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Abstract

This thesis is focused on Eddy Current Testing (ECT), a technique for the

Non Destructive Testing of conductive materials. In particular we study

the quantitative imaging (inverse problem) of defects in conductive materi-

als. By quantitative imaging we means imaging methods based on numer-

ical models of the interaction between the probe and the defect(s). The

imaging methods attempt to provide an image of the defect at variance

of commercial instruments that, generally, detect the defect and may have

limited capabilities of extracting its major sizes by means of calibration

curves obtained in predefined conditions. In addition, numerical models of

the probe-defect interaction (direct problem) play a relevant role for the

computer aided design of the probe, where commercial codes typically fail

to treat this kind of problems. In this thesis we present methods for the

solution of both the direct and the inverse problems in ECT. The methods

have been developed ad-hoc for ECT and have been optimized for accuracy

and speed in view of real-time applications.

The thesis is organized as follow. In Chapter 1 the main techniques in

Non Destructive Testing are presented. In Chapter 2 two numerical for-

mulations to solve the electromagnetic direct problem of the interaction

probe-defect are illustrated. The first exploits for the first time the differ-

ential geometry to solve this kind of numerical problems, and the second

is based on an efficient integral formulation. In Chapter 3 a topology

based iterative imaging method to reconstruct the shape of inclusions with

ECT data is illustrated. Its performances are compared with a genetic algo-

rithm and an extensive experimental validation is presented. In Chapter

4 a non-iterative imaging method based on monotonicity property of the

measured impedance matrix (Monotonicity imaging method) is presented

and its performances are compared with other two methods (Factorization



method and MUSIC method) which represent the State-of-the-Art of the

non-iterative methods. In Chapter 5 the first experimental validation of

the Monotonicity imaging method is presented. We show that with a de-

signed measurement system the algorithm is able reconstruct in real time

the conductivity profile of Printed Circuits Boards (PCB). Finally the Con-

clusions are drawn.
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1

Introduction

1.1 Non Destructive Testing

NON-DESTRUCTIVE TESTING is a group of techniques aimed to investigate the

materials properties without causing the damage. In the last years the main industries

have invested a lot in non-destructive testing to guarantee for their products:

- high quality;

- high reliability;

- economical competitiveness.

In order to be competitive, the industries have to produce high quality and re-

liability products to protect against eventual defects that can compromise both the

performances and the properties of the products. In this scenery Non destructive Test-

ing (NDT) is very important to guarantee the reliability of a product without causing

the damage during the testing. NDT techniques are used a lot when a continuous test-

ing of the process cycle is required specially in those engineering fields as nuclear fusion,

petrochemical , aeronautical applications where the quality product check is very im-

portant for the people security. The NDT techniques can be applied to both conductive

and non conductive materials and several way to execute the test can be adopted. A

first classification of the NDT experiments is based on the subdivision in active and

passive tests. The active techniques are based on an increasing in the system energy if

a defect is present in the device. The methods based on eddy current, ultrasounds and

1



1. INTRODUCTION

X-ray, belong to this category. On the other hand the passive techniques reveal the

presence of a defect evaluating the reaction of the device under test to some external

agent. Liquid penetrant and magnetic particles methods belong to passive category.

Another classification is the subdivision of the tests in surface and volumetric. The

surface techniques are adapt to reveal surface defects localised near the surface inter-

ested by the analysis. The methods belonging to this category are the liquid penetrant

and the eddy current inspection that is able to reveal also the sub-surface defect, but

there are limits related to the penetration depth that is the main difference with the

volumetric methods like ultrasonic and X-ray which are able to detect deeper defects.

1.1.1 Applications of Non destructive Testing

In order to completely inspect an object it is important to combine more types of

non destructive testing techniques. The choosen inspection is strictly related to the

applications:

- dimensions measurement. It regularly obtained with optical techniques, ultra-

sounds and eddy current specially to measure the thickness of the metals or

dialectic covering thickness on metal substrate;

- material properties measurement. It reveals the material properties as the impu-

rity content, elasticity, permeability, conductivity etc. The electric conductivity

measurement is particular adapt to be measured with eddy current testing, while

the magnetic properties are measured with magnetic particles inspection;

- internal defects analysis. The most common analysis field in non destructive

evaluation is the internal defect analysis. The X-ray methods are particularly

adapt to this end because they can provide an high resolution image of the region

internal by respect the defect. The main drawback are the difficulties to execute

the test and the dangers related to the exposition to the X-rays. In the last years

new techniques less dangerous than the X-rays have been developed. Among these

methods it is worth mentioning the ultrasonic methods, which are particularly

adapt to locate the defect position;

- surface defects analysis. The surface defects analysis is obtained with penetrant

liquid technique or with the electromagnetic particles technique. The first method

2
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is not very good in sub-surface defect evaluation while the second one is used

specially to evaluate the depth of the surface cracks in the metals, but they can

be used only in magnetic materials and they require the application of an high

magnetic field. For the metals the eddy current inspection is particularly adapt

to reveal surface and sub-surface defects.

In the following the main methods used in Non Destructive Testing are illustrated.

1.1.2 Liquid penetrant inspection (LPI)

This non destructive technique exploits the property of some liquids to penetrate in

surface defects thanks to their capillary action (low surface tension fluid penetrates into

clean and dry surface-breaking discontinuities). When an adequate penetration time

has been allowed, the excess penetrant is removed by water and a developer is applied.

The developer helps to draw penetrant out of the flaw where a visible indication becomes

visible to the inspector. The defect is then revealed by directly observing the device

and the contrast between the penetrant and the developer (see Fig.1.1). The liquid

Figure 1.1: Liquid penetrant inspection.

penetrant inspection is adapt to reveal surface discontinuities in all the materials. It

can be applied on each component of a device without taking into account the geometry

and the material types. The main advantages of this technique are:

� It can be applied in all the materials;

� It is easy to perform the analysis and to analyze the results;

� It can be applied on components on which it can be difficult to access;

� It can be performed with a cost reduced by respect the available methods.

3
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On the other hand the main drawbacks are:

� It reveals the surface inclusions;

� Materials different from the background are not revealed;

� The surface of the device under test has to be carefully prepared;

1.1.3 Magnetic particles inspection

The magnetic particles inspection is adapt to localise surface and sub-surface discon-

tinuities in ferromagnetic materials. The test is based deviation of the magnetic field

lines in presence of a discontinuity. In order to reveal the presence of a defect, magnetic

particles of ferromagnetic materials are posed on the surface of the device under test,

so that the trace of the anomaly profile is obtained. To efficiently perform the magnetic

particles inspection it is important that the defect is not aligned with the force lines of

the magnetic field; for this reason the device has to be magnetised in two orthogonal

directions (see Fig.1.2). The main advantages of this technique are:

Figure 1.2: Device under test. Circular magnetization (top), longitudinal magnetization
(bottom)

� It is a simple procedure;

4
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� It is automatic;

� It can be very sensitive;

� The results analysis is simple.

On the other hand the main drawbacks are:

� It has to be performed on ferromagnetic materials;

� The test can be done on limited areas of the device;

� The demagnetization can be very difficult when low levels of residual magnetiza-

tion are required.

1.1.4 Ultrasounds inspection

Ultrasounds inspection is a non-destructive testing method based on high frequency

sound waves introduced in the device under test to reveal surface or internal defects, to

reconstruct the shape and the position of the anomalies and finally to measure materials

thickness. The ultrasounds inspection exploits the acoustic wave transmission in a

material, evaluating the differences between the transmitted signal and the received

signal. When a defect is present inside the device under test, the acoustic wave is

deviated or reflected and this phenomena is revealed through the presence of additional

peaks on the received signal (see Fig.1.3). The amplitude and the position of the peaks

constitutes an indication of the type, the shape and the position of the defect inside

the device under test.

Figure 1.3: Ultrasounds inspection
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The main advantages of the ultrasounds inspection are:

� It is a simple procedure;

On the other hand the main drawbacks are:

� It is difficult to test objects with a difficult geometry;

� It is difficult to test devices with an high acoustic attenuation;

� It is difficult to analyze the results.

1.1.5 X-ray inspection

This technique is based on the high frequency (and high energy) electromagnetic radi-

ations properties. When an X-ray passes through the device under test, it is absorbed

Figure 1.4: X-ray inspection

with an exponential law which is a function of the thickness and the material density.

A photographic image of the X-ray after its passage through the device is an indication

of the thickness, the density, material composition, whose variations are evaluated by

the density image variation, usually using a grey scale for the image (see Fig.1.4). The

main advantages of the X-ray inspection are:

6
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� It is easy to perform the test;

� By the microfocus technique it is possible to magnify the defect area;

On the other hand the main drawbacks are:

� The maximum defect thickness is 400-500 mm;

� The defects with crack plane not aligned with the irradiation cone, cannot be

revealed;

� It is necessary to keep the X-ray radiation in the maximum level prescribed by

the normative;

� The testing devices are not portable.

1.1.6 Eddy Current Testing

Eddy Current Testing (ECT) is based on the detection of the reaction magnetic field

produced by the eddy currents induced in the specimen under test by a driving coil

passed by a sinusoidal current (see Fig.1.5). The presence of a defect disturbs the flow

Figure 1.5: Eddy Current Testing

of the eddy currents, thus producing a magnetic field perturbation that depends on

the position and shape of the defect and reflects in an impedance variation of the coil.

By the impedance variation it is possible to determinate the amplitude and phase of

the eddy current which depends on the material conductivity and permeability, and by

the position and the shape of a defect inside the device under test. In presence of a

defect the eddy currents deviate and this translates in an increasing of the amplitude

and phase of the coil impedance variation.
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The penetration depth is a critical parameter for this method. In order to detect

internal defect it is mandatory to use low frequency signals with an high penetration

depth (usually 1kHz), because the eddy current pattern has to extent inside the device

under test. Anyway it is difficult to apply this technique to deep defect because the coil

impedance variation decreases with the frequency and there is a trade-off between the

penetration depth and the signal quality in the receptive coils. On the other hand the

eddy current inspection is particularly adapt to reveal surface and sub-surface defect

(penetration depth of few millimetres) by using an excitation frequency from 10kHz to

1MHz with an good enough impedance variation signal. The main advantages of the

Eddy Current inspection are:

� High sensitivity of the test;

� High affidability;

� Complex geometries can be analyzed;

� The test is fast;

� The test has a low cost, the testing devices are portable;

On the other hand the main drawbacks are:

� The method can be applied only on metals with surface or sub-surface defects;

� The results analysis requires experience.

In the last years the optimization and modelling techniques improvement has given

rise to an automation and a executing time reduction, so that the errors are reduced in

the Non Destructive Testing. The testing automation process is based on the envelope

of automatic procedures for the complete testing of a component and for the analysis

of the type and characteristics of the revealed defect. For this last aspect it is used to

apply the following methods:

- Signal analysis: the signals obtained in the non destructive analysis of the com-

ponent are compared with the ones obtained in laboratory from artificial defect

of known shape;
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- Numerical model: the experimental signals are compared with the ones obtained

with a numerical code based on the finite element method. Moreover inversion

algorithms which minimise the errors between the numerical and the experimental

signals can be applied to find the position and the exact shape of the defect.

Among the presented NDT methods, we choose to focus this thesis on the eddy cur-

rent testing. As we explained eddy current testing can detect very small cracks and

physically complex geometries can be investigated. It is also useful for the electrical

conductivity and thickness measurements. The testing devices are portable, provide

immediate feedback, and do not need to contact the device under test. So this technique

is particular adapt to study several classes of problems from both the experimental and

numerical point of view. In particular we show the development of numerical codes

to simulate the eddy current testing, experimental activities coupled with inversion

algorithms to recovery the shape of a defect or the conductivity profile of the analyzed

devices.

1.1.7 Numerical methods for Eddy Current Testing

Eddy Current Testing constitutes an essential technique for the electromagnetic non-

destructive testing of defects in conductive materials. Main applications are found in

the inspection of aircraft, nuclear power plants, and other engineering constructions.

In recent years numerical methods to simulate the experiments have been developed.

This numerical interest is mainly due to the design of the experimental setup and is

related to the development of new inversion algorithms to reconstruct the profile and

the position of a defect. From a general point of view, we recognize the direct and the

inverse problems.

1.1.7.1 Direct problem

The direct problem consists of computing, usually by numerical methods, the measure-

ments (the magnetic flux density in given space locations or the voltages induced in the

pickup coils) for an assigned geometrical configuration and driving system (excitation

field).

The electromagnetic model of the measurements can be described by the magneto-

quasistatic form of the Maxwell equations. We consider the situation described in
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Figure 1.6: Coil above a plate. The source magnetic field H0 induces in the conductive
region Vc the eddy current density J which is the source of the reaction magnetic field Hr.

Fig.1.6 with an imposed current density J0 in a coil in R3\Vc, where Vc is a conductive

material (see Fig.1.6). The mathematical model for the conductive region Vc is given

by the equations:

∇×E = −∂B

∂t
in Vc (1.1)

∇×H = J in Vc (1.2)

B = µ0H in Vc (1.3)

J = σE in Vc (1.4)

∇ ·B = 0 in Vc (1.5)

and outside the conductive region:

∇×H = J0 in R3\Vc (1.6)

∇ ·B = 0 in R3\Vc (1.7)

B = µ0H in R3\Vc (1.8)

where µ0 is the permeability of the free space and σ is the conductivity of the

10
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conductive volume Vc. In eddy current testing if a time variating current density J0

circulates in a coil, it is generated a time-variating magnetic field H0, which induces an

electric field E. Exploiting the Ohm law the current density J (eddy current density)

is induced in the conductor, which generates a reaction magnetic field Hr (see Fig.1.6).

The presence of an inclusion in the conductive material is equivalent to a variation in

the conductivity ∆σ which causes a perturbation in the eddy current density and in

the reaction magnetic field, that can be measured in terms of impedance variation in

the receptive coil.

The direct problem consist of solving numerically this magneto-quasistatic model of the

Maxwell equations. In recent years, numerical methods for solving the direct have been

extensively studied. Several numerical formulations have been developed for modelling

the effects of defects in a conductive material. The problem is challenging because of

its intrinsically multiscale nature. Indeed, the eddy current density perturbation due

to a defect is spatially localized, whereas the total eddy current density is circulating

on a larger scale depending on the size of the probe. Commercial codes typically fail in

solving this class of multiscale problems and, therefore, ad-hoc numerical formulation

is mandatory. Numerical methods based on finite element formulations or the moment

method have been applied to get a satisfactory accuracy and to reduce the computa-

tional cost. In this thesis we concentrate on finite element formulations both differential

and integral.

We have implemented a differential formulation exploiting the differential geometry [1]

to relax the multiscale nature of the direct problem and use the same finite element

mesh for a class of problems.

On the other hand we have applied an integral formulation, developed in our research

group for more than a decade, named CARIDDI ECT [2, 3] to the computation of

cracks on benchmarks related to the nuclear power industry [4] and compared its per-

formances with another integral formulation, the CIVA code [5], and the experimental

data.

