution can be effectively applied to 
remote sensing of complex natural stratification as well as to the 
simulation of radio-wave propagation in urban environment. In 
addition, it is susceptible of an attractive application to the inverse 
problem, opening the way to new innovative techniques.  

On the other hand, the main limitation of the SPM is its restricted 
domain of validity, as it is valid for small RMS height/wavelength 
ratios. In the limit of large wavelengths, however, this approximation 
tends to the true solution of the scattering problem. As matter of fact, 
SPM constitutes the reference for any approximate method in the low-
frequency limit.  
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With regard to the validation of the proposed model, the following 
considerations are in order. Although full consistency of BPT 
solutions with existing simplified ones has been verified analytically, 
which is a preliminary and fundamental step for formal validation of 
the innovative model, proper measurement campaigns should be 
carried out to fully expose the proposed model to an experimental 
validation. With regard to that, we emphasize that a proper 
measurement methodology and ad-hoc measurement campaigns are 
needed and, for that reason, their definition and implementation are 
deferred to subsequent investigations. However, regarding this point, 
we emphasize that the simplicity of the final analytical expressions of 
the innovative model should suggest the appropriate experimental set-
up. Nonetheless, a comparison with the results of simulations 
obtainable with numerical methods needs to be further investigated. 

On the other hand, when the potential future developments are 
concerned, the following considerations are in order. First, although 
multiple scattering effects associated to higher-order terms of the SPM 
solution are generally neglected assuming gently rough interface; 
however, in the context of the interference phenomena that take place 
in stratification, the goodness of this first-order SPM approximation 
should need further investigations by evaluating at least the second 
order terms of the perturbative expansion.  

Second, with regard to the geometric surface description, 
intentionally no particular restrictive assumption has been held. In 
fact, fractal description [37] can be applied as well as the classical 
one.  
Finally, we remark the twofold advantage of the obtained compact 
solutions. From a theoretical viewpoint, BPT provides a general 
formulation for an arbitrary 3D layered geometry, in the framework of 
the first-order approximation, for a scattering problem whose compact 
solution was still lacking. On the other hand, the proposed 
polarimetric solutions can be effectively applied to several practical 
situations of interest, such as remote sensing of complex stratifications 
as well as to the simulation of radio-wave propagation in urban 
environment. For instance, the results of this work have led to 
transmission models that can be directly included in ray-tracing-based 
propagation prediction tools, in order to get a more accurate 
description of wave propagation in urban scenario. We also highlight 
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that the availability of a compact closed-form solution constitutes a 
tremendous practical advantage to deal with the inverse problem; for 
instance, in order to locate and delineate subsurface structure 
proprieties of interest in remote sensing applications.It should be also 
noted that the availability of both (from and through) reciprocal 
scattering solutions enables the computation of the full scattering 
matrix to characterize the global response of a microwave or optical 
component, whose structure can be modeled as a rough-interfaces 
multilayer.  

 
5.12 Appendix: Derivation of the non-uniform 

boundary conditions in matrix notation 
 

In order to effectively use the transfer matrix approach, from (21)-
(22), considering firstly only the (q=h) horizontal polarization case, 
we have: 

,)()(ˆ )1()1( zjkh
mm

j
m

zmeShed kkk rk   (A.1) 

.)()(ˆˆ1 )1()1( zjkh
mmm

m

j
m

zmeShk
Z

ed kkkH rk   (A.2) 

By enforcing the non-uniform boundary condition (25), we get: 
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where 11d  and where eq. (23) has been considered. Pre-
multiplying (vectorially) by ẑ  both sides of (26), we get: 
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with 11f  and where we have considerer that 
)ˆˆ(ˆ)))(ˆˆ(ˆ(ˆ zkkhkzz mmm k . Therefore, we have: 
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Scalar multiplying two sides of eqs. (A.5)-(A.6) by k̂ , we have: 
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Subtracting and adding (A.7) from and to (A.8), we get, respectively: 
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Therefore, the boundary conditions (25)-(26), considering that 
)1()1( ˆˆˆˆ p

Em
p
Em zkzk JJ , can be rewritten using the matrix notation (30)-

(31). 
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Chapter 6 
 

Physical Meaning of the Boundary 
Perturbation Theory  
 
 

“I am not interested in proofs. I am only 
interested on how Nature works.”  

P.A.M. Dirac 
 

“… è attraverso le teorie che impariamo ad 
osservare, cioè a porre domande che 

conducono a delle osservazioni e alle relative 
interpretazioni.”  

Karl Raimund Popper 

 
he primary aim of this Chapter is to investigate on the 
physical meaning of first-order solutions for the field scattered 

by layered structures with rough interfaces, which were derived in the 
BPT framework presented in Chapter 5. In order to capture the 
intrinsic significance of the BPT closed-form scattering solutions, a 
mathematical description which connects the concepts of local 
scattering and global scattering is provided. Consequently, the 
functional decomposition of the BPT global scattering solution in 
terms of basic single-scattering local processes is rigorously 
established. This wave scattering decomposition gives insight into the 
BPT analytical results, so enabling a relevant physical-revealing 
interpretation involving ray-series representation. The performed 
series expansions, which can be seen as ray series, can be then 
accurately analyzed showing that each term has a direct physical 
explanation. The analysis is carried out for both from- and through-
layered-structure scattering configurations.  

T 
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Accordingly, in first-order limit, the way in which the character of 
the local scattering processes emerges is dictated by the nature of the 
structural filter action, which is inherently governed by the series of 
coherent interactions with the medium boundaries. As a result, 
analytical perturbative solutions turn out to be completely 
interpretable by simple physical concepts, so that the global scattering 
response can be interpreted as the superposition of single-scattering 
interaction mechanisms taking place locally, which are filtered by the 
layered structure.  

As a result, scattering phenomena, which occur inside layered 
media and are associated with interfacial roughness, can be now 
completely understood on the basis of BPT; the consequent 
phenomenological implications on the practical applications are then 
noteworthy. This is to say that BPT analytical results are rigorously 
susceptible of a powerful physical interpretation, so that the 
fundamental interactions contemplated by the BPT can be revealed, 
gaining a coherent explanation and a neat picture of the physical 
meaning of the BPT theoretical construct.  

The meaning of the first-order approximation is also discussed in 
the layered structure context. Finally, a complete explanation for the 
scattering enhancement phenomenon contemplated in the first-order 
limit is given.  

 
6.1  Introduction and Motivation 

 
Theoretical formulas without a clear comprehension of their 

intrinsic meaning are of difficult use in the context of practical 
applications.  

Several specific perturbative solutions were found for different 
simplified configurations as discussed in Chapter 4 (see also [3]-[12]); 
however, the pertinent physical interpretations are lacking.  

In previous Chapter, by analyzing the wave interaction with 
layered structures with rough boundaries, it has been shown that the 
derivation in closed-form of the first-order perturbative solutions for 
the relevant scattering problem is feasible within the general 
systematic BPT framework. In fact, general closed forms, involving 
the generalized reflection/ transmission formalism, has been obtained 
for the scattering from and through three-dimensional layered 
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structures with an arbitrary number of gently rough interfaces has 
been derived in Chapter 5. Consequently, the compact expressions 
(5.68) and (5.77) allow us to analyze polarimetrically and 
parametrically the general functional dependence of the scattered 
electromagnetic field on the electromagnetic and geometric 
parameters of an arbitrary layered structure.  

We emphasize that in the following we refer exclusively to the 
general BPT formulation, since all of the other previously existing 
ones [3]-[12], concerning simplified layered configurations, can be 
regarded as particular cases of the BPT.  

On the other hand, generally speaking, even though the 
manageability of the analytical solutions is an essential requirement 
for applications, the understanding of the physical meaning can be 
even more crucial. Nevertheless, in analytic derivations the final 
results are mostly attainable in a form that can appear illegible in the 
physics perspective. Furthermore, modeling real situations often leads 
to some suitable analytical approximations whose intuitive 
interpretation can be lost. Conversely, when a clear physical 
perspective of the meaning of the obtained solutions is viable, the 
implications open scenarios that could not be conceived otherwise.  

More in general, in the radar applications the availability of 
closed-form scattering solutions is even more fundamental for the 
comprehension and the schematic handling of the problem rather than 
for the actual scattering evaluation. In this perspective, the physics of 
the scattering mechanisms involved in the scattering from and through 
layered structures with rough boundaries should be better clarified.  

The physics of the interaction of electromagnetic waves with 
complex layered structures with an arbitrary number of rough 
interfaces has not been completely clarified yet. On other hand, 
despite the fact that the general BPT solutions derived in Chapter 5 
exhibit a compact and symmetric structure, the related physical 
meaning is not immediately obvious and a physical interpretation has 
not been provided yet.  

Nevertheless, the relevant question one might ask now is whether, 
using such an analytical result, the intrinsic physical meaning of the 
first-order global BPT solutions can be revealed, to shed light on the 
contemplated scattering processes that take place locally inside the 
layered structure. Furthermore, we emphasize that in many 
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applications, such as exploration of seismic events or GPR, time-
dependent wave-trains are observed, rather than spectral intensities. 
Therefore, in some cases a time domain characterization of the layered 
structures response could result more attractive than a spectral one. 

In view of the above considerations, in this Chapter considerable 
attention is paid to the intrinsic significance of the global scattering 
solution, getting more concrete insight into the physics of the problem, 
and a physical interpretation of the BPT solutions is carried out on an 
analytical playground. Our aim is then to show that detailed, 
physically revealing and mathematically useful information can be 
extracted from BPT models.  

For this purpose, starting from the BPT solutions, detailed in 
Chapter 5, firstly we suitably expand the obtained solutions. The 
results we obtained in [7], [8] suggest us the usefulness to base the 
expansions on local descriptors, in order to analyze the meaning of the 
global scattering response. Once the nature of the local interaction is 
recognized, we demonstrate that the obtained expansions can be 
properly seen as a ray series or a geometrical optics series; so the 
basic scattering mechanisms involved can be accurately visualized 
showing that each term of the ray series has a direct physical 
explanation. Consequently, the local/global scattering concepts are 
successfully exploited, differently from [3], [9] and [10] wherein the 
authors resort to the radar contrast. 

Therefore, the suitable reformulation of the scattered field 
expressions and the associated ray series sheds light on the relations 
among global scattering and local scattering phenomena in the 
layered structure: the expansions explain how global scattering, from 
and through the layered structure, arises from the (local) scattering 
that takes place when the waves propagating in the structure interact 
locally with the corrugated interfaces; whereas the multiple bounces 
on the flat boundaries, preceding and following the (local) single 
scattering occurrence, elucidate how the interference effects acting in 
the structure influence the global response of the structure.  
Consequently, in the first-order limit, the global scattering can be 
considered as the superposition of waves propagating in the layered 
structure, each one undergoing to a local scattering phenomena 
filtered by the layered structure; whereas the filter action arises from 
the interferential effects due to the coherent interaction with the 
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boundaries. As a result, the global scattering problems, which were 
introduced as formal mathematics in the first-order perturbative limit 
(Chapter 5), turn out to be fully interpretable by simple physical 
concepts.  

Commonly, the scattering enhancement phenomenon is only 
illustrated for volume scattering or second-order scattering from rough 
surface [18], [19]; whereas in [9], [10], in the first-order, the 
backscattering enhancement from a single rough surface on the top of 
a layered media is pointed out. In view of that, the performed physical 
interpretations bring us to characterize the scattering directions, for 
which our first order models contemplate the enhancement scattering 
phenomenon, associated with the coherent effects taking place in a 
layered medium with rough interfaces. Consequently, Enhancement 
Cones are identified. This result is corroborated by, and could explain, 
the experimental results in [20]. 

In addition, note also that if the incident wave is a modulated 
pulse, each term of the expansions corresponds to an echo that will be 
received with a different time delay. It is then clear that the obtained 
expansions open the way to a time-domain analysis of the layered 
structures response. It should be noted that this point is of fundamental 
importance for instance if the considered model must be embedded in 
a SAR simulator, as well in a SAR data processing strategy or in a 
ray-tracing code for field levels prediction in urban environment. 

Finally, we remark the several advantages of obtained expansions. 
They let us deeply understand the physics of the problem revealing the 
intrinsic nature of the basic scattering mechanisms involved; they 
elucidate the physical meaning of the first-order approximation; and 
they explain the enhancement phenomena contemplated in the first-
order limit. What is more, the expansions are mathematically useful 
since they are also addressed to a direct time-domain characterization 
of the structure response that can be effectively applied to several 
situations of interest. As a result, even though our approach is 
primarily theoretical, the proposed analytical expansions are 
meaningful from the result interpretation point of view, they have 
interesting implications, and they open the way to new possible 
applications to coherent remote sensing and to radio propagation 
prediction in urban environment. 

This Chapter is organized as follows.  
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The concept of physically-based local descriptors is introduced in 
Section 6.2. In section 6.3, a powerful physical interpretation of the 
pertinent analytic solutions for a specific geometry is provided.  
Section 6.4 is devoted to the physical interpretation of the general 
BPT solutions. Global and local scattering concepts are discussed in 
Section 6.5. The meaning of the first-order approximation is 
elucidated in Section 6.6. In Section 6.7, the contemplated scattering 
enhancement phenomenon is discussed.  Section 6.8 concludes with a 
summary.  
  
6.2 Local Scattering Concept 
 

The concept of local scattering is introduced in this section, with 
particular emphasis to the case of local scattering from a through a 
rough interface.  

In order deal with the scattering property of a corrugated interface 
of a layered structure, it is fruitful to emphasize the local response of a 
rough interface, i.e., the scattering properties exhibited by the 
roughness when the stratification surrounding the rough interface 
recedes to infinite.  

Therefore, from the scattering mechanism point of view, it can be 
assumed that the wave interaction with a rough interface embedded in 
a layered structure can be locally assimilated to the wave interaction 
with a rough surface between two half-spaces. The rationale 
motivating this concept will appear clear in the next section, when it 

 

Fig.1. Reciprocity for local scattering from and through a rough interface.  
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will be shown that the first-order BPT solutions are susceptible of a 
representation in terms of the local scattering properties of the 
corrugated interfaces. 

The local scattering cross sections of the n-th rough interface of 
the structure, for the scattering from and through the roughness 
respectively, are then defined as: 
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where p, q  {v, h} and wherein, for the hh case, we have: 
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Specifically, four distinct types of local interaction with an 
embedded rough interface can be distinguished: two of them 
identifiable as local scattering through the relevant interfacial 
roughness and other ones as local scattering from the roughness. We 
emphasize that the corresponding coefficients 1,mm

qp and mm
qp

,1  refer 
to cases in which both the observation and incidence directions are, 
respectively, above and under the roughness; whereas 1,mm

qp and 
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mm

qp
,1 concern the local scattering contributions that cross the 

roughness in opposite directions.  
Therefore, the local scattering coefficients are formally identical to 

the classical ones relative to a rough surface between two half-spaces 
[18]-[22]. Consequently, the reciprocity for the local scattering can be 
expressed as follows (see Fig.1): 

  ),,(),( 1,1, simm
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6.3 Ray-Series Physical Interpretation for a 
Specific Configuration 

 
In this Section, we first of all investigate the scattering phenomena 

in simplified layered structure with one rough interface and a detailed 
physical interpretation of the relevant formal solution is carried out, 
emphasizing the role of the interference phenomena that take place 
inside the stratification.  

The relevant scattering solution (4.12)-(4.13) for bistatic 
configuration, which is here analyzed, is the one pertinent to the 
geometry depicted in Fig.2 of Chapter 4: it is important to emphasize 
that such a specific solution can be also directly obtained by 
particularizing the general BPT solution (5-82)-(5.85) with reference 
to a specific layered configuration (see also (5.96)-(5.97)).   

To get more insight into the meaning of the first order solutions 
from the concerning scattering mechanism point of view, it is 
instructive to carry out a complete expansion of the scattering 
coefficients. Focusing on the hh case (without loss of generality), from 
(5.97) we have:   
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where 2,1
hh is associated with the local scattering coefficients 0

hh  (see 
Section 6.2), i.e., the classical scattering coefficients of a rough 
surface between two semi-infinite homogeneous media, characterized 
by dielectric permittivity 1 and 2 , respectively [6]: 

  )].(1)][(1)[ˆˆ)(( 21211
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shihsi

hh kRkRkk  (6.10) 

It should be noted that 2,1~
hh is equal to 2,1

hh  when stratification 
above the roughness vanishes. We recognize that the factor 
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is associated with the unperturbed local incident field on the 
roughness, i.e., the field that would be incident at the interface 1 if the 
latter were smooth. This can be considered as the wave that undergoes 
an equivalent coherent transmission through the layers 0-1.  

It is useful to introduce the following notation: 

   ,)()()( 112
21011

zkjhh ekRkRk   (6.12) 

 
and recognize that this factor corresponds to a complete round-trip in 
the intermediate layer with coherent reflections  at the layer 
boundaries. We then consider the series expansion (geometric power 
series): 
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Using (13), the expression (9) is susceptible of the following 
representation: 
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 This expansion, expressed as a double absolutely summable 
infinite series, is susceptible of a straightforward physical 
interpretation: the scattering phenomena can be expressed in terms of 
the (local) scattering and the series contributions take into account all 
the interference effects that take place in the layered structure.  

Equation (14) can be thought of as a ray series or a geometrical 
optics series, and each term of (14) can be readily identified: each of 
these waves (see Fig.2) undergoes a coherent transmission through the 
layers 0-1 ( 11)(10

i
zjkih ekT ), then m complete round-trips ( mik )]([ 1 ) in 

the intermediate layer with coherent reflections at the incident angle               
( ik ), then an incoherent (local) scattering from the rough interface               
( ),(2,1 is

hh kk ) in the observation plane ( sk ), subsequently n complete 
round-trips ( nsk )]([ 1 ) in the intermediate layer with coherent 
reflections at the scattering angle ( sk ), and finally a coherent 
transmission through the layers 1-0 ( )(01

11 shjk kTe s
z ). 

 
Fig.2. Physical Interpretation: bistatic configuration  
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When the backscattering configuration is concerned ( is kk ), 
from the (14) we obtain: 
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If we rearrange the individual terms in the double infinite series by 
collecting terms raised to the same power (such that n+m=k), the last 
equation can be rewritten as: 
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where the k+1 identified waves in (15) sum-up in phase and become 
indistinguishable, so that the backscattering enhancement 
phenomenon takes place. The k-th component in (16) corresponds to 
k+1 different waves. Each of these waves (see Fig.3) undergoes a 
coherent transmission through the upper interface ( 11)(10

i
zjkih ekT ), then 

k-r (r = 0, …, k) complete round-trips ( rkik )]([ 1 ) with coherent 
reflections at the incident angle ( ik ) in the intermediate layer, an 
incoherent (local) backscattering from the rough interface, 

 
Fig.3. Physical Interpretation: mono-static configuration 
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subsequently r complete round-trips ( rik )]([ 1 ) with coherent 
reflections at the scattering angle ( ik ) in the intermediate layer, and 
finally a coherent transmission through the upper interface                    
( 11)(01

i
zjkih ekT ). 

As a result, these suitable expansions lead us to clearly understand 
the physical meaning of the pertinent analytical expressions. 

Note also that if the incident wave is a modulated pulse, each term 
of the series corresponds to an echo that will be received with a 
different time delay. This point is of fundamental importance, for 
instance, if the considered model must be embedded in a SAR 
simulator. 

 
6.4 Ray-Series Physical Interpretation for 

General BPT First-Order Solutions 
 

In this section, the focus is on the intrinsic significance of the 
global BPT scattering solutions, getting more concrete insight into the 
physics of the problem of the scattering from rough interfaces of a 
layered media. 

In this section, to get more insight into the meaning of the BPT 
first-order solutions (5.68) and (5.77) from the concerning scattering 
mechanism point of view, we consider instructive to carry out a 
complete expansion of the scattering coefficients.  

In order to accomplish a satisfactory comprehension of how the 
interaction of the EM field with rough interfaces of an arbitrary 
layered structure takes place, a key-point is to recognize that the 
interaction with the structure can be expressible in terms of local 
interactions with the generic rough interface. This is to say that, in 
order  to be able to express the solution in terms of readable basic 
physical phenomena, a key point is to exploit the local scattering 
concept (Section 6.2).  

It should be noted that the exact analytic decomposition of the 
solution in terms of local interactions is rigorously feasible, since, in 
the first-order perturbative approximation, the scattering amplitude 
can be written as a single space integral with a kernel that depends 
only on the rough interface height and on its first-order derivatives at a 
given point [21]. 
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As a result, in order to phenomenologically describe the scattering 
from and through the structure and analyze the meaning of the global 
scattering response, we point out the usefulness of basing the 
expansions on local descriptors. Specifically, four distinct types of 
local interaction with an embedded rough interface can be 
distinguished: two of them identifiable as local scattering through the 
roughness and the other ones as local scattering from the roughness.  

Moreover, since in the limit of first-order perturbation theory the 
global response of a structure with all rough interfaces can be directly 
obtained considering the superposition of the response from each 
interface (see Chapter 5), we firstly focus our attention to a generic 
embedded rough interface. Afterwards, the general interpretation for a 
layered structure with an arbitrary number of rough interfaces can be 
addressed. Without loss of generality, since analogous considerations 
hold for the other polarization combinations, the analysis is conducted 
for the hh case only.  
 
6.4.1 Scattering from an arbitrary layered media 

with rough interfaces  
 

Closed form solution for the upward scattered far-field (5.63) into 
the upper half-space from an arbitrary layered structure with an 
embedded rough interface (m-th) has been established in Chapter 5.  

