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Xerxes: 
“There will be no glory in your sacrifice. I will erase even the memory of Sparta 

from the histories. The world will never know you existed at all.” 

 

King Leonidas:  
“The world will know that free men stood against a tyrant, that few stood against 

many, and before this battle was over, that even a god king can bleed.” 
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CHAPTER I - INTRODUCTION 

I.1 Problem statement 
The modeling of flexible robots and, more generally, the modeling of flexible 

structures having weaknesses controlled or not, is a historic topic of robotic 

research [2] [7]-[14] and it remains very interesting for the scientific community 

[37], [38], [42], [44], [45]. 

The derivation of the dynamic model of a robot is fundamental for its 

dimensioning, for the design of the control system and for its validation making 

suitable simulations. Several methods have been proposed in literature for these 

purposes, such as the Newton-Euler method [3] [4], the Kane’s method [6] and 

the Euler-Lagrange one [5], [12]. However, the above methods are useful only 

when each link of the robot is considered a rigid body. 

Many researchers and engineers over the years have realized that flexible robots 

are lighter, faster, and cheaper than similar rigid robots. These benefits are 

important in aerospace applications, where structures must be lightweight, but 

also in the transport and manufacturing systems employed in modern mass 

production plants. 

In fact, the above systems require higher and higher specifications in terms of 

operating speeds and/or amplitude of the work space; the only way to satisfy the 

previous specifications is to reduce the mass and to make the structures slender, 

thus to employ robots having flexibility properties. 

Obviously, in order to take full advantage of the benefits offered by the above 

lightweight flexible robots, it is necessary to develop modeling methodologies 

which allow to obtain reliable and efficient models and to develop trajectory 

planning and control methodologies. 
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The modeling, planning and control of realistic flexible robots represent a 

research area with significant problems to face, like, for example, the followings: 

• the derivation of a model which is precise under the assumption of 

almost static motion and at low frequencies, since flexible structures 

must be almost always operated and/or solicited at low frequencies, in 

order to avoid their breaking and/or annoying noises; 

• the choice of mode shape functions and/or of admissible basis 

functions to describe the flexible behavior; 

• the integration of the structure model with the sensors and actuators 

ones; 

• the numerical stability of the models with “small” errors; 

• the computational load, since the models of flexible structures, because 

of their weaknesses, are strongly nonlinear and very complex, even for 

small deformations; 

• the “kinematic” inversion, which is a complex problem because of the 

structure flexibility and of the external and mass forces, in particular 

the gravity one; 

• the distributed parameter model of the flexible structure makes the 

control problem hard to solve, since the Lagrangian deformation 

variables used to approximate the structure flexibility are almost 

always not directly controllable, i.e. a joint controlled flexible structure 

is a sub-actuated system; 

• the closed loop control system must exhibit robustness properties in 

order to avoid the troublesome and/or dangerous spillover  

This paper presents a methodology which gives significant answers to the above 

problems, which are extremely relevant especially if the control problem is 
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considered; some results related to the active control of vibrations of static 

structures have already been given in [21], [24], and some ideas related to flexible 

structures with weaknesses have already been presented in [39], [43]. 

I.2 Contributions 
The contributions of this work fall into the areas of modeling, trajectory planning, 

“kinematic” inversion and control of flexible structures. 

I.2.1 Modeling 
In this Ph.D thesis a modular, computationally efficient, and numerically stable 

method is presented, which allows to obtain the dynamic model of a robot 

constituted by flexible links having variable cross-section and subjected to generic 

ending forces and torques and to the gravity actions. 

This method is based on the use of admissible deformation functions of wavelet 

type, obtained by using the Instantaneity Principle of the deflection of an element, 

and it is based on the Euler-Bernoulli beam theory if the link is slender or, 

otherwise, on the Timoshenko one. Moreover, it is easy to extend the presented 

methodology to deal also with the case of large link deformations. 

Moreover, a very simple method to obtain the analytical model of a flexible robot 

has been developed, which results drastically more efficient, from a computational 

point of view, than the assumed modes method. 

This method uses suitable linear combinations of the modes of each link as basis 

functions to evaluate the deflection, such a way to minimize the dependency of 

the position of the generic link on the Lagrangian variables of the previous links. 

Finally, a simple and efficient technique to insert friction into the dynamic model 

of a flexible robot has been developed. 
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I.2.2 Trajectory planning and “kinematic” inversion 
A technique for the trajectories planning has been developed, which consists in 

defining a certain number of points in the operational space; in each point, a 

“kinematic” inversion is performed, which is based on the nonlinear static flexible 

model of the robot; the above model is derived by using the sectioning and 

congruence techniques known by the building science. 

The desired joint trajectory is then obtained through suitable interpolation of the 

joint variables and by “decoupling the flexible dynamics from the rigid ones”. 

I.2.3 Control 
A method which allows to find, given a desired joint trajectory, an admissible 

nominal input has been developed; this input is compatible with the whole rigid-

flexible dynamics and it allows to obtain the above trajectory. 

However, since the nominal model is unstable, it is stabilized in a sufficiently 

high number of points by using easily implementable controllers, which are 

designed with the use of a parameter optimization technique. 

Then the control law is then calculated by interpolating the gains of the controllers 

in the various points; in this way, a controller is obtained, whose gains are 

nonlinear functions of the rigid motion coordinates and, possibly, of some 

measurable deformation coordinates. 

The designed control law is finally validated by verifying the convergence to zero 

of the impulse response matrix, which is numerically calculated, and/or by using 

the Lyapunov theory. 
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I.3 Literature review 
The literature review is divided into two areas: the modeling and the control of 

flexible robots. 

I.3.4 Flexible robots modeling 
In order to describe the behavior of a flexible robot it is possible to use infinite 

dimensional models, exact but scarcely operative, or finite dimensional models, 

which are approximate but more operative. 

The most known approximate methods in literature are the assumed modes 

method, the Ritz-Kantorovich expansions with polynomials, and the finite 

elements and finite differences methods. 

The assumed mode method [8], [9], [14], [16], [28], [32], [41] uses the modes 

deriving from the solution of the Euler-Bernoulli beam dynamic equation with 

distributed inertial load and no other loads. 

This equation is solved by imposing 4 boundary conditions which describe the 

configuration of the flexible link. In some works [16] [44], the configuration of 

the link with clamped-free boundary conditions has been proposed, in other works 

[9], [14], instead, the one with clamped-mass boundary conditions has been 

considered. 

However, these choices are not appropriate to describe the varying configurations 

of the flexible link in which occurs when it is joined to other links and/or when it 

is subjected to gravity actions, disturbances and under joint control actions, also in 

static conditions. Moreover, the assumed mode method presents other drawbacks: 

first the derivation of modes becomes very complicated because they can be 

obtained only in a numerical way, in particular when the link has variable cross-

section, secondly the modes are very sensitive to parametric variations. 
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The Ritz-Kantorovich [10], [20] expansion uses the polynomial set in order to 

approximate the deflection. This choice results to be inappropriate in the realistic 

case of links having variable cross-section, even at very low frequencies; 

moreover, in any case, it produces serious problems of numerical instability, also 

when the cross-section is constant, when a high precision is needed in a large 

bandwidth of mechanical solicitations, as it will be shown in the sequel. 

The finite elements approach [7], [23], [32] requires the use of cumbersome 

software packages which are often not control oriented. Also if a specific FEM 

software can model the structure, this model cannot be easily used to design the 

control system. Moreover, the modeling of multi-body dynamics and their 

integration with sensors and actuators models can be burdensome for a control 

engineer who is not an expert in FEM. 

I.3.5 Flexible robots control 
Several control techniques exist in literature, many of which have been applied to 

flexible robots. 

The application of pole-placement techniques to flexible systems is discussed in 

[2]; these techniques are able to move lightly damped poles to locations with 

higher damping. 

In [11] a singular perturbation approach is developed to the control of flexible-

link manipulators. This approach consists in breaking the system into two 

subsystems; the former is slow and describes the rigid motion, the latter is fast and 

describes the vibrations about the nominal motion of the slow subsystem. Rigid 

robot control techniques are applied to the slow subsystem, and then a stabilizing 

controller is developed for the fast subsystem. 
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In [22] the above work is extended to control the position of a flexible robot as 

well as its contact force with a rigid environment. 

In [13] an approach for designing optimal compensators for the slow and fast 

subsystems is presented. Care is taken to ensure that fast subsystem spillover does 

not destabilize the slow subsystem. 

In [18] a problem formulation directly based on PDE without discretization is 

presented; by using the concept of A-dependent operators in Hilbert spaces, a 

rigorous proof of the ability of direct strain feedback control to damp vibrations 

for a single-flexible-link robot is given. However, the torque control requires the 

feedback of strain rate, which is difficult to measure in practice. 

In [33] [35] [34] an adaptive control based on neural networks has been applied to 

several flexible systems. This approach has been shown to be effective in 

compensating for parametric errors, unmodeled dynamics, external disturbances, 

and actuator nonlinearities. 

Other modeling methodologies which have been applied to flexible robots are the 

H∞ robust control [15], [30] and the sliding mode control [30], [26], even if 

mainly in the case of a single-link flexible robot. 
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CHAPTER II - A WAVELET FUNCTIONS BASED 

MODELING METHODOLOGY 

II.1 Introduction 
In this chapter a modular, computationally efficient, and numerically stable 

method is presented, which allows to obtain the dynamic model of a robot 

constituted by flexible links having variable cross-section and subjected to generic 

ending forces and torques and to the gravity actions. This method is based on the 

use of admissible deformation functions of wavelet type, obtained by using the 

Instantaneity Principle of the deflection of an element, and it is based on the 

Euler-Bernoulli beam theory if the link is slender or, otherwise, on the 

Timoshenko one. 

Moreover, it is easy to extend the presented methodology to deal also with the 

case of large link deformations. 

The kinematic model of the generic link is obtained by using absolute motion and 

relative deformation coordinates; the dynamic model, derived with the Lagrangian 

approach, is obtained by assembling the Lagrangian functions of the links, which 

are obtained una tantum in an analytical compact form, by using a very simple 

recursive interconnection algorithm based on the congruence technique. 

The proposed modeling methodology guarantees no static error, even with a 

relatively low number of wavelet functions per link (in the planar case at least 2), 

both in the presence of generic forces and torques at both ends, for generic cross-

section profiles, and in the presence of gravity actions, for several cross-section 

ones; moreover, it guarantees good dynamic precision at low frequencies with a 

contained number of wavelet functions per link and a dynamic precision which 

increases when the number of wavelet functions increases; this happens in an 
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increasing frequency range as long as this range and the entity of deformations 

make the infinite dimensional model of Bernoulli or Timoshenko still valid. 

It is shown that the presented methodology is also more efficient and numerically 

stable than other modeling methods known in literature. 