1.1.7.2 Inverse problem

The inverse problem aims to find the position and the shape of a defect on the basis

of the measurements obtained for a given excitation field. As each inverse problem

it is non-linear and ill-posed. Strong difficulties arise since the possible presence of
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local minima requires global optimization procedures, such as simulating annealing or

genetic algorithms that work efficiently only with a limited number of unknowns. In

this thesis we exploit both the iterative and non-iterative methods. In the iterative

algorithms the strategy for estimating the shape of the defect is that the imaging al-

gorithm ”adapt” and improve iteratively its best estimate of the defect. To have a

system that, in perspective, can be used for practical applications, it is fundamental

that the imaging algorithm requires few steps only to find the estimate. To this aim

we implemented an iterative topology based inversion algorithm [6] which has better

performances by respect the genetic algorithm [7]. The problem which cannot be solved

for the iterative methods is the high computation time due to the iterative cycles. We

implemented and improved a fast non iterative inversion algorithm developed in our

research group, the Monotonicity imaging method [8], and compared it with the other

two methods available in literature, the Factorization method [9] and MUSIC method

[10] in terms of reconstructions quality and computational cost. These three methods

are the State-of-the-art of the non iterative methods. As very interesting results we got

that Monotonicity imaging method works fine by respect the other two methods and

can be applied to more than two phases conductivity materials [11, 12, 13]. Finally we

performed for the first time an experimental validation of the Monotonicity imaging

method in the frame of the Eddy Current Tomography, applying the method to recon-

struct the conductivity profile of Printed Circuits Boards (PCB). We got as the most

interesting result of the work of this thesis that with a designed measurement system,

the Monotonicity imaging method provides the conductivity profile of the device un-

der test in real time with no errors [14]. This result can be the starting point for the

development of real-time imaging methods in eddy current inverse problem.
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Direct Electromagnetic Problem

2.1 Introduction

The determination of the eddy currents induced in conductive materials by a time vary-

ing applied magnetic field is based on the solution of the quasi-stationary Maxwell’s

equations. Several numerical formulations based on the finite element method have

been proposed to overcome the well known difficulties related to this kind of this open

boundary problem both differential and integral. Among the differential formulations

we recall the H-Φ formulation proposed by Bossavit and Verite [15],the T-Ω formu-

lation discussed by Carpenter [16], later by Brown [17] and Albanese and Rubinacci

[18], the a-v formulation proposed by Biró [19]. The main advantage of the differential

formulation is that the matrices of the solving system are sparse, and this is quite very

important for the computational cost. The main drawback is the air meshing which

implies the re-meshing of the system when the movement has to be simulated. The

computation with re-meshing can be source of numerical noise on the field computa-

tion. These problems can be reduced with new techniques which exploit the differential

geometry to simulate the movement [20]. We will show in the following section that the

same concept can be applied to relax the multiscale nature of the eddy current problem

which involves mesh generation of narrow cracks in a bigger domain [1].

In the frame of integral formulations we mention a method used in the high-frequency

regime [22]. This is a thin-skin model valid for crack depths larger than four times

the electromagnetic skin depth. Typical surface crack inspections as indeed fulfil this

prerequisite. The second model,is based on an integral formulation [23]-[28] specifically
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derived to deal with this kind of problem and numerically approximated by the method

of moments. In this case, the unknowns are the equivalent sources consisting of vol-

ume current dipole distributions, usually approximated by piecewise constant vector

pulse functions. These integral equations are based on the dyadic Green’s function

that requires to discretize only the region occupied by the flaw and, in addition, takes

into account automatically the continuity conditions. The finite element integral for-

mulation [2, 3] named CARIDDI ECT is based on the scalar Green’s function rather

than dyadic one. This formulation exploits the superposition principle. Specifically,

the effects due to the defect are evaluated by solving a small problem onto a local

mesh in a neighbourhood of the defect, once the unperturbed problem has been solved

either analytically or onto a larger mesh. The superposition is very helpful when many

tentative solution of the direct problem need to be computed when for example we use

an iterative inversion algorithm, as we will show in the following chapter. The main

advantage of the integral approach is in the fact that only the conducting part of the

domain must be discretized. The conductive structures are usually thin and meshing

only the conductive is very attractive. Nevertheless, for the integral approach both the

numerical solution time and memory requirements grow at least as the square of the

number of unknowns involved. A number of the techniques have been used to increase

the effectiveness of the integral formulation, including tools to improve the sparsity of

the matrices and the parallel treatment of the inversion [37]-[38]. These new techniques

based on parallel computing make the integral formulation computational cost at least

comparable with the differential formulation one.

2.2 Differential geometry based method

A typical problem in non-destructive testing (NDT) is to specify the defect that gen-

erates a certain signal into a probe. This is an indirect problem –the geometry of

the defect that causes the signal is not known– and consequently, a number of forward

computations is required to sketch the defect. Moreover, finite element-type NDT com-

putations are known to be rather sensitive to numerical errors and all this makes NDT

problems burdensome. The dimensions of a defect depend on the metric chosen for a

space. At first this may sound preposterous, as obviously the defect is what it is and

cannot be changed by some modeling choice. This is indeed the case, but the issue is
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how we as the modelers observe the defect. The change of metric is like viewing the

defect through eyeglasses that magnify locally the view, making the defect appear large.

This alleviates the FE-mesh generation problems caused by narrow defects. Moreover,

the magnification can be made adjustable, and a family of defect widths can then be

modeled with a single (topological) mesh. This reduces the errors sensitive to the mesh

[20]. Practically, the change of eyeglasses in this sense is done by a transformation

between different systems that reflect the choices of metric one makes. Pre-processors

use hardwired Euclidean metric to measure distances of coordinates. Standard param-

eterizations assign coordinates to points such that their Euclidean coordinate distances

equal the measured distances of the points [21]. Reparameterization changes the points’

coordinate distances (as we cannot redefine the hardwired coordinate metric) and this

induces a new metric into the space. The change of metric affects the constitutive laws’

material parameters, whose numerical values depend on the particular metric. Another

view to the matter: Each finite element stiffness matrix corresponds to some field prob-

lem. If one changes locally the metric, altering the numeric values of distances, one can

counterbalance this by adjusting the material parameters such that the entries of the

stiffness matrix remain the same.

2.2.1 Equivalence of boundary value problems

Forward NDT problems regarding the magnetic field and current density are electro-

magnetic boundary value problems (BVP). To pose an electromagnetic BVP, one needs

to specify its domain and the constitutive equations, and impose Maxwell’s equations

and appropriate boundary values. Typically, a standard parameterization (here ξ-

coordinates) is used to “start up” the modeling process, i.e. describe the domain by

coordinates and determine the material parameters that are expressed in terms of an

appropriate length unit. However, our aim is to formulate and solve the problem with a

reparameterization (here x-coordinates), and therefore we pose another BVP in terms

of the reparameterization, such that the BVP describes the same physics. The repa-

rameterization does not change Maxwell’s equations, because they are invariant under

diffeomorphic changes of coordinates and independent of metrics. To derive the mate-

rial parameters for the reparameterization, we require that the virtual works related to

corresponding displacements match for corresponding fields, and the field expression of

energy stored is independent of our choice of coordinate system [21]. The invariance of
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the virtual work establishes a correspondence between the fields in different coordinate

systems. If Eξ denotes the electric field vector in the ξ-system and the change-of-

coordinates map from the x-system is h = ξ ◦ x−1, then the virtual displacements are

related by dξ = Jdx, where J is the Jacobian matrix of h. Then the invariance re-

quirement Eξ · dξ ≡ Ex · dx relates the electric field vector Eξ to Ex by the formula

Eξ = J−T Ex, (2.1)

The same transformation formula holds also for the magnetic field H which denotes

the magnetic field intensity. Departure from a standard parameterization implies that

the Euclidean distances between x-coordinates are no more the same as the measured

distances between the points they label. If a corresponding virtual displacement now

appears shorter than originally, the corresponding field vector appears stronger. The

invariance of energy, together with the invariance of virtual work, establishes the corre-

spondence of material parameters. If D ⊂ R3 is the domain of the BVP in the ξ-system,

the invariance of the energy means that∫
D

Eξ · εξ Eξ dvξ =

∫
h−1(D)

Ex · εx Ex dvx (2.2)

holds for all field pairs (Eξ,Ex) satisfying (2.1).

The matrix εx in terms of matrices εξ and J is

εx = det(J)J−1εξJ
−T . (2.3)

The permeability µ and the conductivity σ transform similarly [21]. Their inverses

transform as

νx = µ−1
x =

JT νξJ

det(J)
. (2.4)

The above transformation rules indicate how to pose equivalent BVPs on different

coordinate systems . If the FEM meshes of equivalent BVPs are related by the change

of coordinates h, then equation (2.2) shows that the stiffness matrices for both systems

are identical.
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2.2.2 Transformations

In most NDT applications, the probe must be placed into the immediate vicinity of

the defect in order to detect it reliably, and because the geometry of the probe is

independent of the defect width, it is not practical to extend the transformation into

the probe.

We shall consequently restrict the transformations into the immediate vicinity V of

the defect. The domain V may be tessellated into subdomains, see Fig. 2.1, if practical

[20]. The feasible transformations

� must not displace any points at the boundary of V , and

� be continuous and piecewise differentiable with piecewise differentiable inverse.

Figure 2.1: Defect (shaded) and its vicinity regions.

The Jacobians of the transformations must be reasonably well-behaved: their condition

numbers and their determinants must not be extreme. We propose transformations to

change the problem geometry (here defect width) and adjust the mesh to different

penetration depths (frequency-dependent).

2.2.3 Problem geometry transformation

Let us now introduce transformations to modify the defect size. We can then treat

a family of problems with the same mesh and ease the problems related to the mesh

generation of narrow defects. The coordinates seen in the pre-processor are x, y, z, and

the coordinates related to the original metric are ξ, υ, ζ. The original width of the defect

is αw, and the transformation is produced by displacement of points of V in y-direction
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Figure 2.2: Regions 1 to 5.

only. We subdivide the box surrounding the defect into five different types of regions

(see Fig. 2.1), where we apply the geometric transformations shown in Fig. 2.2.

We map piece-wise from x-positions to ξ-positions by h = ξ ◦ x−1. The material

parameters for the x-system are given by equations (2.3) and (2.4). These expressions

are convenient, because the Jacobian is expressed in terms of x-coordinates and the

transformations from x to ξ and z to ζ are identities. The only interesting component

of each transformation is υ, expressed in Fig. 2.2, and equations (2.5)–(2.10).

υdefect = αy, (2.5)

υ1 = y +
w

2
(1− α)

y − ye
ye − w/2

, (2.6)

υ2 = y − y(1− α)(1− z − zc
zv − zc

), (2.7)
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υ3 = y − w

2
(1− α)(1− x− xc

xv − xc
− y − w/2
ye − w/2

), (2.8)

υ4 = y − y(1− α)(1− x− xc
xv − xc

− z − zc
zv − zc

), (2.9)

υ5 = y − w

2
(1− α)(1− x− xc

xv − xc
− y − w/2
ye − w/2

− z − zc
zv − zc

). (2.10)

2.2.4 Penetration depth transformation

Different frequencies of the excitation field cause different penetration depths. This is

challenge for detection of defects, that relies on accurate computation of eddy currents.

The current flaw around the defect is shown in Fig. 2.3. The mesh should correctly take

into account the localization of the current density around and below the defect. The

exponential decay of the current density calls for a mesh with several layers of elements

in one penetration depth. The problem is that the penetration depth depends on the

excitation frequency, typically leading to re-meshing for each frequency.

Figure 2.3: Eddy current distribution around a defect inside a plate for a given position
of the excitation coil from a top view (left) and on a cut plane of the plate (right).

Our proposal is to work with a single mesh (protype mesh) and apply metric trans-

formations to adapt it for study of problems with different excitation frequencies, as

shown in Fig. 2.4. We henceforth call the layer where the defect resides the “top layer”

and the layer underneath the defect the “bottom layer”.

On the top layer, we propose an exponential transformation, adapt for the cases of

small penetration depth (see Fig. 2.5). Applying the mapping to a layer between z1

and z2, such that we increase the mesh density towards z2 we obtain:
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Figure 2.4: The mesh in the non-standard parameterization (above). It is mapped to the
mesh in a standard parameterization (below): Top layer by exponential mapping, bottom
layer by linear compression. (Two superposed surface meshes visible in the defect area.)

ζ =
β

z−z1
z2−z1 − 1

β − 1
(z2 − z1) + z1, (2.11)

with displacement parameter β satisfying β > 1.

Figure 2.5: Exponential mapping of mesh points in z-direction from a non-standard (even
point spacing) to a standard parameterization.

On the bottom layer, we propose a linear compression in order to increase uniformly

the elements density on the bottom layer between the coordinates z1 and zc. To extend

the layer from zc to ze, we obtain the mapping:

ζ = (z(z1 − zc) + (z1 − zc)z1)/(z1 − γzc), (2.12)

where γ is the aspect ratio ze/zc.

It is, of course, possible to compose mappings to deal with both geometric and

penetration depth changes in one go. The Jacobian J of a composite mapping f1 ◦ f2
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Figure 2.6: Linear compression of mesh points in z-direction from a non-standard (even
point spacing) to a standard parameterization.

is the product of the single Jacobians J1 and J2:

J = J1J2. (2.13)

2.2.5 Differential Formulation

The magneto-quasi-static model is used [29] and the boundary value problem is for-

mulated in terms of the magnetic vector potential A and electric scalar potential V .

Specifically, we use the symmetrized version of A, V − A formulation [19], and impose

the uniqueness of the magnetic vector potential with the tree-co-tree gauge [30]. The

domain is topologically simple, with no cavities or tunnels through it. We assume

the media linear. The current in the driving coil is imposed, and the magnetic vector

potential it causes without eddy current is first computed. The magnetic vector po-

tential due to the eddy currents are subsequently solved for. Current flow out of the

conducting sample is prohibited, as is the magnetic flux out of any part of the domain

boundary. Let us start from the Gauss law:

∇ ·B = 0⇒ B = ∇×A (2.14)

and the Faraday law:

E = −∂A

∂t
−∇V (2.15)

and finally the Ampere-Maxwell law:

∇× 1/µ0∇×A = Js + Jeddy (2.16)

Where Js is the source density current and Jeddy=σE is the eddy current density.

Now we can divide the contribution of the source field Bs by the reaction field Br
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introducting the following position:

A = As + Ar (2.17)

where As is the magnetic vector potential due to the source and Ar is the reaction

vector potential inducted by the eddy currents. The magnetic vector potential is pre-

calculated with the Ampere-Maxwell law considering as source the current density Js

in the coil:

∇× 1/µ0∇×As = Js (2.18)

Taking into account the position (2.17) and equation (2.18) for As we have that

the equation for the reaction magnetic vector potential is given by:

∇× 1/µ0∇×Ar = −σ · (∂Ar

∂t
+
∂As

∂t
+∇V) (2.19)

The unicity of the magnetic vector potential is guaraanted with the tree-cotree

gauge which imposes zero values for A on the trees of the finite element mesh. In the

conductive regions the unicity is imposed with the gauge condition:

∇ · J = 0 (2.20)

this condition coupled with the Neumann condition:

J · n = 0 (2.21)

guarantees that the equation for the scalar potential V is well-posed. In fact we

can rewrite the equations (2.20) and (2.21):

∇ · σ∇V = −∇ · σ∂As

∂t
−∇ · σ∂Ar

∂t
(2.22)

∂V

∂n
= −∂As

∂t
· n− ∂Ar

∂t
· n (2.23)

V is actually defined up to a constant value which can be set by defining V at one

point P in the space:

V(P ) = C (2.24)
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where C is a costant. Now the Galerkin formulation can be derived by representing

the unknows as:

A =

n∑
l=1

alWe,l (2.25)

V =

n∑
s=1

vsWn,s (2.26)

where We are the Whitney edge basis functions and Wn are the Whitney nodal

functions. Simplicial meshes are used to span Whitney function spaces [31], We for A

and Wn for V .