In the following we focus on the relevant analytical expression 
(5.63) with particular reference to the hh case (see (5.64)). 

Therefore, in order to provide a symmetrical expansion, it is 
possible to explicit the factor )( ih

m kM , which is associated with the 
multiple round trip in the m-th layer and included in )(0

ih
m k ; so we 

can write: 
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It should be noted that the p
m0  are distinct from the coefficients 
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m0  the effect of all the layers 
under the layer m is taken into account, whereas )(
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m  are evaluated 
referring to a different configuration in which the intermediate layers 
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1...m are bounded by the half-spaces 0 and m. Moreover, noting that 
p

mm 1  is susceptible to be written equivalently in the form [16]: 
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and applying (3.6) and (3.44), we obtain the following expansion for 
the sub factors in (5.64): 
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Furthermore, we introduce the following convenient notation: 
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and recognize that these factors correspond to a complete roundtrip in 
the intermediate layer with coherent reflections at the layer 
boundaries.  

We consider then the series expansions (geometric power series) 
of sub-factors (3.44),(3.46):  
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where M ,  may stand for h
mM 1 , h

m 1  or h
mM , h

m  or h
mM , h

m , 
respectively. By using (22), substituting (17) and (19) in (5.64) and 
taking into account (3)-(6), we obtain the final expansion: 
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 (6.23) 

Note also that, using extensively (22) the generalized transmission 
coefficients (3.54) and (3.58) could be as well expressed as the 
product of a number of summations equal to the number of layer 
involved. However, for the reasons substantiated before, we focus our 
attention on the two layers just above (m) and under (m+1) the 
considered roughness. In Fig.4, the remaining part of the structure is 
visualized condensed in two equivalent slabs constituted, respectively, 
by the intermediate layers m+2,...,N-1 (under the (m+1)-th layer) and 
1,...,m-1(above the m-th layer). 

The suitably expanded solution (23), expressed as an infinite sum 
of contributions, is then susceptible of a straightforward physical 
interpretation in terms of a ray series. 

In particular, each individual term of the absolutely summable 
in eries can be physically identified as a wave propagating in the 
structure that experiences a local single-interaction with the 
roughness.   
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a)

b) 

c)

d) 
 

Fig.4. Physical interpretation for the scattering from an arbitrary layered structure 
with an embedded rough interface. 
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Consequently, four distinct families of rays can be recognized; 
each one associated to one type of local interaction, so that each term 
in (23) can be readily identified as follows: 

a) Local upward scattered waves from rough interface: each of 
these waves (see Fig.4.a) undergoes a coherent transmission into m-th 
layer ( )exp()(0 m

i
zm

ih
m jkk ), through the intermediate layers 1,…,m-1, 

then j1 complete round-trips  ( 1)]([ ji
m k ) in the m-th layer with 

coherent reflections at the incident angle ( ik ), then an incoherent local 
scattering from the rough interface ( ),(1, ismm

hh kk ), upward within the 

observation plane ( sk ), subsequently j2 complete round-trips                
( 2)]([ jsh

m k ) in the m-th layer with coherent reflections at the scattering 
angle ( sk ), and finally a coherent transmission ( )()exp( )(

0
sslabh

mm
s
zm kjk ) 

in the upper half-space through the intermediate layers m-1,…,1. 
b) Local upward scattered waves through rough interface: each of 

these waves (see Fig.4.b) undergoes a coherent transmission into the 
m-th layer ( )exp()(0 m

i
zm

ih
m jkk ), through the intermediate layers 

1,…,m-1, then j1 complete round-trips ( 1)]([ ji
m k ) in the m-th layer 

with coherent reflections at the incident angle ( ik ), subsequently a 
coherent transmission  ( )(1

ih
mm kT ) followed by n1 complete round-trips 

in the (m+1)-th layer ( 1)]([ 1
nih

m k ) and by further bounce on the 
(m+1)-th flat interface ( )2exp()( 1)1(21 m

i
mz

ih
mm kjk ) at the incident 

angle ( ik ), and after that an incoherent local scattering through the 
rough interface ( ),(,1 ismm

hh kk ), upward within the observation plane        
( sk ), subsequently j2 complete round-trips ( 2)]([ jsh

m k ) in the m-th 
layer with coherent reflections at the scattering angle ( sk ), and finally 
a coherent transmission ( )()exp( )(

0
sslabh

mm
s
zm kjk ) in the upper half-space 

through the intermediate layers m-1,…,1. 
c) Local downward scattered waves through rough interface: each 

of these waves (see Fig.4.c) undergoes a coherent transmission into 
the m-th layer ( )exp()(0 m

i
zm

ih
m jkk ), through the intermediate layers 

1,…,m-1, then j1 complete round-trips ( 1)]([ ji
m k ) in the m-th layer 

with coherent reflections at the incident angle ( ik ), then an incoherent 
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local scattering through the rough interface ( ),(1, ismm
hh kk )downward 

in the observation plane ( sk ) followed by further bounce on the 
(m+1)-th flat interface ( )2exp()( 1)1(21 m

s
mz

sh
mm kjk ) with subsequently 

n2 complete round-trips in the (m+1)-th layer ( 2)]([ 1
nsh

m k )  at the 
scattering angle ( sk ), next a coherent transmission ( )(1

sh
mm kT ) 

followed by subsequently j2 complete round-trips ( 2)]([ jsh
m k ) in the 

m-th layer with coherent reflections at the scattering angle ( sk ), and 
finally a coherent transmission ( )()exp( )(

0
sslabh

mm
s
zm kjk ) in the upper 

half-space through the intermediate layers m-1,…,1. 
d) Local downward scattered waves from rough interface: each of 

these waves (see Fig.4.d) undergoes a coherent transmission into the 
m-th layer ( )exp()(0 m

i
zm

ih
m jkk ), through the intermediate layers 

1,…,m-1, then j1 complete round-trips ( 1)]([ ji
m k ) in the  m-th layer 

with coherent reflections at the incident angle ( ik ), next a coherent 
transmission ( )(1

ih
mm kT ) followed by n1 complete round-trips in the 

(m+1)-th layer ( 1)]([ 1
nih

m k ) and by further bounce on the (m+1)-th 
flat interface ( )2exp()( 1)1(21 m

i
mz

ih
mm kjk ) at the incident angle ( ik ), 

and after that an incoherent local scattering from the rough interface   
( ),(,1 ismm

hh kk ), downward in the observation plane ( sk ), followed by 
further bounce on the (m+1)-th flat interface                        
( )2exp()( 1)1(21 m

s
mz

sh
mm kjk ) with subsequently n2 complete round-

trips in the (m+1)-th layer ( 2)]([ 1
nsh

m k ) at the scattering angle ( sk ), 
then a coherent transmission ( )(1

sh
mm kT ) followed by subsequently j2 

complete round-trips ( 2)]([ jsh
m k ) in the m-th layer with coherent 

reflections at the scattering angle ( sk ), and finally a coherent 
transmission ( )()exp( )(

0
sslabh

mm
s
zm kjk ) in the upper half-space through 

the intermediate layers m-1,…,1.   
It should be noted that (see Chapter 3): 
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Furthermore, to give reason for the several factors appearing in the 
expansion (23) in the form s

zm
s
zn kk , we observe that differentiating 

Snell’s law 

 ,sinsin s
mn

s
mm     (6.25) 

we obtain: 

  ,
s
n

s
m

s
zm

s
zn

d
d

k
k

    (6.26) 

where the angle s
m  identifies, within the m-th layer, the ray scattered 

in observation direction. This scattered ray can be thought as the 
contribution in the observation direction from a spherical wave 
emanating from the mth roughness. Therefore, the factor (26) accounts 
for the variation of the divergence of the locally scattered rays, which 
cross the flat boundaries stratification from the m-th to the n-th layer.  

As a result, s
zm

s
zn kk is interpretable as the scattered-ray-amplitude 

divergence factor, associated with the varying refractive index. Note 
also that when the geometry reduces to the one depicted in Fig.2 of 
Chapter 4, only the first term in (23) holds (see Fig.4.a), so that the 
interpretation is fully congruent with the one furnished in Section 6.3.  

 
6.4.2 Scattering through an arbitrary layered 

media with rough interfaces.  
 

 Similarly to the analysis conducted in Section 6.4.1, the process of 
scattering transmitted through the structure can be investigated as well 
referring to a generic rough interface of the stratification.  
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Accordingly, we now focus on the relevant analytical expression 
(5.72) for the downward (far-field) scattered wave into the lower half-
space, through an arbitrary layered structure with an embedded (m-th) 
rough interface, with particular reference to the hh case (see (5.73)). 

Similarly to Eq. (19), the following relation can be derived: 

 
.)]([)()(1

)()(1
12

11

11

kMekkT

kTk
h
m

kjp
mm

p
mm

p
mm

p
mm

mzm
 (6.27) 

Furthermore, the following additional notation is introduced: 

.)()()( 2
11

mzmkjh
mm

h
mm

h
m ekRkk   (6.28) 

Likewise, by using (22) with h
mM 1 , h

m 1  or h
mM , h

m  or h
mM , h

m  or h
mM 1 ,

h
m 1, respectively, in place of M , ; taking into account (3)-(6) and 

substituting (17), (19) and (27) in (5.73), the final expansion (29) is 
obtained.  
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(6.29) 

Analogous considerations can be done as in the previous case; 
however to save space we do not repeat similar examination. The 
reader can verify that the expansion (29), which is the counterpart of 
(23) for the scattering through the structure, can be similarly 
interpreted in terms a series of rays identified as pictured in Fig.5.  

It is important to emphasize that (see Chapter 3): 
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a) 

b) 

c) 

d) 
 

Fig.5. Physical interpretation for the scattering through an arbitrary layered 
structure with an embedded rough interface. 
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Once both the expansions, for the scattering from (23) and through 
(29) the structure, have been formulated and illustrated, some 
remarkable considerations are in order.   

First of all, it should be noted that, even though the presented 
physical interpretations allow us directly visualizing the physics of the 
problem, they are not based on an intuitive approach but are carried 
out analytically starting from BPT solutions obtained in first-order 
limit. Specifically, the expansions have been carried out exploiting the 
local nature of the interaction between waves and corrugated 
interfaces within the layered structure; so that the global scattering 
response, from and through the layered structure, has been 
decomposed in terms of local interactions.  

Although the investigation leads to expansions that can appear 
cumbersome, however, from the viewpoint of the comprehension of 
scattering mechanisms, each term of (23) and of (29) can be directly 
identified as a wave propagating in the structure: each of them 
comprises a series of coherent interactions with flat boundaries and an 
incoherent local single-scattering occurrence, from or through the 
corrugated interface. Therefore, equations (23) and (29) can be 
thought of as a ray series or a geometrical optics series.  

Therefore, despite the expansions are attained rigorously without 
any further approximation with respect to the solutions proposed in 
Chapter 5, the resulting interpretations turn out to be extremely 
intuitive and surprisingly simple.  

Finally, note also that when the arbitrary layered structure with all 
rough interfaces is concerned, since in the first-order limit the multiple 
scattering contributions are neglected, the relative physical 
interpretation can be obtained effortless by superposition of the 
several ray contributions obtained considering separately each rough 
interface.  

The last but not the least factor distinguishing our approach  is 
that, for the application point of view, the focus is often on the 
observed time-dependent wave-trains, rather than spectral intensities. 
As a matter of fact, propagation of the transmitted wave through the 
structure causes a superposition of the echoes scattered from the 
interfaces that are received by a sensor located above or under the 
structure. Concerning this aspect, note also that if the incident wave is 
a modulated pulse, each term of the ray series corresponds to an echo 
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that will be received with a different time delay. Consequently, the 
obtained results also open the way toward a time-domain formulation 
of the problem. This aspect is of fundamental importance, for 
instance, if the considered models have to be embedded in a SAR 
simulator or in a ray tracing code to predict the characteristics of the 
radio channel. 
 
6.5 Global and Local Scattering  
 

To focus formally on the relations among local and global 
scattering concepts, the obtained Wave Scattering Decomposition (23) 
and (29) of the global scattering response in terms of the four types of 
local interactions (from and through the corrugated interface),  can be 
expressed in a compact notation as scalar products of four-element 
vectors: 

 ),,(),(~ 1,1, ismm
qp

isqp
m

mm
qp kk kkP   (6.31) 

 ),,(),(~ 1,1,0 ismm
qp

isqp
m

mm
qpN kk kkQ   (6.32) 

wherein 

,][),( ,11,,11,1, Tmm
qp

mm
qp

mm
qp

mm
qp

ismm
qp kk   (6.33) 

captures the local response of the m-th rough interface between two 
layer of permittivity m  and 1m , and the transfer vectors qp

mP  and 
qp
mQ  are related to the coherent propagation inside the stratification. 

Consequently, 0
,

~
mqp  depends on a combination of local scattering 

proprieties of the roughness between two homogeneous media m and

1m , ( ),(1, ismm
qp kk ), and of coherent propagation inside the 

stratification ( qp
mP  and qp

mQ ). This brings us to refer to 0
,

~
mqp  as the 

(equivalent) global scattering coefficients of a layered structure with 
the m-th embedded corrugated boundary between two layers, 
respectively,  of permittivity m  and 1m .  
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As a particular situation, we mention the case in which the 
stratification under the roughness vanishes. This is the case of the last 
(N-1)-th rough interface of the layered structure, whereas NN

qp
,1~  

depends on NN
qp

,1  only, so that qp
N 1P  reduces to a scalar: 

   ,),(
~~

2
1

2

,1

,1

0
1,

0
1, isqp

NNN
qp

NN
qp

Nqp

Nqp kk   (6.34) 

whereas for the hh case, we have: 

  .
)(

)(
)(

)(
),(

1

0

1

0
1 ih

NN

ih
N

sh
NN

sh
Nishh

N kT
k

kT
k

kk   (6.35) 

As a result, the transfer vector, which measures the influence of 
the stratification on the local scattering, whatever the roughness is, can 
be expressed in terms of the generalized transmission/reflection 
coefficients.  

It has been established that, when the observation point is located 
above or under the stratification, the global scattering by a generic 
rough interface embedded in the layered structure can be considered 
as a result of local scattering phenomena (from e through the 
embedded rough interface) filtered by the layered structure. The 
filtering action arises from the resulting interferential effects that take 
place in the layered structure, which are associated with the coherent 
interactions with the boundaries.  

Moreover, when the N-rough interfaces structure is concerned, the 
global scattering (from and through layered structure) can be the 
thought as representative of superposition of filtered scattering 
phenomena that take place from and through each rough interface 
locally. Finally, we emphasize that the presented expansions and the 
introduced coefficients are not mere factorizations related to some 
analytical convenience, but are based on physical relevance. 
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6.6  Meaning of the first-order approximation 
 

In this sub-section the physical significance of the first-order 
perturbative approximation in the layered structure context is clarified.  

Note that the transfer vectors qp
mP and qp

mQ are affected in a global 
way by the unperturbed stratification properties and do not depend 
neither on the directions of ik  and sk , nor on the roughness. This 
aspect, from a different perspective, can be elucidated by means of the 
following further considerations. Indeed, for the phase-matching 
condition, the projections of the wave vectors, ik  and sk , for 
incident and scattered direction, respectively, must be invariant in the 
flat boundaries stratification, i.e., the propagation directions in 
multilayer flat-boundaries structure must be coplanar.  

Therefore, the round trips within and the transmission through the 
layers are all constrained in the incidence plane or in the observation 
plane, individuated by the vectors ik  or sk  (and z direction), 
respectively.  

This clarifies that the contributions contemplated by the first-order 
perturbative approximation are restricted within these two planes, 
whereas the neglected multiple scattering, associated with higher-
order terms of the perturbative development, are not. In fact, it should 
be noted that although the considered expansions contain some 
infinite sums associated with multiple reflections between the 
interfaces, they account for a single diffuse scattering only, and only 
one of the surface spectral components, i.e. that specified by the so-
called momentum transfer is kk , appears in the scattering process 
in the limit of the first-order perturbation method.  

 
6.7 Scattering Enhancement Phenomenon 
 

In this section, the focus is on one of the most interesting 
phenomenon, associated with coherent effects, which is perhaps a 
universal wave phenomenon inherent to waves of whatever physical 
nature; the aim of this theoretical analysis is to demonstrate that this 
enhancement phenomenon is contemplated by first-order BPT models. 
To this purpose, using the performed physical interpretations, we 
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show that from each generic rough interface of a rough boundaries 
multilayer, due to the presence of the reflective action of the 
boundaries, coherent effects arise in the layered structure. These 
effects, contemplated in the single -scattering limit, arise in particular 
directions that can be clearly identified. For such a purpose, we focus 
our attention on waves that undergo to local scattering through a 
rough interface. Starting then from (31), which is a formal expression 
of the expansion (23), and evaluating it in the directions for which 

is kk , we get, for the hh case: 

)ˆ,ˆ()()ˆ,ˆ(~ 1,1, iiismm
hh

ihh
m

iiismm
hh kkkkk kkPkk  (6.36) 

Examination of the expansion (23) evaluated in the directions for 
which is kk , shows that the corresponding second and third 
elements of the transfer vector hh

mP  are identical, except for a minus 
sign. Both these elements are associated with the local scattering 
through ( mm

qp
mm

qp
,11, , ) the rough interface in opposite directions 

(downward and upward directed).  
Formally: 

 )(11
)(

1)()()( i
i

iiihh
m kb

kb
kbkakP   (6.37) 

where 

)()()( 0
02

0
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i
zkjih
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i
zm   (6.38) 
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i
mzkjih
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m

ih
mm

i ekkkTkb  (6.39) 

On the other hand, analyzing the scattering directions for which
is kk , we observe that from the reciprocity (8) directly follows 

that: 
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 )ˆ,ˆ()ˆ,ˆ( 1,,1 iiismm
hh

iiismm
hh kkkk kkkk   (6.40) 

Therefore, from (37) and (40) it follows that second and third 
terms in (36) are identical. This formal result is susceptible of an 
intuitive explanation in terms of coherent interaction between waves 
propagating through multi-channel reciprocal paths within the 
structure along scattering directions such that is kk . Preliminarily, 
to clarify the phenomenology we refer to the picture illustrates 
schematically in Fig.6a. By a solid and dashed lines, we have 
indicated only the propagation path of the scattering wave 
corresponding, respectively, to the terms 1,mm

qp  and mm
qp

,1
 of (23) 

with the summation indexes n1=n2=j1=j2=0. Note that, in far field 
observation point, these two reciprocal waves interfere constructively, 
in spite of the randomness of the rough interface, for scattering 
direction such that iss k kk ˆ  .  

In general, the terms of (23) relative to the local scattering through 
the rough interface mm

qp
mm

qp
,11, , , for which n1=n2=n (and j1+j2=j) 

constitute a family of reciprocal local scattered ray partners; each 
pair undergoes to total number (j) of round trips in the m-th layer as 
well as to a total number (n) of round trips in (m+1)-th layer. This 
mutual coherent wave partners, scattered locally through the interface 
in opposite direction, whatever be the random phase introduced by the 
roughness, sum-up in phase.  

In other words, this phenomenon arises from multi-channel wave 
propagation of reciprocal wave partners passing through identical 
channels with zero phase difference. Note also that the term 
reciprocal derives from the fact that the two partners cross the 
roughness in opposite directions. Consequently, the waves partners, 
resulting from such reciprocal scattering events, have the same 
amplitude and phase (i.e. these waves interfere constructively) if the 
projection on the z=0 plane of wave vectors of the incident and 
scattered waves have the same modulus ( is kk ). As a result, the 
sum-up in phase of all these terms exists only for directions lying in a 
cone defined by the incident direction, and whose axis is parallel to z 
direction as in Fig.6. This brings us to refer to this family of directions 
as the enhancement scattering cone.  
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Analogous considerations hold for the case of scattering through 
the structure. In Fig.6.b, by dashed and solid lines we have indicated 
the propagation path of the scattering wave corresponding to the terms 

mm
qp

mm
qp

,11, , of (29) with and n1=n2=0, j1=j2=1 and n1=n2= j1=j2=0, 
respectively.  

In conclusion, the expansions allow us to demonstrate that the 
well-known enhancement phenomenon is contemplated by BPT 
models. This analysis is accompanied by theoretical interpretations 
describing coherent interference between reciprocal scattered waves. 

 

a) 

b)

  
Fig.6. Physical interpretation of coherent effect in a layered structure with an 

embedded rough interface. 
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In addition, we have shown that the enhancement phenomenon 
manifestation appears not only in backscattering [9][10][20] and 
specular [20] directions, but arises also in several directions which 
identify an enhanced scattering cone, disappearing as the angle of 
scatter deviates away from these directions since the two waves 
partners are no longer in phase and the coherent effect weakens. 
However, the factor is kk ˆˆ  (essentially related to the definition of 
polarization in the global coordinate system [25]) appearing in all of 
the terms, see (3)-(6)), is responsible for the fact that this enhancement 
is more evident near back- and forward-scattering directions, in 
agreement with the experimental data [20]. Moreover, a similar 
examination can be conducted for each rough interface of the 
structure, pointing out the corresponding Enhancement Scattering 
Cone.   

We stress that the analysis can be obviously particularized to the 
backscattering configuration ( 0is kk ), and analogously a ray 
interpretation can be used to visualize the coherent effect. 

We underline that, although the two considered components sum-
up in phase when the scattering directions are along the enhancement 
cone, however this might give rise to enhancements or reductions of 
the total scattered intensity, depending on how the first and fourth 
terms in (36) interfere with the “enhanced” second+third term. 
Nonetheless, to evaluate the attractiveness of this analysis a time-
domain context should appear more relevant.  