In this chapter some effective methods of static and dynamic comparison, between 

the proposed methodology to model realistic flexible robots and others very 

significant in literature, are also proposed and applied. 

Moreover, some significant examples are presented in this paper which highlight 

that the proposed modelling methodology is advisable when it is necessary to 

obtain high precisions, in particular at low frequencies, and/or not prohibitive 

calculus time and/or when the other modelling methods result inapplicable 

because of numerical divergence problems. 

This methodology can be used to obtain models for the dynamic simulation of 

flexible robots and/or for the design of the control system and for the analysis of 

its performance. 

The results presented in this chapter are based on [46], [48]. 

II.2 II. Hypotheses, notations and preliminaries 
In this paper it is considered, for brevity, the case of a planar robot with fixed 

base, constituted by ν  flexible links having variable cross-section. For simplicity, 

each link has a straight line as unstressed configuration, both rigid ends of 

negligible dimensions with respect to its length, and rotation axes orthogonal to 

the vertical plane. It is worth noting that the modeling methodology can be easily 

extended to more complex robots. 
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In Fig. 1 a schematic representation of a planar flexible robot with three links is 

shown, while in Fig. 2 a detailed representation of the i-th link in the stressed and 

unstressed configuration is reported. 

 

Fig. 1  Schematic representation of a flexible robot. 

For the sake of clarity, the following preliminary notations are introduced for the 

generic i-th link:  

• iL  is the length of the link; 

• iA  is the cross-section area of the link; 

• iE  is the modulus of normal elasticity of the link; 

• iG  is the modulus of transversal elasticity of the link; 

• iχ  is the shear factor of the link; 

• iI is the area moment of inertia for the cross-section of the link; 

• iρ  is the mass density of the flexible part of the link; 

• i i im Aρ=  is the mass per unit length of the flexible part of the link; 

• ,i iM M− +  are the masses of the rigid ends of the link; 



23 
 
 

 

• ,i iJ J− +  are the inertia moments of the rigid ends of the link with respect to 

rotation axes; 

• iq  is the distributed transversal load; 

• iτ  are the distributed torques; 

• , ,o i o i ix y α  are the absolute motion coordinates of the link supposed rigid; 

• ( , )id z t  is the relative vertical deflection of the link; 

• ( , )i z tγ  is the rotation of the generic cross-section of the link; 

 

Fig. 2  Schematic representation of the generic flexible link. 

Moreover, suppose that the following result holds. 

 

Instantaneity Principle of the deflection of an element. If the inertia of an element 

iL∆  of “sufficiently small” length of the i-th link is neglected, the vertical 

deflection of this element, due to “slowly variable” control actions and/or 

disturbances acting on the links and on the end-effector and due to the consequent 

inertial actions, remains practically unchanged. 
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Remark 1. It is worth noting that, according to the sectioning principle of a 

structure, the deflection of the element is due to (Fig. 3): 

• the torque C−  and the force T −  acting on the left end of the element, 

corresponding to the resultant of all external torques and forces with 

changed sign, including gravity actions, constraints actions and inertial 

forces acting on the left-hand side of the robot; 

• the torque C+  and the force T +  acting on the right end of the element, 

corresponding to the resultant of all external torques and forces, including 

gravity actions, constraints actions due to interaction with the environment 

and inertial forces acting on the right-hand side of the robot with its possible 

payload; 

• the generalized forces acting on the element itself including gravitational 

actions, disturbances and inertial actions. 

Therefore, for the calculus of the deflection of the element, it is possible to neglect 

the inertial actions acting on the element itself. This approximation is as true as 

the element is small, as the flexible parts of the links are lightweight with respect 

to the whole robot, also with actuators, and as the motion is slow. 

These remarks justify the Instantaneity Principle. 

The Instantaneity Principle and the Euler-Lagrange theory represent the key on 

which the presented modeling methodology is based. 
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Fig. 3  Forces and torques acting on an element iL∆  of the link. 

II.3 Lagrangian function of a flexible link 
In this paragraph the Lagrangian function of a flexible link, supposed in free-free 

boundary conditions, is derived, in a compact and closed form, by using the Euler-

Bernoulli or the Timoshenko [1] beam theories and the Instantaneity Principle of 

the deflection of an element  

According to the preliminary notations (see also Fig. 2), the configuration of the 

generic cross-section of the i-th link can be expressed as: 

cos( ) sin( )

sin( ) cos( )

.

i o i i i i

i o i i i i

i i i

x x z d

y y z d

α α

α α

ψ α γ

= + −

= + +

= +

 (1) 

Several methods to approximate the deflection ( , )id z t  of a flexible link have been 

proposed in literature. These methods consist in choosing a complete set of 

functions { ( )}km z  through which the deflection can be approximated as 
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1
( , ) ( ) ( )

n

i k fk
k

d z t m z q t
=

≈∑ , where ( )fkq t  are the Lagrangian deformation variables; 

moreover, almost always it is supposed that i id zγ = ∂ ∂ . 

Different choices of the set { ( )}km z  have been proposed in literature. The 

assumed mode method uses the modes deriving from the solution of the Euler-

Bernoulli beam dynamic equation with distributed inertial load and with 

( , ) 0q z t =  

2 2 2

2 2 2

( , ) ( , )( ) ( ) ( ) ( , ).d z t d z tE z I z m z q z t
z z t
 ∂ ∂ ∂

+ = ∂ ∂ ∂ 
 (2) 

Equation (2) is solved by imposing 4 boundary conditions which describe the 

configuration of the flexible link. In some works [16], [44] , the configuration of 

the link with clamped-free boundary conditions has been proposed, in other works 

[9], [14], instead, the one with clamped-mass boundary conditions has been 

considered. However, these choices are not appropriate to describe the varying 

configurations of the flexible link in which occurs when it is joined to other links 

and/or when it is subjected to gravity actions, disturbances and under joint control 

actions, also in static conditions. Moreover, the assumed mode method presents 

other drawbacks: first the derivation of modes becomes very complicated because 

they can be obtained only in a numerical way, in particular when the link has 

variable cross-section, secondly the modes are very sensitive to parameter 

variations. 

In other works [10], [20] the polynomial set ( ) k
km z z=  has been chosen as 

complete set of functions { ( )}km z . This choice proves to be inappropriate in the 

realistic case of links having variable cross-section, even at very low frequencies, 
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and, in any case, it produces serious problems of numerical instability, also if the 

cross-section is constant, when a high precision is needed in a large bandwidth of 

mechanical solicitations. According to the Instantaneity Principle and to Remark  

the deflection of the generic element of the link is computed with the proposed 

method by approximating the dynamic beam equation of Euler-Bernoulli (2) with 

the following static equation 

2 2

2 2

( , )( ) ( ) ( , )d z tE z I z q z t
z z
 ∂ ∂

= ∂ ∂ 
, (3) 

which is obtained by neglecting the inertial term and by considering time-

independent loads. 

If the shear effect is not negligible, the deflection of the generic element of the 

link can be computed more accurately by approximating the dynamic beam 

equations of Timoshenko [1] 

2

2

2

2

GA d dm q
z z t

GA dEI I
z z z t

γ
χ

γ γγ ρ τ
χ

 ∂ ∂ ∂ − − = −  ∂ ∂ ∂  
∂ ∂ ∂ ∂   + − − =   ∂ ∂ ∂ ∂   

 (4) 

in which the dependency on z  and t  has been omitted, with the static ones. 

Finally, if the link is subjected to large deformations [25], it is still possible to 

apply the proposed methodology, by fictitiously subdividing the link into sublinks 

as shown in Fig. 4. 

The above static equations, with suitable boundary and “middle” conditions, with 

concentrated loads in the middle and/or at the ends, and/or with distributed loads 

according to the mass density or according to its first order moment, are 
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numerically or analytically, if it is possible, solved on any interval kZ  of an 

appropriate partition of the monodimensional domain of the i-th link. For 

example, by assuming that the generic domain [ ]0, iL  is uniformly partitioned into 

in  parts, the intervals kZ  are defined as follows 

0, 2 , , 3 , , ( 1) ,i i i i
i i

i i i i

L L L Ln L
n n n n

       −      
       

 . (5) 

 

Fig. 4  Fictitious subdivision of the generic link into sublinks. 

In Fig. 5 the constraint and the static loading physical schemes of a partition 

element, considered in the following, are reported. 

 

Fig. 5  The considered constraint and loading schemes. 
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The deflections kwδ , kwγ  corresponding to the considered schemes, derived for 

the interval ,k k kZ Z Z− + =    (k=1,2,…ni) of the partition, represent the wavelet 

spatial functions used by the proposed methodology in order to approximate the 

vertical displacement and the rotation due to the deformation. An example of 

these wavelet functions, under the hypothesis that [ ]1 0 2 3iZ L= , 

[ ]2 3i iZ L L=  and [ ]3 2 3i iZ L L= , is reported in Fig. 6. 

Once the wavelet functions have been calculated, the deflection of the i-th link is 

approximated as 

( )
1

( , ) ( ) ( ) ( ) ( )
in

i k k k k
k

d z t w z t w z tδ γδ γ
=

= +∑ . 

 

Fig. 6  An example of wavelet functions.. 

Remark 2. It is worth noting that the Lagrangian deformation variables i kδ , i kγ  

corresponding to these wavelet functions respectively represent the vertical 

displacements and the rotations of the cross-sections of the link in correspondence 

to the endpoints of the partition intervals kZ . 



30 
 
 

 

 

After these preliminary considerations, by neglecting the contribute of the rotation 

due to the deformation, the kinetic energy of the i-th link can be derived as 

follows 

( )

2 2 2 2 2 2 2

0

2

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

1 .
2

i

i i

i

L

i i i i i o i o i i i i i z L i z L

i i in

T x y m z dz M x y J M x y

J

α

α γ

− − +
= =

+

= + + + + + + +

+ +

∫      

 

 (6) 

After some tedious manipulations and by omitting, for the simplicity of notations, 

the subscript i, it is 

( ){ ( )( )
( ) ( ) ( )

( )( )}

2 2 2 2 2 2 21
2

2 2 cos sin

2 cos sin ,

T T
o o n n f f f n f f f

T T
f n n n f o o

T
f n o o

T M x y M J J q B q M L q B q

k q J M L M h q x y

N h q M y x

δ γ δ α

γ δ α δ α α α

α δ α α

+ + +

+ + +

+

= + + + + + + + + +

+ + + − + + +

+ + + −

     

    

   

(7) 

where, by omitting the dependency on z: 

• 
0

( )
L

M M m z dz M− += + +∫ , 2

0

( )
L

J J z m z dz J− += + +∫ , ( )
L

o

N M L zm z dz+= + ∫ ; (8) 
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• the symmetric matrix 2 2n n
fB R ×∈  is derived by using the relationship  

2
1

0

2
1 1 1

0 0

2
1 1

0 0 0

L

L L

f

L L L

n n n

w mdz

w w mdz w mdz
B

w w mdz w w mdz w mdz

δ

δ γ γ

δ γ γ γ γ

 
− − − 

 
 
 − −

=  
 − 
 
 

 

∫

∫ ∫

∫ ∫ ∫

  



 (9) 

• the vector 2nh R∈  is derived by using the relationship  

1 1
0 0 0

L L L
T

nh w m dz w m dz w m dzδ γ γ

 
=  
 
∫ ∫ ∫  (10) 

• the vector 2nk R∈  is derived by using the relationship  

1 1
0 0 0

L L L
T

nk w m z dz w m z dz w m z dzδ γ γ

 
=  
 
∫ ∫ ∫  (11) 

• 2n
fq R∈  represents the vector of the Lagrangian deformation coordinates  

1 i i

T
f k k n nq δ γ δ γ δ γ1 =    , (12) 

where, according to Remark 2, kδ  and kγ  respectively represent the vertical 

displacements and the rotations of the cross-sections, due to the deformation, of 

the link in correspondence to the endpoints of the intervals Zj of the partition. 