2.2.6 Computational example

TEAM test problem number 8 [32] is used as the computational example. The problem

features a defect that is a 40 × 10 × 0.5 mm rectangular crack at the surface of an

austenitic 18-10MO steel plate with relative permeability µr = 1 and conductivity

σ = 0.14× 107 S/m. We calculate the transfer impedance parameter by the difference

of magnetic fluxes in the receptive coils, normalized such that the impedance at the

last scan position is 0 + 1j in the complex plane. The models were constructed with

gmsh pre-processor [33], and the computations were carried out with GetDP [34]. The

Figure 2.7: Normalized values of real and imaginary part of the impedance, for a parallel
(above) and perpendicular (below) scan, with values 1 (continuous line), 1/2 (·-), 1/3 (-)
for α.

first simulation, whose result are presented in Fig. 2.7 demonstrates two strengths of
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Figure 2.8: Normalized values of real and imaginary part of the impedance for a par-
allel (above) and perpendicular (below) scan. Numerical results obtained with a mesh
without transformations (-), a mesh where there are both exponential and compression
transformations (·-), experimental results (continuous line).

the proposed technique: the high aspect ratio of the defect can be reduced somewhat to

ease the meshing, and defects of different widths can be computed with a single mesh.

The Fig. 2.7 shows the real and imaginary part of the impedance, for a parallel and

perpendicular scan of the active probe [32], with values 1, 1/2, 1/3 for α. The results

with different values of α show reasonable mutual agreement, according to the fact

that they pertain to the same defect in the standard parameterization. The experi-

mental results indicate that we need to increase the mesh density on the top layer and

on the bottom layer in order to follow the current variations. We start the computa-

tions with a prototype mesh and then apply both the exponential and the compression

transformations. The results are shown in Fig. 2.8.

The Fig. 2.8 shows that the computation of the impedance with the prototype mesh

produces some mismatch with the experimental data. If we apply both the exponential

and compression transformations in order to improve the mesh density near the defect,

the numerical results show a reasonable agreement with the experimental ones. The

values chosen for β and γ are respectively 2.2 and 1.5.

2.3 The CARIDDI ECT Integral Formulation

Here we briefly summarize the CARIDDI ECT numerical model [2, 3] assuming linear

constitutive relationships and time harmonic operation (hereafter the ejωttime depen-

dence is assumed). We refer to perfectly insulating defects. The formulation is described
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2.3 The CARIDDI ECT Integral Formulation

in more details in the Appendix A.

In this formulation the Faraday’s law is automatically satisfied by expressing the

electric field as:

E = −jωA−∇ϕ (2.27)

whereϕ is the electric scalar potential and A is the magnetic vector potential:

B = ∇×A (2.28)

that, under the Coulomb gauge, can be related to the unknown current density by

the integral expression:

A(r, t) =
µ0

4π

∫
Vc

J(r′, t)

|r− r′|
dr′ + As(r, t) (2.29)

As being the magnetic vector potential due to the source current JS . The electric

constitutive equation is imposed in weak form as:

∫
Vc

(ηJ−E) ·Wdr = 0, J ∈ S, ∀W ∈ S (2.30)

where η is the electric resistivity, S={J∈L2
div(Vc), ∇· J = 0 in Vc, J ·n̂ = 0 on

∂Vc}, L2
div(Vc) is the space of vector fields that are square integrable in Vc together

with their divergence, and n̂ is the outward normal defined on the boundary of Vc. In

order to get the numerical model, the current density is expanded in terms of solenoidal

shape functions with normal component zero on ∂Vc. The shape functions are the curl

of edge elements shape functions Nk:

J =
∑
k

Ik∇×Nk (2.31)

The Degrees of Freedom (DoFs) are related to the edges of the finite element mesh

and represent the integrals of the tangential component of the electric vector potential

T (J = ∇×T) along the edge. The gauge and the boundary conditions can be imposed

by using the tree-cotree decomposition as described in [2, 3]. By imposing these two

conditions, it follows that the unknowns are restricted to only a proper subset of edges

of the finite element mesh. The edges of this subset are termed active edges.
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The numerical model is finally obtained by combining eqq.(5.9) and (2.31) through

the Galerkin method yielding:

(
R+ jωL

)
I = V (2.32)

where I = {Ik}, V={Vk} and

Lij =
µ0

4π

∫
Vc

∫
Vc

∇×Ni(r) · ∇ ×Nj(r
′)

|r − r′|
drdr′ (2.33)

Rij =

∫
Vc

∇×Ni(r) · η∇×Nj(r)dr (2.34)

V i = −jω
∫
Vc

∇×Ni(r) ·ASdr (2.35)

In case of linear problems, to improve the accuracy and speed of the numerical

calculation, it is possible to use the superposition principle. With the superposition

principle the first step is to calculate the solution of the direct problem without the flaw

(the unperturbed current density J0). For canonical shape of the conducting domain,

as is the case for the infinite plate [35] and thin plates [36], it is possible to use analytical

expressions. Otherwise it is possible to solve the forward problem numerically. The

second step (perturbed solution), consists in solving the problem obtained by imposing

that the total current J=J0 + δJ is equal to zero in the flaw. In order to improve the

accuracy, we solve this second forward problem in term of the eddy current density

perturbation δJ. It is worth noting that δJ is essentially localized in a neighbourhood

of the defect whereas J0 is circulating in a much larger region, i.e. the problem is

intrinsically multiscale. Moreover, this separate computation of J0 and δJ allows to

avoid ill-conditioning due to elements with size of different order of magnitude and

to reduce the number of elements. Indeed, we can use a coarser and larger mesh for

computing the unperturbed current and a finer and smaller mesh for computing the

perturbed current, so that we can minimize the overall computational time and improve

the accuracy.

Finally, from the eddy current perturbation δJ it is possible to calculate the impedance
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2.3 The CARIDDI ECT Integral Formulation

change in the exciting coil as:

δZ = jω

∫
Coil

δA · JSdr/I2
S (2.36)

δZ = jω

∫
VC

AS · δJ dr/I2
S (2.37)

where δA is the vector potential due to δJ. Equation (2.36) is the standard ex-

pression while (2.37) is given by the reciprocity theorem and usually produces more

accurate results. In the following section the integral formulation is applied to problems

arising from the nuclear power industry. Specifically, we consider the inspection of a

steam generator tube without and with the support plate. The specific configurations,

as well as the experimental data used for the validation, are from benchmark problems

provided by the Commissariat l´nergie Atomique (CEA) at Saclay (France).

2.3.1 Numerical Results

In the following section we will show numerical results that simulate four types of NDT

benchmark problems proposed by the Commissariat a lÉnergie Atomique (CEA). The

first two refer to the inspection of tubes using either an internal bobbin coil and an

external bobbin coil. The third benchmark involves a steam generator tube with the

support plate, whereas the last benchmark concerns the inspection of a planar slab

with an air coil probe.

2.3.1.1 Tube inspection

The considered tube has the typical dimensions and material properties from nuclear

power plants applications. The tube is made by Inconel, a nonmagnetic alloy with

conductivity 1MS/m, and it has the following dimensions: Rmin=9.84mm (inner di-

ameter), etube=1.27mm (wall thickness). We considered two differential probes: an

internal axial probe and an external axial probe. Each probe is made by two coils

operating in differential mode. The measurement consists of the voltage across the

two coils of the probe are connected to the branches of a Wheatstone bridge work-

ing close to its equilibrium when the specimen is unflawed (see Fig.2.9). The internal
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2. DIRECT ELECTROMAGNETIC PROBLEM

Figure 2.9: The measurement circuit. Coil 1 and Coil 2 are the two coils that are part
of a single probe.

axial probe is made by two bobbin coils characterized by the following parameters: in-

ternal radius Rmin=7.83mm, external radius Rmax=8.50mm, height h=2.00mm, gap

between the coils d=0.50mm, number of turns N=70. The inspection is carried out at

the frequency f=100kHz. The external axial probe is made by two bobbin coils char-

acterized by the following parameters: internal radius Rmin= 11.3mm, external radius

Rmax= 12.313mm, height h = 2.01mm, gap between the coils d=0.99mm, number of

turns N=20. The inspection is carried out at the frequency f=120kHz. The numerical

models calculate the impedance variation of the probe during the scanning whereas

in industrial applications, as in our case, the data consists of voltage measurements

rather than impedance measurements. Since the voltage values depend upon several

parameters of the experimental set-up (gain of the amplifier, amplitude of the injected

current, resistances in the Wheatstone bridge, etc), the numerical computed measure-

ments need to be calibrated on some reference flaws. Usually, the numerical signals are

calibrated through a rotation and magnification in the complex plane in order to match

the amplitude and phase of the experimental signals for the reference flaw. Specifically,

the numerical data after the calibration are the complex voltages V̇k’s (k being the

position of the probe) that are obtained from the numerically computed impedance

value żk as V̇k = Ṁ żk, where Ṁ is a complex constant. The complex constant Ṁ can
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2.3 The CARIDDI ECT Integral Formulation

be obtained by solving the following least-square problem:

min
Ṁ

∑
k

∣∣∣V̇ meas
k − Ṁ żk

∣∣∣2 (2.38)

where V̇ meas
k is the experimentally measured complex voltage at the k-th location.

The flaws used for calibrating the internal and external bobbin coils are, respectively,

an outer groove flaw termed GE40 (40 % of the tube thickness, height of 1mm along

the tube’s axis) and a through-wall borehole with a diameter of 1mm termed TFP1.

Specifically the CEA prescribes, for the two benchmarks, the distance and the direction

for the two peaks of the impedance appearing in the Lissajous plot as shown in Tab.2.1

and Fig.2.10.

Flaw A (V) ϕ(˚)

GE40 2.814 +141.8

TFP1 0.980 -169.8

Table 2.1: Amplitude and phase for the reference flaws.

From Fig.2.10 it is evident the excellent agreement between the experimentally

measured data and the numerically computed data (after the calibration) achieved on

the reference flaws. Specifically, the relative errors defined as:√√√√∑
k

∣∣∣V̇ meas
k − V̇ num

k

∣∣∣2/∑
k

∣∣∣V̇ meas
k

∣∣∣2 (2.39)

where V̇ num
k is the numerically computed voltage are: 0.08 (CARIDDI ECT) and

0.09 (CIVA) for reference flaw GE40 and for 0.089 (CARIDDI ECT) and 0.077 (CIVA)

for reference flaw TFP1. The relative discrepancy between CARIDDI ECT and CIVA

is 0.0132 on GE40 and 0.039 on TFP1. The discrepancies between the numerically

computed voltages are due to intrinsic differences in the numerical methods such as

integration schemes and meshes. On the other hand, the discrepancies between nu-

merical and experimental results are mainly due to uncertainty affecting parameters

such as the lift-off, material properties, etc. In any case, the agreement is excellent

for industrial applications. Once the calibration constants have been evaluated on the

reference flaws, they can be applied to any other configuration where only the geometry

of the flaws is changed. In the following we apply the calibration constants evaluated
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Figure 2.10: Top: description of the inspection procedure for the flaw GE40 (left) and
experimental results (o) vs numerical results obtained with the CARIDDI ECT code (+)
and the CIVA code (*) after the calibration (right) @ f=100kHz. Bottom: description of
flaw TFP1 (left) and results after the calibration (right) @ f=120kHz.

Figure 2.11: The bobbin coil used in the measurements (left). Flaws representation in
cylindrical coordinate system (right).
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2.3 The CARIDDI ECT Integral Formulation

Figure 2.12: Left: the experimental results (o) vs the numerical results obtained with
CARIDDI ECT code (+) and CIVA code (*) for the flaw ELE6. Right: the results for the
flaw GI10.

in this section. Two longitudinal notches are considered in the case of the internal

bobbin coil. The main parameters describing the flaws (ELE6 and GI10) are shown in

Fig. 2.11and Tab.2.2. The inspection is carried out at the frequency f=100kHz. The

comparison between the experimental and numerical results for the two flaws is shown

in Fig.2.12.

Flaws Descriptions Dimensions
∆r ∆Φ ∆y

ELE6 External Longitudi-
nal notch, length of
6mm

0.66mm

(52%)

0.63˚
(opening:
0.12mm)

6mm

GI10 Internal groove
10% of the tube
thickness

0.127mm

(10%)

360˚ 1mm

ELE10 External Longitudi-
nal notch length of
10mm

0.69mm

(54%)

0.60˚
(opening:
0.1mm)

10mm

ET82 Transversal through
wall notch,
angular extension
82˚

1.27mm

(100%)

82˚
(extension:
12.9mm)

0.133mm
±
0.02mm

Table 2.2: Flaws dimensions along the tube

The relative errors with the experimental data are 0.082 (CARIDDI ECT) and

0.104 (CIVA) for flaw ELE6; 0.121 (CARIDDI ECT) and 0.130 (CIVA) for flaw GI10.
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Figure 2.13: Top: the experimental results (o) vs the numerical results obtained with
CARIDDI ECT code (+) and CIVA code (*) for the flaws ET82 (left), ELE6 (right).
Bottom results for the flaw ELE10.

The relative discrepancy between CARIDDI ECT and CIVA is 0.10 on ELE6 and

0.015 on GI10. It is worth noting that the numerical modelling of ELE6 is more

difficult than GI10 because of its smaller dimensions (moreover ELE6 is a fully 3D

problem whereas GI10 is an axisymmetric problem). As a matter of fact, the signature

of ELE6 is one order of magnitude smaller than the signature of GI10. The flaws

considered in the case of the internal bobbin coil are a transversal through wall notch

(ET82) and two longitudinal notches (ELE6 and ELE10) described in Tab.2.3. The

inspection is carried out at the frequency f=120kHz. The comparison between the

experimental and the numerical results is shown in Fig.2.13. The relative errors against

the experimental data are 0.1811 (CARIDDI ECT) and 0.1811 (CIVA) for flaw ET82;

0.105 (CARIDDI ECT) and 0.125 (CIVA) for flaw ELE6; 0.132 (CARIDDI ECT) and

0.091 (CIVA) for flaw ELE10. The relative discrepancy between CARIDDI ECT and

CIVA is 0.154 for ET82, 0.118 for ELE6 and 0.081 for ELE10. We notice that for

flaw ET82 both CARIDDI ECT and CIVA give the same relative error against the

experimental data, despite figure 6 (left) shows that the graph of the signature obtained
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Figure 2.14: Real (left) and imaginary (right) parts of the voltages as a function of the
spatial position for flaw ET82. Experimental results (o), CARIDD ECT numerical results
(+) and CIVA numerical results (*).

by means of the CARIDDI ECT is definitely better than the graph of the signature

for the CIVA if compared to the experimental data. The sources of the relative errors

can be better understood by considering the plot of the real and imaginary parts of the

voltages as a function of the probe position (see Fig.2.14). From this figure it appears

that the discrepancies against the experimental data are mainly in the imaginary part

that, moreover, is the smaller component and, thus, contributes in a secondary manner

to the relative error.

2.3.1.2 Steam Generator Tube with a Support Plate

This benchmark concerns a steam generator tube with a nonmagnetic support plate.

In the nuclear power plant the tubes are usually supported with plates that are termed

support plates.

Figure 2.15: The tube with a support plate.

The plate gives a major complexity to the defect detection by eddy current because

it produces signals having amplitude usually much larger than that due to the defect.
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In this example the tube is the one considered in the previous simulations. The sup-

port plate consists of a copper, alloy with conductivity plate=58 MS/m and thickness

20mm. It is in mechanical contact but electrically insulated from the tube as shown in

Fig.2.15. In Fig.2.16 are shown the results related to the case GE40 at f=100kHz. Since

Figure 2.16: Top: matching by fitting the field due to the support plate (major lobes),
local view (left), global view (right). Bottom: matching by fitting the field due to the
notch, local view (left), global view (right).

calibration signals are not available, we compare the signals after performing a best fit

consisting in a proper phase rotation and amplification, as for the previous case, plus

a translation compensating a background voltage. However, in this case we found that

it is not possible to match with the same rotation, amplification and translation both

the major lobes (mainly due to the support plate) and the central area (mainly due to

the notch). Therefore, we applied two different matching: (i) a matching on the major

lobes and (ii) a matching on the central area, as shown in Fig. 2.16. In both cases, the

agreement after the matching is remarkable. The existence of two different matching

denotes potential errors such as lift-off etc. affecting the experimental measurements.
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Figure 2.17: Measurement scheme (left). The coil used in the measurements (right).