Finally, we emphasize that the scattering enhancement 
phenomenon is not accounted for by the radiative transfer theory [18]. 
Actually, the manifestations of these effects, that remain after 
ensemble averaging, could not be contemplated without employing 
full wave analysis which preserves phase information. Therefore, this 
effect should be taken into account, for instance, when data of the 
remote sensing of the Earth’s structures are interpreted. 

 
6.7.1 Numerical Examples 

 
In this section, some numerical examples aimed at better clarify 

the actual consequences of the coherent effects on the scattering 
response are presented.  
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To this purpose, we refer to a canonical layered medium with three 
rough interfaces, which is representative of several situations of 
interest. The considered vertical profile is characterized by the 

 

 
Fig. 7.  Scattering coefficients hh for a three rough interfaces layered media with 

a fixed incidence angle: 0 contribution (long-dashed line), 1  contribution 
(dotted-dashed line), 2 contribution (dotted line), total contribution (solid line). 

Note that an offset of 50 dB has been conveniently added to each scattering 
pattern. The incidence direction is also shown. 

 

 
Fig. 8.  Scattering contribution hh from the rough interfaces 1  for prescribed 
incidence angles ( i

0 37.8) and for 2/  =4.30 (solid line) and 3.80 (dashed 
line). The associate incidence direction is also shown. Note that an offset of 50 dB 

has been conveniently added to each scattering pattern. 
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following parameters: 0 = 1, 1 = 3.0 + j0.0, 2 = 5.5 + j0.00055, 3 = 
10.5 + j1.55;  1/  = 3.20 2/  = 4.30.  

In addition, we model the roughness of the interfaces as Gaussian 
2-D random processes with Gaussian correlations, characterized by 
the surface height standard deviation n and correlation length ln, with 
the subscripts n referring to the n-th interface. 

In order to perform a consistent comparison, we refer to interfaces 
with the same roughness statistics. In addition, we suppose no 
correlation between the interfaces. We assume k0ln=1.5, k0 n=0.15 for 
n= 0, 1, 2. Once this reference structure has been characterized, we 
first study  the scattering cross section of the structure as a function of 
the scattering vertical angle  in  the  upper half-space, assuming fixed 
the incident direction. In the polar plot of Fig.7 the total scattered field 
is shown (solid line), together with the individual contributions of the 
different interfaces, as a function of the scattering angle s

0 . To save 
space, only the hh case is shown. It should be noted that to visualize 
the patterns an offset of 50 dB has been conveniently added to each 
scattering pattern. In addition, it has been assumed i

0 = 37.8 ; we 
emphasize that this value of incidence angle has been calculated to 
have all the four local contributions of eq.(36) summing up in phase 
when is

00  for the interface 1, whereas this does not happen for 
the other interfaces In fact, in Fig.7 the backscattering enhancement 
only appears in the individual return from 1. 

In order to better illustrate this issue, we focus our attention on the 
scattering contribution from the interface 1: in Fig.8 we plot the 
scattering contribution from the interface 1 with no change with 
respect to the previous example (solid line) and by changing the ratio 

2/  to the new value 3.80 (dashed line). Again, it is clear that in the 
former case a backscattering enhancement is present, whereas it is not 
in the latter. It should be also noted that the shape of pattern responses 
are also affected by the coherent effects due to the unperturbed 
interfaces of the structure.  

This simple example explains that, in agreement with the proposed 
analysis, a backscattering enhancement effect may appear even in the 
first order field, although it is not always present. 
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6.8 Conclusion 
 

In this Chapter, we have investigated the physical meaning of the 
existing first-order perturbative solutions for the field scattered by 
layered structures with rough interfaces. In order to capture the 
physical significance of the analyzed formulations, suitable 
expansions of the closed form solutions are rigorously performed 
leveraging on local scattering descriptors. The general approach has 
been applied to both scattering configurations (from and through the 
layered structure); thus the obtained expansions render a lucid 
interpretation of the scattering mechanisms that take place in a layered 
structure, whereas the series, which can be seen as a ray series or a 
geometrical optics series, offer a clear physical perspective of the 
interferential phenomena involved. Consequently, the global 
scattering response can be thought as the superposition of single-
scattering local interactions filtered by the layered structure, whereas 
the filter action arises from the interferential effects due to the 
coherent interactions with the boundaries. Moreover, the physical 
meaning of the first-order perturbative approximation has been 
clarified in the layered structure context.  

It should be also noted that, despite the expansions are attained 
rigorously without any further approximation with respect to the BPT 
solution proposed in Chapter 5, the resulting interpretations turn out to 
be extremely intuitive and surprisingly simple. Therefore, the global 
scattering problems, which were introduced in Chapter 5 as formal 
mathematics in the first-order perturbative limit, turn out to be 
completely interpretable by simple physical concepts.  

As a result, the obtained expansions also allow us to identify all 
the scattering directions for which the scattering enhancement 
phenomenon may be contemplated by our perturbative models in the 
first-order limit (Enhancement Scattering Cones).  

We want to explicitly underline that the obtained expansions 
primarily give insight into the perturbative analytical results, so 
enabling a relevant physical interpretation involving ray-series 
representation. However, for practical calculation purposes, the more 
compact notation of Chapter 5 can be more conveniently used. This is 
certainly true if only the frequency (or, better, phasor) domain solution 
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is of interest (this is the case, in practice, when a sinusoidal time 
dependence is a sufficient approximation). 

However, the expansions presented in this Chapter open the way 
to a time domain characterization of the scattering response, since 
each ray of the series corresponds to an echo that will be received with 
a different time delay. As a result, the proposed expansions may be 
also useful in practice when a time-domain solution is required. 

As a result, the comprehensive scattering model obtained in the 
BPT framework proved extremely fruitful not only in that it provides 
an effective tool which permits to systematically analyze the bi-static 
scattering patterns of 3D multilayered rough media. In fact, it is 
important to note that a deep comprehension of the physical 
phenomena involved in the electromagnetic wave scattering 
interaction with such kind of complex structures would have been a 
rather hopeless task before the introduction of the BPT. 

In conclusion, the implications of the obtained expansions are 
twofold. In fact, not only the phenomenologically successful BPT 
models give us deep insight into the physics of scattering problem, 
and as such are crucial from a speculative investigation perspective; 
what’s more, they open the way toward new techniques for solving the 
inverse problem, for designing SAR processing algorithms, and for 
modelling the time-domain response of layered structures. These 
aspects will be a matter of further investigation. 
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Chapter 7 
 

Volumetric-Perturbative Reciprocal 
Theory  
 

“La funzione più importante 
dell’osservazione e del ragionamento, come 
pure dell’intuizione e dell’immaginazione, è 
quella di aiutarci ad esaminare criticamente 

quelle congetture ardite che sono i mezzi 
con cui sondiamo l’ignoto.”  

Karl Raimund Popper 

he aim of this Chapter is to present the Volumetric-
Perturbative Reciprocal Theory (VPRT) formulation for the 

evaluation of the electromagnetic wave interaction with non trivial 
random stratifications; it is intrinsically reciprocal, wholly avoiding 
the Green’s functions formalism. 

 The adopted structural description of media and interfaces is 
methodologically conceived to consistently treat both interfacial and 
volumetric random inhomogeneities, relying on a proper 
characterization of the dielectric permittivity space-variant 
perturbation. Accordingly, the developed comprehensive scattering 
approach methodologically permits to, simultaneously and rigorously, 
take into account both rough-interface scattering and volume 
scattering.  

First, a new look at classical SPM for rough surface is offered 
within VPRT framework, so demonstrating how that the pertinent 
solution can be now derived in a conceptually neat way. The presented 
first-order VPRT formulation is then applied to the case of a layered 
structure with rough interfaces: the relevant polarimetric closed-form 
solution, formally derived for a 3-D layered geometry and a bistatic 
radar configuration, can be directly expressed in terms of unperturbed 
solutions and turns out to be fully consistent with the one obtained in 

T 
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the BPT theoretical framework. In order to emphasize the neat 
physical significance of relevant methodological approach, a 
remarkable interpretation of the analytical solution in terms of the 
Rumsey’s reaction concept is provided, and the concept of multi-
reaction is introduced. Finally, the canonical case of random semi-
infinite 3-D media, with both interfacial roughness and volumetric 
fluctuations, is addressed and the concept of effective power spectral 
density of the structure is introduced for considering the absorption in 
the medium. As a result, the comprehensive mathematical structure of 
VPRT enables a unified perturbative formulation jointly taking into 
account the scattering phenomena, which are formally presented 
within a unitary formal construct and directly interpreted in terms of 
the fundamental Rumsey’s reaction concept.  

 
7.1  Introduction and Motivation 

 
Generally speaking, Perturbation Methods have been extensively 

applied in many areas to obtain formal solutions to problems whose 
closed form was impossible, too difficult or not convenient to be 
obtained.  

The essential idea behind perturbation theory applied to a physical 
system is the attaining of approximate solutions for such systems by 
suitably transforming exact solution of the approximate system, 
whereas the systems can be regarded as obtained from a solvable 
system by the addition of a small effect (perturbation). Nevertheless, 
this simple idea is completely obscured by the bulky classical SPM 
formulations, and the relative physical significance remains hidden in 
the available analytical derivations. In spite of its widespread 
recognition, the SPM solution is commonly obtained via involved 
procedures that require tedious manipulations even in the first-order 
approximation. Besides, several procedures have been applied in the 
derivation of the classical SPM solution. SPM solution can be derived 
by using Rayleigh method, which relies on the Rayleigh hypothesis, or 
else by employing the more involved extended boundary conditions. 
The Green functional formalism can be utilized or not. Commonly, 
perturbation of the boundary conditions is employed, even if 
perturbation of the dielectric constant volumetric distribution can be 
also considered. Indeed, the currently available procedures, as it is 
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shown in this Chapter, not only require an unnecessary complication; 
in addition, they lead to obscuring the underling physics as well as the 
essence of the perturbative approach.  

More generally, the analysis of scattering by layered and/or 
inhomogeneous structures with rough boundaries is of crucial 
importance for many applications. As a matter of fact, natural 
stratifications exhibit rough interfaces and volume inhomogeneities, 
which are both responsible for the scattering from the pertinent 
structure.  

A brief discussion is now useful to understand the state of the art 
in this field. A considerable effort has been devoted to study the wave 
scattering by stratifications and several papers have been published: 
within this framework, modeling in microwave remote sensing of 
natural structures is of interest in [16]-[25], whereas analyzing optic 
thin films is the subject in [26]-[27]. The classical SPM solution for 
rough surface was first obtained for perfect conductive surface and 
then extended to dielectric surface separating two homogeneous half-
spaces [19][5][6][8][9][31]. On the other hand, a closed-form solution 
for the volume scattering by a flat-boundaries stratification in the Born 
approximation may be easily found in literature for simplified 
geometry [5] including a very small number of layers; however, at 
best of our knowledge, a solution is not available for stratification 
with an arbitrary number of layers. Moreover, volumetric scattering 
by a perturbed random half-space was considered only limitedly to 
asymptotically small absorption [12] or columnar assumptions [55]. 

Furthermore, noticeable progress has been attained in the 
investigation on the extension of the classical perturbative solution for 
the scattering from rough surface to layered structure with an arbitrary 
number of rough interfaces (see Chapter 5): the systematic BPT 
formulation based on the perturbation of boundary conditions has 
been introduced to deal with the analysis of a layered structure with an 
arbitrary number of rough interfaces. 

Specifically, the results of the Boundary Perturbation Theory 
(BPT) lead to polarimetric, formally symmetric and physical revealing 
first-order solutions: in this case the theoretical construct is based on a 
suitable perturbation in the geometry of the problem and the scattering 
problem is treated by adopting a proper perturbation of boundary 
conditions. These ensuing general solutions have been obtained in 
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closed form for a 3-D geometry and a bi-static configuration, 
concerning scattering configurations from [23] and through [24] 
layered structures; generalized reflection/transmission have been 
adopted to get compact solutions [23]-[24].  Furthermore, these 
solutions enable us to express scattering amplitudes as made up of 
terms, each one amenable of a proper physical interpretation, that 
allows fully identifying the scattering mechanisms involved into the 
structure, as discussed in Chapter 6 (see also [25]). These solutions 
can be also regarded as generalization to layered media with rough 
interfaces of the classical SPM method originally developed for rough 
surfaces [5]-[6]. In addition, most of the already existing perturbative 
approaches [16][17][18][19], originally developed for simplified 
configurations in the first-order approximation, can be rigorously 
regarded, in a unified framework, as special case of BPT solutions 
[20]. Although the BPT final solution (see also [23]-[24]) is expressed 
in a compact form, its derivation, as presented in Chapter 5, is 
however very involved. 

Indeed, most of the approaches for solving scattering problem, 
hitherto proposed by different Authors, conceive as conceptually 
different the nature of the scattering contributions pertaining to 
volume and surface inhomogeneities. Accordingly, distinct scattering 
formulations have been correspondingly adopted to cope with two 
different structural elements separately: interfacial inhomogeneity are 
usually described by means of suitable 2-D random processes 
pertinent to the geometry of the boundary, whereas volumetric 
inhomogeneity are modeled as 3-D random processes pertaining to the 
medium dielectric properties.  

Although, volume and surface scattering contributions have 
usually been formulated separately, we quote some approaches, in 
which the interfacial roughness is seen as a permittivity fluctuation, 
that have been also presented [40]-[41]: they are, however, semi-
analytical (in as much as the multi-layer Green function has to be first 
computed numerically) or limited to two-dimensional geometry, so 
that none of them providing results amenable of practical 
applicability.  

As a result, it is worth noting that the crucial limitation resides in  
the different descriptions adopted for interfacial or volumetric 
fluctuations that preclude a unitary treatment of the two scattering 
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contributions. Accordingly, the interaction arising between these two 
different scattering phenomena is not commonly taken into 
consideration, as no comprehensive formulation for treating their 
combined effects is available. 

It is important to note that when both surface and volume 
scattering, respectively ascribable to different kind of 
inhomogeneities, are concerned, the distinction between these two 
kinds of phenomena in random media is somehow arbitrary and the 
adoption of a certain structural description for the scattering medium 
is only a matter of convenience.  

Conversely, the coexistence of interfacial roughness and 
volumetric fluctuations in actual structures should be taken into 
account methodologically and an inclusive scattering analysis, even 
though approximate, should be fulfilled, in order to clear understand 
the distinguishing characteristics of these two different scattering 
mechanisms.  

To overcome those limitation, we derive the a new formalism 
necessary for the theoretical description of the scattering processes, 
providing a mathematically consistent scheme that has the great result 
of the uniformity in the treatment of the two different types of 
scattering phenomena.  

Therefore, in this Chapter, the formulation of the Volumetric-
Perturbative Reciprocal Theory (VPRT) is developed. VPRT is based 
on two key elements: the use of the Reciprocity Theorem [28] and an 
appropriate description of the scattering structure in terms of 
perturbation of the dielectric constant volumetric distribution; this is a 
formal alternative to the perturbation of the boundary conditions, 
which was employed in Chapter 5.  

A short discussion on the newness in use of these two key 
elements is in order. The description in terms of perturbation of the 
dielectric constant volumetric distribution is widely used in volumetric 
scattering problems e.g., [5], [6], [15], [31], and it leads to the well 
known Born approximation. In some cases [27] the description in 
terms of perturbation of the dielectric constant volumetric distribution 
has been also used to evaluate the scattering from a rough surface, 
although the connection of the obtained solution with the classical 
SPM solution has not been highlighted.  
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We are here essentially interested in presenting a general 
theoretical formulation whose structure maintains analytical 
consistency with both BPT construct and classical Born 
approximation for volume fluctuation formulations. First of all, when 
an inclusive scattering formulation is concerned, a conceptual key-
point resides in the selection of appropriate and mutually compatible 
mathematical descriptions for interfacial roughness and volumetric 
inhomogeneities. In this perspective, we adopt a systematic 
description for the interfacial and volumetric inhomogeneities, in 
which both are regarded as an appropriate space-variant permittivity 
perturbation.  

In addition, it is well known that Reciprocity Theorem can help 
solving scattering problems [28]-[30], even if its use is not so popular 
with respect to other approaches that may lead to equivalent results. 
However, at best of our knowledge, Reciprocity Theorem and 
volumetric distribution have never been used to compute scattering 
from a multi-layer. In addition, the intrinsically reciprocal formulation 
permits to wholly avoid the cumbersome Green functions formalism.  

The VPRT construct introduced in this Chapter is based on an 
intrinsically reciprocal approach; we also show how our formulation 
methodologically will allow us to obtain, even if in the first-order 
limit, a rigorous and unified treatment for both volume and interface 
scattering.  

 The analytical solutions obtained in the VPRT framework are 
then provided directly in terms of the unperturbed solutions known in 
closed-form. Accordingly, the formulation here presented clearly 
illustrates that the first-order scattered field can be formally expressed 
as a proper coupling of two unperturbed solutions, thus clearly 
revealing the intrinsic aim of use of the perturbation theory.  

First of all, since this simple idea of perturbation theory is 
currently completely obscured by the bulky classical SPM 
formulations for a gently rough surface, whose relative physical 
significance remains hidden in the available analytical derivations, we 
preliminarily demonstrate how to straightforwardly derive the 
classical SPM scattering solution in a surprisingly simple way. As a 
result, the canonical SPM can be arranged in the new methodological 
perspective offered by the powerful VPRT framework, in which it can 
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be derived in a conceptually neater, more concise and clearer way, 
gaining a more direct comprehension in a methodological perspective. 

Furthermore, the adopted methodological approach, when applied 
to rough multilayer, offers a certain inherent analytical convenience 
and can be effectively conduct to a formal solution for scattering from 
rough layered media, which can be carried out much more 
straightforwardly with respect to pertinent BPT derivation (see 
Chapter 5): we demonstrate that the proposed formulation, somehow 
surprisingly, has a reduced mathematical complexity. This can be 
explained by observing that the new formulation makes only use of 
the vector electric field, whereas the BPT formulation based on 
perturbation of boundary conditions requires the analysis of both 
magnetic and electric fields.  

Finally, VPRT also allow us to jointly take into account the 
scattering phenomena from both interfacial roughness and volumetric 
fluctuations for random semi-infinite three dimensional (3-D) 
medium: the obtained perturbative solution is then given in closed-
form for a bi-static configuration, providing a common analytical 
structure for both the scattering processes. To characterize the overall 
scattering response of the structure, the effective power spectral 
density (effective PSD) of the structure is also introduced. Therefore, 
the presented formulation helps us in gaining an analytical insight into 
the distinguishing character of the scattering mechanisms, neatly 
clarifying and quantifying the role played by the two scattering 
contributions in a common analytical framework. 

Therefore, the VPRT framework presented in this Chapter enables 
a comprehensive perturbative analysis for the evaluation of the 
scattering from randomly inhomogeneous media. The developed 
unified perturbative formulation permits to treat consistently both 
these mentioned inhomogeneities and evaluate on an analytic 
playground, in the weak fluctuation approximation, the contributions 
pertinent to the two corresponding scattering mechanisms involved in 
a unitary theoretical framework. A proper description for the 
morphological features of the considered perturbed structure and 
formal expression for the unperturbed fields are specifically provided. 
The solutions here provided are all expressed in terms of the 
experimentally relevant quantities such as the scattering cross 
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sections, whose expressions are directly related in terms of 
microscopic entities such as the structural correlation functions. 

The Chapter is organized as follows.  
In section 7.2, the innovative VPRT scattering formulation is 

proposed. A new look at SPM for rough surface is provided in Section 
7.3. The formulation is applied to the scattering from rough interfaces 
of a multilayer in Section 7.4, so and the formal consistency of the 
solution with the one of the BPT is also analytically provided. In 
addition, a lucid interpretation of the perturbative solution is given in 
terms of the multi-reaction. In order to demonstrate how VPRT 
enables the joint evaluation of the scattering contributions relevant to 
the interfacial and volumetric inhomogeneities a canonical structure is 
addressed in Section 7.6. Conclusions are finally drawn in Section 7.7.  
 
7.2 Volumetric Perturbative Formulation 
 

In this Section we introduce the volumetric perturbative 
formulation: a general scattering problem is analyzed.  

Let us consider a source current density J(r) radiating an 
electromagnetic field E(r), H(r) in an inhomogeneous medium 
characterized by a distribution, )(r , of its relative dielectric 
permittivity . The electric field satisfies the vector Helmholtz equation 
(in the following, a factor exp( j t) is understood and suppressed): 

  ),()()()( 00
2
0 rJrErrE jkk   (7.1) 

where k0 and 0  are the propagation constant and the intrinsic 
impedance of vacuum, respectively. Let us now assume that the 
considered medium can be seen as an unperturbed medium with 
relative permittivity = (0)(r) to which a perturbation (r) is applied, 
so that (r) = (0)(r)+ (r); let us also define the unperturbed field 
E(0)(r) as the field radiated by J(r) in the unperturbed medium: 

 ).()()()( 00
)0()0(2

0
)0( rJrErrE jkk  (7.2) 

By subtracting (2) from (1) we get 
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 )()()()()( 2
0

)1()0(2
0

)1( rErrErrE kk , (7.3) 

where E(1)(r)= E(r) E(0)(r) is the field perturbation. Equation (3) 
shows that the field perturbation can be considered as radiated by an 
equivalent current density J1(r): 

 )()()()()( )0(1
00

1
001 rErrErrJ jkjk ; (7.4) 

in eq.(4) medium perturbations (r) are assumed to be small, then the 
field perturbation E(1)(r) turns out to be small with respect to the 
unperturbed field E(0)(r), which leaded us to replace E(r) with E(0)(r) 
in eq.(4). 