Once the kinetic energy has been derived, it is necessary to calculate the elastic 

potential energy eiU  and the gravitational potential one  of the i-th link. 



32 
 
 

 

The elastic potential energy due to the deformation of the i-th link, neglecting the 

contribute due to shear, results 

22

2
0

1 1( ) ( ) ,
2 2

L
T

e f f
dU E z I z dz q Kq

z
 ∂

= = ∂ 
∫  (13) 

where the symmetric matrix 2 2n nK R ×∈  is derived by using the relationship 

2
1

0

2
1 1 1

0 0

2
1 1

0 0 0

L

L L

L L L

n n n

w E I dz

w w E I dz w E I dz
K

w w E I dz w w E I dz w E I dz

δ

δ γ γ

δ γ γ γ γ

 
′′ − − − 

 
 
 ′′ ′′ ′′ − −

=  
 − 
 

′′ ′′ ′′ ′′ ′′ 
 

∫

∫ ∫

∫ ∫ ∫

  



, (14) 

in which it is supposed that ( ) ( )EI E z I z= . 

 

Remark 3. It is worth noting that if the rotational inertia is taken into account, it is 

necessary to add the term 2

0

1
2

iL

i i iI dzψ ρ∫   to (6); moreover, in the case of 

Timoshenko model, it is necessary to add the elastic energy due to shear 

deformation 
2

0

1
2

iL
i i i

i
i

G A d dz
z

γ
χ

∂ − ∂ ∫  to (13) 

 

The gravitational potential energy results 
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0

( ) ,
i

i

L

gi i i o i i i z LU g y m z dz M gy M gy− +
== + +∫  (15) 

where g is the gravitational acceleration. By substituting the second of (1) into 

(15), it results 

( )sin cos ,T
g o n fU Mgy Ng M h q gα δ α+= + + +  (16) 

in which the subscript i has been omitted. 

 

Remark 4. It is interesting to note that the matrices Bfi and Ki and the vectors hi 

and ki can be easily calculated una tantum in a numerical way (or also analytically 

in the case of homogeneous links having constant cross-section). Moreover, it is 

important to note that the matrices fiB  and iK  are very sparse (Fig. 7) and also 

well-conditioned; this fact is in accordance with (9), (14) and with the wavelet 

nature of the basis functions (Fig. 6).  

Instead, when other basis functions, such as the polynomial or the modal ones, are 

used, the above matrices are full and ill-conditioned. 

 

Fig. 7  Structure of the matrices Bfi and Ki of the i-th link. 
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Remark 5. It is worth noting that the compact and closed-form expression of the 

kinetic energy (7) can be further simplified if the higher order terms T
f f fq B q  and 

2
nM δ+  are neglected. 

 

Remark 6. It is important to note that if 

2

100GAL
EI

χβ = >  (17) 

the Timoshenko beam theory practically coincides with the Euler-Bernoulli one. 

For example, for a link made of steel having square hollow constant cross-section, 

with side 40mmil = , thickness 2mmis =  and length 5miL = , it is 42.88 10β = ⋅ . 

It follows that, for the majority of flexible robots, it is possible to apply the Euler-

Bernoulli beam theory. 

II.4 Interconnection algorithm 
In this paragraph an algorithm for the calculation of the Lagrangian function of a 

robot constituted by interconnected flexible links is presented, starting from the 

results, valid for a single link, stated above. 

This algorithm allows to calculate the kinetic and the potential energies of a robot 

constituted by v  flexible links of the type shown in Fig. 2. 

The kinetic energy of the i-th link (7) can be rewritten in a compact matricial form 

as follows 

1
2

T
i i i iT q B q=    , (18) 
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where: 

• T T T
i ti iq q q =   , , , ,T T T

ti o i o i i i fiq x y q qα   = =    ; 11 12

12 22

i i
i T

i i

B B
B

B B
 

=  
 

 


 
, 

11

0
0

i
i

i

M
B

M
 

=  
 

 ; 

• 
( )
( )12

cos sin sin
;

sin cos cos
i

i

T T
i in i fi i i i i i

i T T
i in i fi i i i i i

M h q N h
B

M h q N h

δ α α α

δ α α α

+

+

 − + − −
 =
 − + + 






( )2 2

22
i

T T
i fi fi fi i i in i

i

i fi

J q B q M L k
B

k B

δ+ + + +
 =
  




 
; 

• T
ih  is obtained by adding iM +  to the (2ni-1)-th element of vector T

ih ; 

• T
ik  is obtained by adding i iM L+  to the (2ni-1)-th element and iJ +  to the 2ni-

th element of vector T
ik ; 

• fiB  is obtained by adding iM +  to the (2ni-1, 2ni-1)-th element and iJ +  to the 

(2ni, 2ni)-th element of the matrix fiB  

Now observe that, being the 1-st link hinged to the base, the variables 1ox  and 1oy  

do not appear in the kinetic energy expression, hence 

1 1 1 1
1
2

TT q B q=   , (19) 
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where 1 221 .B B=   Moreover, the rigid translation variables 1o ix +  and 

1, 1 1o iy i ν+ ≤ ≤ −  are redundant, since they depend on , , 1, ,k kn k iα δ =  ; in fact 

from (1) the following recursive relationship can be derived 

1

1
( , )

i

o i o i i
i i in

o i o i fi

x x
A

y y q
α

α δ+

+

     
= +     

    

 

  
, (20) 

where ( )2 2 1in
iA R × +∈  is given by 

sin cos 0 .. 0 sin 0
.

cos sin 0 .. 0 cos 0
i i in i i

i
i i in i i

L
A

L
α δ α α
α δ α α

− − − 
=  − 

 (21) 

Therefore, equation (18), for 2i ≥ , can be rewritten as function of the only 

Lagrangian variables as follows 

1 1 1 1 1 1 1 1
1 1
2 2

T T T
i i i i i i i i iT q A B A q q B q− −= =     

    , 1 1
T T T

i iq q q =    , 

1 1
1 1

2 1i

i
i

n

A A O
A

O I
−

−
+

 
=  
 




, (22) 

in which pI  denotes the identity matrix of order p and O is a zero matrix of 

suitable dimensions. 

Finally, the kinetic energy of the robot constituted by ν  flexible links results 

1
2

TT q Bq=   , (23) 

where 1q q ν=   and the inertia matrix B is obtained “by adding” the matrices Bi 

according to the recursive scheme reported in Fig. 8. 
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Fig. 8  Composition scheme of the matrix B. 

Remark 7. It is useful to note that the matrices iA  are very sparse, well-

conditioned and they always depend only on the deformation variable 
iinδ , 

whatever the number of Lagrangian deformation variables (i.e of wavelet 

functions) is, and they do not depend on all the Lagrangian deformation variables, 

as it happens when other basis functions are used. 

 

Concerning the elastic potential energy of the whole robot, it is easy to verify that 

it results 

1
2

T
eU q Kq= , (24) 

where the matrix K is the following block diagonal matrix 

1 2(0, ,0, , ,0, )K diag K K Kν=  . (25) 

Finally, the gravitational potential energy of the whole robot is obtained as the 

sum of 
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( ) ( )
21

1
sin cos sin cos

2k i

i
Ti

gi i k k kn k i i i i i in i fi i
k

LU M g L m M L g M h q gα δ α α δ α
−

+ +

=

+ + + + +
 

=  
 

∑ ,(26) 

where giU  is the gravitational potential energy of the i-th link. 

II.5 Dynamic model of the robot 
In this paragraph the dynamic model of the whole robot is considered in the more 

suitable form presented in [40], [43] by using the Euler-Lagrange method. 

It is easy to show that this model, under the assumptions that control actions 

1 2C C Cν  and disturbances d dC F  are the ones reported in Fig. 9, results 

( ) 1( ) ( )
2

T
g c c d d

d B q q q B q q Kq U H u H u
dt q q

∂ ∂
− + + = +

∂ ∂
   , (27) 

where: 

[ ] [ ]1 2 ,T T
c d d du C C C u C Fν= = , (28) 

11 12

21 22

1 2

1 1 0

0 1 0
0 1 1

, ,
0 0 1
0 0 1

0 0 0

d d

d d
c d

d d

O O O

h h
h hO O O

H H

h h
O O O

ν ν

− 
 
 
 −
 −   

  
 = = 
 − 
     

 
 
 
  











 







   

 (29) 



39 
 
 

 

in which 

[ ] [ ]
( ) ( ) ( )

1 1

2

0 0 0 , 1, , 1, 1 0 1 ,

sin cos sin 0 , 1,2, , ,
i

T T
di d

T
d i i i d in i d i d

h O i h O

h L O i
νν

α α δ α α α α ν

= = − =

= − − − − − − =




(30) 

being O a zero vector of suitable dimension. 

 

Fig. 9  Control actions and disturbances acting on the robot. 

II.6 Validation guidelines 
In order to validate the dynamic model of a flexible robot in an efficient and 

effective way, it is advisable to consider it in significant and realistic operative 

conditions. The authors propose the following guidelines to validate the model of 

a flexible robot: 

• let be considered the robot in the following conditions: hinged joints, 

clamped joints, joints controlled with a well-defined and realistic control 

action of PD type; 

• for each of the above cases let be derived the linearized model of the robot 

around those equilibrium configurations for which some theoretical results 

exist in literature and/or around those configurations more recurring in 
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practical applications, considering the gravity action gq  and the disturbances 

cosx dF F α= , siny dF F α= , and dC C=  applied to the end effector as 

inputs, and the position and the orientation of the end effector as outputs 

(Fig. 10); 

 

Fig. 10 Input-output scheme of the robot. 