Finally, we highlight that the CARIDDI ECT, due to its capability of treating full 3D

backgrounds, can be applied straightforwardly for modelling this non-canonical geom-

etry where Green’s dyadic are difficult or impossible to be computed.

2.3.1.3 Slab inspection using an air-core coil

The flaws considered in the following case are 20mm long notches (see Tab.2.3). The

specimen is a nonmagnetic slab made by Inconel (conductivity 106S/m, relative per-

meability 1, thickness 1.55mm).

Flaws Descriptions
Dimensions
Length(mm) Width(mm) Height(mm)

FL1(100-20mm-
011)

Length 20mm 20 0.11 1.55
(100%)

FL2(80I-20mm-
014)

Length 20mm 20 0.14 1.24
(80% in surface)

FL3(40I-20mm-
011)

Length 20mm 20 0.11 0.62
(40% in surface)

FL4(80E-20mm-
14)

Length 20mm 20 0.14 1.24
(80% in back-
wall)

Table 2.3: Flaws dimensions along the slab.

The probe is a single emitting and receiving nonmagnetic-coil with dimensions:

internal diameter Di=2mm, external diameter De=3.25mm, height h=2.00mm, number

of turns N=328. The inspection is carried out at the frequency f=300kHz. The real and

imaginary parts of the impedance of the coil are measured with an impedance analyzer.
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The lift-off is 0.303mm and the scanning step is 0.1mm. The sensor is moved along a

line crossing orthogonally the defect, as shown in Fig.2.17. The comparison between

the experimental and numerical results is shown in Fig.2.18.

Figure 2.18: Top: experimental results (o) vs numerical results obtained with
CARIDDI ECT code (+) and CIVA code (*) for the flaws FL1 (left) and FL2 (right).
Bottom: results for the flaws FL3 (left) and FL4 (right).

The relative errors against the experimental data are 0.049 (CARIDDI ECT) and

0.069 (CIVA) for flaw FL1; 0.0693 (CARIDDI ECT) and 0.0992 (CIVA) for flaw FL2;

0.0894 (CARIDDI ECT) and 0.0863 (CIVA) for flaw FL3; 0.0525 (CARIDDI ECT)

and 0.048 (CIVA) for flaw FL4. The relative discrepancy between CARIDDI ECT

and CIVA is 0.0363 for FL1, 0.0522 for FL2, 0.1318 for FL3 and 0.025 for FL4. We

notice that for FL3 we have similar relative errors but slightly different signatures. The

CARIDDI ECT is less accurate than CIVA on the real part but more accurate than

CIVA on the imaginary part (see fig. 2.19) thus producing similar relative errors.
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Figure 2.19: Real (left) and imaginary (right) parts of the impedance variation as a func-
tion of the spatial position for FL3. Experimental results (o), CARIDDI ECT numerical
results (+) and CIVA numerical results (*).

2.4 Conclusions

In this chapter we propose a new technique based on differential geometry to perform

numerical computations in eddy current direct problem. The size of a defect can be

parameterized to model a family of defect widths with a single mesh. The avoidance

of mesh regenerations makes automated simulation runs immune to mesh generation

failures, that are commonplace in problems with narrow defects with differential for-

mulations. Moreover, we show how to adapt a mesh for different penetration depths,

dependent on different frequencies [1]. In the second part of the chapter we have illus-

trated an integral formulation, named CARIDDI ECT, that allows to treat arbitrary

3D geometrical configurations with defects of arbitrary shape in a background material

having arbitrary shape and, eventually, with space varying properties. This integral

model requires to discretize the volumetric region where circulates the perturbation of

the eddy current density due to the defect and it involves, for building the stiffness ma-

trix, the integration of singular kernels. Finally, the CARIDDI ECT numerical model

has been capable of modelling correctly the response also for a defect near the support

plate for a nuclear power plant tube [4]. This, as well known, is a challenging and

difficult problem.
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3

Iterative Methods for Crack

Shape Reconstruction

3.1 Introduction

The following three chapters are dedicated to the inverse problems. First we investigate

the iterative methods and later we move to non iterative ones which are the candidate

for real-time imaging, they are very fast and no iterations are required to get the shape

of the inclusion. In this chapter we show a topology based algorithm to reconstruct

the shape of anomalies in eddy current inverse problem. We show an improvement in

the reconstructions by exploiting topology informations which improve the convergence

of the numerical solution. As well known, the inverse problem of the detection of the

shape of defects retrieval from eddy current testing measurements is non-linear and

ill-posed (see [39]-[41] for mathematical issues). In particular, the sensitivity of the

measurements with respect to the defect shape is poor and therefore, it is very difficult

to invert the ECT data. This challenging problem has attracted the interest of the sci-

entific community. We mention papers [42]-[49] about the inversion of ECT data with

both iterative (gradient based or stochastic) and non-iterative methods. In this section

we describe a new iterative procedure that we have applied to reconstruct inclusions in

industrial applications [7] by combining an efficient integral formulation Cariddi ECT

[3] for the direct problem described in the previous chapter and an algorithm based

on Topology Costrained Optimization Algorithms (TOPCSA) for the inverse problem

[6]. As we explained the Cariddi ECT formulation restrict the computation of the field
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due to the inclusion to a limited region in a neighbourhood of the defect so that only

a “small” sub-problem has to be solved; this is particular adapt for an iterative cycle

which require the solution of the direct problem for many tentative regions (see Ap-

pendix A for details). The inversion (zero-order method) is carried out by the TOPCSA

optimization, and compared with the results obtained with a Genetic Algorithm (GA).

The GA overcomes the difficulties related to gradient-based optimization methods that

can be trapped in local minima in multimodal problems. However such methods rely on

operators that are developed to reconstruct specific types of shapes, so that the ability

of the GA to evolve complex rules for more realistic topologies is an open question. In

the TOPCSA approach the optimization algorithm is an interesting alternative to the

GA because it presents both local and global operators with a computational cost at

least comparable to the one of the GA and moreover it does not require any kind of re-

combination method. In the following sections we describe both the GA and TOPCSA

algorithms and then, a comparison of the performances obtained by them in processing

(inverting) the experimental ECT data.

3.2 Genetic algorithm

Genetic algorithms have been developed to solve optimization problems with natural

selection principles. They are suitable to solve non-linear problems where the objective

function could even be not continuous and not differentiable. The GA consider a

population of individuals (chromosomes or genotypes) and defines a fitness function

that evaluates the quality of each individual gi (i.e. how is good the solution for the

problem) of a given population P. In abstract terms, the fitness function indicates how

individuals adapt to the environment: individual with better fitness are more likely

to reproduce and transmit their genes to the future generations. At each step the

genetic algorithm uses three main types of operators to create the next generation of

individuals:

- Crossover or recombination (inspired by genetics);

- Mutation (inspired by genetics).

- Selection (inspired by natural selection);
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The operators select individuals to improve the fitness. Individuals with higher fitness

should be privileged over the others. Members selected are placed in a mating pool for

reproduction. When the mating pool is filled with n members (number of individuals of

the population), n new descendents are generated by applying genetic operators. Two

individuals in the mating pool (parents) are chosen at random and portion of their

genotype are exchanged (see Fig. 3.1), in order to generate two individuals (children)

with characteristics from both parents.

Figure 3.1: Crossover operator. The crossover point is chosen at random.

The crossover operator is applied n/2 times; according to a fixed probability 0 <

p < 1 , to obtain n individuals. The mutation operator applies a random change with

a fixed and small probability pm to a single gene of a chromosome for reintroducing

genetic material in the population.

Figure 3.2: Mutation operator. The mutation point is chosen at random.

Regard to selection the operator selects individuals to improve the fitness. Individ-

uals with higher fitness should be privileged over the others.

A termination criterion for the algorithm, may be to achieve a high percentage of

individuals of a generation that has the same function as fitness of the best. The GA

algorithm can be described with an iterative scheme:
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Figure 3.3: Genetic iterative cycle.

t = 0
initialize population P(t) at random
order the population P(t) using a function of fitness
while (termination condition not satisfied)

select individuals from P(t) and enter them in P1
select individuals from P1 and enter them in the mating pool (MP)
apply the crossover to the individuals forming P2
apply the mutation of P2 individuals forming P3
form P(t +1) by selecting for the replacement individuals from P3 and P(t)
t = t +1

end while

3.3 Topology Constrained Optimization Algorithm

Shape inclusion optimization usually starts from initial user-defined configuration of

material. Optimization algorithms are then applied for optimizing objective functions

starting form predefined parameters. A different approach to the shape optimization

is the Topology Constraint Optimization algorithm (TOPCSA) described in [6]. It is

worth noting that the TOPCSA is capable of treating arbitrary topologies: the material

properties at every point of the design space are considered in the design processes.

The TOPCSA algorithm is an interesting alterative to the GA because it presents both

local and global operators with a computational cost comparable to the one of genetic

algorithms. The TOPCSA algorithm starts by generating Npop initial distributions in

the material. The performance of these distributions, called antibodies, is evaluated

in an iterative cycle with an fitness function subject to a given criterion. The first

Nsel antibodies are selected and some copies, called clones, are generated which are

subjected to an affinity maturation (local operator) process or to a macromutation
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process (global operator). The number of clones for each iteration i is given by:

N i
C =

βNsel

i
(3.1)

Where the ratio is approximated by the upper natural number. The parameter is

a constant that regulates the number of clones. After that, the fitness of the clone is

evaluated, and the clone replaces the original antibody if it presents a better fitness. The

antibodies that are not selected for cloning are replaced by a new material configuration

randomly generated. This process is performed with several generations. The iterative

cycle is repeated until some stop criterion is reached. From this scheme it seems that

the computational effort is too high with respect to the genetic algorithm. In order

to avoid this, the size of the population is progressively reduced, until Npop = Nsel ,

i.e until all the antibodies are selected for cloning. At the same time, the parameter

regulating the number of clones is increased, in order to intensify the local evolution

of the material distributions. With this strategy, it is possible to narrow the search for

the optimal topology around the most promising solution.

3.3.1 Affinity maturation

The affinity maturation is the main local operator and it involves only a limited area

of the interested domain, usually corresponding to the pixels on the boundary of the

inclusion that have an empty pixel on both side.

Figure 3.4: Domain with inclusion before (left) and after (right) the affinity maturation.
The grey pixel are interested in the process and the arrows are indicative of the relative
mutation direction, while the dark pixel are representative of the pixel belonging to the
inclusion not considered by the operator.

The affinity maturation is performed at random with a prescribed probability.
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3.3.2 Cleaning

This operator is dedicated to avoid isolated filled elements in the material. It checks

the neighbors of each element so that if the four side of a filled element are empty, the

considered pixel is also converted to empty, as shown in the next figure.

3.3.3 Surface Smoothing

This operator is equivalent to the cleaning, but it involves pixel on the boundary of the

whole domain that presents three empty elements as shown in the next figure.

Figure 3.5: Domain with inclusion before (left) and after (right) both the cleaning and
the surface smoothing operators. The grey pixel in the bottom is interested in the surface
smoothing process, while the pixel in the top is interested by the cleaning.

3.3.4 Macromutation

This last operator is the main helpful in crack reconstruction . It helps the algorithm

to explore areas, randomly chosen, that can belong to the inclusion by setting a group

of neighbor elements to the same state. This operator helps the algorithm in exploring

new regions of the search space, to generate shapes with holes in the middle of material

regions, and to escape local minima in the later generations [6], when the population

size is reduced according to (3.1).

The TOPCSA algorithm can be described with an iterative scheme:
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3.4 Experimental setup

Figure 3.6: Domain with a random distribution in the material before (left) and after
(right) the macromutation operator.

t = 0
assign algorithm parameters: Npop, Nsel, b and initialize population P(t)
while (termination condition not satisfied)

Evaluate and sort the antibodies from P(t)
for the first Nsel better antibodies

for Nc times
Generate a clone and apply either one of the Global Operators
or the Affinity Maturation

if the clone outperforms its parent antibody
than it replaces the antibody in the population P(t)
end if

end for
end for
Recalculate Npop, Nsel, b
t = t +1

end while

3.4 Experimental setup

In the following we show a comparison between the TOPCSA and GA algotithms for

both 2D and 3D reconstructions together with an experimental validation. The mea-

surement system is composed by a robot scanner, a sliding probe for fastener inspec-

tion and an impedance analyser. The robot scanner, produced by Mitsubishi Electric,

named Melfa RV-1A, is composed by six joints which reproduce all the degrees of free-

dom related to the human arm movement with a precision of 0.02 mm. The robotic

arm is controlled by a PC via RS-232 interface (see Fig. 3.8). The probe is a dual

element reflection probe with a complex ferrite magnetic circuit [50, 51]. For this kind

of probe-defect interaction we used for the direct problem computation the numeri-

cal formulation Cariddi ECT in presence of linear magnetic materials whose details
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Figure 3.7: Robot Melfa RV-1A (left), reflection probe (right).

are shown in Appendix A. EC signals from the sliding probe were measured by an

impedance analyzer . Both the robotic arm and EC instrument were controlled by a

PC via RS-232 interface (see Fig. 3.8). The measurement have been performed with a

frequency of 25KHz to get an appropriate signal to noise ratio.

Figure 3.8: Block diagram of the measurement system.

3.4.1 2D Reconstructions

The sample used in our first test is a titanium plate used in aeronautical applica-

tion, provided by Alenia Aeronautica S.p.A (Naples, Italy). The slab has dimensions

12.5cm×12.5cm×0.35cm and a background conductivity of 0.55 MS/m.

The plate has an through-wall hole on the top and three fatigue cracks, as indicated

by Alenia Aeronautica S.p.A, whose orientations, dimensions and shapes are unknown
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3.4 Experimental setup

Figure 3.9: Titanium plate SPT 10-T with a through-wall hole on the top and three
defects contained within the region 1,2 and 3. The regions have a circular cross-section
with a diameter of 5mm. Each defect is a fatigue crack. Metallographic cross-sections are
not available for this specimen.

(see Fig. 3.9 and its caption). On this titanium plate we performed several reconstruc-

tions starting from the related experimental data. The EC inspection is performed by

robotic scanning of samples along straight lines containing both the hole and the three

flaws with the sensitive axis of the sliding probe being oriented along the scanning

path. The measurement data are shown in Fig. 3.10. The numerical model [3] has

been tested on the through-wall hole on the top of the slab as shown in Fig. 3.11. It

is worth noting the high accuracy of the numerical method and of the experimental

measurements.

Figure 3.10: Top: Experimental ECT data obtained on the hole (left) and on the defect
1 (right); ECT data on the defect 2 (left) and defect 3 (right). The intensity diagram are
referred to the modulus of the measured impedance.