In order to compute the perturbed field in a generic point r0, we 
define an auxiliary (fictitious) source 

 
 

Fig. 1. Geometry of the scattering problem. 
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 )(ˆ)( 0rrrJ Jt ,   (7.5) 

where t̂  is an arbitrarily oriented unit vector, (.) is the Dirac delta 
function, and J = 1 A m is a unitary constant introduced for 
dimensional consistency reasons. This (test) source radiates a field 

)0(E in the unperturbed medium. By applying the Reciprocity 
Theorem [28] we get: 

  0)()()()( 1
)0()1(

V

drrJrErJrE ,  (7.6) 

where V is a volume enclosing all the sources, as pictured in Fig.1. 
Use of (4) and (5) in (6) leads to 

 
V

d
J
kjt rrErrErE )()()(ˆ)( )0()0(

0

0
0

)1( .  (7.7) 

Equation (7) allows us evaluating the field perturbation from 
knowledge of the medium perturbation and of the two unperturbed 
fields radiated by real and fictitious sources.  

If the unperturbed medium have discontinuity planes orthogonal to 
the z-axis, then it is convenient to distinguish between transverse E  
and longitudinal field zE  components (i.e., the field components 
orthogonal and parallel to the z-axis): 

)(
)(ˆ)()(ˆ)()(

)0(
v

)0(
)0()0()0()0(

r
rrErrErE z

z
DzEz ,  (7.8) 

where v is the dielectric constant of vacuum and )0()0(
v

)0(
zz ED  is 

the z-component of the unperturbed electric flux density. Accordingly, 
eq.(7) can be rewritten as 



 

  

                                          Volumetric-Perturbative Reciprocal Theory                                     173 

 

.)(
)(

)()(

)()()(ˆ)(

)0(
2)0(2

v

)0(

)0()0(

0

0
0

)1(
0

rr
r

rr

rErrErE

dDD

J
kjt

zz

V   (7.9) 

It is important to note that throughout this thesis with a 
parenthesized superscript we systematically indicate the order of 
perturbation.  

On the other hand, where explicitly indicated, a subscript m 
distinguishes the pertinent m-th spatial region of the medium. Indeed, 
we also emphasize that a field solution assumes different expressions 
depending on the specific region of the structure which is concerned. 
Accordingly, to indicate the pertinent field expression within a 
specific (m-th) region, if necessary a proper subscript (m) is included 
in the field notation. Conversely, when the relevant subscript is 
omitted we indicate the overall field solution. For instance, )1(

0E
denotes the relevant expression assumed by the electric field first-
order perturbation )1(E  in the 0-th region.  

Finally, by noting that, for small medium perturbation, 
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so that 
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This equation, with respect to Eq. (7), has the advantage that it is 
expressed in terms of unperturbed field components that are all 
continuous across discontinuity planes orthogonal to the z-axis. Note 
also that the integration in Eq. (12) is effective only over the volume 
involving the dielectric perturbation. 
 
7.3 A New Look at SPM for Rough Surface 
 

In this Section, by employing the intrinsically-reciprocal VPRT 
formulation of Section 7.2, we preliminarily demonstrate how to 
derive the classical SPM scattering solution for a rough surface in a 
surprisingly simple way. The proposed new mathematical formulation 
for the relevant scattering problem then results, with respect to the 
classical one, neater, more concise, clearer, and as such offers a more 
direct comprehension in a methodological perspective. The 
mathematical structure presented not only represents a conceptually 
clean formulation for the classical SPM, but itself provides a new way 
of thinking about the perturbation theory applied to the scattering 
problem. 

Some instructive and useful preliminary considerations are in 
order. 

The essential idea behind perturbation theory applied to a physical 
system is the attaining of approximate solutions for such systems by 
suitably transforming exact solution of the approximate system, 
whereas the systems can be regarded as obtained from a solvable 
system by the addition of a small effect (perturbation). Nevertheless, 
this simple idea is completely obscured by the bulky classical SPM 
formulations, and the relative physical significance remains hidden in 
the available analytical derivations [5][6][8][9][12][44].   

Therefore, the aim of this Section is not to propose a new solution 
to the relevant scattering problem, but to highlight how the canonical 
SPM for scattering by gently rough surface can be conceptually 
arranged in the new methodological perspective offered by the VPRT 
framework. 
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This new formulation, allows us to emphasize the crucial role of 
wave coupling of unperturbed solutions, which clearly exposes the 
intrinsic aim of the perturbation theory, thus offering a more complete 
comprehension in a conceptual perspective. In addition, the proposed 
approach permits to avoid the Green functions formalism, and is 
carried out referring exclusively to the vector electric field in a 
surprisingly simple way. 

 
7.3.1 Dielectric Permittivity Characterization 

 
We consider a gently rough (as in classical sense) surface between 

two homogeneous half-space (Fig. 2). We here assume that the 
magnetic relative permeability  is uniform. Accordingly, the 
unperturbed permittivity distribution is 

)()()()( 010
)0()0( zzr ,  (7.13) 

where )(  is the Heaviside’s unit step function, that is zero for 
negative argument and 1 for positive argument.The perturbed medium 
is now obtained by assuming that the rough surface has a roughness 
characterized by a zero-mean two-dimensional process

)(),( ryx . Therefore, the perturbed permittivity distribution is 

 
 

 
 
 

Fig. 2. Surface Scattering: Bistatic scattering configuration. 
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))(()(),( 010 rr zz , (7.14) 

and the perturbation of the dielectric permittivity is  

 )(),(),( )0( zzz rr .   (7.15) 

Note that this perturbation is non-null only in relative thin regions 
around the planes z = 0. In addition, we assume that the perturbation 
has a finite extent in the x, y directions, i.e., )(r  is zero outside 
region of area A. Performing a series expansion of the perturbation, 
and assuming that roughness heights  are small enough, in the first-
order limit we get:  

)()()(),( 01 zz rr .  (7.16) 

Similarly, we can write 

))(()(),( 1
0

1
1

1
0

1 rr zz ,  (7.17) 

)()()()),(( 1
0

1
1

1 zz rr .   (7.18) 

In such a way, the roughness can be regarded as volume 
perturbations localized around the unperturbed interface and, 
accordingly, the roughness can be replaced by discontinuous volume 
inhomogeneities.  

 
7.3.2 Unperturbed Field Evaluation 

 
We consider an arbitrary polarized monochromatic plane wave 

incident from the upper half-space on the stratification at an angle i
0  

with respect to the ẑ  direction, as schematically shown in Fig.2, 
whose representation (similarly as discussed in Section 3.2.2: see 
(3.7)-(3.10)) is given by  

  zjkjiiiviiihi i
z

i eevEhE 0)](ˆ)(ˆ[)( 00000
rkkkrE ,  (7. 19) 
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where the incident vector wave-number direction is individuated, in a 
spherical coordinate frame, by ii

00 , : 
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iii
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kzkk kk   (7.20) 

being 
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i
ii hzk

zk
zkh k    (7.21)  

 iiiii khv 000
ˆ)(ˆ)(ˆ kk  .   (7.22) 

Accordingly, ykxk i
y

i
x

i ˆˆk  is the two-dimensional projection of 
incident vector wave-number on the plane z=0.  

By employing above notations (see also Chapter 3) the 
unperturbed field E(0)(r), which is the one in absence of the roughness 
(flat interface), on the unperturbed surface can be conveniently 
expressed in the following closed-form: 

iviv
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iviv
i
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ihihij
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k
kzEkR

k
kk

EkRhe i

010
00

010
00

0

010
)0(
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)](1[ˆ)](1[ˆ

)](1[ˆ)0,( rkr
 (7.23) 

where the orthonormal right-handed basis }ˆ,ˆ,ˆ{ zkh ii  has been used, 
pR 10  is the usual Fresnel reflection coefficient (see Chapter 3), 

p {v,h} denotes the polarization, and 22
0 kmzm kk with m {0,1}.  

 
7.3.3 Auxiliary Unperturbed Field Solution 

 
In a similar way, if we assume that the test source is placed in the 

upper half-space and it is in the far zone with respect to the roughness, 
then the unperturbed field )0(E  is the field present in an unperturbed 



178                                                                                           Chapter 7 

medium on which a (locally) plane wave impinges, whose wave-
number vector is  

),cosˆsinsinˆcossinˆ(
ˆˆ

000000

000
sssss

s
z

ss
s

zyxk
kzrk kk  (7.24) 

and whose electric field is 

 tEee izjkji s
z

s ˆ)( 00
0rkrE ,   (7.25) 

where  

 
s
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r
eJkjE
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000 .   (7.26) 

Accordingly, the unperturbed field )0(E evaluated on the 
unperturbed surface can be written as 

,)](1[ˆ)](1[ˆ

)](1[ˆ)0,(
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ivsv
s
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s
zs

ihshsj
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EkRhe s rkr
  (7.27) 

where sĥ  and sv̂  are given by (21)-(22) with superscripts i replaced by 
superscripts s, and where 

siih htEE ˆˆ
00 , siiv vtEE ˆˆ

00 .  (7.28) 

 
7.3.4 Scattered Field Evaluation 

 
When geometric roughness of the surface is described, as in the 

previous subsection, by means of an appropriate volume perturbation 
localized about the interfaces, then the integral in (12) become 
essentially a surface one. By using (16) and (18), Eq.(12) can be 
concisely rewritten as 
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)0,()0,()()(ˆ)( )0(
0

)0(
001

0

0
0

)1(
0 rErErrrE d

J
kjt ,    (7.29) 

in which 0  means that the longitudinal field components are 
evaluated immediately above the plane z = 0, and wherein  

1ˆˆˆˆˆˆ 10zzyyxx     (7.30) 

is a pseudo-horizontal projector, because it coincides with the classical 
horizontal one zzˆˆ  for perfect conductivity ( 010 ). In 
other words, the operator  accounts for the discontinuities of the 
unperturbed field across the (flat) boundary: 

)0,()0,( )0(
0

)0(
1 rErE .   (7.31) 

Note also that is a symmetric operator and )0,()0,( )0(
0

)0(
1

1 rErE . 
Obviously, similar relationships hold also for )0(E .  

As a result, we emphasize that (29), which clearly express the 
perturbative solution directly in terms of unperturbed solutions, allows 
us to read the scattered field in terms of wave coupling of unperturbed 
solutions, whereas the roughness couples the energy of the incident 
wave with the scattered one at the receiver. At this point, to evaluate 
the scattered field E(1)(r), the following representation is considered 

 )(ˆ)(ˆ)( 000
)1(

0
sssvsssh vEhE kkrE .  (7.32) 

Substituting (23) and (27) in (29), evaluated for sht ˆˆ  and for svt ˆˆ , we 
directly obtain the following compact expression  
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with 
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where the superscripts i and s refer to the incident and scattered field 
directions, respectively;  

 )()2()(~ 2 rrk rkjed   (7.35)  

is the Fourier transforms (2D-FT) of the rough surfaces, and where 
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 (7.39) 

Assuming that the relevant statistical properties of the process 
describing the interfacial roughness are invariant with respect to a 
spatial shift in the x-y plane (wide sense stationary), the pertinent 
power spectral density )(W of the rough interface can be expressed, 
accordingly to (2.18), as  

2
2 )(~1)2()(

A
limW
A

,   (7.40) 

where A is the illuminated surface area and angular brackets denote 
ensemble averaging. Accordingly, the bistatic scattering cross section 
for the pertinent surface can be defined as in (1.12) 
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where q {v, h} and p {v, h} denote the scattered and incident 
polarizations, respectively. By substituting (33) and (40) in (41), the 
final expression for the bistatic scattering cross-section is obtained: 

)(),(
24

0
0 isis

qpqp Wk kkkk   (7.42) 

This result is fully consistent with the classical SPM one obtained 
for the case of a homogeneous rough half-space [5]-[6].  

As a result, within the VPRT framework the classical SPM 
scattering solution for a rough surface straightforwardly can be 
derived in a surprisingly simple way. The presented mathematical 
structure not only represents a conceptually clean formulation for the 
classical SPM, but itself provides a new way of thinking about the 
perturbation theory applied to the scattering problem, especially in 
view of further developments. 

 
7.4 Scattering From Rough-Boundaries 

Multilayer  
 

In this section we use the general expression reported in (12) to 
compute the scattering from a layered medium with rough interfaces. 
To this end, we have to characterize the medium, explicitly compute 
the medium permittivity perturbation  (Section 7.4.1) and the two 
unperturbed fields radiated by real, )0(E , and fictitious, 

)0(
E , sources 

(Sections 7.4.2 and 7.4.3, respectively). 
 

7.4.1 Layered Medium Characterization 
 

For a layered medium with rough interfaces, the unperturbed 
medium is provided by a stack of N-1 parallel slabs, sandwiched in 
between two half-spaces; the entire structure is shift invariant along x 
and y directions (infinite lateral extent in x, y directions are assumed). 
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 Each layer is assumed to be homogeneous and characterized by 

deterministic parameters: the dielectric relative permittivity m, and 
the thickness m = dm–dm-1, as depicted in see Fig.3. The parameters 
pertaining to m-th layer are identified by a subscript m; its boundaries 
are z = –dm-1 and z = –dm.  

 
 

Fig. 3. Geometry of the rough-boundaries multilayer structure. 
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We here assume that all the layers have the same magnetic relative 
permeability  (possibly, but not necessarily, equal to 1). In addition, 
with reference to Fig.3, we set d0=0. Accordingly, the unperturbed 
permittivity distribution is 

)()()()( 1

1

0
0

)0()0(
mmm

N

m

dzzr , (7.43) 

where )(  is the Heaviside’s unit step function, that is zero for 
negative argument and 1 for positive argument. 

The perturbed medium is now obtained by assuming that each 
interface has a roughness characterized by a zero-mean two-
dimensional process, then for the m-th interface we have 

)(),( rmmm yx . Therefore, the perturbed permittivity 
distribution is 

))(()(),( 1

1

0
0 rr mmmm

N

m

dzz , (7.44) 

and the perturbation of the dielectric permittivity is given by 

   )(),(),( )0( zzz rr .  (7.45) 

We assume that roughness heights m  are small enough to 
perform a series expansion of the perturbation (45) around 0m  and 
truncate it to its first-order. Accordingly, by using (44) in (45) and 
recalling that the derivative of the Heaviside’s unit step function is a 
Dirac‘s delta function, we get the following first-order expansion:  

 ).()()(),( 1

1

0
mmmm

N

m

dzz rr   (7.46) 

where )(  is the Dirac delta function. Note that this perturbation is 
non-null only in thin regions around the planes z = –dm. We also 
assume that the perturbation has a finite extent in the x–y directions, 
i.e., )(rm  is zero outside region of area A. Similarly, we can write 
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In such a way, as the interfaces description is concerned, the actual 
interfaces can be regarded as volume perturbations localized around 
the unperturbed interfaces and, accordingly, the roughness can be 
replaced by discontinuous volume inhomogeneities.  

 
7.4.2 Unperturbed Field Evaluation 

 
If we assume that the field source is placed in the upper half-space 

and it is in the far zone with respect to the rough interfaces, then the 
unperturbed field E(0)(r) is the field present in the unperturbed 

 
 

Fig. 4. Layered structure: unperturbed geometry. 
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stratified medium (characterized by flat boundaries) on which a 
(locally) plane wave impinges.  

We consider an arbitrary polarized monochromatic plane wave 
incident from the upper half-space on the stratification at an angle i

0  
with respect to the ẑ  direction, as schematically shown in Fig.4, 
whose representation (similarly as discussed in Section 3.2.2: see 
(3.7)-(3.10)) is given by  

  zjkjiiiviiihi i
z

i eevEhE 0)](ˆ)(ˆ[)( 00000
rkkkrE ,  (7. 49) 

where the incident vector wave-number direction is individuated by 
ii
00 ,  in a spherical coordinate frame ( see also (20)-(22)). 

 By employing above notations (see also Chapter 3) the 
unperturbed field )()0( rEm in the m-th layer can be conveniently 
expressed in the following closed-form: 

TABLE I 

Notation Description 

N Number of rough interfaces 
m

 Thickness of the mth layer 

m  Spatial roughness of the mth interface 

m
~  Spectrum of the spatial roughness of the mth interface 
 Relative permeability  
m Relative permittivity of the mth layer 
0  Intrinsic impedance of vacuum 

k0 Wave-number in the vacuum 
km Wave-number in the mth layer 
k  Projection on (x,y) plane of the vector wave-number  

kzm 
z-component of the vector wave-number vector in the mth 
layer 

m   Angle in the mth layer 
p

mmR 1
 Ordinary reflection coefficients for the p-polarization,  at the 

interface between the regions m-1 and m 
p

mmT 1
 Ordinary transmission coefficients for the p-polarization in 

downward direction between the regions m-1 and m 
p

mm 1
 Generalized reflection coefficients for the p-polarization,  at 

the interface between the regions m-1 and m 
p

m0
 Generalized transmission coefficients for the p-polarization 

in downward direction between the regions 0 and m 
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where the orthonormal right-handed basis }ˆ,ˆ,ˆ{ zkh ii  has been used 
(see Fig.4), and where we set:  

],)(1[)(),( 2
100

1 mzmmzm dzkjp
mm

dzjkp
m

p
m ekekzk  (7.51) 

where the symbol ± in the superscript on LHS represents a given 
choice linked to the symbol ± in RHS expression; the superscripts p  
{v, h} denote the polarization, the generalized reflection coefficient 

)(1 kp
mm at the interface the interface between regions m and m+1 

and the generalized transmission coefficient )(0 kp
m

 can be 
recursively expressed, respectively, as in Section 3.4. and Section 3.5.  

We stress that (generalized) reflection and transmission 
coefficients do not depend on the direction of k . 

 
7.4.3 Auxiliary Unperturbed Field Solution 
 

Similarly, if we assume that the auxiliary (test) source is placed in 
the upper half-space and is located in the far zone with respect to the 
rough interfaces, then the unperturbed field )0(E is the field present in 
an unperturbed plane stratified medium on which a (locally) plane 
wave impinges; this plane wave is expressed by the electric field 

   tEee izjkji s
z

s ˆ)( 00
0rkrE ,   (7.52) 

with a wave-vector (see also Fig.3) 
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and amplitude 
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Accordingly, the unperturbed field )()0( rEm  in the m-th layer is 
given by: 
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where sĥ  and sv̂  are given by (21)-(22) with superscripts i replaced by 
superscripts s, and where 

 siih htEE ˆˆ
00 ,  siiv vtEE ˆˆ

00  .  (7.56) 

 
7.4.4 Scattered Field Evaluation 
 

The integral of the (12) over the volume V reduces to a multi-
surface one being the geometric roughness of the interfaces described 
by means of an appropriate volume perturbation localized around the 
interfaces (Sect. 7.4.1). By substituting (46) and (48) in (12), we get 
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   (7.57) 

or 
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  (7.58) 

wherein md  indicates that the longitudinal field components are 
evaluated immediately above the plane z = –dm. Equation (58) can be 
concisely rewritten as 
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wherein  

]1ˆˆˆˆˆˆ[ 1mmzzyyxx     (7.60) 

is a pseudo-horizontal projector, because it coincides with the classical 
horizontal one zzˆˆ  for perfect conductivity ( 01mm ). In 
other words, the operator  accounts for the discontinuities of the 
unperturbed field across the m-th (flat) boundary. Note also that  is 
a symmetric operator: 

).,(),( )0()0(
1 mmmm dd rErE   (7.61) 

At this point, we have all the elements to evaluate the field 
perturbation E(1)(r), i.e., the scattered field. As a matter of fact, by 
substituting (50) and (55) in (59), and noting that 
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we get 
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where, accordingly to (51), we have set  

),()( 00 m
p
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It is convenient to project the scattered field onto sĥ  and sv̂  (given 
by (21)-(22) with superscripts i replaced by superscripts s):  
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By introducing  

 ),()2()(~ 2 rrk rk
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j
m ed   (7.68)  

the Fourier transforms (2D-FT) of the rough interfaces m , and using 
(54) and (56), we have  
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for sht ˆˆ , and 
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for svt ˆˆ . Note also that in Eqs. (69)-(70) superscripts i and s refer to 
the incident and scattered field directions, respectively.  
 
7.4.5 Generalized Scattering Matrix 
 

In this section, to emphasize the polarimetric character of the 
obtained solution, we introduce the concept of generalized bistatic 
scattering matrix of the rough layered media. Accordingly, equations 
(69)-(70) can be more concisely written in matrix form as: 
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with generalized bistatic scattering matrix formally expressed by 
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which characterizes the polarimetric response of the generic (m-th) 
rough interface of the layered structure, for a plane wave incident in 
direction ik  and for a given observation direction sk , with  

),(~),(~
),(~),(~

),(~
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1,1,
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kkkk
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where 
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where, in compliance with (51) and (66) we have  

)](1[)()( 100 kekk p
mm

jkp
m

p
m

mzm .  (7.78) 

Eqs. (71)-(78) provide a key result of this Section. Some 
comments are in order to illustrate major consequences from these 
equations.  

First of all, we emphasize that the proposed approach avoid 
somehow defining and using the Green functions, whereas our 
treatment directly involve the integral transform of the field. This 
simplifies the mathematical treatment of the problem; in addition, as it 
is clarified in the following, our approach leads to a meaningful 
physical interpretation of the perturbative solution.  