• let be derived the global parameters of the obtained models, like static gain, 

dominant poles and frequency response, and let them be compared with 

those obtained by using the proposed method, but with a sufficiently high 

number of wavelet functions per link. This comparison is justified by the 

fact that, by virtue of the Instantaneity Principle, the proposed method has 

the property of deriving a model that converges to the exact one starting 

from low frequencies, without incurring in numerical instability problems; 

• let be compared the calculated results with the theoretical ones known in 

literature, with the ones obtained by increasing the number of the 

Lagrangian deformation variables, with the ones obtained with other 

modeling methods proposed in literature; 

• let be made suitable dynamic simulations of the flexible robot for assigned 

nominal inputs when the number of deformation degrees of freedom 

increases; 
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• let be evaluated the numerical stability of the model when the number of 

Lagrangian deformation variables increases, by calculating the condition 

number of the inertia matrix for the more significant equilibrium 

configurations. 

In the sequel, for the convenience of the reader, some theoretical results known in 

literature (see e.g. [36]), useful in order to validate the model according to the 

above guidelines, are reported. 

I Hinged link having constant cross-section ( Fig. 11): 

• Natural frequencies: 
2

2 , 1, 2,
2

i
i

EIf i
L m

λ
π

= =   

where 

3.92660231,7.06858275, 10.21017612, 13.35176878, 16.49336143, (4 1) 5.
4i i iπλ = + >

(31) 

• Tip rotation when gq mg= − and 
2

mgLF = : 
3

24
mgL

EI
α = .  

 

Fig. 11  Static deflection of a hinged link with constant cross-section. 

 

II Clamped link having constant cross-section (Fig. 12): 

• Natural frequencies: 
2

2 , 1, 2,
2

i
i

EIf i
L m

λ
π

= =   
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where 

1.87510407,4.69409113, 7.85475744, 10.99554073, 14.13716839, (2 1) 5.
2i i iπλ = − > (33) 

• Tip vertical deflection δ  and tip rotation α : 

3

2

4

0, 0, 0
3

0, 0, 0
2

0, 0, 0
8

g

g

g
g

FL se F C q
EI

CL se F C q
EI

q L
se F C q

EI

δ


≠ = =




= = ≠ =



= = ≠


 

2

3

0, 0, 0
2

0, 0, 0

0, 0, 0
6

g

g

g
g

FL se F C q
EI

CL se F C q
EI

q L
se F C q

EI

α


≠ = =


= = ≠ =



= = ≠


 (34) 

 

Fig. 12  Static deflection of a clamped link with constant cross-section. 

II.7 A methodology to introduce the internal friction 
By using the modeling approach based on wavelet functions developed in the 

above paragraphs, a simple and effective technique has been developed, which 

allows to introduce friction in the dynamic model of a flexible robot. 

Friction is introduced by considering the beam dynamic equation with inertial 

load and internal friction 

4 3 2

4 2 2 0a
d d dEI k m

z t z t
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

; (35) 
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the work of the non conservative forces is 

3

2
10 0 0

( ) ( ) ( ) ( )
L L Ln

a a k k k k
k

dk dz k t w z dz t w z dz
t z δ γδ γ

=

 ∂ ′′ ′′≈ + ∂ ∂  
∑∫ ∫ ∫  . (36) 

By expanding the above relationship, the internal friction can be modeled with a 

matricial expression of the type fD q . 

II.8 Properties of the methodology and illustrative examples 
In this paragraph the properties of the proposed modeling methodology and some 

significant examples are presented. 

II.8.1 Static and dynamic precision 
The following result holds. 

Theorem 1. For any static equilibrium configuration, the position and the 

orientation of the planar robot constituted by flexible links having constant cross-

section calculated with the proposed method (27), at the endpoints of the partition 

intervals kZ , both in the presence of gravity actions due to links and payload, and 

in the presence of concentrated torques and forces control actions and 

disturbances, strictly coincide with those obtained by using the Euler-Bernoulli 

beam theory. 

Proof. By virtue of the sectioning principle of a structure, without loss of 

generality, the proof of the theorem is given in the case of a robot constituted by 

one flexible link in the horizontal configuration and referring to the endpoint nZ + ; 

moreover, it is supposed that the link partition is uniform like the one defined in 

(5). With regard to the case of concentrated forces and torques applied to the tip, 
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the proof easily follows from the way in which kwδ  and kwγ  are obtained. With 

regard to the gravity actions acting on the link, due to the distributed mass, it is 

worth noting that the corresponding system of generalized forces is the one 

reported in Fig. 13. 

 

Fig. 13 System of generalized forces equivalent to the gravity action. 

From Fig. 13 and from the first and the second of (34) it is 

( ) ( ) ( )2 21
2

12 4 12

n

i

mgl nl mgl nlmgl il
EI EI EI

α
−

=

= − − +∑ , (37) 

ut it results that 

3 2
2

1 3 2 6

n

i

n n ni
=

= + +∑ ; (38) 

in fact, by using the Principle of Induction, it is 

( )

( ) ( )

3 2 3 2 21
22

1
3 2

3 3 2 1 1 11
3 2 6 3 2 6 3 3 2 3 2 6

1 1 1 .
3 2 6

n

i

n n n n n n n n ni n

n n n

+

=

= + + + + = + + + + + + + + =

+ + +
= + +

∑
 

Therefore from (37), by virtue of (38), it is ( )3

6
mg nl

EI
α = − , in accord with the 

(34). 
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In order to complete the proof, it is worth noting that the vertical tip displacement 

of a clamped horizontal link subjected to a vertical concentrated force not applied 

to the tip, as shown in Fig. 14, results 

3 2

3 2
Fa Fa b
EI EI

δ = − − ; (39) 

 

Fig. 14 Link subjected to a vertical concentrated force not applied to the tip. 

From Fig. 13 and from (39) it is 

( ) ( ) ( ) ( ) ( )3 221 1
3 2

1 13 2 6 24

n n

i i

mgl nl mgl nlmgl mglil il n i l
EI EI EI EI

δ
− −

= =

= − − − − +∑ ∑ , 

which can be rewritten as 

( ) ( )3 224 41 1
3 2

1 16 2 6 24

n n

i i

mgl nl mgl nlmgl mgnli i
EI EI EI EI

δ
− −

= =

= − − +∑ ∑ , (40) 

but, by induction, 

4 3 2
3

1 4 2 4

n

i

n n ni
=

= + +∑ . (41) 
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Therefore from (40), by using (38) and (41), it is ( )4

8
mg nl

EI
δ = − , in accord with 

(34). On this basis, to illustrate the dynamic precision of the proposed method, 

consider the following example. 

 

Example 1. Let be considered a robot constituted by two flexible links made of 

aluminium having square hollow constant cross-section (Fig. 15) with length 

1 2 2mL L= = , side 1 2 20mml l= = , thickness 1 2 1mms s= = , 1 2E E= =  

10 26.4 10 N/m= ⋅ , 3 3
1 2 2.7 10 kg/mρ ρ= = ⋅ . 

 

Fig. 15  I-th flexible link having square hollow constant cross-section. 

Let be considered the above robot in the horizontal configuration with clamped 

joints. In this configuration the robot can be considered as a single clamped link 

of length 1 2L L+ . 

In Table I the first two theoretical frequencies ( Tf ) obtained from (33), the ones (

Wf ) obtained with the proposed method with two wavelet functions per link, the 

ones ( If ) obtained with the assumed mode method by using, for each link, the 
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first two modes of the clamped-free configuration, the frequencies ( Cf ) obtained 

with the assumed mode method by using, for each link, the first two modes of the 

hinged-free configuration  and, finally, the ones ( Pf ) obtained by using the Ritz-

Kantorovich expansion with two deformation polynomials per link are reported. 

 

( )Tf Hz  ( )Wf Hz  ( )If Hz  ( )Cf Hz  ( )Pf Hz  
1.32 1.32 1.36 1.51 1.32 
8.29 8.36 9.28 10.00 8.36 

Table I  First two frequencies of the robot with clamped links having constant cross-section. 

 

In Table II and in Table III the values of the tip rotation α  and of the vertical tip 

displacement δ  produced by an ending torque 10NmC = , by an ending vertical 

force 5NF =  and by the gravitational payload are respectively reported; these 

ones are calculated by using the theoretical formulae (34) and the models of the 

robot obtained with the various approaches, as above. 

 

 (deg)Tα  (deg)Wα  (deg)Iα  (deg)Cα  (deg)Pα  
C  7.81 7.81 6.26 5.83 7.81 
F  7.81 7.81 6.92 6.03 7.81 

gq  4.19 4.19 3.83 3.20 4.19 

Table II  Tip rotation for concentrated torque and force applied to the tip and for the gravitational payload. 

 (mm)Tδ  (mm)Wδ  (mm)Iδ  (mm)Cδ  (mm)Pδ  
C  273 273 241 211 273 
F  363 363 332 280 363 

gq  219 219 206 167 219 

Table III  Vertical tip displacement for concentrated torque and force applied to the tip and for the 
gravitational payload. 
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From Table I, Table II and Table III it emerges that the proposed method and the 

Ritz-Kantorovich expansion, which are equivalent in the considered case of links 

with constant cross-section and for the number of deformation freedom degrees 

chosen, result better than the ones based on the assumed mode method. 

 

Example 2. Let be considered a robot constituted by two flexible links made of 

steel having square hollow and piecewice constant cross-section (Fig. 16) with 

1 1 2 2 1.25mL L L L+ − + −= = = = , 1 40mml− = , 1 30mml+ = , 2 20mml− = , 2 10mml+ = , 

1 2 2mms s= = , 10 2
1 2 21 10 N / mE E= = ⋅ , 3 3

1 2 7.8 10 kg / mρ ρ= = ⋅ . 

 

Fig. 16  I-th flexible link having square hollow and piecewise constant cross-section. 

Let be considered the above flexible robot in the horizontal configuration with 

joints controlled by a very strong PD action. In Table IV and in Table V the 

values of the tip rotation , ,T W Pα α α  and of the vertical tip displacement 

, ,T W Pδ δ δ  produced by an ending torque 50NmC = , by an ending vertical force 

10NF = , and by the gravitational payload are respectively reported. The above 
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values are calculated by using the proposed method with 20 wavelet functions per 

link (regarded as the true one), with 2 wavelet functions per link, and the Ritz-

Kantorovich expansion with 2 deformation polynomials per link. Moreover, in 

Fig. 17, Fig. 18 and Fig. 19 the corresponding static deflection are reported. Note 

that the Theorem 1 is still verified, also if the cross-section is not constant, as it 

emerges from the reported results. 

 

 (deg)Tα  (deg)Wα  (deg)Pα  
C  26.5 26.5 17.2 
F  4.32 4.32 2.94 

gq  1.90 1.90 1.45 

Table IV  Tip rotation for ending torque and force and for gravitational payload. 