Then we analyzed the defects. The fatigue cracks can be considered with zero

thickness and typically perpendicular to the specimen. In order to find the crack plane
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Figure 3.11: Plot of the numerical (-) and experimental (·−) impedance values in the
complex plane.

we analyzed the symmetries in the measured response. Finally, the reconstruction was

carried out by minimizing an error functional for the real and the imaginary part of the

impedance, related to the root mean square error between experimental measurements

and simulated signals:

εr =

√∑
n

(Rcalcn −Rmeasn )2

√∑
n

(Rmeasn )2
, εi =

√∑
n

(Xcalc
n −Xmeas

n )2

√∑
n

(Xmeas
n )2

(3.2)

where Rmeasn + iXmeas
n is the measured impedance variation due to a crack and

Rcalcn + iXcalc
n Rcalcn + iXcalc

n is the computed impedance variation for each position of

the coil along a line parallel to the specimen and to the fatigue crack. Finally, Figs. 3.12

and 3.13 show the reconstructions for the flaws (cases 1 and 2) on the crack plane, while

Tab.3.1 shows the associated errors obtained with the two methods. It is worth noting

that in both cases the solution provided by the TOPCSA fits the experimental data

significantly better than the solution provided by the GA. Moreover, the TOPCSA,

by taking into account topological constraints (defect made by several non connected

component are ”discarded”), provide better approximation of the geometry of a fatigue

crack.
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Figure 3.12: Top: Reconstructions obtained with TOPCSA (left) and GA (right) for
the defect 1. The black pixels belong to the reconstructed inclusion. Bottom: plot of the
experimental (·−) and numerical (-) impedance variation values (real and imaginary part)
for each position of the reflection probe on the specimen, obtained after the fitting with
TOPCSA (left) and GA (right).

Defect Topcsa εr% εi%

1 8.5 2.75

2 10 4.38

Defect GA εr% εi%

1 18.3 6.7

2 25.3 23.6

Table 3.1: Errors obtained with TOPCSA (Top)and GA (Bottom) for both the analyzed
defects.
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Figure 3.13: Top: Reconstructions obtained with TOPCSA (left) and GA (right) for
the defect 2. The black pixels belong to the reconstructed inclusion. Bottom: plot of the
experimental (·−) and numerical (-) impedance variation values (real and imaginary part)
for each position of the reflection probe on the specimen, obtained after the fitting with
TOPCSA (left) and GA (right).

3.4.2 3D Reconstructions

In this section we perform a 3D reconstruction, by analyzing not more a crack plane

but the whole region scanned by the probe. We analyze an aluminium plate (conduc-

tivity σ = 18.30MS/m, thickness 2mm) with a 5mm×0.2mm though-wall defect in the

middle. The algorithms have to chose pixels which are identified in a volume as shown

in Fig.3.14 where we chose three cut planes in the y direction in accordance with the

measurement data. The defect is localised exactly in the middle, in the plane y=0.
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3.4 Experimental setup

Figure 3.14: Finite element mesh used for the perturbed solution of Cariddi ECT near
the analyzed defect

In the following Figs. 3.15 and 3.16 are shown the reconstructions obtained with

the GA algorithm and TOPCSA algorithm.

Figure 3.15: Top:3D reconstrution obtained with the GA algoritm. Bottom: plot of the
experimental (·−) and numerical (-) impedance variation values (real and imaginary part)
for each position of the reflection probe on the specimen.
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Figure 3.16: Top:3D reconstrution obtained with the TOPCSA algoritm. Bottom: plot
of the experimental (·−) and numerical (-) impedance variation values (real and imaginary
part) for each position of the reflection probe on the specimen.

The errors are shown in the following Tab.3.2. As we expected the performances of

TOPCSA are better than GA also when we consider the whole scanning area with 3D

reconstructions.

Defect GA εr% εi%

20.43 23.72

Defect Topcsa εr% εi%

12.79 19.07

Table 3.2: Errors obtained with GA (Top) and TOPCSA (Bottom)

3.5 Conclusions

In this chapter we have applied a new iterative topological based algorithm (TOPCSA)

to eddy current testing of defects. The method has been compared with a Genetic

Algorithm (GA) and experimentally validated [7]. The topological optimization method
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takes naturally into account some topological constraints performed significantly better

than a classical GA based method for both 2D and 3D reconstructions.
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4

Non-iterative Imaging Methods

for Electrical Resistance

Tomography

This chapter is focused on a comparison between the three non-iterative methods which

are the State-of-the-Art of the non-iterative methods. The aim of this comparison is

to analyze the performances of the Monotonicity imaging method [8], which has been

developed for years in our research group and improved thanks to the work of this

thesis with new details that we describe in this chapter. The comparison is carried out

in the frame of the Electrical Resistance Tomography (ERT) to detect inclusions in

conducting materials. This technique has been considered in a variety of applications

covering different fields such as medical applications [52], geophysical prospecting [53],

non-destructive testing [54, 55], process tomography [56]. The problem was first for-

mulated mathematically by Calderón [57] as inverse boundary value problem, since the

conductivity σ appears as a diffusion coefficient in an elliptic differential equation. A

major role is played by the Neumann-to-Dirichlet operator Λ which maps the applied

currents f on a body into the boundary (measured) voltages u.

Let Ω ⊂Rn, n ≥ 2 be a simply connected, bounded domain with smooth boundary

∂Ω. When a boundary current f ∈ S(∂Ω) is imposed on ∂Ω is induced an electrical

potential u ∈ R(∂Ω) which is solution of the Neumann problem:

{
∇ · σ∇u = 0 in Ω

σ ∂u
∂n = f on ∂Ω

(4.1)
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where

S(∂Ω) = {f ∈ L2(∂Ω) :

∫
∂Ω

f(s)ds = 0}g (4.2)

R(Ω) = {u ∈ H1(Ω) :

∫
∂Ω

u(s)ds = 0} (4.3)

The conductivity σ is piecewise constant, homogeneous in Ω except for a number p

of inclusion Bj , j=1,. . . .,p where σ is assumed to be different from the background:

σ(r) =

{
σ0 r ∈ Ω\B
σj r ∈ Bj

(4.4)

and B = ∪jBj .

The problem is very challenging since the map σ →Λ is nonlinear and the recovery

of σ from Λ is ill-posed in the sense of Hadamard. It has been demonstrated that the

knowledge of the Neumann-to-Dirichlet map guarantees the uniqueness of the solution

of the inverse problem [58]-[62].

Main of the developed algorithms are based on a linearization technique of the

operator mapping the resistivity into the boundary data. We refer to [52] for a list

of references, also covering other classes of methods such as iterative minimization for

various error functionals, which are mainly based on Newton’s method.

The iterative methods require the solution of the direct problem for several assigned

tentative shapes of the inclusion and can be very expensive in terms of computational

cost. Moreover, the convergence cannot be guaranteed.

On the other hand non-iterative methods have attracted a lot of interest because

they provide a test for evaluating if a point of the domain (or a subregion) is part or not

of the anomaly, regardless other points (or subregions). The test is very cheap from the

computational viewpoint because no iterations are necessary and a robust numerical

convergence criterion is given for each method, which can be extended to noisy data.
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4.1 Monotonicity method

This method is based on the work described in [8, 14, 63, 64, 65]. The method is based

on the monotonicity principle of the Neumann-to-Dirichlet operator, that is:

σ2 (r) ≥ σ1 (r) , ∀r ∈ Ω⇒ Λσ1 ≥ Λσ2 (4.5)

where Λσk is the Neumann-to-Dirichlet map corresponding to σk and Λσ1 ≥ Λσ2

means that Λσ1 − Λσ2 is positive semi-definite.

Monotonicity (4.5) can be easily proved through the variational characterization of

the solution of problem (4.1) in term of minimum in H1(Ω) of the functional:

Fσ(u) =
1

2

∫
Ω

σ |∇u| 2dτ −
∫
∂Ω

f u ds (4.6)

Moreover, as well known, on the solution uσ of (4.1) it turns out that:

Fσ(u) = −1

2

∫
∂Ω

f uσ ds. (4.7)

Finally, Monotonicity (4.4) can be obtained as follows:

〈f,Λσ1f〉 =
∫
∂Ω

f uσ1 ds = −2Fσ1 (uσ1 ) ≥ −2Fσ1 (uσ2 )

= −
∫
Ω

σ1 |∇uσ2 |
2dx+ 2

∫
∂Ω

f uσ2 ds

≥ −
∫
Ω

σ2 |∇uσ2 |
2dx+ 2

∫
∂Ω

f uσ2

= −2Fσ2 (uσ2 ) = 〈f,Λσ2f〉 .

(4.8)

where we have taken into account the assumption σ2 > σ1 in the second inequality.

It is worth noting that from the physical standpoint, (4.6) means that if the conductivity

of the considered material increases pointwise, then the Ohmic losses for a prescribed

boundary current f increase.

Monotonicity (4.5) can be easily turned into a fast imaging method [8]. Indeed,

let us consider a two-phases problem, i.e. the shape identification problem consisting

in retrieving a homogeneous unknown anomaly B hosted in the homogeneous domain

Ω. In other terms, we are assuming that all the σj in (4.4) are equal. In addition, we

assume that the conductivity of the anomaly is smaller than that of the background.
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Let us now consider a test anomaly occupying the region Btest. Thanks to (4.5), if

the test domain is contained in the unknown anomaly B, then the conductivity of

the test anomaly is (pointwise) greater or equal to that of the unknown anomaly and

ΛB ≥ ΛBTest
(ΛB is the Neumann-to-Dirichlet map related to B and ΛBTest

is the

Neumann-to-Dirichlet map related to Btest). Consequently, it holds that:

ΛB ≥ ΛBTest
false ⇒ Btest 6⊂ B. (4.9)

Test (4.9) is the basis for the fast imaging method. Indeed, once the data ΛB has

been measured, for a given (and known) test anomaly Btest it is possible to ascertain

if it is part or not of the unknown anomaly B by simply checking the sign of the

eigenvalues of ΛB − ΛBTest
. Then, the same test, repeated for different positions and

shapes of the test anomaly, provides the shape of B. It is worth noting that ΛB is the

data corresponding to the unknown B, whereas ΛBTest
corresponds to the known Btest

and it can be either measured experimentally or evaluated numerically [14].

Figure 4.1: The domain Ω the inclusion B and a possible partitioning of in terms of the
test subdomains BTest

The imaging method checks (4.9) for different trial anomalies, for instance those

obtained by partitioning the domain Ω in non-overlapped subsets (see Fig. 4.1). After

evaluating through (4.9) if a generic test domain from this partition is included or not

of the unknown anomaly B, the reconstruction is obtained as the union of the subsets

that result to be included in B.

As well known from perturbation theory, the eigenvalues of the symmetric matrix

A + E differ from those of A of at most the L2-norm of the perturbation matrix E.

Concerning the imaging algorithm, this means that if the L2-norm of the measurement

noise is larger than all negative eigenvalues, test (4.9) is unreliable and it may provide

false detections of anomalies (see Fig.4.2).
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Figure 4.2: Eigenvalues of ΛB −ΛBTest
in a logarithmic scale for a test anomaly external

to the inclusion. (o) is the plot of the absolute value of the negative eigenvalues and (*) is
the plot of the positive ones. The continuous line (-) is the noise level calculated with the
L2-norm of the noise matrix.

From extensive numerical tests, we found effective in improving the immunity to

the noise to replace (4.9) with:

ΛB − Λ0 ≥ C (Λ BTest
− Λ0) false ⇒ Btest 6⊂ B (4.10)

where C is a proper constant and Λ0 is the Neumann-to-Dirichlet map when no

anomalies are present.

Numerical simulations showed that the value of C depends on the noise level but is

only weakly dependent on the shape of the anomaly. Therefore, the value of C can be

a priori evaluated on some test configurations. Specifically, C is chosen numerically in

order to keep the magnitude of the smaller eigenvalues above the noise level when the

inclusion is outside the anomaly as shown in Fig.4.3.

It is worth noting that if the value of the constant C is too high, the inclusion

condition can be not verified also in the regions that belong to the anomaly, so the

choice of C has to be properly carried out.

4.2 Factorization method

The second algorithm is based on the Factorization method proposed by Brühl and

Hanke in [9, 66] starting from an idea of Colton and Kirsch [67, 68] developed in
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Figure 4.3: Eigenvalues of ΛB −ΛBTest
in a logarithmic scale for a test anomaly external

to the inclusion. The value chosen for C from simulations is 50. (o) is the plot of the
absolute value of the negative eigenvalues and (*) is the plot of the positive ones. The
continuous line (-) is the noise level calculated with the L2 norm of the noise matrix.

the frame of inverse scattering problems. This method requires the knowledge of the

Neumann-to-Dirichlet map Λ0 related to the background, i.e. when no inclusions are

present in Ω, and the measured map Λ corresponding to the actual configuration under

testing. To be more specific, Λ0 maps the applied currents f ∈ S(∂Ω) on the boundary

∂Ω, into the boundary voltages u0|∂Ω where u0 ∈ R(Ω) is the solution of:

{
∇ · σ0∇u0 = 0 in Ω

σ0
∂u0
∂n = f on ∂Ω

(4.11)

A primary quantity for the imaging algorithm is the solution of the following ho-

mogeneous (constant conductivity) problem:

{
∇2Gz,d = ∇2Dz,d in Ω\ {z}
∂Gz,d

∂n = 0 on ∂Ω
(4.12)

where Dz,d is the scalar dipole potential:

Dz,d(x) =
(z − x) · d
2π |x− z|2

, x 6= z. (4.13)

where d ∈R2. Function Dz,d represents the scalar potential for a dipole located in

z and directed along the direction given by d.
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Figure 4.4: Equipotential lines of the dipole function Dz,d in the domain Ω.

The imaging algorithm is based on the following result [9, 66]:

z ∈ B ⇔ gz,d = Gz,d|∂Ω ∈ R
(

(Λ− Λ0)1/2
)
. (4.14)

In other words, a point z belongs to the inclusion B if and only if the trace gz,d

belongs to the range of range of the operator (Λ− Λ0)1/2. By exploiting the Picard

criterion, condition (4.14) is equivalent to:

z ∈ B if and only if
∞∑
k=1

〈gz,d, νk〉2 /λk < +∞ (4.15)

where the νk’s and λk’s are the eigenfunctions and the eigenvalues of Λ − Λ0. For

understanding the imaging algorithm, at least partially, we notice that for prescribed

f in (4.1) and (4.11), the difference between the boundary potentials u|∂Ω and u0|∂Ω,

h = u|∂Ω − u0|∂Ω, is a function from the range of the operator Λ− Λ0, i.e.:

h = (Λ− Λ0)f (4.16)

that is the trace on ∂Ω of w = u− u0 that is an harmonic potential in Ω\B. In

addition the flux ∂w/∂n is equal to zero on ∂Ω. Therefore, w is uniquely determined

as the solution of the Cauchy problem:


∇2w = 0 in Ω\B
∂w
∂n = 0 on ∂Ω
w = h on ∂Ω

(4.17)

Therefore, it is clear that if gz,d, that is the trace of Gz,d in (4.14), is an element of

the range of the operator Λ−Λ0 then, Gz,d satisfies (4.12) and, consequently, z ∈B. The

converse is not true for the operator Λ−Λ0 and, therefore, an imaging algorithm testing

condition gz,d ∈ R (Λ− Λ0) may provide a smaller image of the anomalies. This is not
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the case of the square root (Λ− Λ0)1/2 where, thanks to (4.15), an imaging algorithm

testing gz,d ∈ R
(

(Λ− Λ0)1/2
)

produce, at least theoretically and with complete and

noise-free data, the exact shape on the anomaly.

From the practical viewpoint, to apply test (4.15), it is important to realize that

the convergence of the series has to be evaluated from the available data: we have at

our disposal only a finite number of elements of the series that, in addition, are known

only in an approximate way. The convergence of the series (4.15) can be evaluated by

comparing the decay of the terms 〈gz,d, νk〉2and λk. As example (see Fig. 4.5) when

z ∈ B it turns out that the plot of 〈gz,d, νk〉2 is steeper than the plot of the λk’s. The

converse is true when z is not part of the inclusion.