Furthermore, we highlight that formally the obtained analytical 
solution (71)-(78), for the scattering from rough-boundaries 
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multilayered structures, is perfectly equivalent to the one based on the 
perturbation of the boundary conditions approach [23]-[24]. In fact, it 
is easy to verify that (74)-(77) are formally coincident with (5.82)-
(5.85) in Chapter 5. In particular, it is simple to verify that, when the 
layered medium merely reduces to a single interface between two 
half-space, these coefficients exactly reduce to the classical SPM ones 
[5][6][23].  

When the interfacial roughness is concerned, we emphasize that 
from a qualitative viewpoint, in long wavelength limit the controlling 
factor for the validity of our solution is not the dielectric contrast: in 
fact the smallness of the dielectric perturbation does not necessary 
requires a limitation on the dielectric contrast (whose modulus can be, 
and usually is, greater than 1). The relevant limitations regard the 
vertical extension (rms height) of the rough interface, which has to be 
small with respect to the wavelength of the incoming radiation. This is 
directly related to the role of the phase of the wave propagating inside 
the perturbation. In addition, regarding the roughness also a constraint 
on the small-slope assumption has to be considered (the gradient of 
the interface must be small in comparison with unit). This point is 
discussed in detail in Chapter 8.   

Accordingly, the range of validity of the VPRT formulation 
applied to rough multilayer is the same as the one of the BPT 
formulation [23]-[24], i.e., the height deviation of the rough interfaces, 
about the unperturbed interface, is everywhere small compared to the 
wavelength of the incoming wave and the gradient of each interface is 
small in comparison to unity.  

It should be noted that, when only first-order terms are considered, 
then the perturbation theory yields the Bragg scatter phenomenon 
referred to a multi-rough-interfaces scattering: in fact, the scattered 
field at a given angle turns out to be the linear combination of the 
amplitudes of the Fourier Transforms of the interfaces roughness at 
one specific vector wave-number. Then, the scattered power at a 
particular angle is directly a linear combination of energies at relevant 
surface scales.  

We also emphasize that the scattering configuration we considered 
in Eq. (67) is compliant with the classical Forward Scattering 
Alignment (FSA) convention that is adopted in radar polarimetry.  
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Concerning the azimuthal -dependence, we also note that the 
cos-like scattering patterns experimentally obtained for a rough 
surface in [38] are taken into account in our solution. Regarding this 
point, we underline that our method clearly indicates how this 
dependence is associated with the bistatic configuration geometry in 
which the scattering phenomenon is observed, whereas in [38] this 
effect is referred to as a polarization artifact. Moreover, Eqs. (74)-(74) 
also shown how this behavior is also inherited by each polarization 
component.  

Lets indicate with the superscript T the transpose. It can be easily 
verified that the scattering matrix whose elements are in (74)-(77) 
satisfies the following relationship:  

   .),(),( 11 T
simmismm kkkk  (7.79) 

This fundamental property in the radar polarimetry was first 
obtained with a general purpose approach in [39]: the approach we 
here introduced in a different way led to coefficients that satisfy that 
property. This can be concisely expresses as a form of the reciprocity 
principle in the electromagnetic theory. It turns out that our result is 
invariant for an appropriate exchange between the role of transmitter 
and receiver. As a matter of fact, the formal exchange between the 
projections on the z=0 plane ik  and sk  is directly related to the 
exchange between the incident and scattered wave-vectors 

zk i
z

ii ˆ0kk  and zk s
z

ss ˆ0kk .  
Finally, some considerations on the unperturbed-waves coupling 

interpretation are in order. Taking into account that
),(),( )0()0(

mmm dd rErE , we are in the position to conveniently 
rewrite (59) as 

),()()(ˆ)( )0(
1

)0(
1

00

0
0

)1(
0 rErrErrE mmm

N

m

d
J
kjt   (7.80) 

where, in each  sub-region ),(:),( 1mmm ddzzrr  of the 
layered structure, the unperturbed solution assumes the form 

)()( )0()0( rErE m , provided that the boundary condition on the flat 
interfaces are satisfied. Note that (80) is invariant when the subscripts 
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m and m+1, of the corresponding two unperturbed fields, are 
exchanged. It should be also noted that the (scalar) perturbation 
strength 

   )()()()( 1 mmmmm dzrr   (7.81) 

formally represents a perturbation operator associated with the 
roughness of the m-th interface. This operator reduces the integral in 
Eq. (80) to a multi-surface one. We highlight the crucial role played 
by the resulting wave coupling, which is intimately related to 
structural perturbation introduced in the first-order formulation: The 
exchange of energy is taking place as the roughness couples the 
energy of the incident wave with the one of the scattered field at the 
receiver. Consequently, for any fixed observation point the 
perturbation gives rise to a scattered field readable in terms of wave 
coupling of unperturbed solutions [see (80)]. In the first-order 
approximation, from the receiver viewpoint, the electromagnetic 
coupling between only two unperturbed waves is observed. In other 
words, the signal received depends on two unperturbed fields, whereas 
the operators m  affect the coupling between these two unperturbed 
solutions.  

As a result, the perturbation operators (81) can be also thought as 
coupling coefficients, with m=0, 1, …, N-1.  

  
7.5 Reaction-Concept-Based Interpretation of 

the Scattering Solution 
 

In this section, a very useful and informative interpretation of the 
presented VPRT solution for rough multilayers is proposed; this is 
done in terms of reactions.  

The concept of reaction, which has to be regarded as a basic 
physical observable, was originally introduced by Rumsey [35] (for a 
systematic exposition of this subject see also [28]). We underline that 
the reaction concept was applied in [35] by considering surface 
currents, whereas volume polarization currents case were taken into 
account in [36].  
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Let’s consider two vectorial functions, aE and bJ : in an infinite-
dimensional linear space for the electromagnetic fields, we can 
introduce the symmetric bilinear form  

)()(, rJrErJE baba d ,  (7.82) 

to which is given the physical meaning of reaction [15] between two 
field quantities; the scalar on the left-hand side of eq.(82) is a measure 
of the reaction (or coupling) between the source field, bJ , and the 
mediating field, aE . Note also that, the symbol <·,·> is here adopted 
to mathematically represent the bilinear form (82) which is a more 
general concept with respect to the inner product and does not require 
the structure of an inner product space.  

Using the notion (82), eq.(80) can be then conveniently rewritten 
in the form of a multi-reaction: 

   )(),(ˆ)( )1()0(
1

0
0

)1(
0 rJrErE mm

N

m

tJ ,  (7.83) 

where, to the first-order )()( )0(
1

1
00

)1( rErJ mmm jk  can be interpreted 
as the equivalent polarization current induced into the (localized) 
perturbed volume by the unperturbed field )()0(

1 rEm . Then, the generic 
m-th term of the summation in (83) )1()0( , mm JE  is susceptible to be 
physically interpreted as the unperturbed electric field )()0( rEm , which is 
produced by the sampling source )(ˆ

0
sJt rr , “measured” by the 

source )1(
mJ . Note that if the reaction is zero, then no energy is 

transferred by the first-order field from the transmitter to the receiver.  
The right-hand-side of Eq. (83) shows how the scattered field is 

intimately related to the multi-reaction. This remarkable 
interpretation, which intimately depends on the essence of 
perturbation approach, is straightforward and rich in descriptive 
power. 

Note also that, since the medium is also symmetric or reciprocal, 
this multi-reaction is symmetric according to the reciprocity theorem. 
Indeed, from the symmetry of , it turns out that a form equivalent 
to (83) is given by: 



196                                                                                           Chapter 7 

   ,)(,ˆ)( )0()1(
1

0
0

)1(
0 rEJrE mm

N

m

tJ    (7.84) 

wherein to the first-order, )()( )0(
1

1
00

)1( rErJ mmm jk  can be now 
interpreted, as the equivalent polarization current induced into the 
(localized) perturbed volume by the unperturbed field )()0(

1 rEm  
produced by the test-source )(ˆ

0
sJt rr . Accordingly, the generic m-th 

term of the summation in (83) can be now read as the unperturbed 
electric field )()0( rEm , due to the real source, “measured” by the source 

)1(
mJ . 

This is to say that the proposed formulation is reciprocal.  
 

7.6 Surface and Volume Scattering: A Joint 
Peturbative Formulation 
 

A unified perturbative formulation jointly taking into account the 
scattering phenomena from both interfacial roughness and volumetric 
fluctuations for random semi-infinite three dimensional (3-D) media is 
presented. We first introduce a proper description for the considered 
spatial 3-D structure, which is described in terms of a proper 
perturbation of the corresponding idealized structure, afterward the 
formalism for the unperturbed field is provided. Finally, a general 
expression for the first-order scattering field is obtained by using 
VPRT. 

 
7.6.1 Semi-Infinite Medium with Interfacial and 

Volumetric, Random Inhomogeneities  
 
The considered structure (Fig. 5) can be regarded as obtained by a 

proper perturbation of the unperturbed structural properties.  
The unperturbed structure (Fig. 6) is constituted of two half-

spaces, separated by a flat interface, each one assumed to be 
homogeneous and characterized by arbitrary and deterministic 
dielectric permittivity 0 and 1, respectively. We hereafter assume 
that both the half-spaces have the same magnetic relative permeability 
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 (possibly, but not necessarily, equal to 1). The unperturbed structure 
is then shift-invariant in the direction of x and y (infinite lateral extent 
in x, y directions). Accordingly, the unperturbed medium permittivity 
distribution is 

)()()()( 010
)0()0( zzr ,  (7.85) 

where )(  is the Heaviside’s step function, which is zero for 
negative argument and 1 for positive argument. 

 In order to characterize the inherent morphology, the description 
of statistical fluctuations occurring in the actual spatial structures can 
be achieved by employing different quantities: The perturbed medium 
is now obtained by assuming that topography of the interfacial 
irregularities is characterized by a zero-mean two-dimensional 
stochastic process, )(),( ryx , and the space-variant 
morphological features of the lower half-space volume are 
characterized by a zero-mean three-dimensional stochastic process, 

1(r), such that the relative permittivity of the lower half-space is 
described by 1(r)= 1+ 1(r). Accordingly, the perturbed medium can 
be seen as the truncation by the rough interface )(r of an infinite 
volume, whose permittivity fluctuations are described by a process 

1(r). Therefore, the perturbed permittivity distribution is modeled by 

))(())((),( 010 rrr zz ,  (7.86) 

and the perturbation of the dielectric permittivity is  

   )(),(),( )0( zzz rr .   (7.87) 

We assume that roughness heights and volumetric fluctuation 1 
are small enough to perform a series expansion of the perturbation and 
truncate it to its first-order:  

 )()()()()(),( 101 rrr zzz ,  (7.88) 

where )(  is the Dirac’s delta function.  
Similarly, we obtain 
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)()()()()()),(( 1
2

1
1

0
1

1
1 rrr zzz . (7.89) 

In addition, we can write 

))(()(),( 1
0

1
1

1
00

1
1

rr zz , (7.90) 

)()()()),(( 1
0

1
10

1
1

rr zz .  (7.91) 

In such a way, the roughness can be regarded as volume 
perturbations localized around the unperturbed interface and, 
accordingly, the roughness can be replaced by discontinuous volume 
inhomogeneities.  

 

 
Fig. 5. Scheme for the scattering problem. 
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We emphasize that the essential postulate of perturbation theory is 
that all higher terms may be neglected because is relatively small.  

Anyhow, we also assume that the perturbation concerning the 
interface has a finite extent in the x-y directions, i.e., )(r  is zero 
outside region of area A; and also that the perturbation 1(r) 
concerning the volumetric fluctuation has finite extent in the x-y-z 
directions. As matter of fact, the perturbations domain can be thought 
as physically limited by the illumination beam-width and by the 
relevant electromagnetic wave penetration-depth.  

 
7.6.2 Unperturbed Field Evaluation 

 
In this Section, we provide a general expression for the 

unperturbed vector field solution E(0)(r) relevant to the pertinent 
unperturbed structure of Fig.6; similarly, an auxiliary solution )0(E is 
introduced in next subsection. If we assume that the field source is 
placed in the upper half-space and it is in the far zone with respect to 
the rough interface, then the unperturbed field E(0)(r) is the field 
present in the unperturbed medium (characterized by flat interface and 
homogeneous permittivity) on which a (locally) plane wave impinges.  

 
Fig. 6. Unperturbed Geometry. 
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We consider an arbitrary polarized monochromatic plane wave 
incident from the upper half-space on the stratification at an angle i

0  
with respect to the ẑ  direction, as schematically shown in Fig.6, 
whose representation (similarly as discussed in Section 3.2.2: see 
(3.7)-(3.10)) is given by  

  zjkjiiiviiihi i
z

i eevEhE 0)](ˆ)(ˆ[)( 00000
rkkkrE ,  (7. 92) 

where the incident vector wave-number direction is individuated by 
ii
00 ,  in a spherical coordinate frame. By employing above notations 

(see also Chapter 3), the unperturbed field E(0)(r) can be conveniently 
expressed in the following closed-form: 
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      (7.93) 

iviv
i

iviv
i
ziihihizjkj EkT

k
kzEkT

k
kkEkThee i

z
i

010
10

010
10

1
010

)0(
1 )(ˆ)(ˆ)(ˆ)( 1rkr

  (7.94) 

where the superscripts p {v, h} denote the polarization, the subscript 
of the field {0,1} obviously refers to the relevant half-space, 0k  and 

101 kk are the wave-numbers in the upper and lower half-space, 
respectively.  

In particular, the unperturbed field E(0)(r) evaluated immediately 
above the unperturbed interface can be written as 
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  (7.95) 
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where pR 10  and pT 10  are, respectively, the ordinary (Fresnel) Reflection 
and Transmission reflection coefficients at the interface (see Chapter 
3): 
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kk
kkR ,  
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It is also important to note that pp RR 0110 , pp RT 1010 1 , pp RT 0101 1

and 
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7.6.3 Auxiliary Unperturbed Field Solution 
 

Similarly, if we assume that the test source is placed in the upper 
half-space and is located in the far zone with respect to the structure, 
then the unperturbed field )0(E is the field present in the unperturbed 
medium on which a (locally) plane wave impinges; this plane wave is 
characterized by the electric field 

tEee izjkji s
z

s ˆ)( 00
0rkrE    (7.99) 

with a wave-vector  
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zyxk
kzrk kks  (7.100) 

and complex amplitude 



202                                                                                           Chapter 7 

    
s

rjk
i

r
eJkjE

s

4
0

000 .   (7.101) 

Accordingly, the unperturbed field )0(E can be formally expressed as: 
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where sĥ and sv̂ are given by (21)-(22) provided that superscripts i is 
replaced by superscripts s, and where 

siih htEE ˆˆ
00 ,  siiv vtEE ˆˆ

00 . (7.104) 

Similarly, the unperturbed field )0(E evaluated immediately above 
the unperturbed interface can be written as 
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7.6.4 Scattered Field Evaluation 

 
In this section, to address the analytical evaluation of the scattered 

field, we here focus formally on the expression (12). By substituting 
(88)-(89) into (12), we get 
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in which 0 and 0 mean that the fields are evaluated immediately 
under and above the plane z = 0, respectively; where V1 denotes the 
half-space z<0, and S is the surface of the unperturbed interface z=0. It 
should be noted that the surface and volume integrals in (106) 
correspond, respectively, to the two pertinent scattering contributions 
(form rough interface and volume fluctuations). In particular note also 
that when geometric roughness of the surface is described, as in the 
previous subsection, by means of an appropriate volume perturbation 
localized about the flat interfaces, then the integral in (12) becomes 
essentially a surface one: the first term on the right-hand-side of (106) 
accounts for the contribution due to implusive permittivity fluctuation 
on the flat-boundaries, with which we equivalently describe interfacial 
roughness in the approximation of small roughness, and which has 
been treated separately because of the discontinuity of the unperturbed 
electric field on the flat-interfaces of the unperturbed structure. 

In next Sections, we explicitly evaluate each of the integral 
expressions appearing in the right-hand-side of (106). To this purpose, 
it is convenient also to introduce a suitable spectral representation for 
the unperturbed solutions: let us consider the 2-D Fourier Transform 
of (94) and (103), respectively, with respect to the transverse 
coordinates  
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Therefore, we have 
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7.6.5 Scattering from the Interfacial Roughness 

 
In this section, we focus on the analysis of interfacial 

inhomogeneities, which are responsible for surface scattering 
contribution from the relevant perturbated half-space.  Taking into 
account only the first term in the RHS of (106), and proceeding quite 
similar as done in Section 7.3.4, from equation (106) we obtain 
another equivalent form, which is more convenient for our purpose, 

).0,()()0,()(ˆ)( )0(
1

)0(
1

1
01

0

0
0

)1(
0 rErrErrE

S

d
J
kjt     (7.113) 

As a result, we emphasize that (113), which clearly express the 
perturbative solution directly in terms of unperturbed solutions, allows 
us to read the scattered field in terms of wave coupling of unperturbed 
solutions, whereas the roughness couples the energy of the incident 
wave with the scattered one at the receiver. By using the notations 
(111) and (112), we can write 
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where )(~ k is the two-dimensional (generalized) Fourier Transform 
(2D-FT) of the rough surfaces (see (35)). At this point, to describe the 
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scattered field )( 0
)1(

0 rE , similarly as done in previous Sections, the 
following representation is considered 

 )(ˆ)(ˆ)( 000
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0
sssvsssh vEhE kkrE .  (7.115) 

Substituting (109), (110) and (30) in (115), evaluated for sht ˆˆ  and for
sv̂t̂ , and taking into account (62)-(64), we directly obtain the 

following compact expression  
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wherein 
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where the superscripts i and s refer to the incident and scattered field 
directions, respectively, and where 
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We underline that the solution furnished here is fully equivalent to 
the one in Section 7.3.4: this formal equivalence can be 
straightforwardly verified, provided that the reflection coefficients are 
expressed in terms of the corresponding transmission coefficients. 
How it will be clear in the following, the expression provided by 
(118)-(121) is more convenient here for our purposes. However, both 
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these expressions essentially represent, in different forms, the classical 
SPM solution.  

This point merits a further discussion. The available bulky 
procedures for the derivation of classical SPM solution require 
unnecessary complication and lead to obscuring the underling physics 
as well as the essence of the perturbation approach (see, for instance, 
[5][6][9]). On the contrary, the presented formulation is carried out in 
a surprisingly simple way, provides a conceptually clean formulation 
for the classical SPM, and offers, in a completely different and 
innovative perspective, a more complete comprehension of the 
resonant scattering phenomenon, emphasizing the role of wave 
coupling of unperturbed solutions. Moreover, VPRT approach permits 
also to include the volumetric scattering contribution within the same 
formalism, as detailed in the following. 

 
7.6.6 Scattering from the Volumetric Fluctuations 

 
In this section, we confine our attention to the analysis of volume 

inhomogeneities, which are responsible for volumetric scattering 
contribution from the relevant random half-space.  Taking into 
account only the second term in the RHS of (106), equation (106) can 
be equivalently rewritten as 
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We highlight the crucial role played by the resulting wave coupling, 
which is intimately related to structural perturbation introduced in the 
first-order formulation: )()()( )0(

11
)0(

1 rErrJ j  can be then 
interpreted as the equivalent polarization current induced into the 
(localized) perturbed half-space by the unperturbed field )0(

1E . As a 
result, we get 
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where the symbol <·,·> is adopted to mathematically represent the 
symmetric bilinear form to which is given the physical meaning of 
reaction [15],[35]-[36].  

Therefore, in the first order approximation, from the receiver 
viewpoint, the electromagnetic coupling between two unperturbed 
waves is observed (see Eq. (122)), and the scalar on the left-hand side 
of Eq.(123) is susceptible to be physically interpreted as a measure of 
the reaction (or coupling) between the source field, )0(

1J , and the 

mediating field, 
)0(

1E . Therefore, we get 
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where S is the illuminated surface. Making explicit the integration in 
(122) and using the expressions (109) and (110), we get 
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By introducing the 2-D (generalized) Fourier Transform of the 
corresponding perturbation with respect to transverse coordinates (see 
also Chapter 2) 
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equation (125) can be rewritten in the form 
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wherein 
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and where isd kkk  is the projection on the x-y plane of the vector 
isd kkk . We emphasize that the analytical evaluation of field 

expression (125) essentially reduces to performing the inherent 
complex integral (128). It should be noted the similarity in the 
vectorial structure of the formal solutions (114) and (127). Proceeding 
as in the previous Section, we directly obtain in this case the following 
compact expression  
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wherein 
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with 
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Note that (131)-(134) are formally identical to corresponding (118)-
(121), except for a factor 01 missing in vv : this reflects the role 
played by the dyadic operator  when the scalar product of the 
pertinent unperturbed fields is concerned (see (114) and (127)).  

It is important to note that the coefficients (131)-(134) and (118)-
(121) are formally compliant with the reciprocity principle [39], so 
also (130) and (117). 
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7.6.7 Analysis of the Field Intensity Fluctuations 

 
In this section, we are interested in deriving the statistical 

properties of the scattered far-field in terms of the structural statistical 
characteristics of the scattering medium. A frequently used basic 
assumption adopted for the description of random structures is that the 
pertinent structural statistics are stationary, i.e., pertinent spatial 
statistics are typically homogenous. It means that the distribution of 
the analyzed structure is translation-invariant in statistical sense.  