 

 (mm)Tδ  (mm)Wδ  (mm)Pδ  
C  377 377 257 
F  106 106 79 

gq  83 83 73 

Table V  Vertical tip displacement for ending torque and force and for gravitational payload. 
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Fig. 17  Static deflection for an ending torque of 50 Nm. 

 

Fig. 18  Static deflection for an ending force of 10 N. 
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Fig. 19  Static deflection due to the gravity payload. 

In Fig. 20 (Fig. 21) the frequency responses ending torque – tip rotation of the 

robot in the considered configuration are reported, which are obtained by using 

the proposed method with 10 (20) wavelet functions per link (regarded as the true 

one), with 2 (4) wavelet functions per link and the Ritz-Kantorovich expansion 

with 2 (4) deformation polynomials per link. It is worth observing that the 

frequency range in which the proposed model is reliable widens, starting from the 

zero frequency, when the number of wavelet functions per link increases. 
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Fig. 20  Frequency responses ending torque – tip rotation of the robot controlled by a strong PD action, with 2 
Lagrangian deformation variables per link. 

 

Fig. 21  Frequency responses ending torque – tip rotation of the robot controlled by a strong PD action, with 4 
Lagrangian deformation variables per link. 

Let be considered the above robot in the horizontal configuration with joints 

controlled by a weak PD action. In Fig. 22 (Fig. 23) the frequency responses 

ending torque – tip rotation of the robot in the considered configuration are 

reported. They are obtained by using the proposed method with 10 (20) wavelet 
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functions per link (regarded as the true one), with 2 (4) wavelet functions per link 

and the Ritz-Kantorovich expansion with 2 (4) deformation polynomials per link. 

It is important to note that, in this case, the first two modes of the controlled robot 

are due to the rigid motion, whereas the following ones are due to the flexibility 

and are negligible with respect to the first two modes, i.e. the robot behaviour is 

practically like a rigid one; this remark shows that the number of Lagrangian 

deformation variables required to obtain a good model depends, besides on the 

bandwidth of the command signals and of the disturbances, also on the used 

control system. 

 

Fig. 22  Frequency responses ending torque – tip rotation of the robot controlled by a weak PD action, with 
with 2 Lagrangian deformation variables per link. 
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Fig. 23  Frequency responses ending torque – tip rotation of the robot controlled by a weak PD action, with 
with 4 Lagrangian deformation variables per link. 

II.8.2 Numerical stability 
The proposed method results numerically very stable with respect to other ones 

known in literature, in particular the one based on the Ritz-Kantorovich expansion 

with polynomials, as it clearly emerges from the following example. 

 

Esempio 3. With reference to the robot considered in the Example 1, in Table VI 

the condition numbers of the inertia matrices calculated with the proposed method 

and with the Ritz-Kantorovich expansion are reported, for several degrees of the 

polynomials Pn  and numbers of the wavelet functions Wn , such to always 

consider the same number of deformation freedom degrees Fn  per link. 

Fn  Wn  Pn  Wcond  Pcond  
2 2 2 6.16∙103 5.48∙104 
6 6 6 2.35∙105 3.68∙1011 
10 10 10 1.57∙106 2.53∙1018 

Table VI  Condition numbers of the inertia matrices when the number of deformation DOF increases. 
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For a more global evaluation, according to the proposed guidelines, the frequency 

responses ending torque – tip rotation of the robot in the considered configuration 

are reported in Fig. 24. It is worth noting that the frequency response, obtained by 

using the proposed method with 2 wavelet functions per link, in the considered 

frequency range practically coincide with the true one, which is still calculated by 

using the proposed method, but with 20 wavelet functions per link. Finally in Fig. 

25 the frequency responses ending torque – tip rotation of the robot in the 

considered configuration are reported, which are obtained by using the proposed 

method with 10 and 20 wavelet functions per link and the Ritz-Kantorovich 

expansion with 10 deformation polynomials per link. It is worth observing that the 

frequency response obtained with the Ritz-Kantorovich expansion results strongly 

impaired by the numerical instability, in accord to Table VI and Remark 8. 

 

Fig. 24  Frequency responses ending torque – tip rotation with 2 Lagrangian deformation variables per link. 
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Fig. 25  Frequency responses ending torque – tip rotation with 10 Lagrangian deformation variables per link. 

 

Remark 8. It is explicitly highlighted that, because of the ill-conditioning of the 

inertia matrix, for 10pn ≥  some eigenvalues of the dynamic matrix of the linearized 

model of the robot have even positive real part! This is true also in the simple case 

of a single clamped link robot (Fig. 26). In fact, in this case, the dynamic model, 

in absence of gravity, results: 

, TBq Kq Hu y H q+ = = , (42) 

where: 

[ ],
F

u y
C

δ α
 

= = 
 

, (43) 

or, in an equivalent way, 
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1 1

0 0
0

0 .T

I
x x u

B K B H

y H x

− −

   
= +   −   
 =  


 (44) 

By supposing that 25m, 1kg / m, 1NmL m EI= = =  and by using the proposed 

method with 10 wavelet functions per link, it is easy to verify that: 

[ ]1 1 2 2 3 3 4 4 5 5
Tq δ γ δ γ δ γ δ γ δ γ=  (45) 

312 0 54 13 0 0 0 0 0 0
0 8 1 33 0 0 0 0 0 0

54 13 312 0 54 13 0 0 0 0
13 3 0 8 13 3 0 0 0 0
0 0 54 13 312 0 54 13 0 01
0 0 1 33 0 8 1 33 0 0420
0 0 0 0 54 13 312 0 54 13
0 0 0 0 1 33 0 8 1 33
0 0 0 0 0 0 54 13 156 22
0 0 0 0 0 0 1 33 2 24

B

− 
 − 
 −
 − − − 
 −

=  
− − − 

 −
 

− − − 
 − 
 − − − 

, (46) 

 

 

Fig. 26. Single link flexible robot. 
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2 40 1 26 0 0 0 0 0 0
0 8 6 2 0 0 0 0 0 0

1 26 2 40 1 26 0 0 0 0
6 2 0 8 6 2 0 0 0 0
0 0 1 26 2 40 1 26 0 0
0 0 6 2 0 8 6 2 0 0
0 0 0 0 1 26 2 40 1 26
0 0 0 0 6 2 0 8 6 2
0 0 0 0 0 0 1 26 1 26
0 0 0 0 0 0 6 2 6 4

K

− 
 − 
 − − −
 − 
 − − −

=  
− 

 − − −
 

− 
 − − − 
 − 

, (47) 

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

T

H  
=  
 

; (48) 

instead, by using the Ritz-Kantorovich expansion with 10 deformation 

polynomials, it is easy to verify that: 

1 2 3 4 5 6 7 8 9 1 0

T

f f f f f f f f f fq q q q q q q q q q q =   , (49) 

2

, 2,3,...,11; 2,3,...,11
1

i jLB i j
i j

+ + 
= = = + + 

, (50) 

from which: 

6.25 2 2.60 4 1.12 4 9.39 7 4.36 8
2.60 4 1.12 4 4.88 4 4.36 8 2.03 9
1.12 4 4.88 4 2.17 5 2.03 9 9.54 9

9.39 7 4.36 8 2.03 9 2.27 13 1.08 14
4.36 9 2.03 9 9.54 9 1.08 14 5.18 14

e e e e e
e e e e e
e e e e e

B

e e e e e
e e e e e

 
 
 
 

=  
 
 
 
 







     





; (51) 
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{ } 3

0, 4 0
, ,( 1)( 1) , 4 0

3

2,3,...,11; 2,3,...,11 ,

i j
ij ij

i j
K k k ij i j L i j

i j

i j

+ −

+ − <
= = − − + − ≥ + −

= =
 (52) 

2 3 4 10 11

2 3 9 102 3 4 10 11

25 125 625 9765625 48828125
.

20 75 500 19531250 107421875

T

T

L L L L L
H

L L L L L
 

= = 
 

 
=  
 









 (53) 

The condition number of the inertia matrix B (46), obtained with the proposed 

method, is 27.85 10⋅ , whereas the one of the inertia matrix (51) computed by 

using the Ritz-Kantorovich expansion is 211.78 10⋅ ! 

Moreover, in the following the exact natural angular frequencies Tω , calculated 

by using the theoretic method, the ones calculated by using the proposed method 

with 10 and 20 wavelet functions, respectively 10Wω  and 20Wω , and finally, due to 

ill-conditioning problems, the eigenvalues Pλ  of the dynamic matrix computed by 

using the Ritz-Kantorovich expansion are reported: 

 

Tω =0.1406, 0.8814, 2.4679, 4.8361, 7.9944, 11.9422, 16.6796, 22.2066, 28.5232, 

35.6293, 

10Wω =0.1406, 0.8818, 2.4768, 4.8928, 8.1208, 13.4909, 19.7305, 28.6136, 

40.6478, 59.7951, 
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20Wω =0.1406, 0.8814, 2.4685, 4.8407, 8.0145, 12.0067, 16.8460, 22.5689, 

29.1814, 36.2766, 

Pλ = i± 0.1340, i± 0. 7439, i± 1.5938, i± 3.377, ± 5.6917, i± 10.99, i± 28.46, ±

36.99, i± 98.28, i± 205.57. 

 

It is worth noting that, because of the ill-conditioning of the inertia matrix (51), 

obtained by using the Ritz-Kantorovich expansion, some eigenvalues of the 

dynamic matrix are even positive real! 

 

Esempio 4. Let be considered a robot constituted by two flexible links made of 

steel, having square hollow and linearly varying cross-section (Fig. 27) with 

1 2 2.5mL L= = , 1 50mml− = , 1 30mml+ = , 2 30mml− = , 2 10mml+ = , 1 2 2mms s= =

, 10 2
1 2 21 10 N / mE E= = ⋅ , 3 3

1 2 7.8 10 kg / mρ ρ= = ⋅ . 

 

Fig. 27  I-th flexible link having square hollow and linearly varying cross-section. 

Let be considered the above flexible robot in the horizontal configuration with 

clamped joints. 
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In Fig. 28 (Fig. 29) the frequency responses ending torque – tip rotation of the 

robot in the considered configuration are reported, which are calculated by using 

the proposed method with 20 wavelet functions per link (regarded as the true one), 

with 2 (10) wavelet functions per link and the Ritz-Kantorovich expansion with 2 

(10) polynomials per link. Also in this case the model obtained with the Ritz-

Kantorovich expansion results strongly impaired by numerical instability. 

 

Fig. 28  Frequency responses ending torque – tip rotation with 2 Lagrangian deformation variables per link. 
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Fig. 29  Frequency responses ending torque – tip rotation with 10 Lagrangian deformation variables per link. 