Figure 4.5: Plot of 〈gz,d, νk〉2 when z is internal to the inclusion (*) and when z is external
to the inclusion (o), together with the eigenvalues (·). The plots are normalized.

It is well known that the eigenvalues λk’s exhibit an exponential decay. By means

of a least square approach it is possible to estimate the decay parameters c and q from

the first m0 eigenvalues λk:

log λk ≈ c+ k log q (4.18)

Similarly it possible to apply the same concept to 〈gz,d, νk〉2 in order to obtain the

decay parameters ψz and φz:

log 〈gz,d, νk〉2 ≈ ψz + k log φz (4.19)
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In terms of the decay parameters (numerical range criterion) test (4.15) becomes:

z ∈ B if and only if ψz < q. (4.20)

In case of noisy data, the trends of both 〈gz,d, νk〉2 and λk are perturbed (see Fig.

6). Assuming the noise is additive, we may represent it as a perturbation operator E

that sums to Λ and, therefore, to Λ−Λ0. From the perturbation theory, we know that

the eigenvalues of the new map Λ−Λ0 +E differ from the unperturbed ones by at most

δ that is the L2 norm of the operator E.

Figure 4.6: Plot of 〈gz,d, νk〉2 when z is internal to the inclusion (*) and when z is external
to the inclusion (o), together with the eigenvalues (·). The plots have been obtained in the
presence of additive random noise.

In order to minimize the effect of noise it is necessary to reduce m0 that is the

maximum number of terms of the series (4.15) that are considered in decay parameters

in (4.17) and (4.18). Specifically, we retains only the terms such that condition λk > δ

is satisfied. For example in Fig.4.6 only m0=5 eigenvalues can be used.

4.3 MUSIC method

The third method is an algorithm based on the MUltiple SIgnal Classification method

(MUSIC). The MUSIC algorithm has been originally developed to locate point scat-

terers from multistatic measurements in wave propagation inverse problems [10]. Here

we briefly describe this method as originally developed for the scalar wave-propagation

equation. Let us consider N elementary antennas located at the spatial positions R1,
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. . . ,RN , in a material that is homogeneous apart from M small anomalies. Let X1,

. . . , XM be the spatial position of the anomalies. The (scalar) unperturbed field ψincj

evaluated at the point x and due to the j−th antenna can be evaluated through the

appropriate Green function as:

ψincj = G(x,Rj)ij . (4.21)

where ij is the input current applied to the antenna.

Assuming the interactions between the M scatterers are negligible, the field ψScj,m

scattered by the m−th anomaly is given by:

ψScj,m = G(x,Xm)rmψ
inc
j (Xm), (4.22)

where rm is reflection coefficient of the scatterer. The field received by the i−th

antenna is given by the superposition of the elementary fields given by (4.22) evaluated

at Xi:

vi =
∑

m
G(Xi, Xm)rmG(Xm, Rj)ej . (4.23)

From (4.23) it is possible to recognize the multistatic response matrix H:

Hij =
∑

m
G(Ri, Xm)rmG(Xm, Rj) (4.24)

that relates the applied input to the measured output. In compact form we have:

H = GRGT (4.25)

where the matrices G and R are defined as follows:

G =

 G(R1, X1), . . . G(R1, XM )
...
G(RN , X1), . . . G(RN , XM )

 (4.26)

R = diag {r1, r2, .....rm} (4.27)
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The matrix H is symmetric and for N > M its null space is not trivial. It is possible

to consider its singular value decomposition:

H = UΣV H (4.28)

where U and V are N×N orthonormal matrices, Σ = diag {σ1, ..., σN} with σ1 ≥

σ2 ≥ . . . ≥ σM > 0 and σM+1 = σM+2 = σN = 0. Let U0 be the last L columns of U

related to the vanishing singular values σM+1, . . . , σN . It follows that:

0 = UH
0
GRGT . (4.29)

By exploiting that R is invertible and G is full (columns) rank, we have that:

UH
0
G = 0, (4.30)

i.e.

UH
0

Γ (Xm) = 0, m = 1, ...,M (4.31)

where

Γ (X) =

 G(R1, X)
...

G(RN , X)

 (4.32)

Summing up, the position of the scatterers can be found through the peaks of:

PMUSIC (X) =
1∥∥∥UH

0
Γ (X)

∥∥∥ . (4.33)

In the framework of ERT, it has been observed [52, 66, 69, 71, 72] that there is

a strong connection between the Factorization and the MUSIC methods. Indeed, in

[71] it was proved that if the anomalies have radii proportional to a small parameter ε,

then:

Λε − Λ0 = ε2K + o
(
ε2
)
, for ε→ 0 (4.34)
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Λε is the Neumann-to-Dirichlet map for a given ε and K, as in the case of MUSIC,

has a rank equal to the number of anomalies M . Moreover, the range of K is spanned

by the functions gXm,d, m = 1, ...,M defined in the previous section. Within approx-

imation (4.32) the ranges of K, Λε − Λ0 and (Λε − Λ0)1/2 coincide and (4.33) can be

replaced by:

cot θ(z) =
∥∥(1− P )gz,d

∥∥ / ∥∥Pgz,d∥∥ (4.35)

where P is the orthoprojector operator in the null space of Λε − Λ0.

Figure 4.7: A point zk of Ω surrounded by a circle of radius εrk.

Geometrically, θ represents, the angle between gz,d and the range of Λε-Λ0. By con-

struction cot θ(z) is very large when z is inside an inclusion and the peaks of log cot θ(z)

can be used to find an approximate location of the cavities. In the presence of noise

having a level of δ the orthoprojector P is related to the linear space spanned by the

eigenvectors of Λε−Λ0 whose corresponding eigenvalues are greater than the noise level

δ.

4.4 2D Numerical Examples

In this section we present a comparison among the three fast imaging methods described

in the previous section. We propose three different examples related to industrial and

biomedical applications. At the discrete level, i.e. when the Neumann-to-Dirichlet map

is represented through a matrix, the noise model is:

Λ̃ij = Λij +Nij · ξ, (4.36)
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where Λ̃ij is the noisy Neumann-to-Dirichlet map, Λ is the noiseless Neumann-to-

Dirichlet map, Nis a normalized noise having entries uniformly distributed in (-δ, +δ)

and ξ = maxi,j

∣∣∣(Λ− Λ0)i,j

∣∣∣ . The number of applied currents is equal to 60. The

values chosen for δ are 0.001 and 0.01. These values are realistic from an experimental

point of view and, moreover, are compatible with the sought resolution. The constant

C in the Monotonicity method is 50 for δ=0.001 and 100 for δ=0.01. We consider

inclusions in a disk of unitary radius. The first example presents a single anomaly, the

second example two anomalies whereas the third example concerns the treatment of a

three phases material. In this latter case the monotonicity has been applied twice for

retrieving the two phases that are different from the background.

4.4.1 First Numerical Example

The first example refers to an industrial application consisting of the identification of a

defect (1S/m almost insulating) in a copper background (58MS/m). The shape of the

inclusion is shown in Fig.4.8, whereas the related reconstructions are shown in Fig.4.9.

From Fig.4.9 it is we notice that the reconstructions performed with the Factorization

method and the Monotonicity method are quite good.

Figure 4.8: A rectangular inclusion with aspect ratio 3:1 in a circle domain.

On the other hand, the MUSIC method underestimates the shape because of the

underlying hypothesis of small inclusions. The computational time for the inversions is

the same for both the Factorization and the MUSIC methods; it concerns the evaluation

of the dipole function Dz,d on every node of the mesh used during the inversion. On

the other hand, the Monotonicity algorithm requires test (4.15) to be applied to each

region Bk. The estimated computational time for the inversions is about 60s for the

Factorization and MUSIC methods and about 15s for the Monotonicity method.
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Figure 4.9: From left to right: reconstruction by means of the Monotonicity method, the
Factorization method and the MUSIC method. Noise level: δ =0.001 (top) and δ =0.01
(bottom). In the Monotonicity method the reconstructions are shown together with the
test subdomains.

4.4.2 Second Numerical Example

The second example refers to an industrial application consisting of the identification

of low conductivity (1S/m) inclusions in an aluminum background (38 MS/m). Sim-

ilarly to the previous example, the reconstructions are quite satisfactory for both the

Monotonicity and Factorization methods, whereas the MUSIC method fails in detecting

these “non small” anomalies.

Figure 4.10: A rectangular inclusion with aspect ratio 2:1 and a square inclusion in a
circle domain.
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Figure 4.11: From left to right: reconstruction by means of the Monotonicity method,
the Factorization method and the MUSIC method. Noise level: δ =0.001 (top) and δ =0.01
(bottom). In the Monotonicity method the reconstructions are shown together with the
test subdomains.

4.4.3 Third Numerical Example

The third example (see Fig.4.12) concerns a biomedical application inspired to the

reconstruction of the heart and two lungs with conductivities 0.5S/m and 1.2S/m re-

spectively, in a diastolic configuration, with a background conductivity equal to 1S/m.

The three “anomalies” have conductivities that are greater (lung) and smaller (heart)

than that of the background. We notice that the Monotonicity method has been origi-

nally proposed in [8] for two-phases problems. Here, we propose to apply it twice: first

for retrieving the heart (conductivity smaller than that of the background) and then

for retrieving the lungs (conductivity greater than that of the background).

Figure 4.12: Two rectangular inclusions (lungs) with aspect ratio 3:1 and a square in-
clusion (heart) in a disk.

Specifically, we introduce two families of test anomalies. A first family is for detect-

ing the presence of the heart and is made by anomalies whose conductivities are equal

to that of the background apart from one test subdomain where the values is that of
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Figure 4.13: Reconstruction with δ =0.001: Monotonicity method applied to retrieve
the lungs (top-left) and Monotonicity method applied to retrieve the heart (top-right),
Factorization method (bottom-left), MUSIC method (bottom-right).

Figure 4.14: Reconstruction with δ =0.01: Monotonicity method applied to retrieve
the lungs (top-left) and Monotonicity method applied to retrieve the heart (top-right),
Factorization method (bottom-left), MUSIC method (bottom-right).

the heart (0.5S/m). The second family differs from the first one in the value of the

conductivity in the test subdomain, equal to that of the lungs (1.2S/m). The numerical

results are shown in Fig.4.14. In both cases, the reconstruction with the Monotonicity

method is shown in terms of an image for the lungs and one image for the heart. The

estimated computational time for the inversions is the same as the previous case for

the Factorization and MUSIC method, while for the Monotonicity method it is doubled

because of the application of two sets of test anomalies.
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4.5 3D numerical examples

In this section we show numerical examples regarding applications in the field of process

tomography [73]. We simulate the experimental acquisition of boundary voltage to

obtain a finite dimensional approximation of the Neumann to Dirichlet map by imposing

a set of boundary currents on a given number of electrode uniformly distributed on the

analyzed tridimensional domain(see Fig.4.15). We use 75 electrodes and the same noise

levels (δ=0.001 and δ=0.01) of the 2D examples. The constant C in the Monotonicity

method is 35 for δ=0.001 and 70 for δ=0.01.

Figure 4.15: Simulated experiment setup. The black cubes are representative of the elec-
trodes used to calculate the finite dimensional approximation of the Neumann to Dirichlet
map.

The simulated experiments consist of placing plastic bottles ( σ = 10−9S/cm at

20�) which are filled with tap water ( σ = 10−4S/cm at 20�) in two different geometric

configurations.

4.5.1 First 3D numerical example

The first 3D example is shown in next Fig.4.16 and the reconstructions in Fig.4.17.

For these 3D reconstructions the estimated computational time for the inversions is

80s for the Factorization and MUSIC methods and 20s for the Monotonicity method,

this increasing in time computation by respect the 2D case is obviously due to a major

number of nodes in the finite element mesh for the evaluation of the dipole function of

the Factorization and MUSIC methods, and a major number of regions in this 3D case

for the Monotonicity method.
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Figure 4.16: Configuration under investigation. The considered domain is a cylinder of
height h=2m and radius r=1m. The inclusion is represented by a rectangular prism of
dimensions 0.2×0.2×0.4.

Figure 4.17: From left to right: Simulations obtained with Factorization method, MUSIC
method and Monotonicity method with δ=0.001 (top) and with δ=0.01 (bottom).

4.5.2 Second 3D numerical example

The second 3D example is shown in next Fig.4.18 and the reconstructions in Fig.4.19.

The reconstruction obtained with Monotonicity method are quite good while here is

evident for the MUSIC method the underestimation of the inclusions as in the 2D cases.

For the 3D inclusions the Factorization method seems to be more sensitive to noise by

respect the 2D cases.
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Figure 4.18: Configuration under investigation. The considered domain is a cylinder
of height h=2m and radius r=1m. The inclusion is represented by rectangular prisms of
dimensions 0.2×0.2×0.4.

Figure 4.19: From left to right: Simulations obtained with Factorization method, music
method and Monotonicity method with δ=0.001 (top) and with δ=0.01 (bottom).

4.6 Conclusions

In this chapter three non-iterative methods for locating inclusion in Electrical Resis-

tance Tomography have been presented. These methods are candidate for real-time

imaging because no iterations are required to get the shape of the inclusion. The

Monotonicity and Factorization methods provide satisfactory reconstructions for a rea-

sonable values of the noise level for both 2D and 3D reconstructions. They work for

non ”small” and multiple anomalies, as well. On the contrary, MUSIC achieve worse

performances because it relies on the assumption of ”small” anomalies. Moreover, in

this section we have extended the Monotonicity method from two phases problems to
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more complicated configurations consisting of more than two phases with conductivities

which can be higher and lower than that of the background and improved the immunity

to noise [11, 12, 13].
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5

Non Iterative Imaging Method

for Eddy Current Tomography

5.1 Introduction

In this chapter we present the first experimental validation of the Monotonicity imaging

method presented in the previous chapter through the eddy current tomography [14].

Here we exploit the monotonicity property of the real part of the measured impedance

matrix [63]. As we showed in the previous chapter this method was initially devel-

oped for elliptic problems such as electrical resistance tomography [8], than has been

extended to parabolic problems such as the eddy current testing in both low frequency

(large skin depth) [63] and high frequency (skin depth negligible with respect to the

relevant dimension) [64, 65], but has never been applied on experimental data. A key

role in eddy current tomography is the reconstruction of the resistivity profile of the

specimen under test, starting from the measurement data, through the solution of an

inverse problem. The measured data consist of measurements of the impedance matrix

(self and mutual impedances) between the coils of the array (see Fig.5.1).

The identification of the conductivity distribution inside a material is seriously af-

fected by the inherently ill-posed and nonlinear nature of the eddy currents inverse

problem (see [39]-[41] for mathematical issues). First and foremost, the ill-posedness

translates into low sensitivity measurements, i.e. different resistivity distributions pro-

duce similar measurements and, in addition, the nonlinearity requires sophisticated

inversion algorithms. As we showed in the previous chapters the imaging methods can
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Figure 5.1: The planar surface to be investigated (specimen) together with a probe made
by an array of seven coils and a rectangular defect.

be divided in iterative and non-iterative (direct). As main drawbacks, the iterative

methods require the solution of the direct problem for several assigned tentative shapes

of the inclusion and this can be very expensive in terms of computational cost. More-

over, the convergence cannot be guaranteed. On the other hand non-iterative methods

have attracted a lot of interest because they provide a test for evaluating if a point

of the domain (or a subregion) is part or not of the anomaly, regardless other points

(or subregions). The test is very cheap from the computational viewpoint because no

iterations are necessary. The aim of this chapter is to show that is possible to apply a

real time imaging method to the eddy current inverse problem if we design correctly the

measurement system in accordance with the noise level. Numerical simulations of the

direct problem with the numerical code CARIDDI ECT [2, 3] have been exploited to

check numerically if a given probe was able to guarantee appropriate reconstructions.