In conformity with the theory of random function, the estimate of 
the mean field-power-density (PSD) is then obtained averaging over 
many realizations. Accordingly as discussed in Chapter 1 (see eq. 
(1.12)), the overall bi-static scattering cross section for the pertinent 
structure can be defined as 
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where angular brackets denote ensemble averaging, q  {v, h} and p  
{v, h} denote the scattered and incident polarizations, respectively, 
and A is the illuminated surface area. Note also that the overall 
scattering field from the structure, whose components are 

)(ˆ)( 0
)1(

0
sq kr , arises from the superposition of the scattered fields 

given by (114) and (127). 
Firstly, the contribution from the interfacial roughness is 

addressed. Assuming that suitable statistical properties (see also 
Chapter 2) of the process describing the interfacial roughness are 
invariant with respect to a spatial shift in the x-y plane (wide sense 
stationary), the pertinent power spectral density )(W of the rough 
interface can be expressed as (40). 

 Accordingly, proceeding similarly as done previously, we obtain 
the bi-static scattering cross-section of the rough surface only 
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qpqp Wk kkkk .  (7.136) 
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This result corresponds to the classical SPM one formally obtained for 
the case of a homogeneous rough half-space. Note also that the (136) 
constitutes a different expression of the one carried out in Section 
7.3.4.  

Secondly, the contribution from the volumetric fluctuations is 
addressed. We assume that the volumetric permittivity fluctuations to 
be statistically homogeneous in vertical direction, i.e., the pertinent 
vertical correlation function is given (see also Chapter 2) by the 
following 2-D spectral representation for 1(r) 
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zzB
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,  (7.137) 

where the asterisk denoting the complex conjugation; the angular 
brackets denoting the ensemble averaging; A is the illuminated area; 
and where the dependence of B1 on the difference variable zz
reflects the aforementioned assumption of statistical homogeneities.  

Accordingly, the associated (spatial) Fourier transform for the z 
direction of the correlation function (137) is given by  

zj
z

zezBdzW ),()2(),( 1
1

1 .   (7.138) 

where z is the z-directed spectral wave number. Equation (138) 
defines the 3-D power spectral density of the volumetric fluctuation 
and it relates its 2-D and 3-D spectral representations (as discussed in 
Section 1.2).  

Therefore, the relevant mean field-power-density is  
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wherein 
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The remaining double integral in (140) resembles the one considered 
in [5]: There the integration was performed in the complex plane only 
under asymptotically-low-absorption approximation, resorting to the 
residue calculus. It should be noted that, when the asymptotically 
small absorption hypothesis is not fulfilled, the result in [5] is no 
longer valid and the integral (140) must be evaluated explicitly. 
Therefore, we proceed, differently from [5], carrying out the double 
spatial integration, without introducing any approximation (as detailed 
in Appendix), obtaining  
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with 0z , }Re{ 11
i
z

s
zz kk and }Im{ 11

i
z

s
zz kk . It should be 

noted that, for prescribed scattering ( sk ) and incident ( ik ) directions, 
the corresponding vector wave-numbers in the lower (unperturbed) 
medium, respectively, for the scattering and incident directions are 
given by 
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ss kk 2
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iii
z

ii kk 2
1011 sinˆˆ zkzkk ,  (7.143) 

hence, we have 
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Furthermore, we emphasize that it turns out that 

).)((ˆ)(ˆ *
111111
isis WW kkkk    (7.147) 

Accordingly, the bi-static scattering cross-section due to the 
volumetric fluctuations only is 

 )(ˆ),( 111

24
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0 isis
qpqp Wk kkkk ,  (7.148) 

where the spectrum 1Ŵ  appearing in (139), whose expression is given 
by (141), has to be then regarded as an effective power spectral 
density, being expressed in terms of an integral transform of the 
volumetric fluctuation one 1W , where formally complex spatial 
frequencies have to be considered. It is important to note that the 
prescribed spatial frequency is defined by both the incident and 
observation planes. Some informative considerations will be provided 
in the detailed examination of this formula, as discussed in next 
Section.  

In addition, it should be emphasized that, if the first-order 
interfacial and volumetric perturbations are assumed statistically 
uncorrelated, the relevant contributions to the scattering cross-section 
may be superimposed. Conversely, when the assumption is not 
fulfilled, the scattering contributions will be coupled through cross 
products of the two perturbation quantities, taking into account 
volume-roughness spatial correlations.  
 
7.6.8 Effective Power Spectral Density of the 

Structure 
As discussed in previous subsection, the representation of the 

mean field-power-density appearing in (139) is then given directly in 
terms of the quantity )(ˆ

111
isW kk , whose expression is given by (141), 

and which can be evidently named the effective power spectral density 
of the structure, since it constitutes a filtered version of the power 
spectral density of the medium volumetric fluctuation )(1W .  
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In this regard, we highlight that the integral (141), for a given 
direction of scattering, clearly takes the form of a convolution: 
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where  denotes the convolution and where the kernel
z

L  is 
represented by:  
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It should be noted that (150) is the well-know Lorentzian spectrum 
profile (Fig. 7). It is also known as Cauchy distribution in statistics. 
Note also that, in nuclear and particle physics, it is also formally 
representing the celebrated Breit–Wigner resonant formula 
[45][47][48]. In spectroscopy context, Lorentzian shape gives the 

 
Fig. 7. Lorentzian lineshape for different value of the 

parameter z (0.7, 1.0, 2.0, 5.0). 
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description of the line shape of spectral lines which are subject to 
homogeneous broadening in which all atoms interact in the same way 
with the frequency range contained in the line-shape. More in general, 
its importance in physics is due to it being the solution to the 
differential equation describing forced resonance.  
In mathematics, the convolution 

z
LW1 in (149) can be also formally 

regarded as representative of the well-know Poisson formula in the 
half-plane resulting from the Laplace’s equation in a half-plane 
solution [46]. Figure 7 illustrates the evolution of the Lorentzian shape 
(150) as z increases: It is seen that the peak (or mode) occurs at

zz  and the related amplitude is given by 1)( z , the full width at 
half maximum (FWHM) of the Lorentzian shape is z2 ; so that z plays 
the role of scale parameter.  

As a result, the effective PSD of the structure (149) results from 
the convolution of the actual permittivity fluctuation PSD with a 
Lorentzian one, which characterizes the relevant spectrum broadening 
(diffraction line broadening) due to finite absorption (spatial) scale in 
the unperturbed medium. This is to say that the effective PSD profile, 
which plays a particularly important role in our investigation on the 
scattered power, is a precise consequence of two effects: the one 
concerning the morphological inhomogeneities of medium’s 
volumetric perturbation, 1(r),  and the other one intrinsically 
associated with absorption nature of the unperturbed lower half–space 
medium. It should be also noted that exponential nature of the spatial 
distribution of field decay in the lower unperturbed lower half-space 
(radiation spatial damping) determines the form of the line shape of 
the resonance. Moreover, we underline that the effective PSD of the 
structure measures the fluctuations of the actual PSD ),(1 z

dW k  of the 
volumetric perturbation at (spatial) scale z/1 , providing information 
on the local irregularity of 1W  around the direction z  and at scale z . 
The trend at scale z containing slower evolutions is essentially 
eliminated in ))(ˆ(ˆ

1 zz
d jzW k .   

Now, we investigate the limiting case of negligible losses 
(Asymptotically Small Losses) and also show that a consistent 
relationship can be found between our result and the approximate one 
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obtained in [5][12]. Under this circumstance, in which the losses in 
the half-space become vanishingly small, we obtain 
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where we have observed that 
z

L asymptotically approaches the 
Dirac’s delta function as 0z . As a matter of fact, the Cauchy’s 
definition of the Dirac’s delta function is [45][46]: 
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Therefore, for 0z we have  
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so that, when particularized for the limiting case of vanishingly small 
losses, our result (148) consistently reduces to the corresponding 
approximated one provided in [5][12]. We also stress that in such a 
case an infinite scattering contribution is obtained when 0z . It is 
important to note that in this limit case the first-order approximation 
could not be acceptable. 
 
7.7 Conclusion 
 

In this Chapter, we have proposed VPRT formulation to deal with 
EM scattering form rough surface and rough multilayered structures; 
the formulation is intrinsically reciprocal.  

The comprehensive scattering formulation is based on a unified 
description for both interfacial and volume inhomogeneities. This 
formulation permits to obtain a comprehensive method to evaluate the 
scattering, which includes in conjunction and in rigorous manner both 
rough-interfaces scattering and volume scattering in complex 
multilayer.  
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We have shown that this formulation, when applied to rough 
surface or 3-D rough multilayer, leads to derive, in the first-order limit 
of the perturbative development, pertinent closed form solution in a 
very simple way. The obtained scattering solution is expressed in 
terms of unperturbed solutions, offering deep analytical insight into 
the physics of the problem. This clearly exposes the intrinsic aim of 
the perturbation theory, which relies on the assumption that the 
unperturbed solutions, for the problem we are dealing with, are known 
in closed form.  

The comparison of the obtained solution with the one obtained in 
the theoretical framework of perturbation of boundary conditions 
(Chapter 5) reveals an intrinsic  equivalence between the two different 
approaches, which evaluate the scattering from the same perturbed 
structure starting from two different kinds of description for the 
structure itself. In other words, the formal identity of the final 
solutions reflects the full consistency of the corresponding different 
perturbative formulations.  

Indeed, a salient feature of the proposed formulation lies in its 
reduced mathematical complexity: In particular, the formulation here 
exposed can be carried out by exclusively referring to the vector 
electric field; conversely, the BPT formulation, based on perturbation 
of boundary conditions, requires the analysis of both magnetic and 
electric fields. Concerning the analytical complexity, a crucial point 
involves the use of polarization currents rather than equivalent surface 
currents (as in [23]-[24]). Although in principle both the 
representation in terms of surface or volume currents can be equally 
employed, we underline that in the analyzed problem, in which non 
magnetic media are concerned (i.e., whose relative permeability is 
unitary), the magnetic polarization currents vanish, thus we simply 
have to take care of the electric field distribution only. In addition, we 
highlight that the conducted analysis did not require to resort to the 
cumbersome Green functional formalism.  

Therefore, we have shown that the perturbation methodology 
applied to rough-boundaries structure gains in generality as well in 
simplicity when it is considered under a different perspective of the 
volumetric perturbation. Therefore, the general results deduced in 
Chapter 5 are strengthened and, at the same time, the proposed 
approach offers a more complete comprehension in a conceptual 
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perspective. We finally emphasize that when a new mathematical 
formulation, perhaps more general, for a physical phenomenon is 
conceived, the mathematical structure of the new formulation itself 
provides a new way of thinking about the phenomenon, especially if 
the results, as in our problem, are closely related to the ones obtained 
with a different formulation. Therefore, if applied to the case of 
rough-boundaries layered media, the formulation here presented is not 
only an (equivalent) alternative with respect to the one in Chapter 5 
(see also [23]-[24]) obtained via the perturbation of the boundary 
conditions (BPT), but leads to a simpler formulation with clearer 
interpretation. Therefore, due to the formal full-consistency of the 
proposed solution with the one obtained in the theoretical framework 
of the boundary perturbation, we can certainly refer to the numerical 
examples reported in Chapter 5 (see also [23]-[25]). We are also 
planning to compare our results with the ones derived via numerical 
methods or also with the ones provided by Kirchhoff-based models; in 
the second case, however, the comparison can be not easy due to the 
different domains of validity. 

On the other hand, we highlight that the mentioned validity 
conditions are fully consistent with the BPT theoretical result; in 
addition, rigorous demonstration and comparative discussion on the 
regime of validity are deferred to next Chapter. 

Furthermore, it is worth noting that if the point source is placed in 
far field with respect to the illuminated volume, then the plane-wave-
incidence approximation can be used, and the results of our method 
can be used. Otherwise, a plane wave expansion of the incident field 
can be performed, and the presented approach can be used for each 
plane wave component. 

It should be noted that our method can remind other theoretical 
approaches [40]-[41], because in these methods the roughness 
interface is also seen as a permittivity fluctuation. However, for the 
structure mainly considered in this Chapter, the perturbation is 
characterized by means of zero-mean processes, so that the mean 
scattered (far) field is null, except that in a narrow cone around the 
specular direction. In addition, our formulation leads to closed form 
solution, whereas the approaches [40]-[41] are semi-analytical in as 
much as the multi-layer Green function has to be first computed 
numerically. 
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In addition, we have concerned with formulation, full vectorial 
treatment and solution of the scattering problem involving semi-
infinite structures with fully space-variant, three-dimensional weak 
fluctuations. 

Although surface and volumetric scattering were usually treated as 
completely disconnected phenomena, in the spirit of our approach a 
mutually compatible mathematical description is adopted for 
irregularity in the geometry of interfacial surface, which separates two 
different media, and the spatial fluctuation of the volumetric 
properties. In addition, a substantial effort is directed towards joint 
modeling of the corresponding two major scattering mechanisms, 
emphasizing the pertinent formal analogy. The perturbative analysis 
leads to closed form solution for bistatic configuration, including 
single-scattering contributions. This permits, via a unified 
mathematical formulation and conceptual understanding of two 
inherent scattering mechanisms, a detailed derivation for volume 
scattering contribution for a dissipative half-space, whose effect can 
be consequently taken into account introducing an effective power 
spectral density of the pertinent structure. In addition a practical and 
comprehensive scattering model, which is able to clarify relative role, 
common features and impact of the coexisting scattering processes is 
obtained. As a result, this Chapter also provides a canonical model for 
electromagnetic wave interactions with semi-infinite structure subject 
to a random perturbation: a main final purpose is to provide a unified 
analytic solution to be profitably used in applications, especially in the 
remote sensing scenario ones. 

Therefore, an essential aim of this Chapter is to also furnish the 
conceptual and analytical treatment useful to gain a unifying 
perspective on the scattering phenomenon considered in its entirety. 
As a matter of fact, it is intellectually more satisfying to treat 
elementary scattering mechanisms (i.e. interfacial and volumetric 
scattering) consistently on the same conceptual and formal footing.  

Nonetheless, the proposed solution not only turns out to be an 
extension to 3D semi-infinite inhomogeneous media of the classical 
SPM solution for rough surfaces, but it also introduces a new 
methodological perspective. 

Furthermore, the comprehensive VPRT formulation presented in 
this Chapter can be used also to derive closed form solution for 
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scattering, from and through, inhomogeneities that are possibly 
present in each slab of a structure with an arbitrary number of layers. 
Similarly, the problem of the scattering through rough boundaries 
multilayer can be also advantageously addressed by using the 
proposed approach. This opens the way to a complete analytical 
solution for fully space-variant dielectric multilayered structures. 
Indeed, the presented results provide a comprehensive basis and have 
important implications: This approach also furnishes a fundamental 
mathematical construct that can be systematically extended to layered 
structures. However, this case requires an suitable analysis, and 
therefore is deferred to subsequent publications. 

Indeed, it is important to emphasize that the proposed VPRT 
formulation exhibits several appealing features, which are of interest 
for future developments. First of all, the approach that we have 
presented leads to a solution which is directly susceptible of a 
powerful interpretation in terms of the Rumsey’s reaction concept 
which allows interpreting the scattering solution in terms of multi-
reaction. This furnishes a clear interpretation of the scattering problem 
and might be also useful to interpret the first-order perturbative 
approximation. Analogously, this approach opens the way to evaluate 
and interpret the higher-order terms of the perturbative development. 
In this regard, it is important to note that the results of this Chapter 
will be fundamental, since they  methodologically provide a basis 
even for the derivation of second-order perturbative contributions, so 
permitting to include consistently surface-volume combined effects. 
This will be a matter of further publications currently in preparation. 
Another further investigation will be devoted to the comparison of the 
predictions obtained with our model with the ones provided by 
applying numerical methods, in order to precisely assess the pertinent 
limits of validity. 
 
7.8 Appendix: Integral Analytical Evaluation 

 
This Appendix is devoted to a full evaluation of the function 1Ŵ  

whose integral expression is (141). To this purpose, adopting a 
suitable change over to integration variables 
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and noting that the Jacobian of the pertinent transformation is unitary, 
we obtain  
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 The previous integral (A.1) can be then rewritten more conveniently 
as 
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It useful to recall the Fourier Transform pair 
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Therefore, by using (A.3) and by invoking convolution theorem, 
(A.2) can be rewritten as 
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where ),(1 zW is given by (138). To proceed further, it is convenient 
to observe that the integration over za in (A.4) can be carried out 
directly, exchanging the integral symbols and taking into account the 
following formula 

22
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2 )2sin(
zz

z
z

z zedz z .   (A.5) 

Accordingly, performing integration with respect to za, from (A.4) 
we finally obtain the formula (141). 
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Chapter 8 
 

On the Regime of Validity of 
Pertubative Scattering Formulations 
for Layered Rough Interfaces  
  
 

“The engineering course influenced me 
very strongly:… I’ve learned that, in the 

description of nature, one has  to  tolerate 
approximations, and  that even work with 

approximations can be interesting and can 
sometimes be beautiful.” 

P.A.M. Dirac 
 

 theoretical analysis on the regime of validity of volumetric-
perturbation-based formulations addressing electromagnetic 

scattering evaluation from interfacial roughness is presented: we 
formally establish the pertinent regime of validity, which has not been 
properly highlighted in previous related works. The obtained 
conditions, which are derived for the general case of rough 
multilayers, also permit to overcome the apparent theoretical 
incoherence between the regime of validity of volumetric-perturbative 
reciprocal theory (VPRT) and the one of the boundary perturbation 
theory (BPT). Finally, the VPRT formulation is casted within a 
general variational framework, enabling a wider discussion on the 
relevant approximation. 

 
8.1 Introduction and Motivation 

 
Easy physical interpretation, clear regime of validity and formal 

consistency with comparable analytical results are definitely matter of 
essential interest for theoretical constructs and analytical models.  

A
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This Chapter focus on a theoretical analysis on the regime of 
validity of volumetric-perturbation-based formulations addressing 
electromagnetic (EM) scattering evaluation from interfacial 
roughness: we formally establish the pertinent regime of validity, 
which has not been properly highlighted in previous related works 
[3][4][5]. The obtained conditions, which are derived for the general 
case of rough multilayers, also permit to overcome the apparent 
theoretical incoherence between the regime of validity of volumetric-
perturbative reciprocal theory (VPRT) [11] and the one of the 
boundary perturbation theory (BPT) [11]-[15]. Finally, the VPRT 
formulation is casted within a proper variational framework, enabling 
a wider discussion on the relevant approximation. 

Generally speaking, establishing the domain of validity of an 
analytical result is definitely of paramount interest for both practical 
application and theoretical investigation perspectives.  

One possible approach, in order to specifically assess the 
conditions of validity of an (approximate) analytical method, 
essentially consists in a comparison between the predictions of the 
considered analytical solution with the “exact” results obtained by 
applying numerical methods. In particular, numerical methods have 
been widely applied to verify the validity of theoretical scattering 
solutions.  

This point merits to be discussed more in detail.  
 Specifically speaking, numerical methods can provide specific 

answers to the considered scattering problem only for some prescribed 
conditions pertaining to a precise parametrical setting of the structure 
under analysis [6][7][8]. Indeed, by conducting several, usually time-
consuming, numerical simulations is then possible to comparatively 
achieve, in some case (e. g. surface scattering), certain relevant 
conditions of validity, which turn out expressed in terms of  some 
inequalities [2]. This inequalities cannot obviously exhibit a general 
validity: however, they can be of some help, inasmuch as they provide 
just an indication when the considered analytical solution have to be 
applied in specific context.  

Unfortunately, when more complex structures are concerned, the 
same, as when the parametric dependency exhibited by the solution is 
relatively simple, e. g. surface scattering problem, cannot be equally 
achieved: obtaining such relations can turn out a neither easy nor 
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practicable attempt. In fact, the parametric dependency exhibited by 
the analytical solution involving more complex problem, like 
scattering in rough multilayer [11]-[17], necessary leads, in order to 
achieve comprehensive conclusion, to a prohibitive number of 
possible cases to be analyzed (with associated time requirements 
dramatically increasing with variable space dimension) due to the 
intricate combination of the numerous inherent parameters involved 
(thickness, complex permittivities, roughness parameters, etc.). In 
particular, an interesting study of validity involving only two layered 
surfaces has been recently conducted performing numerical 
simulations, which employs the method of moments (MoM)[9]: the 
analysis was limited to one-dimensional interfaces (2-D scattering 
problem), fixed incidence angle and polarization, and prescribed 
dielectric properties: also in this case, which involves  however 
several parameters, the numerical approach leads only to partial 
answers, since the verification of the relevant analytical solution for 
all the possible parameters combinations (multidimensional analysis) 
is hard to be achieved. 

As a result, this kind of approach is essentially addressed to check 
the validity of the pertinent solution for all possible cases, in order to 
achieve a sort of recipe employable as a precise quantitative validity 
criterion. However, it is important to note that, more in general, even 
if the overall parameters multidimensional region was sufficiently 
explored, the achievable conclusion could be expressed, at the most, 
with an over-complicated representation, whose practical usefulness 
and significance remains, however, questionable. Furthermore, for the 
benefit of practical applications, another interesting point concerns 
how the range of validity can be somehow extended if relaxed error 
criteria are adopted, so tolerating a certain prescribed prediction error.  

 These preliminary considerations highlight the difficultness of the 
matter concerning the precise determination of the validity domain of 
analytical models, particularly when scattering by rough multilayers is 
addressed.  

We now turn our attention on the pertinent theoretical scattering 
models, which allow us a more deep comprehension of the scattering 
phenomenon and pertinent direct understanding of the functional 
dependence of the structural scattering properties. When rough 
interfaces, eventually layered, are concerned, the scattering problem 
can be treated resorting to different (full-wave) analytical approaches. 