 

II.8.3 Computational efficiency 
By virtue of the sparseness of the matrices B and Ai (Remark 4 and 7) the 

proposed method results computationally very efficient, as it emerges from the 

following example. 

 

Esempio 3. S Let be considered a robot constituted by three flexible links having 

square hollow constant cross-section with parameters 1 2 3 2.5mL L L= = = , 

1 2 3 50mml l l= = = , 1 2 3 2mms s s= = = , 1 2 3E E E= = =  10 221 10 N / m= ⋅ , 

1 2 3ρ ρ ρ= = = 3 37.8 10 kg / m= ⋅ . Let be further supposed that (Fig. 2) 1 2M M+ +=  

3 1M M+ −= = =  2 3 1M M kg− −= = =  , 1 2J J+ += =  3 1J J+ −= =  2
2 3 1kg mJ J− −= = ⋅ . 

In Table VII and Table VIII the number of multiplications required to evaluate the 

inertia matrix B and the gradient of the kinetic energy c are reported, which are 
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computed by using the various methods, under the assumption that the number of 

Lagrangian deformation variables per link is 4 (4 polynomials, 4 modes, 4 wavelet 

functions) and 8 (8 polynomials, 8 modes, 8 wavelet functions) respectively. 

 

 B  c  B and c  
Proposed method 344 878 1222 
Polynomials 1147 2770 3917 
Clamped-free modes 1179 2830 4009 
Hinged-free modes 1001 2526 3527 

Table VII  Number of multiplications with 4 deformation variables per link. 

 B  c  B and c  
Proposed method 687 1712 2399 
Polynomials 4232 10915 15147 
Clamped-free modes 4101 10997 15098 
Hinged-free modes 3665 10050 13615 

Table VIII  Number of multiplications with 8 deformation variables per link. 

 

Remark 9. It is worth noting that when the number of Lagrangian deformation 

variables has doubled also the number of multiplications required by the proposed 

method has about doubled, instead, the one required by the other methods has 

about quadrupled. 

 

In Table IX the time costs required by the dynamic simulation of the above robot 

are reported, in the hypotheses that: 

• 4 Lagrangian deformation variables per link are used; 

• each joint of the robot is controlled by using a PD controller with 
35 10 , 250p dK K= ⋅ = ; 
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• the torque disturbance [ ]3( ) 1 10 1( 3) 1( 4)d t t t= ⋅ − − −  acts on the first joint; 

• the initial configuration of the link is undeformed with angles: 1 20degα = − , 

2 0degα = , 3 20degα = − ; 

• the numerical solver Matlab® ode15s is used, with variable step size and 

relative tolerance of 510− . 

 

Proposed method 26.4 s 
Polynomials 83.9 s 
Clamped-free modes 95.1 s 
Hinged-free modes 146.8 s 

Table IX  Time costs of the dynamic simulation with 4 Lagrangian deformation variables  per link. 

 

In Table X the time costs required by the dynamic simulation of the above robot 

are reported, under the same assumptions as above, but by using 6 Lagrangian 

deformation variables per link. 

 

Proposed method 124.6 s 
Polynomials 18 days(estimated) 
Clamped-free modes 648.5 s 
Hinged-free modes 722.7 s 

Table X  Time costs of the dynamic simulation with 6 Lagrangian deformation variables  per link. 

 

It is interesting to note that, when the polynomials of the Ritz-Kantorovich 

expansion are used, the time cost required by the dynamic simulation, which has 

been estimated on the basis of a shorter simulation, is practically prohibitive. The 

same result is obtained also if the relative tolerance is 410− . This fact and the 



65 
 
 

 

warnings messages, due to ill-conditioning of the inertia matrix, displayed by the 

Matlab solver during the simulation, make the the Ritz-Kantorovich expansion 

practically inapplicable. 

In Table XI the time costs required by the dynamic simulation of the above robot 

are reported, under the same assumptions as above, but supposing that 8 

Lagrangian deformation variables per link are used. 

 

Proposed method 504.1 s 
Polynomials 775 days (estimated) 
Clamped-free modes 4312.4 s 
Hinged-free modes 5254.3 s 

Table XI  Time costs of the dynamic simulation with 8 Lagrangian deformation variables  per link. 

 

It is worth noting that, in this case, the simulation is practically possible only with 

the proposed method, even if the relative tolerance is 410−  or 310− . 

With reference to the last simulation, the plots of the ending deflections iδ  and of 

the ending rotations iγ  of each link, obtained with the proposed method, are 

reported in Fig. 30, Fig. 31 and Fig. 32 

 

In conclusion, from the above comparisons it emerges that the simulation times 

required by the other models are markedly longer than those required by the 

proposed method as shown in the above tables, both because, due to numerical 

instability problems, a very small integration step is sometimes required, and 

because the calculation of the inertia matrix B and of the gradient of the kinetic 

energy c is very much cumbersome, as it is clear from Table VII and Table VIII. 
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Fig. 30  Time histories of the terminal deflections iδ  of the three links. 

 

Fig. 31  A detail of Fig. 30. 

0 1 2 3 4 5 6 7
-50

-40

-30

-20

-10

0

10

20

30

40

50

time [s]

[c
m

]

 

 

δ1

δ2

δ3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-50

-40

-30

-20

-10

0

10

20

30

40

50

time [s]

[c
m

]

 

 

δ1

δ2

δ3



67 
 
 

 

 

Fig. 32  A detail of the time histories of the terminal rotations iγ  of the three links. 
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CHAPTER III - A VERY EFFICIENT VARIATION TO THE 

ASSUMED MODE METHOD 

III.1 Introduction 
In this chapter a variation to the assumed mode method is presented which allows 

to obtain the analytical model of a flexible robot and which results drastically 

more efficient, from a computational point of view, than the classic assumed 

modes method. 

The presented method consists in using suitable linear combinations of the modes 

of each link as basis functions to evaluate the deflection, such a way to minimize 

the dependency of the position of the generic link on the Lagrangian variables of 

the previous links. In this way, the number of terms of the inertia matrix and of 

the Coriolis and centrifugal vectors is drastically reduced. 

The model is derived by firstly analytically calculating, if the links are 

homogeneous and with constant cross-section, or otherwise by numerically 

calculating, the parameters of the closed-form expression of the Lagrangian 

function of the generic link supposed free; afterwards, the analytical dynamic 

model of the whole robot is obtained by using an iterative interconnection 

algorithm, which can be easily implemented by using a symbolic manipulation 

language. 

The simplicity and the efficiency of the proposed method is shown with very 

significant examples. 

The results presented in this chapter are based on [47]. 
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III.2 Hypotheses, notations and preliminaries 
In this chapter it is considered, for simplicity and for brevity, the case of planar 

robots with fixed base, constituted by ν  flexible links having a straight line as 

unstressed configuration, both rigid ends of negligible dimensions with respect to 

its length, and rotation axes orthogonal to the vertical plane. In Fig. 33 a 

representation of the i-th link in the stressed and unstressed configuration is 

shown. 

 

Fig. 33  Schematic representation of a flexible link. 

The following preliminary notations are introduced for the generic i-th link: 

• iL  is the length of the link; 

• iE  is the Young’s modulus for the flexible part of the link; 

• iI is the area moment of inertia for the cross-section of the link; 

• im  is the mass per unit length of the flexible part of the link; 

• ,i iM M− +  are the masses of both rigid ends of the link; 
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• ,i iJ J− +  are the inertia moments of both rigid ends of the link with respect 

to rotation axes; 

• , ,oi oi ix y α  are the absolute motion coordinates of the link supposed rigid; 

• ( , )id z t  is the vertical deflection of the link in relative coordinates. 

III.3 Lagrangian function of a flexible link 
In this paragraph the Lagrangian function of a flexible link is obtained. 

By using the above notations, the coordinates ( , )i ix y  of a generic point of the i-th 

deflected link can be expressed as: 

cos sin

sin cos .
i o i i i i

i o i i i i

x x z d

y y z d

α α

α α

= + −

= + +
 (54) 

The assumed mode method approximates the deflection ( , )id z t  as 

1
( , ) ( ) ( )

in

i k k
k

d z t t zη ψ
=

≈∑  (55) 

by using as functions ( )k zψ  the modes deriving from the solution of the Euler-

Bernoulli beam equation with distributed inertial load 

2 2 2

2 2 2

( , ) ( , ) 0.d d z t d z tEI m
z z t

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

 (56) 

The above modes can be easily analytically computed if EI const= ; otherwise 

they can be numerically computed by using standard software packages or by 

using the method proposed in the previous chapter. 
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By taking the derivatives of (54) and by using (55), the velocity vector 

components of a generic point along the deformed link are obtained 

1 1

1 1

sin( ) sin( ) cos( )

cos( ) cos( ) sin( )

i i

i i

n n

i o i i i k k i k k i i
k k

n n

i o i i i k k i k k i i
k k

x x z

y y z

α α η ψ α η ψ α α

α α η ψ α η ψ α α

= =

= =

= − − −

= + + −

∑ ∑

∑ ∑

   

   

 (57) 

where the dependency on z and on t has been omitted for simplicity and ni is the 

number of Lagrangian deformation variables of the i-th link. 