The Monotonicity imaging method is here applied to identify the conductivity profile

of several benchmarks. We show that with a designed measurement system through

direct simulations, the Monotonicity imaging method provides the conductivity profile

of the device under test in real time with no errors.

5.2 Monotonicity principle for Eddy Current Testing

In this section we briefly describe the monotonicity principle for the real part of the

measured impedance matrix (self and mutual impedances between pairs of coils of the
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array shown in Fig.5.1). In the low frequency limit, the impedance matrix admits the

following expansion:

ZcoilD = R0 + jωL0 + ω2P
(2)
D + jω3P

(3)
D +O(ω4) (5.1)

that is valid as long as the frequency is enough low so that the 4th and higher

order terms in (5.1) are negligible. We mention that all matrices appearing in (5.1) are

real and symmetric. Matrix P
(2)
D , which contributes to the real part of the impedance

matrix, plays a key role because of its monotonicity property [63]. First we demostrate

the monotonicity property for the operator Rη which represent the resistance matrix

associated to the conductive region and later we extend the monotonicity property to

the second order term P
(2)
D . The operator Rη is defined through the ohmic power

dissipated for a given resistivity η:

Pη =

∫
D

η ‖J‖2 dV = ITRηI (5.2)

If we refer to the electric vector potential (J = ∇ × T) based formulation for the

direct eddy current problem, the vector potential T is given by the solution of the

following variational formulation:

find T ∈ AIsuch that

∫
D

η ‖∇ ×T‖2 dV is minimum (5.3)

where

AI=̂

T ∈ A|
∫
Sk

∇×T · n̂dS = ik, k = 1, . . . ,M

 (5.4)

with ik we indicate the imposed currents through the electrodes on the conductive

region to calculate the resistance matrix.

Proposition 1. η1 ≥ η2 ⇒ R1 ≥ R2 where R1 is the resistance matrix related to

η1, R2 is the resistance matrix related to η2 and R1 ≥ R2 means that R1 −R2 is a

positive semi-definite matrix, i.e. xT (R1 −R2) x ≥ 0, ∀x.

Let T1 and T2 be defined as the solution of (5.3) when the column vector I of the

electrode currents is given and the resistivities are η1 and η2, respectively. Then it
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Figure 5.2: Top: a simple configuration where a single excitation coil is used to probe a
wire-like conductor (grey) having an equivalent resistance equal to R. Bottom: the exci-
tation coil and the conductor form two coupled inductors (L1, L2 and M are the self and
mutual inductance coefficient, R0 is the equivalent resistance of the excitation coil).

follows that

ITR1I =

∫
D

η1 ‖∇ ×T1‖2 dV ≥
∫
D

η2 ‖∇ ×T1‖2 dV ≥
∫
D

η2 ‖∇ ×T2‖2 dV = ITR2I

(5.5)

where the first and last equality follow from the definition of resistance matrix, the

first inequality follows from the hypothesis and the second inequality follows from (5.3)

when particularized to η2. The thesis follows from the arbitrariness of I. In particular we

can conclude that if the resistivity of the considered material increases pointwise, then

the ohmic power dissipated in the conductor increases and consequently P
(2)
D decreases

in the sense that will be clarified in the following. Let us consider, for the sake of

simplicity, a simple system made by one exciting coil and by a filamentary conductor

(see Fig. 5.2). The system is coupled magnetically (we are in the magneto- quasistatic

limit) and it is equivalent to two coupled conductors (a transformer) with a current

generator injecting a current on the “primary” and a resistor of the “secondary” see

Fig. 5.2.

78



5.3 Monotonicity imaging method

The ohmic power provided by the current generator is:

P =

[
R0 +

R(M/L2)2

1 + (R/ωL2)2

]2

i

∼=
[
R0 +

M2ω2

R

]
i2 for ω → 0 (5.6)

where R0 is the resistance of the exciting coil and L and M are the self and mutual

inductance of the coupled inductors. From (5.6) it follows that for small ω the power

P and the equivalent resistance seen from the current generator that correspond in our

case to the second order term P
(2)
D of the measured impedance matrix, decrease as R

(the equivalent resistance matrix of the conductive specimen) is increased, i.e., as the

resistivity in D. From these considerations it follows that for two-phase materials the

monotonicity can be stated as [63]:

V1 ⊆ V2 in D ⇒ P
(2)
V1
≥ P

(2)
V2

(5.7)

where Vk ⊆ D represents the domain occupied by the k-th anomaly (resistivity ηa)

that is hosted in the background material having resistivity ηb < ηa. In (5.7) P
(2)
V1
≥ P

(2)
V2

means that matrix P
(2)
V1
−P

(2)
V2

is positive semi-definite, i.e. all its eigenvalues are non-

negative.

5.3 Monotonicity imaging method

Equation (5.7) forms the basis for the method to solve the inverse problem (see [63]).

Let V be the (unknown) subset of Dwhere the resistivity is ηa (the resistivity in D\V
is ηb). The inverse problem consists in retrieving V .

Let us consider a generic (and known) test domain Ωk. From (5.7) it follows that:

P
(2)
Ωk
≥ P

(2)
D false ⇒ Ωk 6⊂ D, (5.8)

and, thus, by checking (5.8) for different test anomalies Ωkit is possible to esti-

mate/retrieve V . It is worth noting that the algorithm can be applied to an arbitrary

number of anomalies with unknown shape and topology.

In order to test (5.8) we need to compute the eigenvalues of P
(2)
Ωk
−P

(2)
D for checking

if this symmetric matrix is positive semi-definite or not. However, only a noisy version

P̃
(2)
D = P

(2)
D + E, P

(2)
D being the noiseless matrix and E the noise matrix, can be

measured and it can be processed as described in [63]. Similarly, the test matrices
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Figure 5.3: The conductive domain D subdivided in elementary regions together with an
anomaly V (grey pixels) and a test region Ωk (black pixel).

P
(2)
Ωk

may be affected by either measurement errors (if measured) or numerical errors

(if numerically computed). Therefore, the eigenvalues of P̃
(2)
Ωk
− P̃

(2)
D can be different

from the eigenvalues of P
(2)
Ωk
−P

(2)
D and this may alter in an unpredictable way the sign

of the eigenvalues with smaller magnitude, i.e. this may alter the reconstruction.

In order to deal with this situation, we quantify how much the matrix P̃
(2)
Ωk
− P̃

(2)
D

is positive semi-definite through the so-called sign index sk defined as:

sk=̂

M∑
j=1

λk,j

M∑
j=1
|λk,j |

(5.9)

where λk,j is the j-th eigenvalues of the matrix P̃
(2)
Ωk
− P̃

(2)
D and M is the number

of the available eigenvalues. We notice that sk is closer to 1 when almost all relevant

eigenvalues are non-negative (sk=1 when P̃
(2)
Ωk
−P̃

(2)
D is rigorously positive semi-definite).

In addition, from perturbation theory [92], it follows that the eigenvalues that may

change their sign due to the presence of noise, are only those having a magnitude

smaller than the Euclidean norm of the noise. When the magnitude of the noise is

known or estimated, these eigenvalues can be removed from the summations in (5.9).

Finally, we highlight that the dimension (number of rows and columns) of the

matrix P̃
(2)
Ωk
− P̃

(2)
D is small because it is equal to the number of coils of the array

that, usually, is made by few elements (few tens). Therefore, a very low computational

cost (computation of the eigenvalues of P
(2)
Ωk
− P

(2)
D ) is required to compute (5.9) for

performing test (5.8).
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Figure 5.4: Block diagram of the measurement system.

.

Figure 5.5: Representation of the test domain on the top side of the PCB.

.

5.4 Inversion Examples

The experimental tests we describe in the following consist of an array made by two

coils mounted in a fully automated imaging system composed by a scanning system,

a LCR meter and a PC controlling the whole acquisition and inversion process (see

Fig.5.4).

The specimen under test is a printed circuit boards (PCB) presenting copper is-

lands, having different size and shapes, to be imaged. The copper islands are union

of 5mm×5mm elementary domains (see 5.5). These elementary domains are taken as

the Ωk during the imaging process. The sensor, that has been designed through ex-

tensive numerical simulations, is made by two pancake coils. The first coil (internal

diameter=5mm, external diameter=10.5mm, height=6.5mm, number of turns=700)
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Figure 5.6: The two coils composing the array. The smaller coil is inserted into the bigger
one.

.

contains internally the second coil (internal diameter=1mm, external diameter=4mm,

height=3mm, number of turns=180). Simulated inversions have provided that this ar-

ray gives no reconstruction errors for a noise level not greater than 50mΩ This threshold

has been achieved during the experimental test that, therefore, provide error-free re-

constructions. The excitation frequency is 30kHz, chosen to satisfy the condition of 4th

and higher order terms in (5.1) negligible. At same time, this frequency guarantees an

appropriate magnitude of the measured signal and a noise level smaller than the 50mΩ

threshold. The Monotonicity algorithm processes the experimental data providing the

reconstruction, in 0.1ms per pixel.

5.4.1 Single-face PCB

The first test is a printed circuit board where the copper (thickness 35µm) forms the

letters IP (Inverse Problem) as showed in Fig.5.7 (left). The inversion, that is showed in

Fig.5.7 (right) is error free. This is because the experimental noise level is smaller than

the threshold (50 mΩ) found by the aforementioned numerical simulations involving

the inversion of synthetic data. It is worth noting that the second order moment for a

test domain (P
(2)
Ωk

) has been experimentally measured on a 5mm×5mm copper island.

Moreover, thanks to the translational invariance of the problem, it has been sufficient to

perform the measurement of P
(2)
Ωk

only a single test domain. In the following Fig.5.8(left)

it is shown another benchmark. The reconstruction in Fig.5.8(right) is error free.
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Figure 5.7: The specimen under test (left) and its reconstruction (right). The white
pixels represent the conductive pixels. The pixel dimensions are 5mm×5mm.

Figure 5.8: The specimen under test (left) and its reconstruction (right). The white
pixels represent the conductive pixels. The pixel dimensions are 5mm×5mm.
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Figure 5.9: Representation of the test domain on the top side of the PCB interested by
the scanning (left), test domain on the bottom side of the PCB (right) under the dielectric.

5.4.2 Double-face PCB

The second test is a double-face printed circuit board. It consists of a double sided

PCB (copper, thickness 35µm) as showed in Fig.5.10 (top). The measurements are

taken from only the top side of the PCB. In this case the imaging algorithm requires

the test domains on both sides on the PCB (see Fig.5.9). The test domains on a side

of the PCB provide the reconstruction for the related side.

For instance, the test domains on the top side provide an error free reconstruction of

the top side (Fig.5.10, left column). On the other hand, the test domain in the bottom

layer provide as reconstruction the union of the pixels in the top and bottom sides

(Fig.5.10, right column). This unexpected result can be easily explained by considering

that it results P̃
(2)
Ωk, bottom

≤ P̃
(2)
Ωk, top

and, therefore, it is trivial to prove that the test

domains related to the bottom side provide a reconstruction that is the union of the

pixels from the top and the bottom sides.

In the following Fig.5.11 (top) it is shown another example of double face PCB

benchmark. The error free reconstructions are shown in Fig.5.11 (bottom).

It is worth noting that the image of the bottom of the PCB is obtained as difference

between the showed maps except the pixel which are in common between the top and

the bottom layer that is the case of Fig.5.11. This information can be retrieved by using

in the inversions test domain which present metal on both the sides of the dielectric

(see Fig.5.12).

These test domain have a signal which is comparable to those pixels of the bench-

mark which are on both the sides of the dielectric substrate. The inversion with these

new test domain is shown in next Fig.5.13. In conclusion we get all the informations

about the conductivity profile on the double-face PCB.
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Figure 5.10: Top: The specimen under test. The top side (left) directly under the probe,
and the bottom layer (right). Bottom: reconstructed image with the test domains from the
top side (left) and reconstructed image with the test regions from the bottom side (right).
For this latter inset the white pixels represent the pixels of the bottom side whereas the
grey pixels represent the pixels of the top side.
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Figure 5.11: Top: The specimen under test. The top side (left) directly under the probe,
and the bottom layer (right). Bottom: reconstructed image with the test domains from the
top side (left) and reconstructed image with the test regions from the bottom side (right).
For this latter inset the white pixels represent the pixels of the bottom side whereas the
grey pixels represent the pixels of the top side.

Figure 5.12: Representation of a test domain which presents metal on the top and on
the bottom side of the PCB.
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Figure 5.13: Reconstruction obtained with test domains which are on both sides of the
dielectric.

5.5 Conclusions

A fast inversion method for inverting eddy-current testing data has been experimentally

validated for the first time [14]. Numerical simulation of the whole imaging process (not

reported here for the sake of brevity) provide noise level threshold of about 50mΩ such

that for noise level below such threshold the reconstruction is error-free. The time

required to form the image in a single pixel is about 0.1ms. The imaging algorithm is

fully non-linear and, therefore, can treat arbitrary shapes and topologies. Moreover,

the measured data have been processed by means of pre-measured data and without

resorting to the numerical solution of the direct problem that, as well known, is time-

consuming.
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Appendix A

An Integral formulation for ECT

defect simulation in linear

magnetic materials

A.1 The Cariddi ECT numerical model

Here we describe the formulation of the numerical code Cariddi ECT which has been

brefly discussed in Chapter 2. The model takes into account the presence of linear

magnetic materials which is the case of Chapter 3 where we model a dual element

reflection probe with a ferrite magnetic circuit. The mathematical model, in the fre-

quency domain, consists of the set of the eddy current equations in linear magnetic

media:

∇×E = −jωB in Vc (A.1)

∇×H = J in Vc (A.2)

J = σE in Vc (A.3)

B = µ0H in Vc (A.4)

B = µ0(H + M) in Vf (A.5)

M = kB in Vf (A.6)

k =
µr − 1

µ0µr
in Vf (A.7)

where E is the electric field, H is the magnetic field, B is the magnetic flux density,
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J is the current density, M is the magnetization vector, Js is the impressed current

density, σ is the electrical conductivity, and µr is the piecewise constant relative mag-

netic permeability. Vc is the conducting domain, i.e. the region of space where σ 6=0,

which will be supposed simply connected in the following to fix the ideas. The region

of space where µr 6= 1 is denoted by Vf and it can be either part of Vc either outside

Vc. Outside Vc and Vf , the following equations hold:

∇ ·B = 0 in R3\{Vc ∪ Vf} (A.8)

∇×H = Js in R3\{Vc ∪ Vf} (A.9)

B = µ0H in R3\{Vc ∪ Vf} (A.10)

where Js is the impressed current density. Moreover, a suitable set of boundary

and interface conditions must be imposed. The formulation recalled here is presented

in detail in [4, 29, 93, 94, 95]. In this approach, the Faraday’s law is automatically

satisfied by expressing the electric field as:

E = −jωA−∇ϕ, (A.11)

where ϕ is the electric scalar potential and A is the magnetic vector potential

defined by Coulomb gauge:

B = ∇×A,∇ ·A = 0, (A.12)

which can be linked to the unknown current density and magnetization by:

A(x, t) =
µ0

4π

∫
Vc

J(x′, t)

|x− x′|
dV ′ +

µ0

4π

∫
vf

M(x′, t)× (x− x′)

|x− x′|3
dV ′ + As(x, t) (A.13)

where As is the vector potential due to the known source Js. The magnetic flux
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density can also be expressed in terms of the sources H and M as:

B(x, t) = µ0
4π

∫
Vc

J(x′,t)×(x−x′)
|x−x′|3 dV ′ + µ0M(x, t)− µ0

4π

∫
vf
∇ ·M(x′, t) (x−x′)

|x−x′|3dV
′+

µ0
4π

∫
∂vf

M(x′, t) · n̂ (x−x′)
|x−x′|3dS

′ + Bs(x, t)

(A.14)

where Bs is the magnetic flux density due to the known source Js and particular

care must be taken to calculate the contribution of ∇ ·M if M /∈ L2
div(Vf ), where

L2
div(Vf ) is the space of vector fields that are square integrable in Vf together with

their divergence. Imposing the electric and the magnetic constitutive equations using

the weighted residual approach, we obtain the following integral formulation of the field

problem in terms of the sources J and M:

∫
Vc

(ηJ−E) ·WdV = 0, J ∈ S, ∀W ∈ S (A.15)

∫
Vf

(M− kB) ·WMdV = 0, M ∈ L2(Vf ), ∀WM ∈ L2(Vf ) (A.16)

where η=1/σ is the electric resistivity, S = {J∈L2
div(Vc), ∇·J = 0 in Vc, J·n = 0

on ∂Vc}, Note that the condition J∈ S, which implies the continuity of the normal

component of J, comes from (A.15) and the continuity of the tangential components of

H. On the contrary, the condition that also the weighting function W∈S is a numerical

choice, which allows to remove the contribution of the electric scalar potential in (A.15).