230                                                                                           Chapter 8 

Hitherto, two main analytical approaches are practicable: the first one 
relying on the Kirchhoff approach (and its extension), the second one 
is based on the perturbation theory. In the first case, the analytic 
derivation, which is directly based on physical concepts [1]-[2], was 
obtained at most for two layered rough interfaces only [10]. In the 
second case, closed-form solutions are obtained by rigorously 
applying the perturbative formulation of Maxwell equations to a 
certain class of three-dimensional (3D) structures [1]-[5], [12]-[16], 
whose pertinent polarimetric expression, only subsequently, turns out 
susceptible of a clear physical interpretation [17].  

In particular, in this Chapter the focus is on analytical models 
referable to the perturbation theory. Within this framework, analytical 
solutions for scattering from and through gently rough interface [1]-
[5] and rough multilayers [12]-[17] are available. Basically, two 
conceptually and structurally different kind of formulations, stemming 
from different descriptions of the inherent structural perturbation, 
have been adopted to analytical deal with single interface or layered 
interfaces scattering problem. 

In a first case, the formulation relies on a suitable perturbation 
pertinent to the geometry of the structure, and accordingly the 
scattering problem is treated by adopting a proper perturbation of 
boundary conditions: classical Small Perturbation Method (SPM) [1]-
[2] and Boundary Perturbation Theory (BPT) [14]-[16] have been 
developed to cope with, respectively, single surface and rough 
multilayers scattering. In this case, the clear validity conditions, which 
visibly arise from the pertinent analytical developments, regard both 
small (compared with the wavelength) rms height and small slope 
assumptions. 

In the second case, the formulation considers a perturbation 
pertinent to the dielectric properties of the structure, and accordingly 
the scattering problem is treated by adopting suitable volumetric 
current distributions: various relevant volumetric-perturbative based 
formulations are available for a single rough interface [3]-[5],[11], and 
Volumetric-Perturbative Reciprocal Theory (VPRT) was formulated 
[12] for rough multilayer.  

As validity condition regarding volumetric perturbation based 
formulations, it generally (explicitly) assumed only that the surface 
height variation is small compared with the wavelength of the incident 
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wave (see for instance [3]). Perhaps, further limitations involving 
somehow the roughness shape (e. g. small slope assumption), which 
do not directly arise from the relevant developments, are not explicitly 
required.  

Accordingly, the connection between the corresponding validity 
conditions of volumetric perturbation and boundary perturbation -
based formulations for rough surface scattering remains obscure. 
Moreover, when rough multilayer scattering is concerned the same 
applies; however, we emphasize that the final results of this Chapter 
was anticipated in previous Chapter, without providing demonstration 
and pertinent discussion. 

On the other hand, it is noteworthy that the two mentioned 
different kinds of perturbative formulation (volumetric perturbation 
and boundary perturbation -based), when applied to single rough 
interface (or also rough multilayer), lead to the same corresponding 
final solution. Although it is surprising that two completely different 
theoretical constructs, based on the adoption of different structural 
descriptions, and involving no trivial derivations (as long as they are 
correct), when applied to rough interface (or rough multilayer), lead to 
perfectly consistent final (first-order) solutions, it is reasonable to 
expect that this also reflects an essential consistence of the 
corresponding validity conditions. Nonetheless, a conceptual 
discrepancy arises due to the different validity conditions of the 
corresponding aforementioned perturbative formulations: cover this 
gap is of high interest. 

The question now naturally arises, whether the evident 
inconsistency between the corresponding validity conditions of the 
two different perturbative formulations is essential or apparent. Due to 
the essentially different nature of the intrinsic theoretical constructs on 
which the two distinct kinds of perturbative development are based, 
this connection, however, cannot be directly achieved and a detailed 
investigation on the relevant regime of validity is required, in order to 
have purely intuitional considerations supported by a rigorous 
discussion.  

In this regard, we believe that, before to proceed to onerous 
numerical simulations, firstly the regime of validity of the volumetric 
perturbation based models, for both single rough surface [3]-[5] and 
rough multilayer (Chapter 7, see also [12]), needs be better 
investigated and clarified from a formal point of view, for gaining 
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additional insight into the conceptual coherence with respect to similar 
models (i. e. SPM and BPT).  

Therefore, the aim of this Chapter is to overcome this conceptual 
discrepancy establishing and discussing proper formal validity 
conditions for volumetric-perturbation-based scattering models 
applied to both single rough interface and rough multilayer. 
Specifically, this investigation also enables the explanation of the 
apparent theoretical incoherence of the validity condition of the two 
different perturbative formulation  (BPT and VPRT) inherent to 
scattering from rough multilayer. 

This Chapters consists of three main parts. Sections 8.2 and 8.3 
briefly present the pertinent theoretical background. In Sect. 8.4 we 
establish and discuss the proper regime of validity for VPRT. Finally, 
a the VPRT perturbative formulation is casted in a general variational 
framework (Section 8.5). Conclusions are drawn in Section 8.6. 

 
8.2 Boundary Perturbation Theory 
 

In this Section we briefly summarize the results of the Boundary 
Perturbation Theory (BPT). 
 
8.2.1 Formulation  
 

In order to cope with the scattering problem in layered structure 
with an arbitrary number of rough interfaces (see the scheme of 
Fig.1), closed-form (first-order) solutions have been derived in the 
analytic framework of  BPT (Chapter 5). As schematically shown in 
fig.1, each layer is assumed to be homogeneous and characterized by 
arbitrary and deterministic parameters: the dielectric relative 
permittivity m, the magnetic relative permeability m and the 
thickness m=dm-dm-1.  

In addition, each m-th rough interface is assumed to be 
characterized by a zero-mean two-dimensional stochastic process 

)(rmm  with normal unit vector mn̂ .  
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The relevant general formulation relies on a suitable perturbation 
pertinent to the geometry of the structure, and accordingly the 
scattering problem is treated by adopting a proper perturbation of 
boundary conditions. It involves a systematic perturbative expansion 
of the fields in the layered structure and enables the transferring of the 
geometry randomness into a non-uniform boundary conditions 
formulation (Chapter 5, [14]): 

m
mm

dz

m
mdzmmdzm z

zz
)0(

)0()1( ˆˆ EEE  (8.1) 

 

Fig. 1. Geometry of the scattering problem. 
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m
mm

dz

m
mdzmmdzm z

zz
)0(

)0()1( ˆˆ HHH  (8.2) 

where )0()0( , mm HE  and  )1()1( , mm HE  are, respectively, the unperturbed and the 
first-order solution in the m-th layer; mmm EEE 1 . Subsequently, the 
fields’ spectral expansion can be analytically evaluated by using a 
recursive matrix formalism approach encompassing a proper scattered 
field representation in each layer and a matrix reformulation of non-
uniform boundary conditions, as discussed in Chapter 5.  

 
8.2.2 Pertinent Closed Form Solution 
 

Relevant closed-form solution have been derived for three-
dimensional (3-D) layered structures with arbitrary number of rough 
interfaces and bistatic configuration. The field scattered into the upper 
half-space, form 3-D layered structure, in the first-order limit of the 
perturbative development can be then written in the form: 
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where the generalized bistatic scattering matrix  

),(~)(~),( 1,2
0

1 ismmis
m

ismm k kkkkkk ,  (8.4) 

characterizes the polarimetric response of the generic (mth) rough 
interface of the layered structure, to a plane wave in the direction ik , 
in a given observation direction sk . )(~ km  is the spectral 
representation (2D-FT) of the corrugation )(rm . The fully 
polarimetric closed-form expression for  

),(~),(~
),(~),(~

),(~
1,1,

1,1,
1,

ismm
hh

ismm
hv

ismm
vh

ismm
vvismm

kkkk
kkkk

kk ,  (8.5) 

is provided in Chapter 5 (see also [14]-[16]). In addition, the solution 
is formally symmetric [15] and physically revealing [17]. Finally, we 
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emphasize that classical SPM solution for rough surface can be 
rigorously regarded as a special cases of the BPT general solutions for 
rough interfaces of layered media [14] [16]. 
 
8.2.3 Regime of Validity 
 

BPT validity requires that the height deviation of the rough 
interfaces, about the unperturbed interface, is everywhere small 
compared to the wavelength of the incident wave and the gradient of 
the surface is small in comparison to unity. Formally, this is to say: 

1mmk  ,   11 mmk ,  1m . (8.6) 

for m=0, 1, …, N-1. 
 

8.3 Volumetric-Perturbative Reciprocal Theory 
 

In this Section we briefly summarize the results the volumetric 
perturbative reciprocal theory (VPRT) formulated in Chapter 7. 
 
8.3.1 Formulation 
 

The VPRT formulation considers a perturbation pertinent to the 
dielectric properties of the structure whose scheme is depicted in 
Fig.1: 

))(()(),( 1

1

0
0 rr mmmm

N

m

dzz   (8.7) 

which can seen as an unperturbed medium with relative permittivity  

)()()()( 1

1

0
0

)0()0(
mmm

N

m

dzzr ,  (8.8) 

to which a perturbation (r) is applied, so that (r) = (0)(z)+ (r).  
)(  is the Heaviside’s unit step function. Accordingly, the scattering 

problem is then treated by adopting suitable volumetric current 
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distributions.  As demonstrated in [11][12], the scattering field sE , at 
position r0 in upper half-space, can be written as 

V

s d
J
kjt rrErrErE )()()(ˆ)(

)0(

0

0
0

.  (8.9) 

where )0(E  is the (unperturbed) field in the unperturbed medium 
radiated in the unperturbed medium by an auxiliary (fictitious) 

)(ˆ)( 0rrrJ Jt  source located at r0, ( ) is the Dirac’s delta function; 
k0 and 0  are the propagation constant and the intrinsic impedance of 
vacuum, respectively. V is a volume enclosing all the sources: note 
also that the integral is effectively performed over the whole volume 
of the perturbation.  
We highlight that the quantity )()()( 1

00 rErrJ jkind  can be 
interpreted as an (equivalent) polarization current density, which is 
induced into the perturbation volume by the total field E . The 
scattering integral (10), therefore, can be interpreted as the reaction (e. 
g. multi-reaction, when a rough multilayer is concerned [12]) between 
the equivalent current density )(rJ ind  and the auxiliary unperturbed 
field )0(

E . In the regime of small (r),  the field E(r) in the integrand 
(see Eq.(10)) can be estimated by the corresponding unperturbed field 
E(0)(r) (i.e the field radiated by the actual source in the unperturbed 
medium), so that the (first-order perturbation) scattered field E(1)(r) 
turns out to be  

V

d
J
kjt rrErrErE )()()(ˆ)( )0()1()0(

0

0
0

)1( . (8.10) 

with 

m
m

N

m m 0

1

0

)1( )()( rr  

Equation (10) allows us evaluating of the first-order scattered field the 
from knowledge of the medium perturbation )1( and the two 
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(unperturbed) field expressions, E(0)(r) and )0(E , respectively, 
radiated by real and fictitious sources in the unperturbed medium.  

How to obtain a close form solution from (9)-(10) is discussed in 
Chapter 7.  
 
8.3.1 Pertinent Closed Form Solution 
 

It is worth noting that VPRT, when applied to the structure  of 
Fig.1 (in far field with respect to the sources and the observation 
point), formally leads to the same solution (3)-(5). 
This is to say that first-order scattering field expressions derived by 
using VPRT and BPT are essentially identical. Note also that by 
applying VPRT to a rough surface, the obtained solution is formally 
identical to the classical SPM one [11]. 
 
8.3.2 Regime of Validity 
 

The formal validity conditions are carried out in Section 8.4. 

8.4 Investigation on the VPRT Regime of 
Validity 

 
In this Section we investigate on the formal validity conditions 

required for the volumetric perturbation based formulations, primary 
focusing on the more general VPRT formulation: the discussion is 
applied to the general case of a rough multilayer, so including the case 
of rough surface as a special case. The overall fields, E and H, into the 
structure are governed by the Maxwell equations 

0)(
/)())()((

)()()()(
)()(

rH
rrEr

rJrErrH
rHrE

v

v

v

j
j

, 

where v and v are the permeability and the permittivity of the 
vacuum, respectively. Considering the structural description 
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)()()( )1()0( rr z  and the perturbative field expansions  
,)1()0( EEE  )1()0( HHH , we can decompose the problem in two 

equation systems: 
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where )()( )0()1( rErJ vj and ))()(( )0()1( rErv  are the first-
order equivalent current and charge distributions, respectively. It 
should be noted that from the charge conservation it follows 

)()( )1()1( rrJ j . First-order field )1(E can be then regarded as 
produced by both these (first-order) sources )1()1( ,J .  
 
8.4.1 Limitation on the shape of the perturbation 
 

In this subsection, we clarify the origin of the required limitations 
involving the interfacial slope.  

Since the unperturbed field is univocally determined for prescribed 
actual source and structural parameters of the unperturbed medium,  in 
order to have a small scattered field, with respect to the unperturbed 
one, we assume sufficiently small both )1(J and )1( .  This is to say 
that  

rrEr d
V

))()(( )0(    (8.11) 

is also small.  
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In order to deeply understand the necessary restrictions for the 
validity of the pertinent volumetric perturbative formulation, 
expression (11) needs to be examined accurately.  

To this purpose, it is instructive to introduce a proper partitioning 
of the structural perturbation: we consider the following scheme. In 
Fig.2 we schematically represent the perturbation of the m-th generic 
(flat) interface. Here, the perturbation pertaining to the dielectric 
properties, denoted by (r)= (r) (0)(z) is firstly introduced without 
approximation. We distinguish the perturbed volumes above ( mV ) and 
under ( mV ) the m-th unperturbed interface; so that the pertinent entire 
perturbation volume is considered as the sum of two disjoint sets 

mmm VVV  (Fig. 2). Accordingly, we distinguish the positive part      
( m ) and negative part ( m ) of the relevant surface m describing the 
generic m-th interfacial roughness:  

0),(max
2

)()(
)( r

rr
r m

mm
m

  (8.12) 

0),(min
2

)()(
)( r

rr
r m

mm
m

  (8.13) 

As depicted in Fig.2, the partition of the support of the 
perturbation (r) is constituted by )(0:)( rr mm zzV  and 

0)(:)( zzV mm rr .  

 

 
Fig. 2. Decomposition scheme for the perturbation volume relevant to the mth 

rough interface. 
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Accordingly, we  get  
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and applying divergence theorem, we obtain  
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where the closed surfaces delimiting mV  and mV  have been partitioned 
as, respectively, mm SS and mm SS . As depicted in Fig. 2, we 
have 0)(: rr mmS  and 0)(: rr mmS . In addition, in 
(15) we have employed the fact that inside the perturbation volume 

mV we have mmm 1)(r and, similarly, we have 

1)( mmmr  inside the perturbation volume mV . An 
expression similar to (15) can be also obtained with regard to volume 

mV . Recalling that the normal unit vector mn̂ to the m-th interface m  
is given by 

21

ˆˆ
m

m
m

zn    (8.16) 

and taking into account that znm ˆˆ on mS , we get  
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    (8.17) 
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It should be noted that the element of surface area on mS  is 
rdds m

21 . Similarly, we can write 

m

m
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  (8.18) 

By inspection of (17) and (18), it is clear that two different 
constraints on the shape of the perturbation are required, in order to 
satisfy the condition on (11), one related to the first term of the RHS 
of (17) and (18), and the other related to the second term. With regard 
to the first term, if each m-th interface m  satisfies the condition 

1mmk  ,   11 mmk ,   (8.19) 

i.e, if we assume small rough interface heights, the variability along 
the z-direction of the unperturbed field )()0( rE  inside the perturbation 
is negligible, so that )),(),( )0()0(

mmmmm dd rErE  and (17) can be 
rewritten as 

m
m

S
mmmm

V
m ddd rrErrrEr ),()())()(( )0()0(  (8.20) 

Similarly, by exploiting the small height assumption we can assume 
)),(),( )0(

1
)0(
1 mmmmm dd rErE , so that (18) can be rewritten as 
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V
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 (8.21) 

The second constraint is now in order. Combining both (20) and (21), 
we obtain 



242                                                                                           Chapter 8 
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   (8.22) 

Therefore, for the Cauchy-Schwarz inequality, we get 

),(),()( )0()0(
mmmm ddd rErrEr .  (8.23) 

Finally, in order to have the RHS of (23) negligible, we need 
1)(rm . Accordingly, we conclude that considering )( )0(E

sufficiently small requires, in addition to (19), that the following 
condition 

 1m .    (8.24) 

for m=0, 1, …, N-1, must be also fulfilled. 
Therefore, although at first glance one might erroneously claim 

that condition (19) suffices for the validity of the volumetric-
perturbative development (see also [3]-[5]), a more detailed 
investigation finds that, in addition to the condition (19), the further 
condition (24), which involves the slopes of the interfaces, is required, 
so restricting the class of rough interfaces to which the method 
applies.  

As a result, the pertinent validity conditions we have pointed out 
are given by (19) and (24) for each (m-th) rough interface. Finally, we 
underline that the case of a single rough interface can be regarded as a 
special case and accordingly is included in our discussion. 
 
8.4.2 The Approximation of the Internal Electric Field 
 
 In this subsection, we investigate the role of the above 
assumptions, emphasizing the involved internal field approximation.  
 Once the conditions (19) and (24) have been established, we can 
proceed further by using reasoning quite similar to that used in 
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preceding subsection, again distinguishing the contributions pertinent 
to volumes above ( mV ) and under ( mV ) the inherent discontinuity 
plane of the unperturbed structure (see Fig.2). Thus, we decompose 
the integral in (9) in the form 
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Therefore, (25) can be rewritten as  
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We stress that so far the considered scattering field expression (26) 
is rigorous. Hereinafter, proper approximation can be taken into 
account.  

Since the total electric field )(rE inside the perturbation also 
includes the (unknown) scattered field, generally an estimation of this 
field is required in the perturbation developments. In the framework of 
small perturbation, it is generally assumed that the scattering field is 
small with respect to the unperturbed field, so that the field enters the 
perturbation without significant distortion.  The classical (first-order) 
Born approximation estimates the overall field inside the perturbation 
with the incident field only. In the following, however, a slightly 
different approximation is taken into account. 
In fact, it is intuitive that, instead of assuming ),(),( )0( zz rErE , as a 
direct application of the Born approximation would require, a better 
estimation of the actual field )(rE inside the perturbation volume mV  
can be obtained by considering the unperturbed field )0(E  just beneath 
the unperturbed interface: ),(),( )0(

1 mm dz rErE , This is sometimes 
referred to as “internal field approximation” [18]. Hence, we can write 
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Note also that, in compliance with (19), the approximation 
),()(

)0()0(
mm drErE  is also assumed  inside the perturbation volume 

mV . Likewise, a better estimation of the actual field )(rE inside the 
perturbation volume mV  can be obtained by considering the 
unperturbed field )0(E just above the unperturbed interface: 

),(),( )0(
mm dz rErE . Hence, we can write 
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Note also that, similarly, inside the perturbation volume mV  the 
approximation ),()(

)0(
1

)0(
mm drErE  is assumed, in compliance with 

(19). As a result, substituting (27) and (28) into equation (26), and 
taking into account that mmm  and 
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which is essentially the same conclusion we directly obtained in 
Chapter 7 via a proper perturbative expression for )(r .  

Finally, we have also demonstrated that the development in 
Chapter 7, which does not explicitly involve the internal field 
approximation, is also susceptible of an interesting interpretation in 
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terms of internal field, which is consistent with the small height 
assumption.  
 
8.4.3 Discussion 
 

The conclusion we obtain in previous subsections is that the 
assumptions defining the regime of validity of volumetric perturbation 
based methods, and specifically VPRT,  is defined by both the 
inequalities (19) and (24) for m=0, 1, …, N-1. Indeed, the scattering 
can be seen as caused by the effective induced polarization current, 
which is proportional to the actual field inside the perturbation. The 
small rms height assumption assures that the field enters the structure 
without significant distortion. Accordingly, in the first order 
approximation, this actual field can in turn be approximated, inside the 
perturbation, with the relevant (internal) unperturbed field. In this 
case, the role of the phase of the unperturbed wave as it propagates 
inside the perturbation volume is crucial.  

Accordingly, in long wave limit, the controlling factor for the 
validity of the perturbative solution is not the dielectric contrast 
pertinent to the generic (mth) interface, mm 1 : indeed, the 
smallness of the perturbation )(r does not necessary require a 
limitation on the dielectric contrast 11 mmm . On the 
contrary, the validity condition (19) can be met even when  

11 mm , as usually is.  Therefore, the dielectric contrast pertinent 
to the perturbation )(r  can assume the prescribed value 
correspondent to the considered unperturbed layered structure ( )()0( z ) 
over limited spatial regions comprising the actual interfacial 
roughness, whose vertical extension is perhaps assumed small with 
respect to  the wavelength of the incoming radiation.  

Furthermore, we have demonstrated that the general condition (19) 
is insufficient to guarantee the  validity of the whichever volumetric 
(small) perturbation based analytic development addressed to rough 
interfaces.  
In this regard, condition (19) must be complemented with (24). This 
implication, regarding the volumetric perturbation based approach 
addressed to rough interfaces, is pointed out here for the first time (at 



246                                                                                           Chapter 8 

the best of our knowledge) and plays an important role for  both 
theoretical relevance and practical applicability perspectives.  
 In addition, this result, which has been established from a 
mathematical point instead of resorting to purely intuitional 
considerations, bridges the conceptual gap between the correspondent 
regime of validity of boundary-perturbation (e.g. classical SPM) and 
volumetric perturbation approaches [3]-[5],[11] applied to a rough 
interface. 
 The discussion has been conducted referring to the general case of 
scattering from rough multilayers. As a result,  we also provide insight 
into the formal connection between the corresponding regimes of 
validity of the BPT and VPRT formulations: accordingly, these two 
theoretical construct addressed to rough multilayers scattering can be 
now regarded in a conceptually coherent frame. 
 