The kinetic energy of the i-th link can be computed as follows 

2 2 2 2 2 2 2

0
2

1

1 1 1 1( ) ( ) ( )
2 2 2 2

1 .
2

i

i i

i

i

L

i i i i i o i o i i i i i z L i z L

n

i i k k z L
k

T m x y dz M x y J M x y

J

α

α η ψ

− − +
= =

+
=

=

= + + + + + + +

 
′+ + 

 

∫

∑

     

 

 (58) 

By substituting (57) into (58), after some tedious manipulations and by omitting, 

for the simplicity of notations, the subscript i, it is 

( ) ( ) ( ) ( )( )( ){
( ) ( ) ( )

( )( )}

2 2 22 2 2 21 m ( ) m ( ) m ( )
2

2 m ( ) m ( ) 2 m ( ) co s sin

2 m ( ) cos sin ,

f

T T T T
o o f f f f f f f f

T T T T T T
f f f f f f f f f f f o o

T T
f f f o o

T M x y M L q J L q J q B q M L L q

q B q k q J L q M L L q M L q h q x y

N h q M L q y x

α

α α α α

α α α

+ + +

+ + +

+

′= + + + + + + + +

′+ + + + − + + +

+ + + −

   

       

    

 (59) 

where: 

• M M mL M− += + + , 
3

3
LJ J m J− += + + , 21

2
N M L mL+= + ; 

• the matrix n n
fB R ×∈  is derived by using the relationship 



72 
 
 

 

( )2

0

1 1m
2 2

L
T T
f f f f fm q dz q B q=∫    ; (60) 

• the vector nh R∈  is derived by using the relationship 

0

m
L

T T
f f fm q dz h q=∫   ; (61) 

• the vector nk R∈  is derived by using the relationship 

0

m
L

T T
f f fm q zdz k q=∫   ; (62) 

• n
fq R∈  represents the vector of the Lagrangian deformation variables 

[ ]1 2
T
f nq η η η=  , (63) 

• m ( ) n
f z R∈  represents the vector of the spatial deformation modes 

[ ]1 2mT
f nψ ψ ψ=  . (64) 

 

Remark 10. It is worth noting that the matrix fB  and the vectors h  and k  can be 

computed off-line, una tantum, for each link and the kinetic energy of the i-th link 

(59) can be conveniently rewritten in a compact matricial form as 

1
2

T
i i i iT q B q=    , (65) 
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where: 

• T T T
i l i l iq q q =    , ,T T T

l i o i o i l i i f iq x y q qα   = =    ; 11 12

12 22

i i
i T

i i

B B
B

B B
 

=  
  

 


 
; 

• 11

0
0

i
i

i

M
B

M
 

=  
 

 ,  
( )
( )12

m ( ) cos sin sin
;

m ( ) sin cos cos

T T T
i f i i f i i f i i i i i i

i T T T
i f i i f i i f i i i i i i

M L q h q N h
B

M L q h q N h

α α α

α α α

+

+

 − + − −
 =
 − + + 





 

• 
( )( )22

22

m ( )T T T
i f i f i f i i i f i i f i i

i

i f i

J q B q M L L q k
B

k B

+ + + + =  
  




 
; 

• m ( )T T T
i i i f i ih h M L+= + ; 

• m ( ) m ( )T T T T
i i i f i i i i f i ik k J L M L L+ +′= + + ; 

• m ( )m ( ) m ( )m ( )T T
f i f i i f i i f i i i f i i f i iB B M L L J L L+ + ′ ′= + + . 

Once the kinetic energy has been derived, it is necessary to calculate the elastic 

potential energy eiU  and the gravitational potential one giU  of the i-th link. The 

elastic potential energy due to the deformation of the i-th link results 

( )2

0

1 1m
2 2

iL
T T

e i i i f i f i f i i f iU E I q dz q K q′′= =∫ . (66) 

The gravitational potential energy results 

0

,
i

i

L

g i i i oi i i z LU mg y dz M gy M gy− +
== + +∫  (67) 
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where g is the gravity acceleration. By substituting the second of (54) into (67) 

and by using (55) it is 

( )sin m ( ) cos .T T
g i i o i i i i f i i f i i f i iU M gy N g M L q h q gα α+= + + +  (68). 

 

Remark 11. Let be noted that, by virtue of the choice which has been made of the 

Lagrangian deformation variables, the contribute to the kinetic energy and to the 

gravitational potential one of the ending inertias M + and J +  depends on all the 

Lagrangian deformation variables of the vector fq . 

III.4 Interconnection algorithm and Lagrangian function of the 

robot 
In this paragraph an algorithm for the calculation of the Lagrangian function of a 

robot constituted by several interconnected flexible links is presented, starting 

from the results, valid for a single link, stated in the previous paragraph. 

This algorithm allows to calculate the kinetic and the potential energies of a robot 

constituted by v  flexible links having kinetic energy given by (59), elastic 

potential energy given by (66), and gravitational potential one given by (68). 

It is useful to observe that, being the 1-st link hinged to the base, the variables 1ox  

and 1oy  do not appear in the kinetic energy expression, hence 

1 1 1 1
1
2

T
l lT q B q=   , (69) 
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where 1 221B B=  . Moreover, the rigid translation variables o ix  and , 2o iy i ν≤ ≤  

depend on , , 1, , 1k f kq k iα = − ; in fact from equations (57) the following 

recursive relationship can be derived 

1

1
( , )o i o i i

i i f i
o i o i f i

x x
A q

y y q
α

α+

+

     
= +     

     

 

  
, (70) 

where ( )2 1in
iA R × +∈  has the following expression 

sin m ( ) cos sin m ( )
.

cos m ( ) sin cos m ( )

T T
i i f i i f i i i f i i

i T T
i i f i i f i i i f i i

L L q L
A

L L q L
α α α
α α α

 − − −
=  −  

 (71) 

Therefore, equation (65), for 2i ≥ , can be rewritten as function of the only 

Lagrangian variables as follows 

1 1 1 1 1 1 1 1
1 1
2 2

T T T
i i i i i i i i iT q A B A q q B q− −= =     

    , 1 1
T T T

i l l iq q q =    , 

1 1
1 1

1i

i
i

n

A A O
A

O I
−

−
+

 
=  
 




, (72) 

in which pI  denotes the identity matrix of order p and O is a zero matrix of 

suitable dimensions. 

Finally, the kinetic energy of the robot constituted by ν  flexible links results 

1
2

TT q Bq=   , (73) 
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where 1q q ν=   and the inertia matrix B is obtained “by adding” the matrices Bi 

according to the recursive scheme reported in Fig. 34. 

 

Fig. 34  Composition scheme of the matrix B. 

Remark 12. It is important to note that, by virtue of the Lagrangian deformation 

variables chosen, the transformation matrix iA  depends on all the Lagrangian 

deformation variables of the vector fq . The above consideration and Remark 10 

make the inertia matrix of the robot B and the vector c of Coriolis and centrifugal 

terms very burdensome to compute because of the explosive number of their 

terms, which notably increases when the number of the Lagrangian deformation 

variables of each link increases. 

 

Concerning the elastic potential energy of the whole robot, it is easy to verify that 

it results 

1
2

T
eU q Kq= , (74) 

where the matrix K is the block diagonal matrix 1 2(0, ,0, , ,0, )K diag K K Kν=  . 
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Finally, the gravitational potential energy of the whole robot gU  is obtained as the 

sum of 

( ) ( )
1

1
sin m ( ) cos sin m ( ) cos

i
T T T

gi i i i fi i fi i i i i fi i fi i fi i
k

U M g L L q N g M L q h q gα α α α
−

+

=

+ + += +∑ ,(75) 

 where giU  is the gravitational potential energy of the i-th link, which has been 

obtained from (68) by expressing o iy  as function of the Lagrangian deformation 

variables. 

 

Remark 13. It is useful to note that, once the kinetic and potential energies of the 

generic flexible link have been calculated in a hybrid symbolic-numeric form, the 

ones of the whole robot can be obtained by implementing the proposed 

interconnection algorithm with a symbolic manipulation software language. 

III.5 Dynamic model of the robot 

In this paragraph the dynamic model of the whole robot is derived in the more in 

[40], [43] by using the Euler-Lagrange method. 

It is easy to show that this model, under the assumptions that the control actions 

1 2C C Cν  and the disturbances d dC F  are the ones reported in Fig. 35, 

results 

( ) 1( ) ( )
2

T
g c c d d

d B q q q B q q Kq U H u H u
dt q q

∂ ∂
− + + = +

∂ ∂
   , (76) 

where: 

[ ] [ ]1 2 ,T T
c d d du C C C u C Fν= = , (77) 
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1

11 122

21 22

1 2

1 1 0
m ( )

0 1 1
m ( )

0 0 1
,

0 0 0

0 0 0

f

d df

d d
c d

d d

O L O

h hO O L
h h

H H
O O O

h h
O O O

ν ν

− 
 ′− 
 −
 ′−   

  
 = = 
  
     

 
 
 
  











 







   

, (78) 

with 

[ ]
( ) ( ) ( )

1 1

2

0 , 1, , 1, 1 m ( ) ,

sin m ( ) cos m ( )sin , 1,2, , ,

T T
di d f

T T T
di i i d fi i fi i d fi i i d

h O i h L

h L L q L i

ν ν νν

α α α α α α ν

′ = = − =  
 = − − − − − − =




(79) 

being O a zero vector of suitable dimension. 

 

 

Fig. 35 Control actions and disturbances acting on the robot. 



79 
 
 

 

III.6 A method to reduce the computational cost 
In order to reduce the computational cost of the assumed modes method, let be 

considered the two Lagrangian deformation variables δ and γ , which define the 

tip deflection and orientation of the generic flexible link. 

These variables depend on the Lagrangian ones fq  as follows: 

( )
( )

T
f i f
T
f i f

m L q
m L q

δ
γ

  
=    ′    

. (80) 

Let be 

[ ]1 2 2ˆ f nq η η η δ γ−=   (81) 

the vector obtained by substituting two Lagrangian variables of the vector fq , e.g. 

1nη −  and nη , with the variables δ and γ . 

The vectors fq  and ˆ fq  are related by the following matricial expression: 

11

22

22

1 2 2 1 1

1 2 2 1

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

nn

n n n n

n n n n

L L L L L
L L L L L

ηη
ηη

ηη
ψ ψ ψ ψ ψ ηδ
ψ ψ ψ ψ ψ ηγ

−−

− − −

− −

    
    
    
    

=     
    
    
    

′ ′ ′ ′ ′        





      







, (82) 

which can be rewritten in compact form as 

ˆ f fq Tq= . (83) 

Hence, the deflection of the generic link (55) can be expressed as 
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1 ˆˆ ˆ( , ) m m mT T T
f f f f f fd z t q T q q−= = = , (84) 

where m̂T
f  represents the new transformed modal basis. 

 

Remark 14. The new modal basis allows to represent the tip deflection and 

orientation of the generic flexible link, each of them with one Lagrangian 

deformation variable (δ and γ ), instead of using a linear combination of all the 

Lagrangian deformation variables, as it has been shown in (80). The above 

consideration, in the light of Remark 11 and Remark 12, allows to strongly reduce 

the dependency of the inertia matrix and of the vector of Coriolis and centrifugal 

terms on the Lagrangian deformation variables; this way, significant 

improvements in terms of computational cost and memory usage have been 

obtained. 

 

Remark 15. It is worth noting that the above linear transformation of the 

deformation variables does not impair the numerical stability of the model with 

respect to the model obtained with the classic assumed mode method. 

III.7 Validation results 
In this paragraph some validation results are presented, which demonstrate the 

computational improvement obtained with the proposed method. 

 

Example 1. Let be considered a robot constituted by flexible links made of 

aluminium having square hollow constant cross-section (see Fig. 36Fig. 15) with 
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2miL = , 20mmil = , 1mmis = , 10 26.4 10 N / miE = ⋅ , 3 32.7 10 kg / miρ = ⋅ , where 

iρ  denotes the density of the i-th flexible link. 

 

Fig. 36  I-th flexible link having square hollow constant cross-section. 

In Table XII (Table XIII) the number of multiplications to evaluate the inertia 

matrix B (the gradient of the kinetic energy c) required by the classic assumed 

modes method and by the proposed one are compared, under the assumption that 

the number of modes per link is 4 and by increasing the number of links. 