The numerical solution of (A.15)-(A.16) is obtained for a given discretization of Vc

and Vf in terms of a finite element mesh. The condition J∈ S is imposed expanding

J =
∑
k

IkJk on a set of basis functions Jk’s which in turn belong to S. This is guaranteed

by introducing the electric vector potential T, such that ∇×T = J, and expanding it

on an edge element basis Nj , as T =
∑
k

IkNk [29]. Doing so, the coefficient Ij is the

line integral of T along the edge j. The uniqueness of T is guaranteed by zeroing the

degrees of freedom associated to the edges of the tree of the graph made by the nodes

and edges of the finite element mesh. Only the coefficients related to the edges of the

co-tree are retained. Any of these coefficients, say Ik, is then the current flux linked

by the loop closed by the edge k of the co-tree with the branches of the tree. It is also
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straightforward to enforce the additional condition required to the functions of S:

J · n = 0 on ∂Vc (A.17)

If the tree is formed firstly connecting boundary nodes with boundary edges, for a

simply connected region, all the co-tree edges on the boundary close loops completely

laying on ∂Vc, and therefore the corresponding coefficient must vanish. Multiply con-

nected regions can also be automatically treated as discussed in [96, 97]. In this way,

the basis functions Jk = ∇×Nk of the current density automatically belong to S, and

so does J. The degrees of freedom Ik of the expansion

J =
∑
k

Ik∇×Nk (A.18)

have the following property. Given a mesh facet f , let k1, ..kr be the indices of the

active (i.e. non vanishing) edges which are part of the contour ∂f of f . Then, the

current flux through f is simply

Gf = ±Ik1 ± ...± Ikr (A.19)

where the signs depend on the relative orientation of the edges and ∂f.

The magnetization is supposed to be piecewise constant and is therefore represented

using scalar pulse functions pk(x) as:

M(x) =

3Ne∑
k=1

MkPk(x) (A.20)

where Pk(x) is a vector pulse function defined as

Pk(x) = pj(x)̂iα, α = x, y, z (A.21)

whereas the scalar pulse functions pj(x) is defined as:

pj(x) =

{
1, x ∈ jth element of Vf
0, x /∈ jth element of Vf

(A.22)

Adopting the Galerkin method, i.e. choosing the W’s equal to the basis functions

Jk’s, and the WM ’s equal to the basis functions Pk’s , Eqs (A.15,A.16) can be written
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as:

(
R+ jωL

)
I + jωFM = jωQi (A.23)

(
D − kE

)
M − kF T I = kNi (A.24)

where I = {Ik}, M = {Mk}, with Mk = {Mk,x, Mk,y, Mk,z}, i={ik}is the vector of

the external coil currents and

Lij =
µ0

4π

∫
Vc

∫
Vc

∇×Ni(x) · ∇ ×Nj(x
′)

|x− x′|
dV dV ′ (A.25)

Rij =

∫
Vc

∇×Ni(x) · η∇×Nj(x)dV (A.26)

Qik =
1

ik

∫
Vc

∇×Ni ·A0k dV (A.27)

Fij =
µ0

4π

∫
Vf

∫
Vf

∇×Tj(x) · (Pi × (x− x′))

|x− x′|3
dV dV ′ (A.28)

Eij = µ0

∫
Vf

Pi ·PjdV −
µ0

4π

∫
∂Vf,i

∫
∂Vf,j

(Pi(x) · n) (Pj(x
′) · n′)

|x− x′|
dS dS′ (A.29)

Dij =

∫
Vf

Pi ·PjdV (A.30)

Nik =
1

ik

∫
Vf

Pi ·B0
kdV (A.31)

in which ∂Vf,i is the surface bounding the element where the shape function Pi is

located and B0
k is the magnetic induction produced in the vacuum by the k-th coil.

Hereafter

Z∗I = jωQ∗i (A.32)
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where

Z∗ = R+ jωL∗ (A.33)

L∗ = L+ FSF T (A.34)

Q∗ = Q+ FSN (A.35)

S = k
(
D − kE

)−1
(A.36)

As a first step, we calculate the solution of the electromagnetic problem without

the flaw. Analytical solutions are available for particular forms of the conducting struc-

tures, e.g., for an indefinite plate [35]. These analytical solutions provide acceptable

approximations in most practical cases.

Otherwise, if the edge effects are not negligible, or the shape of the specimen is not

canonical, the unperturbed field quantities can be determined numerically by solving

(A.32) in absence of cracks, i.e. by expanding the current density J0 in terms of shape

functions Jk‘s, defined in Vc, in absence of defects (J0 =
∑
k

I0kJk). In this way, equation

(A.32) becomes:

Z
0
I0 = jωQ∗

0
i (A.37)

where Z
0

= R
0

+ jωL∗
0
is the impedance matrix for the specimen without defects.

The subscript “0” indicates that the matrices and the solution coefficients are calculated

in the absence of the crack.

The second step for the solution of the forward problem is the determination of

the modified eddy current pattern due to the presence of anomalies. In principle, the

desired result might be obtained by calculating the eddy current density induced by

the exciting coil in the presence of the crack, obtaining the corresponding signal, and

subtracting the signal obtained without the flaw. However, to avoid cancellation errors,

we exploit superposition, assuming directly the variation δJ of the eddy current density
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as unknown:

J = J0 + δJ (A.38)

The correction δJ can be determined on the basis of the constraint imposed by the

presence of defects. Among possible anomalies we distinguish between thin cracks and

volume cracks. If the thickness of the defect is small when compared not only to its

depth and width but also to the skin depth at the exciting frequency, the defect can be

described as a surface Σd, discretized via a set of finite element faces characterized by

the constraint:

J · n = 0 on Σd (A.39)

where n is the normal unit vector on the face. A volume crack is a more complex

structure defined by a region Ωd characterized by the constraint

J = 0 in Ωd (A.40)

Actually, if the shape of the crack would be known in advance, an ideal volume crack

could also be associated to the constraint

J · n = 0 on ∂Ωd, (A.41)

where the computational domain should be restricted to the region Vc\Ωd. However

this last constraint is not convenient in view of an efficient modelling of the perturbed

problem using superposition. In this case, in fact, the computational domain includes

also the region Ωd. Since the identification of defects (the inverse problem) requires

to solve the direct problem many times for the same specimen with different possible

defects, a brute force approach, i.e. the solution of problem (A.32), with the boundary

condition (A.17) imposed on ∂Vc∩Σd∩∂Ωd is not efficient at all, because the change of

Σd for surface cracks and/or Ωd for volume cracks implies redefinition of the tree and

reassembling of the matrices.

We expand δJ in terms of the solenoidal shape functions used for the flawless plate:

δJ =
∑
k

δIkJk (A.42)
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For a thin crack, the flux δGi =
∫
fi

δJ · n̂i dSof a given current density distribution

δJ across any elementary facet fi can be expressed as the circulation of δT (δJ=∇×δT)

along the edges identifying the face. As the values of the unknowns δIk‘s represent the

line integrals of δT along the active edges, the net current crossing an elementary face

is given by the algebraic sum of the unknowns associated with the active edges of the

face. Therefore, to satisfy Eq.(A.39), the normal component of δJ must be just the

opposite of the unperturbed one across the crack, leading to the constraint

P
f
δI = −G0 (A.43)

where P
f

is a (m, n) sub-matrix of the edge-facet incidence matrix with coefficients

0, +1 or -1 such as

Pf ,ij =

∫
fi

n̂i · JdjS (A.44)

Note that G0 = P
f
I0 if J0 is expanded by using the same shape functions Jk‘s

defined on the discretization where the constraint is imposed.

In a similar way, we can describe the current density J0inside Ωd using the expansion

(A.18), by requiring that
∫

Ωd
‖J (r) + J0 (r)‖2 dr is minimum. This condition yields the

linear system

P
d
δI = −w0 (A.45)

where

Pd,ij =

∫
Ωd

Ji · Jdjr (A.46)

w0,i =

∫
Ωd

Ji · J0dr (A.47)

It is worth noting that (x) is equivalent to imposing J(r)=-J0(r) in Ωd in weak sense.

We also notice, as before, that w0 = P
d
I0 if J0 is expanded by using the same shape

functions Jk‘s represent J in (A.32).
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In conclusion, the problem is described by the following system of algebraic equa-

tions

ZδI = 0 (A.48)

with the constraint P
f
δI = −G0for a thin crack, and the constraint P

d
δI = −w0

for a volume crack.

The impedance change of a given couple of exciting coils, associated to the presence

of the flaw, is given by:

δZkl =
jω

2ikil
[(Q∗

k
)T δIlik + (Q∗

l
)T δIkil] (A.49)

We now summarize the numerical method proposed in [4, 95] to solve the problem.

This method is very efficient when the solution for many different trial defects is re-

quired. Indeed, by a block partition of the impedance matrix, the unknowns outside

the crack region can be eliminated, with the subsequent reduction of the order of the

system that should be solved at any step of the inversion procedure.

We initially refer to a volumetric flaw. We note that in practice it is often possible

to identify a search region VT containing the defect in its interior. The identification

of this tentative region is fairly easy from the experimental viewpoint. Therefore, we

assume that VT is a possibly small subset of VC and that Ωd is an arbitrary subset of

VT , i.e. Ωd ⊆ VT .

Let P
T

and wT be the matrix and vector defined by (A.46) and (A.47), respectively,

but referred to VT . Let us define the following change of variables:

δI = K
T
x+RT

T
y (A.50)

where the columns of the matrix K
T

span the null space of P
T

and the rows of R
T

are an orthonormal basis for the space spanned by the rows of P
T

. In this way, the

unknown can be partitioned into two sets: one is related to x and it accounts for current

densities flowing externally to VT , asP
T
K
T
x = 0 for any x. The other one, related to

y, takes into account the current densities flowing in V E
T , defined as the union of the

elements of the finite elements mesh sharing at least one active edge with VT .
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For a given Ωd ⊆ VT , we have also that P
d
K
T

= 0, because the columns of K
T

represent current densities that are vanishing in VT and, therefore, also vanishing in

Ωd. Thus, substituting (A.50) in (A.45), we have

P
d
RT
T
y = −w0 (A.51)

This constraint can be imposed by representing the solution of (A.29) as:

y = K̃
d
q + y

0
(A.52)

where the columns of the matrix K̃
d
span the null space of P

d
RT
T

and y
0

is a par-

ticular solution of (A.51).

By substituting (A.51) in (A.49) we have the following change of variables

δI = K
T
x+RT

T
K̃
d
q +RT

T
y

0
(A.53)

where the unknowns are x and q, and an impressed source in Ωd: is explicitly

introduced. In (A.52) x, as already remarked, represents current densities flowing in

VC\VT , q current densities flowing in V E
T \Ωd and y0 represents the best approximation

of -J0(r) in Ωd. Applying the Galerkin method to (A.29) with the new shape functions

following from (A.53) we easily obtain:

Z
xx
x+ Z

xy
K̃
d
q = −Z

xy
y

0
(A.54)

K̃
T

d
Z
yx
x+ K̃

T

d
Z
yy
K̃
d
q = −K̃T

d
Z
yy
y

0
(A.55)

where

Z
xx

=̂KT
T
ZK

T
(A.56)

Z
xy

= ZT
yx

=̂KT
T
ZRT

T
(A.57)

Z
yy

=̂R
T
ZRT

T
. (A.58)
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Solving (A.54) with respect to x and substituting in (A.55) leads to:

K̃
T

d

(
Z
yy
− S

yy

)
K̃
d
q = K̃

T

d

(
S
yy
− Z

yy

)
y

0
(A.59)

x = −Z−1
xx
Z
xy

(
K̃
d
q + y

0

)
(A.60)

where

S
yy

= Z
yx
Z−1
xx
Z
xy
. (A.61)

In case of a thin crack, the partition of the unknowns is much easier. As for the

volume flaw, we identify a set ΣT of all possible candidate crack facets, i.e. the set

of all mesh facets which could possibly belong to the crack. Consequently, we assume

that Σd is an arbitrary subset of ΣT , i.e. Σd ⊆ ΣT .

In this case, every elementary facet fi of ΣT is characterized by an elementary

flux Gi and it is easily possible to directly identify the subset G0 characterizing Σd.

Therefore, we introduce the following change of variables, analogous to eq. (A.50):

δI = K
T
x+W

b
δGb +W

f
δGf (A.62)

where now the columns of the matrix K
T

span the null space of P
f
, defined by

(A.44) but referred to ΣT ,
[
W

b
W

f

]
= P

f
, and δGb (δGf = − G0) are the current

fluxes (unperturbed current fluxes) through the mesh facets belonging to ΣT \Σd (to

Σd). Having identified the unknowns δGb in ΣT \Σd, the analogous of the Eqs (A.54)-

(A.55) can be easily written as

Z
xx
x+ Z

xb
δGb = Z

xf
G0 (A.63)

Z
bx
x+ Z

bb
δGb = Z

bf
G0 (A.64)

where

Z
xx

=̂KT
T
ZK

T
(A.65)
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Z
xy

= ZT
yx

=̂KT
T
ZW

y
(A.66)

Z
by

=̂W T
b
ZW .

y
(A.67)

The efficiency of the proposed numerical scheme comes from the fact that system

(A.59) is small because of the order of the number of DoF’s in region VT that, by

assumption, is a small part of the whole conducting domain Vc.

Moreover, for a given VT , matrices Z
xx

, Z
xy

, Z
yy

, S
yy

and Q
y

are independent

from V0 and can be computed once for all. On the other hand, each time that Ωd is

changed, the re-computation of the matrix K̃
T

d

(
Z
yy
− S

yy

)
K̃
d

as well as the vector

K̃
T

d

(
S
yy
− Z

yy

)
y

0
(see (A.59)) requires a modest computational cost because it in-

volves multiplications of matrices of the order of the number of DoF’s in region VT .

Similarly, the computation of y
0

involves the solution of a small system.

Finally, we notice that the number and the shape of the defects are not limited by

any further modelling assumption, the only constraint being that Ωd should be a subset

of volume elements of VT. Similar considerations hold true for the system of equations

(A.63)-(A.64).
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