8.5 Variational Formulation 
 

In this Section, we now carefully examine the perturbation 
problem in the framework of variational formalism. We first derive a 
general variational solution for the scattering problem, then we show 
how the first-order VPRT solution can be arranged in the general 
variational framework, so enabling a wider discussion on the pertinent 
approximation involved. 

This also demonstrates how VPRT can be reformulated as an 
equivalent variational principle in the square-integrable vector 
functions space.  

The primary reason of a variational formulation of the scattering 
problem is that it permits an interesting physical interpretation, 
providing another picture for the description of the considered 
phenomena. In addition, this variational formulation has mathematical 
significance, since it enables the evaluation of the formal upper-bound 
to the involved prediction error.  

As it has been widely demonstrated, the Rumsey’s reaction 
concept [18]-[20], and its generalized form (multi-reaction) (see [12]), 
can be effectively employed for the description of the scattering 
phenomena from generally layered structures. This naturally suggest 
us to construct the variational formulation on this concept. 
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Let us consider the formal linear operators describing the problem 
associated, respectively, with the perturbed and unperturbed medium  

)]([)( 2
0

1
00 rkjk ,   (8.30) 

)]([)( 02
0

1
00

(0) zkjk ,   (8.31) 

so that we have 

JE ,    (8.32) 

where E is the (unknown) vectorial function and J is the given 
(known) source function. We also introduce the associated auxiliary 
problem, for supplementing the original problem described by (33): 

JE ,    (8.33) 

where E is another (unknown) vectorial function and J is another 
(known) suitable source function. Note that, concerning the notation 
adopted in this Chapter, an over-bar is used for the symbols which 
refer to the auxiliary problem. For the sake of clarity, we emphasize 
that the auxiliary source (fictitious) is located at the observation point 
of the bistatic scattering configuration.  

In the following we exclusively refer to the real-type inner product 
(bilinear form):  

rrBrABA d
V

)()(, ,  (8.34) 

which is physically related to the reaction between two field quantities 
[18]-[20],[24]. By using this formalism, the reciprocity theorem can 
be expressed in the form 

EJEEEEJE ,,,, ,  (8.35) 

which states that the reaction of the field of the auxiliary system (34) 
on the actual source J  of the original system (33) is equal to that of 
the field of the original system (33) on the auxiliary source J . The 
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statement provided by (35) needs further comments, inasmuch as the 
involved operator is considered symmetric. Indeed, it is reasonable 
to assume that the equivalent source indJ , ascribable to the 
polarization induced into the perturbation, has a finite support: we can 
make the volume V (including the structure and the sources) infinitely 
large, so that it results limited by the closed surface S to infinity. Then 
using the fact that the fields satisfy the radiation condition and 
degenerate to (locally) plane waves, the relevant surface integral on S 
vanish. This implies that the linear operator defined by (33) is a 
symmetric operator when the perturbation has a finite support [21].  

We now consider the variation of the linear operator , 

)()()( 0
2
0

1
00

(0) rr jkjk , (8.36) 

and the trial field EEE )0( . Note that here )0(E denotes the relevant 
unperturbed solution referable to whichever point source J , which is 
not necessarily placed in far-field with respect to the illuminated 
structure. We emphasize that the actual and the unperturbed fields can 
be regarded as produced by the actual source J , respectively, in the 
actual and unperturbed medium: 

JEE )0()0( .    (8.37) 

Likewise for the auxiliary source J , we have 

JEE )0()0( ,    (8.38) 

Let us consider the variation of the reaction EJ,R , 

EEEJEJ ,,, )0()0()0(R   (8.39) 

By using the symmetry of the operator 

EEEE )0()0()0()0( ,,    (8.40) 

and taking into account that expanding the difference  

EEEEEE )0()0()0()0()0( , (8.41) 
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 Eq. (39) can be also written as  

EEEEEE ,,, )0()0()0()0(R  (8.42) 

Taking into account the symmetric nature of the operator , we 
finally obtain: 

EEEE ,, )0()0()0(R   (8.43) 

It is important to note that the first term and second term in (43) 
involve, respectively,  first-order and second-order effect of .  
 
8.5.1 Analysis of the first term 
 

Now we analyze the first term of (43),  

)0()0(
0

)0()0( )(,, ErEEE jR  (8.44) 

Physically speaking, Eq. (44) can be interpreted as the reaction 
between the unperturbed field )0(E  and the induced current inside the 
perturbation volume by the unperturbed field )0(E . It is straightforward 
to show that  

)0()0()0()0()0()0( , EEEEEE     (8.45) 

where AAA ,*  is the norm of A in the corresponding Hilbert 
space, with the asterisk denoting complex conjugation. If we assume 
that  

A
A

A 0
sup    (8.46) 

with  <<1, then an upper bound for the reaction (45) is: 

)0()0()0()0( , EEEE    (8.47) 
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8.5.2 Connection with the first-order VPRT solution 
 

In this Subsection we investigate the connection with the general 
formulation (44) with the first-order VPRT solution for scattering 
from rough multilayer (10): we demonstrate that the latter it is 
included in (44).  

It is then instructive to evaluate the functional derivative of R  
with respect to the m-th interfacial roughness. Assuming m as small 
parameters: 
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In order to further manipulate the expression (48) it is useful to 
compute the derivatives of )(r : 
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By comparing (51) and (52) it is easy to recognize that 
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Note also that  
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Therefore, by using (54), Eq. (48) assumes the form 
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that can be also rewritten as 
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We promptly recognize that the first term in (58) formally 
coincides with the first-order VPRT solution (10). The second and 
third terms on RHS of (59) are clearly related to the variability along 
the z-direction of the unperturbed fields )0(E and )0(E inside the 
perturbation volume. It is then clear that if, in compliance with (19), 
this variability is negligible, then (58) reduces to the first term only, 
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i.e. to the VPRT first-order solution, in agreement with the discussion 
in Section 8.4.1. 

 
8.5.3 Analysis of the second term 

 
The second term in (43), considering that  

EEEEEE
EEEEEE

,,,
,,,

)0()0(

)0()0()0()0(
 (8.59) 

can be rewritten as 

EEEE ,,)0(R   (8.60) 

Physically speaking, Eq. (60) can be interpreted as the reaction 
between the field variation E  inside the perturbation volume and the 
induced current inside the perturbation volume by the field variation 

E relevant to the auxiliary source. In addition, we have 

., EEEE   (8.61) 

The assumption that it exists a >0 such that  

EE ,   (8.62) 

which is usually called a stability estimate, is consistent with the 
postulate that the field enters the perturbation without significant 
distortion: 

1
)0(E

E
.    (8.63) 

In fact, from (46) we get 

)0()0()0( EEEE ,  (8.64) 

which combined with (62) gives 
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)0(11 EEE ,  (8.65) 

in accordance with (63) being 1. 
By using (64) and (65), from (61) we obtain: 

)0()0(, EEEE    (8.66) 

The (66) merits some comments. It should be noted that as 
increases, multiple scattering phenomena included in (66) becomes 
increasingly important with respect to the single-scattering 
phenomena (see also (47)).  It is important to note that the relevance 
of these multiple scattering phenomena can be connected to both the 
upper bound ( ) for the structural perturbation and the lower 
bound ( ) for the structure operator . Finally, it is important to note 
that variational analysis maintains general validity for a generic 
structure whose irregularities can be described as fully space-variant 
perturbation. 
 
8.6 Conclusions 
 

This Chapter has been aimed primarily at resolving the apparent 
formal discrepancy between the corresponding regimes of validity of 
two different kinds of perturbative formulations: boundary 
perturbation and volumetric perturbation -based, respectively. The 
analysis leads to the formal demonstration of the necessity of the 
additional small slope assumption for the validity volumetric 
perturbation based formulation (and, in particular, for the VPRT), 
which has been not highlighted in previous works.  

This finding will be important for the successful application of 
recently developed VPRT to canonical structures with fully space-
variant perturbation. 

We also emphasize that the required limitation relevant to the 
interfacial slope is more difficult to be directly deduced by adopting 
the formulations in [3]-[5]; differently our VPRT formulation enables 
pointing out this implication easily.   
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Our investigation has been addressed to the general case of layered 
rough interface, so that, the two relevant theoretical construct (BPT 
and VPT) for rough multilayer scattering can be now regarded in a 
conceptually coherent frame. The case of a single rough interface can 
be accordingly regarded as a special case of our discussion. 

Finally, we have shown how the first-order VPRT solution can be 
arranged in the variational formalism framework, so enabling a more 
formal and comprehensive perspective on the discussion regarding the 
pertinent approximation involved. Specifically, we emphasize that, 
although first-order perturbative approximation constitutes a reference 
solution that tends to the true solution in the limit of large wavelength, 
second-order (and higher-order) terms of the perturbative 
development might turn out of particular interest, and further efforts in 
pertinent analytical derivation are recommended especially in the 
context of scattering in layered structure. Indeed, in the layer 
structures context, the energy directly scattered by a rough interface 
can be coupled into guided-wave modes and consequently could give 
rise to second-order processes contributing to the overall scattered 
field in relevant measure. It is therefore clear that the availability of 
second-order solutions for layered rough media is highly desirable and 
it is for that reason subject of current investigation. This analytical 
result, if available, will also enable the effective comparison of the 
perturbation solution prediction with the results obtainable with 
numerical methods, so permitting a more appropriate assessment of 
the precise conditions of validity for the relevant perturbation model. 
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Chapter 9 
 

Conclusion and Future Developments 
 

“Research is what I'm doing when I don't know 
what I'm doing.”  

Wernher von Braun 
 

“… essi godono di un ben grandissimo, e 
posson persuadersi d’intendere e di sapere tutte 

le cose, alla barba di quelli che conoscendo di 
non saper quel ch’e’ non sanno, ed in 

conseguenza vedendosi non saper né anco una 
ben minimissima particella dello scibile, 

s’ammazzano con le vigilie, con le 
contemplazioni, e si macerano intorno a 

esperienze ed osservazioni.”  
Galileo Galilei 

 

he problem of electromagnetic wave scattering in 3-D random 
layered structures, has been analytical treated by relying on 

original results of the Boundary Perturbation Theory (BPT) and 
Volumetric-Perturbative Reciprocal Theory (VPRT), whose structured 
presentation of the pertinent theoretical body of innovative results is 
proposed and developed in this thesis.  

Preliminarily, the available formalisms for the evaluation of the 
electromagnetic field in flat-boundaries multilayer has been re-
examined, providing a comprehensive and organized new perspective: 
this step is crucial for the derivation of pertinent (full-vectorial) 
general solutions in closed form, so providing a methodological basis 
for the perturbation analysis.  

The systematic formulation of Boundary Perturbation Theory 
(BPT) has been introduced to deal with the analysis of a layered 
structure with an arbitrary number of gently rough interfaces: in this 
case the theoretical construct is based on a suitable perturbation 
pertinent to the geometry of the problem and the scattering problem is 
treated by adopting a proper perturbation of boundary conditions. 

T 
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Specifically, in the first-order approximation, BPT leads to fully 
polarimetric, formally symmetric and physical revealing closed form 
solution: the relevant innovative scattering models obtained in this 
perturbation framework permit to deal with bistatic scattering, from 
and through three-dimensional layered structures with an arbitrary 
number of gently rough interfaces.  

On the other hand, the formulation of Volumetric-Perturbative 
Reciprocal Theory (VPRT) methodologically adopts a different 
approach, which is based on two key elements: the use of the 
Reciprocity Theorem and an appropriate description of the scattering 
structure in terms of space-variant volumetric perturbation of the 
dielectric constant distribution. The VPRT construct also provides 
meaningful reaction-based expressions for the scattering field. 

It is important to emphasize that VPRT, which is methodologically 
conceived to consistently treat both interfacial and volumetric random 
inhomogeneities (so providing a unified mathematical formulation and 
conceptual understanding of two inherent scattering mechanisms), is 
also fully consistent with the results of BPT. Accordingly, within 
VPRT framework, both rough-interface and volume scattering are 
take into account methodologically. 

Furthermore, a new look at the classical SPM solution for rough 
surface is also offered: in this new theoretical framework even such a 
specific solution (whose derivation hitherto obtained via unnecessary, 
involved and obscure algebraic manipulations) can be now derived a 
surprisingly simple way, clarifying all the same the lacking inherent 
physical meaning. 

This Thesis exploits several mathematical tools and specific key-
concepts (as reaction, scattering enhancement, generalized reflection/ 
transmission notions, etc.) and further introduces new perspectives 
and concepts (local and global scattering, multi-reaction, etc.). 

Beyond a certain compactness of the pertinent closed-form 
solutions, the fundamental scattering interactions can be revealed, 
gaining a coherent explanation and a neat picture of the physical 
meaning of the proposed theoretical constructs. In fact, it is important 
to note that a deep comprehension of the physical phenomena 
involved in the electromagnetic wave scattering interaction with such 
kind of complex structures would have been a rather hopeless task 
before the introduction of these theories. 
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Therefore, this theoretical body of results enables a new way to 
systematically construct meaningful and general expressions for the 
scattering field, and it is successful in that it exhibit: conceptual 
clearness, descriptive power and general applicability to random 
layered structures. In this regard, it is noteworthy that the proposed 
theoretical constructs methodologically provide the new way to 
analytically approach and study a wide class of scattering problems, 
involving complex structures (e.g. Semi-Infinite Media with 
Interfacial and Volumetric Random Inhomogeneities, Rough 
Multilayers, Randomly-Inhomogeneous Layers, etc.) that can be 
arranged in a perturbation framework. It should be noted that VPRT 
also provide the methodological basis to deal with scattering, from 
and through, three-dimensional layered structures with an arbitrary 
number of gently rough interfaces and inhomogeneous layers.  

Finally, current investigations (not included in this thesis) 
indicates that the general VPRT formulation can be directly extended, 
so including up to second order effects, in order to address even 
intriguing second-order scattering effects taking place in random 
layered structures. This is to say, that further developments of VPRT 
are viable and promise to open remarkable possibilities. 

 



 
 
 
 
Publications  

Part of the work presented in this thesis is essentially based on the 
following publications in refereed journals, chapter books and international 
and national conference:

Publications in refereed journals

1. P. Imperatore, A. Iodice, D. Riccio, “VOLUMETRIC-
PERTURBATIVE RECIPROCAL FORMULATION FOR SCATTERING 
FROM ROUGH MULTILAYERS”, IEEE Transaction on Antennas 
and Propagation. (in print)

2. P. Imperatore, A. Iodice, D. Riccio, “PHYSICAL MEANING OF 
PERTURBATIVE SOLUTIONS FOR SCATTERING FROM AND 
THROUGH MULTILAYERED STRUCTURE WITH ROUGH 
INTERFACES”, IEEE Transaction on Antennas and 
Propagation, vol.58, no.8, pp.2710-2724, Aug. 2010. 

3. P. Imperatore, A. Iodice, D. Riccio, “REMOTE SENSING OF 
LAYERED MEDIA: PERTURBATIVE SCATTERING MODELS”,
Italian Journal of Remote Sensing, February 2010, n. 42 (1), 
pp.129-141.

4. P. Imperatore, A. Iodice, D. Riccio, “TRANSMISSION 
THROUGH LAYERED MEDIA WITH ROUGH BOUNDARIES: FIRST-
ORDER PERTURBATIVE SOLUTION”, IEEE Transaction on 
Antennas and Propagation, vol.57, no.5, pp.1481-1494, May 
2009.



5. P. Imperatore, A. Iodice, D. Riccio, “ELECTROMAGNETIC 
WAVE SCATTERING FROM LAYERED STRUCTURES WITH AN
ARBITRARY NUMBER OF ROUGH INTERFACES”, IEEE 
Transactions on Geoscience and Remote Sensing, vol.47, no.4, 
pp.1056-1072, April 2009. 

6. G. Franceschetti, P. Imperatore, A. Iodice, D. Riccio, and G. 
Ruello, “SCATTERING FROM LAYERED STRUCTURES WITH ONE 
ROUGH INTERFACE: A UNIFIED FORMULATION OF 
PERTURBATIVE SOLUTIONS”, IEEE Transactions on
Geoscience and Remote Sensing, vol.46, no.6, pp.1634-1643,
June 2008. 

Contributions in international books

7. P. Imperatore, A. Iodice, D. Riccio, “ELECTROMAGNETIC 
MODELS FOR REMOTE SENSING OF LAYERED ROUGH MEDIA”,
in Geoscience and Remote Sensing, New achievements, (Edited 
by P. Imperatore & D. Riccio) INTECH Publisher, February 
2010, pp. 177-202, ISBN 978-953-7619-97-8.

8. P. Imperatore, A. Iodice, D. Riccio, “BOUNDARY 
PERTURBATION THEORY FOR SCATTERING IN LAYERED ROUGH 
STRUCTURES”, in Passive Microwave Components and 
Antennas (Edited by V. Zhurbenko), INTECH Publisher, April 
2010, pp. 1-25, ISBN 978-953-307-083-4.

Contributions at international and national 
conferences

9. P. Imperatore, A. Iodice, D. Riccio, “MULTI-REACTION AND 
SCATTERING FROM ROUGH MULTILAYERS”, URSI Commission 
F Microwave Signatures 2010, Specialist Symposium on 



Microwave Remote Sensing of the Earth, Oceans, and 
Atmosphere, Florence, Italy Oct. 4-8, 2010.

10. P. Imperatore, A. Iodice, D. Riccio, “MODELING OF 
ELECTROMAGNETIC WAVE SCATTERING THROUGH A WALL 
WITH ROUGH INTERFACES”, Proceedings of IEEE 
International Geoscience and Remote Sensing Symposium, 
IGARSS 2010, pp. 2972-2975, Honolulu, Hawaii, July 25-30,
2010.

11. P. Imperatore, A. Iodice, D. Riccio, “RECIPROCITY,
COUPLING AND SCATTERING: A NEW LOOK AT SPM FOR 
ROUGH SURFACE”, Proceedings of European Microwave 
Conference, EuMC 2009, pp.994-997, Sept. 29-Oct. 1, 2009, 
Rome, Italy

12. P. Imperatore, A. Iodice, D. Riccio, “INTERPRETATION OF 
PERTURBATIVE SOLUTION FOR THE SCATTERING FROM 
LAYERED STRUCTURE WITH ROUGH INTERFACES”,
Proceedings of IEEE International Geoscience and Remote 
Sensing Symposium,  IGARSS 2008, vol.4, pp. IV-1141-IV-
1144, Boston, July 7-11, 2008. 

13. P. Imperatore, A. Iodice, D. Riccio, “SMALL PERTURBATION 
METHOD FOR SCATTERING FROM ROUGH MULTILAYERS”,
Proceedings of IEEE International Geoscience and Remote 
Sensing Symposium, IGARSS 2008, vol.5, pp.V-271-V-274, 
Boston, July 7-11, 2008.

14. P. Imperatore, A. Iodice, D. Riccio, “PERTURBATIVE 
SOLUTION FOR THE SCATTERING FROM MULTILAYERED 
STRUCTURE WITH ROUGH BOUNDARIES”, Proceedings of 
Microwave Radiometry and Remote Sensing of the 
Environment (MICRORAD 2008), pp.1-4, March 11-14,
2008, Florence, Italy. 



15. P. Imperatore, A. Iodice, D. Riccio, “A VOLUMETRIC 
PERTURBATION BASED FORMULATION FOR SCATTERING FROM 
ROUGH STRATIFICATIONS”, Atti della Riunione Nazionale di 
Elettromagnetismo, 2010, XVIII RiNEm - 1st National URSI 
B Meeting, Benevento, 6-10 Settembre 2010. 

16. P. Imperatore, A. Iodice, D. Riccio, “BOUNDARY 
PERTURBATION THEORY SOLUTION FOR ELECTROMAGNETIC 
PROPAGATION THROUGH ROUGH WALLS”, Atti della Riunione 
Nazionale di Elettromagnetismo, 2010, XVIII RiNEm - 1st 
National URSI B Meeting, Benevento, 6-10 Settembre 2010. 

17. P. Imperatore, A. Iodice, D. Riccio, “A PHYSICAL INSIGHT 
INTO THE BOUNDARY PERTURBATION THEORY”, Proceeding of 
IEEE GOLD Remote Sensing Conference 2010, Livorno, 
Italy, April 29-30, 2010.

18. P. Imperatore, A. Iodice, D. Riccio, “MODELLO 
PERTURBATIVO PER LA DIFFUSIONE ELETTROMAGNETICA DA 
STRUTTURE STRATIFICATE CON INTERFACCE RUGOSE”, Atti 
della Conferenza AIT/CeTeM/MECSA, Telerilevamento a 
Microonde, Roma, 23-24 Ottobre 2008.

19. P. Imperatore, A. Iodice, D. Riccio, “SOLUZIONE ANALITICA 
PER LA DIFFUSIONE ELETTROMAGNETICA DA STRATIFICAZIONI 
CON INTERFACCE RUGOSE”, Atti della Riunione Nazionale di 
Elettromagnetismo, XVIII RiNEm, Lecce, 15-19 Settembre 
2008.

20. P. Imperatore, A. Iodice, D. Riccio, “MODELING OF 
ELECTROMAGNETIC RADIATION SCATTERED BY SLIGHTLY-
ROUGH-INTERFACES LAYERED MEDIA”, Proceedings of IEEE 
GOLD Remote Sensing Conference, 22-23 May 2008, ESA-
ESRIN Frascati (Roma), Italy.