 

 optimized 
modal method 

classic 
modal method 

ratio 

2 link 132 407 3.08 
3 link 344 1178 3.42 
4 link 663 2308 3.48 

Table XII  Number of multiplications to evaluate the inertia matrix B with 4 modes per link. 

 optimized 
modal method 

classic 
modal method 

ratio 

2 link 324 1052 3.24 
3 link 878 2887 3.28 
4 link 1705 5624 3.30 

Table XIII  Number of multiplications to evaluate the gradient of the kinetic energy c with 4 modes per link. 
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Note that the computational advantage of the proposed method is really notable 

(over 300%). 

 

In Table XIV (Table XV) the number of multiplications to evaluate the inertia 

matrix B (the gradient of the kinetic energy c) required by the classic assumed 

modes method and by the proposed one are compared, under the assumption that 

the number of links is 3 and by increasing the number of modes per link. 

 

 optimized 
modal method 

classic 
modal method 

ratio 

3 modes 257 734 2.85 
4 modes 344 1178 3.42 
5 modes 448 1849 4.13 

Table XIV  Number of multiplications to evaluate the inertia matrix B with 3 links. 

 

 optimized 
modal method 

classic 
modal method 

ratio 

3 modes 665 1786 2.68 
4 modes 878 2887 3.29 
5 modes 1101 4391 3.99 

Table XV  Number of multiplications to evaluate the gradient of the kinetic energy c with 3 links. 

 

Note that the computational advantage increases when the number of modes per 

link increases. The computational improvement obtained allows to reduce the 

time required by the dynamic simulation of the robot and to improve the 

implementation of the robot dynamic model in terms of memory usage.  
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CHAPTER IV - TRAJECTORY PLANNING 

IV.1 Introduction 
Trajectory planning and “kinematic” inversion for flexible robots are complex 

problems [27], [29], [31], both for structure flexibility and for internal and 

external forces, in particular the gravity one. 

Moreover, the distributed parameter model of the flexible structure makes the 

control problem hard to solve, since the Lagrangian deformation variables used to 

approximate the structure flexibility are almost always not directly controllable, 

i.e. a joint controlled flexible structure is a sub-actuated system; 

However, flexible structures must be operated and/or solicited at low frequencies, 

in order to avoid their breaking and/or annoying noises 

Considering the above important remarks, a methodology for trajectory planning 

in the workspace has been developed. 

IV.2 Presentation of the methodology 
Let be considered a desired trajectory in the robot workspace and let it be divided 

into a certain number of points; for each of them a “kinematic” inversion is made, 

based on the static nonlinear flexible robot model, which is obtained by using the 

sectioning and congruence techniques known by the building science. 

For each point of the trajectory, the relative joint angles are calculated which 

allow to rigorously obtain the desired end-effector pose; the desired joint 

trajectory is then obtained through suitable interpolation. 
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In this way the regulation problem of the end-effector is always solved. The 

tracking problem, instead, is solved with an error which tends to zero when the 

motion velocity tends to zero. 

IV.3 An example of flexible static model derivation 
In order to simplify the comprehension of the proposed methodology, the 

following example is reported in this paragraph. 

Let be considered a planar flexible robot constituted by two flexible links (Fig. 

37) 

By using the same notations employed in Chapter I, the direct relationship which 

allows to express the position of the end-effector as a function of the rigid motion 

absolute angles results: 

3 1 1 1 1 2 2 2 2

3 1 1 1 1 2 2 2 2

cos sin cos sin

sin cos sin cos
o

o

x L L

y L L

α δ α α δ α

α δ α α δ α

= − + −

= + + +
 (85) 

The tip deflections 1δ  and 2δ  can be expressed as a function of the absolute 

angles 1α  and 2α , by using the sectioning and congruence techniques known by 

the building science. 

 

In order to calculate 2δ , note that on the second link only gravitational load acts 

2 2 2cosq m g α= ; (86) 

from (34) and from (86) it results 
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4
2 2

2 2cos
8

m gL
EI

δ α= − . (87) 

 

Fig. 37  Two-link flexible robot. 

In order to calculate 1δ , instead, note that on the first link, in addition to the 

gravitational load 

1 1 1cosq m g α= , (88) 

also a vertical force applied to the tip 

21 2 2T m L g= −  (89) 

and a torque applied to the tip act 

2
2 2 2

21
cos

2
m gLM α

= − , (90) 
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due to the effect of the second link on the first one. 

The tip deflection 1δ  can be calculated by virtue of the effects superposition 

principle 

1 1 1 1g T Mδ δ δ δ= + +  (91) 

where: 

4
1 1 1

1
cos

8g
m gL

EI
αδ = −  (92) 

is the tip deflection due to the gravity, 

3
2 2 1 1

1
cos

3T
m L g L

EI
αδ = −  (93) 

is the tip deflection due to the vertical force 21T , 

2 2
2 2 2 1

1
cos

4M
m L g L

EI
αδ = −  

is the tip deflection due to the torque 21M . 

By substituting the (87) and (91) into the (85) the nonlinear functions are obtained 

3 1 1 2

3 2 1 2

( , )

( , )
o

o

x f

y f

α α

α α

=

=
 (94) 

which can be inverted by using the powerful Matlab algorithms which solve 

nonlinear equations systems. 
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CHAPTER V - CONTROL 

V.1 Calculation of an admissible nominal input 
The first problem to face in the joint control of a flexible robot, when a desired 

joint trajectory must be followed by the motion relative angles, is the calculation 

of an admissible control input which should be compatible with the entire rigid-

flexible robot dynamic. 

At the light of the above consideration, a methodology for the dynamic inversion 

has been developed, which consists of the following steps: 

• suitably transform the equations of the robot dynamic model so that the n 

joint control inputs appear only in n equations and the remaining equations 

result homogeneous; the above transformation is made by premultiplying 

both side of the differential equations system of the distributed parameter 

model for a transformation matrix T, which is obtained by placing side by 

side the orthogonal complement of the input matrix H and the input matrix 

H itself;  

( )( ) ( , ) ( )T B q q C q q q Dq Kq g q T Hu T H H⊥ ⋅ + + + + = ⋅ =        

• obtain the trajectory flexible components, once the desired joint trajectory 

has been assigned, by solving the homogeneous equations of the 

transformed system; 

• once all the trajectory components have been calculated, find the admissible 

control inputs by using the non homogeneous equations of the transformed 

system; 
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Fig. 38  Simulink block scheme for the calculation of an admissible input. 

In Fig. 38 the Simulink block scheme which implements the dynamic inversion 

described above is reported. 



89 
 
 

 

In particular, it is worth noting how the transformed system of equations has been 

divided into a subsystem of homogeneous equations (the left Matlab function 

block) which is used for the calculation of the Lagrangian deformation variables 

dynamics, and a subsystem of non homogeneous equations, which is used for the 

calculation of the nominal torques (the right Matlab function block). 

V.2 Controller design 
The nominal nonlinear model of the flexible robot is unstable, therefore it is 

locally stabilized in the neighbourhood of a sufficiently high number of the 

trajectory points with a linear decentralized controller of PD type having the 

following structure: 

( ) ( )( )2 ˆ ˆ2r r r rh a q q a q q− + −   (95) 

where 

• h and a are the parameters of the controller gains; 

• rq  represents the vector of the motion Lagrangian variables; 

• ˆrq  represents the vector of the motion Lagrangian variables of the nominal 

trajectory planned. 

The stabilization is numerically obtained through the ascendant cyclic coordinates 

technique so to optimize the parameters minζ  (as high as possible) and maxτ (as 

small as possible). 

The global nonlinear control law is then calculated by interpolating the controller 

gains in the various points of the trajectory. 
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A controller is thus obtained, whose gains are nonlinear functions of the rigid 

motion coordinates and, possibly, of some measurable deformation coordinates. 

The designed control law is finally validated by verifying the convergence to zero 

of the impulse response matrix, which is numerically calculated, and/or by using 

the Lyapunov theory. 

V.3 A numerical example 
Let be considered a planar robot constituted by two flexible links made of 

aluminium having square hollow constant cross section (Fig. 15) with 

1 2 2mL L= = , 1 2 20mml l= = , 1 2 1mms s= = , 10 2
1 2 6.4 10 N / mE E= = ⋅ , 

3 3
1 2 2.7 10 kg / mρ ρ= = ⋅  

Suppose the tip must track a trajectory defined through 4 points in the work space 

at the time reported: 

1

2

3

4

( 1, 1)m
( 2, 1)m
( 2, 2)m
( 1, 2)m

P
P
P
P

= − −
= − −
= − −
= − −

         

1

2

3

4

0 s
5 s
10 s
15 s

t
t
t
t

=
=
=
=

 

and suppose that the first joint of the robot is located at the origin of the work 

space (Fig. 37). 

By using the “kinematic” inversion methodology described in Chapter IV, the 

relative joint angles are obtained, which guarantees, in static condition, the tip 

regulation (Fig. 39). 
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Fig. 39  Flexible robot poses in correspondence of the trajectory points. 

The desired joint trajectory is thus obtained through interpolation with cubic 

splines (Fig. 40). 

Once the above trajectory has been calculated, following the steps described in 

paragraph V.1, the admissible nominal (Fig. 41) input is derived. 
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Fig. 40  The desired joint trajectory obtained through interpolation (joint 1 in blue, joint 2 in green). 

 

Fig. 41  Admissible nominal input. 

Afterwards the system is stabilized in the neighbourhood of the trajectory points 

and, for each of them, the parameter h and a of the controller are obtained. 
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In particular, in this example, the control law has been further simplified by 

choosing the parameters h and a constant and equal to the max values between 

those calculated in the various trajectory points, i.e. 25h = and 5a = . 

The next step is to verify the linearity (in the neighbourhood of the planned 

trajectory) and the stability of the controlled flexible robot, by using the linear 

time variant systems theory. For a linear time variant system of order n, if n free 

responses converging to zero are found, which correspond to n independent initial 

conditions, the system is internally stable. 

This verification has been successfully made for several values of the n initial 

conditions (80%, 90%, 100% of their maximum value). For example, in Fig. 42 

the time diagram of the Lagrangian deformation variable 2δ  is reported. 

 

Fig. 42  Time diagram of the Lagrangian deformation variable 2δ  (100% of the initial conditions in blue, 
90% of the initial conditions in green, 80% of the initial conditions in red). 

Finally, in Fig. 43 the time diagram of the x and y coordinates of the tip is 

reported, under the assumption that the initial conditions are equal to 90% of their 
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nominal value. It is worth noting that the tip goes through the desired trajectory 

points (in red) in a satisfying manner also of the trajectory is covered with non 

zero velocity. 

 

Fig. 43  Time diagram of the x and y coordinates of the tip. 
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